A PIEREIC URFACE OF REVOLUTION IN OPTICAL DE IGN

By

Devia George west EL EORD.GULLEY.

This dissertation is entered for the degree of Master of Science in the University of London.

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed a note will indicate the deletion.

ProQuest 10107223
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

CONTHNT

pt. I Introuuction and Darly Development.
pt. II Development of the Schmiat.
pt. III Two mirror systems and more complicated nirror plate systems.
pt. IV Genera Aspheric design and Ray tracinc.

Part I. 4 Pter a brief introduction to aspheric surfoce, the early mork in the seventeenth century is described and the emergence of the ontical path equality principle. The Abbe sine theorem in the nineteenth century i how to lead to a number of aspheric aplanatic objectives in which this theorem is ful silled. The schmiat telescope, an anestigmatic svstem of high perfomance is
consilered briecly in conjunction with some variations of it.

Part II. The Schmidt camera is considered in more detail, including descriptions of a number of authors' methods for deriving the equation of the corrector plate, and the pos ibilities in balancing the aberpations over the whole field. A number of the Schmidt variations are described including field flattened and folded types.

Part III. The de igns of two mirror and more complicated mircor piste systems are snalysed by
first order and other methods, and the use of aspheric surfaces to provide field correctors for large paraboloid mirrors described.

Part IV. The general first order design of aspherics with the see-saw diagram and the application of differential methods of correction, are fonowed by methods for obtaining axial stigmati m and aplanatism. Lastly a number of ray tracing method are examined, most of which involve the
u e of an electronic computor.
pt. I Introluction and Early Develoment.

Spheric 1 and aspheric 1 Surfieos.
Eaply hork of Descartes, fuycens and others in the seventeenth century.

The ine theorem and the de igns of Schwarschila
and those influenced by him on aplanatic two mirror systems.

The ocmilt Telescope.
The chmilt-..right Short Teiescope.

Shheric 1 an aspheric I Surpros.

Surfaces which may be usol in Optical
instruments, must be, in general, accurate in contour to the orler of a wavelength, and the development of methots of producing upheres to thi toler nee hae resulte in the modern optical industr 's ability to make la es of higa quility in iurge numbere. Nevertheless, although spherical surfaces are the essiest to make, yet they ill n it, ithout correction, realt in the fomation of a gooi image, the axial monochronatic aberration they poduce, in fact, being termed spherical.

seventeenth century.

In the first half of the seventeenth century it was reali ed that to poluce an image without Spherical aberration, more complicated curves moxid be reouired, and in 1637 Descartes, although labouring unier the difficulty of having an insufficient knowledge of the nature of light, publi hel in La Dioptique an account of the "shapes Which transparent bodies should have to refract rays in every way servicable for vision". lie determinei the curves, which fumi h aberrationless image fomation for a siven pair of conjugate points, generally of the fourth legree, but degenerating in certain eases to conic sections, and in his leteminations made no u e of the principie of enual path lengths, essentially a wave theory conception, adopting geometricul methods only. The Construction is as folloas:

If through the pt. B on the ellipse one Iraw the straight lines LBG and CBE, which eut each other at right angles and of which the one LG divides the angle HBI into two ecual hives, the other CE will touch the ellipoe at B.

If through B is draw a line BA parallel to the major axis $D K$ and equal in length to BI, and if are arawn from the pt. A and I to $L G$ the two perpeniiculurs $A L$ and $I G$, these will stand in a fixed propoction to $D K$ and HI, hich is a constant ratio.

Hence if the line $A B$ is ar ruy of light, ant the ellipae DBK is the section of a solid transparent body through wich the rays pass more easily than through air, in the same proportion as the line $D K$ is greater than HI, then this pay AB will be so deflected at B that it will travel towarls I. And ince the pt. B. can be selected at will, therefore all ruys purallel to DK will pass through the pt. I. Now every ray minich is irected towards the centre of s sphere uffers no copraction. Hence ith centre I one iravs a circle of any required radius, then the line DB and QB turning about the axis D_{2} will iescribe the shape which a lens should have to focus in air, at the pt. I all the rays which were parallel before falling on the lens.

Just what Descartes meant by rays pas ing more ea ily through s olid body than air is obecure, he rogarled iight as an "instantan ously propagatex
statical pres upe in a granulated continuum". He arived however at the corpect result.

By imilar means Descartes gave the properties of the hyperoola in image foming lense.

At about the same time Warin Mersenne, a Hinorite friap, suggested in l'iamonie Universeile 1636 a telescope consisting of tio paraboloils, which is interesting in that it uses the second mirror as an eyepiece.

Mersenne teloscopes of two confocal paraboloids

an objective consisting of a primary paraboloia centrally perforated and a econdary concave ellipsoid.

At about this time (1668) Navton, who hai been studying Dispersion, concluaing that it was not possible to correct chromatic aberration by combinations of lasse, turned his attention to the reflecting telescope and produced his type in anich a paraboloia is combinea ith a mall flat.

A little later Cascefain (1578) suggested

a telescope objective consisting of a paraboloidal primary an a convex hyperbolic secondary.

In 1690 Huygen's published his Treatise on Light, in which Chapter VI is headed "On the figures of the Transparent bodies which serve for refraction anl for reilexion."

In this is given a Eraphical method for constructing curves to remove the spherical aberration, the method of optical path difference being usea for the fir time. The construction is as follows:-

Suppose a system is to be corrected by means of its last surface.

$$
\text { Given the pole of this surface } A_{K} \text { and }
$$

its paraxial radius.
Then the paraxial focus is given by $B^{1}{ }_{K}$. Now if a ray is traced through the other surfaces to arrive at the last but one surface at P_{n-1}, the ray is refracted at P_{K-1} and dram on to meet the axis in $B^{1} K_{-1}$.
Computing Op the paraxial path and Om the marcinal.
path up to ${ }^{\mathrm{r}} \mathrm{K}-1$
Then $O p$ - Om equals the O.P.D. assuming that image $i^{n_{K}} \operatorname{inn}_{K}$.

Construct the pt. B where $P_{\mathrm{K}-1} B=\frac{00-0 m}{n_{K}}$ perpendicular ${ }_{a}$ on to $P_{K-1} B_{K-1}$ at F from $B_{K}{ }_{K}$. Measure it.

Compute $B^{1} K^{F} \times \frac{n^{1} K}{n K}$ and with centre B and this radius draw a circle

Draw the line $B^{1} \mathrm{KC}$ to jut touch this circle
Then the t. C is on the required curve.

By con tructing imilar points for other rays
a curve may be built up; using thi method Huygens are a lens which had one sherical urface and one aspherical urface.

Such methods of construction, however,
are not accurate enough for most optical work. Systens of this sort moreover are in general not aplanatic, for it is well knom tat the inecondition is fulfilled for an infinitely di tant object if the points of intersection of all incilent rays parallel to the axis, with their corresponding emergin rays all lie in a circie of radius F^{I} and centre F^{1} the second focal point. Thus a lenso the Descartestype, for example, can never be uplanatic ince the points of intersection of incilent and refracted rays lie on the cartesian surface.

The sine Theocem and the designs of schac child

 and tho se influence by him, on aplanatic two mirror zystems.The discovery of the Abbe Helmholtz'
sine theorem in 1873, permitted systems to be computed that were corrected for pherical aberration and coma. Thus the statement of the optical path equality and the sine conlition are the starting points of an aplanatic two mirror system by schwarzschild in 1905. Schwapzochila stapt by saying: "ive shall have to try to culculate a mirror system for an aperture of any siwe which is trictly free from any spherical aberration and fulfills at the Same time the sine condition, as with the latter conlition the li sappearance of the coma is alo secured. The focu; of the required system mu t be according to Abbe's lescription, an aplanatic point, wherefore the entire system may be called aplanatic."

The two mirpors are represented in the figure.

Let the focal length be unity
Let the small mirror be S, and the large S^{\prime}
For optical path equality $\varphi+\varphi^{\prime}+x^{\prime}=2(e+1)$
For the sine condition

$$
\frac{y^{\prime}}{\sin \alpha}=\text { constant }
$$

Putting this constant equal to one
From the figure

$$
\begin{aligned}
& \frac{1}{Q} \frac{d Q}{d \alpha}=\tan \beta \\
& 2 \beta^{\prime}=\alpha+2 \gamma \\
& x^{\prime}+Q \operatorname{sos} \alpha=Q^{\prime} \cos 2 \gamma \\
& y^{\prime}=Q \sin \alpha+Q^{\prime} \sin 2 \gamma
\end{aligned}
$$

The equations above contain the information for the problem Eliminating $\gamma^{\prime} x, 4$, using $1,3,4$,

$$
\begin{array}{ll}
\sin \alpha=Q \sin \alpha+Q^{\prime} \sin (2 \beta-\alpha) & -6 \\
Q+Q^{\prime}+\psi^{\prime} \cos (2 \beta-\alpha)-Q \cos \alpha=2(e+1) & -7
\end{array}
$$

eLiminating A $^{\prime}$

$$
\begin{aligned}
& 2(e+1)=Q(1-\cos \alpha)+(1-Q) \sin \alpha \cot \left(\beta-\frac{\alpha}{2}\right) \\
& \tan \beta=\tan \frac{\alpha}{2} \frac{e+1-q+\cos ^{2} \frac{\alpha}{2}}{e+\cos ^{2} \frac{\alpha}{2}}
\end{aligned}
$$

from equation 2 is obtained the following first order differential equation for the meridional mirror
Then putting $\frac{1}{4} \frac{d 9}{d \alpha}=\sin \frac{\alpha}{2} \frac{4+1-9+\cos \frac{\alpha}{3}}{2+\cos ^{2} \frac{\alpha}{2}}$

$$
\xi=\frac{1}{\cos ^{2} \frac{d}{2}} \text { so } \frac{1}{q} \frac{d Q}{d \xi}=\frac{(e+1-9) \rho+1}{2 \delta+1}
$$

and substituting again
It follows $\frac{d \eta}{d \xi}=\frac{5-2}{1+e s}$

$$
\frac{f}{s}=2 \quad-8
$$

or $(1+e \xi) \frac{d \eta}{d f}+\eta=\xi \quad$ (The integrating^is $(1+e \xi)^{\frac{d}{e} \cdot 1}$)
Hence integratig this equation

$$
\begin{aligned}
\eta(1+e \xi)^{\frac{1}{e}} & =\int d \xi \int(1+e f)^{\frac{1}{e}-1} \\
& =\int \frac{d \xi(1+e \xi)^{\frac{1}{e}}-(1+e \xi)^{\frac{1}{e}-1}}{e} \\
& =\frac{(1+e \xi)^{\frac{1}{e}+1}}{e(c+1}-\frac{(1+e)^{\frac{1}{e}}}{e}+C \\
\text { or } \eta & =c(1+e \xi)^{-\frac{1}{e}}+\frac{\xi-1}{e+1}
\end{aligned}
$$

Substituting back the original variables, the poler equation of the mirror S is obtained

$$
\frac{1}{Q}=\frac{\sin ^{2} \frac{\alpha}{2}+C\left(e+\cos ^{2} \frac{\alpha}{2}\right)^{-\frac{1}{2}}\left(\cos ^{2} \frac{\alpha}{2}\right)^{\frac{1}{2} e}}{\frac{1}{e}}
$$

There now remains to express x^{\prime} as a function of α and to obtain the form of the mirror S^{\prime}. Aron equation '0' x ' $=2(e+i)-Q-Q$ '
from equations 6 and 7 it follows through elimination of β and therewith $Q^{\prime}=1+\varepsilon-Y \sin ^{2} \frac{\alpha}{2}+\frac{\sin ^{2} \frac{\alpha}{2} \operatorname{sios} \frac{\alpha}{2}(1-Q)^{2}}{1+c-Q \sin ^{2} \frac{\alpha}{2}}$

$$
x^{1}=e+1-Q \cos ^{2} \frac{\alpha}{2}-\frac{\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{x}{3}(1-Q)^{2}}{1+e-Q \sin ^{2} \frac{\alpha}{2}}
$$

$$
\text { or } x^{\prime}=e+1 \cdot \cos ^{2} \frac{\alpha}{2} \cdot \frac{Q\left(1+e-2 \sin ^{2} \frac{\alpha}{2}\right)+\sin ^{2} \frac{\alpha}{2}}{1+e-Q \sin ^{2} \frac{\alpha}{2}}
$$

substituting for Q from equation 9

$$
\left\{\begin{array}{l}
x^{\prime}=e-1 \cdot \frac{\sin ^{1} \alpha}{4(e+1)} \cdot \frac{1}{e(e+1)^{2}}\left(e+\cos ^{2} \frac{\alpha}{2}\right)^{2+\frac{1}{e}}\left(\cos ^{2} \frac{\alpha}{2}\right)^{-\frac{1}{e}}-10 \\
y^{\prime}=\sin \alpha
\end{array}\right.
$$

These are the rectangular coordinates of the mirror s° as
a function of α
To determine the constants e and c consider a paraxial ray where $Q_{0}=\lambda=$ distance of the focal point from the mirror S $\varphi_{0}-x_{0}^{\prime}=\varphi_{0}^{\prime}=d=$ distance between the mirrors Then it follows for $\alpha=0$ in ' $9^{\prime} \theta$ ' 10 '

$$
\frac{1}{8}=\varepsilon(1+e)^{\frac{1}{e}} \quad x^{\prime}=e+1-\frac{e+1}{e}
$$

so $e+1=d \quad c=\frac{d^{\text {af. }}}{A}$
Equation 9 is now developed as a power series

$$
\frac{P}{r}=1+\sin ^{2} \frac{\alpha}{2}\left(1+\frac{1-1}{a}\right)+\sin ^{4} \frac{\alpha}{2}\left[\left(1+\frac{1-1}{a}\right)^{6} \cdot \frac{1}{2}\right]+d c-12
$$

From' to'
$x^{\prime}=d \cdot \lambda \cdot \frac{1-\lambda}{d} \sin ^{2} \frac{\alpha}{2}+\frac{1}{d}\left(1-\frac{\lambda}{2}\right) \mathrm{sm}^{4} \frac{1}{2}+$ win
Now the rectangular coordinates for S and S^{\prime} are

$$
\left\{\begin{array}{l}
x=Q \sin x \\
y=Q \sin x
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=\sin x
\end{array}\right.
$$

$$
-14
$$

Using equation 9 a power series is developed for sin $\frac{\pi}{2}$ with respect to y and y^{\prime}
Hence

$$
\left\{\begin{array}{l}
x=-\lambda-\left(1 \frac{-\lambda}{d}-1\right) \frac{y^{2}}{4}+\left\{\frac{1}{4 d}-\frac{1-\lambda}{2 d}+2\left(\frac{1-\lambda}{2 d}\right)^{2}\right\} \frac{y^{4}}{8 e^{3}}-15 \\
x^{\prime}=d-\lambda-\frac{1-\lambda}{4 d} 4^{3}+\frac{1}{32 \alpha} y^{, 4}
\end{array}\right.
$$

To obtain a practical application Schwarzschild puts

$$
\lambda=5 \quad d=1.15
$$

For the mirror S

$$
\begin{aligned}
x & =Q \cos \alpha, y=Q \sin \alpha \\
\omega_{1}+h \frac{1}{Q} & =\frac{4}{5} \sin ^{2} \frac{\alpha}{2}+\frac{2\left(\cos \frac{\alpha}{2}\right)^{0}}{\left(1-\frac{h}{5} \sin \frac{\alpha}{2}\right)^{y}}
\end{aligned}
$$

For the mirror S^{\prime}

$$
\begin{aligned}
& x^{\prime}=\frac{5}{4}-\frac{\sin ^{2} \alpha}{5}-\frac{\frac{1}{2}\left(1-\frac{4}{5} \sin ^{2} \frac{\alpha}{2}\right)^{6}}{\left(\cos \frac{\alpha}{2}\right)^{8}} \\
& y=\sin x
\end{aligned}
$$

Using the e equations Schvaraschild pooluees
a pair of tables:-
mal mir:or.

5 $3 / 6 . \quad 87.756 \quad .759 \quad .761 \quad .759 \quad-1 \quad 0$
$101 / 3.3 \quad 173.648,3.004 \quad 3.025 \quad 3.004-11 \quad 0$
$15 \quad 1 / 2.2358 .819 \quad 6.42 \quad 60702 \quad 6.643-62 \quad=2$
$20 \quad 1 / 2.7 \quad 34.020 \quad 12.518 \quad 13.724 \quad 12.532-196 \quad-2$.
$25-1 / 2.4 \quad 42.618-17.431 \quad 17.893-17.479-162-18$
$30 \quad 1 / 2.2-500.000 \quad 26.12-25.063-24.264-235-136$

These tables show that up to a Relative aperture of $\sqrt{1 / 3}$ the mirpors may be ellipsoi lazand hyperboloid \& even beyon that up to a Relative
 a. fen nundreath of a millimetre. This is of importunce from the manufacturing point of vien. The field in this telesope is restricted by the astigmatism and from the practica point of vien, as the photographic piate is ituatelmizay between the two miprors a sky baftle or exten ion is necesuary to peovent exposure to 11 rect licht fron the sky. Only tao of chwerschill's de igns sem to have been attemptor, one of $2{ }^{\prime \prime}$ aperture at the Univer ity of Iniians, and one of Is" at Brom Univerity, Rnode Islund. An altemative to chamaschill's systom Wus proposel by h. Couder of the daris Observatory in 2936 in wich he computed the curve renured to Qive sero astigmutiom on a curved focal urface. Iinneman of Gottingen (1005) gave the lesign for an aplanatie iens, wich is founlea in charasschili' treatnont, in wich win aperture of $\overrightarrow{2} / 8$ is obtinet.

```
A rather interesting contribution was 8 made in 1908 by Arthur C. Lunn, who investigated ystems of Conic sections using nirrors. In his preamble he says "For convenience of testing it is desirable and in existing constructions apparently universal for each mirror separately to be free from axial aberpation, through being a quadric surface of revolution having as conjugate optical foci, its own geometry foci. The investigation concerns the question, how fap is it possible by suitable choice of the focal lengths of the component mirrors to dimini h the errors due to leparture from the ine-ratio", and after a prool by induction he states his result. "In any optical combination consisting of a centred system of reflecting urfaces of revolution, each of which i indivi dually corrected for axial aberpation, the relative zones of magnification at given points in the einal annular sperture are ilentical with those of a single mirpor giving the same paxial magnification." After Schwarzschila had drawn up general conditions for the aplanation of reflecting systems, Siedentopf explained a particular case and showed
```

that for parallel incilent rays aplanatic image formation occups by replection at a cardioid in conjunction with peflection at a spherical surface; these properties forn the basis of the deiss cardioil condenser, in which the cardioj surface being a naprow one is sufficiently represented by a spherical ring. Aspheric surfaces at about this time were used to a limited extent where extreme accuracy was not required, special spectacles for cataract, eyepieces in which one surface was made Aspheric to reduce the spherical aberpation, and of course, searchlights and condensers.

After the Fir t Vorld War Chretien, a French optician, published the design for a new aplanatic telescope, produced at the request of, and in conjunction with Ritchy, the famous American astronomer, in wich the esign is basically a Cassegrain type as opposed to the schwarzschild Gregorian.

In the development, Chretien, after paying tribute to Schwarzschild's design, uses slightly different variables, but a very imilar proceduce, to arrive at a set of equations for the big mirror.

Chretien's equations for the mirror are $\left\{\begin{array}{l}x=e-\frac{x(1-1)}{e} \cdots e^{-(1-2 e)}(e \cdot x)^{\frac{1-2 e}{1-e}}(1-A)^{\frac{1}{1-2}} \\ y=\sin \mu\end{array}\right.$
where

$$
\begin{aligned}
& \pi=\operatorname{cm}^{2} \frac{\mu}{2} \\
& e=\text { dist. between mirrors } \\
& m=\text { dist. of plate behind mirror }
\end{aligned}
$$

Compared with Schwarzschild's equations.
$\left\{\begin{array}{l}x^{\prime}=e+1-\frac{\sin \alpha}{4(e+1)} \cdot \frac{1}{(e+1)^{2}}\left(e+\cos ^{2} \frac{\alpha}{2}\right)^{2+\frac{1}{2}}\left(\cos ^{2} \frac{\alpha}{2}\right)^{-\frac{1}{e}} \\ y^{\prime}=\sin \alpha\end{array}\right.$
where $\quad \equiv \mu$

$$
e+1=\text { dist. between mirrors }
$$

$$
\text { c } \quad=\text { constant depending on distance }
$$ between mirror and plate

Chretien then gets a power series for the equations in a imilar manner and also a series Porthe anell mipror.

The Ritchy-Chretien telescopes work at an aperture ratio of $F / 7$ comparel with $F / 3$ or less for the Schwarzschild. They have, however, practical advantazes over it. everal Chretien telescopes were mate in America and age in Prance.

Bureau and swings have publi hei a treatment similar to Chretien's but for two conjugate points neither being at infinity.

The Americans, both profes ional and amateur, have been foremost in the field of telescope makimg, and quite detailed description, have appeared in "Scientific American" of the Ritchy-Chpetien
-
telescopes. A type of two nirpor system with the secondary opherical ant primary aspherical was proposed by Allan A. Kirkham. This has the if saivantage of even more coma than the standard Cagegrain composed of conics. It is, hovever, easier to make.

The Schmitt Telescone.
By far the most uccessful hort-focus
photographic telescope is the schmilt, first deacribed in 1938 in a paper by Bermhavd chandt. The ajstem conists of a spherical mirror in front of which is placed a thin correction plate which corrects the spherical aberration of the mirror, and has noarly no power. Apparently the ilea of usins an espheric plate to compensate spherical aberration in a mirpor hal been suggested before, although it aeems doubtful if chmi it knew this. Moreover chniat placei his plate at the centre of curvature of the nirpor, thus eliminsting at the sane time coma, astigmation and aistortion; furthermore schmilt was able to make his aspheric plate. Tinere pemaina only curvature of field, and this may be overcome by using thin filme or plates Which can be spruns in a holder to follow the curve. In his paper on "A High Inten ity Coma-pree Nirror Bystem", schmiat lia not give his method of conctruction, ant he closes his paper "I have ae umed in describlig thi telescope the technical ability
to make the correction profile".
Stroomgren in 1935 gave the third order
aberpations and the best equation of the plate profile. A the veilel temis for the chnidt are zero, most of his discus ion deals ith the design of the correcting surface and its colour troubles.
The spherical aberration of a mipror may be measured by the distance between the pacaxial

focus and the marginal focus, the distance Fp Fm. The as heric plate may be ficurel so a to corpect the marginal pays andorings them to the point 1 P. In thic case the contour takes the form of a plate of minimum thickness in the centre, increasing to a maximum at the edge.

This is known the first chmiat system.
Altomatively the Plate may be figured to bring
the rays to a cocus at km , with a minimum thickness at the edge, and a maximum thickness at the centre; and of cour e the late may be figured to bring the rays to a focus at any point between the two.

This is known as the seconi chmidt system. Stroemgren chose the point F and the plate contour to ive the minimum Chromatic ifference of spherical aberration. The point F is where the lisc of least
con usion lies and the height of the neutral zone h_{0} is at. 86 of the plate diameter.

The chmit-iright short Telescove.
The disadvantages of the schmidt are its long length in compariso with its focal length, and its curved field. Y Vaising of Turiku University, Finlan l, proposed the u se of a plano convex lens bs a field flattener, and the same vriter and F.B. Wright of California, apparently independently inventea a modified chniat with a length equal to the focal lencth, poeses ing, hovever, asticmatism and greater chronatic aberration, both the mirror and the plate being aspherical.
"The theory of the schmi telescope has been based on a consideration of the properties of a spherical mirror. If the theory is jeveloped alon more generil lines with no assumptions as to the shape of the mirror nd the position of the correcting lens, a whole fumily of telescopes may be obtained."

One of this fumily has the property that the focal plane is in the surface of best definition

The correcting lens is mounted at a distance from the mirror nearly equal to the focal length of the system.

The equations are derived from the

achwarzschild equations by multiplying the equation for the first optical component by $\frac{-2}{n-1}$.

$\Delta x^{\prime}=-\frac{F-M}{2(n-1) E} \frac{y^{\prime 2}}{F}+\frac{M}{16(n-1) E} \frac{y^{\prime 4}}{F^{3}}+\frac{(4 E+F) M}{192(n-1) E 2} \cdot \frac{y^{6}}{F^{5}}+$
$\Delta x=\frac{E-(F-M)}{4 E} \cdot \frac{y^{2}}{M}+\frac{M-(F-M)}{32 E} \frac{y^{4}}{M^{3}}+\frac{(E+M) M}{3+8 E^{2}} \cdot \frac{y^{6}}{M^{5}}+$

The Schmi at ease is $\mathrm{E}=\mathrm{F}+\mathrm{M}$ and in this case equation (2) reduces to a sphere us E becomes maller (2) approaches an oblate spheroil. Wright then writes dow the thira orter astigmatism anz shavs that for his telescope the tangential and sagital lines are nearly equally spacel about the Gauss plane. He estimates that for a 3° field tar images will be $9^{\prime \prime}$ in diameter. The Iength of the comera is thus reduced at the cost of a further asphericity and a con iderable reduction in the field, in comparison with the 17 chmidt, Dimitrofi ani baker ilst three wight twpe caneras in u os in merica, all working at a pelative apecture of P / t.

Pt. II Development of the Schmidt.

```
The Design of the Clssaicul Schmidt.
Aberertion balancing over the whole field.
Fiela Plattening.
Solid and thick mirror types.
Composite or meniscus chmilt.
```


The us in of the ola, icsl chmit.

The chmit Camera, as inaicated in part I,
was lescribei and proluced as long ago as 1930
13 by B. chill. Consisting essentially of a spherical airror at whose centre of curvature is placed an a spherical plate which correct the spherical aberration, the system conbincs implicity with very high performance. Hovever, in comon ith many optical le igns, the simple fir t principles tend to become obsurel in the complicity of the algebra 18 renuired in their pealisation. Linfoot in a number of papers und in a chapter in his "Recent 14 Advances in Optics" has developel a comprehensive treatment of the clas ical chmid, using a method ori inally due to Caratheolory. The latter obtained the leading aberpation of the instrument u ing the

Pact that the mirror an field urface we pact of concentric spheres whose centre lies on the pole of the corrector surf ce. This method of pherical
symmetry is acknowle fed in turn by Curatheodory
to have been age ted to him just before the Second world war phon he aus in America. Caratheodory, however, in his treatment con fillers only the fir t type of chit system, except for a short section on the chromatic aberration, where the econ chit type is introduced and a mention wen the oblique pay aberrations of the two types are compared.
Using rectangular axe t. y

The ligation of a circle touching the axis 3 , centre $t=0$
nay be written $(t-2)^{2}+y^{2}=(2 F)^{2}$

$$
\begin{equation*}
\text { or } 4 t=y^{2}+t^{2} \tag{1}
\end{equation*}
$$

Or $4 t=y^{2}+t^{2}$
Expanding by the binomial $t=\frac{y^{2}}{4 y^{2}}+\frac{y^{4}}{64} 3+$

The paraboloid whose vertex touche
the sphere formed by revolving the circle about its axis and wo se focal length is a lo F, is given by

$$
t=\frac{y^{2}}{4 F}
$$

an it will be seen that the equations lifer by the y^{4} and higher terms.

Neglecting the higher terms, the inference between the two curves horizontally is sivan by $\frac{y^{*}}{54 F^{3}}$. The paraboloid 1 mirror has the property that plane wavefront incident along its axis are reflected as spherical. Consider now a paraboloil with focal length F^{3}, who e equation is

$$
\begin{equation*}
t=\frac{y^{2}}{4 F^{\prime}} \tag{2}
\end{equation*}
$$

Subtracting (i) from (2) $\xi=y^{\prime}\left(\frac{1}{48}, \cdot \frac{1}{4 f}\right)-\frac{y^{4}}{648}$,
This difference may be produced by a bias plate figured to the profile

$$
y=\frac{25}{(n-1)}-\frac{y^{2}}{(n-1)}\left(\frac{1}{2 f},-\frac{1}{2 f}\right)+\frac{y^{4}}{32(n-1) f^{3}}
$$

putting $\quad=\frac{32 f^{3}}{70^{2}}\left(\frac{1}{2 f}-\frac{1}{2 f}\right)$

$$
\eta=\frac{y^{6}-a y^{2} 0^{3}}{32 f^{\prime}(n-1)}
$$

The trongth of an aspheric plate is defined as ($n-1$) times the coefficient of y^{*} and here equal $\frac{1}{32 F^{3}}$. The value of 'a' nay be fixed to give various pl te profile

plate may be coo en to minimi e the colour error. For a cron-glase the 1 asper ion may be con i iered as $1 / 60$ th the deviation produced by the prism effect of the plate.

Thu tron (5) $\operatorname{so-}-1) \frac{d y}{d y}=\frac{y^{3}-\frac{1}{2} 440^{2} y}{8 f^{3}}$
An for the minimum colour error the value of $y=\%_{0}$ Would be equal to the value when $4^{3}-\frac{1}{2} 440^{2} y$
j. greatest. This Ives $a=\frac{3}{2}$.

This eopposponla to a neutral zone at height

- $86 G=1 \sqrt{3}$.

Although the thin order abempitions of the chan are enual to sen, it io necessary to consider the higher order aberrations. everal writers derive these, Martin, bouvers, finfoot, Caratheodory, in varying degrees of generality. Linfoot is mot general but probably Bower the neatest. Because of the spherical symmetry of the Dotcom, in order to determine the image error at an angular distance from the centre of the field, it i uficient to calculate the effect on the axial mage by tilting
the plate. Following Bowers
apo e tie corrector is of the form $T=F(y)$
Then a merit ian ray incilent at in ans le ϕ at point y.ill be deviated (from the formula for an inclined prison) $(0-1) p^{\prime}(y)\left(1+\frac{n+1}{2 m} \phi^{2}+k s\right) \quad\binom{\phi$ smalt and }{$q^{\prime}(y)$ small }
but this pi di tanta $y \cos \phi$ from the contra ray. Therefore the correction required is

$$
\begin{aligned}
& (n-1) f^{\prime}(y, \infty) \varphi \\
= & (n-1) f^{\prime}\left(y-4 \frac{4}{2}^{2}+a b\right.
\end{aligned}
$$

Expanding by Taylor' Theorem, this bee mes

$$
(n-1)\left[f(y)-y \frac{d^{2}}{2} f^{\prime \prime}(y) \cdot d e\right]
$$

The difference between the deviation al the deviation required

$$
(n-1) \frac{\phi^{2}}{2}\left[\frac{n+1}{n} f(1)+4 f^{\prime \prime}(n)\right] \text { neg'zecting high powers. - (5) }
$$

This equation may be applied to any Com of correction plate, and one may see pron it that the eparation is of a radial character and of a metrical nature and mall. Linfoot hows that the e re ital error represent lateral pherica aberption and in addition a peeies of higher order astigmatism. Provided tho focal patio i less than $\overline{3} / 3$, it is enough to know tho eoercietent of the quaked and
fourth power terms in the expansion of the plate. However, for hi sher apertures it i necessary to con idler the sixth powers as well. Take axes in the plane of the plate x and y, and 3 along the optical axis

In addition put $\mu=H, x=\mu \mu, y=\mu v, h=\mu r$
Let the equation of the plate be of the form

$$
s=a_{1} \mu^{2} v^{2}-4 \mu^{4} v^{4}+a_{3} \mu^{6} v^{6}+
$$

The coefficient may be obtained by considering a geometrical figure, with neutral zone at height μ vo

From the geometry of the figure and the Gaussian optics, it may be shown

$$
a_{1}=-\frac{\left(1-\cos \theta_{0}\right)}{n-1}
$$

and then by using the equal path length principle, ore obtain, after mme reduction,

$$
\left\{\begin{array}{l}
q_{1}=\frac{-1}{n-1}\left(\frac{1}{2} \mu^{2} v_{0}^{2}+\frac{1}{8} \mu_{0}^{4} v_{0}^{4}+\right. \tag{6}\\
q_{2}=\frac{1}{n-1}\left(\frac{1}{4}-\frac{1}{2} \mu^{2} v_{0} v+\right. \\
q_{3}=\frac{1}{n-1}\left(\frac{3}{v}+\right.
\end{array}\right.
$$

The equation thus is written

$$
\begin{align*}
& (n-1) s=\frac{1}{4} \mu^{4}\left(v^{4}-2 v^{2} v_{0}^{2}\right)+\mu^{4}\left(\frac{3}{8} v^{6}-\frac{1}{2} v^{4} v_{0}^{2}-\frac{1}{8} v^{2} v_{0}^{4}\right)+o\left(\mu^{2}\right)- \tag{7}\\
& \text { or } \left.(v-1) s=\frac{1}{4} \mu^{4}\left(v^{2}-v_{0}\right)^{2}\left(1-\frac{\delta}{2} v_{0}^{2} \mu^{2}\right)+\frac{3}{\mu^{2}}\left(v^{2}-v_{0}^{2}\right)^{3}+\cos +\cos \mu^{2}\right) \tag{8}\\
& \text { Now } 1 \text { ot } v_{0}=\frac{1}{2} \sqrt{3}\left(1+b \mu^{1}+\text { ate }\right) \tag{9}
\end{align*}
$$

A before the lope at the edge of the plate should equal the steepest lope on the bulge.
By (3)

$$
\begin{aligned}
& (n-1) \frac{d s}{d v}=\mu^{4} v\left(v^{2}-v_{0}{ }^{2}\left(1+5 v_{0}^{2} \mu^{2}\right)+\frac{4}{4} \dot{r}^{6} v\left(v^{2} \cdot v_{0}^{1}\right)^{2}+d_{0}\right. \\
& (n-1) \frac{d^{\prime} v}{d v^{2}}=\mu^{4}\left(2 v^{2}-v_{0}^{1}\right)\left(1+\frac{5}{2} v_{0}^{2} v^{2}\right)-\frac{9}{4} \mu^{6}\left(v^{2}-v_{0}^{2}\right)\left(5 v^{3}-v_{0}^{1}\right)
\end{aligned}
$$

substituting from (9) into (1) and neglecting powers of " higher than the sixth, the stationary lope is found when $0=2 \frac{3}{6}$.

$$
\text { This } \gamma_{0}=\frac{1}{2} \sqrt{3}\left(1+\frac{3}{16} \mu:\right)
$$

and substituting back in (6)

$$
\left\{\begin{array}{l}
a_{1}=-\frac{1}{n-1}\left(\frac{3}{8} \mu^{2}+\frac{29}{128} \mu^{4} \cdots\right) \\
a_{1}=\frac{1}{n-1}\left(\frac{1}{4}-\frac{3}{8} \mu^{2}\right. \\
a_{3}=\frac{1}{n-1}\left(\frac{3}{8}\right.
\end{array}\right.
$$

also

$$
\begin{equation*}
f=\frac{1}{2} \operatorname{ser} \theta_{0}=\frac{1}{2}+\frac{3}{16} \mu^{2}+\frac{45}{256} \mu^{3} \tag{13}
\end{equation*}
$$

The e formulae were first given by Baker ${ }^{2 \lambda}$
in 1940 for use at focal ratios shorter than F/I. Fo A。 Lucy in "Exact and Approximate Computation of chard Cameras" uses the path difference method applied directly to the camera. Suppose equation of the plate is of the form $x=x h^{2}+\rho h^{4}+h^{2}$

Lot the paraxial quantities be indicated $D y$ the affix o
Then the rocs length $F=\frac{\theta_{0}-\phi_{0}}{\omega_{0}}=1-\frac{\phi_{0}}{0_{0}}$
Let 6 be the spherical aberration of the selected ray

$$
\begin{gathered}
\text { Lo }=\frac{1}{2}=\sigma \text { and } \frac{\phi_{0}}{L_{0}}=\theta_{0} \quad \text { as } \mathrm{R}=1 \\
\text { Therefore } \mathrm{F}=\frac{1}{2}+\infty
\end{gathered}
$$

The optical length of a paraxial ray is.

$$
\pi_{0}=n t_{0}+2-F
$$

From geometry $F=\frac{L S}{\operatorname{Los} 2 \phi_{S}}$

$$
\begin{equation*}
=\left(2 \infty \phi_{5}\right)^{-1} \tag{17}
\end{equation*}
$$

U sine Pythagoras $F P=\left(1-2 F 00 \phi-F^{1}\right)^{\frac{1}{2}}$
General ray path $\pi=x+\frac{n t}{\cos d_{1}}+\frac{\cos \phi}{\sin \left(b_{1}+i_{1}\right)}+\left(1-2 F \operatorname{con} \phi+F^{2}\right)^{\frac{1}{2}}-(19)$ Linuating (14) and (19)
 Since it is posible to compute S_{1} and δ_{2} as
oven below (20) could be u ed is it stands
Various less exact but impaler equations are
obtainable. Differentiating

$$
\begin{equation*}
d x=2 \alpha h d h-4 \beta h^{3}-1 t \cdot 2 t \tag{31}
\end{equation*}
$$

at the incidence point of a selected ray

$$
\begin{align*}
& \frac{d x_{s}}{d h_{3}}=0 \quad \text { whence } \alpha=2 \beta h_{3}^{2} \text { or } \beta=\frac{\alpha}{2 h_{1}{ }^{2}} \\
& x_{3} \simeq \alpha h_{1}{ }^{2}-\frac{\alpha h_{3}^{2}}{2} \simeq \frac{\alpha h_{1}^{2}}{2} \\
& x \bumpeq \frac{2 x_{5} h^{2}}{h_{3}{ }^{2}}-\frac{x_{3} h^{4}}{h_{2}^{2}}
\end{align*}
$$

From
(10) x may be determined exactis inge for the selected ray $x_{s}=\frac{\operatorname{as} \phi_{1} \cdot \operatorname{suc} \phi_{s}-{ }^{2}}{m-1}$

By expansion $x_{3}=\frac{\phi_{1}{ }^{4}}{4(n-1)}+\frac{\phi^{6}}{12(n-1)} \cdot d s$
Po. mos turbo as the term in $\phi,^{4}$ yowl be enough. Another equation of intermediate precision suitable
for any telescope likely to be constructed is
$(n-1) x \bumpeq\left(1-2 f \cos \phi+f^{2}\right)^{\frac{1}{2}}\left[1+\frac{1}{1-\frac{f \sin 2 \phi}{\cos \phi}}\right]+f-2$
obtained from (20) by substituting for d_{1}, s_{2} and c noclijng temp affecting only the eighth or further dignirtcunt figures. Certain let 11 of the derivation of (25) are of interest, as δ, occurs in (2) espy as a division of n, and equating it to unity core ponds to correcting the ray for a sightly afferent wavelength. From Figure I $S_{1}+\partial_{i}=\theta-2 \neq$

$$
\cos \left(s_{1}+s_{1}\right)=\left(\cos \phi-f \cos (\phi) /\left(1-2 f \operatorname{sen} \dot{q}^{2}+f^{2}\right)^{\frac{1}{2}} .\right.
$$

Substitution of this in (20)nith $\cos s_{+}=1$ gives

It has been shown that for the least
possible departure from flatness at any point of the plate $h=\frac{i}{2} \sqrt{ }$, for a plate correcting up to fourth order temps.
Another choice for h would be to obtain the mallest average deviation, thus concentrating the chromacity blur near its centre and getting the best possible resolving power.
This dives $h, \infty, 7 g$

Stromsren gives for his formula

$$
\begin{equation*}
x=5.86 \times 10^{-3} h^{2}-6.25 \times 10^{-2} h^{4} \tag{26}
\end{equation*}
$$

Using equations (24) and (22)

$$
\begin{equation*}
x=5.903 \times 10^{-5} n^{2}-6.308 \times 10^{-2} n^{4} \tag{27}
\end{equation*}
$$

Equation x at hedge x at $h_{s} \quad x$ at h inflexion

(20)	123.9	138.95	76.8

(25)	235.9	138.95	76.8

(26)	182.1	137.6	76.3
(27)	122.7	138.1	76.8

This table of course shows Lucy's
equations are slightly superior to troemgren's. Secure of their high Iunino its, schmidt systems have been u ed in television projection systems, their curvature of field making them especially suitable H. S. Friedman has given a method of computing the chnidt Plate required for near projection using a ray tracing method, although essentially, as fth the previous methods, the optical paths are used.
Rays are computed at first from the tube
to the screen, thus making the aspheric surface the
last. The spherical aberration is removed at the centre of the field by equali ing the optical path lengths. Chromatic aberr tion is minimised by a proper selection of the con tints of the system. For a $\% \mathrm{X}$ magnification the height of the neutral zone is about 85 , of the edge.

The optical path from 0 to I is computed and
the optical path of any other ray from 0 as Hell.
The difference K between the two is found. Then if
K is the inference
For no optical math difference

$$
\begin{align*}
& K=n A E+M F \\
& n A E=\frac{n x}{\cos \alpha} \\
& E F^{2}=(11-x \tan \alpha)^{2}+(d-x)^{2}
\end{align*}
$$

$$
\begin{equation*}
x^{2}+2\left[\frac{\cos ^{2} \alpha}{n^{2}-1}\right]\left[H \operatorname{Hem} x+d-\frac{n k}{\operatorname{sen} \alpha}\right] x+\left[\frac{\cos ^{2} \alpha}{n^{2}-1}\right]\left[x^{2}-H^{2}-d^{3}\right]=0 \tag{3i}
\end{equation*}
$$

Since α, if $x \mathrm{~K}$ are determined by the ray trace, and d and n are constants of the system. Its equation is a quadratic in x_{0}

$$
\begin{equation*}
\text { Then } \quad h=A-x \operatorname{Inm} \alpha \tag{32}
\end{equation*}
$$

Thus the coordinates of the correction plate may be found.

For oblique rays the trace is started at the screen, and pays directed from a point on the screen to a point on the curve mich is already known. As the normal at the point ia known, a ray i easily traced.

> Maloff and epstein have written on the use of the schmidt in projective television. They consider the system gives a gain of 6 or 7 to 1 on an ordinary $\mathrm{F} / 2$ len , with a quality of image comparable with an ordinary projection lens.

Aberration balancing over the whole field.
Corrector plates designed to five the best ercor-free axial image in this way, although giving a performance rated as high by ordinary standards,
posses the disadvantage that they to not balance the aberrations over the hole field. The abstractions are smallest in the centre of the field and increase in ia ce toward the edge. a number of papers
describe methods for balancing the aberrations over a wider field. .il. Normser applies such a method to a $\mathrm{F} / \mathrm{o}^{\prime} 7$ schmidt for 40° using lucy's approximate method.

de inning the aspheric urface oo as to obtain optimum performance. The equation of the plate as has already been seen may be written as

$$
\begin{gathered}
(n-1) s=\frac{\mu^{4}}{4}\left(v^{2}-v_{0}^{1}\right)^{2}\left(1+\frac{5}{2} r_{0}^{2} \mu^{2}\right)+\frac{2}{8} \mu^{2}\left(v^{2}-v_{0} 1^{\prime}+\text { constant }-0\left(\mu^{2}\right)-\right.\text {-(33) } \\
--2-
\end{gathered}
$$

Neglecting tom of ${ }^{6}$

$$
(n-1) s^{\prime}=\frac{\mu^{4}}{4}\left(v^{+}-a v^{2}\right)+o\left(\mu^{t}\right)
$$

or if $2 \lambda=$ numerical goceture $\Omega 2 \mu, a=2 v_{0}{ }^{2}$

$$
(n-1)=\frac{\lambda^{4}}{4}\left(v^{4}-a v^{2}\right)+O(x)^{\frac{1}{6}}
$$

$I f$ the off avi bone timon ane δx and δY measure
in seconds of are.

$$
\begin{align*}
& +0\left(8 \mu^{3}\right)
\end{align*}
$$

For light of a deferent wavelength (refractive index n)
the pays of tho axial 21° pencils ave no longer
brought to a sharp focus. If IN - If $\# \sigma^{\prime} \mu^{\prime}$) the
aberration are now given by

$$
\begin{align*}
& +\frac{K \mu^{3}}{\omega} \frac{n N}{N-i}\left(\frac{\partial}{\partial \mu} \cdot \frac{\partial}{\partial v}\right)\left(r^{4}-a r^{1}\right)+o\left(K \mu^{*}\right) \tag{37}
\end{align*}
$$

Sup pose n_{0} be some selected value, and appose that
$n-n_{0} \operatorname{san} N-n_{0}$ awe $o\left(\mu^{b}\right)$
Then in place of δx and δy, use the quantities
defined by tire equation $\delta X^{x}=\int y^{*}$ ven that

$$
\begin{align*}
& +\frac{1}{4} k \mu^{3} \frac{n-N}{n_{0}-1}\left(\frac{1}{\partial \mu}+1 \frac{\partial}{\partial v}\right)\left(v^{8}+a r^{2}\right)
\end{align*}
$$

the error is only o($\left.\mu \mu^{3}\right)$ in each case.

Feon (38) us n_{0} can only bo varied by $0\left(\mu^{2}\right)$ it follows to ithin an accuracy $O\left(\kappa^{\prime} \mu^{\prime}\right)$ that δx and δy Qopent oniy on $n-N, a, \mu$, and ϕ, wnid are indopenkent of 0° The tro fifth orler aberp tion of lateral spherieal aberrntion axi hichen asigmatiom, may be balanced out by figurdng the p2ate for undercorrection of the pheric 3 . aberrition on axi for the fiet, and inceraing the contral bulge for the ecmi, i.e. by incres ing a. fovever, too big a depactuce from the leternined value of u alll ive exce ive chromatita ant poil the percommane of the sy tem. pon (38) it appeers in aite angle yotems where $\frac{n-\infty}{n_{0}+1}<\phi_{s}{ }^{2}$ taat camonatim i not o impoetan, but in lurge itromonical chai to working at F/3.F or innger, over 5° or 6° lielt, conilleration of chmonatim play the arger part in letemining tho profile。

The ilea of opthoi ing the perfomance over a siven field can be interppeted in variou way. One metho is to tuke the srestet inage diameter for ajl object points in the given fiell ant for all mavelengths in the given vange, sin make the diameter
a mall as possible. This method has certain
drawback e, and finfoot and wolf define the effective radius as the square root of

$$
\begin{aligned}
& \frac{i}{\pi+3^{2}} \iint\left[5 x^{2}+\Delta y^{3}\right] d x d y \\
& x^{1}+y^{2} \leq H^{2}
\end{aligned}
$$

-(39) (its dynamic analogy would be radius of gyration)
and the effective monochromatic image-radius over
the field ϕ_{0}, as the square root of

$$
=\frac{2}{\pi \psi_{0}^{2}} \int_{0}^{\psi_{0}} \phi d \phi \int\left[\left((\xi x)^{2}+(\} x\right)^{2}\right] d x d v \quad \text { (mean square average }
$$

$$
u^{4}+v^{2} \leqslant 1 \quad \text { over the whole field) }
$$

The v tue of $\mathrm{E}=\mathrm{E}\left(\boldsymbol{\psi}_{0}, a, N-n\right)$ is different for various wavelengths.

After lengthy analysis the value of E * where E * is defined by $E=E^{*}\left[1+O\left(\mu^{2}\right)\right]$ is arrived at. $E ;=\frac{1}{8} k^{2} \mu^{6} \varphi_{0}{ }^{4}\left\{\left(a^{2}-\frac{8}{2}+2\right)\left[\frac{1}{6}\left(1+2 \alpha+2 \alpha^{2}\right)+\frac{1}{2} \mu(i+2 \alpha) \cdot \mu^{2}\right]+\right.$ where $\alpha=\frac{1}{2}$ and $\left.+2\left(\frac{1}{2}-\frac{1}{2}\right)\left[\frac{1}{6}(3+4 \alpha)+n\right]+\frac{1}{4}\right\}$ Thus the effective image radius in "n light" is

$$
E \frac{1}{2}=\left(E^{*}\right)^{\frac{1}{2}}\left\{1+\Delta\left(\mu^{2}\right)\right\}
$$

If we define e* such that

$$
E \frac{1}{2}=\frac{1}{2}\left(\frac{e^{*}}{2}\right)^{\frac{1}{2}} k \mu^{3} \phi_{0}^{2}
$$

$$
\text { A graph i plotted of }\left(e^{*}\right)^{\frac{1}{2}} \text { as a function }
$$

of a and n. From this graph the minimum value of $\left(\frac{a^{*}}{2}\right)^{\frac{1}{2}}$ may be measured off and thus a value of 'a' obtained to give a profile equation.

Two examples are quoted by Linfoot and Wolf, which show that at apertures near $\mathrm{F} / 3$ the optimum plate may be obtained by lightly decreasing the strength of the ordinary colour minimised plate. Thus the example given of an $\mathrm{F} / 3.5$ plate puts ' a ' at about 1. 3; while in wide angle systems at $F / 1$ it is better to use a plate with the neutral sone at the edge,
the example given $a=2$. At the same time the graph shows the iminishing importance of the chromatiom at the larger field and F numbers.

Field Flattening.

$$
\begin{aligned}
& \text { As was seen in purt I, it was suggested } \\
& \text { by Valshla in } 1935 \text { and F.E. Ross in } 1940 \text { that the } \\
& \text { curv ture of field of the schmidt could be removed } \\
& \text { by a field flattener len, Thi shoul be a } \\
& \text { plano convex lens ith the curved surface facing } \\
& \text { the mirror and with a radius of about one sixth } \\
& \text { of it. Linfoot has considered the aberrations }
\end{aligned}
$$

of the field flattened schmidt.

being, of the converging pencils, suppose all the rays are converging on points in the curve I Io', Finfoot finds the image spreads due to the field flattener lone, which are of the same order as those of the camera, and adas the two. By consideration of the geometry of the figure, the fifth order aberration function of the system may be obtained, from which the only a metric 1 contribution is represented by the term

$$
8 R_{\mu}{ }^{6}{ }_{c} \cup\left(\frac{5}{3}-V^{2}\right) \frac{n_{1}+1}{n_{1} 2^{2}\left(n_{1}-1\right)} \mu+\cdots
$$

This coma being proportional to $U\left(\frac{5}{3} \cdot v^{2}\right)$ viii hes at the centre of the field and is very mall in practice, and may be reduced to less than one third its v blue by moving the plate lng the axis towards the mirror a distance

$$
\frac{11}{3} \frac{n}{n}+1_{1\left(n_{1}+1\right)}^{R}=x_{\mu}^{1}
$$

A further improvement can be made by adjusting
the focal setting according to the figure, which gives the chromatic aberration. The best position for F light is dotted.

A better colour correction may be obtained by designing the syster from the first as a field flattened Schmidt, instead of taking a plain chmidt, adding a flattener, and moving the plate to balance the coma. Thus, if ' a^{\prime} is increased from $3 / 2$ to 1. 705 the colour lines move closer together.

This improved system gives aberrations not much larger in ice than the classical schmidt.

Solid and Thick Mirror Types.

The design of extremely fast schmiat-ty e cameras for astronomical spectroscopy has produced a number of variations. The thick mirror schmidt has been described by Hendrix and compared with the ordinary type. The type is shown in the following figure and compared with the ordinary schmidt.

O\&TNBRY

- mick. m! raga
a centre

-

Vluered
Surface
R / z in thickness, silvered on the back surface, i used in place of the ordinary Schmidt mirror, the speed is increased by a factor of $2 \frac{1}{-3}$ times, depending on n. Thus the speed of
on $F / .66$ camera may be obtained with the field and correction plate of an F / l. Better still, the solid type schmidt can be made of a solid piece of glass or quartz with worked end faces.

This type becomes n^{2} times faster, and thus a solid Schmidt of diamond could have an aperture ratio of F/. 2.

A subvariation is the folded Schmidt.

According to Baker, ${ }^{22}$ schmidt himself contemplated a solid glass camera, but did not make one, while his colleagues at Bergedorf considered the thick mirror
type afforded the best answer to the problem of obtaining access to the focal surface. Unfortunately the thick mirror type is optically inferior to the solid, and cannot be used at the extreme speeds available to the latter. F/. 3 is practicable. For the solid schmidt the formulae as
previously developed may be used, replacing

$$
\frac{1}{n-1} \text { by } \frac{n}{n-1} \text { The form of the plate is given by }
$$

$$
\begin{aligned}
x & =a y^{2}+b y^{4}+c y^{6}+ \\
a & =3-\frac{a}{3}\left[1+\frac{a}{4},\right. \\
b & =\frac{1}{4} \frac{a}{n-1}\left[1+\frac{3}{2} b^{2}+\right. \\
c & =-\frac{2}{2}[1
\end{aligned}
$$

The equivalent focal length is given by

$$
\mathrm{F}^{I}=\frac{1}{2 n}\left[1+\frac{3}{\gamma} h^{2}+\frac{45}{14}, 4, \text { an }\right]
$$

As the oblique rays are refracted at
the figured surface the field is compressed towards the axis according to the expression $\sin \eta=n \sin \eta$
and the focal length is reduced by $\frac{1}{n}$ reducing exposure time by n^{2}. The excavation is multiplied by n^{4} so that it is necessary to use the exact form of the profile equation. By a similar treatment Baker obtains
$x($ nave $J-1)=n[\cos \phi \sec J+(\sin \phi-f) \sec \theta+f-2]$
$x(n \cos)-1)=n\left[\left(1-2 f \cos \phi+f^{2}\right)^{t}\left[1+\frac{i}{\left.1-\frac{\sin t \phi}{\sin \phi}\right]+f-2}\right.\right.$

$$
h=\operatorname{sen} \phi \cdot(\cos \phi \cdot x) \text { lan } s
$$

The occurrence of the factor n on the right side of (+2) shows that for a given ϕ, the solid Schmidt requires deeper figuring than the classical, but this is no real disadvantage as the classical form must be made more compact by the same factor to obtain a given actual speed. Further, beau e of the angular compression of the field in the solid form, equivalent focal ratios are possible, Which would have not been attainable otherwise.

Composite or Meniscus chmidts.

By substituting for the aspheric plate of the schmidt a combination of aspheric plate and meniscus lens concentric with the mirror surface, a y stem may be obtained who e performance
is much superior to either the Maksutov or schmidt camera. Bowers, and Hawkins and Linfoot have published information on these systems, while in America the so-called "super-schmidt Cameras" have been constructed to the designs of Baker, having an effective aperture of $12 \frac{1}{4}^{\prime \prime}$. 7 orking at F/. 82 and covering 55° field.

These cameras are used for Meteor research, at the two Harvard meteor-observing stations, which being 18 miles apart, permit meteor height determinations by simultaneous photographs.

Hawkins and Linfoot consider a system slightly
simpler employing one lens meniscus.

In the classical chmidt converging power is provided by the spherical concave mirror, which it
is the function of the chmiat plate to correct. This it does at the cost of introducing certain higher order errors, lateral spherical aberration and hicher astigmatism, and a certain mount of chromatism, the good performance being due to the intrinsic mallness.

Using a meniscus the seidel aberrations of the mircor may be corrected, and using a stop at C the system suffers then from higher order spherical aberration, and colour, but is uniform over the Whole field. The residual spherical aberration may now be removed with a piate of the form

$$
s=c r^{6}
$$

and the colour corrected without introducing too much other aberration by making the plate in the form of a cementable doublet, from two glasses of the some refractive index, and different dispersions.
In the design, a concentric meniscus was
found by trial so that the angular deviations of the d light were as small as possible. Then if the focus be at a point, say F, rays were traced outwards from F through the system at angle θ, and their inclination η to the axis found.

The colour may be illus treated by plotting $\eta_{A}-\eta_{F}$
n_{d} - $?_{e}$ against in 0

The profile of the plate was determined by numerical integration of the table using the equation

$$
\left(n_{d}^{\prime}-1\right) \frac{d s}{d y}=\frac{\pi}{648,000} \quad r=13977 \sin \theta
$$

By choosing hard crow and telescope

flit in lasses the colour error may be reduced to $8^{\prime \prime}$ of are on 18° field. The off axis aberration may be analysed by the same method as before used, by considering the plate to be tilted and calculating the effect on a ray passing through a thin, nearly parallel prism.

As before the expressions
in $-1\left(\sin ^{1} \phi\left[\frac{2 x}{2 n} \frac{\partial T}{\partial x}+\frac{x}{2} \frac{\partial^{T}}{\partial x^{2}}, \quad(n-1) \sin ^{1} \phi\left[\frac{1}{\ln } \frac{\partial T}{\partial y}+\frac{x}{2} \frac{\partial T}{\partial x y}\right]\right.\right.$
represent the components of angular aberration
in the ray through the point x '
The linear deviation components ξ, η, are given
by multiplying by f and since the plate is
a solid of revolution $T=T\left(x^{2}+y^{2}\right)=T r^{2}$
$\left\{+4 \eta=(r \cdot n) \hat{y} \sin : \phi\left\{\sin \left(r+j+(x+y)\left(\frac{1}{x} T(r y)+2 x^{2} T^{\prime \prime}(x)\right)\right\}\right.\right.$ introducing $P\left(A^{2}\right)=\frac{648000(n-i)}{\pi f}\left[T\left(v^{2}\right) \cdot T(0)\right]$ who e λ derivations $\eta(t)=? * f^{\prime}(\nmid 1)$ measured
in seconds of arc the radial deviation imposed on the plate by a ray meeting it normally at a one
of radius $r=\# t$

so that δx and $s y$ are the apparent angular
aberrations in seconds of are in the incoming ray. Then

Where $\alpha=\frac{Q}{f} \quad R=$ radius of the aperture stop

$$
\mu_{2}=\frac{x}{k}, v=\frac{x}{12} \quad A^{2}=x^{2}\left(\mu^{1}, w^{2}\right)
$$

It may be show that the function
$\gamma^{*}(t)=-437+63504^{3}-13340 \operatorname{tr}^{5}-43+20 A^{7}$ agrees with the function γ of the graph to within $.8^{\prime \prime}$ of arc.
Thus $P=\left\{(5 x)^{\prime}+(\hat{y})^{\prime}\right\}^{t} / \sin ^{6} \psi \quad$ may be
calculated for each point,$~ \psi$ of the aperture stop. By this means it may be seen that the error spreads of the meniscus schmidt over an 18° field are everywhere less than $8^{\prime \prime}$ and that 97% of the light falla in a circle of less than $35^{\prime \prime}$ of arc. Thus the total error spreads are less than $1 / 16$ th of those of a class ical Schmidt of the same field and aperture ratio.

Part III

TWo Mirror ystems and More Complicated Mircor

Plate systems.
Two mirror telescopes and their variations.
Schmilt. Cassegraine.
Reflecting microscopes.
Paraboloid field correctors.

Two Mipror Systems and more complicated mirror

 Plate Systems.Tyo Mreor Telescopes and their vapiation.
A ha been le cribed in part I the tandard
form of the Gassegrainian and Gregorian telescope are confocal conic section and ubject to the error or Cona, the amount of which, a shom by A_{A} C. Lunn, is the same for different confocal conic sections of the same focal length. Various molifications proposed for practical reason, such as making either primary or secondary mirror a sphere, and figuring the other for zero pherical aberpation, only tend to make the coma worse. Robert i. Jones has derived formulae, which show the effect of small modifications
on two mirror systems.
In the case of a ingle parabolic reflector
the departure from the sine condition i given by

$$
\left(\frac{F_{0}}{F_{0}}-1\right)=\frac{1^{2}}{4 F_{2}^{2}}
$$

-1
Let A be the ratio of the focal length of the combination to the focal length of the primary
mirror. To con ider the effects of various
modifications on the Case grain the equation of
the primary is written

$$
x_{2}=\frac{1_{1}^{2}}{2 R_{1}}+\frac{\sum_{2}}{\left(2 R_{1}\right)^{2}}
$$

$$
-2
$$

and for the secondary

$$
x_{2}=\frac{u_{1}}{2 R_{2}}-\left[5-\frac{t_{2}}{(P-1)^{2}}\right] \frac{y_{3}}{\left(2 R_{2}\right)^{3}}
$$

the quantities $\Delta \pi=P\left[\frac{\pi}{(2 R, i}\right]$
-3

$$
-l_{2}
$$

$$
\left.\Delta s_{4}=3 \sum_{\left(2 x_{2}\right)}\right]
$$

$$
-5
$$

represent deviations of the primary and secondary mirror from their original parabolic and hyperbolic forms. Thus putting $P=1$ makes the primary spherical. The spherical aberration will remain corrected if

$$
\Delta x_{1}+\Delta x_{2}-b
$$

If D_{2} is the diameter of the secondary and D_{1} that of the primary

$$
\frac{D 2}{31}=\frac{12}{4 i}
$$

$$
-3
$$

Prom equations $a 56=7 \quad p a \quad 3\left(\frac{\Delta}{a_{2}}\right)^{3}\left(\frac{b_{2}}{b_{2}}\right)^{6}$ -8

The offence against the sine condition may be written

$$
\left(\frac{F_{3}}{F_{0}}-1\right)=\frac{c_{y}^{2}}{+F_{0}^{2}}
$$

- -

where $C=1+\frac{\hat{2}-1^{2}}{2 \theta}\left(1-\frac{D_{L}}{5}\right)$ s
-10
or in terms of $P \quad C=i+\frac{Q^{2}}{2}\left(\frac{D}{D_{2}}-1\right) p$

- 11

For chwarzschild' s condition of aplanation $C=0$

$$
\text { and } S=\frac{2 \theta}{\left.(\beta-3)^{3}\right\}-(3)}, \quad P=\frac{3}{\alpha_{2}\left(\frac{3}{3}-1\right)} \quad-12-13
$$

When these values are put in 2 and 3 they produce

- light overcorrection of the primacy and an
increase in the eccentricity of the hyperbolic
secondary as seen in part $I_{\text {. }}$
For the construction of Dale and Kirkham employing
a spherical secondary

$$
s=1 \cdot \frac{4}{(\beta-1)^{2}}
$$

$$
-14
$$

and $\frac{E_{n}}{F_{0}}-1=\left[1+\frac{(A-1)(f+1)}{2 A}\left(1-\frac{D_{3}}{3}\right)\right] \frac{n_{i}}{4 r_{0}}$

- 15
if $\frac{D_{3}}{O_{1}}=\frac{1}{4}$ and $A=4 \quad C=8$. Thus the coma
is increased eight times, over the standard Cassegrain
by this modification.
If the primary mirror i spherical $P=1$

$$
\text { and } S=\left(\frac{\theta}{\theta-1}\right)^{3} \frac{D_{1}}{t_{i}}
$$

$\left(\frac{\sigma_{0}}{E_{0}}-1\right)=\left[1+\frac{\theta^{2}}{\tau}\left(\frac{\partial_{2}}{D_{i}}-1\right)\right] \frac{v_{1}^{2}}{4 F_{a}^{2}}$
-17
for $\frac{\partial_{1}}{\eta_{i}}=4$ and $A=4 \quad C=24$. Thus the coma
is three times as great as in the previous example.

For modification of the Gregorian

$$
x_{2}=-\frac{3_{2}^{2}}{2 R_{2}}\left[5+\frac{4 A}{\left(\theta^{2}+1\right)^{2}}\right] \frac{43^{*}}{\left(2 E_{2}\right)^{3}}
$$

while the factor of increase of zonal magnification

$$
C=1 \cdots \frac{A_{2}}{\dot{L}}\left(1+{\underset{D}{D}}^{D_{2}}\right) \rho
$$

The coma of two mirror systems is shown by the following graphs:

Fron these graphs it can be seen that the attempts to make the type easier to construct only introduce further amounts of coma. For wide field photographic telescopes it is of course necessary to considerfurther aberrations. The shwarzschila telescope, although aplanatic, retains the defect of astigmatism, which is distributed about a nearly plane focal surface and, furthermore, which is small enough to obtain a moderately large useful field. wright, using the Schwarzschild equations, has generalised the Schmidt camera into a n entire family, and has shown that the two surfaces of astigmatism cannot coalesce in a flat surface by means of a correcting pla te and an aspherical mirror.

schmidt Cassempains

J. G. Baker in his important paper on "Flat fielded cameras equivalent in performance to the Schmidt camera" first suggested the idea of the Schmidt-Cassegrain type of camera, that is to say, a system of a correcting plate and two mirrors. "One can see that such a system properly designed will be
free not only of spherical aberration and coma
of all orders, but will be anastigmatic on a flat field to the third order."

Even after all the conditions for exact
aplanati m and after the third order equations
for anastigmatism and flat field are satisfied, there remain two free parameters, being the distance of the correcting plate from the primary mirror d_{3}, and the distance of the photo plate from the secondary mirror $4 ;$ All the constants of the system $c a n$ be expressed as rational functions of the two parameters. In the following equations the equivalent focal length $=1$.

In order to compute the constants of a given system, one must first decide upon the value of ats

Then $d_{\psi}=\left(1-d_{r}\right)^{2}$
and if $\quad P=0$

$$
A_{4} \times 4_{5}=-2(1-A, 4)
$$

also $A=x_{1}+\rho_{4} 5_{5}+x_{1} s_{4}$

$$
B=x_{1}+P_{z} s_{s}
$$

$$
c=\alpha_{3}+\rho_{3} s_{5}
$$

$$
D=\alpha_{4} \quad 4 \quad \hat{p}+5
$$

Where $\quad \alpha=\frac{1+2 d_{s} d_{s}{ }^{1}}{8\left(1-d_{s}\right)}, P_{0}=8 d_{5}^{4}, x_{1}=-8$

The quantities of A, B, C, D contain the
two unknowns S, and 's which have the following significance:- In the coordinate system of the figure, let the equation of the $i^{\text {th }}$ surface be

$$
\begin{aligned}
& x_{1}=a, 4 s^{2}+l_{1} y^{4}+\sqrt{2} \\
& a_{1}=\frac{1}{2 r}
\end{aligned}
$$

and if the surface is spherical $\mathbb{Q}_{\mathbf{1}}=$ a 3
The quantity S, represents the departure from a sphere such that for an aspheric surface the expansion puns $x,=a, 4 y^{1}+(9)^{3}-5,1 y^{4}+$ the

$$
\begin{aligned}
& \approx \sim=\frac{10+d 5-13 d_{5}^{2}+7 d_{5}-d_{5}}{8}, P_{4}=3 d_{5}\left(1 \cdot d_{5}\right)
\end{aligned}
$$

thus $b_{1}=q_{2}{ }^{3} \ldots S_{1}$
In order to evaluate $)_{4}$ and ${ }_{5} 5$ the following equations must be satisfied.

$$
\begin{aligned}
& C+B d_{3}=0 \\
& B+B A_{3}=0
\end{aligned}
$$

Thus for each value of A_{3} one obtains particular values for S, and S.
If distortion is al o to be zero (a condition usually unimportant in celestial photography) then

$$
\begin{aligned}
D+A A_{3}^{3} & =\frac{1}{2} \\
b_{3} & =\frac{A}{\ddots(n+1)}
\end{aligned}
$$

Considerations of tube length and
manufacturing difficulties identify four important single parameter families of nearly equivalent performance.

Case A. Correcting plate close to the secondary mirror. The tube length reaches a low value but the mirrors depart far from spheres and curvature of correcting plate is also quite large.

Case B. Criterion that the secondary mirror shall be spherical, the dep rture of the primary mirror is also mall.

Case C. Primary is a sphere.

Csege. Distortion to be made zero. The corpecting plate of each of the new type of comeras is of higher curviture than the shmiat of the sume foc length and aperture, conse quently the dispersion causes a more serious colour ecror, depending upon the value of b_{3}.

As in the chmidt it is desirable to introduce a central bulge into the correcting plate so that the maximum lope of any part of the plate is minimised. In order to illustrate the performance of the sy tems the author has traced a number of rays accurately through canera B. The correcting plate was taken without a central bulge for ease of computation. A differential correction made the system extremely aplanatic.
C. R. Burch in 1942 used the O tical see-Saw
diagram (about which more will be said in part IV) to design a Baker camera. Briefly, the see-saw diagram represents the jeidel properties of systems of spherical and aspherical surfaces of revolution, by placing at the centre of curvature a figured plate wich corrects, to the fourth power, the spherical
aberrations, and by ita position the off axis aberration of coma and astigmatiom as in the chnidt camera, and then images into any convenient representative space all the plates which the system possesses. Thus the sistem is replaced by an anastigmatic cysten and a collection of figured plates, some of these being negatives of missing anastigmatising plates, and other figurings on surfaces which may be aspherised. The plate diagram is ituated in an image space for which the object is at infinity. Burch calls this "star space". The strength of the plates has already been lefined as the retardation $=K$ (zonal radius) ${ }^{4}$ and is altered by imaging, inversely a the fourth power of the magnification. If the plates be regarled as masses proportional to their streneth poised on a see-saw in star space whose point is the pupil of the system, then
(1) Spherical aberration is proportional to the total weight on the pivot.
(2) Coma i proportional to the unbalanced moment about the pivot point.
(3) Astigmatism is proportional to moment of inertia.
(4) That part of the di tortion which is not associable with the representation of apheres on tangent planes i poportional to the third moment of mass about the pivot point. Taking a Baker camera for example, putting $P=0 \quad f=2$ the figure i s constructed as shown

plates are involved.
(1) Anastigmatising plate lacked by concave mirror
(2) Anastigmatising plate lacked by convex mirror.
(3) Tiguring on surface of concave mirror.
(4) Fizuring on surface of convex mirfor.
(5) Pigured plate.

Plate (1) is in star space already, plate (2)
is at the centre of the convex, i.e. 2.58 in front of the concave mirror. Thus it images into star space 1.63291 in front of the concave with
magnification $\frac{1.63891}{2.58}$. Plate (3) is also in star
space already. Mate (4) is . 58 in front of the concave it images 1.38095 behind it. Plate (5) is in star space already.

The strength of the anastigmatising
plate lacked by a concave mirror of radius of curvature ρ, object di trance u, at zonal radius r $r=\left(\frac{\mu}{\mu-p}\right)^{2} \frac{r}{4 \rho^{3}}$
Taking as unit of strength $\frac{r^{4}}{4 p^{3}}$ so that the factor x_{3}^{x} may be dropped.
Plate (1) has strength -1 retardation units.
Plate (2) has strength $\left(\frac{43}{15}\right)^{2}$ since the convex i
used at $u=.42$ and images into star space with
strength $\left(\frac{4}{5} \frac{2}{8}\right)^{2} \times\left(\frac{2}{1} \frac{5}{636}\right)^{4}=.440365$ (retardation)
Let plate (3) have strength os retardation s and
plate (4) $\underset{\sim}{0}$ in star space.
The plate diagram may be then sown

The strength of plate (5) . $559635-(\beta+\alpha)$ has
of course been chowen 0 that $\sum m=0$, for zero spherical aberration.

Now etting $\sum m x=0$ for aplanati m and $\sum m x^{2}=0$
for anastigmatism

$$
\begin{aligned}
& 3.38095 \beta+2 \alpha+.161653-\{.559635-(\beta+\alpha)\} \delta=0-20 \\
& \left.3.380951^{2} \beta+4 \alpha+.059341+\{.559635-(\beta+\alpha)\}\right\}^{2}=0-21
\end{aligned}
$$

Eliminating ∂

$$
9.08721 \beta+2.82571 \alpha+.059341-1.186677 \alpha \beta=0
$$

It is possible to control the contribution to distortion \{mx x^{3} and still satiofy this equation by a suitable choice of α and β. This gives the baker type $D_{\text {. }}$ uppose $\boldsymbol{s}=0$

$$
\operatorname{Tnen} \alpha=-.02100 \delta=.20607 \text { and plate } 5 \text { has }
$$

$$
\text { strength }=, 538635 \text { retardation } .
$$

suppo e $\alpha=0$

$$
\begin{aligned}
\beta & =-.00653 \delta=.24653 \text { and plate } 5 \text { has strength } \\
& =.553105 \text { retardations. }
\end{aligned}
$$

These examples give, of cour e, Baker B and C types. Burch then con ilers mono-centric types, which have not zero pet vai curvature but have both mirror spherical and are anastigmats, using the same method.

Infoot has extended and generalised
the method of plate-diagram analysis and applied it to the chmidt-Cas egrain systems.
suppose the two mirrors M_{1} and M_{2} have
radii ρ_{1} and ρ_{2}, with poles d apart, focii ρ_{1} and ρ_{2}.
Then the plate diagram may be represented.

For sero spherical aberration

$$
\alpha+\beta+\gamma+\frac{\left(f_{1}-d\right)^{2}\left(d+2 f_{2}-f_{1}\right)^{2}}{f_{1}^{4} f_{2}^{3}}-\frac{1}{f_{1}^{3}}=0
$$

For zero coma

$$
-\frac{d f_{1}}{f_{1}-d} \rho^{3}+x \gamma+\frac{f_{1}\left(2 f_{1}+d\right)}{\alpha+2 f_{2} \cdot f_{1}} \cdot \frac{\left(f_{1} \cdot d\right)^{2}\left(d \cdot 2 f_{2} \cdot f_{1}\right)^{2}}{f_{1}^{4} f_{2}^{3}}-\frac{2}{f_{1}^{2}}=0
$$

For zero astigmatism

$$
\left(\frac{d f_{1}}{f_{1}-d}\right)^{2} p+x^{2} y+\frac{f_{1}^{2}\left(2 f_{2}+d\right)^{2}}{\left(d-2 f_{2}-f_{1}\right)^{2}} \frac{\left(f_{1}-d\right)^{2}\left(d \cdot 2 f_{2} \cdot f_{1}\right)^{2}}{f_{1}^{4} f_{1}^{3}}-\frac{4}{f_{1}}=0
$$

Then putting $A=\alpha f_{1}^{\prime}, B=\rho_{1} f_{1}^{3}, r=\gamma f_{1}^{3}, \sigma=\frac{n}{f_{1}}, q \cdot 1-\frac{d}{f_{1}}, \xi=\frac{f_{2}}{f_{1}}$

The plate diagram becomes

become

$$
\left\{\begin{array}{l}
A+B+r-\frac{q^{2}(2 f-q)^{2}}{\xi^{2}}=1 \\
\frac{-1-q}{q} B+\sigma r-\frac{q^{2}(2 f \cdot q)(2 f \cdot 1-q)}{f^{3}}=2 \\
\left(\frac{1-q)^{2}}{q}\right)^{2}+\sigma^{2} r+\frac{q^{2}(2 \xi+i-q)^{2}}{\xi^{2}}=4
\end{array}\right.
$$

These three equations specify all the chnidt-Cassegrain ana tigmats in term of ix parameters.
AB P are the figuring depth on primary, secondary and plate expressed in temp of parabolic correction of the primary as a unit.
σ is the distance of the plate in front of the primary expressed in terms of f_{1} as a unit.
ξ is the ratio $\frac{f_{2}}{f_{1}}$.
q is the obstruction ratio for the axis pencil,
alternatively $1-q$ is the separation between the mirror expressed in temp of f_{1} a a unit.

$$
\text { On setting } A=B=0 \text { the case of the }
$$

anastigmat saith two spheres and one plate may be obtained. The equations become

$$
\left\{\begin{array}{l}
r=1-\frac{q^{2}(25 \cdot q)^{2}}{\xi^{3}} \\
\sigma r=2-\frac{q^{2}(25-q)(2 \xi+1 \cdot q)}{\xi^{3}} \\
\sigma^{2} r=4-\frac{q^{2}(25+1 \cdot q)^{2}}{\xi^{2}}
\end{array}\right.
$$

on eliminating o and r

$$
\begin{aligned}
& \quad q^{2}(25 \cdot 1-q)^{\prime} / s^{\prime}=0 \\
& \text { hence } q=2\} \text { or } q=0 \text { that is to say } d=2 f_{1}-2 f_{3} \\
& \text { or } d=I_{1} .
\end{aligned}
$$

Case $/$ is when the spheres are concentric and in this case the pet $\vee 1$ curvature cannot be zero and hence the systems are not flat fielded. Case 2 is when the second sphere i at the paraxial focus of the first. This in fact corresponds to the flat fielded chmiat, in which the convex secondary mirror is replaced by a field flattening lent.
If the fir t to equations only are
retained, and the mirrors made spherical, $A=0$ and
$B=0$ and

$$
\begin{array}{r}
r=1-\frac{q^{2}(25-q)^{2}}{q^{3}} \\
\sigma r=2-\frac{\left.q^{2}(2 q+1-q)(1)-q\right)}{q^{3}} \\
-73-
\end{array}
$$

The petzv curvature is given by

$$
\begin{aligned}
& \frac{1}{f_{r}}=-\frac{1}{f_{1}} \cdot \frac{1}{f_{L}}=\frac{1}{f_{1}} \frac{1-f}{3} \\
& \text { In schidt-Cassegrain aplanats of high }
\end{aligned}
$$

definition, the off axis astigmatism hould be so mall. as to cause no observable effect on their image size for most practical cares. This means the petaval curvature should be mall, otherwise the astigmatic m needed to flatten the field will spoil the definition.
Flat fielded anastigmats described by
baker are characterised by having $\frac{1}{f_{p}}=0$. Thus $\frac{1}{f_{1}}=-\frac{i}{f_{6}}$ and $\rho=1$

Type A. Short tube. This has the corrector plate at the focus of the primary. Hence $\sigma=I$

$$
\text { and } \begin{aligned}
A & =-1-2 z \\
B & =\frac{92}{1-q}\left[2-2^{2}(3-q)\right] \\
\Gamma & =(1-1)-2 q^{2}(3-q)
\end{aligned}
$$

The di tortion is about ${ }^{1} / 5$, mat 3° off axis

Type B. spherical secondary. i.e. $B=0$

$$
A=\frac{-q^{2}(1-4)^{2}}{2}
$$

$$
\begin{array}{cc}
\Gamma=\frac{Q^{i}}{R} & \propto \cdot \frac{Q}{Q} \\
\text { Distortion } 1 / 80, n \text { nit } 3^{0}
\end{array}
$$

Type C. spherical primary. i.e. $A=0$

$$
\begin{aligned}
& B=-\frac{(4-q)}{1+q} \\
& r=p+\frac{q^{4}(1+q)}{1+v}
\end{aligned}
$$

Type D. Distortion free. The condition for zero ai tortion from the plate diagram is given by

$$
\begin{aligned}
&\left(\frac{1-q}{q}\right) n-\sigma^{\prime} r+\frac{3-q}{q} R=0 \\
& A=r \cdot \beta-r \\
& B=\frac{a^{2}}{-q} \frac{2 \cdot q}{q^{2} \cdot-q} \\
& r=\frac{1}{a}\left(\hat{\psi}+\frac{1-q}{q} n\right)
\end{aligned}
$$

By similar methods Linfoot extent the argument to two plate systems to reduce the chromatic error, restricting his examples to two sphere, two plate systems.
P. A. Gagman has obtained the higher
aberrations in the case of the monocentric SchmidtCassegrain cameras using the spherical symmetry method evolved by Caratheodory and developed by Linfoot. This method cannot be a plied to the general schmidtCassegrain system but only to the monocentric type.

Let f_{1} and f_{2} be the loci of the two mirrors and if
the radius of the primary be $R=1$

$$
f_{1}=\frac{1}{2}, f_{2}=\frac{5}{2} \quad \xi=\text { ratio of } \frac{f_{1}}{f_{i}}
$$

Putting $\mu=\frac{H}{R}$ where H is the radius of the aperture stop and suppose μ is small.
Setting coordinate axe with $x^{2}+y^{2}=H^{2} r^{2}$
The plate profile is of the form

$$
s(r)=\frac{T r) \cdot T(0)}{R}=a_{1} \mu^{2} r^{2}+a^{2} \mu^{4} r^{2}+a_{2} \mu^{6} r^{6}+o\left(\mu^{8}\right)-2
$$

The paraxial focal length of the plate is given by

$$
f_{r}=-\frac{1}{2\left(n_{0}-1\right)}-\frac{1}{a_{1}}
$$

$$
-33
$$

In the figure the neutral ray is given by ∂P_{1} with
$r=r_{0}$.
Therefore

$$
\frac{1}{f_{r}}=2 \frac{f-1}{5}+\frac{1}{5} \frac{\sin 2\left(\psi_{0}-\theta_{0}\right)}{\sin \psi_{0}}
$$

since ψ_{0} and θ_{0} are functions of r_{0}

$$
\frac{1}{f_{r}}-P\left(r_{.}\right)
$$

$$
\cdots 35
$$

Thus equations 23 and 25 relate a_{1} and r_{0}.
Then making use of the fact
(a) that the plate slope vani hes at $r=r_{0}$
(b) that under perfect axial sigmatism the
optical path difference is zero
Wayman, after considerable analysis, obtains the
plate coefficients in the following form

$$
\left(n_{0}-1\right)_{4},=\frac{35^{5}-165^{4}+325^{5}-325^{2}+165-3}{85^{5}}+2\left(4^{9}\right)
$$

Combining 16 with 26

$$
s(r)=\frac{\xi^{3}-45^{2}+4 \xi^{-1}}{4\left(n_{0}-1\right) 5^{3}} \mu^{4}\left(r^{4}-9 x^{2}\right)-0\left(\mu^{0}\right)
$$

To minimise the colour spread over the plate,
taking $a=\frac{\pi}{2} \quad \frac{21}{2}=0 \quad$ ar $r=\frac{1}{2}$
$30 \quad\left|\frac{2}{2 r}\right|_{r=1}=\left|\frac{2}{2 r}\right|_{r=\frac{1}{2}} \quad$ is the condition
required as before
and thus $T_{0}=\frac{\sqrt{3}}{2}=.866$ as in the colour minimised Schmidt camera.

$$
\begin{aligned}
& \left.\left.\left(n_{0}-1\right) a_{1}=\frac{\left(\xi^{3}-4 j^{2}+4 \xi-1\right)}{25^{3}}\right) \mu^{2} r_{0}^{2}-\frac{\xi^{r}-8 \delta^{3}+8 \xi^{1}-1}{8 \xi^{5}} \mu^{4} 0_{0}^{6}+0 \mu^{6}\right)
\end{aligned}
$$

Using the argument of Hawkins and Linfoot
the loading monochromatic terms in the components of angular aberration are given by
 Where, as before, $T(x y)$ is the thickness of the corrector plate, ϕ the angle off axis, and the marginal zone of the corrector is given by $s^{2}=u^{2}+v^{2}=1$
so that $\frac{\partial T}{\partial x}=\frac{1}{\mu} \frac{1}{\partial v} d e$
From 27 and 28 the angular aberration in seconds

$$
\begin{aligned}
& \text { of are are given by } \\
& \begin{array}{c}
\partial x+\partial y=\frac{\xi^{3}-4 j^{2}+4 i-1}{4 \delta^{3}} \times \mu^{3} q^{2}\left[\frac{n_{0}+1}{2 n_{0}} \frac{\partial}{\partial u}+\frac{\mu}{2} \frac{\partial^{2}}{\partial u}+\frac{1}{20} \frac{j}{\partial v}+\frac{\mu u}{2} \frac{j}{\partial \mu \partial v}\right] \\
x\left(r^{4}-a r^{2}\right)+0\left(r \mu^{7}\right)
\end{array}
\end{aligned}
$$

This equation represents the leading
monochromatic aberrations of the monocentric Schmidt-Cassegrain cameras which are seen to be, to a first approximation, dependent only on the second order fourth power terns of the plate profile expansion. The choice of the arameter \mathcal{F} is
restricted to a mall range, for while it is
desirable that it should be low to reduce obstmetion, the focal surface must lie behind the primary mirror to obtain the fully accessible image surface.

Allowing for the thickness of the mirror $\quad \bar{f}=.69$ serin to be tho love st pernissable valve. Because of the curvature of the image surface the system cannot conveniently be used over a pester field diameter than about 5^{0} at an aperture ratio of $\mathrm{e} / 3.5$
Linfoot hus given details for the fine
correction of a Baker B type camera, that is one with a sphenic 1 secondary mirror. Having it the incurs previously specified fixed the intensions bond ficuringe to annul the selden eppors of the systems, the neutral sone of the plate is fixed and a part traced through it on to the micros to determine the focal point. F. F thus being determined, a meridional fin of rays is traced out from p at numerical apertures of .01, .02, . 03 up to. 25 for an i / s system, $u p$ to the plate. Let hi, θ)denote the height at which s ray cuts the plat te having left the axis inclined at θ to it. Then $\frac{h_{1}(\theta)}{\operatorname{sen} \theta}$ is found to be nearly constant for the different values of θ (since the seidel condition is already satisfied). The aspherity on the big inisror is adjusted to make $\frac{h_{1}(\beta)}{\operatorname{com} \theta}$ constant as θ varies, sur the neutral ray
is traced again and the procedure repeated till no change is found. The plate profile is then adjusted to bring all the rays out parallel to the axis.

Farther improvement to the design might be made after exploring the field with a microscope, the residual field curvature could be balanced out by changing the radius of curvature of the secondary, the coma reduced by a slight shift in the po ition of the plate along the axi.

Reflecting Micro copes.

In part I, the early attempts to use sspheric surfaces in telescope were described, and at the same time it was realised that if the light was sent backwards through a telescope objective, it became a microscope objective. The various attempts to make practical instruments, however, failed because of the difficulty of making the aspheric surfaces. chvarzschild's equations for the two mirror aplanat may be used to form the basis of the design for a two mirror reflecting microscope objective and instruments
based on them have been designed and constructed by 43.6.39
C. R. Durch. the figure represent the chmarzschild
type of objective.

The paraxial radii of
the large un d small
mirrors are ρ and R
respectively, separated by distance \&.

The image distance from
the large mirror is m.
Taking an objective with infinite tube length.
The Schwarzschild equation for the large mirror is

$$
\frac{1}{r}=\frac{t}{\varepsilon}+\frac{1}{m} \frac{\left(1-\frac{z}{i}\right)}{(1-t)+i}
$$

-30
where $t=\sin ^{2} \frac{\mu}{2}$

- 2

The incidence point of this ray on the small mirror may be expressed

$$
\left.\begin{array}{l}
x=\left\{-(1-t)\left[\frac{r(2-2 t)+t}{\epsilon \cdot+t}\right]\right. \\
y=2 t^{\frac{1}{2}}(1-t)^{\frac{1}{2}}=\sin u
\end{array}\right\}
$$

and the incidence angle i^{l} of this pay on the large mirror is given by

$$
\tan i^{\prime}=\frac{\varepsilon \cdots+1}{\varepsilon+r}\left(\frac{\pi}{1-t}\right)^{i} \quad-33
$$

The primary astigmatism i given by

$$
\frac{2-2}{2 m} \theta^{1}
$$

-34
and the fraction of N.A. shadowed $=\frac{1}{m-\varepsilon}$ or $m \cdot \varepsilon \quad-\frac{5}{5}$

Equations io and if may be written as a series:

$$
\begin{aligned}
x=m+ & {\left[\frac{1-m}{\varepsilon}-1\right] \frac{y^{2}}{4 m}-\left(\frac{(1-m)^{2}}{e}-\frac{1-m}{2}+\frac{1}{2 \varepsilon}\right\} \frac{y^{4}}{16 m^{3}} } \\
& +\left[2\left(\frac{1-n}{\varepsilon}\right)^{3}-2\left(\frac{1-m}{\varepsilon}\right)^{2}+\frac{2}{\varepsilon}\left(\frac{1-m}{\varepsilon}\right)-\frac{1+\varepsilon}{68}\right] \frac{y^{6}}{64 m^{2}}-3 t
\end{aligned}
$$

disregarding terms above y^{6} the non -elliptic part
of this is

$$
\frac{-m}{128^{2}}\left[\frac{1+\varepsilon}{3}+\frac{\varepsilon}{1-m-\varepsilon}\right]\left(\frac{4}{m}\right)^{6}
$$

While the remainder is an ellipse of paraxial radius

$$
P=\frac{2 m \xi}{m+\xi-1}
$$

the eccentricity being given by

$$
e^{2}=\left(\frac{1-m+\varepsilon}{1 \cdot m-\varepsilon}\right)^{2}+\frac{2 \varepsilon^{2}}{1 \cdot m \cdot \varepsilon}=e b^{2}-\frac{1}{4 t}\left(\frac{\beta}{m}\right)^{2}-3 q
$$

e_{o} is eccentricity of the ellipse with foci object
and paraxial image point.
for the mall mirror $x=A+B y^{2}+C y^{4}+D y^{6}+B y^{8}$
where $A=m-c, B=\frac{1-m}{4}, \quad C=-\frac{1}{r} \frac{m}{4}$
$\left.D=-\frac{1}{96} \frac{1+4 \varepsilon}{\varepsilon} \frac{m}{4 *} \quad, E=-\frac{1}{1536} \frac{2+11 c, 30 \varepsilon}{\varepsilon^{2}} \frac{m}{4 \varepsilon}\right\}$
This is approximately an ellipse of paraxial radius

$$
R=\frac{3 \varepsilon}{m-1}
$$

and of eccentricity e given by $e^{2}=1-\frac{2 \varepsilon^{2} m}{(1-m)^{3}}$
The non-elliptic part of the sixth power coefficient
$\div 1$
is $D-\frac{2 c^{2}}{13}$
-43
If both mirrors are made spherical e^{I} and e
re zero. This gives $=2$ and the system is
anastigmatic. As previously seen the system is monocentric with $m=2+J 5, \rho=1+/ 5, \mathrm{R}=\sqrt{ } \mathrm{m}-1$ The obstruction ratio, however, is too high $1 / / 5$. Retaining anastigmatiom and setting $\varepsilon=2$, except in the previous ca e both mirrors must be aspherised. If the system be aplanatic only, putting $e=z e r o$ gives $\epsilon^{2}=\frac{(m-1)^{3}}{i m}$ then m may be elected to give as small an obstruction ratio $\frac{1}{m-c}$ as required. Altemativelye $=$ zero, but thi leads to a higher astigmatic coefficient for a given ob truction ratio. The small mirpor may be spherical in objectives of mall obstruction ratio for NA up to .65 and in the special case of the sphere cardioid, pair up to NA 1 , used in aplanatic dack ground condensers usually in approximation as two pheres. Burch has made two uch objectives, one of NA. 58 and a second of NA. 65. The vi ual performance is comparable with repractor of imilar N. A.

4 Paraboloid Field Coprector:

Fron the twin mirror and mirror plate systems which have been considered, it may be seen that there are nearly no aplanatic sy tems which
require a parabolic primary mirror. This means that in astronomy the primary mirror cannot be usel alone, in such system, as a viewing device. From the otner point of view, parabolic miprors, and this includes most of the very large ones, cannot be used over large field angles. To overcome thi defect field correctors have been designed by Ross consisting of epherical Ienses for the $100^{\prime \prime}$ and 200" telescopes. More pecentiy C.G. Wyone has investigated this subject including the use of aspheric corrector plates. He show, by considering the seidel sums of a system of a parabolic mirror and doublet lens, that the spherical aberration can only be corrected simultaneously with coma and astigmatism by a system of thin lenses in contact in the converging beam if their combined. power is such as to give, in combination with the primary mirror, an sfocal systern.

For a pair of aspheric plates in the
convereing bean, the total uncorrected apherical
abempation (coma and astigmatism having been corrected)
depends on the distance from the mirror of the point
midway between the plate, and becomes smaller as this distance approaches the focal length of the mirror. The spherical aberration coefficients of the individual surfaces are of opposite signs and increase in magnitude as the separation between the plates is reduced.

The Seidel aberrations for a system of surfaces and the conditions for the removal are

$$
\begin{array}{ll}
\text { Spherical aberration } S_{1}=\langle A=0 \\
\text { Coma } & S_{2}=\{A B=0 \\
\text { Astigmatism } & S_{3}=\left\{A B^{2}=0\right. \\
\text { Field curvature } & S_{4}=\{P=0 \\
\text { Distortion } & S_{5}=\left\{A\left(A D^{2}+P\right)=0\right.
\end{array}
$$

The quantity B contains a factor E which is changed when the stop position is moved. Suppose the stop is moved to a new position giving a change $E \rightarrow E-\delta$.
Then denoting the new values of the aberration coefficients by $3_{1}{ }_{2}^{1}$ etc.

$$
\begin{aligned}
& s_{1}^{1}=s_{1} \\
& S_{2}^{1}=s_{2}+s_{1} \\
& s_{3}^{1}=s_{3}+2 s_{2} S_{1}+s_{1}\left(d_{E}\right)^{2} \\
& s_{4}^{1}=S_{4}
\end{aligned}
$$

$$
S_{5}=3_{5}+\left(y_{4}+33_{3}\right) \delta E+3 s_{2}(\delta E)^{2}+S_{2}(\delta E)^{3}
$$

For a parabolic mirror with radius of curvature at the vertex r_{m} and semi-aperture h, the spherical aberration for an infinite object distance is zero, so that the coma coefficient is independent of stop position. Its value $=-\frac{2 h^{2}}{4 m^{2}}$. The astigmatism coefficient v aries with stop position and is zero for a stop at di trance $\frac{1}{2} r_{m}$ in front of the mirror. If $A_{1} A_{2}$ be the seidel spherical aberration of the two plates at di trances $d_{1}, d_{1}+d_{2}$ from the mirror then the conditions for the removal of coma and astigmatism from the whole system are

$$
\begin{aligned}
& A_{1} E_{1}+A_{2} E_{2}=\frac{2 h^{2}}{r} \\
& A_{1} E_{1}^{2}+A_{2} E_{2}^{2}=0
\end{aligned}
$$

Thus the spherical aberration of the system is given by

$$
A_{1}+A_{2}=\frac{2 h^{2}}{r_{m}^{2}} \quad \frac{E_{1}+E_{2}}{E_{1} E_{2}}
$$

which can only be zero if E_{1} and E_{2} have opposite signs. Putting in the values for E_{1} and E_{2}

$$
\begin{array}{rlrl}
A_{1}+A_{2} & =8 h^{4} \frac{\left(r_{m}-2 d_{1}-d d_{2}\right)}{r_{m}} & & \text { where is the } \\
& =45\left(1 \cdot D_{1}-\frac{2}{2} D_{1}\right) & & \text { spherical aberr- } \\
& & \text { anion of a spherical } \\
& \text { mirror radius } r_{m} \\
& \text { and } D \text { the ratio } \\
& & \text { of } \frac{i d}{r_{m}} .
\end{array}
$$

A similar treatment of the ca e of two chmidt plates shows that the spherical aberration, coma and astigmatiom may be corrected by the use of two plates so placed that the sum of their distances from the mirror is twice the focal Iength.

With one plate in the conversing beam and one in the parallel beam, the latter must have a distance from the mirror of more than twice the focal length, this distance increasing as the second plate is moved nearer the foc I plane. The length of all such systems therefore is such as to introduce considerable vignetting uniess the plates are very large.

It is necessary therefore to have three or more correcting elements to give an image iree of spherical aberration, coms, astigmatism, curvature and chromatic errors.
Wynne goes on to discuss by similar methods
a number of three-element systems.

1. The first suggested by J.G. Baker, consisting of a doublet lens and a figured plate.

The disadvantages are the difficulties in making such a large plate, and al o the vignetting produced. 2. A correction plate between the mirror and lens.

This type of design gives best results when the lens and plate are far apart. Some advantage in compactness Would result from replacing the plate by a figured mirror. Ra.

The field curvature may be eliminated by a convex secondary mirror with an afocal lens par.
3.

$$
-8-
$$

3.

Four examples have been computed. One each of 1. and 2. and two of 3. in the fourth example the secondary mirror is nearly spherical, and small changes would give an exactly spherical arc, which is not any easier to make but less sensitive to centering errors.

Fact IV. Generai Aspheric De im and Ray Tracing.

First order design.
Differential correction.
Hethois for obtaining axial stigmatim.
Aplanatim.
Ray Tracing.
Conclusion.

Firt onder le irn.
In part III the first order design of the
Baker schmidt Cassegrain cameras, was described by the use of the method of plate diagram nalysis. The method is, of course, a means of describing the seidel aberrations in tems which (at least according to C. R. Burch ${ }^{41}$) may be more easily visualised, although the methoi of antaysis by $\mathrm{Hi}_{\mathrm{H}} \mathrm{H}$. Hopkins ${ }^{42}$ as epplied first to spherical surfaces and extendex to aspheric urfaces may be considered to have equal clarity without the need of the analogue. However, Hopkins is ppimarily concerned with aberpations of spherical surfaces, and speciffically does not include lens design, whereas Burch is mainiy
interested in the use of tare dreidel aberrations in aspheric design.

Burch fad considered the conditons for anastigmatiom in a four plate system. Suppose a system of four plates is represented in the see-saw diagram by $m_{1}, m_{2}, m_{3} m_{4}$, separated by distances a, b and c. Then the necessary and sufficient

condition for anastigmatism is that the total weight, and the first and second moments all be zero. This ia sati filed if the strength are in the ratio

$$
\begin{gathered}
b c(b+c), \quad-c(a+b)(a+b+c), \quad a(b+c)(a+b+c), \\
-a b(a+b) \\
\text { A syst tom of two surfaces is in general a }
\end{gathered}
$$

four plate system, and this result may be applied to
it. Consider a sphere of radius r, refractive index N^{1}, immersed in index N. An image is produced distance v from the pole in N space, by an object distance u from the pole in N^{1} space.

Then the strength of the plate required at the centre of curvature in N space is given by Retardation at height h

$$
\begin{aligned}
& =\frac{h^{4}}{8 r^{3}}\left(N^{\prime}-N\right)\left(\frac{N}{N}\right)^{2}\left(\frac{\mu}{\mu-r}\right)^{2}\left(\frac{N \mu-\left(N+N^{\prime}\right) r}{N_{\mu}}\right) \\
& =\frac{h^{4}}{8 r^{3}}\left(N^{\prime}-N\right)\left(\frac{N}{N^{\prime}}\right)^{2}\left(\frac{v}{v r}\right)^{2}\left(\frac{N_{V}-\left(N+N^{\prime}\right)_{r}}{N /}\right)
\end{aligned}
$$

In a two surface system, let the first surface be a. figured sphere of radius ρ, refractive index N^{1} immersed in N, and let the second surface distance d inside the first be san asphere of radius $-R$, index N^{l} immersed in N. The position of the object is specified by mean of the intermediate image as this is easily referred to either surface, and let the intermediate image be L in N^{1} pace inside the p sphere.
The strength of the p plate

$$
=\left(\frac{\left.N^{\prime}-N\right)}{8 P^{3}} h^{14}\left(\frac{N^{\prime}}{N}\right)^{2}\left(\frac{L}{L \cdot \rho}\right)^{2}\left(\frac{L-\left(1+\frac{N}{N}\right) P}{L}\right)\right.
$$

of the a plate

$$
=-\frac{\left(N^{\prime}-N\right) h^{\prime 4}}{R^{2}}\left(\frac{N^{\prime}}{N}\right)^{2}\left(\frac{L-d}{R+d-L}\right)^{2}\left(\frac{L-d-\left(1+\frac{N}{N} \cdot I_{R}\right.}{L-d}\right)
$$

To create a star space in which to construct the see-saw diagram, a perfect anastigmat of unit focal length is placed such that its posterior focus is at the intermediate image.

The surfaces and pora-centres ace then imaged
into star space giving

$$
\begin{array}{ll}
a=\frac{R+d-P}{(P-L)(R+d-L)} & a+b=\frac{P}{L(P-L)} \\
b=\frac{R+d}{L(R+d-L)} & b+c=\frac{R}{(L-d)(R+d-L)} \\
c=\frac{d}{L(L \cdot d)} & a+b+c=\frac{P-d}{(L-d)(P-L)}
\end{array}
$$

The process of imaging the plates into star space increases the strengths of the -4 th power of the magnification, that $i s$, by the +4 th power of the distance of each plate from the posterior focus of the unit focal length anastigmat. Thus the strengths in star space of the plates are given by

$$
\begin{aligned}
\text { plate } m_{1} & =\frac{H^{4}\left(N^{\prime}-N\right)}{8 P^{3}}\left(\frac{N^{\prime}}{N}\right)^{2} G^{2}(L-\rho)^{2}\left\{\frac{L-\left(1+N^{\prime}\right)}{L}\right\} \\
-R \text { plate } m_{2} & =-H^{4}\left(\frac{N^{\prime}-N}{8 R^{3}}\left(\frac{N^{\prime}}{N}\right)^{2}(L-d)^{2}(c-d \cdot R)^{2}\left\{\frac{L-d-\left(1+N^{\prime}\right) R}{L-9}\right\}-(2)\right.
\end{aligned}
$$ H being the general height in star space.

since m_{3} and m_{4}, the values of the figuring on the surfaces, may be any value, the possibility of anastigmatism by figuring reduces to whether $\frac{m_{2}}{m_{2}}$ has the value demanded.
From (1) and (2)

$$
\begin{equation*}
\frac{m_{1}}{m_{2}}=-\frac{R^{3}}{\rho^{3}}\left(\frac{L}{L-d}\right)^{2} \frac{(L-\rho)^{2}}{(R+d-L)^{2}}\left\{\frac{1-\left(1+\frac{N}{N_{1}}\right) \frac{C}{L}}{1-\left(1+\frac{N}{N_{1}}\right) \frac{R}{(L-d)}}\right\} \tag{3}
\end{equation*}
$$

while the ratio $\frac{-k(b+c)}{(a+b)(a+b+c)} \quad$ is $-\frac{R}{p}\left(\frac{\beta+d}{p-d}\right) \frac{(b-p)^{2}}{(B+d-c)^{2}}$
so that $\left(\frac{L-d}{R}\right)^{2}=\frac{R^{2}}{\rho^{2}}\left(\frac{C-d}{R+d}\right)\left[\frac{1-\left(1+\frac{N}{N}\right) \frac{\rho}{L}}{1-\left(1+\frac{N}{N}\right) \frac{R_{1}}{L \cdot d}}\right]$
Then the two mirror system may be deduced as a special case, putting $N=-N^{1}$. (5) becomes

$$
\begin{equation*}
\frac{L-d}{L}=\frac{R}{\rho} \sqrt{\frac{R-a}{R+d}} \tag{6}
\end{equation*}
$$

and further putting the tube length infinite i. e. $L-d=\frac{R}{2}$ it may be seen that focus length must be half the distance between the mirrors or infinite as was first seen by Schwarzschil. Burch goes on to diseuse the design of anastigmatic singlet lenses by the use of these formulae. Rewriting (5) in the form

$$
\begin{equation*}
\frac{1}{P}\left\{\frac{L}{P}-\left(\frac{1+N)}{N^{\prime}}\right\}(P-d)=\frac{L-d}{R}\left\{\left(\frac{L-d)}{R}-\left(\frac{1+N)}{N^{\prime}}\right\} R+d\right.\right.\right. \tag{7}
\end{equation*}
$$

it may be seen that this is a quadratic in L and thus there are two object distances for which a given singlet may be figured anastigmatic. For a flat fieldedanastigmat $R=\rho$ and for objects at infinity

$$
\begin{align*}
& L=P \frac{N^{\prime}}{\left(N^{\prime}+N\right)}=\int_{n-1}^{n} \text { on piping } \frac{N^{\prime}}{N}=n \text { Then (7) gives } \\
& L\left(L-\left(\frac{a+1}{r}\right)\left(\frac{n-1}{n}\right) L\right)(\rho-d)=(L-d)\left(L-d-\left(\frac{n+1}{n}\right)\left(\frac{n-1}{n}\right) L\right) \rho+d \tag{8}\\
& \left\{\frac{(L-d)}{L}\right\}\left(\frac{b-n^{2} d}{L}\right)=\frac{(n-1) L-n d}{(n-1) L+n d} \\
& \text { or }\left(\frac{n \rho-(n-1) d}{n p}\right)\left(\frac{n p-(n-1) n^{2} d}{n p}\right)=\frac{p-d}{p+d}
\end{align*}
$$

Putting $x=d \rho$

$$
\begin{equation*}
\left\{1-\left(\frac{n-1}{n}\right) x\right\}\{1-(n-1) n x\}=\frac{1-x}{1+x} \tag{11}
\end{equation*}
$$

or $(n-1)^{2} x^{2}-(n-1)\left(\frac{n+1}{n}\right) x+2-(n-1)\left(n+\frac{1}{n}\right)=0$
Solving for x

$$
x=\frac{n+1}{2 n(n+1)} \pm \frac{1}{2(n-1)}\left[\left(\frac{n-1}{n}\right)^{2} \cdots 4\{1-n(n-1)\}\right]^{\frac{1}{2}}
$$

Two real values of x exist if $\frac{n-1}{2 n}>1-n(n+1)$
i. e. for x greater than 1.602. For the critical value $x=\frac{n+1}{\ln (n-1)} \simeq 1.35$

The product of the two roots, $2-(n-1)\left(n+\frac{1}{n}\right)$,
is positive for the usual range of n a that both roots will be positive. As a must be positive no flat field anastigmat exists with a concave front face for the u dual range of n. For a convex front face putting $n(n-1)=1$ that $x=1$ or n the lens assumes a pecial for, with $x=1$ the intermediate image is in the Amici po ition with respect to the second urface, Hence, only that surface need be figured and $n=1.618$. When
$x=n$ the gecond urface $i s$ concentric with the final image. Burch finally considers the possibility of achronati ing for magnification by suitably placing the diaphragm.

Differential Correction.

The plate diagram therefore gives a
method of detemining the aspheric profiles which a system must have to obtain a required standard of definition over a finite field to the approximation of the third order. As a rule, of course, higher aberrations must be taken into account, and there is at pent no similar general method for dealing with them. The differential method of lens correction or h^{\prime} Aulay and Cmick hank were usei with great success durings the second world var for adjustment of rough lens designs and D. S. Volosov has publi shed a method of tifferential correction of spherical surfaces into asphericsl ones, and by this means
improves several aberpations without actually having to trace rays through aspheric surface. He state the objects of his discourse as follows:

1. To ind from the analysis on the structure of axial as well as oblique pencils, which spherical surface of the system is to be hoped into a non-spherical one.
2. To find from the ansis mentioned above the shape of the non-spherical surface without having recour e to any supplementary ray tracing through non-spherical surfaces.
3. To evaluate, though approximately, the influence of the introduced non-spherical surface upon the remaining aberrations of the system.

The equation of an aspheric urface may be given as

$$
\begin{align*}
f(x)=y^{2} & =a, x+a_{2} x^{2}+a_{3} x^{3}-a_{4} x^{2}+\cdots \\
a_{1} & =8- \\
a_{1} & =-(1+6)
\end{align*}
$$

where b is the deformation coefficient of schwarzschild.
(for conic ections $b=-e^{2}$)
The coefficients a_{2} and $a_{i z}$ are parameters for the correction of aberration in the seidel region. Con ides the figure which represents a ray passing through an aspheric surface.

Let this ray pass through the system and reach some place in the object space the ordinate of which is I^{I}. by taking a system of spheric or aspheric surfaces or the second order corrected for third order aberrations, the two coefficients ${ }^{a_{1}}$ and a_{2} may be found. Then variations of the abscissa $1^{I}\left(a 1^{\perp}\right)$ in terms of the variations of the coefficients $a_{3} a_{4}$ of the non-spherical surface are determined $\frac{d 2^{\prime}}{d a r}$ for several rays oblique and axial, and from these results the inverse problem, assuming any desired changes in 1^{1} may be solved. Suppose the variations in the image apace be denoted by

$$
\partial m=\frac{\partial e^{\prime}}{\partial a_{m}} \quad D_{n}=\frac{\partial e^{\prime}}{\partial a_{n}} \text {, and so on. }
$$

Then

$$
d Q^{\prime}=D_{1} d a_{1}+D_{1} d a_{2}+D_{3} d a_{3} d e
$$

In the propo ed method the most laborious part
is the determination of two initial partials, say,
D_{k} end D_{K-1}. Once these are determined the
remainder may be found from

$$
\begin{equation*}
\bar{v}_{r r+1}=2 x_{0} D_{r} \cdot x_{0}^{2} y_{m+1} \tag{17}
\end{equation*}
$$

Volasov proposed five methods for determining the two initial partials:-

1. A method in which the non-a spherical urface
is the last one.
2. Application of the lass of optics of collinear relationships to the m ridinal pencils.
3. A simplified method where the deformations are mall.
4. A method of immediate determination of the
partials $\mathrm{D}_{\mathrm{K}-1}$ and D_{k} based upon the application of tables describing how changes of the parameters of a system influence the aberrations; the tables being composed for systems of spherical surfaces. Volosov considers the last method to be the best. Method 2 is really the method of Cmickshank and W"Aulay, and in addition the advent of electronic computing has removed the difficulties of aspheric ray tracing, at least for those who have access to a machine.

Mothoi for outainin axial stigmatic.

In sone systems involving aspherie surface it is sufficient to ensure that the image is axially stigmatic, the geometer of the system ensuring the automatic removal on near cemoval of the off axis aberrations. The schmidt system is the obvious example and methods for computing the corrector plate, generally depending on the optical path difference method have been described in part II. Some other more general methods have been described. W. Hermberger and H. O. Hoadiey describe a method for the calculation of the aspheric correcting surface for an optical system in which the surface is adjacent to object of image and an extension for cases where the aspheric surface is in the interior, the rays being refracted to match a given non-spherical Wave surfice.

The first part of the computation is the tracing of a series of rays from the object point up to the fins correcting enface of the form

$$
\begin{equation*}
z=\alpha y^{3}+\beta_{y}^{4}+\gamma y^{6} d x \tag{18}
\end{equation*}
$$

The power of the surface and therefore the coefficient α
is determined by the necessity of bringing the paraxial ray to the focal point. From the well known formula $\frac{n^{\prime}}{s_{0}}-\frac{1}{r_{n}}=\frac{n^{n}-n}{r_{0}}$ rom may be determined and hence α since $\alpha=\frac{1}{2.0}$

The first approximation to the correcting
surface is now assumed, and the intersection points of the rays with the surface are calculated. A suitable surface would usually be a sphere radius r_{0} or for a schmidt camera a plane. Let the coordinate of the intersection point be z_{1} and y_{1} and a the desired angle that the refracted ray makes with the axis.

The figure represents a non-spheric refracting surface y

Then $\tan \sigma^{\prime}=\frac{1}{s^{\prime}-2_{1}}$
also $\partial=\sigma^{\prime}-\sigma \in c-c^{\prime}$

$$
\sin t=\sin s \frac{n^{\prime}}{\sqrt{n^{2}-n^{2}-2 n n^{\prime} \cos \delta}}
$$

The required slope angle ϕ is given by

$$
\begin{equation*}
\phi=\sigma+\epsilon=\sigma^{\prime}+\epsilon^{\prime} \tag{22}
\end{equation*}
$$

The actual angle $\Phi_{\text {, }}$ will in general not agree with the v hue and may be determined from equation (18)
 A surface which will have the required $\phi \mathrm{S}$ at the specified value y, can be calculated. .

Suppose several rays have been traced, and
sere denoted by a, b, c, etc. The coefficients of such a surface can be found from the following set of simultaneous linear equations derived from equation (23.

$$
\left.\begin{array}{l}
2 \beta_{1}+3 \gamma_{1} 4 a_{1}^{2}+4 \delta_{1} 4 a_{1}^{4}+d x=R_{a_{1}} \\
2 \rho_{1}+3 \gamma_{1} 4 g_{1}^{2}+4 \delta_{1} \ell_{1}^{4}+k_{s}=R_{l_{1}} \\
2 \rho_{1}+3 \gamma_{1} 4_{e_{1}}^{2}+4 J_{1} 4 c_{1}^{4}+d e=R_{e}
\end{array}\right\}
$$

Thus the number of coefficients in the surface which can be determined is equal to the number of rays used. Rays are then traced through the surface thus determined and new intersection points y_{2}, Z_{2}, determined. The whole procedure being repeated until the refracted rays pass through the desired point with the required accuracy.

```
In principle the calculation of an
```

interior correcting surface is aniler, but a modification is needed as the refracted rays will in most cases not be required to meet in a point and the desired σ^{\prime} cannot be found Prom equation (20). Tho wave surface required is described by giving the elope of the emerging rays. The nomads to the rave surface, as function of the intersection heights of the rows in the tangent plane of the correcting surface. Wo find this s. number of pars are traced backward: through the system and by means of a set of equations similar to (24) the slope e of the raps are approximated by a function of the form

$$
\begin{equation*}
\tan \sigma^{\prime}=\mathrm{A} h^{\circ}+B 厶^{\prime}+\mathrm{Ch}^{\circ}+\operatorname{to} \tag{21}
\end{equation*}
$$

and it is how required to find a value of σ^{\prime} and h^{\prime} such that they fulfil the equations

$$
\begin{array}{rlr}
\tan \sigma^{\prime} & =A h^{\prime}+A h^{\prime}+C h^{\prime}, \text { ts } & -(26)_{a} \\
\delta & =h^{\prime}-Y-2 \tan \sigma^{\prime}=0 & -(6) b
\end{array}
$$

The procedure then continues in a
similar manner as for the simpler case and equation (t) may be considered a simple case of equations (80 in Which the refracted rays all pass through a point.

The piper I c dives a buy tracing procedure which will be discus ed later. ..s. Preddy and E. Wolf, ${ }^{45}$ and Inter \because, Wolf alone, have written papers on the axis 1 correction of systems by mean of aspheric surfaces, The paper by hole is an extension of the earlier one and treats the subject more generally. hole first atutea a theorem A "ff two rays hi and ha intersect a wove front i. of F in P_{1} an P_{B} and O in in_{1} and Q then the optic a i path aippenence $P_{2} \partial_{2}-P_{I} I_{1}$ is ven by $n \int_{h .}^{h_{1}}$ in win" This nemult is proved by ready ana Wolf.
Next, with the use of this theorem the
correspondence between the parameters of two rays which pass through the aspheric surface is observed. In the figure let Γ and Γ be two coplanar 'normal rectilinear congruences' situated in spaces of refractive index n and n and let \sum be the refracting or reflecting profile which transoms one to the other.

Tet h_{x} and $h_{s}{ }^{l}$ be any two corresponding pay in this tran formation, and. let W and W^{2} denote the Wave front of T and ${ }^{-}$'. Let Pr and ar be the point of inter section of the ray hr with W and or respectively and imilamy for the de ned letters. Let $x_{p_{r}}$ denote the coordinates of the point Rr. Then after con iteration of this figure and the ontic il path involved, use of theorem A results in the following equation which is stated then as Theorem B.

$$
\text { In the transformation } \Gamma \text { to } \Gamma^{\prime} \text {, the }
$$

pspaneters of corresponding ray when referred to any sot of rectangular axes with their origin placed at a point io f the tran forming profile satisfy the following relation;
$\operatorname{in}\left(\omega,-\omega_{0}^{\prime}\right)\left\{n \int_{0}^{h r} \sin w^{\text {th }}-n^{\prime} \int_{0}^{h r} \sin w^{\prime} d h^{\prime}\right\}$
$+\left(n \cos \omega_{i}-n^{\sin \omega_{+}}\right)\left(h_{v}-h_{\nu}\right)=0$

Suppose the equation of the fir t congruence is given by

$$
\begin{aligned}
w= & w(r) \\
& -105
\end{aligned}
$$

In mpactice it i often more convenient to use a polynomial approximation of the form

$$
\sin =a_{2} h+3^{h^{3}}+
$$

Which may be obtained by tracing a number of rays into the space which precedes \sum, and computing for each rey the quantities $\%$ and h and fitting a polynomial.

In the space which follows \$ the rays are traced backwamds from the image point and a similar equation may be obtained.
The function of the surface \leqslant is to transform Γ into Γ^{\prime} and Theorem B permits the calculation of the profile, The proof of Theorem B then follows Somewhat imilar zines to that propo ed by Herzberger and Hoadly, being ank iterative method. In the special case where the corrector is the first or Jast aurface, the profile calculation is consiterabiy simplified. In this case the surface \mathcal{L} is the Iast before S^{\prime} the imate. The ficure pepresents this.

Waco the metical path from the gave front in to lo is con tent
$P Q+p x \operatorname{asc} \omega+n^{\prime}\left[\left[\rho^{\prime}-r\right)^{2}+(h+x \tan \omega)^{2}\right]^{\frac{1}{2}}=\left[P_{0} 0\right]+n^{\prime} s^{\prime}$ From Theorem A

$$
n \int_{0}^{n} \operatorname{arm} w \operatorname{coc} h+n \operatorname{sesec} w+n^{\prime}\left[\left(h^{\prime}-x\right)^{2}-(h+x \operatorname{lese} w)^{2}\right]^{\frac{1}{2}}-n^{\prime} s^{\prime}=0
$$

$$
\text { on } P x^{2}+212 x+\infty \cos +C_{x x^{2}}{ }^{2}=0
$$

$$
\text { where } A=n^{2}-n^{2}
$$

$$
B=n^{\prime} \int_{0}^{1} \sin \omega d h-n n^{\prime} s^{\prime} \cdot n^{\prime 2}\left(s^{\prime} \cos \omega-h \sin \omega\right)
$$

$$
0=\left(n S_{0}^{x} \text { arm with } K r \int_{0}^{n} \text { sin n with } 2 n^{\prime} s^{\prime}\right)-n^{\prime 2} h^{2}
$$

Solving and urine $T=h+x$ for ω

$$
x+1 y=\left(\frac{e^{-1}}{9}\right)\left[B \pm\left(b^{\circ} \cdot a c\right)^{\frac{1}{x}}\right]+h
$$

$$
\text { The integral which occur in } B \text { and } C
$$

may be evaluated by tracing rays and applying Thoopen A.
A. Warp ham' described a dioptric sclunilt
in which convert ing power is provided by three doublets and the spherical aberration corrected by an apheric plate, the image lying on a curved field as against the flat one normally considered as essential in lenses of this type. ho lever, the aperture is raised to ff? and an interesting method of calculating the pl te profile is used. The method is as follows.
argo = the equation of tho plate if of the form

$$
x=a_{2} y^{2}+a_{2} y^{4}+a_{6} y^{6}+a_{8} y^{8}
$$

In the figure the last asphenical surface is the $n^{\text {th }}$ surface and the inner or n. $\boldsymbol{c}^{\text {th }}$ the fir th ate surface which is spherical.

A paparial prey is traced through the syr tem, and in addition a ronal pay en be brought through to the n- luth surace.

The figure represents this state of aft irs.

$Q(x, y)$ is the unknown point where the ray meets the a pheric surface and D the uniknom path length. U^{2} is also unknown. From the figure $x=X-Z+D C o s u$ and $y=Y-D$ sin U Therefore $\partial F^{2}=(Y-D \sin U)^{2}+(Z-D \cos U)^{2}$

$$
\text { where } Z=1^{2}-x+d
$$

Equating the zonal and paraxial optical paths

$$
p=P+W D+\left[(Y-D \sin U)^{2}+(P-D \cos U)^{2}\right]^{\frac{1}{2}}
$$

On solving for D, x and y may be found and from the ge $\tan U^{I}=\frac{y}{e^{1}-x}$
and then $\tan I=\frac{\sin \left(U U^{\prime} U\right)}{\operatorname{arc}(U) \cdot N} \quad$ anon $\frac{d_{a}}{\operatorname{div}}=\tan (I+U)$
If the value of u^{i} gives a sati factory sine
condition, the coefficients may be calculated.
a. is know from the garaxial equations and as from the first order aberration.
Hence $a_{2} y^{2}+a_{4} y^{2}=x_{1}$ gay and differentiating

$$
2 a_{2} y+4 a_{4} y^{3}=V_{3} \quad 8 a y
$$

It follows that $a_{6} y^{6}$ and a $y^{8}=x-x_{1}=q$

$$
\text { and } 6 a_{6} y^{5}+\operatorname{aig} y^{7}=\frac{d x}{4 y}-v_{1}=V \text { say }
$$

Thus a_{6} and a may be calculated

$$
a_{6}=\frac{8 q-v_{4}}{2 y^{6}} \quad a_{8}=\frac{v_{y}-b_{2}}{2 y^{8}}
$$

an the equation of the plate profile is completed. If the sine condition is not good enough the plate is bent slightly to correct for this. A zonal ray of .83 full aperture gives satisfactory results for apertures not exceeding $\mathrm{f} / \mathrm{I} .0$.

Anianati m.

In systems which do not depend on geometrical considerations to secure mall off axis aberrations,
and taxs haclunge the majonity, wxian btignatiom is not enough, and as was seen in pant I, Schwarusehild ank Cncetion wope anie to prowuce aplarntic two mifeor jotcmo wai Limmemom on aplenatic lens, by introducime the aduitional sine conditiong although the sine conlition, of course, does not obtain the redcase Prom coma of all orders.
J. W. hactin hato vorked out the data ior twn aplanat singlat denses using Chnetion's theory of the solanatic toloscope, the statement of optical poth equality and the sine conlition Poming the basic of the drempent. Two numerical examples aie given, one an apianet, the othef an whatigmat ith zero petv 1 wh, which fokow Burch' \bar{x} example given earlier. It is intoresting to see that al though the Ien, is spheicully corrected for a very large aperture, owing to the high ordor coma and astigmetism the eorrection is on2y reasonably zood over as semifiche of γ° and at an aperture of $f / 5$. These resuits are letermined by ray tracing.
G. .. hassemann ana E. holf have given
methols whereby the aplanati of a syotem may be
ensured by the aspherization of two of the surfaces.

The other quantities are similar to those used by Wolf in the paper previously discussed.

Suppose a normal rectilinear consmence Γi transformed by the tho urfaces into $\boldsymbol{r}^{\prime}, r$ can be specified by the relations.

$$
y=i(t) \quad h=h(t)
$$

If the object point, is at a finite distance \boldsymbol{t} is chosen as

$$
\begin{equation*}
=\operatorname{in} \Pi \tag{8}
\end{equation*}
$$

where (A) is the angle made by the ray in the object space.

If the object i at infinity it is put equal to H, the distance of the pay from the axis.

Tup ralation (27 can ravelv be obt ined and
Wole and harsemann favour the fomming of a table
basea on a par trocons ajin t a polmomial
approzimation.
By tracing pays bankwards from the object Γ^{\prime} can
be specirici bu imile moans.

$$
W^{2}=w^{1}\left(t^{\prime}\right) \quad H^{2}=n^{2}\left(t^{\prime}\right)
$$

The sine relation ts riven by

$$
\begin{equation*}
\frac{\pi}{\hbar^{\prime}}=\operatorname{con} \tan t \tag{29}
\end{equation*}
$$

If T and in in the figupe are the points (x, y) and (x^{1}, y^{1}), Sno12's law zivos

$$
n\left(\cos \because \frac{d x}{d t}+\sin v \frac{d y}{d t}\right)=n^{*}\left(\cos w^{*} \frac{d_{x}}{d t}+\sin v^{*} \frac{d y}{d y}\right)
$$

where $\quad \operatorname{in} v^{*}=\frac{R y}{R} \quad \cos W^{*}=\frac{R x}{R} \quad$-(1)
where $R=x^{3}-x+Q, R y=y^{I}-Y \quad R^{2}=R x^{2}+R y^{2}$-(02)

$$
\begin{align*}
& y=n+x \tan w \tag{33}\\
& y^{1}=n^{1}+y^{1} \tan w^{1} \tag{44}
\end{align*}
$$

Substituting for oos W^{*} and sin W^{-1} and $\frac{y}{d t}$ fron(3)(11) and (30)
$\frac{d x}{d t}=-\left[\frac{\left(n^{*} R x-n R \operatorname{sos} \omega\right)}{\left(n^{*} R_{y}-n R \sin \omega\right)}+\operatorname{san} \omega\right]^{-1}\left[\frac{d h}{d t}+x \frac{d t}{d t} \tan \omega\right]$

In the table given, the results are compared with schwarzschild's formulae, the maximum error being 2×10^{-6} s.w in X and 1×10^{6} amo for J. Joseph Meiron has designed a double aspheric curved field anastigmat, the object of the design the extension of the field of view of a doublet telescone objective.

The preliminary design is carried out by the third order methods of Burch and H. H. Hopkins, and Meiron says that in the design of a doublet, any spherical abercation and coma can be fully corrected. An aspheric plate, the object of which is to correct the astigmatism, must be placed away from the aperture stop, but with the stop in this position distortion will be introduced, which may be overcome by placing a second aspheric plate on the other side of the doublet. This, of course, as umes the stop
to be on the doublet. In the dioptic schmidt, as previously discussea, the stop is on the aspheric plate and at the same time the lens is giving a residual of spherical aberration. The lens is compared with a petzval lens where a slightly superior astigmatic performance is claimed, other factors, spherical aberration, coma, field curvature, being similar. The lens was tested by ray tracing on an electronic machine and nence some attempt at control of higher order aberrations could be made, the final lens, however, appeared to show few advantages over the petzual lens with which it was compared.

Ray Tracing.
The difficulty involved in tracing rays through aspheric surfaces has often been considered to be one of the reatest stumbling blocks to aspheric lesign and only the advent of electronic computing has made it possible to trace the large numbers of rajs which seem to be required. A number of writers have given methods for aspheric tracing with the electronic machines in mind. Most
of the methods are algebraic, usually iterative in solution.

$$
\text { T. Smith }{ }^{\text {si }} \text { in } 1945 \text { eave a method for tracing }
$$

rays through an axially symmetrical optical sy stem With aspheric refracting or reflecting surfaces. The equation of a non-syherical surface is specified by $\quad 3=f(4)$

Where x, y, z are the coordinates of the surface whose pole is the origin, z the optic axis and s the subnormal.
$\{, 7$,$\} , are modified direction cosines, the direction$ cosines times the refractive index. The ray tracing equations are given as

$$
\begin{array}{rlr}
S_{\Gamma} & =S_{r-1}-x_{r} A_{r} & \\
\eta_{r} & =n_{r-1}-y_{r} A_{r} & \text { Refraction } \\
x_{n+1} & =x_{n}-S_{r} D_{r} & \\
Y_{n+1} & =Y_{r}-\eta_{n} D_{r} & \text { Transfer }
\end{array}
$$

D is the distance between surfaces divided by the refractive index and

A is the generalised power at the point of incidence.

They are given by

$$
\begin{array}{ll}
-D_{r}=\frac{t_{p}-z_{n}+z_{p}}{3_{r}} & \text { where } t_{r} \text { is the axial } \\
A_{r}=\frac{J_{n}-J_{r-1}}{S_{n}} & \text { distance }
\end{array}
$$

The pay trace consists in using approximate values
z_{n} and ξ_{n} and putting the se in the equations, and on completing the trace, improved values of z_{n} and 3_{n} are computed from equations

$$
\begin{aligned}
& z^{\prime}=\frac{1}{2 s}\left\{x^{2}+7^{2}+1 \int_{0}^{2} 2 d s\right. \\
& 3^{\prime}=\frac{1}{2}\left\{3-\frac{\left.v^{2}-s^{2}-y^{2}\right\}}{2 s}\right\}
\end{aligned}
$$

These improved values are put in the equations and the procedure repeated until the values of the coordinates and direction cosines remain unchanged to the desired number of places. If the first approximate v lues of \mathbf{Z}_{r} and Y_{n} are the paraxial one, the inset round dives the paraxial properties, and the following rounds approximate to the first, second and 0 on orders of aberrations.

52
W. Weinstein, in tracing cays through a
reflecting microscope noticed a case in which the iteration id not converge but diverged. This led him to an investigation of the condition for convergence of such systems and he found that the

```
conulete itoration converges when the rays
``` are only moderately inclined to the uris and the refracting surfaces not too steep, but divergence can occur for systems of large numerical aperture. This is illustrated in the two following figures, the first showing converwence, the second divergence. \(P_{1}, Q_{1}, P_{2}, Q_{2}\), etc. are the points of the iteration.

(a) Convergence

(0) Divergence.

Weinstein gives an improved iteration which always converges, represented in the figure.

(c) Convergent under all conditions.

The improved \(v\) lues of \(z\) an 3 somewhat more complicated are given by
\[
\begin{aligned}
& z^{I}=\frac{2(5 x+7 y)-\frac{1}{2}\left(x+y^{2}+2 j^{2} 2 d 0\right.}{5 x+7 y+35} \\
& y^{\prime}=\frac{3\left(5\left(N^{2}-\xi^{2}-y^{2}\right)-3(5 x+2 y)\right.}{\frac{1}{2}\left(3^{2}-N^{2} 5^{2}-7^{2}-3(5 x+7 y)\right.}
\end{aligned}
\]

Weinstein claims that this iteration better represents
the aberrations of increasing order then does
that given by smith.
Marx has produced a further rearrangement
in which the formulae are made linear, by using approximation in which the tertiary aberrations are neglected.

Herzberger and Hoadly include a ray tracing scheme, as has been mentioned, for tracing through surfaces expressed in the form of a power series.
\[
z_{y}=\alpha y_{1}^{i}+\int_{y} y^{6}, \gamma y_{1}^{i} \text { de }
\]
a form which is very often used in defining an aspheric surface.

The starting data are the angle \(\sigma\) of
the incident ray, and the height of its intersection point in the plane tangent to the surface at the pole.

If the coomliastes of tho point of incidence are \(y, z\), it mar bo seen that
\[
y=i=2 \tan \sigma
\]

Now if a value of \(y\) is a word and abotituted in the first equation, \(a\) value of \(z\) may be found,
which in turn is in the second equation to find a new value of \(y\) and so on. The process is represented in the figure.

It may be seen that this system suffers from the sane disadvantages for steep rays as the T. Smith method.

The computation may be shortened if the value af the rectidual \(\Delta\) be calculated where
\[
\Delta=y-h+z \tan \sigma
\]
\(\Delta\) must of cour se be zero if \(y\) and \(z\) are actually the point of incidence, and if \(\Delta\) be found for
two dieperont rlues of \(y\) as explained before, the thinl expooximation of \(Y\) hould be calmalated by Iinear interpolation to make \(A=0\). The iteration then converges more rapidly. When the point of incidence has been located the diesction of the surface nomal is found by differentiation
\[
\tan \phi=\frac{d z}{d y}=J\left(2 \alpha+4 \beta y^{2}+6 x_{y}^{4} d x\right)
\]
and then the angles of incidence and refraction and the direction of the refracted ray are found. The methot, of course, has not the generality of T. mith's method, being confined to the meridional plane, but uses the surface formulae in a convenient form.
\[
\text { I. 4. Baker in } 1944 \text { gave a method for }
\]
tracing shew-rays through second degree surfaces in which spherical trisonometric fomulae are used for logarithmic mork. He divides the trace into four parts.
(1) detemination of coordinates of the pojnt where the ray cuts the uriace.
(2) detemination of the direction cosines of the normal to the surface at this point.
(3) the refraction equation.
(4) determination of the direction cosines of the refracted ray.
The equation of the ray is given by
\[
\frac{x-\alpha}{\sin \theta}=\frac{y-\beta}{\sqrt{2} \sin \phi}=\frac{3}{\sin \theta \cos \phi}
\]
and the equation of the surface by
\[
y^{2}+z^{2}=2 r x-p x^{2}
\]
where \((\alpha, \beta, \gamma\),\() is a point on the ray, and \cos \theta\), \(\sin \theta \sin \phi, \sin \theta \cos \psi\) the direction cosines. From these equations a quadratic may be found to determine x .

For small values of \(x\) Baker uses an iterative
method for solving. spherical trigonometry is used to evaluate the direction cosines and a special table of logarithms is appended to assist in the evaluation of the equations involved. Baker considers that the method is at least three times as long as for an ordinary ray, and this would seem to be an understatement.

Most of the modern sy toms for tracing rays through aspheric surfaces are intended for use with electronic machines with their advantages and disadvantages. The advantages, of course, are the
extrencly higa reste of oulculution and the ability to make simpie "either or" iecisions; the disaivantagos, the Iffiteulty of using sy tems involving tables (this incluase most of the older types of ray tracine). A machine would mormaly work out the value from first pinciplos, ank the fact that the machines have a tecinology of their own, must be fully understood by the designer before attempting a computation.

Por these reasons the systems evolved tend to be extremely general ao that ore progranue may be used for all traces and, as a mule, involve lirection cosines. olution of equations is often by iterative meang.
D. P. Peder \({ }^{55}\) has Eiven a metnod for
calculating aspheric surfaces; it involves first finding the point of incidence on the surface using an iterative method, and seeond, Iinding the direction of the pefracted ray. Vectors are used to lefine the problen put the equ tions used are set out in algebraic form.
Allen and nyder have extended
equations for use with prisms, mirror, centred a pherics and even to uncentred spherical uresces; of considerable interest to optical designers. Their system uses base I ines surveyed through the optical system, each successive segment being formed by dropping a perpendicular to the next interface, as in the figure.

The base line may be conveniently the optical axis, and if it departs from this, the correspondence may be reintroduced by bringing into the \(y\) sem one on more fictitious interfaces arch as I in the figure.

The transfer and refraction equations are referred to the base line, the computing scheme is algebraic,
ant, as in Feder's method, tho deteraination of the point of contact itomative and possibly aivergent Cor steep angles. The equatione contain an
oxpreacion forthe optic guth Iength anc this gives a means of getting sxial tigmation in an whinuric of ton, mich the authors use to corpect a reflecting cona.
Q. Black has used the algebraic method for tracing skew rays on the menchester machine and the basic fommlae are given by nim.
If an incident ray has direction cosines
\(L, M, N\), the refracted ray \(I^{1}, M^{I}, N^{I}\), and the normal at the point of incidence direction cosines \(A, B, C\), the law of reiraction can be expressed.
\[
\left|\begin{array}{lll}
L & M & N \\
L^{I} & W^{I} & N^{I} \\
A & B & C
\end{array}\right|=0
\]

The cosine of the angle of incidence is given by
\[
\cos I=L A+N B+N C
\]
and \(\Delta(n \sin I)=0 L^{2}+M^{2}+N^{2}=L^{2}+H^{2}+I^{2}=1\), hence the direction cosines of the refractod ray are deteminable. The intersection point of the refracted ray comes from the equation
\[
\begin{aligned}
\frac{X-x}{L^{\prime}}=\frac{V}{M^{\prime}}=\frac{Z}{N^{\prime}}=D \quad & (\omega \text { the distance along } \\
& \text { the ray between } x, Y, z, \\
& \text { and } x, y, z)
\end{aligned}
\]
and the equation of the form of the surface. The form of the olution of these equations varies with the authors, the iterative form being favoured.
\[
\begin{aligned}
& \text { Bor central quadrics of the form } \\
& \qquad \alpha x^{2}+\beta y^{2}+z z^{2}=1
\end{aligned}
\]
the coordinate of be intersection point are
\(X+L^{1} D_{1} Y+M^{1} D_{1} Z^{2}+N^{1} D_{1}\) and the parameter \(D\) may
be found by substitution.
The equation of the normal at the
inter section point may oe written
\[
\frac{x-x}{x x}=\frac{y \cdot y}{1 y}=\frac{2 \cdot 2}{y^{2}}
\]

For paraboloids of the form
\[
\alpha x^{2}+\beta y^{2}+2 y^{2}=0
\]
the equation of the normal is
\[
\frac{x-x}{x x}=\frac{\gamma-1}{\beta y}=\frac{2}{\gamma}
\]

The equation of the refracted ray may thus be determined.
Peltier has given a similar treatment for ray tracing through quadrics of revolution, stating in his preamble, that although trigonometric methods
```

wfs more suitalide ION moridimsi rays ipaced through
Gyerical supraces, skew rayo through asmeric
supfacgs ape bettor trucea slgebraically.
The aze of machises as tanalogues was
\$9
sugtested by O. .. Ifarris who has developed a geries
of matrices to docecike the thisd ordor aberantions.
The matrices coula be represented by olectrical
netwonks so that the setting up and analy ing of a
design could be done in a Pew minutes. Unfortunately,
the matrices ape extremely cumbecsome, and an
analogue computof coula be more readil: adapted
from the third orier equations themselves. A
number of graphjeal ray trace constructions have
been levelopsd, and L. W. Lewis uses a soometric
construction for aspheric surfaces. such systems
can, only be a guile to the type of aurface required
and ss most aspheric systems can readily be
understood the need for a graphical idea is seldom
requinea.

```

\section*{Conclaion.}

\section*{Although a diacuosion of the methods}
of sharic Reston doos not include the practice of the manufactune of the ashoric suffeces reguired, the fsot that uch monufactuce i grtremeny difeicult End costly, must necssamoily Influence the isoign itself. Aapheic surfaces will only be \(u\) ed where spheric ones camot and the number of these surfaces kept to the minimum. In a design employing spherjesl urraces ondy, most designers will probably proceed by Laying down a spaxial schene, snd then detemining the weidel coefficients for the system. By examination of the eidel soefficients using some sistem uch as H. H. Hoplins, an experienced. designer can probably arrive at a required result faiply capinly, the ises of the zonos being estimated by the ize of the individual coefficients, and the final rosiluals. If a simil or method is rpplied to the losign of sphoric syoteme using the primeny abocretion mothod of 0. R. Burch, the Anal iesign ill not necessarily be better than a corresponding le ign of ohericol surfaces, although it may have fewer surfaces.

These consideration indicate why the use of aspheric surfaces has mainly been confined to astronomical systems, where economic con iderations are not of primary importance, and where mirrors have long been establi hed because of their achromatic properties. In a reflecting sy tem the number of components must be a minimum because of obscuration and in addition the aberrational zones are low becsuse of the high refractive index.

In fact no general methods are available which enable the designer to determine the hapes of the surfaces neeled to give a required performance over a finite field, the most succes ful systems being those in which the field aberrtions are controlled by virtue of the inherent symmetry, e. g. Schmidts and mono-centric schmidts. These systems lend themselves to analyais due to the fact that the mirrors and field surfaces are parts of concentric spheres at whose centre the sspheric plate lies. This methot, originally due to Caratheotory, and developed by hinfoot, gives the higher order aberr tions, but is not applicable
to dhers. The information is therepore Iimited to tne aperture ratio ana field angle which is permissabie. In any case, information of this sort is better obtained by pay tracing, e pecially as iterative procedures give as steps the sberration orderg, or at least chose approximations to them. The differential method of fine correction is one which has beer applied by Boker to the cameras known by his name, and also lescribed by Volosov as a method which is most suitable for figuring spherical surfaces. In these cases where the difference is as inlied, small, the method is extremely good, out for larso differences it might easily be possible to bend a lens the wrong way to try to find a large change. Volosov's paper is not clear on sone points regarding the detemination of the polymomial constants wich detemine the new form of the urface, slthough the general methoi is easy to follow. When axial stigmatiom only is required,
as in the schmiat systems, variations of tize optical path ifference methon, qualified by the need for
minimam chaom tic abopration, are ucpiciont to obtain the recuiced cosult. There the ascherie suxiace is fifst on lat, the methol is straightfomard In theony at loast, but fon interion supfaces, some such methol us Hoczberger wa HoadIy's is required, Which havolvec the detomination of the wevefom before and fter the virface in question, and thus for a compler surface involving a large number of constants in the polymomal shich detemines it, a large number of soy must be tracod. The method of Wassemarn sai Wolf for obtaining aplenatic systems involving two aspheric surfaces also requires a. number of pays to be traced.

\section*{The use of a pherie surfaces for the control} of zones in Lenses such as the Cook triglet has been conailened, and it was at fisst thought that the itguring of ong of the negitive surfaces, which are both very close to the iris, woulz have this effect without nat, rially affecting the other aberrations, but in fact a Iarge amount of higher order coma appeared. The best solution was found in adjusting the primary cona and figuring the last surpace. In
any case in aspheric designs it is always expedient to trace skew rays as designs which have seemed excellent with rogord to the usuel meri ional rays have been poor in practice.

The large amount of asoheric rav tracing required by some of the methods can only be undertaken by an olectronic calculating machine, snd methods involving their use have been developed both in this country and America. Although they are very fast, they require a Iarge amount of money to instal and operate, and a large amount of effort on the part of the would-be designer to utilise this speed. Methols which involve iteration would seem to offer advantages as the aberrational orders are notained as part of the trace. The promise that optical plastics gave of being moulded into aspheric foms and so provide cheap wile aperture photo lenses, did not materialise for phrsical reasons, but with the advent of electronic techniques for measuring lengths of optical magnitude, it is possible that aspheric surfaces might be produced fairly cheaply in glass. At the moment, however, it would seem that interest
in aspheric design, which was high shortly after the Second World War, has diminished, is diminishing, and will contimue to diminish.

\section*{REFEREENCES}
1. F.Iwyman: Prism and Lens making, Ch. 10 (1952)
2. H.C. King: istory of the Ielescope, Chs. 4 \& 5 (1955)
3. Huygens: Traitè de Ia Iumēre Ch. 6 (1690, Rendered into English by Silvanus P Whompson 1912).
4. L.C. Martin: Technical uptics Vo. II Ch. 8 (1954)
5. Conrady: Applied Optics and Optical Design, Ch.7 (1929)
6. Schwarzschild: AbhandI. GES.VISS.Göttingen Nath. PHMSIK
7. Gleichen: Theory of Modern uptical Instruments.Ch.16, 1910, Translated by Emsley \& Swaine 1921).
8. A.C.Lunn: Astro Physics Journal, 27,p280, (1908)
9. Chretien: Rev D'Optique. 1,p13, (1922)
10. Albert G. Ingilis: Seientific American (June 1933 EI SEQ)
11. Bureau and Swings: Revue D'Optique, 13, 127 (1934)
12. Allan A. Irkham: Scientific American 158, p374 (1938)
13. Schmidt. 3: Mitt Hamburger Sternwarte, 7 IVo 36, p15(1932)
14. Stroemgren.B: Vierteljahresschrift Der Astr. GES.70, p (195)
15. Y. V4ish14: Astr. MAGHR.254, p361, (1935); 259,p197(1936)
16. F.B. Wright: Publ.Astr. SOC.PAC.47,p300 (1935)
17. Dimitroff und Baker: Telescopes and Accessories. .294(1916
18. Iinfoot: M. .R.A.S. 109, p279 (1949); 111, p75 (1951)
19. Linfoot: Recent Advances in Optics Ch. 3 (1955)
20. Garatheodory: Aamburger. Aath.Einzelschrjft.(1940)
21. Bouwers: Achievments in Optics,Ch.1 (1946)
22. J.G. Baker: Proc.Amer.Fhil.Soc.82, Jio. 3, p323 (1940).
23. E.A. Lucy: J.O.S.A.30, p251 (19407; 31,p358 (1941)
24. H.S.Friedman: J.O.S.A. 37, p488 (1947)
25. Maloff and Epstein. Proc.Nat.Electronics.Conf.pl90 (1944)
26. Wormser: J.O.S.A. 40.p.412 (1950)
27. Iinfoot and Wolf. J.0.S.A., 39, P752, (1949).
28. Hendrix: Publ.Astr.Soc. PAC,51, p158 (1939)
29. Hendrix \& Christie: Scientific American.Aug. (1939)
30. Hawkins and Linfoot: M.N.R.A.S., 105,p334 (1945)
31. R.E. Jones: J.O.S.A. 44 p.630 (1954)
32. J.G. Baker: Proc.Amer.Phil,Soc., 82,No.3, p339, (1940)
33. C.R. Burch: M.N.R.A.S. 102, p159, (1942)
34. Linfoot: M.N.R.A.S. 103, p210 (1943)
35. Linfoot: M.N.R.A.S. 104, p48 (1944)
36. Wayman: Proc Phys.Soc.63, p553 (1950)
37. Iinfoot: Proc.Phys. Soc. 55, p481 (1943)
38. C.R. Burch: Proc.Phys. Soc. 55, 9433 (1943)
39. C.R. Burch: Proc.Phys.Soc. 57 p 567 (1945)
40. C.G. WYNNE. Proc.Phys.Soc. 67B, p772 (1949)
41. C.R. Burch: Proc.Phys,Soc. 59, pp \(41 \& 47\) (1947)
42. H.H. Hopkins: Wave Theory of Aberrations (1950)
43. Volosov: J.O.S.A., 37, p342 (1947)
4.4. Herzberger and Hoadley: J.O.S.A., 36 p 334 (1946)
45. Wolf巴 and Preddy: Proc.Phys.Soc.59, p704 (1947)
46. Wolfe.E: Proc.Phys.Soc., 61, p494, (1948)
47. A. Warmisham: Proc.London Conf. Opt.Instruments (1951)
48. L.C. Martin: Proc.Phys.Soc. 56, p104 (1944)
49. Wasserman and Wolf: Proc.Phys.Soc. 62B,p2 (1949)
50. Meiron.J: J.O.S.A., 46, p288 (1956)
51. T. Smith: Proc.Phys.Soc. 57, p286 (1945)
52. W. Weinstein: Proc.Phys.Soc., 65B p731 (1952)
53. Marx: Optica ATCA, 1, pl27 (1954)
54. T.Y. Baker: Proc.Phys.Soc.,56, p114 (1944)
55. Feder: J.O.S.A. 41 p630 (1951)
56. Allen and Snyder: J.O.S.A., 42 , p243 (1952)
57. G. Black: Proc.Phys.Soc., 67B, p569 (1954)
58. Peltier: Revue d' Optique, 31, pl31 (1952)
59. Harris: J.0.S.A., 40, p819, (1950)
60. Lewis: J.O.S.A. 41 p 456 (1951)```

