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Abstract

Predicting the future is an important purpose of machine learning research. In

online learning, predictions are given sequentially rather than all at once. Peo-

ple wish to make sensible decisions sequentially in many situations of everyday

life, whether month-by-month, day-by-day, or minute-by-minute.

In competitive prediction, the predictions are made by a set of experts and

by a learner. The quality of the predictions is measured by a loss function.

The goal of the learner is to make reliable predictions under any circumstances.

The learner compares his loss with the loss of the best experts from the set

and ensures that his performance is not much worse.

In this thesis a general methodology is described to provide algorithms with

strong performance guarantees for many prediction problems. Specific atten-

tion is paid to the square loss function, widely used to assess the quality of

predictions. Four types of the sets of experts are considered in this thesis: sets

with finite number of free experts (which are not required to follow any strat-

egy), sets of experts following strategies from finite-dimensional spaces, sets of

experts following strategies from infinite-dimensional Hilbert spaces, and sets

of experts following strategies from infinite-dimensional Banach spaces. The

power of the methodology is illustrated in the derivations of various prediction

algorithms.

Two core approaches are explored in this thesis: the Aggregating Algorithm

and Defensive Forecasting. These approaches are close to each other in many

interesting cases. However, Defensive Forecasting is more general and covers

some problems which cannot be solved using the Aggregating Algorithm. The

Aggregating Algorithm is more specific and is often more computationally

efficient.

The empirical performance and properties of new algorithms are validated

on artificial or real world data sets. Specific areas where the algorithms can

be applied are emphasized.
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Chapter 1

Introduction

Prediction is very difficult,

especially if it’s about the future.

Niels Bohr

• Is it going to rain tomorrow?

• Will the price of a stock go up or down next minute?

• Which team will win the upcoming football match?

• Will the ozone concentration in the air rise high tomorrow?

We do not know the answers to these questions. However, we can try to predict

using past experiences.

The goal of our studies is to develop learning algorithms for computer for

the purpose of making predictions. A computer program is said to learn from

experience, with respect to some class of tasks and a performance measure, if

its performance at these tasks, as measured by the measure, improves with the

experience (Mitchell, 1997).

The task may be to predict an outcome which can take only finitely many

values. In this case, it can be called a classification problem. If the outcome

can take infinitely many values (for example, on the real line), the task can

be called a regression problem. Even though classification may be reduced to
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a regression problem, the methods which work better for each of these tasks

are often different. In this thesis, we approach both regression and multi-class

classification, and (separately) two-class classification.

Online setting

We consider the online setting. Online prediction is a wide area of machine

learning, Cesa-Bianchi and Lugosi (2006) give a good introduction to this

area. Predictions in this setting are given step by step. After each step, the

algorithm learns on the new data. This is the contrary to the batch setting,

where the algorithm learns only on a subset of the data (called training set),

and then predicts on another subset (called test set). For example, suppose

the aim is to predict the weather in January. If the data about the weather in

December is available, a batch method is trained on the December data, and

gives predictions for all the days in January at once. An online method gives

predictions for January sequentially, adjusting its parameters every day with

updated weather conditions.

The process can be presented in the form of a game between a learner

and reality. The learner uses an algorithm which takes some information from

reality. Then the learner predicts the next outcome in the sequence. After

reality announces the actual outcome, the learner updates parameters of the

algorithm. This process is repeated step by step.

Competitive prediction

In statistical learning, statistical assumptions are made about the data gener-

ating process, and guarantees are proven for the methods working under these

assumptions.

In this thesis, we consider another approach, called competitive prediction.

In competitive prediction, one provides guarantees for the algorithms in com-

parison with other predicting models (we call them experts), instead of making

statistical assumptions about the data generating process.

Thus we do not develop methods which predict well under certain circum-

stances, but try to combine predictions which are given to us by experts. The
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goal of competitive prediction is to develop algorithms whose performance is

not much worse than the performance of the best experts.

We can combine predictions of experts without knowing how their predic-

tions are obtained. On the other hand, they can be obtained as predictions of

a model with different (not necessarily countable) values of parameters.

Dealing with the class of experts

One of the ways to use experts is to choose the expert which performed better

than all other experts so far. In case of a model with parameters, this way

corresponds to the search of the best parameter for the model.

However, good past performance does not necessarily lead to good future

performance. Thus, we choose a different approach in this thesis. All the

experts are assigned weights, and the predictions are given considering the

weights of all the experts’ predictions. The weights are updated step by step

to reflect experts’ current performance. We use two algorithms to deal with

the weights: the Aggregating Algorithm (Vovk, 1990) and the Defensive Fore-

casting algorithm (Chernov et al., 2010).

A similar approach is used, for example, in Bayesian methods. In the

Bayesian approach, the learner chooses a distribution (called prior) over the

models, and updates this distribution using the likelihood of the available

data, thus obtaining the posterior over the models. Then the learner gives

its prediction as the expected prediction of all the models over the posterior

distribution.

The Bayesian approach takes into account the average loss of the predicting

algorithm. The guarantees on the performance for all our algorithms are given

in terms of the loss suffered by them in the worst case scenario, even when the

data fail to satisfy any statistical assumptions.

Classes of experts

When the algorithm to combine experts is chosen, it is important what kind

of performance guarantees it can provide in comparison with different classes

of experts. In this thesis, we primarily concentrate on this problem, and cover
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a wide range of sets of experts, from sets with finite number of experts to sets

with uncountable number of experts.

It may be difficult to weigh uncountable number of arbitrary experts, so in

this case each expert is required to follow a prediction strategy. As an example,

we can say that under a prediction model, each expert chooses a particular

parameter for the model. For example, each expert may predict according to

a linear function of input vectors. Then it is possible to provide guarantees on

the performance of the algorithm competing with the linear experts.

An important practical question is “How to predict intervals in time when

one expert outperforms another one?” An algorithm competing with differ-

ent experts does not provide the answer to this question. The question the

algorithm answers is “At each moment in time, how to achieve the overall

prediction performance which is not much worse than the performance of the

best expert at that moment?”

11



1.1 Original contributions

The following list provides the summary of the main original results achieved

during the work on the thesis.

• New algorithms are developed and guarantees on their performance are

proven for the following online prediction settings: generalized linear

models under the square loss (Algorithm 9 and Theorem 3.5), regres-

sion of a variable which is bounded by different constants at each step

(Algorithm 8 and Theorem 3.4), regression under discounted square loss

(Algorithm 8, Theorem 3.4, and Corollary 3.4), and probability forecast-

ing of multi-dimensional outcomes under the square loss (Algorithm 10,

Theorems 3.7 and 3.6).

For all of the algorithms their generalizations for Hilbert spaces are de-

rived and the performance guarantees for them are proven (Theorem 4.6,

Theorem 4.5, and Theorem 4.7 respectively).

• Practical experiments with new and existing algorithms are performed.

For prediction the results of sport matches (Section 2.6), it is shown that

algorithms which do not have strong guarantees on their performance can

fail to be competitive with the best model. For the algorithms which have

guarantees, the guarantees are often tight in practice. The experiments

with the prediction of ovarian cancer (Section 2.7) showed that combining

different predictors in the online setting can improve the reliability of the

predictions at different stages before diagnosis.

Areas of applications of the new algorithms are investigated, ways to

choose their parameters are suggested, and the comparison with other al-

gorithms is performed on artificial and real world data sets (Section 3.5.4,

Section 3.4.3, and Section 3.6.4).

• An elegant method is used to answer the question whether the Ridge Re-

gression algorithm has guarantees on its square loss in the online setting;

the guarantee is proven in the form of equality (Theorem 3.3). It leads

to the guarantee in the more standard form. The method follows from
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the proof of the guarantees on the logarithmic loss of the Bayesian Ridge

Regression algorithm (and its generalization for Hilbert spaces version)

in the setting of regression of a variable with the presence of the Gaussian

noise (Theorem 3.2 and Theorem 4.3).

Guarantees on the performance of the algorithms are proven using a new

methodology (the core elements of the proofs are Lemma 3.2 and Lemma 4.1).

The following is a list of other interesting results achieved during the work on

the thesis.

• A way to compute efficiently predictions of the Defensive Forecasting

algorithm in many cases is suggested (Equation (2.14)).

• It is found that the Aggregating Algorithm can be applied to compete

with second-guessing experts under the square and logarithmic loss using

a fixed point property (Theorem 2.9).

• New algorithm competing with functions from functional Banach spaces

is developed. Guarantees on its performance are proven in semi-online

prediction setting. This is done by considering abstract linear regression

(Algorithm 12, Theorems 5.1 and 5.4).
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1.3 The structure of the thesis

The thesis contains six chapters. Chapter 1 gives the introduction to the

thesis, outlines the original contributions, and describes the organizational

structure of it. Chapter 2 describes the general online prediction framework

and the problem of competing with a finite number of experts. Chapter 3 is

devoted to the problem of competing with the experts who predict according

to functions from spaces of finite dimension. In Chapter 4 the algorithms

competing with linear experts are generalized to compete with the experts

who predict according to functions from Reproducing Kernel Hilbert Spaces.

Chapter 5 gives a way to approach the problem of competing with experts

in Banach spaces. Finally, Chapter 6 briefly concludes the work and gives

directions for the future research.
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Chapter 2

Main algorithms and their

application to finite number of

experts

In this chapter we describe two algorithms which we use in our studies and

analyze the basic setting of competitive online prediction.

Section 2.1 and Section 2.2 contain the description of the main algorithms

for the general case, without the assumption that the number of experts is

finite. We introduce the general framework of competitive online prediction

and describe two algorithms which are mainly used in our studies. Section 2.3

shows two basic cases of the use of our algorithms which are further developed

and generalzied to cover more interesting problems. We consider the problem

of competing under the Brier loss in multi-dimensional setting (Section 2.4)

and competing with second-guessing experts (Section 2.5). Sections 2.6 and 2.7

describe experimental evaluation of the algorithms.
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2.1 Introduction to competitive online predic-

tion

The area of online prediction that is devoted to algorithms competing with

countable (finite or infinite) number of experts is usually called prediction

with expert advice. The case when the number of experts is uncountable

can be considered as a generalization of the finite case; we call it competitive

online regression. The idea of prediction with expert advice is very intuitive

and practical: imagine there are some people or organizations which make

their predictions about a sequence; they are called experts. The learner makes

predictions using their advice, in other words using their predictions.

The first ideas of combining different models for making forecasts probably

appeared in Barnard (1963) for predicting airline passenger numbers, and later

using experts’ advice in Morris (1974). First ideas of competitive online pre-

diction go back to DeSantis et al. (1988) who applied the Bayesian approach to

average experts’ predictions. Later Littlestone and Warmuth (1994) and Vovk

(1990) introduced online algorithms for some other games. We use Vovk’s

Aggregating Algorithm and the Defensive Forecasting algorithm introduced in

Chernov et al. (2008) because these algorithms are known to give very strong

theoretical guarantees on the loss of the learner.

Instead of choosing the expert who performed better than others so far,

the learner following our algorithms takes into account predictions of all the

experts in a certain way. He assigns weights to all the experts. The weights are

updated from one step to another to reflect the change in the learner’s level of

trust to each of the expert’s predictions. The performance of the learner and

the experts is measured by a loss function. The goal of a good algorithm for

the learner is to find a way to combine experts’ predictions and to update the

weights such that it provides theoretical guarantees on the loss of the learner

in comparison with the loss of the best expert.
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2.1.1 The framework

We assume that the outcomes lie in an outcome set Ω, the experts and the

learner predict these outcomes using a prediction set Γ and we measure the

quality of their predictions using a loss function λ : Ω × Γ → [0,∞]. The

triple (Ω,Γ, λ) is called the game. We denote the index set for the experts by

Θ and each individual expert by θ ∈ Θ. Then the prediction process follows

Protocol 1.

Protocol 1 Competitive online prediction
L0 := 0.

Lθ
0 := 0, θ ∈ Θ.

for t = 1, 2, . . . do

Experts announce ξθ
t ∈ Γ, θ ∈ Θ.

Learner announces γt ∈ Γ.

Reality announces ωt ∈ Ω.

Lt := Lt−1 + λ(ωt, γt).

Lθ
t := Lθ

t−1 + λ(ωt, ξ
θ
t ), θ ∈ Θ.

end for

Here Lt is the cumulative loss of the learner after the step t, and Lθ
t is the

cumulative loss of the expert θ after this step.

We will be interested in deriving upper bounds on the loss of the learner

in terms of the loss of the best expert in the form

LT ≤ min
θ∈Θ

Lθ
T +RT (2.1)

for all T = 1, 2, . . .. Here RT is the so-called regret term. It can be thought

of as a measure of the quality of the upper bound. If the number of experts

is not finite, there is usually an additional term on the right-hand side which

expresses the complexity of the strategy of the chosen expert. We are mostly

interested in the bounds where the regret term divided by T converges to zero:

RT = o(T ).

Example 2.1 (Simple prediction game) Assume that Ω = Γ = {0, 1} and

19



the loss function is λ(ω, γ) = 1− δγ
ω, where

δγ
ω =

1, if ω = γ

0, otherwise

is the Kronecker symbol. This is the classification game with zero-one loss.

Suppose that one of the experts is perfect, in other words that there exists

θ such that Lθ
T = 0 for all T . Then there is a strategy for the learner to achieve

LT ≤ log2K, where K is the number of experts. This is easy to prove: the

learner follows the majority of the experts who have not been eliminated so

far. If he makes a mistake, he eliminates all the experts which he followed at

this step. Thus at each step the number of experts at least halves. After the

first step it becomes ≤ K/2, after the second step it becomes ≤ K/4, etc. The

perfect expert is found after at most log2K steps, and then the strategy does

not make any mistakes.

If there is no perfect expert, the learner has to be more tolerant of the

experts and to reduce their weights instead of completely eliminating them.

Theoretical guarantees in this setting were first proven for the so-called the

Weighted Majority Algorithm described by Littlestone and Warmuth (1994).
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2.2 Description of the algorithms

In this section we describe two algorithms used in our study: the Aggregating

Algorithm and the Defensive Forecasting algorithm.

2.2.1 Aggregating Algorithm

One of the algorithms which may be used for online prediction is Vovk’s Aggre-

gating Algorithm (AA). It has strong theoretical guarantees in many settings

of competitive online prediction. It is possible to prove that the theoretical

guarantees given by this algorithm can not be improved in certain cases. The

Aggregating Algorithm is given as Algorithm 1. 1

Algorithm 1 Aggregating Algorithm

Require: An initial weights distribution P0(dθ) = P ∗
0 (dθ) on the experts,

a learning rate η > 0.

for t = 1, 2, . . . do

Read the experts’ predictions ξθ
t , θ ∈ Θ.

Calculate generalized prediction: a function g : Ω → R on outcomes

defined by gt(ω) = − 1
η

ln
∫

Θ
e−ηλ(ω,ξθ

t )P ∗
t−1(dθ).

Using a substitution function Σ : RΩ → Γ predict γt = Σ(gt) such that

λ(ω, γt) ≤ gt(ω),∀ω ∈ Ω.

Read ωt ∈ Ω.

Update the weights Pt(dθ) = e−ηλ(ωt,ξθ
t )Pt−1(dθ).

Normalize the weights P ∗
t (dθ) = Pt(dθ)R

Θ Pt(dθ)
.

end for

The Aggregating Algorithm has two parameters: an initial weights distri-

bution on the experts P0(dθ) ∈ P(Θ) from the space P(Θ) of all probability

distributions on the experts, and a learning rate η > 0. It is an exponential

weights algorithm; in other words, at each step it updates the weights of the

1In this thesis, we only work with a special case of the Aggregating Algorithm for so-called
mixable loss functions, to be explained below.
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experts by the following formula:

Pt(dθ) = βλ(ωt,ξθ
t )Pt−1(dθ) = βLθ

tP0(dθ), (2.2)

where β = e−η ∈ [0, 1). This weights update ensures that the experts which

suffer large loss at some step receive smaller weight for further predictions.

After the Aggregating Algorithm has received the experts’ predictions at

some step, it combines them in the following minimax way. A generalized

prediction is any function of the type Ω → R. The Aggregating Algorithm

chooses its generalized prediction to be the mapping gt : Ω → R for each

possible outcome such that

gt(ω) = logβ

∫
Θ

βλ(ω,ξθ
t )P ∗

t−1(dθ), (2.3)

where P ∗
t−1(dθ) are the normalized weights:

P ∗
t−1(dθ) =

Pt−1(dθ)

Pt−1(Θ)
.

We define the Aggregating Pseudo-Algorithm (APA) as the algorithm which

does not necessarily give permitted predictions, but formal mixtures of pre-

dictions. For each possible outcome the APA suffers the loss equal to the

generalized prediction.

Finally, the Aggregating Algorithm gives its prediction γt using a substi-

tution function. A substitution function Σ : RΩ → Γ is a function which maps

generalized predictions into permitted predictions such that

λ(ω, γt) ≤ gt(ω),∀ω ∈ Ω (2.4)

for γt = Σ(g).

Let us define P(Θ) as the set of all probability measures over Θ. If such a

substitution function exists for any distribution P ∗
t−1(dθ) ∈ P(Θ), we say that

the loss function is η-mixable. The loss function is mixable if it is η-mixable for

some η > 0. The game is called mixable if the loss function of it is mixable in

the setting of the game. Some non-mixable games are described and analyzed

22



in Vovk (1998). In its general form, the AA is capable of competing under

non-mixable loss functions. Relative loss bounds for non-mixable games often

have the coefficient more than 1 before the loss of the best expert in (2.1).

The next lemma is Lemma 1 from Vovk (2001). It gives an expression

for the sum of the generalized predictions evaluated at the actual outcomes

in terms of the initial distribution and the loss of each expert. It shows that

the cumulative loss of the APA, LT (APA) :=
∑T

t=1 gt(ωt), is an average (in a

general sense) of the experts’ cumulative losses.

Lemma 2.1 (Vovk, 2001, Lemma 1) For any learning rate η > 0, initial

distribution P0, and T = 0, 1, 2, . . .,

LT (APA) = logβ

∫
Θ

βLθ
TP0(dθ). (2.5)

Proof We proceed by induction in T : for T = 0 the equality is obvious, and

for T > 0 we have:

LT (APA) = LT−1(APA) + gT (ωT )

= logβ

∫
Θ

βLθ
T−1P0(dθ) + logβ

∫
Θ

βλ(ωT ,ξθ
t ) βLθ

T−1P0(dθ)∫
Θ
βLθ

T−1P0(dθ)

= logβ

∫
Θ

βLθ
T−1P0(dθ) + logβ

∫
Θ
βLθ

TP0(dθ)∫
Θ
βLθ

T−1P0(dθ)

= logβ

∫
Θ

βLθ
TP0(dθ).

Here the second equality follows from the inductive assumption, the defini-

tion (2.3) of gT , and (2.2). �

Note that the cumulative loss LT (AA) of the Aggregating Algorithm does

not exceed the cumulative loss LT (APA) of the Aggregating Pseudo-Algorithm,

LT (AA) ≤ LT (APA), for a mixable game. Now notice that

P ∗
T (dθ) =

βLθ
TP0(dθ)

βLT (APA)
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and thus for the countable number of experts

LT (AA) ≤ LT (APA) = Lθ
T + logβ P

θ
0 − logβ P

θ
T (2.6)

for any θ ∈ Θ. Here P θ
0 is the initial weight of the expert θ, and P θ

T is its

normalized weight after the step T . There are two ways which are usually

used to prove theoretical guarantees on the loss of the Aggregating Algorithm.

The first one is to notice that P θ
T ≤ 1 and so

LT (AA) ≤ Lθ
T +

ln(1/P θ
0 )

η

for any θ. This approach is usually used for finite or countable classes of

experts. The second way is to evaluate the right-hand side of (2.5) and extract

the part with the loss of the best expert. This approach is usually used for

larger classes of experts.

The only part of the Aggregating Algorithm which we have not explicitly

explained yet is the form of the substitution function Σ in the definition of

Algorithm 1. Following Vovk (2001) we require that

∀g Σ(g) ∈ arg minγ∈Γ supω∈Ω

(
λ(ω, γ)− g(ω)

)
and

∀g1,∀g2
(
∃c ∀ω ∈ Ω g1(ω)− g2(ω) = c

)
⇒
(
Σ(g1) = Σ(g2)

)
.

(2.7)

Here g1, g2 ∈ Ω → R are the generalized predictions calculated with different

weights distributions. The last implication ensures that if we calculate the

generalized prediction with unnormalized weights Pt(dθ) instead of P ∗
t (dθ),

the prediction of the AA will be the same. This property becomes important

for infinite classes of experts, since normalization is often computationally

inefficient. We will also need this property for the case of multi-dimensional

outcomes.
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2.2.2 Defensive Forecasting

Another algorithm which we use in our studies is the Defensive Forecasting

algorithm (DF). In some games the DF and the AA depend on the same

property (2.4) being satisfied. However, the defensive forecasting technique

is more flexible and allows us to compete in a larger class of situations. On

the other hand, the predictions given by the DF are usually more difficult to

compute than the predictions of the AA, especially if the outcome set is a

subset of the Euclidean space Rn, n > 2.

In defensive forecasting, it is possible to use different outcome and predic-

tion sets Ωt and Γt at each step. In other words, reality announces the outcome

set and the prediction set at the beginning of each step before any predictions

are made. Each expert θ is allowed to choose a loss function at each step t

defined on the Cartesian product of these sets. Let λθ
t be the mixable loss

function chosen by the expert θ at the step t. The learner wishes to compete

with all the experts under their loss functions. The ability to compete un-

der different loss functions at once is currently the main known advantage of

defensive forecasting over the AA.

Moreover, it is possible to discount the loss after each step. The cumulative

losses of the experts and the learner are discounted with a factor αt ∈ [0, 1],

at each step. If LT−1 is the discounted cumulative loss of the learner at the

step T − 1, then the discounted cumulative loss of the learner at the step T is

defined by

LT := αT−1LT−1 + λθ
T (ωT , γT ) =

T−1∑
t=1

(
T−1∏
i=t

αi

)
λθ

t (ωt, γt) + λθ
T (ωT , γT ).

If Lθ
T−1 is the discounted cumulative loss of the expert θ at the step T − 1,

then the discounted cumulative loss of the expert θ at the step T is defined by

Lθ
T = αT−1Lθ

T−1 + λθ
t (ωT , ξ

θ
T ) =

T−1∑
t=1

(
T−1∏
i=t

αi

)
λθ

t (ωt, ξ
θ
t ) + λθ

T (ωT , ξ
θ
T ).

In the beginning the losses L0,Lθ
0 are initialized to zero. If all the discounting

factors are the same, α1 = . . . = αT , then at each step the dependence on the
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loss at the previous steps exponentially decreases: the coefficient in front of λ1

becomes equal to αT−1 at the step T .

For each step t and each expert θ we define the function

Qθ
t : Ωt × Γt → [0,∞)

Qθ
t (ω, γ) := eηθ

t (λθ
t (ω,γ)−λθ

t (ω,ξθ
t )).

(2.8)

We also define the mixture function

QT (ω1, γ1, ω2, γ2, . . . , ωT−1, γT−1, ω, γ) :=

∫
Θ

(
T−1∏
t=1

(
Qθ

t

)QT−1
i=t αi

)
Qθ

TP0(dθ)

with some initial weights distribution P0(dθ) on the experts. Here ω1 ∈
Ω1, . . . , ωT−1 ∈ ΩT−1 are the actual outcomes and γ1 ∈ Γ1, . . . , γT−1 ∈ ΓT−1 are

the predictions until the step T − 1. Here also ηθ
t are learning rate coefficients;

they will be described later in the section.

In online prediction one often considers predictions which are probability

distributions on outcomes (see, e.g, Dawid, 1986). Defensive Forecasting is

based on a correspondence between the set of all probability distributions and

the prediction set. In our studies we consider the outcome set and the predic-

tion set which are subsets of the Euclidean space. We also restrict ourselves

to the case when the loss functions λθ
t (ω, γ) are continuous in γ for any ω. If

Ωt = {Yt,1, Yt,2} for Yt,1, Yt,2 ∈ R for all t, the set of all probability distribu-

tions P(Ωt) over Ωt can be identified with the interval [0, 1]. Each probability

measure πp ∈ P(Ωt) assigns the probability p ∈ [0, 1] to the outcome Yt,2 and

the probability 1− p to the outcome Yt,1. We define the correspondence

γp = p(Yt,2 − Yt,1) + Yt,1, p ∈ [0, 1], (2.9)

between [0, 1] and learner’s predictions γp ∈ Γt. We will consider the cases

Γt = [Yt,1, Yt,2] and Γt = R below.

Standard proofs of the bounds for Defensive Forecasting are based on the

fact that the properties of QT are very similar to the properties of a game-

theoretic supermartingale (see Shafer and Vovk, 2001, p. 82). If the outcome

set is the same for all steps, the prediction set is the set of all probability dis-
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tributions over the outcome set, and there is no discounting (αt = 1 for all t),

QT is a function defined on (Ω×P(Ω))T . In this case it is a supermartingale by

the definition of Chernov et al. (2008). It is a function defined on (Ω×P(Ω))∗

such that given any past values of the actual outcomes ω1, . . . , ωT−1 ∈ Ω

and of the predictions π1, . . . , πT−1 ∈ P(Ω), the expectation of the function

QT (ω1, π1, . . . , ωT−1, πT−1, ω, π) w.r.t. any prediction measure π ∈ P(Ω) does

not exceed the value of the function QT−1(ω1, π1, . . . , ωT−1, πT−1) at the previ-

ous step.

However, we introduce the notion of a defensive property to incorporate

more general cases. As we will see later, this property is crucial in helping

the learner to defend himself against suffering the large loss (in comparison

with the experts). Assume that there are fixed bijections between the spaces

P(Ωt) of all probability measures on Ωt and the set [0, 1]. Each pπ ∈ [0, 1]

corresponds to some unique π ∈ P(Ωt), and vice versa. We also take the

correspondence (2.9) between [0, 1] and each prediction set Γt.

Definition 2.1 (Defensive property) A sequence R of functions R1, R2, . . .

such that Rt : Ωt×Γt → (−∞,∞] is said to have the defensive property if, for

any t and any π ∈ P(Ωt), it holds that

EπRt(ω, γ
pπ

) ≤ 1, (2.10)

where Eπ is the expectation with respect to a measure π.

A sequence R is called forecast-continuous if, for all T and all ω ∈ ΩT , the

function RT (ω, γ) is continuous in γ.

The following lemma states the most important for us property of all the

sequences having the defensive property. A variant of the lemma was originally

proven by Levin (1976). For a full proof in the case when Ωt,Γt do not depend

on t see Vovk (2007, Theorem 1). We prove it only for the simple case Ωt =

{Yt,1, Yt,2}, Γt = R with Yt,1 < Yt,2 and Yt,1, Yt,2 ∈ R: in our studies we restrict

ourselves to this case and its direct generalization with Ωt = [Yt,1, Yt,2].

Lemma 2.2 (Levin lemma) Let R be a forecast-continuous sequence having
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the defensive property. For any t there exists p ∈ [0, 1] such that for all ω ∈ Ωt

Rt(ω, γ
p) ≤ 1.

Proof Define a function ft : Ωt × [0, 1] → (−∞,∞] by

ft(ω, p) = Rt(ω, γ
p)− 1.

Since R is forecast-continuous and the correspondence (2.9) is continuous,

ft(ω, p) is continuous in p. Since R has the defensive property, we have

pft(Yt,2, p) + (1− p)ft(Yt,1, p) ≤ 0 (2.11)

for all p ∈ [0, 1]. In particular, ft(Yt,1, 0) ≤ 0 and ft(Yt,2, 1) ≤ 0.

Our goal is to show that for some pt ∈ [0, 1] we have ft(Yt,1, pt) ≤ 0 and

ft(Yt,2, pt) ≤ 0. If ft(Yt,2, 0) ≤ 0, we can take pt = 0. If ft(Yt,1, 1) ≤ 0, we

can take pt = 1. Assume that ft(Yt,2, 0) > 0 and ft(Yt,1, 1) > 0. Then the

difference

ft(p) := ft(Yt,2, p)− ft(Yt,1, p)

is positive for p = 0 and negative for p = 1. By the intermediate value theorem,

ft(pt) = 0 for some pt ∈ (0, 1). By (2.11) we have ft(Yt,2, pt) = ft(Yt,1, pt) ≤ 0.�

This lemma shows that at each step there is a probability measure (corre-

sponding to pt ∈ [0, 1]) such that the sequence having the defensive property

remains less than one for any outcome. In other words, at each step there is

a prediction which defends the sequence from exceeding one. The proof pre-

sented here is constructive: pt can be found as a root of a continuous function

in the interval [0, 1]. If the dimension of the outcomes is more than 2, the proof

is based on the fixed point theorem, and the procedure to find p is often very

inefficient. We will show later that if the set of outcomes Ωt is the full interval

[Yt,1, Yt,2], the same p can sometimes be used as for the case Ωt = {Yt,1, Yt,2}.
We state here the Defensive Forecasting algorithm for Ω = {Yt,1, Yt,2},

28



Γ = R as Algorithm 2. The sequence of functions ft is defined by

ft(ω, p) = Qt(ω1, γ1, . . . , ωt−1, γt−1, ω, γ
p)− 1, (2.12)

where ω ∈ Ωt, p ∈ [0, 1], and ω1 ∈ Ω1, . . . , ωt−1 ∈ Ωt−1, γ1 ∈ Γ1, . . . , γt−1 ∈
Γt−1.

Algorithm 2 Defensive Forecasting algorithm

Require: An initial weights distribution P0(dθ) = P ∗
0 (dθ) on the experts.

for t = 1, 2, . . . do

Read Ωt, Γt.

Read experts’ loss functions λθ
t , θ ∈ Θ.

Calculate the appropriate learning rates ηθ
t > 0, θ ∈ Θ.

Read experts’ predictions ξθ
t , θ ∈ Θ.

Define ft : Ωt×[0, 1] → (−∞,∞] by (2.12) using the correspondence (2.9).

if ft(Yt,2, 0) ≤ 0 then

Predict γt = γ0.

else if ft(Yt,1, 1) ≤ 0 then

Predict γt = γ1.

else

Predict γt = γp satisfying ft(Yt,1, p) = ft(Yt,2, p).

end if

Read ωt.

end for

The calculation of the appropriate learning rates ηθ
t depends on the outcome

set and prediction set at the step t and on the loss function chosen by the

expert θ at this step. In the next section we will describe ways to approach

this calculation for two important cases. They closely relate to the proofs of

mixability (2.4) for the Aggregating Algorithm.

Assume that all the experts choose the same loss functions λt on all the

steps. Then it is interesting to note that Algorithm 2 in some cases finds the

prediction satisfying the equation (2.7), if trivial predictions YT,1 and YT,2 are
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not suitable. Indeed, it solves

∫
Θ

T−1∏
t=1

eηt(
QT−1

i=t αi)(λt(ωt,γt)−λt(ωt,ξθ
t ))eηT (λT (YT,2,γ)−λT (YT,2,ξθ

T ))P0(dθ)

−
∫

Θ

T−1∏
t=1

eηt(
QT−1

i=t αi)(λt(ωt,γt)−λt(ωt,ξθ
t ))eηT (λT (YT,1,γ)−λT (YT,1,ξθ

T ))P0(dθ) = 0

in γ ∈ [YT,1, YT,2]. We define

gT (ω) = − 1

ηT

ln

∫
Θ

e−ηT λT (ω,ξθ
T )

T−1∏
t=1

e−ηt(
QT−1

i=t αi)λt(ωt,ξθ
t )P0(dθ) (2.13)

for any ω ∈ ΩT . Rewriting the equation for the root, we have

eηT (λT (YT,2,γ)−gT (YT,2)) − eηT (λT (YT,1,γ)−gT (YT,1)) = 0

Moving the second exponent to the right-hand side and taking logarithms of

both sides, we obtain

λT (YT,2, γ)− gT (YT,2) = λT (YT,1, γ)− gT (YT,1) ≤ 0, (2.14)

(the inequality follows from the defensive property), which satisfies (2.7) if the

loss function, the outcome set, and the prediction set are the same for all steps

and there is no discounting (for all t, Yt,1 = Y1, Yt,2 = Y2, λt = λ and thus

ηt = η, and αt = 1). Therefore the prediction of the DF in this case coincides

with the prediction of the AA clipped to the prediction region [Y1, Y2].

Standard proofs of upper bounds for Defensive Forecasting are based on

the following argument. It states that Qt is a forecast-continuous sequence

having the defensive property.

Lemma 2.3 Assume that the sequence of functions Qθ
t is forecast-continuous

and has the defensive property. Then the mixtures Qt as functions of two vari-

ables ω, γ at the step t (given γ1, . . . , γt−1) form a forecast-continuous sequence

having the defensive property.
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Proof The continuity easily follows from the continuity of Qθ
t and the in-

tegration functional. We proceed by induction in T . For T = 0 we have

EπQ0 = Eπ1 ≤ 1. For T > 0 assume that for any ω1 ∈ Ω1, . . . , ωT−2 ∈ ΩT−2

and any γ1 ∈ Γ1, . . . , γT−2 ∈ ΓT−2

EπQT−1(ω1, γ1, . . . , ωT−2, γT−2, ω, γ
pπ

) ≤ 1

for any π ∈ P(ΩT−1). Then by Lemma 2.2 there exists πT−1 ∈ P(ΩT−1) such

that

QT−1(ω1, γ1, . . . , ωT−2, γT−2, ω, γ
pπT−1

) =

∫
Θ

(
T−2∏
t=1

(
Qθ

t

)QT−2
i=t αi

)
Qθ

T−1P0(dθ) ≤ 1

(2.15)

for any ω ∈ ΩT−1. We denote γT−1 := γpπT−1
and fix any ωT−1 ∈ ΩT−1. We

obtain

EπQT (ω1, γ1, . . . , ωT−1, γT−1, ω, γ
pπ

)

= Eπ

∫
Θ

(
T−1∏
t=1

(
Qθ

t (ωt, γt)
)QT−1

i=t αi

)
Qθ

T (ω, γpπ

)P0(dθ)

=

∫
Θ

(
T−1∏
t=1

(
Qθ

t (ωt, γt)
)QT−1

i=t αi

)(
EπQ

θ
T (ω, γpπ

)
)
P0(dθ)

≤
∫

Θ

T−1∏
t=1

(
Qθ

t (ωt, γt)
)QT−1

i=t αi
P0(dθ)

=

∫
Θ

((
T−2∏
t=1

(
Qθ

t

)QT−2
i=t αi

)
Qθ

T−1

)αT−1

P0(dθ)

≤

(∫
Θ

(
T−2∏
t=1

(
Qθ

t

)QT−2
i=t αi

)
Qθ

T−1P0(dθ)

)αT−1

≤ 1.

The first inequality holds because EπQ
θ
T (ω, γpπ

) ≤ 1 for any π ∈ P(ΩT ). The

penultimate inequality holds due to the concavity of the function xα with

x > 0, α ∈ [0, 1]. The last inequality holds due to (2.15). This completes the

proof. �

By Lemma 2.2 at each step t there exists a prediction γt such that Qt is
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less than one. Thus∫
Θ

T−1∏
t=1

eηθ
t (
QT−1

i=t αi)(λθ
t (ωt,γt)−λθ

t (ωt,ξθ
t ))eηθ

T (λθ
t (ωT ,γT )−λθ

t (ωT ,ξθ
T )P0(dθ) ≤ 1. (2.16)

Extracting the losses of the learner and the losses of the experts from this

expression where possible, one can obtain upper bounds in the more familiar

form (2.1).

Defensive Forecasting for multiple loss functions

A major problem in prediction with expert advice is the choice of the loss

function used to measure the quality of the predictions. In the setting of

multiple loss functions the performance of the learner and experts can be

measured by many loss functions λm, m = 1, . . . ,M . It is required that the

learner is competitive under all the loss functions.

Assume that the number of experts is finite and equal to K: |Θ| = K.

We shall reduce our problem to the framework described previously. It is

equivalent to say that the number of experts is larger and equal to K ×M

(they are then indexed by (θ,m)). All the experts with m = 1, . . . ,M and fixed

θ give the same predictions ξθ
t . We take for all t the outcome set Ω = {Y1, Y2},

the prediction set Γ = [Y1, Y2], and the correspondence between [0, 1] and Γ is

defined by (2.9). We do not take discounting into account in this subsection,

αt = 1 for all t.

By Lm
T :=

∑T
t=1 λ

m(ωt, γt) we denote the cumulative loss of the learner

under the loss function λm at the step T , and by Lθ,m
T :=

∑T
t=1 λ

m(ωt, ξ
θ
t ) we

denote the cumulative loss of the expert (θ,m) under this loss function. The

following performance guarantee for the loss of the learner follows from (2.16)

(first proven in Chernov and Vovk, 2009).

Theorem 2.1 Assume that Qθ
t defined by (2.8), t = 1, . . . , is a forecast-

continuous sequence having the defensive property. Using Algorithm 2 as the

learner’s strategy for the game with multiple loss functions guarantees that, for

all T = 1, 2, . . .,

Lm
T ≤ Lθ,m

T +
lnKM

ηm
. (2.17)
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for any θ = 1, . . . , K and any m = 1, . . . ,M .

Proof We have from (2.16) for the uniform initial distribution over the new

experts:

1

KM

M∑
m=1

K∑
θ=1

T∏
t=1

eηm(λm(ωt,γt)−λm(ωt,ξθ
t )) ≤ 1,

and thus
T∏

t=1

eηm(λm(ωt,γt)−λm(ωt,ξθ
t )) ≤ KM

for any θ = 1, . . . , K and any m = 1, . . . ,M . Taking natural logarithms of

both parts completes the proof. �

It is well known that the constant ηm in (2.17) is optimal in the case M = 1

(Watkins’s theorem; see Appendix A of Vovk and Zhdanov, 2009).

Defensive Forecasting for discounted loss

Discounted loss (especially exponential smoothing) is another setting widely

used in many practical applications of online prediction, such as finance, on-

line tracking, and others (see Gardner, 2006, for the review of exponential

smoothing).

We take for all t the outcome set Ω = {Y1, Y2}, the prediction set Γ =

[Y1, Y2], and the same loss function λ for all the experts at all the steps. The

correspondence between [0, 1] and Γ is defined by (2.9).

Theorem 2.2 Assume that Qθ
t defined by (2.8), t = 1, . . . , is a forecast-

continuous sequence having the defensive property. Using Algorithm 2 as the

learner’s strategy for the game with discounted loss guarantees that, for all

T = 1, 2, . . .,

LT ≤ Lθ
T +

lnK

η
. (2.18)

for any θ = 1, . . . , K.
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Proof We have from (2.16) for the uniform initial distribution over the ex-

perts:

1

K

T∏
t=1

eη(
QT−1

i=t αi)(λ(ωt,γt)−λ(ωt,ξθ
t )) ≤ 1

and thus

eη(LT−Lθ
T ) ≤ K

for any θ = 1, . . . , K. Taking natural logarithms of both parts completes the

proof. �

The discounted linear regression is one of the most popular methods where

discounting is used. We will describe the online setting in Chapter 3.
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2.3 Simple cases

In this section we discuss two important mixable games: the square loss game

and the logarithmic loss game. We show how the Aggregating Algorithm and

Defensive Forecasting can be applied to them. Unfortunately, another popular

loss function, absolute loss function, is not mixable (see Vovk, 1998). Other

methods should be applied to compete with experts under this loss function,

such as the weak Aggregating Algorithm (Kalnishkan and Vyugin, 2005), if

we wish to have the coefficient 1 in front of the cumulative loss of the experts

in (2.1). Throughout this section the number of experts is finite and equal toK:

|Θ| = K. For the logarithmic loss function we take the outcome set Ω = {0, 1}
and the prediction set Γ = [0, 1]. For the square loss function we take the

outcome set Ω = {Y1, Y2} and the prediction set Γ = R. The facts which are

necessary to handle the more general case of Ω = [Y1, Y2] will be proven in

Chapter 3. We also take no discounting in Defensive Forecasting, αt = 1 for

all t.

2.3.1 Logarithmic loss function

The prediction set Γ = [0, 1] can be identified with the set of all probability

distributions P(Ω) over the outcome set Ω = {0, 1}. Each prediction γ ∈ Γ

is identified with the pair (γ(1), γ(0)) = (γ, 1 − γ) such that γ(1) = γ is the

predicted probability of the outcome 1, γ(0) = 1−γ is the predicted probability

of the outcome 0. This is a particular case of the identification (2.9).

The logarithmic loss function (log-loss function) is defined as

λ(ω, γ) :=

− ln γ if ω = 1,

− ln(1− γ) if ω = 0,
(2.19)

where ω ∈ Ω and γ ∈ Γ. Logarithmic loss is sometimes written as

λ(ω, γ) = − ln γ(ω) (2.20)

meaning that the loss is the minus logarithm of the predicted probability of
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the realized outcome. This form allows us to generalize the logarithmic loss

function on the cases of more than two possible outcomes.

Aggregating Algorithm for the logarithmic loss function

As we will see soon, the Aggregating Algorithm for the logarithmic loss func-

tion and η = 1 is the same as the Bayesian scheme, which goes back to DeSantis

et al. (1988) in the case of countable Θ and Ω. We call it the Bayesian Al-

gorithm (BA) as it is virtually identical to the Bayes rule used in Bayesian

learning (the main difference being that the experts are not required to follow

any prediction strategies). We take η = 1.

The weights update (2.2) becomes

Pt(dθ) = ξθ
t (ωt)Pt−1(dθ) = P0(dθ)

t∏
i=1

ξθ
i (ωi), (2.21)

where ξθ
i (ω) is understood in the sense of (2.20). Therefore, the normalized

version P ∗
t (dθ) becomes identical to the posterior distribution on Θ after ob-

serving ω1, . . . , ωt. The generalized prediction (2.3) becomes

gt(ω) = − ln

∫
Θ

ξθ
t (ω)P ∗

t−1(dθ),

and thus represents the loss of the Bayesian mixture. Therefore, the gener-

alized prediction corresponds to the permitted prediction: the substitution

function Σ : RΩ → Γ is simply e−(·). It is now clear that the log-loss game is

mixable for η ≤ 1. Indeed, the function xη is concave for η < 1, and thus∫
Θ

(ξθ
t (ω))ηQ(dθ) ≤

(∫
Θ

ξθ
t (ω)Q(dθ)

)η

for any ω and Q ∈ P(Θ). Taking minus logarithms and multiplying by 1
η
, we

obtain

−1

η
ln

(∫
Θ

ξθ
t (ω)Q(dθ)

)η

≤ −1

η
ln

∫
Θ

(ξθ
t (ω))ηQ(dθ).

In other words, the loss of the prediction corresponding to η = 1 is less than
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the generalized prediction calculated with any other η < 1.

The Bayesian Algorithm works as follows.

Algorithm 3 Bayesian Algorithm

Require: An initial weights distribution P0(dθ) = P ∗
0 (dθ) on Θ.

for t = 1, 2, . . . do

Read experts’ predictions ξθ
t , θ ∈ Θ.

Predict γt =
∫

Θ
ξθ
tP

∗
t−1(dθ).

Read ωt ∈ Ω.

Update the weights Pt(dθ) = ξθ
t (ωt)Pt−1(dθ).

Normalize the weights P ∗
t (dθ) = Pt(dθ)/

∫
Θ
Pt(dθ).

end for

The following theorem can be easily deduced from (2.6) for the uniform

initial weights distribution P0(dθ) = 1/K.

Theorem 2.3 Using Algorithm 3 as the learner’s strategy in Protocol 1 for

the game with logarithmic loss function guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + lnK. (2.22)

It is also interesting to note that (2.6) leads to the following exact equality

for the loss of the BA in comparison with the loss of any expert in the case of

countable number of experts. It holds because LT (AA) = LT (APA) for this

loss function:

LT (BA) = Lθ
T + ln(1/P θ

0 )− ln(1/P θ
T )

for any θ ∈ Θ.

Defensive Forecasting for the logarithmic loss function

Function Qθ
t from (2.8) is expressed as follows:

Qθ
t = eη(− ln γt(ωt)+ln ξθ

t (ωt)) =

(
ξθ
t (ωt)

γt(ωt)

)η

.
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Lemma 2.4 For η ∈ (0, 1], Qθ
t is a forecast-continuous sequence having the

defensive property.

Proof The continuity is obvious. It suffices to check that for all p, q ∈ [0, 1]

peη(− ln p+ln q) + (1− p)eη(− ln(1−p)+ln(1−q)) ≤ 1,

where p = γt(1), 1− p = γt(0), q = ξθ
t (1), 1− q = ξθ

t (0). In other words,

p1−ηqη + (1− p)1−η(1− q)η ≤ 1

for all p, q ∈ [0, 1]. The last inequality immediately follows from the generalized

inequality between arithmetic and geometric means: uαv1−α ≤ αu + (1− α)v

for any u, v ≥ 0 and α ∈ [0, 1], which in turn (after taking logarithm of both

parts) follows from the fact that the logarithm function is concave. �

Let us assign equal weights 1/K to all the experts in the beginning of the

prediction process. Then by Lemma 2.3 the linear combination

QT =
1

K

K∑
θ=1

T∏
t=1

Qθ
t

is also a forecast-continuous sequence having the defensive property. Conse-

quently, by Lemma 2.2 there exist predictions such that QT ≤ 1 for any T . Let

us denote the cumulative loss of the learner following the Defensive Forecast-

ing algorithm by LT =
∑T

t=1 λ(ωt, γt), and the cumulative loss of the expert θ

by Lθ
T =

∑T
t=1 λ(ωt, ξ

θ
t ). Then the following theorem holds.

Theorem 2.4 Using Algorithm 2 as the learner’s strategy in Protocol 1 for

the game with logarithmic loss function guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + lnK. (2.23)
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Proof QT ≤ 1 ensures that for η = 1

1

K
eLT−Lθ

T =
1

K

T∏
t=1

eλ(ωt,γt)−λ(ωt,ξθ
t ) ≤ 1

K

K∑
θ̃=1

T∏
t=1

eλ(ωt,γt)−λ(ωt,ξθ̃
t ) ≤ 1

for θ = arg minθ̃=1,...,K Lθ̃
T . Taking natural logarithms of the left and right hand

sides completes the proof. �

2.3.2 Square loss function

Square loss, or square error, is a very popular measure of the quality of pre-

dictions in statistics. The square loss function is defined as

λ(ω, γ) := (γ − ω)2, (2.24)

where ω ∈ Ω and γ ∈ Γ. Square loss for the game with Ω = {0, 1} is sometimes

defined differently by λ(ω, γ) = (γ − ω)2 + ((1− γ)− (1− ω))2, which is twice

the square loss by the first definition. To distinguish them, we will sometimes

call the loss from the last definition the Brier loss (following Brier, 1950).

This form allows us to generalize the square loss function for the cases of

multidimensional outcomes.

Aggregating Algorithm for the square loss function

We first prove that the square loss game with Ω = {Y1, Y2} and Γ = R is

mixable. In other words, we prove that there exist values of η such that for any

generalized prediction gt(ω) the inequality (2.4) holds for some prediction γt.

Lemma 2.5 The square loss function is η-mixable if and only if η ≤ 2
(Y2−Y1)2

.

Proof Let us represent the generalized prediction (2.3) by the point

(x, y) = (e−ηg(Y1), e−ηg(Y2))

of the R2 plane. The set of permitted predictions is represented by the para-
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metric curve

(ũ, ṽ) = (e−η(γ−Y1)2 , e−η(γ−Y2)2)

for all γ ∈ Γ. Reformulating (2.4), we can say that the loss function is η-

mixable if and only if for any convex mixture (x, y) of the points of the

curve (ũ, ṽ) we can find a point γ0 on this curve which lies to the North-East

of the mixture:

e−η(γ0−ω)2 ≥ e−ηg(ω), ∀ω ∈ Ω.

Let us denote the set of points which correspond to γ ∈ [Y1, Y2] of the

curve (ũ, ṽ) by (u, v). For each u on the curve we have unique v corresponding

to it (note that this does not hold for (ũ, ṽ)). Therefore, it is enough to prove

that the curve (u, v) is concave. We check that second derivative of v in u is

less than or equal to zero:

d2v

du2
=

d2v
dγdu

du
dγ

=
d
(

dv/dγ
du/dγ

)
/dγ

du
dγ

=
d
(

2η(Y2−γ)e−η(Y2−γ)2

2η(Y1−γ)e−η(Y1−γ)2

)
/dγ

2η(Y1 − γ)e−η(Y1−γ)2

=
d
(

Y2−γ
Y1−γ

e−η(Y 2
2 −Y 2

1 )+2ηγ(Y2−Y1)
)
/dγ

2η(Y1 − γ)e−η(Y1−γ)2

=
e−η(Y 2

2 −Y 2
1 )+2ηγ(Y2−Y1)

(
Y2−Y1

(Y1−γ)2
+ 2η(Y2 − Y1)

Y2−γ
Y1−γ

)
2η(Y1 − γ)e−η(Y1−γ)2

≤ 0.

Thus we need 1
Y1−γ

+ 2η(Y2 − γ) ≤ 0, which is equivalent to

η ≤ 1

2(Y2 − γ)(γ − Y1)
.

Since maxγ∈[Y1,Y2](Y2−γ)(γ−Y1) = 1
4
(Y2−Y1)

2, the curve is concave for any γ

if and only if η ≤ 2
(Y2−Y1)2

.

For any point on the curve (ũ, ṽ) corresponding to γ̃ ∈ R \ [Y1, Y2] at least

one of the end points of the curve (u, v) corresponding to γ ∈ {Y1, Y2} lies to
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the North-East:

e−η(γ−ω)2 ≥ e−η(γ̃−ω)2 , ∀ω ∈ Ω.

Taking these points in any convex mixture (x̃, ỹ) instead of the points on (ũ, ṽ),

we obtain that (x̃, ỹ) lies to the North-East of the mixture (x, y). We can

always find a prediction γ0 lying to the North-East of (x̃, ỹ) by the argument

for (u, v). �

This mixability property leads to the following upper bound on the loss

of the Aggregating Algorithm with the uniform initial weights distribution

(see (2.6)).

Theorem 2.5 Using Algorithm 1 as the learner’s strategy in Protocol 1 for

the game with square loss function guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + (Y2 − Y1)

2 lnK

2
. (2.25)

We now describe a formula for the substitution function. Since the loss of

any permitted prediction is also a generalized prediction for some weights, it

is easy to see from (2.7) that for γ = Σ(g) we have for the square loss game

(γ − Y1)
2 − g(Y1) = (γ − Y2)

2 − g(Y2).

Therefore, the substitution function is expressed as follows:

γ =
Y2 + Y1

2
− g(Y2)− g(Y1)

2(Y2 − Y1)
. (2.26)

Finally, we visualize in Figure 2.1 how the Aggregating Algorithm makes

predictions in the game with two experts. Clearly, the curve for the losses is

strictly convex because the averaging is performed after taking the exponents.

Defensive Forecasting for the square loss function

We start by proving that Qθ
t has the defensive property.
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Figure 2.1: Aggregating Algorithm for two experts and Y1 = 0, Y2 = 1. Hor-
izontal axis corresponds to the case ω = 0, vertical axis corresponds to the
case ω = 1. The cross corresponds to a mixture of two experts. The substitu-
tion function finds the prediction point on the loss curve which is the opposite
vertex of a square drawn from the generalised prediction. This square is drawn
with dashed lines and the corresponding point is given by (2.26). The area to
the bottom-left of the dotted lines is the area where a permitted prediction
can lie in order for the upper bound (2.25) to hold.

Lemma 2.6 For η ∈
(

0, 2
(Y2−Y1)2

]
,

Qθ
t = eη((γt−ωt)2−(ξθ

t−ωt)2)

is a forecast-continuous sequence having the defensive property.

Proof The continuity is obvious. We need to prove that

peη((γ−Y2)2−(ξθ
t−Y2)2) + (1− p)eη((γ−Y1)2−(ξθ

t−Y1)2) ≤ 1 (2.27)

holds for all γ ∈ [Y1, Y2] and η ∈
(

0, 2
(Y2−Y1)2

]
. Indeed, for any γ ∈ R \ [Y1, Y2]

there exists γ̃ ∈ {Y1, Y2} such that (γ̃ − ω)2 ≤ (γ − ω)2 for any ω ∈ Ω. Since
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the exponent function is increasing, the inequality (2.27) for any γ ∈ R will

follow.

We use the replacements γ = p(Y2 − Y1) + Y1 for some p ∈ [0, 1], ξθ
t =

q(Y2 − Y1) + Y1 for some q ∈ R, and µ = η(Y2 − Y1)
2. Then we have to show

that for all p ∈ [0, 1], q ∈ R, and η ∈
(

0, 2
(Y2−Y1)2

]
,

peµ((1−p)2−(1−q)2) + (1− p)eµ(p2−q2) ≤ 1.

If we substitute q = p+ x, the last inequality will reduce to

pe2µ(1−p)x + (1− p)e−2µpx ≤ eµx2

, ∀x ∈ R.

Applying Hoeffding’s inequality (see Hoeffding, 1963, 4.16) to the random

variable X that is equal to 1 with probability p and to 0 with probability (1−p),
we obtain

peh(1−p) + (1− p)e−hp ≤ eh2/8

for any h ∈ R. With the substitution h := 2µx it reduces to

pe2µ(1−p)x + (1− p)e−2µpx ≤ eµ2x2/2 ≤ eµx2

,

where the last inequality holds if µ ≤ 2. It is equivalent to η ≤ 2
(Y2−Y1)2

. �

We assign equal weights 1/K to all the experts in the beginning of the

prediction process. Derivations similar to the ones for the logarithmic loss

function lead to the following upper bound on the cumulative square loss of

the learner which uses the Defensive Forecasting algorithm.

Theorem 2.6 Using Algorithm 2 as the learner’s strategy in Protocol 1 for

the game with square loss function guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + (Y2 − Y1)

2 lnK

2
. (2.28)
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2.4 Brier game

There are several important loss functions which have been shown to be mix-

able and for which the optimal regret term has been found. In Section 2.3

we described two examples for the case of two possible outcomes: the log-loss

function and the square loss function.

In this section we concentrate on a generalization of the square loss func-

tion to the case of multiple possible outcomes. We consider the classification

problem: outcomes take values in a finite set. Surprisingly, the problem of

non-binary classification under the square loss has never been analyzed in the

framework of prediction with expert advice before the conference version of

these results has been published (Vovk and Zhdanov, 2008). The full ver-

sion (Vovk and Zhdanov, 2009) appears in the Journal of Machine Learning

Research.

Kivinen and Warmuth (1999) consider competing with finite number of

experts under the square loss when the outcomes and predictions lie in a zero-

centred ball of the Euclidean space and under the logarithmic loss when the

outcomes and predictions lie in the simplex of Rd. They notice an interesting

property of the upper bound on the Brier loss of the algorithms which deal

with multidimensional predictions. The algorithms which are intended to give

multidimensional predictions directly (first type) may have a better regret term

than the algorithms which predict each component separately (second type).

On the other hand, the algorithms of the second type are capable to compete

with the strategies which choose the best expert for each component separately:

this choice has an advantage when, for example, one of the experts predicts

well one of the components of the outcome and another expert predicts well

another component. It is not clear whether the algorithms of the first type

have this property.

Our setting is a special case of the setting of Freund and Schapire (1997),

where the predictions are not made and only experts’ losses are known. In

that setting the upper bounds are worse since the assumptions are weaker. In

online convex optimization (Zinkevich, 2003), one allows the loss functions to

be unknown before the prediction is made, but requires the learner’s prediction
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to be the weighted average of the experts’ predictions. Our way of giving

predictions is different, and we obtain better bounds under the specific square

loss.

In this section we apply the Aggregating Algorithm. It is possible to apply

defensive forecasting, but it does not give any advantages for the Brier game

which we consider. Instead, the calculation of the predictions may become

very complicated if the number of classes is large.

2.4.1 Prediction algorithm and performance guarantee

In this section we are interested in the following Brier game (Brier, 1950):

Ω is a finite and non-empty set with d elements, where each element ω ∈ Ω

is associated with a unit basis vector from Rd; Γ := P(Ω) is the set of all

probability measures on Ω; and

λ(ω, γ) =
d∑

i=1

(
γi − ωi

)2
, (2.29)

where γ = (γ1, . . . , γd) ∈ Γ, ω = (ω1, . . . , ωd) ∈ Ω. For example, if Ω =

{1, 2, 3}, ω = (1, 0, 0), γ1 = 1/2, γ2 = 1/4, and γ3 = 1/4, then λ(ω, γ) =

(1/2− 1)2 + (1/4− 0)2 + (1/4− 0)2 = 3/8.

The game follows Protocol 1. The set Θ indexing experts is a finite set of

K elements. We denote the cumulative loss of the learner at the step t by Lt

and the cumulative loss of the expert θ by Lθ
t .

An optimal (in the sense of Theorem 2.7 below) strategy for the learner

for prediction with expert advice in the Brier game is given by Algorithm 4.

We use the notation ω{i} for the ith possible outcome in Ω (for the vector

(0, . . . , 0, 1, 0, . . . , 0) of the length d with 1 at the ith position) and

t+ := max(t, 0).

The algorithm will be derived in Section 2.4.2.
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Algorithm 4 Aggregating Algorithm for the Brier game

P θ
0 = 1/K, θ ∈ Θ.

for t = 1, 2, . . . do

Read experts’ predictions ξθ
t , θ ∈ Θ.

Set Gt(ω) := − ln
∑K

θ=1 P
θ
t−1e

−λ(ω,ξθ
t ), ω ∈ Ω.

Solve
∑

ω∈Ω(s−Gt(ω))+ = 2 in s ∈ R.

Set γi
t = (s−Gt(ω{i}))+/2, i = 1, . . . , d.

Output prediction γt.

Read observation ωt.

Update weights P θ
t = P θ

t−1e
−λ(ωt,ξθ

t ).

end for

The following theorem gives a performance guarantee for Algorithm 4,

which cannot be improved by any other prediction algorithm. For the full

proof, see Vovk and Zhdanov (2008). The main part in the proof of this result

is the proof of the mixability (see (2.4)) of the Brier loss function.

Lemma 2.7 The Brier loss function is η-mixable if and only if η ∈ (0, 1].

It is then easy to prove the following theorem.

Theorem 2.7 Using Algorithm 4 as the learner’s strategy in Protocol 1 for

the Brier game guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + lnK. (2.30)

If A < lnK, the learner does not have a strategy guaranteeing, for all T =

1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + A. (2.31)

2.4.2 Derivation of the algorithm

To achieve the loss bound (2.30) in Theorem 2.7, the learner uses the Aggre-

gating Algorithm with η = 1. In this section, a suitable substitution function

for this algorithm is described. This substitution function does not require
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that the weights of the experts are normalized in computation of the gen-

eralized prediction. In other words, we try to find a substitution function

satisfying (2.7).

Suppose that we are given a generalized prediction g = (l1, . . . , ld) com-

puted from a normalized distribution on the experts. We are required to find

a permitted prediction (u1, u2, . . . , ud), ui ≥ 0,∀i, such that all the possible

losses
λ1 = (u1 − 1)2 + u2

2 + · · ·+ u2
d

λ2 = u2
1 + (u2 − 1)2 + · · ·+ u2

d

. . .

λd = u2
1 + u2

2 + · · ·+ (ud − 1)2

(2.32)

are less than the corresponding components of the generalized prediction;

see (2.4):

λ1 ≤ l1, . . . , λd ≤ ld. (2.33)

Now suppose we are given a generalized prediction (L1, . . . , Ld) computed

from an unnormalized distribution on the experts; in other words, we are given

L1 = l1 + c

. . .

Ld = ld + c

for some c ∈ R. To find (2.32) satisfying (2.33) we can first find the largest

t ∈ R such that (2.33) is still satisfied for (L1− t, . . . , Ld− t) in the right-hand

sides, and then find (2.32) satisfying

λ1 ≤ L1 − t, . . . , λd ≤ Ld − t. (2.34)

Since t ≥ c, it is clear that (λ1, . . . , λd) will also satisfy the required (2.33).

Proposition 2.1 Define s ∈ R by the requirement

d∑
i=1

(s− Li)
+ = 2. (2.35)

The unique solution to the optimization problem t→ max under the constraints
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(2.34) with λ1, . . . , λd as in (2.32) will be

ui =
(s− Li)

+

2
, i = 1, . . . , d, (2.36)

t = s− 1− u2
1 − · · · − u2

d. (2.37)

Proof By ui and t we denote ui and t which satisfy (2.36) and (2.37) respec-

tively. Now notice that the ith constraint in (2.34) can be rewritten as

u2
1 + · · ·+ u2

d − 2ui + 1 ≤ Li − t,

which immediately follows from (2.36) and (2.37). As a by-product, we can

see that the inequality becomes an equality, that is,

t = Li − 1 + 2ui − u2
1 − · · · − u2

d, (2.38)

for all i with ui > 0.

We can rewrite (2.34) as follows:
t ≤ L1 − 1 + 2u1 − u2

1 − · · · − u2
d,

...

t ≤ Ld − 1 + 2ud − u2
1 − · · · − u2

d,

(2.39)

and our goal is to prove that these inequalities imply t < t (unless u1 =

u1, . . . , ud = ud), and so t is maximal. Choose i for which εi := ui − ui is

maximal (necessarily ui > 0 unless u1 = u1, . . . , ud = ud; in the latter case,

however, we can, and will, also choose i : ui > 0). Then every value of t
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satisfying (2.39) will also satisfy

t ≤ Li − 1 + 2ui −
d∑

j=1

u2
j

= Li − 1 + 2ui − 2εi −
d∑

j=1

u2
j + 2

d∑
j=1

εjuj −
d∑

j=1

ε2j

≤ Li − 1 + 2ui −
d∑

j=1

u2
j −

d∑
j=1

ε2j ≤ t. (2.40)

The penultimate inequality in (2.40) follows from

−εi +
d∑

j=1

εjuj =
d∑

j=1

(εj − εi)uj ≤ 0.

The last inequality in (2.40) follows from (2.38) and becomes strict when not

all uj coincide with uj. �

There exists a unique s satisfying (2.35) since the left-hand side of (2.35) is

a continuous, increasing (strictly increasing when positive) and unbounded

above function of s. The substitution function is then given by (2.36). We

will describe experimental results of applying Algorithm 4 for prediction the

results of football and tennis matches in Section 2.6.
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2.5 Second-guessing experts

In this section we consider a new setting for prediction with expert advice,

where the experts are allowed to “second-guess”, that is, to give conditional

predictions that are functions of the future learner’s prediction. If the depen-

dence is regular enough (the expert’s loss is continuous in the learner’s loss),

the Defensive Forecasting algorithm works in the new setting virtually with-

out changes and guarantees the same performance bound as in the traditional

setting. The AA in its original form cannot work in the new setting, and we

suggest a modified version of the AA for this case. The short conference ver-

sion of these results appeared in the ALT 2008 proceedings (Chernov et al.,

2008), and the full version appeared in the TCS journal (Chernov et al., 2010).

In game theory, the notion of internal regret (Blum and Mansour, 2007;

Foster and Vohra, 1999) is somewhat related to the idea of second-guessing

experts. The internal regret appears in the framework where, for each predic-

tion, which is called action in that context, there is an expert that consistently

recommends this action, and the learner follows one of the experts at each step.

The internal regret for a pair of experts i, j shows by how much the learner

could have decreased his loss if he had followed expert j each time he followed

expert i. This can be modeled by a second-guessing expert that “adjusts”

the learner’s predictions: this second-guessing expert agrees with the learner

if the learner does not follow i, and recommends following j when the learner

follows i.

The internal regret is usually studied in randomized prediction protocols.

In the case when the learner gives deterministic predictions, one cannot hope

to get any interesting loss bound without additional assumptions. Indeed, the

experts can always suggest exactly the “opposite” to the learner’s prediction

(for example, in the log loss game, they predict 1 if the learner predicts (“the

probability of 1”) less than 0.5 and they predict 0 otherwise), and the reality

can “agree” with them (choosing the outcome equal to the experts’ prediction);

then the experts’ losses remain zero, but the learner’s loss grows linearly in

the number of steps. The results of Blum and Mansour (2007) and others

are bounds of the form LT ≤ Lθ
T +O(

√
T ) for the Freund-Schapire game (see
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Vovk, 1998, Example 7), which is not mixable. In this section we consider

another kind of bounds. However, here we will also make the assumption that

second-guessing experts modify the prediction of the learner continuously.

2.5.1 Game with second-guessing experts

The game with second-guessing experts proceeds according to the following

protocol.

Protocol 2 Prediction with second-guessing expert advice
L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
for t = 1, 2, . . . do

Experts announce ξθ
t : Γ → Γ, θ ∈ Θ.

Learner announces γt ∈ Γ.
Reality announces ωt ∈ Ω.
Lt := Lt−1 + λ(ωt, ξt).
Lθ

t := Lθ
t−1 + λ(ωt, ξ

θ
t (γt)), θ ∈ Θ.

end for

The new protocol contains only one substantial change from Protocol 1.

The experts announce functions ξθ
t from Γ to Γ instead of an element of Γ.

Therefore, the loss of each expert is determined by the learner’s prediction as

well as by the outcome chosen by reality. We call the experts in this protocol

second-guessing experts. Second-guessing experts are a generalization of the

experts in the standard protocol: a standard expert can be interpreted in the

new protocol as predicting a constant function.

The phenomenon of second-guessing experts occurs, for example, in real-

world finance. In particular, commercial banks serve as second-guessing ex-

perts for the central bank when they use variable interest rates (that is, the

interest rate for the next period is announced not as a fixed value but as an

explicit function of the central bank base rate).

We discuss the simple game Ω = {0, 1},Γ = [0, 1], even though the following

reasoning holds for some more general cases.
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2.5.2 Defensive Forecasting

Defensive Forecasting requires virtually no modifications for this task and gives

the same loss bounds as in Theorems 2.4 and 2.6.

Theorem 2.8 Assume experts’ predictions are continuous functions of the

learner’s prediction. Using Algorithm 2 as the learner’s strategy in Protocol 1

for the game with the log-loss function guarantees that, for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + lnK. (2.41)

For the game with the square loss function it guarantees that, for all T =

1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T +

lnK

2
. (2.42)

Proof Clearly, function Qθ
t = eη(λ(ωt,γt)−λ(ωt,ξθ

t (γt))) from (2.8) is forecast-

continuous as a composition of continuous functions. By Lemmas 2.4 and 2.6

we have that Qθ
t has the defensive property for η = 1 (η = 2 for the square

loss): it has the property for any fixed γt (because the lemmas hold for any

expert’s predictions from Γ). Thus the mixture QT =
∑K

θ=1

∏T
t=1Q

θ
t is a

forecast-continuous sequence having the defensive property by Lemma 2.3,

and by Lemma 2.2 for any T there exists γT ∈ Γ such that QT ≤ 1. Thus

T∏
t=1

eηλ(ωt,γt)−ηλ(ωt,ξθ
t (γt)) ≤ K.

Taking natural logarithms of both sides completes the proof. �

It may be surprising to see that we do not loose anything by generalizing the

experts; but in terms of the upper bounds having finite number of continuous

experts is equivalent to having finite number of experts predicting numbers

directly.

2.5.3 Aggregating Algorithm

As opposed to the DF, the AA needs substantial improvement to be able to

compete with second-guessing experts. Recall that the AA is looking for a
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prediction satisfying the inequality (2.4), containing the prediction γt only in

the left-hand side.

In the second-guessing protocol, both sides of this inequality will contain γt:

λ(ω, γt) ≤ logβ

∫
Θ

βλ(ω,ξθ
t (γt))P ∗

t−1(θ).

The DF implicitly solves this inequality in the proof of Lemma 2.2 using a

kind of fixed point theorem. We will present a modification of the AA which

uses a fixed point theorem explicitly.

A topological space X has the fixed point property if every continuous

function f : X → X has a fixed point, that is, ∃x ∈ X f(x) = x. It follows

from Theorem 4.10 of Agarwal et al. (2001) that the set Γ = [0, 1] has the

fixed point property. Thus in order to compete with second-guessing experts

the AA needs its substitution function Σ to be continuous. In particular, for

the log-loss function (we obtain this from (2.7)) we have

γ = Σ(g) =
1

1 + eg(1)−g(0)
= e−g(1),

and for the square loss function we have

γ = Σ(g) =
1

2
+
g(0)− g(1)

2
.

The continuous substitution function presented in Lemma 27 of Chernov et al.

(2010) is suitable for more general types of games, which we do not consider

here.

We modify the Aggregating Algorithm such that at each step it announces

as the learner’s prediction γt any solution of the following equation with respect

to γ ∈ Γ:

γ = Σ

(
logβ

∫
Θ

βλ(ω,ξθ
t (γ))P ∗

t−1(dθ)

)
, (2.43)

where ξθ
t are announced by the experts and Σ is a continuous mapping, like

one of the standard mappings mentioned above.

Theorem 2.9 Assume experts’ predictions are continuous functions of the
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learner’s prediction. Using the modified Aggregating Algorithm as the learner’s

strategy in Protocol 2 for the game with the log loss function guarantees that,

for all T = 1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T + lnK. (2.44)

For the game with the square loss function it guarantees that for all T =

1, 2, . . .,

LT ≤ min
θ=1,...,K

Lθ
T +

lnK

2
. (2.45)

Proof Since Γ = [0, 1] has the fixed point property and the mapping given

by (2.43) is continuous as the composition of continuous mappings, we see that

equation (2.43) has a solution.

The property λ(ω,Σ(g)) ≤ g(ω),∀ω of Σ implies that

λ(ω, γt) ≤ logβ

∫
Θ

βλ(ω,ξθ
t (γt))P ∗

t−1(dθ), ∀ω

and the usual analysis of the AA gives us the bounds. �
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2.6 Prediction the results of sports matches

In this section we investigate the practical performance of different algorithms

for prediction with expert advice. We use real world data sets containing the

results of football and tennis matches over past years. We first apply the Ag-

gregating Algorithm (Algorithm 4) and measure the quality of its predictions

by the Brier loss function (2.29). Then we show that algorithms designed to

compete under the Brier loss function can fail if the quality of predictions is

measured by the log-loss function, and vice versa. Applying the Defensive

Forecasting algorithm (Algorithm 2) allows us to predict with a performance

guarantee under both loss functions simultaneously. Finally, we compare the

performance of other algorithms on our data sets. Some of the results of this

section are described in Vovk and Zhdanov (2008) and in more details in Vovk

and Zhdanov (2009).

2.6.1 Data sets

We use two data sets. The first one contains historical data about 8999 matches

in various English football league competitions, namely: the Premier League

(the pinnacle of the English football system), the Football League Champi-

onship, Football League One, Football League Two, and the Football Confer-

ence. Our data, provided by Football-Data, cover four seasons: 2005/2006,

2006/2007, 2007/2008, and 2008/2009.

The matches are sorted first by date, then by league, and then by the

name of the home team. The outcome of each match takes one of three possible

values, “home win”, “draw”, or “away win”; we will encode the possible values

as 1, 2, and 3.

For each match we have forecasts made by a range of bookmakers. We use

eight bookmakers for which we have enough data over a long period of time,

namely: Bet365, Bet&Win, Gamebookers, Interwetten, Ladbrokes, Sporting-

bet, Stan James, and VC Bet. The seasons mentioned above are chosen be-

cause the forecasts of these bookmakers are available for them.

The second data set involves data about a large number of tennis tourna-

ments in 2004, 2005, 2006, and 2007, with the total number of matches 10, 087.
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The tournaments include, for example, Australian Open, French Open, US

Open, and Wimbledon; the data is provided by Tennis-Data.

The matches are sorted by date, then by tournament, and then by the

winner’s name. The data contain information about the winner of each match

and the betting odds of 4 bookmakers for his/her win and for the opponent’s

win. Therefore, there are two possible outcomes (player 1’s win and player 2’s

win). There are four bookmakers: Bet365, Centrebet, Expekt, and Pinnacle

Sports.

The data used for all the experiments in this section can be downloaded

from http://vovk.net/ICML2008.

2.6.2 Experimental setup

Let us consider the football case, the case with three possible outcomes. A

probability forecast for each outcome is essentially a vector (π1, π2, π3) consist-

ing of positive numbers summing to 1: π1 + π2 + π3 = 1.

The bookmakers do not announce these numbers directly; instead, they

quote three betting odds, a1, a2, and a3. Each number ai > 1 is the total

amount which the bookmaker undertakes to pay out to a client betting on

outcome i per unit stake in the event that i happens (if the bookmaker wishes

to return the stake to the bettor, it should be included in ai; i.e., the odds are

announced according to the “continental” rather than “traditional” system).

The inverse value 1/ai, i ∈ {1, 2, 3}, can be interpreted as the bookmaker’s

quoted probability for the outcome i. The bookmaker’s quoted probabilities

are usually slightly (because of the competition with other bookmakers) in

his favour: the sum 1/a1 + 1/a2 + 1/a3 exceeds 1 by the amount called the

overround (at most 0.15 in the vast majority of cases). We use a different

formula

πi := a−γ
i , i = 1, 2, 3, (2.46)

(suggested by Khutsishvili, 2009) to compute the bookmaker’s probability fore-

casts, where γ > 0 is chosen such that a−γ
1 + a−γ

2 + a−γ
3 = 1. Such a value

of γ exists and is unique since the function a−γ
1 + a−γ

2 + a−γ
3 continuously and

strictly decreases from 3 to 0 as γ changes from 0 to ∞. In practice, we usually
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have γ > 1 as a−1
1 +a−1

2 +a−1
3 > 1 (i.e., the overround is positive). The method

of bisection was more than sufficient for us to solve a−γ
1 + a−γ

2 + a−γ
3 = 1 with

satisfactory accuracy. Khutsishvili’s argument for (2.46) is outlined in the next

subsection.

Typical values of γ in (2.46) are close to 1, and the difference γ− 1 reflects

the bookmaker’s target profit margin. In this respect γ−1 is similar to the over-

round; indeed, the approximate value of the overround is (γ−1)
∑3

i=1 a
−1
i ln ai

assuming that the overround is small and none of ai is too close to 0 and using

a1−γ
i − 1 ≈ ln a1−γ

i . The coefficient of proportionality
∑3

i=1 a
−1
i ln ai can be

interpreted as the entropy of the quoted betting odds.

2.6.3 Khutsishvili’s theory

The standard formula (following, e.g., Pennock et al., 2001, Section 7 and

Sauer, 2005, pp. 419–420) to convert bookmakers’ betting odds into their

quoted probabilities is expressed as follows:

pi :=
1/ai

1/a1 + 1/a2 + 1/a3

, i = 1, 2, 3, (2.47)

in place of (2.46).

We first compare the formulas (2.46) and (2.47) empirically by calculating

the Brier losses of the predictions of the bookmakers found using these formu-

las (see Tables 2.1 and 2.2). As we can see from the tables, using Khutsishvili’s

formula (2.46) consistently leads to smaller losses. The improvement of each

bookmaker’s total loss over the football data set is in the range 0.72–5.84;

over the tennis data set the difference is in the range 1.27–11.64. These dif-

ferences are of the order of the differences in cumulative loss between different

bookmakers, and so the improvement is significant.

We will further present the Khutsishvili’s argument for (2.46). The theory

is based on a very idealized model of a bookmaker, who is assumed to compute

the betting odds a for an event of probability p using a continuous function f ,

a := f(p).
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Table 2.1: The bookmakers’ cumulative Brier losses over the football data
set when their probability forecasts are computed using formula (2.46) and
formula (2.47).

Loss resulting from (2.46) Loss resulting from (2.47) Difference
5585.69 5588.20 2.52
5585.94 5586.67 0.72
5586.60 5587.37 0.77
5588.47 5590.65 2.18
5588.61 5589.92 1.31
5591.97 5593.48 1.52
5596.01 5601.85 5.84
5596.56 5598.02 1.46

Table 2.2: The bookmakers’ cumulative Brier losses over the tennis data set
when their probability forecasts are computed using formula (2.46) and for-
mula (2.47).

Loss resulting from (2.46) Loss resulting from (2.47) Difference
3935.32 3944.02 8.69
3943.83 3945.10 1.27
3945.70 3957.33 11.64
3953.83 3957.75 3.92

Different bookmakers (and the same bookmaker at different times) can use

different functions f .

The following simple corollary of Darboux’s theorem describes the set of

possible functions f ; its interpretation will be discussed immediately after the

proof.

Theorem 2.10 Suppose a function f : (0, 1) → (1,∞) satisfies the condition

f(pq) = f(p)f(q) (2.48)

for all p, q ∈ (0, 1). There exists c > 0 such that f(p) = p−c for all p ∈ (0, 1).
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Proof Equation (2.48) is one of the four fundamental Cauchy equations,

which can be easily reduced to each other. For example, introducing a new

function g : (0,∞) → (0,∞) by g(u) := ln f(e−u) and new variables x, y ∈
(0,∞) by x := − ln p and y := − ln q, we transform (2.48) to the most standard

Cauchy equation g(x+y) = g(x)+g(y). By Darboux’s theorem (see, e.g., Aczél,

1966, Section 2.1, Theorem 1), g(x) = cx for all x > 0, that is, f(p) = p−c for

all p ∈ (0, 1). �

The function f is defined on (0, 1) (no bookmaker assigns a subjective

probability of exactly 0 or 1 to an event on which he accepts bets). It would be

irrational for the bookmaker to have f(p) ≤ 1 for some p, so f : (0, 1) → (1,∞).

To see that the requirement (2.48) is reasonable, we should take into ac-

count not only “single” but also “double” bets. If a bookmaker quotes two

odds a and b on two independent (by his opinion) events, his quoted odds on

the conjunction of the two events should be ab. If the probabilities of the two

events are p and q, respectively, the probability of their conjunction will be pq.

Therefore, we have (2.48).

We can see from Theorem 2.10 that if the bookmakers apply the same

function f to all three probabilities p1, p2, and p3, the formula f(p) = p−c for

the function converting predicted probabilities into odds follows. We have pi =

a−γ
i , where γ = 1/c and i = 1, 2, 3, and γ can be found from the requirement

p1 + p2 + p3 = 1.

An important advantage of (2.46) over (2.47) is that (2.46) does not impose

any upper limits on the overround that the bookmaker may charge (Khut-

sishvili, 2009). If the game has n possible outcomes (n = 3 for football and

n = 2 for tennis) and the bookmaker uses f(p) = p−c, the overround is

n∑
i=1

a−1
i − 1 =

n∑
i=1

pc
i − 1

and so continuously changes between −1 and n− 1 as c ranges over (0,∞) (in

practice, the overround is usually positive, and so c ∈ (0, 1)). Even for n = 2,

the upper bound of 1 is too large to be considered a limitation. The situation

with (2.47) is very different: upper bounding the numerator of (2.47) by 1

and replacing the denominator by 1 + o, where o is the overround, we obtain
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pi <
1

1+o
for all i, and so o < mini p

−1
i − 1; this limitation on o is restrictive

when one of the pi is close to 1.

An interesting phenomenon in racetrack betting (on horses, cars, etc.),

known since Griffith (1949), is that favourites are usually underbet while long-

shots are overbet (see, e.g., Snowberg and Wolfers, 2007, for a recent survey and

analysis). Khutsishvili’s formula (2.46) can be regarded as a way of correcting

this “favourite-longshot bias”: when ai is large (the outcome i is considered a

longshot), (2.46) slashes 1/ai when computing pi more than (2.47) does.

2.6.4 Experimental results

The probabilities calculated from (2.46) of the bookmakers’ are used as the

experts’ predictions in our experiments. The results of applying Algorithm 4

to the football data, with 8 experts and 3 possible outcomes, are shown in

Figure 2.2. Let Lθ
T be the cumulative loss of the expert θ, θ = 1, . . . , 8, over

the first T matches and LT be the corresponding number for the Aggregating

Algorithm. The dashed line corresponding to the expert θ shows the excess

loss T 7→ Lθ
T −LT of the expert θ over the Aggregating Algorithm. The excess

loss can be negative, but from the first part of Theorem 2.7 we know that

it cannot be less than − ln 8; this lower bound is also shown in Figure 2.2.

Finally, the thick line (the positive part of the x axis) is drawn for comparison:

this is the excess loss of the Aggregating Algorithm over itself. We can see

that at each moment in time the algorithm’s cumulative loss is fairly close to

the cumulative loss of the best expert (at that time; the best expert keeps

changing over time).

Figure 2.3 shows the distribution of the bookmakers’ overrounds. We can

see that in most cases overrounds are between 0.05 and 0.15, but there are also

occasional extreme values, near zero or in excess of 0.3.

The results in Figure 2.4 show the results of the experiments with the tennis

data. They are presented in the same way as in Figure 2.2. Typical values of

the overround are below 0.1, as shown in Figure 2.5 (analogous to Figure 2.3).

As in football data, tennis bookmakers have some extreme values of the over-

round, like 0.48 or negatives. We can explain them as in the beginning of
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Figure 2.2: The difference between the cumulative loss of each of the 8 book-
makers (experts) and of the AA on the football data. The lower bound − ln 8
obtained from Theorem 2.7 is also shown.

some games a bookmaker makes incorrect forecasts, and thus incorrect bets.

The bookmaker’s welfare depends not only on the accuracy of his forecasts,

but also on the amount of people who stake on each event. Thus the bets

can not be easily changed during the betting process, they have to be changed

dramatically to attract more people. Just before the beginning of the match

the bookmaker has to “save” his capital, and tries to do it by changing his

bets. We have closing bets for the bookmakers and we see the result of these

tricks. It is important to note that there are few of such forecasts having the

overround which is less than zero or more than 0.2: 9 matches out of 10087 for

all bookmakers, 8 matches for one of them, and 1 for another. The majority

of the overrrounds included by the bookmakers have small values, and there

is good reason to think that the extreme overrounds have no strong influence

upon the real forecasts extracted from the values of bets using formula (2.46).

In both Figure 2.2 and Figure 2.4 the cumulative loss of the AA is close

to the cumulative loss of the best expert. The bound (2.30) is not hopelessly

61



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 2.3: The overround distribution histogram for the football data, with
200 bins of equal size between the minimum and maximum values of the over-
round. The horizontal axis gives the bin, the vertical axis gives the number of
forecasts in each bin.

loose for the football data and is rather tight for the tennis data. The pictures

look almost the same when the AA is applied in the more realistic manner

where the experts’ weights P (dθ) are not updated over the matches that are

played simultaneously (on the same day). Thus we do not include the pictures

with the results of these experiments.

Our second empirical study (Figure 2.4) covers only binary prediction and

considers prediction under multiple loss functions.

2.6.5 Prediction under multiple loss functions simulta-

neously

As described at the end of Section 2.2.2, the method of defensive forecasting

makes it possible to compete with a set of experts with respect to several loss

functions at once. We apply it to the predictions made by the bookmakers

and show that the AA working with only one of the loss functions can fail if
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Figure 2.4: The difference between the cumulative loss of each of the 4 book-
makers and of the AA on the tennis data. Now the lower bound is − ln 4.

the performance is measured by another loss function.

Experimental results

In our experiments we will use the Brier loss function (2.29) (doubled square

loss (2.24) in case of two possible outcomes) and the logarithmic loss func-

tion (2.19). We show pictures only for the experiments with tennis matches,

with two possible outcomes.

As we have seen earlier in Theorem 2.5, if the learner uses the Aggregating

Algorithm, he can ensure that

LT ≤ Lθ
T + lnK (2.49)

in the traditional game of prediction with expert advice following Protocol 1

with the Brier loss function. Similarly, Theorem 2.3 implies that if the learner

uses the Bayesian Algorithm he can ensure (2.49) in the traditional game of
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Figure 2.5: The overround distribution histogram for the tennis data. The
horizontal axis gives the bin, the vertical axis gives the number of forecasts in
each bin.

prediction with expert advice with the log loss function.

As in the previous section, a probability forecast for the next outcome

is a vector (π1, π2) consisting of non-negative numbers summing to 1. For

simplicity in this experiment, we convert betting odds into probabilities simply

by normalizing 1/an. In other words, we use the simple formula

πi :=
1/ai

1/a1 + 1/a2

, i = 1, 2, (2.50)

for computing the bookmaker’s probability forecasts.

In the binary case the Defensive Forecasting algorithm can be implemented

efficiently using the simple method of bisection. The results of applying the

DF, the AA, and the BA to the tennis data, with 4 experts and 2 possible

outcomes, for both loss functions are shown in Figures 2.6–2.11. The dashed

lines corresponding to the experts again show the excess loss T 7→ Lθ
T −LT of

the experts over the given algorithm.

On all the pictures we also show the existing lower bounds on the excess
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Figure 2.6: The difference between the cumulative loss of each of the 4 book-
makers and of the DF algorithm on the tennis data for the Brier loss.
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Figure 2.7: The difference between the cumulative loss of each of the 4 book-
makers and of the AA on the tennis data for the Brier loss.
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Figure 2.8: The difference between the cumulative loss of each of the 4 book-
makers and of the BA on the tennis data for the Brier loss.
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Figure 2.9: The difference between the cumulative loss of each of the 4 book-
makers and of the DF algorithm on the tennis data for the log loss.
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Figure 2.10: The difference between the cumulative loss of each of the 4 book-
makers and of the AA on the tennis data for the log loss.
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Figure 2.11: The difference between the cumulative loss of each of the 4 book-
makers and of the BA on the tennis data for the log loss.
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loss of the experts over our prediction algorithms: − ln 8 for the Defensive

Forecasting algorithm (see Theorem 2.1), and − ln 4 for the AA under the

Brier loss and for the BA under the log loss (see (2.49)). The guaranteed lower

bound is− ln 8 for Figures 2.6 and 2.9, and the guaranteed lower bound is− ln 4

for Figures 2.7 and 2.11; there are no guarantees whatsoever for Figures 2.8

and 2.10 (and it shows). We can see that at each moment in time the relevant

algorithm’s cumulative loss is fairly close to the cumulative loss of the best

expert (at that time; the best expert keeps changing over time), provided

there are theoretical guarantees for the given combination of the prediction

algorithm and the loss function.

Table 2.3 gives precise values for the maximal differences maxθ,T (LT −Lθ
T )

and the upper bounds for them.

Table 2.3: The maximal difference between the loss of each prediction algo-
rithm (first column) and the loss of the best expert for the tennis data under
the two loss functions (second column); the upper bound on this difference
(third column).

Algorithm and loss Max. diff. Bound
DF for Brier loss 1.7919 2.0794
AA for Brier loss 1.2021 1.3863
BA for Brier loss 4.6531 none
DF for log loss 1.6817 2.0794
AA for log loss 6.0410 none
BA for log loss 1.3854 1.3863

The results that we obtained for the tennis data set are sensitive to the

way of converting betting odds into probabilities. Replacing the standard

formula (2.50) by the less standard (2.46) may lead to different results.

The principal advantage of the DF algorithm is not that it always gives

more precise predictions than more naive prediction strategies, but that there

is a guarantee that it will never suffer failures such as those in Figures 2.8

and 2.10. The loss bound (2.17) guarantees decent performance under any of

the selected loss functions.
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2.6.6 Comparison with other prediction algorithms

It is possible to apply other popular algorithms for prediction with expert

advice instead of Algorithm 4 (i.e., the AA) to predict the results of the sports

matches. These are, for example, the Weighted Average Algorithm (WdAA,

proposed by Kivinen and Warmuth, 1999), the Weak Aggregating Algorithm

(WkAA, proposed independently by Kalnishkan and Vyugin, 2005, and Cesa-

Bianchi and Lugosi, 2006, Theorem 2.3; we are using Kalnishkan and Vyugin’s

name), and the Hedge algorithm (HA, proposed by Freund and Schapire, 1997,

we apply it in randomized form).

Since neither the WkAA nor the HA satisfy bound of the form (2.31),

we pay particular attention to the WdAA. To extract probabilities from the

quoted betting odds we use the formula (2.46). The reader can consult Vovk

and Zhdanov, 2007, for details of experiments with the latter two algorithms

and formula (2.47). We also briefly discuss three more naive algorithms.

The WdAA is also an exponential weights algorithm, as the AA. It keeps

the same weights (2.2) and gives its prediction simply as the weighted aver-

age of the expert’s predictions (in comparison to the AA which uses a more

sophisticated scheme). The theoretical guarantee for the performance of the

WdAA is weaker than the optimal (2.30).

Figures 2.12 and 2.13 show the performance of this algorithm in the same

format as before (see Figures 2.2 and 2.4). We can see from the figures that

for the football data the maximal difference between the cumulative loss of the

WdAA and the cumulative loss of the best expert is slightly larger than that

for the AA but still well within the optimal bound lnK given by (2.30). For

the tennis data, the maximal difference is almost twice as large as for the AA,

violating the optimal bound lnK.

Kivinen and Warmuth, 1999, the beginning of Section 6, proposed that the

WdAA works in the game where the outcome set and the prediction set are the

unit ball in Rn. This covers the Brier game (see Section 2.4). However, in the

Brier game the predictions are known to belong to the simplex {(u1, . . . , un) ∈
[0,∞)n|

∑n
i=1 ui = 1}, and the outcome is known to be one of the vertices of

this simplex.

If we want the WdAA to work in the Brier game and have theoretical
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Figure 2.12: The difference between the cumulative loss of each of the 8 book-
makers and of the Weighted Average Algorithm (WdAA) on the football data.
The chosen value of the parameter c = 1/η for the WdAA, c := 16/3, mini-
mizes its theoretical loss bound. The theoretical lower bound − ln 8 ≈ −2.0794
for the Aggregating Algorithm is also shown (the theoretical lower bound for
the WdAA, −11.0904, can be extracted from Table 2.4 below).

guarantees on its loss, we can consider the smallest ball containing the simplex.

This will optimize the radius of the ball which is used in the guarantee proved

by Kivinen and Warmuth, 1999. The radius of the smallest ball is

R :=

√
1− 1

n
≈


0.7071 if n = 2

0.8165 if n = 3

1 if n is large.

The WdAA is parameterized by c := 1/η instead of η, and the optimal value

of c is c = 8R2, leading to the loss bound

LT ≤ min
θ=1,...,K

Lθ
T + 8R2 lnK
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Figure 2.13: The difference between the cumulative loss of each of the 4 book-
makers and of the WdAA for c := 4 on the tennis data.

for all T = 1, 2, . . .. This is significantly looser than the bound (2.30) for

the AA.

In Figures 2.12 and 2.13 we use the values c = 16/3 and c = 4 because they

minimize the theoretical guarantee for the loss of the WdAA’s. However, to

minimize the empirical loss, it is possible that they are not the best parameters

for the data sets which we use. Figure 2.14 shows the maximal difference

max
T=1,...,8999

(
LT (c)− min

θ=1,...,8
Lθ

T

)
, (2.51)

where LT (c) is the loss of the WdAA with parameter c on the football data

over the first T steps and Lθ
T is the analogous loss of the θth expert, as a

function of c. Similarly, Figure 2.15 shows the maximal difference

max
T=1,...,10087

(
LT (c)− min

θ=1,...,4
Lθ

T

)
(2.52)

for the tennis data. As we can see, in both cases the value of c minimizing the
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Figure 2.14: The maximal difference (2.51) for the WdAA as function of the
parameter c on the football data. The theoretical guarantee ln 8 for the max-
imal difference for the AA is also shown (the theoretical guarantee for the
WdAA, 11.0904, is given in Table 2.4).

empirical loss is far from the value minimizing the bound; as could be expected,

the empirical optimal value for the WdAA is not so different from the optimal

value for the AA. The following two figures, 2.16 and 2.17, demonstrate that

there is no such anomaly for the AA.

Figures 2.18 and 2.19 show the behaviour of the WdAA for the value of

parameter c = 1, that is, η = 1, that is optimal for the AA. They look very

similar to Figures 2.2 and 2.4, respectively.

Precise numbers associated with the figures referred to above are given in

Tables 2.4 and 2.5: the second column gives the maximal differences (2.51)

and (2.52), respectively. The third column gives the theoretical upper bound

on the maximal difference (i.e., the optimal value of A in (2.31), if available).

Other two algorithms which we use in our studies are the weak aggregating

algorithm (WkAA) and the Hedge algorithm (HA). They make weaker as-

sumptions about the prediction game. The Aggregating Algorithm computes
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Figure 2.15: The maximal difference (2.52) for the WdAA as function of the
parameter c on the tennis data. The theoretical bound for the WdAA is 5.5452
(see Table 2.5).

Table 2.4: The maximal difference between the loss of each algorithm in the se-
lected set and the loss of the best expert for the football data (second column);
the theoretical upper bound on this difference (third column).

Algorithm Maximal difference Theoretical bound
The AA 1.2318 2.0794

The WdAA (c = 16/3) 1.4076 11.0904
The WdAA (c = 1) 1.2255 none

the experts’ weights using the information that the loss function is convex af-

ter exponentiation (see Lemma 2.5, for example). The WkAA assumes that

the loss function is only convex (not necessarily exponentially) and thus com-

putes the weights of the experts differently than the AA and the WdAA. The

WkAA can use both the prediction approach of the WdAA (which is more

computationally efficient), and the prediction approach similar to that of the
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Figure 2.16: The maximal difference ((2.51) with η in place of c) for the AA
as function of the parameter η on the football data.

Table 2.5: The maximal difference between the loss of each algorithm in the
selected set and the loss of the best expert for the tennis data (second column);
the theoretical upper bound on this difference (third column).

Algorithm Maximal difference Theoretical bound
The AA 1.1119 1.3863

The WdAA (c = 4) 2.0583 5.5452
The WdAA (c = 1) 1.1207 none

AA; but this appears less important than the way it computes the weights.

The HA assumes even less: it does not even assume that its and the experts’

performance is measured using a loss function. At each step the HA decides

which expert it is going to follow, and at the end of the step it is only told the

losses suffered by all experts.

We denote the parameters of the WkAA and the HA by c and β, respec-

tively; the ranges of the parameters are c ∈ (0,∞) and β ∈ [0, 1). The loss
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Figure 2.17: The maximal difference ((2.52) with η in place of c) for the AA
as function of the parameter η on the tennis data.

bounds that we give below assume that the loss function takes values in the

interval [0, L], in the case of the WkAA, and that the losses are chosen from

[0, L], in the case of the HA, where L is a known constant. In the case of the

Brier loss function, L = 2.

The loss of the WkAA (Kalnishkan and Vyugin, 2008, Corollary 14) is

upper bounded as follows:

LT ≤ min
θ=1,...,K

Lθ
T + 2L

√
T lnK. (2.53)

This bound is very different from (2.30) as the regret term 2L
√
T lnK in (2.53)

depends on T . This bound is guaranteed for c =
√

lnK/L. For c =
√

8 lnK/L,

Cesa-Bianchi and Lugosi (2006, Theorem 2.3) prove the stronger bound

LT ≤ min
θ=1,...,K

Lθ
T + L

√
2T lnK + L

√
lnK

8
.
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Figure 2.18: The difference between the cumulative loss of each of the 8 book-
makers and of the WdAA on the football data for c = 1 (the value of parameter
minimizing the theoretical performance guarantee for the AA).

It is proven in Chernov and Zhdanov (2010) that WkAA achieves the regret

L
√
T lnK with the parameter c =

√
4 lnK/L.

The performance of the WkAA on our data sets is significantly worse than

that of the WdAA with c = 1: the maximal difference (2.51)–(2.52) does

not exceed lnK for all reasonable values of c in the case of football but only

for a very narrow range of c (which is far from both Kalnishkan and Vyu-

gin’s
√

lnK/2 and Cesa-Bianchi and Lugosi’s
√

8 lnK/2) in the case of tennis.

Moreover, the WkAA violates the bound for the AA for all reasonable values

of c on some natural subsets of the football data set: for example, when pre-

diction starts from the second (2006/2007) season. Nothing similar happens

for the WdAA with c = 1 on our data sets.

The loss bound for the HA (Freund and Schapire, 1997, Theorem 2) is as

follows:

ELT ≤
ln 1

β
minθ=1,...,K Lθ

T + L lnK

1− β
, (2.54)
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Figure 2.19: The difference between the cumulative loss of each of the 4 book-
makers and of the WdAA for c = 1 on the tennis data.

where ELN stands for the learner’s expected loss (the HA is a randomized

algorithm). In the same framework, the Aggregating Algorithm attains the

stronger bound

ELT ≤
ln 1

β
minθ=1,...,K Lθ

T + L lnK

K ln K
K+β−1

(2.55)

(Vovk, 1998, Example 7). Of course, the AA applied to the HA framework

(as described above, with no loss function) is very different from Algorithm 4,

which is the AA applied to the Brier game; we refer to the former algorithm

as AA-HA.

The losses suffered by the AA and the AA-HA on our data sets are close

to each other and violate the optimal bound for the AA. It is interesting to

note that the parameter β for the HA which minimizes its empirical loss is

very close to zero (and equals zero for football). In this case the HA coincides

with the Follow the Leader Algorithm (FLA). The FLA calculates the losses

of the experts so far, and follows the best expert at the next step. If there

are more than one best expert, its prediction is a simple average with equal
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weights of the predictions of the best experts. It is known (Cesa-Bianchi and

Lugosi, 2006, Section 4.3) that the FLA can fail on many natural sequences,

unlike its variant Follow the Perturbed Learner.

The empirical performance of the FLA on the football data set is not so

bad: it violates the loss bound for the AA only slightly; however, on the tennis

data set the bound is violated badly.

Since the FLA performs well on the football data set, it is reasonable

to check the performance of another similarly naive algorithm. The Simple

Average Algorithm’s (SAA) prediction is defined as the arithmetic mean of

the experts’ predictions (with equal weights).

We have found that none of the naive algorithms perform consistently

poorly, but they always fail badly on some natural parts of our data sets. The

advantage of the more sophisticated algorithms having strong performance

guarantees is that there is no danger of catastrophic performance on any data

set.
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2.7 Online prediction of ovarian cancer

In this section, we use the Aggregating Algorithm to diagnosing ovarian cancer

using the level of the standard biomarker CA125 in conjunction with informa-

tion provided by mass-spectrometry.

Early detection of ovarian cancer (OC) is important since clinical symptoms

sometimes do not appear until the late stage of the disease. This leads to

difficulties in treatment of the patient. Using the antigen CA125 significantly

improves the quality of diagnosis. However, CA125 becomes less reliable at

early stages and sometimes elevates too late to make use of it. Our goal is

to investigate whether existing methods of online prediction can improve the

quality of the detection of the disease and to demonstrate that the information

contained in mass spectra is useful for ovarian cancer diagnosis in the early

stages of the disease. The results of this section are described in Zhdanov et al.

(2009a) and in more details in Zhdanov et al. (2009b).

2.7.1 Data set

We are working with a data set processed by Devetyarov et al. (2009) that

was collected over the period of 7 years and has information (referred to as

samples) about patients with the disease (referred to as cases) and patients

who were healthy all this period, called controls. Description of the collection

process is not our goal, so we do not state this question in detail. More detailed

description of the data set and mass spectrometry peak extracting procedures

can be found in Menon et al. (2005) and Devetyarov et al. (2009).

We consider prediction in triplets : each case sample is accompanied by two

samples from healthy individuals, matched controls, which are chosen to be

as close as possible to the case sample with respect to attributes such as age,

storage conditions, and serum processing. There are 881 samples in total: 295

cases, 586 matched controls. There are up to 5 samples for each of the cases.

Data for all samples contain the value of CA125, time to diagnosis (for cases),

intensities of 67 mass-spectrometry peaks, and other. Time to diagnosis is the

time interval measured in months between the date when the measurement was

taken and the date when OC was diagnosed, or the date of operation. Peaks
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are ordered by their frequency, or the percentage of samples having a non-

aligned peak. We have 67 peaks of frequency more than 33%. For classification

purposes we exclude cases with only one matched control, and cases with a

lack of suitable information. As a result, we have 179 triplets containing 358

control samples and 179 case samples taken from 104 individuals. Each triplet

is assigned a time-to-diagnosis defined as the time to diagnosis of the case

sample in this triplet.

2.7.2 Experiments

In the given triplet of samples from different individuals we detect one sample

which we predict as cancer. This framework was first described in Gammerman

et al. (2008). The authors analyze an ovarian cancer data set and show that the

information contained in mass-spectrometry peaks in conjunction with CA125

can help to provide more precise and reliable predictions of the samples from

diseased patients than the CA125 criteria by itself several months before the

moment of the diagnosis. We use the same framework and set of decision rules

(CA125 combined with peak intensity) to derive an algorithm which performs

better in a sense than any of these rules.

We combine the decision rules by using the Aggregating Algorithm and thus

get our own prediction strategy. This section describes two experiments. The

first one is a study of probability prediction of ovarian cancer. In the second

one we analyse prediction at different stages before diagnosis and ensure that

our results are not accidental by showing their statistical significance through

calculating p-values.

Probability prediction of ovarian cancer

The aim of this experiment is to demonstrate how we give probability predic-

tions for the samples in triplets and compare them to the predictions obtained

using CA125 alone. The outcome of each event can be represented as a vector

(1, 0, 0), (0, 1, 0), or (0, 0, 1).

In order to estimate classification accuracy, we convert the predictions of all

the algorithms into strict predictions by the maximum rule: we assign weight
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1 to the labels with maximum predicted probability, weight 0 to the labels

of other samples, and then normalize the assigned weights. The prediction

of CA125 is represented as a vector with three components. This vector is

obtained by applying the maximum rule to CA125 levels.

We refer to the combination of CA125 and peak intensity meaning the

decision rule in the form

u(v, w, p) = v lnC + w ln Ip, (2.56)

where C is the level of CA125, Ip is the intensity of the p-th peak, p = 1, . . . , 67,

v ∈ {0, 1}, and w ∈ {−2,−1,−1/2, 0, 1/2, 1, 2}. In our setting, each expert

predicts according to one of the fixed combinations applying the maximum

rule to their values for the samples in a triplet. The total number of different

combinations, or experts, is 537: 402 = 6× 67 for v = 1, w 6= 0, 134 = 2× 67

for v = 0, and 1 for v = 1, w = 0. Devetyarov et al. (2009) show how such

combinations can predict cancer well up to 15 months before diagnosis.

We apply Algorithm 4 to make predictions. For the purpose of simulating

online prediction, we sort all the triplets by their time-to-diagnosis such that

the earlier triplets go first. At each step we give the probability of being

diseased for each sample in the triplet, numbers p1, p2, p3 ≥ 0 : p1 + p2 +

p3 = 1. We choose the uniform initial distribution over the experts and the

theoretically optimal value for the parameter η, η = 1, for the Aggregating

Algorithm (see Lemma 2.7). The evolution of the cumulative Brier loss of

all the experts minus the cumulative loss of our algorithm over all the 179

triplets is presented in Figure 2.20. Clearly, the line for the AA is zero since

we subtract its loss from itself. Experts having the line lower than zero are

better than the AA, experts having the line higher than zero are worse. The

x-axis presents triplets in the chronological order.

We can see from Figure 2.20 that the Aggregating Algorithm predicts bet-

ter than the majority of the experts in our class after about 54 triplets, in

particular better than CA125. At the end, the AA is better than all the ex-

perts. The group of lines clustered on the top of the graph separated from the

main group are experts which do not include CA125. They make relatively
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Figure 2.20: The difference between the cumulative loss of each of the experts
of the AA over all the triplets.

many mistakes especially on late stages of the disease and accumulate large

loss. These results show that the probability predictions of the AA are more

precise than predictions of the experts interpreted as probability predictions.

Moreover, we can be sure that the loss of the Aggregating Algorithm will never

be much worse than the loss of the best expert since there is the bound (2.30)

for it.

One can say this comparison is not fair because we allow the experts to

give only strict predictions, and our algorithm is more flexible so its Brier loss

is not so large. On the other hand, it is not trivial to find experts which make

probability predictions, or convert the predictions of CA125 into probabilities

of the disease for each sample in triplet, so this approach presents one of the

ways to provide them.

In order to make a more strict comparison we allow the AA to make only

strict predictions and use the maximum rule to convert its probability predic-

tions into strict predictions. We will refer to this algorithm as to the categorical

AA. If we calculate the Brier loss, we obtain Figure 2.21. We can see that the
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Figure 2.21: The difference between the cumulative loss of each of the experts
and of the categorical AA over all the triplets.

categorical AA still beats CA125 at the end. The final performance is the

performance on the whole data set. The loss of the categorical AA over the

whole data set is more than the loss of only few predictors.

It may be useful to know specific combinations which perform well in this

experiment. At the last step the best performance is achieved by the combi-

nations

lnC − ln I3, lnC − 1

2
ln I3, lnC − ln I2, lnC − 1

2
ln I7. (2.57)

After them combinations with the peaks 50, 2, 7, 1, 34, 47 follow.

Prediction on different stages of the disease

Our second experiment is aimed to investigate whether it is possible to predict

well at early stages of the disease. In this experiment we follow the approach

proposed in Devetyarov et al. (2009). We consider 6-month time intervals with

the starting points t = 0, 1, . . . , 16 months before diagnosis. So if, for example,
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t = 1, then samples with time-to-diagnosis from 1 to 7 are chosen. We will

show below that our predictions are not reliable for the stages earlier than 15

months. For each time interval we select only the triplets within it; the latest

for each case patient is taken if there are more than one. We denote the triplets

in the interval t of length θ by St,θ. We use θ = 6.

In this experiment, we do not use a uniform initial weights distribution

on the experts because the number of triplets within each time interval is too

small for the algorithm to learn a lot. Instead, we assume that the importance

of each peak decreases as its number increases in accordance with a power law,

and that different combinations including the same peak have the same impor-

tance. This makes sense because the peaks are sorted by their frequency in the

data set, so the peaks further down the list are less frequent and important for

fewer people. Our specific weighing scheme is that the combinations with peak

1 have the initial weight 1 = d0, the combinations with peak 2 have the initial

weight d−1, etc. We empirically choose the coefficient for this distribution,

d = 1.2, and the parameter η for the AA, η = 0.65, to achieve the reliability

of prediction for all time intervals. The number of errors was calculated as

half of Brier loss, which corresponds to counting errors in the case where all

predictions are strict. Figure 2.22 shows the fractions of erroneous predictions

made by different algorithms over different time periods. It presents the values

for CA125, for the categorical Aggregating Algorithm, and for the best com-

bination of the form (2.56) at each time period separately (assuming we know

in advance which combination is the best for each period). It also includes the

fractions of erroneous predictions for the three best combinations in (2.57) as

peaks 2 and 3 were noticed to perform well.

This figure shows that the performance of the categorical AA is at least

as good as the performance of CA125 on all stages before diagnosis. For the

period 9–13 months the combination lnC− ln I3 performs better than the AA,

but on late stages 0–8 months it performs worse. Other combinations are even

worse. Thus we can say that instead of choosing one particular combination,

we should use the Aggregating Algorithm to mix all the combinations. This

allows us to predict reliably on many stages of the disease.

The choice of the coefficients for the categorical AA requires us to check
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Figure 2.22: Fraction of erroneous predictions of different predictors over dif-
ferent time periods.

that our results are not accidental. Since the amount of data we have does

not allow us to carry out reliable cross-validation procedure, we follow the

approach for calculating p-values proposed in Gammerman et al. (2008). For

each stage of the disease (time interval), we test the null hypothesis that the

peak intensities and CA125 do not carry any information relevant for predicting

labels. The test statistic is the performance of the categorical AA with the best

parameters. Except for the earliest stages, we show that either this hypothesis

is violated or some very unlikely event happened.

We calculate p-values for testing the null hypothesis. The p-value can be

defined as a value taken by the random variable ξ satisfying

∀δ Probability(ξ ≤ δ) ≤ δ

for all δ ∈ (0, 1) under the null hypothesis. To calculate p-values we choose

the test statistic T described below, apply it to our data, and get the value
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T0. Then we calculate the probability of the event that T ≤ T0 under the null

hypothesis.

Let τ be a triplet in St,6 and take the categorical AA with the parameter

η and the initial weights distribution with parameter d. Let err(τ, d, η) be its

half Brier loss on the triplet τ . Then the half loss over each time interval

[t, t+ 6] is expressed as

Err(St,6; d; η) =
∑

τ∈St,6

err(τ ; d; η),

where St,6 is the set of triplets for the time interval [t, t + 6]. We randomly

reassign the labels in the triplets N times. For each t and each j = 1, . . . , N

we calculate the minimum number of errors E made by the categorical AA by

the rule

E = min
d∈D,η∈R

Err(St,6, d, η).

Here D = {1.1, 1.2, . . . , 2.0} and R = {0.1, 0.15, 0.2, . . . , 1.0}, so we consider

different values for all parameters of the algorithm. By E0 we denote the

number of errors made by the categorical AA on the data with the correct

label assignment. E is the loss of the best categorical AA on the data with

permutations. This number is our test statistic. The p-value is calculated by

the Monte-Carlo procedure stated as Algorithm 5.

Algorithm 5 Calculation of p-value

Require: Time to diagnosis t, number of trials N = 104.
Calculate E0 := mind∈D,η∈R Err(St,6, d, η).
Initialize Q := 0.
for j = 1, . . . , N do

Assign a case label to a randomly chosen sample in each triplet in St,6.
Calculate E = mind∈D,η∈R Err(St,6, d, η) for this data set.
if E ≤ E0 then

Update Q = Q+ 1.
end if

end for
Output Q+1

N+1
as a p-value.
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Figure 2.23: The logarithm of p-values for different algorithms.

Algorithm 5 calculates the ratio of times when the best categorical AA on a

labels permutation performs better than the best categorical AA on the correct

labels assignment. If the particular choice of the parameters d, η allowed the

categorical AA to adjust well to any given data (overfit), this ratio would not

be very small.

The logarithms of p-values for different algorithms are presented in Fig-

ure 2.23. It includes the values for the categorical AA. It also includes the

values taken from Devetyarov et al. (2009) for the CA125 only. It includes p-

values for an algorithm described in Devetyarov et al. (2009). This algorithm

chooses the combination with the best performance and the least number of

peak for each permutation of the labels. The figure also includes the p-values

for the algorithms which choose the best combination with one particular peak,

2 or 3.

As we can see, our algorithm has small p-values, comparable with or even

smaller than p-values for other algorithms. At the same time, our algorithm

has fewer adjustments, because it does not choose even the peak but mixes all

the peaks in the same manner. It also does not choose the best parameters
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for every time interval but chooses them for all the time periods. The precise

values for errors and p-values are presented in Table 2.6. Lower index e stands

for the half loss for a given algorithm (AA stands for the categorical AA, CA

stands for CA125), lower index p stands for the p-values for a given algorithm.

The column Mine shows the minimum number of errors made by one of the

combinations, the p column shows the p-values for the method which chooses

the best combination for each time period (see Devetyarov et al. (2009)), C3
1,e

shows the number of errors for the combination lnC − ln I3, C
3
2,e shows the

number of errors for the combination lnC− 1
2

ln I3, C
2
e shows number of errors

for the combination lnC − ln I2. Columns 3p and 2p contain the p-values for

the combinations with the peaks 3 and 2, respectively.

Table 2.6: Number of errors and p-values for different algorithms.

t |St,6| CAe CAp AAe AAp Mine p C3
1,eC

3
2,e 3p C2

e 2p

0 68 2 0.0001 2 0.0001 1 0.0001 3 2 0.0001 3 0.0001

1 56 4 0.0001 4 0.0001 2 0.0001 5 4 0.0001 5 0.0001

2 47 6 0.0001 5 0.0001 3 0.0001 7 5 0.0001 6 0.0001

3 36 8 0.0001 8 0.0001 4 0.0001 9 7 0.0001 8 0.0001

4 27 7 0.0001 7 0.0001 4 0.0001 8 6 0.0001 7 0.0001

5 23 7 0.0008 5 0.0006 4 0.0006 7 6 0.0007 6 0.0004

6 20 6 0.0010 5 0.0004 4 0.0028 6 7 0.0046 5 0.0010

7 17 6 0.0071 4 0.0006 4 0.0141 5 6 0.0098 4 0.0017

8 17 5 0.0021 3 0.0003 3 0.0019 4 5 0.0020 4 0.0020

9 20 7 0.0042 6 0.0009 5 0.0076 5 6 0.0009 5 0.0010

10 28 14 0.0503 7 0.0001 6 0.0003 6 8 0.0001 8 0.0001

11 28 15 0.1028 9 0.0006 8 0.0042 8 9 0.0004 11 0.0008

12 28 17 0.3164 11 0.0120 10 0.0585 10 11 0.0049 13 0.0033

13 30 16 0.0895 10 0.0011 10 0.0168 10 11 0.0015 13 0.0007

14 25 16 0.4661 10 0.0070 8 0.0304 10 11 0.0301 11 0.0015

15 20 13 0.5211 8 0.0124 6 0.0464 8 9 0.0577 9 0.0022

16 10 6 0.4406 6 0.6708 2 0.4101 6 6 0.5979 6 0.5165
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In practice, one often chooses a suitable significance level for their particular

task. If we choose it at 5%, then we can see from the table that CA125

classification is significant up to 9 months in advance of diagnosis (the p-values

are less than 5%). At the same time, the results for peaks combinations and

for the AA are significant for up to 15 months.

2.7.3 Discussion

Our results show that the CA125 criterion, which is a current standard for the

detection of ovarian cancer, can be outperformed, especially at early stages.

Our approach gives more reliable predictions than the vast majority of partic-

ular combinations. It performs well on different stages of disease.

When testing the hypothesis that CA125 and peaks do not contain useful

information for the prediction of the disease at its early stages, our algorithm

gives better p-values in comparison to the algorithm which chooses the best

combination; in addition, our algorithm requires fewer adjustments. This hy-

pothesis can be rejected at the standard significance level 5% later than 16

months before diagnosis. Other approaches to probability prediction of ovar-

ian cancer using CA125 criteria are based on the Risk of Ovarian Cancer

algorithm (see Skates et al., 2003) and require multiple statistical assumptions

about the data and a much larger size of data sets. Thus they can not be

comparable in our setting.

The triplet setting looks a bit unrealistic. Our results can still be useful

as a good demonstration that the choice of a particular prediction model may

lead to worse predictions, and the mixture of the models may result in better

and more reliable prediction. On the other hand, the online triplet setting can

be used by itself: it is enough to choose a threshold level for the probability

predictions of the AA which will determine whether in a given triplet of patients

the prediction about one of them is certain. If any of the probabilities in a

triplet are less than the threshold, additional analysis and application of other

methods is required.
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Chapter 3

Online regression in

finite-dimensional spaces

The regression task is to predict a label of the given input vector. The label

is usually allowed to take infinitely many values (for example, on real line).

In this chapter, we describe online linear (or generalized linear) regression

framework. Experts predict according to linear functions of the input vectors

given by reality at each step.

If the advice from a finite number of experts is given, the task of competing

with all linear combinations of them can be reduced to linear regression. It is

enough to interpret the vector of experts’ predictions as the input vector for a

regression algorithm.

In almost all the sections of this chapter, we consider the square (or Brier)

loss. The Least Squares method was the earliest form of regression, and

was first described by Gauss around 1794, and published by Legendre (1805)

and Gauss (1809). Later it was noticed that in its simplest form Least Squares

Regression may tend to data overfitting (good performance on the set of vectors

where the coefficients of the method are found, but bad performance on many

other sets) and large computational errors with certain types of data. One of

the ways which was suggested to overcome these problems uses a Tikhonov

regularization term in addition to the square error while searching for the best

fit; the corresponding Ridge Regression method was published by Hoerl (1962).

The first work with linear regression in competitive online setting was per-
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formed by Foster (1991), who considered a variant of Ridge Regression to

compete with all linear functions with coefficients from the probability sim-

plex.
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3.1 Introduction to online regression

By online regression we usually understand the case when the benchmark class

of experts is uncountable. Each expert is taken to follow certain prediction

strategy, in other words to predict according to a function. In this case the

notion of complexity of the functions is needed. The learner wishes to compete

with the best expert which follows a strategy which is not too complex. The

tradeoff between the complexity and the loss of the best expert is regulated

by a parameter of the online regression algorithm chosen for the learner.

A popular field related to the competitive prediction is the online convex

optimization introduced by Zinkevich (2003). Both fields cover a common

special case: a compact set of experts under loss functions of a specific form

(the square or logarithmic loss for our applications). In the general case,

online convex optimization significantly relaxes the condition on loss functions,

whereas competitive prediction removes the compactness requirement. Since

many algorithms for competitive prediction are designed for a narrower class

of loss functions, they have a better coefficient in the regret term.

3.1.1 Online regression framework

We follow the notation of the previous chapter: an outcome set is denoted by Ω,

a prediction set is denoted by Γ, a loss function is denoted by λ : Ω × Γ 7→
[0,∞], an index set for the experts supplied with a norm is denoted by Θ, and

each individual expert is denoted by θ ∈ Θ. In online regression framework,

reality gives a “hint”, an input vector from a set X, to the learner and the

experts to help them in predicting the outcome. The prediction process follows

Protocol 3.
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Protocol 3 Online regression

for t = 1, 2, . . . do

Reality announces xt ∈ X.

Experts announce ξθ
t ∈ Γ.

Learner announces γt ∈ Γ.

Reality announces yt ∈ Ω.

end for

For the compliance with the online regression literature we denote the out-

comes by y, instead of ω as in the previous chapter. The experts and the

learner record their cumulative losses: by Lt we denote the cumulative loss of

the learner after the step t, and by Lθ
t we denote the cumulative loss of the

expert θ after this step.

We will mostly be interested in deriving upper bounds on the loss of the

learner in the form

LT ≤ Lθ
T + a‖θ‖2 +RT (3.1)

for any θ ∈ Θ, all T = 1, 2, . . ., and a regret term RT = o(T ). Here a > 0

is the regularization coefficient responsible for the tradeoff between the loss of

the best expert and the complexity of his strategy.
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3.2 Aggregating Algorithm for Regression

In this section we describe the Aggregating Algorithm for Regression (AAR)

introduced by Vovk (2001). If the outcome set Ω is a bounded interval [Y1, Y2],

Y1 < Y2, the AAR is competitive with all the linear functions Θ = Rn of the

input vectors.

3.2.1 Derivation of the algorithm

Let the outcome set Ω be the bounded interval [Y1, Y2], the prediction set Γ be

the real line R, and the loss function be the square loss (2.24): λ(y, γ) = (γ−y)2

for y ∈ Ω, γ ∈ Γ.

Let also the set X of input vectors be a subset of Rn, X ⊆ Rn. A linear

expert θ ∈ Rn predicts ξθ
t at the step t:

ξθ
t = c+ θ′xt (3.2)

for some c ∈ R, we call c the concentration point of the experts. We apply the

Aggregating Algorithm (Algorithm 1) to compete with these experts. Vovk

(2001) first applied it for online linear regression with Y1 = −Y , Y2 = Y ,

Y > 0, and symmetric experts with c = 0.

The unnormalized weight of the expert θ after the step T is represented by

PT (dθ) = e−η(ξθ
T−yT )2PT−1(dθ) = e−η

PT
t=1(ξθ

t−yt)2P0(dθ).

We set the initial weights distribution P0 over the set Θ = Rn of the experts

to have the Gaussian density with a parameter a > 0:

P0(dθ) =
(aη
π

)n/2

e−aη‖θ‖2dθ. (3.3)
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Then the generalized prediction (2.3) at the step T is represented as follows:

gT (y) = −1

η
ln

(
1

K

∫
Θ

e−η((ξθ
T−y)2+

PT−1
t=1 (ξθ

t−yt)2+a‖θ‖2)dθ

)
= −1

η
ln

(
1

K

∫
Θ

e−η(θ′AT θ−2θ′bT−1−2θ′xT (y−c)+
PT−1

t=1 (yt−c)2+(y−c)2)dθ

)
,

where AT = aI+
∑T

t=1 xtx
′
t is a symmetrical positive definite matrix n×n, I is

the unit n×n matrix, and bT−1 =
∑T−1

t=1 xt(yt−c) is a column vector n×1. Here

K =
∫

Θ
e−η

PT−1
t=1 (ξθ

t−yt)2−aη‖θ‖2dθ is the normalizing constant for the weights

distribution.

Substitution function for the game with infinite number of possible

outcomes

We show that the substitution function (2.26) can be used for the case of

infinite number of possible outcomes, Ω = [Y1, Y2]. The following lemma is

an elaboration of the result in Haussler et al. (1998) that shows that any

substitution function in the game with two possible outcomes {Y1, Y2} is also

a substitution function in the game with Ω = [Y1, Y2].

Lemma 3.1 (Vovk, 2001, Lemma 3) Fix Y1 and Y2 such that Y1 < Y2.

Let y and γ range over [Y1, Y2] and R respectively, and λ(y, γ) = (γ − y)2 be

the square loss function. Let P be a probability distribution in R, and let g be

the following mixture:

g(y) = logβ

∫
β(γ−y)2P (dγ), β ∈ [0, 1).

For every γ ∈ R, if

λ(Y1, γ) ≤ g(Y1) and λ(Y2, γ) ≤ g(Y2),

then

λ(y, γ) ≤ g(y), ∀y ∈ [Y1, Y2].
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The prediction algorithm

Recall that we take β = e−η. Due to Lemma 3.1 we can use the substitution

function (2.26):

γT =
Y2 + Y1

2
− gT (Y2)− gT (Y1)

2(Y2 − Y1)

=
Y2 + Y1

2
− 1

2(Y2 − Y1)η
ln

∫
Θ
e−ηθ′AT θ+2ηθ′(bT−1+(Y1−c)xT )−η(W+(Y1−c)2)dθ∫

Θ
e−ηθ′AT θ+2ηθ′(bT−1+(Y2−c)xT )−η(W+(Y2−c)2)dθ

=
Y2 + Y1

2
− 1

2(Y2 − Y1)
ln eY 2

2 −Y 2
1 +2c(Y1−Y2)−(bT−1+(Y2+Y1

2
−c)xT )

′
A−1

T (Y2−Y1
2

xT )

= c+

(
bT−1 +

(
Y2 + Y1

2
− c

)
xT

)′
A−1

T xT , (3.4)

where the third equality follows from Lemma A.3. Here W =
∑T−1

t=1 (yt − c)2.

Thereby we obtain Algorithm 6.

Algorithm 6 Aggregating Algorithm for Regression

Require: a > 0.

Initialize b0 = 0 ∈ Rn, A0 = aI ∈ Rn×n.

for t = 1, 2, . . . do

Read xt ∈ Rn.

Update At = At−1 + xtx
′
t.

Predict γt = c+
(
bt−1 +

(
Y2+Y1

2
− c
)
xt

)′
A−1

t−1xt.

Read yt.

Update bt = bt−1 + (yt − c)xt.

end for

The incremental update of the matrix A−1
t can be done efficiently by the

Sherman-Morrison formula (see, e.g., Press et al., 1992, p.73), which requires

O(n2) operations per step:

A−1
t = A−1

t−1 −
A−1

t−1xtx
′
tA

−1
t−1

1 + x′tA
−1
t−1xt

.
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It is easy to check that Algorithm 6 minimizes

a‖θ‖2 +

(
θ′xT −

(
Y2 + Y1

2
− c

))2

+
T−1∑
t=1

(θ′xt − (yt − c))2 (3.5)

in θ ∈ Θ. Indeed, by taking the derivative in θ of the quadratic form and

finding θ̂ where it achieves zero, we can obtain that the AAR predicts c+ θ̂′xT .

3.2.2 Performance guarantee

To derive an upper bound on the cumulative loss of Algorithm 6 we use the

following lemma. It states an upper bound on the loss of the AA (see Sec-

tion 2.2.1). It generalizes the proof technique firstly suggested in the proof of

Theorem 1 (Vovk, 2001), and will be used to handle several problems of online

regression. It does not require that the experts follow linear functions of the

input vectors and the loss function is the square loss.

Lemma 3.2 Let Θ = Rn be the set indexing experts. Take the initial distri-

bution P0(dθ) over the experts to be the Gaussian distribution (3.3). Assume

that the loss function λ : Ω× Γ → [0,∞] is η-mixable, and denote by θ0 some

element of arg minθ∈Θ

(
Lθ

T + a‖θ‖2
)
. If, for any T = 1, 2, . . ., there exists a

symmetric positive definite matrix AT such that

Lθ
T + a‖θ‖2 ≤ Lθ0

T + a‖θ0‖2 + (θ − θ0)
′AT (θ − θ0), (3.6)

then

LT (AA) ≤ Lθ0
T + a‖θ0‖2 +

1

2η
ln det

(
1

a
AT

)
. (3.7)

If the Bayesian Algorithm is used, and (3.6) holds as an equality, then (3.7)

holds as an equality with η = 1.

Proof By Lemma 2.1 we have

LT (APA) = logβ

∫
Θ

βLθ
TP0(dθ) = logβ

(
(aη/π)n/2

∫
Θ

βLθ
T +a‖θ‖2dθ

)
≤ logβ

(
(aη/π)n/2βL

θ0
T +a‖θ0‖2

∫
Θ

β θ̃′AT θ̃dθ̃

)
,
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where θ̃ = θ − θ0. The inequality follows from (3.6) and the fact that the

functions βz and logβ z are decreasing in z > 0, with β ∈ [0, 1). The integra-

tion over θ̃ is equivalent to the integration over θ. The last integral can be

analytically evaluated using Lemma A.1:∫
Θ

β θ̃′AT θ̃dθ̃ =

∫
Θ

e−ηθ̃′AT θ̃dθ̃ =
πn/2√

det(ηAT )
.

Substituting this to the upper bound for LT (APA) and using the fact that

LT (AA) ≤ LT (APA) for the mixable game concludes the proof of (3.7).

For the Bayesian algorithm LT (BA) = LT (APA) and thus if (3.6) is an

equality, then there is equality in (3.7). �

This lemma states that if the regularized cumulative loss of each expert can be

bounded above by a quadratic form with its minimum in the best expert, then

the loss of the AA can be bounded above by the regularized cumulative loss of

the best expert plus a simple regret term. This lemma leads to the following

upper bound on the cumulative square loss of the AAR.

Theorem 3.1 For any a > 0, every positive integer T , every sequence of

outcomes of the length T , and any θ ∈ Rn, the cumulative loss LT of the AAR

with the parameter a satisfies

LT ≤ Lθ
T + a‖θ‖2 +

(Y2 − Y1)
2

4
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
. (3.8)

If, in addition, ‖xt‖∞ ≤ X for all t, then

LT ≤ Lθ
T + a‖θ‖2 + n

(Y2 − Y1)
2

4
ln

(
1 +

TX2

a

)
. (3.9)

Proof By θ0 we denote the best expert: θ0 = arg minθ∈Θ

(
Lθ

T + a‖θ‖2
)
. The

regularized cumulative loss of any expert θ at any step T can be expressed as
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follows:

Lθ
T + a‖θ‖2 =

T∑
t=1

(θ′xt − (yt − c))2 + a‖θ‖2

=
T∑

t=1

(θ′0xt − (yt − c))2 + a‖θ0‖2 + (θ − θ0)
′AT (θ − θ0)

for AT = aI +
∑T

t=1 xtx
′
t. By Lemma 3.2 we obtain for any θ ∈ Θ

LT ≤ Lθ
T + a‖θ‖2 +

1

2η
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

We take the maximum value for η, η = 2
(Y2−Y1)2

(recall Lemma 2.5). The

determinant of a symmetric positive definite matrix is upper bounded by the

product of its diagonal elements (see Beckenbach and Bellman, 1961, Chapter

2, Theorem 7): det
(
I + 1

a

∑T
t=1 xtx

′
t

)
≤
(

1 + TX2

a

)n

. This concludes the

proof. �

Interestingly, the upper bound for the AAR depends only on the size of the

prediction interval but not on the location of it. It also does not depend on

the concentration point of the experts.
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3.3 Competing with Gaussian linear experts

In this section, we consider the problem of competing with Gaussian linear

experts: experts whose predictions are the densities of normal distributions on

the set of outcomes. From the statistical point of view, they predict according

to the model y = θ′x + ε with Gaussian noise ε ∼ N(0, σ2). Therefore, these

are linear experts which additionally incorporate the information about the

Gaussian nature of the noise into their predictions.

We show that Bayesian Ridge Regression can be thought of as an online

algorithm competing with all the Gaussian linear experts under the logarith-

mic loss function. We use this representation of Bayesian Ridge Regression to

derive theoretical guarantees on the square loss of Ridge Regression competing

with linear experts. Our main theoretical guarantees have the form of equali-

ties. This leads us to an upper bound on the square loss of Ridge Regression.

The results of this section are described in Zhdanov and Vovk (2009).

Most of previous research in online prediction considers experts that disre-

gard the presence of noise in observations. Some bounds for Bayesian Ridge

Regression were previously derived by Kakade and Ng (2004). They prove

upper bounds (perhaps because a more general problem is considered) which

usually have the same logarithmic order of the regret term as the order of the

bounds which we derive from our equalities for Bayesian Ridge Regression. See

also Banerjee (2006) and Freund et al. (1997) for upper bounds on the loss of

general Bayesian algorithms. Our approach allows us to partly improve these

results for our problem.

3.3.1 Bayesian Ridge Regression as a competitive algo-

rithm

Let the outcome set Ω be the real line R, the prediction set Γ be the set of all

measurable functions on the real line that are integrable to one, and the index

set Θ for the experts be Rn. The loss function λ is the logarithmic loss (2.20):

λ(y, γ) = − ln γ(y),
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where γ ∈ Γ and y ∈ Ω. The game follows Protocol 3 of online regression.

We consider experts whose predictions at step t are the densities of the

normal distributions N(θ′xt, σ
2) on the set of outcomes for some known fixed

variance σ2 > 0 (so each expert θ follows a fixed strategy, as everywhere in

this chapter). In other words, each expert θ ∈ Θ predicts

ξθ
t (y) =

1√
2πσ2

e−
(θ′xt−y)2

2σ2 . (3.10)

We denote the cumulative logarithmic loss of the expert θ at the step T by Lθ
T

and the cumulative logarithmic loss of the learner at the step T by LT . We

use the Bayesian Algorithm (Algorithm 3) to mix these experts and obtain a

competitive algorithm.

We take the initial distribution N
(

0, σ2

a
I
)

on the experts with some a > 0:

P0(dθ) =
( a

2σ2π

)n/2

exp
(
− a

2σ2
‖θ‖2

)
dθ.

We will prove that in this setting the prediction of the Bayesian Algorithm is

equal to the prediction of Bayesian Ridge Regression. The prediction γT of

the Bayesian Algorithm is expressed as follows:

γT (y) =

∫
Θ

ξθ
T (y)P ∗

T−1(dθ). (3.11)

Here the normalized weights distribution P ∗
T−1(dθ) is obtained after the nor-

malization of the unnormalized weights (2.21): PT−1(dθ) = P0(dθ)
∏T−1

t=1 ξ
θ
t (yt).

First we need to introduce some notation. For t = 1, 2, . . ., let Xt be the

t × n matrix of row vectors x′1, . . . , x
′
t, Yt be the column vector of outcomes

y1, . . . , yt, and At = X ′
tXt + aI. The Bayesian Ridge Regression algorithm

predicts at each step T the normal distribution N(γT , σ
2
T ) with the mean and

variance given by

γT = Y ′
T−1XT−1A

−1
T−1xT , σ2

T = σ2x′TA
−1
T−1xT + σ2 (3.12)

for some a > 0 and the known noise variance σ2.
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Lemma 3.3 In our setting the prediction (3.11) of the Bayesian Algorithm is

the prediction density of Bayesian Ridge Regression in the notation of (3.12):

γT (y) =
1√

2πσ2
T

e
− (γT−y)2

2σ2
T . (3.13)

Proof The prediction

γT (y) =

∫
Θ

ξθ
T (y)P ∗

T−1(dθ) =

∫
Rn

1√
2πσ2

e−
(θ′xT−y)2

2σ2
∏T−1

t=1
1√

2πσ2
e−

(θ′xt−yt)
2

2σ2 P0(dθ)∫
Rn

∏T−1
t=1

1√
2πσ2

e−
(θ′xt−yt)

2

2σ2 P0(dθ)

is formally equal to the density of the predictive distribution of the Bayesian

Gaussian linear model, and so equality (3.13) is true (see Bishop, 2006, Sec-

tion 3.3.2). �

Remark 3.1 From the probabilistic point of view Lemma 3.3 is usually ex-

plained in the following way (Hoerl and Kennard, 2000). The posterior distri-

bution P ∗
T−1(θ) is N(A−1

T−1X
′
T−1YT−1, σ

2A−1
T−1). The conditional distribution of

θ′xT given the training examples is then N(Y ′
T−1XT−1A

−1
T−1xT , σ

2x′TA
−1
T−1xT ),

and so the predictive distribution is N(Y ′
T−1XT−1A

−1
T−1xT , σ

2x′TA
−1
T−1xT + σ2).

To derive the theoretical guarantee on the logarithmic loss of Bayesian

Ridge Regression we utilize the fact the loss of the APA (2.5) can be trans-

formed to the regularized cumulative loss of the best expert θ and a regret

term (following Lemma 3.2).

Theorem 3.2 For any sequence x1, y1, x2, y2, . . . , the cumulative logarithmic

loss LT of the Bayesian Ridge Regression algorithm predicting (3.13) at any

step T can be expressed as

LT = min
θ

(
Lθ

T +
a

2σ2
‖θ‖2

)
+

1

2
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
. (3.14)

If ‖xt‖∞ ≤ X for any t = 1, 2, . . . , then

LT ≤ min
θ

(
Lθ

T +
a

2σ2
‖θ‖2

)
+
n

2
ln

(
1 +

TX2

a

)
. (3.15)
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Proof By θ0 we denote the best expert: θ0 = arg minθ∈Θ

(
Lθ

T + a
2σ2‖θ‖2

)
.

The regularized cumulative loss of any expert θ at any step T can be expressed

as

Lθ
T +

a

2σ2
‖θ‖2 =

T∑
t=1

− ln
1√

2πσ2
e−

(θ′xt−y)2

2σ2 +
a

2σ2
‖θ‖2

=
T∑

t=1

− ln
1√

2πσ2
e−

(θ′0xT−y)2

2σ2 +
a

2σ2
‖θ0‖2 + (θ − θ0)

′AT (θ − θ0)

for AT = 1
2σ2

(
aI +

∑T
t=1 xtx

′
t

)
. By the second part of Lemma 3.2 we obtain

for any θ ∈ Θ

LT = Lθ
T +

a

2σ2
‖θ‖2 +

1

2
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

As we already noticed, the determinant of a symmetric positive definite matrix

is upper bounded by the product of its diagonal elements (see Beckenbach and

Bellman, 1961, Chapter 2, Theorem 7): det
(
I + 1

a

∑T
t=1 xtx

′
t

)
≤
(

1 + TX2

a

)n

.

This concludes the proof. �

This theorem shows that the Bayesian Ridge Regression algorithm can be

thought of as an online algorithm successfully competing with all the Gaussian

linear models under the logarithmic loss function. A bound similar to (3.15)

on the logarithmic loss of Bayesian Ridge Regression is proven by Kakade and

Ng (2004) using a different method; the only difference in the bound is that

the authors assume that the 2-norm of xt is bounded by 1.

3.3.2 Ridge Regression as a competitive algorithm

In this section we let the outcome set Ω and the prediction set Γ be the real

line R, and the index set Θ for the experts be Rn. The loss function λ is the

square loss (2.24):

λ(y, γ) = (γ − y)2,
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where γ ∈ Γ and y ∈ Ω. The game follows Protocol 3. The linear experts

predict (3.2) with c = 0.

We use the Ridge Regression algorithm (RR) for the learner:

Algorithm 7 Online Ridge Regression

Require: a > 0.

Initialize b0 = 0 ∈ Rn, A0 = aI ∈ Rn×n.

for t = 1, 2, . . . do

Read xt ∈ Rn.

Predict γt = b′t−1A
−1
t−1xt.

Read yt.

Update At = At−1 + xtx
′
t.

Update bt = bt−1 + ytxt.

end for

As we can see, the difference between the RR and the AAR is that the

AAR updates the matrix At before making its prediction, whereas the RR

does it after making its prediction.

Following this algorithm the learner’s prediction at step T can be written

as

γT =

(
T−1∑
t=1

ytxt

)′(
aI +

T−1∑
t=1

xtx
′
t

)−1

xT .

It is easy to check that Algorithm 7 minimizes

a‖θ‖2 +
T−1∑
t=1

(θ′xt − yt)
2 (3.16)

in θ ∈ Θ. Indeed, by taking the derivative in θ of the quadratic form and

finding θ̂ where it achieves zero, we can obtain that the RR predicts θ̂′xT .

We prove the following theoretical guarantee for the square loss of the

learner following Ridge Regression. It states an equality rather than inequality

without even assuming that the outcomes are bounded. Since it is an equality,

it unites upper and lower bounds on the loss. It appears that all natural bounds

on the square loss of Ridge Regression can be deduced from our theorem; we
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give some examples below. In the case when the input vectors and outcomes

are not restricted in any way, like for our Theorem 3.3, it is possible to prove

certain loss bounds for the Gradient Descent (see Cesa-Bianchi et al., 1996).

The bounds are proved on the cumulative loss of a Gradient Descent based

algorithm competing with linear experts: the algorithm predicting γGD
t at step

t achieves the upper bound

T∑
t=1

(γGD
t − yt)

2 ≤ 9 min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)
2 + max

t=1,...,T
‖xt‖2

2‖θ‖2

)
. (3.17)

We will derive a bound of this type from our main theorem below.

Theorem 3.3 The Ridge Regression algorithm for the learner with a > 0

satisfies, at any step T ,

T∑
t=1

(γt − yt)
2

1 + x′tA
−1
t−1xt

= min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)
2 + a‖θ‖2

)
. (3.18)

Proof Let us rewrite the cumulative logarithmic losses LT and Lθ
T in (3.14)

using the expression for σ2
t given by (3.12) and (3.10):

LT = −
T∑

t=1

ln

(
1√

2πσ2
t

e
− (γt−y)2

2σ2
t

)

=
1

2
ln

(
(2πσ2)T

T∏
t=1

(1 + x′tA
−1
t−1xt)

)
+

1

2σ2

T∑
t=1

(γt − yt)
2

1 + x′tA
−1
t−1xt

,

Lθ
T = − ln

(
1

(2πσ2)T/2
e−

1
2σ2

PT
t=1(θ′xt−yt)2

)
=
T

2
ln(2πσ2) +

1

2σ2

T∑
t=1

(θ′xt − yt)
2.
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Substituting these expression into (3.14), we have:

1

2
ln

T∏
t=1

(1 + x′tA
−1
t−1xt) +

1

2σ2

T∑
t=1

(γt − yt)
2

1 + x′tA
−1
t−1xt

=
1

2σ2
min

θ

(
T∑

t=1

(θ′xt − yt)
2 + a‖θ‖2

)
+

1

2
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

Equation (3.18) follows from Lemma A.6. Note that σ2 cancelled out; this

is natural as Ridge Regression (unlike Bayesian Ridge Regression) does not

depend on σ. �

An equivalent equality is also obtained (but well hidden) in the proof of

Theorem 4.6 in Azoury and Warmuth (2001). Our proof is clearer and empha-

sizes the role of the equality. The power of the equality for Ridge Regression

can be best appreciated by looking at the range of its implications, both known

and new. For example, Corollary 3.1 answers the question asked by several

researchers (for example, Vovk, 2001) whether Ridge Regression has a relative

loss bound with the regret term of the order lnT under the square loss function,

where T is the number of steps and the outcomes are assumed bounded.

Note that the part x′tA
−1
t−1xt in the denominator is usually close to zero for

large t. We obtain an upper bound in the form which is more familiar from

online prediction literature.

Corollary 3.1 Assume |yt| ≤ Y for all t, clip the predictions of Ridge Re-

gression to [−Y, Y ], and denote them by γY
t . Then

T∑
t=1

(γY
t −yt)

2 ≤ min
θ

(
T∑

t=1

(θ′xt − yt)
2 + a‖θ‖2

)
+4Y 2 ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

(3.19)

Proof We first clip the predictions of Ridge Regression to [−Y, Y ] in Theo-

rem 3.3. In this case the loss at each step can only become smaller, and so the

equality transforms to an inequality. Since all the outcomes also lie in [−Y, Y ],
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the maximum square loss at each step is 4Y 2. We have the following relations:

1

1 + x′tA
−1
t−1xt

= 1−
(

x′tA
−1
t−1xt

1 + x′tA
−1
t−1xt

)
and

x′tA
−1
t−1xt

1 + x′tA
−1
t−1xt

≤ ln(1 + x′tA
−1
t−1xt).

The last inequality holds because x′tA
−1
t−1xt is non-negative due to the positive

definiteness of the matrix At−1. Thus we can use b
1+b

≤ ln(1 + b), b ≥ 0 (it

holds at b = 0, then take the derivatives of both sides). For the equality

T∑
t=1

ln(1 + x′tA
−1
t−1xt) = ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)

see Lemma A.6. �

The bound (3.19) is exactly the bound obtained in Vovk (2001, Theorem 4)

for the algorithm merging linear experts with predictions clipped to [−Y, Y ],

which does not have a closed-form description and so is less interesting than

clipped Ridge Regression. The bound (3.8) for the AAR has Y 2 in place of

4Y 2. The regret term in (3.19) has the logarithmic order in T if ‖xt‖∞ ≤ X

for all t, because, as we already noticed, the determinant of a positive definite

matrix is bounded by the product of its diagonal elements (see Beckenbach

and Bellman, 1961, Chapter 2, Theorem 7):

ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
≤ n ln

(
1 +

TX2

a

)
. (3.20)

From our Theorem 3.3, we can also deduce Theorem 11.7 of Cesa-Bianchi

and Lugosi (2006), which is somewhat similar to our corollary. That theorem

implies (3.19) when Ridge Regression’s predictions happen to be in [−Y, Y ]

without clipping (but this is not what Corollary 3.1 asserts). In Theorem 4.6

of Azoury and Warmuth (2001) the same upper bound as in Corollary 3.1 is

proven.

The upper bound (3.19) does not hold if the coefficient 4 is replaced by

any number less than 3
2 ln 2

≈ 2.164, as can be seen from the example given in

Theorem 3 of Vovk (2001), where the left-hand side of (3.19) is 4T + o(T ),

the minimum in the right-hand side is at most T , Y = 1, and the logarithm
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is 2T ln 2 + O(1). It is also known that there is no algorithm achieving (3.19)

with the coefficient less than 1 instead of 4 even in the case where ‖xt‖∞ ≤ X

for all t (see Vovk, 2001, Theorem 2).

If the outcomes are not necessarily bounded, it is possible to prove an

upper bound without the logarithmic part on the cumulative square loss of

Ridge Regression.

Corollary 3.2 If ‖xt‖2 ≤ Z for all t, then the Ridge Regression algorithm for

the learner with a > 0 satisfies, at any step T ,

T∑
t=1

(γt − yt)
2 ≤

(
1 +

Z2

a

)
min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)
2 + a‖θ‖2

)
. (3.21)

Proof Qazaz et al. (1997) showed that 1 + x′tA
−1
j xt ≤ 1 + x′tA

−1
i xt for j ≥ i.

We take i = 0 and obtain 1 + x′tA
−1
t−1xt ≤ 1 +Z2/a for any t in Theorem 3.3.�

This bound is better than the bound in Corollary 3.1 of Kakade and Ng (2004),

which has an additional regret term of logarithmic order in time. If we take

a := Z2/8, we obtain the bound which is slightly better than (3.17) in that it

has the coefficient Z2/8 instead of Z2 before the norm. On the other hand,

the choice of a requires the knowledge of Z a priori to apply Ridge Regression.

Asymptotic properties of the Ridge Regression algorithm can be further

studied using Corollary A.1 in Kumon et al. (2009). It states that when ‖xt‖2 ≤
1 for all t, then x′tA

−1
t−1xt → 0 as t → ∞. It is clear that we can replace

‖xt‖2 ≤ 1 for all t by supt ‖xt‖2 < ∞. The following corollary states that if

there exists a very good expert (asymptotically), then Ridge Regression also

predicts very well. If there is no such a good expert, Ridge Regression performs

asymptotically as well as the best regularized expert.

Corollary 3.3 Let γt be the predictions output by the Ridge Regression algo-

rithm with parameter a > 0. Suppose supt ‖xt‖2 <∞.

1. If

∃θ ∈ Rn :
∞∑

t=1

(θ′xt − yt)
2 <∞, (3.22)
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then
∞∑

t=1

(γt − yt)
2 <∞.

2. If

∀θ ∈ Rn :
∞∑

t=1

(θ′xt − yt)
2 = ∞, (3.23)

then

lim
T→∞

∑T
t=1(γt − yt)

2

minθ∈Rn

(∑T
t=1(θ

′xt − yt)2 + a‖θ‖2
) = 1. (3.24)

Proof Part 1. Suppose that the condition (3.22) holds. Then the right-hand

side of (3.18) is bounded by a constant (independent of T ). By Corollary A.1

in Kumon et al. (2009), the denominators in the left-hand side converge to 1

as t→∞ and so are bounded. Therefore, the sequence
∑T

t=1(γt−yt)
2 remains

bounded as T →∞.

Part 2. Suppose that the condition (3.23) holds and the right-hand side

of (3.18) is bounded above by a constant C. Then for each T there exists θT

such that
T∑

t=1

(θ′Txt − yt)
2 + a ‖θT‖2 ≤ C.

It follows that each θT belongs to the closed ball with centre 0 and of radius√
C/a. This ball is a compact set, and thus the sequence θT has a subsequence

that converges to some θ̃. For each T0 we have
∑T0

t=1(θ̃
′xt − yt)

2 ≤ C, because

otherwise we would have
∑T̂

t=1(θ
′
T̂
xt − yt)

2 > C for a large enough T̂ in the

subsequence. Therefore, we have arrived at a contradiction:
∑∞

t=1(θ̃
′xt−yt)

2 ≤
C < ∞. Thus if the condition (3.23) holds then right-hand side of (3.18)

cannot be bounded above by a constant.

Once we know that the right-hand side of (3.18) tends to ∞ as T →∞ and

the denominators on the left-hand side tend to 1 (this is true by Corollary A.1

in Kumon et al., 2009), (3.24) becomes intuitively plausible since, as far as the

conclusion (3.24) is concerned, we can ignore the finite number of ts for which

the denominator 1 + x′tA
−1
t−1xt is significantly different from 1. However, we

will give a formal argument.
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The inequality ≥ 1 in (3.24) is clear from (3.18) and 1 +x′tA
−1
t−1xt ≥ 1. We

shall prove the inequality ≤ 1 now. Choose a small ε > 0. Then starting from

some t = T0 we have that the denominators 1 + x′tA
−1
t−1xt are less than 1 + ε.

Thus, for T > T0,

T∑
t=1

(γt − yt)
2 =

T0∑
t=1

(γt − yt)
2 +

T∑
t=T0+1

(γt − yt)
2

≤
T0∑
t=1

(γt − yt)
2 + (1 + ε)

T∑
t=1

(γt − yt)
2

1 + x′tA
−1
t−1xt

=

T0∑
t=1

(γt − yt)
2 + (1 + ε) min

θ∈Rn

(
T∑

t=1

(θ′xt − yt)
2 + a ‖θ‖2

)
.

This implies that the left-hand side of (3.24) with lim replaced by lim sup does

not exceed 1+ε, and it remains to recall that ε can be taken arbitrarily small.�
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3.4 Regression with pointing prediction inter-

vals under discounted square loss

In this section we consider a new setting for online linear regression, more

general than in Section 3.2. We look at the two important generalizations:

first, in this setting we are allowed to discount the cumulative square loss of the

learner and the experts with time when measuring their overall performance.

Second, we allow all the outcomes at different steps to belong to different

intervals. The learner is given new bounds, upper and lower, for the outcome

at each step. We will refer to the process of transforming prediction intervals

into point predictions as pointing the prediction intervals, and this is what our

algorithm does. We show that the two generalizations which we consider in

this section closely relate to each other.

It is possible to apply a modification of the Aggregating Algorithm (Algo-

rithm 1) to mix linear predictors in this framework. However, this modification

is motivated by defensive forecasting (Algorithm 2), and thus we describe the

solution which uses the defensive forecasting technique rather than the Aggre-

gating Algorithm.

The pointing prediction intervals setting can be applied, for example, when

the change scale of a sequence of outcomes depends on the current value and

volatility of the sequence. As another example, there may be a clear trend

in data which does not depend on the input vectors; this may happen even

after data preprocessing. As a third example, we may use our algorithm on

top of other algorithms whose predictions are intervals for the outcome at the

next step (see, e.g., Vovk et al., 2005) to give point predictions, somewhat

analogously to boosting (see Freund and Schapire, 1997). We show that in

practice these predictions can be more precise than just naive prediction of

the centres of the intervals.

From the Bayesian perspective, pointing intervals is quite common: it can

be considered as giving an exact prediction in case when a distribution over

the outcomes is inferred (and confidence intervals are given). Whereas predict-

ing the mean of the distribution may be optimal under certain conditions (for

example, when the process follows probabilistic assumptions and the expecta-
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tion w.r.t. the assumed probability measure of the square loss is minimized,

see Chapter 4 of Hamilton, 1994), other algorithms may be needed when the

conditions are not valid.

If the prediction intervals are constant and known in advance, and the

cumulative loss is not discounted, the performance guarantees that we prove

for our algorithm coincide with the guarantees in Theorem 3.1. On the other

hand, when all the outcomes have large values but small deviation from each

other, our algorithm has stronger performance guarantees.

Discounted loss is widely used in finance, online tracking, and other appli-

cations (see Gardner, 2006, for the review of exponential smoothing), as we

already noticed before. With the absence of competitive properties, exponen-

tial smoothing for online prediction was considered already by Muth (1960). A

different approach leading to very similar models which uses discounted least

squares was proposed by Brown (1963).

It can be beneficial to use discounted loss when the best expert slowly

changes over time: when discounting earlier losses, the algorithm will try to

adjust to the new best expert faster. As Freund and Hsu (2008) notice, the

use of discounted cumulative loss represents an alternative to the “tracking the

best expert” framework of Herbster and Warmuth (1998). If the best expert

changes after some steps (as in the tracking framework), the algorithm which

competes under discounted loss will not take into account small losses of the

old best expert because they are strongly discounted, and will switch to track

the new best expert.

Even the logarithmic regret term in the cumulative loss of the algorithms

competing with the large classes of experts can be considered to provide too

slow convergence for some applications. The upper bound on the exponentially

discounted loss has approximately constant order of the regret term in time,

which can be beneficial for these applications.

Discounted loss in the online prediction framework was analyzed by Fre-

und and Hsu (2008) in the setting where the predictions are not given, and

only the losses of the experts are known. The goal of the learner is to assign

weights distribution over the experts at each step such that his expected loss

w.r.t. this distribution is less than or close to the loss of the best expert. We
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use the square loss function to measure the quality of predictions and prove

an upper bound for the weighted cumulative loss of the learner in terms of the

weighted cumulative loss of any regularized linear predictor. Since we consider

a much more specific setting, it is natural that the order of the regret term

for our bounds is better. We are not aware of any other works which con-

sider exponentially discounted square loss in the online competitive prediction

framework.

Cesa-Bianchi and Lugosi (2006, § 2.11) discuss another kind of discounting.

Their framework allows them to give guarantees only at one moment T chosen

in advance (see Theorem 2.8 in Cesa-Bianchi and Lugosi, 2006).

An approach to prove the results for discounted loss reformulated in terms

of the Aggregating Algorithm is described in Chernov and Zhdanov (2010).

3.4.1 The prediction protocol and performance guaran-

tees

We modify Protocol 3 to allow new prediction intervals at each step. The

outcome set Ωt = [Yt,1, Yt,2] is announced by reality at the beginning of each

prediction step t. Let the prediction set Γ be the real line R, the index set Θ

for the experts be Rn, and the set of input vectors X be a subset of Rn. The

loss function λ is the square loss (2.24):

λ(y, γ) = (γ − y)2,

where γ ∈ Γ and y ∈ Ωt. The prediction process follows Protocol 4.

Protocol 4 Stepwise-bounded online regression

for t = 1, 2, . . . do

Reality announces xt ∈ X and non-empty Ωt = [Yt,1, Yt,2] ⊆ R.

Experts announce ξθ
t ∈ Γt.

Learner predicts γt ∈ Γt.

Reality announces yt ∈ Ωt.

end for
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We discount the cumulative loss of the learner and the experts with the

factors αt ∈ [0, 1] after each step (analogously to the end of Section 2.2.2).

Our algorithm competes with the linear experts predicting ξθ
t = θ′xt at the

step t, in other words we take c = 0 in (3.2). This class of experts can be

easily generalized to ct + θ′xtdt, where ct, dt ∈ R are constants announced by

reality at the beginning of step t, if for a particular task these scaled linear

experts are more appropriate. This is done by analogy with the approach of

Section 3.2.

We need some preparation to prove a performance guarantee for an algo-

rithm for the learner. The sequence of functions

Qθ
t (yt, γt) := eηt((γt−yt)2−(θ′xt−yt)2)

is forecast-continuous and has the defensive property by Lemma 2.6 with ηt ∈(
0, 2

(Yt,2−Yt,1)2

]
, yt ∈ {Yt,1, Yt,2}, and γt ∈ R. We take the maximum value for

ηt. Therefore, by Lemma 2.3, the sequence of functions

QT (y1, γ1, . . . , yT−1, γT−1, y, γ) :=

∫
Θ

T−1∏
t=1

(
Qθ

t (yt, γt)
)QT−1

i=t αi
Qθ

T (y, γ)P0(dθ)

is forecast-continuous and has the defensive property for ηt ≤ 2
(Yt,2−Yt,1)2

, y ∈
{YT,1, YT,2}, and γ ∈ R. By Lemma 2.2 there exists γT ∈ [Yt,1, Yt,2] such that

QT ≤ 1 for all y ∈ {YT,1, YT,2}.
The following lemma generalizes Lemma 2.2 for the case when the outcome

set is the full interval: Ωt = [Yt,1, Yt,2].

Lemma 3.4 If γT is such that QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ 1 for all y ∈
{YT,1, YT,2}, then QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ 1 for all y ∈ [YT,1, YT,2].

Proof Note that any y ∈ [YT,1, YT,2] can be represented as y = uYT,2 + (1 −
u)YT,1 for some u ∈ [0, 1]. Thus

(ζ1 − y)2 − (ζ2 − y)2 = ζ2
1 − ζ2

2 − 2y(ζ1 − ζ2)

= u[(ζ1 − YT,2)
2 − (ζ2 − YT,2)

2] + (1− u)[(ζ1 − YT,1)
2 − (ζ2 − YT,1)

2]
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for any ζ1, ζ2 ∈ R. Due to the convexity of the exponent function, we have for

any ηT ≥ 0

eηT [(ζ1−y)2−(ζ2−y)2] ≤ ueηT [(ζ1−YT,2)2−(ζ2−YT,2)2] + (1− u)eηT [(ζ1−YT,1)2−(ζ2−YT,1)2].

Thus

Qθ
T (y, γT ) ≤ uQθ

T (YT,2, γT ) + (1− u)Qθ
T (YT,1, γT ),

and therefore

QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ uQT (y1, γ1, . . . , yT−1, γT−1, YT,2, γT )

+ (1− u)QT (y1, γ1, . . . , yT−1, γT−1, YT,1, γT ) ≤ 1,

where the second inequality follows from the condition of the lemma. �

Denote by X the T × n matrix consisting of the rows of the input vectors

x′1, . . . , x
′
T . We shall denote wt,T := ηt

∏T−1
i=t αi with ηt = 2

(Yt,2−Yt,1)2
. We also

have that WT := diag(w1,T , w2,T , . . . , wT,T ) is the diagonal matrix T × T . We

prove the following upper bound for the learner’s loss.

Theorem 3.4 For any a > 0, there exists a prediction strategy for the learner

achieving, for every T and for any linear predictor θ ∈ Rn,

T∑
t=1

wt,T (γt − yt)
2 ≤

T∑
t=1

wt,T (θ′xt − yt)
2 + a‖θ‖2

+
1

2
ln det

(
X ′WTX

a
+ 1

)
. (3.25)

If, in addition, ‖xt‖∞ ≤ Z for all t, then

T∑
t=1

wt,T (γt − yt)
2 ≤

T∑
t=1

wt,T (θ′xt − yt)
2 + a‖θ‖2

+
n

2
ln

(
Z2
∑T

t=1wt,T

a
+ 1

)
. (3.26)
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Proof We have by Lemma 3.4 that Algorithm 2 predicts γt, t = 1, . . . , T ,

such that

QT =

∫
Θ

T∏
t=1

ewt,T ((γt−yt)2−(θ′xt−yt)2)P0(dθ) ≤ 1.

We take the Gaussian initial weights distribution over the experts with a pa-

rameter a > 0:

P0(dθ) = (a/π)n/2e−a‖θ‖2dθ.

Thus, extracting the loss of the learner from the integral in the previous in-

equality, we obtain

e
PT

t=1 wt,T (γt−yt)2(a/π)n/2

∫
Θ

e−
PT

t=1 wt,T (θ′xt−yt)2−a‖θ‖2+B0−B0dθ ≤ 1.

Here B0 = minθ∈Θ

(∑T
t=1wt,T (θ′xt − yt)

2 + a‖θ‖2
)

is the loss of the best reg-

ularized predictor. In the exponent we have a horizontal shift of a quadratic

form by θ. Directly evaluating the integral following Lemma A.1, we get

e
PT

t=1 wt,T (γt−yt)2e−B0(a/π)n/2

√√√√ πn

det
(
aI +

∑T
t=1wt,Txtx′t

) ≤ 1.

It is easy to see that
∑T

t=1wt,Txtx
′
t = X ′WTX. When we take natural loga-

rithms of both parts, we obtain (3.25). We then bound the determinant of the

positive definite matrix by the product of its diagonal elements (see Theorem

7 in Chapter 2 of Beckenbach and Bellman, 1961) and obtain (3.26). �

Let us consider the special case when there is no discounting (αt = 1 for

all t). Then this theorem coincides with the upper bound for the Aggregat-

ing Algorithm for Regression (Theorem 3.1) if the prediction intervals do not

depend on t: Yt,2 = Y2 and Yt,1 = Y1.

On the other hand, if the outcomes lie in the tight tube yt ∈ [Ct− δ, Ct + δ]

for some large Ct and small δ, the length of the interval for the outcomes is

just 2δ, and so the regret term becomes much smaller than if we used the

AAR with Y = suptCt + δ. Indeed, dividing both parts of the inequal-

ity (3.26) by ηt = 1
2δ2 we obtain the regret term nδ2 ln

(
X2T
2δ2a

+ 1
)

. At the
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same time, Theorem 3.1 states the upper bound for the AAR with the regret

term n(suptCt + δ)2 ln
(

X2T
a

+ 1
)

for the same a.

We now consider another special case when the prediction intervals and

the discounting coefficients do not depend on t: Yt,2 = Y , Yt,1 = −Y , and

αt = α ∈ [0, 1]. The following corollary easily follows from Theorem 3.4 (we

use the strategy from this theorem with a := a/η = 2Y 2a).

Corollary 3.4 Assume that ‖xt‖∞ ≤ Z for all t. For any a > 0, there exists

a prediction strategy for the learner achieving, for every T and for any linear

predictor θ ∈ Rn,

T∑
t=1

αT−t(γt − yt)
2 ≤

T∑
t=1

αT−t(θ′xt − yt)
2 + a‖θ‖2

+ nY 2 ln

(
Z2
∑T

t=1 α
T−t

a
+ 1

)
. (3.27)

Since
∑T

t=1 α
T−t = 1−αT−1

1−α
if α 6= 1, we can see that the regret is constant

nY 2 ln
(

Z2

a(1−α)
+ 1
)

. When the losses are discounted, the role of the time is

played by the sum of the discounted factors:
∑T

t=1 α
T−t. Effectively, only a

finite number of recent losses is used to assess the quality of the algorithm.

3.4.2 Derivation of the algorithm

In the proof of Theorem 3.4 we use Algorithm 2 as the strategy for the learner.

We will show that Algorithm 8 is a modified version of it, and it is more efficient

than the direct use of Algorithm 2 (which requires numerical integration).

It requires O(n3) operations per step, even though usually the process can

be accelerated by applying efficient algorithms for solving systems of linear

equations. We call this algorithm the Pointing Prediction Intervals Regression

algorithm (PPIR).

117



Algorithm 8 Pointing Prediction Intervals Regression

Initialize b0 = 0 ∈ Rn, A0 = aI ∈ Rn × Rn, α0 = 1.

for t = 1, 2, . . . do

Read new xt ∈ Rn, and [Yt,1, Yt,2] ⊆ R, Yt,1 < Yt,2.

Calculate ηt = 2
(Yt,2−Yt,1)2

.

Update zt = bt−1 + ηt
Yt,2+Yt,1

2
xt, At = aI + αt−1(At−1 − aI) + ηtxtx

′
t.

Predict γt = z′tA
−1
t xt.

Read new yt and αt ∈ [0, 1].

Update bt = αt(bt−1 + ytηtxt).

end for

The most time-consuming operation is the inversion of the updated matrix

At. If there is no discounting (αt = 1 for all t), this operation can be done by

the Sherman-Morrison formula (see Section 2.10 of Press et al., 1992):

A−1
t = (At−1 + ηtxtx

′
t)
−1 = A−1

t−1 −
(A−1

t−1xt)(A
−1
t−1xt)

′

1/ηt + xtA
−1
t−1xt

,

which requires only O(n2) operations.

It is easy to check that Algorithm 8 minimizes

a‖θ‖2 + ηT (θ′xT − (YT,2 + YT,1)/2)2 +
T−1∑
t=1

wt,T (θ′xt − yt)
2 (3.28)

in θ ∈ Θ. Indeed, by taking the derivative in θ of the quadratic form and

finding θ̂ where it achieves zero, we can obtain that the PPIR predicts θ̂′xT .

If the discounting is present, or if smaller and smaller intervals are an-

nounced with time, then the coefficients for the recent losses increase in com-

parison with the coefficients for the older losses. The dependency of predic-

tions on the past data decreases with time, similarly to the suggestion made

by Busuttil (2008) for financial applications (the WeCKAAR).

Lemma 3.4 provides the existence of the appropriate predictions at each

step and gives a way to find them. Unfortunately, this way requires the time-

consuming search for a fixed point and numerical integration when the experts

predict according to the linear functions. We have shown in Section 2.2.2 that
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the Defensive Forecasting algorithm finds the prediction γT satisfying (2.14):

(γT − YT,2)
2 − gT (YT,2) = (γT − YT,1)

2 − gT (YT,1), (3.29)

where gt(y) is defined from (2.13):

gT (y) = − 1

ηT

ln

∫
Θ

e−ηT (θ′xT−y)2
T−1∏
t=1

e−wt,T (θ′xt−yt)2P0(dθ)

for any y ∈ [YT,1, YT,2].

It is possible that the calculated prediction does not lie in the prediction

interval: γT /∈ [YT,1, YT,2], in which case the algorithm may just truncate it to

the closest point in this segment. The upper bound holds for both truncated

and not truncated predictions. The solution of (3.29) in γT is given by

γT =
YT,2 + YT,1

2
− g(YT,2)− g(YT,1)

2(YT,2 − YT,1)

=
YT,2 + YT,1

2

− 1

2(YT,2 − YT,1)ηT

ln

∫
Θ
e−θ′AT θ+2θ′(bT−1+ηT YT,1xT )−(

PT−1
t=1 wt,T y2

t +ηT Y 2
T,1)dθ∫

Θ
e−θ′AT θ+2θ′(bT−1+ηT YT,2xT )−(

PT−1
t=1 wt,T y2

t +ηT Y 2
T,2)dθ

=
YT,2 + YT,1

2

− 1

2(YT,2 − YT,1)ηT

ln e
ηT

�
Y 2

T,2−Y 2
T,1−

�
bT−1+ηT

�
YT,2+YT,1

2

�
xT

�′
A−1

T

�
YT,2−YT,1

2
xT

��

=

(
bT−1 + ηT

(
YT,2 + YT,1

2

)
xT

)′
A−1

T xT , (3.30)

where the third equality follows from Lemma A.3. Here we have AT = aI +∑T−1
t=1 wt,Txtx

′
t + ηTxTx

′
T and bT−1 =

∑T−1
t=1 wt,Tytxt.

3.4.3 Experiments with pointing intervals

In our experiments we do not take discounting into account and only inves-

tigate the empirical properties of the pointing part of the algorithm. This is

because pointing algorithms are less frequently used than the algorithms which
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are capable to discount the past data and their empirical properties are less

known. We run Algorithm 8 on several artificial and real-world data sets.

Artificial data sets

We imitate time series with different properties, such as a constant term, linear

trend, and a seasonal component. Denoting time steps by t = 1, 2, . . . , T ,

where T = 300, and outcomes by yt, we generate the following data sets:

D1 : yt = ξt,

D2 : yt = 3 + ξt,

D3 : yt = 0.01t+ ξt, (3.31)

D4 : yt = −0.01t+ ξt,

D5 : yt = sin(t/20) + ξt.

Each sequence is corrupted by noise ξt. We use 3 types of noise: Gaussian

noise ξt ∼ N(0, 0.1), signed power-law ξt ∼ ±St(2.4) (student-distributed

variable with the positive sign with probability 1/2), and correlated Gaussian

ξt = 0.8ξt−1 + η, η ∼ N(0, 1). All the noise values ξ1, . . . , ξT are divided by

a constant so that the variance of the noise is equal to 0.1. The coefficients

in the noise distributions are chosen so that the resulting data sets represent

well given classes of noises. In other words, noise values for non-Gaussian

distributions should differ significantly from the Gaussian noise, and at the

same time they should not be too extreme. Examples of the data sets are

presented in Figure 3.1.

We need a training set to find the best parameters for the algorithms which

we compare and a test set to calculate the mean square error and assess the

performance. We divide each sequence into two equal parts: training set and

test set. The coefficients of the functions for yt were chosen such that training

sets are good representatives for the test set (this is especially important for

the case of sinus) and the sequences are not extreme.

We analyse sequences (3.31) as time series. In time series there are no

explicit input vectors attached to the outcomes. However, we can take vectors
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Figure 3.1: Examples of the data sets: D1 with the Gaussian correlated noise
on the left top, D2 with the power-law noise next right, then upward trend,
downward trend, and sinus. The last three are corrupted by Gaussian noise.

consisting of previous observations and use them as input vectors for our al-

gorithms. We chose to use one previous observation: our experiments showed

that using more observations improves the absolute performance of all the al-

gorithms, but does not affect their relative performance. In order to assess the

quality of predictions, we calculate the cumulative square loss over the test set

and divide it by the number of examples (obtaining the Mean Square Error,

MSE).

Since our data sets are randomly generated, we need to look at several runs

in order to collect reliable statistics. We run algorithms 1000 times for each
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time series generating different noise values each time.

We apply three online algorithms: the Ridge Regression algorithm, the

Aggregating Algorithm for Regression, and the PPIR. Theoretical guarantees

for the cumulative square loss of the online Ridge Regression in the case when

the outcomes are uniformly bounded are given by Corollary 3.1. Theoretical

guarantees for the cumulative square loss of the Aggregating Algorithm for

Regression in the case when the outcomes are uniformly bounded are given by

Theorem 3.1. The parameters a for each of the algorithms are chosen on the

training set.

The PPIR requires values of Yt,1, Yt,2 at each step. We use the Bayesian

Ridge Regression predictions to get them (see Section 3.3.1). The Bayesian

Ridge Regression algorithm is based on the assumption that the underlying

process is of the form yt = θ′xt + ζt, where ζt ∼ N(0, σ2) is the Gaussian

noise with some variance σ2, and uses the Gaussian prior on models θ ∼
N(0, (1/a)I). In this case the Bayesian Ridge Regression prediction at step T

is the mean of the conditional distribution p(yT |xT , xT−1, yT−1, . . . , x1, y1) (and

corresponds to the prediction of online Ridge Regression):

γRR
T =

(
T−1∑
t=1

xtyt

)′
A−1

T−1xt

for AT−1 = aI +
∑T−1

t=1 xtx
′
t. A confidence interval for yt will then be given

using δ2
T = σ2(1 + ax′TA

−1
T−1xT ): YT,1 = γRR

T − cδT , YT,2 = γRR
T + cδT . We

choose the coefficient cσ such that our algorithm suffers the least loss over the

training set.

Table 3.1 gives the number of times the AAR and the PPIR (second raw)

suffer less loss over the test set than the RR and the AAR (first column) out

of total 1000 Runs for different data sets and different noise distributions. It is

interesting that the RR is outperformed everywhere by the AAR or the PPIR.

The AAR works well on most of the data sets. As we could expect, the PPIR

outperforms all the algorithms on the potentially unbounded data sets with

trends D3, D4 because it gives its future prediction in accordance with the

previous ones using prediction intervals. The fact that the AAR beats other

algorithms on the second data set D2 seems surprising: the AAR moves the
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predictions of the RR towards zero, and the mean of the outcomes is equal to

3.

One can extract the measure of statistical significance from the difference

between the algorithms in Table 3.1. Testing the hypothesis that one of the

algorithms beats another one with probability 1
2

gives p-values less than 5% if

the number in the table is more than 527 or less than 473, and p-values less

than 1% if the number in the table is more than 538 or less than 462.

Table 3.1: Number of times the AAR and the PPIR suffer less loss than the
RR and the AAR.

Gaussian Power-law Correlated
AAR PPIR AAR PPIR AAR PPIR

D1

RR 759 663 711 667 542 449
AAR 0 668 0 655 0 458
D2

RR 1000 90 939 174 887 274
AAR 0 0 0 64 0 111
D3

RR 214 1000 415 980 13 921
AAR 0 955 0 707 0 988
D4

RR 182 1000 405 981 15 926
AAR 0 970 0 713 0 985
D5

RR 988 360 940 380 949 219
AAR 0 48 0 130 0 55

Table 3.2 gives the means of the mean square errors over 1000 runs and

their standard deviations. As we can see, most of the differences between the

errors of the algorithms are not very large, but as it was shown in Table 3.1

these differences are stable.
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Table 3.2: The means and standard deviations of Mean Square Errors over
1000 runs.

Gaussian Power-law Correlated
MSE DEV MSE DEV MSE DEV

D1

RR 0.0995 0.0081 0.0993 0.0324 0.0377 0.0063
AAR 0.0995 0.0081 0.0993 0.0323 0.0377 0.0063
PPIR 0.0994 0.0081 0.0992 0.0323 0.0377 0.0063
D2

RR 0.1975 0.0225 0.1984 0.0657 0.0419 0.0077
AAR 0.1959 0.0222 0.1965 0.0644 0.0417 0.0076
PPIR 0.1975 0.0225 0.1984 0.0658 0.0419 0.0077
D3

RR 0.2059 0.0215 0.2091 0.0606 0.0426 0.0078
AAR 0.2068 0.0208 0.2077 0.0565 0.0434 0.0078
PPIR 0.2044 0.0217 0.2061 0.0627 0.0426 0.0078
D4

RR 0.2060 0.0215 0.2090 0.0607 0.0426 0.0078
AAR 0.2069 0.0208 0.2078 0.0565 0.0434 0.0078
PPIR 0.2045 0.0217 0.2060 0.0629 0.0426 0.0078
D5

RR 0.1843 0.0192 0.1843 0.0192 0.0423 0.0075
AAR 0.1834 0.0190 0.1834 0.0190 0.0421 0.0074
PPIR 0.1842 0.0193 0.1842 0.0193 0.0423 0.0075

Real-world data sets

For the second experiment, we use three data sets containing air quality infor-

mation. The ozone data set1 contains 366 observations of Los Angeles ozone

pollution levels in 1976. Each observation is one day. The problem is to predict

the daily maximum one-hour-average ozone reading using other 12 variables

(features). We exclude three variables which define the date of the observations

and 12 observations with missed ozone readings.

1This data set is taken from the BLSS Data Library, and accessible here: ftp://ftp.
stat.berkeley.edu/pub/users/breiman/.
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The airquality data set2 contains 154 observations of air quality measure-

ments in New York, May to September 1973. Each observation is one day. The

problem is to predict the mean ozone concentration using other 5 variables.

We exclude two variables which define the date of the observations and 38

observations with missed ozone readings.

The NO2 data set3 contains 500 observations from a road air pollution

study collected by the Norwegian Public Roads Administration. The predicted

variable is the hourly values of the logarithm of the concentration of NO2

(particles), measured at Alnabru in Oslo, Norway, between October 2001 and

August 2003. Seven predictor variables include the logarithm of the number

of cars per hour, temperatures, wind speed and direction, hour of day, and the

date when the observation was taken. We exclude the date variable, but kept

the hour of day variable because the observations in the data set do not come

hour by hour, there are many hours missing.

All the observations are sorted by their date and time. We normalize all

the features and outcomes to have zero mean and standard deviation one over

the first half of each data set (we use it as a training set). We also add an

additional bias feature 1 to all the observations.

In this study the intervals for the PPIR are given by the Ridge Regression

Confidence Machine (RRCM); see Section 2.3 of Vovk et al. (2005). This

interval predictor is based on Ridge Regression. It takes a ridge parameter

ac for Ridge Regression and a significance level parameter ε ∈ (0, 1]. If the

data are independent identically distributed and the significance level is ε, this

algorithm produces a prediction interval for the outcome such that the actual

outcome belongs to this interval with the probability 1−ε. When applied in the

on-line mode, the RRCM makes errors at different observations independently.

For example, if ε = 0.1 then around 90% of the intervals predicted by the

RRCM for different input vectors contain the outcomes for these vectors. If

the interval for an outcome is infinite, we shrink it to the interval [−105, 105].

We use the intervals predicted by the RRCM as the input parameters for the

2This data set is taken from the R data set package, http://stat.ethz.ch/R-manual/
R-devel/library/datasets/html/00Index.html.

3This data set is taken from the StatLib Archive, http://lib.stat.cmu.edu/
datasets/.

125

http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/


PPIR at each step. We also take the centres of the intervals as the point

predictions of the RRCM. By comparing the predictions of our algorithm with

these predictions we can say whether the achieved precision is due to the good

interval prediction only, or also due to the capability of our algorithm to utilize

these intervals.

The parameter ac is chosen such that the RRCM suffers the least square loss

on the training set with the best significance level ε. We then fix the parameter

ac and compare the performance of the algorithms for different values of ε. We

find the ridge parameters for the Ridge Regression, for the AAR, and for the

PPIR such that these algorithms suffer the least cumulative square loss on the

training set. Note that in online prediction one does not need a validation set:

at each step in the training set the prediction is made on a new example.
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Figure 3.2: Cumulative square losses over the test set of the ozone data of
different algorithms for different significance levels.

Figure 3.2 shows the cumulative square loss of different algorithms over

the test set (the second half) of the ozone data for different significance levels

ε. The ridge for the RRCM, ac = 1, was chosen on the training set. Clearly,
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the RR and the AAR do not depend on the significance level and the lines for

them are constant. It is interesting to note that the best significance level for

the RRCM is very close to 0, whereas the best significance level for the PPIR

based on the RRCM is larger. The PPIR outperforms all other algorithms

when the significance level ε lies in the large interval [0.06, 0.91]. We pay

particular attention to the small values for the significance level, because they

correspond to the reasonable reliability of the intervals given by the RRCM.

The PPIR does not perform as well on the airquality data set but still

outperforms all the algorithms if the significance level ε lies in the intervals

[0.11, 0.24] and [0.34, 0.62] or equals 0.01 or 0.03.

On the NO2 data, the PPIR outperforms the RR and the RRCM if the

significance level ε belongs to the intervals [0.04, 0.07] and [0.11, 0.17] or equals

0.02. The AAR outperforms all other algorithms on this data set. It is worth

noting that excluding one vector from the NO2 data set which contains an

outlier feature value makes the PPIR perform much better: it beats all the

algorithms if the significance level is in the range of [0.02, 0.07] and it per-

forms better than the RR and the RRCM if the significance level belongs to

[0.02, 0.23].
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3.5 Generalized linear models

In this section, we develop an algorithm competitive with the benchmark class

of generalized linear models under square loss function. Generalized linear

models have been found very useful in statistical analysis (see McCullagh and

Nelder, 1989) to solve bounded regression problems. Classification problems

are often solved by means of these models as well.

We use the Aggregating Algorithm (Algorithm 1) somewhat similarly to the

AAR described in Section 3.2. Whereas the AAR only covers the class of linear

experts, our new algorithm also covers other popular classes of experts, which

are more efficient in that their predictions always belong to the interval [Y1, Y2]

assumed to contain the label that is being predicted. When specialized to

the case of linear experts, our general loss bound coincides with the known

optimal bound for the AAR. A disadvantage of our algorithm is that we need

to know [Y1, Y2] a priori to be able to apply it (as for the PPIR described in

Section 3.4).

The problems which cover in part generalized linear models from the per-

spective of online convex optimization are analyzed in Hazan et al. (2007).

Our algorithm can be applied to some non-convex functions, which is impos-

sible for the methods of online convex optimization even for a compact set of

experts.

Generalized linear models are popular in Bayesian statistics for solving

classification problems (see Relevance Vector Machines in Bishop, 2006, Sec-

tion 7.2.3). From the competitive prediction prospective, Bayesian mixtures

are analogous to the Aggregating Algorithm competing under the logarithmic

loss function. Upper bounds on the logarithmic loss are proved by Kakade

and Ng (2004), Kivinen and Warmuth (2001), and Banerjee (2007) using dif-

ferent approaches. In this section, we prove upper bounds on the square loss,

which is more often used in practice to compare the performances of different

algorithms.

This problem does not appear to be analytically tractable. Therefore, we

develop a prediction algorithm using the Markov chain Monte Carlo method,

which is shown to be fast and reliable in many cases. Monte Carlo methods are
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well known in the Bayesian community (Neal, 2003). They are also applied by,

for example, Dalalyan and Tsybakov (2009), to explore exponential weighting

schemes in problems with high dimension of the input vectors.

We give suggestions about choosing the parameters of our algorithm and

perform experiments with it on a toy data set and two real world ozone level

data sets. The results of this section are described in Zhdanov and Vovk

(2010).

3.5.1 Performance guarantee

We consider Protocol 3 with Ω = [Y1, Y2], Γ = R, and the square loss (2.24):

λ(y, γ) = (γ − y)2,

where γ ∈ Γ and y ∈ Ω. Signals xt come from a set X ⊆ Rn.

The learner wishes to compete with the class of generalized linear experts

indexed by θ ∈ Θ = Rn. Expert θ’s prediction at step t is denoted ξθ
t and is

equal to

ξθ
t = Y1 + (Y2 − Y1)σ(θ′xt). (3.32)

Here σ : R → R is a fixed activation function. We have σ : R → [0, 1] in all

the cases except linear regression (see below). If the range of the function σ is

[0, 1], the experts necessarily give predictions from [Y1, Y2].

Assume that the function

b(u, z) :=

(
dσ(z)

dz

)2

+ (σ(z)− u)
d2σ(z)

dz2
(3.33)

is uniformly bounded: b := supu∈[0,1],z∈R |b(u, z)| < ∞. We will see below

that this assumption holds for the most popular generalized linear regression

models. We prove the following upper bound on the learner’s loss.

Theorem 3.5 Let a > 0. There exists a prediction strategy for the learner

such that for any positive integer T , for any sequence of outcomes of length T ,
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and any θ ∈ Rn, the cumulative loss LT of the learner satisfies

LT ≤ Lθ
T + a‖θ‖2 +

(Y2 − Y1)
2

4
ln det

(
I +

b(Y2 − Y1)
2

a

T∑
t=1

xtx
′
t

)
, (3.34)

where b := supu∈[0,1],z∈R |b(u, z)| and b(u, z) is defined by (3.33). If, in addition,

‖xt‖∞ ≤ X for all t, then

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)
2

4
ln

(
1 +

b(Y2 − Y1)
2X2T

a

)
. (3.35)

Proof The regularized cumulative loss of the expert θ at the step T can be

expressed as

Q(θ) :=
T∑

t=1

((Y2 − Y1)σ(θ′xt) + Y1 − yt)
2

+ a‖θ‖2.

Because of the second addend in the definition ofQ(θ), Q(θ) →∞ as ‖θ‖ → ∞.

Therefore minθ Q(θ) is attained at some point. Let θ0 be a point where it is

attained, and thus ∇Q(θ0) = 0. We use Taylor expansion of Q(θ) in the

point θ0:

Q(θ) = Q(θ0) +
1

2
(θ − θ0)

′H(φ)(θ − θ0),

where φ is a convex combination of θ0 and θ. Here H is the Hessian matrix

of Q(θ), the matrix of its second derivatives. By δj
i we denote the Kronecker

delta. The second partial derivative of Q is expressed as follows:

∂2Q

∂θi∂θj

= 2aδj
i + 2(Y2 − Y1)

2

·
T∑

t=1

(
∂σ(θ′xt)

∂θi

∂σ(θ′xt)

∂θj

−
(
yt − Y1

Y2 − Y1

− σ(θ′xt)

)
∂2σ(θ′xt)

∂θi∂θj

)

= 2aδj
i + 2(Y2 − Y1)

2

T∑
t=1

xt,ixt,jb

(
yt − Y1

Y2 − Y1

, θ′xt

)
.
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It is clear now that the matrix H(φ) can be represented as follows:

H(φ) = 2aI + 2(Y2 − Y1)
2X ′Γ(φ)X,

where X is the design matrix T ×n consisting of the rows of the input vectors

x′1, . . . , x
′
T . Here Γ(φ) is the diagonal T × T matrix which has the coefficients

b(u1, φ
′x1), . . . , b(uT , φ

′xT ) on the diagonal (with ui = yi−Y1

Y2−Y1
, i = 1, . . . , T ).

Since Γ(φ) is a symmetric matrix, we can see (Harville, 1997, Theorem 21.5.6)

that

ψ′Γ(φ)ψ ≤ ψ′λmaxψ (3.36)

for any ψ ∈ Rn, where λmax is the supremum over maximum eigenvalues

of Γ(φ). Since b(ut, φ
′xt) is uniformly bounded, we have λmax ≤ b.

We can take ψ = X(θ − θ0) and obtain from (3.36) that

Q(θ) ≤ Q(θ0) + (θ − θ0)
′(aI + b(Y2 − Y1)

2X ′X)(θ − θ0).

By Lemma 3.2 we obtain that for any θ ∈ Θ the loss of the Aggregating

Algorithm satisfies

LT ≤ Lθ
T + a‖θ‖2 +

1

2η
ln det

(
I +

b(Y2 − Y1)
2

a

T∑
t=1

xtx
′
t

)
.

We take the maximum value for η, η = 2
(Y2−Y1)2

(recall Lemma 2.5). The

determinant of a symmetric positive definite matrix is upper bounded by the

product of its diagonal elements (see Beckenbach and Bellman, 1961, Chapter

2, Theorem 7):

det

(
I +

b(Y2 − Y1)
2

a

T∑
t=1

xtx
′
t

)
≤
(

1 +
b(Y2 − Y1)

2TX2

a

)n

.

This concludes the proof. �

The order of the regret term in bound (3.35) is logarithmic in the number of

steps. It matches the order of the best bounds for the linear regression prob-

lem under square loss proved in Theorem 3.1 and for the classification prob-
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lem using generalized linear regression experts under logarithmic loss proved

by Kakade and Ng (2004).

The prediction strategy achieving (3.34) is formulated as Algorithm 9 (page

138), calculated with the number of iterations M →∞; we also call Algo-

rithm 9 the Aggregating Algorithm for Generalized Linear Models (AAGLM).

In Section 3.5.3, we derive it and describe its parameters. Even though Algo-

rithm 9 is an online algorithm, it is easy to apply it in the batch setting: it

suffices to consider each example in the test set as the next example after the

training set.

3.5.2 Examples of the models and performance guaran-

tees

Now we give some examples of generalized linear models and bounds on the

losses of the corresponding algorithms.

Linear regression

We have for linear regression

σ(z) =
z

Y2 − Y1

− Y1, z ∈ R (3.37)

(so that the experts predict ξθ
t = θ′xt). The derivatives are equal to

dσ(z)

dz
=

1

Y2 − Y1

and
d2σ(z)

dz2
= 0.

Using these expressions in the derivatives of σ in (3.33) we obtain

b(u, z) =
1

(Y2 − Y1)2
.
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Using b = 1
(Y2−Y1)2

in (3.35), we have the following corollary for the linear

regression experts.

Corollary 3.5 There exists a prediction strategy for the learner achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)
2

4
ln

(
1 +

X2T

a

)
for any expert θ ∈ Rn predicting according to (3.32) and (3.37).

As we can see, the upper bound is the same as the upper bound (3.9) for

the AAR. This bound is known to have the best possible order (see Vovk, 2001,

Theorem 2) for the linear experts.

Logistic regression

We have for logistic regression

σ(z) =
1

1 + e−z
, z ∈ R. (3.38)

The derivatives are equal to

dσ(z)

dz
= σ(z)(1− σ(z))

and
d2σ(z)

dz2
= σ(z)(1− σ(z))(1− 2σ(z)).

Using these expressions in the derivatives of σ in (3.33), we obtain

b(u, z) = σ2(z)(1− σ(z))2 + (σ(z)− u)σ(z)(1− σ(z))(1− 2σ(z)).

We have |b(u, z)| ≤ b < 5
64

. Using this in (3.35), we have the following corollary

for logistic regression experts.

Corollary 3.6 Let a > 0. There exists a prediction strategy for the learner
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achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)
2

4
ln

(
1 +

5(Y2 − Y1)
2X2T

64a

)
for any expert θ ∈ Rn predicting according to (3.32) and (3.38).

Probit regression

We have for probit regression

σ(z) = Φ(z) =
1√
2π

∫ z

−∞
e−v2/2dv, z ∈ R, (3.39)

where Φ is the cumulative distribution function of the normal distribution with

zero mean and unit variance. The derivatives are equal to

dσ(z)

dz
=

1√
2π
e−z2/2

and
d2σ(z)

dz2
= − z√

2π
e−z2/2.

Using these expressions in the derivatives of σ in (3.33), we obtain

b(u, z) =
1

2π
e−z2 − (σ(z)− u)

z√
2π
e−z2/2.

We have |b(u, z)| ≤ b < 25
128

. Using this in (3.35), we have the following

corollary for probit regression experts.

Corollary 3.7 Let a > 0. There exists a prediction strategy for the learner

achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)
2

4
ln

(
1 +

25(Y2 − Y1)
2X2T

128a

)
for any expert θ ∈ Rn predicting according to (3.32) and (3.39).
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Complementary log-log regression

We have for the complementary log-log regression

σ(z) = 1− exp(− exp(z)), z ∈ R. (3.40)

When the argument z of the complementary log-log function 1−exp(− exp(z))

approaches minus infinity, this function is similar to the logistic function 1
1+e−z

and tends to zero. When the argument approaches infinity, the function tends

to one more quickly than the logistic function. This can be used in problems

with asymmetry in outcomes. The derivatives of σ(z) are equal to

dσ(z)

dz
= ez(1− σ(z))

and
d2σ(z)

dz2
= ez(1− σ(z))(1− ez).

Using these expressions in the derivatives of σ in (3.33), we obtain

b(u, z) = e2z(1− σ(z))2 + ez(1− σ(z))(1− ez).

We have |b(u, z)| ≤ b < 17
64

. Using this in (3.35), we have the following corollary

for complementary log-log regression experts.

Corollary 3.8 Let a > 0. There exists a prediction strategy for the learner

achieving

LT ≤ Lθ
T + a‖θ‖2 +

n(Y2 − Y1)
2

4
ln

(
1 +

17(Y2 − Y1)
2X2T

64a

)
for any expert θ ∈ Rn predicting according to (3.32) and (3.40).

3.5.3 Derivation of the prediction algorithm

Our prediction algorithm differs from many algorithms commonly used to fit

a generalized linear model (see, for example, McCullagh and Nelder, 1989).
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First, instead of fitting the data with the best parameter θ (as in logistic

regression) it uses the regularization parameter a > 0 preventing θ to be too

large, and thus preventing overfitting to a certain extent. Second, it looks to

minimize the square loss instead of the logarithmic loss. To predict at step T ,

it works with the function

T−1∑
t=1

(ξθ
t − yt)

2 + a‖θ‖2 (3.41)

with ξθ
t from (3.32). Third, it does not look for the best regularized expert θ,

but at each prediction step it mixes all the experts using the Aggregating

Algorithm (Algorithm 1), thus preventing overfitting even further.

We apply the AA with the Gaussian initial distribution over experts:

P0(dθ) = (aη/π)n/2 exp(−aη‖θ‖2)dθ (3.42)

for some a > 0. We use the substitution function (2.26) to give predictions.

It allows us to use generalized predictions (2.3) calculated from unnormalized

weights (2.2) and with factor (aη/π)n/2 omitted. Normalization is avoided

because calculating the normalizing constant is a computationally inefficient

operation for our task. By Lemma 2.5 we take the maximum value for η,

η = 2
(Y2−Y1)2

. We denote (using (3.32))

wT (θ) := exp

(
−aη‖θ‖2 − η

T∑
t=1

(
ξθ
t − yt

)2)
. (3.43)

Algorithm 9 is based on the MCMC technique of numerical integration

in (2.3) at y = Y1 and y = Y2; Andrieu et al. (2003) give a good MCMC

survey. The function e−η(ξθ
t−y)2 needs to be integrated with respect to the

unnormalized posterior distribution Pt−1(dθ). We choose to use the simple

Metropolis sampling to sample θ from the posterior.

Metropolis sampling from a distribution P is an iterative process, with the

initial value θ0 and a simple proposal distribution. We choose the Gaussian

proposal distribution N(0, σ2) with the parameter σ2 chosen on the data. At
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each iteration i = 1, . . . ,M , the update for θ is sampled from the proposal

distribution:

θi = θi−1 + ζ i, ζ i ∼ N(0, σ2).

The updated θi is accepted with the probability min
(

1, fP (θi)
fP (θi−1)

)
. Here fP(θ)

is the value of the density function for the distribution P at the point θ. By

accepting and rejecting the updates, the values of the parameter θ move closer

to the value where the maximum of the density function fP is achieved. Thus

sampling is performed from the area with high density of P and covers the

tails of it only occasionally. Therefore numerical integration using sampling

with MCMC is often more efficient than the usual Monte Carlo sampling from

the uniform distribution. Sometimes the updates are accepted even if they do

not move the next θ closer to the maximum (this happens when fP (θi)
fP (θi−1)

< 1).

This may allow the algorithm to move away from the local maxima of the

density function.

It is common when using the MCMC approach to have a “burn-in” stage,

at which the integral is not calculated, but the algorithm is looking for the

best “locality” for θ. This stage is used to avoid the error accumulated while

the algorithm is still looking for the correct location of the main mass of the

distribution. Instead of that, at each prediction step t we take the new starting

point θ0 for the Metropolis sampling to be the last point θM achieved on the

previous step t− 1.

In the case when the dimension n of input vectors is large and the sampling

is not very efficient, one can use more advanced techniques, such as adaptive

sampling or Slice sampling (Neal, 2003). However, when we tried several ver-

sions of Slice sampling, the convergence speed on our data sets was slower than

for Metropolis sampling.

The function (3.41) is not necessarily convex in θ, so it may have several

local minima. Thus we cannot use the Laplace approximation for the integral

and obtain reliable Iteratively Reweighted Least Square estimation of θ, the

common approach to give predictions when working with generalized linear

models. The MCMC approach to calculating similar integrals for Bayesian

prediction models was analyzed by Neal (1999). It is stated there that it

137



takes O(n3) operations to calculate a general integral.

Algorithm 9 AAGLM

Require: Bounds for the outcomes Y1, Y2,

maximum number of MCMC iterations M > 0,

standard deviation σ > 0,

regularization coefficient a > 0.

Calculate η := 2
(Y2−Y1)2

.

Initialize θM
0 := 0 ∈ Θ.

for t = 1, 2, . . . do

Gt,1 := 0, Gt,2 := 0.

Define wt−1 : Θ → [0,∞) by (3.43) with t− 1 in place of T .

Read xt ∈ Rn.

Initialize θ0
t := θM

t−1.

for m = 1, 2, . . . ,M do

θ∗ := θm−1
t +N(0, σ2I).

if wt−1(θ
∗) ≥ wt−1(θ

m−1
t ) then

θm
t := θ∗.

else

Flip a coin with success probability wt−1(θ
∗)/wt−1(θ

m−1
t ).

if success then

θm
t := θ∗.

else

θm
t := θm−1

t .

end if

end if

Gt,1 := Gt,1 + e−η(ξ
θm
t

t −Y1)2 , Gt,2 := Gt,2 + e−η(ξ
θm
t

t −Y2)2 .

end for

Output prediction γt := 1
2

(
Y2 + Y1 + ln Gt,2−ln Gt,1

η(Y2−Y1)

)
.

Read yt ∈ [Y1, Y2].

end for
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3.5.4 Experiments

In this section we investigate empirical properties of our algorithm on toy and

real data sets and suggest ways to choose the parameters for it.

Toy data set

In this experiment we aim to emphasize the main properties of competitive

online algorithms: how they behave if the data follow the assumptions of one

of the experts, and when the data fail to do so; how quickly online algorithms

adjust to the substantial changes in the properties of the data.

Consider the following online classification problem. Let xt ∈ R be the

input vectors x1 = −50, x2 = −49.9, . . . , xT = 100, real numbers from −50

to 100 with step 0.1. Let the outcomes yt be

yt =

1 if xt < −10 or 10 < xt < 50,

0 otherwise.

We add the bias one as the second component of each input vector (input vector

dimension becomes equal to 2). We try to predict this sequence online step by

step by Algorithm 9 competing with logistic experts. The result is presented

on Figure 3.3. We also show the best fitted logistic predictor achieving the

minimum cumulative square loss. Notice three following interesting properties

of the picture.

The predictions of the AAGLM tend to the predictions of the best logistic

regression fitted to the whole data as T becomes large. This matches the fact

that the mean loss of the AAGLM converges to the mean loss of the best

logistic regression; see Corollary 3.6.

When x ∈ [−10, 50) both algorithms suffer large loss. Corollary 3.6 ensures

that the AAGLM does not suffer much more than the best logistic regression.

During each period, the AAGLM tries to fit a logistic regression function in

this and the previous periods. The dependence on the previous periods is due

to the fact that the trained AAGLM is equivalent to the untrained AAGLM

which starts predicting with initial weights distribution P ∗
t (dθ), where t is the

number of steps in the previous periods.
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Figure 3.3: Sequential predictions of the AAGLM algorithm for the two-class
classification problem. The dashed curve is the predictions of the best logistic
regression (under square loss) on all the data. The horizontal axis contains
the input vectors, the vertical axis contains the outcomes and the predictions
of the outcomes by the two algorithms.

In order for expert-based algorithms to predict well on a certain type of

data, the best expert should suffer small loss on these data. If the sequence

of outcomes has several regimes which rarely switch from one to another, like

in our figure, “tracking the best expert” (Herbster and Warmuth, 1998; Vovk,

1999) may be a more suitable framework.

The parameters of the AAGLM used in these studies are Y1 = 0, Y2 = 1,

M = 1000 (we did not use “burn-in” stage), σ = 0.00001, a = 10−100. In-

creasing the regularization coefficient a leads to the regularization towards 0.5

(as expected). Increasing M accelerates somewhat the reaction in the very

beginning of each turn, but the main trend does not change. Too low value

for σ leads to slower convergence. Too high value of this parameter forces the

algorithm to fluctuate between two classes, and never find a stable solution

(this is expected as well since with large σ the numerical integration becomes

less precise). It is common when applying the MCMC technique to use the fol-
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lowing rule of thumb to determine the value of the parameter σ: the rejection

rate should be 30–70%.

Ozone data set

We perform empirical studies on two real-world data sets described by Zhang

and Fan (2008).

Data sets The data sets contain various meteorology and ozone data for

the Houston, Galveston, and Brazoria (HGB) area in Texas, USA, day by

day for 7 years, 1998–2004. We use both one-hour (ozone1) and eight-hour

(ozone8) ozone data sets: they contain the the daily maximum of 1 hour

(ozone1) ozone concentration and the daily maximum of the average over 8

consecutive hours (ozone8) ozone concentration. Each observation is one day.

Each observation has 72 features of various measures of air pollutant and

meteorological information for the target area in the study. Each observation

is assigned the label 1 (we say its outcome is equal to 1) if the ozone level

exceeds the danger threshold, which is 120 parts per billion (ppb) for ozone1

and 80 ppb for ozone8; otherwise, the observation has the label 0 (outcome

is equal to 0). The data are collected online, so online prediction algorithms

are more appropriate for the study than batch algorithms. They are able to

predict ozone levels day by day incorporating the information from all the

previous days. Therefore we consider online two-class classification problems.

Zhang and Fan (2008) showed that all 72 features may be relevant to the

prediction problem, and thus we decided to use all of them to train our al-

gorithms. We replace the missing values of the features by the mean of the

available values of them from the first year (we use the first year data as our

training set).

The data sets are very skewed: the number of positive examples is very low

(73 for ozone1 and 160 for ozone8 out of 2534 observations). It can be expected

that for such data sets complementary log-log (comlog) regression performs

better than logistic or probit regression (as explained in the description of

the comlog activation function). Indeed, the square loss suffered by logistic

regression trained on the whole data set is 48.4178 for ozone1 and 96.2846
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for ozone8. At the same time, the square loss suffered by comlog regression

trained on the whole data set is 46.7815 and 94.8399 respectively. Thus we

use the comlog activation function (3.40) in this experimental study.

Algorithms and results We normalize all the features to have mean zero

and maximum absolute value one over the first year. We also add an additional

bias feature 1 to all the examples.

We compare different algorithms in two regimes: the online regime and the

(incremental) batch regime. In the online regime the algorithms are retrained

as soon as a new observation is obtained. In the batch regime the algorithms

are only retrained yearly on all the past data. Zhang and Fan (2008) suggested

this regime as the most realistic for meteorologists (they did not consider the

online regime though).

For the online regime the AAGLM parameters M , σ, a, and the length of

the burn-in stage are chosen to suffer the least square loss over the first year.

We choose σ from the range 10−k, 5·10−k, k = 0, 1, . . . , 5. We choose a from the

range 10−k, 5 · 10−k, k = −1, 0, 1, . . . , 10. The best parameters are M = 2500,

σ = 0.01, a = 0.1, and the length of the burn-in stage is 2000. It is interesting

to note that for both data sets the best parameters are the same up to our

precision. This may mean that the best parameters for the algorithm depend

mostly on the input vectors, and not on the outcomes (because the input

vectors are the same for our data sets).

The batch regime of the AAGLM can be understood as just one step of

the online algorithm repeated for each new test example. During the training

stage the batch algorithm does not calculate the integral but saves the values

of θ obtained at each iteration m = 1, 2, . . . ,M . At the prediction stage,

the algorithm calculates the integral using the saved values of θ computed on

the iterations between B < M and M , where B is the length of the burn-in

stage. We choose the same parameters σ = 0.01, a = 0.1 as for the online

version, and B = 5000, M = 15000 to ensure good convergence. There are no

theoretical guarantees for the batch setting.

The first algorithm with which we compare the AAGLM is the online

comlog regression minimizing logarithmic loss (standard generalized regres-
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sion model): at each step t it uses all the previous steps to find the best

parameter θ̂ and then gives its prediction σ(θ̂′xt) according to this parame-

ter. In terms familiar from the online prediction literature, it corresponds to

the Follow the Best Expert predictor under the logarithmic loss function, the

natural competitor to our algorithm.

In the batch regime, in the beginning of each year, the best parameter θ̃ is

found on all the previous years. All the predictions in the following year are

made using this θ̃.

We also calculate the performance of the linear Support Vector Machine

(SVM) and the SVM with the RBF kernel, implemented by Chang and Lin

(2001). The SVM with the RBF kernel showed the best performance on ozone8

in a different framework (Zhang and Fan, 2008). In the online regime the SVMs

predict only one next outcome at each step and retrain after the actual outcome

is announced. The parameter of the kernel and the parameter C are chosen to

achieve the least square loss over the first year. Note that in the online regime

one does not need the validation set: the training set at each step does not

include the next test example at which prediction is made. Thus the risk of

overfitting is less than if the testing was done on the training set.

In the batch regime, at the beginning of each year, the SVMs are retrained

on all the previous years. All the predictions in the following year are made

using these trained SVMs. The parameter of the kernel and the parameter C

are chosen using 5-fold cross-validation: all the data from the previous years

are randomly separated into 5 parts. Four parts are used to train the SVM,

the fifth part is used for testing: the square loss is calculated over the fifth

part. This procedure repeats 5 times with different combinations of the parts.

The parameters of the SVMs are chosen to suffer the least average square loss.

Since the number of positive examples is small, it makes sense to com-

pare the precision of the predicting algorithms with the precision of the zero

predictor: the predictor which always predicts low ozone concentration.

The minimal square loss which is suffered by the comlog regression model

trained on the whole data set is equal to 28.0001 for ozone1 and 75.0001 for

ozone8. This loss is unrealistic since we do not know all the observations when

start predicting, and included here to specify the limitations of the generalized
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regression model. The square loss of the online comlog regression over this

period is equal to 105.1823 and 186.6147 respectively. The square loss of

the AAGLM over this period is equal to 66.2727 and 120.8483 respectively.

At the same time, the upper bounds on its loss from Corollary 3.8 have the

values 323.9632 for ozone1 and 371.3681 for ozone8. The zero predictor suffers

the square loss 73 and 160 respectively.

Table 3.3 contains average mean square errors for different algorithms over

the last 6 years (2–7) in the data sets.

Table 3.3: Average MSEs of different algorithms over the last 6 years of

ozone1/ozone8.

Algorithm MSE online MSE batch

AAGLM 8.2159/15.3288 8.2163/15.7552

SVM rbf 9.7607/14.8806 9.4497/15.9679

SVM linear 8.8624/16.1532 8.8500/16.5264

Comlog 14.4578/24.2686 13.8096/27.9474

Zeros 9.6667/21.3333 9.6667/21.3333

Figure 3.4 presents precision (the number of correctly identified high ozone

days divided by the total number of the predicted high ozone days) and recall

(the number of correctly identified high ozone days divided by the total number

of the actual high ozone days) for different threshold values calculated for the

last 6 years of ozone8. It contains information for the four algorithms applied

in the online regime. The area under the curve for the AAGLM is larger than

the area under the curve for the online comlog regression and under the curve

for the linear SVM. This shows the superiority of our algorithm over these

competitors for the classification task. We can also see that there is a point

on the curve for the online comlog regression where the reduction of the recall

does not lead to the increase in the precision. This means that the threshold

becomes larger than the predicted probability of many high-ozone days.

As we can see from the figures in Table 3.3, the algorithms in the online
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Figure 3.4: Precision-recall curve for different threshold values for the algo-
rithms applied in the online regime on ozone8.

regime perform better than the same algorithms in the batch regime on ozone8

and usually worse on ozone1.

We can also see that the AAGLM significantly outperforms the simple zero

predictor and the comlog predictor. Unlike the comlog predictor, the AAGLM

is developed to work with the square loss and achieves better empirical perfor-

mance in terms of the square loss. It performs a little worse on ozone8 than the

SVM with the RBF kernel. It is possible to apply kernelization to the AAGLM

as well (for the kernelization of standard generalized linear regression models

see Cawley et al., 2007), as we will show in Section 4.5; the kernelized algo-

rithm may achieve better performance. On ozone1 the AAGLM outperforms

all the algorithms including SVMs.

The disadvantage of our algorithm against the competitors is in its training

speed. Increasing the training speed of our algorithm is an interesting area of

future research. It would be also interesting to apply our classifier to other

data sets and find extreme data sets where the theoretical guarantee is tight.
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3.6 Linear probability forecasting

In this section, we introduce a generalization of the Aggregating Algorithm

for Regression described in Section 3.2 to the case when the dimension of

the outcomes is more than two. Our generalization is intended to deal with

probability forecasting, when the outcome and the predictions at each step are

probability distributions on a finite number of events. This problem can be

thought of as a multi-class classification problem if each outcome is associated

with one of the events.

In this section, we consider asymmetric linear experts. They predict a

set of numbers; each of these numbers should approximate the corresponding

component of the outcome. One component of their prediction has the meaning

of a remainder. In practice this situation is quite common. For example, in the

previous chapter we considered the problem of predicting the results football

matches. In that scenario either one team wins or the other, and the remainder

is draw. As another example, we may analyse precious metal alloys and look

for a description of the following kind: an alloy has 40% of gold, 35% of silver,

and some addition (e.g., copper and palladium). Our algorithm also can be

used in financial applications: it is common to try to predict the direction of

the price: the price can go up, down, or stay close to the current value.

Kivinen and Warmuth’s (2001) work includes the case when possible out-

comes lie in a more than 2-dimensional simplex and the algorithms give prob-

ability predictions; their algorithm competes with all logistic regression func-

tions. They use the relative entropy loss function L and obtain a regret term

of the order O(
√
LT (θ)) which is upper unbounded in the worst case. They

also consider the standard approach to apply online linear regression for each

component of the outcome and thus make predictions of multi-dimensional

outcomes. The upper bound on the loss is also easy to derive. We consider a

slightly different problem: first, we aim to give probability predictions; second,

not all of the components of the outcome have the same role, one of them is a

remainder. Our algorithms can be easily kernelized (see Section 4.6).

In online convex optimization (see Hazan et al., 2007, for the bounds with

the logarithmic regret term) one allows the loss functions to be unknown before
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the prediction is made, but requires the learner’s prediction to be the weighted

average of the expert’s predictions. Our way of giving predictions is different.

It allows us to give probability predictions in the situation when the experts

do not necessarily provide probabilities.

Our setting also slightly relates to the Optimal Portfolio selection problem

(Cover, 1991). In this problem predictions come from a probability simplex:

they are considered as a capital allocation among a set of assets. There are no

outcomes, and the loss function is the minus logarithm of the scalar product

between the prediction and the vector of the changes in the prices of the assets.

The upper bounds for classification problems are often proved in terms

of the number of mistakes which are made by the learner (see, for example,

Cesa-Bianchi et al., 2005). In this situation the learner is forced to give exact

predictions about the assignment of the label to the input vector.

The quality of the predictions in our setting is assessed by the Brier loss.

We develop two algorithms to solve the problem of multi-dimensional predic-

tion. The first algorithm applies the AAR to predict each coordinate of the

outcome separately, and then combines these predictions in a certain way to

get probability prediction. The other algorithm is designed to give probability

predictions directly. We derive upper bounds on the losses of both algorithms

and come to an unexpected conclusion that the component-wise algorithm is

better than the second one asymptotically, but worse in the beginning of the

prediction process. Their performance on benchmark data sets is very similar.

The results of this section are described in Zhdanov and Kalnishkan (2010b)

and in more details in Zhdanov and Kalnishkan (2009).

3.6.1 Framework

We are interested in the generalisation of the Brier game (Brier, 1950), which

was considered in Section 2.4. The set of outcomes Ω = P(Σ) is the set of all

probability measures on a finite set Σ with d elements, the set of predictions

Γ := {(γ1, . . . , γd) :
∑d

i=1 γ
i = 1, γi ∈ R} is a hyperplane in d-dimensional

space containing all the outcomes, and the quality of predictions is measured

by the Brier loss (2.29). The set of input vectors X ⊆ Rn is a subset of the
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Euclidean space. The game of prediction follows Protocol 3.

We develop algorithms which are capable of competing with all linear func-

tions ξt = (ξ1
t , . . . , ξ

d
t )′ of the input vectors x1, x2, . . . ∈ X:

ξ1
t = 1/d+ (θ1)′xt

. . .

ξd−1
t = 1/d+ (θd−1)′xt (3.44)

ξd
t = 1− ξ1 − · · · − ξd−1 = 1/d−

(
d−1∑
i=1

θi

)′
xt,

where θi ∈ Rn, i = 1, . . . , d − 1. In the model (3.44), the last component of

the prediction is calculated from the other components. We use the notation

(Y ;Z) for the vertical concatenation of two column vectors Y and Z. We

denote each expert by θ = (θ1; . . . ; θd−1) and the indexing set for the experts

by Θ = Rn(d−1). The prediction of the expert θ can be represented as ξt = ξt(θ).

By LT we denote the cumulative loss of the learner at the step T , and by Lθ
T

we denote the cumulative loss of the expert θ at this step.

3.6.2 Derivation of the algorithms

In this section we describe how we apply the Aggregating Algorithm (Algo-

rithm 1) to mix experts and make predictions. In order to apply the AA we

first need to ensure that the game is mixable, see (2.4).

Proof of mixability

Let us denote the set of d probability measures concentrated in points of Σ by

R(Σ). Lemma 2.7 ensures that the Brier game with finite number of outcomes

is mixable iff η ∈ (0, 1]. This statement is valid for the experts which give

predictions lying inside the probability simplex P(Σ) and the outcomes which

belong to R(Σ).

We need to prove that there exists a prediction satisfying (2.4) for our

experts (3.44) (who can give predictions outside of the probability simplex)

and our outcome set Ω (the whole probability simplex, not only its vertices).
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Lemma 3.6 describes the first part, but first we need to state an additional

statement. The following lemma shows that any vector from Rd can be pro-

jected into simplex without increasing the Brier loss. Recall that β = e−η.

Lemma 3.5 For any ξ = (ξ1, . . . , ξd) ∈ Rd there exists ζ = (ζ1, . . . , ζd) ∈
P(Σ) such that for any y ∈ Ω, we have λ(y, ζ) ≤ λ(y, ξ).

Proof The Brier loss of a prediction γ is the square Euclidean distance be-

tween γ and the actual outcome y. The proof follows from the fact that P(Σ)

is a convex and closed subset of Rd. �

Lemma 3.6 Let P (dθ) be any probability distribution on Θ. Then for any

η ∈ (0, 1] and any ξ(θ) ∈ Rd there exists γ ∈ Γ such that for any y ∈ R(Σ),

we have

λ(y, γ) ≤ logβ

∫
Θ

βλ(y,ξ(θ))P (dθ).

Proof By Lemma 3.5 for any experts’ prediction ξ(θ) we can find ζ(θ) ∈ P(Σ)

such that its loss does not exceed the loss of the experts: λ(y, ζ(θ)) ≤ λ(y, ξ(θ))

for any y ∈ R(Σ). Thus we have

logβ

∫
Θ

βλ(y,ζ(θ))P (dθ) ≤ logβ

∫
Θ

βλ(y,ξ(θ))P (dθ)

for any y ∈ R(Σ). We can take the same prediction γ ∈ Γ that satisfies the

necessary inequality with ζ instead of ξ. By Lemma 2.7 such prediction exists

for any η ∈ (0, 1] (or β ∈ [e−1, 1)). �

We now prove that we can use the same substitution function and the same

learning rate parameter η as for the case of finite number of possible outcomes.

Such a function is described in Proposition 2.1. This is an extension of Lemma

4.1 from Haussler et al. (1998).

Lemma 3.7 Let P (dθ) be a probability distribution on Θ and put

f(y) = logβ

∫
Θ

βλ(y,ξ(θ))P (dθ)
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for every y ∈ Ω. Then if γ is such a prediction that λ(z, γ) ≤ f(z) for any

z ∈ R(Σ) then λ(y, γ) ≤ f(y) for any y ∈ Ω.

Proof Let us take the unit vector basis z{1}, . . . , z{d} in Rd. It is easy to

see that

λ(y, ξ(θ))− λ(y, γ) =
d∑

j=1

(ξj(θ)− yj)2 −
d∑

j=1

(γj − yj)2

=
d∑

j=1

(ξj(θ))2 − (γj)2 − 2yj(ξj(θ)− γj)

=
d∑

i=1

yi

[
d∑

j=1

(ξj(θ))2 − (γj)2 − 2z{i}j(ξj(θ)− γj)

]

=
d∑

i=1

yi

[
d∑

j=1

(ξj(θ)− z{i}j)2 −
d∑

j=1

(γj − z{i}j)2

]

=
d∑

i=1

yi[λ(z{i}, ξ(θ))− λ(z{i}, γ)]

for any y ∈ Ω. We also have that λ(y, γ) − f(y) ≤ 0 is equivalent to∫
Θ
βλ(y,ξ(θ))−λ(y,γ)P (dθ) ≤ 1. Due to the convexity of the exponent function

and the fact the the inequality holds for any z ∈ R(Σ), we have

∫
Θ

βλ(y,ξ(θ))−λ(y,γ)P (dθ) =

∫
Γ

β
Pd

i=1 yi[λ(z{i},ξ(θ))−λ(z{i},γ)]P (dθ) ≤
d∑

i=1

yi = 1. �

Algorithm for multidimensional outcomes

Let us denote the ith possible outcome from R(Σ) by y{i}, i = 1, . . . , d. The

figure brackets {i} will mean that the ith vector out of d vectors is taken. We

take the initial weights distribution P0 over the experts to have the Gaussian

density with a parameter a > 0:

P0(dθ) = (aη/π)n(d−1)/2e−aη‖θ‖2dθ.
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Instead of taking the integral (2.3) to calculate the generalized prediction,

we obtain a shifted generalised prediction G by calculating Gi
T = gT (y{i}) −

gT (y{d}). We use the substitution function from Proposition 2.1, which is

irrespective to this shift. Each component of GT = (G1
T , . . . , G

d
T ) corresponds

to one of the possible outcomes from R(Σ) and Gd
T = 0. Other components

for i = 1, . . . , d− 1 are expressed as follows:

Gi
T = logβ

βgT (y{i})+
PT−1

t=1 gt(yt)

βgT (y{d})+
PT−1

t=1 gt(yt)
= −1

η
ln

∫
Θ
e−ηQ(θ,y{i})dθ∫

Θ
e−ηQ(θ,y{d})dθ

,

where by Q(θ, y) we denote the quadratic form:

Q(θ, y) = Lθ
T−1 + λ(y, ξT (θ)) + a‖θ‖2

=
T−1∑
t=1

d∑
i=1

(ξi
t(θ)− yi

t)
2 +

d∑
i=1

(ξi
T (θ)− yi)2 + a‖θ‖2. (3.45)

Here yt = (y1
t , . . . , y

d
t ) are the actual outcomes on the steps before T and

y = (y1, . . . , yd) ∈ Ω is the possible outcome at the step T .

Let CT be the n×n matrix CT =
∑T

t=1 xtx
′
t. The quadratic form Q(θ, y) can

be separated into a quadratic part, a linear part, and a remainder: Q(θ, y) =

Q1(θ, y) +Q2(θ, y) +Q3(θ, y). We have that

Q1(θ, y) =
T∑

t=1

d−1∑
i=1

(θi)′xtx
′
tθ

i +

(
d−1∑
i=1

θi

)′
xtx

′
t

(
d−1∑
i=1

θi

)+ a‖θ‖2

= θ′

aI +


2CT · · · CT

...
. . .

...

CT · · · 2CT


 θ = θ′AT θ

is the quadratic part of Q(θ, y). Here AT is a square matrix with n(d − 1)

rows. The linear part is equal to

Q2(θ, y) = θ′hT − 2
d−1∑
i=1

(yi − yd)(θi)′xT ,

151



where hi
T = −2

∑T−1
t=1 (yi

t − yd
t )xt, i = 1, . . . , d − 1, make up a big vector

hT = (h1
T ; . . . ;hd−1

T ) ∈ Rn(d−1). The remainder is equal to

Q3(θ, y) =
T−1∑
t=1

d∑
i=1

(yi
t − 1/d)2 +

d∑
i=1

(yi − 1/d)2.

Therefore Gi
T can be calculated using Lemma A.3 as follows:

Gi
T = −(bT{i})′A−1

T zT{i} (3.46)

for i = 1, . . . , d− 1 and Gd
T = 0. Here we have

bT{i} = hT−1 + (xT ; . . . ;xT ; 0;xT ; . . . ;xT ) ∈ Rn(d−1),

zT{i} = (−xT ; . . . ;−xT ;−2xT ;−xT ; . . . ;−xT ),

where the zero-vector 0 ∈ Rn and −2xT are placed in the i-th blocks. It

is now possible to apply the substitution function from Proposition 2.1 to

get predictions. We call our algorithm the mAAR (the multi-dimensional

Aggregating Algorithm for Regression). It is described as Algorithm 10.

Component-wise algorithm

In this section we describe the component-wise algorithm. It gives predictions

for each component of the outcome separately, and then combines them in a

special way to give probability prediction.

We consider a different (more wide) class of experts than (3.44): the com-

ponents of their predictions have symmetry. Each expert θ ∈ Rnd predicts

ξi
t = 1/d+ (θi)′xt, i = 1, . . . , d, (3.47)

i.e. they use c = 1/d in (3.2) for each component of their prediction.

The component-wise Aggregating Algorithm for Regression (cAAR) calcu-

152



lates its preliminary prediction by the formula (3.4):

γi
T =

1

2
+

(
T−1∑
t=1

yi
txt +

d− 2

2d
xT

)′(
aI +

T∑
t=1

xtx
′
t

)−1

xT , i = 1, . . . , d.

In this formula the outcomes yi
t are taken to be equal to the ith components of

the real outcomes. The algorithm then projects the prediction vector onto the

prediction simplex such that the loss does not increase. We use the projection

algorithm suggested by Michelot (1986) and described as Algorithm 11.

Algorithm 10 The mAAR for the Brier game

Require: a > 0.
Initialize hi

0 = 0 ∈ Rn, i = 1, . . . , d− 1, and C0 = 0 ∈ Rn×n.
Set h0 = (h1

0; . . . ;h
d−1
0 ) ∈ Rn(d−1).

for t = 1, 2, . . . do
Read xt ∈ X.

Update Ct = Ct−1 + xtx
′
t, At = aI +

2Ct · · · Ct
...

. . .
...

Ct · · · 2Ct

 .

Set bt{i} = ht−1 + (xt; . . . ;xt; 0;xt; . . . ;xt), where 0 is a zero-vector
from Rn placed at the ith position, i = 1, . . . , d− 1.

Set zt{i} = (−xt; . . . ;−xt;−2xt;−xt; . . . ;−xt), where −2x′t is placed at
the ith position, i = 1, . . . , d− 1.

Calculate Gi = −(bt{i})′A−1
t zt{i}, Gd = 0, i = 1, . . . , d− 1.

Solve
∑d

i=1(s−Gi)+ = 2 in s ∈ R.
Predict γt ∈ P(Ω) with γi

t = (s−Gi)+/2, i = 1, . . . , d.
Read yt.
Update hi

t = hi
t−1 − 2(yi

t − yd
t )xt, ht = (h1

t ; . . . ;hd−1
t ).

end for
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Algorithm 11 Projection of a point from Rd onto probability simplex.

Initialize I = ∅, x = 1 ∈ Rd.

Let γT be the prediction vector and |I| be the dimension of the set I.

while 1 do

γT := γT −
Pd

i=1 γi
T−1

d−|I| .

γi
T := 0 for all i ∈ I.

if γi
T ≥ 0 for all i = 1, . . . , d then

break.

end if

I := I
⋃
{i : γi

T < 0}.
if γi

T < 0 for some i then

γi
T := 0.

end if

end while

3.6.3 Performance guarantees

We derive upper bounds on the cumulative loss of the mAAR and of the cAAR

predicting in the same framework.

Loss bound for the cAAR

The loss of the component-wise algorithm by one component is bounded as

in Theorem 3.1. When we use the component-wise algorithm to predict each

component separately, its Brier loss is bounded as in the following theorem.

Theorem 3.6 If ‖xt‖∞ ≤ X for all t then for any a > 0, every positive

integer T , every sequence of outcomes of the length T , and any θ ∈ Rn(d−1),

the loss LT of the cAAR with the parameter a satisfies

LT ≤ Lθ
T + da‖θ‖2 +

nd

4
ln

(
1 +

TX2

a

)
. (3.48)

Proof Let us first consider the experts (3.47) and sum the upper bounds (3.9)

with Y2 = 1, Y1 = 0 for each of the components of the outcome. In the last
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component we can take θd = −
∑d−1

i=1 θ
i instead of any expert and use the

Cauchy inequality ∥∥∥∥∥
d−1∑
i=1

θi

∥∥∥∥∥
2

≤ (d− 1)
d−1∑
i=1

‖θi‖2

to compete with the experts (3.44). Thus we obtain the right-hand side

of (3.48). The probability prediction of the cAAR is given by Algorithm 11

such that the Brier loss does not increase (see Michelot, 1986, Theorem 3.1).

This completes the proof. �

Loss bound for the mAAR

The upper bound for the loss of Algorithm 10 is given by the following theorem.

Theorem 3.7 For any a > 0, every positive integer T , every sequence of

outcomes of the length T , and any θ ∈ Rn(d−1), the cumulative loss LT of the

mAAR with the parameter 2a satisfies

LT ≤ Lθ
T + 2a‖θ‖2 +

1

2
ln det

I +
1

2a


2CT · · · CT

...
. . .

...

CT · · · 2CT


 . (3.49)

If, in addition, ‖xt‖∞ ≤ X for all t, then

LT ≤ Lθ
T + 2a‖θ‖2 +

n(d− 1)

2
ln

(
1 +

TX2

a

)
. (3.50)

Proof Let by θ0 denote the best expert: θ0 = arg minθ∈Θ

(
Lθ

T + 2a‖θ‖2
)
.

The regularized cumulative loss of the expert θ at the step T can be expressed

using the decomposition (3.45) as follows:

T∑
t=1

d∑
i=1

(ξi
t(θ)− yi

t)
2 + 2a‖θ‖2

=
T∑

t=1

d∑
i=1

(ξi
t(θ0)− yi

t)
2 + 2a‖θ0‖2 + (θ − θ0)

′AT (θ − θ0)
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for AT = 2aI +


2CT · · · CT

...
. . .

...

CT · · · 2CT

. By Lemma 3.2, we obtain for any θ ∈ Θ

LT ≤ Lθ
T + 2a‖θ‖2 +

1

2η
ln det

(
AT

2a

)
.

We take the maximum value for η, η = 1. The determinant of a symmet-

ric positive definite matrix is upper bounded by the product of its diago-

nal elements (see Beckenbach and Bellman, 1961, Chapter 2, Theorem 7):

det
(

AT

2a

)
≤
(

1 + TX2

a

)n(d−1)

. This completes the proof. �

We can derive a slightly better upper bound: in the determinant of AT one

should subtract the second block row from the first one and then add the first

block column to the second one, then repeat this d− 2 times with other rows

and columns.

Proposition 3.1 In the conditions of Theorem 3.7, the loss LT of the mAAR

with the parameter a satisfies

LT ≤ Lθ
T + a‖θ‖2

2 +
n(d− 2)

2
ln

(
1 +

TX2

a

)
+
n

2
ln

(
1 +

TX2d

a

)
(3.51)

for any θ ∈ Rn(d−1).

The upper bound (3.50) is worse asymptotically in d than the bound (3.48)

of the component-wise algorithm, but it is better in the beginning, especially

when the norm of the best expert ‖θ‖ is large. This can happen in the impor-

tant case when the dimension of the input vectors is larger than the size of the

prediction set: n >> T .

Using methods similar to the ones described by Vovk (2001), it is possible

to prove lower bounds for the regret term of the order O
(

d−1
d

lnT
)

for the case

of the linear model (3.44). We can say that the order of our upper bounds is

optimal. Multiplicative constants may possibly be improved though.
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3.6.4 Experiments

We run our algorithms on six real world time series data sets. In the time

series, we consider there are no input vectors attached to the outcomes. How-

ever, we can take the vectors consisting of previous observations (we shall take

ten of those) and use them as the input vectors. Data set DEC-PKT4 contains

an hours worth of all wide-area traffic between Digital Equipment Corpora-

tion and the rest of the world. Data set LBL-PKT-44 consists of observations

of another hour of traffic between the Lawrence Berkeley Laboratory and the

rest of the world. We transformed both the data sets in such a way that each

observation is the number of packets in the corresponding network during a

fixed time interval of one second. The other four datasets5 (C4,C9,E5,E8)

relate to transportation data. Two of them (C9,C11) contain low-frequency

monthly traffic measures. Two of them (E5,E8) contain high-frequency day

traffic measures. On each of these data sets the following operations were per-

formed: subtraction of the mean value and division by the maximum absolute

value. The resulting time series are shown in Figure 3.5.

We use ten previous observations as an input vector for tested algorithms at

each prediction step. We consider the following 3-class classification problem.

We predict whether the next value in a time series will be more than the

previous value plus a precision parameter ε, less than that value, or will lie

in the 2ε tube around the previous value. The precision ε for each time seres

is chosen to be the median of all the changes in them. In order to assess the

quality of predictions, we calculate the cumulative square loss at the last two

thirds of each time series (test set) and divide it by the number of examples

(MSE). Since we are considering the online setting, we could calculate the

cumulative loss from the beginning of each time series. However, our approach

is not sensitive to starting effects. It allows us to choose the ridge parameter

a fairly on the training set. It also allows us to compare the performance of

our algorithms with batch algorithms, which would be normally used to solve

this problem.

The square loss on the test set takes into account the quality of an algorithm

4Data sets can be found http://ita.ee.lbl.gov/html/traces.html.
5Data sets can be found http://www.neural-forecasting-competition.com/index.htm.
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Figure 3.5: Time series from 6 data sets.

only at the very end of the prediction process, and does not look at the quality

during the process. We introduce another quality measure: at each step in

the test set we calculate the MSE of an algorithm until this step. After all

the steps, we average these MSEs and call the average AMSE. Clearly, if one

algorithm is better than another on the whole test set (its total MSE is smaller)

but was often worse on many parts of the test set (total MSEs of many parts

of the set is larger), this measure takes it into account.

We compare the performance of our algorithms with the multinomial logis-

tic regression (mLog), because it is a standard classification algorithm which
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gives probability predictions:

γi
mLog =

eθix∑d
i=1 e

θix

for all the components of the outcome i = 1, . . . , d. In our case d = 3. Here

parameters θ1, . . . , θd are estimated from the training set. We apply this algo-

rithm in two regimes: batch regime, where the algorithm learns only on the

training set and is tested on the test set (and thus θ is not updated on the

test set); and in the online regime, where at each step new parameters θ are

found, and only one next outcome is predicted. The second regime is more fair

to compare with online algorithms, but the first one is standard and faster.

In both regimes logistic regression does not have theoretical guarantees on the

square loss.

We also compare our algorithms with the simple predictor predicting the

average of the ten previous outcomes (it thus always gives probability predic-

tions).

We are not aware of other efficient algorithms for online probability pre-

diction, and thus use the logistic regression and simple predictor as the only

baselines. Component-wise algorithms which could be used for online predic-

tion (e.g., Gradient Descent, Kivinen and Warmuth 1997, Ridge Regression,

Hoerl and Kennard 2000) have to use the normalization by Algorithm 11.

Thus they have to be applied in a different way than they are described in the

corresponding papers, and cannot be fairly compared with our algorithms.

The ridge for our algorithms is chosen to achieve the best MSE on the

training set: the first third of each series. The results are shown in Table 3.4.

In this table cAAR and mAAR state for the derived algorithms, mLog states

for the logistic regression, mLogOnline states for the online logistic regression,

and Simple stands for the simple average predictor. We highlight the most

precise algorithms for different data sets. We also show the time needed to

make predictions on the whole data set. The algorithms were implemented

in Matlab R2007b and run on the laptop with 2Gb RAM and processor Intel

Core 2, T7200, 2.00GHz.

As we can see from the table, our online methods 4 out of 6 times perform
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better than the batch method. Online logistic regression performs well, but it

is very slow. Our algorithms perform similar to each other and comparable to

the online logistic regression, but they are much faster.

Table 3.4: The square losses and prediction time (sec) of different algorithms.

Set Algorithm MSE AMSE Time

D
E

C
-P

K
T cAAR 0.45906 0.45822 0.578

mAAR 0.45906 0.45822 1.25
mLog 0.46107 0.46265 0.375

mLog Online 0.45751 0.45762 2040.141
Simple 0.58089 0.57883 0

L
B

L
-P

K
T

cAAR 0.48147 0.479 0.579
mAAR 0.48147 0.479 1.266
mLog 0.47749 0.47482 0.391

mLog Online 0.47598 0.47398 2403.562
Simple 0.57087 0.5657 0.016

C
4

cAAR 0.64834 0.65447 0.015
mAAR 0.64538 0.65312 0.062
mLog 0.76849 0.77797 0.016

mLog Online 0.68164 0.7351 4.328
Simple 0.69037 0.69813 0.016

C
9

cAAR 0.63238 0.64082 0.015
mAAR 0.63338 0.64055 0.063
mLog 0.97718 0.91654 0.031

mLog Online 0.71178 0.75558 10.625
Simple 0.6509 0.65348 0

E
5

cAAR 0.34452 0.34252 0.078
mAAR 0.34453 0.34252 0.219
mLog 0.31038 0.30737 1.109

mLog Online 0.30646 0.30575 446.578
Simple 0.58212 0.58225 0

E
8

cAAR 0.29395 0.29276 0.078
mAAR 0.29374 0.29223 0.25
mLog 0.31316 0.30382 0.109

mLog Online 0.27982 0.27068 83.125
Simple 0.69691 0.70527 0.016
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Chapter 4

Online regression in Hilbert

spaces

In this chapter we describe online regression framework in Hilbert spaces. The

well-known in machine learning kernel trick applied to methods for linear re-

gression allows us to develop methods working with much wider classes of

regression functions: the classes of functions from Reproducing Kernel Hilbert

Spaces.

Even though the theory of Reproducing Kernel Hilbert Spaces is known

for mathematicians for a relatively long time (Aronszajn, 1950), its popularity

in machine learning (following work of Aizerman et al., 1964) is probably due

to the development of statistical learning theory (Vapnik, 1995) and the ap-

plications of Support Vector learning (Schölkopf and Smola, 2002). Bayesian

analysis often regards kernel methods from the perspective of Gaussian non-

parametric methods (Rasmussen and Williams, 2006).

The first analysis of an online prediction algorithm which is competitive

with a large class of functions is due to Cesa-Bianchi et al. (1996).
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4.1 Online regression in Hilbert spaces

Online regression in Hilbert spaces follows the same Protocol 3 which we con-

sidered earlier for online linear regression. The difference lies in the class of

experts with which the learner tries to compete.

If the set of input vectors lies in a Euclidean space, X ⊆ Rn, then we can

consider simple linear predictors of the form θ ∈ Rn which given a signal x ∈ X

make predictions θ′x. This approach was used in the previous chapter. The

use of the linear methods in the real world is limited though, because they

can only model simple dependencies. Even though generalized linear models,

which we considered in Section 3.5, work with non-linear experts, it is still a

narrow class. One solution to this problem could be to map the data to some

high dimensional feature space and then find a simple solution there. Some

of the implementations of this idea can lead to the curse of dimensionality:

the situation where both the computational and generalisation performance

degrade as the number of features grow. On the contrary, kernel methods

can be used to make a linear algorithm operate in feature space without the

inherent complexities.

Definition 4.1 (Kernel as a Dot Product in Feature Space) Given a

mapping φ : X 7→ H, where H is a Hilbert space, kernel is defined as a function

k : X×X → R such that

k(x, y) = 〈φ(x), φ(y)〉H.

Definition 4.2 (Reproducing Kernel Hilbert Space (RKHS)) A Re-

producing Kernel Hilbert Space (RKHS) on a set X is a Hilbert space F of

real valued functions on X such that the evaluation functional f ∈ F 7→ f(x)

is continuous for each x ∈ X.

By the Riesz Representation theorem, for every x ∈ X there exists a func-

tion kx ∈ F such that

f(x) = 〈kx, f〉
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for all f ∈ F . The reproducing kernel of F is the function k : X × X 7→ R
such that

k(x, y) = 〈kx, ky〉 = kx(y) = ky(x).

The continuity requirement is essential for regression tasks: it ties the norm

of the functions from a functional Hilbert space with their predictions. If two

functions are close w.r.t. norm, they should give similar predictions.

An equivalent definition of the kernel will also be useful in many derivations.

Definition 4.3 (Kernel as a Symmetric Positive Semi-Definite Ma-

trix) A kernel is any function k : X×X 7→ R that is symmetric

k(x, y) = k(y, x)

for all y, x ∈ X, and positive semi-definite

∑̀
i,j=1

cicjk(xi, xj) ≥ 0

for all ` ≥ 1, all ci, cj ∈ R, and all xi, xj ∈ X.

These three definitions are equivalent since a function k(x, y) : X×X 7→ R
can be represented in the form 〈φ(x), φ(y)〉 iff k is the reproducing kernel of

an RKHS iff k is symmetric and positive semi-definite. For every kernel there

exists a unique RKHS F such that k is the reproducing kernel of F . For

more information on kernels and RKHS see, for example, Aronszajn (1950)

and Schölkopf and Smola (2002, Chapter 2).

In order to kernelize a linear algorithm, one usually formulates it in a dual

form, where all input vectors appear only in dot products. These dot products

are then replaced by kernels. This procedure is known as the kernel trick. As

we will see below, it is sometimes necessary to be able to derive the kernelized

algorithm from the linear one without using the kernel trick.
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Standard Kernels

There are several kernels which are generally advised to use for practical pur-

poses if the specific form is not known.

The Linear Kernel The linear kernel (dot product) is the simplest of ker-

nels and is used in linear algorithms

k(x, y) = 〈x, y〉.

Clearly, the mapping used is the identity function, therefore the input set lies

directly in the feature space.

The Polynomial Kernel The polynomial kernel is a generalization of the

linear kernel given by

k(x, y) = (1 + 〈x, y〉)d.

This kernel maps the elements of the vectors into the space spanned by all

their monomials (products of features) up to and including the dth degree.

The Radial Basis Function Kernel The radial basis function (RBF) ker-

nel is calculated by

k(x, y) = exp

(
−‖x− y‖2

2σ2

)
.

RBF kernel maps the input set onto the surface of an infinite dimensional unit

hypersphere, because by construction ‖φ(x)‖ =
√
k(x, x) = 1 for all x ∈ X.

The parameter σ controls the amount of smoothing of the decision surface in

the space with input vectors. Large σ leads to a smooth surface, small σ leads

to a more flexible surface.
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4.2 Kernelized Aggregating Algorithm for Re-

gression

In this section we present the Kernelized Aggregating Algorithm for Regres-

sion (KAAR) described by Gammerman et al. (2004). It competes with all

functions from the RKHS given by a kernel for the case when the outcome set

Ω is a bounded interval [Y1, Y2], Y1 < Y2.

Kivinen and Warmuth (2004) consider online learning in RKHS using Gra-

dient Descent, and also derive mistake bounds for an online classification al-

gorithm.

4.2.1 Derivation of the algorithm

Let the outcome set Ω be the bounded interval [Y1, Y2], the prediction set Γ be

the real line R, and the loss function be the square loss (2.24): λ(y, γ) = (γ−y)2

with y ∈ Ω, γ ∈ Γ. Let also the set X of input vectors be a subset of Rn,

X ⊆ Rn. Each expert predicts according to a function f ∈ F at the step t:

ξθ
t = c+ f(xt) (4.1)

for some c ∈ R, where F is the Reproducing Kernel Hilbert Space correspond-

ing to a kernel function k(x, z), x, z ∈ X. We say that F indexes experts, and

each expert is associated with a function f ∈ F . Here c in the experts may be

needed because we usually take the distribution over the experts centred at 0,

and c shifts the centre.

We apply the Aggregating Algorithm for Regression to compete with these

experts. Gammerman et al. (2004) first applied it for the case Y1 = −Y ,

Y2 = Y , Y > 0, symmetric experts with c = 0, and separable RKHS. We first

need to rewrite the formula (3.4) for the predictions of the AAR in the form

that involves only dot products.

165



We introduce some notation. Let

k(x, y) be the given kernel function,

KT be the matrix of kernel values, KT = {k(xi, xj)}T
i,j=1,

kT be the last column of this matrix, kT = {k(xi, xT )}T
i=1,

YT be the column vector of outcomes, YT = (y1, . . . , yT )′.

(4.2)

Let also YT −c be the difference between the vector YT and the column vector

of constant values c of the same length. When we write Z = (V; Y) (Z =

(V′,Y′)) we mean that the column (row) vector Z is obtained by concatenating

two column vectors V,Y vertically (row vectors V′,Y′ horizontally).

Proposition 4.1 Predictions (3.4) of the AAR can be represented as

γT = c+

(
YT−1 − c;

Y2 + Y1

2
− c

)′
(aI + KT )−1kT (4.3)

for the linear kernel k(x, y) = 〈x, y〉, the unit T × T matrix I, and a > 0.

Proof Let by X denote the design matrix T ×n consisting of the rows of the

input vectors x′1, . . . , x
′
T . Then we have aI + KT = aI +XX ′ and kT = XxT .

By Lemma A.4 we obtain (aI +XX ′)−1XxT = X(aI +X ′X)−1xT . It is easy

to see that(
YT−1 − c;

Y2 + Y1

2
− c

)′
X =

(
T−1∑
t=1

xt(yt − c) +

(
Y2 + Y1

2
− c

)
xT

)′
,

and thus we obtain formula (3.4) from (4.3). �

Following this proposition the KAAR can use other kernel functions to

give its predictions. In the next section we prove that if another kernel func-

tion is used, the KAAR is competitive with all the functions from the RKHS

corresponding to the kernel.

4.2.2 Performance guarantee

Let F be the RKHS corresponding to the kernel k(x, y). The following lemma

presents a general approach used to prove theoretical guarantees for kernelized
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algorithms.

Let predicting algorithm A be such that it uses input vectors only in the

form of dot products. We say that γAt are the predictions of A, and γKAt are

the predictions of A obtained by replacing dot products 〈xi, xj〉 of the input

vectors by the values of the kernel k(xi, xj).

Let a theoretical guarantee for the algorithm A at the step T depend on the

predictions γAt , the actual outcomes yt, the values θ′xt for an expert θ ∈ Rn, its

complexity ‖θ‖2, parameters of A, and the dot products of the input vectors

〈xi, xj〉, i, j = 1, . . . , T . Then we say that its dual form at the step T depends

in the same way on the predictions γKAt the actual outcomes yt, the values∑T
i=1 cik(xt, xi) for an expert c ∈ RT , its complexity

∥∥∥∑T
i=1 cik(·, xi)

∥∥∥
F

, the

same parameters of A, and the kernel values k(xi, xj), respectively.

Lemma 4.1 Take algorithm A predicting in Protocol 3. If there is a theoret-

ical guarantee for the algorithm A, then the dual form of the guarantee holds

even if any other kernel than the dot product is used.

Proof It suffices to prove that for each T ∈ {1, 2, . . .} and each sequence

(x1, y1, . . . , xT , yT ) ∈ (X × R)T , the dual form of the guarantee is valid. Fix

such T and (x1, y1, . . . , xT , yT ). Fix an isomorphism between the linear span of

kx1 , . . . , kxT
obtained from the Riesz Representation theorem, and RT̃ , where

T̃ ≤ T is the dimension of the linear span of kx1 , . . . , kxT
. Let x̃1, . . . , x̃T ∈ RT̃

be the images of kx1 , . . . , kxT
, respectively, under this isomorphism. Then

k(·, xi) = 〈·, x̃i〉, thus the kernels in the dual guarantee transform to the dot

products. The values
∑T

i=1 cik(xj, xi), j = 1, . . . , T , for any expert c ∈ RT are

equal to the values 〈x̃j, θ〉 for the expert θ =
∑T

i=1 cix̃i ∈ RT̃ . The complexities

of the experts are equal as well due to the isomorphism:

‖θ‖2
2 =

∥∥∥∥∥
T∑

i=1

cix̃i

∥∥∥∥∥
2

RT̃

=

∥∥∥∥∥
T∑

i=1

cikxi

∥∥∥∥∥
2

F

.

The algorithm A applied to the transformed input vectors x̃1, . . . , x̃T is

equivalent to the initial algorithm applied to the input vectors x1, . . . , xT (with

the use of kernels), thus they give the same predictions. They have the same

theoretical guarantees on their losses, thus the guarantee with kernels is valid.�
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The following theorem plays an important role in machine learning. It

shows that given a finite set of pairs (x1, y1), . . . , (xT , yT ), the best predictor

among all the functions from the given RKHS can be represented as a finite

linear combination of the kernel functions based on the input vectors.

Theorem 4.1 (Representer theorem; see Schölkopf and Smola, 2002,

Theorem 4.2) Denote by g : [0,∞) → R a strictly monotonic increasing

function. Assume X is an arbitrary set, and F is a Reproducing Kernel Hilbert

Space of functions on X with the given kernel k : X2 → R. Assume we also

have a positive integer T and an arbitrary loss function c : (X × R2)T →
R
⋃
{∞}. Then each minimizer f ∈ F of

c ((x1, y1, f(x1)), . . . , (xT , yT , f(xT ))) + g(‖f‖F)

admits a representation of the form

f(x) =
T∑

i=1

αik(x, xi)

for any x ∈ X and real numbers αi, i = 1, . . . , T .

By Lf
T denote the cumulative loss of the expert f ∈ F : Lf

T =
∑T

t=1(f(xt)−
yt)

2. The KAAR has the following upper bound on its cumulative square loss.

Theorem 4.2 For any a > 0, every positive integer T , every sequence of

outcomes of the length T , and any f ∈ F , the cumulative square loss LT of

the KAAR with the parameter a satisfies

LT ≤ Lf
T + a‖f‖2 +

(Y2 − Y1)
2

4
ln det

(
I +

1

a
KT

)
. (4.4)

Proof Following Lemma 4.1 we first need to prove that the upper bound (3.8)

for the AAR can be expressed in such a way that all the input vectors appear

only in dot products. Let us take the dot product kernel k(xi, xj) = 〈xi, xj〉.
Then the predictions of the AAR are equal to the predictions of the KAAR

for all t = 1, . . . , T by Proposition 4.1, and thus the left-hand sides of (3.8)
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and (4.4) are the same. The regret terms

(Y2 − Y1)
2

4
ln det

(
I +

1

a
KT

)
=

(Y2 − Y1)
2

4
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)

are the same due to Lemma A.5. The loss of any expert is upper bounded

by the loss of the best expert achieving the minimal loss. The regularized

cumulative losses of the best experts are the same by the Representer Theorem.

Thus we can apply Lemma 4.1 to obtain the upper bound (4.4) for any kernel

other than the dot product. �

The order of the regret term in (4.4) is not clear on the face of it. We

show that it has the order O(
√
T ) in many cases. We will use the notation

c2F = supx∈X k(x, x) and assume c2F <∞.

Corollary 4.1 In the conditions of Theorem 4.2 and if the number of steps T

is known in advance, the KAAR can achieve

LT ≤ Lf
T +

(
‖f‖2 +

(Y2 − Y1)
2

4

)
cF
√
T (4.5)

for any f ∈ F .

Proof The determinant of a symmetric positive definite matrix is upper

bounded by the product of its diagonal elements (see Beckenbach and Bell-

man, 1961, Chapter 2, Theorem 7) and thus

ln det

(
I +

1

a
KT

)
≤ T ln

(
1 +

c2F
a

)
≤ T

c2F
a

If we know the number of steps T in advance, then we can choose a specific

value for a; let a = cF
√
T . �

If we do not know the number of steps in advance, it is possible to achieve a

similar bound using the Aggregating Algorithm with a suitable initial weights

distribution over the parameter a (see Vovk, 2005).

Seeger et al. (2008) analyze the order of ln det
(
I + 1

a
KT

)
using other meth-

ods. For example, they show that if the input vectors are i.i.d. and the RBF

kernel is used, the expected order of the regret term is O(logn T ).
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4.3 Kernelized Ridge Regression

In this section we further develop the results obtained in Section 3.3. The

Bayesian Algorithm which we use in this section becomes an analogue of non-

parametric Bayesian methods.

Upper bounds on the logarithmic loss of Bayesian non-parametric algo-

rithms (including our bound for the Kernelized Bayesian Ridge Regression)

are derived by Kakade et al. (2005) and further analyzed by Seeger et al.

(2008) using other methods. On the other hand, we provide a new equality

on the square loss of the Kernelized Ridge Regression. Another approach to

obtain the same result is described in Zhdanov and Kalnishkan (2010a).

4.3.1 Kernelized Bayesian Ridge Regression

Let the outcome set Ω be the real line R and the prediction set Γ be the set of

all measurable functions on the real line integrable to one. The loss function

λ is the logarithmic loss (2.20):

λ(y, γ) = − ln γ(y),

where γ ∈ Γ and y ∈ Ω. The game follows Protocol 3. Input vectors xt come

from a set X ⊆ Rn.

Let F be the RKHS corresponding to a kernel function k(x, z), x, z ∈ X.

We also use the notation (4.2). In addition, by XT we denote the design matrix

T × n consisting of the rows of the input vectors x′1, . . . , x
′
T .

Each expert f ∈ F predicts at the step t the normal distribution on the

set of outcomes with the mean f(xt) and the variance σ2 which is assumed to

be known. In other words, each expert f ∈ F predicts

ξf
t (y) =

1√
2πσ2

e−
(f(xt)−y)2

2σ2 . (4.6)

Mixing these experts directly using the Bayesian Algorithm would correspond

to taking a Gaussian process initial distribution over the infinite-dimensional

class F of experts. Even though we will use this approach later in Section 4.5,
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here we utilize the convenient properties of the kernel trick introduced in Sec-

tion 4.2.

At step T the Kernelized Bayesian Ridge Regression algorithm (KBRR)

predicts the normal density on outcomes with the mean µT = Y′
T−1(aI +

KT−1)
−1kT−1 and variance σ2 + σ2(k(xT , xT ) − k′T−1(aI + KT−1)

−1kT−1)/a.

We denote by LT the cumulative logarithmic loss, over the first T steps, of the

algorithm, and by Lf
T we denote the cumulative logarithmic loss of the expert

f ∈ F over these steps.

Theorem 4.3 For any sequence x1, y1, x2, y2, . . . , the cumulative logarithmic

loss of the kernelized Bayesian Ridge Regression algorithm at any step T can

be expressed as

LT = min
f∈F

(
Lf

T +
a

2σ2
‖f‖2

F

)
+

1

2
ln det

(
I +

1

a
KT

)
. (4.7)

Proof Following Lemma 4.1 we need to prove that the theoretical guaran-

tee (3.14) for the BRR can be expressed in such a way that all the input

vectors appear only in dot products. Let us take the dot product kernel

k(xi, xj) = 〈xi, xj〉.
Using Lemma A.4 we obtain that the Bayesian Ridge Regression algorithm

gives the same predictions as the kernelized Bayesian Ridge Regression algo-

rithm:

Y′
t−1(aI + Kt−1)

−1kt−1 = Y′
t−1(aI +Xt−1X

′
t−1)

−1Xt−1xt

= Y′
t−1Xt−1(aI +X ′

t−1Xt−1)
−1xt.

Furthermore, we have by Lemma A.5 that

ln det

(
I +

1

a
KT

)
= ln det

(
I +

1

a
XTX

′
T

)
= ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

The regularized cumulative losses of the best experts are the same by the

Representer Theorem. Thus we can apply Lemma 4.1 to obtain (4.7) for any

kernel other than the dot product. �
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This theorem is also proven by Kakade et al. (2005) for a = σ2 using a different

approach.

4.3.2 Kernelized Ridge Regression

In this section we prove bounds on the square loss of the Kernelized Ridge

Regression algorithm (KRR). At step T it predicts the mean of the predictive

distribution of the Kernelized Bayesian Ridge Regression: γT = Y′
T−1(aI +

KT−1)
−1kT−1. The following theorem is an analogue of Theorem 3.3 for Ridge

Regression.

Theorem 4.4 The Kernelized Ridge Regression algorithm for the learner with

a > 0 satisfies, at any step T ,

T∑
t=1

(γt − yt)
2

1 + 1
a
(k(xt, xt)− k′t−1(aI + Kt−1)−1kt−1)

= min
f∈F

(
T∑

t=1

(f(xt)− yt)
2 + a‖f‖2

F

)
. (4.8)

Proof Following Lemma 4.1 we need to prove that the theoretical guar-

antee (3.18) for the RR can be expressed in such a way that all the input

vectors appear only in dot products. Let us take the dot product kernel

k(xi, xj) = 〈xi, xj〉.
Since the predictions of the Bayesian Ridge Regression algorithm and the

kernelized algorithm are the same, the means of the predictive distributions are

the same. Thus the KRR gives the same predictions as the RR. Furthermore,

by Lemma A.4 we have the equality of the denominators:

1 +
1

a
(k(xt, xt)− k′t−1(aI + Kt−1)

−1kt−1)

= 1 +
1

a
(x′t(I −X ′

t−1(aI +Xt−1X
′
t−1)

−1Xt−1)xt)

= 1 +
1

a
(x′t(aI +X ′

t−1Xt−1)
−1((aI +X ′

t−1Xt−1)−X ′
t−1Xt−1)xt)

= 1 + x′t(aI +X ′
t−1Xt−1)

−1xt.
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The regularized cumulative losses of the best experts are the same by the

Representer Theorem. Thus we can apply Lemma 4.1 to obtain (4.8) for any

kernel other than the dot product. �

We can see from Theorem 13.3.8 of Harville (1997) that

det

(
I +

1

a
KT

)
= det

(
I + 1

a
KT−1

1
a
kT−1

1
a
k′T−1 1 + k(xT , xT )/a

)

= det

(
I +

1

a
KT−1

)(
1 +

k(xT , xT )− k′T−1(aI + KT−1)
−1kT−1

a

)
,

and so by induction we have

det

(
I +

1

a
KT

)
=

T∏
t=1

(
1 +

k(xt, xt)− k′t−1(aI + Kt−1)
−1kt−1

a

)
,

with k′0(aI + K0)
−1k0 understood to be 0. Using this equality and following

the arguments of the proof of Corollary 3.1 we obtain the following corollary

from Theorem 4.4.

Corollary 4.2 Assume |yt| ≤ Y for all t, clip the predictions of kernelized

Ridge Regression to [−Y, Y ], and denote them by γY
t . Then

T∑
t=1

(γY
t − yt)

2 ≤ min
f∈F

(
T∑

t=1

(f(xt)− yt)
2 + a‖f‖2

F

)
+ 4Y 2 ln det

(
I +

1

a
KT

)
.

(4.9)

It is possible to prove this corollary directly from Corollary 3.1 using the same

argument as in the proof of Theorem 4.4.

The order of the regret term in (4.9) can be analyzed using the same argu-

ments as in the end of Section 4.2.2.
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4.4 Kernelized regression with pointing pre-

diction intervals under discounted loss

In this section we present the Kernelized Pointing Prediction Intervals Regres-

sion algorithm (KPPIR).

4.4.1 Derivation of the algorithm

Let the outcome sets Ωt be the bounded intervals Ωt = [Yt,1, Yt,2] announced

by reality at the beginning of each prediction step t. The prediction set Γ is

the real line R and the loss function is the square loss (2.24): λ(y, γ) = (γ−y)2

with y ∈ Ωt, γ ∈ Γ. The square loss is discounted with the factors αt ∈ [0, 1]

at each step.

Let F be the RKHS corresponding to a kernel function k(x, z), x, z ∈
X. We also use the notation (4.2). Recall that ηt = 2

(Yt,2−Yt,1)2
and wt,T =

ηt

∏T−1
i=t αi. We also denote WT := diag(w1,T , w2,T , . . . , wT,T ) and thus

√
WT =

diag(
√
w1,T ,

√
w2,T , . . . ,

√
wT,T ). Expert f ∈ F predicts at step t

ξf
t = f(xt). (4.10)

Proposition 4.2 Predictions (3.30) of the PPIR can be represented as

γT =

(
YT−1;

Y2 + Y1

2

)′√
WT

(
aI +

√
WTKT

√
WT

)−1√
WTkT (4.11)

for the linear kernel k(x, y) = 〈x, y〉, the unit T × T matrix I, and a > 0.

Proof Let by X denote the design matrix T ×n consisting of the rows of the

input vectors x′1, . . . , x
′
T . Then we have KT = XX ′ and

√
WTkT =

√
WTXxT .

By Lemma A.4 we obtain(
aI +

√
WTXX

′
√
WT

)−1√
WTXxT =

√
WTX(aI +X ′WTX)−1xT
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It is easy to see that

(
YT−1;

Y2 + Y1

2

)′
WTX =

(
T−1∑
t=1

wt,Tytxt + ηT

(
YT,2 + YT,1

2

)
xT

)′
and

X ′WTX =
T−1∑
t=1

wt,Txtx
′
t + ηTxTx

′
T .

Thus we obtain formula (3.30) from (4.11). �

The most time-consuming operation is the inversion of the updated matrix

aI +
√
WTKT

√
WT = aI

+


w1,Tk(x1, x1)

√
w1,Tw2,Tk(x1, x2) · · · √

w1,TwT,Tk(x1, xT )
√
w2,Tw1,Tk(x2, x1) w2,Tk(x2, x2) · · · √

w2,TwT,Tk(x2, xT )
...

...
. . .

...
√
wT,Tw1,Tk(xT , x1)

√
wT,Tw2,Tk(xT , x2) · · · wT,Tk(xT , xT )

 .

It is interesting to find efficient algorithms to inverse the matrix, especially

in the case when the outcome sets and the discounting do not depend on t:

Yt,2 = Y2, Yt,1 = Y1, and αt = α is close to zero. Then the first rows and

columns in the second addend matrix become small with time, and efficient

algorithms may exist to provide reliable approximations of the inverse.

4.4.2 Performance guarantees

In this section we prove an upper bound on the discounted square loss of the

KPPIR.

Theorem 4.5 For any a > 0, every positive integer T , every sequence of

outcomes of the length T , and any f ∈ F , the KPPIR with the parameter a
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satisfies

T∑
t=1

wt,T (γt − yt)
2 ≤

T∑
t=1

wt,T (f(xt)− yt)
2 + a‖f‖2

+
1

2
ln det

(√
WTKT

√
WT

a
+ 1

)
(4.12)

Proof Following Lemma 4.1 we need to prove that the upper bound (3.25)

for the PPIR can be expressed in such a way that all the input vectors appear

only in dot products. Let us take the dot product kernel k(xi, xj) = 〈xi, xj〉.
Then the predictions of the PPIR are equal to the predictions of the KPPIR

for all t = 1, . . . , T by Proposition 4.2, and thus the left-hand sides of (3.25)

and (4.12) are the same. The regret terms

1

2
ln det

(
I +

√
WTKT

√
WT

a

)
=

1

2
ln det

(
I +

X ′WTX

a

)
are the same due to Lemma A.5. The loss of any expert is upper bounded

by the loss of the best expert achieving the minimal loss. The regularized

cumulative losses of the best experts are the same by the Representer Theorem.

Thus we can apply Lemma 4.1 to obtain the upper bound (4.12) for any kernel

other than the dot product. �

The order of the regret term in (4.12) can be analyzed using the same

arguments as in the end of Section 4.2.2. We would like to pay attention to

one particular special case when the prediction intervals and the discounting

factor do not change with time: Yt,2 = Y2, Yt,1 = Y1, and αt = α. We will use

the notation c2F = supx∈X k(x, x) and assume that c2F <∞.

Corollary 4.3 In the conditions of Theorem 4.5 and given in advance any

constant T such that
∑T

t=1 α
T−t ≤ T , one can choose parameter a such that
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the strategy in Theorem 4.5 achieves

T∑
t=1

αT−t(γt − yt)
2

≤
T∑

t=1

αT−t(f(xt)− yt)
2 +

(
(Y2 − Y1)

2

4
+ ‖f‖2

)
cF
√
T (4.13)

for any f ∈ F .

Proof The determinant of a symmetric positive definite matrix is upper

bounded by the product of its diagonal elements (see Beckenbach and Bell-

man, 1961, Chapter 2, Theorem 7) and thus

ln det

(
I +

√
WTKT

√
WT

a

)
≤ T ln

1 +
c2F

(∏T
t=1wt,T

)1/T

a


≤ T

c2F
a

(
T∏

t=1

wt,T

)1/T

.

Moreover, using the inequality between the geometric and arithmetic means,

we obtain (
T∏

t=1

wt,T

)1/T

= η

(
T∏

t=1

αT−t

)1/T

≤ η

∑T
t=1 α

T−t

T
≤ η

T
T
.

Choosing a = ηcF
√
T , we obtain (4.13) from (4.12). �

The role of time in (4.13) is played by the upper bound T on
∑T

t=1 α
T−t,

similarly to other problems with discounting (e.g. Section 3.4). Note that if

α < 1, then

T∑
t=1

αT−t = α0 + . . .+ αT−1 =
1− αT

1− α
≤ 1

1− α
.

Thus if α is known, it is easy to find T for all T at once.
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4.5 Kernelized generalized linear models

In this section we kernelize the algorithm described in Section 3.5 and prove

upper bounds on the square loss of the algorithm competing with the functions

from an RKHS. Algorithm 9 is not formulated in terms of the dot product of

input vectors, and thus the technique applied in Section 4.2 is not applica-

ble here. Instead, we approach the kernelization problem by mixing infinite-

dimensional Hilbert space of experts directly using the Gaussian process prior

on them, similarly to the approach of Bayesian nonparametric methods.

An approach to kernelize the algorithms working with generalized linear

models under the logarithmic loss function (standard models) was suggested

by Cawley et al. (2007). Their algorithm uses only dot products of input

vectors.

4.5.1 Derivation of the algorithm

We consider Protocol 3 with the outcome set Ω = [Y1, Y2], the prediction set

Γ = [Y1, Y2], and the square loss (2.24): λ(y, γ) = (γ − y)2 with y ∈ Ω, γ ∈ Γ.

Input vectors xt come from a set X ⊆ Rn.

Let F be the RKHS corresponding to a kernel function k(x, z), x, z ∈ X.

We also use the notation (4.2). Expert f ∈ F predicts at step t

ξf
t = Y1 + (Y2 − Y1)σ(f(xt)) (4.14)

for the activation function σ : R → R. The cumulative square loss of the

expert f at the step T is denoted by Lf
T .

We mix experts (4.14) using the Aggregating Algorithm (Algorithm 1).

Let the initial distribution P0(df) over the experts be a Gaussian process;

see Rasmussen and Williams (2006) for the description of some mathematical

foundations and practical application of Gaussian processes.

Definition 4.4 (Gaussian process) A Gaussian process is a collection of

random variables, any finite number of which have a joint Gaussian distribu-

tion.
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The realization of the random variable distributed as a Gaussian process

can be thought of as an infinite vector such that each component (and set of

components) of it is a realization of a Gaussian distributed random variable.

Each component of the vector can be interpreted as a function of the index of

the component. The distribution over functions on different domains is defined

similarly. It is possible to sample from a given Gaussian process, but only to

obtain the values of a finite set of the components of the vector.

The initial distribution over functions evaluated in examples x1, . . . , xT is

expressed as follows:

(f(x1), . . . , f(xT ))′ ∼ N

(
0,

KT

2ηa

)
.

We denote it by P T
0 (df). Even though this particular normal distribution

depends on the examples, it corresponds to the initial distribution over the

experts, the Gaussian process, which is independent on them.

Following the usual steps in the derivation of the prediction algorithm using

the AA, we obtain that the generalized prediction calculated from unnormal-

ized weights is expressed as follows:

GT (y) = logβ

∫
β
PT−1

t=1 (σ(f(xt))−yt)2+(σ(f(xT ))−y)2P T
0 (df) (4.15)

for any y ∈ Ω. The algorithm uses the substitution function (2.26) to give its

prediction:

γT =
Y2 + Y1

2
− GT (Y2)−GT (Y1)

2(Y2 − Y1)
. (4.16)

In order to calculate the integral, it is possible to use a Monte-Carlo method.

That is, to sample many vectors (f(x1), . . . , f(xT ))′ from the initial distrib-

ution, and then average the values of the integrated function. We call the

algorithm which uses numerical integration the KAAGLM (Kernelized Aggre-

gating Algorithm for Generalized Linear Models). It is possible to apply the

methods of MCMC to calculate the integral more efficiently similarly to as

described in Section 3.5.3.
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4.5.2 Performance guarantee

To derive the upper bound on the loss we again need the activation function

to have the property (3.33). The function

b(u, z) :=

(
dσ(z)

dz

)2

+ (σ(z)− u)
d2σ(z)

dz2
(4.17)

should be uniformly bounded: b := supu∈[0,1],z∈R |b(u, z)| < ∞. We derive the

following upper bound on the cumulative square loss of the prediction strategy

SK which uses the asymptotical (in the number of iterations in numerical

integration) KAAGLM to give its predictions.

Theorem 4.6 Let a > 0. There exists a prediction strategy SK for the learner

such that for every positive integer T , for every sequence of outcomes of the

length T , and any f ∈ F , the loss LT of the learner satisfies

LT ≤ Lf
T + a‖f‖2 +

(Y2 − Y1)
2

4
ln det

(
1 +

b(Y2 − Y1)
2KT

a

)
. (4.18)

Proof Following Lemma 4.1, we have to prove that the theoretical guaran-

tee (3.34) can be expressed in such a way that all the input vectors appear

only in dot products. We also need to prove that the kernelized strategy SK

gives the same prediction as the strategy S used in Theorem 3.5 if the kernel

is the dot product.

Let us take the dot product kernel k(xi, xj) = 〈xi, xj〉. Let us denote by

hi the values f(xi), i = 1, . . . , T , and by hτ the vectors hτ = (h1, . . . , hτ )′ for

τ = 1, . . . , T . Then the integral in (4.15) at the step τ is expressed as follows:∫
β
Pτ−1

t=1 (σ(ht)−yt)2+(σ(hτ )−y)2P τ
0 (dh) (4.19)

with the Gaussian measure P τ
0 (dh) ∼ N

(
0, Kτ

2ηa

)
. On the other hand, the

initial weights distribution (3.42) over the generalized linear models is also

Gaussian, P0(dθ) ∼ N
(

0, I
2ηa

)
, and thus there is a measure over predictions

Xτθ ∼ N
(

0, Xτ X′
τ

2ηa

)
. Here Xτ is the matrix consisting of the rows of the input

vectors x′1, . . . , x
′
τ . We also have Kτ = XτX

′
τ . Therefore, the measures in both
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of the integrals (4.19) for SK and

logβ

∫
β
PT−1

t=1 (σ(θ′xt)−yt)2+(σ(θ′xT )−y)2P0(dθ)

for S induce the same measure over predictions. This leads to the fact that

the predictions of the strategies are the same since they utilize the integrals in

the same way (4.16).

The determinants

det

(
I +

b(Y2 − Y1)
2

a
KT

)
= det

(
I +

b(Y2 − Y1)
2

a

T∑
t=1

xtx
′
t

)

are the same to Lemma A.5.

The loss of any expert is upper bounded by the loss of the best expert

achieving the minimal loss. The regularized cumulative losses of the best ex-

perts are the same by the Representer Theorem. Thus we can apply Lemma 4.1

to obtain the upper bound (4.18) for any kernel other than the dot product.�

The order of the regret term in (4.18) can be analyzed using the same

arguments as in the end of Section 4.2.2.
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4.6 Kernelized probability forecasting

In this section, we further develop the results obtained in Section 3.6. We only

consider the algorithm which gives probability predictions directly (mAAR),

because the properties of the component-wise algorithm easily follow from the

properties of the KAAR described in Section 4.2.

4.6.1 Derivation of the algorithm

The set of outcomes Ω = P(Σ) is the set of all probability measures on a finite

set Σ with d elements, the set of predictions Γ := {(γ1, . . . , γd) :
∑d

i=1 γ
i =

1, γi ∈ R} is a hyperplane in d-dimensional space containing all the outcomes,

and the quality of predictions is measured by the Brier loss (2.29). The set of

input vectors X ⊆ Rn is a subset of the Euclidean space. The game of pre-

diction follows Protocol 3. F is the RKHS corresponding to a kernel function

k(x, z), x, z ∈ X.

Our algorithm competes with the experts predicting ξt(f) according to the

following functions:

ξ1
t = 1/d+ f 1(xt)

. . .

ξd−1
t = 1/d+ fd−1(xt) (4.20)

ξd
t = 1− ξ1 − · · · − ξd−1

with f 1, . . . , fd−1 ∈ F . We denote the cumulative loss of the expert f =

(f 1, . . . , fd−1)′ by Lf
T .

We start by rewriting the prediction of the mAAR in the dual form. We

use the notation (4.2). We also denote

Ỹi
T−1 := −2(yi

1 − yd
1 , . . . , y

i
T−1 − yd

T−1,−1/2)′, i = 1, . . . , d− 1,

Y
i

T−1 := −2(yi
1 − yd

1 , . . . , y
i
T−1 − yd

T−1, 0)′, i = 1, . . . , d− 1.
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Let us set AT := aI +


2KT · · · KT

...
. . .

...

KT · · · 2KT

 with the unit T (d− 1)× T (d− 1)

matrix I.

Proposition 4.3 On trial T values Gi
T from (3.46) can be represented as

Gi
T =

(
Ỹ1

T−1; · · · ; Ỹi−1
T−1; Y

i

T−1; Ỹi+1
T−1; · · · ; Ỹd−1

)′
· A−1

T

(
k(xT ); · · · ; k(xT ); 2k(xT ); k(xT ); · · · ; k(xT )

)
(4.21)

for the linear kernel k(x, y) = 〈x, y〉.

Proof By MT = (x1, . . . , xT ) we denote the matrix n × T consisting of the

columns of the input vectors. Let us set

BT =


2MT · · · MT

...
. . .

...

MT · · · 2MT

 , CT =


M ′

T · · · 0
...

. . .
...

0 · · · M ′
T

 .

Then hi
T = −2

∑T−1
t=1 (yi

t − yd
t )xt = MTY

i

T−1, i = 1, . . . , d − 1, and we can

decompose

bT{i} = (h1
T−1; . . . ;h

d−1
T−1) + (xT ; . . . , xT ; 0;xT ; . . . , xT )

= C ′
T

(
Ỹ1

T−1; · · · ; Ỹi−1
T−1; Y

i

T−1; Ỹi+1
T−1; · · · ; Ỹd−1

T−1

)
.

The matrix AT can be represented as AT = aI + CTBT because KT =

M ′
TMT . Using Lemma A.4, we obtain from (3.46)

Gi
T = −(bT{i})′(aI +BTCT )−1zt{i}

= −
(
Ỹ1

T−1; · · · ; Ỹi−1
T−1; Y

i

T−1; Ỹi+1
T−1; · · · ; Ỹd−1

T−1

)′
· (aI + CTBT )−1CT

(
−xT ; · · · ; −2xT ; · · · ;−xT

)
, i = 1, . . . , d− 1,

and Gd
T = 0. Note that kT = M ′

TxT , thus (4.21) holds. �
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To get predictions one can use the substitution function from Proposition 2.1.

We call the resulting algorithm the multidimensional Kernelized Aggregating

Algorithm for Regression (mKAAR).

4.6.2 Performance guarantee

Theorem 4.7 For any a > 0, every positive integer T , every sequence of

outcomes of the length T , and any f 1, . . . , fd−1 ∈ F , the loss LT of the mKAAR

with the parameter 2a satisfies

LT ≤ Lf
T + 2a

d−1∑
i=1

‖fi‖2
F +

1

2
ln det

I +
1

2a


2KT · · · KT

...
. . .

...

KT · · · 2KT


 . (4.22)

Proof Following Lemma 4.1 we need to prove that the upper bound (3.49)

for the mAAR can be expressed in such a way that all the input vectors appear

only in dot products. Let us take the dot product kernel k(xi, xj) = 〈xi, xj〉.
The predictions of the mAAR and of the mKAAR are equal to each other

by Proposition 4.3; thus the left-hand sides of (3.49) and (4.22) are the same.

The regret terms

1

2
ln det

I +
1

2a


2CT · · · CT

...
. . .

...

CT · · · 2CT




=
1

2
ln det

I +
1

2a


2KT · · · KT

...
. . .

...

KT · · · 2KT




are the same due to Lemma A.5; here CT =
∑T

t=1 xtx
′
t. The regularized

cumulative losses of the best experts are the same by the Representer Theorem

Thus using Lemma 4.1 we can prove (4.22) for any kernel other than the dot

product. �

The regret term can be analyzed using the arguments of Section 4.2.2.
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Chapter 5

Online regression in Banach

spaces

In this chapter we describe online regression in Banach spaces. The idea of

competing with a class of functions wider than Hilbert spaces, in particular

Banach spaces, is very natural. Indeed, if we want to compete with some

linear space F , it should have a norm. If there is no norm, F can contain a

very complicated hypothesis f (e.g., an exact fit) and it is almost impossible

to compete against it. If there is a norm, we can say that this hypothesis f

is probably too complicated. The norm should be somehow aligned with the

evaluation functional. Indeed, we are ultimately interested in predictions f(x).

The norm is just a measure of complexity, and the continuity of the functional

gives some connections between predictions and this measure. So if hypotheses

f1 and f2 are close w.r.t. the norm, they should produce similar predictions.

This argument leads to the fact we need the notion of Proper Banach Func-

tional Spaces. These are functional Banach spaces with continuous evaluation

functional. Moreover, there are too many types of norms, so it is not enough

to only give a measure of complexity. Some geometrical property of the space

is needed, some measure “to which extent the norm is good”. This property

can be given, for example, by the convexity module, or by the smoothness

module.

The mathematical theory of functional Banach spaces is wide and well

developed in many areas (see, for example, Triebel, 2006). Unfortunately, may
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be due to the high complexity of the theory, there exists much less known

applications of it to machine learning than for Hilbert spaces. Despite of

that, a description of some of the recent achievements in this area is given

by Zhang et al. (2009). Grove et al. (1997) prove mistake bounds for a linear

online classification algorithm. Gentile and Littlestone (1999) introduce online

regression algorithms competing with linear functions from a finite-dimensional

Banach space. Vovk (2007) uses a cardinally different method and develops

an algorithm working with infinite-dimensional functional Banach spaces.
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5.1 Competing with Banach lattices

In this section, we consider more general sets X of the input vectors than

subsets of Rn used in previous chapters. We take X to be a subset of an

abstract normed vector space. The performance of our algorithm is compared

with the performance of any vector from the dual space (we say that it predicts

linearly on the input vector). Thus we consider linear regression in infinite-

dimensional abstract Banach spaces.

From one side, we show that it is enough to slightly modify algorithms

developed to compete with linear functions (we take the AAR, Section 3.2,

as an example) to enable them to work in our framework. On the other side,

this surprising result comes with the assumption that all the input vectors are

known in advance. We call it semi-online setting.

We then modify our algorithm to enable it to work with finite-dimensional

vectors from a domain of Rn as input vectors and compete with the functions

belonging to a functional Sobolev space. This may lead to a wide spectrum of

applications, for example prediction of Brownian motion, which almost surely

belongs to a Sobolev space. The results of this section are described in Zhdanov

et al. (2010).

5.1.1 Linear functions and their p-norms

Let the outcome set Ω be the interval [−Y, Y ] for some Y > 0, the prediction set

Γ be the real line R, and the loss function be the square loss (2.24): λ(y, γ) =

(γ − y)2 for y ∈ Ω, γ ∈ Γ.

Let also the set X of input vectors be a subset of Rn, X ⊆ Rn, only in this

subsection. A linear expert θ ∈ Rn predicts ξθ
t = θ′xt at the step t.

We use the Aggregating Algorithm for Regression. The regret term in the

upper bound (3.9) has the logarithmic order in T but linear in n. Therefore,

it is better applicable for the case of small n and large T . We shall now

prove an upper bound that grows more slowly in n and depends on non-

euclidian norms of θ. By ‖x‖p we denote the p-norm of any vector x ∈ Rn:

‖x‖p = (|x1|p + . . .+ |xn|p)1/p. We also denote the space of n-dimensional real

vectors x = (x1, . . . , xn) equipped with the p-norm by `np , p ≥ 1. We take
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q to be such that 1/p + 1/q = 1. We use the following constants of norms

equivalence.

Lemma 5.1 Let a ∈ Rn, 1 ≤ p ≤ 2, and 1/p+ 1/q = 1. Then

‖a‖2 ≤ ‖a‖p,

‖a‖2 ≤ n1/2−1/q‖a‖q.

Proof The first inequality follows from the fact that the function f(p) = ‖a‖p

is decreasing in p. Indeed,

f ′p = ‖a‖p

(
−

ln ‖a‖p
p

p2
+

∑n
i=1 |ai|p ln |ai|
p‖a‖p

p

)
.

We need to prove that

n∑
i=1

|ai|p ln |ai| ≤ ‖a‖p
p ln ‖a‖p.

Since norm is homogenous, it is enough to prove the inequality for any a such

that ‖a‖p = 1. This follows from the fact that ln |ai| ≤ 0 for |ai| ≤ 1 for all i.

To prove the second inequality we consider the Hölder inequality for x, y ∈
Rn and b ≥ 1 (see Beckenbach and Bellman, 1961, p.21):

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|b
)1/b( n∑

i=1

|yi|c
)1/c

for 1/b+ 1/c = 1. This implies

‖a‖2
2 =

n∑
i=1

|ai|2 ≤

(
n∑

i=1

(|ai|2)q/2

)2/q( n∑
i=1

|1|
q

q−2

) q−2
q

,

for b = q/2 ≥ 1 and c = q
q−2

. Therefore ‖a‖2 ≤ n1/2−1/q‖a‖q. �

Lemma 5.2 For each positive integer T there is a constant a > 0 such that

for any sequence (x1, y1), . . . , (xT , yT ) such that ||xt||q ≤ X for all t = 1, . . . , T ,
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the loss LT of the AAR with the parameter a satisfies

LT ≤ Lθ
T + (Y 2X2 + ‖θ‖2

p)T 1/2n1/2−1/ max(q,p) (5.1)

for any θ ∈ `np .

Proof Let by X denote the design matrix of the rows of the input vectors

x′1, . . . , x
′
T . By Lemma A.5 we have

det

(
I +

1

a

T∑
t=1

xtx
′
t

)
= det

(
I +

1

a
XX ′

)
in (3.8). Thus, bounding the determinant of the matrix by the product of its

diagonal elements (see Beckenbach and Bellman, 1961, Chapter 2, Theorem 7)

and using ln(1 + z) ≤ z for z ≥ 0, we obtain

LT ≤ Lθ
T + a‖θ‖2

2 + Y 2T
maxt=1,...,T ‖xt‖2

2

a
.

If q ≥ 2, then by Lemma 5.1 ‖xt‖2
2 ≤ n1−2/q‖xt‖2

q for all t and ‖θ‖2
2 ≤ ‖θ‖2

p.

This leads to a‖θ‖2
p + Y 2Tn1−2/qX2

a
in the bound. By choosing a =

√
Tn1−2/q

we obtain (Y 2X2 + ‖θ‖2
p)T 1/2n1/2−1/q.

If 1 ≤ q ≤ 2, then by Lemma 5.1 ‖xt‖2
2 ≤ ‖xt‖2

q for all t and ‖θ‖2
2 ≤

n1−2/p‖θ‖2
p. This leads to an1−2/p‖θ‖2

p+ Y 2TX2

a
in the bound. For a =

√
Tn1−2/q

and using 1/p+ 1/q = 1 we obtain (Y 2X2 + ‖θ‖2
p)T 1/2n1/2−1/p. �

Remark 5.1 We can deduce another bound from (3.9). We have ‖x‖∞ ≤ ‖x‖q

for any q ≥ 1. If q ≥ 2, we have ‖θ‖2 ≤ ‖θ‖p, and the upper bound becomes

LT ≤ Lθ
T + a‖θ‖2

p + nY 2 ln

(
TX2

a
+ 1

)
.

If 1 ≤ q < 2, we have ‖θ‖2 ≤ n1/2−1/p‖θ‖p, and the upper bound becomes

LT ≤ Lθ
T + an1/2−1/p‖θ‖2

p + nY 2 ln

(
TX2

a
+ 1

)
.

The last bounds are better in T but worse in n than (5.1). In our main theorem
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below we consider spaces of infinite dimension. The role of n is played there

by the dimension of the span of the input vectors so far, which is generally T

(because input vectors also come from an infinite-dimensional space), and only

bounds similar to (5.1) remain nontrivial.

5.1.2 Banach lattices in semi-online setting: framework,

algorithm, and performance guarantee

In this section we need to consider a different protocol than Protocol 3. The

learner plays the game following Protocol 5. S is an abstract normed linear

space. The prediction set Γ is the real line.

Protocol 5 Semi-online abstract regression

Reality announces number of steps T and input vectors x1, . . . , xT ∈ S.
for t = 1, 2, . . . , T do

Experts announce ξθ
t ∈ Γ.

Learner announces γt ∈ Γ.
Reality announces yt ∈ Ω.

end for

The learner competes with the experts predicting according to the linear

predictors from the dual space S∗. We derive the algorithm BLAAR (Banach

Lattices-competing AAR) working in Lp(µ), p ≥ 1. Recall that Lp(µ) is the

space of all µ-equivalent classes of p-integrable µ-measurable functions on Rn:

‖f‖Lp(µ) =

(∫
Rn

|f |pdµ
)1/p

<∞.

We use the notation Lp := Lp(µ). The BLAAR uses the Kernelized Aggre-

gating Algorithm for Regression (see Section 4.2) to give its predictions. It is

described as Algorithm 12 and the derivation follows in Section 5.1.3.

We prove the following upper bound for the cumulative loss of the BLAAR.

It competes with the experts following linear functions from (Lp)∗. Given an

input vector x, the expert f predicts f(x). Its cumulative square loss is denoted

by Lf
T .

190



Theorem 5.1 Suppose we are given p > 1 and x1, . . . , xT ∈ Lp for any pos-

itive integer T . Assume also that ‖xt‖Lp ≤ X for all t = 1, . . . , T . Then

there exists a > 0 such that for all f ∈ (Lp)∗ and any sequence y1, . . . , yT , the

cumulative loss LT of the BLAAR with the parameter a satisfies

LT ≤ Lf
T + (Y 2X2 + ‖f‖2

(Lp)∗)T
1/2+|1/2−1/p|. (5.2)

The proof of this theorem is given in Section 5.1.3. Note that if in Lemma 5.2

we take n = T , then the AAR gives the regret term of the same order T 1−1/p

for `np , p ≥ 2.

Algorithm 12 BLAAR for Lp.

Require: Number of steps T and input vectors x1, . . . , xT ∈ Lp.
Step 1. Find a linearly independent subset of x1, . . . , xT with the maximum
number of vectors: xr1 , . . . , xrn .
Step 2. Solve the following optimization problem. Maximize the absolute
value of the determinant of the n × n matrix C = {cij}ij (| detC| → max)
of the expansion coefficients of γi =

∑n
j=1 cijxrj

subject to the constraints∥∥∥∥∥∥
√√√√ n∑

i=1

|γi|2

∥∥∥∥∥∥
Lp

≤ 1.

Step 3. Take a =
√
Tn−|1/2−1/p|. Use it as a parameter for the KAAR.

Step 4. Find the coefficients βsi, s = 1, . . . , T , i = 1, . . . , n, of the expan-
sions xs =

∑n
i=1 βsiγi.

Step 5. Define the kernel matrix

k(xs, xt) =
1

n

n∑
i=1

βsiβti, s, t = 1, . . . , T. (5.3)

for t = 1, 2, . . . , T do
Predict γt ∈ Γ with KAAR according to the formula (4.3) with c = 0,
Y2 = Y , and Y1 = −Y .
Read yt.

end for

It is possible to generalize the result on Banach lattices of more general

types (see the definition in Lindenstrauss and Tzafriri, 1979 or Tomczak-
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Jaegermann, 1989). The algorithm becomes rather tricky and the derivation

of it is too technical, thus we do not discuss the general case here. The proof

of an analogue of Theorem 5.1 for general lattices is given in Zhdanov et al.

(2010). The lattices are a well-studied wide class of Banach spaces. We use the

fact that any Lp(µ) is a lattice (consequently, `p is a lattice). Other examples

of Banach lattices include Orlicz spaces.

5.1.3 The proof of the main result and the derivation

of the algorithm

In this section we prove Theorem 5.1 and derive Algorithm 12.

Proof of the main result

The proof is based on the possibility to construct an isomorphism between a

finite-dimensional subspace of Lp and a Hilbert space such that the norms of

the vectors do not increase too much. Precisely (see Lewis, 1978, Corollary 5),

Theorem 5.2 (Distance) If X is an n-dimensional subspace of Lp, 1 < p <

∞, then there exists an isomorphic operator U : X → Rn = `n2 such that

‖U‖‖U−1‖ ≤ n|1/2−1/p|. (5.4)

Here ‖U‖ = supx∈X
‖Ux‖
‖x‖ and ‖U−1‖ = supr∈Rn

‖U−1r‖
‖r‖ .

The expression infV ‖V ‖‖V −1‖ over all isomorphisms V : X → Rn defines a

Banach-Mazur distance d(X ,Rn) between X and Rn. For the case of a general

Banach space the John theorem (John, 1948) states that d(X ,Rn) ≤
√
n for

any n-dimensional subspace X ∈ B, where B is any Banach space. Thus our

theorem can be applied for the cases p = 1 and p = ∞ though the regret term

becomes trivial (of order T ).

Proof (of Theorem 5.1) Let X ⊂ Lp be the linear span of the input vec-

tors x1, . . . , xT . Let the dimension of X be n. By the Distance theorem there
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exists an isomorphism U : X → Rn such that

‖U‖‖U−1‖ ≤ n|1/2−1/p| = C.

Let us assume (without loss of generality) that the norms of the operator U

and of the inverse operator U−1 are as follows:

‖U‖ = sup
x 6=0,x∈X

‖U(x)‖
‖x‖

= 1, ‖U−1‖ = sup
r 6=0,r∈Rn

‖U−1(r)‖
‖r‖

≤ C. (5.5)

If the norm of the direct operator does not equal one, we can always replace

it by the operator V = U/||U || with unitary norm. The norm of the inverse

operator then increases by ||U ||.
By ri = U(xi), i = 1, . . . , T , we denote the images of the input vectors

xi applying operator U . We apply the KAAR with the scalar product kernel

to these images ri consequently. From Theorem 4.2 we obtain that for any

g ∈ (Rn)∗ and a > 0 the loss LT of the learner at the step T satisfies

LT ≤ Lg
T + a‖g‖2

2 + Y 2T
maxi=1,...,T ‖ri‖2

2

a
, (5.6)

where the determinant of the positive definite matrix I + 1
a
KT (KT is the

matrix of scalar products (ri, rj)) is bounded by the product of its diagonal

elements (Beckenbach and Bellman, 1961, Chapter 2, Theorem 7) and the

logarithm ln(1 + x) is bounded by x for x ≥ 0.

For any f ∈ (Lp)∗ we fix g̃ : Rn → R such that g̃(r) := f(U−1(r)) for any

r ∈ Rn. Since U is an isomorphism, U−1(r) ∈ Lp. The linearity of g̃ follows

from the linearity of U−1, so g̃ ∈ (Rn)∗. This means that Lg̃
T = Lf

T because

the values of f and g̃ are equal on the corresponding vectors from X and Rn.

Let us consider any linear functional h : X → R such that h(x) = f(x) for

all x ∈ X . Clearly,

‖f‖(Lp)∗ = sup
‖x‖=1,x∈Lp

|f(x)| ≥ sup
‖x‖=1,x∈X

|f(x)| = sup
‖x‖=1,x∈X

|h(x)| = ‖h‖X .
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The norm of h can be lower estimated using (5.5):

‖h‖X = sup
x 6=0,x∈X

|h(x)|
‖x‖

= sup
r 6=0,r∈Rn

|g̃(r)|
‖U−1(r)‖

≥ 1

C
sup

r 6=0,r∈Rn

|g̃(r)|
‖r‖

=
1

C
‖g̃‖(Rn)∗ .

On the other hand, we have ‖r‖ ≤ ‖x‖ for all x ∈ X , r = U(x). Thus

‖ri‖2 ≤ ‖xi‖2, i = 1, . . . , T , and ‖g̃‖2
(Rn)∗ ≤ C2‖h‖2

X ≤ C2‖f‖2
(Lp)∗ , so the

upper bound (5.6) transforms to

LT (BLAAR) ≤ LT (f) + aC2‖f‖2
(Lp)∗ +

Y 2TX2

a
.

We can choose a =
√
T/C and recall that n in C is the number of linearly

independent input vectors among x1, . . . , xT . Thus n ≤ T , and we get the

bound (5.2). �

Derivation of Algorithm 12

The derivation of our algorithm is based on the proof of the Distance theorem

given in Lewis (1978) and on the proof of Theorem 5.1.

Step 2: The optimization task. Let X := span{xr1 , . . . , xrn} and thus

dimX = n. We construct the isomorphism U (to be more precise, U−1) for

the Distance theorem in the following way.

We take some basis φ1, . . . , φn ∈ X ∗. For any isomorphism u : Rn → X ⊂
Lp we define its determinant by detu = det{φi(γj)}ij, where γj = u(ej) for

the unit vector basis e1, . . . , en ∈ Rn.

Then we find u0 such that | detu0| → max and ‖γX‖Lp ≤ 1, where γX =√∑n
i=1 |γi|2. The resulting isomorphism u0 turns out to be the one which

is used in the Distance theorem, u0 = U−1, for the proof see Lewis (1978)

or Tomczak-Jaegermann (1989). The absolute value of the maximum of the

determinant is unique up to a constant depending on the choice of {φi}n
1 . It is

convenient to choose φi such that φi(x) = ai for any x =
∑n

i=1 aixri
∈ X (so

{φi}n
1 is a biorthogonal system to {xri

}n
1 ). Then | detu| = | det{cij}ij|, where

{cij}ij is the matrix of the coefficients of the expansions of γ1, . . . , γn in the

basis xr1 , . . . , xrn : γi =
∑n

j=1 cijxrj
. We say that the coefficients {cij}ij make
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up the n× n matrix C.

Steps 4 and 5: The scalar product. The scalar product of x1, . . . , xn

(the kernel matrix) can be defined through the scalar product of the images of

these vectors under the isomorphism u−1
0 , i.e., 〈xs, xt〉 := 〈u−1

0 (xs), u
−1
0 (xt)〉Rn .

Each input vector can be expanded in the basis γ1, . . . , γn:

xs =
n∑

i=1

βsiγi

with some coefficients βsi.

It is known (Lewis, 1978) that 〈γi, γj〉 = δij/n, where δij is the Kronecker

delta, i, j = 1, . . . , n. Thus we have

〈xs, xt〉 =
1

n

n∑
i=1

βsiβti.

5.1.4 Applications of the algorithm

In this section we consider possible applications of our main theorem.

Algorithm competing with functional Banach spaces

A different protocol than Protocol 5 is usually considered in the online re-

gression literature (Protocol 3): in this protocol input vectors are elements of

some domain X ⊆ Rn. Our goal is to find an algorithm competing with all

the functions from a functional Banach space B on this domain X. Many al-

gorithms are capable to compete with the functions from Reproducing Kernel

Hilbert Spaces, for example the algorithms which we described in Chapter 4.

The generalization of the notion of these spaces for the Banach case is called

a Proper Banach Functional Space by Vovk (2007).

Definition 5.1 (Proper Banach Functional Space) A functional Banach

space B on a set X is called a Proper Banach Functional Space (PBFS) if the

evaluation functional ϕ : f ∈ B 7→ f(x) is continuous for each x ∈ X.
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We will use the notation cB(x) for the norm of this functional: cB(x) :=

supf :‖f‖B≤1 |f(x)| and the embedding constant

cB := sup
x∈X

cB(x)

is assumed to be finite.

We cannot compete with Lp spaces directly since they are not proper. De-

spite of that, we will show a way to compete with very important classes

of Banach spaces: Besov and Triebel-Lizorkin spaces with appropriate para-

meters (Triebel, 1978). We start our description with the discussion of the

algorithm competing with fractional Sobolev spaces. Sobolev spaces W s
p have

two parameters p, s. Intuitively, the parameter p is responsible for the rotun-

dity of the unit ball (the unit ball is perfectly round when p = 2, and the space

becomes a Hilbert space), and the parameter s is responsible for the smooth-

ness of the functions in the space. If s is a positive integer, it represents the

number of times which the functions from W s
p are differentiable. Spaces with

fractional s are generalizations of the spaces with integer s (see, for example,

Adams and Fournier, 2003).

Competing with Sobolev spaces The main trick used in order to compete

with Sobolev spaces is to impose an Lp structure on these spaces. We will

further restrict ourselves to the spaces defined on the whole Rn: in this case

this isomorphism can be easily found. It can also be found if X is an open,

non-empty subset of Rn such that there exists a linear extension operator (see

definition on p.1372 of Pe lczyński and Wojciechowski, 2003) from the Sobolev

spaceW s
p (X) intoW s

p (Rn), for example for Lipschitz domains (see, e.g., Rogers,

2006).

Let us take a function u(x) : Rn → R and by

û(y) =
1

(2π)n/2

∫
Rn

u(x)e−ixydx

denote the Fourier transform of u(x). By f∨ we denote the inverse Fourier
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transform

f∨(x) =
1

(2π)n/2

∫
Rn

f(y)eixydy

of a function f . Then the isomorphism between a Sobolev space and a subspace

of Lp is described by the following theorem. It is constructed using Bessel

potentials.

Theorem 5.3 (Isomorphism of W s
p and Lp) Let 1 < p < ∞, s > 0 such

that sp > n. Then W s
p may be described as

W s
p = {f ∈ S ′(Rn) :

(
(1 + ‖y‖2

2)
s/2f̂(y)

)∨
∈ Lp(Rn)}, (5.7)

where S ′(Rn) is a collection of all tempered distributions on Rn.

The proof is provided in Theorem 1.3.2 of Triebel (1992). In other words, the

Isomorphism theorem states that each element of W s
p can be linearly (because

of the linearity of Fourier transform) identified with an element from Lp, and

vice versa, such that under this identification the norms in W s
p and in Lp are

equivalent.

The mapping in (5.7) means the convolution of the given function f and

the function with the polynomial Fourier transform (1 + ‖y‖2
2)

s/2 (the latter

called Bessel potential). Explicit expressions of these functions can be found

in Aronszajn et al. (1963).

Using this theorem, we obtain the following upper bound on the loss of an

algorithm competing with Sobolev spaces. By Lf
T we denote the cumulative

loss of the predictor f ∈ W s
p .

Theorem 5.4 Assume X ⊆ Rn and W s
p (Rn) is a fractional Sobolev space of

functions on Rn, s > 0, p > 1. Suppose we are given a positive integer T and

x1, . . . , xT ∈ X. Then there exists an algorithm such that for all f ∈ W s
p (Rn)

and any sequence y1, . . . , yT , its loss LT satisfies

LT ≤ Lf
T + (Y 2c2W s

p
+ ‖f‖2)KT 1/2+|1/2−1/p|. (5.8)

Here K is defined by the isomorphism (5.7) between W s
p and Lp.
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Proof Sobolev spaces are proper Banach spaces (see Triebel, 2005, Propo-

sition 7(ii)) and have cW s
p
< ∞. From the other hand, we impose a lattice

structure on the Sobolev space using isomorphism (5.7).

We represent x1, . . . , xT as elements αi of the dual space (W s
p )∗. For all

f ∈ W s
p we take αi(f) = αxi

(f) := f(xi), i = 1, . . . , T . We can now consider

the abstract setting from Subsection 5.1.2. In this setting we compete with

the elements of (W s
p )∗∗: for each f ∈ W s

p we take gf ∈ (W s
p )∗∗ such that by

definition gf (α) := α(f) for any α ∈ (W s
p )∗. This change of variables does not

change the prediction error because f(xi) = αi(f) = gf (αi).

The Isomorphism theorem states that there exists a linear isomorphism

U : Lp → W s
p between Lp and W s

p such that ‖U‖‖U−1‖ < K for some constant

K. We also denote

CU = ||U || = sup
η∈Lp

||Uη||
||η||

, CU−1 = ||U−1|| = sup
f∈W s

p

||U−1f ||
||f ||

.

This isomorphism defines the dual isomorphism U∗ : (W s
p )∗ → (Lp)∗ by

(U∗α)(η) = α(Uη)

with any η ∈ Lp and α ∈ (W s
p )∗. Clearly, (U∗α)(U−1f) = α(f) for all f ∈ W s

p .

We denote β = U∗α ∈ (Lp)∗. Similarly, we have the correspondence U∗∗ :

(W s
p )∗∗ → (Lp)∗∗ defined by

(U∗∗g)(β) = g((U∗)−1β),

which gives us functions h = U∗∗g ∈ (Lp)∗∗ to compete with. After these

replacements we have the same prediction error since for any g ∈ (W s
p )∗∗ we

get h(βi) = (U∗∗g)(βi) = g((U∗)−1βi) = g(αi), i = 1, . . . , T . The norm of the

function can not increase by more than CU−1 :

||h|| = sup
β

|h(β)|
||β||

= sup
α

|g(α)|
||U∗α||

≤ |g(α)|
|α(Uη)|

||η|| = ||η|| ≤ CU−1‖f‖,

where η = U−1f and g(α) = gUη(α). The first inequality follows from the fact
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that

‖U∗α‖ = sup
η

|(U∗α)(η)|
‖η‖

≥ |(U∗α)(η)|
‖η‖

=
|α(Uη)|
‖η‖

for all η ∈ Lp. To apply Theorem 5.1, we have to ensure that all ||βi|| are

bounded. It holds since

||βi|| = sup
η

|(U∗αi)(η)|
||η||

= sup
f

|f(x)|
||U−1f ||

≤ sup
f

|f(xi)|
||f ||

CU ≤ cW s
p
CU

for i = 1, . . . , T . Applying Theorem 5.1 concludes the proof. �

The algorithm used in the proof of Theorem 5.4 first identifies all the input

vectors x1, . . . , xT with the functionals from (W s
p )∗. It then finds β1, . . . , βT ∈

(Lp)∗ defined using the isomorphism obtained from (5.7) between the duals

(W s
p )∗ and (Lp)∗. Then it applies the BLAAR to β1, . . . , βT .

The order of the regret term in (5.8) reaches its minimum in p when p = 2.

In this case W s
p is a Hilbert space. The PBFS property implies that W s

p is

a Reproducing Kernel Hilbert Space. The order O(
√
T ) of the regret term

corresponds to the order in the bounds for the algorithms competing with

RKHS described in the previous chapter.

Competing with Besov spaces Lately Besov Bs
p,q and Triebel-Lizorkin

F s
p,q function spaces begin to interest researchers due to their connections with

wavelets theory. They have the PBFS property (see Triebel, 2005, Proposition

7(ii)), and cBs
p,q
, cF s

p,q
< ∞. By the embedding theorem (Triebel, 1978, Theo-

rem 2.3), we have F s
p,q → Bs

p,q → F s′
p,2 = W s′

p , 1 < p ≤ q < ∞, s > s′. Here

embedding A→ B implies that there exists a constant C and linear operator

T : A → B such that for any f ∈ A we have Tf ∈ B and ‖Tf‖B ≤ C‖f‖A.

For Slobodetsky spaces Bs
p = Bs

p,p, we can use another result from the same

theorem: Bs
p → W s

p , 2 ≤ p < ∞, s > 0. It helps to keep the same parameter

s and thus does not increase the multiplicative constants in the regret term.

Using Theorem 5.4, we can get the upper bound

LT ≤ Lf
T + (Y 2c2{B,F}s

p,q
+ ‖f‖2

{B,F}s
p,q

)CT 1/2+|1/2−1/p|
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for all f ∈ {B,F}s
p,q, p > 1 and some C > 0 defined as the multiplication of

the embedding constants. An interesting class of spaces is the class of Hölder-

Zygmund spaces Cs = Bs
∞. They are embedded to Bs′

p = Bs′
p,p whenever s′ < s.

It is known that fractional Brownian motion B(h) almost surely belongs to Cs,

s < h.

Application of the abstract framework

In this section we describe an example of how our algorithm can be used in

signal processing. An input vector can often be interpreted as a function on

some domain, e.g., a picture can be thought of as a mapping from points to

colors. A musical fragment can be thought of as a mapping from a point in

time into sound frequencies. We may be given weak regularity restrictions

on the class these functions form, e.g., it can be a Sobolev or Besov space.

The family of Hilbert spaces is reasonably wide, but if lacks many classes of

functions of irregular behavior.

Imagine we are given a film consisting frames of resolution 1024× 768 and

we want to predict some score calculated from each image. The correct linear

score for each image is given to us only after we make a prediction about the

score of this image.

Applying the algorithm from Lemma 5.2 for prediction we can get the

following upper bound for the square loss of our predictions

LT ≤ (Y 2X2 + ‖θ‖2
p)T 1/2n1/2−1/p

where p ≥ 2, n = 1024×768 = 786432, T is the length of the film in frames, X

is the maximal q-norm of the images (1/q+1/p = 1), and Y is the upper bound

on the absolute value of the score. The upper bound from the remark after

Lemma 5.2 is worse in n, and in our example n is the dominating constant for

reasonable films length. On the other hand, the algorithm from Theorem 5.1

has the upper bound

LT ≤ (Y 2X2 + ‖θ‖2
p)T 1−1/p.
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If we wish to predict 24 frames per second (say, to detect defective frames),

the upper bound on the loss of the second algorithm will be better if we

work with films of duration less than 32768 (around 9 hours). The higher the

resolution of the images is the more advantage the second algorithm has. This

improvement is due to the fact that it finds linearly independent vectors and

significantly depends only on them. Note that the example above works well

in the semi-online setting.

Learning a classifier

Online regression algorithms are often applied in the batch setting, when one

has a training set with input vectors and their labels and a test set containing

just input vectors. In this case the semi-online setting does not appear as a

drawback.

Online regression methods can be used to learn a linear classifier, for exam-

ple Perceptron. Cesa-Bianchi et al. (2005) use the AAR to make an algorithm

to train a Perceptron and to derive upper bounds on the number of mistakes

during the training process. They consider both linear classification and clas-

sification in RKHS. We show that the combination of our preprocessing steps

and their algorithm allows us to learn a classifier in PBFS.

Let (x1, y1), . . . , (xT , yT ) be a set of training examples, where xi ∈ Rn is an

input vector and yi = {−1, 1} is its label, i = 1, . . . , T . The label corresponds

to the class of the input vector. For any fixed margin γ > 0 and pair (x, y)

define the hinge loss

Dγ(f, (x, y)) := max{0, γ − yf(x)}

of any function f from a Sobolev space W s
p , s > 0, p > 1. If we perform the

preprocessing steps described in the proofs of Theorems 5.1 and 5.4, we will

obtain the vectors r1, . . . , rT ∈ Rn corresponding to our input vectors, for some

n ≤ T .

Let a > 0 be the parameter of the second-order Perceptron algorithm (see
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Cesa-Bianchi et al., 2005, Figure 3.1). At step t it predicts

ŷt = sign

(∑
i∈Mt

yiri

)′(
aIn +

∑
i∈Mt

rir
′
i

)−1

rt

 ,
where Mt ⊆ {1, 2, . . .} is the set of indices of mistaken steps (yi 6= ŷi, i ∈Mt)

before the step t.

We prove the following upper bound on the number of mistakes.

Theorem 5.5 It is possible to run the second-order Perceptron Algorithm on

any finite sequence (x1, y1), . . . , (xT , yT ) of examples such that the number k of

mistakes satisfies

k ≤ inf
γ>0

min
f∈W s

p

R2(f, a, T )

2γ2
+
DT

γ (f)

γ
+
R(f, a, T )

γ

√
DT

γ (f)

γ
+
R2(f, a, T )

4γ2

 ,

where R2(f, a, T ) = c2W s
p

(
T |1/2−1/p|K‖f‖2

W s
p

+ 1
a

∑
i∈MT

f 2(xi)
)
, DT

γ (f) is the

cumulative hinge loss
∑T

i=1Dγ(f, (xi, yi)) of f , and K = ‖U‖‖U−1‖ for the

isomorphism U defined by (5.7).

Proof After the preprocessing steps we obtain the images r1, . . . , rT ∈ Rn of

the input vectors. Let by Xk denote the matrix consisting of the columns of

ri with i ∈ MT . The second-order Perceptron algorithm run on the sequence

(r1, y1), . . . , (rT , yT ) achieves (see Theorem 1 in Cesa-Bianchi et al., 2005) for

any g ∈ Rn

k ≤ inf
γ>0

min
g∈Rn

D̃T
γ (g)

γ
+

1

γ

√√√√(a‖g‖+ g′XkX ′
kg)

n∑
i=1

ln(1 + λi/a)

 ,

where λi are the eigenvalues of the matrix XkX
′
k and D̃T

γ (g) is the cumulative

hinge loss of the linear function g on this sequence.

Clearly, since g is linear, we have g′XkX
′
kg =

∑
i∈MT

g2(ri). The sum of

the eigenvalues of a square matrix is equal to the trace of it. At the same

time, the nonzero eigenvalues of XkX
′
k coincide with the nonzero eigenvalues

of X ′
kXk. We first use ln(1+x) ≤ x for x ≥ 0 and bound the trace

∑
t∈M ‖rt‖2
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of the matrix X ′
kXk by kmaxt∈M ‖rt‖2. Then we obtain

k ≤ inf
γ>0

min
g∈Rn

D̃T
γ (g)

γ
+

1

γ

√√√√(‖g‖+
1

a

∑
i∈MT

g2(ri)

)
kmax

t∈M
‖rt‖2

 .

Denote R̃2(g, a, T ) :=
(
‖g‖+ 1

a

∑
i∈MT

g2(ri)
)

maxt∈M ‖rt‖2. Solving the in-

equality in k, we obtain

k ≤ inf
γ>0

min
g∈Rn

R̃2(g, a, T )

2γ2
+
D̃T

γ (g)

γ
+
R̃(g, a, T )

γ

√
D̃T

γ (g)

γ
+
R̃2(g, a, T )

4γ2

 .

Recall that due to the fact that ri are the images of the input vectors, we

can say that ‖ri‖ ≤ cW s
p
. Following the same arguments as in the proofs of

Theorems 5.1 and 5.4, we can ensure that for any f ∈ W s
p there exists g ∈ Rn

such that f(xi) = g(ri) for all i = 1, . . . , T , and ‖g‖ ≤ KT |1/2−1/p|‖f‖W s
p

for

the constant K defined from the isomorphism (5.7). This concludes the proof.�

Note that if the algorithm is run on the same sequence of input vectors several

times, then T does not increase with every new run.

5.1.5 Discussion

Our results have more theoretical value rather than of real practical use: we

are not aware of any ways to perform several steps of our algorithms in practice

(among them the main optimization step, the search for the linearly indepen-

dent subsets, the identifications of the input vectors). The semi-online setting

requires the knowledge of the input vectors and the horizon of the prediction

in advance. Both these restrictions weaken the result if considered within the

online prediction concept. We believe that there exists a better way to deal

with the problem of competing with Banach spaces, but our research may give

some insights of how to approach it.

The idea of competing with infinite dimensional Banach spaces was ap-

proached by Vovk (2006, 2007) using two different ways. The first technique is

based on the game-theoretic probability theory (Shafer and Vovk, 2001) and

the algorithm is called BBK29. The second technique is based on the metric
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entropy of the space with which the learner wishes to compete. The Aggregat-

ing Algorithm is used for prediction. Suppose that input vectors are taken from

a domain X ⊆ Rn. The main difference in the upper bounds for two algorithms

can be described on the example of Slobodetsky spaces Bs
p(X) = Bs

p,p(X). We

always assume that sp > n: this condition ensures that the elements of Bs
p

are continuous functions on X (see, e.g., Triebel, 1978). Assuming p ≥ 2, the

known upper bound on the regret term is of order O(T 1−1/p) when the learner

uses either the BBK29 or our algorithm from Theorem 5.4 to predict the out-

comes. This order does not depend on s. The order O(T n/(n+s)) is provided

by the Metric Entropy technique. This order does not depend on p and so this

algorithm can be applied to compete with spaces with p = 1.

The question asked by Vovk (2006) is whether it is possible to create an

algorithm which will have an upper bound such that the order of its regret term

involves both parameters p and s and is better than the regret terms for the

existing algorithms. Our paper gives another way to apply the Aggregating

Algorithm, and the order of the regret term corresponds to the order given

by the BBK29, O(T 1−1/p). Thus we reduced (in a sense) the problem to the

analysis of two different ways of using the Aggregating Algorithm to compete

with functions from Banach spaces.
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Chapter 6

Conclusion and directions of

future research

In this thesis we suggested a methodology to approach competitive online pre-

diction problems. Two algorithms are described: the Aggregating Algorithm

and the Defensive Forecasting algorithm. The way which is used by the AA

to give predictions can be easily represented geometrically. This makes the

AA more intuitive than the DF. On the other hand, the DF can be naturally

applied to a wider class of problems. That is why it may often be handy to

derive an algorithm using Defensive Forecasting, but then rephrase it in terms

of the Aggregating Algorithm (in this thesis this can be done with the PPIR).

We have shown that in simple cases with square and log loss functions,

the AA and the DF have the same guarantees on their performance and even

their predictions are the same if a particular substitution function is used in

the AA.

The natural idea is to consider second-guessing experts. This setting allows

the experts to give the actual prediction after the prediction of the algorithm

is made. We have shown that in this setting, the DF and the AA achieve the

same performance guarantees on their loss.

The outcomes of the predicted sequence can be assumed to belong to a

probability simplex. The important problem of classification under the Brier

loss can be solved under this setting. By considering prediction the results

of sports matches we have shown that the performance guarantees can be
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tight in practice. The algorithms which do not have guarantees can fail to

produce reliable performance. Moreover, if the performance of an algorithm

is measured by a different loss function than the one it was trained with, it

can fail to satisfy strict performance requirements. In this case the DF can be

useful, because it is able to compete under several loss functions at the same

time.

We have shown that online prediction algorithms (in particular, the AA for

the Brier game) can be beneficial to use for predicting ovarian cancer. By com-

bining different prediction rules, it achieves comparable or better performance

than the best rule chosen in hindsight.

In Chapter 3 we described a different class of problems. These are online

regression problems, where each expert follows a determined prediction strat-

egy, which depends on an input vector at each step. We proved a general

lemma, which helps to provide guarantees for different algorithms for online

regression. Using this lemma, we proved the guarantees for the Aggregating

Algorithm for Regression. It competes with all linear functions of input vectors

under the assumption that the outcomes lie in an interval.

An assumption which is often made in statistics is that the outcomes are

corrupted by Gaussian noise. We considerd the problem of competing with

Gaussian linear experts under the logarithmic loss function. We have shown

that applying the Aggregating Algorithm leads to the derivation of Bayesian

Ridge Regression and proved guarantees on its cumulative logarithmic loss.

These guarantees are easily transformed to an equality on the square loss of

Ridge Regression. We have shown that the equality leads to an upper bound on

the cumulative square loss of Ridge Regression competing with linear experts

(under the assumption that the outcomes are bounded).

If the outcomes are not bounded uniformly, in other words, the bounds for

the outcomes become known only in the beginning of each prediction step, it is

possible to apply the DF and prove guarantees on the square loss of the derived

algorithm. We investigated the performance of the algorithm on artificial and

real world data sets and found that the algorithm can be used in conjunction

with an interval predictor to point prediction intervals. We have shown that

this problem closely relates to the problem of competing under the discounted
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square loss. We solved both problems using the same approach.

Linear experts are not very efficient when it is known that the outcomes lie

in an interval. We generalized the class of the experts and considered general-

ized linear experts. Generalized linear models are often used for classification.

Using the AA, we derived an algorithm competing with the experts under the

square loss. We investigated the performance of the algorithm in practice and

showed that it can outperform known benchmark batch and online algorithms.

If the outcomes lie in a multi-dimensional probability simplex (for example,

in the case of multi-class classification), it is possible to consider the multi-

dimensional regression problems. We derived two algorithms competing with

linear experts under the Brier loss, proved performance guarantees for them,

and investigated their performance in practice. The experiments show that the

algorithms can be as precise as benchmark online methods, and at the same

time require less training time.

For all the algorithms from Chapter 3, we derive their kernelized ver-

sions. They are capable of competing with functions from Reproducing Kernel

Hilbert Spaces. Many of them are based on the kernel trick. We showed that

if the kernel trick cannot be directly applied, as for the problem with general-

ized linear models, it is possible to derive an algorithm competing with func-

tions from RKHS using the Bayesian non-parametric approach with Gaussian

processes.

We approached the problem of competing with functional Banach spaces

through the intermediate abstract linear regression framework. Facts from

functional analysis allowed us to find a correspondence between linear regres-

sion in abstract Banach spaces and linear regression in the Euclidean spaces

in the semi-online setting.

Future research

We see the following interesting future directions of the research.

• The algorithm competing under the discounted loss has the property of

tracking the best expert (or the best linear predictor). It is very inter-

esting to investigate the Tracking the Best Linear Predictor framework

207



(Herbster and Warmuth, 2001) directly using the methodology suggested

in this thesis.

• It may be possible to use methods developed by van der Vaart and

van Zanten (2008) or by Zhang et al. (2009) to compete with infinite-

dimensional functional Banach spaces in a different way than the one

which is suggested in this thesis. The first step may be to investigate

the extent to which the smoothness of the functions in an RKHS influ-

ences the performance guarantees for the algorithms competing with the

RKHS.

• Many of the algorithms suggested in this thesis can be applied in practice.

The investigation of their empirical properties is an important possible

direction of the future research.

• In this thesis we paid special attention to the square (and somewhere

logarithmic) loss function. Another loss function which is often used in

practice is the absolute loss. It may be possible to develop methods based

on the Weak Aggregating Algorithm (Kalnishkan and Vyugin, 2005) sug-

gested for the finite and countable number of experts to compete with

larger classes of experts.

• The algorithm which competes with generalized linear models under the

square loss requires the application of the MCMC technique to numerical

integration. It may be useful to find approximations of the predictions

similar to the ones which are used in standard generalized linear models

(such as Iteratively Reweighted Least Squares) to develop more efficient

algorithms.
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Appendix A

Lemmas from linear algebra

Lemma A.1 Let Q(θ) = θ′Aθ + b′θ + c, where θ, b ∈ Rn, c is a scalar, and A

is a symmetric positive definite n× n matrix. Then∫
Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ).

The proof of this lemma can be found in Harville (1997, Theorem 15.12.1).

Lemma A.2 Let

F (A, b, z) = min
θ∈Rn

(θ′Aθ + b′θ + z′θ)− min
θ∈Rn

(θ′Aθ + b′θ − z′θ),

where b, z ∈ Rn and A is a symmetric positive definite n × n matrix. Then

F (A, b, z) = −b′A−1z.

Proof This lemma is proven by taking the derivative of the quadratic forms

in F in θ and calculating the minimum: minθ∈Rn(θ′Aθ + c′θ) = − (A−1c)′

4
c for

any c ∈ Rn (see Harville, 1997, Theorem 19.1.1). �

Lemma A.3 Let Q1(θ) = θ′Aθ + b′1θ + c1, Q2(θ) = θ′Aθ + b′2θ + c2, where

θ, b1, b2 ∈ Rn, c1, c2 are scalars, and A is a symmetric positive definite n × n

matrix. Then ∫
Rn e

−Q1(θ)dθ∫
Rn e−Q2(θ)dθ

= ec2−c1− 1
4
(b2+b1)′A−1(b2−b1)
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Proof After evaluating each of the integrals using Lemma A.1 the ratio is

represented as follows:∫
Rn e

−Q1(θ)dθ∫
Rn e−Q2(θ)dθ

= eminθ∈Rn Q2(θ)−minθ∈Rn Q1(θ) .

The difference of minimums can be calculated using Lemma A.2 with b = b2+b1
2

and z = b2−b1
2

:

min
θ∈Rn

Q2(θ)− min
θ∈Rn

Q1(θ) = c2 − c1 −
1

4
(b2 + b1)

′A−1(b2 − b1) . �

Lemma A.4 For any n×m matrix B, any m×n matrix C, and any number

a such that aI + CB and aI +BC are nonsingular, we have

B(aIn + CB)−1 = (aIm +BC)−1B, (A.1)

where In, Im are unit matrices n× n and m×m, respectively.

Proof This is equivalent to (aIn + BC)B = B(aIm + CB). That is true

because of distributivity of matrix multiplication. �

Lemma A.5 (Matrix Determinant Identity) For any n × m matrix B,

any m× n matrix C, and any number a

det(aIn +BC) = det(aIm + CB), (A.2)

where In, Im are unit matrices n× n and m×m, respectively.

Proof It follows from matrix multiplication rules that(
In B

0 Im

)(
aIn +BC 0

−C aIm

)
=

(
aIn aB

−C aIm

)

=

(
aIn 0

−C aIm + CB

)(
In B

0 Im

)

Taking the determinant of both sides and using rules of rules of taking the

determinant of block matrices we get the statement of the lemma. �
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Lemma A.6 Let xt ∈ Rn be a set of column vectors, t = 1, . . . , T . Then for

any a > 0,

det

(
I +

1

a

T∑
t=1

xtx
′
t

)
=

T∏
t=1

(1 + x′tA
−1
t−1xt)

for At = aI +
∑t

i=1 xix
′
i.

Proof This fact can be proven by induction in T : for T = 0 it is obvious

(1 = 1) and for T ≥ 1 we have

det

(
I +

1

a

T∑
t=1

xtx
′
t

)
= a−n detAT = a−n det (AT−1 + xTx

′
T )

= a−n(1 + x′TA
−1
T−1xT ) detAT−1

= det

(
I +

1

a

T−1∑
t=1

xtx
′
t

)
(1 + x′TA

−1
T−1xT ) =

T∏
t=1

(1 + x′tA
−1
t−1xt).

The third equality follows from the Matrix Determinant Identity. The last

equality follows from the inductive assumption. �
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Appendix B

Additional online resources

Online prediction web-site It is very convenient to use a web-site which

gathers information about online prediction and related areas. We set up

the web-site http://onlineprediction.net/. This is a wiki-type web-site

accessible for reading and editing to everyone. The web-site has two major

purposes:

• Provide overviews of various research topics, for students or people who

are new to the area.

• Provide descriptions of open questions, for people who wish to further

develop the area.

The LATEX syntax can be used for formulas. We encourage everyone to partic-

ipate in editing and improving the content of the web-site.

There are both articles about theory and articles about experimental results

(we try to separate theory and experiments, covering them in different, often

cross-referenced, articles).

Prediction with expert advice package We implemented the most inter-

esting algorithms used in this thesis and made them accessible for the public

use. The Matlab implementation of the algorithms used in Sections 2.6 and 2.7

is accessible1. The following algorithms are implemented: the Aggregating Al-

1http://www.mathworks.com/matlabcentral/fileexchange/
28131-prediction-with-expert-advice
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gorithm (and Algorithm 4), the Defensive Forecasting algorithm, the Weighted

Average Algorithm, the Weak Aggregating Algorithm, and the Follow the Best

Expert Algorithm. File examplepredict.m contains an example of use, predict-

ing results of tennis matches using bookmakers’ predictions.

Online/Batch generalized linear models under square loss The Mat-

lab implementation of the new algorithms used in Section 3.5 (AAGLM) is

accessible2. The algorithms have guarantees on the cumulative square loss for

the worst case when applied in online fashion. The variable regressed should

lie in [0, 1], thus the program is a tool for two-class classification or for bounded

regression. Four possibilities are provided: linear regression, logistic regression,

probit regression, comlog regression. Other functions can be easily added and

used. File examplepredict.m contains an example of use.

2http://www.mathworks.com/matlabcentral/fileexchange/
28251-onlinebatch-generalized-linear-models-under-square-loss
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