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Abstract

A general method of approach to resonant non-linear optical phenomena
involving travelling weves hagz been developed. MNaxwell's equations are solved
for the electric field in a spherical Fabry-Perot type optical resonator,
which encloses uniaxial arisotropic media. The specific case of
propagation perpendicular to the optic axis is considered but the theory
can be extended to cover the general case including double refraction. In
the presence of more than one optical field of this form, when the medium
enclosed in the resonator is non-linear, by expanding the polarization in
terms of the electric field in the normal way coupled mode equations are
obtained for amplitudes of the eigenmodes concerned.

This general formelism is then used to examine resonant second
harmonic generation in the small conversion approximation from a
fundamentel beam in the lowest order O0-0 mode. Analytical solutions are
obtained in three limiting cases, weak focussing, strong focussing and
the focus removed infinitely from the non-linear medium. The general case
is solved numerically. TFrom the results the values of the variable
narameters can be obtained which give the maximum output in any given mode.
Graphs are presented giving the output veriation in 0-0 and 0-2 modes
with focus position, phase matching, focussing and spot size. From there

it can be seen that the optimum focussing for the O-0 mode occurs at

lb = 5.65 (1 crystal length, 2o one half the confocal parameter).
2



Secondly degenerate marametric amplification between two lowest order
modes is examined under the approximation tkat the pump beam is
undenleted. An analytic solution is obtained for the single pass
amplification in the weak focussing limit and preliminary results of
numerical computations for the generasl case are given. From these

results a value for the optimum threshold condition is calculated.



CCHTINTS

Chapter T Introduction and Review
1.1 Introduction
1.2 Non Linear Oscillator Ilodel
1.3 The Susceptibility Tensor
(a) Definition
(v) Spatial Symmetry
(c) Xleinmans Symmetry Condition
1.4 Propagation of electromagnetic radiation
in dielectric medium
(a) Medium with Linear Response
(vb) Absorption
(c) Tediuvm with Quadratic Response
1.5  Enhancement of Non-linear Effects

Chapter II

2.1

2.2

2.3

The Modes of the Optical Resonator
Introduction

Derivation

(2) Mirror Field Distribution

(b) Travelling wave in the resonator

(c) The general spherical mirror resonator

(d) Resonant Frequency

The Solution of lMaxwells Hquations for the Resonator

(a) Lossless Isotropic liedia
(i) Lowest Order Mode

(ii) Higher Order llodes.

Page

20

21

26

30

32

34
37
k2
L3

Lh
L5

b7



2.5

(e)

(a)

Validity of the Approximation

Transverse nature of the Polarization of
the solution

Normalisation

(i) Two Dimensions

(ii) Three Dimensions

(e) Orthogonality

Propagation in Anisotropic Media

(a) Two Dimensions

(b) Three Dimensions

Effect of Absorption

Chanter TIIT

341

302
3.3

Derivation of the Coupled lMode Lguations and the

Calculation of the Coupling Coefficients

Two dimensions

(a) Second Harmonic Generation

(v)

(i) Coupled Hode Equations

(ii) Energy Conservation Relation

(iii) Evaluation of the Coupling Coefficients
Parametric Amplification
(i) Coupled Mode Lquations

(i1) GEvaluation of the Coupling Coefficients

Three Dimensions

Effect of Absorption

19

So

g1

§2
53

54

s6
59

64

67

70

72

73

83
86

g9

93



hapter TV
Second Harmonic Generation
Lo Introduction
L.2 THear Tield - Weak Focussing Limit
(a) Lowest Order lode
(b) Higher Order Modes
L3 PFar Field Limit
Lot Infinite Crystal — Strong FPocussing Limit
L.5 General Formula
(a) 0-0 mode
(b) 0-2 mode
4.6  Calculation of the Resonator Output
Chapter V
Parametric Amplification
5e1 Introduction
5.2 TNear Field - Weak Focussing Limit
5.3 Preliminary General Results

5.4 Calculation of Threshold and Resonator Output

U
q¢
7
98
101

o

103
1077

0%

12

13
[20

122



Appendix I

Evaluation of the Coupling Coefficient Intezral
Appendix II

Numerical Integration of the Second Harmonic Integral

Avpendix TIT

Mumerical Integration of the Parametric Coupled
Differential Equations
Graphs
Conclusion
Acknowledgements

References

125

129

134

1

164
T4

16



Chanter 1

1.1 Introduction

The term ™ion-linear optics" is used in this thesis to describe
processes in which energy exchange occurs between a number of optical
fields at different frequencies. The discovery and development of
lasers made available for the first time extremely high electric
fields 100Kv/cm at optical frequencies which although still small
compared with atomic field strengths 105Kv/bm make the classical
assumption of a linear response of the material to the field untrue.
When the non-linearities are included in the theory they not only
modify the linear effects but also give rise to completely new non-
linear effects.

The first observation of these effects was made by Franken et
al (1) in 1961 using a ruby laser focussed into a quartz crystal. The
emergent light was found to contain radiation not only at 0.6943
microns, the ruby laser wavelength, but also at 0.3472 microns the
second harmonic wavelength. Since then many other non-linear processes
have been observed.2, 3, 4, 5.

If a dielectric medium is subjected to an optical electric field
E which is small it sets up a polarization in the medium that is
linear in the field. » |
(1.1) P= ﬁi& (ignoring the vector nature of the electric field)

At higher field strengths we have to Sonsider the right hand side of



1.1 as the first term in a power series expansion of P in terms of E
so that in general (1.2)" Pz X8 + P H2 4 BB 4 vevenvnveres
The non linear optical effects arise from the higher order terms of
this series,

We shall consider only non linear effeots‘which arise from the
second term, specifically second harmonic generation and parametric
amplification.

1.2 Non ILinear Oscillator Model

The classical theory of linear dispersion (6, 7.) giving rise to
eq.. 1.1 is based on a model due to Lorentz that pictures each electron
in a dielectric medium as being held in its equilibrium position by
a harmonic restoring force. When an electric field is applied to the

dielectric the electron moves according to the equation of motion.

13
d2r 2 ydr - chr - -2 g
dt 2 - dt - (] - m

Where 1r is the diéplacement of the electron from.its equilibrium
position, m its mass, e its charge,éa.the.natural frequency of its
motion and y a damping parameter.

From this equation the polarization density of the medium can be
calculated.
14 P = Ner, N electron density. To extend this to produce
non linear effects we consider that if the eiectron has a large enough

displacement the restoring fofce is no longer linear and can be written

in the form
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1.5 F = -(001' + )I'Q'J' eevecesoces ( Small)

and the displacement of the electron is now governed by the equation.

1.6 42

T dr 2 2 -eE
dt2+2th+O - Mp% = ==

oF m

The solution of which for an electric field of the form

1.7 F = B 19P L g 104t
is
1.8
=iw
- E(w
r = — ( 1) © 1 + complex conjugate
2

. 2
(e, - 21y, =-6y)

o =21 011:

2 2
m

(@7 - 41y - 4007 - 2y - 022

02

. * 1
M2 EC E (a)

“o? (@0 fa1y o - B) Q%+ 21y - 6)12)
+ complex conjugate + eecsscecsccccs
It can be seen that we have new terms over the solution to the
linear equation which are quite distinct from the linear terms., The
first will give rise to a polarization oscillating at the first harmonic
frequency of the applied electric field and the second a constant

polarization proportional to the magnitude of the applied electric

field.
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1.3 The Susceptibility Tensors.

(a) Definition. Since we will be dealing with optical fields which
are monochromatic or nearly monochromatic it is more convenient to work
with the Fourier transform of the electric field.

o0
¥

1.9 E(r,0) = 15;_ dt B(r,t) exp(ict)
—ob
than with the electric field itself.
From 1;9 it follows that
E(r, w) =§f( Ty~ ) since E (r, t) is real.
The Fourier transform of the monochromatic field defined in equation
1.7 is given by

1.10 E (o) = gwg(w1-w) + E‘o*g(ofro)

The polarization response of the medium in terms of the Fourier
transforms of the electric field is given by:

(1) for the linear response

oo

1.11 Pi® (¢) = j\ dw Xij () Ej (w) exp (icot)
- 00
which defines the linear susceptibility tensor.

X33 ()

for the second order responses

[ I -}
1.12 P@’t = do, do, X . o(©0,y,0,) E(x)E, (v,)
* i()' 1 %2 A\ T2/ P31/ Tk V2
-0 =80

defining the 2nd order susceptibility tensor.

Since P,(t) is real we have
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*
1.13 Xij((o) = Xij (- )
1.1 X ( ) iy S)
e T Lt LA i C9p -0

The order of writing the electric fields in equation 1.12 has no

significance, therefore

5 =
1.15 Xijk (601, 6.)2) = Xijk (wz, A),I)

The Fourier transform of the polarization is defined as
(]

1 .
1.16 P, (w) = >3 P, (t) exp (iot) dt

—th
Substituting for Pi (t) from 1.12 and carrying out two of the integrations

we have
@ s 1
1.17 Pi (o) = Xij ( w) Ej ( w) and substituting w for 2,
od
®) _ 1 1 N o 1
1.18 P, (w) = dow xijk (w,; @ u)bj(w)}_k(o-u))
-0

To show that this corresponds with the normal definition of the non linear

susceptibility consider the case of sum mixing of two monochromatic fields.

w w
1 # 1
3 S(e-w,) + 25 §( 6 + w)

4 cal

1.19 g(w1)

L]

w A)
1.20 B (,) $E 2 S(o- w,) + 18 2§ w4+ ©,)

Substituting into 1.18 and carrying out the integration picking out the

coefficients of g(lo— L, + (02) and §( @ + L, + (02)



w w [A) [~}

@ e o 1p 02 1
1.21 (w3) = (4 131'((“) wz)mj B, "+ X o (0

§ *01 xwg * £ *w1
©w - 60 w B 3 2. )
( * )+<X (@ 0,)85 3 I O 2’31( >X

ijk
S(wrw, + cog)

ol S =D w
where 03 ) + .

using the intrinsic symmetry of Xijk and changing the dummy suffices.

1.22 Pi@(wj) = B (0, &)2)ij1 Esz S(o-o + )

=X ijk

‘l‘X* 3;((.0 ) E”‘O1 ‘l’wzg
T e 19 o) % By B (e + ©))

which is just the form for monochromatic polarisation at frequency

03 w,l (.32
1.23 Pi = le (@ 02) Ej Ek
© 1 3 1 *03
L2k (a) PyTs) = 2y 7 §(e-w) 3P §(w+ )
For second harmonic generation
gl *1
E(le) = %E~ g((*)»]-w) + %—\ S((“)al +l.»))

so the polarization at the harmonic frequency is

P ] -
1. x
+ 4XijkEj (w)D (w) S( w+ 24.31)
so that o o
2001 P 1 D 1
1.24(pb) P = ;g (s c..>1) EJ. E, 1

This definition is the same as Bloembergen, 9, Robinson, 11, but will

differ from that of Kleinman, 12, when the dim tensor is defined in

13
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Ay =- 8y,

if the medium has inversion symmetry the susceptibility tensors must

be invariant under this transformation.

(‘313 432) = (-1)3 (601, GDZ) and therefore

Xijk ijk

Xijk =0

so the second order tensor vanishes identically.

In general the process of finding all the restrictions is rather
tedious so we will consider one special case that of Lithuim Niobate
Li Wb 03. Tor reasons which will become apparent later. Lithuim Niobate

has point group symmetry 3m, (CEV)’ a threefold axis of symmetry with

three reflection planes passing through the rotation axis.

OX2

ox!

The diagram represents a project of a sphere with points marked
on the top surface at the positions marked by the = signs. The axes
are taken as shown Qith the Ox, axis being the axis of threefold
symmetry vertical through the centre.

The rotation transformation is given by the matrix



/6‘

equation 1.36.

b. Svatial Symmetry.

The susceptibility tensors itransform between different co—ordinate
systems according to the usual transformation lazws for polar tensors.
If we transform the tensor with a symmeitry transformation of the medium
the new tensor must be identical with tie old one. Hence this restricts
the values of the elements of the tensor. 4 full description of
symaetry groups is given in the International Tables for X~ray
Crystallography, 13, and Nye, 12.

The transforwmation laws are easily derived. Consider two co—ordinate
systems which are related to each other by a rotation. The co-ordinates
of a point with respect to the first set of axes will be related to those

of the second set by an orthogonal linear transformation.

1.25 Xi = Aij Xj

The electric field and polarization being both polar vectors

transform in the same way as the co-ordinates.

1
.26 P, (t) = Aij Pj(t)

o1 _ -
E, () = Aij EJ. (e2)

Thus using 1.11, 1.12, the susceptibility tensors transform as

1
1.27 xij () = A Ajs X g ()

1
Kig (01 @p) = Ay Ay Ay gy (@ )

As a general example we consider the inversion transformation
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1.28 -1 % 0

A= -% -1 0 and A

and the reflection transformations

1.29 R = [-1 0 ©
o1 O
0 0 1
2
AR and AR
Consider the effect of the reflection on X, (045 432)
Topp (@19 @p) = Byy RBpy By i (wyp @)
= Ry Rpye - Xy (g ©5)

= Kyoy (045 ©5)

130 .0 X, (@4 ©5) = 0

Similarly any element which has an odd number of subscripts equal
t0 one is identically zero.

This reduces the two tensors to

1.31 X©= X11 0 0

0 Xyp Xy

0 X35 Iy;
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. @_
1.32. X™ =0 0 0 0 0 Xy Xy3 Ky, Xy

X211 Zopp Kooy Xp3y Xp3p 0 0 0 0
X311 %320 K333 Xypy Xy3p 0 0 O O

applying the rotation transformation these reduce further to

1.33 X® = X” 0 0

0 X, 0
0 0 X,
and
@ _
1.34 X =10 0 0 0 0 X3 Xy3 =X =X

“Xo0o oo O Xyq3 X3¢ 0 0 0 O

X319 X399 %33 0 0 0 0 00

for the case of second harmonic generation we are dealing with the tensor
Xijk (601, 01) which from equation 1.15 is symmetric in J and k.

This symmetry reduces the number of independant elements of X@ gtill

further since x”3 = X131 and we can write the tensor in a reduced

form similar to that used for piezo electric tensors (33).

Define dlm = Xijk (01, 6.31) when j = k.
135 . 4 | |
Gp = B(Eyg (g @) # Xy (45 ©4))
i fk

when m is given by
m = 1 2 3 4 5 6

when jk

11 22 33 23 31 12



Thue for crystals with symmetry point group 3m as Lithuim Niobate

1.36 4. = 0 0 0 0 4 -d

im 15 22
-d22 d22 0 d15 ¢ 0
d d d 0 0 ©
73 733

The 3 x 6 matrix dim operates on a column vector (E E)m where
= _ @ 2 _ 2 . _ 2
(-U E)1 = E»] 1 (E\_B.)2 - E2 H (Q ]:‘)3 = E2 H
=EEa.nd(EE)6=EE

173

C. Kleinman's Sztmetry Condition

In addition to these symmetry restrictions there are other
restrictions which apply when the non linear polarization is of
electronic origin rather than ionic and the crystal is non absorbing
for all the optical fields concerned in the interaction.

So the power loss P of the field Q_({at) is zero. These
restrictions were first put forward by Kleimman, 12, and the argument
given here follows that given by him, 15.

The average power loss in time 2T is given by

S
1.37 P = - = | e\ a* ) L P, (zt)
31 = o7 | ot By &) By -

T
and must be zero under our approximations. Replacing B and P by their

Fourier transforms,

»w
iTr
3 1 ;,* 1 1 Ry
P = T dr dwdw .-Ji(r,w) Pi (r,w)w S_Ifw w)

-0 Sp

13



where

o

°r (n) > §(N)
T

as Ty

«"+ for T large enough

P = ij‘d-jr jdcaE (r,w) Pi(g,w)ta

-0

substituting from 1.18.
1.38 P = i gd’r [dbydw E (T’“’)Xak (wq w-w1)
‘ A |
X Ej(..I."w )Ek(aaw'w)-@ .

1

writing O = @  + (m-co1) Sence

X is symmetric in the last two subscripts, We see that the integral

with ©'is equal to that with w - !,

0 0

so
P = ZiJAdar Sgdw dw ! E (r,qw)XJk(w, w—w)
T 1
x Ej(zyw) Ek('{-‘,‘w'w)

using B (2 w) = i (r, =) and re-arranging we have

®o 0

. 2 1 0% 1
1.39 P = -21J dr ‘(dwdo By (ry o )xjik (—w? W~ w')
SR

x E (zy w') Ek(r,u—w)

but since P = O

comparing with 1.38, théy are both equal to zero, therefore we have

(o) (- w)

1 1 1
ink(-u,w-w)= Xijk(""’ W - W )

or writing X with its three associated freq_uencies;

19



1.40 X, w

jix (@pr gy ©) = Xiqe (@39 @g )
Armstrong et al,=%6, and others have carried out Quantum Mechanical
calculations for the form of the X' s under the conditions we have

stated and found this symmetry and also the further symmetry.

()

1.41 X, »

15k (to3, o1) = X3 (o1, Loy (,33) is predicted.
Ward and Franken, 19, have discussed these symmetries in the
presence of dispersion and absorption and concluded thét they are
relatively insensitive to small amounts of dispersion and absoxrption.
The measurements that have been carried out seem to verify these
predictions. Several tables of values appear in the literature, e.ge.
Robinson, 11, and and Yariv, 20, (Yariv defines his values as

Kleinman, 15, et al, Robinson, 11, as Bloembergen et all, 9) 1.4.

Propagation of E.M. radiation in a Dielectric medium

20

The propagation of electromagnetic radiation in a dielectric whose

magnetic polarization is negligable is described by solution of

Maxwell's equations.

1 d8

Vx E= -7 &
- L 4d
1.42 VxH = T a
where D = E + 47 P

Eliminating the magnetic field H from these eguations in the usual way

produces the equatién

2
Vi(vrm+ L L& . -4 &
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for the electric field.

Where E and P are functions of § and +t. Taking the Fourier

transform of this equation it produces

2
144 Vz (Vx E(zw) - 5 B5w)= ¥ p (0
i C “ C ~

under the same conditions of convergence as equation 1.9 which are
discussed by Butcher, 22, P ( £y w) as we have seen can be expanded in
terms of the electric field § and the susceptibility tensors.

e Medium with linear response

The polarization in this case is given by
1452 (5,0) = 2% (0) Bz, ©)
substituting into 1.44 and dropping the explicit frequency label, which

is an unnecessary complication in the linear regime, we have

1.46
QJZ
a« Vzx (VxE) - = €:'E =0
C
where
bo é=1+4TIX®
To investigate the propagation of a plane wave in this medium we
write

where T is the position vector, n the direction of propagation and ﬂ
the refractive index, @ the direction of the polarization which are to be
obtained. Substituting 1.47 into 1.46 we obtain Fresnel's equation

1.48 72 (nx (nx g))+ €. = 0
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At this point we assume that € is regl, i.e. the medium is
non-absorbing. Equation 1.48 represents a system of simultaneous
homogenous linear equations for a = (a1, 809 a3). The equations
are simplified by choosing axes along the principal axes of the
dielectric tensor,they will be the same as those of X @ (©) from
1.46(b). Applying the consistency condition gives a quadratic equation
for 4]2. For an isotropic medium where

€ = | € 0 O
0 € 0
0 0 €

The equation for '72 reduces to

(’72 - € )2 = 0 substituting this into 1.48 we have a‘n = 0
determining a.
In a uniaxial medium, such as the previous exa.mple)lithuim niobate ,

the dielectric tensor has the form of equation 1.33

€ =€1oo
061 0
0062

The orientation of the x and y principal axes is arbitrary and it is
convenient to choose them so that n 1lies in the O0xz plane and we can
put

= i = n cos e
n, s:me,ny o, 5 = '

where © is the angle between the 2z axis and the direction of

Propagation. In this case the equation.for '72 reduces to



z3

> X

BN

11

w

12

'1’3 .
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2 . 2
e + €1s1ne) - & 52) = 0

1.49 (”)2 - €, ) »72 (€,c0s
Thus for one solution /‘]2 = 61 which is independent of the direction
of propagation. For this solution from 1.48

1.50 a = (0, 1, 0)

i.ee a is orthogonal to both the direction of propagation and the =z

axis as in figure 1.1.

The second solution has refrective index given by.

1 cosze sinze
1 051 —2‘ = —Z-——-— —-—e——-—-
g “3 1

This is the extraordinary wave for which the refractive depends on the

direction of propagation. The solution for a has a_ = 0 and

X
1.52 a_ € = #2os®e
a‘y 472sin © cos &

So that 2 lies in the plane of O and 1 and is inclined to n at

an angle of 12T- - where

1.53 tan « = %;"12 (é; - 1;—) sin 26

The energy flux due to the wave is given by

1.54
P =x I

-
from 1.42 H is parallel to n x Ag.\ so that S 1lies in the plane
of n and the 2z axis but inclined to n at the angle o given by
1.53. That is the energy of the extraordinary wave propagates at ah
angle, o, to the direction of phase propagation of the wave (see

figure 1.2). Figure 1.3 represenis the.refractive index as distance



RS

from the origin of both ordinary and extraordinary waves with
the direction of propagation for a negative uniaxial crystal.
be Absorption

The imaginary part of € accounts for absorption. Since for
any medium of interest absorption wiil be small we can consider it as a
small perturbation on the previous theory. Let the perturbed
refractive index be N and polarization vector be b. So Fresnel's

equation becomes

1
1.55 N2 (mx(nx b) + 61'13_ + i €p = 0
where we have written
E = 61 + i 611

Taking the scalar product with a ,the old polarization vector and using

the symmetry of 61 (i.e. a - 61- b =D 61- é) we can write

156 ¥ (a.n x (@ xb ) -"fr-(ax (@xa))+iaelyp
= 0
rearranging

1.57 A
N2 - /72 + i €
(rxea)nxk)
1",
assuming a is very nearly equal to b and € is small we can
write using the binomial expansion

N:?‘A?""iK

1.58 where
0. ea
2m(nx a)?

X =

Substituting this into the original form for the wave 1.47, we have



2¢

_ ' . W 11
1.58 a. ;EJ' = B Qexp( Eﬂ’n‘_.g) exp( - 2: £ -2 221.':2)
2¢ (a x a)

so K is the extinction coefficient of the wave.

Ce Medium with Quadratic Response

Including the quadratic response of the polarization to the
electric field into Maxwell's equations 1;42 we can write equation 1;46

more generally as

1.59 .
2 2
Vz (Vzx Bed - % €(0) Bro) = 4582, )
C c

The solution to this equation for infinite plane waves has been studies
by many authors, 16, 17, 18) 21. We will consider here the main
points.

We assume that none of the frequencies involved approach the
singulatities of the second order susceptibility tensor;l This tensor
is then real and obeys Kleinman's symmetry conditions and EQD is small
and can be regarded as a perturbation on the linear equation which we

have seen has solutions of the form

E = a exp (i'% Mo n-r )

~ A A~

We write the perturbed electric field as , 22,

1.60 E = (A(g)g + ¢ (S) ) ex (109 ”,g )

~

where § = .t a co-ordinate in the direction of propagation. A( S )

is a slowly varying amplitude factor, c¢(§) is a slowly varying

@)

correction term which arises from the 6omponents of P orthogonal

to Qe
~

Substituting this into equation 1.59 and using Fresnel's equation
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1.43 and some vector manipulation, 22, we obtain the equation

. ()
4 _ 4rmiw a-P = (w) .
1.61 . A(S) = C/"](w) L(p\xg)z exp[l%) ”)(w)g)

for the amplitude variation of the field at frequency .
For the simplest case when A(S§ ) represents the amplitude of the
second harmonic of a field at frequency ©, (= w/2).' the polarization

takes the form.

2
1.62 Q~E®(w)= B

> % K (@, ©) by by

' 2w
x em (1—gk (o) S )

The driving fundamental field being of the form
w
1 ( 1
E = E bexp (ig "7((.01)§)

Therefore

1.63 4 A@B) « E02 exp (iAkS ) where

as
. 2q
1.64 Ak = —= (7() - #(20))

The solution of this equation may be written down immediately if
we assume that the second harmonic field is small enough not to affect

the amplitude of the Pfundamental field (i.e. E is constant), then

sin(Aé{g)

1,65 A(S ) ol i/

We see that A(S) oscillates sinusoidally when Ak ¥ O and grows
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linearly with § when Ak = 0. Most transparent optical materials
exhibit normal dispersion. Thus the condition of perfect phase
matching Ak = O cannot be achieved in an isotropic medium or if
both waves are the same type in a uniaxial or biaxial medium. However
as first pointed out by Giordmaine, 51 and Terhune, 52, the directional
dependence of the extraordinary refractive index can be employed to
balance out the effects of dispersion in some materials. For
potassium dihydrogen phosphate one of the first umaterials which proved
suitable a second harmonic extraordinary wave has the same refractive
index as its fundamental ordinary wave when they propagate at an angle
of 50° to the optic axis for a fundamental wavelength of 0.6943 microns.
Then the polarization vectors can be writtem a = (0, 1, 0),

b = (cos 50, 0, =sin 50) neglecting the small correction term. We
see from equation 1.53 fhat the energy contained in the second harmonic
wave propagates at an angle « to that of the fundamental wave so

the interaction between the two waves will cease after some
characteristic length. This is known as the aperture effect. This
drawback can be overcome if phase matching could be achieved in a
diréction perpendicular to the optic axis whem o« = O. This case has
also the added advantage that phase matehing is not as critical since
now the refractive index curves touch rather than intersect. The
refractive index of lithium niobate is temperature dependent and obeys

the Sellmeier equations, 23,

1.173 x 10° + 1.65 x 1072 1°
2

1.66 /702 = 4.19130 +

N - (212 x10% + 2.7 z 1070 72)2
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- 2.8 x 108 )2
1.67 ‘7g2 = 4.5567 + 2.605 x 101 12
5 2 o .
+ 0.970 x 10° + 2,70 x 10 °T - 2.24 % 10—8 N 2

N2 = (2.01 x 102 + 5.4 x 10721%)2
)\ wavelength 1077 cms. (i.e. nms.)
T Temperature OK
for wavelength between 0.4 and 4.0 microns and phase matching can be
achieved in a perpendicular direction to the optic axis for a variety
of wavelengths (24, 26).
The polarization vectors for this case are a = (0, 1, 0),

d.31 from 1.36.

i
wj

a; Xijk (w1, w1) b;j b, =
The process involving this tensor element dominates since the

others are not phase matched.

For parametric effects when the medium is subjected to two optical

fields at frequencies a>1 and 02 of the form

w ‘ (N
271 -5 b em (g 4(ep)S)
e .

w3> w1>0

the quadratic polarization then contains the difference frequency term
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@0y -
2RT(0) = By Bl ey Kige (@30 = ©9) gy by

x ez (18/0 (03 4(0y) - 0 4(w) )
from equation 1.23

Again the interaction will depend on phase matching term

Ak =

Qj-

(w3 4 (wy) - o, M) = wy4(0))
and the difference frequency will only be exited to a significant
amount if Ak = 0.

Attempts at optical parametric amplification have been made using
Lithium Niobate 25, for the degenerate case W, = db. In this case

phase matching occurs if the pump wave at 6J3 is extraordinary i.e.

5 = (0, 0, 1) and the subbarmonic wave is ordinary a = k1 =

~3
(0, 1, O) then from 1.36

a; Xyge (039 @) b3y by = 445

as long as X131 = X113 which is true under our assumptions that

O, 1is much less than the frequencies of the electronic transitions.

3

Enhancement of Nonlinear Effects

The first and most obvious way to enhance the effect is to use
a focussed beam. Several authors, 27-31, 53, 54 have treated second
harmonic generation by focussed beams of light; they considered the
focussed beam as a sum of plane wave components. Kleinman and prd,
15, have treated this in great detail for the case of a gaussian
fundamental beam focussed into a nonlinear crystal. They have studied

the variation and form of the output with focus position, focussing,
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length of crystal, phase matching both theoretically and experimentally
and their results are similar to those obtained here.

The second method of enhancing the effect is to place the
nonlinear crystal inside a resonator of its own firstly outside the
laser cavity ultimately inside. Ashkin, Boyd and Dziedzic, 32, have
applied their work on focussed beams to the first case but this method
of treating resonant second harmonic generation is rather clumsy and
cannot be applied to the general case. We will study this problem
here by solving Maxwell's equations for the field in the resonator
containing the nonlinear crystal. By basing the study on the modes of
the resonator we can avoid the inherent difficulties of the plane wave
approach for solving the general case when there is more than one
mode present.

This theory can then be applied with minor changes to the theory

of parametric amplification and oscillation.
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The Modes of the Optical Resonator

1 Introduction

The open resonator was first.proposed as a resonant cavity for
lasers by Dicke, 34, and Shawlow and Townes, 35, and Prokhurov, 36,
because even at optical frequencies,when the cavity dimensions must be
much greater than the wavelength of the contained radiation,they only
support relatively few psuedo%—eigen modes of oscillation. Only
waves which propagate along the axis of the resonator willvbe supported;
any others will have very high losses. Fox and Li, 37, by making
self consistent field calculations based on Huygen's principle showed
that discrete modes existed both for the plane parallel mirror
resonator and the spherical mirror resonator and indicated the field
distribution over the mirrors and thelosses of the modes. Boyd and
Gordon, 38,vBoyd and Kogelnik, 39, solved these equations for the
spherical mirror resonator and gave an expression for the field in the
resonator. I shall give a brief outline of their method +to show the
way in which the solutions arise and then go on to derive them as
solutions to Maxwell's equations for the resonator, firstly for the
case when the resonator is.filled with an isotropic medium, secondly

a uniaxial medium.

* psuedo in that there is a larger possibility that a photon will

étay in the mode for a long time but not indefinitely, 40.
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2 Derivation
ae Mirror Field Distribution

We consider the simplest case a confocal resonator (see
figure 2.1 ). Two spherical mirrors, radius of curvature b, separated
by a distance b. Because of the axial symmetry there will be a plane
polarized solution and we can use Kirchoff's diffraction theory, 50, to
give the field E(x) at the point P(x) due to the distribution

1 . .
E(x ) over the first mirror surface.

2.1 E(x) = — gg (E%—}f My gs

. S
U e-llﬂ‘ 1
where = m r = 1(3;5 - X ) '

and %—5 represents differentiation along the outward normal to the

mirror surface S. Since %— << k at optical frequencies and

o .
b_n- = 5o cos &
3 e-ikr e—ikr
we can write 2.2 Sz ( = ) = ikcose = and to the first
order,

23 3 (BE)) - -uE (&)

substituting into 2.1 we have

~ikr

2.4 E (x) = %r:-r- E(;J)%-l (1 + cose) ds

for the resonator © never departs very far from zero and S is a

square mirror of side a.
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By symmetry if E (;g) is an eigen mode of the resonator the
field distribution will reproduce itself on the second mirror apart
from some loss factor. In the usual fashion solving for eigen modes
we assume

E(r) = B £ (x)e, ()
and so the field

E (x)

where

It

B, £, (x) e ()

E1 = o, o E° S, Sn being the eigenme

value of the equation. Therefore

ik -ikr 1 1 1 1
2.7 o, o, f (x)g () = 5 © £ (x )g, (v )ax' dy
~a —-a
from the diagram 2.1 to the first order v is given by
1 .1
Y = b (1 ol E_z_.*._m— + evecsccooe )
b

substituting this into 2;7 and separating the integrals
-

.. =ikbd . 1
ike ikxx 1 1
c,. o, f(x)eg () = e[_—}f (') ax
m nm n 21mb b2 m

a -a
-1
i 1 1
x [e{l—l%z—} g, v) &
b
-a
in terms of dimensionless variables

2 2ma? Je’ e
a . 2me ¥ xVe Y - X_EE

b b2

’ B a

Foo(x) = £ (x) 6 (¥) = g (¥)
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i
~ikb 1
e 1 14X
2.9 0y 0y Fm (g) ¢ (1) = el Fo(x) e ax
: , o ¥

1

-

x | ¢ (1) T gy

-

The solution to this equation will be the product of the solutions to

two equations of the form

A
— ejé& 1
2.10 7 (X) = |2 —2 F_ e X g’
27 Onm
=Jc

These are giveh'by, 41, the angular and radial wﬁve fuﬁctidns in

prolate spheroidal co-ordinates. The field given by these functions
falls away quite rapidly from the axis sé that we can appréximafe 2.10
by taking the limits of the integratioﬁ to infinity and then the solution

is given by
'%XZ -
2.12 F_ X)) = CH X)e

whére Hm (X) is the Hermite polynomial of degree my, C a constant. Under

this approximation the field distribution over each mirror will be given

by ‘ /
B - B H (X)H (Y) exp -t (X + 1°)
T To'm n =
K« o [X k 2 2
2.13 E=E0Hm(xfg)Hn(Yb)exp—2b x= + ¥9)

(for a two dimensionél resonator we can apply the same theory to arrive at

‘ A NS k 2
E=E0Hm(x f-g)ex?(-?bx)
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b. Travelling wave in the resonator

Using this solution for the field distribution over the mirror
we can now calculate from equation 2.4 the form of the travelling wave
which is produced in the cavity. If we assume one of the mirrors is
partially transmitting this will also be the form of the wave outside
the cavity.

For the simplest case of the lowest order mode, in the
approximztion of infinite mirrors the defraction integral is

D o>

" —ike

- . k 12 12y ¢ 1 1

2.14 E (x,y,2) = = E ik exp - 53-(x +y ) - dx dy
27T
~o0 —00
To the first approximation from diagram 2.2
| 12 2 12 1 1
0.5 ¢ = £ o - LB E__ (xx +yy)
: 2b 2¢ 33 €

where § = 7z + %-, Wz = x2 + y2, W12 = x12 + y12

substituting into 2.14.

E ik ' R
E(x,y) = — exp { R AR € }
: 2w

2.16

00

k - ik + ik 2 . 1 1

x Jﬂ exp {-- (Eg 5 2€ ) x° + ik xx } ax
ik
2§

® .
o i i 2 . 1
ij exp {—(1-;-5-- -J-é-,];-+—— ) ¥y© o+ 1kyy1}dy
—b4
taking the first of the integrals, Ii "
—kx 1 1/ ,1-1
2.17 Ix = exp expfx _[x 2( =

1-3 4

2e® (T2 ) Lu
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1.
) = 1
§ 26 {2 toi, 1y Y[
z (= + &)
changing the variable of integration to
1 k1 -4 ivvE .
2.18 ”]=x(-2-(b +E))2- ikx
1
k1 =i i yy2
26 (3 (— +'§f))
we have
éﬁé 2
2.19 I, = 1 exp —kx exp - q 2d~?
g,(1 -i i 2,1 -1 i
e 7+ 9 28705 vl

ffhere C iz a straight line in the complex /7 plane. This integral

-

and also the integral which we obtain for the higher mode case is

treated in Appendix I. Using the result

2
2.20 I. = VGF - exp = -
x Eldet,ly 21 -1 . i
2 ‘"o € 2§(“—r{;—*+”§')

note that the expression for E (x, ¥, z) is given as the product of two
two-dimensional terms, so the two dimensional result follows immediately.

The field E (x, ¥y, z.) is now given by

E; —kw>
2.21 E(z, y, 2.) = T-1 1 exp{ ;1 i, i
g (5 v 7) 25 % 52+ })
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E (1 + 1) 2.2
2,22 E (%, g, 2) = —2m—n em{i{——@‘——*—y—l - ik (z + 2 }

R R

Redefining E, to absorb the constants

'L"\

B 2 2 .
2.23 _ (o} —kgx + ¥ ) - ikz

E(x, y, z) = — . exp :
(-22) ™ o 2

Separating the real and imaginary parts this can be written alternatively

as
E 2 2
2.2, E (x, y, z) ____9._§Ji oxp | T y%
(1412 20 A2
b b

2 2 .
Sy B E) ko gan —2-?)>

2 b
b2(1 +—-————L*Z2 >
b
We see from this equation for fizxed 2z +the field falls off from the

axis of the resonator as
-k 512 + Xz)
exp 5
b (1 + —LE-Z-)
b2

We define the spot size W of the mode to be the radius where the field

has fallen to —l— of its value on the axis.

(1+ k2 oy
b2

2
2 w2 (14
o b2

2.25 Therefore W2 = -E

which can be written W =

1
)2  the minimum spot size. We can write

wlic

defining W = (
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27 by

22 .
= = =— o= = where A is the wavelength and
b kWo 'ﬁ'WOZ

defining 7, and §

> _ zZ, _ 22z _
2.262—Z°andzo- = = £

These definitions will be adhered to throughout this thesis from

this point on.

The beam spread is defined by (see Figure 1.3)
L {T 1w } Pan (w
1m an an (o]
2.27 e = ( = ) = _...)
2500 -\ Zo

using these definitions we can write the general travelling wave form

for the n mth mode as

2.28 E _ (x, v, 2) = B ° 11..‘:..5)???4_1
(1-1¢) 2
xH(FX)Hn( )xexpﬁ-——-——-y-z) -ikz}
W (1 -1€)
or as (39).
229 5, (r 9 = 5,0 Toop () g ( )

xexp{"&zﬁ; %) —i(if-—t—ﬁf —(m+n+1)tan"%§)

m)}

note that these can be split (except for the exp (-ikz) term) to give

the two dimensional rgsult.
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2.30 B (x, ) = E, 1+ 3 I Hm(\f_?.&)
(1 -i§) 2 !
' 2
exp {A-——;:—QE-——— - ikz
w°2(1-1§)
C. The general spherical mirror resonator ,

Equation 2,28 will also represent the field inside a resonator
with arbitrary mirror spacing as long as the mirrors lie on surfaces
of constant phase of the electric field. The surfaces of constant

phase of the field represented by the equation 2.21 are given by

2 2 :
(5——-—'"2—-2—-)§+kz- (m+n+1)tan-1§
W

constant = kz1

[}

whereas z1 is the point at which the surface intersects the =z axis,
Neglecting the term (m + n + 1) tan-if s since it is small
compared with kz, and re-arranging this gives:

2 + y2 = (z1 - z) 2z (1 + %

which represents a spherical surface, radius of curvature

2)

R = 2(1 + +~2) =
§
z 2
2.31 ie.e. R = Z (1 + ————2‘— )
Z

Thus if we are given two mirrors radius of curvature Ty Tp
respectively placed a distance apart d, distances Z1, 22 from the

beam waist (see figure 2.4) then the beam parameters can be

calculated from 2.31 2.
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kW 2 .
S S R LR, IR T
2
(r1 + T, - 24)

from this expression we can obtain the values of Ty To d which

support resonance. For a more detailed treatment see Bhawalker,A42.

d. Resonant Frequency

The phases of the wave at the two mirrors relative to the
origin are (from equation 2.29)
-1
¢1 = -kz; + (m+n+1)tan f1
-1
¢2=k22—(m+n+1)tan g,
Therefore the phase change between the mirrors is

-1 -1
¢1-¢2=kd-tan '§2-—tan fi
, %
-1 a(th rH=-4)

(ry -a)(z N -d)

2.32 f, -f, = ki~ (n+n+1)tan

using equation 2.31. For resonance ¢1 - ¢2 must be an integer
multiple of 1 o+ Therefore

2.33 g = ki- (m+n+ 1) tan (9)
L}) is given by 2.32 and is a function of the cavity parameters only.
In general q will be large and the resonator will support a number of

longfitudinal modes the wave number separation of which is given by

SE

Equation 2.33 also shows that the transverse modes will have a wave
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nunber separation of

...k=?ln.i.&)_

Mk = k

m+ 1 m a
3. Solution of Maxwell's Equations for the Resonator

(a) lossless Isotropic Medium

Maxwell's equations for a homogeneous, isotropic, linear and

non-magnetic dielectric reduce to

2
2.3 Vzi;{({’t) - c;.é 3°R(z, t) _

C Btz
Taking the Fourier transform we have

2

()
2.35 vzg(;,w)-l-f(;z— E(r,w) = 0

Considering a plane polarised wave travelling in the 2z direction we
can write.

2.36 E = £(x, v, z) exp (-ikz) where the function & will
represent the differences between the wave form we are considering

and a plane wave. We assume E? is a slowly varying function and

2 ’ | 2
031 (26| <o i [4E where k = o
d22 dz C2

which is a reasonable assumption since k is large ( nv105) at

optical frequencies. Substituting 2.36 into 2.35 and using 2.37 we

have

32 2% L X6 _

2.38
6]{2 By2 éz
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This is the basic equation of the subsequent work which was first
derived by Kogelnik and Li, 43. The presence of the reéonator gives
us the boundary conditions for the solution of 2,38. As we have
already pointed out the boundary conditions are axially symmetric and
S0 We can assumé a plane polarizéd solution. Secondly they introduce
an axis into the problem and so the solution will also have an axis.

In the absence of these boundary conditions there will be no axis
so that the solutions which we will derive cannot be regarded as
solutions of Maxwell's equations in the absence of the resonator.

(i) lowest-order mode

Following the derivation of the lowest order mode given by

Xogelnik and Li, 43, we assume € can be written in the form

kr2 )
2q

2.39 £ = go exp -i (P «+

where r2 = x2 + y2,

P is a function only of z and represents a complex phase shift

and q a function only of 2 which describes the variation of elect;ic

field away from the axis and the curvature of the phase front.
Substituting 2.39 into 2.38 we have

2.40 - 22 _ XX a2 @ - I
e a dz 2

a_(
dz

Q=

Equating coefficients of

i3 -i dg _
.40 () = T (b) = =

)

2.41 (b) can be integrated immediately to give

2042 qQ = qo + 2z
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guided by the previous work (eq. 2.29) we split %- into its real

and imaginary parts

1
2.43 T -

1. iz
R

R will be the radius of curvature of the phase front on the axis and
w a measure of the decrease in field amplitude from the axis. The
intensity distribution is gaussian af every cross section and W can
be defined as the spot size or beam radius at a particular Z. We
set up our axes at the point where R = o8 and define the spot size

at this point of the Z axis to be Wo. _Therefore from 2.43 and 2.42

R
W T T,
2
LW
- i k "o + g
2
which gives
2 2 4 72
2.44 WS = WSS (1 + 24)
kW
(o]
2 4 2 2 2
245 and R = 2 (1 + 5 W y o X ¥ W
422 4z

This result corresponds exactly with our previous definitions.

Substituting for q into equation 2.41 (a)

& _ =
dz z + 1ikW 2
0
2
' i2z
iP = log (1 - 3 )
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2,46 = log (1+£t__)_tan-1(__gg,_§)
k W kWo

substituting back into equation 2.39

£ - gem{ 1og‘(1+l*Z )+ i tan T (-&—2-)

k W kW
o

- (2"’ )}

—p? ir 2 27 . -1 ,27
exp) —5- - 5, +1 tan (————2-)
W k WO KA

2.7 € = €

which corresponds with the lowest order mode of equation 2.29.

2 2 2 27 g
r = X + ¥ , 5 =
kWo

(11)  Higher order modes

To derive the higher modes we have to introduce a more general

form in the place of egquation 2.39. Guided by experience we put

2
2.48 € - gf(Ix) (J;)exp —i(P+—-k£—-)

2q
substituting this into equation 2.38 and dividing throughout by f g

we have using 2..43

7 Bx 2x 1, xA?
2x) - 4-‘-5 £ (E3%))

oy I3 442,
-;-(;V@- (& - R e () -
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23ik _ 2kdP
q dz B

Separating off the variable x and then y and introducing the two

constants of separation =-2m, -2n gives the equations

14
2,50 f (X) - 2% £ (x) + emf (X) = O
4 (4 ,
g (Y) - eave (1) + 2ng (¥) = O for £ and g
Where X = {gz and Y = 423. These are just the equations for the

W W

Hermite polynomials of degree m and n respectively so that

Pry gy

‘:v m

()

2,50 £ (

Ly

(g

g n

The equation for P in this case is

@ i _ 2(m+n)

dz =~ g W 2
giving

2.52 4P = log (1 + -L-——-) - i(m+n+ 1) tan | (—22)
i r kW

Thus the general solution for the travelling wave mode in the cavity is

given by
W J__‘ ’J_l 2 .
o oy 2y =T ir2z
= — H e -
255 €= & B OF) () o= W kwew?
o
+i(m+n+1) tan ¢ 222 ) '}
kW
0
. 2 2 2 2z
changing the notation r = X + ¥ , §= W 2
o

this corresponds to equation 2.29
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(b) Validity of the approximation

We have approximated by assuming that

L<L /kdi.i } in obtaining

2.54 / a’€ }
d22

equation 2.38. TFor self consistency our solution 2.53 must obey
this condition. For the lowest order mode,calculating the derivatives

and substituting into equation 2.54,gives

S sw B2 2 4 2
2.55 /1—2 (- BT E T J o [E(41 B
aq a 4q
(i) at r = 0 we obtain
2
= k
HES
i.ee A S s
b L<L lz + 120

substituting for q from equation 2.42, gq . = Zfo. At worst this

o
will give o
. ) foo

)\ <L T zo R since 20 = )3

we have
(ii) Finite r Substituting for q = 2z + iz=o 2.55
becones
2_ 4

2.57 2 _ 2 2 _k r

- (z z2, + kr "z ) -

N
n



- i (=P - 2 zzo)( << {-z+i(lc1'2—-g—o-)

This breaks down in two regions the first near z = 0 and
2 Z . . . .
kr- -_"o = 0. The second if ¥ is large enough. Region one is
2

defined by (2° + (r - wo)2 YL . This is

k2.

relavively unimportant since it is so swall compared with the beam
parameter.

Region two is defined by r2§D kﬁﬂ. The magnitude of the field is
proportional to exp (- rZ/W2). 50 in this region this factor is much
less than exp (-k) and the field is so small that this inconsistency can
be neglected. Some error in the outer regions can be expected since we
have approximated the finite mirrors of the rescnator by infinite ones.
Thus the only significant restriction is given by equation 2.56 the minimum s
spot size must be much greater than the wavelength of the light of the
beam.

(iii) Transverse Nature of the Polarization

Orienting the x and y axis so that the field in the resonator is
polarized in the y direction we can write the divergence equation for

the field as

dE OF
2.58 <L 4+ —£ = 0 where E_is the component of the field along the
dy dz
direction of propagation. We assume that
BEZ
a_; z - lk:EZ.

Taking the lowest order mode (equation 2.39) and calculating the

derivative in the y direction we have
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dE
2.59 L. _ - iky E?:y. so that from
d
y q

equation 2.58 we can write.

Je | - Iz

q

therefore as long as lyl <« lq |

l Ez | L <L ’Ey I and the mode will be traversely polarized.
2 KW W
2 2k _ % _z° Yo ¥
lal = (2° + 2% = == W (1 + =)= —
0 2, 2

Therefore the condition reduces to
kW W
—_

2

2.60 |yl L<

and again the ideal condition breaks down far from the axis when the
field is small. So that over the region of interest it is a wvglid
approximation to assume there is no component of the field in the
direction of propagation.

(iv) Normalization

We assume as before we have a mode propagating along the axis
of the resonator polarized in the y direction,

E = (0, E, 0) to the approximation of the last section. From
Maxwell's equations the magnetic field H will have the form

E = (H, 0, O)
C

bi=2

The Poynting vector S = e E x
and therefore § = g; (0, 0, EH)

In the usual way we write

E = Re{gexp -i (kz-wt)}
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2,61 H = Re {){ exp [-i (kz -m)]}
and using Maxwellt's equations

n €= X

where " is the refractive index of the medium. Therefore the one non-

zero component of the energy flux

2 -
c £ :
2,62 SZ = ﬁ [T exp [ -2i (k= —Ub)} }
* ¥ o
+ 826 + % exp [21 (kz —wt)] }
taking the time average

cM Ee*
L ° 2

2.63 S,
to calculate the total energy flow in the propagating mode we now
integrate 2.63 over the cross section.

(i) In two dimensions £ is given by 2.30 and

ERTIRE

- C

J2x
- e = S 2
Zw
2
< om (H)
c Wio g 2 2 2
=E—T_‘_J—?/o} 82 (S) em (-S?) aS

where f = -3‘5[7_12—}5

Carrying out the integration

W
5 .o _o9 no_| 2
2.65 SrI‘otal - 8 «f2_1 . 2 nl JW jgo]

For unit energy flux
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‘€’2=8T" 1 2
° c W on! ot “

It is convenient at this voint to define a new normalised

ampifitude 2 so that

i
2
s . L_le
2.66 §, = sw]nl
therefore
1 2\ 2
2,67 4 -lel —— 2
,"{ N\ (W M1 )
o
and 2,30 becomes
%+ 'y/2
S A A B 2y A+ 4
2.68 En - N ( n o TT) ( 1 - i ) n+ 1
WOZ nt -

2
s, () el

leaving out the exp (—ikz) term
(i1) 1In three dimensions € is given by 2.28. Using this

expression the resulting expression for STotal contains a double

integration which is separable into an integration over y and an
integration over x each of the form of the integral in equation

2.64. Carrying out these integrations we have

W e

= C o 2 ,n mo o\
269 Sp .1 = T ——\Eo\ 2 ni,f:r1 i N s
t

Again we define a new normalized amplitude ¥ where

le | = lfﬂé .%; ( _1 VE

)

and the travelling wave mode is defined as
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m-+n
. 2
2.70 é:mn = £;N+ n_| | _\F (x15) m+n
W (2 n! m-m) (1_15)—-—5——4.1

J—r'

This normalization is the most convenient and has been used also by
Kogelnik, 44.
The energy flux now is equal to

C 2 -
T /é: N'/ x 10 T

watts , and so

e —————,

= 7
£/ /jsﬂ S, x 10 _
2.17 Ed - S in watts.
c ’ T

Orthogonality

The normalised modes (CN = 1) are orthogonal since for two

dimensions

oo

/fn*&a dx

-850 [

H
]

- ! ’ B, (§) B (§) em (-5% aS
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- S

mn

and for three dimensions

»*
= J//é:ne é:nﬂ: dx dy
-00

1 2 ;
- n +m+ 1+k ] ™ 4

IH];([%X)dY=5 gké

Since the Hermite functions form a complete set over the

mn

interval (~ 00,00 ) we can regard the resonator modes as forming
a complete set in the cavity and therefore any travelling waveform in
the cavity can be expanded as a sum of the modes.

The general solution of the differential equation 2,38 can be

written, therefore as

o

é: = E: A é?n ‘for two dimensions and
A=
oo ° o
£= Z Z Anm gnm for three dimensions
LX) M=

where the A's are constants which for a given field can be determined

in the normal way using the orthogonality of the gn’ ( E,m) -
’
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4. Propagation in Anisotropic Media

(a) Two dimensions

The propagation of the lowest order two dimensional gaussian
mode has been treated independently by Bhawalker, Gambling and Smith,
45, in some detail but here we are only interested in the particular
case of propagation perpendicular to the optic axis. Bergstein
and Zachos, 48, 49, have also studies propagation in an uniaxial
anisotropic media using a diffraction theory approach.

We consider Maxwell's equations for an infinite uniaxial
lossless medium enclosed in a resonator with the optic axis of the
medium perpendicular to the axial plane of the resonator. We set up
a system of co-ordinates so that the resonator is infinite in the ¥y
direction, the optic axis lies in the =x direction and the =z
direction in the direction of propagation. These axes are principal
axes of the dielectric tensor which can therefore be written.

2.72 € 00
€ = 0 € 0

0 0 Ez

The Fourier transforms of Maxwell's equations (e.g. 1.46)

written out in full are

3%g 3%E 2
wr =
2.73 (a) Z . 2x - = €; Ex 0
dxdgz 3z c
2 2
(») - —L - L 2 S E, = 0
522 bx2 c
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2_ 2
(o) o “x D% w2 ez o
o2 JX - 3 2 02 z z

[

Note that the equations decouple. The x and 2z component describe the
propagation of the extraordinary wave whose refraction index varies with
direction of propagation and the y component describes the propagation
of the ordinary wave. The y component has exactly the form of the

isotrcpic eguation and hence the foregoing theory applies without change.

Using the divergence equation

€_ OB OB
o 2% 4 € —Z - 0
ox z oz

The x and 2z components can be separated, equation 2.73 (a) becoming

. 2 2
275—GE ébX+aux+‘f—EC—E—o
‘ € 2 2 2 x x

z Ox Dz c

We now consider an extraordinary wave propageting in the 2z direction.
Since we can assume it is transverse it will be governed by this equation.

Let EY = é;exp (dkz). where é: is a slowly varying function of

w . . . .
x and z and k = /C /€ . Substituting into equation 2.75 and

~r

using the previous approximation 2.37 we obtain

- 2ik

€ D2 €& &
X
216 /C_ z axz oz
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Making the scale charxge x = { 7/ € )% X we obtain the two-

dimensional analogue of equation 2.38

2
Y4

which has solutions

20 77 = O

2
2'x X
1 G (T ) ey

(1-1€) 2 WY (1-1¢ )

£ - € (1+i£)p/2
n +

n 0

Therefore a mode polarized as an extraordinary wave propagates as

2
€x x
- (1 + i€)72 2x , €23 - _&x
ers &, = & LXISN_ g (vw_f(_é_)f) oxp

(1-16) 2% ) Wy (1= 15)

Wo1 no longer represents the spot size of the beam, but we

V4

define

€ 1
2.79 W, = (_é_z_c_ )= W°1 and now W_ is the spot size as defined
z

previously (equation 2.25).

2z 2z x
2
also § = s = ( ) W

so that the beam spread is altered to

€
2.81 ©= tan "~ {-2-— (_-’F.)E
KN ‘e,



The beam spread therefore is less for an extraordinary beam in a
negative uniaxial medium, more for an extraordinary beam in a positive
uniaxial medium than the beam spread for the ordinary beam.

The lines of constant phase of equation 2,78 are given by

(c.f. section 2 (c)).

2 1 ex Z-02
282 x = 2 (z -12) z ?;; (1 - ;5— )

As before these are circles, now of radius of curvature

éix ( 202 )
2,83 R = Z —= 1 -
€, Z2
W2 e
where z = (=)
2 Cx

The spot size, confocal parameters etc. of a set of modes produced by
two given mirrors can be calculated from this data as in section 2 (¢)
(see reference 45 for explicit formulae). Note that the spot sizes of
the extraordinarily polarized modes will be different from the ordinaxry
polarized ones for a given resonator.

The normalization of equation 2.78 can be carried out exactly
as before and all other conclusions of the earlier work hold for this
case.

Three Dimensions

Consider a resonator filled with uniaxial lossless dielectric
with axes oriented as for the two dimensional case. Then equations

1.46 written out in full are
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2. 2 2 2
(a) B, 2% 2B 2B o« o€ - o
2
dx dz dx dy 352 ay2 c
2 2
I°E O°E 2
() %, _ Ey VEr Wt e g -
2 2 c 2 v
dy dx dzdy dx Yz
>2g %g NG 28 2
(¢) __¥ ., X_f_._.é__.z__ ;-‘;’EE
b A a a ax c zZ Z
Z oy z4dx 33]
and the divergence equation
AEX OF oE,
(a) 8, + g —_— 4 = = 0
93z dy 3z

Using the divergence eguation the others can be reduced to

2.85
3% 3g ¥E 2
(=) 5+ 5+ T+ Loz €rB = O
dx oy Jz ©
2
3 “E c 2
- =%y - Jlmy - = E = 0
dydx E, ) o2 z ¥
d%g € 2
(e) = (1 - —= - szz - Q_é- 62 B, = 0
bsz eZ R c

We assume that the anisotropy is small i.e. (1 - -Z:-:- ) << 1
Z

and look for a solution representing an almost plane wave travelling



&1

in the 2z direction. We expect two solutions, extraordinary and

ordinary waves, therefore we put

2.86
B, = E; exp (- 1k, z)
Ey = €y exp (-1 k z)
o e
E, = Ex exp (-1k z) + f; exp (- ikez)

where E;? f;, E; are slowly varying functions of x, ¥y, z.

Substituting these into the divergence equation 2.84 (d) and using the

approximations
g (o] e
d o€

2,87 2] 44k / EZO\ and./ 2 & Kk, IEZ d
dz dz

it becomes

NES € &
.88 . ) . X X
2.8 (._S.;rl._ - ik Ez ) exp (-1 k z) + (—é-; >

-ik_ E:)

x exp (-1k, z) = O

This equation can be split into two equations if the change of
the quantities in the brackets is negligable over a period of the
exponential term

exp {_i(ko - k) z} which is 2w /(ko - ke)

This condition will be true since we have assumed the waves to

be nearly plane waves and that f;; 6&, Eé are slowly varying

compared with the exp (- i k, z).
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2.88 becomesg therefore

£
2.89 (a) —b——-—l - ik 5x° = 0

oy

(b)

e = -1 K, E:'ze = 0
z dz

and these can be used with the substitution
of 2.86 to reduce equations 2.85 to

2.90. (a) e-—J-C- ézgx é28:: . éEx
EZ N > + —_-é > - 21 ke é
X 5 2

2
(b)—a-——zg—l-i-B——Eféz--Ziko é—E—l=o
dx dy dz

Equation (b) corresponds to that found by, 46, for the more general
case, including double refraction.

The third equation is of negligible order. So under these
approximations the equations have split as in the two dimensional
case, into one governing the ordinary component and the other the
extraordinary. The ordinary component 2.90 (b) again propagates as

for the isotropic case. Making a scale change in 2.90 (a)
€, 1
x = (—= )% X
Ex
we can reduce it to the isotropic case and thus the solutions of

2.90 (a) will be
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m+n
E? fi §1 + i.gz B
2.91 T o m+n+ 2 Hﬁ(-JZZ%E (—= y% )
. 2 W x
(1—1§)
/é" c 2 2
B (L) em - (g2 % YY)

e (1-1§)

We see from this that the beam is no longer circular, the curves

of constant intensity for g given 2z are given by

E
2.92 —z_ X2 % y2 = W which is an ellipse with semi axes
€y
€y 2
—X 3
W and W( ez) .

The surface of constant phase which define the resonator surfaces
are given by

(=
(——ez x2+y2)§ + kz = kz
X

W21+ §2)

(as for section 2.2 (c))
b

Rearranging " 2
= 4

2.93 —=Z Iz + y2 = 2 (Z"— z) Z (1 + __(2)_-. )
€x z

This is the surface of an ellipsoid, so that a resonator enclosing
a uniaxial medium needs to have ellipsoidal mirrors to achieve
resonance for the extrazordinary polarized modes. In this situation the

ordinary polarized modes will have greater loss due to the wrong

curvature of the mirrors and so effectively the resonator will have
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only one set of modes. One possible way around the experimental
difficulty of ellipsoidal mirrors in the situation when the non-linear
properiies of a particular uniaxial medium are required would be to
include also inside the resonator some medium of the opposite
uniaxial nature to reproduce spherical wave fronts on the mirrors
(see diagram 2.5). This would also enable the ordinary polarized
modes to resonate.

The normalization of the mode will be changed by the factor

é;/ €, vhich has now appeared.  Keeping the definition of

2
0_ 3 *
‘5 - 22/£W > k = oxt ;5_' the normalized form of Eﬁm is
o
n+m
2.94 & = % (1+i6) 2

. om c ] 1 T n+m+ 1

G F T Al -af) F

zZ

GZ
s (2 g, (B e (-t D

x w°2,<1-i5 )

Effects of Absorption

The derivation of equation 2,38 from equation 2.34 holds without
change when £ is complex, The solution to equation 2.38 follows the
same lines except that k 1is now complex since

6%=1<r - i k,

k =
1m

ol&

Instead of equation 2.43 we define

i2

2.95
k. W
x.

1
o] B

Q|-



and hence
ik W° kW
Q@ = TS + =z and 2, = 5
§ 2 2 Lo
Tne spot size W ig given by W~ = WO ( 1 + ———§~7:-
k.‘r ‘{'{o
A
ha)
and the wavefront radius of curvature R = z ( 1 + — 20 )
Lz
2
1 2wl w2
. _r 0
Lz

The equation for the factor P of equation 2.39 for the general case
remains unchanged
2 _ i 2 (wxn)
7z 2
d 4 KW
but the solution for P, egquation 2.52, is altered to

2 ¢
2.96 iP = log (1-1;—J£1——~—— ) - i ! +'§%§ (n + n) tan -1/ 2z
2 k Kk 2

x ey h
r (e}

w
fadie}
Thus the general soluticn for the travelling wave modes after some
manipulation to bring out the imaginary part of k is given by

(c.f. equation 2.53)

W r‘1 3 2 . 2
0 2X 2y -~ =2ir 7
2.9 & = Eo 7 By () E, D exl’[ > 2

m n W ok WOW
r (¢]

. -1 27 '
+ i (m+n+ 1) tan ( - 2) f (kim)

o)

42




é¢

where
2

k, . e
£ (k. ) = exp {~k1m (1r2 2

- ) 4+ — (n + n)x
m W K WW 2

The exponential term £ (kim) is due to the presence of
absorption. When considering the electric field we will also have
the term exp ( - k; z) arising from exp (-1ik z)e As we have
remarked previously all materials of interest will necessarily have
low absorption therefore

ki << 1

This implies the very much stronger inequality at optical frequencies

ki < < kr
All the terms in the second exponential depend on thé factor kim/ k.
and hence can be neglected. This leaves only the term exp (- ki z)

which has been introduced by the absorption present.
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Chanter 3

Derivation of the Counled lode Houation and

Calculation of the Counlinz Coefficients

1 Two dimensions

We consider now the propagation of the travelling wave modes which
were studied in the last chapter in a resonator which contains a uniaxial
medium with a non linear response. From Haxwell's equations for the
media coupled eguations governing the interchange of energy between the
various modes of the resonators are derived. This provides a new direct
method for studying the interaction of optical fields due to the nén
linear medium when the interaction is inside a resonator. Previously the
theory of the non resonant effect has been adapted to the resonant case.

The optical field at frequency ~is subject to equation 1.59.

2 2
3.1 vx (V){ii,w> —% é(l&))'Ea‘: ﬁ’_tré_d '\P@u
c Cc

and writing D = }i“l + uwg®+ L,LvTP@

the divergence equation.

W
5.2 V(e E ) = —prVer®

Setting up axes as before, we have the =x axis along the optic axis
of the uniaxial medium, the 2 axis in the direction of propagation and
the yz plane the axial plane of the resonator. The x and y components

of equation 3.1 are
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— e B'Ex w _ WL? ® «
743 e - - € = L,I=p
303z 3 2 C2 X 7x 2 x
- C
2w 2.,v
Bﬂy é - bJ2 w 2 @“
(b) - — - € E = LT——?P
N 2 2 C2 z "y c2 v
z dx
and the divergence eguation
w
UAEN LJBE [S]
3ol < £ 4 € - A,rrV-P®
ox & BZ w

m

after substituting 3.4 into 3.3 (a) to eliminate 3.3 (a) becomes

pA
L
€. ¥ ¥u2 L2 o > L O
3.5 X X, X, € I ) Px
: €, 2 2 2 x x 2
dx 3z © ©
W
The term —ATr—B— (VE@ ) has been neglected for the reason that
X

because P arises from optical folds propagating in the =z direction

which vary slowly in the Xq¥ plane the relation

[A) 2 w
3.6 |2 (V-P® ) hre” |, O
" 7 c? *

will hold.

Hence we have the two equations 3.5 and 3.3 (b) governing the
propagation of the extraordinary and ordinary waves respectively in the

\
resonator. From here we can proceed as in the linear case putting

[A]
1 = - 3 ’ ~
. Ex,' vy E‘o, e exp ( 1ko,ez’

substituting into 3.5 and 3.3 (b). This gives on approximating as before .
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0w
. S €,  dE, w02 B |
3.7 (a) 2 - 2ik x5 = AL:;;— Py exp (1kbz)
0, @ 2
€, 9 € N E 2 o
_-}_C e — 3 e _ —'),{_Tr W @ . .
(o) g, 33{2 21ke S5 - 02 PX exn (1kez)

We have seen that the general solution to the eguation without the
non linear polarization can be represented by an infinite sum over the
resonator modes.

3.8 5 = 2 An En where the An are constants.

Since the second order polarization is "small'" we can regard the solution
to the non linear equations as a perturbation of this solution. In general
the non linear term counles energy into or out of the wave as it
propagates so we introduce 3.8 as a solution of the non linear equation
allowing the An to be slowly varying functions of z. This coupled mode

approach has been used in the study of systems with small non linearities.

55, 56,
W - SN w
let 3.9 Eo (x,y,8) = 2 A (2) E’:m (x,5,2)
h=o
. «
w I w [X)
éé (X:Y:Z) = ééi Bn (2) é;e (X,y,z)

and substituting these into equation 3.7 we have

A da w 2
3.10 (a) Z' -2k =" & e Py@w

o dz on 2

f\izo
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a3 Y
[ 2
n =470 W @l-é N
b 2 - 2ik = Ei = P exp (ik 2z,
( ) “e Az en 2 X 2 (‘L\'e /
nzo Cc
w X!
Tekinz the scalar product with E;r E;m respectively we have
1 >
0
an”
2 w
3,11 (a) mo_ z2mwie” E* P ®wdx exp (ik_z)
- dz - 02 om 7 B e}
© ~o0
dBQ 2 ) w
x
m =21 i .
(b) = E:, P @ dx exp (ik z)
dz 2 Bl X e
ke
e -0

. . th
These equations give us the rate of change of the m  resonatoer
node ((a) ordinary (b) extraordinary) for the field at frequency (” due
to the non linear polarization at that frequency.

(a) Becond Harmonic Generation

(1) Coupled llode Lquation:— For second harmonic generation we have to
consider two optical fields, frequencies @ and 2¢w Since the ordinary
wave at @ will be near phase matching to the extraordinary at 2« we
need only consider these two components.

From section 1.4 (c) we have

*b)
p O _ 4 g gaw
y 15 v x
[AY w
p@2e _ 1,4 %3
X 31 Ty Ty

In terms of the resonator modes.
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Ow L. *¥W 5 x W 5
3.12 P - a 2_ éjx. B 4 &, i
7 e 15 &, 13 I ‘53 Ejk
exp (=i (kz - “1) z)
02 2y 2 PN I
©_ 2 j{ o (=23
x To® d31 — \Aj Ak Ej g P ( 21'““1Z>

dropping the explicit o e subscript and substituting these eanations into
?

the appropriate ecuations from 3.11 we have

[-2}
2 2w [e¥]
dB 2 ¥ nd
mo o hmiw w b
(v) dz k 02 d31 AJ Alc <E‘m EJ E;- dx
2
=50

x exp (+i (k, - 2k1) z)

which can be written

w

dA 2 x©
m 2L

3.1 (a) P = ijk Aj B
2w

aB w

m 26 ©
(@) dz - le:m A,j Ak

where the coupling coefficients are defined by 3.13 (a) (v)
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(ii) wnersv Conservatlon relation

For a losslesgs nedium there exists a useful relation between the

o 2L
., and C .
mjk mjic

The total enersy of the system is represented by

x> _)(2» 5 N . ) - '
= (A_r1 N A_(1 + Bn . Bn ) and this must be constant. Thus differenting
IlZe” T I ¥

tluis expression for the energy we have
L =

w > 2
- dA‘n L{3) n -
3,15 e An + T Bn + comnlex conjusate = O

ank Aj An Bk + Cjk_n Aj Ak Bn +
complex conjugate = 0
interchanging dumny suffices we have
© * 2uw & ke 2w .
(c ..+ S5) A A B + complex conjugate = O
njk njk

J n k

This relation must be true for all values of the AJ.'s and Bj's hence

0 *
5016 C . = "’C BT 2w
niji nj<

This is an imporitant result which corresponds to Xlienman's symmetry

condition.
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(1ii) Caloulabion of the coefficients C 2O
n ; z \ 1 2“‘) ) . .
From 3.13 (b) the anl’ depend on the integral
od
w w
3.7 I; = €20 £ € a
dkm m 3 k
~Q

which en substituting for the resonator mode functions introducing the

subscript 1 2 Tor the fundamental and harmonic quantities rcsvectivels
i ) L L

is essentially the integral.

0

3.18 I, = H (“—/—?—JC H. “-/—E-X) H —J—?—’i)
Jkn m '\'v2 3 Wy k »11
-0

2 2
~X -2X
exp{ 5 > } dx
W o (1 + 1§2) W 4 (1 -i€)
where the coefficients will be given by

1
oo fhimz dz (2m)% exp (1Akx)

3019 C.1 = " 1 X
Jjkm 2 omt+ J+rk p iyl w 2y =
k2c (2 m® j? k! W4 Wo2)

. 2 . i + k
(1-18)%% (141 §)E

. m -+ 1 . j + k + 1
(1 + 14 §2)——2—- (1-14 §1) -‘1—-—2———— x I,jkm where Ak = k, - 2k,

W

1 * =J-2;'—zv2

3.18 becomes
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N

R Hm(w/?oc ) B, (W) " (W)

xexp(-—u2 (zx2 (1—:‘|_§2)+‘l+i§1 }) du

This can be evaluated using the generating function for the Heruwite

polynomials

o

3.22 exp (2 s x - sg): Zl q (x) s

n
Nz, n‘.

Ijkm will be the coefficient of t" s° pk miltiplied by j‘. x| m! in the

expansion of the expression in powers of t, s and p

-3

exp (2 Joeeut ~ t2 + 2us - s:2 + 2pu - p2

<l

- b2 u2) du
where b° —32(1—i§) + (1+1§,)
- - 2 1

rearranging

[
W
.23 I —! Jexp (-b2 W+ 2u (Y2t + 5 + D) % —g° -p2) du
J2
~05

To evaluate this integral letv= ub - (J_2‘QC|, :; s + p)
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and it reduces to

W 2
san 1= o e (2RI L2208 ) (g (v) e
JE% b
C
using the result of apvendix 1
2
3.25 j\(exp(—\/")) dv = yllt(—\
C
dZyxpanding the exponential term in 3.24 gives
0o n
|
V2 - 2 5 05
exp((€“t+s+ﬂ _tZ_SZ_p?) Z ((@xt+s+pl _t._s:Z)
2 n=0 2
b ] b
n!
expanding further using the binomial theorem
5 -
_q\0-m NPy 2m n—in
5.26 = Z’ - £ 12 (_I_’_l ) ( 2t + 85 + P) (_t2 +82 +u2)
nzo fzo { m b
n.
and again using the binomial theorem
0 n 2 ﬂ:; "‘ ‘
—t Ez: j{; n—m
- 'n —
527 T - %J; S e L ' Gl
Nz ™M=d Y=o ?/’b f:o €=0 n!

(2) (25) (nj?(‘;) (%) £ po2n (450:)2“7‘1" pl + 2t

. (r=1-2q-21) 4 (2n~r-2q)

We can rewrite this in a formal way in order to pick out the regquired

coefficient putting 1 + 21 = k
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N
Q0
H
+
nNo
()

1
N
}-._J
+
[xe]

|

S

i

[ S}

\
i

resrransins equation .27

3.29 T

1

2
+
.

|
Py

- - o o s s Zw o
n is an inteser, therefore for a non-zero ccefficient C ., , m+ J +
1=
must be an even integer. This Jjust expresses the symetry couditions

odd =nlus even Fundawental wmode gives odd S.H. mode
Odd 1" Odd n 1 1 even t 1"

even " even 1 " " even ! "

Picking out the required coefficients we have

m j+k i jtk-m Yy
2 1
: —1 1
Jjkn b Y2 (m+g+k>! _ ; ; _
M=9 ci’zo f:o

ik J+k-m e d+k)  (2m ) (ot jrk-m)  (w+j-2q)  (q)
oy S g e ] g %“ b 8

(=) (

m

e
=
=
N
1
S
Carny
1

m+ j-2q q

b—2m (_JE&)Zm—m—3+2q

76

k
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Thus the coefficients can be evaluated analytically althouzh the final
exnression is rather complicated in general. As we would expect the

low—-order coefficients are uwuch simpler in form eg

. ki /?
5+ 31 Iooo = 3% NT
I - .‘.‘L \/:_7? (_1.__ 1)
020 b V2 b
W
;.4 fi _
101 = © V32 o0

The wost important set which we will examine more closely are those
resulting frowm the coupling between the lowest order gaussian fundamental

mode and the 2nth second harmonic mode.

W - 2 n
3. % _ T2 Lo
0. 32 IooZn ) J2 (.b2 - 1) n!
: . 2 ®

From 3.21 and 2.25 we have & =

i, Jé‘wo , (1 522)

and defining W = ——
2
v? - w28 (g + (s
2
3.3 (1+8,)

= (141€)) W+ 1-1 (Wz§1 - 52)
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and therefore

. . 2
2 1- 1
al e (T8 (S o (&
v (-1 &) (%+1 - 1 (€, -§))
2 1 2
. w2 - . V2 -
C+1 €2) (w -1 i (-J §1 §2>>
(1-i¢,)
2 (P - i (wz§1 -5))
Substituting these expressions into that for Ioan and then the
resulting expression into eguation 3.19 for C?;; we have
2 2 1
~4i w'd, = = .
5.3 qu = )1 — 2n exp(il kz
ooZn Kk C2 e i g loR e
2 7 o2 ' (1-1 §,)%
2 2 n
Woel=i (W -
(J 1= (ﬂ §1 §2)) 1
"l . el N+
(1) -1 (w6, - 8,00
1%
The factor iigﬁl;l has values
\ o1
n:?2
afof g2 | 3 ] a |6 | o
£ {1 , 0.7071 , 0.672 ’ 0.5590 l 0.5229 | 0.4749 | 0.4197

and so decreases with n reducing the coupling between the lowest order

fundamental mode and 2nth ordér harmonic mode with increasing n.

Thus far we have only considered the coupling case when the second

AN
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harmonic resonator and tue fundanental resonztor are oerfectly aligned
and the foci of the bezus are at the same position. There will be a
. N . 2N . N ~ . . PRI W
reduction of the counling (1) iT the foci are any distance apart (11) if
the axial planes are parallel but a distance apart and (iii) if the axial planes
are inclined at a small angle to each otler.
I 1 . o 2"‘> : Fel C . s o .
{1) The evaluation of the Coan is unafTected by this modification.

Considering the fundamental mode to be focussed at the origin and the

nth harmonic mode to be focussed at z:f,fa rewains unchanged but

3.36 §é = 2-L§4:—£% and this introduces the extra term
,'52 ‘J'foz
-2%/k W2 into equation 3;35. =
2 02 - '

(i1) If the axial plane of the fundamental Jth mode is removed from that

of the harmonic modes by a distance v of the harmonic modes it will be

described by the eguation

1 . i/ 2
3437 EQ = (____1_..‘. JZ_)? .£_1.,+,ﬁ3/1 H(E (K—v))
J W2 j T (-ig)BE i

ol

2
x exp (C (x=v)

Wl .
W01 (1—1.§1)

Substituting this form into equation 3.17 equation 3.22 becomes
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3.38

H ( Zau) Hj (uv-5) H (u-$ ) ex» (—uge‘(z(‘l—i §2)

(

Imjk

~00

(902 (141 §) ]

3.28 (b) where S = J%:V
1

using the generating functions as before 3.23 becomes

W
.39 I = 7%‘ Jexp §—u2b2+2u (@cct+s+p+§(1+i §1)) -tg-sg—p2 % du

(Ja xt + s+ 0 + S (1 + i§1) )

b

putting V= ubd-

znd carrying out the integration (appendix I) we have

1+i§1) )

W =
S AU DR

—32 -p2 + 2

(Zw:+s+p)° _2 ( Pt + 5 + p)G)

b b )
Thus the separation of the axial planes has introduced two extra factors
into equation

324 The first is
(_e2(1+1 &) (- (141 §.) )
S 1 21 )

exp
( 5

substituting for b this becomes
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£ 1) -1 (8% -6

1

he real part of the expression which forns the arzument of the

exopcnential funciion is always less than zero and as this factor will

moully each coefficient

2
exn (-©8°),

"l

3.);2 © = W

Where

CE@

3k they will all decrease with S as
£ AA,

(1485 (#+ 1)

(7 + D% (8, W -5)°

S 0

Thus the coupling between any two modes has an overall decrease with

increasing separation but of course theve may be local increase. | v

The second Tacter

oJ2 &t +

LA exp %

\

3 has as the argument of the

exponential function gn exmression which depends on an odd power of
= - - r

t, s and p and therefore

in ecuations 1.29.
zero under equation 1.29

of ¥ in the expansion of

Wy ﬁ/ﬁj
N e Y

so that substituting for

Consider as a specific example 1001

it will break the symmetry conditions contained

which is
for the coaxial case. 1001 igs the coefficient

equation 3..40.

(R T
v

oxp (_ §2 2 (1 +§2) % 2
é (W2 + 1 -1 (w2§1 - §.0) )

S from 3.38 (b)



g2

2
ow v -20v" )
9 - exn
001 & ( .2 )
OI o
of
- 20, . . s s
Thus Coo1 is zero ot v = o as exnected znd increases with
';,“7
. X . . s ) of v -
increasing separation v, 1o a naximum when v = ==  and vhereafter
2de

decreases asywtotically aprproaching zero. Since @ dewends on =

this does not immediately -ive the separation of the axes which will

raxiuize the coupling in a ziven crystal except for the case when

z/zo << 1
(iii} For the case when the axial nlane of the fundancntal resonctor

iz til%ted at 2 swall angle © ,to the axial vlane of the second harmonic

-

resonator the equation representing the jth fundamental wmode is

’ -;':' 1 ] “'l - \
sas €5 (i JEV IR sy
) " z J.| TT - i+1 3 v, ) 7
W3 2! (138 )5 1
2
( == v - ikex %

if the 2z axis lics in the axisl plane of the second harmenic resonator.
The exira term depending on © arises from the vropagation term

exp (~ikz) of the electric field; =all the other correction terms will

g

be negligible in comparison with this cne since 11 > 1

Using this equation, equation 3.23 becoues
o0
; <SR
PR ki ( -2 1%+ 2u (2wt + s +p - i i® 1)-12-52-13) du

I=-——1- exp
V5 ( .

-
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Carrying out the integration as before equation 3.2l bacomes

! (J_’;‘\g(t-i—s-{—p)

W, /1
( t 4+ s
247 I = BlN/lz—L e ( (ot + s + n)

As in the previous case the {tilt angle has introduced itwo new factors.

, . . 2 . 2 . .
The first being -k ‘.‘1'1 (<) affecting all the coefficients, the
&3D
p( ——st— )

second breaking the syumetry condition of eguations 3.29

from 3.47

(—k2‘611262)
( 2 )

“y
345 I = //-2—- exp

] ,er:
001 2ik »!1 >

This has exactly the form of the previous coupling when the axes of the
resonators were separated, increasing to a maximum and thereafter
decreasing and asymtotically anproaching zero. The maximum in this case
occurs at an angle
1 . .
© = —— this again

1y
1

depends on 2z and so will not give the maximum coupling condition
imnediately.

(2) Parametric Amplification

(i) Coupled lode Equation

We have now three optical fields (.)1, 02, 603

where 03 = @1 + G)z.
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12 case of narametric amplification vwhen the pump fisld, @
i z
-~

- £}

N

nropa_stes as an extraordinary wave and the sisnal, ®, and idler

fields »ropa

to a nesative uniaxial crystal. The tieory can be used For positive
unaxizl crystals when the opposite coanfiguration is anpropriate by using

the apnronriate mode function. The relevant second order polarization

terus are for this case therefore

W w W
PO _ 4 250
7 12 Ty %
o ) ©
2 * T3
P = 10 D
y d15 “y x
O Q @ w
5 _ - b5 2
PX = d31 _.J_r .LJ‘r

OIS W w * W ©_
. 1 2 73 2 gl 3o C s e )
3.50 Py = d15 Aj By Ej ; exp ( =i (k kz) z

o ) W
Q% * 9 5 0% % 3 0 0 ey )
P = d,. A éﬁ €k °xp ( _(k5 AQ 7

.
i 15 ] “k

Qe @y 6y “ “5
P = 43y A5 Ay Ej Ek exp E i (s, + k) zg

Suvbstituting these relations into the appropriate equations from

sate as ordinary waves., This beins the configuration annropriate
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O

2.1 (a) and (b) we arrive at the counled mode equations for the

raranetric case

©4
dA W » @ w
3.51 S~ ¢t ou % 3 ?
dz njv J Iz
“2
dA 3] * W W
m 2 1 L 3
= . AL B,
dz Jmlz J Jd
w
aB_ - @, @« c>
m 3 1 2
dz = Cj}:m Aj Ay

Eal

where the coupling coefficients are defined in a similar way to the

previous case of second harmonic generation.

For example
od
) 2 * @ « w
1 ) ( . ) 1 5” 2 2
Z 5 - - 1ot
3.52 ijk 2 d15 exp ( 1LLKX> é;m ; é;k dx
ey J
vh X = -k, -k
where QX k3 1 ] 5

For a lossless medium we can establish a relationship between the coupling
coefficients as in the previous case
— AN FA) w w (A W
2 1 1 2 2 3
¥

(a A + A A + B B ) is the total
n n n n n n

energy present in the system and is constant. 3By the previous argunent

used we have
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[8)
@, (.32 * 95
. C . = =C .
njk njk njk

A3}
.
o
N
Q
-+

1

Fote that this result does reduce to 3.15 if @ @ Dbecause of the

1 2
factor 4 in front of eguation 3.12 (b) produced by the w1 = 02
gymaetry.
®
(ii) Celculation of the coefficients anlf

The calculation will follow precisely the lines of the calculation

for the second harmonic generation but we have now the added complication
[

1
of three sets of beam parameters. Cjk:m will depend on an intesral of
the form
06
R A x W W
5 1 2 3
55k Tgn = j €y Em dx
Y- =]

substituting for the resonator modes, introducing subscripts 1, 2, 3 to

denote the terms arising from the modes at (01 ‘»52 033 respectively the
’ b/

integral will reduce to

_ (d2x ), (Bx), () (=
355 Ijkm J Hj ( W‘l ) Hk ( WZ ) Hm ( WB ) Zp é wof (1+i§1)
- X _ %2 )
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L d k
@, ~21 m12 Ay o (14) (2m)* (1-1§02  (1-1 §,)2
mere C_, = = — .
Jlan - 2 THJFL hap ) oo v N Naall e+
ky " (2 mbghebowr v, U3E (1es 51) 2 (144 féf"i"
&4
3.56@) m
(1+i 55)2
-1 X I.,,__rl
(1-1 8,072 S
mazing the substitutions —{—12-4( = u, —25 = &, u, ﬁ = &, u
W 8 1 W 2
5 1 2
W W,
where &, = -;‘3-, x, = =2
1 W 2 W
1 2
the integral becomes
o0
- 3 (. 2( 20, .
3. 56¢) Ijkm = > Hj (x1u) H, (aéu) H (u) exp (% (1:1§1)
-y

+ cxg (-1 §,) + (141 §5) g du

using the generating funciion of the Hermite polynomials the integral

L)

generating the I, ~ is
Jkm
o0
i (22 2 2 2)
3.57 I = \‘__l exp( -b u" + 2u (o(1t + nrzs + p)-t° -s -p ) du
2

o

where b2

oc12 (1-1 §1) + «22 (1-1 §2) + (1+i §3)

which becomes, carrying out the integration
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2

i

o 1 X, t+& s+ 0p
3.58 I = 2 L exn ((1 2 ) _.-1-,2 _52_p2>

oo A2 = ( 2 )

b

If we expand this expression the Imj]r' can ve picked out as before and the
symmetry condition (3.39) m+ j + k = even integer, holds for this case.

A Tew of the low-order coefficients are

3,59 ,
B
ooo b 2
W, e o
2
SR A
110 b N2 2
b
%
Lot = T N2 273
b
ete.
@

. . L : g
We will now evaluate COOO in detail as an example,substituting for D

and & 0(2 we have

1y
5.60
1 W
I - Jl o5
000 2 ( i W : )
(1 + 2 + 1 )
(O+i¢)  (+18) (-1€.) )
1 2 3
_ W03
where we have defined W1 = T the ratio of the pump and signal spot sjzes’
'01
_ W 3
Wz = WO—- the ratio of the pump and idler spot sizes, and substituting
02

W

. \ , i
this into equation 3.56(0&) we arrive at the expression for Cooo



¥?

2 2
w -2iw,” a4, (2mw)= N . _
61, L TE 7 e (mialm)
- 000 2 ., "1 o" exp (m1a k) A5
,c o
1 03
x 1 5

(5, (41 €,) (1-185) + T, (1415,) (1-1 §5)+(1+18) (141 € )

This is the result for the perfect cuse of coincident focus positions and
axial planes. A4s before we can evaluate the result for the various
combinations of non-coincident focus positions and axial planes of the
"three resonators. The nethod and results will in general be the same as
for the case of second harmonic generation which has been considered.

(2) Three Dimensions

Under the approximation considered in chapter IT the derivation of
the coupled mode equations followed the same lines as for the two
dimensional case. Tune relevant equations derived from liaxwell's equations

are (c.f. equation 2.8l)

.« 2@ 2« 2.
E E NE E 2 2
3.62 d % + e Bm%, -2 ¢ gl e P@““
dy dx 3z dy > 2z c? 2 J ¢? I
2. 2, o D_
BDX .\ BEX _B2EX _ B < —(:-3—2- e T_‘l-) _ M P@Q
3xdz dx dy 3z 32 2 *E 2 Tx
and the divergence equation
AE JE JE
X i oz _ -39
3 TS TS TS S, T Ly P

Using the approximations which were formulated in chapter II for
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dealing with the linearized versions of these ecuations they can be

reduced to the equations

2 2@ 2«
I R OO s RS
Je > 7 2 7 >t 2 2 D'r - 2 PY
dx dy dz c v c
o W o e )
€ 3@ ¥E ¥i© 42 o
x X X % . LT W ow
— 3 4
g 2 " > 7 >+ 3 &5, - 2 x
dx dy dz c c

for the electric fields of the ordinary and extraordinary waves
respectively. Iaking the substitution E = £ exp (-ikz) as before

reduces these eauations to the eguations

2~ 2 ~°
d¢E Y& A€ Ry
3.6 2° + 20 21k g - 1""‘: P@wexp (ik =)
dx oy ° z c J ©
2£‘~> 26“ AE‘" 5
éx 5 e 5 e . e =-LTT W @w . .
c 5+ 3 —2ik, o= = 5 13‘X exp (1kez)
z Iz dy c

for the quantities Eo e ° If we now express Eo o @S a sum over the
b 3

relevant cavity modes allowing the coefficients to vary with 2z as before

and substitute the resulting expressions into equations 3.6 we have

2 g’ - 2
. ~l T W © .
3.65 (a) Z‘i_( ~2ik érzlm lﬁ;nm = 5—3—2——- Py@ exp (1koz)
Nzo M™M=0 c
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4] [A
e | 5—3 (X} 2
é i nm é o =hre @“",A .
(v) Z,\ . 21k, dz errn 2 Py %0 (lkez>

If we now use the orthogonality of the wode functions we can arrive at

the expressions for the rate of chanze of the mode amptitudes with 2z as

o P NS
dA 2
—29714 I8
3466 o —2mie 5 _ P® dx dy exp (ik =)
cdz 1 C2 onm "y o}
0 _S e
o8 o w
r
A2, | 2mie’ é p O ix a7 ex (ik z)
dz I C2 man "X ¢ 2 e”
e Sl

If we now apply these results to the theory of second harmonic
zeneration, tue expansion of the polarization in terwms of the resonator

irodes can be written

e x @
. Boe £

D »
15 Rse Brg Gy Gg e (k) 2)

22 4 A - o
Px = 5 d31 Ajk Ars (c':jk £r exp (1(1{2—1&1) z)

Substituting these expansions into equations 3.66 produces the simultaneous

coupled mode equations

w
568 —m | ® N
! dz “nmjkrs Tjk Trs



92

dB . w Iy
nn 2w .
— - A A

dz Jersnm Jjk Trs

where for the lossless case ve have aszain the connecting relation

4 2
3.69 Co _ % Aw

nmjkrs nmjlrs

.. . . P 2w
between the two coefficients. In three dimension coefficients C°

depend on the double integrzal

® 0
_k
. 1 © = 2w
2. 70 R = . dx dy
2o nmjkrs égk Ers nm v
o4 —0d

which on substituting for the resonator modes from equation 2.91 and

iy

2.28 splits into an integral over =, I}L and one over y, I . Iv has
S y J

exactly the form of equation 3,18

[
o
3.71 I = H (’—F%U (‘/?)H (Y2 ) oxp (
¥ m V k W, s Wy (42 (141 € )
o 02 2
2
-2

oy (116 ) :

whereas IX is wodified by the é?z/'eX factor (equation 2.91)

oD
¢ B 2
3.72 I = H —‘L?,—y—'—-?-)ﬂ (f%E-{)H.(i:——A) e}:p< 2t
x n Ve T W j W (
x 1 1
S
—2x2 )

W, (1-18,) )
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The coupline coefficient is given by the equation

.2
3,73 cgm ) =43 e d71 xp (i Avx) (gn—
e [ 1 ~ = )
Jkrsnn 2 (2m+3+h+n+r+b V3t el nt ) s)E
J+ k}r+s
(1-18,) E (1+1 €,) P
% % X <
* ITH'YH'Z 7+k+r+s+2 (—e—_ ) ——é——-‘[—
P E) * W, W
(i3, 2 (g 2 s

The integrals can be evaluated exactly as before and all the results of
the previous theory appnly to each iniegral. t is thus a simple matter
to generalize the two dimensional results to three dimensions. The

only difficulty being that the expressions are very long and tedious to
write out. In the same way as has been done for second harmonic generation
the expressions for three dimensional parametric amplification can be

evaluated.

(3) BEffect of absorvtion

It has been shown (section 2.5) that the presence of absorption in
the wedium only effects the term exp (—ikz) of the resonator mode
functions. Hence the results of this chapter will be unaffected by the
presence of absorption except that k will now be complex. This

introduces x loss term exp (1{2(l ) 1(m];z) into equations 3.35,
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Chapter 4

Second Harmonic Generation in the small conversion approximation

4.1 The simplest problem to which the formalism developed in the last
chapter can be applied is the problem of resonant second harmonic
generation from a travelling wave gaussian beam, 32. In the small
conversion approximation there is no reaction back on the fundamental
and therefore only the original lowest order (gaussian) mode need be
considered of the fundamental beam. We first study the second
Harmonic generated in the limiting cases which ¢an be solved
analytically and then go on to study the general case numerically. We
show that the theory fthat has been set up gives results consistent with
those of Kleinmman and Boyd, 15, for the non resonant case.

Consider a suitable resonator containing a uniaxial non linear
dielectric orientated with its optic axis perpendicular to the axis of
the resonator (fig. 4.1). It is assumed that the mirrors of this
cavity are transparent to the fundamental laser frequency and that the
alignment of the fundamental beam and the cavity is perfect. The
theory can be extended immediately to cover the cases of imperfect
alignment as indicated in the last chapter since the fundamental only
travels in one direction through the non linear dielectric, second
harmonic will only be produced in that direction. In the smzll
conversion approximation the second harmonic produced in a single pass
of the non linear dielectric is not dependent on the value of the second
harmonic at the starting face of the dielectric and the problem splits

into two parts. Firstly the calculation of the various second
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harmonic imode amplitudes produced by a single pass of ths dielectric,
assuming an initial value zero, and secondly using these results to
calculate the actual mode amplitudes produced in the resonator and
hence the output of the resonator.

Generalizing equation 3.35 to three dimensions the rate of

change of the 2n 2m 'th second harmonic mode amplitude is given by the

equation
2 QW w w
4.1 4B A
iz 2n 2m = 62n om ;‘o AO where
b) 1
sl 4 lom)2
to (2 ) 4iw d31 w (onlom) e (ilkz )
* 2n 2m 1 1 .
k 02 e W nlm\ 22F0FE (1-1 En)
2 02
n
2.2 . 2.2 2 . £002
(%% -1 -1 (5026 - &) (¥ -1 -1(%¢ - £)F
X —r 1
2.2 . 2.2 n+ 5 m+z
(€W 1 =1 (658 1 =550 7 BB 1 (WPE - E,)
where €_/ ¢ = &2
X z :
Since f=-?£——-——-£=————2-2—"-—-, Ak = kx, - 2k
'oxw 2 0Tt gy 2 2 1
1 o1 2 02
2 2 Ak
we have W f: - f;,_ = W §°, ("j{;‘)
for 8x < 10 the term dependent on Ak/fls2 can be neglected
hence sz - f = 0
{ 2 -
2 .2 2 .2 1
4.4 e W § -8, = fw g (1—;"2—)
defining € = - 1 we can write
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2,2 . 2.2
4.5 c§°2 - “hm exp (i8ksz) (e” -1 +1ieWE € )
n m ] ) N
oo 0-16) (22,1 ua g e)n
m
bd W2 =1
a
(W2+1)m+2

for A4k < 10 vwhere “'nm is a constant dependent on the mode number.

Since we have assumed Ao to be constant the amplitude of the

nmth second harmonic mode at the exit face of the dielectric is given

by
5 ?
2w w 2w
4.6 B = (AO ) g Cop op 47
2,
where the entry face is given by 2z = z, the exit face 2z = 25

(figure 4.1).

4.2 New Field approximation

We consider first the case where the dielectric lies in the
near fold of both the second harmonic resonator aﬁd the fundamental
beam i.e. where both
4.7 €41 and §1

This is the case treated by Ashkin,Boyd and Dziedzic but for the
dielectric potassium Dihydrogen Phosphate, KDP, which does not phase
match perpendicular to the optic axis and hence is somewhat less
efficient than a material in which this can be done, €.g. Lithium

Niobate. This corresponds to the weak focussing limit and can be

treated analytically. Two important results are brought out by this

case, first the variation of second harmonic output with the relative
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spot sizes of the two beams and second, the result that the normal
phase matching condition Ak = O no longer holds.

a. Towest order mode

To the first order in §" s We can approximate

(1-1€ )" exp (i € )

--:'Le2W2 € g,

1 1
(B + 1+ ie%W e £)F = (AP 4 1)F exp ( )
2 (e W + 1)

Using these approximations equation 4.5 for the lowest order coupling

reduces to

2
i (Akz + € (1 - eWe

2 (e W+ 1)

4.8 C,. = oo ©XD "

¥ (ezw2 + 1)%‘ (w2 + 1)2

07,

and the second barmonic output in the lowest order mode is given by

e 2

0<¢:x<>‘A' }7“
po :
Wy, (%W c1E @ 1E | em {iAk
ll
2 .2
+ 1 1 - e W E ) z g dz
Zoy 2(eW + 1)

The variation of this output with the spot sizes of the laser
beam and the second harmonic resonator is given to a good approximation

by the function

1
1 1
Wop (e%W% + 1)% (W% + 1)

2.10 F (W) =

For constant W., this increases with decreasing W (i.e.

02

decreasing W As the resonator mode functions are only valid as

01)+
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long as Wy, > N this just implies that for maximum output
WO1 ,the laser spot size’must be as small as possible as would be
expected from physical considerations. For constant Wo1,f7u9has a

maximum at

( "] refractive index)

The behaviour of F(W) for fixed Wy is shown in graph 1 for
e2 = 0.96, (an approximate values for Lithuim Niobate) when it can
be seen that W = 1.02.

max

The integral in equation 4.7 is of the same form as the integral
which arises when considering Second Harmonic Generation from plane
waves except that the phase matching condition is now given by

2 2

4.12 Ax = =1 (1 - e WE )
204 2 (ezw2 + 1)
At the maximum value of W = 1.02
Ak = - 0. = hond 1028
ZO\ k1 We| 2

which is the limit of an infinite laser beam and Second Harmonic
resonator tends to the usual Ak = 0 as expected but can be
substantially different from this for the usual spot sizes

-2

~10 cms,

b. Higher Order Modes

Here we consider first the case when eW - 1 is not near

zero then we can approximate
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in e2’.-12& f;

(%% _ 1)

(%W -1+ 1 % We " = (%% = 1) exp (
Using this and the previous approximations equation 4.5 becomes

2 n 2
20 a (Wo 1)t (FWE - )"

4.13 ¢C
2n 2m 1 1
L W+ 1) F (HP )2t B

xexp{iz(dk +-—1-—(1+e2¥{2€(-—2-25—- --(%’—'-"2—11
Zo1 (e“W° =~ 1) 2(e“W° + 1
The variation with spot size is given again to a good approximation

by the function

W2+ 1) (%% - 1)°

2 m+ g, 22 n+ %
Woo (W + 1) 2 ("W 4 1) 2

4.14 F (W) =

again if W_ . is held constant this function increases with decreasing

02
WO1’ the laser spot size, as expected. For WO1 held constant the
function has two distinct maximum which for e = 1 occur at
reciprocal points. The variation of a few of the lower order
functions are plotted in graph I for e = 0.96. It can be seen
that the value of w at which the maximum occurs increases with
increasing mode numbers. This is brought out by the similar function

which occurs in the two dimensional case

4.15 F (W) = 1
n Woz (W2 + 1)n + 5

which is simpler to handle and has its maxima at

416 W= 4+ 1 & J(m+1)2 o4
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phase matching for the nth mode occurs when

L AR e~ melE)
01 (e“W - 1) 2 (e“W° + 1)
Which is dependant on n the x - =z plane mode number. Hence

to some extent modes which are undesired in the output can be
discriminated against by varying the relative spot size and the
phase matching. TFor example putting W = 1 eliminates output in

all the higher y, 2z plane modes without reducing noticeably the

0 - O output.

If leW - 11 << 1 then all the coefficients except
02‘: om  BTe of higher order in §| , than the first and hence are
negligible in the near field approximation. The cgfzm are given
by
418 050, =, (12 - 1)" 5 efe g

iy 1
Voo W2 + 1) Y E (P )Pt

2
oxp {iz (DK . 1 (1 - (2n + 1) WL, )

Z“ 2 (eaw2 + 1)

Considering the results so far it can be seen that the region

le w - 1l << 1 win1 only be entered when it is the aim to
maximise the output of the lowest order modes. From equations 4.16

and 4.6 we have
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2.2
4.19 Cae _ e W f’, € °<1O
o =
C 2,2 &
00 (e“W" + 1) 00

which is approximately equal to 3 x 10-2 l{: ‘

For 15}‘ << 1 +this will be negligible especially since if
maximum coupling is required into the lowest order 00 mode than the
0 - 2 mode will neither be perfectly phase matched nor resonate
perfectly in the cavity set for .the 0 -~ O mode.

4,3 Far Field
The second limiting case which can be evaluated analytically
when the non linear dielectric has in the far field of both the laser
and the S.H. resonator, i.e. both.
€ C>>1and €L > ana P/, %X 1

Under these approximations the lowest order coefficient ng can be

written
2
z

26 - %o =,
4.20 Con = 5 - S 3 exp (i A kl)
Voo (WS + 1)=W - i

e € 2z

and hence the S.H. output from a slab of dielectric of length

l = Zy = %4 is proportional to
22
4.21 I = exp (idkz )adz
z, Zzﬁ
ei Akz,
= — exp (iAkx ) d>< to the first order
Z
' 1

in z/&. We can see the phase matching condition and the general

form of the integral in this limiting case is just that which é.rises
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when considering the interaction of plane waves and hence the output

sin ( Akl / 2)
Ak

This is as

will vary with the usual

expected since far from the focus the beam ternds te a plane wava.
Infinite Crystal
In the limit of an infinite crystal or equivalently the steep

focussging limit —> 0 the expression for the amplitude of the

Z01

second harmonic output is from equation 4.5.

o4
. o« X
260 00 exp (1Ak z) dz
4.22  C__ = = T : 55 5
Woz("’ +1) _n('l-l{')(ew + 1 + ie
=
wet, )
Changing the variable of integration and writing Akzo = ¥,
§ = Vv  the integral on which the output in this  case depends
is
o

(1 =-iv)(a+ibv)?

where a = e2W2+1 b = ezwzé

N e
0

This integral can be evaluated under certain conditions by
contour'in’cegration in the complex v plane. Tor y = 0 we
consider the integral around the contour made up of a semicircle
radius R in ’§he lower half plane and the cbmpleting section of the
real axis. In the limit R — & the integral around the semi~
circle tends to zero and the contour contains the simple pole of the

integral at v = ~i. Hence from Cauchy's theoram
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-27 exp (y)
4.2 I = for y £ O

(a + b)%>

The integral has a branch point on the upper half plane at
V = 1ia and so cannot be integrated immediately when Ak D> O.
However since b 1is small the limit b 20 will give an indication
of the behaviour of the integral when y S O. In this limit the
integrallis analytic in the upper half plane and hence integrating
around a contour completed in the upper half plane we have by
Cauchy's theoram.
4,25 I = 0O fory » O b = O

Thus we expect the integral to exhibit something of a
discontinuity at Ak = 0. This general behaviour can be seen
in graph T which records the variation of the integral I with Ak

for e/Zo = 100, This shows clearly the discontinuity although

it is modified by a periodic fine structure. The integral

the 1imit (b = 0) has been considered by Kleinman Ashkin and Boyd,
27, in a different context. They obtain a continuous analytic
approximation for this fine structure.

General Formula (@)Lowest Order Mode

The S.H. output in the lowest order mode is given by the

equation (from eqg. 4.5)
$a
oL
oo W 2o exp iy § ) af

4.26 COO =. )

Wy, (024 1) (1-3€)a+ib§ )®

where a = 92w2 +1, b = 'ezwze' sy ¥ = Ak 2 and so
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contains the mismatch parameter; §, = Z’I/Z ’ 5(: = 7‘2/
Z

}
o1 o1

and contains the length 1 of the non linear medium

1 = (§ - § ) 2z, and the position of the foci of the two
beams (assumed coincident) £ = ( § + § ) z01/2. The
variation with the focussing parameter 3z of the fundamental beam

o1

for constant crystal length 1 can be obtained by rearranging 4.26

to the form
—
X oo [, 1 1
4017 COO = 2 )%_ \/ M —
W+ 1 2
( Vg -
£
¥ exp (1 vy § )af
T
¢ (1-1§ Ya +1iDb ¢ )2
'
and studying the variation of this form with fz, f" for a

given focus position.
Graphs 2, 3, 4, 6 and 7 show the second harmonic output
variation with the phase matching parameter AkVZ& for wvarious

relative crystal lengths Si = -z-g‘-- with the focus at the
o1

centre of the crystal. Graph 2 shows the shortest length has the
appearance expected from the new fieid limit consideration. The
curve has the form sin (% )/x with the absolute maximum
slightly off Ak = 0. Away from the absolute maximum all the
curves exhibit a periodicity of 7T . (Cf, the plane wave

interaction which is proportional to sin ( &k 1/2) and thus

has a period of Ir on the -graph). As the length increases or
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equivalently the focussing increases (zo1 decreases). The curves
become assymetric. The optimum phase matching position moves away
from Ak = 0 and the central peak moves out on the side

Ak < 0 engulfing the smaller peaks (graph 4). This marks
the increasing effect of the focussing terms in the denominator of
the integral (1 -1F ), (B2 +1-1lelud)E.

If the gaussian beam is considered as a sum of plane waves,
propagating over a range of directions, the reason for the assymetry
becomes apparent, When Ak > 0 the fundamental and S.H.
refraction index surfaces (dgms. 1 - 3) no longer intersect for any
direction of propagation hence none of the constituent plane waves
is phase matched, but when Ak < 0O the index surfaces intersect
and so there exist plane waves in the sum which are phase matched,
The steep focusging or infinite crystal effect can be seen fully
developed in graph 7 as has been previously pointed out. Note that
the periodicity of the fine structure for Ak <& 0 is twice that
of that for Ak > 0. The width at half length of all the curves
in the units of Ax £ / 2 is approximately constant. All these
curves are consistent with those of Kleinman and Boyd, 15. Graph
10 shows the variation with focussing at the optimum phase match
angle and optimum relative spot size for three positions4of the focus.

With the focus at the centre the maximum occurs alb f/zo = 5,65

which is consigtent with the result given by Kleinman and Boyd, 15,

for free S.H.G. E/ o = 5.68.

If we think of the free second harmonic generated as being
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made up of a number of confocal resonator modes, the higher order
ones will contribute a small amount to the total and this would
be sufficient to explain the difference between the two results.
Since the higher modes maximise at a higher degree of focussing the
direction of the difference is as expected.

With the forms of the fundamental beam at the entry face, or

exit face, of the crystal the maximum occurs at l/Zo = 3.09 as

shown in the second curve. This figure would of course be the one
required in a plano - concave resonator. The third curve
represents the case when the focus is one half the crystal length
outside the crystal. Here the curve has an early maximum and falls
off sharply as the focal region withdraws from the crystal. Also
shown on the same graph is the output in the 0.2 mode under the
same conditions of phase matching and spot size as the corresponding
curve for the O - 0O mode.

Graph 8 shown the variation of output with focus position for
several lengths at optimum phase match and spot size. Graph 9 shows
the variation in shape of the output curve with phase match angle as
the focus moves away from the centre of the crystal. As expected
from the consideration of the far field limit the optimum phése
match position moves towards Ak = 0 and the shape of the curve
approaches (sin ( 4x1/2 ) /(Ax 1/ z )| as the focus moves away
from the centre. 4 greater range of Ak 1is shown in graph 5 for

~ .
the case when the focus is at the face of the crystal. It can Dbe

seen that the minima have moved up from zero and the curve has taken
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on much of the form of the steep focussing limit. These effects
can be shown by expanding the integrand in powers of & to be
due to the increasing effect of the anisotropy as the focus moves
from the centre.

0 - 2 Mode

The output in the 0 - 2 mode is given from equation 4.5 by

27.
428 o - —o2 exp (1 Ak z) (2% — 141 6%Wo€f, ) do
) 2y (1-1$)P+1+1el e )/
02 < ' ] 2

This mode of the higher modes will have the greatest output when
the various parameters are set for optimisation of the output in the
0 - O mode.

Graphs 11 and 12 show the output variation of this mode with

phase matching for yzo = 5.65 the optimum value for the O - O mode.

With the focus at the centre the output exhibits a double peak.
This is present at all crystal lengths, the relative heights of the
two peaks changing with length. As the focus moves away from the
centre (graph 12) the second peak decreases in height and the
curve takes on the form of those for the O - O mode. The
positions of the twin peaks ohénge little with increasing length
(focussing) giving rise to the dip in the curve for the O — 2 mode,
focus at the centre, on graph 10. This occurs as the position of
optimum phase matching for the O - O mode moves through the region
between the twin peaks of the 0O -~ 2z mode output.

Although the output variation with relative spot size W for

the O - O mode has the form of graph 1 for the optimum length
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the curve for the output in the O - 2 mode has changed and become
very assymetric about the central position (dotted curve as graph 1).

The relative outputs for the two modes are when the 0 - O
mode is optimised.

o ~
Con

100 for the focus at the centre, and

== A= 50 for the focus at the entry/exit face.

Absorption

The presence of absorption can be taken into the foregoing
theory without difficulty. It of course modifies the theory
reducing the output amplitudes, but gives no new effects except
that an optimum crystal length can now be defined which will
depend on the amount of absorption present at each frequency.

Calculation of the Output from the Resonant Cavity

To calculate the output of the resonant cavity on a given mode
we refer to diagram 4.1 where CO is defined as the amplitude of
the relevant mode just inside the crystal exit face and r exp (i § )
is the power loss parameter of the cavity including diffraction
losses, reflection losses and the loss due to the output. In the

absence of any second harmonic generation after a single round trip

the amplitude of the mode would be € = CO r exp (i ¢ ) since

the second harmonic power is only generated as the wave travels from
Jeft to right the amplitude in the cavity is given by the self

consistency equation.
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Vs =2| E 2‘21
4.29 C = C,rexp (if) *+c
Where C1 is the S.H. generated in a single pass, the quantity we
have been considering. Therefore from 4.29,

C1
4.30 C0 =
(1 =z exp (i ¢))
and in terms of the power present
P

4.31 P =

(1 -2rcosdp + r2)

Therefore the power transmitted from the cavity is given by
t P1
4.32 P = st e e

(1 - 2rcosf)-1° 2 )

where t is the transmission coefficient of the exit mirror.

at resonance

tP
4.33 P = 1

(1 -1

)2
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As pointed out by Ashkin, Boyd and Dziedzic, 23, this can be
the power obtained in a single pass e.g. the

1
case r = 0.99, t = 0.01, P = 102P

much greater than P
This optimisation process will also discriminate against the

higher modes since from equation 2.33 when the 0 - O mode

is resonating @ = O the higher modes will not be resonant.

For example for a confocal cavity using the data given previously

the ratio of the power output from the cavity in the 0 ~ 2 mode

to that in the 0 - O mnode is approximately

P

02
0.25 x 1074  —
POO
where Po2 and POO are the power generated in a single pass of

the non linear in the 0 - 2 and 0 - O mode respectivély. Hence the
power output in the 0 - 2 mode is negligible.

In general the fundamental laser beam will consist of a number
of longitudinal modes of the laser resonator and hence the fundamental

electric field will be of the form

! Wn % “n
4.34 E(o)=32-£(E S(w- ) + B §(w+ 9))

where from equation 2.33 ‘Jn is given by

(A =

h = 3 (e o tan (¢))
To a good approximation the spot sizes of each of these modes will
be equal and so the general form of each mode will be the same
and so in considering the frequency term of the modes we need not

consider the mode shape,
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Using equation 1.18 the second order polarization will be set
up at frequencies.

4.35 (oq = o« o+ On, where @ , &~ are given by equation

4.34., The resonances of the second harmonic resonator occur at

frequencies.

[¢]
4.36 Oq = q

(a7 * tari ( y, )) where d,is the

optical length of the resonator cavity and l/}, is calculated from

equation 2.32 using the optical length 4 Putting together 4.34,

1.
35, 36 resonance occurs when
437 @ ((@+n) T+ 230 (Y)) = a(aw +tan (Y))

From this equation knowing the laser cavity parameters suitable

parameters for the second harmonic cavity can be calculated.
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Chanter B
nanter 7

Parametric AmnlifTication

5.1 The second provlem %o which the Toralisma developed in the previous
chanters has veen applied is thst of peranetric aumlification and oscillation

from a travellinge wave pump optical Tield. Under the anoroximation that
the pump field is mach larcer than either the szignal or idler fields and

therefore may be regarded as constant the »roblem splits ints two varts as

seneration. Tirst the calculation of the single

with second harmonic

nass amnliTication and secondly the resonztor calculation which zives the

)

threshold of a given rasonator and its output Tor a ziven pum field above

1

threshold. Guided by the sxperience of the last chapter only the interaction
between the lowest order, (-0 wodes of each field has been examined,
contributions from higher wmodes have been neglected., Under these
approximations an analytical solution to the coupled mode equations is
ziven for the wealr focussing — near field limit and nreliminary results
of numerical computations are given for the general solution.

e consider a non linear dielectric enclosed in a resonator, orientated
as before. Tmpinging on the dielectric will be optical fields at freguencies

43, aé, a% which will be referred to as the pump, idler, and signal

fields respectively. To achieve phase matching in Lithium Niobate we
consider the pump field to be propagating as an extraordinary wave and the
signal and idler fields as ordinary waves. The coupled mode eguations

governing the amplitudes of the signal and idler beams are from equations

251
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a% e
= A2 3
[~)
=C"A’;’3

counling coefficients and B  is the pup mode

1
[

are given by equation 3.61 or its three dimensional
~t ¥ -

Verl: Pocugsing — Wear Pield Limit

Under the sar

2e approximations as have been used in section 4.2(&)

souations 5.1 can be written
dA
*
5.2 (a) EEl = —ia1 A2 exp (ivz)
dA
2 *
—_—Z - ek - v
(v) P 0%, Ay exp (ivz)
i
wf a4 2By W, B
where (c\°<1 = 1’29 + 5 22 55 5% 1
: ’ 2 2 = . v - 5 - . =
’ z W W ) = ¥ ¥ =
L1,2 o e W 4 ( R 1= (e Ip o+ et W+ 1)
and (d) y = Ak + (e2+1) {\’-.’f —Z-l— - —2—1-— + Wg (-2—1-— - ;—1—- (—2—1—- + —2-1—-—)}
3 02 03 ol o1 02
W W S
v _ 93 gL 22
end W= T Wy o=y
o1 o1

All other variables are as defined previously.

From 5.2(0) the variation of the interaction with the various spot
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sizes 1is given by the funciion
W, W
= . 1.2
5.3 ® (“) = B il ) 2.2 o
W Weow VS o+ )R (e o+ TS 4+ )R
03 ( 1 2 )7 ( “1 2 )
then e = 1 the maxinun ags a function of W ., occurs when
J
1 1 1 2 3 1 ER 13
- = + and it can be shown by the method of
i W i
03 o2 ol
Lagranzes undetermined multinliers that the absolute marimum will occur
when W , =W __. 3ince the W, ~ ¥ _  syunetry is retained when e#l the
ol 02 1 2
=% _. Then P (W) reduces to
ol 02

maxiun value would still be expected at W
real and

the function studied in section 4.2(a).
One method of solution of eguations 5.2 is to separate the
58,16,

imaginary varts and solve the resulting eguations

Thus putting
A L 1
o, = X, e 7 etc.

-7T .
=5 (e1+92) + Y+ oz

and @ =
(Note 50 = % = 502

from ecuation 5.2(c) )

we have n
daA

1 Ao

(a) o= = % A, cos é

5.5
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fv’ﬁ
Lt 2 A A —_—
(b) 5= = o4 Ay cos
ad ‘;1 8‘2 &2 K1 T
() 22 -y (2 =1 ) s §
A A
1 2

These equations give lumediately iaformation sbout the maxiimm possible
amplification. TFrom 5.5(c) we see thst as long as vy = 0 all the
derivatives of j‘f are identically zero when é = 0 and hence é = 0 is a

solution of 5.5(0). This reduces the problem to solving the two simple

counled ecuations.

dA1 ~ A
Y
5.6 dz 1 AZ
dA
9 ~ ~
2 _ &
iz 2 A1

which will give the optimum amplification.

The second point which can be deduced from 5.5(c) is that if at the
crystal entry face the idler wmode amplitude A, is zero (i.e. non-resonant
jdler) then the initial value of % is fixed at .the optimum value % = Q.

0

Thirdly it can be seen from eguation 5.5(a) that the signal is

. T T ] : . . .
amplified when - CH <¥>< -27:- and absorbed otherwise. This has a simple

interpretation in terms of the phases of the three interacting waves. Trom

equation 5.4, in the plane wave limit y =Ak , we have

$ - -571 + (V}.}.kz)z) - (& ,+kz) - (62+k22)

- 5= + P = (g )
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where ¢ Yé, %L are the ophases of the three interacting waves at any

17

noint in the crystal.

: Ye

Amplification Lbsorption

Thus if y1 + yg lags W7 then both signal and idler are amplified
Z A

-

if ?ﬁ + ?% leads yg then both siznal and idler are absorbed. The

possibility of signal and idler behaving differently is ruled out since

the phase of a%

ig equal to that of & In the non plane wave case ¥

5"
can still be split into three parts, cone associated with each frequency.
Than %g, %é, ?4 may be interpreted as an average value of the phases of
the constituent plane waves of the resonator mode at each frequency.

To obtain the general solution it is simpler to proceed with the
complex eguations. lnltiplying eauation 5.2(&) by exp (-iyz) and
differentiating we can then substitute from equation 5.2(b) and obtain the

-

equation

"
(@)

*
5.1 & T Xi% A

for A, and by a similar procedure a similar equation for A The solution

1 2"

to this equation depends on the familiar (16, 58, 20) gain factor

¥ 2
5.8 @ = o o - 7/



The solution for A, ducreases exponentizlly with increasing distance

1

from tue zntry face when {570 but lates ginuscidally when {3< Q.
In terus ol the power rresent in eazch mode wiich is directly oroportional

>

. 12 .2 . . . . .
to [./&1/ , 148,/ , the solution to eauation 5.7 can be written

[\

5.9 (a) for p)O.

2 \
e o v/ T3 . my sinh (2@ (z-a))
+ (oR P1 + )“1 '7 fz "/“1(‘[ P1 P2 CO3 (.?O + 2/) @2 v

. R
+ Sin (é) + %) 10(1‘ /P1 P2 sinh P(Q‘D (4, Q/)

(b) for B<0.

5
5 2 2 ) m sin“(2p (2= a))
P_l(u) = P, + (x P, o+l P, - |°<1'J/P1EOOS (j;io + 72"> £

¢

+ sin (@o +%’) 10(1‘ P1 P2 sin (ZP(Z— a))

P

X 2 \
where ¢~ =o, &, 3 Py, P, are the values of P,I(z), P2(z) the
power oresent in the sisnal and idler modes respectively and %o is the

value of § at the crystzl entry face z =&,
It can be verified that the optimum value of this function with

-

respect to y and ¢ occurs at the expected values éo = 0 y = 0. It

can be seen that for a general value of %o the power output function is not
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syuaetric with respect to the phase natching paraveter y. This will only

be immortant in the de_encrate case when the sizmal and idler fields are

Q

= 4, . Bince, in the non-degencrate case, the idler is generated

one, A4 , >
’ 1 2
effect and i€ it is non~resconant, or if it is reconant in an
optimised caviiy thaen ¢% = 0 and the Tunction is symmetric. But in the
dezenerate case i% is Tixed by externzl naraueters and need not be zero.

dence in degenerate paraietric awplification it is likely to be difficult
to obtain the optimum output exnperimentally. For the imvortant case

® = 0 we have
-0

c.10 0 (a) B>0

5 2 R

P.(z) = Py+ (o Pyt !0(112132) sin” ( @(z=a))
1
¢

sin (2 8(z=a))

+ lo(1lP1 P2

For the case P2 = 0, non-resonant idler, there is gain for all

values of 7 and y.
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B + . . o . . rs
In the otuher extreme P, = P1, de-enerate, we have from evuation S.10(b)

2
2 2 N \
S 11 P1(z) = P1((1 + ﬁg% ein® ( @(z—tﬁ)) +-§ sin (2 @(z—q )

znd there is galn as long &s

F.12 8 > - ton (3@-—0))

P
Pubting z—a =1 , u =31 this conditicn becomes
= Fap
£.13 uﬁxl > - tan u

\"

V= u

g / // Al:scﬂ;m

Ejlbi\

N
N
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. 5 SO - -u
In the diagram the curves v = tanu and VvV = T are sketched and
the regions of absorption are shown dottad,

™

When the initial value of the idler pover lies between these extremes

the behaviour of the output vazlue of th

®
w
‘J

isnzl would be expected to lie

1

between thene extremes.

5.2 General Caze

i

5.1 in the

-

The single pass amplification is governed by eguations
enerzl case

where 5,14

rw, % d, W, W, exp (1A ks

x(w12 (141 €5) (1-1§)) + wg? (45 €5) (=1 £) + (1-1 ) (11 §°2))—5

e

x(e? W, 2 (1+4 £3) (-1 6,) + e W,% (141 £) (-1 §) + (-1 £) (-1 &)

IA)
in the three dimensional case. A similar equation defines C 2. A computer
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ws veun developed te solve these esuations mamerieall

-

)
3
-
-
o
QN

s

¥ using

‘e Y - . . 5 .
Yilnes nradictor—-corrector methiod of intesration T The nrozram is
descrived in Apnendix 1TTL.

Graphs 13 - 17 are asreliminsry resultz cbtained from this nrogrem.

Graphis 13, 14, 15 show the typiczl variation in amplificaticn of the

Y

Ay~ A0

% /
R

el

I

o

with the phase matching narzueter Ak = Tor non-de_snerate caze vhen the

ro

initizl idler amnlitude is zero. As bhas been pointed out this will

correspond te the situstion when the idler is non resonant. The pumn beam
it pumy

is focussed at the centre of a 1 cm crystal. Grzph 13 shows the behaviour

D N 1 X .
in a relatively weallly focussed cazse =— = C.5 and has Jjust the apvearance

expected in this limit. As the focussing increases the main peak moves
away from Ak = C and those pealts on the side Ak { Ok (optimum) increase
in heizht. This behaviour is somewhat different than that which occurs for
second harmonic generation.

Graph 17 shows the variation of the gain with focussing when the
phase matching is optimised both for degensrate parametric amplification
(with ortimised initial phase) and for non-resonant idler. Wote that the
scales differ for the two curves so that the degenerate amplification is

over ten times greater than the other. The maxima in both cases apvears to
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1 - .
be about —— = 2.5 :lthoush the stronzly focussed resion is not yet well

defined.
- .
Graph 16 represents

. .- Do . 1 - o
ontimised witu respect o nhase matchin and at the focuszing —— = 2.33

with the effective non~linear coefl

coefficient is defined as

B15 A = 6uwT Ay

where P 1is the vower vresent in the pumm beam in watts., This zraph can

be vsed to calculate the threshold of a given cavity lowing its losszes as

is shown in the next section. Hote that fer thisg sreph also the scales

for the gain in the two cases differ by a factor of ten.

’)

Resonator Cutvut

5.5 Calculation of Threshold and

/
0/ Ny
—‘7;—> A A t
Z nonl;ua'r l
/ (<] gﬁ\
7 0 [
é Y-

Consider the schematic diagram of the signal resonator figure 5.2
Ai is the signal mode amplitude entering the resonator, A the amplitude

of this mode just inside the crystal eniry face. C is the gain coefficient
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which has been exawined in the nrevious section and + +the transmission
loss of the output wirror. In the real case there will be some loss of

the iuput bean as it enters tle cavity but tais hasg been neglected. Since

there is gain only in one direction we have

l'-\'016 .‘-"‘. = A. + AI‘ 6]

also A = ¢t A

The condition for zain is ziven by

I—":blc'l-:}
Y
—_—

. i . \ ; .
Putting r¢c = 1T ce ¢ vhere ¢ is the change of phase of the amplitude
in a round trip and substituting from eguation 5.17 the gain condition

becomes

2 (lrl2

5.18  Idl - 1412 ) = 2/l 1el cosg+ 1 £ O

giving the gain condition

- —
vl cos¢ - \/Itl 2 m? sin2q§
!r}2 - 1 2

5.19 lcl;
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wiich in %he case of resonance, ¢)= C, reduces to

5,20
- lcl > 1
S I R

For sain to take place =t all, the cavity must he tuned so that the souare

<

root in equation £.19 reuwsninsg real

-

n

i.e. sing(j) < =
T

J

For » = (.9 i.e. 102 loss in the rescnator and the output mirror
naving & transmission coafficient of t = 0.05 i,=s, 5% transmission, we have
at resonance from ecuztion 5.20 that Jecl >1.05, Under the conditions of

¥ X
L

craph 16 this occurs when the effective non-linear coefficient d is

—4 . PR
creater than 4.6 x 10" for dezenerate parauetric amplification and

6.6 x 1077 for non-degenerate auplification with a non-resonant idler.

. . -3
Taking the approximate vzlues for d1q, 3 x 10 e.s.u. and for
o

c, 3% 1O10 cmsfsec, and substituting into eguaticn 5.15 it can be seen
that threshold occurs for this cavity at P = 10 milliwatts for the
degenerate case and P = 1 watt in the non-degenerate case. This power of
course must be in 8 single longtitudinal pump mode. This method of
estimating the threshold of a given cavity should give better results than

previous uethods 15, 25 since there are fewer doubtful assumptions made.
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Anvendix T
£0Denttx &

svaluation of the Integral I = g‘ exp (-z°) dz
c

snere the contour C is a straisht line in the complex z »plane given

[ a5

)

L

As x rung from - ootoc + o , g runs on the line G

Putting 7 = U+ iv
b = b, + ib,
c = G1 + iog
the eguation for the line =z = bx + ¢ is

|
Pan
fro
~
e

M v c1o2/b1 + o,
. . ;2 .
Consider I = exp (-2 ) dz where
14

!

G is the contour given .in the diagram Al.1
n
T

by & = bx + ¢, where Db, ¢ are complex conztants, ¥ a real variable

By Cauchy's theorum IC = 0. as the integral has no noles inside the

1

contour.



Therefore we have

R 5 ]

A2.2 I(\ = fexp (—ug) du - '/;379 (-—za) dz  + / exp (—22) az
1 -} o A
Jow
5
1.1 = / exp (-—22) dz /
j\B -
A
% 2 02 . y in 18
= /f exp (-R” cos 26 - iR” sin 2 ) iRe dé/
0 jx| 5
4 _/ exo (-R” cos 26) de
° =z
4 2 T
< R/ exp (-R” cos 2@) de i =l < Y
o 14
substituting o = 7L - F/2

A

/ IABI =4 ‘/ exp (-R2 sin 75) d?

o

< —% by Jordans Inequality

and as R » 00 /I /> o.

AB
Therefore
A1.3 I exp (—zz) dz = ‘/-:-ﬂ:
m 2
R>Doo Y-}

12¢

This result can be extended to a line not passing through the origin



Za7

by means of the contour C

2 c
o
Fy. A2 a
o
> <« > ->
a
A Cs
Azain by Cauchy's theorum / exp (—zg) dz = O
CL
/ IBC/ = // exp (-;v:2 + y2 - 2iXy) idy /
B¢
< exp (—X°) / e (7°) ay
ac
a

2
= exp - x° (1-tan” x) /exp (2Xtan u + u2) du

o

and therefore /IBC/—>O as X = o0 if | éZ/(——E

Similarly /IDA_/'?O as X = « and hence
AL fm / exp (—22) dz = D/‘i /e}':p (-—22) dz
X a0 P X300 R
:ff; for /el (-L-Z
from Al.1
X = tan | ('bz/b1) = arg(b) . Therefore the condition

1 1< RAR implies that



lag

arg

2 ™
(b)<—é

~y

. , 2 . . R
ie that the real part of b~ is greater than zero which is true for all

the integrals which have been considered.



127

Avnnendix

Lo

Juinerical Intesration of the Couplinge Coefficients

The inte rals on wuick

e

e second haroonic outnut in each wmode of

the resonmtor depend are a2ll of the s

[

me forie, increasins in complexity

&

with iacreasias nods nunber,
d

avelunte any particular one. carriad out on the

;
=
n
O
3
(38
L]
(_‘_\
=
o)
—
<
.

London University Atlas Computer, the nrogran baing writte:

Uge was nade of the Fertran function procedure in order to
focilitate change of the integrand.
The prosram evaluates the real and imazinary narts of the intesral

using Siapson's Rule and nrints the nodulus and arswaent. It is an
extension of one givan by Pennin;ﬁon) the basic Simpson's Rule intezration
nrocedure of which has an error coatrol. The integral is calculated
using successively decrsasing step lenzths until two successive calculations

differ by 1

o}

ss than a reguired amount. This procedure only gives good
results if the integrand varies comsistently over the range of integration
because of the approximation introduced by Simpson's Rule. The coupling
coefficients satisfy this condition.

The input data for the program was arranged in thres nested loops.
For each value of the parameters W, spot size, a and b, crystal end
positions, the integral was calculated over a specified range of y the
phase wmismatch  from 74 to I in steps Ay. Having completed this new
values of a and b were taken and tae procedure repeated. This can be

seen from the flow diagram for the program figure A2.1., The spot size

[

[v}
H=



o
iy
D

Dprosran varied

l3o

with t

intervzl a, B a3z would be exvected but in jensral it calculated four to
eizht intesrals per second to a specified accuracy of four decimal places.
This accuracy was adejuate except Tor determining the maxiaun valaes of

tie focous curve and spot size curve

For the lowest order mode the
A2.1 2
- N -
T - exo (irz) dx ,
2
(1-ix) (ec+idx)=
a
2,2 2.2
where ¢ = eV +1 d = e
the real and imaginary parts being
)
A2.2 L
Ir = (x) dx Ii

Q

where

e \-(c+dx2+(o +d7x

2,22

.,

81z places were used

auation 4.5 of the Torm

(x) dx

0

1 s

Y+x cos (*ry/ (o=d+(c +d2y2) )

sin
F1 (=) =

tJ'x

€
2= (1+x2) (c2+d2 )

The general procedure is unaf
Bquation A2.1 just becomes

4

exp (iyx=lkx) dx

(1-ix) (c+i ax)®

Z‘.«i)—"‘

(c+(c +d :c*) )

Tected by the inclusion of absorpition since
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A 2,4 Flow Diagram for S.H. Intepration Program
AV - 4«—no
yes, . 1
[fnput _ Yo[w<100 |50 Toput v, ¥, AY Y,<100
,no Y = Y11AY @D s
lstop! s Y Y
, " | Input

) J=20

Y=Y+AY| ]

T -f=

T =4 I=2 no a {100
v _l‘\ h
Ed — ‘\ ral — 4 3 R es
I1—f2(a)+*2(b) 11_12\a)+f2(o L, ¥
12=f2(a+Ax) 12=f2(a+Ax)

T (T HLT,)/3

IBTO
I3 = I ) + l3
I. = 0
2
—
JQX =:£xx/2 (:>'
x = a+dx
yes '
O RSN g MES WO
no
T +f, (%) pI , 4
2 2 2 1P = Ax(T, + 4T, + 21,)/3
‘ : T
€2
£(2)=I 1r—no«;’;1——~—{—3_§T§..‘.-yes«'.----giil - IP J<£0.0009 [
M= Jf(12) + f(22) QL ves ’ L no :
A= tan”@“(z)/f(@ £(1) = I ﬁ .
v‘" ! . v . Tee
Print M, A, 3 £ / .
in ‘;: b4 j . K:} @
Y_<.Y9 r‘yes”?‘<:)
lno |
A4




21

13
16

32

Invesration Pro~ran

DILENSIGT T (2)

READ 101,W,1

1@ (W-1C0) &,9,9
EP=1-1/ (T#3)

=Wk

READ 103,Y1,Y2,DY
IF (Y1-10G) 22,11,11
RZAD 101,4,B

PRINT 104,4,B
o (4-100) 31,33,33

Y=¥1-DY

ACL=57RT (B-A)

Y=Y+DY

I=1

J=0

J=J+1

FORT (X)=( (i 1 +SQRT ( (Wali+1)w w24 (Wa T wXnlP w4 2) ) #(COS (X4Y ) S TH (X
1Y) ) =X T 40P (X #COS (XY )+STH (X#7) ) ) / ((A+X %K) S SRT ( (Visel/ (i) +1 ) % (W
2 Ve l+SQRT(W W+1) 2+(WW X EP) 2)) ((Ww1) 2+4(WWIP X) 2) 2)

3

FGR2(X) = ( (WoAT 14 SQRT ( (W Hi7+1 e w2+ (WolAX P Yo 2 ) )¢ ( COS (X o )X+ ST (X
1Y) )+ Xl il ( COS (Kae¥ ) ~XnSTH (X7 ) ) )/ ( (14K0X ) seSQRT ( (Foel/ (s + DWW
2§W+1+SQRT((Wxﬁ+1)**2+(WuW*XaEP)**2)*((W%W+1)¢*2+(W*W¢EP~X}x*2)n2)
»y

DX=(P-4)/2

Go TO (21,22),7

FI1=FGR1(B)+FGR1(4)

FI2=FGR1({A+DX)

GO TO 10

FT1=TGR2 (B)+IGR2(4)

FI2=TCR2(A+DX)

GO TO 10

FI3=0

FI=DX %(FI1+4xFI2)/3

PI3=FI2+FI3

FI2=0

TDX=DX

DX=0.5#DX

K=A+DX

GO TO(12,13),T

FI2=FI2+FGR1(X)

GO TO 16

FI2=FI2+FGR2(X)

GO TO 16

X=X+IDX

IF(K"B) 3935k



o

O\

102
101
101,
103

=DXKoe(PT1+l , ¥FT2+2. %71 35) /3
nI’S(T‘l'_P FT)-0. 0C0C01)6,6,51
*(DX-.0001)6,6,5

ALOD—“ T’T F( ) P4 ;+F(2) »(2))
A= ATm}P(z)/PU
BCL=ALOD/ACL
PRINT 102, ALI0D, ATG,Y,BCL
TR(Y- YZ—;OO'I)ZU,/_U 29

FORLAT (2812,6,F8,3,712.6)
I‘o*tﬂéz“‘m 35

FORIAT (2FG, 3)
FORLAT (3110, 3)
CALL EXIT

1ND

733



13%

erential ecuations have been intezrated
1 intecration with a

s
18

Apvendix
TlLe parametric couplea diff
using lilnes nredictor-corrector wmethod of nmugerics
oth Tor speew and accuracy. The program is a generalisation
57 written on Fortran V for the London
to be solved are of

iven in Pennington
as before., The equatior

-
7

University Atlas Couputer

the form

A 3.1
dy1

i

i

= & :
& (8, (%) vy +
are defined in the program which fcllows this

.~
|

f1 (X)’ f2 (

wnere x)
Ifilnes method is not self starting the seven starting
This

section. Since
In

are calculated by the method of Runga-Kutta.
subroutine is also based on the program given in Pennington 57.
(=7

values renuired
The first section of the program calculates all the input data.

order to simplify the input as much as possible the variables chosen as

the basic set are those which can be varied directly in an experimental
They consist of the wavelength of the three beams, the length

situation.
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of the crystal, the temperature of the crystal, the confocal parameters of
the three beaws, and the effsctive non-linear coefficients, which includes

tue puwa power. 3Section one of the flow diagram shows the way in which this

~

is accomnlished, wyustion 1,66, 1.67 are used to define the refractive
index of the crystal with wavelength and temperaturs. 3By using the important

secondary psraueters the ohase watching parameter, the spot sizes, and the

v

. 1 . - . . ;

relative length T when evaluatin: the results of the integration, the
5

results can be recarded as guite general althoush the equations 1.66 1.67

represent a specific crystal.

. . \ .
The results so far have been restricted to (1) ¥ =0 i.e. dezenerate

-X,  focus at the centre of the crystal and (3)

amplification, (2) X, -

i

Zy = 3, = 1 the three confocal parameters equal, although the prozram
is capable of dealing with these variations.

The first section of the following program also calculates the optimum
phase angle of the initial value of the signal amplitude this being the mosi
interesting value. By altering this specification any value can be taken
into account.

Flow ciagraps for the first two sections of the program are included
but not one for the main part since this is only a minor modification of

the diagram given in Pennington, 57.



Section I

Input A3‘(
)\1 =2\

()

3

9 - 2A3
1= YAS/7 )

no
Input Zo3%4r %o @_yes T1<1OOO )

*e) = x1/203

X = X
end 2/:}.03

13

Inoput and Celculation of Phvsical Parameters

By
V‘

<7

Y

function paramsters;

Calculation of refractive indices;
phase match parameter, ccefficients Y1, Xé.
>

spot sizes;

end initial phase angle.




- £ F

Section IT Calculation of the Starting Values of the Milne
Program usine the lethod of Runge-Kutta

- =f (x, Yy y2’ y5,yl+)

for € =
. *@ /____‘ j
X =X + h/2 : Yi0= M
: a, = hze : o Y YPe = 2¢
Yp= yny + % ' ‘ A for&»:tl,' 4
(> & T
X =% + h/2 ¢% = hz
@ C12= hZB _;@ . Yp o= Ymp + 02{
Y = ym+ el @;" fort =1, 4 -’s‘ﬂ@
for £=1, 4 £ =7 ]
K =8 % z x
n
' Cle-c = hzt .
O—> '
1 ypp = ymy + (o1, + 2(e2+ 03 ) + chy )/6
for £=1, &4




93

19

46
47

1w

Parametric Integration Programme

M=4

Dimension Y(7,4), YP (7,4), Q(3,4), @P(3,4), ¥s(4), c(4),w1(4),
WP1(4), W2

1(4),%P2(4)

Dimension Z(4), V(4), W(4), c1(4), c2(4), ¢c3(4), C4(4), YEND (4)

Dimension WAV (3), ROF(2)

PI = 3.1415926536

FGR1(X) = (((A1+A2%X*X+A3%X**4) + SQRT((A1+A2%X*X+A3*X**4 )**2+ (A4*x+A5

1*X*X*X)**Z))*COS(YM*X)+X*(A4+A5*X*X)*SIN(YM*X))/SQRT(((A1+A2*X*X+A

23%X*%4 J+SQRT( (A1 +A2%X¥ X+ A3*Xx* ) ¥ %24 (A4 # Xt AS*X*X*X )52 ) Y% 2% ((A1+42

I*X*X+AI*#X**A )% 24 (A4 * T+ AS*X*X*X )XX2) )

FGR2(X )= (((A1+A2%X*X+A3%X*%4 )+ SQRT( (A1+A2%X*X+A3%X* %4 ) %% 24 ( A4 * X+ 45

1*x*x*x)**z))*SIN(YM*x)-x*(A4+A5*X*x)*cos(YM*x))/SQRT(((A1+A2*X%X+A

23%X*%4 )+ SQRT( (A1+A2*X* X+ A3*X¥ %] )%% 24 (AA*X+AS*X*X*X ) *#2 ) )% 2% ((A1+A2

IRXHRX+AI*EH*A Y% 24 (A4 * X+ AS* X XXX )*%2) )

YT=0. 001

ERR= 0.00001

D = 0.001

READ 110,WAV(3),GA

READ 110,X1,X2

IF(X1-100.0)19,44,44

READ 112, T1,T2,DT

IF(T1-1000.0)46,93,93

READ 112,20P, 21,272

IF(ZOP-100.0)96,19,19
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96 PRINT 112,20P, %1,22
X0=X1/70P
XEND=X2/Z0P
PRINT 110,X0,XEND
T=T1-DT

94 T=T+DT ‘
$=0,001*(T+273.0)
WAV(1)=2*WAV(3 )*PI/(PI+GA*WAV(3))
WAV(2)=2*WAV(3)ﬁPI/(PI-GA*WAv(3))
DO 95,1I=1,3

95 ROF(I)=SQRT(4.9130-0.0278*WAV(I )*WAV(I)+((11.73+1.65%S*S)/(100%WAV
1(I)*WAV(I )= (2.12+0. 27#5%S)*%2)))
REF=SQRT(4.5567+0. 2605%5%5-0. 0224 *WAV(3 )*WAV(3 )+( (9. 7+2. T#S*S) /(10
10%WAT(3 )*WAT(3 )= (2. 01+0.54%5%5 )¥%2) ) '
WOP=0.01*SQRT(WAV(3 )*ZOP/(PI*REF))
WO2=WAT(3 )*ROF(2 )* 22/ (WAV(2 )*REF )
WO1=WAV(3 )*ROF(1 )*Z1 /(WAV(1 )*REF )
YM=2*PI*Z0P* (REF/WAV(3)-ROF(1)/MAV(1)-ROF(2)/WAV(2) )*10000.0
AV=WO1+W02+1
BU=WO1*Z2+W02%Z1-21%Z2
OW=Z1+22+H01 % (Z2-1 }+WO2* (Z1-1)
E=(REF/ROF(3))**2
EAW=E*WO1+E*H02+1
EBW=E*W01 *Z2+EX02% Z1 =21 *22

ECW=Z1+Z2+E*W01 % (Z2-1 )+E*W02* (21-1)



45

22

28

23

4o

Al=AWXEAW
A2+EAT*BH+AN*EBH-CH*ECH

A3=BW*FBY -
M=CW*EAW+ECH*AW

A5=EBW*CH+ECH*BI

YTI=SQRT(FGR1 (X0 )**2+FGR2(X0 )**2)
YN(1)=YT*(SQRT(1+FGR1 (X0 )/YTI }+SQRT(1-FGR1 (X))/YTI))*0.5
IN(2)=YT*(SQRT(1-FGR1 (X0)/YTI )~SQRT(1+FGRI (X0)/YTI) )*0.5
IN(3)=1(1)

W (4)=1N(2)

AP1=-0,001#* (WO1*Z0P/(WOP*SQRT(SQRT(E))))
AP2=4P1/(WAV(2)*ROF(2))

AP1=AP1/(WAV(1 )*ROF(1))

PRINT 110,AP1,AP2

XN=X0

I=1

DD=.5%D

X=XN

D0 28 I=1,M

V(L)=1v (L)

=1

Z(1)=4P1*(FGR1 (X)*V(4 )-FGR2(X)*V(3))
Z(2)=AP1%*(FGR1 (X)*V(3 )+FGR2(X)*V(4))

7(3 )=AP2* (FGR1 (X )* V(2 )-FGR2(X)*T(1))

Z(4 )=AP2% (FGR1 (X)* V(1 }+FGR2(X)* V("))

IF(I-1)99,99,16



99

98

16
24

29

25

32

26

33

27

D0 98 =1,
Y(1,L)=Y0(L)
YP(1,L)=7(L)

I=T+1

GO TO 16

GO TO (24, 25, 26, 27),J
X=XN+DD

D0 29 I=1,M
C1(L)=D*Z(L)
V(L)=YW(L)+C1(L)*0.5
J=2

GO TO 23

DO 32 L= 1,M
c2(L)=p*z(L)
V(L)=YN(L)+C2(L)*.5
J=3

GO TO 23

X=XN+D

DO 33 I=1,N
¢3(L)=D*2(L)
V(L)=YN(L)+c3(L)

J =4

60 TO 23

XN=X

0 34 I=1,M

¢4 (L)=D%z(L)

142



34

17

91

10

61

51

142

IN(L)=YN(L)+(C1 (T )+2%(Cc2(L)+C3(L) )+C4(L))/6
DO 17 E=1,H

Y(I,L)=Yv(L)

TP(I,1)=7(L)

T=T+1

IF(1-7)22,91,91

X=X0+5%D

ERP=29*ERR

ERG=. 01 *ERP

A=1.3333333%D

B=.3333333*D

K=1

DO 61 L=1,M
Y(?,L);Y(3,L)+Aﬁ(YP(4,L)+YP(4,L)—YP(5,L)+2*YP(6,L))
X=X+D

J=1
YP(1,1)=AP1*(FGRT (X)*Y(7,4 )-FGR2(X)*Y(7,3))
YP(7,2)=AP1%(FGRI (X)*Y(T,3 +FCR2(X)*Y(T,4))
YP(7,3)=4P2% (FGRI (X)*Y (7, 2)~FGR2(X)*T(7,1))
TP (7,4 )=AP2* (FGR1 (X)*T (7,1 }+FGR2 (X)*T(T,2))
G0 TO (3,4),7

D051 L =1,M

Ys(1)=Y(7,L)
7(7,1)=Y(5,L)+B*(YP(5,L)+4*¥P(7,L))

J=2

GO TO 2



52

53

20

43

72
54

30

31
55

1

56

12

L=1
C(L)=aBs(Y(7,L)=7S(L))

IF(C (L)-ABS(ERP*Y(T7,1)))53,53,21
L=I+1

IF(1~M-1)52,20,20
IF(X~XEND+, 0001 )5,43,43

IF (X~XEND-. 0001 )50,50, 21

I=1
IF(C(L)-ABS(EFG*Y(7,L)))54,54,30
L=I+1

IF(1-M-1)72,7,7

K=1
D0 55 =1,M
D0 31 I=1,6

Y(I,L)=y(I+1,L)
YP(I,L)=YP(I+1,L)
CONTINUE
GO TO 1
Go TO (11,12,13,14,15),K
DO 56 L=1,M
w1 (L)=Y(1,L)
w21 (L)=YP(1,L)
K=2
GO TO 6

=3
GO TO 6

143
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13 DO 5TL=1,N
w2 (L)=Y(1,L)

57 wp2(L)=YP(1,L)
K=4
GO TO 6

14 X=5
GO TO 6

15 DO 58 L=1,M
Y(6,L)=y(7,L)
Y(4,L)=Y(3,L)
Y(3,L)=Y(1,L)
Y(2,L)=w2(L)
Y(1,L)=W1(L)
YP(6,L)=YP(7,L)
YP(4,L)=YP(3,L)
YP(3,L)=YP(1,L)
YP(2,L)=WP2(L)

58 YP(1,L)=WP1(L)
D=D+D
GO TO 10

21 IF(D-.0000001)40,40,41

40 PRINT 1001
IF(T-T2)94,46,46

“ D0 59L=1,0
D0 421 =1,3



42

59

50

60

44

145

Q(T,L)=0.5%(Y(5=I,L)+Y(6-I,L))-.0625%(Y(7-T,L)=U(6-I,L)=-Y(5=1,L)+T
1(4-1,1))
QP(T,L)=0.5%(YP(5=1,L)+YP(6~I,L))-.0625%(YP(7-1,L)-YP(6=I,L)=YP (5=
1I,L)+YP(4-1I,L))

1(6,L)=Y(5,L)

Y(2,L)=Y(3,L)

¥(5,1)=q(1,L)

Y(3,L)=q(2,L)

7(1,L)=2(3,L)

YP(6,1)=YP(5,L)

YP(2,L)=YP(3,L)

YP(5,1)=Qp(1,L)

YP(3,L)=qP(2,1)

YP(1,1)=QP(3,L)

X=X-2%D

D=.5%D

G0 TO 10

XEND=X

D0 60 L =1,M

YEND(L)=Y(7,L)

Ul=(SQRT(YEND(1 )**2+YEND(2)*%2) /0. 001 )=1
U2+ SQRT (YEND(3 )**2+ YEND(4 )**2)

PRINT 101,T,YM,W01,%02,U1,U2
IF(T=T2)94,46,46

CALL EXIT



Zsc

110  FORMAT(2F10.4)

101  FORMAT(2F12.4,2F10.3,2E15.4)

112 FORMAT(3F10.3)

1001 FORMAT(32HROUNDOFF ERROR PXIVENTS SOLUTION )

END
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nm
2" Mot

Output
relative

units

01

4
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1-0 =

Ocﬁuc*

relative
units

0-5=

. &m[\'l

Length Mmuo&

I max=0-315
Focus at centre




" 0-5 =

b 3

relative L Length 20=2'5
units . I max=0-662

Focus at centre

| | |
=20 -16 -12 -8 -4 0
R



IS0

2
Length 26=5-65

Imax=0-238
Focus at centre

104
Output
relative '
units
05 -
3
—<
B
-20 16 12 -8




G

Output . _.m:m:._th =565
relative - - Imax=0-506
units

Focus at face

0-5—

C\‘hpl\(
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1-0 =
, . Output
i relative
| units
p _.m:m:anhoud 0
Imax=0-705
Focus at centre
0-5—
9
<
[
¥
b
T _ _ I _ _ >;\\// \.ﬁ./; TN
=20 =16 -12 -8 -4 0 4 12 A
NREC ’
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1.0

0

Uiits

ive

Length mﬁo. =100

Imax=0-312

Focus af centre

20

16

12

0 —

Do

022

f -
oo

NP

16

20



el €

0-6

0-5 7

o.u.u..

01 —
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Conclusions

A wethod has been developed with which non~linear ontical problems
involving the invezration of tle nodes of the optical rssonator can be
studied directly. This enables meaninsful apnroximations to be made about
tie nunber of modes present in any given situstion. The method develoned
nere iz for travelling waves but the same principles should apply to
standinz waves.

Two examwles of the use of method have been given. In the first the
problem of resonant second harmonic seneration in the simall conversion

L s L
%

ansroximation has been studieds it has been skhown that the results ars

consistent with previous theories and in the general case the results
1E
civen by Boyd and Kleinman - for non-resonant second harmonic generation.
In applying this method to the second problem, parametric
amplification, it has been shown that it gives results which agree with
previous theories in the weak focussing limit. The preliminary numerical
results indicate the behaviour in the general case. These results extend

the previcusly established theory into the finite focussed rezion and

indicate that further research will prove vrofitable.
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