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Summary

This thesis has been motivated largely by Lehmer’s problem [20], which was stated in 1933
and it is still a problem that mathematicians have not completely solved. The Mersenne
sequence, (2n −1)n∈N, has properties that make it useful for finding large primes but its
terms become very large very fast. Lehmer’s problem is related to finding large primes
in sequences that are analogous to the Mersenne sequence but that grow as slowly as
possible and Lehmer’s conjecture implies a lower bound on the growth rate of any such
sequence.

Lehmer’s problem is usually stated in terms of a geometric constraint on the zeros
of polynomials having integer coefficients and top coefficient 1. Breusch [4] and Smyth
[38] have reduced the problem to one where it is only necessary to consider a much
smaller class of polynomials. Some recent progress has been made on this restricted
version of Lehmer’s problem by associating some of the polynomials of this smaller class
to combinatorial objects. The characteristic polynomial χA (x ) of a matrix A is taken to be
det(x I −A). For an n×n integer symmetric matrix A we define its associated polynomial
as

RA (z ) := z nχA (z +1/z ).

A Hermitian matrix A is called cyclotomic if all of the zeros of RA lie on the unit circle.
McKee and Smyth [26] showed that Lehmer’s conjecture holds for the polynomials RA for
all integer symmetric matrices A. Their method involved first classifying all cyclotomic
integer symmetric matrices.

McKee [23] used the classification of cyclotomic integer symmetric matrices to classify
certain polynomials (which he called small-span polynomials) that are also characteristic
polynomials of integer symmetric matrices.

A large part of my research has involved developing the method of McKee and Smyth
of associating algebraic numbers to combinatorial objects. The main results are the
following.

1. The classification of cyclotomic matrices over the Eisenstein and Gaussian integers.

2. The classification of cyclotomic matrices over real quadratic integer rings.

3. Reducing to a finite search the proof that Lehmer’s conjecture holds for polynomials
RA for all Hermitian matrices A over the Eisenstein and Gaussian integers.

4. Confirmation that Lehmer’s conjecture holds for polynomials RA for all real sym-
metric matrices A over real quadratic integer rings.

5. The classification of small-span polynomials that are also characteristic polynomials
of Hermitian matrices over quadratic integer rings.
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Chapter 1

Introduction

In this chapter we introduce the area of work with which this thesis is involved. We will

begin by stating a couple of conjectures that provide the main motivation for the work in

this thesis, and we give a partial survey of some results that supply us with a platform to

build on. We will conclude the introductory chapter by stating some important material

which will be used repeatedly throughout this thesis.

1.1 Boyd and Lehmer

A Pisot number is a real algebraic integer ς> 1 whose (Galois) conjugates have absolute

value strictly less than 1. Somewhat trivial examples of Pisot numbers are the rational

integers greater than 1. Pisot numbers have been well studied and much is known about

them. In particular, Salem [32] proved that the set of Pisot numbers is closed and, shortly

after, Siegel [35] showed that the smallest Pisot number ς0 is the real zero of the polynomial

x 3−x −1. The set of Pisot numbers is denoted by S. A related set of algebraic integers

is the set T of Salem numbers. A Salem number is a real algebraic integer τ > 1 whose

(Galois) conjugates have absolute value at most 1 with at least one having absolute value

equal to 1. Much less is known about the set T , for example it is not known whether there

exists a smallest Salem number. It was shown, however, first by Salem [33], and then again

later by Boyd [3], that each Pisot number is the limit (from both sides) of a sequence of

Salem numbers. In his paper containing the proof of the above result, Boyd made the

following conjecture.

Boyd’s conjecture. The set S is the derived set of T , and hence S ∪T is closed.

Let f (x ) = (x −α1) · · · (x −αn ) be a monic polynomial in C[x ]. The Mahler measure

[22]M ( f ) of f is defined to be the product of the absolute value of the zeros of f that lie

outside of the unit circle; in symbols

M ( f ) =
n
∏

j=1

max(1, |αj |).
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1. Introduction

It is clear that the Mahler measure of a monic polynomial is at least 1. The Mahler

measure M ( f ) is 1 when f is a cyclotomic polynomial and when f is a monomial. By a

theorem of Kronecker [19], we have the converse, that is, if M ( f ) = 1 then f is a product

of cyclotomic polynomials and a monomial. In 1933, Lehmer [20] published a paper

focused on the factorisation of elements in certain divisibility sequences. Given a monic

integer polynomial f factorizing over C as f (x ) = (x −α1) · · · (x −αn ), one can construct a

divisibility sequence whose k th element is given by

∆k ( f ) =
n
∏

j=1

(αk
j −1).

Notice that when f (x ) = x −2, the sequence (∆k ( f )) is the Mersenne sequence. Lehmer

found that the elements of the sequences associated to polynomials with smaller Mahler

measure grow slower, and hence those sequences are better for finding large primes. He

posed the following problem.

Lehmer’s problem. If ε is a positive quantity, find a monic integer polynomial f such that

the Mahler measure M ( f ) lies between 1 and 1+ ε.

Along with this problem, Lehmer exhibited the following degree 10 polynomial

L(z ) = z 10+ z 9− z 7− z 6− z 5− z 4− z 3+ z +1,

which has Mahler measure M (L) = τ0 = 1.1762808182599. . . . To this day, L holds the

world record for the smallest Mahler measure greater than 1 of an integer polynomial.

Moreover, the larger real zero τ0 of L is a Salem number and hence it is the smallest

known Salem number (since every Salem number is the Mahler measure of its minimal

polynomial). Although its attribution is dubious, the following conjecture is known as

Lehmer’s conjecture.

Lehmer’s conjecture. For monic f (z )∈Z[z ], either M ( f ) = 1 or M ( f )¾τ0.

For the history of Lehmer’s problem see Smyth’s expository article [37]. Note that both

Boyd’s conjecture and Lehmer’s conjecture imply that there exists a smallest Salem num-

ber.

A polynomial f is called reciprocal if its coefficients are palindromic, i.e., f satisfies

the equality

f (z ) = z deg f f (1/z ). (1.1)

10



1. Introduction

By a remarkable theorem of Smyth [38], if f (z )∈Z[z ] is non-reciprocal then the Mahler

measure of f is at least ς0 (the smallest Pisot number). A similar but weaker result was

proved earlier by Breusch [4], Smyth’s result, however, gives the best possible bound since

the minimal polynomial of ς0 is non-reciprocal. Hence, to make progress with Lehmer’s

problem, one needs only to consider reciprocal polynomials.

Much of the work in this thesis is dedicated to studying Hermitian matrices over

certain rings and, before we continue, we give a couple of important definitions. Define

the characteristic polynomial of a matrix A by χA (x ) = det(x I −A). For an n ×n matrix

A, we define its associated reciprocal polynomial as

RA (z ) = z nχA (z +1/z ).

It is easy to see that RA (z ) satisfies equation (1.1) and so it is indeed reciprocal. A Hermi-

tian matrix A is called cyclotomic if its associated reciprocal polynomial RA has integer

coefficients and Mahler measure M (RA ) = 1. The name ‘cyclotomic’ is given because, by

Kronecker’s theorem (mentioned above), RA is a product of cyclotomic polynomials and

possibly a monomial. Let A be a Hermitian matrix such that its characteristic polynomial

has integer coefficients. Then A is cyclotomic if and only if it eigenvalues are contained

inside the interval [−2, 2].

1.2 Simple graphs

Progress has been made on Boyd’s conjecture and Lehmer’s conjecture by associating

algebraic integers to combinatorial objects. In this section we will state some of the results

that have been obtained by studying simple graphs. A simple graph G is a graph having

no loops nor any multiple edges. For most graph theorists, our ‘simple graphs’ are what

they would simply call ‘graphs’, we deliberately use this longer phrase here since, in later

sections, we will use the term ‘graph’ quite loosely.

Let G be a simple graph with adjacency matrix A. The characteristic polynomial

χG of G is taken to be the characteristic polynomial χA of its adjacency matrix and the

associated reciprocal polynomial RG is defined as RG (z ) := RA (
p

z ) if G is bipartite and

RG (z ) :=RA (z ) otherwise. The adjacency matrix A is a real symmetric matrix with all its

entries from the set {0, 1} and only zeros on the diagonal, its characteristic polynomial

and associated reciprocal polynomial are both monic and both have integer coefficients.

We call G cyclotomic if A is cyclotomic.

In 1970, Smith proved the following theorem.

11



1. Introduction

Theorem 1.1. [36] Let G be a connected cyclotomic simple graph. Then G is a subgraph of

a simply-laced extended Coxeter graph.

. . .

Ãn . . .
D̃n Ẽ6

Ẽ7 Ẽ8

Figure 1.1: Extended simply-laced Coxeter graphs

Theorem 1.1 exposes an underlying connection between affine Coxeter groups and

graphs G having M (RG ) = 1. We will explore this connection in more depth in the next

chapter.

The next theorem classifies certain simple graphs with bounded spectra. And an

immediate corollary confirms Lehmer’s conjecture for polynomials associated to simple

graphs. Hence one can also draw motivation for the work in this thesis from spectral

graph theory.

Theorem 1.2. [9] Let G be a non-cyclotomic simple graph such that all of its proper sub-

graphs are cyclotomic. Then G is one of the 18 graphs given in [9, Figure 3].

Corollary 1.3. Let G be a simple graph with adjacency matrix A.

Then M (RA ) = 1 or M (RA )¾τ0.

One can associate Salem numbers and Pisot numbers to simple graphs, as was first

done by McKee and Smyth [24]. We call a nonbipartite simple graph G a Salem graph

if it has only one eigenvalue λ > 2 and no eigenvalues less than −2. We call a bipartite

simple graph G a Salem graph if it has only one eigenvalue λ> 2. Let G be a simple Salem

graph with largest eigenvalue λ. If λ2 6∈ Z then G has a corresponding Salem number,

that is, the largest zero of RG . Define the set Tgraph as the set of Salem numbers having a

corresponding Salem graph.

Theorem 1.4. [24] The set of limit points of Tgraph is a subset of S, which we will call Sgraph.

Furthermore, Tgraph ∪Sgraph is closed.

The graph of a Pisot number inSgraph can be viewed as a bicoloured graph that encodes

the limit of sequence of some Salem graphs, see [24, Section 8] for details. Theorem 1.4

12



1. Introduction

settles Boyd’s conjecture for Salem numbers and Pisot numbers that can be associated to

simple graphs.

In Chapter 2, we settle Lehmer’s conjecture and Boyd’s conjecture for polynomials

coming from certain weighted trees.

1.3 Integer symmetric matrices

Lehmer’s problem has been settled for various classes of polynomials, for example Bor-

wein et al. [1] showed that if f is a polynomial with odd coefficients then the Mahler

measure of f is either 1 or at least 1.4953. . . , which is strictly greater than τ0. And we

have seen in the previous section that Lehmer’s problem has been solved for polynomials

RG where G is a simple graph. Dobrowolski [10] showed that if RA is irreducible for A

an integer symmetric matrix then either M (RA ) = 1 or M (RA )¾ 1.043. . . . Subsequently,

McKee and Smyth confirmed Lehmer’s conjecture for all polynomials RA where A is an

integer symmetric matrix.

Theorem 1.5. [26] Let A be an integer symmetric matrix.

Then M (RA ) = 1 or M (RA )¾τ0.

In order to obtain this result, McKee and Smyth [25] first classified cyclotomic integer

symmetric matrices, that is, integer symmetric matrices A with M (RA ) = 1. Their approach

to proving Theorem 1.5 takes advantage of a theorem of Cauchy which we will give in the

next section. As was mentioned above, Lehmer’s problem has been reduced, so that it

suffices to consider only monic reciprocal integer polynomials, but we do not get all monic

reciprocal integer polynomials from the associated reciprocal polynomial RA of integer

symmetric matrices A. Along with Theorem 1.5, McKee and Smyth gave a table of Mahler

measures M (RA )< 1.3 for A an integer symmetric matrix. Comparing this table with the

table of small Salem numbers in [3, 28] exposes the Mahler measure M (P) = 1.20261. . .

as one that cannot be obtained at the Mahler measure of RA for any integer symmetric

matrix A. Here, P could be the polynomial

P(z ) = z 14− z 12+ z 7− z 2+1.

This polynomial cannot be obtained from any integer symmetric matrix A (as RA ) since

the polynomial x 7−8x 5+19x 3−12x−1 is not the characteristic polynomial of any integer

symmetric matrix. This degree 7 example and other small degree examples of polynomials
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1. Introduction

that are not the characteristic polynomial of any integer symmetric matrix were found by

McKee [23] as low degree counterexamples to a conjecture of Estes and Guralnick, which

we give below.

It is well established [11] that for every totally real algebraic integer α, there exists an

integer symmetric matrix A having α as an eigenvalue, and hence the minimal polynomial

of α divides χA . Furthermore, Hoffman [16] showed that this implies that every totally

real algebraic integer is an eigenvalue of some adjacency matrix of a simple graph. Estes

and Guralnick [12, page 84] conjectured that any monic separable totally real integer

polynomial is the minimal polynomial of some integer symmetric matrix. This conjecture

was shown to be false by Dobrowolski [10]who showed that if an irreducible polynomial

f is the minimal polynomial of an integer symmetric matrix then the absolute value of

its discriminant is at least (deg f )deg f . And there exists an infinite family of irreducible

polynomials f having discriminant less than (deg f )deg f , the lowest degree of this family

of polynomials is 2880. However, Estes and Guralnick proved their conjecture to be true

for monic separable totally real integer polynomials of degree at most 4. In fact, what

they proved is even stronger; they showed that for any monic separable totally real integer

polynomial f of degree at most 4, there exists a 2n ×2n integer symmetric matrix having

f as its minimal polynomial. Since there exist reciprocal polynomials that are out of reach

of integer symmetric matrices, in later chapters we consider Hermitian matrices over the

ring of integers of quadratic extensions of the rationals.

At this point we confess that there exist reciprocal polynomials having small Mahler

measure that are not equal to RA for any Hermitian matrix A. Let f be a monic reciprocal

integer polynomial with zeros α1,α−1
1 , . . . ,αn ,α−1

n . A necessary condition for f to be

realised as RA for some Hermitian matrix A is for the polynomial

f̃ =
n
∏

j=1

(x −αj −α−1
j )

to be totally real. But there exist reciprocal polynomials that do not satisfy this necessary

condition, for example the polynomial

Q(z ) = z 18+ z 17+ z 16− z 13− z 11− z 9− z 7− z 5+ z 2+ z +1.

The polynomial Q̃ is not totally real and hence Q cannot be realised as RA for any Hermi-

tian matrix A. The Mahler measure of Q is the fourth smallest known Mahler measure of

monic integer polynomials, M (Q) = 1.201396186235. . . . Hence, to solve Lehmer’s prob-
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1. Introduction

lem, it is not enough to consider only reciprocal polynomials RA for Hermitian matrices

A.

In Chapters 3 and 4, motivated by Lehmer’s problem, we consider Hermitian matrices

over imaginary quadratic integer rings and Hermitian matrices over real quadratic inte-

ger rings respectively. The last chapter is devoted to studying Hermitian matrices over

quadratic integer rings whose eigenvalues are constrained in a slightly different way to

those of cyclotomic matrices; these eigenvalues are subject only to the condition that

the smallest and largest eigenvalue differ by less than 4. We complete this introductory

chapter by giving some material, with which the subsequent chapters assume the reader

is familiar.

1.4 Recurrent themes

We conclude this introductory chapter by giving some important definitions. Throughout

this thesis we repeatedly use some ideas and results which we give in this section.

1.4.1 Equivalence and matrix visualisation

A major theme in this thesis is the use of weighted directed graphs as a convenient way

of viewing Hermitian matrices. Let S be a subset of C. For an element x ∈C we write x

for the complex conjugate of x . An S-graph G is a directed weighted graph (G , w )whose

weight function w maps pairs of vertices to elements of S and satisfies w (u , v ) =w (v, u )

for all vertices u , v ∈ V (G ). The adjacency matrix A = (a u v ) of G has a u v =w (u , v ); this

matrix depends on a ‘labelling’ of the vertices of G , which determines how the rows of

A correspond to the vertices of G . For every vertex v , the charge of v is the number

w (v, v ). A vertex with nonzero charge is called charged, those with zero charge are called

uncharged. Notice that every Hermitian S-matrix can be recognised as the adjacency

matrix of some S-graph.

Now we set up our notion of equivalence for Hermitian matrices over some subring

R ⊆C. The philosophy of the following equivalence is to call two Hermitian R-matrices, A

and B , equivalent if A is similar to ±B under some unitary transformation over R , which

thus preserves the Mahler measure so that M (RA ) =M (RB ).

We write M n (R) for the ring of n ×n matrices over a ring R ⊆ C. Let Un (R) denote

the unitary group of matrices Q in M n (R)which satisfy QQ∗ =Q∗Q = I , where Q∗ denotes

the Hermitian transpose of Q. Conjugation of a matrix M ∈M n (R) by a matrix in Un (R)

15



1. Introduction

preserves the eigenvalues of M and the base ring R . Now, Un (R) has a subgroup U ′n (R)

generated by permutation matrices and diagonal matrices of the form

diag(1, . . . , 1, u , 1, . . . , 1),

where u ∈ R has |u | = 1. Let D be such a diagonal matrix having u in the j th position.

Conjugation by D is called a u -switching at vertex j . This has the effect of multiplying all

the out-neighbour edge-weights of j by u and all the in-neighbour edge-weights of j by

u . The effect of conjugation by permutation matrices is just a relabelling of the vertices of

the corresponding graph.

Let L be the Galois closure of the field generated by the elements of R overQ. Denote

by Gal(L/Q) the Galois group of L overQ. Let A and B be two matrices in M n (R). We say

that A is strongly equivalent over R to B if A =σ(Q BQ∗) for some Q ∈U ′n (R) and some

σ ∈Gal(L/Q), whereσ is applied componentwise to the matrix Q BQ∗. The matrices A and

B are merely called R-equivalent if A is strongly equivalent over R to ±B . When it is clear

which ring R we are working over, we simply call matrices A and B strongly equivalent

or equivalent if they are strongly equivalent over R or R-equivalent respectively. We are

primarily interested in matrices with integer characteristic polynomials. Observe that,

since they are rational integers, the coefficients of the characteristic polynomials of such

matrices are invariant under Galois conjugation.

Let G be an S-graph with adjacency matrix A. By a subgraph H of G , we mean an

induced subgraph; we say that G contains H and that G is a supergraph of H . The

subgraphs of G correspond to the principal submatrices of A. Define the underlying

graph of a Hermitian S-matrix A to be the corresponding S-graph of A whose charges

are set to zero and whose other nonzero weights are set to 1; the underlying graph is a

simple graph. The notions of a cycle/path/triangle etc. carry through in an obvious way

from those of the underlying graph. By simply saying “G is a graph,” we mean that G is

a T -graph where T is some unspecified subset of the complex numbers. Note that all

possible vertex-labellings of a graph are strongly equivalent over R for any subring R ⊂C.

For this reason, we draw graphs without vertex labels.

We will find it useful to draw various graphs throughout this thesis and in each chapter

we outline our drawing conventions which we will alter slightly from chapter to chapter.

The changes in drawing conventions are there to simplify exposition and, even though

they are not explicitly stated, hopefully the reasons for each slight change will be apparent.
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1. Introduction

1.4.2 Interlacing and matrix decomposition

We use repeatedly the following theorem of Cauchy [7, 13, 18]which we will sometimes

refer to as ‘interlacing’.

Theorem 1.6 (Cauchy’s interlacing theorem). Let A be an n × n Hermitian matrix with

eigenvalues λ1 ¶ · · · ¶ λn . Let B be an (n − 1) × (n − 1) principal submatrix of A with

eigenvalues µ1 ¶ · · ·¶µn−1. Then the eigenvalues of A and B interlace. Namely,

λ1 ¶µ1 ¶λ2 ¶µ2 ¶ · · ·¶µn−1 ¶λn .

A matrix that is equivalent to a block diagonal matrix of more than one block is called

decomposable, otherwise it is called indecomposable. A matrix is indecomposable if

and only if its underlying graph is connected. The eigenvalues of a decomposable matrix

are found by pooling together the eigenvalues of its blocks.

Let A be a Hermitian matrix and let B be a principal submatrix of A. By Theorem 1.6,

we obtain an upper bound on the Mahler measure of RB in terms of the Mahler measure

of RA , that is,

M (RB )¶M (RA ). (1.2)

By equation (1.2), in order to settle Lehmer’s problem for the reciprocal polynomials RA

where A is some Hermitian matrix, it is sufficient to restrict our attention to Hermitian

matrices that are minimal with respect to being non-cyclotomic. We call these matri-

ces minimal non-cyclotomic matrices, they are the matrices A subject to the condition

M (RA ) > 1 and M (RB ) = 1 for all proper principal submatrices B . We call an indecom-

posable cyclotomic matrix maximal if it is not contained as a proper submatrix of an

indecomposable cyclotomic matrix.

Let G be an S-graph for some set S ⊆C. Define the degree of a vertex v ∈V (G ) as

∑

u∈V (G )

|w (u , v )|2.

The spectral radius ρ(G ) of G is defined as the maximum of the moduli of its eigenvalues.

Lemma 1.7. Let G be a graph having spectral radius ρ. Then every vertex of G has degree

at most ρ2.

Proof. Suppose that v is a vertex of G having degree d > ρ2 and let A be an adjacency

matrix of G with v corresponding to the first row. The first entry of the first row of A2 is
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1. Introduction

d . Therefore, by interlacing, the largest eigenvalue of A2 is at least d , and so the spectral

radius of A is at least
p

d >ρ, which is a contradiction.

Corollary 1.8. Let G be a graph with a vertex v of degree d > 4. Then G is not cyclotomic.

18



Chapter 2

Radical Integer Trees

In this chapter, motivated by the combinatorial approach to Lehmer’s problem and Boyd’s

conjecture, we study certain weighted trees. Define a radical integer graph to be an

uncharged S-graph G where

S =
§

p

k : k ∈N0

ª

.

By studying radical integer graphs we are effectively studying symmetric S-matrices. The

valency of a vertex of v is defined to be the number of neighbours of v and we denote

by ∆(G ) the maximum valency of the vertices of G . We draw an edge-weight between

two vertices u and v as e if e =w (u , v ) is nonzero. If w (u , v ) = 1 then, to reduce

clutter, we simply draw .

2.1 Cyclotomics

Building on the work of Smith [36]mentioned in the introduction, we classify the cyclo-

tomic radical integer forests. We are interested in radical integer forests because of the

following lemma.

Lemma 2.1. Let T be a radical integer forest with adjacency matrix A. Then the character-

istic polynomial χT :=χA has integer coefficients.

Proof. We can assume that T is a tree since the characteristic polynomial of a forest is

the product of the characteristic polynomials of its connected components. Let T1 be a

radical integer tree on a single vertex, it has characteristic polynomial χT1 (x ) = x which is

in Z[x ]. Let T2 be a radical integer tree on two vertices with edge-weight e0 =
p

k (k ∈N0),

it has characteristic polynomial χT2(x ) = x 2 − e 2
0 which is also in Z[x ]. Suppose T has

n > 2 vertices and let u be a leaf vertex of T and let v be its neighbour with w (u , v ) = e .

Expanding the determinant χT (x ) along the row corresponding to u gives

χT (x ) = xχG (x )− e 2χH (x )
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2. Radical Integer Trees

where G is the induced subforest on V (T )\{u } and H is the induced subforest on V (G )\{v }.

Both G and H have fewer than n vertices and, since e 2 is an integer, the result follows by

induction.

Let T be a radical integer tree with adjacency matrix A. Since A is a nonnegative

matrix, we can appeal to the Perron-Frobenius theorem to study the eigenvalues of radical

integer trees. Recall that the spectral radius ρ(T ) of T is defined as the maximum of the

moduli of its eigenvalues.

Theorem 2.2. [14, Theorem 8.8.1] Let T be a radical integer tree with adjacency matrix A.

1. The spectral radius ρ :=ρ(T ) is a simple eigenvalue of T . If x is an eigenvector for ρ

then all the entries of x are nonzero and have the same sign.

2. Suppose T ′ is a subforest of T . Then ρ(T ′)<ρ(T ).

3. Suppose T ′ is a radical integer forest with adjacency matrix A ′ such that A −A ′ is

nonnegative. Then ρ(T ′)¶ρ(T )with equality if and only if A = A ′.

For a Hermitian matrix, eigenvectors corresponding to distinct eigenvalues are or-

thogonal. Suppose that x is an eigenvector of A with all entries positive. Then it cannot be

orthogonal to a vector whose entries are all nonzero and of the same sign, and thus, by

Theorem 2.2, it must be an eigenvector for the spectral radius ρ.

The classification of cyclotomic radical integer trees is almost a generalisation of

Smith’s [36] classification of cyclotomic simple graphs. It is not quite a generalisation

since we are restricted to only considering forests.

Theorem 2.3. Let T be a cyclotomic radical integer tree. Then T is contained in one of the

maximal cyclotomic radical integer trees Ã1, B̃n (n ¾ 3), C̃n (n ¾ 2), D̃n (n ¾ 4), Ẽ6, Ẽ7, Ẽ8,

F̃4, and G̃2 as in Figure 2.1.

Proof. The numbers associated with the vertices of the radical integer trees in Figure 2.1

give the eigenvectors corresponding the the eigenvalue 2. By the remark following The-

orem 2.2, since all entries of this eigenvector are positive, 2 is the largest eigenvalue.

Moreover, by Theorem 2.2 these radical integer trees are maximal cyclotomic.

Conversely, let T be a radical integer tree whose spectral radius is at most 2. By

Corollary 1.8, each vertex of T has degree at most 4 and hence each vertex has valency at

most 4, that is,∆(T )¶ 4. Now we split into cases.
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2. Radical Integer Trees
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Figure 2.1: The maximal cyclotomic radical integer trees Ã1, B̃n (n ¾ 3), C̃n (n ¾ 2), D̃n (n ¾
4), Ẽ6, Ẽ7, Ẽ8, F̃4, and G̃2. The numbers on the vertices correspond to eigenvectors with
largest eigenvalue 2. The number of vertices is one more than the subscript.

Case 1. ∆(T ) = 4. Suppose v is a vertex of T with valency 4, then every edge-weight

incident to v is 1, otherwise the degree of v would exceed 4. In this case, then, T must

contain D̃4, and since D̃4 is maximal, we have that T = D̃4.

Case 2. ∆(T ) = 3. Suppose v is a vertex of T with valency 3, then two of the edge-weights

incident to v are 1 and the third incident edge-weight is either 1 or
p

2, otherwise the

degree of v would exceed 4. If the third incident edge-weight is
p

2 then T must contain

B̃3, so we assume the third incident edge-weight is 1. If another vertex of T has valency

3 then T must contain D̃n for some n , otherwise, if T contained an edge-weight greater

than 1 then T would properly contain either G̃2 or B̃n for some n . We thus assume that all

other vertices of T have valency at most 2. Then, in order to avoid properly containing

one of the maximal cyclotomic radical integer trees from Figure 2.1, T must be contained
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2. Radical Integer Trees

in B̃n , Ẽ6, Ẽ7, or Ẽ8.

Case 3. ∆(T ) = 2. In this case T must be a path. Again, in order to avoid proper

containment of C̃n , F̃4, or G̃2 as subgraphs, T must be a subtree of one of the trees

C̃n , F̃4, or G̃2 in Figure 2.1.

Case 4. ∆(T ) = 1. In this case it is easy to see that T must be a subtree of Ã1, F̃4, or G̃2.

This classification of cyclotomic radical integer trees strongly resembles the classifica-

tion of irreducible root systems. We will address the resemblance in Section 2.3.

2.2 Minimal non-cyclotomics

A non-cyclotomic radical integer tree T is called minimal non-cyclotomic if every sub-

forest of T is cyclotomic. In this section we classify the minimal non-cyclotomic radical

integer trees.

As a part of their classification of minimal non-cyclotomic simple graphs (although

neither did they call them such nor were trees treated separately) Cvetković et al. obtained

the following result.

D̃ (1)4 D̃ (2)4 D̃ (2)5 D̃ (2)6 D̃ (2)7

D̃ (2)8
Ẽ (1)6

Ẽ (1)7 Ẽ (1)8

Figure 2.2: The 9 minimal non-cyclotomic simple trees.

Theorem 2.4. [8] There are 9 minimal non-cyclotomic simple trees, D̃ (1)2 , D̃ (2)4 , D̃ (2)5 , D̃ (2)6 ,

D̃ (2)7 , D̃ (2)8 , Ẽ (1)6 , Ẽ (1)7 , and Ẽ (1)8 given in Figure 2.2.

We will prove a generalisation of the above result, which we state below.
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Figure 2.3: The minimal non-cyclotomic radical integer trees on more than 2 vertices with
at least one irrational edge-weight.
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Theorem 2.5. Let T be a minimal non-cyclotomic radical integer tree. Then T is either an

edge with weight
p

a for some a > 4 or one of the trees in Figures 2.2 and 2.3.

The proof will require a collection of lemmata.

Lemma 2.6. Let T be an edge of weight
p

a where a ∈ N. Then T is minimal non-

cyclotomic if and only if a > 4.

Proof. The eigenvalues of T are ±
p

a and hence are contained inside the interval [−2, 2]

if and only if a ¶ 4. Therefore T is non-cyclotomic if and only if a > 4. For minimality,

observe that T cannot properly contain a non-cyclotomic tree.

Let T be a minimal non-cyclotomic radical integer tree on at least 3 vertices. The

lemma above implies that the edge-weights of T are bounded above by 4.

Lemma 2.7. Let T be a minimal non-cyclotomic radical integer tree on 3 vertices. Then T

is one of M (1), M (2), Ã (1)1 , Ã (2)1 , Ã (3)1 , or Ã (4)1 .

Proof. By Lemma 2.6, we can check this exhaustively (by hand).

Lemma 2.8. Let T be a minimal non-cyclotomic radical integer tree containing a maximal

cyclotomic radical integer tree M as a subgraph. Then the vertices of T are given by the set

V (M )∪{v }where v is adjacent to exactly one vertex of M .

Proof. Since T is non-cyclotomic, the containment of M must be proper. Moreover, by

Theorem 2.2 and since the spectral radius of M is 2 (Theorem 2.3), any tree that properly

contains M is non-cyclotomic. Now, T is minimal with respect to being non-cyclotomic

and hence it must not contain any subforest that properly contains M . Therefore T can

be obtained by attaching one vertex v to M , and since T is acyclic, v can only be adjacent

to exactly one vertex of M .

Now, we consider minimal non-cyclotomic radical integer trees that contain various

maximal cyclotomic radical integer trees. By the above lemma, we can think of such

minimal non-cyclotomic trees as maximal cyclotomic trees with one extra vertex attached.

Lemma 2.9. Let T be a minimal non-cyclotomic radical integer tree containing Ã1. Then

T is either Ã (1)1 , Ã (2)1 , Ã (3)1 , or Ã (4)1 .

Lemma 2.10. Let T be a minimal non-cyclotomic radical integer tree containing F̃4. Then

T is either B̃ (2)4 , C̃ (2)4 , F̃ (1)4 , or F̃ (2)4 .
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2. Radical Integer Trees

Lemma 2.11. Let T be a minimal non-cyclotomic radical integer tree containing G̃2. Then

T is either G̃ (1a )
2 , G̃ (1b )

2 , G̃ (1c )
2 , G̃ (2)2 , or G̃ (3)2 .

By Lemma 2.6 and Lemma 2.8, the proofs of Lemmata 2.9, 2.10, and, 2.11 come down

to checking a small number of cases and we omit the details.

Lemma 2.12. Let T be a minimal non-cyclotomic radical integer tree containing B̃k for

some k . Then T is either B̃ (1)3 , B̃ (2)3 , B̃ (3)3 , B̃ (1)4 , B̃ (2)4 , B̃ (3)4 , B̃ (1)5 , B̃ (1)6 , B̃ (1)7 , B̃ (1)8 , C̃ (1)3 , or C̃ (1)4 .

Proof. By Lemma 2.8, we can assume that T is obtained by attaching a vertex v to a

vertex of B̃k with an edge of weight
p

a where, by Lemma 2.6, a ∈ {1, 2, 3, 4}. Suppose k

is at least 9 and label the vertices of B̃k by v1, . . . , vk−1,x , y where v j is adjacent to v j+1

for j ∈ {1, . . . , k −2} and vk−1 is adjacent to both x and y . The edge between v1 and v2

has weight w (v1, v2) =
p

2. We split into three cases, where v is adjacent to vertices of

valencies 1, 2, and 3.

Case 1. Suppose v is adjacent to a vertex of valency 1. Up to symmetry, we need only

consider when v is adjacent to v1 and when v is adjacent to x .

First, suppose v is adjacent to v1. Let T ′ be the subtree obtained by deleting vertex

x from T . We can use Theorem 2.2 to compare the adjacency matrix of T ′ with the

adjacency matrix of F̃4 (adding extra zero rows/columns where necessary) to deduce that

ρ(T ′)>ρ(F̃4) = 2. This implies that T properly contains a non-cyclotomic subtree, which

contradicts the minimality of T .

Secondly, suppose v is adjacent to x . Let T ′ be the subtree obtained by deleting vertex

v1 from T . We can use Theorem 2.2 to compare the adjacency matrix of T ′ with the

adjacency matrix of Ẽ8 (adding extra zero rows/columns where necessary) to deduce that

ρ(T ′)>ρ(Ẽ8) = 2. This implies, again, that T properly contains a non-cyclotomic subtree,

which contradicts the minimality of T .

Case 2. Suppose v is adjacent to a vertex v j of valency 2. We will use the same trick of

comparing adjacency matrices and referring to the Perron-Frobenius Theorem. Let T ′ be

the subtree obtained by deleting vertex x from T . Compare the adjacency matrix of T ′

with the adjacency matrix of B̃ j+1 (adding extra zero rows/columns where necessary) to

deduce that ρ(T ′)>ρ(B̃ j+1) = 2. This contradicts the minimality of T .
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Case 3. Finally, suppose v is adjacent to the vertex vk−1 of valency 3. Let T ′ be the

subtree obtained by deleting vertex v1 from T . Compare the adjacency matrix of T ′ with

the adjacency matrix of D̃4 (adding extra zero rows/columns where necessary) to deduce

that ρ(T ′)>ρ(D̃4) = 2. This contradicts the minimality of T .

Therefore we need only consider T as a tree obtained by attaching a vertex to one of

the vertices of the trees B̃3, . . . , B̃8. It remains to examine the possible ways of attaching a

vertex to see the result; this is a small computation.

Lemma 2.13. Let T be a minimal non-cyclotomic radical integer tree containing C̃k for

some k . Then T is either C̃ (1a )
2 , C̃ (1b )

2 , C̃ (2a )
2 , C̃ (2b )

2 , C̃ (1)3 , C̃ (2)3 , C̃ (1)4 , or C̃ (2)4 .

Proof. By Lemma 2.8, we can assume that T is obtained by attaching a vertex v to a vertex

of C̃k with an edge of weight
p

a where a ∈ {1, 2, 3, 4}. Suppose k is at least 5 and label the

vertices of C̃k by v1, . . . , vk+1 where v j is adjacent to v j+1 for j ∈ {1, . . . , k }. Suppose v is

adjacent to a vertex v j of valency 2. If j −1¶ k +1− j then set l = j +1 and let T ′ be the

subtree of T obtain by removing v1, otherwise set l = k +3− j and let T ′ be the subtree of

T obtain by removing vk+1. We can use Theorem 2.2 to compare the adjacency matrix

of T ′ with the adjacency matrix of B̃l (adding extra zero rows/columns where necessary)

to deduce that ρ(T ′)>ρ(B̃l ) = 2. Hence T properly contains a non-cyclotomic tree T ′

which contradicts the minimality of T .

Now suppose v is adjacent to a vertex of valency 1. Without loss of generality we

can assume that v is adjacent to v1. Let T ′ be the subpath of T obtained by deleting

the vertex vk+1. Using Theorem 2.2 we can compare the adjacency matrix of T ′ with the

adjacency matrix of F̃4 (adding extra zero rows/columns where necessary) and deduce

that ρ(T ′)>ρ(F̃4) = 2. Hence, again, T properly contains a non-cyclotomic tree T ′ which

contradicts the minimality of T . Therefore we need only consider T as a tree obtained by

attaching a vertex to one of the vertices of the trees C̃2, C̃3, and C̃4. It remains to examine

the possible ways of attaching a vertex to see the result; this is a small computation.

Lemma 2.14. Let T be a minimal non-cyclotomic radical integer tree on n > 3 vertices.

Then T contains a maximal cyclotomic radical integer tree.

Proof. The minimal non-cyclotomic simple trees have been classified in Theorem 2.4

and one can see by inspection that the theorem holds for these trees. We can henceforth

assume that at least one edge-weight of T is greater than 1. Let w > 1 be the largest

26



2. Radical Integer Trees

edge-weight of T . The edge-weight w must be at most 2 otherwise T would properly

contain a non-cyclotomic edge.

Case 1. w = 2. In this case it is clear that T contains Ã1.

Case 2. w =
p

3. Every proper subforest of T is cyclotomic. Let P be a 3-vertex subpath

of T that contains an edge-weight
p

3. Since the degree of the valency 2 vertex of P is at

most 4, the other edge-weight of P has to be 1. Hence T contains G̃2.

Case 3. w =
p

2. Let P be a subpath of T that has an edge-weight
p

2. If P has another

edge-weight
p

2 then P (and hence T ) contains C̃k for some k . Otherwise, if P has only

one edge-weight
p

2, either P properly contains F̃4 or P is cyclotomic. If all subpaths are

cyclotomic then, since T is non-cyclotomic, T must have a vertex of valency at least 3, in

which case, T must contain B̃k for some k .

From the proof above, in order to classify the minimal non-cyclotomic radical integer

trees on at least 4 vertices it is only necessary to consider minimal non-cyclotomic radical

integer trees that contain a maximal cyclotomic radical integer tree. Hence, together the

lemmata above give a proof of Theorem 2.5.

Corollary 2.15. Let T be a minimal non-cyclotomic radical integer tree. Then the second

largest eigenvalue of T is less than 2.

Proof. Let λ1 ¶ · · ·¶λn be the eigenvalues of T . Let T ′ be obtained by deleting a vertex of

T and letµ1 ¶ · · ·¶µn−1 be the eigenvalues of T ′. Every proper subforest of T is cyclotomic

and, in particular, −2¶µ1 and µn−1 ¶ 2. By interlacing (Theorem 1.6), λn−1 ¶µn−1, and

hence λn−1 is at most 2. Suppose λn−1 = 2, then the largest eigenvalue µn−1 of T ′ must

be 2. Therefore every subforest of T on n −1 vertices must have a maximal cyclotomic

radical integer tree as a component. By inspecting the minimal non-cyclotomic radical

integer trees in Figure 2.3, it is easy to see that this is not the case.

To recapitulate, by Theorem 2.5 we have, for T a radical integer tree, either M (RT ) = 1

or M (RT )¾ τ0. We have equality when T is Ẽ (1)8 . This confirms Lehmer’s conjecture for

this restricted class of polynomials.
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2.3 Coxeter systems

The classifications in the two previous sections resemble classifications from other ar-

eas of mathematics. A Coxeter system is a pair (W,S) consisting of a group W having

presentation

W = 〈s ∈S | (s ′s )m (s ,s ′) : (s , s ′)∈S′ ⊆S×S〉,

where m (s , s ′) = 1 if s = s ′ and m (s , s ′) =m (s ′, s ) ¾ 2 otherwise. The set S′ is the set of

pairs of generators (s , s ′)with m (s , s ′) finite; for convention we write m (s , s ′) =∞ for pairs

of generators (s , s ′) not in S′. The group W is called a Coxeter group; W is determined

up to isomorphism by the set of integers m (s , s ′) for s , s ′ ∈ S. This information can be

encoded in a graph Γwhose vertex set is S. Two vertices s and s ′ are adjacent if and only if

m (s , s ′)¾ 3 and the edge between them is assigned the label m (s , s ′). It is understood that

m (s , s ′) = 2 for any non-adjacent pair of distinct vertices s and s ′, and as a convention the

label 3 is omitted. The graph we have described is called the Coxeter graph of W . We say

a Coxeter system is irreducible if its Coxeter graph is connected.

We associate to a Coxeter graph Γ on n vertices an n ×n symmetric matrix B = (a j k )

with entries

b j k =−cos

�

π

m (j , k )

�

for j , k ∈V (Γ). (2.1)

Hence, we can associate a quadratic form x>Bx (x∈Rn ) which is called positive semidef-

inite if all the eigenvalues of B are nonnegative and it is called degenerate if B has a zero

eigenvalue.

Theorem 2.16. [2, Chapter VI, Theorem 4] Let (W,S) be an irreducible Coxeter system with

S finite. The associated quadratic form is positive semidefinite and degenerate if and only if

the Coxeter graph is isomorphic to one of the graphs in Figure 2.4.

Here we are abusing notation (by overloading the names of our graphs in Figure 2.1 and

Figure 2.4), but we will try to justify this abuse by giving a relation between the quadratic

forms of the graphs in Theorem 2.16 and the adjacency matrices of maximal cyclotomic

radical integer trees. The above classification resembles two of the classifications we have

seen earlier: Theorem 1.1 and Theorem 2.3. In fact, if we restrict to the simply-laced

Coxeter graphs in Theorem 2.16 then we get precisely the maximal cyclotomic simple

graphs in Theorem 1.1.
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Ã1 ∞

Ãn (n ¾ 2)

. . .

B̃n (n ¾ 3) . . .4

C̃n (n ¾ 2) . . .4 4

D̃n
. . .

Ẽ6

Ẽ7

Ẽ8

F̃4 4

G̃2 6

Figure 2.4: Positive semidefinite Coxeter graphs. The number of vertices is one more than
the subscript.

Let T be a cyclotomic radical integer tree with adjacency matrix A. The eigenvalues of

A are contained inside the interval [−2, 2] and hence the matrix

B = I −
1

2
A (2.2)

is positive semidefinite. Moreover, each diagonal entry of B is 1 and the remaining entries

of B belong to the set
1

2

¦

0,−1,−
p

2,−
p

3,−2
©

.

Each element of this set can be written as −cos(π/m )where m is in the set {2, 3, 4, 6,∞}.

Hence B is a matrix of a positive semidefinite quadratic form associated to some Coxeter

system (W,S)with S finite. If T is a maximal cyclotomic radical integer tree then its largest

eigenvalue is 2. Hence the matrix B is singular and its quadratic form corresponds to a

Coxeter system with Coxeter graph isomorphic to one from Theorem 2.16. This also holds

for Ãn .
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Let (W,S) be an irreducible Coxeter system, with graph Γ and associated quadratic

form B . The Coxeter group W is called hyperbolic if the following two conditions are

satisfied.

1. B is non-degenerate but not positive definite;

2. For each s ∈ S, the Coxeter graph obtained by removing s from Γ has a positive

semidefinite quadratic form.

Let T be a minimal non-cyclotomic radical integer tree with adjacency matrix A and

let B = I − 1
2 A. Since T is non-cyclotomic, it has an eigenvalue λ> 2 which corresponds to

a negative eigenvalue of B making B not positive definite, and by Corollary 2.15, T does

not have an eigenvalue equal to 2 which implies that B is non-degenerate. The second

hyperbolic condition of B is satisfied since every proper subforest of T is cyclotomic.

Therefore, every minimal non-cyclotomic radical integer tree corresponds to a Coxeter

graph of a hyperbolic Coxeter group. This also holds for minimal non-cyclotomic simple

graphs.

Lehmer’s problem has been studied from the perspective of Coxeter groups; see the

article of McMullen [27].

2.4 Unfolding trees

In this section we will show a connection between the spectra of radical integer graphs

that are related by some kind of folding/unfolding action.

Proposition 2.17. Let N be a radical integer graph with a distinguished vertex v . Let G be

the graph obtained by attaching p leaf vertices to v so that the edge-weight between v and

each leaf vertex is 1. Let H be the graph obtained (also from N ) by attaching to v a single

vertex with an edge of weight
p

p .

Then G and H have the same nonzero spectrum and moreover the multiplicity of the

zero-eigenvalue of G is p −1 more than that of H.

Proof. Let AN be the n ×n adjacency matrix of N with the first row (and column) cor-

responding to v . Consider the adjacency matrices AG and AH of G and H respectively.

Define Ek = (e i j ) to be an k ×n matrix with

e i j =







1, if j = 1;

0, otherwise.
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Without loss of generality we can write the (n+p )×(n+p )matrix AG and the (n+1)×(n+1)

matrix AH in the following way:

AG =







0 Ep

E>p AN






; AH =







0
p

p E1

p
p E>1 AN






.

Let the (n +1)× (n +p )matrix P be defined as

P =



























1p
p · · · 1p

p 0 · · · · · · 0

0 · · · 0 1
...

...
...

...
...

... 0

0 · · · · · · · · · · · · · · · 1



























.

. . . . . . ...
︸ ︷︷ ︸

p

. . . . . . . . . .
︸ ︷︷ ︸

n

We obtain the relationship

AG = P>AH P. (2.3)

Hence

P>AH Pvk =λk vk ,

where the vk (1¶ k ¶ n +p ) are eigenvectors of AG with corresponding eigenvalues λk .

We use the property PP> = I (n+1) to obtain

AH Pvk =λk Pvk . (2.4)

Therefore an eigenvector vk of AG corresponds to an eigenvector Pvk of AH if and only

if it is not in the kernel of P . Pick a basis v1, . . . , vp−1 for ker P . By equation (2.3), each vk

(1¶ k ¶ p −1) is in the zero eigenspace of G . Using eigenvectors of G , we can extend to a

basis for Rn+p given by the vectors

v1, . . . , vp−1, vp , . . . , vn+p .

Apply P to each of these vectors. The proof of rank-nullity gives Pvp , . . . , Pvn+p as a

basis for im P = Rn+1. Since the relevant Pvk are not zero, by equation (2.4), we have

that the vectors Pvp , . . . , Pvn+p are eigenvectors for AH with corresponding eigenvalues

λp , . . . ,λn+p . (These eigenvalues are precisely those of vp , . . . , vn+p for AG .) Moreover,

since the eigenvectors Pvp , . . . , Pvn+p are linearly independent, G and H have the same

nonzero spectrum. The p − 1 eigenvectors in the zero-eigenspace of G in ker P do not

correspond to eigenvectors of H , and hence we have the result.
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Now, instead of just vertices, consider attaching graphs to a vertex.

Proposition 2.18. Let N be a radical integer graph with distinguished vertex vN and let

L be a radical integer graph with distinguished vertex vL . Let G be the graph obtained by

attaching p copies of L to N with an edge of weight 1 between vN and each vL . Let H be the

graph obtained by attaching a single copy of L to N with an edge of weight
p

p between vN

and vL .

Then the spectrum of H is a sub-list of the spectrum of G and moreover G and H have

the same spectral radius, i.e., ρ(G ) =ρ(H ).

Proof. Let AN be the n ×n adjacency matrix of N with the first row corresponding to vN

and let AL be the m ×m adjacency matrix of L with the first row corresponding to vL .

Consider the adjacency matrices AG and AH of G and H respectively. Define E = (e i j ) to

be the n ×m matrix with the entry e11 = 1 and all other entries equal to 0. Without loss

of generality we can write the (n +m p )× (n +m p )matrix AG and the (n +m )× (n +m )

matrix AH in the following way:

AG =





















AN E . . . E

E> AL

...
...

E> AL





















; AH =









AN
p

p E

p
p E> AL









.

Let the (n +m )× (n +p m )matrices Ck , for k ∈
�

1, . . . , p
	

, be defined as

Ck =







1p
p In 0 0 . . . 0

0 δ1k Im δ2k Im . . . δp k Im






,

where δi j is the Kronecker delta. Multiplying AH on the right by Ck and on the left by C>k

gives

C>k AH Ck =





















1
p AN δ1k E . . . δp k E

δ1k E> δ1k AL

...
...

δp k E> δp k AL





















.

Thus, we obtain the relationship

AG =
p
∑

k=1

C>k AH Ck .
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Hence
�

p
∑

k=1

C>k AH Ck

�

vk =λk vk ,

where the vk (1¶ k ¶ n +m p ) are eigenvectors of AG with corresponding eigenvalues λk .

We use the property
�

p
∑

k=1

Ck

�

C>l = I (n+m ) ∀ l ∈
�

1, . . . , p
	

to obtain

AH

�

p
∑

k=1

Ck

�

vk =λk

�

p
∑

k=1

Ck

�

vk . (2.5)

Set P =
∑p

k=1 Ck . An eigenvector vk of AG corresponds to an eigenvector Pvk of AH if and

only if it is not in the kernel of P . Let B be a set of eigenvectors of AG that form a basis for

Rn+m p given by

B =
¦

v1, . . . , vm (p−1), vm (p−1)+1, . . . , vn+m p

©

,

where the vectors v1, . . . , vm (p−1) lie in ker P . The vectors of the set

B ′ = {Pv : v ∈ B\(B ∩ker P)}

form a basis for im P =Rn+m and hence, each eigenvalue of H is an eigenvalue of G . (In

contrast with Proposition 2.17 - all AG -eigenvectors forming a basis for P were in the

zero eigenspace of AG , with AG : ker P→{0}whereas since PAG = AH P , we have only that

AG : ker P→ ker P .)

Let w be an eigenvector of G corresponding the eigenvalue ρ(G ). By Theorem 2.2, we

can assume that all entries of w are positive. Since the transformation matrix P has only

nonnegative entries, w cannot be in ker P and hence we can choose B so that Pw is in B ′.

Moreover, Pw has all entries positive and hence, by Theorem 2.2, it corresponds to ρ(H ).

Therefore, w and Pw correspond to the same eigenvalue ρ(G ) =ρ(H ).

Corollary 2.19. Let T be a radical integer tree with spectrum λ(T ). Then there exists a

simple tree T ′ whose spectrum contains λ(T ) and whose spectral radius ρ(T ′) =ρ(T ).

Proof. We can repeatedly apply Proposition 2.18 to T , effectively replacing edge-weights
p

p (for some p ∈ N) by p edges of weight 1, until we obtain the simple tree T ′ whose

spectrum contains λ(T ) and whose spectral radius ρ(T ′) =ρ(T ).

In the next section we will briefly mention replacing an edge of weight
p

k with k edges

of weight 1 in the way described in the results above. We will refer to this replacement as

‘unfolding’.
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2.5 Boyd’s conjecture

We call a radical integer forest a Salem forest if it has only one eigenvalue λ> 2. Recall

that, to each Hermitian matrix, we associate a reciprocal polynomial RA (z ). Let T be

an n-vertex Salem forest with adjacency matrix A. Now, since T is bipartite, if λ is an

eigenvalue of T then so too is −λ, and hence each monomial of χT has an even power,

i.e., χT (x ) = p (x 2) for some monic integer polynomial p . We therefore associate to T the

reciprocal polynomial defined as follows

RT (z ) :=RA (
p

z ) = z n/2χA (
p

z +1/
p

z ).

If ρ(T )∈Z then T is called a trivial Salem forest, otherwise it is called a nontrivial Salem

forest. The Salem number τ(T ) associated to a nontrivial Salem forest T is the larger root

of the equation
p

z +1/
p

z =ρ(T ).

Proposition 2.20. Let T be a Salem forest. Then every subforest of T has at most one

non-cyclotomic connected component.

Proof. Suppose that T contains a subforest T ′ having at least 2 non-cyclotomic connected

components. Then T ′ has at least 2 eigenvalues greater than 2 and hence, by Theorem 1.6,

so does T . This is a contradiction.

Proposition 2.21. Let T be a non-cyclotomic radical integer forest having a vertex v such

that the induced subforest on V (T )\{v } is cyclotomic. Then T is a Salem forest.

Proof. By Theorem 1.6, the second largest eigenvalue of T is bounded above by the largest

eigenvalue of any induced subgraph of T on |V (T )| −1 vertices. Since one can obtain a

cyclotomic subforest by deleting a single vertex v , the second largest eigenvalue of T is at

most 2.

The converse of this proposition is not true. For example, the following radical integer

tree T is a Salem tree such that none of its subforests obtained by deleting a single vertex

is cyclotomic.
p

2
p

2
p

3
p

3
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By ‘unfolding’ this tree we can obtain the following simple Salem tree T1.

By Proposition 2.18 the spectrum of T1 contains the spectrum of T and ρ(T ) = ρ(T1).

This might give one hope that, for every Salem tree T there exists a simple Salem tree T ′

with ρ(T ) = ρ(T ′); thereby reducing the proof of Boyd’s conjecture for Salem numbers

associated to Salem trees to that of simple Salem trees. If it is the case that one can restrict

to considering only simple Salem trees, then, if working via ‘unfolding’, one needs to be

careful of how one ‘unfolds’. To demonstrate this, by ‘unfolding’ T in a different way, one

can obtain the radical integer tree T2:

p
2

p
3

p
3

p
2

p
3

p
3

The tree T2 is not Salem; this can be seen by using Proposition 2.20: delete the leftmost

vertex in the picture above to give a subforest consisting of two non-cyclotomic connected

components. Hence, by Proposition 2.18, any further ‘unfolding’ of T2 will also not be

Salem. Therefore we cannot simply reduce the study of Salem trees to the study of simple

Salem trees via ‘unfolding’ in this way.

Recall Boyd’s conjecture [3], that the set of Pisot numbers S is the set of limit points

of the set of Salem numbers T . McKee and Smyth [24, Theorem 1.1] settled a version of

Boyd’s conjecture for Salem and Pisot number coming from simple graphs. In order to

obtain this result, McKee and Smyth used a series of lemmata. Almost all of the lemmata

used do not depend on the edge-weights of the graphs and can therefore be automatically

extended to hold for radical integer trees. For the convenience of the reader we repeat

these lemmata.

Let T be a Salem tree with spectral radius ρ. The following lemma gives upper bounds

(in terms of ρ) on the number of vertices of T having degree not equal to 2. Furthermore,

it bounds the number of vertices of T of valency 1, which means only the number of

vertices with both degree 2 and valency 2 is unbounded.
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Lemma 2.22. Let T be a Salem tree with spectral radius ρ :=ρ(T ). Then

(i) The vertices V (T ) of T can be partitioned as V (T ) =M ∪A ∪H, in such a way that

• the induced subtree T |M is one of the minimal non-cyclotomic radical integer

trees from Theorem 2.5;

• the set A consists of all vertices of V (T )\M adjacent in T to some vertex in M ;

• the induced subforest T |H is cyclotomic.

(ii) T has at most B := 10(3ρ4+ρ2+ 1) vertices of degree greater than 2, and at most

ρ2 B vertices of valency 1.

The proof is almost exactly the same as the proof of Proposition 3.2 in [24].

Proof. Since it is non-cyclotomic, T must contain a minimal non-cyclotomic radical

integer tree T |M as in Theorem 2.5 and T |M can have at most 10 vertices. Define A to

be the subset of vertices of V (T )\M having a neighbour in M . By Proposition 2.20, the

subforest T ′ on V (T )\A has at most 1 (in fact precisely 1) eigenvalue greater than 2, which

must be the spectral radius of T |M . Therefore, the other connected components of T ′

form a cyclotomic forest which we define to be T |H .

By Lemma 1.7, the degree of each vertex is bounded by ρ2. We can apply this to the

vertices in M to obtain a crude bound on the cardinality of the neighbouring set A, that

is, |A | ¶ 10ρ2. Applying this argument to the vertices in A adjacent to some vertices in

H , we have that there are at most ρ2|A | edges with one endvertex in A and the other

in H . Now, every connected cyclotomic radical integer tree has at most 2 vertices of

degree greater than 2, see Figure 2.1. Since T is connected, each connected component

of T |H must have an edge going from it to a vertex in A. Hence there are at most another

2ρ2|A | vertices of degree greater than 2 in H . Summing up gives a bound of at most

|M |+ |A |+ρ2|A |+2ρ2|A |¶ 10(3ρ4+ρ2+1) vertices of degree greater than 2 in T .

To bound the number of vertices of valency 1, we simply associate each such vertex

with the nearest (as in number of hops) vertex of degree greater than 2, and then use the

degree bound of ρ2 (from Lemma 1.7) on these latter vertices.

An edge is called pendant if at least one of its incident vertices has valency 1, otherwise

it is called internal. Similarly, a path is called pendant if it contains at least one pendant

edge, otherwise it is called internal.
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Lemma 2.23. [24, Lemma 4.2] Let T be a radical integer forest and (v1, v2, . . . , vk ) a list of

(not necessarily distinct) vertices of T . Let T(m1,...,mk ) be the radical integer forest obtained

by attaching one endvertex of an m i -vertex simple path to vertex vi (so T(m1,...,mk ) has

m1+ · · ·+mk more vertices than T ).

Let Rm1,...,mk (z ) be the reciprocal polynomial of T(m1,...,mk ). Then if all the m i are at least

2 we have

(z −1)k Rm1,...,mk (z ) =
∑

ε1,...,εk∈{0,1}
z
∑

εi m i P(ε1,...,εk )(z ),

for some integer polynomials P(ε1,...,εk )(z ) that depend on T and (v1, . . . , vk ) but not on

m1, . . . , mk .

With notation as in Lemma 2.23, we refer to P(1,...,1) as the leading polynomial of

Rm1,...,mk .

Corollary 2.24. [24, Corollary 4.4]With notation as in Lemma 2.23, suppose further that T

is a radical integer tree and that T(m1,...,mk ) is a Salem tree for all sufficiently large m1, . . . , mk .

Then T(m1,...,mk ) is a nontrivial Salem tree for all but finitely many (m1, . . . , mk ).

Furthermore, P(1,1,...,1)(z ), the leading polynomial of Rm1,...,mk (z ), is the product of the

minimal polynomial of some Pisot number (ς, say), a power of z , and perhaps some

cyclotomic polynomials.

Moreover, if we let all the m i tend to infinity in any manner (one at a time, in bunches,

or all together, perhaps at varying rates), the Salem numbers τm1,...,mk :=τ(T(m1,...,mk )) tend

to ς.

Lemma 2.25. [24, Lemma 4.5] Let T be a radical integer forest with two distinguished

vertices v1 and v2. Let T (m1,m2) be the radical integer forest obtained by identifying the

endvertices of an (m1+m2+3)-vertex simple path with vertices v1 and v2 (so that T (m1,m2)

has m1+m2+1 more vertices than T ).

Let R (m1,m2) be the reciprocal polynomial of T (m1,m2). Then

R (m1,m2)(z ) = (z −1)Rm1,m2 (z )+Qm1,m2 (z ),

where Qm1,m2 has much smaller degree compared to Rm1,m2 , in the sense that

deg Rm1,m2 −degQm1,m2 →∞

as min(m1, m2)→∞.

Let T ′ be the set of Salem numbers τ(T ) such that T is a nontrivial Salem forest.
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Theorem 2.26. The set of limit points of T ′ is some subset S ′ of Pisot numbers. Further-

more, T ′ ∪S ′ is closed.

The proof is a small modification of the proof of Theorem 1.4 in [24, Theorem 1.1].

Proof. Consider an infinite sequence (Sr ) of nontrivial Salem forests such that the corre-

sponding sequence of Salem numbers (τ(Sr )) is convergent. The connected components

of a Salem forest consist of exactly one Salem tree and perhaps some cyclotomic radical

integer trees. Since the cyclotomic components have no effect on the corresponding

Salem number, we can assume that (Sr ) is a sequence of nontrivial Salem trees. We would

like to know about the limit points of T ′ and hence, by means of moving to a subse-

quence, we may assume that (Sr ) does not contain a constant subsequence. Since the

sequence of Salem numbers converges, each Salem number in this sequence is bounded.

By Lemma 2.22, we have an upper bound on the number of vertices of degree greater than

2 and the number of vertices of valency 1. Furthermore, Lemma 1.7 gives an upper bound

for the degree of each vertex.

Let S be the set of radical integer trees with at most B1 vertices each of which has

degree at most B2 and no vertices having both degree 2 and valency 2. Then the set S is

finite and each Salem tree T of (Sr ) can be associated with an element of S having T as a

subdivision of some of its edges. Now, since S is finite, there are only finitely many radical

integer trees in S that are associated to elements of (Sr ). By moving to a subsequence, we

can assume that all the Salem trees of (Sr ) are associated to the same radical integer tree

M ∈S. Label the edges of M by e1, . . . , em . Each e j corresponds to a simple path of length

l j ,n joining the two vertices incident to e j , in the nth Salem tree of (Sr ).

Consider the sequence (l 1,n ). If it is bounded then it has an infinite constant subse-

quence, else it has a subsequence monotonically tending to infinity. Hence, by means

of taking a suitable subsequence, we can assume that (l 1,n ) is either constant or mono-

tonically tending to infinity. These properties are preserved under moving to further

subsequences, thus we repeat this for the sequences (l 2,n ), (l 3,n ), . . . , (l m ,n ). Now we are in

the situation where each e j corresponds to a constant sequence or a monotonic sequence

tending to infinity. The constant sequences can be replaced by fixed paths, which we

incorporate into M (now allowing degree/valency-2 vertices), and we henceforth assume

that every sequence (l j ,n )monotonically tends to infinity.

Suppose our sequence (Sr ) has s increasingly subdivided internal edges and t increas-

ingly subdivided pendant edges. Form another sequence of radical integer forests by
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removing a vertex near the middle of each increasingly subdivided internal path of each

Sr , giving 2s + t increasingly subdivided pendant edges. We obtain a new sequence (Tr )

of radical integer forests with n 1, . . . , n 2s+t for the lengths of its pendant paths.

Claim 1. For n 1, . . . , n 2s+t all sufficiently large, we have a Salem forest.

Suppose that the forests of (Tr ) are cyclotomic for all n 1, . . . , n 2s+t . Then each connected

component of these forests must be a subtree of B̃n . Therefore, connecting the broken

internal paths back together (to get back to some Sk ) would give a cyclotomic radical

integer tree, but this is a contradiction since all of the elements of (Sr ) are Salem trees.

Each Tk can have at most one eigenvalue greater than 2, since otherwise, by Theorem 1.6,

the corresponding Sk would also have at least two eigenvalues greater than 2.

By Lemma 2.25, the sequences (τ(Tr )) and (τ(Sr )) have the same limit and by applying

Corollary 2.24 to (Tr )we have that this limit is a Pisot number. The second sentence of the

theorem is automatic.
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Chapter 3

Hermitian Matrices over

Imaginary Quadratic Integer Rings

Recall that a cyclotomic matrix is a Hermitian matrix A whose associated reciprocal

polynomial RA has integer coefficients and Mahler measure M (RA ) = 1. Cyclotomic

matrices over the rational integers and over the imaginary quadratic integer rings OQ(pd )

for d 6= −1 and d 6= −3 have been classified by McKee and Smyth [25] and Taylor [40]

respectively. Also, Lehmer’s problem has been confirmed for polynomials RA where A is a

Hermitian matrix over Z and over OQ(pd ) for d =−2 and d <−3 by McKee and Smyth [26]

and Taylor [41, 39]. Let OK denote the ring of integers of a number field K . In this chapter,

for d =−1 and d =−3, we classify cyclotomic OQ(pd )-matrices and we reduce Lehmer’s

problem to a finite search for the polynomials RA , where A is a Hermitian OQ(pd )-matrix.

Our methods can be used to classify cyclotomic matrices over OQ(pd ) for all d ∈Z.

For Hermitian matrices A over an imaginary quadratic ring OQ(pd ) the integrality of

the characteristic polynomial is automatic. The nontrivial Galois automorphism σ of

Q(
p

d ) (with d ∈Z−) overQ is simply complex conjugation. Applyingσ to the coefficients

of χA gives

σ(χA (x )) = det(x I −σ(A)) = det(x I −AT ) =χA (x ).

Hence, the coefficients of χA are rational, and since they are also algebraic integers, they

must be in Z.

3.1 Cyclotomic matrices over Z[i ] and Z[ω]

3.1.1 Graph drawing conventions

Here we outline our graph drawing conventions. We are interested in S-graphs where

S = Z[i ] and S = Z[ω] (where ω = 1/2+
p
−3/2). Edges are drawn in accordance with

Tables 3.1 and 3.2. It will become clear later why the edges in these tables are sufficient for
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3. Hermitian Matrices over Imaginary Quadratic Integer Rings

Edge-weight Visual representation

1

−1

i

−i

1+ i

−1− i

2 2

Table 3.1: Edge drawing convention for Z[i ]-graphs.

our purposes. For edges with a real edge-weight, the direction of the edge does not matter,

and so to reduce clutter we do not draw arrows for these edges. For all other edges, the

number of arrowheads reflects the norm of the edge-weight.

Edge-weight Visual representation

1

−1

ω

−ω
1+ω
−1−ω

2 2

Table 3.2: Edge drawing convention for Z[ω]-graphs.

A vertex with charge 1 is drawn as + and a vertex with charge −1 is drawn as − . For

charge 2 we draw 2 . If a vertex is uncharged, we simply draw . A hollow vertex is drawn

as

+ , − , or ,

with respect to its charge.

3.1.2 Classification of cyclotomic matrices over Z[i ]

We split up the classification of cyclotomic matrices over Z[i ] into three parts and prove

each part separately.
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3. Hermitian Matrices over Imaginary Quadratic Integer Rings

. . .

A

B

A

B

. . .

A

B

A

B

Figure 3.1: The families T2k and T (x )2k (respectively) of 2k -vertex maximal connected
cyclotomic Z[x ]-graphs, for k ¾ 3 and x ∈ {i ,ω}. (The two copies of vertices A and B
should be identified to give a toral tessellation.)

. . .

Figure 3.2: The family of 2k -vertex maximal connected cyclotomic Z[i ]-graphs C2k for
k ¾ 2.

+

+ +

+

. . .

+

+ −

−

. . .

Figure 3.3: The families of 2k -vertex maximal connected cyclotomic Z-graphs C++2k and
C+−2k for k ¾ 2.

+

+

. . .

Figure 3.4: The family of (2k +1)-vertex maximal connected cyclotomic Z[i ]-graphs C2k+1

for k ¾ 1.
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3. Hermitian Matrices over Imaginary Quadratic Integer Rings

Figure 3.5: The sporadic maximal connected cyclotomic Z[ω]-graphs S10, S12, and S14 of
orders 10, 12, and 14 respectively. The Z-graph S14 is also a Z[i ]-graph.

Figure 3.6: The sporadic maximal connected cyclotomic Z-hypercube S16.

2

S1

2

S2

+

−

S†
2 S‡

4

+ +

S5

+ −

+−

+ −

S6

+ −

S†
6

Figure 3.7: The sporadic maximal connected cyclotomic Z[ω]-graphs of orders 1, 2, 4, 5,
and 6. The Z-graphs S1 and S2 are also Z[i ]-graphs.

+

−

−

+

S4

+ −

S†
4

+

−

+

+

S7

−

+

+

−

+

−

−

+

S8

−

+

+

−

S′8 S†
8 S††

8 S‡
8

Figure 3.8: The sporadic maximal connected cyclotomic Z[i ]-graphs of orders 4, 7, and 8.
The Z-graphs S7, S8, and S′8 are also Z[ω]-graphs.
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3. Hermitian Matrices over Imaginary Quadratic Integer Rings

Theorem 3.1 (Uncharged with unit entries). Let A be a maximal indecomposable cyclo-

tomic matrix that has only zeros on the diagonal and whose nonzero entries are units from

the ring Z[i ]. Then A is equivalent to an adjacency matrix of one of the graphs T2k , T (i )2k , S†
8,

S14, and S16 in Figures 3.1, 3.5, 3.6, and 3.8.

Theorem 3.2 (Uncharged). Let A be a maximal indecomposable cyclotomic Z[i ]-matrix

that has only zeros on the diagonal, and at least one entry of A has norm greater than 1.

Then A is equivalent to an adjacency matrix of one of the graphs C2k , S2, S††
8 , and S‡

8 in

Figures 3.2 and 3.8.

Theorem 3.3 (Charged). Let A be a maximal indecomposable cyclotomicZ[i ]-matrix that

has at least one nonzero entry on the diagonal. Then A is equivalent to an adjacency matrix

of one of the graphs C++2k , C+−2k , C2k+1, S1, S4, S†
4, S7, S8, and S′8 in Figures 3.3, 3.4, and 3.8.

The theorems above give a complete classification of cyclotomic matrices over the

Gaussian integers as follows.

Theorem 3.4 (Cyclotomic matrices over the Gaussian integers). Let A be a maximal in-

decomposable cyclotomic matrix over the ring Z[i ]. Then A is equivalent to an adjacency

matrix of one of the graphs from Theorems 3.1, 3.2, or 3.3.

Moreover, every indecomposable cyclotomic Z[i ]-matrix is contained in a maximal one.

3.1.3 Classification of cyclotomic matrices over Z[ω]

As with the classification over the Gaussian integers, we split up the result to deal with

uncharged graphs and charged graphs separately.

Theorem 3.5 (Uncharged). Let A be a maximal indecomposable cyclotomic Z[ω]-matrix

that has only zeros on the diagonal. Then A is equivalent to an adjacency matrix of one of

the graphs T2k , T (ω)2k , S2, S‡
4, S10, S12, S14, and S16 in Figures 3.1, 3.5, 3.6, 3.7, and 3.8.

Theorem 3.6 (Charged). Let A be a maximal indecomposable cyclotomic Z[ω]-matrix

that has at least one nonzero entry on the diagonal. Then A is equivalent to an adjacency

matrix of one of the graphs S1, S†
2, C++2k , C+−2k , S†

4, S5, S6, S†
6, S7, S8, and S′8 in Figures 3.3, 3.7,

and 3.8.

Again, the theorems above give a complete classification of cyclotomic matrices over

the Eisenstein integers.
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3. Hermitian Matrices over Imaginary Quadratic Integer Rings

Theorem 3.7 (Cyclotomic matrices over the Eisenstein integers). Let A be a maximal

indecomposable cyclotomic matrix over the ring Z[ω]. Then A is equivalent to an ad-

jacency matrix of one of the graphs from Theorems 3.5 or 3.6.

Moreover, every indecomposable cyclotomic Z[ω]-matrix is contained in a maximal

one.

Nowhere in our proofs of the above theorems do we use McKee and Smyth’s clas-

sification of cyclotomic integer symmetric matrices. We do, however, expand on their

technique of using Gram matrices and excluded subgraphs. Part of the proof of their

classification used the classification of indecomposable line systems. Despite our not

making use of line systems, there does appear to be a relation between the uncharged

case of this classification and unitary line systems, see [21].

Following McKee and Smyth [25], we remark that all the maximal connected cyclo-

tomic graphs (with adjacency matrices A) of Theorems 3.4 and 3.7 are ‘visibly’ cyclotomic:

A2 = 4I , hence all their eigenvalues are±2. It is easy to see that ‘visibly’ cyclotomic graphs

are maximal. Each vertex of such a graph has degree equal to 4 and hence any connected

supergraph would have to have a vertex of degree greater than 4. By Corollary 1.8, such a

supergraph cannot be cyclotomic. Therefore, the classifications reduce to showing that

every cyclotomic graph is contained in one of the maximal cyclotomic graphs given in the

figures above.

In Sections 3.3, 3.4, and 3.5 we will use heavily material from Section 3.2

3.2 Excluded subgraphs and Gram matrices

In this section we set up some machinery which we will use to classify cyclotomic matrices

over quadratic integer rings. We will also refer to this section in Chapter 4.

3.2.1 Excluding subgraphs

If a graph is not cyclotomic, then by Theorem 1.6, it cannot be a subgraph of a cyclotomic

graph. We call such a graph an excluded subgraph of type I.

Certain connected cyclotomic graphs have the property that if one tries to grow them

to give larger connected cyclotomic graphs then one always stays inside one of a finite

number of fixed maximal connected cyclotomic graphs. We call a graph with this property

an excluded subgraph of type II. Given a connected cyclotomic graph G and a finite list
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L of maximal connected cyclotomic graphs containing G , we describe the process used

to determine whether or not a graph G has this property. Consider all possible ways of

attaching a vertex to G such that the resulting graph H is both connected and cyclotomic.

Check that each supergraph H is equivalent to a subgraph of one of the graphs in L (if

not then G is not an excluded subgraph of type II with respect to the list L). Repeat this

process with all supergraphs H . Since L is a finite list of graphs on a finite number of

vertices, this process terminates.

Given a list L of graphs, we define a L-free graph to be a connected cyclotomic graph

that does not contain any graph equivalent to any graph in L. We have included being

both connected and cyclotomic in this definition to ease the terminology below. We shall

have cause to use different lists at various points in our proofs.

3.2.2 Cyclotomic matrices and Gram matrices

Let S be a subset of C and suppose G is a cyclotomic S-graph with adjacency matrix A.

Then all of the eigenvalues of A are contained in the interval [−2, 2]. The matrix M = A+2I

is positive semidefinite and therefore decomposes as M = B ∗B , where the columns of B

are vectors in a unitary space Cm for some arbitrary m ∈N. Hence M is the Gram matrix

for the set of vectors forming the columns of B ; these vectors are called Gram vectors.

Each vertex v of G has a corresponding Gram vector v and the inner product of Gram

vectors u and v correspond to the adjacency of the vertices u and v . By examining the

diagonal of the Gram matrix, one can see that Gram vectors corresponding to uncharged

vertices have squared length 2. Similarly, a Gram vector corresponding to a vertex of

charge +1 (respectively −1) has squared length 3 (respectively 1).

Gram vector constraints

In the proof of the classification of cyclotomic matrices in this chapter and the next, we

exploit the dependencies of Gram vectors that satisfy certain conditions as outlined in the

next lemma.

Lemma 3.8. Let G be a cyclotomic graph. Suppose that G has uncharged vertices x1, x2,

x3, and x4 whose Gram vectors x1, x2, x3, and x4 are pairwise orthogonal and suppose that

the Gram vector v for an uncharged vertex v ∈V (G ) satisfies

|〈v, x1〉|= · · ·= |〈v, x4〉|= 1.
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Then we can write

2v= 〈v, x1〉x1+ 〈v, x2〉x2+ 〈v, x3〉x3+ 〈v, x4〉x4.

Proof. With λj s in C, we write

v=λ1x1+λ2x2+λ3x3+λ4x4+ξ, (3.1)

with ξ orthogonal to each xj . Taking inner products with equation (3.1) and each xj gives

λj =
〈v, xj 〉

2
.

Now we write

2v= 〈v, x1〉x1+ 〈v, x2〉x2+ 〈v, x3〉x3+ 〈v, x4〉x4+2ξ. (3.2)

By taking the inner product of equation (3.2) with v, we see that 〈ξ, v〉= 0 and hence, using

(3.1), we have ξ= 0.

Hollow vertices and saturated vertices

Let H be a cyclotomic S-graph contained in some cyclotomic S-graph H ′. Given H ′ and

H , we refer to the vertices V (H ′)\V (H ) as the hollow vertices of H . For a graph G , let

NG (v ) denote the set of neighbours of v in G , those vertices u ∈V (G )with nonzero weight

w (u , v ). We define the hollow-degree of a vertex v ∈V (H ) as

d H ′ (v ) =
∑

u∈NH ′ (v )

|w (u , v )|2.

This generalises the degree of a vertex v ∈V (H ), which is given by d H (v ). Let V ′4 (H ) denote

the subset of vertices of H that have hollow-degree 4, i.e., the set

{v ∈V (H ) : d H ′ (v ) = 4} .

Since H and H ′ are cyclotomic each of their vertices v has a corresponding Gram

vector v. Our notion of switching carries through to vectors naturally; we say that two

vectors u and v are switch-equivalent if u= x v for some x with |x |= 1. Accordingly, the

vertices u and v are called switch-equivalent if their corresponding Gram vectors are

switch-equivalent. Let G be a cyclotomic graph that contains H and let N ′G (v ) denote the

set of vertices u ∈NG (v ) such that u is switch-equivalent to some vertex in V (H ′). Define

VG (H ) to be the subset of V (G ) consisting of the vertices of H and their adjacent vertices

that are switch-equivalent to hollow vertices, in symbols

VG (H ) =
⋃

v∈V (H )

N ′G (v ).
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Let S ⊂C, let L be a list of graphs, and let H and H ′ be graphs such that H ′ contains

H . A vertex v ∈V (H ) is called H ′-saturated in H if, for any L-free S-graph G containing

H , each vertex in NG (v ) is switch-equivalent to some hollow vertex, i.e., NG (v ) =N ′G (v ).

Note that the definition of a vertex being H ′-saturated in H depends on the set S, the list

L, and the graphs H and H ′. Any vertex that is H ′-saturated in H is also G ′-saturated in G

where G and G ′ are supergraphs of H and H ′ respectively. We refer imprecisely to these

vertices simply as ‘saturated vertices’.

3.3 Proof of Theorem 3.1

In this section we prove Theorem 3.1 and hence we restrict our attention to the set

S = {0,±1,±i }.

3.3.1 Excluded subgraphs

XA1 XA2

Figure 3.9: some non-cyclotomic uncharged Z-graphs.

Y A1 Y A2 Y A3 Y A4 Y A5 Y A6 Y A7

Figure 3.10: some cyclotomic Z[i ]-graphs that are contained as subgraphs of fixed maxi-
mal connected cyclotomic Z[i ]-graphs.

In Table 3.3 we list each excluded subgraph of type II in Figure 3.10 along with every

maximal connected cyclotomic Z[i ]-graph that contains it. Let L1 consist of vertices of

charge ±1 and the graphs from Figure 3.10. Hence, all L1-free S-graphs are uncharged

and, since Y A4 and Y A5 are excluded, no L1-free S-graph can contain a subgraph whose

underlying graph is a triangle. We refer to this fact as the ‘exclusion of triangles’. For this

section, the notion of a saturated vertex will depend on the list L1.
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Excluded subgraph Maximal cyclotomics

Y A1 S14 and S16

Y A2 S14 and S16

Y A3 S14 and S16

Y A4 T6 and S7

Y A5 T (i )6 and S†
8

Y A6 T (i )8 and S††8

Y A7 T (i )10

Table 3.3: Excluded subgraphs from Figure 3.10 and (up to equivalence) their containing
maximal connected cyclotomic Z[i ]-graphs.

3.3.2 Inductive Lemmata

Define Pl ,r (solid vertices) and P ′l ,r (solid and hollow vertices) with the following Z-graph

. . .. . .

v−l

v ′−l

v−l+1

v ′−l+1

v−2

v ′−2

v−1

v ′−1

v0

v ′0

v1

v ′1

v2

v ′2

vr−1

v ′r−1

vr

v ′r ,

where l ¾ 0 and r ¾ 0. Here, the set of hollow vertices of Pl ,r is the set V (P ′l ,r )\V (Pl ,r ).

Clearly both Pl ,r and P ′l ,r are cyclotomic since they are contained in T2(l+r+2). Note that

Pl ,r has l + r +2 vertices and P ′l ,r has 2(l + r +1) vertices. The set V ′4 (Pl ,r ) of vertices of Pl ,r

having hollow-degree 4 is the set
¦

v j :−l < j < r
©

∪
¦

v ′0
©

.

Lemma 3.9. In Pl ,r for l ¾ 2 or r ¾ 2, we can write the Gram vector for each hollow vertex

in terms of Gram vectors of the vertices as follows:

v′−t = v−t +2
t−1
∑

j=1

(−1)t+j v−j +(−1)t
�

v0+v′0
�

, for t ∈ {1, . . . , l } .

v′t =−vt −2
t−1
∑

j=1

(−1)t+j vj − (−1)t
�

v0−v′0
�

, for t ∈ {1, . . . , r } .

Proof. We will prove the lemma for v′t where t ∈ {1, . . . , r }, the details are similar for v′−t

where t ∈ {1, . . . , l }. By Lemma 3.8 we can write

2v1 = v2+v′2+v0−v′0 (3.3)

2v′1 =−v2−v′2+v0−v′0. (3.4)
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From equation (3.3), we see that v′2 has the required form. Combining equations (3.3) and

(3.4) gives

v′1 =−v1+v0−v′0.

By Lemma 3.8, for k ∈ {1− l , . . . , r −1}, we can write

2vk = vk+1+v′k+1+vk−1−v′k−1. (3.5)

Suppose the lemma holds for all 1¶ t ¶ k so that, in particular,

v′k−1 =−vk−1−2
k−2
∑

j=1

(−1)k−1+j vj − (−1)k−1�v0−v′0
�

. (3.6)

Rearranging equation (3.5) and substituting equation (3.6) gives

v′k+1 =−vk+1−2
k
∑

j=1

(−1)k+1+j vj − (−1)k+1�v0−v′0
�

,

and hence the lemma follows by induction.

Lemma 3.10 (Saturated vertices). Let G be an L1-free S-graph containing Pl ,r with l +r >

2. Then, for each vertex v ∈V ′4 (Pl ,r ), we have NG (v ) =N ′G (v ). Hence, each vertex in V ′4 (Pl ,r )

is P ′l ,r -saturated in Pl ,r .

Proof. Fix Gram vectors for P ′l ,r . We want to show that, for all vertices v ∈V ′4 (Pl ,r ), we have

NG (v ) =N ′G (v ). Since P ′l ,r contains Pl ,r , we have NG (v )∩V (Pl ,r ) =N ′G (v )∩V (Pl ,r ) for all

vertices v ∈V (G ). Hence, we consider a vertex v ∈V (G )\V (Pl ,r ) adjacent to some vertex

w ∈V ′4 (Pl ,r ) and show that v is switch-equivalent to some hollow vertex, i.e., a vertex in

V (P ′l ,r )\V (Pl ,r ). Split into two cases.

Case 1. v0 has hollow-degree 4. Hence, both r and l are nonzero. We can assume that

r ¾ 2 (and l ¾ 1). We consider vertices v ′0, v j ∈ V ′4 (Pl ,r ) where j ¾ 0. The arguments are

similar for j ¶ 0. Suppose that v is adjacent to v j for some j ¾ 0. Working up to a switching

of v , we can assume that 〈v, vj 〉= 1.

First suppose j = 0. Lemma 3.9, gives us the following equalities:

v′−1 = v−1−v0−v′0; (3.7)

v′1 =−v1+v0−v′0. (3.8)

Since we have excluded triangles, v is orthogonal to both v−1 and v1. We have assumed

that r ¾ 2 and l ¾ 1, and since we have excluded Y A1, the vertex v must be adjacent to
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at least one of the vertices v ′0 and v2. But the exclusion of subgraphs XA1, Y A2, and Y A6

imply that v must be adjacent to v ′0. Moreover, 〈v, v′0〉=±1 for otherwise G would contain

Y A6. In either case, using equations (3.7) and (3.8), we obtain that v is switch-equivalent

to either v′1 or v′−1. Thus v0 is P ′l ,r -saturated in Pl ,r . Similarly, v ′0 is also P ′l ,r -saturated in

Pl ,r .

Second, suppose j = 1. Exclusion of triangles implies that v is orthogonal to all of v0,

v′0, and v2. By Lemma 3.8, we have

2v1 = v0−v′0+v2+v′2. (3.9)

Now, by taking the inner product of v and equation (3.9) we find that v= v′2. Hence v1 is

P ′l ,r -saturated in Pl ,r .

If r = 2 we are done, so we assume that r > 2. For our final basic case we suppose that

j = 2. Exclusion of triangles implies that v is orthogonal to both v1 and v3. If v is adjacent

to either v0 or v ′0, then since they are P ′l ,r -saturated in Pl ,r , v must be switch-equivalent

to either v′1 or v′−1, and since v2 is orthogonal to v′−1, v must be switch-equivalent to

v′1. Otherwise, if v is adjacent to neither v0 nor v ′0 then, from equation (3.8), we have

〈v′1, v〉= 0. By Lemma 3.8, we have the equality

2v2 = v1−v′1+v3+v′3. (3.10)

From taking the inner product of v with equation (3.10) it follows that v= v′3.

Thus the vertices v0, v1, and v2 are P ′l ,r -saturated in Pl ,r . If r = 3 then we are done. Oth-

erwise we assume that 2< t < r and that each vertex v j with 0¶ j < t is P ′l ,r -saturated in

Pl ,r . It suffices now to show that vt is P ′l ,r -saturated in Pl ,r . Suppose that v ∈V (G )\V (Pl ,r )

is adjacent to vt . We split into cases.

Case 1.1. v is adjacent to vt−2. By our inductive hypothesis, vt−2 is P ′l ,r -saturated in

Pl ,r and thus v is switch-equivalent to the Gram vector of some hollow vertex. Moreover,

the hollow vertex in question must be adjacent to both vt and vt−2. Hence v is switch-

equivalent to v′t−1.

Case 1.2. v is not adjacent to vt−2. Hence v is orthogonal to vt−2. The exclusion

of triangles implies that v is also orthogonal to both vt−1 and vt+1. Now, our inductive

hypothesis says that if v is adjacent to a vertex v j ∈ V ′4 (Pl ,r ) then v is switch-equivalent

to some hollow vertex. But for 0 ¶ k ¶ t − 3 there are no hollow vertices adjacent to
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both vk and vt . Therefore v must be orthogonal to all of v0, v′0, v1, . . . , vt−3. By Lemma 3.9,

the vector v′t−1 is a linear combination of the Gram vectors v0, v′0, v1, . . . , vt−1, and hence

〈v′t−1, v〉= 0. By Lemma 3.8 we can write

2vt = vt−1−v′t−1+vt+1+v′t+1. (3.11)

The inner product of v and equation (3.11) gives 〈v, v′t+1〉= 2. Hence v= v′t+1 as required.

Case 2. v0 does not have hollow-degree 4. Up to equivalence, we can assume that l = 0

and r ¾ 3. We consider vertices v j ∈V ′4 (Pl ,r )where j ¾ 1. Suppose that v is adjacent to v j .

We can assume that 〈v, vj 〉= 1. The lemma holds for j = 1 just as in Case 1.

Suppose j = 2. Since triangles are excluded, v is adjacent to neither v1 nor v3. If v is

adjacent to either v0 or v ′0 then the exclusion of XA1, Y A1, and Y A6 forces 〈v, v0〉=−1 and

〈v, v′0〉= 1. And taking the inner product of v with equation (3.8) gives v=−v′1. Otherwise,

if v is adjacent to neither v0 nor v ′0 then by equation (3.8), v is orthogonal to v′1. Hence,

taking the inner product of v with the equation

2v2 = v1−v′1+v3+v′3

gives v= v′3. Therefore, the vertex v2 is P ′l ,r -saturated in Pl ,r .

If r = 3 then we are done. Otherwise suppose r ¾ 4 and assume that 2< t < r and that

the lemma holds when v is adjacent to v j with 0¶ j < t . Letting j = t , again we split into

cases.

Case 2.1. v is adjacent to vt−2. This is the same as in Case 1.1.

Case 2.2. v is not adjacent to vt−2. The possibility of v being adjacent to v0 or v ′0 is

ruled out by the excluded subgraphs XA2 and Y A7 if t = 3 and by Y A3 if t > 3. Hence v is

orthogonal to both v0 and v′0. Now the argument is the same as in Case 1.2.

Let G be an L1-free S-graph containing Pl ,r with l + r > 2. By the symmetry of the

graph P ′l ,r , it follows from Lemma 3.10 that each vertex in V ′4 (VG (Pl ,r )) is P ′l ,r -saturated in

VG (Pl ,r ).

Lemma 3.11 (Left adjacency). Let G be an L1-free S-graph containing Pl ,r with l + r > 2,

where a vertex v ∈ V (G )\VG (Pl ,r ) is adjacent to v−l but not to vr . Then v is orthogonal to

all of the vectors vj and v′j , for j ∈ {1− l , . . . , r }. Hence G contains a subgraph equivalent to

Pl+1,r .
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Notice that here we are using the set VG (Pl ,r ) of vertices of Pl ,r and their adjacent

vertices that are switch-equivalent to hollow vertices, as defined in Section 3.2.

Proof. By Lemma 3.10, the vertices v1−l , . . . , vr−1 are P ′l ,r -saturated in Pl ,r , and so all of

their neighbours are in VG (Pl ,r ), hence v is orthogonal to their Gram vectors. And by

assumption, we have 〈v, vr 〉= 0.

First suppose that l > 0. By Lemma 3.9, for each j ∈ {1− l , . . . , r }, we can write v′j as a

linear combination of the Gram vectors v1−l , . . . , vr . Therefore v is orthogonal to each v′j

as required. We can assume that 〈v, v−l 〉= 1 and hence G contains a subgraph equivalent

to Pl+1,r .

Finally suppose that l = 0, then by assumption, r ¾ 3. We can assume that 〈v, v0〉= 1.

Now, v ′0 is a vertex of G so 〈v, v′0〉 is in S. The exclusion of Y A3 causes 〈v, v′0〉 6= 0. And the

excluded subgraphs XA1 and Y A6 force the inner product 〈v, v′0〉= 1. Therefore, we have

〈v, vj 〉= 0 for all j ∈ {1, . . . , r } and 〈v, v0−v′0〉= 0. Apply Lemma 3.9. Thence we are done.

Lemma 3.12 (Right adjacency). Let G be an L1-free S-graph containing Pl ,r with l +r > 2,

where a vertex v ∈ V (G )\VG (Pl ,r ) is adjacent to vr but not to v−l . Then v is orthogonal to

all of the vectors vj and v′j , for j ∈ {−l , . . . , r −1}. Hence G contains a subgraph equivalent

to Pl ,r+1.

Proof. Similar to the proof of Lemma 3.11.

Lemma 3.13 (Left/Right orthogonality). Let G be anL1-free S-graph containing Pl ,r with

l + r > 2, where a vertex v ∈V (G )\VG (Pl ,r ) is adjacent to v−l and vr . Then v is orthogonal

to all of the vectors vj and v′j , for j ∈ {1− l , . . . , r −1}.

Proof. By Lemma 3.10, the vertices v j are P ′l ,r -saturated in Pl ,r for all j ∈ {1− l , . . . , r −1}

and hence all of the neighbours of these vertices are in VG (Pl ,r ). Therefore v is orthogonal

to vj for all j ∈ {1− l , . . . , r −1}. If l > 0 and r > 0, then, in particular, the vertices v0 and

v ′0 are P ′l ,r -saturated in Pl ,r . And Lemma 3.9 gives that v is orthogonal to all of the vectors

v′j for j ∈ {1− l , . . . , r −1}.

Suppose l = 0. We can assume 〈v, v0〉 = 1. We must have that v is adjacent to v ′0

otherwise G would contain a subgraph equivalent to Y A3. Moreover, the exclusion of XA1

and Y A6 forces the inner product 〈v, v′0〉= 1. Thus, 〈v, v0− v′0〉= 0. Applying Lemma 3.9

gives us that v is also orthogonal to all of the vectors v′j , for j ∈ {1− l , . . . , r −1}. The

argument is similar when r = 0.
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Lemma 3.14 (Left/Right adjacency). Let G be an L1-free S-graph containing Pl ,r with

l + r > 2, where a vertex v ∈V (G )\VG (Pl ,r ) is adjacent to v−l and vr . Then G is contained

in a graph equivalent to either T2(l+r+2) or T (i )2(l+r+2).

Proof. We can assume that 〈v, v−l 〉 = 1 and 〈v, vr 〉 = s for some nonzero s ∈ S. By

Lemma 3.8, we can write

2v1−l = v−l −v′−l +v2−l +v′2−l . (3.12)

By assumption r > 2−l , and so, according to Lemma 3.13, the Gram vector v is orthogonal

to v1−l , v2−l , and v′2−l . Taking the inner product of v and equation (3.12) gives 〈v, v′−l 〉=

〈v, v−l 〉= 1. Again, by Lemma 3.8, we can write

2vr−1 = vr−2−v′r−2+vr +v′r . (3.13)

Similarly, v is orthogonal to vr−1, vr−2, and v′r−2, and, from the inner product of v and

equation (3.13), we obtain 〈v, v′r 〉=−〈v, vr 〉=−s . By Lemma 3.8, we write

2v= s vr − s v′r +v−l +v′−l .

Define the vector v′ by the equation

2v′ = s vr − s v′r −v−l −v′−l . (3.14)

Let v ′ be a hollow vertex of Pl ,r ∪ {v } with Gram vector v′. The graph P ′l ,r ∪ {v, v ′} is

equivalent to one of the Z[i ]-graphs T2k or T (i )2k (for k = l + r + 2), and hence it too is

cyclotomic.

Now we show that every vertex in V (Pl ,r )∪{v } is
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r ∪{v }.

By Lemma 3.10, this immediately reduces to showing that v−l , vr , and v are
�

P ′l ,r ∪{v, v ′}
�

-

saturated in Pl ,r ∪{v }.

First we show that v−l is
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r ∪{v }. Suppose that a vertex

x ∈V (G )\V (Pl ,r ∪{v }) is adjacent to v−l . We can assume that 〈x, v−l 〉=−1. We must have

that x is adjacent to at least one of the vertices vr and v2−l , otherwise G would contain a

subgraph equivalent to Y A3. The exclusion of XA1, Y A2, and Y A6 forces x to be adjacent

to either vr or v2−l . If x is adjacent to v2−l then, since v2−l is
�

P ′l ,r ∪{v, v ′}
�

-saturated in

Pl ,r ∪{v }, the Gram vector x must be switch-equivalent to v′1−l . Otherwise, we assume x

is adjacent to vr . If 〈x, vr 〉=−s then G would contain a subgraph equivalent XA1 and if

〈x, vr 〉=±i s then G would contain a subgraph equivalent to Y A6. We have, therefore, that
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〈x, vr 〉= s . Apply Lemma 3.13, to give that, in particular, x is orthogonal to the vectors v1−l ,

v2−l , v′2−l , vr−1, vr−2, and v′r−2. The inner product of x with equation (3.13) and the inner

product of x with equation (3.12) yield 〈x, v′r 〉 = −s and 〈x, v′−l 〉 = −1 respectively. Now,

taking the inner product of x with equation (3.14) gives x= v′. Hence, the vertex v−l is
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r∪{v }. Similar arguments show that vr is also
�

P ′l ,r ∪{v, v ′}
�

-

saturated in Pl ,r ∪{v }.

It remains to show that v is
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r ∪ {v }. Suppose that a

vertex x ∈V (G )\
�

V (Pl ,r )∪{v }
�

is adjacent to v . Since triangles have been excluded, x is

adjacent to neither v−l nor vr . In fact, we must have that x is adjacent to either v1−l or

vr−1 otherwise G would contain a subgraph equivalent to Y A3. Both v1−l and vr−1 are
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r ∪{v }, so we are done.

Since P ′l ,r ∪{v, v ′} is
�

P ′l ,r ∪{v, v ′}
�

-saturated in Pl ,r ∪{v }, each vertex of G corresponds

to a vertex of P ′l ,r ∪ {v, v ′}. This correspondence is one to one, since otherwise, if two

vertices x and y of G were both switch-equivalent to the same vertex z , then |w (x , y )|= 2,

which would contradict the fact that ℑw ⊆S. Depending on the value of s , the S-graph

P ′l ,r ∪{v, v ′} is either T2(l+r+2) or T (i )2(l+r+2). Hence G is contained in a graph equivalent to

either T2(l+r+2) or T (i )2(l+r+2).

3.3.3 L1-free S-graphs on up to 9 vertices

Consider the infinite family of n-vertex (n ¾ 3) S-cycles O (s )n illustrated below.

. . .

O (s )n

The edge of O (s )n marked with an arrow corresponds to the edge of weight s . The S-cycles

O (s )n can be defined on vertices v1, . . . , vn by setting w (v1, vn ) = s for some s ∈ S and

w (v j , v j+1) = 1 for j ∈ {1, . . . , n −1}.

Lemma 3.15. The S-graph O (s )n is cyclotomic for all n ¾ 3.

Proof (a quick proof). Since O (s )n is contained in either T2k or T (i )2k , which are both cyclo-

tomic, the lemma follows by Theorem 1.6.
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Proof (an alternative proof). Let

A (s ) =





































0 1 0 . . . 0 1

1 0 1 0

0 1 0 1
... 1

... 1
...

1 0 1 0

0 1 0 s

1 0 . . . 0 s 0





































be an adjacency matrix of O (s )n . Let v1, . . . , vn ∈Cn be constructed as follows:

vT
1 = (1, 1, 0, . . . , 0)

vT
2 = (0, 1, 1, 0, . . . , 0)

...

vT
n−1 = (0, . . . , 0, 1, 1)

vT
n = (1, 0, . . . , 0, s ).

Setting B T = (v1, · · · , vn ) gives B B ∗ = A (s )+2I . Hence A (s )+2I is positive semidefinite.

Therefore the smallest eigenvalue of A (s ) must be at least −2 for all s ∈ {±1,±i }. Moreover,

it is easy to see that −A (s ) is strongly equivalent to A (t ) for some t ∈ {±1,±i }. Hence the

eigenvalues of A (s ) must be contained inside the interval [−2, 2].

Lemma 3.16. Let G be an uncharged S-cycle. Then G is strongly equivalent to O (s )n for some

s ∈ {±1,±i } and some n ∈N.

Proof. Suppose G is an S-cycle on n vertices. Label the vertices v1, . . . , vn so that v1 is

adjacent to vn and v j is adjacent to v j+1 for all j ∈ {1, . . . , n −1}. We can inductively switch

the vertices of G so that w (v j , v j+1) = 1 for all j ∈ {1, . . . , n −1}, and w (v1, vn ) = s for some

s ∈ {±1,±i }.

Let G be an L1-free S-graph. If the maximum degree of G is 1 then G is just an edge. If

the maximum degree of G is 2, then G is either an S-cycle or an S-path. If G is an S-path

then by inductively switching the vertices, we obtain an equivalent {0, 1}-path which is

contained in the visibly cyclotomic Z-graph T2k for some k . If G is an S-cycle then, by

Lemma 3.16, G is equivalent to the S-cycle O (s )n in Lemma 3.15 for some s ∈ {±1,±i }. The

problem, therefore, reduces to assuming that the maximum degree of G is at least 3.
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Below we describe the process of computing L1-free S-graphs on a given number of

vertices.

Growing process. Start with a single vertex H . Consider all possible ways of adding

a vertex to H such that the resulting graph H ′ is L1-free. Repeat this process with all

supergraphs H ′ until all L1-free S-graphs on the desired number of vertices have been

obtained.

We have exhaustively computed (up to equivalence) all L1-free S-graphs on up to 9

vertices having maximal degree at least 3. Out of these graphs, the ones on 9 vertices con-

tained a subgraph equivalent to either P0,3 or P1,2. It should be noted that this computation

can be done by hand. One considers all L1-free S-supergraphs of the complete bipartite

graph K1,3 that do not contain a graph equivalent to Pl ,r , with l + r > 2, to find that there

do not exist any such graphs on more than 8 vertices. For the sake of succinctness we

have omitted the details.

Now, from the above computation and by iteratively applying Lemmata 3.11, 3.12, and

3.14, we have the following lemma.

Lemma 3.17. Let G be an L1-free S-graph. Then G is contained in either T2k or T (i )2k for

k ¾ 3.

Together with the computation of the maximal connected cyclotomic Z[i ]-graphs

containing the excluded subgraphs of type II from the list L1 (see Figure 3.10), we have

proved Theorem 3.1.

3.4 Proof of Theorem 3.2

In this section we prove Theorem 3.2. Let G be an uncharged cyclotomic Z[i ]-graph. By

Corollary 1.8, we know that G cannot be equivalent to a graph containing any weight-α

edge where the norm of α is greater than 4. Therefore G can have edge-weights coming

only from the subset

{0,±1,±i ,±1± i ,±2,±2i } .

3.4.1 Excluded subgraphs

In Table 3.4 we list each excluded subgraph of type II in Figure 3.12 along with every

maximal connected cyclotomicZ[i ]-graph that contains it. Let L2 consist of all cyclotomic
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X B1 X B2 X B3 X B4 X B5

X B6 X B7 X B8 X B9 X B10

Figure 3.11: some non-cyclotomic uncharged Z[i ]-graphs.

Y B1 Y B2 Y B3

2

Y B4

Figure 3.12: some cyclotomic Z[i ]-graphs that are contained as subgraphs of fixed maxi-
mal connected cyclotomic Z[i ]-graphs.

Excluded subgraph Maximal cyclotomics

Y B1 S‡
8

Y B2 S‡
8

Y B3 S††
8

Y B4 S2

Table 3.4: Excluded subgraphs from Figure 3.12 and (up to equivalence) their containing
maximal connected cyclotomic Z[i ]-graphs.

charged vertices and the graphs in Figures 3.10 and 3.12. Hence, all L2-free Z[i ]-graphs

are uncharged and, since we have excluded X B1, X B2, X B3, X B4, X B5 together with Y A4

and Y A5, we have that no L2-free Z[i ]-graph can contain a subgraph whose underlying

subgraph is a triangle. As in Section 3.3, we may refer to this fact as the ‘exclusion of

triangles’. For this section, the notion of a saturated vertex will depend on the list L2.
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3.4.2 Inductive lemmata

Define P2r+1 (solid vertices) and P ′2r+1 (solid vertices and hollow vertices) with the follow-

ing Z[i ]-graph

. . .v0

v1

v ′1

v2

v ′2

vr−1

v ′r−1

vr

v ′r ,

where r ¾ 1. The set of hollow vertices of P2r+1 is the set V (P ′2r+1)\V (P2r+1). Clearly both

P2r+1 and P ′2r+1 are cyclotomic since they are contained in C2(r+1). Note that P2r+1 has

r +1 vertices and P ′2r+1 has 2r +1 vertices. Having chosen Gram vectors v0, . . . , vr , by an

argument similar to the proof of Lemma 3.8, we can write

v′1 =−v1+(1+ i )v0 (3.15)

and

v′2 =−v2+2v1− (1+ i )v0. (3.16)

Lemma 3.18. In P2r+1 for r ¾ 2, we can write the Gram vector for each hollow vertex in

terms of Gram vectors of the vertices as follows:

v′t =−vt −2
t−1
∑

j=1

(−1)t+j vj − (−1)t (1+ i )v0, for t ∈ {1, . . . , r } .

Proof. If r = 2, then, since we have equation (3.15) and equation (3.16) there is nothing to

prove. Therefore we assume that r > 2. By Lemma 3.8, for k ∈ {2, . . . , r −1}, we can write

2vk = vk+1+v′k+1+vk−1−v′k−1. (3.17)

Suppose the vectors v′t have the required form for all t ¶ k so that, in particular,

v′k−1 =−vk−1−2
k−2
∑

j=1

(−1)k−1+j vj − (−1)k−1(1+ i )v0. (3.18)

Rearranging equation (3.17) and substituting equation (3.18) gives

v′k+1 =−vk+1−2
k
∑

j=1

(−1)k+1+j vj − (−1)k+1(1+ i )v0.

By equation (3.15) and equation (3.16) the vectors v′1 and v′2 have the required form.

Hence, by induction, so too do the vectors vt for all t ∈ {1, . . . , r }.
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Lemma 3.19 (Saturated vertices). Let G be an L2-free Z[i ]-graph containing P2r+1 with

r ¾ 3. Then, for each vertex v ∈ V ′4 (P2r+1), we have NG (v ) =N ′G (v ). Hence, each vertex in

V ′4 (P2r+1) is P ′2r+1-saturated in P2r+1.

Proof. Fix Gram vectors for P ′2r+1. We want to show that, for all vertices v ∈ V ′4 (P2r+1),

we have NG (v ) =N ′G (v ). Since P ′2r+1 contains P2r+1, we have NG (v )∩V (P2r+1) =N ′G (v )∩

V (P2r+1) for all vertices v ∈V (G ). Hence, we consider a vertex v ∈V (G )\V (P2r+1). Suppose

that v is adjacent to the vertex v j ∈ V ′4 (P2r+1) for some j ∈ {0, . . . , r −1}. Without loss of

generality, either 〈v, vj 〉= 1 or 〈v, vj 〉= 1+ i .

Suppose first that j = 0. The exclusion of triangles implies that 〈v, v1〉 = 0. Since

X B9 and Y B1 are excluded, v must be adjacent to v2, moreover, the excluded subgraphs

X B6 and Y B3 preclude the possibility of 〈v, v0〉= 1 while 〈v, v2〉=±1. And since r ¾ 3, if

both 〈v, v0〉= 1 while 〈v, v2〉=±1± i then G would contain a subgraph equivalent to Y B1.

Therefore we must have 〈v, v0〉= 1+i . By taking the inner product of v and equation (3.15),

we obtain that v= v′1.

Second, suppose that j = 1. Since we have excluded triangles, v must be orthogonal to

both v0 and v2 and we must have 〈v, v1〉= 1, otherwise the degree of v1 is greater than 4.

Using equation (3.16), we find that 〈v−v′2, v−v′2〉= 0. Hence v= v′2.

We have that the vertices v0 and v1 are P ′2r+1-saturated in P2r+1. We assume that, for

1< t < r , each vertex v j ∈ V ′4 (P2r+1) with 0¶ j < t is P ′2r+1-saturated in P2r+1. It suffices

now to show that vt is P ′2r+1-saturated in P2r+1. Suppose a vertex v ∈ V (G )\V (P2r+1) is

adjacent to vt . We split into cases.

Case 1. v is adjacent to vt−2. By our inductive hypothesis, vt−2 is P ′2r+1-saturated in

P2r+1 and thus v is switch-equivalent to the Gram vector of some hollow vertex. Moreover,

the hollow vertex in question must be adjacent to both vt and vt−2. Hence v is switch-

equivalent to v′t−1.

Case 2. v is not adjacent to vt−2. Then 〈v, vt−2〉= 0. Since triangles are excluded, v is

orthogonal to vt−1 and vt+1. And we must have 〈v, vt 〉= 1 since we have excluded X B7

and X B8. Now, our inductive hypothesis says that if v is adjacent to a vertex vk ∈V ′4 (P2r+1)

where 0 ¶ k < t then v is switch-equivalent to the Gram vector of some hollow vertex.

But for 0¶ k ¶ t −3 there are no hollow vertices adjacent to both vk and vt . Therefore

v must be orthogonal to all of v0, v1, . . . , vt−3. By Lemma 3.9, the vector v′t−1 is a linear

combination of the Gram vectors v0, v1, . . . , vt−1, and hence 〈v′t−1, v〉= 0. By Lemma 3.8

60



3. Hermitian Matrices over Imaginary Quadratic Integer Rings

we can write

2vt = vt−1−v′t−1+vt+1+v′t+1. (3.19)

From the inner product of v and equation (3.19), it follows that v= v′t+1 as required.

Let G be an L2-freeZ[i ]-graph containing P2r+1 with r ¾ 3. By the symmetry of P ′2r+1, it

follows from Lemma 3.19 that each vertex in V ′4 (VG (P2r+1)) is P ′2r+1-saturated in VG (P2r+1).

Lemma 3.20. Let G be an L2-free Z[i ]-graph containing P2r+1 with r ¾ 3, where vr is

adjacent to a vertex v ∈V (G )\VG (P2r+1). Then either G is contained in C2(r+1) or G contains

P2(r+1)+1.

Proof. Without loss of generality, we have either 〈v, vr 〉= 1 or 〈v, vr 〉= 1+i . By Lemma 3.18,

for j ∈ {1, . . . , r −1}, we can write v′j as a linear combination of the Gram vectors v0, . . . , vj .

According to Lemma 3.19, the vertices v0, . . . , vr−1 are P ′2r+1-saturated in P2r+1. Since

v 6∈ VG (P2r+1), we have 〈v, vj 〉 = 0 for j ∈ {0, . . . , r −1}. Therefore, v is orthogonal to v′j

for all j ∈ {1, . . . , r −1}. Hence, in particular, v is orthogonal to vr−1, vr−2, and v′r−2. By

Lemma 3.8 we have

2vr−1 = vr−2−v′r−2+vr +v′r . (3.20)

Take the inner product of v and equation (3.20) to give 〈v, vr 〉=−〈v, v′r 〉.

Case 1. 〈v, vr 〉= 1+ i . By above, we have 〈v, v′r 〉=−1− i . Hence, the graph P ′2r+1 ∪{v } is

equal to the visibly cyclotomic Z[i ]-graph C2(r+1), and hence it too is cyclotomic.

It remains to show that every vertex of V (P2r+1) ∪ {v } is
�

P ′2r+1 ∪{v }
�

-saturated in

P2r+1 ∪{v }. By Lemma 3.19, this immediately reduces to showing that both v and vr are
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪{v }.

First we treat v . Suppose a vertex x ∈ V (G )\V (P2r+1 ∪ {v }) is adjacent to v . The

exclusion of triangles and the excluded subgraphs X B9 and Y B1 force x to be adjacent

to the vertex vr−1 which is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪ {v }. Therefore x is switch-

equivalent to v′r .

It remains to show that vr is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪ {v }. Suppose that

x ∈V (G )\V (P2r+1∪{v }) is adjacent to vr . Since all possible uncharged triangles have been

excluded, we have that x is orthogonal to both vr−1 and v. And the excluded subgraphs

X B7 and X B10 force x to be adjacent to the vertex vr−2 which is
�

P ′2r+1 ∪{v }
�

-saturated in

P2r+1 ∪{v }. Therefore x is switch-equivalent to v′r−1. We have shown that both v and vr

are
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪{v }.
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Since each vertex of P ′2r+1 ∪ {v } is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪ {v }, the vertices

of G correspond to vertices of P ′2r+1 ∪ {v }. This correspondence is one to one, since

otherwise, if two vertices x and y of G were both switch-equivalent to the same vertex

z , then |〈x, y〉|= 2, and Y B4 has been excluded. Since P ′2r+1 ∪{v } is equal to C2(r+1), G is

equivalent to a subgraph of C2(r+1).

Case 2. 〈v, vr 〉= 1. By above, we have 〈v, v′r 〉=−1. We have established a subgraph of G

equivalent to P2(r+1)+1.

3.4.3 L2-free Z[i ]-graphs on up to 7 vertices

Let G be an L2-free Z[i ]-graph. If G does not contain an edge with a weight of norm at

least 2 then G has been classified in Theorem 3.1. Since G is cyclotomic, it cannot be

equivalent to a graph containing an edge of norm greater than 4. We have excluded Y B4

and no element of Z[i ] has norm 3, so we can assume that G contains an edge of norm

2. The growing process is similar to that described in Section 3.3.3, but in this case we

can start the process with a weight-(1+ i ) edge. From this process, we have exhaustively

computed (up to equivalence) all L2-free Z[i ]-graphs on up to 7 vertices. Out of these

graphs, each one on 7 vertices contains a subgraph equivalent to P7 (4 vertices). Again, we

note that this computation can be done by hand.

From the above computation and by iteratively applying Lemma 3.20 we have the

following lemma.

Lemma 3.21. Let G be an L2-free Z[i ]-graph having at least one edge-weight of norm 2.

Then G is equivalent to a subgraph of C2k for some k ¾ 2.

Together with the computation of the maximal connected cyclotomic Z[i ]-graphs

containing the excluded subgraphs of type II from the list L2 (see Figure 3.12), we have

proved Theorem 3.2.

3.5 Proof of Theorem 3.3

In this section we prove Theorem 3.3. Let G be a cyclotomic Z[i ]-graph. As in Section 3.4,

G can have edge-weights coming only from the set

{0,±1,±i ,±1± i ,±2,±2i } .
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Moreover, since we are actually studying Hermitian matrices, we allow G to contain only

rational integer charges, and by Corollary 1.8, this immediately restricts the charges to

coming from the set {0,±1,±2}.

3.5.1 Excluded subgraphs

+

+

XC1

+

XC2

+

XC3

+ +

XC4

+ +

XC5

+

+ +

XC6

+

+ +

XC7

+

+ +

XC8

+

XC9

+ +

XC10

+

XC11

+

XC12

+

XC13

+ +

XC14

− +

XC15

+

XC16

Figure 3.13: some non-cyclotomic charged Z[i ]-graphs.

+

−

Y C1

+

−

Y C2

+

Y C3

+

+

Y C4

+

−

Y C5

+

Y C6

+

Y C7

2

Y C8

Figure 3.14: some charged cyclotomic Z[i ]-graphs that are contained as subgraphs of
fixed maximal connected cyclotomic Z[i ]-graphs.

Excluded subgraph Maximal cyclotomics

Y C1 C+−4 , S4, S†
4, S7, S8, and S′8

Y C2 S4

Y C3 C3

Y C4 C++6 and S7

Y C5 C+−6 and S′8
Y C6 S7 and S′8
Y C7 S†

4

Y C8 S1

Table 3.5: Excluded subgraphs from Figure 3.14 and (up to equivalence) their containing
maximal connected cyclotomic Z[i ]-graphs.
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In Table 3.5 we list each excluded subgraph of type II in Figure 3.14 along with every

maximal connected cyclotomic Z[i ]-graph that contains it. Let L3 consist of the excluded

subgraphs of type II in Figures 3.10, 3.12, and 3.14. Note that, up to equivalence, there is

exactly one charged Z[i ]-triangle that can be a subgraph of an L3-free Z[i ]-graph, namely

the triangle

+ + .

In this section, the notion of a saturated vertex will depend on the list L3.

3.5.2 Inductive lemmata

Define P2r and P ′2r with the following Z-graph

−

−

. . .

v1

v ′1

v2

v ′2

v3

v ′3

vr−1

v ′r−1

vr

v ′r ,

where r ¾ 1. Here, the set of hollow vertices of P2r is the set V (P ′2r )\V (P2r ). Clearly both

P2r and P ′2r are cyclotomic since they are contained in a Z-graph equivalent to C++2(r+1).

Having chosen Gram vectors v1, . . . vr , by an argument similar to Lemma 3.8, we can write

v′1 =−v1; (3.21)

v′2 =−v2+2v1; (3.22)

and

v′3 =−v3+2v2−2v1. (3.23)

Lemma 3.22. In P2r for r ¾ 3, we can write the Gram vector for each hollow vertex in terms

of Gram vectors of the vertices as follows:

v′t =−vt −2
t−1
∑

j=1

(−1)t+j vj , for t ∈ {1, . . . , r } .

Proof. If r = 3, then, since we have equation (3.21), equation (3.22), and equation (3.23)

there is nothing to prove. Therefore we assume that r > 3. Let k ∈ {3, . . . , r −1}. By
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Lemma 3.8, we can write

2vk = vk+1+v′k+1+vk−1−v′k−1. (3.24)

Suppose the lemma holds for all t ¶ k so that, in particular,

v′k−1 =−vk−1−2
k−2
∑

j=1

(−1)k−1+j vj . (3.25)

Rearranging equation (3.24) and substituting equation (3.25) gives

v′k+1 =−vk+1−2
k
∑

j=1

(−1)k+1+j vj .

By equation (3.21) and equation (3.22) the lemma holds for v′1 and v′2, hence the lemma

holds for all t ∈ {1, . . . , r } by induction.

Lemma 3.23 (Saturated vertices). Let G be an L3-free Z[i ]-graph containing P2r with

r ¾ 3. Then, for each vertex v ∈ V ′4 (P2r ), we have NG (v ) = N ′G (v ). Hence, each vertex in

V ′4 (P2r ) is P ′2r -saturated in P2r .

Proof. Fix Gram vectors for P ′2r . We want to show that, for all vertices v ∈ V ′4 (P2r ), we

have NG (v ) =N ′G (v ). Since P ′2r contains P2r , we have NG (v )∩V (P2r ) =N ′G (v )∩V (P2r ) for

all vertices v ∈ V (G ). Hence, we consider a vertex v ∈ V (G )\V (P2r ). Suppose that v is

adjacent to the vertex v j ∈ V ′4 (P2r ) for some j ∈ {1, . . . , r −1}. Without loss of generality,

either 〈v, vj 〉= 1 or 〈v, vj 〉= 1+ i .

Suppose first that j = 1. If v is charged, then the excluded subgraphs Y C2 and XC1

rule out the possibility of 〈v, v1〉 = 1+ i , and so we assume 〈v, v1〉 = 1. Moreover, Y C1

forces v to have charge−1. Therefore the inner product 〈v+v′1, v+v′1〉 is zero and hence

v=−v′1. On the other hand, if v is uncharged, then the excluded subgraph Y C3 rules out

the possibility of 〈v, v1〉= 1+ i , and so we assume 〈v, v1〉= 1. The exclusion of the triangles

containing exactly one charged vertex XC2, XC3, and Y C6 forces v to be orthogonal to v2

and by taking the inner product of v and equation (3.22) we find that v= v′2. Hence, the

vertex v1 is P ′2r -saturated in P2r .

Now suppose that j = 2. If v is adjacent to v1, then, since v1 is P ′2r -saturated in P2r

and v ′1 is adjacent to v2, we must have v switch-equivalent to v′1. Otherwise, if v is not

adjacent to v1, the excluded subgraphs Y C3, Y C4, and Y C5 imply that v is uncharged.

Moreover, X B1, X B2, X B3, and XC12 rule out the possibility of 〈v, v2〉= 1+ i , so we assume
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〈v, v2〉= 1. The exclusion of uncharged triangles Y A4 and Y A5 forces 〈v, v3〉= 0 and using

equation (3.23), we deduce that 〈v−v′3, v−v′3〉= 0. Hence v= v′3.

Thus v1 and v2 are P ′2r -saturated in P2r . If r = 3, we are done, hence let r > 3. We

assume that, for 2< t < r , each vertex v j ∈V ′4 (P2r )with 1¶ j < t is P ′2r -saturated in P2r . It

suffices now to show that vt is P ′2r -saturated in P2r . Suppose a vertex v ∈V (G )\V (P2r ) is

adjacent to vt . We split into cases.

Case 1. v is adjacent to vt−2. By our inductive hypothesis, vt−2 is P ′2r -saturated in P2r

and thus v is switch-equivalent to the Gram vector of some hollow vertex. Moreover,

the hollow vertex in question must be adjacent to both vt and vt−2. Hence v is switch-

equivalent to v′t−1.

Case 2. v is not adjacent to vt−2. Since we have excluded triangles having at most one

charge, v is adjacent to neither vt−1 nor vt+1. If t = 3 then the excluded subgraphs XC14,

XC15, and Y C3 preclude the possibility of v having a charge and the exclusion of XC16

means that we can assume 〈v, vt 〉= 1. Otherwise, if t > 3 then the excluded subgraphs

X B7, XC13, and Y C3 enable us to assume that v is uncharged and 〈v, vt 〉= 1. Hence, since

t ¾ 3, we can assume that v is uncharged and 〈v, vt 〉= 1. If t = 3 then, by Lemma 3.22,

since v is orthogonal to both v1 = vt−2 and v2 = vt−1 the Gram vector v is also orthogonal

to v′t−1. Suppose that t > 3. If v were adjacent to v j for some j ∈ {1, . . . , t −3} then, by

our inductive hypothesis, v would be equivalent to the vector corresponding to some

hollow vertex adjacent to v j . But, since no hollow vertices are simultaneously adjacent to

both vt and v j with j ∈ {1, . . . , t −3}, the Gram vector v must be orthogonal to vj for all

j ∈ {1, . . . , t −3}. Therefore, by Lemma 3.22, we have 〈v, v′t−1〉= 0. Appealing to Lemma 3.8,

write

2vt = vt−1−v′t−1+vt+1+v′t+1. (3.26)

By taking the inner product of v and equation (3.26) we find that v= v′t+1. As required.

Let G be an L3-free Z[i ]-graph containing P2r with r ¾ 3. By the symmetry of P ′2r , it

follows from Lemma 3.23 that each vertex in V ′4 (VG (P2r )) is P ′2r -saturated in VG (P2r ).

Lemma 3.24. Let G be an L3-free Z[i ]-graph containing P2r with r ¾ 3, where vr is ad-

jacent to a vertex v ∈ V (G )\VG (P2r ). Then v is orthogonal to the vectors vj , and v′j , for

j ∈ {1, . . . , r −1}.
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Proof. By Lemma 3.23, the vertices v1, . . . , vr−1 are P ′2r -saturated in P2r . Since v 6∈ VG (P2r ),

the Gram vector v is orthogonal to vj for all j ∈ {0, . . . , r −1}. For each j ∈ {1, . . . , r −1},

we can write v′j as a linear combination of the Gram vectors v1, . . . , vj as in Lemma 3.22.

Hence we have the result.

Lemma 3.25. Let G be an L3-freeZ[i ]-graph containing P2r with r ¾ 3 where vr is adjacent

to an uncharged vertex v ∈V (G )\VG (P2r ). Then either G is contained in C2r+1 or G contains

P2(r+1).

Proof. Similar to the proof of Lemma 3.20.

Lemma 3.26. Let G be an L3-freeZ[i ]-graph containing P2r with r ¾ 3 where vr is adjacent

to a charged vertex v ∈V (G )\VG (P2r ). Then G is contained in either C++2(r+1) or C+−2(r+1).

Proof. Since we have excluded Y C3, we can assume that 〈v, vr 〉 = 1. By Lemma 3.8 we

have

2vr−1 = vr−2−v′r−2+vr +v′r . (3.27)

By Lemma 3.24, v is orthogonal to vr−1, vr−2, and v′r−2. Take the inner product of v and

equation (3.27) to give 〈v, vr 〉=−〈v, v′r 〉. We split into cases when v has charge 1 and −1

respectively.

Case 1. Suppose that v has charge 1. We can write v in terms of vr , v′r , and some vector

ξ.

2v= vr −v′r +ξ, (3.28)

where ξ has length 2
p

2 and is orthogonal to both vr and v′r . Let v ′ be a hollow vertex

of P2r ∪ {v } with Gram vector v′ = v−ξ. The Z-graph P ′2r ∪ {v, v ′} is equal to the visibly

cyclotomic Z-graph C+−2(r+1) and is therefore also cyclotomic. It remains to check that both

v and vr are
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪{v }. First we treat the vertex v . Suppose that

a vertex x ∈V (G )\V (P2r ∪{v }) is adjacent to v .

Suppose that x is charged. The excluded subgraphs XC1 and Y C2 rule out the possi-

bility of 〈x, v〉= 1+ i , and so we assume 〈x, v〉= 1. Moreover, Y C1 forces x to have charge 1

and XC10 forces x to be adjacent to vr . The exclusion of XC4, XC5, and Y C3 means that

we must have 〈x, vr 〉=−1. Now, if x were adjacent to v j for some j ∈ {1, . . . , r −1} then,

since such a vertex v j is
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪{v }, x would be switch-equivalent

to some hollow vertex adjacent to v j . Such hollow vertices are uncharged, hence, since
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x is charged, its Gram vector x must be orthogonal to vj for all j ∈ {1, . . . , r −1}. By

Lemma 3.23, x is also orthogonal to v′j for all j ∈ {1, . . . , r −1}. In particular, x is orthogonal

to vr−1, vr−2, and v′r−2. From taking the inner product of x and equation (3.27) we have

〈x, v′r 〉=−〈x, vr 〉. Hence 〈x, v′r 〉= 1, and the inner product of x and equation (3.28) yields

〈x,ξ〉= 4. Therefore we have x=−v′.

On the other hand, if x is uncharged, then the excluded subgraph Y C3 rules out

the possibility of 〈x, v〉 = 1+ i , and so we assume 〈x, v〉 = 1. And the exclusion of the

triangles having exactly one charge forces x to be orthogonal to vr . Since XC11 has

been excluded, x must be adjacent to the vertex vr−1 which is
�

P ′2r ∪{v, v ′}
�

-saturated in

P2r ∪{v }, and hence x must be switch-equivalent to v′r . Therefore, we have proved that

v is
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪ {v } and it remains to show that vr is
�

P ′2r ∪{v, v ′}
�

-

saturated in P2r ∪{v }.

Suppose that x is adjacent to vr . Since we have excluded Y C3, Y C4, Y C5, XC12, XC13,

XC15, and XC16, the vertex x must be adjacent to either of the vertices vr−1 or v . Both of

these vertices are
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪{v } and hence x is switch-equivalent to

some hollow vertex as required.

We have, then, that each vertex of P2r ∪ {v } is
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪ {v }.

Since P ′2r ∪{v, v ′} is
�

P ′2r ∪{v, v ′}
�

-saturated in P2r ∪{v }, the vertices of G correspond to

vertices of P ′2r ∪{v, v ′}. Two uncharged vertices cannot be switch-equivalent to the same

vertex since Y B4 has been excluded as a subgraph. Suppose two charged vertices x and

y are switch-equivalent to the same hollow vertex. They must have the same charge. If

x and y have charge 1 then |〈x, y〉|= 3 which violates Corollary 1.8. The vertices v1 and

v ′1 have charge −1 and both are switch-equivalent to the same vertex. But since we have

excluded XC6, XC7, and XC8, no three vertices of charge −1 can be switch-equivalent to

the same vertex. The graph P ′2r ∪{v, v ′} is C+−2(r+1) and hence, G is equivalent to a subgraph

of C+−2(r+1).

Case 2. Suppose that v has charge−1. Argument is similar to Case 1, but this time ξ= 0.

We deduce that G is contained in a Z[i ]-graph equivalent to C++2(r+1).

3.5.3 Charged L3-free Z[i ]-graphs on up to 5 vertices

We have exhaustively computed all charged L3-free Z[i ]-graphs on up to 5 vertices. Out of

these graphs, the ones on 5 vertices contain a subgraph equivalent to P6 (3 vertices). The

growing process is similar to that described in Section 3.3.3, but in this case we can start
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the process with a vertex having charge −1. As before, this computation can be carried

out by hand.

By the above computation and by iteratively applying Lemma 3.25 and Lemma 3.26

we have the following lemma.

Lemma 3.27. Let G be a charged L3-free Z[i ]-graph. Then G is equivalent to a subgraph

of one of the maximal cyclotomic Z[i ]-graphs C++2k , C+−2k , or C2k−1 for some k ¾ 2.

Together with the computation of the maximal connected cyclotomic Z[i ]-graphs

containing the graphs from the list L3 (see Figure 3.14), we have proved Theorem 3.3.

3.6 The Eisenstein integers

The classification of cyclotomic matrices over Z[ω] is very similar to the classification

over Z[i ]. In this section we outline the differences that need to be considered for this

classification.

3.6.1 Uncharged case

Y D1 Y D2 Y D3 Y D4 Y D5 Y D6 Y D7 Y D8

Figure 3.15: some cyclotomic Z[ω]-graphs that are contained as subgraphs of fixed maxi-
mal connected cyclotomic Z[ω]-graphs.

Excluded subgraph Maximal cyclotomics

Y D1 S12, S14, and S16

Y D2 S12, S14, and S16

Y D3 S12, S14, and S16

Y D4 S5, T6, and S7

Y D5 T (ω)6

Y D6 T (ω)8

Y D7 T (ω)8 , S10, and S12

Y D8 T (ω)10

Table 3.6: Excluded subgraphs from Figure 3.15 and (up to equivalence) their containing
maximal connected cyclotomic Z[ω]-graphs.
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The uncharged case follows Section 3.3. In Table 3.6 we list each excluded subgraph

of type II in Figure 3.15 along with every maximal connected cyclotomic Z[ω]-graph

that contains it. Form a list of excluded subgraph consisting of charged vertices and the

excluded subgraphs from Figures 3.9 and 3.15. Note that in Figure 3.15, the Z[ω]-graph

Y D4 is not equivalent to Y D5 whereas over Z[i ] these two graphs are equivalent. We

effectively have the same list of excluded subgraphs as we had working over Z[i ]. The

key requisites of the lemmata of Section 3.3 are the set of excluded subgraphs and that

the action of the group of units of Z[ω] acts transitively on the set S\{0}. Let S be the

set containing 0 and the units of Z[ω], namely, S = {0,±1,±ω,±ω}. Then by following

Section 3.3 with this new set S and our list of excluded subgraphs, we obtain a proof of the

classification of cyclotomic S-graphs.

The only elements of Z[ω] of norm greater than 1 and at most 4 are the associates

of 1+ω or 2. A simple computation confirms that any cyclotomic graph containing a

subgraph equivalent to a weight-(1+ω) edge or a weight-2 edge must itself be equivalent

to a subgraph of S‡
4 or S2 respectively. Corollary 1.8 takes care of the remainder of the

elements of Z[ω] and we have completed the proof of Theorem 3.5.

3.6.2 Charged case

In Table 3.7 we list each excluded subgraph of type II in Figure 3.17 along with every

maximal connected cyclotomic Z[ω]-graph that contains it. Form a list of excluded

subgraphs consisting of the excluded subgraphs from Figures 3.9, 3.15, 3.16, and 3.17.

Again, there exist charged excluded subgraphs that are not equivalent over Z[ω] but are

equivalent over Z[i ]. As in the uncharged case, we have the requisites for the lemmata of

Section 3.5; using excluded subgraphs and Corollary 1.8 we can rule out matrices that have

an entry of norm greater than 1. We have effectively the same list of excluded subgraphs

and, in fact, the argument is simpler in this case, since there are no elements in Z[ω]

having norm 2, whereas over Z[i ]we had to consider edge-weights of norm 2.
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Figure 3.16: some non-cyclotomic charged Z[ω]-graphs.

Y E1
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−

Y E6

+

Y E7

+

Y E8

2

Y E9

Figure 3.17: some charged cyclotomic Z[ω]-graphs that are contained as subgraphs of
fixed maximal connected cyclotomic Z[ω]-graphs.

Excluded subgraph Maximal cyclotomics

Y E1 S2

Y E2 S‡
4

Y E3 C+−4 , S6, S†
6, S7, S8, and S′8

Y E4 S†
2

Y E5 S5, C++6 , and S7

Y E6 C+−6 and S′8
Y E7 S†

6, S7, and S′8
Y E8 S5

Y E9 S1

Table 3.7: Excluded subgraphs from Figure 3.17 and (up to equivalence) their containing
maximal connected cyclotomic Z[ω]-graphs.

3.7 Lehmer’s problem

The motivation for this section is Lehmer’s problem. We would like to find a bound

ε > 0 such that, if M (RA ) > 1 then M (RA ) ¾ 1+ ε where A is a Hermitian matrix over

the Eisenstein integers or the Gaussian integers. Our main result is the reduction of this

problem to a finite search.
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3.7.1 Preliminaries

We use ∗ to represent a vertex having any charge; all vertices are equivalent to ∗ . The

edge labelling ∗ represents an edge having any weight; all edges are equivalent to the

edge ∗ . We record for later use the following obvious facts that follow immediately

from the classification of cyclotomic matrices over Z[i ] and Z[ω].

Corollary 3.28. Any connected cyclotomic Z[i ]-graph that is equivalent to a subgraph of

T2k , T (i )2k , C2k , C2k+1, C++2k , or C+−2k is strongly equivalent to a subgraph of T2k , T (i )2k , C2k ,

±C2k+1, ±C++2k , or C+−2k .

Corollary 3.29. Any connected cyclotomic Z[ω]-graph that is equivalent to a subgraph of

T2k , T (ω)2k , C++2k , or C+−2k is strongly equivalent to a subgraph of T2k , T (ω)2k , ±C++2k , or C+−2k .

There are two types of maximal cyclotomic graphs.

The sporadics: S1, S2, S†
2, S4, S†

4, S‡
4, S5, S6, S†

6, S7, S8, S′8, S†
8, S††

8 , S‡
8, S10, S12, S14, and

S16; see Figures 3.5, 3.6, 3.7, and 3.8.

The non-sporadics: T2k (k ¾ 3), T (i )2k (k ¾ 3), T (ω)2k (k ¾ 3), C2k (k ¾ 2), C++2k (k ¾ 2),

C+−2k (k ¾ 2), and C2k+1(k ¾ 1); see Figures 3.1, 3.2, 3.3, and 3.4.

A graph is called minimal non-cyclotomic if it has at least one eigenvalue lying out-

side of the interval [−2,2] and is minimal in that respect, i.e., none of its subgraphs

is non-cyclotomic. A graph is called non-supersporadic if all of its proper connected

subgraphs are equivalent to subgraphs of non-sporadics and supersporadic otherwise.

∗

+ ∗

∗

X1

∗

∗

∗

∗

∗ ∗

∗

X2

∗ ∗

+

+

X3

+

−

X4

+

∗

X5

∗

Figure 3.18: Some Z[i ]-graphs that are not subgraphs of any non-supersporadic graph
having at least 5 vertices.

Given a graph G , a path (respectively cycle) P is called chordless if the subgraph of G

induced on the vertices of P is a path (respectively cycle). Define the path rank of G to be

the maximal number of vertices in a chordless path or cycle of G . Following McKee and

Smyth [26], we say that G has a profile if its vertices can be partitioned into a sequence of

k ¾ 3 subsets C0, . . . ,Ck−1 such that either
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• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some

j ∈ {1, . . . , k −1} or v and w are both charged vertices in the same subset

or

• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some

j ∈Z/kZ or v and w are both charged vertices in the same subset.

In the latter case, we say that the profile is cycling. Given a graph G with a profile C =

(C0, . . . ,Ck−1)we define the profile rank of G to be k , the number of subsets in the profile

C.

Later we will also need the following corollaries.

Corollary 3.30. Let G be a connected charged non-supersporadic graph. Then the longest

chordless cycle has length 4.

Proof. Suppose G contains a chordless cycle C on at least 5 vertices.

Case 1. C is uncharged. Since G is charged, a charged vertex must be joined to the

cycle via some path. Let v be the intersection of the vertices of this path and the cycle.

By deleting a vertex of the cycle that is not a neighbour of v (and not v ), we obtain a

non-cyclotomic subgraph of G , which is impossible.

Case 2. C is charged. Since G is non-supersporadic, each of its edge-weights and charges

has norm at most 2. It is not possible to construct a charged chordless sub-cycle on more

than 4 vertices without X1 of Figure 3.18 being a subgraph. Hence we are done.

The next corollary follows with a proof similar to that of Corollary 3.30.

Corollary 3.31. Let G be a connected non-supersporadic graph that has at least one edge-

weight of norm 2. Then the longest chordless cycle has length 4.

Corollary 3.32. Let G be a connected charged non-supersporadic graph having path rank

r ¾ 5. If G has a profile C then C is not cycling and the charged vertices must be contained

in columns at either end of C.

Proof. By Corollary 3.30, the profile C of G cannot be cycling. The subgraph X1 of Fig-

ure 3.18 which cannot be equivalent to a subgraph of G forces the charges of G to be in

the first or last column of C.
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Again, the next corollary has essentially the same proof.

Corollary 3.33. Let G be a connected non-supersporadic graph that has at least one edge-

weight of norm 2 and has path rank r ¾ 5. If G has a profile C then C is not cycling and the

edges of norm 2 must be between vertices of the first two or the last two columns of C.

In order to classify all minimal non-cyclotomic graphs we must consider all possible

ways of attaching a single vertex to every cyclotomic graph. As it stands, we need to test

an infinite number of graphs, but we will reduce the amount of work required, so that it

suffices to test all the supersporadic graphs (of which there are only finitely many) and

the non-supersporadic graphs on up to 10 vertices.

3.7.2 Reduction to a finite search

In this section we reduce the search for minimal non-cyclotomic matrices to a finite one.

Proposition 3.36 below, enables us to restrict our search for minimal non-cyclotomic

graphs to a search of all non-supersporadic graphs on up to 10 vertices and all minimal

non-cyclotomic supersporadic graphs.

Lemma 3.34. Let G be equivalent to a connected subgraph of a non-sporadic graph. If

G has path rank at least 5 then this equals its profile rank, and its columns are uniquely

determined. Moreover, their order is determined up to reversal or cycling.

Proof. Follows from the proof of [26, Lemma 6].

Lemma 3.35. Let G be an n-vertex proper connected subgraph of a non-sporadic graph

where n ¾ 8. Then its path rank equals its profile rank and its columns are uniquely

determined. Moreover, their order is determined up to reversal or cycling.

Proof. If G has path rank at least 5 then we can apply Lemma 3.34. Since having at least 9

vertices forces G to have path rank at least 5, we can assume that n = 8 and that G has

path rank 4. Let P be a chordless path or cycle with maximal number of vertices r . If the

maximal cycle length is equal to the maximal path length, then take P to be a path. Now,

every proper connected 8-vertex subgraph of a non-sporadic graph contains a chordless

path on 4 vertices. Therefore, P must be a path. The columns of the profile of P inherited

from that of G are singletons. Because the profile is not cycling, the column to which a

new vertex can be added is completely determined by the vertices it is adjacent to in G .
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∗

Y1

∗ ∗

∗ + +

Y2 Y3 Y4 Y5 Y6

Y7 Y8

+

∗ ∗

∗

∗

Y9

∗

∗ ∗

∗

∗

Y10

Figure 3.19: Some Z[i ]-graphs that are not subgraphs of any non-supersporadic graph on
at least 10 vertices.

The graphs in Figure 3.19 are not subgraphs of any non-supersporadic graph on at

least 10 vertices. In the following proposition we shall treat only the ring Z[i ] since the

arguments are the same, if not slightly simpler, for Z[ω].
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Proposition 3.36. Let G be a connected non-supersporadicZ[i ]-graph with n ¾ 10 vertices.

Then G is equivalent to a subgraph of a non-sporadic Z[i ]-graph.

Proof. Let G satisfy the assumption of the proposition. Take a chordless path or cycle P of

G with maximal number of vertices. Let x and y be the endvertices of P if P is a path, oth-

erwise if P is a cycle, let x and y be any two adjacent vertices of P . If there simultaneously

exist chordless paths and chordless cycles in G both containing the maximal number of

vertices then we take P to be one of the paths.

Claim 1. The subgraphs G \{x }, G \
�

y
	

, and G \
�

x , y
	

are connected.

If a vertex x ′ of G is adjacent to x , then it must also be adjacent to another vertex of P

otherwise, if P is a path, there exists a longer chordless path or, if P is a cycle, there exists a

chordless path with the same number of vertices of P . It follows that G \{x } is connected.

This is similar for G \
�

y
	

.

Now suppose P is a chordless cycle and there exists some vertex z not on P that

is adjacent to both x and y and to no other vertex of P . Since the graph Y1 cannot be

equivalent to any subgraph of G , the triangle x y z must have at least two charges, and

hence at least one of x or y is charged. Therefore P is a charged chordless cycle of length at

least 5. But, by Corollary 3.30, the longest charged chordless cycle of G has length 4, which

gives a contradiction. Therefore, G \
�

x , y
	

is connected and we have proved Claim 1.

Next we show that G has a profile.

Claim 2. G has a profile.

Since G is non-sporadic, the connected subgraphs G \{x } and G \
�

y
	

are cyclotomic.

Moreover, since they have at least 9 vertices, they must have path rank at least 5, and

hence, by Lemma 3.34, they have uniquely determined profiles. The connected subgraph

G \
�

x , y
	

has at least 8 vertices and is a proper subgraph of the cyclotomic graph G \{x }.

Thus, by Lemma 3.35, G \
�

x , y
	

has a uniquely determined profile.

By Corollary 3.28, we can switch G \{x } to obtain a subgraph Gx of one of T2k , T (i )2k ,

C2k , ±C2k+1, ±C++2k , and C+−2k for some k . We can simultaneously switch G \
�

y
	

to obtain

a subgraph Gy so that Gx\
�

y
	

and Gy \{x } are the same subgraph which we will call Gx y .

Let C′ be the profile of Gx y . Since it is uniquely determined, the profile of Gx (respec-

tively Gy ) can be obtained by the addition of x (respectively y ) to the profile C′ of Gx y . In

particular, to obtain the profile of Gx (respectively Gy ), either the vertex x (respectively y )

is given its own column at one end of C′ or it is added to the first or last column of C′. Now
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merge the profiles of Gx and Gy to give a sequence of columns C. We will show that C is a

profile for G .

Let q ¾ 5 be the number of columns of C and denote by Cj the j th column of C, where

Cq−1 is the column containing x and C0 is the column containing y . Suppose that no

vertex of column C0 is adjacent to any vertex of column Cq−1. Since no subgraph of G

can be equivalent to X1, X2, X3, X4, X5, Y2, Y3, Y9, or Y10, we have that G is equivalent to a

subgraph of a non-sporadic graph, and moreover C is a profile for G .

Otherwise, suppose that some vertex u of Cq−1 is adjacent to some vertex v of C0 with

w (u , v ) = s for some s ∈Z[i ]. By Corollary 3.30, since G has a chordless cycle of length at

least 5 it must be uncharged and moreover, by Corollary 3.31 each edge-weight of G must

be in the group of units of Z[i ]. Furthermore, any other vertex in Cq−1 must be adjacent to

some vertex in C0 otherwise it would contain a subgraph equivalent to Y6, Y7, or Y8, which

is impossible. Hence C is a profile for G as required for Claim 2.

It remains to demonstrate that, when C is cycling, G is equivalent to a non-sporadic

graph. In particular, we will show that G is equivalent to a subgraph of T2k , T (i )2k , or C2k .

By above, we have that G is uncharged and, since no subgraph of G can be equivalent to

Y1, we have that G is triangle-free. And for j ∈
�

1, . . . ,q −1
	

we have, for any vertex a in Cj

and vertices b and b ′ in Cj+1, the equality w (a ,b ) =w (a ,b ′), and for any vertex b in Cj+1

and vertices a and a ′ in Cj , the equality w (a ,b ) =−w (a ′,b ). Each of these edge-weights

is ±1.

Suppose there exists another vertex u ′ in Cq−1 that is adjacent to v . Let z be a vertex in

the column Cq−2, which has w (z , u ) =w (z , u ′). Thus, in order for G to avoid containing

a subgraph equivalent to either Y4 or Y5, we must have that w (u ′, v ) = −s . Similarly, if

there exists another vertex v ′ in C0 which is adjacent to u , then w (u , v ′) = s . And hence,

if there exist vertices u ′ and v ′ different from u and v with u ′ in Cq−1 and v ′ in C0, then

w (u ′, v ) = −s and w (u , v ′) = s . Since z in the column Cq−2 has w (z , u ) = w (z , u ′), in

order for G to avoid containing a subgraph equivalent to either Y4 or Y5, we must have

that w (u ′, v ′) =−s . Therefore, G is equivalent to a subgraph of T2k , T (i )2k , or C2k for some

k .
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Chapter 4

Hermitian Matrices over

Real Quadratic Integer Rings

In this chapter, for d > 0, we classify cyclotomic OQ(pd )-matrices and we confirm Lehmer’s

conjecture for the polynomials RA , where A is a Hermitian OQ(
p

d )-matrix. Let R be the

compositum of all real quadratic integer rings OQ(pd ) where d > 1 is squarefree. Given a

symmetric R-matrix A, let L A denote the smallest normal extension ofQ that contains all

the entries of A. We define S′n to be the set of n ×n symmetric R-matrices A such that

the spectrum ofσ(A) is contained in [−2,2] for allσ ∈Gal(L A/Q). We also define a finer

set Sn as the set of matrices from S′n having integral characteristic polynomials. Notice

that Sn is precisely the set of n ×n cyclotomic R-matrices. We show that for n > 6, the

two sets Sn and S′n are equal.

4.1 Integral characteristic polynomials

As we saw in the previous chapter, if A is a Hermitian matrix over an imaginary quadratic

integer ring then its characteristic polynomial has integer coefficients. Hence, if A also

has all of its eigenvalues in the interval [−2,2], then A is cyclotomic. However, over real

quadratic integer rings, things are not so simple. For example, the matrix






p
2 1

1 0







has all its eigenvalues lying in the interval [−2, 2] but its characteristic polynomial does not

have integral coefficients, hence it is not cyclotomic. It is clear from the above example

that S′2 strictly contains S2. This complication of having to worry about whether or not

the characteristic polynomial is integral is the reason we treat real quadratic integer rings

separately to the imaginary quadratic integer rings.

There is, though, a redeeming feature of working over subrings of the real numbers;

here we have a notion of nonnegativity and we can therefore make use of Perron-Frobenius
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theory. It is possible to ensure the integrality of a matrix by giving its associated graph a

certain symmetry. Let K be a normal extension of Q with R its ring of integers. We say

that a Hermitian R-matrix A is Galois invariant if it is strongly equivalent to itself under

Galois conjugation, i.e., for allσ ∈Gal(K /Q), A is strongly equivalent toσ(A).

Proposition 4.1. Let A be a Galois-invariant symmetric R-matrix. Then its characteristic

polynomial χA has integer coefficients.

Proof. For allσ ∈Gal(K /Q), applyingσ to the coefficients of χA gives

σ(χA (x )) = det(x I −σ(A)) = det(x I −A) =χA (x ).

Hence, the characteristic polynomial χA must have rational coefficients. And since the

entries of A are algebraic integers, so too are the coefficients of χA .

We observed earlier that all Hermitian matrices over imaginary quadratic integer

rings are Galois invariant. It can be readily seen below, in the classification of cyclotomic

R-matrices, that the converse of the proposition does not hold. For example, the maximal

cyclotomic R-graph S
(2,ϕ)
4 of Figure 4.7 is not Galois invariant, in fact, it is the only such

example; all other maximal cyclotomic R-graphs are Galois invariant.

4.2 Classification of cyclotomic R-matrices

Before stating our results, we outline our graph drawing conventions. We draw edges

with edge-weight w as w and edges of weight−w as w . When it is clear which

weights correspond to each edge we draw edges of weight w and −w as w and

w respectively. If w = 1, we simply draw a solid line and a dashed line

respectively. A vertex with charge c for some c > 0 is drawn as c and a vertex with

charge −c is drawn as c . And if a vertex is uncharged, we simply draw . An uncharged

hollow vertex is drawn as . By a subgraph H of G we mean an induced subgraph: a

subgraph obtained by deleting vertices and their incident edges. We say that G contains

H and that G is a supergraph of H . A graph is called charged if it contains at least one

charged vertex, otherwise it is called uncharged.

Theorem 4.2. [25] Let A be a maximal indecomposable cyclotomic Z-matrix. Then A is

equivalent to an adjacency matrix of one of the graphs T2k (for k > 2), C++2k (for k > 1), C+−2k

(for k > 1), S1, S2, S7, S8, S′8, S14, and S16 in Figures 4.1, 4.3, 4.5, 4.6, 4.7, and 4.8.

Moreover, every indecomposable cyclotomic Z-matrix is contained in a maximal one.
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. . .

A

B

A

B

Figure 4.1: The family T2k of 2k -vertex maximal connected cyclotomic Z-graphs, for k ¾ 3.
(The two copies of vertices A and B should be identified to give a toral tessellation.)

. . .
p
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p
2

p
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p
2

Figure 4.2: The family of 2k -vertex maximal connected cyclotomic Z[
p

2]-graphs C2k for
k ¾ 2.
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. . .

1
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Figure 4.3: The families of 2k -vertex maximal connected cyclotomic Z-graphs C++2k and
C+−2k for k ¾ 2.
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1

. . .
p

2

p
2

Figure 4.4: The family of (2k + 1)-vertex maximal connected cyclotomic Z[
p

2]-graphs
C2k+1 for k ¾ 1.

Figure 4.5: The sporadic maximal connected cyclotomic Z-graph S14 of order 14.
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Figure 4.6: The sporadic maximal connected cyclotomic Z-hypercube S16.
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Figure 4.7: The sporadic maximal connected cyclotomic R-graphs of orders 1, 2, 3 and 4.
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Figure 4.8: The sporadic maximal connected cyclotomic R-graphs of orders 6, 7, and 8.
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Theorem 4.3. Let A be a maximal indecomposable cyclotomic matrix over the ring Z[
p

2]

that is not a Z-matrix. Then A is equivalent to an adjacency matrix of one of the graphs

C2k (for k > 1), C2k+1 (for k > 0), S‡
2, S(1,

p
2)

4 , S(2,
p

2)
4 , S(3,

p
2)

4 , and S†
8 in Figures 4.2, 4.4, 4.7,

and 4.8.

Moreover, every indecomposable cyclotomic Z[
p

2]-matrix is contained in a maximal

one.

Let ϕ denote the golden ratio, 1/2+
p

5/2, so that Z[ϕ] is the ring of integers ofQ(
p

5).

Theorem 4.4. Let A be a maximal indecomposable cyclotomic matrix over the ring Z[ϕ]

that is not a Z-matrix. Then A is equivalent to an adjacency matrix of one of the graphs S3,

S
(1,ϕ)
4 , S

(2,ϕ)
4 , S

(3,ϕ)
4 , S6, S††

8 , and S‡
8 in Figures 4.7 and 4.8.

Moreover, every indecomposable cyclotomic Z[ϕ]-matrix is contained in a maximal

one.

Theorem 4.5. Let A be a maximal indecomposable cyclotomic matrix over the ring Z[
p

3]

that is not a Z-matrix. Then A is equivalent to an adjacency matrix of one of the graphs S′2,

S†
2, and S(

p
3)

4 in Figure 4.7.

Moreover, every indecomposable cyclotomic Z[
p

3]-matrix is contained in a maximal

one.

Theorem 4.4 can be proved by computation of Z[ϕ]-matrices up to degree 8 and for

Theorem 4.5 it suffices to compute Z[
p

3]-matrices up to degree 4. By interlacing, for all

k ¾ 2, each matrix in S′k contains at least one matrix from S′k−1. From our computations,

we have that there are no Z[ϕ]-matrices in S′9, and hence, by interlacing, neither are there

Z[ϕ]-matrices in S′k for k > 9 and similarly, there are no Z[
p

3]-matrices in S′k for k > 4.

Theorem 4.3 follows from the technique which we used in the previous chapter. We will

give the proof in Section 4.3.

Let R be the compositum of all real quadratic integer rings OQ(pd ) where d > 1 is

squarefree.

Theorem 4.6. Let A be an indecomposable cyclotomic matrix over the ring R. Then A is a

symmetric matrix over Z, Z[
p

2], Z[ϕ], or Z[
p

3].

Corollary 4.7. For n > 6 we have Sn =S′n .

In Section 4.4, after stating the Perron-Frobenius theorem, we prove Theorem 4.6 and

Corollary 4.7.
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4.3 Proof of Theorem 4.3

In this section we prove Theorem 4.3. The proof of Theorem 4.3 resembles the proofs

of Theorem 3.2 and Theorem 3.3 in Section 3.4 and Section 3.5 and we use the ideas

from Section 3.2. Let G be a cyclotomic Z[
p

2]-graph. By Corollary 1.8, we know that the

adjacency matrix of G cannot be equivalent to a matrix containing an entry αwhere the

norm of α is greater than 4. Therefore G can have edge-weights and charges coming only

from the subset
¦

0,±1,±
p

2,±2
©

.

Since all of the weights are real, we can assume that the Gram vectors of the vertices of G

are all contained in some Euclidean space. We use the dot product of these vectors for the

adjacency of their corresponding vertices.

4.3.1 Excluded subgraphs
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Figure 4.9: some non-cyclotomic Z[
p

2]-graphs.

In Table 4.1 we list each excluded subgraph of type II in Figure 4.10 along with every

maximal connected cyclotomic Z[
p

2]-graph that contains it. Let L4 consist of the graphs

in Figure 4.10. We weaken slightly the definition of an L-free graph so that such a graph

need not be cyclotomic, instead it need only have all its eigenvalues contained inside the

interval [−2,2]. Since we have excluded X2, X3, X8, and Y9, no L4-free Z[
p

2]-graph can

contain, as a subgraph, an uncharged triangle. We refer to this fact as the ‘exclusion of
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Figure 4.10: some cyclotomic Z[
p

2]-graphs that are contained as subgraphs of fixed
maximal connected cyclotomic Z[

p
2]-graphs.

Excluded subgraph Maximal cyclotomics

Y1 S‡
2, S(2,

p
2)

4 , and S(3,
p

2)
4

Y2 S1

Y3 S2

Y4 C3

Y5 S7, S8, and S′8
Y6 S(1,

p
2)

4

Y7 C++6 and S7

Y8 C+−6 and S′8
Y9 T6 and S7

Y10 S7 and S′8
Y11 S†

8

Y12 S†
8

Table 4.1: Excluded subgraphs from Figure 4.10 and (up to equivalence) their containing
maximal connected cyclotomic Z[

p
2]-graphs.

uncharged triangles’. We also refer to the exclusion of triangles containing exactly one

charged vertex.

4.3.2 Inductive lemmata

Define P2r+1 (solid vertices) and P ′2r+1 (solid vertices and hollow vertices) with the follow-

ing Z[
p

2]-graph

. . .v0

v1

v ′1

v2

v ′2

vr−1

v ′r−1

vr

v ′r ,

p
2

p
2

where r ¾ 1. We have already named graphs P2r+1 and P ′2r+1 in the previous chapter, but

we use the same name again here hoping this does not result in confusion. In fact, the
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graphs P2r+1 and P ′2r+1 in the previous chapter are strongly equivalent over Q(i ,
p

2) to

their counterparts in this chapter. As before, the set of hollow vertices of P2r+1 is the set

V (P ′2r+1)\V (P2r+1). Clearly both P2r+1 and P ′2r+1 are cyclotomic since they are contained

in C2(r+1). Note that P2r+1 has r +1 vertices and P ′2r+1 has 2r +1 vertices. Having chosen

Gram vectors v0, . . . , vr , we can write

v′1 =−v1+
p

2v0 (4.1)

and

v′2 =−v2+2v1−
p

2v0. (4.2)

Lemma 4.8. In P2r+1 for r ¾ 2, we can write the Gram vector for each hollow vertex in

terms of Gram vectors of the vertices as follows:

v′t =−vt −2
t−1
∑

j=1

(−1)t+j vj − (−1)t
p

2v0, for t ∈ {1, . . . , r } .

Proof. By induction using equations (4.1), (4.2), and Lemma 3.8. Similar to the proof of

Lemma 3.18.

Lemma 4.9. Let G be an L4-free Z[
p

2]-graph containing P2r+1 with r ¾ 2. Then, for

each vertex v ∈ V ′4 (P2r+1), we have that NG (v ) =N ′G (v ). Hence, each vertex in V ′4 (P2r+1) is

P ′2r+1-saturated in P2r+1.

Proof. Fix Gram vectors for P ′2r+1. We want to show that, for all vertices v ∈ V ′4 (P2r+1),

we have NG (v ) =N ′G (v ). Since P ′2r+1 contains P2r+1, we have NG (v )∩V (P2r+1) =N ′G (v )∩

V (P2r+1) for all vertices v ∈ V (G ). Let v be a vertex in V (G )\V (P2r+1). Suppose that v is

adjacent to the vertex v j ∈V ′4 (P2r+1) for some j ∈ {0, . . . , r −1}. Without loss of generality,

either v ·vj = 1 or v ·vj =
p

2.

For our basic case, suppose first that j = 0. We begin by showing that v must be

uncharged. Suppose for a contradiction that v is charged. We have v ·v0 = 1 since we have

excluded Y4. The exclusion of triangles containing a single charged vertex implies that

v ·v1 = 0, and X12 forces v to be adjacent to v2. But then G contains a subgraph equivalent

to either Y4 or X13, which is impossible. Hence v must be uncharged. The exclusion of

uncharged triangles implies that v ·v1 = 0. Since we have excluded X9, X10, Y11, and Y12, we

must have v ·v0 =
p

2. Taking the dot product of v and equation (4.1), yields the equality

v= v′1.
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Second, suppose that j = 1. Again, we first show that v must be uncharged in this

case. Regardless of the charge of v we must have v · v1 = 1, otherwise the degree of v1

would be greater than 4. Suppose for a contradiction that v is charged. The exclusion of

triangles containing a single charged vertex means that v is orthogonal to both v0 and v2.

But then G contains a subgraph equivalent to X15, which is impossible; hence v must be

uncharged. Since we have excluded uncharged triangles, v must be orthogonal to both v0

and v2. Using equation (4.2), we find that (v−v′2) · (v−v′2) = 0. Hence v= v′2.

We have that the vertices v0 and v1 are P ′2r+1-saturated in P2r+1. If r = 2 then we are

done. We assume that r > 2 and that, for 1< t < r and 0¶ j < t , each vertex v j ∈V ′4 (P2r+1)

is P ′2r+1-saturated in P2r+1. It suffices now to show that vt is P ′2r+1-saturated in P2r+1.

Suppose a vertex v ∈V (G )\V (P2r+1) is adjacent to vt . We split into cases.

Case 1. v is adjacent to vt−2. By our inductive hypothesis, vt−2 is P ′2r+1-saturated in

P2r+1 and thus v is switch-equivalent to the Gram vector of some hollow vertex. Moreover,

the hollow vertex in question must be adjacent to both vt and vt−2. Hence v is switch-

equivalent to v′t−1.

Case 2. v is not adjacent to vt−2. Then v ·vt−2 = 0. Suppose for a contradiction that v

has a charge of±1. The exclusion of triangles containing a single charged vertex means

that v is orthogonal to both vt−1 and vt+1. But then G contains a subgraph equivalent to

either X18 or X19, which is forbidden. Hence we can assume that v is uncharged.

Since uncharged triangles are excluded, v is orthogonal to vt−1 and vt+1. And we must

have v · vt = 1 since we have excluded X16 and X17. Now, our inductive hypothesis says

that if v is adjacent to a vertex vk ∈V ′4 (P2r+1)where 0¶ k < t then v is switch-equivalent

to the Gram vector of some hollow vertex. But for 0¶ k ¶ t −3 there are no hollow vertices

adjacent to both vk and vt . Therefore v must be orthogonal to all of v0, v1, . . . , vt−3. By

Lemma 4.8, the vector v′t−1 is a linear combination of the Gram vectors v0, v1, . . . , vt−1, and

hence v′t−1 ·v= 0. By Lemma 3.8 we can write

2vt = vt−1−v′t−1+vt+1+v′t+1. (4.3)

From the dot product of v and equation (4.3), it follows that v= v′t+1 as required.

Let G be an L4-free Z[
p

2]-graph containing P2r+1 with r ¾ 2. By the symmetry of

P ′2r+1, it follows from Lemma 4.9 that each vertex in V ′4 (VG (P2r+1)) is P ′2r+1-saturated in

VG (P2r+1).
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Lemma 4.10. Let G be an L4-free Z[
p

2]-graph containing P2r+1 with r ¾ 2, where vr is

adjacent to a vertex v ∈V (G )\VG (P2r+1).

(i) If v is uncharged then either G is contained in C2(r+1) or G contains P2(r+1)+1.

(ii) If v is charged then G is contained in C2(r+1)+1.

Proof. Without loss of generality, we have either v ·vr = 1 or v ·vr =
p

2. By Lemma 3.8 we

have

2vr−1 = vr−2−v′r−2+vr +v′r . (4.4)

By Lemma 4.8, for j ∈ {1, . . . , r −1}, we can write v′j as a linear combination of the Gram

vectors v0, . . . , vj and according to Lemma 4.9, the vertices v0, . . . , vr−1 are P ′2r+1-saturated

in P2r+1. Since v 6∈ VG (P2r+1), we have v · vj = 0 for j ∈ {0, . . . , r −1}. Therefore, by

Lemma 4.8, v is orthogonal to v′j for all j ∈ {1, . . . , r −1}. Hence, in particular, v is or-

thogonal to vr−1, vr−2, and v′r−2. Take the dot product of v and equation (4.4) to give

v ·vr =−v ·v′r . Now, we begin by proving (i). Suppose that v is uncharged.

Case 1. v ·vr =
p

2. By above, we have v ·v′r =−
p

2.

In order to show that G is contained in C2(r+1), we need to show that every vertex of

V (P2r+1)∪ {v } is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪ {v }. By Lemma 4.9, this immediately

reduces to showing that both v and vr are
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪{v }.

First we treat v . Suppose that a vertex x ∈V (G )\V (P2r+1∪{v }) is adjacent to v . We rule

out the possibility of x having a charge as follows. If x were charged then the exclusion

of triangles containing a single charge gives us that x is orthogonal to vr . And since X13

and Y4 are excluded, x must be orthogonal to vr−1. But this means that G would contain a

subgraph equivalent to X12, which is forbidden. Hence we assume x is uncharged. The

excluded subgraphs X2, X3, X8, and Y11 force x to be adjacent to the vertex vr−1, which is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1 ∪{v }. Therefore x is switch-equivalent to v′r .

To complete Case 1, we show that vr is
�

P ′2r+1 ∪{v }
�

-saturated in P2r+1∪{v }. Suppose

that x ∈V (G )\V (P2r+1 ∪{v }) is adjacent to vr . If x were charged then G would contain a

subgraph equivalent to X15, Y4, or a triangle containing exactly one charged vertex. Hence

we can assume that x is uncharged. Since all possible uncharged triangles have been

excluded, we have that x is orthogonal to both vr−1 and v. And the excluded subgraphs

X14, X16, and X17 force x to be adjacent to the vertex vr−2, which is
�

P ′2r+1 ∪{v }
�

-saturated

in P2r+1 ∪{v }. Therefore x is switch-equivalent to v′r−1. We have shown that both v and
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vr are P ′2r+1 ∪{v }-saturated in P2r+1 ∪{v }. Hence, as in the proof of Lemma 3.19, we have

that G is equivalent to a subgraph of C2(r+1).

Case 2. v · vr = 1. By above, we have v · v′r =−1. We have established a subgraph of G

equivalent to P2(r+1)+1.

For (ii) we suppose that v is charged. We can assume that v has charge −1. From the

exclusion of Y4 we have that v ·vr = 1. Hence, the above yields v ·v′r =−1.

Let v ′ be a hollow vertex of charge−1 that is adjacent to v with edge-weight 1. Then

we can write v′ = v and hence v ′ has the same adjacency as v . It suffices to show that

every vertex of V (P2r+1)∪{v } is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1∪{v }. This immediately

reduces to showing that both v and vr are
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1 ∪{v }.

First we show that v is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1 ∪ {v }. Suppose a vertex

x ∈ V (G )\V (P2r+1 ∪ {v }) is adjacent to v . The excluded subgraphs X1, Y4, and Y6 mean

that we must have x · v = 1. If x is uncharged then, since X11 has been excluded along

with triangles having a single charge, x must be adjacent to the vertex vr−1, which is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1 ∪{v }. Hence x is switch-equivalent to v′r . Otherwise,

suppose x is charged. Since we have excluded Y1, Y2, and Y5, the charge of x must be −1.

The dot product (x−v′) · (x−v′) = 0 and hence x is switch-equivalent to v′.

It remains to show that vr is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1 ∪ {v }. Suppose that

x ∈V (G )\V (P2r+1∪{v }) is adjacent to vr . If x is uncharged then, since all possible triangles

having at most a single charged vertex have been excluded, we have that x is orthogonal

to both vr−1 and v. And the excluded subgraphs X15, X18, and X19 force x to be adjacent

to the vertex vr−2, which is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1 ∪{v }. Therefore x is switch-

equivalent to v′r−1.

Otherwise, suppose that x is a charged vertex. Since we have excluded Y4, Y7, and Y8,

we must have x adjacent to v , which is
�

P ′2r+1 ∪{v, v ′}
�

-saturated in P2r+1∪{v }. Hence x is

switch-equivalent to v′. We have shown that both v and vr are
�

P ′2r+1 ∪{v, v ′}
�

-saturated

in P2r+1 ∪{v }. As in the proof of Lemma 3.23, we have that G is equivalent to a subgraph

of C2(r+1)+1.

4.3.3 L4-free Z[
p

2]-graphs on up to 5 vertices

Let G be an L4-free Z[
p

2]-graph. If G does not contain an edge with an irrational weight

then G has been classified in Theorem 4.2. Since G is cyclotomic, it cannot contain an

edge whose weight squares to more than 4. We have excluded X1, Y1, . . . , Y6, so we can
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assume that G contains an edge of weight
p

2 incident at two uncharged vertices. Define

H0 to be the uncharged Z[
p

2]-graph on two vertices having an edge of weight
p

2.

Growing process

Start with our edge with weight
p

2 which we named above H0. Consider all possible ways

of adding a vertex to H0 such that the resulting graph H ′ is an L4-free Z[
p

2]-graph. (Note

that the resulting graph need not be cyclotomic.) Repeat this process with all supergraphs

H ′ until all such Z[
p

2]-graphs on the desired number of vertices have been obtained. We

have exhaustively computed all such graphs on up to 5 vertices. Out of these graphs, each

one on 5 vertices contains a subgraph equivalent to P5 (which has 3 vertices).

By the above computation and by iteratively applying Lemma 4.10 we have the follow-

ing lemma.

Lemma 4.11. Let G be an L4-free Z[
p

2]-graph having at least one irrational edge-weight.

Then G is equivalent to a subgraph of C2k and C2k−1 for some k ¾ 2.

Together with the computation of the maximal connected cyclotomic Z[
p

2]-graphs

containing the excluded subgraphs of type II in Figure 4.10, we have proved Theorem 4.3.

4.4 Applying Perron-Frobenius theory

As opposed to imaginary quadratic integer rings, by working with Hermitian matrices

over real quadratic integer rings, we lose the nice property of having a guaranteed integral

characteristic polynomial (which we had in the last chapter) but we gain the use of the

Perron-Frobenius Theorem which we state below.

4.4.1 The Perron-Frobenius Theorem

We used the Perron-Frobenius Theorem in Chapter 2 and we restate it here along with

some definitions. The spectral radius ρ(A) of a square matrix A is the maximum of the

moduli of its eigenvalues. We define the spectral radiusρ(G ) of the graph G corresponding

to A to be the spectral radius of A. A real matrix is called nonnegative if all its entries are

nonnegative and a graph is called nonnegative if it has a nonnegative adjacency matrix.

Let A and B be real symmetric matrices of dimension n and m respectively with n ¾m .

We write A ¾ B if A contains a principal submatrix such that A − B is nonnegative; the
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inequality is strict unless A = B . For the graphs G and H corresponding to A and B

respectively, we write G ¾H .

Theorem 4.12 (Perron-Frobenius Theorem). [14, Theorem 8.8.1] Suppose A is an inde-

composable nonnegative n ×n matrix. Then:

(a) The spectral radius ρ =ρ(A) is a simple eigenvalue of A and an eigenvector x is an

eigenvector for ρ if and only if no entries of x are zero, and all have the same sign.

(b) Suppose A ′ is a nonnegative n × n matrix such that A − A ′ is nonnegative. Then

ρ(A ′)¶ρ(A)with equality if and only if A = A ′;

Remark. Suppose G is a connected graph and H is a nonnegative graph. An implica-

tion of Perron-Frobenius together with interlacing is that if G >H then ρ(G )>ρ(H ). The

nonnegative graphs P (1)n (for n ¾ 3), P (2)n (for n ¾ 2), P (3)n (for n ¾ 2), and Qn (for n ¾ 3) in

Figure 4.11 have an eigenvalue of 2 corresponding to an eigenvector given by the numbers

beneath their vertices. By Theorem 4.12, since the eigenvectors given are positive, the

graphs P (1)n (for n ¾ 3), P (2)n (for n ¾ 2), P (3)n (for n ¾ 2), and Qn (for n ¾ 3) all have spectral

radius 2.

p
2 2 2 2 2

p
2

. . .p
2

p
2

P (1)n (n ¾ 3)

1

2 2 2 2 2
p

2

. . . p
2

P (2)n (n ¾ 2)

1 1

1 1 1 1 1 1
. . .

P (3)n (n ¾ 2)

1

1

1 1

1

1. . .

Qn (n ¾ 3)

Figure 4.11: Four infinite families of nonnegative cyclotomic Z[
p

2]-graphs each having
spectral radius 2. The numbers on the vertices correspond to an eigenvector with largest
eigenvalue 2. The subscript is the number of vertices.
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4.4.2 Cyclotomic matrices over R

In this section we prove that all matrices in S′n are necessarily symmetric matrices over

one of the rings Z, Z[
p

2], Z[ϕ], or Z[
p

3]. Set R =R, the compositum of real quadratic

integer rings, and let K be the normal closure of the field generated by elements of R over

Q. Let A be an R-matrix in S′n and let G be its corresponding R-graph. By Corollary 1.8,

we need only consider entries of A from the set R ′ =
¦

0,±1,±
p

2,±ϕ,±ϕ,±
p

3,±2
©

; these

are the only real algebraic integers from R whose conjugates all square to at most 4. For a

typical element x ∈R, its square has the form

x 2 = a 2
1+2a 2

2+3a 2
3+a 2

5+2a 2
2,5+3a 2

3,5+3a 2
13+3a 2

5,13+4a 2
17+4a 2

5,17+S+ L,

where the a ’s are rational integers, S is a linear combination of integer squares each having

coefficient greater than 4, and L is an element of R\Z.

We claim that, for each element x ∈R\Z there exists an automorphismσ ∈Gal(K /Q)

such thatσ(x )¾ 0. Define

ωd =







p
d , if d ≡ 2, 3 mod 4

1+
p

d
2 , if d ≡ 1 mod 4.

Let Xk denote the subset of elements of R\Z that can be expressed (over Z) in no fewer

than k differentωd . Any element y ∈X1\X2 has the form aωd for some a ∈Z and some

squarefree d ¾ 2. If y is negative then we can apply an automorphism that sends
p

d

to −
p

d . Now suppose that the claim is true for each element of the set Xk \Xk+1. Any

element y ∈ Xk+1\Xk+2 can be written as α1+ωdα2, for some squarefree d ¾ 2 where

α1 ∈ Xk \Xk+1, α2 ∈ (Z+(Xk \Xk+1)), andωd is not part of the expression of either α1 or

α2. By our inductive hypothesis, we can apply an automorphism to make α1 nonnegative.

If necessary, we can apply an automorphism sending
p

d to −
p

d to make y nonnegative.

Therefore we can assume that L is nonnegative.

Moreover, we can assume that S is zero, otherwise x 2 > 4. Apart from the triples

{a 1, a 2, a 5} and {a 1, a 5, a 2,5}, if at least three of the other a ’s are nonzero then the sum

a 2
1+2a 2

2+3a 2
3+a 2

5+2a 2
2,5+3a 2

3,5+3a 2
13+3a 2

5,13+4a 2
17+4a 2

5,17

is greater than 4 and hence x 2 > 4. One can check that, for the two triples {a 1, a 2, a 5}

and {a 1, a 5, a 2,5} and for nonzero pairs of a ’s, the set R ′ is indeed the set of real algebraic

integers from R whose conjugates all square to at most 4. Therefore, without loss of

generality, we can take R =R ′.
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Now we deal with the possibility of G containing a subgraph equivalent to the following

graphs:

ϕ
ϕ

X1

1 1

p
2

X2

1 1

p
3

X3

1 1
ϕ

X4

1 1

X5

We have exhaustively checked all connected R-supergraphs of X1, X2, X3, X4, and X5 that

are in S′n for some n . These supergraphs are all subgraphs of either S†
2, S

(1,ϕ)
4 , S

(3,ϕ)
4 , S(1,

p
2)

4 ,

S7, S8, or S′8 (see Figures 4.7 and 4.8) and hence are all either Z[
p

2]-graphs, Z[
p

3]-graphs,

or Z[ϕ]-graphs. This computation can be checked with little effort; we used PARI/GP [29],

growing symmetric R-matrices of at most 4 rows. Henceforth we assume that X1, X2, X3,

X4, and X5 are not equivalent to any subgraph of G . We can also exclude ±2 from being

an entry of our matrix A since, by Corollary 1.8, any connected graph properly containing

either S1 or S2 is not in S′n .

Let A ′ be a smallest principal submatrix of A with respect to having at least two

irrational entries α and β such that its corresponding R-graph G ′ is connected. Suppose

α is not conjugate to ±β , i.e., α and ±β do not have the same minimal polynomial. We

will show that this supposition violates the condition that A is in S′n . We can assume that

at least one of α and β (say α) is not equal to ±
p

2. Observe that by a combination of

switching and Galois conjugation (using automorphisms from Gal(K /Q)) we can make all

the edge-weights of G ′ positive and hence we assume that all the off diagonal entries of A ′

are nonnegative.

If G ′ is a triangle then, since we have excluded the subgraphs X1, X2, X3, X4, and X5,

we can find a graph H equivalent to G ′ that satisfies H >Q3. By the Perron-Frobenius

Theorem, the spectral radius of G ′ is strictly greater than 2; hence, by interlacing, G also

has an eigenvalue strictly greater than 2. Otherwise, if G ′ is not a triangle then G ′ must be

a path. Since A ′ is minimal with respect to the condition of containing both α and β as

entries, any induced subpath p1p2 . . . pk of G ′ must have w (p i , p i+1) = 1 when i is equal

to neither 1 nor k − 1. Moreover, the minimality also implies that the charge of p j for

j ∈ {2, . . . , k −1} is either 0 or ±1.

We consider two cases for G ′: the case where G ′ is uncharged and the case where G ′

has a charge. In the first case we have G ′ > P (1)n for some n and in the second, we have

either G ′ > P (2)n or G ′ > P (3)n for some n . By the Perron-Frobenius Theorem, the spectral

radius of G ′ is strictly greater than 2 and hence, by interlacing, G is not cyclotomic.

Therefore, we have established the following result.
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Proposition 4.13. Let A be an indecomposable R-matrix having as entries two irrational

integers α and β with α not conjugate to ±β . Then A is not in S′n .

Theorem 4.6 follows immediately.

4.4.3 Elements of S′n\Sn

Here we give a proof of Corollary 4.7 and enumerate all elements in S′n\Sn for n ¶ 6. In

Table 4.2, we have tabulated the number of elements of the set S′n\Sn for n ¶ 6, these are

given working up to equivalence. With respect to Theorem 4.6, we have also recorded the

number of elements in S′n\Sn that lie in each OQ(pd )-matrix ring for d > 1. We remark

that all elements of S′n are contained in some maximal cyclotomic matrix. Since all

subgraphs of the infinite families of maximal cyclotomic matrices are in Sn , one can find

elements S′n\Sn by checking subgraphs of the sporadic maximal cyclotomic matrices.

n |S′n\Sn | Z[ϕ] Z[
p

2] Z[
p

3]
1 3 1 1 1

2 7 6 1 0

3 4 3 1 0

4 6 6 0 0

5 4 4 0 0

6 1 1 0 0

Table 4.2: Up to equivalence, the number of elements of the set S′n\Sn for n ¶ 6.

Now we give a lemma resembling the crystallographic criterion for a Coxeter graph,

see Humphreys [17, Proposition 6.6].

Lemma 4.14. Let A ∈ S′n be a Z[
p

2]-matrix having all its charges in Z and let G be its

associated graph. Then every cycle of G has an even number of edges of weight ±
p

2. Hence

A is in Sn .

Proof. Letσ be the nontrivial automorphism of Z[
p

2]which sends
p

2 to −
p

2. Suppose

for a contradiction that G contains a cycle having an odd number of edges with weight

±
p

2 and let C be a smallest such cycle.

Case 1. C is uncharged. In this case we can switch either C orσ(C ) in such a way that

the resulting nonnegative cycle C ′ has C ′ >Qk for some k . Hence, ρ(H )>ρ(Qk ) = 2 and

so, by interlacing, we have ρ(A)¾ρ(H )>ρ(Qk ) = 2.
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Case 2. C is charged. As in the previous section we can exclude X2 and X5 as subgraphs

of G . In the case when C is a triangle, one can find an equivalent cycle C ′ satisfying

C ′ >Q3. If C is a quadrangle then C is equivalent to a cycle C ′ which satisfies C ′ > P (2)k

or C ′ > P (3)k for some k or contains a path P satisfying P > P (2)2 or P > P (3)2 . Otherwise, C

contains a subpath equivalent to a path C ′ where either C ′ > P (2)k or C ′ > P (3)k for some k .

Therefore, in each case, A 6∈S′n which is a contradiction.

On the other hand, it can be readily seen that if all the cycles of G have an even number

of edges of weight ±
p

2, then G is Galois invariant.

Finally, we give a proof of Corollary 4.7.

Proof (Corollary 4.7). We have computed all the sets S′n and Sn for n ¶ 8. We have that

S′7 =S7 and S′8 =S8. By computation and Proposition 4.13, we know that all matrices in

S′n for n > 8 are Z[
p

2]-matrices. Thus, it suffices to consider only Z[
p

2]-matrices. From

our computation we know that all Z[
p

2]-matrices in S′5 have all their charges in Z, hence,

by interlacing, the same must be true for the sets S′k for all k > 5. The result then follows

from Lemma 4.14.

4.5 Lehmer’s problem

In this section we turn our attention towards Lehmer’s problem. We would like to find

a bound ε > 0 such that, if M (RA )> 1 then M (RA )¾ 1+ ε where A is a Hermitian matrix

over a real quadratic integer ring. We prove the following theorem.

Theorem 4.15. Let A be a Hermitian matrix over a real quadratic integer ring such that

RA (z )∈Z[z ]. Then M (RA ) = 1 or M (RA )¾τ0.

4.5.1 Preliminaries

For the reader’s convenience, we give definitions similar to those in Section 3.7.1. For

later use we record an obvious fact that follows from the classification of cyclotomic

Z[
p

2]-matrices.

Corollary 4.16. Any connected cyclotomic Z[
p

2]-graph that is equivalent to a subgraph

of T2k , C2k , C2k+1, C++2k , or C+−2k is strongly equivalent to a subgraph of T2k , C2k , ±C2k+1,

±C++2k , or C+−2k .

There are two types of maximal cyclotomic R-graphs.
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The sporadics: S1, S2, S′2, S†
2, S‡

2, S3, S4, S(
p

3)
4 , S

(1,ϕ)
4 , S

(2,ϕ)
4 , S

(3,ϕ)
4 , S(1,

p
2)

4 , S(2,
p

2)
4 , S(3,

p
2)

4 ,

S6, S7, S8, S′8, S†
8, S††

8 , S‡
8, S14, and S16; see Figures 4.5, 4.6, 4.7, and 4.8.

The non-sporadics: T2k (k ¾ 3), C2k (k ¾ 2), C++2k (k ¾ 2), C+−2k (k ¾ 2), and C2k+1(k ¾

1); see Figures 4.1, 4.2, 4.3, and 4.4.

A graph is called minimal non-cyclotomic if it has at least one eigenvalue lying out-

side of the interval [−2,2] and is minimal in that respect, i.e., all of its subgraphs have

their eigenvalues contained in [−2, 2]. Therefore all minimal non-cyclotomic graphs are

connected and, hence, their adjacency matrices are indecomposable. A graph is called

non-supersporadic if all of its proper connected subgraphs are equivalent to subgraphs

of non-sporadics and supersporadic otherwise.

Given a graph G , a path (respectively cycle) P is called chordless if the subgraph of G

induced on the vertices of P is a path (respectively cycle). Define the path rank of G to

be the maximal number of vertices in a chordless path or cycle of G . We say that G has a

profile if its vertices can be partitioned into a sequence of k ¾ 3 subsets C0, . . . ,Ck−1 such

that either

• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some

j ∈ {1, . . . , k −1} or v and w are both charged vertices in the same subset

or

• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some

j ∈Z/kZ or v and w are both charged vertices in the same subset.

In the latter case, we say that the profile is cycling. Given a graph G with a profile C =

(C0, . . . ,Ck−1)we define the profile rank of G to be k , the number of subsets in the profile

C.

By interlacing, each minimal non-cyclotomic matrix A on at least two rows contains

a submatrix B such that M (RB ) = 1. Hence in order to get a lower bound for M (RA )> 1

where A is a Hermitian matrix over a real quadratic integer ring, we can test the Mahler

measures of RA where A is a matrix that contains a matrix in S′n for some n . As it currently

stands, we need to test an infinite number of matrices. But we will reduce the work so that

it suffices to test all the supersporadic graphs (of which there are only finitely many) and

the non-supersporadic graphs on up to 8 vertices.
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4.5.2 Reduction to a finite search

In this section we reduce the search for minimal non-cyclotomic matrices to a finite

one. The only real quadratic integer ring that gives rise to infinite families of maximal

cyclotomic matrices is Z[
p

2], and hence, in this section we will consider matrices over

this ring only.

Let A be a Hermitian Z[
p

2]-matrix with RA (z )∈Z[z ]. As mentioned in the introduc-

tion, Lehmer’s problem has been solved for Hermitian Z-matrices. Hence to find a lower

bound for M (RA )> 1, we can assume that A contains at least one irrational entry.

Lemma 4.17. Let A be a Hermitian Z[
p

2]-matrix with RA (z ) ∈ Z[z ] having an entry a

such that |σ(a )|> 2 for someσ ∈Gal(Q(
p

2)/Q). Then M (RA )>τ0.

Proof. Since the Mahler measure of RA is preserved under equivalence, we may assume

that a > 2. If a is on the diagonal of A then, by interlacing, the largest eigenvalue of

A is at least a . Otherwise, suppose that a is on the off-diagonal, i.e., a j k = a for some

j 6= k . Then the j th diagonal entry of A2 is at least a 2 and hence, by interlacing, the largest

eigenvalue of A2 is at least a 2. Therefore, in either case, the largest eigenvalue of A is at

least a .

Let ρ be the spectral radius of A. At least one zero of RA is given by α(ρ) = (ρ +
p

ρ2−4)/2. Up to conjugation, the smallest modulus of an element of Z[
p

2] that is

greater than 2 is 1+
p

2. Hence it is clear that |α(ρ)|>τ0.

By the above lemma, in order to settle Lehmer’s conjecture for polynomials RA , we

need only consider matrices such that each entry a satisfies |σ(a )|¶ 2 for all automor-

phismsσ ∈Gal(Q(
p

2)/Q).

Lemma 4.18. Let A be a non-cyclotomicZ[
p

2]-matrix having at least one entry of modulus

2. Then M (RA )¾ (
p

5+1)/2>τ0.

Proof. Since the Mahler measure of RA is preserved under equivalence, we may assume

that A has an entry a j k = 2.

Case 1. Suppose j = k . Since the 1×1 matrix (2) is cyclotomic, A has at least two rows

and hence contains as a principal submatrix the matrix






2 a

a b






.
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Since A is indecomposable, it is possible to choose a to be nonzero. Therefore, the j th

diagonal entry of A2 is at least 4+ a 2, and hence the spectral radius ρ of A is at least
p

4+a 2. Now, for all nonzero a ∈ Z[
p

2], we have a 2 ¾ 1 and so we have the following

inequality

ρ ¾
p

4+a 2 ¾
p

5.

Hence, the associated reciprocal polynomial RA has a zero with absolute value at least

(
p

5+1)/2. Therefore M (RA )¾ (
p

5+1)/2>τ0.

Case 2. Suppose j 6= k . Then A contains as a principal submatrix the matrix







a 2

2 b






.

If either a or b are nonzero then by the same argument as before M (RA )¾ (
p

5+1)/2>τ0.

Otherwise, if both a and b are zero, since






0 2

2 0







is cyclotomic, A contains as a principal submatrix the matrix













0 2 c

2 0 d

c d e













.

Since A is indecomposable, we can choose this submatrix so that at least one of c and d is

nonzero. By applying the same argument as before we obtain the inequality

M (RA )¾ (
p

5+1)/2>τ0.

By Lemma 4.17 and Lemma 4.18, instead of Z[
p

2], we can just consider the set

S =
¦

0,±1,±
p

2
©

.

Lemma 4.19. Let G be an S-graph having a vertex of degree at least 5 and let A be an

adjacency matrix of G . Then M (RA )¾ (
p

5+1)/2>τ0.

Proof. By the proof of Lemma 1.7, the spectral radius of A is at least
p

5. Therefore, as in

the previous lemma, M (RA )¾ (
p

5+1)/2>τ0.
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Lemma 4.20. Let G be an n-vertex (n ¾ 7) connected S-graph that is equivalent to a

subgraph of a non-sporadic graph. Suppose that G does not contain a chordless cycle on

more than 4 vertices and suppose that G is not equivalent to a subgraph of T8. Then the

path rank of G equals its profile rank, and its columns are uniquely determined. Moreover,

their order is determined up to reversal.

Proof. Let P be a chordless path or cycle with maximal number of vertices. If the maximal

cycle length is equal to the maximal path length, then take P to be a path. By inspection

of the maximal non-sporadic Z[
p

2]-graphs, it can be seen that any such subgraph on

at least 7 vertices contains a chordless path on at least 4 vertices. By assumption, any

chordless cycle of G has at most 4 vertices and hence we take P to be a chordless path with

maximal number of vertices, which is at least 4. The columns of the profile of P inherited

from that of G are singletons. Because the profile is not cycling, the column to which a

new vertex can be added is completely determined by the vertices it is adjacent to in G .

Proposition 4.21. Let G be an n-vertex (n ¾ 9) connected non-supersporadic S-graph

that contains at least one edge-weight ±
p

2. Suppose that no 7-vertex subgraph of G is

equivalent to a subgraph of T8. Then G is equivalent to a subgraph of a non-sporadic

S-graph.

Proof. Let G satisfy the assumption of the proposition. Take a chordless path or cycle P

of G with maximal number of vertices. If there simultaneously exist chordless paths and

chordless cycles in G both containing the maximal number of vertices then we take P to

be one of the paths.

Claim 1. G does not contain a chordless cycle on more than 4 vertices and hence P is a

path.

Consider a connected subgraph G ′ of G on at least 8 vertices containing an edge of weight

±
p

2. The subgraph G ′ is equivalent to a subgraph of C2k or C2k+1 for some k and hence it

contains a chordless path on at least 4 vertices. Suppose G properly contains a chordless

cycle on at least 5 vertices. Since every subgraph of G is cyclotomic, the cycle cannot

contain an edge of weight ±
p

2, and hence an edge-weight ±
p

2 must be joined to the

cycle via some path. Let v be the intersection of the vertices of this path and the cycle.

By deleting a vertex of the cycle that is not a neighbour of v (and not v ), we obtain a

non-cyclotomic subgraph of G , which is impossible. Otherwise, if G itself is a cycle then
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G contains a subpath on at least 8 vertices having an edge of weight
p

2 near the middle,

one does not find such a graph in the classification of cyclotomic Z[
p

2]-graphs, which is

a contradiction. Therefore G does not contain a chordless cycle on more than 4 vertices,

and hence P is a path.

Let x and y be the endvertices of P .

Claim 2. The subgraphs G \{x }, G \
�

y
	

, and G \
�

x , y
	

are connected.

If a vertex x ′ of G is adjacent to x , then it must also be adjacent to another vertex of P

otherwise there exists a longer chordless path. It follows that G \{x } is connected. This is

similar for G \
�

y
	

. Therefore, G \
�

x , y
	

is also connected and we have proved Claim 2.

Next we show that G has a profile.

Claim 3. G has a profile.

The connected subgraphs G \{x }, G \
�

y
	

, and G \
�

x , y
	

have at least 7 vertices. And since

G does not contain any chordless cycles on more than 4 vertices, by Lemma 4.20, the

subgraphs G \{x }, G \
�

y
	

, and G \
�

x , y
	

have uniquely determined profiles. By Corol-

lary 4.16, we can switch G \{x } to obtain a subgraph Gx of one of T2k , C2k , ±C2k+1, ±C++2k ,

and C+−2k for some k . We can simultaneously switch G \
�

y
	

to obtain a subgraph Gy of

one of T2k , C2k , ±C2k+1, ±C++2k , and C+−2k for some k , so that Gx\
�

y
	

and Gy \{x } are the

same subgraph which we will call Gx y . Since it is uniquely determined, the profile of Gx

(respectively Gy ) can be obtained by the addition of x (respectively y ) to the profile of

Gx y . Now merge the profiles of Gx and Gy to give a sequence of columns C. We will show

that C is a profile for G .

Let q ¾ 5 be the number of columns of C and denote by Cj the j th column of C, where

Cq−1 is the column containing x and C0 is the column containing y . Note that for any

vertex u in Cj and vertices v and v ′ in Cj+1 we have that w (u , v ) =w (u , v ′), and for any

vertex v in Cj and vertices u and u ′ in Cj−1 we have that w (u , v ) = −w (u ′, v ). Since G

does not contain any chordless cycles on more than 4 vertices, no vertex in column C0

is adjacent to any vertex of column Cq−1, and hence, C is a profile for G . Moreover G is

equivalent to a subgraph of a non-sporadic graph.

4.5.3 Details of the finite search

By Proposition 4.21, as well as minimal non-cyclotomic supergraphs of T8, we need only

consider supersporadic minimal non-cyclotomic Z[
p

2]-graphs and non-supersporadic

99



4. Hermitian Matrices over Real Quadratic Integer Rings

minimal non-cyclotomic Z[
p

2]-graphs on up to 8 vertices. This means we only have a

finite search to perform, but we can still reduce the amount of work required to compute

the supersporadic minimal non-cyclotomic Z[
p

2]-graphs. Since supersporadic mini-

mal non-cyclotomic Z-graphs have already been classified [26], we need only consider

supersporadic minimal non-cyclotomic Z[
p

2]-graphs containing at least one irrational

edge-weight. This comes down to considering supersporadic minimal non-cyclotomic

Z[
p

2]-graphs containing an edge of weight ±
p

2. Each of these graphs can be obtained

by attaching a vertex to some connected Z[
p

2]-graph that has at least one edge of weight

±
p

2 and that is a subgraph of a sporadic maximal cyclotomic Z[
p

2]-graph. Suppose

that G is a supersporadic minimal non-cyclotomic Z[
p

2]-graph on at least 10 vertices

obtained by attaching a vertex to some connected subgraph G ′ of a sporadic maximal

cyclotomic Z[
p

2]-graph that has at least one edge of weight ±
p

2. Now, G ′ must be on

at least 9 vertices, but there does not exist any such connected Z[
p

2]-graph that has an

edge of weight±
p

2 and that is a subgraph of a sporadic maximal cyclotomicZ[
p

2]-graph.

Therefore it suffices to check supersporadic minimal non-cyclotomic Z[
p

2]-graphs on up

to 9 vertices. Thus, together with Proposition 4.21, in order to get a lower bound for M (RA )

where A is a non-cyclotomic S-matrix, it suffices to obtain a lower bound for M (RA )where

A is a non-cyclotomic S-matrix on at most 9 vertices. Recall the set S =
¦

0,±1,±
p

2
©

.

Let A be a minimal non-cyclotomic S-matrix. As discussed at the beginning of this

chapter, the associated polynomial RA might not have integer coefficients. If RA (z ) 6∈Z[z ],

then we check the Mahler measure ofσ(RA ) for allσ ∈Gal(Q(
p

2)/Q)whereσ is applied

to the coefficients of RA . For if some non-cyclotomic S-matrix B contains A as a principal

submatrix and RB (z ) ∈ Z[z ], then the coefficients of RB are invariant under the Galois

automorphismsσ ∈Gal(Q(
p

2)/Q), and hence

M (RB )¾M (σ(RA )) for allσ ∈Gal(Q(
p

2)/Q).

We form a list L of all S-graphs in
⋃8

n=1S
′
n on up to 8 vertices each containing at least

one irrational edge-weight. We then proceed as follows. For each 1-vertex graph G of L,

we consider the set MG of all possible S-graphs that can be obtained by attaching a vertex

to G . Using Lemma 4.19, we can restrict to each graph in MG having maximum degree at

most 4. For A an adjacency matrix, let ρ(A) denote the spectral radius of A, that is, the

maximum of moduli of the eigenvalues of A and let G=Gal(Q(
p

2)/Q). For each graph

H ∈MG , if an adjacency matrix AH of H satisfies the inequality

2<max
σ∈G

ρ(σ(AH ))< 2.02 (4.5)
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then we include H in our list L. Observe that each graph H satisfying the inequality

1<max
σ∈G

M (σ(RH ))<τ0

must also satisfy equation (4.5). We then repeat this process for 2-vertex graphs, 3-vertex

graphs, and so on up to 8-vertex graphs.

We apply the same approach to Hermitian matrices over the rings Z[ϕ] and Z[
p

3].

After running the process on each ring R , we found that if A is a Hermitian R-matrix

having at least one irrational entry, then either

max
σ∈G

ρ(σ(A)) = 2 and max
σ∈G

M (σ(RA )) = 1,

or

max
σ∈G

ρ(σ(A))>α(R) and max
σ∈G

M (σ(RA ))>β (R),

where α(R) and β (R) are some constants that depend on R given in Table 4.3 below.

R α(R) β (R)
Z[
p

2] 2.0285 1.2579

Z[ϕ] 2.0237 1.3294

Z[
p

3] 2.0743 1.5392

Table 4.3: Lower bounds for the spectral radius and Mahler measure of non-cyclotomic
matrices over real quadratic integer rings having at least one irrational entry.

The bounds β (R) given in Table 4.3 exceed τ0. This completes the proof of Theo-

rem 4.15.
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Chapter 5

Small-Span Hermitian Matrices over

Quadratic Integer Rings

Let f be a totally real monic integer polynomial of degree d having as its zeros

α1 ¶α2 ¶ · · ·¶αd .

The span of f is defined to be αd −α1. In this chapter we build on the work of McKee [23]

who classified all integer symmetric matrices whose characteristic polynomials have span

less than 4. Following McKee, we call a totally real monic integer polynomial small-span

if its span is less than 4 and a Hermitian matrix is called small-span if its characteristic

polynomial is a small-span polynomial. Irreducible small-span polynomials are of interest

since, up to equivalence (described in Section 5.1), there are only finitely many of any

given degree [34]. We classify all small-span Hermitian matrices over OK for all quadratic

number fields K . In doing so, we obtain small-span polynomials as characteristic polyno-

mials of Hermitian OK -matrices that are not the minimal polynomial of any Hermitian

Z-matrix. But, as we shall see, there still remain small-span polynomials that are not even

minimal polynomials of any Hermitian OK -matrix.

5.1 Orientation

Our current area of study has relevance to the question of which integer polynomials are

the minimal polynomials of Hermitian matrices over quadratic integer rings. There exists

a list, due to Robinson [31], of small-span polynomials up to degree 8 (this list has been

extended up to degree 14 [6]). Supposing that we have classified small-span OK -matrices,

we can check Robinson’s list to see which of the polynomials are the minimal polynomial

of some Hermitian OK -matrix. It was shown in [23] that there exist polynomials of low

degree that are not the minimal polynomial of any integer symmetric matrix, the lowest

degree being 6. This is a consequence of the classification of small-span Z-matrices; on
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Robinson’s list of small-span polynomials, there are three polynomials of degree 6 that

are not the minimal polynomials of any small-span integer symmetric matrix and hence

of any integer symmetric matrix. As discussed in the introductory chapter, Estes and

Guralnick [12] showed that every monic separable totally real integer polynomial of degree

at most 4 is the minimal polynomial of some integer symmetric matrix. The question of

whether or not, for a monic separable totally real integer polynomial f of degree 5, there

exists an integer symmetric matrix having f as its minimal polynomial remains open.

In this chapter, we will use a slightly different notion of equivalence from the notion

that we have been using in the previous chapters. Let f and g be totally real monic integer

polynomials of degree d with zeros αj and βj respectively. We consider f and g to be

equivalent if, for some c ∈ Z and ε ∈ Z∗, each αj = εβj + c . It is clear that the span is

preserved under this equivalence. By setting ε = 1 and c = bαd c − 2, one can see that

each small-span polynomial is equivalent to a monic integer polynomial whose zeros are

contained inside the interval [−2, 3). Moreover, suppose that f is a small-span polynomial

with 2.5¶ αd < 3. Setting ε =−1 and c = 1, one can see that, in fact, f and hence each

small-span polynomial, is equivalent to a monic integer polynomial whose zeros are

contained inside the interval [−2, 2.5).

We redefine matrix equivalence so that two matrices A and B are equivalent if A is

strongly equivalent to ±B + c I for some c ∈Z. (The notion of strong equivalence remains

unchanged.) Observe that two small-span OK -matrices are equivalent precisely when

their characteristic polynomials are equivalent. Each small-span OK -matrix is equivalent

to one whose eigenvalues are contained inside the interval [−2, 2.5).

In 1983, Petrović [30] effectively classified all simple graphs having a characteristic

polynomial of small-span. Actually his classification was of all simple graphs minimal

with respect to having a characteristic polynomial of span more than 4. McKee [23] has

recently classified all small-span integer symmetric matrices and, as part of the proof, he

obtained the following result which we shall put to use later.

Lemma 5.1. Let G be a small-spanZ-graph on more than 12 vertices. Then G is cyclotomic.

5.2 Computation of small-span matrices of up to 8 rows

In this section we describe our computations and deduce some restrictions to make the

computations feasible.

As a consequence of interlacing (Theorem 1.6) we have the following corollary.
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Corollary 5.2. Let A be an n×n Hermitian matrix with n ¾ 2 and let B be an (n−1)×(n−1)

principal submatrix. Then the span of A is at least as large as the span of B. Moreover, if A

has all its eigenvalues in the interval [−2, 2.5), then so does B.

In view of this corollary, given a matrix that contains a matrix that it not equivalent to

a small-span matrix having all of its eigenvalues in the interval [−2, 2.5), we can instantly

disregard it since it is not a small-span matrix.

Using interlacing we can rapidly restrict the possible entries for the matrices that are

of interest to us. This is just a trivial modification of a lemma [23, Lemma 4] used in the

classification of small-span integer symmetric matrices.

Lemma 5.3. Let A be a small-span Hermitian matrix. Then all entries of A have absolute

value less than 2.5, and all off diagonal entries have absolute value less than 2.

Proof. Let a be a diagonal entry in A. Then since the matrix (a ) has a as an eigenvalue,

interlacing shows that A has an eigenvalue with modulus at least |a |. Our restriction on

the eigenvalues of A shows that |a |< 2.5.

Let b be an off-diagonal entry of A. Then deleting the other rows and columns gives a

submatrix of the shape






a b

b c






.

By repeated use of Corollary 5.2, this submatrix must have span less than 4, giving
p

(a − c )2+4|b |2 < 4. This implies |b |< 2.

In order to obtain our results, we use a certain amount of computation. By Corol-

lary 5.2, if A is a small-span matrix then so is any principal submatrix of A. Hence, to

compute small-span matrices we can start by creating a list of all 1×1 small-span matrices,

then for each matrix in the list we consider all of its supergraphs and add to our list any

that have small-span. The list is then pruned with the goal of having at most one repre-

sentative for each equivalence class. Since there is no canonical form in our equivalence

class, we can only prune our list to some limited extent. We can repeat this growing

process until all small-span matrices of the desired size are obtained. The algorithm we

use is essentially the same as the one described in [23], with modifications to deal with

irrational elements. Up to equivalence, we compute all small-span OK -matrices up to

degree 8, and in doing so, we also compute Hermitian matrices whose eigenvalues satisfy

the small-span condition but whose characteristic polynomial does not have integer
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coefficients. As it turns out, these do not cause a problem and we will see that for n > 6,

an n ×n matrix whose eigenvalues satisfy the small-span condition also has an integer

characteristic polynomial.

To make our computation more efficient we can bound the number of nonzero entries

in a row of a small-span matrix. The amount of computation required to prove this lemma

varies according to the ring over which we are working. The ring Z[ω] requires the most

work.

Lemma 5.4. Let A be a small-span Hermitian Z[ω]-matrix with all eigenvalues in the

interval [−2, 2.5). Then each row of A has at most 4 nonzero entries.

Proof. First, we compute a list of all small-span Z[ω]-graphs up to degree 6. This is done

by exhaustively growing from 1×1 small-span matrices (a )where a ∈Z[ω] is an element

whose absolute value is less than 2.5. We find by inspection that there are no small-span

Z[ω]-graphs of degree 6 that contain a vertex of degree greater than 4. Now suppose that

there exists a small-span Z[ω]-graph G on at least 7 vertices that has vertex of degree

more than 4. Deleting vertices appropriately, we obtain a subgraph H on 6 vertices that

has a vertex of degree 5. By Corollary 5.2, H has small-span. But we see that H is not on

our computed list. Therefore, our supposition must be false.

It suffices to grow up to degree 5 for small-span R-matrices where R 6= Z[ω] is a

quadratic integer ring.

Lemma 5.5. Let R 6=Z[ω] be a quadratic integer ring and let A be a small-span Hermitian

R-matrix with all eigenvalues in the interval [−2,2.5). Then each row of A has at most 3

nonzero entries.

Proof. Same as the proof of Lemma 5.4, where each quadratic integer ring R is considered

separately and the list of R-graphs only goes up to degree 5.

We can restrict our consideration to d in the set {−11,−7,−3,−2,−1, 2, 3, 5, 6}, since,

for other d , there are no irrational elements of OQ(pd ) having absolute value small enough

to satisfy Lemma 5.3. Hence, for the d not in this set, all small-span OQ(pd )-matrices are

Z-matrices, which have already been classified.

Now, each 1× 1 small-span matrix is equivalent to the 1× 1 matrix (a ) where a ∈

OQ(pd ) is real and |a | < 2.5. Moreover, for d = 6 and n ¾ 2, all indecomposable n ×n

small-span matrices are Z-matrices. Therefore, over quadratic integer rings OQ(pd ) for

105



5. Small-Span Hermitian Matrices over Quadratic Integer Rings

indecomposable small-span matrices having at least 2 rows, we can restrict further to d

in the set

{−11,−7,−3,−2,−1, 2, 3, 5} .

An indecomposable small-span matrix is called maximal if its eigenvalues are con-

tained in the interval [−2,2.5) and it is not strongly equivalent to any proper submatrix

of any indecomposable small-span matrix. We have computed all n ×n maximal inde-

composable small-span OQ(pd )-matrices (for 2 ¶ n ¶ 8) that are not equivalent to any

Z-matrix. We display these matrices as R-graphs (for various rings R) below and tabulate

their numbers in Table 5.1.

5.2.1 For R a real quadratic integer ring

For this section, we adopt the graph drawing conventions from Chapter 4. There are eight

maximal indecomposable 2×2 examples:

1

p
2

1 1

p
2 p

2
p

2 ϕ ϕ ϕ ϕ
ϕ

p
3

1

p
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There are nine maximal indecomposable 3×3 examples:

ϕϕ
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p
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1 1

p
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There are seventeen maximal indecomposable 4×4 examples:
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2 p
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1 1
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There are nine maximal indecomposable 5×5 examples:
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1 1
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1 1
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1 1
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1
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There are four maximal indecomposable 6×6 examples:

1 1 1

p
2

1 1 1

p
2

1

p
2

1

p
2

There are two maximal indecomposable 7×7 examples:

1

p
2

1

p
2

There are two maximal indecomposable 8×8 examples:

1

p
2

1

p
2

5.2.2 For R an imaginary quadratic integer ring

In this section, we adopt the graph drawing conventions of Chapter 3. In the cases when

R =Z[1/2+
p
−11/2] and R =Z[

p
−2], we will need to be able to draw edge-weight having

norm 3. To do this we draw .

For R =Z[1/2+
p
−11/2]

There are two maximal indecomposable 2×2 examples:

+

For R =Z[
p
−2]

There are four maximal indecomposable 2×2 examples:

− + + +

There are five maximal indecomposable 3×3 examples:

− + − + + + − + −
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There are seven maximal indecomposable 4×4 examples:

+ + + − +

−

+

+

There are eight maximal indecomposable 5×5 examples:

+ + + + + +

+ + + − +

− +

There are four maximal indecomposable 6×6 examples:

+ + + + + +

+ −

There are two maximal indecomposable 7×7 examples:

+ −

There are two maximal indecomposable 8×8 examples:

+

−

For R =Z[1/2+
p
−7/2]

There are two maximal indecomposable 2×2 examples:

− + +

There are six maximal indecomposable 3×3 examples:

− + − + + + − + −

There are seven maximal indecomposable 4×4 examples:
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+ + + − +

−

+

+

There are eight maximal indecomposable 5×5 examples:

+ + + + + +

+ + + − +

− +

There are four maximal indecomposable 6×6 examples:

+ + + + + +

+ −

There are two maximal indecomposable 7×7 examples:

+ −

There are two maximal indecomposable 8×8 examples:

+

−

For R =Z[i ]

There are two maximal indecomposable 2×2 examples:

− + +

There are eight maximal indecomposable 3×3 examples:

+

+ +

− + − + + + − + −

There are sixteen maximal indecomposable 4×4 examples:
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+

+ + + +

+

+

+

+

+

+ + + − +

−

There are ten maximal indecomposable 5×5 examples:

++

+ + + + + +

+ + + − +

− +

There are six maximal indecomposable 6×6 examples:

+

+

+

+ + + + + +

+ −

There are three maximal indecomposable 7×7 examples:

+ −

There are three maximal indecomposable 8×8 examples:

+

−
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For R =Z[ω]

There are two maximal indecomposable 2×2 examples:

+

There are three maximal indecomposable 3×3 examples:

−

+ −

There are ten maximal indecomposable 4×4 examples:

+

+ +

+

+

+

+

+

+

+ +

+ + +

+

There are nine maximal indecomposable 5×5 examples:

+

++ ++

+

+

+

+ +

+

+

There are fourteen maximal indecomposable 6×6 examples:

+ ++

+

+

+

+ +

+

+
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+

+

+

+

+

+

There are two maximal indecomposable 7×7 examples:

There are three maximal indecomposable 8×8 examples:

+

+

+

+

n
d

−11 −7 −3 −2 −1 2 3 5

2 2 2 2 4 2 3 2 2

3 0 6 3 5 8 5 0 4

4 0 7 10 7 16 7 0 10

5 0 8 9 8 10 8 0 1

6 0 4 14 4 6 4 0 0

7 0 2 2 2 3 2 0 0

8 0 2 3 2 3 2 0 0

Table 5.1: The number of maximal small-span matrices, that are not equivalent to a
Z-matrix, of up to 8 rows for each d .

Observe from Table 5.1 that for d ∈ {−11, 3, 5}, each small-span OQ(
p

d )-matrix having

more than 5 rows is equivalent to a Z-matrix. We summarise other useful implications

from our computations in the following lemma.
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Lemma 5.6. Let G be small-span OQ(
p

d )-graph on more than 6 vertices. Then G has the

following properties:

1. Each edge-weight of G has absolute value less than 2;

2. Each charge of G has absolute value at most 1;

3. G contains no triangles with fewer than 2 charges;

4. If G has an edge-weight of absolute value greater than 1 then G contains no triangles;

5. No charged vertex is incident to an edge-weight having absolute value more than 1.

5.3 Maximal small-span infinite families

Let K be a quadratic number field and let R be its ring of integers. We define a template

T to be a C-graph that is not equivalent to a Z-graph and whose edge-weights are all

determined except for some irrational edge-weights ±α where α is determined only up to

its absolute square a =αα. The pair (T , R) is the set of all R-graphs where α is substituted

by some element ρ ∈ R where ρρ = a . We say an R-graph G has template T if G is

equivalent to some graph in (T , R). In a template, an edge of weight 1 is drawn as

and for weight −1 we draw . Let α1 and α2 denote irrational complex numbers

whose absolute squares are 1 and 2 respectively. We draw edges of weight α1 as

and−α1 as . Similarly, we draw edges of weight±α2 as and . For

our purposes, we will not need to draw any other types of edges. A vertex with charge 1

is drawn as + and a vertex with charge −1 is drawn as − . And if a vertex is uncharged,

we simply draw . A template only makes sense as a graph over rings that have irrational

elements having the required absolute squares. Using templates, we can simultaneously

study small-span graphs over various quadratic integer rings.

In this section we study the two classes of infinite families of small-span matrices over

quadratic integer rings. Namely, these are the infinite families of templates Pn and Qn .

+. . .

Pn (n ¾ 3) . . .

Qn
(n ¾ 3)

Our classification of small-span OQ(pd )-matrices uses the classification of cyclotomic

OQ(pd )-matrices. Since small-span Z-matrices have been classified, we can assume that
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d is in the set {−11,−7,−3,−2,−1, 2, 3, 5, 6}. We can restrict d further. In the previous

section we observed, from the computations, that on more than 5 rows there are no

small-span matrices when d is −11, 3, 5 or 6. Hence, we need only consider d from the

set {−7,−3,−2,−1, 2}.

As discussed in the previous two chapters, cyclotomic OQ(pd )-graphs have been clas-

sified for all d , with each classification being over a different set of rings. In these clas-

sifications, the maximal cyclotomic graphs belonging to an infinite family that are not

Z-graphs have one of three templates given in Figures 5.1, 5.2, and 5.3. We call a template

T cyclotomic (resp. small-span), if all the elements of (T ,OQ(pd )) are cyclotomic (resp.

have small-span) for all d that make sense with T . (E.g., the family of templates T2k in

Figure 5.1 only make sense with OQ(pd ))when d =−1 or d =−3.) More generally, we say

a template T has property P if all OQ(pd )-graphs in (T ,OQ(pd )) have property P for all

appropriate d . Warning: two graphs that have the same template do not necessarily have

the same eigenvalues.

In Figures 5.1, 5.2, and 5.3, we have three infinite families of cyclotomic templates

T2k , C2k , and C2k+1. The sets (T2k , R), (C2k ,S), (C′2k ,S) and (C2k+1,S) are sets of maximal

cyclotomic graphs where R = OQ(pd ) for d = −1 or d = −3, and S = OQ(pd ) for d ∈

{−7,−2,−1, 2}. The set (C′2k ,S) is equal to the set (C2k ,S)unless S =OQ(p−7). The arguments

regarding the templates C′2k are very similar to those of C2k and hence we will ignore the

templates C′2k for the remainder of the chapter.

. . .

A

B

A

B

Figure 5.1: The infinite family T2k of 2k -vertex maximal connected cyclotomic templates.
(The two copies of vertices A and B should be identified to give a toral tessellation.)

All of the eigenvalues of the maximal connected cyclotomic graphs, in the sets (T2k , R),

(C2k ,S), and (C2k+1,S), are equal to±2 with at least one pair of eigenvalues having opposite

signs. Hence each of these graphs has span equal to 4. We want to find small-span graphs

contained inside these maximal connected cyclotomic templates. We look for subgraphs

that have span equal to 4. This way, we can recognise that a subgraph does not have

small-span if it contains one of these subgraphs. In Figure 5.4 we list 4 infinite families of

cyclotomic sub-templates having span equal to 4.

We can show that the sub-templates X (1)n , X (2)n , X (3)n , and X (4)s ,t in Figure 5.4 have span
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. . .

. . .

Figure 5.2: The infinite family of 2k -vertex maximal connected cyclotomic templates C2k

and C′2k (respectively) for k ¾ 2.

+

+

. . .

Figure 5.3: The infinite family of (2k +1)-vertex maximal connected cyclotomic templates
C2k+1 for k ¾ 1.

α2 2 2 2 2 α2

. . .

X (1)n (n ¾ 3)

+

+en en−1 en−2 e4 e3 e2

e1

. . .

X (2)n (n ¾ 4)

α2 2 2 2 2
1

1

. . .

X (3)n (n ¾ 5)

A

l s l s−1 l s−2 l 2 l 1
r0

l 0

r1 r2 rt−2 rt−1 rt = l s

A. . . . . .

X (4)s ,t (s , t ¾ 2)

Figure 5.4: Cyclotomic templates having span equal to 4. In the first three templates, the
subscript denotes the number of vertices. The last template has s + t +1 vertices and the
two copies of the vertex A should be identified.
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equal to 4 by simply pointing out the eigenvectors corresponding to the eigenvalues

±2. For each OQ(pd )-graph in (X (1)n ,OQ(pd )) or (X (3)n ,OQ(pd )), we use α2 to label the edge-

weights of absolute square 2. The numbers beneath the vertices of X (1)n and X (3)n in

Figure 5.4 correspond to entries of an eigenvector having associated eigenvalue 2 and

since these two templates are bipartite, they also have as an eigenvalue −2. The entries

of the eigenvectors of X (2)n are represented by the e j ; the eigenvector associated to 2 has

e1 = 1, e2 = −1, and e j = 0 for j ∈ {3, . . . , n}. For the eigenvalue −2 we have e1 = e2 = 1,

e j = (−1)j for j ∈ {3, . . . , n −1}, and en = (−1)n ·α2.

For the graph X (4)s ,t , we use α1 to label the edge-weights of absolute square 1. For the

eigenvalue

−2: for j ∈ {1, . . . , s −1}, set

l j = (−1)s−j (1+α1), rj = (−1)t−j (1+α1), and l s = rt = 1+α1.

If s + t is even, set

l 0 = (−1)s
�

1+
α1+α1

2

�

and r0 = (−1)s
α1−α1

2
.

Otherwise set

l 0 = (−1)s
α1−α1

2
and r0 = (−1)s

�

1+
α1+α1

2

�

.

2: set

l 1 = · · ·= l s−1 = 1+α1, r1 = · · ·= rt = l s = 1+α1, l 0 = 1+
α1+α1

2
, and r0 =

α1−α1

2
.

The Z-graph X (5)4 in Figure 5.5 also has span equal to 4.

Figure 5.5: The Z-graph X (5)4 .

In the next two lemmata we show that any small-span sub-template of C2k , C2k+1, or

T2k is a sub-template of either Pn or Qn .

Lemma 5.7. The template Pn has small-span for all n ¾ 3. Any connected small-span

sub-template of either C2k or C2k+1 is contained in Pn for some n.

116



5. Small-Span Hermitian Matrices over Quadratic Integer Rings

Recall that a template must have at least one irrational edge-weight.

Proof. The template Pn is a sub-template of the cyclotomic template C2n−1 and so, by

interlacing, the eigenvalues of Pn lie in the interval [−2, 2]. Let A be an adjacency matrix

of Pn . Clearly, it suffices to show that Pn does not have −2 as an eigenvalue, i.e., the rows

of A+2I are linearly independent. We can choose A so that A+2I has the following upper

triangular form.




































3 1

5/3 1

7/5 1
...

...

2(n−2)+1
2(n−2)−1 1

2(n−1)+1
2(n−1)−1 α2

2
�

1− 2(n−1)−1
2(n−1)+1

�





































It is then easy to see that the determinant is 4. Therefore A +2I is non-singular and so A

does not have −2 as an eigenvalue.

By Corollary 5.2, any subgraph of a graph having either X (1)k , X (2)k , or X (3)k as a template

cannot occur as a subgraph of a small-span graph. Similarly, X (5)4 cannot be a subgraph of

a small-span graph, hence all connected small-span sub-templates of C2k and C2k+1 are

sub-templates of Pn for some n .

Lemma 5.8. The template Qn has small-span for all n ¾ 3. Any connected small-span

sub-template of T2k is contained in Qn for some n.

Proof. As with the previous lemma, since Qn is contained in T2n , it suffices to show that

Qn does not have−2 as an eigenvalue. Let A be an adjacency matrix of Qn . We can choose

A so that A +2I has the following upper triangular form.




































2 1 1

3/2 1 −1/2

4/3 1 1/3
...

...
...

n−1
n−2 1 (−1)n−1

n−2

n
n−1 α1+

(−1)n

n−1

1+S(n )





































.
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Here

S(n ) =
1

n

�

1− (−1)n (α1+α1)
�

−
n
∑

k=2

1

k (k −1)
.

Hence the determinant of this matrix is

2− (−1)n (α1+α1).

Since the absolute square of α1 is 1, the absolute value of the real part of α1 is at most 1,

and so the determinant is nonzero for all n . Therefore Qn is small-span.

By Corollary 5.2, no small-span template can contain X (4)t ,s (see Figure 5.4) for all

s , t ¾ 2. Moreover, any subgraph of T2k obtained by deleting two vertices that have the

same neighbourhood is a Z-graph and hence not a template. With these two restrictions

on the subgraphs of T2k , we are done.

Using the classification of cyclotomic matrices over quadratic integer rings, in the

next theorem we classify cyclotomic small-span OQ(pd )-matrices.

Theorem 5.9. Let T be a connected cyclotomic small-span template on more than 6 ver-

tices. Then T is contained in either Pn or Qn for some n.

Proof. We can readily check the subgraphs of sporadic cyclotomic graphs of over quadratic

integer rings (see the classifications in Chapter 3, Chapter 4, and [40]) that are not equiva-

lent to a Z-graph, to find that no such subgraph on more than 6 vertices has small-span.

The theorem then follows from Lemma 5.7 and Lemma 5.8.

Before completing the classification of small-span OQ(pd )-matrices, we first state

some lemmata.

Lemma 5.10. [23, Lemma 2] Let G be a connected graph and let u and v be vertices of G

such that the distance from u to v is maximal. Then the subgraph induced by removing u

(and its incident edges) is connected.

Lemma 5.11. [5, Theorem 2.2] Let G be a path whose edge-weights α satisfy |α|= 1. Then

G is strongly equivalent to a simple path.

We are now ready to prove the following theorem.

Theorem 5.12. Let T be a small-span template on more than 8 vertices. Then T is cyclo-

tomic.
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Proof. Let T ′ be a counterexample on the minimal number of vertices possible. Then

T ′ has at least 9 vertices and it follows from the minimality of T ′ that any proper sub-

template of T ′ must have all its eigenvalues in the interval [−2, 2], but if T ′ does not have

any proper sub-templates, i.e., if all its subgraphs are equivalent to Z-graphs, then T ′

must be a cycle and its subpaths need not have all their eigenvalues in [−2, 2]. Pick vertices

u and v as far apart as possible in T ′. By Lemma 5.10, deleting either u or v leaves a

connected subgraph on at least 8 vertices. If the subgraph Gu obtained by deleting u

from T ′ is equivalent to a Z-graph then let G =Gv be the subgraph obtained by deleting

v , otherwise let G =Gu . If G is a template, then by Theorem 5.9, either G is equivalent to

Qn for some n or G is equivalent to a connected subgraph of Pn for some n . Otherwise, if

G is equivalent to a Z-graph, T ′ must be a cycle and each irrational edge-weight αmust

satisfy |α|= 1. Moreover, by Lemma 5.6, we have that every edge-weight of T ′ must have

absolute value equal to 1. First we deal with the case where G is equivalent to a Z-graph.

Case 1. Suppose G is equivalent to a Z-graph. Then, by above, T ′ is a cycle whose

edge-weights all have absolute value 1. Let C be a cycle on n ¾ 9 vertices v0, v1, . . . , vn−1

such that v j is adjacent to v j+1 with subscripts reduced modulo n . Let each vertex v j of

C have charge c j ∈ {−1, 0, 1} and let each edge-weight have absolute value 1. Now, if C is

small-span then each induced subpath of C is small-span. Hence, C is small-span only if

each subpath vk vk+1 · · ·vk+n−2 is small-span for all k where the subscripts are reduced

modulo n . Since we are working up to equivalence, by Lemma 5.11, we can assume that

all edges in these paths have weight 1. We have computed all small-span Z[i ] and Z[ω]-

cycles on up to 12 vertices to find that the ones on more than 8 vertices have Qn (for some

n) as a template. Using Lemma 5.1 and computing all small-span Z-paths on 12 vertices,

one can check that C is small-span only if c j = 0 for all j ∈ {0, . . . , n −1}. Therefore, T ′

must be uncharged. Hence T ′ is equivalent to Qn for some n (see Lemma 3.16). This

contradicts T ′ being non-cyclotomic. Note that we cannot do better than 8 vertices since

the following non-cyclotomic Z[ω]-cycle C8 is small-span:

+

+

+

+

where the irrational edge-weight is −ω.
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Now we have two remaining cases to consider: the case where G is contained in Pn

and the case where G is equivalent to Qn for some n . In each case, by Lemma 5.6, we can

exclude the possibility that G contains a triangle having fewer than 2 charged vertices. And

similarly, by Lemma 5.6, we need only consider charges from the set {−1, 0, 1}. Moreover,

we can exclude any graph equivalent to X (6)5 , X (7)5 , X (8)5 , or X (9)8 (see Figure 5.6) as a subgraph

of a small-span graph since these graphs have span at least 4.

+

X (6)5

+

+

X (7)5

+

−

X (8)5

X (9)8

+

X (10)
9

+

X (11)
9

X (12)
5

+

X (13)
5

Figure 5.6: The Z-graphs X (6)5 , X (7)5 , X (8)5 , X (9)8 , X (10)
9 , X (11)

9 , X (12)
5 , and X (13)

5 which all have
span greater than or equal to 4.

Case 2. Suppose G is equivalent to a sub-template of Pn for some n . In this case T ′

cannot be a cycle for, if it were, it would have a sub-template on more than 6 vertices that is

not equivalent to a subgraph of either Pn or Qn contradicting Theorem 5.9. By Lemma 5.6,

a charged vertex cannot be incident to an edge-weight of absolute value greater than 1

and T ′ does not contain any triangles. Moreover, since we have excluded X (6)5 , X (7)5 , and

X (8)5 , no leaf (a vertex having only one neighbour) can share its neighbourhood with a

charged leaf.

Since it is equivalent to a subgraph of Pn , we have that G is a path. Recall that we

obtained G by deleting either u or v which are vertices at the maximal distance from

one another. Label the vertices of G by v0, v1, . . . , vr−1 where v j−1 is adjacent to v j for

j ∈ {1, . . . r −1}. Then we can obtain T ′ from G by attaching a vertex to one of the vertices

v0, v1, vr−2, or vr−1. Thus, in order for T ′ not to contain a subgraph equivalent to X (6)5 ,

X (7)5 , X (8)5 , X (10)
9 , X (11)

9 , X (12)
5 , X (13)

5 , X (1)k , or X (3)k , the template T ′ must be equivalent to a
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sub-template of either X (1)k , X (3)k , or Pk for some k . Since each of these templates are

cyclotomic, we have established a contradiction.

Case 3. Suppose G is equivalent to Qn for some n . Since we have excluded graphs

equivalent to X (4)t ,s , X (6)5 , and X (9)8 as subgraphs, and triangles with fewer than two charges

are forbidden, there do not exist any possible small-span supergraphs T ′ having G as a

subgraph. We are done.

5.4 Missing small-span polynomials

Finally, we turn our attention to the question of which polynomials appear as minimal

polynomials of small-span matrices. We define a cosine polynomial to be a monic in-

teger polynomial having all its zeros contained in the interval [−2,2], and a non-cosine

polynomial to be a monic totally real integer polynomial with at least one zero lying

outside [−2,2]. McKee [23] found six small-span polynomials of low degree that are not

the minimal polynomial of any Hermitian Z-matrix: three degree-6 cosine polynomials

x 6−x 5−6x 4+6x 3+8x 2−8x +1,

x 6−7x 4+14x 2−7,

x 6−6x 4+9x 2−3,

and three degree-7 non-cosine polynomials

x 7−x 6−7x 5+5x 4+15x 3−5x 2−10x −1,

x 7−8x 5+19x 3−12x −1,

x 7−2x 6−6x 5+11x 4+11x 3−17x 2−6x +7.

Suppose a non-cosine integer polynomial of degree more than 8 is the minimal polynomial

of a Hermitian R-matrix for some quadratic integer ring R . Then, by Theorem 5.12, it is

the minimal polynomial of an integer symmetric matrix. In fact, by our computations, the

above holds for irreducible non-cosine polynomials of degree more than 6, and we record

this result as a corollary. Let Q(x ) be the characteristic polynomial of C8 (from the proof of

Theorem 5.12).

Corollary 5.13. Let R be a quadratic integer ring and let f (x ) 6= ±Q(x ) be a non-cosine

polynomial of degree more than 6. If f is the minimal polynomial of some Hermitian

R-matrix then f is the minimal polynomial of some integer symmetric matrix.
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Hence, in particular, the three degree-7 non-cosine polynomials are not minimal

polynomials of any Hermitian R-matrix for any quadratic integer ring R .

We do, however, find that two of the degree-6 cosine polynomials above are character-

istic polynomials of Hermitian Z[ω]-matrices. The graph

where α1 =ω, has characteristic polynomial x 6−7x 4+14x 2−7; and the graphs Q6 and

where α1 =ω in both, have characteristic polynomial x 6−6x 4+9x 2−3.

The polynomial p (x ) = x 6−x 5−6x 4+6x 3+8x 2−8x +1 remains somewhat elusive as

it is not the minimal polynomial of an Hermitian R-matrix for any quadratic integer ring

R . For suppose that p (x ) is the minimal polynomial of some Hermitian R-matrix A. Then

each eigenvalue of A is a zero of p (x ) [15, §11.6] and the minimal polynomial p (x ) divides

the characteristic polynomial χA (x ). Hence, since p (x ) is irreducible, χA (x )must be some

power of p (x ). Therefore, we need to check that p (x ) is not the minimal polynomial of

any r × r Hermitian R-matrix where 6 divides r . Both Pn and Qn have span larger than

the span of p (x ) for n ¾ 18 and we have checked all possible matrices for r = 6 and 12.

Finally, we point out a matrix that comes close to having p (x ) as its minimal poly-

nomial: the Z[ω]-graph Q7 where α1 = −ω, has as its characteristic polynomial the

polynomial (x +1)(x 6−x 5−6x 4+6x 3+8x 2−8x +1).

122



Bibliography

[1] BORWEIN, P., DOBROWOLSKI, E., AND MOSSINGHOFF, M. Lehmer’s problem for polyno-
mials with odd coefficients. Annals of mathematics 166, 2 (2007), 347–366. 13

[2] BOURBAKI, N. Lie groups and Lie algebras chapters 4-6. Springer, 2002. 28

[3] BOYD, D. W. Small Salem numbers. Duke Mathematical Journal 44, 2 (1977), 315–328.
9, 13, 35

[4] BREUSCH, R. On the distribution of the roots of a polynomial with integral coefficients.
Proc. Amer. Math. Soc. 2 (1951), 939–941. 3, 11

[5] CAMERON, P., SEIDEL, J., AND TSARANOV, S. Signed graphs, root lattices, and Coxeter
groups. Journal of Algebra 164 (1994), 173–209. 118

[6] CAPPARELLI, S., DEL FRA, A., AND SCIÒ, C. On the span of polynomials with integer
coefficients. Math. Comp. 79, 270 (2010), 967–981. 102

[7] CAUCHY, A.-L. Sur l’équation à l’aide de laquelle on détermine les inégalités séculaires
des mouvements des planètes. In Oeuvres complètes, IIième Série (1829), Gauthier-
Villars. 17
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