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Abstract

L. Volkmann, Discrete Math. 245 (2002), 19-53, posed the following ques-
tion. Let 4 < m < n. Are there strong n-partite tournaments, which are
not themselves tournaments, with exactly n —m + 1 cycles of length m?
We answer this question in the affirmative. We raise the following prob-
lem. Given m € {3,4,...,n}, find a characterization of strong n-partite
tournaments having exactly n — m + 1 cycles of length m.

1 Introduction

We use terminology and notation of [1]; all necessary notation and a large part of
terminology used in this paper are provided in the next section.

A very informative paper [11] of L. Volkmann is the latest survey on cycles in
an important class of digraphs, multipartite tournaments. Cycles in multipartite
tournaments were earlier overviewed in [2, 6, 8]. Along with description of a large
number of results on cycles in multipartite tournaments, L. Volkmann [11] poses
several open problems. In this paper, we solve one of them.

Problem 1.1 (Problem 2.27 in [11]) Let 4 < m < n. Are there strong n-partite
tournaments, which are not themselves tournaments, with exactly n — m —+ 1 cycles
of length m?

This problem is a natural question due to the following reasons:

(1) According to Theorem 2.24 in [11], every strong n-partite tournament, n > 3,
has at least n — m + 1 cycles of length m for 3 < m < n.

(ii) By reversing the arcs of the unique Hamilton path of the transitive tournament
on n vertices, we obtain a strong tournament with exactly n —m + 1 cycles of length
m for every 3 < m < n (see [9]).

(iii) For every odd n > 3, there exists a strong n-partite tournament with n — 2
cycles of length 3 (see [5] or Theorem 2.26 in [11]).

One may wish to strengthen Problem 1.1 as follows.
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Problem 1.2 Let 3 < m < n and n > 4. Are there strong n-partite tournaments,
which are not themselves tournaments, with exactly n —m+1 cycles of length m for
two values of m?

In Section 3, we solve Problem 1.1 in the affirmative. We do it by exhibiting
a simple family of multipartite tournaments. We also show that such multipartite
tournaments cannot have m-cycles with a pair of vertices from the same partite set.
This result might well be of interest for solving the following open problem: Given
m € {3,4,...,n}, find a characterization of strong n-partite tournaments having
exactly n — m + 1 cycles of length m. In Section 4 we show that Problem 1.2 has a
negative answer for m € {n — 1,n}.

2 Terminology, notation and known results

A digraph obtained from an undirected graph G by replacing every edge of G with
a directed edge (arc) with the same end-vertices is called an orientation of G. An
oriented graph is an orientation of some undirected graph. A tournament is an
orientation of a complete graph, and an n-partite tournament is an orientation of
a complete n-partite graph. Partite sets of complete graphs become partite sets of
n-partite tournaments.

The terms cycles and paths mean simple directed cycles and paths. A cycle of
length k is a k-cycle. A digraph D is strongly connected (or strong) if for every ordered
pair z,y of vertices in D there exist paths from x to y. For a set X of vertices of a
digraph D, D{X) denotes the subdigraph of D induced by X.

For sets T, S of vertices of a digraph D = (V, A), T—S means that for every
vertex t € T and for every vertex s € S, we have ts € A, and T=-S means that for
no pair s € S, t € T, we have st € A. While for oriented graphs 7—.S implies T=-S,
this is not always true for general digraphs. If u—wv (i.e., uv € A), we say that u
dominates v and v is dominated by u.

The following three results on cycles in strong n-partite tournaments are of in-
terest for this paper.

Theorem 2.1 [7] Every partite set of a strong n-partite tournament, n > 3, contains
a vertex which lies on an m-cycle for each m € {3,4,...,n}.

Theorem 2.2 [5] Every vertex in a strong n-partite tournament, n > 3, belongs to
a cycle that contains vertices from exactly q partite sets for each q € {3,4,...,n}.

Theorem 2.3 [11] Every strong n-partite tournament, n > 3, has at least n —m+1
cycles of length m for 3 <m <n.

3 Results related to Problem 1.1

The following theorem solves Problem 1.1 in the affirmative.
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Proposition 3.1 Let D be an n-partite tournament and let 4 < m < n. Let
Vi, Vo, ..., V, be partite sets of D and let v; € V;, i = 1,2,...,n. If D satisfies
the following conditions, then it has exactly n — m + 1 cycles of length m.

1) |V;| =1 for everyi#mn —m+2.

2) C =010y ... 0,01 18 an n-cycle.

3) For every s € {1,2,...,n —2} andr € {s+2,5+3,...,n}, we have v, = v,.

4) vo = (Vacmiz = {n-mi2})={v1, 02, .., Una )

Proof: By the conditions 2 and 3, the only path from vertex v to v,, r > s
in D(V(C)) is vsvs41 - .- v, which has r + 1 — s vertices. Therefore, D(V(C)) has
n —m + 1 cycles of length m. It is remain to show that there is no m-cycle C' that
contains a vertex & € Vp_pmi2 — {Un—m+2}. Assume that C' = zz129... Ty is
an m-cycle through x. By the conditions 1 and 4 the only vertex that dominates a
vertex in V,_mi2 — {Un—m+2} i v,. Therefore all the vertices in V(C") — {z} are in
V(C). Also 1 = vy,.

Let x1 = vg. By the conditions 2 and 3 the only path in D(V(C)) from vy to v,
iS UkUg41 - - - Uy, which has n + 1 — k vertices. So we have n+1—k=m — 1, i.e.,
k=n—-—m+2. But we have * — 21 = v,_;uyo. This is a contradiction because
Un—m+2 and x are in the same partite set. From the above we conclude that D has
exactly n — m + 1 cycles of length m. |

It would be interesting to solve the following natural problem.

Problem 3.2 Let m € {3,4,...,n}. Find a characterization of strong n-partite
tournaments having exactly n —m + 1 cycles of length m.

This problem seems to be especially interesting for the case of Hamilton cycles,
i.e., m = n. Tournaments with a unique Hamilton cycle were first characterized by
Douglas [3]. Douglas’s characterization is not simple even though the number of such
tournaments on n vertices equals exactly the (2n — 6)th Fibonacci number [4, 10].

The following theorem might well be of interest for solving Problem 3.2.

Theorem 3.3 Let m € {3,4,...,n} and let D be a strong n-partite tournament
that has an m-cycle C containing vertices from less than m partite sets. Then D has
more than n —m + 1 cycles of length m.

Proof: If m = n, then by Theorem 2.1, there is another m-cycle that contains
vertices from the partite set that does not have intersection with V(C).

We prove the theorem by induction on £ =n —m + 1 > 1. The above argument
provides the basis of our induction (¢ = 1). Now assume that ¢ > 2. Let V' be
a maximal set such that V(C) C V', V' does not contains vertices from all partite
sets, and D(V’} is strong. If D(V') contains vertices from n — 1 partite sets then by
induction hypothesis D{V’) has more than ¢ — 1 = n — m cycles of length m. By
Theorem 2.1 the remaining partite set has a vertex that is contained in an m-cycle.
These imply that D has more than n —m + 1 cycles of length m. In particular, this
argument extends the basis of our induction to ¢ = 2.
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Now we may assume that ¢ > 3 and V’ contains vertices from ¢ < n — 2 partite
sets. Let t; be a vertex in V(D) — V'. Without loss of generality, assume that
V'=t;. Since D is strong there is a path from t; to a vertex z € V'. Let P =
tits .. .t.x be such a path and assume that P is of minimum length. Therefore, we
have V'={ts,t3,...,t,_1}. If t,_; and t, are in partite sets that have intersection
with V', then we can add t,_; and ¢, to V', a contradiction. Therefore one of them
is in a partite set that does not have intersection with V'. If ¢ < n — 3 we can still
add t,_, and ¢, to V', a contradiction.

Therefore the remaining case is ¢ = n — 2, and ¢,_; and ¢, are in two different
partite sets that do not have intersection with V’. By our assumption we have
t, = V'—=t,_1—t,. Now consider C. We can find two distinct m-cycles that contain
t,—1 and t,, and some vertices from C. By induction hypothesis, D(V’) has more
than {—2 = n—m—1 distinct m-cycles. These imply that D has more than n—m+1
cycles of length m. O

Corollary 3.4 Let D be a strong n-partite tournament and let D have exactly n —
m+ 1 cycles of length m for some m € {3,4,...,n}. Then every m-cycle of D has
no pair of vertices from the same partite set.

4 Results related to Problem 1.2

In this section we show that Problem 1.2 has a negative answer for m € {n — 1,n}.
We denote, by UC,, the set of all strong n-partite tournaments, n > 4, which are
not themselves tournaments, with exactly one cycle of length n.

Lemma 4.1 If D € UC,, n > 4, and C is its unique n-cycle, then there is a vertex
y € D= V(C) such that D{V(C) U {y}) is strong.

Proof: Let D € UC,, and let C be its unique n-cycle. By Corollary 3.4, C' contains
a vertex from every partite set of D. Let V1, V4, ..., V, be partite sets of D and let
C=vvs...00v, 5, €V, 1=1,2,... n.

Assume that there is no vertex y € D — V(C) for which D(V(C) U {y}) is
strong. Then the following two sets S and T are non-empty: S (T') is the set of
vertices in D — V(C) that do not dominate (are not dominated by) any vertex in
C. Since D is strong and V(C)U SUT = V(D), there exist vertices u € S and
w € T such that v — w. Assume that u € V;, w € V; (i # j). Ifi # j -2,
then wwvj11vj42...vj-2u is an n-cycle of D distinct from C, which is impossible.
If ¢ = j — 2, then wwv;_1v;...vj_4u is an n-cycle of D distinct from C, which is
impossible. O

Theorem 4.2 There are no strong n-partite tournaments, n > 4, which are not
themselves tournaments, with exactly one cycle of length n and two cycles of length
n—1.



MULTIPARTITE TOURNAMENTS 21

Proof: Let D € UC,. By Corollary 3.4, the unique n-cycle in D is C = v1vz . .. v,01,
where v; € V;, i =1,2,...,n. Let y be a vertex in D—V(C') such that D{(V(C)U{y})
is strong. By Theorem 2.2, y lies in a cycle C” of D(V(C)U{y}) that contains vertices
from exactly n — 1 partite sets. If C’ contains v; and v; belongs to the same partite
set as y, then the length of C' is n, a contradiction. Thus, C” is an (n — 1)-cycle. It
remains to observe that D(V(C)) has at least two (n — 1)-cycles by Theorem 2.3. O
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