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ABSTRACT

In this thesis, covariance matrices and generalised variances
for maximum likelihood estimators of Gaussian autoregressive moving
average time series models are derived. It is shown that estimators
for pure moving average and pure autoregressive models have covariance
matrices which are expressed in terms of two triangular matrices.
Furthermore, the generalised variance is obtained from a factorisation
of the determinant of the covariance matrix into four constituent
parts. Examples of these theorems are given. The results are
generalised for estimators of a mixed autoregressive moving average
model in which there is either just one moving average parameter or
just one autoregressive parameter. In particular the generalised
variance is factorised into the determinants of. the covariance
matrices for efficient estimators of the parameters of the
corresponding two pure models, and two other scalar terms. The
submatrices of the covariance matrix for the efficient estimators of
the parameters of the general mixed model are found by specifying
four or five upper triangular matrices, whose non-zero elements are
single parameters of the model, and then carrying out some matrix
mu1tip11cations and additions. Provided the model is not too large,
explicit expressions for the variances and covariances can be
obtained. Examples, using mixed models, of these methods are given,
and the adequacy of the fitted model is discussed in detail.

It is proposed that these theorems enable statistical tests to
be applied to problems of active tracking, which, traditionally, are
expressed in terms of polynomial-projecting dynamic linear models.
The problem of testing for constant velocity is considered in detail.
A test based on a generalisation of Student's t test is discussed.

Several examples of this test procedure are given.
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ADDENDA

p.29 Define the autocorrelation of lag h,

s-h
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where s is the proposedAorder of the model.

p.75 Redundant or nearly redundant factors are not necessarily obvious,
particularly as there may be large sampling errors in the parameter
estimates. Thus factorizing «(z) & B(z) using the obtained
parameter estimates will not always help in identifying where the
inadequacy of the fitted model Tlies. It would be usefui instead to
examine the variances and covariances of these estimates to see how
large they are. If there are some unexpectedly large values in the
covariance matrix then this suggests that the fitted model contains
the wrong combination of autoregressive and moving average parameters.
Another indication is provided by thé genéra]ised variance which will
be large if the order of the model or the parameter values have been

poorly determined.

p.132 In Section 8.2, we assume that the noise components b,, r, are

t> 't
independent and that they have approximately normal N(O, abz),

N(O, °r2) distributions respectively. The bearing can be measuréd
very accurately in practical situations even at relatively long range
which implies that the variance cb2 will be small. In order to
establish that (VXt-ux) has the same correlation structure as a first
order moving average process, the analysis on pp.134-137 assumes

Ibtl < 1. This assumption appears to be valid on the whole since

op > s small, but if lbtl > 1 the result is less certain. The
simulations in the next section attempt to demonstrate that the test

still provides a valid method for detecting velocity changes using

cartestian data converted from bearing and range measurements.
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CHAPTER 1

INTRODUCTION

For many years the analysis of data collected over a period of
time has involved scientific workers in numerous and varied fields
of research. For instance, the data series published by Government
departments are examples of time series of interest to economists.
One of the longest such series is possibly the figures from the
population census which began in the last century. Figures
relating to sales of new or established products are needed by
market researchers, and records of seismic activity are essential to
the geophysicist in his efforts to predict future movements of the
earth's crust. In general, observations from such time series are
dependent, as in population series, for example, where the size of
the population in any one year is dependent on population figures
in previous years.

This dependence is usually due to some underlying process
which may or may not be known to the analyst or control theorist.
This is the case in the active tracking procedure in navigation.

It is required to track moving objects in real-time, such as
aircraft, and to register the general behaviour of these objects.
The observed position of the object at time t 1is dependent on the
position and velocity at previous times through the equations of
motion, and this prior information is helpful in building up a
model for the motion of the object. The model can be verified by
the control theorist and the elements of the underlying processes,

if known, are estimated from the available observations.
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This situation is more useful than cases where the structure of the
underlying process is not known, and a model is fitted from a
consideration of the data only.

Most time series are not purely deterministic, hence accurate
modelling requires the use of random processes. The classical
statistical models, namely the autoregressive (AR), moving average
(MA) and autoregressive moving average (ARMA) models are linear
stationary models which employ random processes. It is frequently
assumed that the elements of the sequence '{et} have a common variance,
and possibly that they are independent and have an identical normal
distribution with mean zero. Many naturally occurring time series
are not stationary, but this property can often by restored by a
suitable non-parametric transformation, such as differencing.

In general it is one of the serious drawbacks of the
employment of classical time series in model fitting procedures that
the parameters have no straightforward interpretations. Also if
the underlying process were to change, it is not clear how.this
would affect the model parameters. To circumvent this problem the
control theorist exploits the underlying process in order to obtain
the model. The components of the resulting 'state space formulation'
have physical meanings, such as distance and velocity. The control
theorist is more interested in the estimation of the state of the
underlying process than the prediction of future observations.
Several state estimation schemes, known as filters, have been
proposed by Kalman (1960) and Kalman & Bucy (1961). One of the most
meaningful and popular is a recursive filter, commonly referred to
in the literature as the Kalman filter.

The state space model 1is considered in detail in a forecasting

context by Harrison & Stevens (1976). By placing mild constraints
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such as time independence on the coefficient matrices, and normality
on the noise components, the resulting state space model is seen to
have some useful properties. For example, the predictors of the
steady model are the same as those of certain low-order non-stationary
time series models. For state space models of larger order,
Godolphin & Stone (1980) have shown that by fixing values on the
products of the coefficient matrices, these models can be interpreted
as polynomial-projecting models of degree d, where the dimension, n,
of the system vector satisfies n > d+1. In the equilibrium state
the predictors of these models are identical to those of a class of
non-stationary time series in which the degree of differencing
required to restore stationarity is d or d+1. It follows that
data generated by a state space model satisfying these conditions can
alsobe described by stationary time series models after differencing
the data a suitable number of times. This property then permits us
to apply the well-established inference techniques of time series
analysis to these data. The usefulness of this dual representation
forms the basis of a test for constant velocity which will be
described in detail in what follows.

A rery general stationary time series is the ARMA model
which has p+q unknown parameters a],...,ap,s],...sq and an
unknown variance o¢2. Either p or q may be zero, yielding pure
moving average or pure autoregressive models respectively. A problem
that has occupied the attention of statisticians in recent years is
the estimation of the parameters of the model, based on a realisation
X of n consecutive observations. One of the forerunners.in this
field is Whittle (1953). He has shown that the maximum 1ikelihood
approach yields a consistent estimator which is asymptotically

normal provided the random process '{et} is Gaussian. Whittle has
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also shown that if {st} belongs to a wide class of non-Gaussian distri-
butions then the least squares approach yields consistent estimators

with asymptotically minimum variance among a certain class of estimators.

In comﬁon with Whittle, the maximum 1ikelihood approaches of
Durbin (1960) and Walker (1962) reduce the data X to a set of m
sample serial correlations. These statistics are often used to
examine standard problems in time series analysis. It appears to
be widely accepted that most of the information on the model
parameters is contained in sample serial correlations of relatively
small lag. Typically m is of the order of 30 when n is
greater than 100 with an expectation of Tittle loss in estimator
efficiency. In estimating the parameters of an autoregressive
process, Mann & Wald (1943) showed that consistent estimators for

Gpse..say  are obtained by replacing o with &k and the

P
covariances Yk by the sample serial covariances Ck in the
Yule-Walker equations. Whittle later showed that these estimators
were also efficient.

Several alternative approaches exist when moving average models
are considered. Whittle's maximum Tikelihood estimator is not
obtained in closed form even for q=1, as was emphasized by
Durbin (1959).- Instead, Durbin approximates the moving average
process by a high order autoregression and then invokes the theorem
of Mann & Wald. Walker (1961) also concludes that Whittle's
approach would be rather cumbersome in practice. His alternative
procedure is based on determining an asymptotically efficient

estimator for the correlations and solving for 51,...,8 using the

q
Cramér-Wold factorization. A comment by Whittle (1954,p.212)
suggests a direct approach to maximising the likelihood. This has

been considered further by Godolphin (1977, 1978a). He shows that
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the maximum likelihood estimators of the parameters are given
asymptotically by a linear combination of the sample serial
correlations. The calculations are straightforward for any value
of q. A computer implementation has been published by

Angell & Godolphin (1978).

Box & Jenkins (1970, Chapter 7) suggest a computational
approach to maximising the Tlikelihood function; their method is
based on a search procedure for minimising the residual sum of
squares Zetz. | Other related methods are given by Ansley (1979),
Ljung & Box (1979) and Nicholls & Hall (1979). The approach of
Anderson (1975) is based on the method of scoring. The methods of
Box & Jenkins and Anderson employ the data as it stands without
transforming the data to a set of sample serial correlations.
Hannan's procedure (1969) is based on the fact that the periodogram
approximately diagonalizes the covariance matrix of the observations,
provided n 1is sufficiently large.

Despite the volume of material oh inference for time series
models, comparatively 1ittle interest has begn shown 1in the
Titerature in the computation ofithe covariance matrix for the

efficient estimator & of o = CORPPL Y- This problem

)

P q
has been in existence for 30 years or more. The work of
Whittle (1953) was added to by Durbin (1959) and Box & Jenkins (1970).
It is shown that the maximum 1ikelihood approach yields a covariance
matrix V/n for & which is smallest in the following sense. The

*
difference V¥ -V 1ds positive semi-definite when y*/n is the

covariance matrix for any alternative consistent estimator. This

impTies that the variances and covariances in V/n are each smaller
*
than the corresponding variances and covariances in V /n; also the

generalised variance is smaller than that of y*/n,
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i.e. det V<det V. Whittle (1953) also derived a formula for

T yhere n!'] is the

calculating the individual elements of V~
information matrix of the model. The formula contains complex
integrals and is rather awkward to apply. An alternative
formulation exists, based on an algorithm of Quenouille (1947a).
This expression eliminates the complex integrals, but is still very
cumbersome to use except for the smallest of models. For models
containing no moving average parameters, Durbin (1959) has produced
a matrix expression for V as a whole. He noted that 2'1 = Ep
where ozgp is the covariance matrix for p consecutive

observations of the process. However this result does not

generalise to include ARMA models. Pagano (1973) has examined
Durbin's result and formed an expression for V in terms of the
products and differences of upper triangular matrices. Although
Pagano's expression has been quoted by other workers, a proof does

not appear to have been given in the Titerature. A simple

adaptation yields an equivalent expression for purely moving average
models as well, but no form for mixed models results from this
duality.

Box & Jenkins (1970, §A7.5) suggest another approach for
evaluating V/n. They derive the information matrix for an
autoregressive process of order p+q whose parameters are the inverse
zeros of a(z) = 1+a]z+...+apzp and g(z) = 1+s1z+...+sqzq.

In moderate or large samples this is approximately the information
matrix for the ARMA(p,q) process with parameter vector @.

This matrix then has to be inverted in order to obtain the covariance
matrix for the efficient estimator of ©. The procedure is

demonstrated with the simplest case, the ARMA(1,1) model. However

if p or q is strictly greater than unity the technique is
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complicated to put into practice, particularly if some of the zeros
of o(z) or B(z) are complex-valued. The accuracy of this method
as the number of model parameters increases, is uncertain, and it is
not clear whether this approach could be adapted to evaluate V, or
the information matrix directly.

In this thesis we present simple procedures for evaluating V
for stationary linear time series models. Also of interest is the
specification of the information matrix and the generalised variance.
For pure models, a proof is given of an expression for V in terms
of upper triangular matrices whose orders are equal to that of the
model considered. The specification of V wusing these matrices
simplifies the déterminant of V 1into the product of four terms,
each of which is easily calculated. These results are generalised
for mixed models which contain either just one moving average or just
one autoregressive paramefer. By defining two further upper
triangular matrices, the submatrices of the information matrix for
the general autoregressive moving average process can be evaluated.
The covariance matrix V/n 1is obtained by inverting the information
matrix and preserving the same partitioning.

Under certain specified conditions; a subclass of general time
series models have similar properties to polynomial-projecting
dynamic linear models. Thus problems relating to active tracking
can be examined using classical statistical tests as alternatives to
the state estimation schemes usually associated with such problems.
The testing for constant velocity is considered in detail. A test
based on a generalisation of Student's t test is derived and the
results of various simulations are given in detail.

In Chapter 2 we establish the basic statistical properties of

three stationary time series, namely the autoregressive, moving
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average and mixed autoregressive moving average models. Some. of the
inference techniques mentioned previously are described, together
with methods for testing for specification of models. State space
models are also defined and the effect of restricting the components
of the system is considered.

Chapter 3 examines in detail the purely autoregressive model.
The model is treated separately not only for reasons of its simplicity
but also because it appears. to be widely used in practice. The
techniques presented in this chapter form a basis of ideas which will
be used or adapted Tater, when more complicated models are being
considered. The elements of the information métrix are. given by a
simplified form of Whittle's result (1953) for the elements of 2'1.
However, if p is only moderately large it appears to be simpler to
use an_a]ternative method. A proof is given of an expression for V
based on Durbin's result (1959). Hence the covariance matrix for
the efficient estimator of the model parameters can easily be
specified and inverting this matrix is the easiest way in which to
form the information matrix. A simple formula is derived for the
generalised variance which relies on the properties of the upper
triangular matrices in the expression for V.

In Chapter 4 we examine a subclass of general ARMA(p,q) models
containing either just one moving average parameter or just one
autoregressive parameter, i.e. we consider ARMA(p,1) and ARMA(1,q)
models only. This subclass contains several simplifications compared
to the general class of mixed models, and since in practice p and q
are usually quite small, it seems likely that the chosen model may
fall into this subclass. The information matrix is obtained in
partitioned form with submatrices on the diagonal given by formulae

from Chapter 3. The off-diagonal block is easily specified in this
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case, since it is a vector and not a matrix. Durbin's result is
not applicable to the matrix y'l as a whole, so the covariance
matrix V/n can only be derived by inverting y'] and preserving
the same partitioning. The addition of one extra parameter makes
the specification of the generalised variance also more complicated
than for pure models. The problem is overcome by defining upper
triangular matrices with similar properties to those in Chapter 3.
The concise expression for the vector component of the information
matrix also plays an important part. Proof is given of an elegant
factorization of det V, together with an example.

An algorithm is presented in Chapter 5 for evaluating the
covariance matrix for the efficient estimators of the parameters of
the general ARMA(p,q) model in which both p and q are strictly
greater than unity. As in Chapter 4, the method is based on

]

inverting V' written in a partitioned form. However the off-

1 is no Tonger a simple

diagonal block of the information matrix nV~
vector. It wduld appear that the p+g-1 different elements of
this pxq matrix can only be specified using Whittle's formula.
But by defining two further upper triangular matrices and taking
products and additions with the previously defined matrices, a pxp
matrix is formed, whose inverse contains the off-diagonal block of

y-l

in its first q columns. The result is proved assuming p > q;
details are also given of the specification of the information matrix
and the covariance matrix for & if p < q.

In Chapter 6 we define the univariate state space model in the
form given by Harrison & Stevens. By placing a mild constraint on
the coefficient matrices a large subclass of these models can be

interpreted as polynomial-projecting models. These models possess

the property that the forecast function is a polynomial in the
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prediction lead-time. The same properties have been demonstrated
to hold for certain non-stationary time series models in which the
degree of differencing is equal to, or one greater than the degree
of the polynomial-projecting model. In the former category, a
deterministic term is also present in the model, and the number of
moving average parameters is less than or equal to the degree of the
polynomial-projecting model. In order that classical inference
techniques of time series are applicable, the moving average model
should be invertible. It seems that this criterion will usually be
the deciding factor as to which time series model should be used to
describe the given data.

Chapter 7 examines a problem of particular interest to control
engineers engaged in the active tracking of marine craft. The aim
is to quickly detect manoeuvres in the object which can be observed
as ve]pcity changes. By estimating the velocities before and after
a suspected velocity change, their difference can be tested for
significance. A test statistic is formulated which is a generalisation
of Student's t test. The state space form for constant velocity is
described. The appropriate time series model is given and
relationships are derived between the variances of the noise components
of each model. Estimates of the parameters of the time serijes model
are required in the test statistic. These are obtained using the
maximum 1ikelihood principle. The test is applied to simulated data
which represent the cartesian co-ordinates of the object relative to
the observer. The two components of the data at each time point are
taken to be independent, and the test is performed separately on each
set of co-ordinate data. The sensitivity of the test is assessed by
performing the test on sets of data containing a wide variety of

velocity changes or no velocity change at all.



- 16 -

In Chapter 8 we consider the active tracking problem when the
data assume a different form to that of Chapter 7. The range of
the object is observed by noting how long the signal emitted by the
observer takes to return to him. It is assumed that the bearing of
the signal can also be measured. With these two pieces.of
information, the location of the object in the plane is known, within
the accuracy of the measuring instruments. It is not feasible to
apply the test described in the previous chapter to the bearing and
range data independently, éince either may remain constant even when
the object is manoceuvring. However we show that the test appears to
be valid if the bearing-range data are first converted into cartesian
co-ordinate data. The resulting data sets relating to the X and Y
co-ordinates are considered independent and the test proceeds as in
Chapter 7. It appears that the test performs comparably well on
the cartesian data converted from bearing-range data as on the

genuine cartesian data of Chapter 7.
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CHAPTER 2

TIME SERIES

2.1 Introduction

In this chapter the statistical properties of univariate time
series models are considered. It is generally assumed that a
realisation X],...,Xh of size n 1is available. Three basic
time series models are defined, namely the autoregressive (AR),

. moving average (MA) and autoregressive moving average (ARMA) models.
The estimation of a possibly non-zero mean is considered in socme
cases. Some methods are outlined for determining estimates of the
parameters of the models. Varijous tests for establishing the
order of the proposed model are also presented. In the final
section state space models are described. These models attempt to
describe time series data in a way that is more acceptable to

practitioners in that the components of the system equation have

intuitive interpretations.

2.2 Statistical Properties of Autoregressive Models

The autoregressive model of order p with zero mean is
defined by

X, + a.X

t .lt_-'+...+

X =

R € (2.2.1)

where {et} is a sequence of uncorrelated Gaussian random variables

with a common variance o<2. 1i.e.

E(et) = 0 E(etek) = St’kcz,
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where ¢ is the Kronecker delta. The model (2.2.1) is

t,k
stationary provided the inverse zeros of the autoregressive

coefficient generating function

z) = 1+ a2 I zP
c7'( ) a'l + ap

are less than one in modulus.

The autocovariances Tk =“E(tht+k) satisfy the Yule-Walker

equations:

Yy + SRR + ... + 0o 0, Y = Yok (2.2.2)

pYk-p -

for k > 1. Multiplying (2.2.1) by X and taking

t+k
expectations gives the Wold equations:

2

0 + @1 Y14 + ...+ aka+p =g bk
where
B(z) = & b2%-_1
k=0 U.(Z)

with bO = 1. The autocovariances can be obtained from the model
parameters by taking the first Wold and the first p Yule-Walker

equations and re-writing them in the form

YO = 1 gl 0'2 (2.2.3)
0§ o AW %
p
where @ = (o, ap)' and
- [ - - [~ .
A= 1 o ap_1 » W= a, ag . ap 0
0 1 ap-Z ay oy 0 0
o 0 .0 0
-0 0 1 _ 0 0 0 0 |
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and Qp is the zero vector of length p. It is interesting to
note that the matrix A features égain in the next chapter, where
the covariance matrix for the efficient estimators of (a],...,ap)
is sought.

An alternative approach to evaluating the autocovariances is

due to Quenouille (1947a). The autocovariance generating function

is defined by

r(z)

1]
2
4=
™
<
o
L}
N
o+
N
S

and satisfies
1

T(z) = o2B(z)B(z"

)

The expression T(z)/¢2 1is uniquely determined by

| p -1 -p
1 KO + (K]z +o..+ sz ) + (K1z +o.0t sz )

?

a(z)a(z"1) a(z) a(z71)

where Ko’KT""’Kp are found by equating coefficients of

zo,z],...zp. Then
= 2
Yo Koo
and the covariances Y{sYpse.. are given by the relation

a(z) z] Ykzk = (K1z + Kzz2 + .. .+ szp)c2 .

The converse problem, that of finding the model parameters
from the autocovariances is straightforward for autoregressive

models; by writing the Yule-Walker equations (2.2.2) in matrix

notation it follows that

-~ - - 1 -

aq = -1Y Y]"'Yp-ﬂ

a2 Y] Yo - - [ Yp-z YZ

Y'l--1
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in which form the parameters can readily be obtained.

In considering the problem of estimating S ERREEL and

o2 we assume that the process (2.2.1) is stationary and that the
sequence {et} consists of independent and identically distributed

random variables. Mann & Wald (1943) showed that for large

~

samples, the maximum Tikelihood soTutfons for ;],...,ap are given

by the intuitively sensible approach of solving the Yule-Walker

equations (2.2.2) with o, replaced by ;k and Yi replaced by

k

the sample serial covariance ¢, of lag k defined by

k
n-k
% ~ _l"t§1 XXpek -
n-k
The variance is estimated by
2 =11 (s oaX, )2
o = z + I o
“ga1 0 bl KEK

Mann & Wald showed that their approach yields consistent estimators
for S RERRELM & o2 and also that the joint 1imiting distribution
of the statistics

/n(ey - a)s o o e s Vn(a
is multivariate normal, with mean zero and covariance matrix V.
The expression for V 1is rather complicated; one of their
achievementswas to show that V 1is independent of n.
Whittle (1953) Tater showed that &1""’;p were also

efficient estimators of a1,...,ap. From this paper we can also

deduce that the corresponding covariance matrix is given by
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where the (i,j)-th element of Fua 1s the constant term in the

expansion of

1 3 {log B(z)B(z™)} 2 {log B(z)B(z™ )} (2.2.4)
2 3oy aaj

with B(z) = {a(z)}-] for purely autoregressive models. A
straightforward method for evaluating E;l is presented in the
next chapter, and the information matrix and generalised variance

are also examined.

2.3 Statistical Properties of Moving Average Models

The model with unknown mean u is defined by

Xg = utoe+ Bregp t - - - F B (2.3.1)

q t-q
where pu 1is the deterministic term representing the mean of the
process, and {et} is a sequence of uncorrelated random varijables
as defined in the previous section. The invertibility condition is
~ that the inverse zeros of the moving average coefficient generating
function

B(z) = 8(z) = 1+pgz+.. .+ quq

are less than one in modulus.

Given a realisation X1,...,X we require an estimate for

n?
u. In general the observations are correlated and unless the process
is completely stationary then their distributions may all be different.
In these cases, general estimation methods such as maximum 1ikelihood
are not applicable. However, even if the observations have

different distributions, they all have the same mean value 1y,

suggesting that the usual estimate, namely the sample mean, may still

provide a reasonable estimate. It is easy to see that
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E(X) = u,
so X is an unbiased estimate of u. For large n,

Var(X) = (1+31+...+3)22

which tends to zero as n tends to infinity, so X 1is a consistent
and unbiased estimator of u. Depending on the actual values of
the parameters, Var(X) may be larger than o¢2/n, the value
applicable to n indepeﬁdent observations. It is interesting to
note that the derivation of the result for Var(X) is given in a
frequency domain context by Priestley (1981, pp318).

The estimation of the parameters of the model (2.3.1) has
been considered by Durbin (1959). He approximates the model by a
high order autoregressive process and then invokes the theorem of
~Mann & Wald (1943). Whittle (1951, 1953) considers the problem
using the maximum 1likelihood principle. These estimates,

é],...,sq are functions of the sample serial correlations

rk=ck/c0 where

n-k —

T (X,=X) (X, ,-X) .
t=1 ¢t t+k

Ck = 1
n-k
Whittle's solutijon which is consistent and efficient is not in
closed form, but can be found using an iterative process. A

direct representation of the iterative solution in terms of the
sample serial correlations has been derived by Godolphin (1977,1978a)
and a computer implementation published by Angell & Godolphin (1978).

The joint 1imiting distribution of the statistics

/N(B-l - B-l)s e s e s l/n(Bq = Sq)
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is N(O, E;1 which is analogous to the result given in the previous

5)
section for purely autoregressive models. An interesting duality
result was derived by Whittle. He showed that the covariance
matrix for the efficient estimators of the parameters of an
autoregressive process was the same as that of a moving average
process provided the parameter sets were the same. This result

follows since the (i,j)-th element of EBB is the constant term

in the expansion of

{1og B(2)B(z )} 5 {log B(2)B(z™')}

13 3

which is equivalent to (2.2.3) with, of course, «a(z)=8(z).

2.4 Statistical Propertiés of Mixed Models

The mixed autoregressive moving average model of order (p,q),

allowing for a non-zero mean u, is defined by

(Xt-u)+oz.l (Xt-'l-“) +o..t ap(Xt_p-u) = e By p te.ot Bq t-q (2.4.1)

and ‘{et} is a sequence of uncorrelated random variables as defined
in Section 2.2. To ensure identifiability we impose the following
condition :

The polynomials

a{z) =1+ a2 + ... F apzp & 8(z) =1+ B1Z + ...+ qui

have no factors in common.
We also require that

(i) A11 the roots of afz) & B(z) 1lie outside the unit

circle, for stationarity and invertibility respectively.

(ii) The parameters % and Bq are not both zero.
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The mean is again estimated by X which is unbiased. For

large n the variance of X fis

(1+3]+...+5q)202 ,

2
(1+a1+...+ap) n

which tends to zero as n increases; thus X is an unbiased and
consistent estimator of .

The covariances can be found, given the parameter values of
the model, by adapting Quenouille's algorithm as follows. The

autocovariance generating function satisfies

r(z) = o28(z)B(z7))

where B(z) = 8(z)/a(z), and hence TI(z)/o? is uniquely determined
by

5(2)3(2-1) = Ky o+ Kz Ht KLzL) + (K1z‘] +oot KLz'L) (2.4.2)
a(2)a(z) “(2) a(z”)

where L = max(p,q).

The converse problem, that of finding the values of the
parameters given knowledge of the autocorrelations is perhaps more
frequently encountered in practice. The Cramer-Wold factorization
seeks a solution for (8],...,eq) given the first q sample serial
correlations and estimates of the autoregressive parameters; the
technique has been considered in detail by Godolphin (1976).

The estimation of the parameters of models of the form (2.4.1)
has been considered by several authors. Whittle (1953) has shown
that the maximum likelihood approach yields consistent estimators

&],...,ap,é],...,sq. He concludes that these estimators are

efficient in the sense that the generalised variance, det(V/n),
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is smaller than the corresponding generaiised variance for any other
set of consistent estimators. The methods of Walker (1961, 1962)
and Durbin (1960) also reduce the data from the realisation X to
a set of sample serial correlations rj. Walker's approach is
based on estimating the «'s and p's, not the a's and g's,
taking rj as the initial estimate of Py The estimates of the
moving average parameters are then found using the Cramér-Wold
factorization. This approach requires the theory of the
distribution of rj due to Bartlett (1946) and Lomnicki &
Zaremba (1957).

In recent years, a number of authors have examined the exact

expression for the 1ikelihood L, given by

L o= [ 1\Y2(det g)-% exp{-1 X'§'1X}
2ma? 292

where o2r 1is the covariance matrix of X. Box & Jenkins

(1970, sA7.4) derive the exact 1ikelihood function for a moving
average process, and this has been extended to the general case by
Newbold (1974) and Galbraith & Galbraith (1974). Phadke & Kedem

(1978) suggest the Cholesky decomposition T = EE' where E is

1& = Y'Y where Y = E-TX, and

lTower triangular, so that X'r~

det T = (det §)2. Ansley (1979) extends the techniques of

Phadke & Kedem to cover ARMA models and shows that his solution is

more efficient than many other methods described in the literature.

1

A closed form expression for X'g' X 1s presented by Ljung & Box

1& are evaluated,

(1979).  They illustrate how det I and X'T~
and, based on some numerical results, they claim that the method
has similar efficiency to that of Ansley. Other methods have been

given by Osborn (1976), Al1i (1977), and Harvey & Phillips (1979) to
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name a few. A

In common with Walker & Durbin, Pham-Dinh (1979) also employs
the sample serial correlations. His approach is based on the
spectral resolution of the Tikelihood function, and hence the
generally simple form for the estimators is unfortunately obscured.
An alternative approach yielding approximately maximum 1ikelihood
estimates in terms of the sample serial correlations is that of
Godolphin (1980b, 1984), which we briefly outline. The Tlog
likelihood for the realisation X = (X1...X )' of the model (2.4.1)

n
is given by

1

Tog L = -n Tog 2m02 - 1 Tog det £, - 1 (X-ul)'r,’

2 2 202

(X-u1)  (2.4.3)
where 1 is a vector of 1's of length n, and where czgn is the
covariance matrix of X. Differentiating (2.4.3) with respect to
o2 and & where 6 ¢ @ = (a7 «wv @) By ... By)' we obtain the

P q
following approximation to the 1ikelihood equations:

-1

2 (X=X -wD) = 0 (2.4.4)
96
and
G2 = 1 -T)'r, X - A
n

where the contribution det I has been ignoreq. To obtain the
solution for @ 1in (2.4.4) it is possible to adopt a further
approximation derived by Whittle (1954, §2.5) and considered later
by Shaman (1976). We replace En-1 by T, where En=(("li-j|)) is the
covariance matrix for n consecutive observations of the stationary

ARMA(q,p) process

Yt+B1Yt_]+o;-+BY = nt+0!.-1n,t_-, + ... + a

q t-q pt-p
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where n, 1is a sequence of mutually uncorrelated random variables

t
with expectation zero and variance unity. Using this approximation
the Tikelihood equations (2.4.4) become

B (X-u)'m, (X-ul) = 0

Y]

which simplify to

m
3 {r_+22% w.r.} =0
—a‘e- 0 j=] J J
with rj = cj/c0 and
n-j - .
o= 1 - .~X
cJ . t£1 (Xt X)(Xt+3 )
n-=3

Technically, the number, m, of sample serial correlations should be
n-1, but it is generally accepted that m can be of the order of
.30 even if n is large with an expectation of Tittle loss of
accuracy in the estimates. Solutions for the Tikelihood equations
can be expressed as iterative equations for é],...,é » Wwhence

q
the non-iterative solutions for a],...,ap, together with

- m
2 = + 1.
o co(wo 2z T

=1 i

2.5 Testing for Specification

The estimation of the parameters is an important part of any
model fitting procedure. Very often it is necessary to first
determine the ordér of the model. One technique used by many
practitioners is to overfit models in the hope that estimates

significantly different from zero will effectively determine the
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required number of parameters. However this practice has
disadvantages which will be discussed later (see Section 4.5).

In this section we briefly discuss various tests for
specification of stationary time series. 0One test which is reported
to have good power properties is that of Whittle (1951, 1952). His
procedure is derived from the 1ikelihood ratio principle and assumes
that the data are best fitted by an autoregressive model, but whose
order is uncertain. Under the null hypothesis an AR(p) model is
fitted and the maximum 1ikelihood estimator of the variance is

approximately

=Co+a]C1+...+apCp

g2
P
An AR(p+k) model is fitted under H], where Kk is positive, and

the variance is estimated by

I\

p+k = C + cz.IC-l + ...+ &

p+k“prk

The test statistic

Q = (n-p-k)(c2 - )/32

P p+k p+k

is asymptotically distributed 1ike x2 with k degrees of freedom
if the null hypothesis is true. If k=1, then the asymptotic

maximum 1ikelihood estimator of « 1 under H1 is

p+
a s e+ B s
p+1 p+1 j=1 aJ p+1-j
c_+ g % .C
° " g=1

using a recursive procedure of Durbin (1960). Since

~

~o ~2
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the test statistic simplifies to

— -n_.1132

) = (TI p ] )ap+1
2 22

Crp+1 1-ap+1

Q' = (e - 02,

~

which under H0 is asymptotically distributed T1ike x2 with one
degree of freedom.

Quenouille (1947b) provided a test of fit using partial
autocorrelations. This was extended by Bartlett & Diananda (1950)
and Walker (1952) compéres the power of these two tests. He
concludes that Quenbui]le's test is on the whole at least as
powerful as that of Bartlett & Diananda, although this will depend
on the form of the null hypothesis and the class of alternative
hypotheses.

An 1ntere§ting test for specification for moving average
models is available, based on examining the correlation structure of
the model. The hypotheses

HO: observations are from an MA(q)
H1: observations are from an MA(g+k)

are replaced by

Hot e 0, ep =0, p3=20

Hy:oeq t 0, o t 0, eg =10

where Q'] = (p_l pZ ... pq).’ 92 = (pq+1 e e pq+k)' and

0q = (pq+k+1 .. pm)'. The test statistic is

"y = Ny Byep

where R, is the covariance matrix for /h§2 under Hy. If the null

hypothesis is true then an is asymptotically distributed Tike
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x2 with k degrees of freedom. This method can be considered a
modification of a goodness of fit test proposed by Wold (1949).

The procedure is a straightforward adaptation of a test for detecting
' gaps in moving average processes of Godolphin (1978b}. In this case

the two hypotheses become
Hot 27 T30 o t 0, e = 0
t0

Hit 01 =0, oy e3 = 0

and the test statistic is based on the covariance matrix for /ng_1
under H].

For mixed models, let V/n denote the covariance matrix for
the efficient estimator of 9= (a] R N Bq)'. Then an

p
intuitively sensible test of @ =0 is

1

JOR
1O

ng'Vv-

which would be chi-squared with p+q degrees of freedom in large

1

samples if the hypothesis were true. Now V' s n times the

information matrix which in partitioned form is

nff = n| F F

=00 -af

Fag g
The derivations of V and F are considered in full in Chapter 5.
At this point it is sufficient to say that F can be specified more
easily than y'] so the statistic becomes n@'Fg .

This test can easily be adapted in order to test say

Hyt @ =0. Then

na'F a
% Lol

is asymptotically distributed Tike chi-squared with p degrees of

freedom if HO is true. To test g = 0 the test statistic is



Here nf & nEBB are the information matrices for a pure
autoregression and a pure moving average process respectively, and
their specification is discussed in the next chapter.

A simple test which is often used by practitioners is the
Box-Pierce test (1970) or its modification by Ljung & Box (1978).

The Box-Pierce test requires the computation of

where rj is the sample serial correlation and T {s a sufficiently

large number less than n. This statistic has a 1imiting ¥2

distribution on T-p-q degrees of freedom. However, this simple

test has the reputation of being unable to distinguish between

several models which could be fitted to the data. The modification

of Ljung & Box gives a test statistic
| T

=1
n(n+2) ¢ (n-k) 'r
k=1 k

2

which provides a closer approximation to x2 on T-p-q degrees of
freedom.

Another approach which contains the Box-Pierce test as a
special case has been proposed by Godolphin (1980a). This method
requires more computation but has greater power properties. It is
based on Walker's idea that we should test the »p's rather than
the B's, using the Godolphin (1978a) estimation procedure. The
set of sample serial correlations (r],...,rT) are transformed to
aset ws=s (w1 ces wT_k)' which is partitioned into

(We Weoiq oo wT_k)' with transformed covariance matrix
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1 2

P12 %2
W, = (W; ... w)' s then estimated using Walker's iterative
—* 1 m

procedure. The test statistic
nQ = nw'(Q, - 2 o )q! )-Tw
T-k-m - \-11 0 =12-22-127 =%

has a central x2 distribution on m degrees of freedom under the
null hypothesis that the parameters of the ARMA(p,q) model have
been correctly specified. |

A comparison of the tests proposed by Whittle, Ljung & Box
and Godolphin for autoregressive models has been made by

Clarke & Godolphin (1982).

2.6 The State Space Model

The basic state space model is of the form

Xp = Eu8p + vy (2.6.7)

0y = @tgt_] + *it?!t (2.6.2)
where 84 1s the process vector varying in time, subject to the
random term Hiw,.  The observations Xi of the function Fi8:

are made at discrete, not necessarily regular, intervals of time
and are subject to a random measurement error Vi- The vectors

X¢s¥y are of order mx1, e, is of order nx1 and W, is of

order rx1. The matrices F & Hy are all matrices assumed

-t’ -t
known at time t, of dimension mxn, nxn and nxr respectively.

G

The random vectors v., w, are taken to satisfy the following

constraints:



E(y,) =0 E(w,) =0
E(vpyt) =V, E(wwy) =W, (2.6.3)
E(YtY%+k) =0 (k¢t0) E(WtW£+k) =0 (kf0).

Also the noise components v, & w, are uncorrelated.

The estimator of the process vector 8¢ is given by

6, =G

8 = Gdyg * Al - B8y y) (2.6.4)

t -t-t-t-1

where Bt is the Kalman gain matrix. Kalman (1963) suggested that

A, should be chosen so as to minimise

-t
gt = EEQt - Qt) (-Qt - Qt;—]
Various assumptions are frequently made concerning the forms of V

t

and W,. If Ve s positive definite, then A, can be expressed

in a form more open to interpretation, namely

-1

Ei¥e

t

It is interesting to see how A, copes with various uncertainties

in the model. For example, if Fo =1 and Ve

is proportional to the uncertainty of the

is diagonal, then
each element of A
estimate, and inversely proportionaT.to the measurement noise.
Thus if measurement noise is large and eétimation errors are small,
then A is small.  Thus Tittle attention is paid to the most
recent observation because we have more confidence in the previous
estimator. Conversely, if measurement noise is small and
estimation errors are large, then gt is large, demonstrating the
need for more information.

The assumption of normality for V., and W, is frequently

made; if G, 1is independent of time, then H_ = I and equations

t t
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(2.6.1), (2.6.2) define the state space model in the form given by

Harrison & Stevens (1976). Under certain conditions, these models
have similar properties to low order ARMA models. For example,

if Ve is absent and the Kalman gain vector Bt has converged

to A then the univariate state space model becomes

X

1]
-
D

t --t
8 = G84.q t+ Ae

where e, = X, - FG8 . The sequence ‘{et} which consists of

t --t-1

one-step ahead prediction errors, replaces the random sequence '{et}
which is common to the time series models defined in §§2.2 - 2.5.
The random term v, can play an important part in these

Harrison-Stevens models; the assumption that Vi is absent is
restrictive in practice. However, if V { 0 then it can still be
shown that these models have the same forecast functions as a
subclass of non-stationary time series models. This is considered
in greater depth in Chapter 6.

In much of the Titerature it is stressed that the matrices
Fs G, V&W need to be specified with care. As suggested earlier,
the coefficient matrices F & G are often known from the physical
situation, but the specification and updating of V & W is more
difficult, and would usually be carried out with confidence by
practitioners or in consultation with them. In applications it will
be necessary to specify V and the elements of the positive
semi-definite matrix W. The situation is eased if W is first
diagonalised by an appropriate non-singular transformation LWL';
however this may restrict the model so that the moving average

parameters of the equivalent time series model no longer cover the

entire stability region. The assumptions that are made about
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V and W are equivalent to making assumptions about the moving
average parameters. From a practical standpoint movements in the
variances are more meaningful than the corresponding changes in the
parameters. However, at present it appears to be much easier to
test assumptions about the unknown parameters than to check the
assumed values of the variances.

The Harrison-Stevens model-is considered further in Chapter 6,
where we place constraints on F and G so that comparisons can be
drawn between these models and specific non-stationary time series.
Data from such models can be rendered stationary by differencing a

fixed number of times and then inference techniques associated with

stationary time series are appropriate.
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CHAPTER 3

THE PURE AUTOREGRESSIVE MODEL

3.1 Introduction

In this chapter the covariance matrix for the efficient
estimators of the parameters of an autoregressive model is

considered. The model is defined by

X = g

Xt+a-lxt_-| + .. . +U-p t"p

; (3.1.1)

where {et} is a sequence of independent and identically distributed
Gaussian random variables with expectation zero and a common
variance 2.

The pure model (3.1.1) merits consideration in its own
right, not only for reasons of its simplicity. The model has been
discussed in the literature for many years and appears to be widely
used in practice. Given a realisation of n consecutive
observations, and that ’{st} is Gaussian, Whittle (1953) has shown
that the maximum 1ike1ihood'approach yields a consistent estimator
of the veetor (a1 . ap)' which is asymptotically normal. The
covariance matrix V/n of this limiting distribution is smallest
in the sense that y*-y is positive semi-definite when y*/n is
the covariance matrix for any alternative consistent estimator.
Whittle has also shown that if '{st} is non-Gaussian, then the
Teast squares estimator has similar optimal properties when n is
Targe.

Several interesting properties of V are derived by Whittle.

In particular, he gives a formula involving complex integrals for
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the elements of the information matrix. The formula is, however,
rather awkward to use in practice. Durbin (1959) derived a method
for evaluating the covariance matrix of the efficient estimators of
(a1,...,ap), by noting that the information matrix and the
covariance matrix for p consecutive observations of the process
(3.1.1) are identical, apart from a multiplicative constant.

Box & Jenkins (1970, 5A7.5) suggest another approach to the problem
of evaluating V/n. Their method involves treating the Tog
likelihood as an approximately quadratic function. Provided the
maximum is not close to a boundary, then the estimates of the
elements of V afe reasonable, even if the sample size is only
moderate.  However this method is rather complicated in practice,
and its accuracy as the number of parameters increases is uncertain.
Pagano (1973) suggested witﬁout proof that Durbin's result could be
expressed in terms of the difference of two products of triangular
matrices, whose non-zero elements are the parameters of the model.

A proof of this expression is given in Section 3.3. The
generalised variance is also considered in this chapter. The two
triangular matrices feature again in a factorization of the
determinant of V, this being an integral part of the generalised
variance.

Analogous results exist on the whole for purely moving average
models; for the sake of completeness, the model is considered
separately in Section 3.6. Many of the ideas presented in this
chapter are used or adapted later, when more complicated models are

discussed.
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3.2 The Information Matrix

In general nF will denote the information matrix, but in
this chapter the notation nfaa will be used. The (i,j)-th
element of Eaa given by Whittle (1953) is the constant term 1in
the expansion of

log {B(z)B(z™)}. 3 log {B(z)B(z 1)}. (3.2.1)

18

This is equivalent to

Lemma 3.2.1

The (i,j)-th element of F__ is the coefficient of 2777 in the

expansion of

1
a(z)a(z™1)

where a(z) =1 + @2 + ... apzp.
Proof
Since B(z) = {a(Z)}-],

1

_3 log B(z)B(z ') = 3 { -loga(z) - log a(2_1) }
90, 0.,
1 ) 1
R S E 1= TR
a(z)  «(z7T)

Therefore, expression (3.2.1) becomes

[t -2 [
2 | o(z2) a(z-l) a(z) a(2'1)

-z

= 1 I z v o7 0H)
| 2(2) 2(z7 ") a(z)a(z 1)

i+] -5, -
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There are no constant terms in z''9/a2(z) or Z-(1+J)/a2(2-1)

and the constant terms in zi-j/{a(z)a(z-])} and zj-i'/{oc(z)cz(z'.l

)}
are the same owing to symmetry in the denominator. Hence the
constant term in (3.2.1) s zi-j/{a(z)a(z'])} and this is
equivalent to the coefficient of z9°1 in '{a(z)u(z-1)}‘] as
fequired.

By letting fk denote the coefficient of zk in

a(2)a(z )Y so that £ = F, (k=1,2,...) by symmetry, it

follows that
S 1 : (3.2.2)

; fk(zk +z
=
a(z)a(z™")

f +
0 k=1

Hence the information matrix is given by n times the matrix Foo

where

ot Fpz - fo

To illustrate this result, the following example applies the Lemma

directly to a simple model.
Example p=2.

The model is

Kg Foqkpp voXyp = ¢

+
Expressing 1/{a(z)a(z-1)} in partial fractions as given by
Quenouille's algorithm (1947a):

-1

ia(2)a(z™) = K+ (K2 + KyzP)/a(z) + (k2" + Kz 8)/a(z )
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Multiplying throughoﬁt by the lowest common denominator a(Z)a(Z-])
yields
1 = K {(l+a,z+a 22)(1+ b 2'2)}
() 1772 *“1 @2

1 -2

+(K12+K222)(1+a]z' ta,Z ) + (K]z']

-2 2
+Ko2Z )(1+a12+a22 ).

Equating coefficients of zo, zi], ziz,

_ 2. 2
1 = K0(1+a} o, ) + 2K1a] + 2K2a2

0

Ko(a]+a-’a2) + K] (1+a2) + Kza-[

Ko, + K, .

0 0 2 2

"

Solving for K0 gives

K = 1+ oy and K.‘ = -oy

(1=ap) { (14a,)% = 042} (T-ap) { (1#0p)? = 0q?}

In this case fo = K0 and f] = K], hence

n Eaa = n 1 +0L2 =o4

('l-az) { (T+a2)2 - a]z}

-ay T+,

When p 1is moderately large, it is preferable to apply a different
approach to evaluate Eaa. This will be described in the next
section. The matrix Eaa is required in several hypothesis tests,

details of which are given in Section 2.5.

3.3 The Covariance Matrix

Let o = (a1 cen ap)' denote the vector of parameters for

the autoregressive model of order p with o(p+0

Xt + a1X +...+alX = e,

oo Xeop (3.3.1)
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In the previous section a method was given for evaluating Eaa.
The covariance matrix for the efficient estimator of o is the
inverse of nF . However, it turns out to be unnecessary to find
the individual elements of F and invert this matrix. This was
noted by Durbin (1959) who produced a simple method for obtaining
E;l without the need for any awkward matrix inversions. His
result is based on the fact that, apart from a multiplicative
constant, F =~ is the covariance matrix for p consecutive |
observat}ons of the process (3.3.1). By letting 51 = (X] cee X )

p

Xy = (X .’sz) denote 2p consecutive observations, he

p+l *°
expressed the unconditional distribution of (X, X,) 1in two

different ways. Equating the first p rows and columns of the
1

matrices in the resultant quadratic forms, this yielded F__

directly. .

Pagano (1973) suggested a neat expression for Durbin's
formulation in terms of the difference of two products of triangular
matrices. But although this formula has been quoted by other
workers, a rigorous proof does not appear to have been given in the
literature. In fact, the result follows from the commutative
properties of upper triangular matrices and a proof of the result
is given in Theorem 3.3.71 below.

Let A and B be upper triangular matrices of order pxp

defined by
6 = 1 %9 ap_'l s 5 = Olp Olp_-l o1
0 1 . ap-? 0 o+ - e
-0 o ... 1 ] -0 o ... apd
Both A and B are non-singular and are symmetric about the
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minor diagonal. A useful property of A and B 1is provided by

the following Temma:

Lemma. The matrices A and B commute.

To show that AB=BA we have

AB =|1 Ay . %1 Oy Op_1c - O = Yp Yp-1t ¢ Yy (3.3.2)
o 1. .. ap-Z 0 ap -0y 0 Yp Yo
0 0... 1 ... . e
A 400 o] [0 0 "p

where v, = o +oqa 4 ...t % k% (1 <k <p). Similarly

BA is the right hand side of (3.3.2) and so the lemma follows.

Theorem 3.3.1 (Durbin, 1959)

F = A'A-B'B
L o a'A- 3%
Proof
Defi o= et fo o]
efine Foo= fp p+1 © ° * Topa
fp-] fp pr-Z
fi f f
1
. 2 P

*
where the elements of F  and F,, are defined by the relation
(3.2.2). Equation (3.2.2) can be re-written as
-1 ot k | -k
a(z ) {fo + =z fk(z +z )} = 1 = 1+ ¢ a .z say.
k=1 k=1
a(z)

Equating constants, and positive and negative powers of z respectively

yields equations (3.3.3). Note that the last two equations require

positive values of k in applications, and recall that fh = f—h'

fo * a1f] taf, apfp = 1
et o P ol v o v fry =g (3.3.3)
fi t alfk—1 + asz_z + ...+ “pfk-p = 0
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The last of equations (3.3.3) implies that

[ €]
F £ 8] = 0

A
Hence
* -1
F = -F B'A (3.3.4)
. The a's are given by the relation
1 = 1+ ra zk
k=1 K
(z)
which can be re-written as
a ta@ 1t Fa qapte =0 (1 <k 2p)
where a8, = o, = 1. This last set of equations verifies the
fact that
=1 B . ]
A = |1 3y ap-T .
0 1 3.2

o 0 ... 1

Consequently, equations (3.3.3) imply that

FE[|a] = &
Foo E{]A A

i.e. F A + FB = A (3.3.5)

*
Substituting for F from (3.3.4) gives

From the Temma, A and B commute; therefore A'] and B

commute. This implies



F (A" -B'BA"") = A7
LI 5 bA a
and post-multiplying by A
F(A'A-B'8) = I,
whence
L. pp -8
LI A'A-DB'Db
and the proof is complete.
It is also worth noting that
Corollary 3.3.2 1 - aa' - g

To show this, define a pxp matrix J which is the "mirror image"

of the identity matrix; i.e.

J=[0...01
0...10
1...00

The matrix J is symmetric and non-singular. Also

detd = (-7 and 9% - 9 =1

Pre- or post-multiplying A or B by J produces some interesting
results, as summarized below:-

The matrices AJ and JA are symmetric since

Al = Fﬁp_l T A L
ag - -1 0 .
: . 0 1 p-2
_'I ...0 0_ _1 ay. .o ap_]d

Hence A = JA'J and A' = JAJ. Thus pre-multiplying A by J



- 45 -

reverses the order of the rows in A, and post-multiplying
reverses the order of the co]umns.' The two operations together
produce a rotation of A through 180%.  An analogous set of
results exists for B. Since E;l is symmetric about both
diagonals, it is unaffected by a rotation through 180°.

Consequently Corollary 3.3.2 follows from

MA-B'R =

1>

‘A - B'B)d
= (JA')AJ - (JB')BJ

= A(JAJ) - B(JBJ)

as required.

To illustrate Theorem 3.3.1, the case p=2 is considered.

Example = - =

The model is

Xp Foqgkip voXi, = ey
A=l o] s B = Joay o
0 0 0 o

' 2
111 - oy a-[(1-a2)
n 2

on.]('l-onz) 1 - oy

Hence if &], &2 denote the efficient estimators of Ay O

respectively, then for suitably large n

2

var (&1) = Var (&2) = 1 (1-a,°)

1
n

and
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Inverting E;l/n gives the information matrix nf,, 2
found in the previous section using Quenouille's algorithm.
Indeed, if p 1is moderately large, and if the information matrix
only is required, it seems to be quicker to evaluate E;l using

Theorem 3.3.1 and then to invert F_l/n.

3.4 The Generalised Variance

The Generalised Variance (G.V) for the efficient estimator
§ of a« 1is defined to be the determinant of the covariance matrix

for this estimator. That 1is,

G.V. = det(f'1)
' -oa
n

1 det F7! .
— -aa
P

The aim of this section is to find an easy way to evaluate this
determinant. Theorem 3.3.1 will prove useful in doing this.
With the matrices A, B and J defined as in the previous section,

det E;l factorizes as follows:

Theorem 3.4.1

det F.| = det (A - JB) det

o

(b
+
1
e
N

Proof

Since A and B commute, it follows that

B'JA = JBA = JAB = A'JB.

- -~ - -—-— -

So
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Hence

1]

det F7) = det (A' - B'J)(A + JB)

det (A' - B'J) det (A + JB)

det (A - JB) det (A + g8) .

By appealing to another result derived in a control theory
context by Jury (1964, pp.87) it is possible to factorize this

determinant still further. Firstly, define the matrix H, where

*

*
Ho= A -8

* *
and A, B are derived from A and B respectively by deleting

the p-th row and p-th column. Thus

H ={1 ay - .. a2 |~ J otp ap_-l <. e 0 (3.4.1)
o1 ... %3 0 G+ e - 03
00 1
| i —9 0 ap—

= 1 o o« o ap_z-ap
0 1 %p=3"%-1
Ty T l-az

Then

Theorem 3.4.2 (Jury, 1964)

det (A+JB) = (1 + ap ta, +.o. . ap) det H

a(1) det H
det (A-JB) = (1-oaf+oay=...¢+ (-1)pap) det H
.a(-T) det H .

By combining the results in these two theorems, the factorization
of the determinant becomes

det F2l = a(T)a(-1)(det W) .



Finally, the generalised variance is given by

1 a(1)a(-1)(det H)

G.V. =

Example p =3

so that
det H = 1

Thus using equation

G.V.

(1+a1

{(T+a

nP
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2

10)

so B =

- ag + a3(a] - a3) .

(3.4.2),

+a2+a3)(1-a1+a2-a3){1-a2 + a3(a1-a3)}2/n3

2
0)

o3

- (a1+a3)2}{1-u2 + a3(a1-a3)}2/n3

(3.4.2)

(3.4.3)

The simplicity which results from the factorization (3.4.2)

is made evident by considering the problem directly.

2
]-Ol.3

a] ‘0233

d1 - QZQB
1+a] -Gy -0
%1 7 %%

G T %23
OL-I - u2a3
1 - a32

In the case
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It is not immediately obvious that the determinant of this matrix
simplifies to the form (3.4.3), hence the factorization (3.4.2)
clearly avoids some tedious algebraic manipulations. A simplified
form for the stationarity conditions can also be deduced using

(3.4.3). For this example the conditions are

2
1"(13 >O

2
det{ 1 - aq aq = ay0g > 0 (3.4.4)

Ay - o 1+2-2-2 S
1 2%3 41 "% 793

and

det F-! > 0.
-

o -

In their present form these inequalities involve fourth degree terms

in the a's, but we now show how (3.4.4) can be simplified to
1+a]+a2+a3 > 0 7

1 - o *ay -y > 0 (3.4.5)

1=y +a(agmag) > 0

|a3l < 1.

Using the factorization (3.4.2) and after some algebraic
manipulations, the inequalities (3.4.4) can be re-written as

1 - a32 > 0
{T+ay - oz3(a-|+oz3)'}{'|-a2 + a3(a-[-a3)} > 0 (3.4.6)

(Toqtagtag) (T-a vaymag) {1-ay + a(ag-0,)3% > 0 (3.4.7)
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If both brackets in (3.4.6) are negative then addition of

these yields

2

2(1 - aq )

< 0
which contradicts [ag| < 1. Thus both brackets are strictly positive
and consequently
: 2
{1 - a, + a3(a]-a3)} + 0.
Hence the squared term can be omitted from (3.4.7) to give
(1+a]+a2+a3)(]-a]+a2-a3) > 0.
If both brackets are negative then
- oy - a, > T + aq and ay = oy > 1 - aq

and hence

2 2 2
- (a1 - oy ) > 1 - ay .

Also 1+a]2-a22-a32 is positive since it is a variance, thus both
brackets are positive and the inequalities reduce to (3.4.5)
together with

T+ a, = a3(a] + a3) > 0.
But this additional inequality is redundant since 1+a3>0 &
1-a3>0 gives

(1-a3)(1+a]+a2+a3) + (1+a3)(1-a1+u2-a3) >0
or

2(]+a2 - a3(a1+a3)) > 0.

Hence the inequalities (3.4.4) simplify to (3.4.5).
It is interesting to note that for the AR(3) model, the
stationarity conditions are

a(1) > 0, a(-1) >0, det H> 0 and lagl < 1.

These bear a remarkable resemblance to those of the AR(2) process,
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namely

a(1) > 0, a(-1) >0 and [ay| < 1.

In this case, det H = 1-a2 > 0 is a redundant constraint. The
stationarity conditions for models containing more parameters are
necessarily more complicated, but can always be simplified to two
first degree inequalities involving o(1) & o(-1), together with
Idp[ <1 and at most 1+(p/2) or T1+(p+1)/2 further constraints,
depending on whether p is odd or even. A discussion given in

a control theory context is that of Jury (1964, §3.5).

3.5 Derivation of the Moments of an Autoregressive Process

An interesting duality result exists between Eaa, where
E;l/n is the covariance matrix‘for the efficient estimator of a,
and the pxp covariance matrix for p consecutive observations of
the AR(p) process (3.1.1). The result was first noted by
Siddiqui (1958). He observed that

where o2r_ is the covariance matrix for the realization X],...,X

p
of the process (3.1.1). This result holds because the

P

autocovariance generating function T(z) is defined by

r(z) = o2/{A(2)A(z" ")}

yielding
r(z) = 1 - 1 = f o+ oz f (2M276).
o2 ADAZTY)  a(z)a(z)) k=1

Hence the elements of F(z)/c2 and Eaa are given by the same

“1)177, and so the matrices I and F

formula, namely {a(Z)d(Z -aa
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are identical.

There are several methods that can be employed for finding
explicitly the individual elements of Ep. One technique is to
solve the Yule-Walker and Wold equations using equation (2.2.3);
this method does not invoke Siddiqui's result, and may be tedious
in practice. Alternatively, Eaa can be evaluated using
Quenouille's algorithm as in Section 3.2. This method is also
rather Tong, and it was concluded in Section 3.3 that even if Eau
is required, the quickest method is to first find E;l using
Theorem 3.3.71 and theh to invert this matrix.

The covariance matrix ozyn for a realization X],...,Xn

of size n of the process (3.1.1) can be determined relatively

easily by expanding T To see this, consider again the example

b’
in Section 3.3. For the Yule process, the covariance matrix for

the efficient estimator of a1, 0o Was found to be

1 2
1Fe =1 1-9 4 T 9%
n n

- 1 - 2
ol B ) %2

Hence the covariance matrix for two consecutive observations of the

same AR(2) process is o?T, where

1 1+ a

22 - Eaa = > > 2 -a.l
(1-a2){(]+u2) - o - a 1+a
1 2
= Yo M say.
1 Y

The Yule-Walker equations for this model are

Vi oY ot = 00 (k2 1) =y,
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so for any k>0, Y, can be expressed solely in terms of Yo

and Y- Therefore let

2 - 2
Ko j En o] Y

-1 "n-2 * * Yo

-

denote the covariance matrix for the realization X]"”’Xn of

the AR(2) process. Using the above algorithm, all the elements

of r, can be found in terms of the previously calculated

Yo and Y1
Clearly, this procedure generalises for any value of p to

give an algorithm for deriving the autocovariances ’{czyk} of a
1

N is found using

general autoregressive process. Firstly E;
Theorem 3.3.1, and then its inverse to give gp. This, together
with o2, gives explicit values for the variance and first (p-1)
covariances. The remaining moments Ypoereo¥poq CEN then be

derived from the Yule-Walker equations in terms of YosY12e Y1

3.6 The Pure Moving Average Model

The results presented so far in this chapter refer only to the

pure autoregressive model of order p. However all of the results
in Sections 3.2, 3.3 and 3.4 are applicable to moving average models
as well. To clarify the situation the results will be discussed

briefly for the moving average model of order q defined by

Xt B €t + B.lst"‘] + .. . + B € (3.6.1)

qt-q °
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The basis of the fact that analogous results exist for a moving
average model is a result due to Whittle (1953). He observed that
the covariance matrix for the efficient estimators of the parameters
of an autoregressive model is the same as that of a moving average
model, provided the parameter sets are the same. Let nEBB denote
the gxq information matrix for the process (3.6.1). The (i,j)-th

element of EB is the constant term in the expansion of

B
1

1 3 log {B(2)B(z™")}. 5 log {B(z)B(z™')}
2 331 3Bj :
which is equivalent to the coefficient of 2977 in
R
8(z)8(z”")
where B8(z) =1 + Biz + . . .t sqzq.
Defining
EBB = | h h1 R hq-T
hy h0 hq_2
hq—1 hq_z . .. ho ]
it follows that
ho+ £ oh (%K) - 1
0 k=] — .
B(z)8(z ')

Clearly if B8(z) = a(z) then the h's have the same defining
equations as the f's in Section 3.2, whence EBB = F, For the
same reasons as before, this is not necessarily the easiest way to
evaluate the information matrix if q 1is moderately large. 1In
general it seems to be quicker to first find the covariance matrix

for the efficient estimators of (31""’Bq) and then take its
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inverse, even if the information matrix only is required.

It is necessary to re-define A and B as matrices of

order gxq

A =1
0

0

b

By -

1

0

© Byl
+ Bge2

—

B

q Bq_-l s v e B-I
Bq - By
0 B8

with elements consisting of parameters of the model:

Then, as before, the covariance matrix for the efficient estimators

of (81”"’Bq) is

1F = 1(A'A-B8'8) = 1 (M -88").
n n n

With these new definitions of 5 and B the formula for

the determinant of EBB

remains as before:

det FI) =

a8 det (A - JB) det (A + JB) .

To complete the simplification of the generalised variance

det (A +JB) = (1 + By + ...+ gq) det H
= g(1) det H

det (A-J8) = (1-8 +... +(-1)qsq) det H
= B(-1) det H,

where
H = |1 By Bge2 Bq

0 1 Bq_3'3q_'l
g Po-1 -8
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* * * *
That is H=A - JB where A, B are derived from A and B
respectively by deleting the qg-th row and the g-th column.

Thus the generalised variance is given by

G.V

-1
det (EBB/n)

1 s(1)8(-1)(det H)? .
nd
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CHAPTER 4

THE ARMA (p,1) AND ARMA (1,q) MODELS

4.1 Introduction

In Chapter 5, the autoregressive moving average (ARMA) model
of order (p,q) for general p and q will be considered in
detail. In the present chapter, a subclass of mixed models which
contain either just one moving average or just one autoregressive

parameter will be examined. These two categories are defined by

Xg #agXe g 0o ot apXt-p = ey * oBeyp g (4.1.7)

and

Xt + aX = ey + B1€t—1 +...+8

1 (4.1.2)

g t-q

In the previous chapter, the purely autoregressive model
was considered. The covariance matrix for the efficient estimators
of the parameters of the model was easily specified and the
information matrix was given simply by its inverse. The
introduction to the model of just one moving average parameter
makes the evaluation of these two matrices and also the generalised
variance significantly more complicated. The information matrix

for the model (4.1.1) can be written in the partitioned form

Eaa EaB
EaB FBB

The terms nEau and nF are just the information matrices for

g8
the AR(p) and MA(1) models respectively and can be specified
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using the techniques described in the previous chapter. However,
with mixed models, there is the additional complication in the
submatrix EaB’ or in this chapter the vector EaB' The form of
the vector EaB for the models (4.1.1) and (4.1.2) is derived
in the next section.

Durbin's result (Theorem 3.3.1) still applies for finding the
inverses of F = and FBB but the result does not generalise for
mixed models, even though there is just one extra parameter. The
covariance matrix can only be found in block form by inverting nF;
some simplification is afforded by the fact that the ﬁatrix Foas
a whole is still symmetric.

The evaluation of the determinant of the covariance matrix,
to give the generalised variance, would aﬁpear to be intractable
in all except a few simple models.  However a neat expression for
factorising det F has been produced, and a proof of the result
is given in Section 4.3.

In the rest of this chapter, only model (4.1.1) is
considered in detail. However, if the model (4.1.2) is re-

defined using the same parameter set as (4.1.1), i.e.,

Xt + th_-‘ = Et + a']Et_-‘ + ... t+ta (4.1-23.)

pEt-p
then it is possible to appeal to a generalisation of Whittle's

result (1953). Clearly the generalised variance is the same for

models (4.1.1) and (4.1.2a); the information matrix becomes

"E = " P Fag

EU.B Eaa
with the blocks defined as previously, and a similar transformation

gives the covariance matrix from that of the model (4.1.1). In



- 59 -

the final section, the adequacy of the chosen model will be

considered.

4.2 The Information Matrix

The information matrix_is defined in a partitioned form by

nfE = nfE . EaB (4.2.1)
Exs Fas
where l;'(m is a pxp symmetric matrix
Fag is a column vector of length p
and FBB is a scalar term.

The matrix Eaa and the scalar FBB are independent of g and
(a],...,ap) respectively. In fact nfaa is simply the information
matrix for a pure autoregression of order p as derived in the
previous chapter. . The matrix Eaa can be evaluated either using
Lemma 3.2.1 or else by inverting E;l given by applying

Theorem 3.3.1.  The scalar term F is just the constant term in

BB
the expansion of

where g(z) =1 + gz, i.e., FBB = (1-82)-1 .

Thus the only difficulty in specifying the complete information
matrix Ties in the derivation of the vector Eus. Whittle's result
in Section 3.2 can be used to find the elements of EaB' In this

case, by adapting Lemma 3.2.1, the (i,j)-th element of F 8 is the
=0

coefficient of 2377 in
S
a(z)s(z )
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By defining

Eas = g0
9.1
91-p
it follows that - -
z gkzk = -1 .
=" a(z)8(z )

By adapting a Quenouille-type algorithm, the following Temma shows

that the evaluation of the elements of F_ is straightforward in

B
the particular case where EaB is a vector.

Lemma 4.2.1

Fe = cl(8)
S

where the multiple S 1is the scalar quantity

s = [}' (-6){] 2
%p

and 8 = (1 -8 (-B)2 R (-B)D-])', a

(]a-[az...a )I.

p-1
Proof
The elements of Ea

] .
2°, z'], c . 2P n -]/{a(Z)B(Z-1)}. Expanding into partial

are given by the coefficients of

fractions,

-1 _ K, o+ Kz +K 22 4.+ szp + Lz

a(z)8(z")) a(2) B(z 1)

Multiplying throughout by the lowest common denominator gives

-1 - -
1= Ka(2)B(2) + (Kz + Kzl 4L k28 (z Y+ 27N,
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1 p

Equating coefficients of z ' and 2z gives

L = —KOB and Kp = -Koap.

Consider next the coefficient of zp'] :

0 = Ko(ap-1 + aps) + (Kp_1 + KpB) + Lap.

Substituting for L and Kp gives

0'%p-1 "~ c‘pB) * Kot
On substituting in the equation for zp'2 for L and Kp_] it

follows that
Ko(a o= a 18 +a ,8) +K , = O
P p p p
By considering the equations for the coefficients of
zp'z, zp'3, ... » 22 in that order, it is possible at each stage

to eliminate one further term K, and also L. The final

substitution for K] and L 1in the equation relating the constants

yields
K (1-ay B+a,85-a8° + fa(-8)P) = -1
0 a]B aZB o3 « . e ap .
whence
3 -
K0 = -(]-a18+u262-a38 + .. .+ ap(-s)p) 1
= -1 . : (4.2.2)
S

The only terms in the expansion of -1/{a(z)s(z-1)} involving

negative powers of z occur in the partial fraction term

1zl - Lz'1(1 - Bz-] + 822-2 - 832'3 +...) .
B(z-])
. . -h ‘o . h-1 h
Thus the coefficijent of z for positive h is (-g)" 'L = (-B) KO,

where K0 is given by (4.2.2).
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Finally,
— - — —
-aB = g0 = K0 ! = %s(g)
g_] -8
9., 82
. o1
9. (-8)
L1 P _ i |

Using this result for Eas’ together with the given expressions for

Foo 3Md F it is possible to write the information matrix as

BB’
~given explicitly for an ARMA(p,1) model by the partitioned
form (4.2.1).

Example ARMA(2,1) model

CKp oKy Fagki o = ey F Bey .

The information matrix is

nE = n{E F
= ~oo -afB
]
EaB FBB
and since gq =1, FBB = (1-32)']. It appears that the easiest way
to evaluate F_ is to find E;l and then take its inverse. From
Theorem 3.3.1,
-1 _ 2
Eaa = |1- oy a1(1 - az)
a](1-a2) 1 - azz
so that

72
(Trop)tll4an)" = ™)}y 4,

Using Lemma 4.2.1,

EQB —_—t



where

™m

1]

)
—
[o1]
3
(o %
wn

n
—

]
Q

—
™
+
Q
nN
™

Thus F
-Q

]

1
—_
—

(1-0q B+a,82) | -8

and the information matrix is

(1-a2){(1+a2)2—a12} —ay Ty 1-a, B+a,8°

1 [ 8 1
1-a B+, 82 1-8

e -

To complete this section, the expression for the information

matrix for the ARMA(1,q) model (4.1.2) is derived. It is given by

n| F©  FO
oo -o.f
0 ,, 0

The matrix nEZB is now the gxq information matrix for the pure
moving average process of order g, and Fga = (1-&2)-1. Also

ESB is a row vector of length q given by

2 -1
538=;1_(1 R ST )
SO

0 2 3 q
where S =1 - + - + ...+ .
U.B-l ¢4 62 ¢ 33 ( CJ.) Bq

4.3 The Generalised Variance

The Generalised Variance (G.V.) is defined to be the determinant

of the covariance matrix for the efficient estimators of

{a],...,ap,ﬂ}.



where F is partitioned as in the previous section.
a factorization was found for det F_

factorization of det F

Generalised Variance
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det (E” /n)
1 s
np+]det E

1

a’

is not so obvious.

In this case, a

In Section 3.4

However, a simple

factorization exists, and is presented in terms of det E;l and

det FBB = FBB’ together with two scalar terms which are easily

evaluated.

The details of the factorization are contained in the

following theorem.

Theorem 4.3.1

where

det F

2
|

with g and ¢

Proof

det F det F
jad 0 10

_ F
- -ao

BB

R%/s

EaB

BB |

(4.3.7) .

vPre—mu1tip1ying F by a matrix whose determinant is unity will

have no effect on the determinant of the product of these two

matrices.

Hence

det F

1]

det I
S
' -EaB'aa
det B
hl 0 16.)
0

0 Eaa =0B
1 -af BB
EU«B
F..-F' FlF
BB ~uB-ao~of
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-1

= (Fpg = Fig FooFag) det Fo
P P
= (1= Ehgfn FooFag) Fag det Fuy - (4.3.2)

Equating (4.3.1) and (4.3.2) it is required to prove that

) A -l L 02,2
- F Fodfag = R/ST. (4.3.3)

Using Theorem 3.3.1 and Lemma 4.2.1, equation (4.3.3) can be

re-written as

(4.3.4)

. -1 _
since FBB = 1-8".

denominator 52 gives

Multiplying throughout by the Towest common

B'B)g(1-8 ) (4.3.5)

To prove equation (4.3.5) it is necessary to derive some
preliminary results involving the matrices A,B and augmented

A & B matrices. Firstly consider

A = R 0« e oy and define A, = K o0 - .oy .
o1 ... -2 0 1 %1
e S

Then
e = e ]fe o] + 10 g (4.3.6)
) 0, A'A

where Qp is the zero vector of length p.
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Also
R N O - S (4.3.7)
T Ty 05 0
where
T = ('"p '"'p_'] “])‘
and
e T o toqag + %-k% (1 <k <p)
T, = 1+ a0, = 1+a12+a2 + +ap2.
Again,
3 B 3 — r- 7]
B = L DR “TW and define B, = o o1 1
0 ap oy 0 cxp o
0 0 0 O
] " | “p
Then
318, = [ [t 1] + [0 o (4.3.8)
A 0, B'S
and
818, = [0 m| *+ |B'B O (4.3.9)
Te Ty QF') 0

It also follows from the definitions of S and R that

s? = |:§' (-s)p]pqq[g' O‘p]-?-

R2 - B "] rq*‘[g; [ e ]
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In proving equation (4.3.5) consider first the product
N ] - —- ! - p - I
pa-vpe = (o of|[ua, - nn)| e
(-8)°
using (4.3.7) & (4.3.9)
=[§' (-B)ﬂ 0. % e l:q' ap]- e [g,t ﬂ 8
A ! _a\P
0, AABB| |a 1 (-8)
using (4.3.6) & (4.3.8).
Thus
B'(A'A - B'B)g = SP-R°+e%g(A'A - B'B)8
using the definitions of 52 and R2 together with the result that
[_s' (-s)p] o o ||e | = feea-ewe
0, A'A-B'B[[(-8)°
Substituting in equation (4.3.5) it follows that
RHS(4.3.5) = [sz - R+ gl (A - B'B)@] (1-8%)
= (5% - R%)(1-8%) + 8°.RHS(4.3.5).
That s,
(1-62).RHS (4.3.5) = (5% - RE)(1 - §%)

Hence the identity (4.

(1-82).LHS (4.3.5).

3.5) has been verified. The determinant

has been neatly factorized into



- 8 =

_ 2,.2
det F = det Fouq det FBB R™/S
=" R2
-1 (1-r2)<2
det Eaa (1-84)S
and the generalised variance is given by
G.V. = 1
nP*ldet F
-1 2,2
= det £ (1-87)S" .
nP+1R2

Example ARMA(2,1) model
Xt + cz]Xt_1 + °‘2Xt-2 = ey + Bet_].
In this case,
2
= 1 - %y a](T-az)
2
a-l(]—(lz) 1 - 0!.2
so that directly, or using Theorem 3.4.2,

1 2

-1 2 2
det F. = (T-0,)((T+0,) - o;1
Also
2 . 2
R = (1 -88 ) (e, o 1) = a, = 0.8 + B
S = (1-88°)(Tayap) = 1-ap8+ay
Therefore
det F = R?
det F71 (1-82)s2
=oda
- (@) = a8 + 32)2
2 2 2 2 2,2
(1-0p) “0(1405) "0 3. (1-87) (1-g 8, 87)
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so that

G.V. 1

nP*1 det F

2)2.

(T-az)z.{(1+a2)2 - a-lz}(T-Bz)(]-a] B+a,B
3( 2)2

n az-a]B+B

The simplification that arises from the factorisation (4.3.1)
becomes apparent when the problem is considered directly. From the

example in the previous section,

— —

F = 1 T+o -a -1 1
22 2 ! 7
(1-&2){(1+a2) -oy } -y ]+a2 1-&1 B+a26 -8

-1 1 -8 1
]—a18+a262

The factorization of det F is in no way obvious from an examination
of the information matrix. Clearly some very lengthy algebra can be
avoided by using the formula (4.3.1).

In general if p 1is large it may be helpful to factorize

-1 . . :
det £, ~as in Section 3.4, i.e.

=1 »
det F,, = oa(T)a(-T)(det H)
and
ey, o alla(-1)(det 1)%(1-g%)s
np+1R2
where
H = 1 Cl..l « o e ap_z_ap
0 L

_-ap -ap_] e . 1-0L2 _J
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4.4 The Covariance Matrix

Let the ARMA(p,1) model be defined by (4.1.1) and let
0= (a] cee ap 8)' denote the vector of pérameters for the

model. The covariance matrix for the efficient estimator of o

10>

is given by the inverse of the information matrix.

v o= 17
n n
where
E N Eaa EaB
EaB FSB

Since F is symmetric, its inverse can be written down in a
relatively straightforward manner.

Let

<<
i

IO

o

Then since FV =1 it follows that

-1
- - 1
T = (FBB EuBEuaEaB)

-1

-1

Q - EaaEuBT
d P o= Fl e F R TR LETh
an - -0.0 -oa-af -0B-aa’

In order to find the individual variances and covariances, the

G ) and

aa=-aB’ .

procedure is first to find T, then the product (F

finally to combine these two producing Q = ((Q;)) and P = ((Pij))’



Clearly
n var (8) = T
n cov (&1&j) = P'ij 1<i,jzp
and ncov(c;ié) = Q T<i<p.
The expressions for P, Q and T can all be simplified owing to
the particular forms of Eds and T 1in the ARMA(p,1) model.
Firstly, consider T,
. - - 1 '1 ".l
T = (Fgg = Eogfuofap)
=1 ool -1,-1
B FBB (1 EaBEaaEaBFBB)
= (1-8%)s2/R?
using Theorem 4.3.1.
Recall
Fo = (D .
S
Hence the vector Q can be simplified to
0 = -E(-1e1-sD)s?
S R2
Q = (1-8%)s E;l B
R2

Finally, the matrix P can be simplified to
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1

The only quantities requiring calculation are S, R, g and E;a.

These are all easy to evaluate and substitute into the expressions
1

for P, Q and T. No matrix inversions are required since E;u

is calculated directly using Theorem 3.3.1. With the
. simplifications above, the matrix -E,, does not need to be

calculated.
Example ARMA(3,1) model
Xg +oqXpoq *ogXpp +agke 3 = ep +Bep g .

2 3,2

nvar (8) = (1-89)s% = (1-8%)(1-a;8%a,8°-a,8°) (4.4.1)
RZ (ag-apBta82-83)2.
Using Theorem 3.3.1,
N I i ‘ T
faw | %3 *17%% %27%1%3
- 1+ z-a z-a 2 =050
@17%2%3 %1 "% %3 %17%%3
- - T-g.2
(12 Cf.-ld.3 (!'I 0L20r.3 (!3
- -
Hence
— a n na T e 2, =T,
n var(a]) cov(a1u2) COV(a]a3) = Bt (1-8 ).{_aa__ F oo
R
COV(&I&Z) var(&z) cov(&2&3)
| cov(&]&3) cov(&2&3) var(&3) |
2y,
where g8 = (1 (-8) 87)',
whence
- 2 2
n var (oz-l) = T-a32 + (1-8 ).{(]-a3 ) - B(a1-a2a3) + Bz(az-a]a3)}2

(ag-aytta £2-59)2

(4.4.2)
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nvar (ay) = Tra 2oy Pea)? + (1-89)] (ag-apeq) (1482) - (T4ay -0, 20,2 8}
(cgmayBay 82-83)
(4.4.3)
and
n var (&3) = 1-a32 + (1-82){(a2-a1a3) - B(ag-ayaz) + 32(1-a32)}2 .
(a3-a23+a182-83)2
(4.4.4)

The covariances between the o's follow in a similar fashion.

Also

.

cov(&1§) = (1-32)S.E;l§
cov(a,8)
cov(&3§)

2 3 2
(1-8 )(1-a1e+a232-a3s ) 1-a32 - 8(aq=aya3) + B (ay-ai0,)

(a3-a28+a182-83)2

2 2 2
(148 )(a]-a2a3) - B(1+a] -0, —a32)

2 2
Gp=0q03 ~ B(a]-u2a3) + 8 (1-a3 )

4.5 Adequacy of the Fitted Model

One technique for checking the adequacy of the fitted model
is suggested by Box & Jenkins (1970, Chapter 8). Their method
involves over-fitting i.e. estimating the parameters of a more
general and therefore larger model than the one which it is believed
fits the data adequately. This assumes that the direction of the
inadequacy can be guessed so as not to add factors simultaneously to

both sides of an ARMA model.
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The above results show that this approach needs to be treated
with caution, since 'over-fitting' frequently leads to possibly much
larger sample variances. This can be illustrated by considering
again the example in Section 4.4. If an AR(3) process is believed

to best fif the data then the sample variances are

2

n var(a1) n var(a3) = 1 - ag

and

2 2 2

n var(&z) 1+ ap” - ay = og

By over-fitting with one moving average parameter i.e. an ARMA(3,1)
process, but whose underlying value is B8=0, then these three

variances become

nvar(ay) = 1 -ayf + (1mag0)? = 1-af  (4.5.1)
0 o
a 2 2
n var(az) = 1+ ap” - ey - ag (a1-a2a3)
2
3
n var(&3) = 1- a32 + (az“a1a3)2
2
3

by setfing g=0 1in equations (4.4.2), (4.4.3) & (4.4.4). For

stationarity, the inverse zeros 215 Iy, Z4 of «a(z)

1 + aqz + azz2 + a323 = (1-212)(1-222)(1-232)

must all be less than one in modulus. If for example

2y =25 =25 = i, then oy = 1/8 and the variance (4.5.1) is
increased by a factor of 64. Similar large increases in the sample
variances n var(&z) and n var(&3) would be expected if an AR(3)

is over-fitted with an ARMA(3,1) process whose moving average
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parameter is in fact zero.
If an AR(p) process is over-fitted with an ARMA(p,1)

process the sample variances var(&i) are increased by

2
Ly (1 7 o1 1
ap .

A

iz<p aOE1

and the sample covariances, cov(&i& are increased by

;)
_1_2 (ai-1 - ap-(i-])ap)(aj-'l - ap-(j-])ap) 1<i,<p aOE1

o

P

provided the underlying value of 8 {s zero.
Similarly if an ARMA(p,1) has been fitted, and is then

over-fitted with an ARMA(p+m,1) model, then the variance

nvar(d) = (1 - g)s2/R?
where
S = T-aq8ta 32 + + (-s)p R=a- + 2 + + (-p)P
1 2 cee C(p » = Olp Olp_'lB ap_28 . ( B)
becomes
1-62 E?
B2m R2

provided the m extra autoregressive parameters were zero. For
invertibility |g| <1, so if B8 = % say, then the variance is
increased by a factor of 4 even if the second model has just one
extra autoregressive parameter with underlying value zero.

Note that an essential condition for these moments to exist
and not be overwhelmingly large is that the zeros of «(z) and
g(z) be quite distinct. Redundant or nearly redundant factors
are not necessarily obvious, thus it is always advisable to

factorize both polynomials and examine carefully for any equal or
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nearly equal factors. Thus if d1=3+6, dz=36+6 and a3=86
for & real and |§|<1, then the denominator in each of the four
moments (4.4.1), (4.4.2), (4.4.3), (4.4.4) will be zero.

If nearly equal factors exist, then this can often be
rectified by modifying the autoregressive parameters and compensating
with a suitable change to the moving average parameters. By writing
an ARMA process in its infinite moving average or infinite
autoregressive representation it may be found that the relevant pure
model yields greater stability in its parameter estimates.

Clearly if there is any resemblance between the zeros of «(z)
and B8(z), then the sampling moments will be very large, which
explains why the estimation problem is reportedly difficult in these

cases. See for example Box & Jenkins (1970 §7.3.5).
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CHAPTER 5

THE GENERAL ARMA (p,q) MODEL

5.1 Introduction

In this chapter, the covariance matrix for the efficient
estimators of the parameters of an autoregressive moving average

model of order (p,q) is considered. The model is defined by

Xt + a1Xt_1 + ... F apxt_p =€t Bieg gt ...t Be (5.1.1)

q t-q
where {st} is a sequence of independent and identically distributed
Gaussian random variables with expectation zero and variance o2.

A realisation of n consecutive observations is available.

The computation of the covariance matrix for the effiéggﬁt
estimator of @ = (o ... dp By --- sq)' is obviously of
considerable interest to practitioners engaged in fitting models of
the form (5.1.1) to data. However the formulation of the matrix
is a general problem which seems to have attracted rather little
comment in the literature. The pioneering work of Whittle (1953)

& Durbin (1959) has not resolved the problem completely: Whittle
gave a formula for the elements of the information matrix but, in
particular for the mixed model, this method is rather cumbersome:
Durbin's method for evaluating the covariance matrix for the
efficient estimator of the parameters is valid for pure models only.

In the previous chapter the mixed model in which either p or g
is unity was considered. It was shown that the information matrix
could no longer be given simply by the inverse of a centro-symmetric

covariance matrix, as is the case with pure models. The partitioned
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form for F has an off-diagonal block Fug- In the previous
chapter this block was a vector which could be evaluated easily by
adapting a Quenouille-type algorithm (cf Lemma 4.2.1), but the
specification of EaB in the more general case is considerably
more complicated. Since p & q are both greater than unity, F

aB
is a pxq submatrix of the partitioned form

F =

- Eaa EaB
Fag Eag

Quenouille's algorithm affords little assistance in giving EaB
even when p & g are both quite small and it is necessary to find
an alternative approach. In the next section a method is given
for obtaining EGB; it involves the épecification of four upper
triangular matrices whose elements are the parameters of the model,
and the carrying out of some matrix products and additions.

Durbin's result (Theorem 3.3.1) is still valid for finding
the inverses of Eaa and EBB’ but the covariance matrix as a
whole can only be specified by inverting nF. Some help in deriving
the covariance matrix for the efficient estimator of ¢ is given by
writing it in a form partitioned conformably with F. Explicit
expressions for the variances and covariances of the estimators can
be found in cases where these moments are not too complicated.

It is assumed throughout this chapter that both p and gq
are greater than unity, since the theory of ARMA(p,]) & ARMA(1,q)
models has already been discussed fully in Chapter 4. Also without
loss of generality, the inequality p>q is understood. The
symmetry inherent in Whittle's formula for the information matrix
implies that nothing is lost by this assumption, but for the sake of

completeness, the case p<q will be considered briefly at the end

of Section 5.3.
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5.2 The Information Matrix

The information matrix in partitioned form is defined by
nE=n|F EaB (5.2.17)
1
EaB EBB
where nEaa is the pxp information matrix for the pure

autoregression (3.1.1) and nE is the gxq information matrix

g8
for the pure moving average model (3.6.1). These two submatrices
can be evaluated using either of the methods described in Chapter 3;
if p and q are both small then Lemma 3.2.1 is appropriate,

1 -1

o b EBB’

and these matrices then have to be inverted. The computation is

otherwise Theorem 3.3.1 can be employed to yield F_

reduced in the case p=q owing to a duality result of Whittle (1953).

l, E;; is given immediately by replacing the

a's 1in E;l with Bg's, since the covariance matrices for the

Having obtained F_

efficient estimators of the parameter sets are the same.
Let «(z), 8(z) be polynomials of degree p,q respectively
defined by

a(z) = 1+a]z+...+apzp , B(z) = 1+B1Z+...+quq

and it is assumed that «(z), B(z) have no zeros on the unit circle
and no factors in common. Defining B(z)=8(z)/a(z) and Tetting
6 €0, then the simplified form of Whittle's result states that the

(i,j)-th element of EaB is the constant term in the expansion of
-1 -1
3 )} _8 {log B(z)B(z ")}. (5.2.2)

2 ae.i aej

1 3 {log B(z)B(z

This is equivalent to
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Lemma 5.2.1

The (i,j)-th element of F,g 1s the coefficient of 2971 in the

expansion of

o
a(z)g(z”1)

Examination of a Quenouille-type approach on the term
“1/{a(2)8(z”]

the general class of mixed models. This is because Eas is a

matrix and not simply a vector as was the case in Lemma 4.2.1. The

)} yields no simplification for specifying Feg 1M

complexities of such an approach are illustrated by considering the

smallest model in this category, namely the ARMA(2,2) process.
Example
The model is

Xp voqkpq Fagkpp = ep * Brepay T Bpepp
Expressing -1/{a(z)3(z-])} in partial fractions

1 2

-1 = Ko + K]z+K222 + L]z- +L22' (5.2.3)

(1+a1z+a222)(1+s]z'1+322-2) ' ]+a12+a222 1+61z']+322-2

Multiplying throughout by the lowest common denominator a(z)s(z'1)
yields

%)

-1 = K0(1+d]z+dzzz)(1+e1z'1+322'
+ (K]z+K222)(]+3]z']+322'2) + (L]Z-]+L22-2)(1+a]Z+u222)

Equating coefficients of zk for k=0, 1, 2, -1, -2, respectively

yields
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1
—
|

= Ko(1+a]B1+0282) + K1s1 + K252 + L]a1 + Lza2

0= Ko(a1+a281) + Kl + K231 + L1a2

Koa2 + K2

o
1]

0 = Ky(By*aq8y) + KyBy + Ly + Loay

(o]
n

KOBZ + L2 .

In this example

so the above five equations need to be solved for Ko’ K] and L1.

After some lengthy and tedious algebra the solutions are

Ky = =(1-0985) = -(l-ap,) say
(]'@262)2 - (CX‘I"QZB])(B-I-Q'-']BZ) ACtB
Ky = oy-ep8y and Ly = gy-oq8y
Ayg | A48

For general ARMA(p,q) models equation (5.2.3) becomes

-1/{&(2)8(2-1)} = Ky + (Kjz + K222 + ...+ szp)/a(z)

T, L22'2 + ...+ L z'q)/s(z']

+ (L1z q

)
In this case, multiplying throughout by a(z)B(z-l) and equating

coefficients of zk

yields a total of p+g+l equations which have
to be solved simultaneously to give explicit values for
Ko’K1""’Kp’LI""’Lq' This alone is a very lengthy procedure,
but further calculations are then required to give the elements of

Eas which, typically, are linear combinations of the K's and L's.
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It is clear that we must reject this algorithm and seek an
alternative method.

Define the pxp matrix

G = 9% 9 © o 9pa

91-p 92-p * + %

b -

where the sequence {gk ¢ k = 0,+1,+#2,...} 1is given by

©

D og2t = -1 . (5.2.4)
k== _—__]—
a(z)g(z )

Comparison with Lemma 5.2.1 implies that Ea is just the first

8

q columns of G, and if p=q then G = Ea It would appear

g
that the problem of finding an easy expression for EaB is
intractable, since Whittle's result and Quenouille's algorithm
afford 1ittle assistance in this general case. However, a
straightforward method exists for specifying the whole of the

matrix G, and Eu can be extrapolated from this result. The

B
method involves some additions and multiplications of four upper
triangular matrices of order p. All of these matrices assume

the form

60 0 ... X

The matrices A, B, C & D are defined as follows:



For A: Xy = 1 and X = o (1 <k <p-1)
For B: x = %k (0 2k <p-T)
For C: Xy = 1 and x) = By (1 < k < min(q,p-1))
0 otherwise
For D: x, =(8_, (p-q < k < p-1)
0 otherwise .

[t is interesting to note that A & B also feature in the evaluation
of the covariance matrix for the efficient estimators of the
parameters of the pure autoregression of order p (cf Chapter 3).

The result for G is contained in the following theorem:

Theorem 5.2.1

6 = (DB' - AC)

Proof

Equation (5.2.4) can be re-written in two ways. Firstly, on

multiplying by a(z) it becomes

a(z) T g2 = _-1_ = -1- 1 pz K. (5.2.5)

k=-w

Equating powers of Zk for k=0, k>0 & k<0 vrespectively yields

9o * %97 t 9, t.o. . upg_p = -]
gk + a-‘gk_-l + azgk_z + .. . + apgk_p = O < (5.2.6)
9t oq9p-r Fep9k-p F oo s Fopkp T -byge |

From Equation (5.2.5),

oo

bz % =

s(z 1) {1 + )
k=1

RHc
&:3&@,4 p:,'\,
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so that
b + Byb_q + Boby o+ . . L+ By =0 (5.2.7)

for k =1,2,...,9, and by taking Bq+1 = .. .= Bp =

equation (5.2.7) also holds for k = q+l,...,p. This verifies

the form for Q'] which will be required later:
1T .
Ch = |1 by boy
01 by-2
00 1
Secondly, on multiplying equation (5.2.4) by B(z-])
sz z g2 = 1 = -l-x g
k=m0 k=1
a(z)

In this case, equating powers of zk for k=0, k>0 & k<0

respectively yields

9o + B19y f ..o+ BG. =
G * B9y * o - - F BTk T S (5.2.8)
G * B1%1 t - ¢ - T BgOkeqg = O

Define the pxp matrix

* — -

G = 9y  9p - -+ 9

9q.p Ip - v 9

91-2p 92-2p° - - 9-p

-

Equations (5.2.6) & (5.2.8) together imply that



[9* G] ¢ g - [Qp -(9')"] (5.2.9)

D A
where Qp is a pxp matrix consisting entirely of zeros.

From equation (5.2.9)

*
6C + G =

1o

giving
* -1
G = -GD(C') " . (5.2.10)

Further,

§B' +GA = -(C')

*
Substituting for G from equation (5.2.10) gives

Tgre) = (e,

1

Now B & C ' commute, since 9'1 is of the same form as A, and

hence the matrices satisfy the lemma preceding Theorem 3.3.1. It

-1

follows therefore that B' and (C') commute, so that

1 -

) = -(C')

Post-multiplying by C' gives

G(AC' - DB') = -I

whence

6 = (DB - AC')”!

as required.

It is also worth noting that

Corollary 5.2.2
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To see this, it is helpful to refer to the matrix J defined in

Corollary 3.3.2. Then

67 = DB' - AC'
= J(DB' - AC')'
= J(BD' - CA')

= (JB)D'J - (JC)A'Y

= B'(ID'9) - C'(4A%))

=B'D-C'A.
Theorem 5.2.1 gives a straightforward method for evaluating EaB'
First g“] is obtained by using the theorem. Then the inverse of

o

G is derived. Finally, F is the first g columns of G.

aB
To illustrate how this theory is applied, consider the
following example.

Example ARMA (2,2)

The model is

Xt + ct.l)(t_.I + oy

The information matrix is

nE = n Eaa -aB
EaB EBB

Using Theorem 3.3.1,

- 2

Eul = 1-a2 a1(1—a2)
2
a1(1-a2) 1-&2
whence
L oa = 1 2 1+0l2 -(1-1
(1-&2){(]+a2) - o 1

-oy 1+a2
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Similarly
Feg = L +8, B
For this model, G =F _, and
- _aB
B =11 a] Iy § = az a] ’ 9 = ] 81 1 9 = 82 81
0 1 0 oy 0 1 0 82
Thus ¢! = DB' - ACT
= 0262-1 aZB]-a1
OL] BZ—B'I 0'-2 82"']
and
G = 1 -(T-azsz) =812,

- 2- - -
{(1-0y87)% = (ag70871)(B1-ay8p)} Brrar8y  ~(1ay8))

Thus the information matrix is

— _
_ - _ -
nF=nf 1 ]+a2 -y 1 -(1-(1282) RLTL
Yo | o Troy | TaB | BymayBy ~(1-ap8))
B - - .
1 "(]’0‘252) Bymo182 1 ]+62 - B
A : ‘ A '
aB a]-a261 -(T_QZBZ) B 'B] 1+32
L d . -
where -
: 2
b, = (Trap){(T+ay)? -oq?)
: 2 2
AB = (1'82){(1+82) _B] }
and

2
Bag = (170g8p)" = (070581 )(B170485)
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The specification of F 1in partitioned form is a useful
preliminary to deriving the covariance matrix for the efficient
estimator of the vector of parameters, o. It is also very helpful
in testing hypotheses. For example, in testing @ = 0, the test

statistic
1

1>
[fOR]

ne'v

is asymptotically distributed like x2

with p+q degrees of freedom
if €=0. But n\_l'] is simply the inverse of the covariance matrix,
which is the information matrix. Clearly in order to perform this

test we would calculate

10>
1O

no'F

thus avoiding the lengthy procedure of evaluating the covariance

matrix, and taking its inverse. The specification of the submatrices

of F 1ds required in other tests described in Section 2.5.

5.3 The Covariance Matrix

In the previous section a method was outlined for obtaining an
explicit expression for the information matrix in the partitioned
form

nF = n|F F . (5.3.1)

- -00 -0B

Fas Eag

The covariance matrix V/n for the efficient estimator of ¢ is
given by the inverse of nF, and can be written in a form

partitioned conformably with (5.3.1), say
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- -1 -] 1 -T -]
LR I g T “Faafag (5.3.2)
n n
- WF' F'.I W
=-af-oa =
where
-1 -1 -] -1 -1.-1
W = (F__ - F = - F!
W= Frofag) = Egall = ELgfoiF afag)

-BB  -aB-aa-aB

Only two matrix inversions are required; one of order pxp, the

other of order gxq. The pxq matrix Ea is derived by

B
evaluating the pxp matrix g'] and finding its inverse; EaB is
then given by the first gq co1umhs of G. The other inversion
involves W.

Let

denote the submatrix of V containing the variances and covariances
of the Bg's. The second inversion is of the qxq matrix U.
This is somewhat cumbersome to evaluate explicitly in practice, but
would be straightforward if the numerical values of the parameters
were known. Thus no matrix inversions of order p+q are required
using the partitioned form (5.3.2) for V/n.

It is worth noting that a s{mplification of V occurs when
p=q, by appealing again to Whittle's result, cited in the previous
section. His result can be extended to mixed models by noting that

the first diagonal submatrix of V can be expressed in the form

Yy = F 1)
- -ao <
_ o P . . . \
where T = 1 - EaBEBBEaBEaa' By replacing a's with Bg's and

vice versa in Y, the matrix W is produced. Thus in the case
p=q, the off-diagonal submatrix and only one diagonal block need

to be calculated.
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For the sake of completeness, we consider the case where the
order of the moving average component in (5.1.1) exceeds that of
the autoregressive component. Retaining all previous definitions

and also 0 <gq <p, let the model be defined by

X ¥ ByXeoq *-or + 8K

g (5.3.3)

= € + a]et_] + ... + apet-p .

The information matrix in partitionéd form is n times the matrix

whilst the covariance matrix for the maximum Tikelihood estimator of

the vector of parameters (B] ces Bq oy - ap)' for the model

(5.3.3) in the Gaussian case is n7! times the matrix
|
W -WF' F
- =-af-aa
"] '] -'I ] "1
- EaaEan Eaa * EaaEanEdBEaa

These two partitioned forms correspond to (5.3.1) and (5.3.2)
respectively, and the evaluation of the submatrices proceeds in

exactly the same way as previously.

5.4 Concluding Remarks

Although the ARMA(p,1) and ARMA(1,q) models were discussed
separately in the previous chapter, the partitioned forms for the
information matrix and the covariance matrix for the efficient
estimators of the parameters of the model are compatable with those
described in this chapter. For ARMA(p,1) models, the matrix W

becomes a scalar quantity and Ea is a column vector of length p.

g
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Theorem 5.2.1 <dnvolves the inversion of a matrix of order p, so

for q=1, Eaﬁ

irrespective of the value of p. The details for the ARMA(2,1)

can be specified more easily using Lemma 4.2.1,

process are given in Godolphin & Unwin (1983).

The specification of V using equation (5.3.2) has many
advantages over a method based on inverting the information matrix
which has not been partitioned. 1In this general case, no simplified
form for the determinant of F exists, with the result that the
evaluation of the inverse of F wusing a method of cofactors would
be very cumbersome in all but the smallest of mixed models. The
individual components of V in the partitioned form, namely
P Fop 8’
products which constitute the submatrices of V itself are rather

& E are easily evaluated, but their combinations and
complicated. Thus explicit expressions for the variances and
covariances of the estimators can only be found for models containing
a small number of parameters. The ARMA(3,1) model was treated in
full in the example in Section 4.4, but the details of the ARMA(2,2)
process are considerably more complicated, despite the fact that the
models have the same number of parameters.

By way of a summary of the theory contained in Chapters 3, 4 & 5,
the following algorithm gives the salient details for specifying the
information matrix and the covariance matrix for the efficient
estimators of the parameters of univariate stationary time series

models.
Algorithm
Step 1

For p>q define the pxp matrices



A=11 o %-1° B = % %o ap b C=f1 Bq. .Bq 0 0
01 %5-2 0 o, Gy 01. Bq . 0
D : Do : D ;g
00... 1 oo ... e, 00....... 1
and D=]0..0 sq -+ By By
0..00 B3 By
L] 'Bq
0 00 0 0 |

If p=q then C & D are equivalent to A & B respectively, with

B's replaced by a's.

Step 2

Evaluate §'1 = §'Q - Q'@ and take its inverse. With the information

matrix for an ARMA(p,q) process defined in the partitioned form

M

Eaa EaB

EaB EBS

then the off-diagonal submatrix EaB is given by the first gq

columns of G.
Step 3

Evaluate E;l = A'A - B'B.  This matrix is n times the covariance
matrix for the efficient estimators of the parameters of the pure

autoregression of order p. Inverting E;l/n gives the information
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matrix for the AR(p) process and also the first diagonal submatrix

of the information matrix of the ARMA(p,q) process, given by (1).

Step 4

Re-define A & B as matrices of order q

]_‘B =11 B-l o ¢ o Bq_-l Py §B = Bq Bq_] . B‘l
0 1 By-2 0 8, By
0 0o ... 1 0 0 . e .
_ | A %q
Evaluate Fo! = A! B'B_ which is n times the covariance

-8~ -B-B  -B-B
matrix for the efficient estimators of ‘{s],...,sq}. Inverting

E;;/n gives the information matrix for the pure MA(q) process

and the second diagonal submatrix in (1).
Step 5

The covariance matrix for the efficient estimators of the parameters

of the ARMA(p,q) process is obtained using the partitioned form

(PR S R E, ]
l y - l Eua + EaaEaBWEaBEaa EaaEaBH
n n
v o]
- WF' F W
=~af-ao -

DT -



- 94 -

CHAPTER 6

POLYNOMIAL-PROJECTING MODELS

6.1 Introduction

The study of data collected from processes which evolve in time
has occupied the attention of scientific analysts for several decades.
One difficulty that occurs when studying such data is that in many
practical situations it is customary to encounter time series that
are not stationary in themselves. However in many cases it may be
possible to transform these data to stationary processes with
properties similar to those of low-order autoregressive moving average
models.  Such transformétions would preferably be free from unknown
parameters. For example models of interest to the control engineer
are typically based on physical considerations and may be .expected to
contain certain Tow-order polynomial trends. These models are
frequently expressed in state-space formulation, where each component
of the state space is intended to have some physical meaning. Thus
it is usual to model the hovement of a ship, for example, in terms
of distance and velocity variables in two dimensions.

Furthermore, by suitably differencing the observed series it is
possible, in principle, to obtain transformed time series with
properties similar to those of low-order ARMA models. By definition
these ARMA models contain a number of unknown parameters which can
be estimated and these estimates examined for significance.
Alternative forms of non-parametric transformations are sometimes

used, such as the taking of logarithms, but in the rest of this thesis
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the only type of transformation considered is that of differencing.
This provides one way in which to apply principles of statistical
inference to state-space models so as to examine hypotheses of

particular interest to the control engineer.

6.2 Univariate State Space Models

In Section 2.6 we defined the general form for the multivariate
state space model, and briefly described the practicalities of
restricting the components of the model equations. The models
considered in this chapter are in the form given by
Harrison & Stevens (1976). Thus the system matrix Qt is
independent of time and Hy = 1. The vector E, 1s also independent
of time but we relax the condition F = (1 0...0)' which
Harrison & Stevens require with all of their polynomial models. Thus

the univariate model is defined by

X, = Fe . +v

¢ Fo, + v, (6.2.1)

<D
]

: GBy_q + Wy . (6.2.2)

The random components Vi and W, are independent and have
N(0,V), N(0,W) distributions respectively and represent additive

noise. The vectors 6, and w, are of order nx1 with G of

t
order nxn. In this univariate case, E 1is a vector of
order 1xn.

In applying the model defined by (6.2.1),(6.2.2), the control
engineer bases the components of the state space on intuitively

sensible considerations. Each component is intended to have a

physical meaning, such as distance, velocity and acceleration.
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These concepts are useful when modelling the movement of objects
such as aircraft or submarines.
The models considered in this chapter also satisfy the
criterion _
re(e-1)4 = o (6.2.3)

for some non-negative integer d. Godolphin & Stone (1980) have
shown that these models can be interpreted as polynomial-projecting
models of degree d; they possess the property that the minimum
mean-squared error forecast for the model at a fixed time origin
describes a polynomial in the lead time variable of degree d.

Box & dJenkins (1970, Chapter 5) demonstrate that the same is true

for models of the form

v Xt = gy + B]st_] + ... +8 (6.2.4)

qt-q
where v denotes the backward difference operator, and provided

q < d+1. The same equivalence holds for models of the form

d

v Xt o= o+ ¢ + B.lgt_-l + ... +8 (6.2,5)

q°t-q

provided that q < d, and where u $ 0 is a deterministic parameter.
It may occur that a model satisfying (6.2.3) will be represented

by a system vector of n = d+1 components. Thus the system

equation is

Xg = F(8yp O1g --- 04¢) ' * Vi (6.2.1)"

and the measurement equation is given by
o — P — . —
v

8 = G2 + ot

ot G | 9t-1 (6.2.2)"

1t ®1¢-1 Wit

dej

8, 8.,
‘_dtJ —dt 1_



X, = E(g'l)gt-l + Bw, + vy,
= Eg(g'l)gt_z + E(G-I We1 t E"."t LA
Similarly
X, = FG(6-1)%, . + F(G-D)%. , + F(G-I)w, | + Fw, + 72y
t =372 Zpe3 TRNETL) Rpap T IAETL My T LV t
and in general, for d ;;],
d+1 .
d+1 _ _pyd+T i
v Xt = [EG(G-I) Qt-d-Z + 1§dE(Q'D Weoq
i B (6.2.6)
N _pyd=i_i d d+1
F B EEDTT N gy + B T

From equation (6.2.3), the first term on the right hand side of

(6.2.6) disappears. The remaining terms are linear combinations
of white noise random variables Wi t-q
v¥*1v,.  Thus the right hand side of (6.2.6) has covariances which

(0 £i,j £d) and also

are identical to those of a stationary moving average process of
order d+I.

However it does not follow that this process will be invertible.
This would appear to depend on the structure of the state space
model, and in particular on the form of the system matrix, G. In
fact there is no polynomial-projecting model of degree d with G
non-singular which yields values for B]""’Bq which cover the
entire stability region. To achieve this result it appears that
the system matrix would need to be of order greater than (d+1)x(d+1).
The implication of this constraint is that the description of a
polynomial model of degree d would need more than d+1 system
'‘parameters'. In practical situations the criterion of invertibility
may be the main factor in deciding which of the two models (6.2.4) or

(6.2.5) is the more appropriate for describing data generated by the
Harrison-Stevens model (6.2.1),(6.2.2).
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6.3 Multivariate State Space Models

The output data Xt encountered by control engineers is, in
practice, usually multivariate, rather than univariate. That is,
for each time point t, there are s distinct observations
available '

Xe = (Xlt""’xst)'

where s > 1. For example, in tracking a moving target, such as
a ship, its motion is in two dimensions. This motion might be
described in cartesian co-ordinates relative to some fixed origin,
in which case s=2. A question arises as to the inter-relation of
the s components. In some cases of practical interest, such as
the motion of the ship described above, it is permissible to assume
that the components X]t"“’xst of Xt are independent of each
other. In these cases the treatment of the corresponding
multivariate state space models follows as a straightforward
generalisation of that for the unijvariate state space models. Each
component X, (lgizs) s assumed to have a state space

representation which is unaffected by the univariate representation
| for components th (J¥i). Hence the elements of X, can all be
treated separately. This is assumed in the simulations described

in Chapter 7.

6.4 Inference for Polynomial-Projecting Models

In Section 6.2 it was shown that the Harrison-Stevens state
space form defined by equations (6.2.1),(6.2.2) can be interpreted
as one of two non-stationary time series models defined by (6.2.4)

and (6.2.5). There exist many variants on the Harrison-Stevens
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representation, but these models still yield polynomial-projecting
predictors. Also in many cases these models have fewer restrictions
than the Harrison-Stevens models without additional complications in
the structure of the system. Recall

X, = Foa, +v

t --t t

8¢ = Gq + Wy -

The system vector of parameters, Qt’ is estimated using the Kalman

updating equation:

~

8

B, - FG8, 1) (6.4.1)

= 89y p + Ap(Xy - B8y 4

where A, s the Kalman Gain vector

- ' -1
A, = PE'ERE' +V,)
and where
Et = @gt-]gl W
The matrix

- - A - A !
. = fteg - 8ey - 8]
denotes the covariance matrix for the difference between the system

vector and its estimate. It is easily seen that

C, = (I-AFP

=t t

Et - Bt(EEtE' + Vt)ét'

Godolphin & Stone (1980) have shown that the predictors of
polynomial projecting models of degree d and the least squares
predictors of models (6.2.4) and (6.2.5) are in a certain sense

equivalent. Define

m., = FG(G

i-1. -
it FG(G - 1) ¢ i=1,..., d+l

i-1 :
ajy = FEG(G - )" A i=1,..., d+l .
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Multiplying the Kalman updating equation (6.4.1) by
FGs EG(G-1)ser-» FG(G-1) we obtain

Tt = Ma, e F My ey Fooge(Xg - my ) i=1,..., d

Td+1,t = Mae, -1 * %ga1, e (X = My 1q)

so that

U = KM+ o (X -m i) (6.4.2)
where

My = (m1,t""’md+1,t)'

g = (o, peeees gy ¢)!
and

K = ((kij)) 1 d=jor i+l =]

0 otherwise .
Godolphin & Stone (1980) apply z-transforms to equation
(6.4.2) and show that the stability region is given by the space in
which the zeros of

g(z) = 1+ BiZ + ... 4 3d+]zd+]

are greater than one in modulus. In addition, this analysis yields
explicit values for the moving average parameters, namely

B; = (-1) Qﬂﬂ) + 1.;1 (-1)3 (d+1) FG'Ja (6.4.3)

i i=0 j

where A denotes the Timiting steady state value of the Kalman
gain vector A..

The form of the state space model is determined by the nature
~of the practical situation being examined. If equation (6.2.3)
holds, then a time series of the form (6.2.4) or (6.2.5) may be

suitable for describing the problem. The invertibility criterion

will usually decide which model to use, as was discussed in Section 6.2.
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Thus the maximum number of moving average parameters present is
known, taking account of the fact that some of these may be zero.
Then instead of adopting (6.4.3), the moving average parameters can
be estimated using the well-established inference techniques of time
series analysis. It follows that the estimation procedures

described here can apply to a realisation X],..., Xn of the model

d
Ke = VZe = u+ ey + ByEpy t ee. + B (6.4.4)

qt-q
where q < d and where the mean, u, may be an unknown parameter.

If u s unknown it is estimated by

b= X o= | (2 42, F e + 7K if d=0

(v41z, - ¥4z, /k-d if da]

where k=n+d is the size of the sample set before the differencing
is carried out. This estimator of u dis both unbiased and
consistent, as was shown in Chapter 2.

The estimation of the moving average parameters based on the
principle of maximum 1ikelihood has been considered by Godolphin (1977).
Let ozyn denote the covariance matrix of X for the model (6.4.4)
and I = ((“1i-j|)) be the covariance matrix for n consecutive

values of the autoregressive process '{Yt} defined by

Yt + BlYt-l + ... + Bth_q = n

where var(nt) = 1. Approximate maximum 1ikelihood equations are
obtained for large n by ignoring the contribution to the Tog
Tikelihood of det I, and by replacing gn'1 by 1. Thus for the

moving average parameters,
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m
Ty * 25N 70 (549

n-k
where rk = I
t=1

(X = %) (Xypp = X)/n-k

n
z (X, = )%n
t=1

The upper limit on the summation denotes a suitably large number

m>q for which the partial derivatives are negligible. This
estimation procedure is unbiased in the sense that the 1ikelihood
equations are satisfied if the rk's are replaced by their asymptotic
expectations r, = pg (1zk=q) » r =0 (k>g+1). 1i.e.

q
dj,0 + zkf1disk°k = 0 (3=1, ..., q)

where dj K denotes the partial derivative 8 - In matrix notation,

9

J
D, + 2 = 0 (6.4.6)
where
(4, | (4, . d d; ]
Do =[%,0] > 9 =%, Y2 %
d2’0 dZ,] dz’z e o o dz’q
C.L.d
dq,O dq,l dq,2 g.q

The 1ikelihood equations (6.4.5) can be written in a comparable

form:

R, = 0 (6.4.7)

D, + 2D 2

Dy + 2D4Ry + 2D

2

where 92 is a matrix of order q x (m-q) with elements di,q+j
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and R,, BZ are vectors of sample serial correlations,

-R-1 = (Y‘]rz coe Y‘q)l, BZ = (rq+]rq+2 ce rm)l’

Combining (6.4.6) and (6.4.7) gives the estimation equation for p as

e = PRy +ER (6.4.8)

where E = 91-192. It is interesting to note that the elements of

92 can be expressed in terms of the elements of Qo & Q] by virtue

of the fact that

_ 29 4
=X Xt 12131 Xeey =0 k > g+l

where X, = dj K 1zj<q and where the 8*'5 satisfy

2q
{B(z)}2 = 1+ = sh*zh
h=1
Thus the elements of E = Q]']QZ are given in terms of the
corresponding elements of QT'TQO = -2p and Q]']Q] = I.

In view of this result, the elements of E and hence the estimation
of p requires no matrix inversions which is an advantage over some
alternative estimation procedures such as Walker's (1961).

It is quite common in estimation prdb]ems that q takes the
value 1 or 2. In such cases equation (6.4.8) is used to obtain o
with initial estimate p =R, and the B's are then obtained using
the Cramér-Wo]d factorization. However for g>2 it is preferable
to transform equation (6.4.8) to a system in terms of é. Such a
procedure would require more iterations to arrive at the solution,

but avoids the need for the Cramer-Wold factorisation. To establish

the B8's it is required to find a gxq matrix H, such that

H]p = g e
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Substituting for p from (6.4.8) gives
B = HRy +HiR, (6.4.9)

where ﬁz = ﬂ]g. From the form of the elements of E it follows
that the elements of ﬂz are given in terms of the corresponding
elements of H](-Zg) = -Zé and Bl = . Thus equation (6.4.9)
gives an iterative solution for é in terms of H,,
requires no matrix inversions. To apply the procedure an initial

31 & 32 and

estimate of B8 from within the invertibility region is required.

[

The estimate B = 0 is feasible, or alternatively a closer initial
estimate can be provided by a single application of an alternative
procedure, such as Walker's. A modified system for the estimator
which is pseudoquadratically convergent has been derived by
Godolphin (1978a) and a computer implementation by
Angell & Godolphin (1978). Other tests for specification involving
moving average parameters are described in Section 2.5.
To test hypotheses about the mean of the sample, we recall

from Chap;er 2 that the distribution of the estimate of u is

X ~ N(w, (1 + By + .ee + B )2 02),

q —_—
n

To test the hypothesis that p = 0 we formulate the statistic

In large samples, Q is distributed 1ike x*> with one degree of
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freedom if the hypothesis is true. The parameters B]""’Bq
and the variance o2 are estimated using maximum 1ikelihood.
This test is adapted in the next chapter so as to test for different

means within a given sample set.
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CHAPTER 7

THE TESTING FOR DEVIATIONS IN STATE SPACE MODELS

7.1 Introduction

In this chapter the application of statistical test procedures
to state space models is considered. Of particular interest is a
problem which concerns control engineers who are engaged in the
active tracking of marine craft. When active tracking is being
carried out, a signal is emitted by the own-ship which registers any
objects within its range. By determining also the direction of the
signal it is thus possible to note the position in cartesian
co-ordinates of the object relative to some fixed origin, in this
case the own-ship. The aim of any test procedure is to detect
quickly and accurately any manoeuvres in the object. It seems
intuitively sensible to base any such test on detecting velocity
changes. Clearly the object can change direction and still maintain
a constant speed, but this manoeuvre is noted as a ve]dcity change,
since velocity is defined as speed with direction.

A test based on detecting velocity changes is presented.
Given a set of data values, one point is chosen at which it is
suspected that a velocity change took place. Then a statistic is
formulated which is related to the difference between the sample
means before and after the suspected ve]ocity change. Thus we
obtain a generalisation of Student's t test. The derivation of
the test statistic is given in Section 7.3. In Section 7.4 the

results of various simulations using the test are presented.
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7.2 The Constant Velocity Model

In tfacking an object such as a ship, the output data available
to the control engineer will be multivariate. In this case, the
cartesian co-ordinates of the object form two data sets, and for this
practical situation, we assume that the X and Y co-ordinates are
independent df each other. Thus each set of data has a state space
representation which is unaffected by the other set, but the analysis
of both sets of output is the same.

The state space model for the X co-ordinate is given by

Xy =[1 o] I (7.2.1)
O3t

o= [T ] [oqeq] +[Wie] (7.2.2)

93t 0 1 93t-1 0

The components of the system equation have physical interpretations

in that o represents the position in the x direction relative

1t
to some fixed origin at time t, and 044 is the x speed at time
t, where 1t 1is the measurement interval. The random component
Wi in (7.2.2) takes the value zero. This is because constant
velocity means no deviation in velocity whatsoever, not even random
deviation. The random components Vit & Wyp are assumed to be
N(O,V) & N(O,W) respectively.

Comparison with equations (6.2.1)' & (6.2.2)' shows that
d=1 and thus the model defined by equations (7.2.1) & (7.2.2)

satisfies the criterion



- 108 -

0 1

where

The question arises as to which of models' (6.2.4) and (6.2.5) is
the more appropriate for describing the given system. We shall show
Athat twice differencing leads to a non-invertible moving average
process of order 2.

Now from equation (7.2.2),

VG-It = T63t_.| + W-lt
so that

2y = u2 2
v Xt v 01t + v vy

t

V(e

u

+ v2v1

3t-1 ¥ M) £

O+ Wyy = Wy + Vi~ 2Vqp0) F Vg -

The covariances are given by

Yo = 2w + 6v
Yy = W~ dv
Yo = v

where w = var(w]) R v = var(v]) and thus

pq = -(w + 4Y) . Py = v
2w + 6v 2w + 6v

We derive the corresponding parameters for the associated MA(2)

process. If By> Bo denote the moving average parameters, then

B(z) =1+ ByZ + 5222

(1 - 22)(1 - z,2)

and
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-1 2 -
C(z) =1+ pl(Z +z )+ p2(z +z 2)
= 2, 2,-1 2 -1 -2
= (1+g1 +85 ) (1+31z+322 )(1+31z 8,2 )
We see that z=1 1is a double root of C(z)=0 since
C(1) =1 - (wtdv).2+ v .2 = 0 .
2w+byv 2w+bv
Furthermore we see that
-1
zZ+2z = 2+w
v
provides the other roots of C(z)=0. In this case,
ezl ze 2 = 2 +.yi + 4w
ve \

and on substituting in C(z) we have

1- (WHV)(2+w) + vV (2+w +4w) = O
2wAbv v 2w+6V v2 v

Consequently

B(z) = (1-2)(1 - 8,2)

where B, is the solution of

which has modulus less than unity. This solution for 82 is

easily seen to be

By = wi2v - T{w(w + 4v)}%
2v 2v

whence
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m
—
il

-('I + 82)

= -(wtdv) + T{w(w + 4v)}% .
2v 2v

Since B(z) has an inverse zero on the unit circle, the associated
MA(2) process is not invertible. Thus the state space model
defined by equations (7.2.1) & (7.2.2) is more appropriately

described by a time series model of the form
e = utoeg Bey 1 - (7.2.3)
Differencing the system equation (7.2.1) once gives

X (7.2.4)

t T O3t PVt Vie T Vigog -

By definition of the model, B3¢ is free from error and so can be
regarded as a deterministic parameter. Thus the mean, yu, in
(7.2.3) can be represented entirely by the term 03¢ = 034 7>

in (7.2.4). Thus equation (7.2.4) can be re-written as
VK = u= Wop Vi T Vot - : (7.2.5)

Multiplying both sides of (7.2.5) by VXt-u and th-1'“ in turn,

and taking expectations gives
2
E &vxt - qu) ] = var(w]) + 2 var(v])

E[(th -ﬁ)(vXt_] —u):] = - var(v])

Thus the theoretical correlation is

p = - var(vy) -1 say,

var(wy) + 2var(vq) 2 +R
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where R = var(w1)/var(v]). Hence 6/(1+82) = - (2 + R)'T, yielding
g = -2]:2+R+(R2+zm)%:]'1

as the invertible solution of the quadratic equation for g.

In the simulations described in Section 7.4, the standard
deviations of vy and W, are varied.  Thus the quantity of interest
in the analysis of the results is the ratio of these standard
deviations, namely R%, and not R itself. It is interesting to
know what theoretical value of B8 corresponds to a particular value
for R%. The table at the end of this section gives the complete
range of R%, together with the resultant theoretical values for B8

and the correlation p. The theoretical value for the variance

var(e) = o2 can be expressed in several equivalent ways, namely
o2 = -var(vy) = var(w)
B (1+8)°

and on substituting in either form for B8, it is possible to
express o2 wholly in terms of var(v,) and var(w]).
To complete this section the constant velocity model for the

Y co-ordinate is given by

Y, = [1 é] Sor | * Voi
Pat

or | = |1 T{[Bot-1{" | Yot

04+ 0 1 94t-1 Q

The analysis of the Y output proceeds in exactly the same way as
that described previously for the X output, with R denoting the

ratio var(wz)/var(vz).



- 112 -

R%= sd(w]) R=var(w1) 8 0
sd(v]) var(v1)
0.00 0.0000 -1.0000 -0.5000
0.20 0.0400 -0.8190 -0.4902
0.25 0.0625 -0.7793 -0.4848
0.30 0.0900 - -0.7416 -0.4785
0.35 0.1225 -0.7059 -0.4711
0.40 0.1600 -0.6721 -0.4630
0.50 0.2500 -0.6096 -0.4444
0.60 0.3600 -0.5536 -0.4237
0.70 0.4900 -0.5034 -0.4016
0.80 0.6400 -0.4584 -0.3788
0.90 0.8100 -0.4181 -0.3559
1.00 1.0000 -0.3820 -0.3333
1.20 1.4400 -0.3206 -0.2907
1.40 1.9600 -0.2711 -0.2525
1.60 2.5600 -0.2310 -0.2193
1.80 3.2400 -0.1983 -0.1908
2.00 4.0000 | -0.1716 | -0.1667
3.00 9.0000 -0.0917 -0.0909
® ® 0.0000 0.0000

7.3 Mean-Difference Test for Constant Velocity

If a velocity change has taken place, then the mean values of
the process before and after this change point will be different.

It seems intuitively sensible therefore to divide the output at the
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point of the suspected velocity change and to base a test on the
estimated mean values for each subset of data.

Let Z = (z] Zy ... Zn+2) denote n+2 observations of the
process. After differencing, the data is divided into two

uncorrelated sets, not necessarily of equal size

>
]

X1 (vz2 VZg ... vzn]+]) = (X] X2 . an)

X, = (vz vz
2 n]+3 nq

L (Xn1+1 Xn1+2 -ee Xp)
with ny, = n-ny points in xz and where the interval t between
observations remains constant throughout. The model is defined by
Xt = VZt = u + €4 + BEt-T
and the test is based on the assumption that
E(Xt) = u-l t=]3...-’n1

Ho t=n]+1,...,n

It is assumed that the parameter B and variance o2 remain the same
for both sets. This assumption seems reasonable since B and o2
are given solely in terms of the variances of the random components
Vit and Wit Although the components themselves may vary with
time, their variances are fixed and are independent of time.

Thus using the result in Chapter 2, the means f],iz for the

two sets are distributed approximately as
21 ~ N(uqs (1+s)202/n])
X, ~ Ny (1+8)26°/n,)

The situation is very similar to that of the classical two

sample t test and for 'n] and n, large, the random variable
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X.I-X2
(;L + _Bf2(1+e)2 t
ng N,
is distributed approximately N ( H1~42 1). Equivalently

1 f;£>c(1+e)

the random variable
T T .2
n o?(1+8)2
has asymptotically a (non-central) chi-squared distribution with one

degree of freedom. To use this test it is required to estimate g

and o2 using maximum likelihood. The Tikelihood takes the form

-1 . -
L= (C;Lgin] (det ;) ° eXp{:l;(X] B U11)'§]1 Xy - w13
2wo 20 (7.3.2)

1 - -
X('1 jjnz (det T,) : exp{-1 (X, - Uzl)'zg] (X5 - “21)}
2

T03 202

where 0221, czgz are the covariance matrices for the first and
second set respectively and 1 1is a vector of 1's of length

compatable with X, and X,.  The matrix T, is of order nqxn,

and [, is of order n,xn,; the matrices are of the same form.

Thus the joint Tlikelihood is
L - 1T§" (det T, det 1,)7% exp(-,)
2102

where

] ""l -
Q]_ = _1_{().(] - u]l) :] ().('] -u]l) + (Xz - Uzl)lljzl ()_(2 - 1121)}
202

To maximise the Tikelihood we make two Targe sample approximations.
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The first is to ignore the contribution to log L of

(det T, det 22)'% and the second approximation, derived by

Whittle (1954, §2.5) and examined further by Shaman (1976), provides
approximate inverses for Iy and T,. Whittle noted that 21'1
can be approximated for large " by I;, where I, = E(YY') fis

the covariance matrix for the first order autoregression generated by

Ye v 8 = oy

where yM is a sequence of uncorrelated random variables with
expectation zero and variance unity. Thus if the covariance matrix

for the first set is

0221 = g2 1+82 B .. .0
B 1+82. 0
0 0 .1+B2
then its inverse is approximated by
21y = o | 1 e ()M
2
1871 - 1 (-8)" 2
(-e)M7 (-p)M 7 ]

The maximum 1ikelihood estimators of Uy and up are Xy, X2

respectively, where

_ n, _ n

Xy =1 X s X, =1 = X
1 t 2 ;_ t=n,+1 t

M 2

Thus the first exponent in the likelihood (7.3.2) s
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- n,-1
(- TD'HEG =KD = (g2 T (8
1-g2

where

T 712 nyok -
o = L B Ge = X7 o= 1 m (X = Ry Xy - Xy)

t=1 t=1

ny ny-k

With exactly analagous results holding for the second set, it follows

that the maximum likelihood estimator for o2 is

. n]-1 .k -1 |
o2 = J_{ ny (Clo + 2 kz](-s) C]k) o, (c20 + 2 kil(-s) C2k{$ (7.3.4)
n(1-3 1-8°
with
7 X,)2 P (T (X, Ky)
C,. = 1 I (X;=X5)"y Cop,= 1 T Xo=Xo) (X, =X,).  (7.3.5)
20 — i ,4 E 2 2k —— 4t 27k T2
n 1 n,-k 1
2 2
Equivalently,
3? =1 (n]G]2 + n2522)
n
where
RPN
012 = ¢y, (1 +2 E (-8) rik) i=1,2
1-32

The maximum Tikelihood estimator for B8 1is derived from

()_(] - X]l)lag](X'] - X]l) + (Xz - le)'&()_(z - le) = 0

9B 9B

and is given by the recursive equation
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5 n1-1 KT ny-1
(7.3.6)

~ 2.M1 ke ol k
, [8020 (-8 %2 (-6) ey - 28 71 (- Czk}] - 0.

This yields the estimating equation

m
k§1(°3)k(”]c1k+n2°2k)}= 0.

B(n]c]o+n2c20)4{(1-82)k2](-B)k']k(n]c1k+n2c2K)-23
(7.3.7)
According to equation (7.3.6) the number, m, of sample serial
covariances in (7.3.7) should be n1-1 or n2-1. However it
appears to be generally accepted that 1ittle loss of estimator
efficiency occurs if m is of the order of 30, even when nys My
are quite large; see, for example, Whittle (1954, p.212). The
sample serial covariances are present in the estimation equations in
products of the form ck(-é)k and ckk(-é)k-1. Since [B|<1 for
invertible models, both products rapidly approach zero as k
increases, and so their contributions become neg1igib1é very quickly.

It is interesting to note that a "weighted" form or "overall"

~ sample serial covariance is obtained by writing them in the form

Cy = (n1c]0 + n2c20)/n
(7.3.8)
Cp = (mCyy + naCop)/n
Consequently equation (7.3.4) can be re-written as
R m .k
g2 = 1T (1+2z (-8) ck) ' (7.3.9)
]_52 k=1

and the estimating equation for B8 becomes



- 118 -

A m ~ - -~ m A
(1-8%) = (-8)Tke, - 28 3 (-B)Kc, (7.3.70)

k=1 k=1

™
(g]
i

These are the familiar forms for the estimation equations for a
single sample from a first order moving average process
(cf Whittle 1951, p.82) and described in more detail for a general
MA(q) process by Godolphin (1977, 1978a).

Having evaluated the covariances using (7.3.8) and formed
estimates of 8 & 02 wusing (7.3.9) & (7.3.10) the statistic K
can be formed and the test is ready for use. The results from

various simulations are given in the next section.

7.4 Empirical Results

In this section, the results using the test described in the
last section on various sets of simulated data are presented. Each
data set either represents constant velocity, or it contains just one
velocity change, and by altering the initial and new velocities of
the object, it is possible to examine the sensitivity of the test to
different magnitudes of velocity change. A comparison is made of
the ability of the test to detect velocity increases and decreases
of the same order. The remaiﬁing factors which w111 affect the
performance of the test are the variances on the noise terms
associated with the system and measurement equations. Recall from

Section 7.2,

(1 + 82)02 = var(wy) + 2 var(vq)
g’ = - var(vq),
so that
(1 + 5)202 = var(w]).
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The statistic for the proposed test is

)2

n02(1+3

where the parameters g & o2 are estimated using maximum 1ikelihood.

Note that the random variable K is inve}sely proportional to the

- variance of system noise, var(w]), even though the theoretical value

of B depends only on R%, the ratio of the standard deviations

(cf §7.2). Thus the system noise will have a direct bearing on the

size of velocity change that we would expect the test to detect.

In practice we would expect the variances of system and measurement

noise to be approximately equal, since they both represent deviation

in metres on distance measurements. Thus in the first half of the

results, the ratio, R%, of standard déviations is fixed at 5/5 = 1.
To illustrate how the test procedure works in practice, the

analysis of one pair of X & Y co-ordinate data is given in full.

The data file is

6000 5000 Initial object position (X,Y in metres)

10 10 Initial object velocities (X,Y in m.s'1)
51 Time of velocity change (in seconds)
10 14 New object velocities (X,Y in m.s'l)
1 Measurement interval (in seconds)
5 5 Standard deviations of system noise (w1, WZ)
5 5 Standard deviations of measurement noise (v1,v2)
1 No. of moving average parameters (q)
30 No. of sample serial correlations (m)

100 No. of points in sample (n)
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The standard deviations of Wy & 2 and also the velocity change in
the Y data have no effect on the analysis of the X data, since
the two data sets are taken to be independent from the outset.

Consider first the analysis of the X co-ordinate data. Under
the null hypothesis it is believed that the data represent constant
velocity. Using all n data values, the estimated velocity is
9.578 and this is subtracted from the once-differenced data values,
thus yielding the required form to the data for the proposed test.
The sample variance and the first thirty sample covariances are given
by

n

2
T (X, - 9.578)%, ¢, =
t=1 ° k

n-k
T (Xt - 9.578) (X
1

1 - 9.578) .
n-k t=

¢ =1 t+k
n
These are then substituted in (7.3.9) & (7.3.10) to give the
maximum 1ikelihood estimators of 8 and o2. In this case the
estimates are -0.526 & 67.426 respectively, and the first fifteen
sample serial correlations rk=ck/co are given in Table 1 below.
Under the alternative hypothesis it is believed that the first
n1=50 data points have a fixed velocity and the remaining n2=50
points also assume constant velocity, but of a different magnitude
to the first set. The two velocities are estimated by 9.230 &
9.878 respectively. For the first subset
c. =1 21

S
M

(x, - 9.230)%, ¢, = - 9.230)

M
) : (X, - 96230)(x

1
—_ t+k
n -k t=1

whence the sample serial correlations ck/c0 can be formed based on
the data available before the suspected velocity change. The first
fifteen sample serial correlations are given in Table 2. Similarly

for the subset of data after the suspected velocity change
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n
=L (X, - 9.878)%, ¢, = _1 1 (X
t=n,+1 t=n. +1

Il 1>

t

- 9.878) (X, - 9-878)

with the first fifteén values for " given in Table 2. The test
requires an "overall" value for each Cie3 these are given by
equation (7.3.8) which, since n]=n2=50; is simply the average of
the sample serial covariances previously calculated for each subset.

The first fifteen "overall" values for r, are given in the second

k
row of Table 11

Table 1 Estimated/Modified Sample Serial Correlations r,

lag 4 2 3 4 5 6 7 8
Under H_ | -0.32 -0.11 -0.05 0.07 0.08 -0.21 0.08 0.06

Under H, 1-0.32 -0.12 -0.06 0.09 0.06 -0.20 0.06 0.70

9 10 11 12 13 14 15
-0.10 -0.04 0.02 0.07 0.01 -0.20 0O.716

-0.12 -0.03 0.00 0.09 0.03 -0.25 0.17

A graphical representation of these sample serial correlations under
H0 is provided by Figure 7.1. The rk's in Table 1 are virtually
identical at each lag under the two hypotheses, suggesting that no
velocity change has occurred. This belief is supported by the test
statistic.

rk’T

0.1

00 ‘ | | l [ | ‘ — | ‘ k

-0.14

-0.2-

-0.3-

Figure 7.1
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Table 2

Sample serial correlations using divided sample

1 2 3 4 5 6 7 8

Before suspected}-0.33 -0.18 0.03 0.18 -0.03 -0.34 0.14 0.22

velocity change

After suspected [-0.32 -0.05 -0.14 0.00 0.16 -0.05 -0.02 -0.02

velocity change

9 0 1N 12 13 14 15

0.20 -0.03 -0.06 0.13 0.01 -0.24 0.15

-0.05 -0.04 0.06 0.06 0.04 -0.25 0.20

The estimates of B & o2 using the "overall" values for c, are

-0.566 and 66.609 respectively. The proposed test statistic is

(X'I - X2) n.]nz
nol(1+8)2

=~
[

(9.230-9.878)° 50 50 = 0.84
100 66.609 (1-0.566)2

which is not significant. The test concludes correctly that there
is no evidence to support the idea of a velocity change.

The analysis of the Y co-ordinate data follows in the same
way. Under the null hypothesié the maximum Tikelihood estimators of
8 and o2 are -0.251 and 83.909 respectively; under the alternative
hypothesis the estimates are -0.527 & 70.236. Using all n data
values, the velocity estimate is 11.276, whereas for the subsets of
Ny and n, points the estimates are 8.774 and 13.637 respectively.
Figures 7.2 and 7.3 give the estimated first fifteen terms of the

correlogram under the null and alternative hypotheses respectively;
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the values are also given in tabular form in Table 3. The sample
serial correlations based on the subsets before and after the

suspected velocity change are presented in Table 4.

Table 3
Estimated/Modified Sample Serial Correlations
lag
1 2 3 4 5 6 7 8
Under H0 -0.32 0.21 -0.16 0.24 -0.12 o0.10 -0.16 0.18
Under Hy -0.40 0.12 -0.20 0.13 -0.14 0.00 -0.18 0.13
9 10 11 12 13 14 15
0.08 0.08 -0.06 0.22 -0.01 0.11 -0.08
-0.01 0.00 0.00 0.15 -0.03 0.05 -0.14
"«]
0.2
i
0.0 l ] ‘] k
~0.14
-0.24
-0.31
i Figure 7.2
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0.1-

0.0 , |

-0.15

-0.21

-Q. 3

04 Figure 7.3

Table 4

Sample serial correlations assuming H]

Tag
1 2 3 4 5 6 7 8

Before suspected|-0.47 0.09 -0.28 0.29 -0.08 -0.04 -0.12 0.11
velocity change

After suspected |-0.33 0.14 -0.12 -0.03 -0.19 0.04 -0.24 0.16
velocity change

0.06 -0.09 -0.08 0.12 -0.05 0.12 -0.05

-0.08 0.09 0.07 0.18 -0.01 -0.02 -0.22

The test statistic for the Y co-ordinate data is

K = (8.774-13.637)2 50 50 = 37.62 .
100 70.236 (1-0.527)2

In this case the velocity change is detected with a large probability.
It is sensible to use several simulations to assess the value

of the test procedure for detecting constant velocity or a velocity
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1 to 14 ms™ ' as described above. It may

increase from 10 m.s”
be that the test can behave unexpectedly on occasions owing to some
untypical random disturbances and that this behaviour may not be
reproduced on the majority of occasions. An atypical random number
seed can produce unusual noise sequences and unfortunately the test
appears to fail each time that particular random number seed is used.
To balance out such effects, ten different random number seeds are
chosen and thus ten sets of data containing the same velocity change
are created. The test is then performed on each set in turn and its
success rate over the ten runs is noted. A more accurate assessment
of the sensitivity of the test can thus be made.

Nine further simulations were constructed of the data set
presented earlier in this section. The results are given in

Table 5, together with the results described in full for random

number seed 19,

Table 5 Test statistic
Ragggg No. x data y data
* Kk
11 1.31 27.71
Yk %
12 1.52 21.97
* %
13 0.00 4.97
k3 23
14 0.08 33.04
15 0.44 3,14
* k%
16 0.01 22.80
*ekk
17 0.42 16.59
* k%
18 2.50 21.25
* kK
19 0.84 37.62
* k%
20 0.16 11.06

*% .. e
*denotes significant at 10%; denotes significant at 5%;

*** - 3 - N
denotes significant at 1%.
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Thus the test detects both a constant velocity of 10 ms!

and the velocity change from 10 m.s”' to 14 m.s~' with a large
probability in the majority of simulations, the only possible
exception on the Y data being the result obtained using random
number seed 15.

Further tests were carried out on data containing different
velocity changes. Each test was repeated ten times using random
number seeds 11-20. As in the previous example each data set
éontained 100 points, and the velocity change occurred after 51

seconds. Denoting the X and Y data already discussed as

Series I and II, the following six series were also examined:

Series III  Velocity increase from 10 st to 12 msT!
Series IV " decrease " 10m.s’! " 5m.s
Series V " increase " 10m.s”! " 16 m.s™)
Series VI " n " BmsT v gms)
Series VIT " n " 5ms v10ms)
Series VIII n decrease " 16 m.s”' " 10 m.s |

The values obtained for the statistic K are pkesented in
Table 6 below. The results in the table indicate that the velocity
change is detected at the 99% significance level in every simulation
of Series IV, V, VII & VIIL. The random variable K fis
proportional to the square of the velocity change and the statistics
on the whole indicate this. For this reason, the results for
Series III & VI are less conclusive than those corresponding to large
velocity changes. In fact the Series III statistics detect the
velocity change at the 90% significance level in only six
simulations out of ten, and that for Series‘VI in eight cases out of

ten. The smaller than average value for K 1in all the series
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using random number seed 15 can be attributed to the unusual
sequence of random numbers generated by that particular seed.
Indeed, this may account for the failure to detect the velocity

changes in Series III & VI using seed 15.

Table 6
Seed|Series IIl|Series IV|Series V{Series VI|Series VII|Series VIII

*kk %Kk kK% *k* * %k *k *kk

11 ]| 8.43 10.59 41.25 17.59 30.73 29.53
*% ok k * %% *kk s k% * k%

12 | 5.72 106.11 93.04 13.14 61.34 35.20
* k% *k Kk *kk Yok k *%kk

13} 6.77 40.14 59.42 0.42 41.37 185.44
* sekk *dkk *%%k Jodkk *dkk

14 { 3.87 34,52 41.58 19.46 28.39 58.11
sk Kk * ok *kk *kk

151 0.90 22.05 17.40 0.52 11.32 75.61
ok *dek * %k ok k . * k% *dek

16 | 5.20 28.59 44.07 14.42 30.79 25.00
*dkk . hkk * k% * %% * k%

17 | 2.42 37.95 35.56 9.30 23.63 38.04
*%kk * kK *kk sk gt

18 | 0.82 60.83 34.59 14.30 21.51 13.44
*hk *kk *kk Yk * %% *kk

19 113.98 37.79 88.14 23.77 63.62 42.04
% kk *k %k * % *dhk * %k

20 | 2.05 24.72 25.93 6.07 17.45 28.08

In practice there are two types of velocity change that we
wish to detect. The first type results from the object maintaining
the same speed but changing its direction. The second type is
caused by the object changing its speed and possibly its direction
as well. A change in direction cannot be instantaneous; the |
resultant increase or decrease in velocity, depending on whether the
object is moving nearer or further away (relative to the own-ship)
will take several seconds in reality, and the test described here is

not designed for this type of lag. It is clear that the time taken
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over the velocity change will have an effect on the ability and
sensitivity of the test to detect increases and decreases. The
nature of the object (ship, aircraft or submarine) will determine its
ability to increase‘or decrease its speed quickly. It seems that
neither type of velocity change will be as discrete as in the
simulations described here, but it is reasonable to suppose that the
test would still be useful for these problems.

Further examination of the sensitivity of the test is made by
considering different values for the sfandard deviations and examining
the effect on detecting the same velocity changes as in Series I to
VIIT inclusive. By increasing the standard deviation of system noise
from 5 to 8, the random variable K 1is significantly reduced, and
this may result in the test not performing as well as previously.

With R%=8/5, the theoretical value for g is =-0.2310. This is
well within the unit circle, so no problems occur with lack of
convergence, and hence a value for K is produced at each simulation.
The following results, to be compared with Tables 5 & 6, are

obtained with these values.

Table 7a

Seed | Series I | Series II | Series III | Series IV

*kk *% *

11 1.27 11.43 5.26 3.23

*k*x ’ *k%k

12 1.34 9.25 0.95 42.09
*%kk

13 0.00 0.06 1.88 13.10
*k%k * %%k

14 0.11 12.13 1.05 13.76
* %%k

15 0.55 0.03 0.11 11.86
* ki *kk

16 0.01 9.40 1.81 8.69
' *% * %k

17 0.39 5.39 0.42 14.39
* k% k%%

18 2.46 12.96 0.01 27.17
* ke * % Jedkk

19 0.63 12.69 5.96 11.11

*% * %%k

20 0.22 4,06 0.51 11.70
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Table 7b
Seed | Series V | Series VI | Series VII | Series VIII|
M| 21467 757" | 16.39° 8.51 "
12 | 27.43°""| 5.67 17.007°° | 12.627"
13 | 17.83| 1.46 12.317 | 96.28™"
14 | 13.89""| 7.48™ 9.3 | 15.91""
15 6.23 | 0.23 3.83" 38.94 "
16 | 14.417| 6.18™ 10.13° 7.45"%
17 | 10.147| 3.08" 6.51" .97 %
18 7.8 9.37" 1.3 3.217
*k% %k Jekd k%
19 | 32.9 8.44 20.17 9.04
%% %% dokx
20 9.47 2.08 6.18 13.9]

The effect of increasing the standard deviation of the system
noise has been to reduce the sensitivity of the test. The
statistics in Tables 7a & 7b are nearly all less than their counter-
parts in Tables 5 & 6. In a few cases only, this means that the
velocity change is no longer detected, even at the 90% significance
level. Such cases are apparent from Tables 7a & 7b; it is clear
that the problem is more marked when detecting smaller velocity
changes.

One problem that might arise using the test is if the
subroutine for evaluating B fails to converge. Such difficulties
may arise if R% becomes small, since this corresponds to
theoretfca] values of B8 near the boundary of the unit circle.
Naturally if g cannot be determined, then o2 cannot be estimated

either by our procedure, and so in such cases nothing can be said
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about the object's motion using this test, as the statistic K
cannot be formed. It is possible that indirect estimation
procedures such as that of Walker (1961), which concentrates onA
estimating the correlogram efficiently, may circumvent this problem.
However, it seems unlikely that this problem would occur frequently
in practice.

The proposed test is appropriate for testing a wide range of
magnitude of velocity changes, both increases and decreases. The
statistic can always be formed, provided the ratio of the standard
deviations (RY) is within the Timits of about [5,2], If the
actual values of these standard deviations are not too high, then
the sensitivity of the test appears to be very reasonable.

The scope of the test is wider than has been considered here.
For instance one would expect, in practice, to have fewer
observations available after the velocity change has happened, say
n1=70 and n2=30. The procedure is still quite valid although
one would expect the power of the test to be reduced in such cases.
The requirement that Ny be reasonably large may be a limiting
factor for the test, and the assumption that a velocity change be
discrete and immediate may nof be realistic, however it is hoped

that the test has the scope to cover these possibilities.
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CHAPTER 8

THE TESTING FOR DEVIATIONS IN STATE SPACE MODELS
USING DATA RELATING TO BEARING AND RANGE

8.1 Introduction

In practice it is often not possible to approach the problem of
detecting velocity changes using the method described in the previous
chapter. This is because it is not easy for marine navigational
devices to measure the position of a neighbouring object in terms of
cartesian co-ordinates. It is more natural in active tracking to

measure the bearing, B, and the range, R, of the object relative to

object

B

own-ship

the observer.} With the own-ship's position assumed known, the range
of the object can be deduced by noting how Tong the signal emitted by
the own-ship takes to return there. If the bearing of the signal is
also measured, then two pieces of information concerning the object's
position are known, and thus, within the accuracy of the
measurements, the location of the object in the plane can be deduced.
It is necessary to modify the state space equations to take
account of the fact that the data are given in a different form. We
derive a test to detect constant velocity and velocity changes by

making assumptions about the magnitude and distribution of the noise
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on the bearing and range measurements. The properties of this test
are considered by performing ten simulations and noting on how many
occasions the test determines correctly whether or not a velocity
change occurred. These results are presented in the final section
together with a comparison of the performance of the test using

bearing-range data and cartesian co-ordinate data.

8.2 The Constant Velocity Model

The constant velocity model is defined in terms of a set of
system and observation equations. The set of system equations is
the same as that of Section 7.2; thus the co-ordinate state position

(e], 62) and velocity (63, 64) variables have the state-space

representation
re; = -1 1'— —91- o+ -w;
A PO R | ) PSR I
) _ _ o (8.2.1)
62-.1 =11 tﬂ 62T W,
_64- . _O 'l_ _64_ o _OJ .

The additive noise terms Wis W, are present as before so that
allowance can be made for the possibility that the position of the
own-ship is not known exactly.

The observation equations cannot be the same as previously,
however, since we do not observe directly the X and Y

measurements. We propose the following model for bearing, B, and

range, R :
B| = [tanTl(sy/e,) | o+ |b (8.2.2)
2 2.3
Rt (e-l +92)2t rt
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The random components bt’ re represent the additive noise on the
bearing and range measurements and are assumed to be independent and
to have N(O, obz), N(Q, crz) distributions respectively. Thus the
data received by the observer consists of two pieces of information
at each point in time, at a constant interval, t. However, in their
present forms, neither data set can be used singly to detect velocity
changes. This is because either the range or the bearing of the
object can remain constant while the object is in fact manoeuvring.
If the constant velocity test described in Section 7.3 were applied
separately to each set of data then the results would be inconclusive.
A natural way of tackling this problem is to transform the bearing

and range measurements into estimates of the cartesian co-ordinates

by the formulae

X, R, sin B, (8.2.3)

Yt Rtvcos B (8.2.4)

t

We now consider under what circumstances the first differences

vX, and vY, have the same correlation structure as an invertible

t t _
first order moving average model with a non-vanishing mean, i.e.

VXt = ]JX + €Xt + Bxext_-l (8.2.5)

vY

1]

£ My + eyt * Byayt-l (8.2.6)

where Mo By are deterministic terms representing the mean of each
process and {ext}, {syt} are independent random processes which are
distributed N(O, cxz), N(O, cyz) respectively.

Consider first the structure of the X co-ordinate data

derived from the bearing and range measurements using equation (8.2.3).

The Taylor series expansion for sin Bt is
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\ . . - 2 .
sin By = sin(B, bt) + btcos(Bt bt) - EE_§1n(Bt-bt)

zl

3

- b t COS(By- bt) + ... F b (s1n(B t)) + .ue

75?_ Kt
We make the assumption that |bt)<1 so that the expansion provides
a valid approximation for sin Bt using relatively few terms. In
examining the correlation structure of (VXt - ux) we shall assume
that the fourth and higher powers of the noise terms bt and re
make negligible contributions to the variances and covariances and
are thus discarded. By assumption the bearing noise has an
N(O, cbz) distribution and thus the third moment of by is zero.
For these reasons we approximate sin Bt by the first three terms in

Taylor's series. From the observation equations,

tan(Bt - bt) = ElE
V2t
so that
sin By 8¢ * stZt - b 261t
R, R, 2R,

where Rt* is the true, but unobserved range measurement

(Blt + 0oy )% from the equation

*
Rt = Rt + rt
Thus
X‘ = + b,s b 28 + re 8¢ + 't b 8 b ze
t = B¢ * Pt 1t 1t 2t 1t -
* * *
2 Rt Rt . ZRt

From the system equations,

LA T T R S 1
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and on substituting oy in vX, 1t is seen that 10441 15 the

only purely deterministic term. Thus the mean, Hys in equation

(8.2.5) is represented by the term TeBt-]' Then
- - - 2
WX =y Wip + Vb6, Vb “61, + vr 6y,
*
2 Rt
2
+ VrtthZt - Vrtbt 81t
* *
Rt 2Rt
In the definition of the model, b, and r_ are N(0, o,2)
& N(0, crz) independent random variables.  Thus
E(rt) = E(bt) = 0
2 2 2
E(rt ) = E(rt_k) = o, k=1,2,
2 2 2
E(b,") = E(b5) = of k=1,2,
and , '
' a. c, _ . .
E(bt re = 0 if a or c 1is odd.
It follows that
1
E[(VXt -ux)] = var(w]) S PR M
where '
} 2,21 . 2. 27 . 2.2 2 2.2, 2
4 = EEZt bt] tOEIS Ty E1oe Te by |+ B[St e By
* *
(Ry )2 (Ry )2 (Ry )2

This expression for Ay is unhelpful in this form since it involves
8 and 6, from the system equations. However it is possible to
eliminate the 6's and to write e in terms of quantities from

the observation equations. Thus
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= o V2 2nnclin 2.:°2/n _
9y = E{(Rt re) by "cos (B, bt)] + E[rt sin”(B, bt):] (8.2.7)
2, 2.2 2, 2 .2
; Ei:rt b, sin (Bt-bt)] + E[r. %, %cos (Bt-bt):,.

In order to establish that (vXt-uX) ‘has the same correlation
structure as a first order moving average process with the first
covariance having the same parity as in Section 7.2 we need to show

that [eo| <3 and
E[(vxt - ux)z] > 0
El:(vXt - u ) (Vg - “x)] <0 (8.2.8)
[-:I:(vxt - ) (VX - ux)] =0 k.

The third of conditions (8.2.8) is satisfied since the k-th

“covariance

EBVXt " i (P = ux)]

consists of terms

E[( J-il )t-k_j] 1,§=0,1 3 kol

i.e. (VXt - ux)

(VXi_, = u ) involves terms with Tlag t-k & t-k-1.  Thus all of

involves terms with Tlag t & t-1 and

the terms df the k-th covariance have zero expectation, so

Y = 0 k>1 .

The first covariance is
1 - E[(VXt = (WX - ”x)] R T

In order that the second of conditions (8.2.8) 1is satisfied, we
require that -1 be positive. Since e and U1 have the
same form it seems likely that they would have the same parity.

Re-writing equation (8.2.7) gives
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= 2 2,2 2 2 2y -
qy = E[&t {(Rt-rt) e }cos (Bt-bti] + E[}t (1-bt )s1n2(Bt—bt)]

which is always positive, since |bt|<] by assumption. Similarly

-1 is positive, and so all of conditions (8.2.8) are satisfied.

The theoretical correlation is

P " 9t

var(w;) +qg + Qg 4

= -1
2 +n

Thus |e| <% as required and hence (VX; - u ) has the same
correlation structure as a first order moving average process.

Note however that n = (var(w]) + Vqt)/qt may be dependent on t.

However, the theoretical values of B8

_ , 2 1]-1
B = -2[2 +n + {(n) +4n}ﬂ

and o2 = var(w])/(]+3)2 may contain errors owing to the possible
dependence of n “on time. These errors may be reflected in the

estimates of B and o2 required for the test statistic
v \2

2 My

noZ (1 + 5)2

K = (X

It is hoped that the dependence on t will not affect K unduly.
The applicability of this test is considered in the next section.
A similar argument holds for the Y co-ordinate data

converted from the bearing and range measurements using equation

(8.2.4). " In this case the correlation structure of th - My is
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E[(th - ) ]
EBth Su) (Mg - w)] = -

E |:(th - “y)(VYt-k - uy)]

* *
var(w,) + g, + g _q

0 k>1
where
q; - E[btz{(Rt - r)? 4 r Psin?(s, - bt)]
+ E[rtz(l - b,cz)cosz(Bt - btﬂ .

The validity of the use of the constant velocity test is
difficult to establish because of the dependence of p on time.
The empirical work in the next section attempts to investigate
whether this is a significant problem compared to the effect on

the test statistic of a possible change in .

8.3 Empirical Results

In order to draw comparisons between the performance of the
test using the cartesian data as in Chapter ; and the cartesian data
converted from bearing-range measurements, the velocity changes
inherent in Series I-VIII are employed as before. The total number
of data points available remains at 100 with the velocity change,
if present, occurring at t=51 seconds. There is no reason to
suspect that the variances would be different on the X and Y
components of the system noise, so the standard deviations of both
are fixed at 5, which corresponds with the value in the first half
of the results in the previous chapter. The bearing and range
components of the observation equations (8.2.2) also have additive.
noise; for the purpose of these simulations, their standard
deviations are fixed at intuitively sensible values such that the

variances sz and Syz relating to equations (8.2.5) and (8.2.6)
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are not too large. For the first set of results on Series I-VIII

the standard deviations of the bearing and range noise are 0.07 and
5.00 respectively. In practice this means that ze - and Syz are
of the order of 70, which compares favourably with the correspdnding
variances in Chapter 7; see, for example, the full analysis of one
pair of X & Y co-ordinate data given at the beginning of Section 7.4.

The data file for Series I is

3000 3000 Initial object position (X,Y in metres)

10 10 Initial object velocities (X,Y in m.s'])
51 Time of velocity change (in seconds)
10 14 New object velocities (X,Y in m.s'])
1 Measurement interval (in seconds)
5 5 Standard deviations of system noise (w1, wz)
0.07 5 Standard deviations of bearing & range noise (b,r)
1 No. of moving average parameters (q)
30 No. of sample serial correlations (m)
100 Total no. of points in sample (n)

Consider first the analysis of the X co-ordinate data of Series I

1

which represents a constant velocity of 10 m.s”'. Under the null

hypothesis it is believed that no velocity change takes place. The
velocity is estimated to be 9.547 using all n data points, and to
produce the required form for the data, the estimate is subtracted
from the once differenced data values. The sample variance and

covariances are then given by

n n-k

c,=1 % (% - 9.547)%, ¢, = T (X. - 9.547)(X,., - 9.547)
n

t t+k

1
t=1] n-k t=1

and the first fifteen sample serial correlations ck/cO are given
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in Table T below. Using equations (7.3.9), (7.3.10), the maximum
Tikelihood estimates of 8 and o2 are -0.557 and 77.074
respectively. These parameter estimates are not required for the
test, but it is interesting to compare the values with those obtained
under the alternative hypothesis.

It is believed under H] that a velocity change occurs and
this is tested for at the point t = 51. The two subsets of data are
treated separately in an identical fashion to the whole data set under
the null hypothesis. The velocity estimates are 9.177 and 9.790
respectively and the first fifteen sample serial correlations for each
subset are given in Table 2. Since there is an equal number of data
points before and after the suspected change point, the "overall"
sample serial correlations are simply given by the average over the
two subsets. The first fifteen'va1ues aré given in Table 1. These
overall values are then employed in the estimation formulae for B8
and o2, The maximum likelihood estimates are -0.617 and 74.983

respectively.
Table 1

Estimated/Modified Sample Serial Correlations "

lag
1 2 3 4 5 6 7 8

Under Ho -0.40 -0.02 -0.01 0.06 =-0.06 -0.02 -0.06 0.11
Under Hy -0.41 -0.04 0.00 0.04 -0.04 -0.02 -0.04 0.1

9 10 11 12 13 14 15
-0.15 0.11 -0.04 0.01 -0.04 -0.08 0.12

-0.15 0.10 -0.04 0.02 0.00 -0.16 0.14
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A graphical representation of these sample serial correlations under

HO is provided by Figure 8.1.

I"k-

Lo L]

-0.14

-0.2-

-034 | Figure 8.1

Table 2

Sample serial correlations using divided sample

1 2 3 4 5 6 7 8

Before suspected|-0.47 0.05 -0.03 0.09 -0.08 -0.13 0.11 0.12
velocity change

After suspected |-0.35 -0.13 0.03 =-0.01 0.00 0.08 -0.19 0.10
velocity change ‘

9 10 11 12 13 14 15

-0.30 0.23 -0.13 =-0.01 0.06 -0.27 0.17

-0.02 -0.03 0.05 0.04 -0.06 -0.04 o0.70

Not only are the estimates of B8 and o2 very similar under
the two hypotheses, but the sample serial correlations in Table 1
are virtually identical at each lag. Th%s suggests that no
velocity change has taken place, and this is clarified by examining

the test statistic;
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~
n

n32(1+§)2

2

(9.177-9.790)% 50 50 = 0.85
100 74.983 (1-0.617)2

which is not significant. The test concludes correctly that there
is no evidence to support the belief that a ve]ocity change took place.

The Y co-ordinate data forming Series II are analysed in the
same way. The parameters of interest under the null hypothesis are
estimated by |

Y = 11.177, 8 = -0.288, o2 = 101.887

and the first fifteen of the thirty calculated sample serial
correlations are given in Table 3 and in diagrammatic form in

Figure 8.2.

0.1 . l '
inne

~0.1 -

-02 4

-03- Figure 8.2

-0.4-
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Table 3
Estimated/Modified Sample Serial Correlations
lag
1 2 3 4 5 6 7 - 8
Under H0 -0.34 0.19 -0.15 0.10 0.03 0.03 =-0.10 0.712

Under H] -0.41 0.12 -0.20 0.02 -0.01 -0.04 -0.13 0.12

0.10 -0.01 0.16 0.06 0.12 -0.06 0.09

0.02 -0.03 0.07 0.01 0.06 -0.07 0.00

Under the alternative hypothesis

Y, = 8.717, 'v'2 = 13.464, 8 = -0.630, o2 = 86.335.

The overall sample serial correlations are given in Table 3 and
Figure 8.3; those relating to the subsets before and after the

suspected velocity change are given in Table 4 overleaf.

J 1

00 | ' . , ] I ] I .

-0.14

-024

~03- Figure 8.3

-04-
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Sample serial correlations using divided sample

1 2 3 4 5 6 7 8
Before suspected| -0.34 -0.11 -0.11 0.15 0.03 -0.08 -0.26 0.29
velocity change
After suspected | -0.46 0.32 -0.27 -0.09 -0.03 0.00 -0.01 -0.03
velocity change

9 10 11 12 13 14 15
0.05 -0.10 =-0.07 0.05 -0.07 0.21 -0.06
0.01 0.03 0.19 -0.03 0.18 -0.31 0.06

The test statistic for the Y co-ordinate data is

~
n

(¥, - T,)% nyn,

no2(1+8

)2

(8.717-13.464)% 50 50 = 47.74

100 86.335 (1-0.630)2

which is highly significant, as is to be expected on comparing the

correlogram in Figure 8.3 to that of Figure 8.2.

In order to draw accurate conclusions about the ability

of the test with Series I & II data, nine further simulations were

constructed. The results are given in Table 5, together with

the results already obtained in the above analysis using random

number seed 19.
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Table §
Random No. Test Statistic
seed X data y data
Bt 1.60 2418
12 0.81 22,477
13 0.04 3.98""
14 0.23 26.48™""
15 0.39 2.83"
16 0.06 3638
17 0.46 20.49""
18 3.21" 28.40™""
19 0.85 4778
20 0.02 9.56

* *%
denotes significant at 10%; denotes significant at 5%;

Jodkdk . o
denotes significant at 1%.

As in the previous chapter, the test detects both a constant

1 1

velocity of 10 m.s ' and the velocity change from 10 ms™! to 14 m.s”
with a high probability in most cases. It appears that the constant
velocity result for the X co-ordinate data is unperturbed by the
velocity change in the Y co-ordinate, even though the data sets are
not strictly independent.

The difficulty in drawing a direct comparison between these
results and the corresponding results in Chapter 7 is that for
cartesian data converted from bearing-range measurements, we cannot
establish the theoretical value of o2 based on the four standard

deviations in the data file. In view of the more complicated nature

of the data, we would not expect the test to perform better using
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converted cartesian data than with pure cartesian co-ordinate
measurements.  However the results in Table 5 appear to be more
conclusive on average in this chapter than in Chapter 7. This can
be attributed to the fact that since the random variable K is
inversely proportional to o2, the standard deviations on the noise
components in the data file have a lesser effect as a whole than
those in Chapter 7, thus yielding a smaller overall variance. These
standard deviations are believed to be set at sensible values, and
the results indicate that the test is still suitable for cartesian
data converted from beéring-range measurements.

With Series III-VIII défining the same velocity changes as in

the previous chapter, i.e.

Series III  Velocity increase from 10 m.s'] to 12 m.s']
Series IV " decrease " 10m.s™! " 5m.sT)
Series V u increase  * 10 m.s™! " 16 m.s™)
Series VI " " " 5msTl v ogmsT]
Series VII " " “ 5msTl " 10 msT)
Series VIII " decrease " 16 m.s”' " 10 m.s”!

the results using the test are given in Table 6 below. The
remaining components in the data file presented earlier in this
section are applicable to all the data sets. The results indicate
that the velocity change is detected at the 99% significance level
in Series IV, V, VII and VIII with every simulation. The results
of Series III and VI are slightly less conclusive, as is to be
expected, since a smaller velocity change is being examined in

these cases.
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Table 6

Seed |Series III{Series IV|Series V|Series VI|Series VII|Series VIII
*
1 9.62" " | 21,32 |45.717 14,81 | 38.01™* | 31.87*"*
12 | 3.74% | 24.41""|55.18"|13.31™"* | 40.23"" | 36.37™™*
13 | 8.14" |182.05""*[66.47"*| 0.07 48.79" | 234177
1 | 2.33 33.217 " [30.217* [15.66°°F | 21.84" | 47.83°""
15 | 0.9 61.46  [18.05" | 0.37 1131777 | 0.1
16 | 5.42"° | 25.197"[a1.46™|23.01°"* | 30.83" | 38.47""
*kok ks *k%k *k%k ’ *dk
17 | 2.05 34,077 31.21°% 1. 29 22.21 48.68
Jkk % Yok * %k kK * %k
18 | 0.35 11.72°%28.26" 119.37 18.33 18.86
*k*k *kk ok k %%k % Joekk * k%
19 | 15.43 38.20" " 1100.25" | 28.85 70.68 55.86
* *kk sk k **k Jodok * %k k
20 | 2.9 22.207729.37°| 4.93 19.87 30.23

The sensitivity of the test is examined further by considering
different standard deviations for the noise components in the
basic data file. By increasing the standard deviation of the
bearing noise from 0.07 to 0.1, decreasing that of the range noise
from 0.5 to 0.1 and leaving the system noise variance unaltered,
the overall effect is that of an increase in the variance o2.
Typically the increase is from 70 to 85 in practice. Using
Series I-VIII as before, the following values for the statistic K

were obtained.
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Seed | Series I | Series II | Series III | Series IV
1 1.66 | 24.36° 90.447 | 21.61""
12 1.32 | 21.24" 5.29° 23.51 "
13 0.06 3.51" 9.597" | 214.65 "
14 0.13 | 25.56"" 3.24" 3153
15 0.34 2.37 0.86 56.94°
16 0.02 | 42.04"" 5.96 30.477""
17 0.48 | 20.27°° 2.71" 34.00 "
18 1.10 | 34.00"" 0.99 13.08""
19 1.07 | 6537 | 15.83" | s54.16™"

e Jok *ekk
20 0.03 9.47 2.65 26.19
Seed | Series V Series VI Series VII Series VIII
* %%k sk Kk * Kk k *%k
1 | 44.10°] 15.02 33.28 34.80
*% %k * %k * %% * %%
12 | 77.47°| 12.68 63.38 34.77
s kK * k% ' *kk
13 | 74.78 0.00 61.11 268.24
P33 * %% *kk *k%x
14 | 36.737] 15.29 26.67 44.33
* %% Jodkk *k*k
15 | 15.93 0.26 10.46 73.15
Jedkk * k% *k% *k*k
16 | 47.88"| 27.22 36.26 46.51
*%k % *k*k * k% * %k
17 | 38.3¢"| 11.16 29.20 48.78
*kk * %%k YKk +oFek
18 | a1.98™| 23.35 27.38 22.21
*kk * %k *dok %k k
19 | 97.25"] 39.63 73.05 74.08
*k* *% J sk k%
20 | 27.73 4.70 18.46 35.25
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Although the variance o2 1s increased, the value of the
statistic K has remained about the same, comparing the values in
Tables 5 and 6 with their countefparts in Tables 7a and 7b. This
is because the only terms in the statistic K which depend on the
standard deviations of the noise components are o2 and B in the
product

o2(1 + 5)2 .
Not only has o2 1increased, but so has |8], so the product
32(1 + §)2 remains about constant. Thus the sensitivity of the
test has been unaffected by the change in the standard deviations.
The results in Tables 7a & 7b further support the applicability of
this test for cartesian data converted from bearing-range
measurements.

One possible effect of different combinations of values for
the standard deviations on the noise components is that the subroutine
for evaluating g might fail to converge on every simulation. This
problem can be overcome by increasing the number, m, of sample serial
correlations in the estimation equation for B8, equation (7.3.10).

In practical situations it may be of prime qimportance to keep the
computer load to a minimum, and so restrict m and maybe also the
total number of observations. In such cases it is necessary to
balance the risk of the test failing to detect a manoeuvre owing to
insufficient data against minimising the calculation time of the
computer. The procedure is still quite valid if there are fewer
observations after than before the velocity change, but one would
expect the power to be reduced. As in the previous chapter, the
velocity change will not be as discrete in practical situations as
the simulations suggest, but it is expected that the test would have

the scope to deal with non-discrete velocity changes in the data.
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CHAPTER 9

SUMMARY

The main objective of this work is to present simple procedures
for evaluating V/n, the covariance matrix for the efficient
estimators of the parameters of stationary linear time series models.
The formulation is obviously of interest to practitioners engaged in
fitting such models to data, but it is a general problem which seems
to have attracted rather 1ittle comment in the literature. Two
related problems which are also of interest are the specification of
the information matrix and the generalised variance. Furthermore a
subclass of non4stationary time series models has been shown to have
similar properties to polynomial-projecting dynamic linear models
under certain conditions. This enables classical statistical tests
to be employed as alternatives to state estimation schemes; the
usefulness of this result is considered later in relation to the
active tracking problems encountered by control engineers.

A very general stationary time series model is the
autoregressive moving average (ARMA) model of order (p.q)

defined by

pt-p q-t-q

Xt + a1xt_1 +oout a X = ey t Byepy toot B
where {et} is a sequence of uncorrelated Gaussian random variables
with expectation zero and a common variance 2. Either p or g

may be zero, yielding pure moving average (MA) and pure

auigfegressivé—kAR) models respectively. In Chapter 2 the basic

statistical properties of these three classes of time series models
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are established. The estimation of the parameters of these models
is briefly considered together with methods for testing for
specification. State space models are also defined.

In Chapter 3 the pure autoregressive model is considered.

The model is treated separately not only for reasons of its
simplicity. The pure MA and AR models are used widely in practice,
and the algorithms presented here provide the basis for several of
the results given in later chapters where models containing more
parameters are considered. Based on a result of Durbin (1959) the
covariance matrix V/n is expressed in terms of two triangular
matrices whose elements are the parameters of the model. The
example demonstrates the ease with which V can be evaluated; it
appears to be quicker to find the information matrix by inverting
the result for V than to use a Quenouille-type algorithm. The
generalised variance is obtained from a factorization of det V

into four constituent parts. This factorization is also seen to
greatly simplify the stationarity conditions of these models.
Analogous results exist on the whole for pure moving average models,
but for the sake of completeness the results are stated in the final
section for an MA(q) process.

The addition of just one moving average parameter to the models
of Chapter 3 makes the specification of V, its inverse and also the
generalised variance considerably more complicated. In Chapter 4,
we restrict attention to ARMA(p>1) and ARMA(1.,q) models. Since p
and q are generally quite small in practice, it seems Tikely that
if a pure model is not suitable to the given situation, then this
subclass of mixed models may contain the appropriate model. The

information matrix is given in a partitioned form with the blocks on
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the diagonal given by results in the previous chapter. A proof is

given of an elegant expression for the generalised variance which is
based on augmenting the triangular matrices defined in the previous

chapter. This result, together with the concise expression for the
off-diagonal block of the information matrix eases the specification
of V. The ability to write V explicitly is seen to be of great

assistance in examining the adequacy of the fitted model.

The general ARMA(p,q) model is considered in Chapter 5. The
off-diagonal block of the information matrix is no Tonger simply a
vector, but a pxq matrix. The p+q-1 different elements can be
found individually by applying a Quenouille~type algorithm to
Whittle's formula, but this is a very lengthy procedure. By defining
two further upper triangular matrices and carrying out some simple
products and additions, a pxp matrix is formed, the inverse of which
contains the off-diagonal block of the information matrix in its first
q columns. An example shows how easily the formula can be applied.
An algorithm is presented for evaluating V 1in a form partitioned
conformably with the information matrix; the variances and
covariances of the estimators can thus be found in cases where these
moments are not too complicated.

In Chabter 6 a class of state space models are examined whose
forecast functions dre polynomials in the prediction lead time. In
the steady state comparisons are made between these models and a class
of non-stationary time series models which possess the same property.
The degree of differencing required to restore stationarity is equal
to or one more than the degree of the polynomial-projecting model.

The former model also has a deterministic term, representing the

mean of the process. In order to apply inference techniques of time
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series we require that the model be invertible and this condition
will usually mean that only one of the models is appropriate.
Procedures for estimating the mean and the moving average parameters
of the chosen model are described.

The accurate tracking of manoeuvring objects in the sea or air
is of interest to control engineers. One way to detect manceuvres
is to estimate the velocity before and after a suspected manoeuvre in
the object and testing the difference for significance. A test
statistic is formulated in Chapter 7, based on Student's t test.
The test is applied to simulated cartesian co-ordinate data of the
object's position relative to the observer, and the ability of the
test to detect different manoeuvres is assessed using a wide variety
of velocity changes, or no velocity change at all. The simulations
give encouraging results, showing that the test is capable of
detecting a wide range of manoeuvres.

Chapter 8 examines further the active tracking problem of the
previous chapter but using data representing the bearing and range
of the object instead of its cartesian co-ordinates. The data in
their present form cannot be used to detect velocity changes since
either bearing or range may remain constant while the object is in
fact manoeuvring. However the bearing and range data can easily
be converted to cartesian co-ordinates and then the test can be
applied as before. Unfortunately it appears to be difficult to
show precisely that the test is still valid for such data, but the
results give a strong indication that the test is still an

effective method for detecting manoeuvres.
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