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ABSTRACT

In th is  th e s is , covariance matrices and generalised variances 

fo r  maximum like lih o o d  estimators o f Gaussian autoregressive moving 

average time series models are derived. I t  is  shown tha t estimators 

fo r  pure moving average and pure autoregressive models have covariance 

matrices which are expressed in  terms o f two tr ia n g u la r matrices. 

Furthermore, the generalised variance is  obtained from a fa c to ris a tio n  

o f the determinant o f the covariance m atrix in to  four constituent 

parts. Examples o f these theorems are given. The resu lts  are 

generalised fo r  estimators o f a mixed autoregressive moving average 

model in  which there is  e ith e r ju s t  one moving average parameter or 

ju s t  one autoregressive parameter. In p a rtic u la r the generalised 

variance is  fac to rised  in to  the determinants o f the covariance 

matrices fo r  e f f ic ie n t  estimators o f the parameters o f the 

corresponding two pure models, and two other scalar terms. The 

submatrices o f the covariance m atrix fo r  the e f f ic ie n t  estimators o f 

the parameters o f the general mixed model are found by specify ing 

four or f iv e  upper tr ia n g u la r matrices, whose non-zero elements are 

s ing le parameters o f the model, and then carrying out some m atrix 

m u ltip lica tio n s  and additions. Provided the model is  not too la rge, 

e x p lic it  expressions fo r  the variances and covariances can be 

obtained. Examples, using mixed models, o f these methods are given, 

and the adequacy o f the f i t te d  model is  discussed in d e ta il.

I t  is  proposed tha t these theorems enable s ta t is t ic a l tests to  

be applied to problems o f active track ing , which, t ra d it io n a lly ,  are 

expressed in  terms o f polynom ial-projecting dynamic lin e a r models.

The problem o f tes ting  fo r  constant ve lo c ity  is  considered in  d e ta il.

A te s t based on a generalisation o f Student's t  te s t is  discussed. 

Several examples o f th is  te s t procedure are given.
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ADDENDA

p .29 Define the autocorre la tion of lag h,

s-h 
 ̂ ^ i^ i+h

Pl, = j=o 1 Ji h ^  sh ----------s------- -  -
1 + Z 6.2

j= l J

where s is  the proposed order o f the model.

p .75 Redundant or nearly redundant fac to rs  are not necessarily obvious, 

p a r t ic u la r ly  as there may be large sampling errors in the parameter 

estimates. Thus fa c to riz in g  a(z) & 6(z) using the obtained 

parameter estimates w il l  not always help in id e n tify in g  where the 

inadequacy o f the f i t te d  model l ie s .  I t  would be useful instead to 

examine the variances and covariances o f these estimates to see how 

large they are. I f  there are some unexpectedly large values in the 

covariance matrix then th is  suggests th a t the f i t te d  model contains 

the wrong combination o f autoregressive and moving average parameters. 

Another ind ica tion  is  provided by the generalised variance which w i l l  

be large i f  the order o f the model or the parameter values have been 

poorly determined.

p .132 In Section 8.2 , we assume tha t the noise components b^, r^ are 

independent and tha t they have approximately normal N(0, o^Z),

N(0, Op2) d is tr ib u tio n s  respective ly. The bearing can be measured 

very accurately in practica l s itua tions  even a t re la t iv e ly  long range 

which implies tha t the variance w i l l  be small. In order to

establish tha t the same co rre la tio n  structure as a f i r s t

order moving average process, the analysis on pp.134-137 assumes 

|b^| < 1. This assumption appears to be va lid  on the whole since 

is  small, but i f  |b^J > 1 the re su lt is  less ce rta in . The 

simulations in the next section attempt to  demonstrate tha t the te s t 

s t i l l  provides a va lid  method fo r  detecting ve lo c ity  changes using 

cartestian data converted from bearing and range measurements.
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C H A P T E R  1 

INTRODUCTION

For many years the analysis o f data co llected over a period o f 

time has involved s c ie n t if ic  workers in numerous and varied f ie ld s  

o f research. For instance, the data series published by Government 

departments are examples o f time series o f in te re s t to economists. 

One o f the longest such series is  possibly the figures from the 

population census which began in the la s t century. Figures 

re la tin g  to  sales o f new or established products are needed by 

market researchers, and records o f seismic a c t iv ity  are essential to  

the geophysicist in  his e ffo r ts  to  p red ic t fu ture  movements o f the 

ea rth 's  c rus t. In general, observations from such time series are 

dependent, as in  population series, fo r  example, where the size o f 

the population in  any one year is  dependent on population figu res 

in  previous years.

This dependence is  usually due to  some underlying process 

which may or may not be known to the analyst or control th e o r is t. 

This is  the case in the active tracking procedure in  navigation.

I t  is  required to  track moving objects in rea l-tim e , such as 

a ir c ra f t ,  and to re g is te r the general behaviour o f these objects.

The observed position  o f the object a t time t  is  dependent on the 

position  and v e lo c ity  a t previous times through the equations of 

motion, and th is  p r io r information is  helpful in  bu ild ing up a 

model fo r  the motion o f the ob ject. The model can be v e r if ie d  by 

the control th e o ris t and the elements o f the underlying processes, 

i f  known, are estimated from the ava ilab le observations.
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This s itu a tio n  is  more useful than cases where the s tructure  o f the 

underlying process is  not known, and a model is  f i t te d  from a 

consideration o f the data only.

Most time series are not purely de te rm in is tic , hence accurate 

modelling requires the use o f random processes. The c lass ica l 

s ta t is t ic a l models, namely the autoregressive (AR), moving average 

(MA) and autoregressive moving average (ARMA) models are lin e a r 

s ta tiona ry  models which employ random processes. I t  is  frequently  

assumed th a t the elements o f the sequence have a common variance,

and possibly tha t they are independent and have an iden tica l normal 

d is tr ib u tio n  w ith mean zero. Many n a tu ra lly  occurring time series 

are not s ta tiona ry , but th is  property can often by restored by a 

su itab le  non-parametric transform ation, such as d iffe renc ing .

In general i t  is  one o f the serious drawbacks o f the 

employment o f c lass ica l time series in  model f i t t in g  procedures tha t 

the parameters have no stra ightforw ard in te rp re ta tio ns . Also i f  

the underlying process were to change, i t  is  not c lear how th is  

would a ffe c t the model parameters. To circumvent th is  problem the 

control th e o ris t exp lo its  the underlying process in order to  obtain 

the model. The components o f the resu lting  's ta te  space fo rm ula tion ' 

have physical meanings, such as distance and v e lo c ity . The control 

th e o ris t is  more interested in  the estimation o f the state o f the 

underlying process than the pred iction o f fu tu re  observations.

Several state estimation schemes, known as f i l t e r s ,  have been 

proposed by Kalman (1960) and Kalman & Bucy (1961). One o f the most 

meaningful and popular is  a recursive f i l t e r ,  commonly re ferred to 

in  the lite ra tu re  as the Kalman f i l t e r .

The state space model is  considered in de ta il in  a forecasting 

context by Harrison & Stevens (1976). By placing m ild constra in ts
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such as time independence on the c o e ffic ie n t m atrices, and norm ality 

on the noise components, the resu lting  state space model is  seen to  

have some useful properties. For example, the predictors o f the 

steady model are the same as those o f certa in  low-order non-stationary 

time series models. For state space models o f la rge r order,

Godolphin & Stone (1980) have shown tha t by f ix in g  values on the 

products o f the c o e ffic ie n t m atrices, these models can be in te rpre ted 

as po lynom ial-projecting models o f degree d, where the dimension, n, 

o f the system vector s a tis fie s  n ^  d+1. In the equilib rium  state 

the predictors o f these models are ide n tica l to  those o f a class o f 

non-stationary time series in which the degree o f d iffe rencing  

required to  restore s ta t io n a r ity  is  d or d+1. I t  fo llows tha t 

data generated by a state space model sa tis fy in g  these conditions can 

also be described by s ta tionary time series models a fte r  d iffe rencing  

the data a su itab le  number o f times. This property then permits us 

to  apply the w ell-estab lished inference techniques o f time series 

analysis to  these data. The usefulness o f th is  dual representation 

forms the basis o f a te s t fo r  constant ve lo c ity  which w i l l  be 

described in  de ta il in  what fo llow s.

A \ e r y  general s ta tionary time series is  the ARMA model 

which has p+q unknown parameters a.|, . . .  . . 6q and an

unknown variance a^. E ither p or q may be zero, y ie ld in g  pure 

moving average or pure autoregressive models respective ly. A problem 

tha t has occupied the a tten tion  o f s ta t is t ic ia n s  in recent years is  

the estim ation o f the parameters o f the model, based on a re a lisa tio n  

X o f n consecutive observations. One o f the forerunners in th is  

f ie ld  is  W hittle  (1953). He has shown tha t the maximum like lih o o d  

approach y ie lds  a consistent estimator which is  asym ptotica lly 

normal provided the random process is  Gaussian. W hittle  has
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also shown tha t i f  {e^} belongs to a wide class o f non-Gaussian d is t r i ­

butions then the leas t squares approach y ie lds  consistent estimators 

w ith asym ptotica lly minimum variance among a certa in  class o f estimators

In common w ith W h ittle , the maximum like lih o o d  approaches o f 

Durbin (1960) and Walker (1962) reduce the data X to a set o f m 

sample se ria l co rre la tio ns . These s ta t is t ic s  are often used to  

examine standard problems in  time series analysis. I t  appears to 

be widely accepted tha t most o f the information on the model 

parameters is  contained in  sample se ria l corre la tions o f re la t iv e ly  

small lag . T yp ica lly  m is  o f the order o f 30 when n is  

greater than 100 w ith an expectation o f l i t t l e  loss in estim ator 

e ff ic ie n c y . In estimating the parameters o f an autoregressive 

process, Mann & Wald (1943) showed tha t consistent estimators fo r  

a - |,.. . ,a p  are obtained by replacing aĵ  w ith aĵ  and the 

covariances by the sample se ria l covariances Cĵ  in the 

Yule-Walker equations. W hittle  la te r  showed tha t these estimators 

were also e f f ic ie n t .

Several a lte rn a tive  approaches e x is t when moving average models 

are considered. W h ittle 's  maximum like lih o o d  estim ator is  not 

obtained in closed form even fo r  q= l, as was emphasized by 

Durbin (1959). Instead, Durbin approximates the moving average 

process by a high order autoregression and then invokes the theorem 

o f Mann & Wald. Walker (1961) also concludes tha t W h ittle 's  

approach would be ra ther cumbersome in p ractice . His a lte rn a tive  

procedure is  based on determining an asym ptotica lly e f f ic ie n t  

estim ator fo r  the corre la tions and solving fo r  $ ^ , . . . , 6̂  using the 

Cramer-Wold fa c to r iz a tio n . A comment by W hittle  (1954,p .212) 

suggests a d ire c t approach to maximising the lik e lih o o d . This has 

been considered fu rth e r by Godolphin (1977, 1978a). He shows tha t
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the maximum like lih o o d  estimators o f the parameters are given 

asym ptotica lly by a lin e a r combination o f the sample se ria l 

co rre la tio n s . The ca lcu la tions are stra ightforw ard fo r  any value 

o f q. A computer implementation has been published by 

Angell & Godolphin (1978).

Box & Jenkins (1970, Chapter 7) suggest a computational

approach to maximising the like lih o o d  func tion ; th e ir  method is

based on a search procedure fo r  minimising the residual sum o f 

squares Other re la ted methods are given by Ansley (1979),

Ljung & Box (1979) and N icholls & Hall (1979). The approach of 

Anderson (1975) is  based on the method o f scoring. The methods o f 

Box & Jenkins and Anderson employ the data as i t  stands w ithout 

transforming the data to a set o f sample se ria l co rre la tions .

Hannan's procedure (1969) is  based on the fa c t tha t the periodogram 

approximately diagonalizes the covariance m atrix o f the observations, 

provided n is  s u ff ic ie n t ly  large.

Despite the volume o f material on inference fo r  time series 

models, comparatively l i t t l e  in te re s t has been shown in  the 

lite ra tu re  in  the computation o f the covariance matrix fo r  the 

e f f ic ie n t  estimator 0 o f 0 = (a^..  .ap B-j •. . 6q) ' .  This problem 

has been in existence fo r  30 years or more. The work o f

W hittle  (1953) was added to  by Durbin (1959) and Box & Jenkins (1970)

I t  is  shown tha t the maximum like liho od  approach y ie lds  a covariance

m atrix V/n fo r  0 which is  smallest in the fo llow ing sense. The
★ * 

d iffe rence V - V is  pos itive  sem i-defin ite  when V /n  is  the

covariance m atrix fo r  any a lte rn a tive  consistent estimator.. This

implies tha t the variances and covariances in V/n are each smaller
★

than the corresponding variances and covariances in V /n ;  also the
ic

generalised variance is  smaller than th a t o f V /n ,
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i . e .  det V 4  det V . W hittle  (1953) also derived a formula fo r  

ca lcu la ting  the ind iv idua l elements o f where nV’  ̂ is  the

information m atrix o f the model. The formula contains complex 

in te g ra ls  and is  ra ther awkward to  apply. An a lte rn a tive  

form ulation e x is ts , based on an algorithm o f Quenouille (1947a).

This expression elim inates the complex in te g ra ls , but is  s t i l l  very 

cumbersome to use except fo r  the smallest o f models. For models 

containing no moving average parameters, Durbin (1959) has produced 

a m atrix expression fo r  V as a whole. He noted tha t V’  ̂ = Tp 

where is  the covariance m atrix fo r  p consecutive-p
observations o f the process. However th is  re su lt does not 

generalise to include ARMA models. Pagano (1973) has examined 

Durbin's re s u lt and formed an expression fo r  V in terms o f the 

products and differences o f upper tr ia n g u la r matrices. Although 

Pagano's expression has been quoted by other workers, a proof does 

not appear to have been given in the lite ra tu re .  A simple 

adaptation y ie ld s  an equivalent expression fo r  purely moving average 

models as w e ll, but no form fo r  mixed models resu lts  from th is  

d u a lity .

Box & Jenkins (1970, §A7.5) suggest another approach fo r  

evaluating V/n. They derive the information m atrix fo r  an 

autoregressive process o f order p+q whose parameters are the inverse 

zeros o f a(z) = l+a-jZ+.. .+apZ^ and g(z) = l+ 6-|Z+.. .+3qZ^.

In moderate or large samples th is  is  approximately the information 

m atrix fo r  the ARMA(p,q) process w ith parameter vector 0 .

This m atrix then has to be inverted in order to obtain the covariance 

m atrix fo r  the e f f ic ie n t  estimator o f 0. The procedure is  

demonstrated w ith the simplest case, the ARMA(1,1) model. However 

i f  p or q is  s t r ic t ly  greater than un ity  the technique is
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complicated to put in to  p ractice , p a rt ic u la r ly  i f  some o f the zeros 

o f a(z) or b ( z ) are complex-valued. The accuracy o f th is  method 

as the number o f model parameters increases, is  uncerta in, and i t  is  

not c lea r whether th is  approach could be adapted to evaluate V, or 

the information m atrix d ire c t ly .

In th is  thesis we present simple procedures fo r  evaluating V 

fo r  s ta tionary lin e a r time series models. Also o f in te re s t is  the 

spec ifica tion  o f the information m atrix and the generalised variance. 

For pure models, a proof is  given o f an expression fo r  V in  terms 

o f upper tr ia n g u la r matrices whose orders are equal to tha t o f the 

model considered. The spec ifica tion  o f V using these matrices 

s im p lifie s  the determinant o f V in to  the product o f fou r terms, 

each o f which is  e a s ily  calcu la ted. These resu lts  are generalised 

fo r  mixed models which contain e ith e r ju s t  one moving average or ju s t  

one autoregressive parameter. By defin ing two fu rth e r upper 

tr ia n g u la r m atrices, the submatrices o f the information m atrix fo r  

the general autoregressive moving average process can be evaluated. 

The covariance m atrix V/n is  obtained by inve rting  the information 

m atrix and preserving the same p a rtit io n in g .

Under certa in  specified conditions, a subclass o f general time 

series models have s im ila r properties to polynom ial-projecting 

dynamic lin e a r models. Thus problems re la tin g  to active tracking 

can be examined using c lassica l s ta t is t ic a l tes ts  as a lte rna tives  to 

the state estimation schemes usually associated w ith such problems. 

The tes ting  fo r  constant v e lo c ity  is  considered in d e ta il.  A te s t 

based on a generalisation o f Student's t  te s t is  derived and the 

resu lts  o f various simulations are given in d e ta il.

In Chapter 2 we estab lish the basic s ta t is t ic a l properties o f 

three sta tionary time series, namely the autoregressive, moving
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average and mixed autoregressive moving average models. Some o f the 

inference techniques mentioned previously are described, together 

w ith methods fo r  tes ting  fo r  spec ifica tion  o f models. State space 

models are also defined and the e ffe c t o f re s tr ic t in g  the components 

o f the system is  considered.

Chapter 3 examines in d e ta il the purely autoregressive model.

The model is  treated separately not only fo r  reasons o f i t s  s im p lic ity  

but also because i t  appears to be widely used in practice . The 

techniques presented in th is  chapter form a basis o f ideas which w i l l  

be used or adapted la te r ,  when more complicated models are being 

considered. The elements o f the information m atrix are given by a 

s im p lifie d  form o f W h ittle 's  re s u lt (1953) fo r  the elements o f V " \  

However, i f  p is  only moderately large i t  appears to be simpler to 

use an a lte rn a tive  method. A proof is  given o f an expression fo r  V 

based on Durbin's re s u lt (1959). Hence the covariance m atrix fo r  

the e f f ic ie n t  estim ator o f the model parameters can ea s ily  be 

specified and inve rting  th is  matrix is  the easiest way in which to 

form the information m atrix. A simple formula is  derived fo r  the 

generalised variance which re lie s  on the properties o f the upper 

tr ia n g u la r matrices in the expression fo r V.

In Chapter 4 we examine a subclass o f general ARMA(p,q) models 

containing e ith e r ju s t  one moving average parameter or ju s t  one 

autoregressive parameter, i .e .  we consider ARMA(p,l) and ARMA(l,q) 

models only. This subclass contains several s im p lifica tio n s  compared 

to the general class o f mixed models, and since in  practice p and q 

are usually quite small, i t  seems l ik e ly  tha t the chosen model may 

f a l l  in to  th is  subclass. The information m atrix is  obtained in 

pa rtitioned  form w ith submatrices on the diagonal given by formulae 

from Chapter 3. The off-diagonal block is  ea s ily  specified in th is
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case, since i t  is  a vector and not a m atrix. Durbin's re s u lt is  

not applicable to the m atrix V  ̂ as a whole, so the covariance 

m atrix V/n can only be derived by inve rting  V”  ̂ and preserving 

the same p a rtit io n in g . The addition o f one extra parameter makes 

the spe c ifica tion  o f the generalised variance also more complicated 

than fo r  pure models. The problem is  overcome by defin ing upper 

tr ia n g u la r matrices w ith s im ila r properties to those in Chapter 3.

The concise expression fo r  the vector component o f the information 

m atrix also plays an important pa rt. Proof is  given o f an elegant 

fa c to riza tio n  o f det V, together w ith an example.

An algorithm is  presented in Chapter 5 fo r  evaluating the 

covariance m atrix fo r  the e f f ic ie n t  estimators o f the parameters o f 

the general ARMA(p,q) model in which both p and q are s t r ic t ly  

greater than u n ity . As in Chapter 4, the method is  based on 

inve rting  V”  ̂ w ritten  in a pa rtitioned  form. However the o f f -  

diagonal block o f the information m atrix nV"^ is  no longer a simple 

vector. I t  would appear th a t the p+q-1 d if fe re n t elements o f 

th is  pxq m atrix can only be specified using W h ittle 's  formula.

But by defin ing two fu rth e r upper tr ia n g u la r matrices and taking 

products and additions w ith the previously defined matrices, a pxp 

m atrix is  formed, whose inverse contains the off-d iagonal block o f 

V'^ in i t s  f i r s t  q columns. The re s u lt is  proved assuming p 4  q; 

d e ta ils  are also given o f the spec ifica tion  o f the information m atrix 

and the covariance m atrix fo r  0 i f  p < q.

In Chapter 6 we define the un ivaria te  state space model in the 

form given by Harrison & Stevens. By placing a mild constra in t on 

the c o e ffic ie n t matrices a large subclass o f these models can be 

in terpreted as polynom ial-projecting models. These models possess 

the property tha t the forecast function is  a polynomial in  the
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prediction lead-tim e. The same properties have been demonstrated 

to hold fo r  certa in  non-stationary time series models in which the 

degree o f d iffe renc ing  is  equal to , or one greater than the degree 

o f the polynom ial-projecting model. In the former category, a 

de te rm in is tic  term is  also present in the model, and the number o f 

moving average parameters is  less than or equal to the degree o f the 

polynom ial-projecting model. In order tha t c lassica l inference 

techniques o f time series are applicab le , the moving average model 

should be in v e rt ib le . I t  seems tha t th is  c r ite r io n  w i l l  usually be 

the deciding fa c to r as to which time series model should be used to 

describe the given data.

Chapter 7 examines a problem o f p a rtic u la r in te re s t to control 

engineers engaged in the active tracking o f marine c ra ft .  The aim 

is  to qu ick ly  detect manoeuvres in the object which can be observed 

as v e lo c ity  changes. By estim ating the ve lo c it ie s  before and a fte r  

a suspected v e lo c ity  change, th e ir  d ifference can be tested fo r 

s ign ificance . A te s t s ta t is t ic  is  formulated which is  a generalisation 

o f Student's t  te s t. The state space form fo r  constant v e lo c ity  is  

described. The appropriate time series model is  given and 

re la tionsh ips are derived between the variances o f the noise components 

o f each model. Estimates o f the parameters o f the time series model 

are required in the te s t s ta t is t ic .  These are obtained using the 

maximum like lih o o d  p r in c ip le . The te s t is  applied to simulated data 

which represent the cartesian co-ordinates o f the object re la tiv e  to 

the observer. The two components o f the data at each time po int are 

taken to be independent, and the te s t is  performed separately on each 

set o f co-ordinate data. The s e n s it iv ity  o f the te s t is  assessed by 

performing the te s t on sets o f data containing a wide va rie ty  o f 

v e lo c ity  changes or no v e lo c ity  change at a l l .
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In Chapter 8 we consider the active tracking problem when the 

data assume a d iffe re n t form to tha t o f Chapter 7. The range o f 

the object is  observed by noting how long the signal emitted by the 

observer takes to return to him. I t  is  assumed tha t the bearing o f

the signal can also be measured. With these two pieces.of

inform ation, the loca tion  o f the object in the plane is  known, w ith in  

the accuracy o f the measuring instruments. I t  is  not feas ib le  to  

apply the te s t described in  the previous chapter to  the bearing and 

range data independently, since e ith e r may remain constant even when 

the object is  manoeuvring. However we show tha t the te s t appears to 

be va lid  i f  the bearing-range data are f i r s t  converted in to  cartesian 

co-ordinate data. The re su lting  data sets re la tin g  to the X and Y 

co-ordinates are considered independent and the te s t proceeds as in 

Chapter 7. I t  appears tha t the te s t performs comparably well on 

the cartesian data converted from bearing-range data as on the 

genuine cartesian data o f Chapter 7.
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C H A P T E R  2 

TIME SERIES

2.1 In troduction

In th is  chapter the s ta t is t ic a l properties o f un ivaria te  time 

series models are considered. I t  is  generally assumed tha t a 

re a lisa tio n  X -j,...,X ^  o f size n is  ava ilab le . Three basic 

time series models are defined, namely the autoregressive (AR), 

moving average (MA) and autoregressive moving average (ARMA) models, 

The estimation o f a possibly non-zero mean is  considered in some 

cases. Some methods are outlined fo r  determining estimates o f the 

parameters o f the models. Various tests fo r  establish ing the 

order o f the proposed model are also presented. In the f in a l 

section state space models are described. These models attempt to 

describe time series data in a way tha t is  more acceptable to 

p ra c titio n e rs  in tha t the components o f the system equation have 

in tu it iv e  in te rp re ta tio ns .

2.2 S ta tis t ic a l Properties o f Autoregressive Models

The autoregressive model o f order p with zero mean is  

defined by

+ “ i V l  + • • • + V t - p  "  (2-2 - T)

where is  a sequence o f uncorrelated Gaussian random variables

w ith a common variance a^. i .e .

E(e^) = 0 E(Et=k) = G t,k * ''
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where  ̂ is  the Kronecker de lta . The model (2 .2.1) is  

s ta tionary  provided the inverse zeros o f the autoregressive 

c o e ffic ie n t generating function

a(z) = 1 + a-|Z + + OpZP

are less than one in  modulus.

The autocovariances " '^ (^ t^ t+ k ^  s a tis fy  the Yule-Walker 

equations:

Yk + *lYk-l + + "p̂ k-p = O' = 7-k (2.2.2)
fo r  k 4 I .  M u ltip ly ing  (2 .2 .1) by and taking

expectations gives the Wold equations:

■̂k + “ l^k+ l + + V k + P  °

where

B(z) = Z. b z" = _ L  , 
a(z)

w ith bg = 1. The autocovariances can be obtained from the model 

parameters by taking the f i r s t  Wold and the f i r s t  p Yule-Walker 

equations and re -w ritin g  them in  the form

?1

where a = (a^ .

A =

0 1

0 0

= " 1  a '
-1

a  A'+W %

. Op)' and

‘l • • • “ p-1

. a p-2 “ 3 “ 4

“ P ° 
0 0

(2 .2.3)

. a  0
P

. 0 0

. 0 0

. 0 0



-  19 -

and Op is  the zero vector o f length p. I t  is  in te re s tin g  to 

note tha t the m atrix A features again in  the next chapter, where 

the covariance matrix fo r  the e f f ic ie n t  estimators o f (a q ,...,O p ) 

is  sought.

An a lte rn a tive  approach to evaluating the autocovariances is  

due to  Quenouille (1947a). The autocovariance generating function 

is  defined by

and s a tis fie s

r ( z )  =  y +  z  Y. (z +Z ) 
° k=1 K

r ( z )  = a2B(z)B(z‘ h

The expression r(z )/a 2  is  uniquely determined by

1 _ Kq + (KqZ + ...+  K zP) + (K-jZ  ̂ + . . .+  K z P)

«(Z)a(z-T) a(z) a (z - l)

where K^,K.j, . . .  ,Kp are found by equating coe ffic ien ts  o f 

z°,z  , . . .z P . Then

^0 =

and the covariances y.j,Y25*-- are given by the re la tio n

a(z) Z YuZ  ̂ = (K,z + KpZ  ̂ + . . . + K_zP)o2 .
k=i K '  ̂ P

The converse problem, tha t o f find ing  the model parameters 

from the autocovariances is  stra ightforw ard fo r  autoregressive 

models; by w rit in g  the Yule-Walker equations (2 .2 .2) in m atrix

notation i t  fo llows tha t

1 Vo Yi . . • Yp.i

%  . . . Vp_2

Yp-1 7p-2 • • Yo

-1 r" “1

?2

L ^ P J
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in which form the parameters can re ad ily  be obtained.

In considering the problem o f estim ating a - j, . . . ,a p  and

we assume tha t the process (2 . 2 . 1) is  s ta tionary  and tha t the 

sequence consists o f independent and id e n tic a lly  d is tr ib u te d

random variab les. Mann & Wald (1943) showed tha t fo r  large 

samples, the maximum like lih o o d  solu tions fo r  a - j, . . . ,a p  are given 

by the in tu it iv e ly  sensible approach o f solving the Yule-Walker 

equations (2 . 2 . 2 ) w ith aĵ  replaced by aĵ  and replaced by

the sample se ria l covariance Cĵ  o f lag k defined by

n-k
'=k "  - L -  /  X t*t+k • 

n-k

The variance is  estimated by

n p . o
*2 = 1 -1  V t - k )  .

Mann & Wald showed tha t th e ir  approach y ie lds  consistent estimators 

fo r  a - |,. . . ,a p  & and also tha t the jo in t  l im it in g  d is tr ib u tio n  

o f the s ta t is t ic s

/n(a-j - a-j), . . . , /n(«p - Op)

is  m u ltiva ria te  normal, w ith mean zero and covariance matrix V.

The expression fo r  V is  ra ther complicated; one of their 

achievements was to show tha t V is  independent o f n.

W hittle  (1953) la te r  showed tha t a . j, . . . ,a p  were also 

e f f ic ie n t  estimators o f O q ,...,ap . From th is  paper we can also

deduce tha t the corresponding covariance m atrix is  given by
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where the ( i , j ) - t h  element o f is  the constant term in the

expansion o f

1 3 {log B (z )B {z '^ )} _ 3_ {log B(z)B(z‘ b >  (2 .2.4)
2 3ct.j Sotj

w ith B{z) = {a (z )}  ̂ fo r  purely autoregressive models. A 

stra ightforw ard method fo r  evaluating F^^ is  presented in  the 

next chapter, and the information m atrix and generalised variance 

are also examined.

2.3 S ta tis t ic a l Properties o f Moving Average Models 

The model w ith unknown mean y is  defined by

h  "  w + Ep + + . . . + 6qet_q (2 .3.1)

where y is  the de te rm in is tic  term representing the mean o f the 

process, and is  a sequence o f uncorrelated random variables

as defined in  the previous section. The in v e r t ib i l i t y  condition is  

tha t the inverse zeros o f the moving average c o e ffic ie n t generating 

function

B(z) = 3(z) = 1 + 3]Z + . . . + 3

are less than one in  modulus.

Given a re a lisa tion  X - j,...,X ^ , we require an estimate fo r  

y .  In general the observations are correlated and unless the process 

is  completely sta tionary then th e ir  d is tr ib u tio n s  may a ll be d iffe re n t. 

In these cases, general estimation methods such as maximum like lih o o d  

are not applicable. However, even i f  the observations have 

d iffe re n t d is tr ib u tio n s , they a ll have the same mean value y ,  

suggesting tha t the usual estimate, namely the sample mean, may s t i l l  

provide a reasonable estimate. I t  is  easy to see tha t
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E(X) = y ,

SO X is  an unbiased estimate o f y .  For large n,

Var(X) = (1 + 3̂1 + . . . + 3q)^o^

which tends to  zero as n tends to in f in i t y ,  so X is a consistent 

and unbiased estim ator o f y .  Depending on the actual values o f 

the parameters, Var(X) may be la rg e r than a^/n, the value 

applicable to n independent observations. I t  is  in te res tin g  to

note tha t the deriva tion  o f the re s u lt fo r  Var(X) is  given in  a 

frequency domain context by P ries tle y  (1981, pp318).

The estimation o f the parameters o f the model (2 .3.1) has 

been considered by Durbin (1959). He approximates the model by a 

high order autoregressive process and then invokes the theorem o f 

Mann & Wald (1943). W hittle  (1951, 1953) considers the problem 

using the maximum like lih o o d  p r in c ip le . These estimates,

3i» * -*> 6q are functions o f the sample se ria l corre la tions 

^k'^k^So where

=k = _L_ (Xt-x)(Xp+k-x) .
n-k

W h ittle 's  so lu tion  which is  consistent and e f f ic ie n t  is  not in  

closed form, but can be found using an ite ra t iv e  process. A 

d ire c t representation o f the ite ra t iv e  so lu tion in  terms o f the 

sample se ria l corre la tions has been derived by Godolphin (1977,1978a) 

and a computer implementation published by Angell & Godolphin (1978). 

The jo in t  l im it in g  d is tr ib u tio n  o f the s ta t is t ic s

/ n ( 3 - j  -  6 - j ) s  . . . s / n ( 3 q  -  6 )
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is  N(0, [ " 2) which is  analogous to the re s u lt given in  the previous
" pp

section fo r  purely autoregressive models. An in te res tin g  d u a lity  

re s u lt was derived by W h ittle . He showed tha t the covariance 

m atrix fo r  the e f f ic ie n t  estimators o f the parameters o f an 

autoregressive process was the same as tha t o f a moving average 

process provided the parameter sets were the same. This re s u lt 

fo llows since the ( i , j ) - t h  element o f is  the constant term

in  the expansion o f

1  _1_ {Tog B(z)B(z~^)}  9 { log B(z)B(z“ ^)}
2 agj

which is  equivalent to (2 .2.3) w ith , o f course, a(z)=g(z).

2.4 S ta t is t ic a l Properties o f Mixed Models

The mixed autoregressive moving average model o f order (p ,q ), 

allow ing fo r  a non-zero mean y, is  defined by

(X^-y)+a^(X^_^-y) + . ..+  Op(X^_p-y) = + ...+  3qE^_q (2 .4.1)

and {e^} is  a sequence o f uncorrelated random variables as defined 

in  Section 2.2. To ensure id e n t i f ia b i l i t y  we impose the fo llow ing 

condition :

The polynomials

a(z) = 1 + a-jZ + . . .  + OpZP & 3(z) = 1 + 3-|Z + . . .  + 3qZ^

have no factors in  common.

We also require tha t

( i )  A ll the roots o f a(z) & 3(z) l ie  outside the u n it

c ir c le ,  fo r  s ta t io n a r ity  and in v e r t ib i l i t y  respective ly .

( i i )  The parameters üp and 3q are not both zero.
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The mean is  again estimated by X which is  unbiased. For 

large n the variance o f X is

(1 + B-j + . . . + 3q)^ cf̂  ,
2

(1 + a-j + . . . + ttp) n

which tends to zero as n increases; thus X is  an unbiased and

consistent estim ator o f y.

The covariances can be found, given the parameter values o f 

the model, by adapting Quenouille's algorithm as fo llow s. The 

autocovariance generating function sa tis fie s

r{z )  = a2B(z)B(z’ h

where B(z) = B (z )/a (z ), and hence r(z )/a ^  is  uniquely determined 

by

6(z)B(z"^) = + (K^z + ...+  Kj_z*") + (K^z’  ̂ + . ..+  K^z'^) (2 .4 .2)

a(z)a(z"^) a(z) cc(z"^)

where L = max(p,q).

The converse problem, tha t o f find ing  the values o f the 

parameters given knowledge o f the autocorrelations is  perhaps more 

frequently  encountered in  p ractice . The Cramer-Wold fa c to riz a tio n  

seeks a so lu tion fo r  ( 3i > . . . j 3q) given the f i r s t  q sample se ria l 

corre la tions and estimates o f the autoregressive parameters; the 

technique has been considered in  de ta il by Godolphin (1976).

The estimation o f the parameters o f models o f the form (2.4.1) 

has been considered by several authors. W hittle  (1953) has shown 

tha t the maximum like lih o o d  approach y ie lds  consistent estimators 

«1 > ... sap,3-j j . . .  >3q- He concludes tha t these estimators are 

e f f ic ie n t  in the sense tha t the generalised variance, de t(V /n),
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is  smaller than the corresponding generalised variance fo r  any other 

set o f consistent estimators. The methods o f Walker (1961, 1962)

and Durbin (1960) also reduce the data from the re a lisa tio n  X to

a set o f sample se ria l corre la tions r^ . Walker's approach is  

based on estimating the a 's  and p 's , not the a 's and g 's ,

taking r . as the in i t ia l  estimate o f p . .  The estimates o f the
j  j

moving average parameters are then found using the Cramer-Wold 

fa c to r iz a tio n . This approach requires the theory o f the 

d is tr ib u tio n  o f r^ due to B a r t le tt  (1946) and Lomnicki &

Zaremba (1957).

In recent years, a number o f authors have examined the exact 

expression fo r  the like lih o o d  L, given by

L = r)"&  exp{jJ_ X 'r '^X }

where a^r is  the covariance m atrix o f X. Box & Jenkins

(1970, §A7.4) derive the exact like lih o o d  function fo r  a moving 

average process, and th is  has been extended to the general case by 

Newbold (1974) and Galbraith & Galbraith (1974). Phadke & Kedem

(1978) suggest the Cholesky decomposition r = EE' where E is

lower tr ia n g u la r, so tha t X 'r'^X  = Y'Y where Y = E"^X, and
2

det r  = (det E) , Ansley (1979) extends the techniques of 

Phadke & Kedem to  cover ARMA models and shows th a t his so lu tion  is  

more e f f ic ie n t  than many other methods described in  the lite ra tu re .

A closed form expression fo r  X 'r ^X is  presented by Ljung & Box

(1979). They i l lu s t ra te  how det r  and X 'r  ^X are evaluated, 

and, based on some numerical re su lts , they claim tha t the method 

has s im ila r e ffic ie n cy  to tha t o f Ansley. Other methods have been 

given by Osborn (1976), A1i (1977), and Harvey & P h illip s  (1979) to
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name a few.

In common with Walker & Durbin, Pham-Dinh (1979) also employs 

the sample seria l corre la tions. His approach is  based on the

spectral resolution o f the l ike lihood  function , and hence the

generally simple form fo r  the estimators is  unfortunately obscured. 

An a lte rna tive  approach y ie ld ing  approximately maximum like lihood  

estimates in terms o f the sample seria l correlations is  tha t of 

Godolphin (1980b, 1984), which we b r ie f ly  ou tline . The log 

like lihood fo r  the rea lisa t ion  X = (X^...X^) ' o f the model (2.4.1) 

is  given by

log L = -n log 2no2 - log det - 1 ( X- y l ) ' (X- y l ) (2.4.3)
2 2 2q2

where 1 is  a vector of I ' s  o f length n, and where is the

covariance matrix o f X. D if fe re n t ia t in g  (2.4.3) with respect to 

and 9 where 6 e 0 = (a^ . . .  ap 6  ̂ . . .  B^)' we obtain the 

fo llowing approximation to the l ike lihood  equations:

_L (X - - ;1) = 0 (2.4.4)
88

and

= 1(X - X D 'r ^ - ^ X  - XI)

where the contribution det r  has been ignored. To obtain the-n
solution fo r  0 in (2.4.4) i t  is  possible to adopt a fu r the r 

approximation derived by Whittle  (1954, §2,5) and considered la te r  

by Shaman (1976). We replace by where ii^=( (iri ._ j | ) ) is  the

covariance matrix fo r  n consecutive observations of the stationary 

ARMA(q,p) process

h  *  + . . .  + SqYfq = + ••• + V t - P
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where is  a sequence o f mutually uncorrelated random variables 

with expectation zero and variance un ity . Using th is  approximation 

the like lihood equations (2.4.4) become

J .  (X -  y l ) '5 n  (X -  wl) = 0
89

which s im p lify  to
m

8 {tt + 2 s TT-r .} = 0 
89 j= l   ̂ J

with r j  = Cj/Cg and

c. = _ L  V  (X -X)(X -X)
J n - j t= l

Technically, the number, m, o f sample seria l corre lations should be 

n-1 , but i t  is  generally accepted tha t m can be o f the order o f 

30 even i f  n is  large with an expectation o f l i t t l e  loss of 

accuracy in the estimates. Solutions fo r  the l ike lihood  equations 

can be expressed as i te ra t iv e  equations fo r  whence

the non-ite ra tive  solutions fo r  o q , . . . ,a p ,  together with

m
= Co("o + •

2.5 Testing fo r  Specification

The estimation of the parameters is  an important part o f any 

model f i t t i n g  procedure. Very often i t  is  necessary to f i r s t  

determine the order of the model. One technique used by many 

practit ioners  is  to o v e r f i t  models in the hope that estimates 

s ig n if ic a n t ly  d i f fe re n t from zero w i l l  e f fe c t iv e ly  determine the
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required number o f parameters. However th is  practice has 

disadvantages which w i l l  be discussed la te r  (see Section 4.5).

In th is  section we b r ie f ly  discuss various tests fo r  

spec if ica tion  o f sta tionary time series. One te s t which is  reported 

to have good power properties is  tha t of Whittle  (1951, 1952). His

procedure is  derived from the l ike lihood  ra t io  p r inc ip le  and assumes

that the data are best f i t t e d  by an autoregressive model, but whose 

order is  uncertain. Under the null hypothesis an AR(p) model is 

f i t t e d  and the maximum like lihood  estimator o f the variance is  

approximately

-  c + cc-C, + . . . + a c p o l l  p p

An AR(p+k) model is  f i t t e d  under Ĥ j, where k is  po s it ive , and

the variance is estimated by

Cp+k = Cg + + . . . + «p+k^p+k •

The tes t s ta t is t ic

Q = ( n - p - k ) ( j 2  -  G 2 + k )/ô 2 + k

is  asymptotically d is tr ibu ted  l ik e  with k degrees o f freedom

i f  the null hypothesis is  true. I f  k= l, then the asymptotic 

maximum l ike lihood  estimator o f under Ĥj is

V i  °  -  (Cp+1 + j ! i  ô j C p + 1 - j }

^ p -C. +  Z a . C .
j= l   ̂ J

using a recursive procedure o f Durbin (1960). Since 

5^,1 = (1 -  5̂p
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the tes t s ta t is t ic  s im p lif ies  to

*p+1 T'âp+1

which under is  asymptotically d is tr ibu ted  l ik e  with one 

degree o f freedom.

Quenouille (1947b) provided a te s t  o f f i t  using p a rt ia l  

autocorrelations. This was extended by B a r t le t t  & Diananda (1950) 

and Walker (1952) compares the power o f these two tests . He 

concludes that Quenouille's tes t is  on the whole at least as 

powerful as that o f B a r t le t t  & Diananda, although th is  w i l l  depend 

on the form of the nu ll hypothesis and the class o f a lte rna tive  

hypotheses.

An in te resting  te s t  fo r  spec if ica tion  fo r  moving average 

models is  ava ilab le, based on examining the corre la tion structure of 

the model. The hypotheses

H^: observations are from an MA(q)

H^: observations are from an MA(q+k)

are replaced by

Hq - £1 Ë2 = Q> Ê3 = 9

" i :  + O' 22 + 9 ' 23 = 0

where ei = (p^ Pj • • • Pq)'» 9z = (Pq+i • ■ ■ Pq+|<)'

P3 = (pq+k+1 • * ' tes t s ta t is t ic  is

" 22 ' ?2 22

where is  the covariance matrix fo r  /np^ under H.j. I f  the null 

hypothesis is  true then nQ̂  is  asymptotically d is tr ibu ted  l ik e
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with k degrees o f freedom. This method can be considered a 

modification o f a goodness o f f i t  tes t proposed by Wold (1949).

The procedure is  a straightforward adaptation o f a tes t fo r  detecting

gaps in moving average processes of Godolphin (1978b). In th is  case

the two hypotheses become

% ■  P i i= 9 .  S2 t  9 .  £3  = 9

H-| : g.| = 0 ,  gg t  9 ’ £3  = 9

and the te s t s ta t is t ic  is based on the covariance matrix fo r  /np.  ̂

under .

For mixed models, le t  V/n denote the covariance matrix fo r  

the e f f ic ie n t  estimator o f 9 = (a^ . . . . . g ^ ) '.  Then an

in tu i t iv e ly  sensible t e s t  o f 0 = 0  is

n0  ' V 0

which would be chi-squared with p+q degrees o f freedom in large

samples i f  the hypothesis were true. Now V”  ̂ is  n times the

information matrix which in partit ioned form is

nF = n F F ,“ aa -a[
F' F-aB "31

The derivations of V and F are considered in f u l l  in Chapter 5.

At th is  point i t  is  s u f f ic ie n t  to say that F can be specified more

easily  than V  ̂ so the s ta t is t ic  becomes nS'FG .

This tes t can easily  be adapted in order to tes t say

a = 0. Then 0 -  -

na ' F a 
-  - a o t -

is  asymptotically d is tr ibu ted  l ik e  chi-squared with p degrees of

freedom i f  H is true. To te s t  B = 0 the tes t s ta t is t ic  is  
0 -  -
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"i 'Fgeê •

Here nF & nF__ are the information matrices fo r  a pure-aa -03
autoregression and a pure moving average process respective ly, and 

th e i r  spec if ica tion  is  discussed in the next chapter.

A simple tes t which is  often used by prac tit ioners  is  the 

Box-Pierce tes t (1970) or i t s  modification by Ljung & Box (1978).

The Box-Pierce te s t requires the computation of

T 2
n z r /
j= l  J

where r̂ . is  the sample seria l corre la tion and T is  a s u f f ic ie n t ly  

large number less than n. This s ta t is t ic  has a l im it in g  

d is t r ib u t io n  on T-p-q degrees o f freedom. However, th is  simple 

te s t  has the reputation o f being unable to distinguish between 

several models which could be f i t t e d  to the data. The modification 

o f Ljung & Box gives a te s t s ta t is t ic

T 1 2
n(n+2 ) z (n-k) r,.

k=l K

which provides a closer approximation to on T-p-q degrees of 

freedom.

Another approach which contains the Box-Pierce tes t as a 

special case has been proposed by Godolphin (1980a). This method 

requires more computation but has greater power properties. I t  is  

based on Walker's idea tha t we should tes t the p's ra ther than 

the 3 's ,  using the Godolphin (1978a) estimation procedure. The 

set o f sample seria l corre lations ( r ^ , . . . , r y )  are transformed to 

a set w = (w.| . . .  Wy_|^)' which is  partit ioned into 

(w* ŵ_j_.j . . .  Wy_^)' with transformed covariance matrix
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9 l l Gl2

0^2 -22

w+ = (w, . . .  w ) '  is  then estimated using Walker's i te ra t iv e  ' 1 m
procedure. The tes t s ta t is t ic

nQy_k_m " " - 12- 22- 12  ̂ - *

has a central d is t r ib u t io n  on m degrees of freedom under the 

null hypothesis tha t the parameters o f the ARMA(p,q) model have 

been correc tly  specified.

A comparison o f the tests proposed by W hitt le , Ljung & Box 

and Godolphin fo r  autoregressive models has been made by 

Clarke & Godolphin (1982).

2.6 The State Space Model

The basic state space model is  o f the form

üt = Et^t + - t  ( 2 .6 .1 )

= M t -1 + ( 2-6. 2 )

where is  the process vector varying in time, subject to the

random term H.w.. The observations X. o f the function- t - i  - t  - t - t
are made at d iscre te, not necessarily regular, in te rva ls  o f time 

and are subject to a random measurement error v^. The vectors 

X^,y^ are o f order mxl, is of order nxl and w  ̂ is  of 

order r x l .  The matrices F^, Ĝ  & are a l l  matrices assumed 

known at time t ,  o f dimension mxn, nxn and nxr respectively. 

The random vectors y^, ŵ  are taken to sa t is fy  the following 

constraints:
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E(v^) = g E(w^) = g

E(v^v^) = 6 (w^w^) = (2.6.3)

^ ( - t - t + k )  " -  (k t  0) E(w^w|^|^) = g (k (= 0) .

Also the noise components y^ & are uncorrelated.

The estimator o f the process vector e.j. is  given by

i t  = + 4t(%t ■ (2.6.4)

where A  ̂ is  the Kalman gain matrix. Kalman (1963) suggested tha t

A. should be chosen so as to minimise- t

Gt = [ { ( ^ t  - i t )  ' ( i t  ■ i t ) ]

Various assumptions are frequently made concerning the forms of V  ̂

and Ŵ . I f  is  pos it ive  d e f in i te ,  then A  ̂ can be expressed 

in a form more open to in te rp re ta t io n , namely

8 t  = ■

I t  is  in te res ting  to see how A.j. copes with various uncerta inties 

in the model. For example, i f  F^ = I and V  ̂ is diagonal, then 

each element o f A^ is  proportional to the uncertainty o f the 

estimate, and inversely proportional to the measurement noise.

Thus i f  measurement noise is  large and estimation errors are small, 

then A^ is small. Thus l i t t l e  attention is paid to the most 

recent observation because we have more confidence in the previous 

estimator. Conversely, i f  measurement noise is  small and 

estimation errors are large, then A  ̂ is  large, demonstrating the 

need fo r  more information.

The assumption o f normality fo r  V  ̂ and is  frequently 

made; i f  is  independent o f time, then = I and equations
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( 2 . 6 . 1 ) ,  (2 . 6 . 2 ) define the state space model in the form given by 

Harrison & Stevens (1976). Under certa in conditions, these models 

have s im ila r  properties to low order ARMA models. For example, 

i f  is  absent and the Kalman gain vector A.̂  has converged

to A then the un ivaria te state space model becomes

\  = G-®t 

§t = G it - i  +

where e^ = - FGe^_-j . The sequence {e^} which consists of

one-step ahead prediction e rro rs , replaces the random sequence 

which is  common to the time series models defined in §§2.2 - 2.5.

The random term v^ can play an important part in these 

Harrison-Stevens models; the assumption that v^ is  absent is 

re s t r ic t iv e  in practice. However, i f  V =1= 0 then i t  can s t i l l  be 

shown that these models have the same forecast functions as a 

subclass of non-stationary time series models. This is  considered 

in greater depth in Chapter 6 .

In much of the l i te ra tu re  i t  is stressed that the matrices 

F, G, y & W need to be specified with care. As suggested e a r l ie r ,  

the co e ff ic ie n t matrices F & G are often known from the physical 

s itu a t io n , but the spec if ica tion  and updating o f y & W is more 

d i f f i c u l t ,  and would usually be carried out with confidence by 

prac tit ioners  or in consultation with them. In applications i t  w i l l  

be necessary to specify y and the elements of the positive  

semi-defin ite matrix W. The s itua tion  is  eased i f  W is  f i r s t  

diagonalised by an appropriate non-singular transformation LWL'; 

however th is  may re s t r ic t  the model so that the moving average 

parameters o f the equivalent time series model no longer cover the 

en tire  s ta b i l i t y  region. The assumptions tha t are made about
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y and W are equivalent to making assumptions about the moving 

average parameters. From a practica l standpoint movements in the 

variances are more meaningful than the corresponding changes in the 

parameters. However, at present i t  appears to be much easier to 

tes t assumptions about the unknown parameters than to check the 

assumed values o f the variances.

The Harrison-Stevens model is  considered fu r the r in Chapter 6 , 

where we place constraints on F and G so that comparisons can be 

drawn between these models and spec if ic  non-stationary time series. 

Data from such models can be rendered stationary by d iffe renc ing a 

f ixed number o f times and then inference techniques associated with 

stationary time series are appropriate.
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C H A P T E R  3 

THE PURE AUTOREGRESSIVE MODEL

3.1 Introduction

In th is  chapter the covariance matrix fo r  the e f f ic ie n t  

estimators o f the parameters o f an autoregressive model is 

considered. The model is  defined by

^ t  “ l^ t-1  “ p^t-p ^ t  (3.1.1)

where {e^} is  a sequence o f independent and id e n t ic a l ly  distributed  

Gaussian random variables with expectation zero and a common 

variance o^.

The pure model (3.1.1) merits consideration in i t s  own 

r ig h t ,  not only fo r  reasons o f i t s  s im p lic i ty .  The model has been 

discussed in the l i te ra tu re  fo r  many years and appears to be widely 

used in practice. Given a rea lisa tion  o f n consecutive 

observations, and tha t is  Gaussian, Whittle (1953) has shown

tha t the maximum like lihood approach y ie lds a consistent estimator 

of the vector (a-j . . .  ap)' which is  asymptotically normal. The

covariance matrix V/n o f th is  l im i t in g  d is tr ib u t io n  is  smallest
★ * 

in the sense that V -V is  positive semi-defin ite when V /n  is

the covariance matrix fo r  any a lte rna tive  consistent estimator.

Whittle has also shown that i f  is  non-Gaussian, then the

least squares estimator has s im ila r optimal properties when n is

large.

Several in te resting  properties o f V are derived by W hittle. 

In p a r t ic u la r ,  he gives a formula involving complex in tegra ls  fo r



-  37 -

the elements o f the information matrix. The formula is ,  however, 

rather awkward to use in practice. Durbin (1959) derived a method 

fo r  evaluating the covariance matrix o f the e f f ic ie n t  estimators of 

(a-j, . . .  ,Op), by noting that the information matrix and the 

covariance matrix fo r  p consecutive observations of the process

(3.1.1) are id e n t ic a l,  apart from a m u lt ip l ica t ive  constant.

Box & Jenkins (1970, §A7.5) suggest another approach to the problem 

of evaluating V/n. Their method involves trea ting  the log 

like lihood as an approximately quadratic function. Provided the 

maximum is  not close to a boundary, then the estimates o f the 

elements o f V are reasonable, even i f  the sample size is  only 

moderate. However th is  method is  rather complicated in practice, 

and i t s  accuracy as the number o f parameters increases is  uncertain. 

Pagano (1973) suggested without proof tha t Durbin's re su lt  could be 

expressed in terms o f the difference o f two products of tr ia ngu la r 

matrices, whose non-zero elements are the parameters o f the model.

A proof o f th is  expression is  given in Section 3.3. The 

generalised variance is  also considered in th is  chapter. The two 

tr iangu la r matrices feature again in a fac to r iza t ion  o f the 

determinant o f V, th is  being an integra l part o f the generalised 

variance.

Analogous results ex is t on the whole fo r  purely moving average 

models; fo r  the sake o f completeness, the model is  considered 

separately in  Section 3.6. Many o f the ideas presented in th is  

chapter are used or adapted la te r ,  when more complicated models are 

discussed.
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3.2 The Information Matrix

In general nF w i l l  denote the information matrix, but in 

th is  chapter the notation nF^^ w i l l  be used. The ( i , j ) - t h  

element o f F^^ given by Whittle (1953) is  the constant term in 

the expansion o f

1 9 log {B(z)B(z"^)}. 9 log {B(z)B(z“ ^ ) } .
2 9cî . 9a.

(3.2.1)

This is  equivalent to

Lemma 3.2.1

The ( i , j ) - t h  element o f F _  is  the coe ff ic ien t o f z^"^ in the 

expansion of
-a a

1
a (z )a (z - l)

where a(z) = 1 + a-jZ + . . . + a^zP.

Proof

Since B(z) = {a(z) ,

9 log B(z)B(z“ ^) = 9 { - lo g a ( z ) -  log a(z“ ^) }
9â 9â

= -Z^ - z"'' . (1=1 , . . . .p )
a ( z )  a ( z - l )  

Therefore, expression (3.2.1) becomes

-z - z-1

a ( z )  a ( z " T )

-Z '

o ( z )  a ( z - T )

i2 (z) aZ(z-T) a (z )a (z - l)
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There are no constant terms in or

and the constant terms in z^"'^'/{a(z)a(z’ ^ ) }  and z'^ '"V{a(z)a(z“ ^ )} 

are the same owing to symmetry in the denominator. Hence the 

constant term in  (3.2.1) is z^*"'^'/{a(z)a(z"^ )} and th is  is  

equivalent to the co e ff ic ie n t o f z^"^ in  (a (z)a(z” ^)}~^ as 

required.

By le t t in g  fj^ denote the co e ff ic ie n t o f z in 
-1 -1

{a(z)a(z )}  so tha t f|^ = f_|^ (k = l ,2 , . . . )  by symmetry, i t  

follows tha t

a(z)o(z"T)
(3.2.2)

Hence the information matrix is  given by n times the matrix F
aa

where

F
- a a ^0 • • fp_i

^0 ’ • • fp -2

fp - l  fp -2 - • ^0

To i l lu s t r a te  th is  re su lt ,  the fo llow ing example applies the Lemma 

d ire c t ly  to a simple model.

Example p=2.

The model is

+ " 2%t-2 = =t-

Expressing l / { a ( z )a ( z '  ) }  in p a rt ia l frac tions as given by 

Quenouille's algorithm (1947a):

l / {a (z )a (z "T ) = i<o + (KqZ + K2Z^)/a(z) + (K-,z"^ + K g Z '^ j /a fz ' l )
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M ultip ly ing throughout by the lowest common denominator a(z)a(z” ) 

y ie lds

1 = K^{(l+aiZ+a2Z^)(l+a-jZ ^ )}

+ ( K i Z + K 2 Z ^ ) ( l + a i Z “ ^+a2z ’ ^) + ( K i Z ”^+K2z“ ^)  ( l+ a . jZ + a 2Z ^ )  

Equating coe ff ic ien ts  o f z°, z~^,

1 = ^^(l+a-j ^+02^) + ^K-ja-j + 2X282

0 = XQ(a-j+a-|a2 ) ^ Kq(l+02)

0 = Ko«2 + Kg .

Solving fo r  gives

1 + a. and K-j = - a .

In th is  case f  = K and f^ = K ,, hence 0 0  1 1

nF
- a a

( l - Q ^ ) { ( 1+82) " “ 1 )

1+a, - a

- a

1
1 +a.

When p is  moderately large, i t  is  preferable to apply a d i f fe re n t  

approach to evaluate F . This w i l l  be described in the next
- a a

section. The matrix F^^ is  required in several hypothesis tes ts , 

de ta ils  of which are given in Section 2.5.

3.3 The Covariance Matrix

Let a = ( a .  . . .  a )' denote the vector of parameters fo rI p
the autoregressive model o f order p with

(3.3.1)
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' p ) '

In the previous section a method was given fo r  evaluating

The covariance matrix fo r  the e f f ic ie n t  estimator o f a is  the

inverse o f nF^^. However, i t  turns out to be unnecessary to f ind

the ind iv idual elements o f F and inve rt th is  matrix. This was
- a a

noted by Durbin (1959) who produced a simple method fo r  obtaining

F"^ without the need fo r  any awkward matrix inversions. His
- a a

re su lt  is  based on the fa c t  tha t,  apart from a m u lt ip l ic a t iv e  

constant, F is  the covariance matrix fo r  p consecutive
- a a

observations o f the process (3 .3 .1 ). By le t t in g  X-j = (X-j .

-2 “  (Xp+1 ••• %2p) denote 2p consecutive observations, he 

expressed the unconditional d is tr ib u t io n  o f (X-j, X^) in two 

d if fe re n t  ways. Equating the f i r s t  p rows and columns o f the 

matrices in the resu ltan t quadratic forms, th is  yielded F^^ 

d ire c t ly .

Pagano (1973) suggested a neat expression fo r  Durbin's 

formulation in terms o f the difference of two products o f tr ia ngu la r 

matrices. But although th is  formula has been quoted by other 

workers, a rigorous proof does not appear to have been given in the 

l i te ra tu re .  In fa c t ,  the resu lt  follows from the commutative 

properties o f upper tr iangu la r matrices and a proof o f the re su lt  

is  given in Theorem 3.3.1 below.

Let A and B be upper tr iangu la r matrices of order pxp 

defined by

A = 1 a i  . • * “ p-1 9 B =
"P “ p-1 . . . a-j

0 1 . • • «P-2 0
“ p . . .  a£

. . .
• • • • •

0 0 . . . 1 0 0 . . .  a
—

Both A and B are non-singular and are symmetric about the
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minor diagonal. A useful property o f A and B is  provided by 

the fo llow ing lemma:

Lemma The matrices A and B commute.

To show tha t AB=BA we have 

AB = 1 a . * . a
1 p-1

0 1 . . .  a p-2

0 0 . . .  1

°‘p *P-1 
0 a_

0 0 . . .  a
PJ

YP 'p -1 ' ' ' M 
0 Y„ . . . Yo

0 0 . . .  Y
PJ

(3.3.2)

where Y^ = + “ I'^k+l + ' ' '  + “ p-k“ p 4  ^  p). S im ila r ly

BA is  the r ig h t  hand side o f (3.3.2) and so the lemma follows.

Theorem 3.3.1 (Durbin, 1959)

-1

Proof 

Define

F ' = A'A - B'B .-aa - - - -

fp+i • • • 

fp -1 ^p • • • f 2p-2

^2 . . . f

where the elements o f F and F are defined by the re la t io n
- a a

(3 .2 .2 ). Equation (3.2.2) can be re -w rit ten  as

«(z 'T ) { f  + z f.(%k + z 'k ) }  = 1 = 1 + £ a. z^ say.
k=1 —  k=l ^

Equating constants, and pos it ive  and negative powers o f z respective ly

y ie lds  equations (3 .3 .3 ). Note tha t the la s t  two equations require

posit ive  values o f k in applications, and reca ll tha t f^  = f_^.

=  1

= < (3.3.3)

=  0

+ " 1^1
+ ^2*̂  2 + . . . +

“ P̂ P

^k
+ “ i V i +

“ 2^k+2 + . . . + “ p^k+p

fk + “ l^ k -1
+ “ 2^k-2 + . . . + “ p^k-p
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The la s t  o f equations (3.3.3) implies thatFp F ' ll_ -aa  -  J B'

A

Hence
*  - 1F = - F B'A '- -aa- - (3.3.4)

The a's are given by the re la t ion

1 = 1 + E a. z
“  k=la(z)

which can be re -w ritten  as

+ “ l®k-l + • • • + V l ® l  + *k = 0 (1 4  k < p)

where a^ = a^ = 1. This la s t  set o f equations v e r i f ie s  the

fac t tha t

,-l 1 a»; . . . a ^
1 p-1

0 1 . . .  a

0 0

p-2

1

Consequently, equations (3.3.3) imply that

,-l[ f p j-a a  -  I = A

1 .e. (3.3.5)

Substituting fo r  F from (3.3.4) gives

F (A' -  B'A'^B) = A‘ L

From the lemma, A and B commute; therefore A  ̂ and B 

commute. This implies
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F (A' - B'BA'T) = A"  ̂-aa - - - -  -

and post-m ultip ly ing by A

F (A'A - B'B) = I ,  -a a  -  -  -  -  -

whence

F'T
-a a A'A - B'B

and the proof is  complete.

I t  is  also worth noting that

.-1F = AA' -  BB' -a a  - -  —Corollary 3.3.2

To show th is ,  define a pxp matrix J which is  the "m irror image" 

o f the id e n t i ty  matrix; i .e .

J = 0 . . .  0 1

0 . . .  1 0

1 . . .  0 0

The matrix J is  symmetric and non-singular. Also

det J = ( - l ) P ' l  and /  = JO' = I •

Pre- or post-multip ly ing A or B by J produces some in te resting  

resu lts , as summarized below:-

The matrices AJ and JA are symmetric since

AJ =
P-1

P-2

«1  ̂
1 0

0 0

, JA = 0 0

0 1 

1 a.

. 1

• Op_2

* “ p-1.

Hence A = JA'J and A' = JAJ. Thus pre-multip ly ing A by J
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reverses the order o f the rows in A, and post-multip ly ing

reverses the order o f the columns. The two operations together

produce a ro ta tion  o f A through 180°. An analogous set o f

results  exists fo r  B. Since is  symmetric about both-aa
diagonals, i t  is  unaffected by a ro ta tion  through 180°. 

Consequently Corollary 3.3.2 follows from

A'A - B'B = J(A'A - B'BIJ

= (JA')AJ - (JB')BJ

= A(JAJ) -  B(JBJ)

= AA' - BB',

as required.

To i l lu s t r a te  Theorem 3.3.1, the case p=2 is  considered.

Example 

The model is

A = 1 a] . B = a^ °̂ 1

0 0 0 “ 2 _

I t  follows immediately that

-1
1  E ' = 1  (A'A - B'B) = 1 1 - «2 a^(l-ag)

a-j ( l-ag) 1 - ag^

Hence i f  a.j, a^ denote the e f f ic ie n t  estimators o f a-j, a^ 

respective ly, then fo r  su itab ly  large n

2

and

Var (a-j) = Var (a^) = J_ (l-ag )
n

Cov (oqag) = 2̂ G^fl-ag) 
n
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Inverting F V n  gives the information matrix nF as -a a  -a a

found in  the previous section using Quenouille's algorithm. 

Indeed, i f  p is  moderately large, and i f  the information matrix

only is  required, i t  seems to be quicker to evaluate F"^ using-a a

Theorem 3.3.1 and then to invert  F~Vn.
-a a

3.4 The Generalised Variance

The Generalised Variance (6 .V) fo r  the e f f ic ie n t  estimator 

a o f a is  defined to be the determinant o f the covariance matrix

fo r  th is  estimator. That is ,

G . V .  = d e t f F ' h
-a a

w l

= _L det C  ■
nP

The aim o f th is  section is  to f in d  an easy way to evaluate th is

determinant. Theorem 3.3.1 w i l l  prove useful in doing th is .

With the matrices A, B and J defined as in the previous section,

det F  ̂ factorizes as fo llows:-a a

Theorem 3.4.1

det F"]  ̂ = det (A - JB) det (A + JB) .

Proof

Since A and B commute, i t  follows that 

B'JA = JBA = JAB = A'JB .

So

(A' - B'J)(A + JB) = A'A - B'B = F-1
aa



-  47 -

Hence
det = det (A- - B'J)(A + JB)

= det (A* - B'J) det (A + JB)

= det (A - JB) det (A + JB) .

By appealing to another resu lt  derived in a control theory 

context by Jury (1964, pp.87) i t  is possible to fac to r ize  th is  

determinant s t i l l  fu r the r. F i r s t ly ,  define the matrix H, where

H = A - JB

*
and A ,

*
B are derived from A and B respective]

the p-th row and p-th column. Thus

H = 1 Ot̂  • • • “ p-2 J
"P "P-

 ̂ • 0&2

0 1 . . . “ p-3 0
“ p

. . .  “ 3

0 0 . . . 1 0 0 . . . “ p
—

= 1 *1 . . . “ p-2 ' “ P •

0 1 “ p-3"“ p-1

■"p ■“ p-1 . . . T-a2

(3.4.1)

Then

Theorem 3.4 .2  (Jury, 1964)

det (A + JB) = (1 + a-j + Ü2 + .

= a ( l)  det H 

det (A - JB) = (1 - a-j + tt2 " .

= . a ( - l ) det H .

. + Op) det H

■ + (- l)Po ) det H

By combining the results in these two theorems, the fac to r iza t io n  

of the determinant becomes

d e t r ^  = a ( l ) a ( - l ) ( d e t  H)2 .
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F in a l ly ,  the generalised variance is  given by

G.V. = J_ a ( l ) a ( - l ) ( d e t  H)^ . 
nP

(3.4.2)

Example p = 3

A = ce-, a.

B =

‘1

H =

0 1

0 0 1

«3 “ 2 “ 1

0 og ag

0 0  ao

*  * 
A - OB

SO A 1 a. 

0 1

SO B “ 3 “ 2

“ a.
“ 1 ■

1 -

so that

det H = 1 - + «^(a-j - a^)

Thus using equation (3 .4 .2 ),

2,_3G.V. = (1+ot.j+02+013)(1 "oti+02- 013){1 -a2 + 03(0^ -03) }  /n

= { ( 1+82)^ - (ot-j+03) ^ } { l -02 + 03(0-1- 03) }^/n^ (3.4.3)

The s im p lic i ty  which results from the fac to r iza t ion  (3.4.2) 

is  made evident by considering the problem d ire c t ly .  In the case 

p = 3,

1 F ' l  = 1— -oo — 
n n

1 -  a- “ l -  “ 2“ 3 “ 2 ■ “ 1*3

2 2 2
o-j - 0 2 ^ 2  i+o^ -« 2  -« 2  o^ -  02^2

“ 2 ~“ l “ 3 “ 1 “ “ 2“ 3 1 -  a.



-  49 -

I t  is not immediately obvious that the determinant o f th is  matrix 

s im p lif ies  to the form (3 .4 .3 ), hence the fac to r iza t io n  (3.4.2) 

c lea r ly  avoids some tedious algebraic manipulations. A s im p lif ied  

form fo r  the s ta t io n a r i ty  conditions can also be deduced using

(3 .4 .3 ). For th is  example the conditions are

and

det 1 “ a.

“ 1 ■ °‘2“ 3

1 “ «2 > 0

*1 " *2*3 > 0

det F  ̂ > 0-aa

(3.4.4)

In th e ir  present form these inequa lit ies  involve fourth degree terms 

in the a 's ,  but we now show how (3.4.4) can be s im p lif ied  to

1 + a-j + ag + &2 > 0 

> 0 

> 0 

< 1

<
(3.4.5)

Using the fac to r iza t ion  (3.4.2) and a f te r  some algebraic 

manipulations, the inequa lit ies  (3.4.4) can be re -w rit ten  as

2
1 -  a. > 0

{ l +«2 “  «2 (0-1+02) } { l - a 2 + 02(0^ -02) }  > 0

2
(I+O1+O2+O2) ( l - o - j + 02 - 0 2 ) { l -02  + 0 2 ( 0 ^ - 0 2 ) }  > 0

(3.4.6)

(3.4.7)
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I f  both brackets in (3.4.6) are negative then addition o f 

these y ie lds

2(1 - «3^) < 0

which contradicts [a^l <: 1. Thus both brackets are s t r i c t l y  pos it ive

and consequently
2

{1 - Og + 82(0^-02) }  ^ 0.

Hence the squared term can be omitted from (3.4.7) to give 

( 1+0^+02+02) ( 1“ ai+a2" 02) > 0 .

I f  both brackets are negative then

- o  ̂ - 02 > 1 + 02 and o  ̂ -  02 > 1 " 02

and hence
/ 2 2 . T 2

-  (o-j -  O2 ) > 1 -  O2 .

2 2 2Also l+o-| -02 -02 is  pos itive  since i t  is  a variance, thus both 

brackets are pos it ive  and the inequa lit ies  reduce to (3.4.5) 

together with

1 + 02 - 02 (0  ̂ + 02) > 0 .

But th is  additional inequa lity  is  redundant since 1+O2>0 &

1-O2>0 gives

( 1- o ^ ) (  1+0-J+02+02) + ( 1+02) ( l - o - | +02-02) > 0

or

2 (1+02 " ^ O'

Hence the inequa lit ies  (3.4.4) s im p lify  to (3 .4 .5).

I t  is  in te resting  to note that fo r  the AR(3) model, the

s ta t io n a r i ty  conditions are

o ( l )  > 0, o ( - l )  > 0, det H > 0 and < 1.

These bear a remarkable resemblance to those o f the AR(2) process.
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namely

a ( l )  > 0 , a ( - l )  > 0 and jogl <

In th is  case, det H = l-Og > 0  is  a redundant constra in t. The

s ta t io n a r i ty  conditions fo r  models containing more parameters are 

necessarily more complicated, but can always be s im p lif ied  to two 

f i r s t  degree inequa lit ies  involving a { l )  & a ( - l ) ,  together with 

[op] < 1 and a t most l+ (p /2) or l+ (p + l ) /2  fu r th e r constra in ts, 

depending on whether p is odd or even. A discussion given in 

a control theory context is  that o f Jury (1964, §3.5) .

3.5 Derivation o f the Moments o f an Autoregressive Process

An in te resting  dua lity  re su lt  exists between F , where
-a a

F /n is  the covariance matrix fo r  the e f f ic ie n t  estimator o f a ,-a a

and the pxp covariance matrix fo r  p consecutive observations o f 

the AR(p) process ( 3 .1 .1 ) .  The resu lt  was f i r s t  noted by 

Siddiqui (1958).  He observed that

F = r-aa -p

where is  the covariance matrix fo r  the rea liza tion  X ^ ,.. . ,X p

of the process ( 3 .1 .1 ) .  This resu lt  holds because the 

autocovariance generating function r(z )  is  defined by

r (z )  = o2/{A(z)A(z"1)}

y ie ld ing

r (z )  = 1 = 1 = f^  + z f^(z^+z"k).
A(z)A(z’ ^) a(z)a(z"T)

Hence the elements o f r (z ) /a^  and F are given by the same-aa
formula, namely {a(z)a(z"^ ) }""*, and so the matrices r and F

-p  -a a
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are id e n t ica l.

There are several methods tha t can be employed fo r  f ind ing 

e x p l ic i t l y  the ind iv idual elements o f r^ .  One technique is  to 

solve the Yule-Walker and Wold equations using equation (2 .2 .3 ); 

th is  method does not invoke S iddiqui's  re su lt ,  and may be tedious 

in practice. A lte rn a t ive ly , can be evaluated using

Quenouille's algorithm as in Section 3.2. This method is  also 

rather long, and i t  was concluded in Section 3.3 tha t even i f  F ̂ -a a

is  required, the quickest method is  to f i r s t  f ind  F~^ using 

Theorem 3.3.1 and then to invert th is  matrix.

The covariance matrix fo r  a rea liza tion  X ^ ,. . . ,X ^

o f size n o f the process (3.1.1) can be determined re la t iv e ly  

easily  by expanding r^ .  To see th is ,  consider again the example 

in Section 3.3. For the Yule process, the covariance matrix fo r  

the e f f ic ie n t  estimator o f a-j, a^ was found to be

1 = 1
 aa —
n n

1 -  a.

a-j -  a^ag

a-j - a-ja2

1 -  a.

Hence the covariance matrix fo r  two consecutive observations o f the 

same AR(2) process is  a^F2 where

r = F
-2  -a a 1

( l - a 2 ){ (l+a2 ) - a-j }

^0 ^1 

^1 ^0

say.

The Yule-Walker equations fo r  th is  model are

1 + a. -a

-  a.j 1 + 0 2

k + «lYk-l  + V k - 2  = °  (k i  1) = Y. k'
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so fo r  any k>0, Y|̂  can be expressed so le ly  in terms o f

and Y-j. Therefore le t

o<r-n '0

Tl

• • ^n-1

• • ^n-2

V i  ?n-2  • • • ^0

denote the covariance matrix fo r  the rea liza t ion  o f

the AR(2) process. Using the above algorithm, a l l  the elements 

o f can be found in terms of the previously calculated 

Yq and Y-j •

C learly, th is  procedure generalises fo r  any value o f p to 

give an algorithm fo r  deriv ing the autocovariances o f a

general autoregressive process. F i r s t ly  F^^ is  found using 

Theorem 3.3.1, and then i t s  inverse to give r^ .  This, together 

with a^, gives e x p l ic i t  values fo r  the variance and f i r s t  (p-1) 

covariances. The remaining moments Ypj...,Y^_-j can then be 

derived from the Yule-Walker equations in terms o f y^ jY-j > ... ,Yp_-|

3.6 The Pure Moving Average Model

The results presented so fa r  in th is  chapter re fe r only to the 

pure autoregressive model o f order p. However a l l  o f the results  

in Sections 3.2, 3.3 and 3.4 are applicable to moving average models 

as well. To c la r i f y  the s itua tion  the results w i l l  be discussed 

b r ie f ly  fo r  the moving average model o f order q defined by

(3.5.1)
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The basis o f the fa c t  tha t analogous results  ex is t fo r  a moving 

average model is  a resu lt  due to Whittle (1953). He observed that 

the covariance matrix fo r  the e f f ic ie n t  estimators o f the parameters 

of an autoregressive model is  the same as that o f a moving average 

model, provided the parameter sets are the same. Let nF denote- pp
the qxq information matrix fo r  the process (3 .6 .1 ). The ( i , j ) - t h  

element o f F^^ is  the constant term in the expansion o f

1 9 log {B(z)B(z~^) } .  9 log {B(z)B(z’ ^)}
2

which is  equivalent to the co e ff ic ie n t o f  ̂ in

where 3(z) 

Defining

i t  follows that

. . . h

. . . h

hq-l hq-2

q-1

q-2

. . h.

Clearly i f  g(z) = a(z) then the h's have the same defining

equations as the f ' s  in Section 3.2, whence = F . For the
“ 63 “ Ota

same reasons as before, th is  is  not necessarily the easiest way to 

evaluate the information matrix i f  q is  moderately large. In 

general i t  seems to be quicker to f i r s t  f in d  the covariance matrix 

fo r  the e f f ic ie n t  estimators o f (3 - | j . . . jB q ) and then take i t s
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inverse, even i f  the information matrix only is  required.

I t  is  necessary to re-define A and B as matrices of 

order qxq with elements consisting of parameters o f the model

1

0 1
1 ' ' ' *q_i

• • ®q-2

0 0 . . . 1

B ®q '"q-1 ' ' ' *1 

0 3_ . . . 3o

0 0

Then, as before, the covariance matrix fo r  the e f f ic ie n t  estimators 

o f (3 - |, . . . ,3q )  is

I E bs = 1  (6 'A - r ? )  = I  (M ' -  BB') .
n n n

With these new de fin it ions  o f A and B the formula fo r

the determinant o f remains as before:

det Fgg = det (A - JB) det (A + JB) .

To complete the s im p lif ica t ion  o f the generalised variance

det (A + JB) = (1 + 3-j + . . . + 3q) det H

= 3(1) det H

det (A - JB) = (1 - 3-j + . . . + (- l)^3q) det H

= 3 ( - l ) det H ,

where

H =
• * V 2"^q

* * Gq-3"Gq-l

^-1 ' * • 1-1
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* *  *  *
That is  H = A - JB where A , B are derived from A and B

respectively by deleting the q-th row and the q-th column.

Thus the generalised variance is given by

G.V = det

= J _ B ( l ) 6 ( - l ) ( d e t  H)2
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C H A P T E R  4

THE ARMA ( p j )  AND ARMA (1 ,q )  MODELS

4.1 Introduction

In Chapter 5, the autoregressive moving average (ARMA) model 

o f order (p,q) fo r  general p and q w i l l  be considered in 

d e ta i l .  In the present chapter, a subclass o f mixed models which 

contain e ithe r ju s t  one moving average or ju s t  one autoregressive 

parameter w i l l  be examined. These two categories are defined by

h  + + • • • + + B=t-1 ( A - l - l )

and

Xf + aX^^i Ef * ^ l^ t-1  Bq^t-q * ( 4 . 1 . 2 )

In the previous chapter, the purely autoregressive model 

was considered. The covariance matrix fo r  the e f f ic ie n t  estimators 

o f the parameters o f the model was easily  specified and the 

information matrix was given simply by i t s  inverse. The 

introduction to the model o f  ju s t  one moving average parameter 

makes the evaluation o f these two matrices and also the generalised 

variance s ig n if ic a n t ly  more complicated. The information matrix 

fo r  the model (4.1.1) can be w ritten  in the partit ioned form

nF = n
- a a  - a (

F' F-aB '̂3f

The terms nF and nF._ are ju s t  the information matrices fo r  
- a a  33

the AR(p) and MA(1) models respectively and can be specified
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using the techniques described in the previous chapter. However, 

with mixed models, there is  the additional complication in the

submatrix F . ,  or in th is  chapter the vector F The form of
- a g  - a g

the vector F^^ fo r  the models (4.1.1) and (4.1.2) is derived 

in the next section.

Durbin's re su lt  (Theorem 3.3.1) s t i l l  applies fo r  find ing the

inverses o f F and F„^ but the re su lt  does not generalise fo r
- a a  33 ^

mixed models, even though there is  ju s t  one extra parameter. The 

covariance matrix can only be found in block form by inverting  nF; 

some s im p lif ica t ion  is afforded by the fac t that the matrix F as 

a whole is  s t i l l  symmetric.

The evaluation o f the determinant o f the covariance matrix, 

to give the generalised variance, would appear to be in trac tab le  

in a l l  except a few simple models. However a neat expression fo r  

fac to r is ing  det F has been produced, and a proof o f the resu lt  

is given in Section 4.3.

In the rest of th is  chapter, only model (4.1.1) is 

considered in d e ta i l .  However, i f  the model (4.1.2) is  re­

defined using the same parameter set as (4 .1 .1 ), i . e . ,

+ • • • + V t - p  (4.1.2a)

then i t  is possible to appeal to a generalisation of W hitt le 's  

re su lt  (1953). Clearly the generalised variance is  the same fo r  

models (4.1.1) and (4.1.2a); the information matrix becomes

"F = " ^66 ^«8

F  ̂ F
~a3 - a a

with the blocks defined as previously, and a s im ila r transformation 

gives the covariance matrix from that of the model (4 .1 .1 ). In
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the f in a l section, the adequacy o f the chosen model w i l l  be 

considered.

4.2 The Information Matrix

The information matrix is  defined in a partit ioned form by

nF = n F F ,- a a  - a (

F’ F
- a g  gf

(4.2.1)

where F is  a pxp symmetric matrix
•aa

F^g is  a column vector of length p 

and F„. is  a scalar term.pp

The matrix F and the scalar F„„ are independent o f g and
- a a  gg

(a - j, . . . ,a p )  respectively. In fac t nF^^ is  simply the information

matrix fo r  a pure autoregression o f order p as derived in the

previous chapter. . The matrix F can be evaluated e ithe r using
- a a  3

Lemma 3.2.1 or else by inverting F” ^ given by applying 

Theorem 3.3.1. The scalar term F._ is ju s t  the constant term inpp
the expansion of

1

g(z)g(z-T)

w h e r e  b ( z )  = 1 +  g z ,  i . e . ,  F = ( 1 - g ^ ) " ^

Thus the only d i f f i c u l t y  in specifying the complete information

matrix l ie s  in the derivation of the vector F . W h itt le 's  resu lt
- a g

in Section 3.2 can be used to f ind  the elements o f F . In th is
- a g

case, by adapting Lemma 3.2.1, the ( i , j ) - t h  element of F is  the 

coe ff ic ie n t of in

-1

a (z )g (z " l)
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By defining

^0

9-1

9 l - l

i t  follows that

Z 9|(Z 
k=-«

-1

a(z)g(z 'T)

By adapting a Quenoui11 e-type algorithm, the following lemma shows 

that the evaluation o f the elements o f F^g is  stra ightforward in

the pa rt icu la r case where F „ is  a vector.
^  - a g

Lemma 4.2.1

i i ( § )
s

where the m ult ip le  S is  the scalar quantity

s = [ § ’ ( - g ) P j

and g = (1 -8 (-8)^ . . . ( -8 )9 "^ ) ' ,  a = (1 ag . . . “ p .-|) '

Proof

The elements o f F  ̂are given by the coe ff ic ien ts  of-ag
z°, z“ \  . . . , z^"P in - l / { a (z )g (z " ^ ) } .  Expanding in to  p a rt ia l

frac t ions ,

-1 _ K + K^z + K«z^ + . . .+  K z^ + Lz ^_________  -  0 1_____c_________ p
o(z)8(z"T) o(z) g (z - l)

M ult ip ly ing throughout by the lowest common denominator gives 

-1 = KQa(z)g(z"T) + (K-jZ + KgZ^ + . . . + K zP)g(z"T) + Lz"^a(z).
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Equating coe ff ic ien ts  of z" and z^ gives

L = -Kgg and = -K^Op.

Consider next the coe ff ic ien t o f zP-1 .

° = Ko(*p-l + Gpg) + (Kp_i + Kpg) + Lap.

Substituting fo r  L and gives

° = Ko(*p-l - =p6 ) + V t

On substitu ting  in the equation fo r  fo r  L and K i t

follows that

l < o ( V 2  •  “ p-1® + O p .28^) +  Kp-2 = 9 

By considering the equations fo r  the coe ff ic ien ts  of 

zP -2^  , z° in that order, i t  is possible at each stage

to eliminate one fu r the r term K, and also L. The f in a l  

substitu tion  fo r  K-j and L in the equation re la t ing  the constants

y ie lds

whence

Kg = “ (1 -a-| g+a2g^-a2g^ + . . . + cip(-g)'^) ^

= 2 i  • (4.2.2)
S

The only terms in the expansion of - l / { a (z )g (z ” ^ )} involving 

negative powers of z occur in the p a rt ia l frac t ion  term

Lz'T = Lz"^(l - ez"^ + g^z'Z - 6^2-3 + . , . ) .
e(z-T)

Thus the coe ff ic ien t o f z ^ fo r  positive  h is  (-g)'^” \  = (-g)^KQ, 

where is given by (4 .2 .2 ).
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F in a l ly ,

- a  g g_ = K 1^0 0

9-1 -g

2
9-2 g

9 l - p ( -6 )P -T

= z l ( g )  
s

Using th is  re su lt  fo r  F^^, together with the given expressions fo r

F and F._, i t  is  possible to w rite  the information matrix as-a a  gg

given e x p l ic i t l y  fo r  an ARMA(p,l) model by the partit ioned 

form (4 .2 .1).

Example ARMA(2,1) model

^ t  * l% t- l “ 2^t-2 " =t *  GEt-i'

The information matrix is 

nF = n F F ^-aa  -a|

F' F
-ag gf

2 -1and since q = 1, F = (1-g ) “ . I t  appears that the easiest way
gg

to evaluate F is  to f in d  F"^ and then take i t s  inverse. From - aa  -aa

Theorem 3.3.1,

--1
■aa

1 -  a. a, (1 - a«)

SO t h a t

F
-aa

a-i ( l - a _ )  1 -  a.

__________ 1___________

Using Lemma 4.2.1,

1 +a.

-a-

-a*

1 +a.

Eag = Z l(g ) 
s
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where

Thus E.g

-1 and S = 1 - a-| 3 + Ogl

-1

(l-a^g+OgB ) 

and the information matrix is

nF = n 1 l+a2 -a-j 

-a-j 1+^2

-1 1
p

1 -a-j 6+^2# -g

-1 [ 1  - g ] 1p
1 -a-j 6+^2# i-g2

To complete th is  section, the expression fo r  the information 

matrix fo r  the ARMA(l,q) model (4.1.2) is  derived. I t  is  given by

F° F°„
aa -ag

( F° ) '  F°^-ag^ -66

The matrix nF^^ is now the qxq information matrix fo r  the pure 

moving average process o f order q, and F°^ = ( 1 - a ^ )  ^ . Also 

F°g is a row vector o f length q given by

E°6 = : !  (1 «2 . . . (_a)9-T)
s°

where = 1 -  ag-j + a^gg -  0^ 3^+ . . . + ( - a ) ^ g  .

4.3 The Generalised Variance

The Generalised Variance (G.V.) is  defined to be the determinant 

o f the covariance matrix fo r  the e f f ic ie n t  estimators of

{ a - j , . . . ,  ttp, g } .
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Generalised Variance = det (F” V n )

= 1 ,
n^^^det F

where F is  partit ioned as in the previous section. In Section 3.4 

a fac to r iza t ion  was found fo r  det F” \  In th is  case, a-aa

fac to r iza t io n  o f det F is  not so obvious. However, a simple

fac to r iza t io n  ex is ts , and is  presented in terms o f det F~̂  and
-a a

det F = F , together with two scalar terms which are easilypp pp
evaluated. The de ta ils  o f the fac to r iza t ion  are contained in the 

fo llow ing theorem.

Theorem 4.3.1

det F = det F det F „, R^/S^-a a  66

where -B' ( - 0 )
*

a , s  = [ g' ( - s ) P ] a

1 _*P_

(4.3.1)

with g and g defined as before , and 2* " ("p “ p-1 • • • “ l ) ' -

Proof

F F F ,-aa
F'-ag

-ag

Pre-multiplying F by a matrix whose determinant is un ity  w i l l  

have no e ffec t on the determinant o f the product of these two 

matrices. Hence

det F = det I 0

-F' F'^ 1-ag-aa

F F ^- aa  -af

F' F^
-ag g|

= det F F-aa  -ag

0 F - F '  F " V
gg -ag -aa -a f
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= (F,« - F -V „« ) det F

aa
(4.3.2)

•ag-aa-ag

Equating (4.3.1) and (4.3.2) i t  is required to prove that

(4.3.3)

Using Theorem 3.3.1 and Lemma 4.2.1, equation (4.3.3) can be 

re -w ritten  as

(4.3.4)

-1 2since F _ = 1-g . M u lt ip ly ing throughout by the lowest common

denominator S gives

$2 - r2 = g'(A'A - B 'B)g(l-8^) . (4.3.5)

To prove equation (4.3.5) i t  is necessary to derive some 

preliminary results involving the matrices A,B and augmented 

A & B matrices. F i r s t ly  consider

A = 1 a- 

0 1

0 0

• V l

* *p-2

and define A, =—r

Then

a a'  a + 0 O'
P -p

a A'A
P_ -p -  -

1 a-| .

0 1 .
. a

. ap-1

0 0 . . . 1

(4.3.6)

where 0^ is  the zero vector of length p,
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Also

0 r * + A'A (4.3.7)

-*  TTq
J i

0

where

i l *

and

“ k + “ i “ k+i + • • • + “ p-k“ p (1 < k < P)

0

Again,

B =

2 2 2 1 + g*g* = 1+a  ̂ fag + . . . +«p .

“ P-T
. . 06"̂ and define B  ̂ = a

“ p -T
. . 1

P —r P
0

“ p •
. . 0̂2 0

“ p •
• • Ct'j

. . . •
• • • • • •
0 0

“ P
0 0

“ p

Then

g* [g* •
0

1 B'B

and

g;B+ =

(4.3.8)

9 3* + B'B
5; (4.3.9)

3*
■i

0

I t  also follows from the de fin it ions  of S and R that

= I^S' (-B )P j a r * ' a l 6,
L- Pj

_*P_ (-g)P

S' (-s)P If* e* 1]
(-s)P
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In proving equation (4.3.5) consider f i r s t  the product

S'(A'A - B 'B)6 6' ( - b)P ][a; a^ - b; b^]

(-6)'

using (4.3.7) & (4.3.9)

6' (-e)P 0 O' 
-p

+ a [-' “ p ] '
g* [=* i 8

Op A ' A - B ' B
^ " P

1 (-g)P

using (4.3.6) & (4 .3 .8 ). 

Thus

S'(A'A - B'B)B + B^e'(A'A -  B'B)6

2 2using the de fin it ions  o f S and R together with the resu lt  that

B' (-S) 0 9p

0 A'A-B'B- p

§' = S^.g'(A'A - B'B)g

(-g)P

(4.3.5) i t  follows that

RHS(4.3.5) = sf - pf + B ^ê '(A 'A  -  B'B)g (1-S^)

= (S^ -  R^)(1-S^) + B^.RHS(4.3.5).

That is ,

(1-B^).RHS(4.3.5) = (S^ -  R^)(i -  g^)

= (i-g^).LHS(4.3.5).

Hence the id e n t i ty  (4.3.5) has been ve r if ie d . The determinant 

has been neatly factorized in to
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det F = det F det F„^ R^/S^-a a  66

det F ' l  {l-g2)s2
- a a  ' '

and the generalised variance is  given by

G.V.

nP+^det F

nP+lR2

Example ARMA(2,1) model

%t + “ l% t- l + “ 2*t-2 " ®t + 

In th is  case,

2F'T-a a

a-j( l-a2 ) ■ «2

so tha t d i re c t ly ,  or using Theorem 3.4.2,

1 - a2*’ a-j (1 -a2 )

1 -  a.

A1 SO

det = ( l - a 2 )^ {( l+ a 2 )^ - a-j^}

R = (1 -6 6 ) (^2 a-j T ) ' = - a^g + g

2 2 
S = (1 -g  g ) (1 a  ̂ ^ 2 ) '  = l - a - | g  + a, '1 2

Therefore

det F =
det F‘ l  ( l-gZjsZ- aa  ' '

2 2
(a2 -  a-jg + g )

( 1 - a 2 ) ^{ ( 1 +a2) ^-a-j ^ } .  ( 1 - g^) ( 1 -a-j g+a20^)^
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so tha t

G.V.
det F

( l - a 2 )^ . { ( l+ a 2 )^ - a-j^}(l-g^)(l-a-j3+oi20^)^'

n^(a2 - a-j 6 + g^)^

The s im p lif ica t ion  that arises from the fac to r isa t ion  (4.3.1) 

becomes apparent when the problem is  considered d ire c t ly .  From the 

example in the previous section.

F = 1 1+02 
-a-j 1+02

-1 1
(l-a2){(l+G2)^"O i3} 1 -O-j g+Ogg^ -g

-1 [ ,  - . ] 1
1 -a-j g+«2g^

L —1
l-gZ

The fac to r iza t ion  of det F is in no way obvious from an examination 

o f the information matrix. Clearly some very lengthy algebra can be 

avoided by using the formula (4 .3 .1).

In general i f  p is  large i t  may be helpful to fac to r ize  

det F^^ as in Section 3.4, i .e .

and

where

G V .  <x( l)a (- l)(de t H)2(l-g2)s2TV
H = ' “ 1 ' ' - “ p-2 “ p

0 1 • • • “ p -3 '“ p-1

■“ p - “ p-1 • • • l - “ 2
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4.4 The Covariance Matrix

Let the ARMA(p,l) model be defined by (4.1.1) and le t  

0 = (a-j . . .  Op g)' denote the vector o f parameters fo r  the 

model. The covariance matrix fo r  the e f f ic ie n t  estimator 0 o f 0 

is  given by the inverse of the information matrix.

where

V
n

F =

1 F 
n

F-aa
F'
-ag

-1

-ag

Since F is  symmetric, i t s  inverse can be written down in a 

re la t iv e ly  straightforward manner.

Let
V = P 9 

Q' T

Then since FV = I i t  follows that

(P - p' p "V  ) ”  ̂
' Rft - a g -a a -a g

- F 'V  T-aa -ag

and P = F ' l  + ( F ' V  J T ( F '  F"^)- aa  \ - a a - a g '  ' - a g - a a '

In order to f ind  the individual variances and covariances, the 

procedure is  f i r s t  to f ind  T, then the product (F V  ^) and
 ̂ ' - a a - a g '

f i n a l ly  to combine these two producing Q = ((Qu)) and P = ( (P \ j ) )
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Cl early

n var ( 6) = T

n cov (a.Œj) = P.. 1 < 1 , j  4 P

and n cov (o^g) = Q-j 1 4  i  4  p .

The expressions fo r  P, Q and T can a l l  be s im p lif ied  owing to 

the p a r t icu la r  forms 

F i r s t ly ,  consider T.

the p a r t icu la r  forms o f F^g and T in the ARMA(p,l) model.

T = ( F  -  F'  F " V
^ gg - a g - a a - a g /

= n  - F' F” V
gg  ̂ - a g -a a -a g  gg/

using Theorem 4.3.1.

Recall

EaB = •
s

Hence the vector Q can be s im p lif ied  to

S r2

Q = (1-B^)S.F:1  6

R̂

F in a l ly ,  the matrix P can be s im p lif ied  to

E = E :I  + C ^ = l ) ê  i z D ê ' C
s r2 s

= r  C ê •

r2 ^  ^
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The only quantit ies requiring calcu lation are S, R, g and 

These are a l l  easy to evaluate and substitu te in to  the expressions

fo r  P, Q and T. No matrix inversions are required since F

is  calculated d ire c t ly  using Theorem 3.3.1. With the

s im p lif ica t ions  above, the matrix F does not need to be
- a a

calculated.

-1
aa

Example ARMA(3,1) model

^ t  * l% t- l  “ 2^t-2 *3%t-3 = =t *  ^^t-1

n var (g) = (l-g^)S^ = (l-g^^(l-a^g+a2g^-agg^)^ .

R' (ag-a2g+aig^-g3)^.

(4.4.1)

Using Theorem 3.3.1,

- a a l - *3

*1-02*3

*2"*1*3

Hence 

n

* l"*2 *3

2 2 2 
l+oĉ  -«2 - “ 3

“ T “ 2“ 3

“ 2 ' “ 1“ 3

“ r “ 2“ 3

1 - a .

var(a-|) C0V(a^a2 ) cov(a^ag)

cov(a-ja2) var(a2) C0v(a2O2)

cov(a^a2 ) cov(a2&2 ) var(âg)

2
where g = (1 (-g) g ) ' ,  

whence

= r i  +
R̂

■aa—  - a a '

n var ( a - j )  = l-a^^ + ( l -g ^ ) . {  ( l-a^^) - g(a-j-a2a3 ) + g^(a2-a^ag)}^

(a3-a2g+a-j g^-g^)^

(4.4.2)
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2 2 2 2 2 2 \ . i 2n var (o^) = l+a^ - ^ 2  “ *3 (1-0  ){(o^-a2a2 )( l+g )-(l+a^ -«2 -^3  )g}

(02- 026+0^gZ-g3)2

(4.4.3)

and

n var (a^) -  l-Og + ( l -g ^ ) { (a 2"OiG3 ) “ 0(01- 0203) g^ ( l-a3^ )}^  .

( 0̂ - 028+01$2_g3)2

(4.4.4)

The covariances between the a's fo llow  in a s im ila r  fashion. 

A1 so

cov(aiB)

cov(a20)

cov(a20)

= ( l - g ^ )  ( l - a - |  6+a20^-O20^)  

(a2-a20+o^g2_g3)2

2 2
l-Og - g(a-|-a2a2 ) + 0 (o^-o^a^)

2 2 2 2 
( 1+0 )(o-j-a202) - 0( 1+0  ̂ -O2 -ag )

2 2
o^-a^ag - g^a^-agOg) + g ( 1-ag )

4.5 Adequacy o f the F itted  Model

One technique fo r  checking the adequacy o f the f i t t e d  model 

is suggested by Box & Jenkins (1970, Chapter 8 ). Their method 

involves o v e r - f i t t in g  i .e .  estimating the parameters o f a more 

general and therefore larger model than the one which i t  is believed 

f i t s  the data adequately. This assumes that the d irec tion  o f the 

inadequacy can be guessed so as not to add factors simultaneously to 

both sides o f an ARMA model.
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The above results show that th is  approach needs to be treated 

with caution, since 'o v e r - f i t t in g '  frequently leads to possibly much 

larger sample variances. This can be i l lu s t ra te d  by considering 

again the example in Section 4.4. I f  an AR(3) process is  believed 

to best f i t  the data then the sample variances are

2
n var(a^) = n varfa^) = 1 -

and
^  2 2 2 

n  v a r ( o 2 )  =  1 +  a - j  ~ ^2 ”

By o v e r - f i t t in g  with one moving average parameter i .e .  an ARMA(3,1) 

process, but whose underlying value is  g=0 , then these three 

variances become

n var(a-| ) = 1 - + ( l-a ^^)^  = l-Og^ (4.5.1)

n var(a2 ) = 1 + a-j^ - + ( 0̂ - 0202)^

 ̂ 2 2
n varfag) = 1 -

by sett ing 3=0 in equations (4 .4 .2 ), (4.4.3) & (4 .4 .4). For 

s ta t io n a r i ty ,  the inverse zeros z-j, Z2 , o f a(z)

2 3
1 +  a ^ Z  + ŒgZ + «gZ = ( l - Z - j Z ) ( l - Z 2 Z ) ( l - Z 2 Z )

must a l l  be less than one in modulus. I f  fo r  example

z-j = z^ = z^ = I ,  then = 1/8 and the variance (4.5.1) is

increased by a fac to r of 64. S imilar large increases in the sample 

variances n var(o2 ) and n var(ag) would be expected i f  an AR(3) 

is  o ve r- f i t te d  with an ARMA(3,1) process whose moving average
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parameter is in fac t zero.

I f  an AR(p) process is  o ve r- f i t te d  with an ARMA(p,l) 

process the sample variances var(ô^) are increased by

1 (“ i - l  - V ( 1- l ) “ p^^ l i i i P  V ' '

“ p

and the sample covariances, cov(â^.âj) are increased by

-^2  (“ i-1 - - V ( j - l ) “ p  ̂ 1 4 - i . j  < P V '

“ p

provided the underlying value o f B is  zero.

S im ila r ly  i f  an ARMA(p,l) has been f i t t e d ,  and is  then 

o v e r- f i t te d  with an ARMA(p+m,l) model, then the variance

n var(s) = (1 - 6^)S^/R^

where

becomes

provided the m extra autoregressive parameters were zero. For 

in v e r t i b i l i t y  | 3 | < 1 , so i f  3 = J say, then the variance is  

increased by a fac to r o f  4 even i f  the second model has ju s t  one 

extra autoregressive parameter with underlying value zero.

Note tha t an essential condition fo r  these moments to ex is t 

and not be overwhelmingly large is  that the zeros o f a(z) and 

g(z) be quite d is t in c t .  Redundant or nearly redundant factors 

are not necessarily obvious, thus i t  is  always advisable to 

factorize both polynomials and examine ca re fu l ly  fo r  any equal or
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nearly equal factors. Thus i f  a^=B+5, 02=36+6 and 0^=36

fo r  6 real and | 6 |<1 , then the denominator in each o f the four

moments (4 .4 .1 ), (4 .4 .2 ), (4 .4 .3 ), (4.4.4) w i l l  be zero.

I f  nearly equal factors e x is t ,  then th is  can often be 

re c t i f ie d  by modifying the autoregressive parameters and compensating 

with a suitable change to the moving average parameters. By w rit ing  

an ARMA process in i t s  in f in i t e  moving average or in f in i t e  

autoregressive representation i t  may be found tha t the relevant pure 

model y ie lds greater s ta b i l i t y  in i t s  parameter estimates.

Clearly i f  there is any resemblance between the zeros o f a(z) 

and 3(z ) ,  then the sampling moments w i l l  be very large, which 

explains why the estimation problem is reportedly d i f f i c u l t  in these

cases. See fo r  example Box & Jenkins (1970 §7.3.5).
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C H A P T E R

THE GENERAL ARMA (p ,q )  MODEL

5.1 Introduction

In th is  chapter, the covariance matrix fo r  the e f f ic ie n t  

estimators o f the parameters of an autoregressive moving average 

model o f order (p,q) is  considered. The model is  defined by

+ ••• + V t - p  = =t + + ••• + V t - q  (5-1- I )

where is  a sequence of independent and id e n t ic a l ly  d is tr ibu ted  

Gaussian random variables with expectation zero and variance a^.

A rea lisa t ion  o f n consecutive observations is available.

The computation of the covariance matrix fo r  the e f f ic ie n t  

estimator o f 9 = (a^ . . .  Op 3  ̂ . . .  3^ ) '  is obviously of 

considerable in te res t to practit ioners  engaged in f i t t i n g  models of 

the form (5.1.1) to data. However the formulation o f the matrix 

is  a general problem which seems to have attracted rather l i t t l e  

comment in the l i te ra tu re .  The pioneering work of Whittle  (1953)

& Durbin (1959) has not resolved the problem completely: Whittle

gave a formula fo r  the elements of the information matrix but, in

p a rt icu la r  fo r  the mixed model, th is  method is  rather cumbersome:

Durbin's method fo r  evaluating the covariance matrix fo r  the 

e f f ic ie n t  estimator of the parameters is  va lid  fo r  pure models only.

In the previous chapter the mixed model in which e ithe r p or q 

is  un ity  was considered. I t  was shown that the information matrix 

could no longer be given simply by the inverse of a centro-symmetric

covariance matrix, as is  the case with pure models. The partit ioned
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form fo r  F has an off-diagonal block F^^. In the previous 

chapter th is  block was a vector which could be evaluated easily  by 

adapting a Quenouille-type algorithm (c f  Lemma 4 .2 .1 ), but the 

spec if ica tion  o f F^^ in the more general case is considerably 

more complicated. Since p & q are both greater than un ity , F^^ 

is  a pxq submatrix o f the partit ioned form

F = F F ,-aa -af
F' F- a 3 -g(

Quenouille 's algorithm affords l i t t l e  assistance in giving F^^ 

even when p & q are both quite small and i t  is  necessary to f ind  

an a lte rna tive  approach. In the next section a method is  given 

fo r  obtaining F^^; i t  involves the specification o f four upper 

tr iangu la r matrices whose elements are the parameters of the model, 

and the carrying out o f some matrix products and additions.

Durbin's re su lt  (Theorem 3.3.1) is  s t i l l  va lid  fo r  f ind ing

the inverses of F and F but the covariance matrix as a
-a a  - 3 B

whole can only be specified by inverting nF. Some help in deriving 

the covariance matrix fo r  the e f f ic ie n t  estimator of § is  given by 

w rit ing  i t  in a form partit ioned conformably with F. E x p l ic i t  

expressions fo r  the variances and covariances of the estimators can 

be found in cases where these moments are not too complicated.

I t  is assumed throughout th is  chapter that both p and q 

are greater than un ity , since the theory o f ARMA(p,l) & ARMA(l,q) 

models has already been discussed f u l l y  in Chapter 4. Also without 

loss of genera lity , the inequa lity  p^q is understood. The 

symmetry inherent in W hitt le 's  formula fo r  the information matrix 

implies that nothing is  lo s t  by th is  assumption, but fo r  the sake of 

completeness, the case p<q w i l l  be considered b r ie f ly  at the end 

o f Section 5.3.
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5.2 The Information Matrix

The information matrix in partit ioned form is  defined by

nF = n F F ^
- a a  - a {

F' F
- a S  - 8 (

(5.2.1)

where nF is  the pxp information matrix fo r  the pure- a a  r

autoregression (3.1.1) and nF^^ is  the qxq information matrix 

fo r  the pure moving average model (3 .6 .1). These two submatrices 

can be evaluated using e ithe r o f the methods described in Chapter 3; 

i f  p and q are both small then Lemma 3.2.1 is  appropriate, 

otherwise Theorem 3.3.1 can be employed to y ie ld  F " ^  & F " l ,
^  - a a  - 3 3

and these matrices then have to be inverted. The computation is

reduced in the case p=q owing to a dua lity  resu lt of Whittle (1953)

Having obtained F^^, F~^ is given immediately by replacing the

a's in  F  ̂ with 3 's ,  since the covariance matrices fo r  the 
- a a

e f f ic ie n t  estimators o f the parameter sets are the same.

Let a ( z ) ,  3 ( z )  be polynomials of degree p,q respectively 

defined by

a ( z )  = l + a ^ Z + . . . + a p Z P  , 3 ( z )  = 1+3-j Z + . . . + 3 ^ Z ^

and i t  is  assumed that a (z ), 3(z) have no zeros on the u n it  c i rc le  

and no factors in common. Defining B(z)=3(z ) /a (z) and le t t in g  

6 e 0 , then the s im p lif ied  form o f W hitt le 's  resu lt  states that the 

( i , j ) - t h  element o f F^g is  the constant term in the expansion of

1 a {log B(z)B(z*^)l _ 3_ {log B {z )B (2 'h l  . (5.2.2)
2 99... 90j

This is  equivalent to
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Lemma 5.2.1

The (1 , j) - th  element o f F^g is  the c o e ffic ie n t o f 

expansion of

-1
a(z)e(z"^)

Examination o f a Quenouille-type approach on the term

- l/ {a (z )e (z  ^ y i e l d s  no s im p lific a tio n  fo r  specifying F^g in

the general class o f mixed models. This is  because F ̂ is  a-a3
matrix and not simply a vector as was the case in  Lemma 4.2 .1 . The 

complexities o f such an approach are il lu s tra te d  by considering the 

smallest model in  th is  category, namely the ARMA(2,2) process.

Example

The model is

+ a^X^_.| + ^ 2 ^ .2  = E; + + S jC fZ

-1Expressing - l / { a ( z ) 3(z )}  in p a rtia l fractions

-1 = + K^z+KgZ  ̂ + Liz'T+Lgz'Z (5 .2 .3)

( l + a - j Z + a 2 Z ^ ) ( l + 3 i Z '  + 3 2 z ' ^ )  l + a ^ j Z + a 2Z^  1 +3-j z “  V g ^ z " ^

M ultip ly ing  throughout by the lowest common denominator a ( z ) 3 ( z “ ^ )  

y ie lds

-1 = K^(l+a.|Z+a2Z^)(U3-jZ"V32z“ ^ l

+  ( K. jz + K £ Z ^ ) ( 1 + 3 - j z  ^+ 3 2 %  ) +  (L^jZ f L ^ z  ) ( l + a - | Z + a 2 Z ^ )

k
Equating coe ffic ien ts  o f z fo r  k=0, 1, 2, - 1 , - 2 ,  respective ly 

y ie lds
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-1 = K g f l+ a ^ 6^+0282) "*"*^1^1 *^2^2 ^  ^1^1 ^  ^2“ 2

0 = + K̂  + Kgĝ  + L̂ Og

0 = Kga, + Kg

0 = KqCBi'̂ 'chi 62) ^ ^1^2 ^ 1̂ ^ ^2^1 

0 = Kq62 + 4  .

In th is  example

- a  8

SO the above f iv e  equations need to be solved fo r  K^, 4  and 4  

A fte r some lengthy and tedious algebra the solutions are

Ko = -(l-ügBg)

(1-0232) - (a-|-a23-j)(3i-a.|32)

= - ( 1-%2G2 ) say

a3

4  = a.|“ a23i and L-j — g-j &2

ag ‘ag

For general ARMA(p,q) models equation (5.2.3) becomes

- l/{a (z )g (z  ^)}  = Kg + (K^Z + K^Z  ̂ + . . .  + KpZ^)/a(z)

+ (L-jZ  ̂ + L2Z  ̂ + . . .  + LqZ ^ )/g (z   ̂)

In th is  case, m u ltip ly ing  throughout by a (z )3(z” ^) and equating 

coe ffic ien ts  o f z^ y ie lds  a to ta l o f p+q+1 equations which have 

to be solved simultaneously to give e x p lic it  values fo r  

K g ,K ^ ,...,K p ,L ^ ,...,L q . This alone is  a very lengthy procedure, 

but fu rth e r ca lcu la tions are then required to give the elements o f 

-ag which, ty p ic a lly ,  are lin e a r combinations o f the K's and L's



-  82 -

I t  is  c lear tha t we must re je c t th is  algorithm and seek an 

a lte rna tive  method.

Define the pxp matrix

G =

9-1 9o

• 9p-l

• 9p-2

9 ] - p  9 2 - p  • ■ 9 q

where the sequence {ĝ  ̂ : k = 0 ,±1 ,±2 , . . . }  is  given by

-1

a {z )3 (z "b
(5 .2.4)

Comparison with Lemma 5.2.1 implies tha t F^g is  ju s t the f i r s t  

q columns o f 6 , and i f  p=q then G = F^g. I t  would appear 

tha t the problem o f find ing  an easy expression fo r  F^g is  

in tra c ta b le , since W h ittle 's  re su lt and Quenouille's algorithm 

afford  l i t t l e  assistance in  th is  general case. However, a 

stra ightforw ard method ex is ts  fo r  specifying the whole o f the

m atrix G, and F  ̂ can be extrapolated from th is  re s u lt. The
-ag

method involves some additions and m u ltip lica tio n s  o f four upper 

tr ia n g u la r matrices of order p. A ll o f these matrices assume 

the form

^0 *1 ' ' ' Xp-1

° *0  ' ' ' *p -2

0 0 . . . X.

The matrices A, B, C & D are defined as follows
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For A: = 1 and x^ = (1 < kj< p-1)

For B: x,̂  =

For C: x^ = 1 and x.
0 k

For D: %k = Pp-k

0

(0 < k < p -1)

\  (1 i k  <: m1n (q ,p - l) )

0 otherwise

(p-q < k 4  p -1)

otherwise .

I t  is  in te res ting  to note tha t A & B also feature in  the evaluation 

o f the covariance matrix fo r  the e f f ic ie n t  estimators o f the 

parameters o f the pure autoregression o f order p (c f Chapter 3).

The re su lt fo r  G is  contained in  the fo llow ing theorem:

Theorem 5.2.1

Proof

G = (OB' -  AC')'^

Equation (5 .2.4) can be re -w ritten  in two ways. F ir s t ly ,  on 

m u ltip ly ing  by a(z) i t  becomes

a(z) Z 9kZ^ = -1 = -1 -
”  . 
z b.z'K . 

k=l
(5 .2.5)

k=-oo
B(Z-I)

k
Equating powers o f z fo r  k=0 . k>0 & k<0 respective ly y ie lds

9o + “ l9 . i + “ 29-2 + . . . +
“ p^-P

= -1

9k *  “ l9 k - l + “ 29k-2 + . . . + “ p^k-p = 0 < (5.2.6)

9k + “ l9k-1 + «29k-2 + . . . + “ p^k-p = -b k-

From Equation (5 .2 .5 ),

g(z-1 ) {1 + z 
k=l

= 1

R H . c .
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so tha t

fo r  k = l , 2 , . . . , q ,  and by taking

=  0 (5 .2.7)

= 0,q̂+1 * * * Pp
equation (5 .2.7) also holds fo r  k = q + l , . . . ,p .  This v e r if ie s

the form fo r  C"  ̂ which w il l  be required la te r :

bi . . . bp_i

0 1 . bp-2

0 0 . . .  1

Secondly, on m u ltip ly ing  equation (5.2.4) by B(z"^)

kB(z’ ^) z g.z^
k=-oo

-1 = -1 -Z  a, z
o(z)

k=l

In th is  case, equating powers o f z fo r  k=0, k>0 & k<0

respective ly y ie lds

9o + 6l9 l + • ■• • + =
-1

9k + ®l9k+l • •' • + Sq9k+q = -a

9k + ®l9|<+l ^ ■ ■' • Gq9k+q 0

pxp matrix

(5 .2.8)

* r“
G = p ®i-p3.

9-1-p 9_p

• 9-1

• 9.2

9l-2p 92-2p- • • 9-p

Equations (5 .2.6) & (5 .2.8) together imply that
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(5 .2.9)

where 0^ is  a pxp matrix consisting e n tire ly  o f zeros. 

From equation (5 .2.9)

g iving

Further,

G C + GD = 0

G* = -GD(C')-1 . (5.2.10)

§*§' + GA = - ( Ç ') " l  .
*

Substitu ting  fo r  G from equation (5.2.10) gives 

G (-D(C ')-’ b ' + A) = -(C ')-1  .

Now B & Ç'^ commute, since C" is  o f the same form as A, and 

hence the matrices s a tis fy  the lemma preceding Theorem 3.3.1. I t  

fo llows therefore tha t B' and (O')  ̂ commute, so tha t

G(A - DB'(C')-T) = -(C ')-1

-1

Post-m ultip ly ing by Ç' gives

G(AC' - OB') = - I

whence

G = (OB' - AC')

as required.

I t  is  also worth noting tha t

Corollary 5.2.2

G = (B'D - C'A) -1
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To see th is ,  i t  is  helpfu l to re fe r to the m atrix J defined in 

Corollary 3.3.2. Then

G""* = DB' - AC

= J(DB' - AC ')'J 

= J(BD' - CA')J 

= (JB)D'J - (JC)A'J 

= B '(JD 'J) - C '(JA 'J)

= B'D - C'A .

Theorem 5.2.1 gives a stra ightforward method fo r  evaluating F^g. 

F irs t  G~̂  is  obtained by using the theorem. Then the inverse o f 

G“  ̂ is  derived. F in a lly , F _ is  the f i r s t  q columns o f G.-ag  ^

To i l lu s t ra te  how th is  theory is  applied, consider the 

fo llow ing example.

Example ARMA (2,2)

The model is

h  + + “ 2V 2 " + ®2^ t -2 •

The information matrix is

nF = n

Using Theorem 3.3.1

F F ,
-a a  -a{

F' F
-ag  - 3f

F"T-aa
1-a ,

Oq(l -ag) 1 -a

«1 ( l-o ^ ) 

2

whence

F-a a
( l - a 2 ){(l+ot2 )^ "

1+a,

-a-

-a 1
1+a,
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S im ila rly

(1- 32) 1̂ (1+32)^ - 3^^}
1+32 ” ^1

-3-| 1+32

For th is  model, G = F . ,  and
- a 3

A = 1 a-j . B = “2 “1 , Ç 1 , D = 62

0 1 0 üg 0 1 0 ^2_

Thus .-1

and

G =

= DB' - AC''

0232-1 a23i“ ai 

32” 3̂

1

{ ( 1- 0̂ 32) - (0-1- 02^1 )(^1"°‘] ^2^^

Thus the information matrix is  

nF = n

— ( 1—̂232) Qq—3^02

^ l" “ l ^2 -( I-O 2G2 )

—

J _ 1+02 “ “ 1
1 - (1 -0 2 8 2 )  01-02^]

A
a - *1 1+^2 \ 3 3-j-CX.J 82 ” (" ”̂^2^2^

1 - ( l - O ^ g g ) 3i-c t .[32 1+82 “ 3-j

\ 3
“ l ~ “ 2^1 - ( 1 - 0 2 ^ 2 ^ - 3-j 1+32

- —  —

where

A3 = (1-32){(1+32)^ -3 i^ }

and

^a3 (1-o?3?) - (a.j-a^g-j ) ( 3t ” 0.| 89) .2^2 1 " 2^1 / \ ^ i



The spec ifica tion  o f F in pa rtitioned  form is  a useful 

prelim inary to deriv ing the covariance matrix fo r  the e f f ic ie n t 

estimator o f the vector o f parameters, 0 . I t  is  also very helpful 

in tes ting  hypotheses. For example, in tes ting  0 = 0 ,  the te s t 

s ta t is t ic

n 0 ' y  0

is  asym ptotically d is tr ib u te d  lik e  with p+q degrees o f freedom 

i f  0 = 0 ,  But nV  ̂ is  simply the inverse o f the covariance m atrix , 

which is  the information m atrix. C learly in order to perform th is  

te s t we would calcu late

n 0 'F 0

thus avoiding the lengthy procedure o f evaluating the covariance 

m atrix , and taking i t s  inverse. The spec ifica tion  o f the submatrices 

o f F is  required in  other tests described in Section 2.5.

5.3 The Covariance Matrix

In the previous section a method was outlined fo r  obtaining an 

e x p lic it  expression fo r  the information matrix in the pa rtitioned  

form

nF = n -a a  - a g

F' F
-ag -gg

(5 .3.1)

The covariance matrix V/n fo r the e f f ic ie n t estimator o f 0 is  

given by the inverse o f nF, and can be w ritten  in a form 

pa rtitioned  conformably w ith (5 .3 .1 ), say
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1  ï
n

F'"* + F " V  cW F ' .F ^ l-a a  -a a -a g — ag-aa

where

-  F' F ' V
-a g -a a -a g '

W

(5.3.2)

F‘ ^ ( I  -  F' F " V  F " ^ ) “ ^
- g g ' -  -a g -a a -a g -g g '

Only two matrix inversions are required; one o f order pxp, the 

other o f order qxq. The pxq matrix F^g is  derived by 

evaluating the pxp matrix G~̂  and find ing  i t s  inverse; F^g is  

then given by the f i r s t  q columns of G. The other inversion 

involves W.

Let ■

w = f :1  u'^

denote the submatrix o f V containing the variances and covariances 

o f the g 's . The second inversion is  o f the qxq m atrix U.

This is  somewhat cumbersome to evaluate e x p lic it ly  in  p ractice , but 

would be stra ightforward i f  the numerical values o f the parameters 

were known. Thus no matrix inversions of order p+q are required 

using the pa rtitioned  form (5.3.2) fo r  V/n.

I t  is  worth noting tha t a s im p lifica tio n  o f V occurs when 

p=q, by appealing again to W h ittle 's  re s u lt, c ited  in  the previous 

section. His re su lt can be extended to mixed models by noting that 

the f i r s t  diagonal submatrix o f V can be expressed in the form

Y = F"^ T"^
-a a  -

-1 -1where T = I - F qF_.F' F^^. By replacing a 's w ith g's and -a g -g g -a g -a a

vice versa in Y, the matrix W is  produced. Thus in  the case 

p=q, the off-diagonal submatrix and only one diagonal block need 

to be calculated.
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For the sake o f completeness, we consider the case where the 

order o f the moving average component in  (5.1.1) exceeds tha t o f 

the autoregressive component. Retaining a ll previous d e fin itio n s  

and also 0 < q 4  p, le t  the model be defined by

Kt Gl*t-1 + ••• + V t - q  = + . . .  + . (5 .3.3)

The information matrix in  pa rtitioned  form is  n times the m atrix

F F'-gg -ag

F  ̂ F-ag  -a a

w h ils t the covariance matrix fo r  the maximum like liho od  estimator o f 

the vector o f parameters (g.j . . .  6q a-j ••• Op)' fo r  the model 

(5 .3 .3) in  the Gaussian case is  n"^ times the matrix

-WF'.F'T— ag-aa

F“ V  _W-a a -a g - + F ' V  _ W F ' , F ' l-a a  -a a -a g — ag-aa

These two pa rtitioned  forms correspond to (5.3.1) and (5.3.2) 

respective ly, and the evaluation o f the submatrices proceeds in 

exactly the same way as previously.

5.4 Concluding Remarks

Although the ARMA(p,l) and ARMA(l,q) models were discussed 

separately in the previous chapter, the pa rtitioned  forms fo r  the 

information matrix and the covariance matrix fo r  the e f f ic ie n t  

estimators o f the parameters o f the model are compatable w ith those 

described in  th is  chapter. For ARMA(p,l) models, the m atrix W 

becomes a scalar quantity and F^g is  a column vector o f length p.
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Theorem 5.2.1 involves the inversion o f a matrix o f order p, so

fo r  q= l, F^g can be specified more eas ily  using Lemma 4 .2 .1 ,

irrespective  o f the value o f p. The de ta ils  fo r  the ARMA(2,1)

process are given in  Godolphin & Unwin (1983).

The spec ifica tion  o f _V using equation (5 .3.2) has many

advantages over a method based on inve rting  the information matrix

which has not been pa rtition ed . In th is  general case, no s im p lifie d

form fo r  the determinant o f F ex is ts , w ith the re su lt tha t the

evaluation o f the inverse o f F using a method of cofactors would

be very cumbersome in a ll but the smallest o f mixed models. The

ind iv idua l components o f V in the partitioned  form, namely 
-1 -1F , F .. & F are eas ily  evaluated, but th e ir  combinations and-a a  -gg -ag

products which constitu te  the submatrices o f V i t s e l f  are ra ther 

complicated. Thus e x p lic it  expressions fo r  the variances and 

covariances o f the estimators can only be found fo r  models containing 

a small number o f parameters. The ARMA(3,1) model was treated in 

f u l l  in the example in  Section 4.4, but the de ta ils  o f the ARMA(2,2) 

process are considerably more complicated, despite the fa c t tha t the 

models have the same number o f parameters.

By way o f a summary o f the theory contained in Chapters 3, 4 & 5, 

the fo llow ing algorithm gives the sa lie n t de ta ils  fo r  specifying the 

information matrix and the covariance matrix fo r  the e f f ic ie n t 

estimators o f the parameters o f un ivariate stationary time series 

models.

Algorithm

Step 1

For p>q define the pxp matrices
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A =

0 1

0 0

P-1

‘p-2

, B =
“ p V l *  ’ * ""l 
0

P 2

0 0 . . .  a.

j  C =

0 1

0 0

0 . . 0

. . 0

: .q 
. 1

and D = 0 . . 0

0 . . 0 0

0 0 0 0 0

I f  p=q then C & D are equivalent to A & B respective ly, w ith 

g's replaced by a 's .

Step 2

.-1Evaluate G = B'D - C'A and take i t s  inverse. With the information 

m atrix fo r  an ARMA(p,q) process defined in the pa rtition ed  form

nF = n F F-a a  -ag

F' F -ag  -gg

(1)

then the off-diagonal submatrix F^g is  given by the f i r s t  q 

columns o f G.

Step 3

Evaluate F“  ̂ = A'A - B'B. This matrix is  n times the covariance
-a a

m atrix fo r  the e f f ic ie n t estimators o f the parameters o f the pure 

autoregression o f order p. Inverting F^^/n gives the information
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m atrix fo r  the AR(p) process and also the f i r s t  diagonal submatrix 

o f the information matrix o f the ARMA(p,q) process, given by (1).

Step 4

Re-define A & B as matrices o f order q

A. =

0 1
1 ' ' ' 4 -1  

* * • 4 -2

0 0 . . . 1

.-1

B. =
4  4 -1  ' ' '
0 . . . 3o

0 0

Evaluate = A'A. - B'B^ which is  n times the covariance 
- 6 8  “ 6" 3  “ 8~8

matrix fo r  the e f f ic ie n t  estimators o f {g-j, . . .  , 6^ }. Inverting 

Fgg/n gives the information m atrix fo r  the pure MA(q) process 

and the second diagonal submatrix in  (1 ).

Step 5

The covariance matrix fo r  the e f f ic ie n t  estimators o f the parameters 

o f the ARMA(p,q) process is  obtained using the pa rtitioned  form

F"^ + F‘ V  .WF' F '^-a a  - a a -a g - -a g -a a

- WF'aF'l— ag-aa

where W = (F^^ -
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C H A P T E R  6 

POLYNOMIAL-PROJECTING MODELS

6.1 Introduction

The study o f data collected from processes which evolve in time 

has occupied the a tten tion  o f s c ie n t if ic  analysts fo r several decades. 

One d i f f ic u l t y  tha t occurs when studying such data is  tha t in many 

practica l s itua tions i t  is  customary to encounter time series tha t 

are not sta tionary in themselves. However in many cases i t  may be 

possible to transform these data to stationary processes with 

properties s im ila r to  those o f low-order autoregressive moving average 

models. Such transformations would preferably be free from unknown 

parameters. For example models o f in te re s t to the control engineer 

are ty p ic a lly  based on physical considerations and may be expected to 

contain certa in  low-order polynomial trends. These models are 

frequently  expressed in state-space form ulation, where each component 

o f the state space is  intended to have some physical meaning. Thus 

i t  is  usual to model the movement o f a ship, fo r  example, in  terms 

o f distance and ve lo c ity  variables in two dimensions.

Furthermore, by su itab ly  d iffe renc ing  the observed series i t  is  

possible, in p r in c ip le , to obtain transformed time series with 

properties s im ila r to those o f low-order ARMA models. By d e fin it io n  

these ARMA models contain a number o f unknown parameters which can 

be estimated and these estimates examined fo r s ign ificance.

A lte rna tive  forms o f non-parametric transformations are sometimes 

used, such as the taking o f logarithms, but in the res t o f th is  thesis
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the only type o f transformation considered is  tha t o f d iffe renc ing . 

This provides one way in which to apply p rinc ip les  o f s ta t is t ic a l 

inference to state-space models so as to examine hypotheses o f 

p a rtic u la r in te re s t to the control engineer.

6.2 Univariate State Space Models

In Section 2.6 we defined the general form fo r the m u ltiva ria te  

state space model, and b r ie f ly  described the p ra c t ic a lit ie s  o f 

re s tr ic t in g  the components o f the model equations. The models 

considered in th is  chapter are in the form given by 

Harrison & Stevens (1976). Thus the system matrix is  

independent o f time and Ĥ  = I .  The vector is  also independent 

o f time but we re lax the condition F = (1 0 . . .0 ) ' which 

Harrison & Stevens require w ith a ll o f th e ir  polynomial models. Thus 

the un ivaria te  model is  defined by

\  ^ t  (6 . 2 . 1)

= Ge^_i + W t. (6 . 2 . 2 )

The random components v^ and ŵ  are independent and have 

N(0,V), N(0,W) d is tr ib u tio n s  respective ly and represent additive  

noise. The vectors e. and w. are o f order nxl w ith G o f
-  L -  L

order nxn. In th is  un ivaria te case, F is  a vector o f 

order Ixn.

In applying the model defined by (6 .2 .1 ),(6 .2 .2 ), the control 

engineer bases the components o f the state space on in tu it iv e ly  

sensible considerations. Each component is  intended to have a 

physical meaning, such as distance, ve lo c ity  and acceleration.
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These concepts are useful when modelling the movement o f objects 

such as a irc ra f t  or submarines.

The models considered in th is  chapter also s a tis fy  the 

c r ite r io n

FG(G-I)d+1 = Q (6.2.3)

fo r  some non-negative integer d. Godolphin & Stone (1980) have 

shown tha t these models can be interpreted as polynom ial-projecting 

models o f degree d; they possess the property tha t the minimum 

mean-squared e rro r forecast fo r  the model a t a fixed time o rig in  

describes a polynomial in the lead time variable o f degree d.

Box & Jenkins (1970, Chapter 5) demonstrate tha t the same is  true 

fo r  models o f the form

+ • • •  + GqCt-q (6.2.4)

where v denotes the backward difference operator, and provided 

q 4  d+1. The same equivalence holds fo r  models o f the form

q t-q (6.2.5)

provided tha t q 4  d, and where y 0 is  a de term in is tic  parameter.

I t  may occur tha t a model sa tis fy ing  (6.2.3) w il l  be represented 

by a system vector o f n = d+1 components. Thus the system 

equation is

'  -(^o t ••• ®dt^' ' ' t

and the measurement equation is  given by

®ot = G ^o t- l +

4 t ® lt- l " i t

®dt-l A

(6 . 2 . 1 )'

(6 . 2 . 2 )'
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VX̂  = F(G -I)8t -1 - - t

[G (G -I)8^_2 + F(G-I}w^_^ + Fw  ̂ + vv^ .

S im ila rly

= FG (G -I)^9^_2 E ( G - I ) 4 t - 2  ■*■ E (Q " I )% t - l  ■’■ — t  ^  ^^ ''t

and in general, fo r  d 4  1 ,

'  [G (G .I)d+ l8t .d _2 + 4 ( G - I ) ’ w^.^
(6 .2 .6 )

+ .z4 ‘ ^ A ' ’ ’ A t-d + i + [ A t  + ? d + iv t .

From equation (6 .2 .3 ), the f i r s t  term on the r ig h t hand side o f 

(6 .2.6) disappears. The remaining terms are lin e a r combinations 

o f white noise random variables Wj (0 4  i , j  4  d) and also

Thus the r ig h t hand side o f (6.2.6) has covariances which 

are iden tica l to those o f a stationary moving average process o f 

order d+1 .

However i t  does not fo llow  tha t th is  process w il l  be in v e rt ib le . 

This would appear to depend on the structure o f the state space 

model, and in p a rticu la r on the form o f the system m atrix, G. In 

fa c t there is  no polynom ial-projecting model o f degree d w ith G 

non-singular which y ie lds  values fo r  g q ,...,g q  which cover the 

e n tire  s ta b i l i t y  region. To achieve th is  re su lt i t  appears tha t 

the system m atrix would need to be o f order greater than (d+ l)x (d + l). 

The im plica tion o f th is  constra in t is  tha t the description o f a 

polynomial model o f degree d would need more than d+1 system 

'parameters'. In practica l s itua tions the c r ite r io n  o f in v e r t ib i l i t y  

may be the main fac to r in deciding which o f the two models (6.2.4) or

(6.2.5) is  the more appropriate fo r  describing data generated by the 

Harrison-Stevens model (6 .2 .1 ),(6 .2 .2 ).



-  98 -

6.3 M u ltiva ria te  State Space Models

The output data encountered by control engineers is ,  in 

p ractice , usually m u ltiva ria te , ra ther than un ivaria te . That is ,  

fo r  each time po int t ,  there are s d is t in c t observations 

ava ilab le

^ t ( ^ l t ’ * * * * 4 t^ ' 

where s > 1. For example, in tracking a moving ta rg e t, such as 

a ship, i t s  motion is  in two dimensions. This motion might be 

described in cartesian co-ordinates re la tiv e  to some fixed o r ig in , 

in  which case s=2. A question arises as to the in te r-re la tio n  o f

the s components. In some cases o f practica l in te re s t, such as

the motion o f the ship described above, i t  is  permissible to assume 

tha t the components X ^^ ,...,X ^^  o f are independent o f each

other. In these cases the treatment o f the corresponding 

m u ltiva ria te  state space models follows as a stra ightforward 

generalisation o f tha t fo r  the un ivariate state space models. Each 

component X.-  ̂ (^41*45 ) is  assumed to have a state space

representation which is  unaffected by the un ivaria te representation 

fo r  components Xj^ ( J t i) *  Hence the elements o f X.|. can a ll be

treated separately. This is  assumed in the simulations described

in Chapter 7.

6.4 Inference fo r  Polynomial-Projecting Models

In Section 6.2 i t  was shown tha t the Harrison-Stevens state 

space form defined by equations (6 . 2 . 1) , ( 6 .2 . 2 ) can be interpreted 

as one o f two non-stationary time series models defined by (6.2.4) 

and (6 .2 .5 ). There ex is t many variants on the Harrison-Stevens
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representation, but these models s t i l l  y ie ld  polynom ial-projecting 

p red icto rs. Also in many cases these models have fewer re s tr ic tio n s  

than the Harrison-Stevens models without additional complications in 

the structure o f the system. Recall

° - 2t  + ' ' t

5t = 9 2 t-l + St •

The system vector o f parameters, 0^, is  estimated using the Kalman 

updating equation:

i t  = §9̂ -1 + At(%t - E9it-l) (6-4.1)

where is  the Kalman Gain vector

At = PtE'(EEtE’ + V t) '^

and where

The m atrix

St = c l jÊ t  " 9 t)(Ê t - ê t ) ' ]

denotes the covariance matrix fo r the difference between the system 

vector and i t s  estimate. I t  is  eas ily  seen tha t

St = (1 - 4tS)St

= Et -  At(EEtE' + V t)4 t ' •

Godolphin & Stone (1980) have shown tha t the predictors o f 

polynomial pro jecting models o f degree d and the least squares 

predictors o f models (6.2.4) and (6.2.5) are in a certa in  sense 

equivalent. Define

m,-t = EG(G -  D ^ '^ i t   d+1

a^t ’  EG(G - D^' ^A^  d+1 .
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M ultip ly ing  the Kalman updating equation (6 .4 . 1) by 

[Q ( G - l) , . . . ,  FG(G-I)^ we obtain

^ . t  = " i + l . t - l  + ^ , t - l  + « it(% t -  W l. t- l)  d

*d+l , t  = V l  , t - l  + “ d+1 .t(% t -  ">1 , t - l  )

SO t h a t

where

Mt = E?!t-1 + 2 t ( * t  '  ^ l . t - l )  (6.4.2)

- t  '  ( " ' l . f ” ’ Md+l, t) '

- t   ̂( “l , f " ’ ° d + l , t ) '

an(d

0 otherwise .

Godolphin & Stone (1980) apply z-transforms to equation 

(6 .4 .2) and show tha t the s ta b il ity  region is  given by the space in 

which the zeros o f

6(z] = 1 + 6-jZ + . . .  +

are greater than one in modulus. In addition , th is  analysis y ie lds 

e x p lic it  values fo r  the moving average parameters, namely

6,. = ( - l ) i  fd+l\ + \  ( - l ) j  I m \ FG^'^A (6.4.3)IJ Ijj" ■

where A denotes the lim it in g  steady state value o f the Kalman 

gain vector A^.

The form o f the state space model is  determined by the nature 

o f the p ractica l s itua tion  being examined. I f  equation (6.2.3) 

holds, then a time series o f the form (6.2.4) or (6.2.5) may be 

su itab le  fo r  describing the problem. The in v e r t ib i l i t y  c r ite r io n  

w i l l  usually decide which model to use, as was discussed in Section 6.2,
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Thus the maximum number o f moving average parameters present is  

known, taking account o f the fac t tha t some o f these may be zero.

Then instead o f adopting (6 .4 .3 ), the moving average parameters can

be estimated using the well-established inference techniques o f time 

series analysis. I t  fo llows tha t the estimation procedures 

described here can apply to a re a lisa tion  X - j, . . . ,  o f the model

h  = = ;  + Ct + + . . .  + 6qEt_q (6.4.4)

where q ^  d and where the mean, y, may be an unknown parameter.

I f  y is  unknown i t  is  estimated by

y = X = (Z- j  + %2 + . . .  + Z^J/k i f  d=0

_(?d-TZk -  vd-TZj)/k-d i f  d>l

where k=n+d is  the size of the sample set before the d iffe rencing 

is  carried  out. This estimator o f y  is  both unbiased and 

consistent, as was shown in Chapter 2.

The estimation o f the moving average parameters based on the 

p rin c ip le  o f maximum like liho od  has been considered by Godolphin (1977) 

Let denote the covariance matrix o f X fo r  the model (6.4.4)

and n = ( ( ï ï , .  . . ) )  be the covariance matrix fo r  n consecutive 

values o f the autoregressive process {Y^} defined by

h  *  ^ i V l  + • • •  + V t - q

where var(n^) = 1. Approximate maximum like lihood  equations are 

obtained fo r  large n by ignoring the contribu tion to the log 

like liho o d  o f det and by replacing by n^. Thus fo r  the

moving average parameters.
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(6.4.5)

9 6 . ag.

n-k
where k = - X)(%t+k - X)/n-k

2 (X. -  X)Vn 
t= l ^

The upper l im it  on the summation denotes a su itab ly large number 

m>q fo r  which the p a rtia l derivatives are ne g lig ib le . This 

estim ation procedure is  unbiased in the sense that the like lihood  

equations are sa tis fie d  i f  the r^ 's  are replaced by th e ir  asymptotic 

expectations r^  = (l<k^q) , r^  = 0 (k^q+1) . i .e .

where d. . denotes the p a rtia l derivative a-n-. . In matrix notation, 
j  Ü

Dq + 20,2 = Q (6.4.6)

where

5o = - d i . o - Si = '*1,1 ' ' ' d i , q

^ 2 .0 '*2,1 ^ 2 ,2  • • • ‘*2 ,q

• i i i

dq.O d q . l  d q ,2  • • • dq ,q

The like liho od  equations (6.4.5) can be w ritten  in a comparable 

form:

So *  ZSiSi + 2Q2-2 ^ - (6.4.7)

where 0» is  a matrix o f order q x (m-q) w ith elements
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and R.|, R̂  are vectors o f sample seria l corre la tions,

Bl = h '-2 -  r q ) ' .  Rg = . . .  r J  ' .

Combining (6.4.6) and (6.4.7) gives the estimation equation fo r  p as

P = Bi + ERg (6.4.8)

where E = I t  is  in te resting  to note tha t the elements of

^2 can be expressed in terms o f the elements o f & D-j by v irtu e

o f the fa c t tha t

2q *
"  ^-k ’ ^k ^ .^.j^i * k - i ^ ° k ^  q+1

where X|̂  = dj 1̂ ^  and where the g*'s sa tis fy

0 2q * ,
{ 6(z )}^  = 1 + Z 6. z" .

h=l "

Thus the elements o f E = are given in terms o f the

corresponding elements o f Oi '^Dq ”  "2p and O-j'^D-j = I .

In view o f th is  re s u lt, the elements o f E and hence the estimation

o f p requires no matrix inversions which is  an advantage over some

a lte rna tive  estimation procedures such as Walker's (1961).

I t  is  quite common in estimation problems that q takes the

value 1 or 2. In such cases equation (6.4.8) is  used to obtain p

w ith in i t ia l  estimate p = B] and the B's are then obtained using

the Cramer-Wold fa c to riza tio n . However fo r q>2 i t  is  preferable 

to transform equation (6.4.8) to a system in terms o f 3. Such a 

procedure would require more ite ra tion s  to a rrive  at the so lu tion , 

but avoids the need fo r the Cramer-Wold fac to risa tio n . To establish 

the 3 's i t  is  required to find  a qxq matrix H-j such tha t

H-]P = i  .
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S ubstitu ting  fo r  p from (6.4.8) gives

I  = HiB] + HgRg (6.4.9)

where = H^E. From the form o f the elements o f E i t  follows

th a t the elements o f Hg are given in terms o f the corresponding

elements o f H^(-2p) = -2§ and H-jI = H-j. Thus equation (6.4.9)

gives an ite ra tiv e  solution fo r  a in terms o f HL, R. & R« and
- I  - I  - 2

requires no matrix inversions. To apply the procedure an in i t ia l  

estimate o f g from w ith in  the in v e r t ib i l i t y  region is  required.

The estimate 3 = 0  is  feas ib le , or a lte rn a tive ly  a closer in i t ia l  

estimate can be provided by a single application o f an a lte rna tive  

procedure, such as Walker's. A modified system fo r the estimator 

which is  pseudoquadratically convergent has been derived by 

Godolphin (1978a) and a computer implementation by 

Angell & Godolphin (1978). Other tests fo r specifica tion  involving 

moving average parameters are described in Section 2.5.

To te s t hypotheses about the mean o f the sample, we reca ll 

from Chapter 2 that the d is tr ib u tio n  o f the estimate o f y is

X ~ N(u. (1 + B, + . . .  + Bq)Z o i) .
n

To te s t the hypothesis tha t ^  = 0 we formulate the s ta t is t ic

Q =  ( X ) ^ n ____________

"  , 2
a (1 + 3-j + • • • + 3q)

In large samples, Q is  d is tribu ted  lik e  with one degree o f
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freedom i f  the hypothesis is  true . The parameters 3-j.........3^

and the variance are estimated using maximum like liho od .

This te s t is  adapted in the next chapter so as to te s t fo r  d iffe re n t 

means w ith in  a given sample set.
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C H A P T E R  7 

THE TESTING FOR DEVIATIONS IN STATE SPACE MODELS

7.1 In troduction

In th is  chapter the app lica tion  o f s ta t is t ic a l te s t procedures 

to state space models is  considered. Of p a rtic u la r in te re s t is  a 

problem which concerns control engineers who are engaged in  the 

active track ing o f marine c ra f t .  When active tracking is  being 

carried  ou t, a signal is  emitted by the own-ship which reg is te rs  any 

objects w ith in  i t s  range. By determining also the d ire c tio n  o f the 

signal i t  is  thus possible to note the position in  cartesian 

co-ordinates o f the ob ject re la tiv e  to some fixed  o r ig in , in  th is  

case the own-ship. The aim o f any te s t procedure is  to detect 

qu ick ly  and accurately any manoeuvres in the ob ject. I t  seems 

in tu i t iv e ly  sensible to  base any such te s t on detecting v e lo c ity  

changes. C learly the object can change d ire c tion  and s t i l l  maintain 

a constant speed, but th is  manoeuvre is  noted as a v e lo c ity  change, 

since v e lo c ity  is  defined as speed w ith d ire c tio n .

A te s t based on detecting v e lo c ity  changes is  presented.

Given a set o f data values, one po in t is  chosen at which i t  is  

suspected tha t a v e lo c ity  change took place. Then a s ta t is t ic  is  

formulated which is  re la ted to the d iffe rence between the sample 

means before and a fte r  the suspected v e lo c ity  change. Thus we 

obtain a genera lisation o f Student’ s t  te s t. The deriva tion  o f 

the te s t s ta t is t ic  is  given in  Section 7.3. In Section 7.4 the 

resu lts  o f various simulations using the te s t are presented.
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7.2 The Constant V e loc ity  Model

In track ing  an object such as a ship , the output data ava ilab le

to  the contro l engineer w i l l  be m u ltiva ria te . In th is  case, the 

cartesian co-ordinates o f the object form two data sets, and fo r  th is  

p ra c tica l s itu a tio n , we assume tha t the X and Y co-ordinates are 

independent o f each other. Thus each set o f data has a sta te  space 

representation which is  unaffected by the other se t, but the analysis 

o f both sets o f output is  the same.

The sta te  space model fo r  the X co-ordinate is  given by

Xt o ] ® lt

®3t

+ VI t (7 .2 .1 )

« I t '
= 1 T « lt-1 +

®3t 0  1 ®3t-l 0

(7 .2 .2 )

The components o f the system equation have physical in te rp re ta tio n s  

in  th a t represents the position  in  the x d ire c tio n  re la tiv e

to some fixe d  o r ig in  a t time t ,  and is  the x speed at time

t ,  where t  is  the measurement in te rv a l. The random component 

Wst in  (7 .2 .2 ) takes the value zero. This is  because constant 

v e lo c ity  means no deviation in  ve lo c ity  whatsoever, not even random 

devia tion . The random components v-j^ & w.j^ are assumed to  be 

N(0,V) & N(0,W) respective ly .

Comparison w ith equations (5 .2 .1 ) ' & (6 .2 .2 ) ' shows tha t 

d=l and thus the model defined by equations (7 .2 .1 ) & (7 .2.2) 

s a tis f ie s  the c r ite r io n

FG(G - I )  = 0
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where

G = 1 T

0 1

The question arises as to  which o f models (6 .2 .4) and (6 .2 .5 ) is  

the more appropriate fo r  describing the given system. We sha ll show 

th a t twice d iffe ren c ing  leads to  a non -inve rtib le  moving average 

process o f order 2.

Now from equation (7 .2 .2 ),

so tha t

+ " i t

= 0 + " i t  '  " l t - 1  + ' ' i t  ■ ^ ' ' l t - 1  + ' ' l t - 2

The covariances are given by

Y = 2w + 6v 
'  0

= -w - 4v

= V

Yl 

Y2

where w = var(w^) ,

p -J = - (w + 4v) 

2w + 6v

V = var(v-j)

’ P2 = -

and thus

2w + 6v

We derive the corresponding parameters fo r  the associated MA(2) 

process. I f  g-j, gg denote the moving average parameters, then

B(z) = 1 + g,z + ggZ

= (1 -  Z , Z ) ( 1  -  ZgZ)

and
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C(z) = 1 + p^(z + z"T) + pgfz^ + z"2)

= ( l+6l^+B2^)” \ l+ 3 lZ + 3 2 2 ^ ) ( l+ 6 iZ ’ ^+622” ^) 

We see tha t z=l is  a double root o f C(z)=0 since

C (l) = 1 - (w+4v).2  + V .2 = 0

2w+6v 2w+6v

Furthermore we see tha t

-1
z + z = 2 + w

provides the other roots o f C(z)=0. In th is  case,

+ z"^ = (z + z 'T )^  -2 = 2 + ^  + 4w
y

and on s u b s titu tin g  in  C(z) we have

2
1 - (w+4v)(2 + w) + V (2 + w + 4w) = 0

2w+6v V 2w+6v v^ v

Consequently

B(z) = (1 - z ) ( l  - ggZ) 

where gg is  the so lu tion  o f

^2  = 2 + w

$2 V

which has modulus less than u n ity . This so lu tion  fo r  g^ is  

e a s ily  seen to be

gg = w+2v - J_{w(w + 4v)}^

2v 2v

whence
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6-| = -(1 + ^2 )

= “ (w+4v) + _T_{w(w + 4 v ) }^  .

2v 2v

Since B(z) has an inverse zero on the u n it c ir c le ,  the associated

MA(2) process is  not in v e r t ib le . Thus the state space model

defined by equations (7 .2 .1 ) & (7 .2 .2 ) is  more appropria te ly 

described by a time series model o f the form

vX^ = y + . (7 .2 .3 )

D ifferencing the system equation (7 .2 .1) once gives

^Xt ^ '^®3t-l ^ I t  ^ I t  “ ^ ' i t - l  * (7 .2 .4 )

By d e fin it io n  o f the model, is  free from e rro r and so can be

regarded as a de te rm in is tic  parameter. Thus the mean, y , in

(7 .2 .3 ) can be represented e n tire ly  by the term 

in (7 .2 .4 ). Thus equation (7 .2 .4 ) can be re -w ritte n  as

vx,. -  y = w,,. + V,,. -  . ( 7 .2 .5 )

M u ltip ly ing  both sides o f (7 .2 .5 ) by vX^-y and vX^_^-y in  turn 

and taking expectations gives

E [(vX^ - y)^J = var(w-j) + 2 var(v-j)

e[cvX^ -y)(vX ^^1 - y )J  = - var(v-j) .

Thus the theo re tica l co rre la tio n  is

p = -  var(v- j )  ^ -1 say,

var(w-| ) + 2var(v-| ) 2 + R
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2 1
where R = v a r(w ,) /v a r(v ,) . Hence s /(l+6  ) = -  (2 + R )' , y ie ld in g

6 . = -  2 ( 2  + R + (R^ + 4R)H

as the in v e r t ib le  so lu tion  o f the quadratic equation fo r  $.

In the simulations described in  Section 7.4, the standard 

deviations o f v.j and w-j are varied. Thus the quantity  o f in te re s t 

in  the analysis o f the resu lts  is  the ra t io  o f these standard 

devia tions, namely R^, and not R i t s e l f .  I t  is  in te re s tin g  to 

know what theo re tica l value o f g corresponds to  a p a rt ic u la r  value 

fo r  R^. The tab le  a t the end o f th is  section gives the complete

range o f R^, together w ith the re su ltan t theore tica l values fo r  g 

and the co rre la tio n  p .  The theo re tica l value fo r  the variance 

var(e) = qZ can be expressed in several equivalent ways, namely

var(v-j) = var(w-|) 

B (1+6)2

and on su b s titu tin g  in e ith e r form fo r  g, i t  is  possible to 

express wholly in terms o f var(v^) and var(w-j).

To complete th is  section the constant v e lo c ity  model fo r  the 

Y co-ordinate is  given by

- , .  [ ,  o ] 2t

4t

'2 t

®2t
= ’ l  T ®2t-l + ^2 t

«4t 0 1 ®4t-l 0

The analysis o f the Y output proceeds in  exactly the same way as 

th a t described previously fo r  the X output, w ith R denoting the 

ra t io  va rfw g j/va rfvg ).
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R^= sd(w-j) 

sd(v^)

R=var(w^) 

var(v^)

3 P

0.00 0.0000 -1.0000 -0.5000

0.20 0.0400 -0.8190 -0.4902

0.25 0.0625 -0.7793 -0.4848

0.30 0.0900 -0.7416 -0.4785

0.35 0.1225 -0.7059 -0.4711

0.40 0.1600 -0.6721 -0.4630

0.50 0.2500 -0.6096 -0.4444

0.60 0.3600 -0.5536 -0.4237

0.70 0.4900 -0.5034 -0.4016

0.80 0.6400 -0.4584 -0.3788

0.90 0.8100 -0.4181 -0.3559

1.00 1.0000 -0.3820 -0.3333

1.20 1.4400 -0.3206 -0.2907

1.40 1.9600 -0.2711 -0.2525

1.60 2.5600 -0.2310 -0.2193

1.80 3.2400 -0.1983 -0.1908

2.00 4.0000 -0.1716 -0.1667

3.00 9.0000 -0.0917 -0.0909

0.0000 0.0000

7.3 Mean-Difference Test fo r  Constant Ve locity

I f  a v e lo c ity  change has taken place, then the mean values o f 

the process before and a fte r  th is  change po in t w i l l  be d if fe re n t.

I t  seems in tu i t iv e ly  sensible therefore to  d iv ide  the output a t the
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po in t o f the suspected v e lo c ity  change and to base a te s t on the 

estimated mean values fo r  each subset o f data.

Let Z = (z-j Zg . . .  denote n+2 observations o f the

process. A fte r d iffe re n c in g , the data is  divided in to  two

uncorrelated sets, not necessarily o f equal size

X ,  =  ( V Z g  V Z 3 . . .  =  ( X ,  Xg  . . .  X ^ ^ )

-2 ^ ^^n,+4 ''^n+2 ) ^ (%n,+1 %n,+2

w ith ng = n-n^ points in Xg and where the in te rva l x between

observations remains constant throughout. The model is  defined by 

%t = = w + St +

and the te s t is  based on the assumption tha t 

E(X^) — [” ^1 t= l, . . . ,n * j

1̂ 2 t= n ^ + l, . . . ,n  .

I t  is  assumed th a t the parameter 3 and variance remain the same 

fo r  both sets. This assumption seems reasonable since 3 and

are given so le ly  in terms o f the variances o f the random components

v^^ and w^^. Although the components themselves may vary w ith 

tim e, th e ir  variances are fixed  and are independent o f time.

Thus using the re s u lt in Chapter 2, the means X-j ,X2 fo r  the 

two sets are d is tr ib u te d  approxim ate ly  as

X, ~ N (y,, (l+B)2o2/n^)

Xg ~ Nfyg, ( l+ B )V /n 2 )  .

The s itu a tio n  is  very s im ila r to tha t o f the c lass ica l two 

sample t  te s t and fo r  n-j and n2 la rge , the random variab le
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h ' h

'±  + V(l+B)
n-j n^/

2-1 i

is  d is tr ib u te d  approximately N ( ^ l "^2  , 1). Equiva lently

the random variab le

K = {X,-X2)^n,n2

n a2(l+s)2

has asym ptotica lly  a (non-centra l) chi-squared d is tr ib u tio n  w ith one 

degree o f freedom. To use th is  te s t i t  is  required to estimate g 

and qZ using maximum lik e lih o o d . The like lih o o d  takes the form

(det exp{J_(X , -  y , l ) ' r ; 1  (X, -  y , l ) l
2cf2 (7 .3 .2 )

x Z _ V l''2  (det r . , ) '^  e x p {i!_ ( ’<2 '  “ 2 l) 'Î2 ^  '  ^2! ) )
\27ray 2cyZ

where are the covariance matrices fo r  the f i r s t  and

second set respective ly  and 1 is  a vector o f I 's  o f length 

compatable w ith  X-j and Xg. The matrix r-j is  o f order n^xn^ 

and is  o f order ngXng; the matrices are o f the same form. 

Thus the jo in t  like lih o o d  is

L = /  1 (det r-| det Fg)  ̂ exp(-Q^)

where

. -1 .-1
Q[_ -   ̂ -y - il)  (!^2 ~ ^2 -^ 'î2  (-2 " ^2- )^

2qZ

To maximise the like lih o o d  we make two large sample approximations.
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The f i r s t  is  to ignore the con tribu tion  to  log L o f

(det det Tg)  ̂ and the second approximation, derived by

W h ittle  (1954, §2.5) and examined fu rth e r by Shaman (1976), provides

approximate inverses fo r  r-j and r^ . W hittle  noted th a t

can be approximated fo r  large n-j by n-j, where ir  ̂ = E(YY') is

the covariance m atrix fo r  the f i r s t  order autoregression generated by

^ t  + GYt-1 =

where is  a sequence o f uncorrelated random variables w ith 

expectation zero and variance u n ity . Thus i f  the covariance m atrix 

fo r  the f i r s t  set is

-1 1+3 B . . . 0 

3 1+3^. . . 0

0 0 . . .1+3^

then i t s  inverse is  approximated by

^1
1-f

J

The maximum lik e lih o o d  estimators o f y-j and y^ are X^, X  ̂

respective ly , where

n
Xi = 1 Z'X. 

—  t= l ^

n
x« = 1 z X.

Thus the f i r s t  exponent in the like lih o o d  (7 .3 .2) is
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i h  - X , l ) ' : i ( X ,  -  X , l)  = n, (c,o + 2 ( - B ) S k )

l-g2

where

Hn o ML-k
Clo = JL (Xf - X,)Z . C , ^ = J _  (%t - %i)(Xt+k - %l)-

(7 .3 .3 )
n-j "  n-j-k

With exactly  analagous resu lts  holding fo r  the second se t, i t  fo llow s 

th a t the maximum like lih o o d  estim ator fo r  is

" l  (=10 + 2 " V ( - S ) S k )  + "2 (=20 + 2%Vs)Sk)T (7 .3 .4 ) 
H l - i 2  ^

w ith

Cg. = JL :: (Xt-X,)^, C j. = _ ! _  2 (Xt-X2)(Xt+k-Xg). (7 .3 .5 )
Og t=n ,+ l 2k ^ ^ _^ t= n ,+ l  t  t+k 2

E qu iva len tly ,

where

cfZ = 1 (n.jO'̂  + ^^2^̂  )

S,2 = c- (1 + 2 (-B )^ r,k ) i  = 1.2 .
’ k=l TK

l-gZ

The maximum like lih o o d  estim ator fo r  3 is  derived from

( X l  -  X i l ) ' ^ ( X i  -  X ^ l )  + (Xg -  X 2 l ) ' ^ ( X 2  -  X g l )  = 0 

93 96

and is  given by the recursive equation
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6c, -  (_ g )k -lkc ,k  - 2g"1%'(-$)kc }
k=l k=l 'K

n , - l

+ Hg p
nu-1 n .- l

B:?n -  {(1 -6^) 2%'(.g)k-1kCgk -  2 g "2 z '( -g ) \ : ,^ }
k=l k=l '2k

(7 .3.6) 

= 0 .

This y ie ld s  the estim ating equation

m m2 k-1 k
3 ( n i C i o + n 2 C 2 o ) “ 'C(1” 6 } ^ % ^ ( " 6 )  k ( n ^ c ^ ^ + n 2 C 2 ^ ) - 2 3 ^ z ^ ( - $ )

(7 .3 .7 )

According to  equation (7 .3 .6) the number, m, o f sample se ria l 

covariances in (7 .3 .7 ) should be n^-1 or n2" l .  However i t  

appears to  be generally accepted tha t l i t t l e  loss o f estim ator

e ff ic ie n c y  occurs i f  m is  o f the order o f 30, even when n.j, ng

are qu ite  la rge ; see, fo r  example, W hittle  (1954, p .212). The 

sample se ria l covariances are present in the estim ation equations in 

products o f the form c^^-g)^ and C|^k(-B)*^” \  Since |g |< l fo r  

in v e r t ib le  models, both products ra p id ly  approach zero as k

increases, and so th e ir  con tribu tions become n e g lig ib le  very qu ick ly .

I t  is  in te re s tin g  to note tha t a "weighted" form or "o ve ra ll"  

sample se ria l covariance is  obtained by w ritin g  them in  the form

=0 ^ "2=2o)/"

=k '  ( " l= lk  *  "2=2k)Z" ■ 

Consequently equation (7 .3.4) can be re -w ritte n  as

(7 .3 .8)

1_ (1 + 2 E (-6) c^)
1 -

:2 k=l
(7 .3 .9)

and the estimating equation fo r  3 becomes
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êc = ( l - é f )  Z (-B)k-TkC. -  2g s (-ÉO^c. . (7.3.10)
k=1 k=l X

These are the fa m ilia r  forms fo r  the estimation equations fo r  a 

s ing le  sample from a f i r s t  order moving average process 

(c f  W h ittle  1951, p .82) and described in  more d e ta il fo r  a general

MA(q) process by Godolphin (1977, 1978a).

Having evaluated the covariances using (7 .3 .8 ) and formed 

estimates o f $ & jZ using (7 .3 .9 ) & (7.3.10) the s ta t is t ic  K

can be formed and the te s t is  ready fo r  use. The re su lts  from

various sim ulations are given in  the next section.

7.4 Empirical Results

In th is  section , the resu lts  using the te s t described in  the 

la s t section on various sets o f simulated data are presented. Each 

data set e ith e r represents constant v e lo c ity , or i t  contains ju s t  one 

v e lo c ity  change, and by a lte r in g  the in i t ia l  and new v e lo c it ie s  o f 

the ob jec t, i t  is  possible to  examine the s e n s it iv ity  o f the te s t to 

d if fe re n t magnitudes o f v e lo c ity  change. A comparison is  made o f 

the a b i l i t y  o f the te s t to  detect v e lo c ity  increases and decreases 

o f the same order. The remaining fac to rs  which w i l l  a ffe c t the 

performance o f the te s t are the variances on the noise terms 

associated w ith  the system and measurement equations. Recall from 

Section 7.2 ,

(1 + e^)a^ = var(w-j) + 2 var(v^)

so tha t

3a  ̂ = - var(v.j)

2 2(1 + 3) a = var(w^)
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The s ta t is t ic  fo r  the proposed te s t is

K = (X.| -  X2) n-jri2 

na^(l+S)^

where the parameters 3 & 0% are estimated using maximum lik e lih o o d . 

Note th a t the random variab le  K is  inverse ly proportional to  the 

variance o f system noise, var(w^), even though the the o re tica l value 

o f 3 depends only on R^, the ra t io  o f the standard deviations 

(c f §7.2). Thus the system noise w i l l  have a d ire c t bearing on the 

size o f v e lo c ity  change th a t we would expect the te s t to detect.

In practice  we would expect the variances o f system and measurement 

noise to  be approximately equal, since they both represent deviation 

in metres on distance measurements. Thus in the f i r s t  h a lf o f the 

re s u lts , the ra t io ,  R^, o f standard deviations is  fixed  a t 5/5 = 1.

To i l lu s t r a te  how the te s t procedure works in  p rac tice , the 

analysis o f one p a ir o f X & Y co-ordinate data is  given in  f u l l .

The data f i l e  is

6000 5000 I n i t ia l  ob ject pos ition  (X,Y in metres)

10 10 I n i t ia l  ob ject v e lo c it ie s  (X,Y in m.s"^)

51 Time o f v e lo c ity  change (in  seconds)

10 14 New object ve lo c it ie s  (X,Y in m .s'^)

1 Measurement in te rva l (in  seconds)

5 5 Standard deviations o f system noise (w^, W2 )

5 5 Standard deviations o f measurement noise (v^,V2 )

1 No. o f moving average parameters (q)

30 No. o f sample se ria l co rre la tions (m)

100 No. o f points in  sample (n)
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The standard deviations o f Wg & Vg and also the v e lo c ity  change in 

the Y data have no e ffe c t on the analysis o f the X data, since 

the two data sets are taken to be independent from the outset.

Consider f i r s t  the analysis o f the X co-ordinate data. Under 

the nu ll hypothesis i t  is  believed th a t the data represent constant 

v e lo c ity . Using a l l  n data values, the estimated v e lo c ity  is  

9.578 and th is  is  subtracted from the once-differenced data values, 

thus y ie ld in g  the required form to  the data fo r  the proposed te s t.

The sample variance and the f i r s t  th i r t y  sample covariances are given 

by
n « n-k

Cq  =  1  :  ( % t  -  9 . 5 7 8 ) ^ ,  c ^  =  _ 1 _  Z -  9 . 5 7 8 ) ( X t + k  -  9 . 5 7 8 ) .

n n-k

These are then substitu ted in (7 .3 .9 ) & (7.3.10) to give the 

maximum lik e lih o o d  estimators o f 3 and In th is  case the

estimates are -0.526 & 67.426 respective ly , and the f i r s t  f i f te e n  

sample se ria l co rre la tions r^=c^/cQ are given in Table 1 below.

Under the a lte rn a tive  hypothesis i t  is  believed tha t the f i r s t  

n^=50 data points have a fixed  v e lo c ity  and the remaining ng^SO 

points also assume constant v e lo c ity , but o f a d if fe re n t magnitude 

to the f i r s t  set. The two v e lo c it ie s  are estimated by 9.230 &

9.878 respective ly . For the f i r s t  subset

Cg =  J L  ( x ^  -  9 . 2 3 0 ) 2 ,  C|^ = _ T _  (X,. - 9 . 2 3 0 ) ( X t + k  '  9 . 2 3 0 )

n, n ,-k

whence the sample se ria l co rre la tions  c^/c^ can be formed based on 

the data ava ilab le  before the suspected ve lo c ity  change. The f i r s t  

f if te e n  sample se ria l co rre la tions are given in  Table 2. S im ila rly  

fo r  the subset o f data a fte r  the suspected v e lo c ity  change



- 121 -

:o = _ L  z: (X - 9.878)2, ^  ̂ (x _ 9.878)(X. . -  9.878)
„ t= n ^ + l t=n^+1 t  , t+k

w ith  the f i r s t  f i f te e n  values fo r  given in  Table 2. The te s t 

requires an "o v e ra ll"  value fo r  each Cj ;̂ these are given by 

equation (7 .3 .8 ) which, since n-j=n2=50, is  simply the average o f 

the sample s e ria l covariances previously calcu la ted fo r  each subset. 

The f i r s t  f i f te e n  "o v e ra ll"  values fo r  are given in  the second 

row o f Table 1.

Table_ l Estimated/Modified Sample Seria l Corre lations

lag 1 2 3 4 5 6 7 8
Under 0 -0.32 -0.11 -0.05 0.07 0.08 -0.21 0.08 0.06

Under H-j -0.32 -0.12 -0.06 0.09 0.06 -0.20 0.06 0.10

9 10 11 12 13 14 15

-0.10 -0.04 0.02 0.07 0.01 -0.20 0.16

-0.12 -0.03 0.00 0.09 0.03 -0.25 0.17

A graphical representation o f these sample se ria l co rre la tio ns  under 

Hq is  provided by Figure 7.1. The r^ 's  in Table 1 are v i r tu a l ly  

id e n tica l a t each lag under the two hypotheses, suggesting th a t no 

v e lo c ity  change has occurred. This b e lie f is  supported by the te s t 

s ta t is t ic .

- 0.1 -

- 0.2-

” 0 .3 -
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Table 2

Sample se ria l corre la tions using divided sample

1 2 3 4 5 6 7 8

Before suspected 
v e lo c ity  change

-0.33 -0.18 0.03 0.18 -0.03 -0.34 0.14 0.22

A fte r suspected 
v e lo c ity  change

-0.32 -0.05 -0.14 0.00 0.16 -0.05 -0.02 -0.02

9 10 11 12 13 14 15

0.20 -0.03 -0.06 0.13 0.01 -0.24 0.15

-0.05 -0.04 0.06 0.06 0.04 -0.25 0.20

The estimates o f 3 & using the " ove ra ll" values fo r =k are

-0.566 and 66.609 respective ly . The proposed te s t s ta t is t ic  is

K = (X- |  -  % 2 )  n ^ O g  

nô2(l+s)2

= (9.230-9.878) 50 50 = 0.84

100 66.609 (1-0.566)2

which is  not s ig n if ic a n t. The te s t concludes c o rre c tly  th a t there 

is  no evidence to  support the idea o f a v e lo c ity  change.

The analysis o f the Y co-ordinate data fo llow s in  the same 

way. Under the nu ll hypothesis the maximum like lih o o d  estimators o f 

3 and are -0.251 and 83.909 respective ly ; under the a lte rn a tive  

hypothesis the estimates are -0.527 & 70.236. Using a l l  n data 

values, the v e lo c ity  estimate is  11.276, whereas fo r  the subsets of 

n  ̂ and ng points the estimates are 8.774 and 13.637 respective ly . 

Figures 7.2 and 7.3 give the estimated f i r s t  f if te e n  terms o f the 

correlogram under the nu ll and a lte rn a tive  hypotheses respective ly ;
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the values are also given in  tabu lar form in  Table 3. The sample 

se ria l co rre la tions based on the subsets before and a fte r  the 

suspected v e lo c ity  change are presented in Table 4.

Table 3

Estimated/Modified Sample Seria l Correlations

lag
1 2 3 4 5 6 7 8

Under -0.32 0.21 -0.16 0.24 -0.12 0.10 -0.16 0.18

Under -0.40 0.12 -0.20 0.13 -0.14 0.00 -0.18 0.13

9 10 11 12 13 14 15

0.08 0.08 -0.06 0.22 -0.01 0.11 -0.08

-0.01 0.00 0.00 0.15 -0.03 0.05 -0.14

0 .2 -

0. 1-

0.0 .

• 0. 1-

• 0 2 -

- 0 . 3 -

,Figure 1 . 1
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Figure 7.3

Table 4

lag
Sample se ria l corre la tions assuming H

Before suspected 
v e lo c ity  change

-0.47 0.09 -0.28 0.29 -0.08 -0.04 -0.12 0.11

A fte r suspected 
ve lo c ity  change

-0.33 0.14 -0.12 -0.03 -0.19 0.04 -0.24 0.16

9 10 11 12 13 14 15

0.06 -0.09 -0.08 0.12 -0.05 0.12 -0.05

-0.08 0.09 0.07 0.18 -0.01 -0.02 -0.22

The te s t s ta t is t ic  fo r  the Y co-ordinate data is

K = (8.774-13.637)^ 50 50 = 37.62
100 70.236 (1-0.527)2

In th is  case the v e lo c ity  change is  detected w ith a large p ro b a b ility .

I t  is  sensible to use several simulations to assess the value 

o f the te s t procedure fo r  detecting constant v e lo c ity  or a v e lo c ity
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increase from 10 m.s  ̂ to  14 m.s  ̂ as described above. I t  may 

be tha t the te s t can behave unexpectedly on occasions owing to  some 

untypical random disturbances and th a t th is  behaviour may not be 

reproduced on the m a jo rity  o f occasions. An atyp ica l random number 

seed can produce unusual noise sequences and un fortunate ly the te s t 

appears to  f a i l  each time th a t p a rtic u la r random number seed is  used. 

To balance out such e ffe c ts , ten d if fe re n t random number seeds are 

chosen and thus ten sets o f data containing the same v e lo c ity  change 

are created. The te s t is  then performed on each set in turn and i t s  

success ra te  over the ten runs is  noted. A more accurate assessment

o f the s e n s it iv ity  o f the te s t can thus be made.

Nine fu r th e r simulations were constructed o f the data set 

presented e a r lie r  in  th is  section. The resu lts  are given in 

Table 5, together w ith the resu lts  described in  f u l l  fo r  random 

number seed 19.

Table 5
Random No. 

seed

Test s ta t is t ic
X data y data

11 1.31 27.71***

12 1.52
* * *

21.97

13 0.00
* *

4.97

14 0.08
* * *

33.04

15 0.44
*

3.14

16 0.01
* * *

22.80

17 0.42
* * *

16.59

18 2.50
* * *

21.25

19 0.84 37.62***

20 0.16
* * *

11.06
icic

*denotes s ig n if ic a n t at 10%; denotes s ig n if ic a n t a t 5%;
* * *

denotes s ig n if ic a n t a t 1%.
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Thus the te s t detects both a constant v e lo c ity  o f 10 m.s"^ 

and the v e lo c ity  change from 10 m.s“  ̂ to  14 m.s“  ̂ w ith  a large 

p ro b a b ility  in  the m a jo rity  o f s im ula tions, the only possible 

exception on the Y data being the re s u lt obtained using random 

number seed 15.

Further tests  were carried out on data containing d if fe re n t 

v e lo c ity  changes. Each te s t was repeated ten times using random 

number seeds 11-20. As in the previous example each data set 

contained 100 po in ts , and the v e lo c ity  change occurred a fte r  51 

seconds. Denoting the X and Y data already discussed as 

Series I and I I ,  the fo llow ing  s ix  series were also examined:

Series I I I V e loc ity  increase from 10 m.s to 12 m.s

Series IV " decrease II 10 m.s " 5 m.s"!

Series V " increase II 10 m.s " 16 m .s '!

Series VI II II II 5 m.s " 8 m.s"!

Series V II II II II 5 m.s " 10 m.s’ !

Series V II I " decrease II 16 m.s " 10 m.s"!

The values obtained fo r  the s ta t is t ic K are presented in

Table 6 below. The resu lts  in the tab le  ind ica te  tha t the v e lo c ity  

change is  detected a t the 99% s ign ificance level in every sim ulation 

o f Series IV, V, V II & V I I L r  The random variab le  K  is  

proportional to  the square o f the v e lo c ity  change and the s ta t is t ic s  

on the whole ind ica te  th is . For th is  reason, the resu lts  fo r  

Series I I I  & VI are less conclusive than those corresponding to  large 

v e lo c ity  changes. In fa c t the Series I I I  s ta t is t ic s  detect the 

v e lo c ity  change at the 90% s ign ificance level in only s ix  

simulations out o f ten , and th a t fo r  Series VI in e igh t cases out o f 

ten. The smaller than average value fo r  K in a l l  the series
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using random number seed 15 can be a ttr ib u te d  to  the unusual 

sequence o f random numbers generated by tha t p a rtic u la r seed. 

Indeed, th is  may account fo r  the fa ilu re  to detect the v e lo c ity  

changes in  Series I I I  & VI using seed 15.

Table 6

Seed Series I I I Series IV Series V Series VI Series V II Series V II I

* * * * * * * * * •k'k'k * * * * * *
11 8.43 10.59 41.25 17.59 30.73 29.53

* * * * * * * * * * * *★* k-k-k
12 5.72 106.11 93.04 13.14 61.34 35.20

* * * * * * * * * kkk
13 6.77 40.14 59.42 0.42 41.37 185.44

* * * * * * * •k-kie * * * kkk
14 3.87 34.52 41.58 19.46 28.39 58.11

* ** * * * * * * kkk
15 0.90 22.05 17.40 0.52 11.32 75.61

* * * * * * * * * * * * kkk
16 5.20 28.59 44.07 14.42 30.79 25.00

*** * * * * * * * * * kkk
17 2.42 37.95 35.56 9.30 23.63 38.04

*** * * * k-k-k * * *
18 0.82 60.83 34.59 14.30 21.51 13.44

* * * * * * * * * * * * * * * kkk
19 13.98 37.79 88.14 23.77 63.62 42.04

* * * * * * * * kkk
20 2.05 24.72 25.93 6.07 17.45 28.08

In practice  there are two types o f v e lo c ity  change tha t we 

wish to  detect. The f i r s t  type resu lts  from the ob ject maintaining 

the same speed but changing i t s  d ire c tio n . The second type is  

caused by the ob ject changing i t s  speed and possibly i t s  d ire c tio n  

as w e ll. A change in  d ire c tio n  cannot be instantaneous; the 

resu ltan t increase or decrease in v e lo c ity , depending on whether the 

ob ject is  moving nearer or fu rth e r away ( re la tiv e  to  the own-ship) 

w i l l  take several seconds in r e a l i ty ,  and the te s t described here is  

not designed fo r  th is  type o f lag. I t  is  c lea r th a t the time taken
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over the v e lo c ity  change w il l  have an e ffe c t on the a b i l i t y  and 

s e n s it iv ity  o f the te s t to detect increases and decreases. The 

nature o f the ob ject (sh ip , a irc ra f t  or submarine) w i l l  determine i t s  

a b i l i t y  to  increase or decrease i ts  speed qu ick ly . I t  seems tha t 

ne ithe r type o f v e lo c ity  change w i l l  be as d iscre te  as in  the 

sim ulations described here, but i t  is  reasonable to  suppose th a t the 

te s t would s t i l l  be useful fo r  these problems.

Further examination o f the s e n s it iv ity  o f the te s t is  made by 

considering d if fe re n t values fo r  the standard deviations and examining 

the e ffe c t on detecting the same v e lo c ity  changes as in  Series I to 

V II I  in c lu s ive . By increasing the standard deviation o f system noise 

from 5 to  8, the random variab le  K is  s ig n if ic a n tly  reduced, and 

th is  may re s u lt in the te s t not performing as well as previously.

With R2=8/5, the theo re tica l value fo r  B is  -0.2310. This is  

well w ith in  the u n it c ir c le ,  so no problems occur w ith lack o f 

convergence, and hence a value fo r  K is  produced a t each s im ulation. 

The fo llow ing  re s u lts , to be compared w ith Tables 5 & 6, are 

obtained w ith  these values.

Table 7a

Seed Series I Series I I Series I I I Series IV

11 1.27
kkk

11.43
**

5.26
*

3.23

12 1.34
kkk

9.25 0.95
kkk

42.09

13 0.00 0.06 1.88
kkk

13.10

14 0.11
kkk

12.13 1.05
kkk

13.76

15 0.55 0.03 0.11
* * *

11.86

16 0.01
kkk

9.40 1.81
kkk

8.69

17 0.39
**

5.39 0.42
*★*

14.39

18 2.46
kkk

12.96 0.01
kkk

27.17

19 0.63
kkk

12.69
**

5.96
* * *

11.11

20 0.22
kk

4.06 0.51
* * *

11.70
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Seed Series V Series VI Series VII Series V II I

11 21.46***
kkk

7.57
* * *

16.39
* * *

8.51

12 27.43***
* *

5.67
kkk

17.40
* * *

12.62

13 17.83*** 1.46 12.31***
* * *

96.28

14 13.89***
* * *

7.48
kkk

9.31
kkk

15.91

15 6.23** 0.23
*

3.83
kkk

38.94

16 14.41***
kk

6.18
* * *

10.13
kkk

7.45

17 10.14*** 3.04*
kk

6.51
* * *

11.97

18 7.88***
* * *

9.37
**

4.32
k

3.21

19 32.96
kkk

8.44
kkk

24.17
kkk

9.04

20
kkk

9.47 2.08
kk

6.18
kkk

13.91

The e ffe c t o f increasing the standard deviation o f the system 

noise has been to reduce the s e n s it iv ity  o f the te s t. The 

s ta t is t ic s  in Tables 7a & 7b are nearly a l l  less than th e ir  counter­

parts in  Tables 5 & 6. In a few cases on ly, th is  means th a t the 

v e lo c ity  change is  no longer detected, even a t the 90% s ign ificance 

le v e l. Such cases are apparent from Tables 7a & 7b; i t  is  c lea r 

th a t the problem is  more marked when detecting smaller v e lo c ity  

changes.

One problem tha t might arise using the te s t is  i f  the 

subroutine fo r  evaluating 3 fa i ls  to converge. Such d i f f ic u l t ie s  

may arise  i f  becomes small, since th is  corresponds to 

theo re tica l values o f B near the boundary o f the u n it c irc le .  

N a tu ra lly  i f  B cannot be determined, then cannot be estimated 

e ith e r by our procedure, and so in such cases nothing can be said
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about the o b je c t's  motion using th is  te s t,  as the s ta t is t ic  K 

cannot be formed. I t  is  possible tha t in d ire c t estimation 

procedures such as tha t o f Walker (1961), which concentrates on 

estim ating the correlogram e f f ic ie n t ly ,  may circumvent th is  problem, 

However, i t  seems u n lik e ly  tha t th is  problem would occur frequently  

in  p rac tice .

The proposed te s t is  appropriate fo r  tes tin g  a wide range o f 

magnitude o f v e lo c ity  changes, both increases and decreases. The 

s ta t is t ic  can always be formed, provided the ra tio  o f the standard 

deviations (R^) is  w ith in  the l im its  o f about I f  the

actual values o f these standard deviations are not too high, then 

the s e n s it iv ity  o f the te s t appears to be very reasonable.

The scope o f the te s t is  wider than has been considered here.

For instance one would expect, in p rac tice , to have fewer

observations ava ilab le  a fte r  the ve lo c ity  change has happened, say

n-j=70 and n2=30. The procedure is  s t i l l  qu ite va lid  although 

one would expect the power o f the te s t to be reduced in such cases. 

The requirement tha t ng be reasonably large may be a l im it in g  

fa c to r fo r  the te s t ,  and the assumption tha t a v e lo c ity  change be 

d iscre te  and immediate may not be re a l is t ic ,  however i t  is  hoped 

tha t the te s t has the scope to cover these p o s s ib il i t ie s .
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C H A P T E R  8

THE TESTING FOR DEVIATIONS IN STATE SPACE MODELS 

USING DATA RELATING TO BEARING AND RANGE

8.1 In troduction

In practice  i t  is  often not possible to  approach the problem o f 

detecting v e lo c ity  changes using the method described in  the previous 

chapter. This is  because i t  is  not easy fo r  marine navigational 

devices to measure the pos ition  o f a neighbouring object in  terms o f 

cartesian co-ordinates. I t  is  more natural in active track ing to 

measure the bearing, B, and the range, R, o f the object re la tiv e  to

object

ow n-sh ip

the observer. With the own-ship's pos ition  assumed known, the range 

o f the ob ject can be deduced by noting how long the signal emitted by 

the own-ship takes to return there. I f  the bearing o f the signal is  

also measured, then two pieces o f information concerning the o b je c t's  

pos ition  are known, and thus, w ith in  the accuracy o f the 

measurements, the loca tion  o f the object in  the plane can be deduced.

I t  is  necessary to modify the state space equations to take 

account o f the fa c t th a t the data are given in  a d if fe re n t form. We 

derive a te s t to detect constant v e lo c ity  and v e lo c ity  changes by 

making assumptions about the magnitude and d is tr ib u tio n  o f the noise
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on the bearing and range measurements. The properties o f th is  te s t 

are considered by performing ten simulations and noting on how many 

occasions the te s t determines c o rre c tly  whether o r not a v e lo c ity  

change occurred. These resu lts  are presented in the f in a l section 

together w ith a comparison o f the performance o f the te s t using 

bearing-range data and cartesian co-ordinate data.

8.2 The Constant V e loc ity  Model

The constant v e lo c ity  model is  defined in terms o f a set o f 

system and observation equations. The set o f system equations is  

the same as tha t o f Section 7.2 ; thus the co-ordinate state position  

(0-|» Gg) and v e lo c ity  (e^, e^) variables have the state-space 

representation

'1

L ’^ J t

h

1 T 

0 1

1 T 

0 1

'1

J L t - i

w

t-1

w,

0
— —* t

(8 . 2 .1 )

The add itive  noise terms w-j, Wg are present as before so tha t 

allowance can be made fo r  the p o s s ib il ity  tha t the position  o f the 

own-ship is  not known exactly .

The observation equations cannot be the same as previously, 

however, since we do not observe d ire c t ly  the X and Y 

measurements. We propose the fo llow ing model fo r  bearing, B, and 

range, R :

ta n '^ e ^ /e ^ )

9 ? 1
L ( e /  +

(8 .2 .2 )
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The random components b^, r^  represent the add itive  noise on the

bearing and range measurements and are assumed to be independent and 
2 2

to  have N(0, ) ,  N(0, ) d is tr ib u tio n s  respective ly . Thus the

data received by the observer consists o f two pieces o f information 

a t each po in t in  tim e, a t a constant in te rv a l,  x. However, in  th e ir  

present forms, ne ither data set can be used s ing ly  to detect v e lo c ity  

changes. This is  because e ith e r the range or the bearing o f the

ob ject can remain constant while the object is  in  fa c t manoeuvring.

I f  the constant v e lo c ity  te s t described in Section 7.3 were applied 

separately to each set o f data then the resu lts  would be inconclusive. 

A natural way o f ta ck lin g  th is  problem is  to transform the bearing 

and range measurements in to  estimates o f the cartesian co-ordinates 

by the formulae

sin (8 .2 .3 )

= R̂  cos B  ̂ . (8 .2.4)

We now consider under what circumstances the f i r s t  d ifferences 

vX^ and vY^ have the same co rre la tio n  structure as an in v e rtib le  

f i r s t  order moving average model w ith a non-vanishing mean, i .e .

= Wx + ^xt + ®x^xt-l (8-2.5)

+ ^y t + V y t - 1  (8-2-6)

where are de te rm in is tic  terms representing the mean o f each

process and {E^^} are independent random processes which are

d is tr ib u te d  N(0, N(0, a ^ )  respective ly.

Consider f i r s t  the structure  o f the X co-ordinate data 

derived from the bearing and range measurements using equation (8 .2.3) 

The Taylor series expansion fo r  sin B̂  is
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sin = sin(B^-b^) + b^cos(B^-b^) -  b^^sin(B^-b^)

21

- b^^cos(B^-b^) + . . .  + b^M(sin(B^-b^)) + . . .

31 IT
We make the assumption th a t |b^]< l so tha t the expansion provides

a v a lid  approximation fo r  sin B  ̂ using re la t iv e ly  few terms. In

examining the co rre la tio n  structure o f (vX^ -  y^) we shall assume

th a t the fo u rth  and higher powers o f the noise terms b.̂ . and

make n e g lig ib le  con tribu tions to the variances and covariances and

are thus discarded. By assumption the bearing noise has an 
2

N(0, ) d is tr ib u tio n  and thus the th ird  moment o f is  zero.

For these reasons we approximate sin B  ̂ by the f i r s t  three terms in 

Tay lo r's  series. From the observation equations,

tan(B t -  b^) = ^

0

SO t h a t

2t

*
where is  the tru e , but unobserved range measurement

( 8^^^ + from the equation

Rt = Rt* + r t  .

Thus

= ®1t  + b t*2t  -  ^  + ' ' M t  -  ■

2 Rt* Rt* 2Rt*

From the system equations.

' i t  "  ■'®3t - l  *  " i t
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and on su b s titu tin g  in vX^ i t  is  seen th a t is  the

only purely de te rm in is tic  term. Thus the mean, y , in  equation 

(8 .2 .5 ) is  represented by the term Then

^  = " U  + -  vbt e^t + V i t

+ v r .b .8 .. -  vr\b^ 8t_ t  2t  
R,

t  t  I t
2R.

In the d e fin it io n  o f the model, b^ and r^  are N(0, )
2

& N(0, ) independent random variab les. Thus

E (r,)  = E(bt) = 0

[ ( r fZ )  = = k = l,2 , . . .

E (b,2 ) =
8 (8t ! k ) = 0 ^  k = l,2 , . . .

and

= 0 i f  a or c is  odd.

I t  fo llow s tha t

E f ( v x ,  - ^ x ) ' l  = var(w^) + q^ + q^

where

‘’ t  = 8 ^ Z t W ] + E - E + E

_ _ _ _ _

This expression fo r  q^ is  unhelpful in th is  form since i t  involves

0.J and 8g from the system equations. However i t  is  possible to 

e lim inate the e's and to w rite  q^ in terms o f quan tities  from 

the observation equations. Thus
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= E (R t-rt)2b^2^os2(B^-b^) + E r^2sir,2(B^-b^)
(8 .2 .7 )

- E 'r/b ^2s in 2 (B ^-b^) + E rt2 b /co s2 (B ^-b ^)

In order to estab lish  th a t (vX^-y^) has the same co rre la tio n  

s truc tu re  as a f i r s t  order moving average process w ith  the f i r s t  

covariance having the same p a r ity  as in Section 7.2 we need to show 

th a t |pI 4  I  and

> 0

E{(?Xt -  < 0 (8 .2 .8 )

E [(vXt -  ;x)(?% t-k -  ’̂ x)] = ° .

The th ird  o f conditions (8 .2 .8 ) is  s a tis fie d  since the k-th  

covariance

e [(VX, -  yx)(VXt_k -  v ]

consists o f terms

e [{ ) t - i (  ) t - k - j ]  ; k>i

i . e .  (vX^ - y^) involves terms w ith lag t  & t -1 and 

(vX^_^ - y^) involves terms w ith lag t - k  & t - k - 1 . Thus a l l  o f 

the terms o f the k-th  covariance have zero expectation, so

ï k  = 0 k>l .

The f i r s t  covariance is

^1 = E (vXt -  Wx)(vXt_T - u*) = -St-1

In order th a t the second o f conditions (8 .2 .8 ) is  s a tis f ie d , we 

require tha t q^_j be p o s itive . Since q^ and q^_.j have the 

same form i t  seems l ik e ly  tha t they would have the same p a r ity . 

R e-w riting equation (8 .2 .7 ) gives
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bt2((R^-rt)2+rt2}cos2(Bt-bt) + E rtZ(l-bt2)sin2(Bt-bt)

which is  always p o s itiv e , since |b^|< l by assumption. S im ila r ly  

is  p o s itiv e , and so a l l  o f conditions (8 . 2 . 8 ) are s a tis f ie d .

The the o re tica l co rre la tio n  is

■ 9 t- l

var(w.|) + + A t- i

-1

2 + n

Thus |p| 4  i  as required and hence (VX^ - y^) has the same 

c o rre la tio n  s truc tu re  as a f i r s t  order moving average process. 

Note however th a t n = (var(w^) + vq^)/q^ may be dependent on t. 

However, the th e o re tica l values o f 3

=  - 2 2 + n- + {(n ) + 4n}2
-1

and = v a r(w ^ )/( l+ 3) may contain e rro rs  owing to the possible 

dependence o f n on time. These erro rs may be re fle c te d  in  the 

estimates o f 3 and required fo r  the te s t s ta t is t ic

K = (X  ̂ - Xg)2 n.| ng .

ncj2 (1 + 6)2

I t  is  hoped th a t the dependence on t  w i l l  not a ffe c t K unduly.

The a p p lic a b il i ty  o f th is  te s t is  considered in  the next section.

A s im ila r argument holds fo r  the Y co-ordinate data 

converted from the bearing and range measurements using equation 

(8 .2 .4 ). In th is  case the co rre la tio n  s tructu re  o f vY^ - y^ is
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]  = varfWg) + q* + q*.-,

E [ ( v Y t  -  P y ) (v Y ^ . ,  -  M y)] = -  q ;_ ,

E[(vYt -  yy)(vY^.|^ -  v p ]  = 0 k>l

q ; = E[b^2^ ( R ^ - r /  + r / } s i n 2 ( B ^ - b ^ ) ]

+ E| r̂^2(T .  b^2)cos2(Bt -  b^)j .

The v a l id i ty  o f the use o f the constant v e lo c ity  te s t is  

d i f f i c u l t  to  estab lish  because o f the dependence o f p on time.

The em pirical work in the next section attempts to investigate 

whether th is  is  a s ig n if ic a n t problem compared to the e ffe c t on 

the te s t s ta t is t ic  o f a possible change in  y.

8.3 Empirical Results

In order to draw comparisons between the performance o f the 

te s t using the cartesian data as in Chapter 7 and the cartesian data 

converted from bearing-range measurements, the v e lo c ity  changes 

inherent in Series I -V I I I  are employed as before. The to ta l number 

o f data points ava ilab le  remains a t 100 w ith the v e lo c ity  change, 

i f  present, occurring a t t=51 seconds. There is  no reason to 

suspect tha t the variances would be d iffe re n t on the X and Y 

components o f the system noise, so the standard deviations o f both 

are fixe d  a t 5, which corresponds w ith the value in the f i r s t  h a lf 

o f the resu lts  in the previous chapter. The bearing and range 

components o f the observation equations (8 . 2 . 2 ) also have a d d itive , 

noise; fo r  the purpose o f these sim ulations, th e ir  standard 

deviations are fixed  a t in tu it iv e ly  sensible values such tha t the 

variances and re la tin g  to equations (8 .2.5) and (8 .2.6)
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are not too large. For the f i r s t  set o f resu lts  on Series I -V I I I  

the standard deviations o f the bearing and range noise are 0.07 and 

5.00 respective ly . In practice th is  means tha t . and are

o f the order o f 70, which compares favourably w ith the corresponding 

variances in  Chapter 7; see, fo r  example, the f u l l  analysis o f one 

p a ir o f X & Y co-ordinate data given a t the beginning o f Section 7.4

The data f i l e  fo r  Series I is

3000 3000 In i t ia l  object position (X,Y in  metres)

10 10 In i t ia l  object v e lo c it ie s  (X,Y in  m.s"^)

51 Time o f v e lo c ity  change ( in  seconds)

10 14 New object ve lo c it ie s  (X,Y in m.s"^)

1 Measurement in te rva l ( in  seconds)

5 5 Standard deviations o f system noise (w^, w^)

0.07 5 Standard deviations o f bearing & range noise (b ,r)

1 No. o f moving average parameters (q)

30 No. o f sample seria l co rre la tions (m)

100 Total no. o f points in sample (n)

Consider f i r s t  the analysis o f the X co-ordinate data o f Series I

which represents a constant v e lo c ity  o f 10 m.s"^. Under the nu ll

hypothesis i t  is  believed tha t no v e lo c ity  change takes place. The 

v e lo c ity  is  estimated to be 9.547 using a l l  n data po in ts , and to 

produce the required form fo r the data, the estimate is  subtracted 

from the once differenced data values. The sample variance and 

covariances are then given by

=0 =  1  "  ( X t  -  9 . 5 4 7 ) 2 ,  =  _ 1 _  " z  ( X t  -  9 . 5 4 7 ) ( X t + k  -  9 . 5 4 7 )

n n-k

and the f i r s t  f if te e n  sample se ria l co rre la tions Cj^/c^ are given
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in  Table 1 below. Using equations (7 .3 .9 ), (7 .3 .10), the maximum 

lik e lih o o d  estimates o f 3 and are - 0.557 and 77.074 

respective ly . These parameter estimates are not required fo r  the 

te s t ,  but i t  is  in te res ting  to compare the values w ith those obtained 

under the a lte rn a tive  hypothesis.

I t  is  believed under H.j th a t a ve lo c ity  change occurs and 

th is  is  tested fo r  a t the point t  = 51. The two subsets o f data are 

treated separately in an iden tica l fashion to the whole data set under 

the n u ll hypothesis. The v e lo c ity  estimates are 9.177 and 9.790 

respective ly  and the f i r s t  f if te e n  sample se ria l corre la tions fo r  each 

subset are given in  Table 2. Since there is  an equal number o f data 

points before and a fte r  the suspected change po in t, the "o ve ra ll"  

sample se ria l co rre la tions  are simply given by the average over the 

two subsets. The f i r s t  f if te e n  values are given in  Table 1. These 

overa ll values are then employed in the estimation formulae fo r  3 

and a^. The maximum like liho od  estimates are -0.617 and 74.983 

respective ly .

Table 1

lag
Estimated/Modified Sample Serial Correlations

1 2 3 4 5 6 7 8

Under -0.40 - 0.02 - 0.01 0.06 -0.06 - 0.02 -0.06 0.11

Under H.j -0.41 -0.04 0.00 0.04 -0.04 - 0.02 -0.04 0.11

9 10 11 12 13 14 15

-0.15 0.11 -0.04 0.01 -0.04 -0.08 0.12

-0.15 0.10 -0.04 0.02 0.00 -0.16 0.14
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A graphical representation o f these sample se ria l co rre la tions under 

is  provided by Figure 8.1.

- 0.1-

Figure 8.1-03-

Table 2

Sample seria l co rre la tions using divided sample

1 2 3 4 5 6 7 8

Before suspected 
v e lo c ity  change

-0.47 0.05 -0.03 0.09 -0.08 -0.13 0.11 0.12

A fte r suspected 
v e lo c ity  change

-0.35 -0.13 0.03 - 0.01 0.00 0.08 -0.19 0.10

9 10 11 12 13 14 15

-0.30 0.23 -0.13 - 0.01 0.06 -0.27 0.17

- 0.02 -0.03 0.05 0.04 -0.06 -0.04 0.10

Not only are the estimates o f 3 and very s im ila r under 

the two hypotheses, but the sample seria l co rre la tions  in Table 1 

are v ir tu a l ly  iden tica l a t each lag . This suggests th a t no 

v e lo c ity  change has taken place, and th is  is  c la r if ie d  by examining 

the te s t s ta t is t ic ;
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(X  ̂ -

nô2(T+g)2

= (9.177-9.790)^ 50 50
100 74.983 (1-0.617)2

0.85

which 1s not s ig n if ic a n t. The te s t concludes c o rre c tly  tha t there 

is  no evidence to support the b e lie f tha t a ve lo c ity  change took place 

The Y co-ordinate data forming Series I I  are analysed in the 

same way. The parameters o f in te re s t under the nu ll hypothesis are 

estimated by

Y = 11.177, 3 = -0.288, = 101.887

and the f i r s t  f i f te e n  o f the th i r t y  calculated sample seria l 

co rre la tio ns  are given in  Table 3 and in  diagrammatic form in 

Figure 8.2.

0.1-

- 0.1 -

- 02 -

F ig u r e  8.2-03-
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Table 3

Estimated/Modified Sample Serial Correlations
lag

1 2 3 4 5 6 7 8

Under -0.34 0.19 -0.15 0.10 0.03 0.03 - 0.10 0.12

Under -0.41 0.12 - 0.20 0.02 - 0.01 -0.04 -0.13 0.12

9 10 11 12 13 14 15

0.10 - 0.01 0.16 0.06 0.12 -0.06 0.09

0.02 -0.03 0.07 0.01 0.06 -0.07 0.00

Under the a lte rn a tive  hypothesis

Y-j = 8.717, Y2 = 13.464, 3 = -0.630, = 86.335.

The overa ll sample se ria l co rre la tions are given in  Table 3 and 

Figure 8 .3 ; those re la tin g  to the subsets before and a fte r  the 

suspected v e lo c ity  change are given in  Table 4 overlea f.

0.1-

- 0.1 -

- 0.2 -
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Table 4

Sample se ria l co rre la tions using divided sample

1 2 3 4 5 6 7 8

Before suspected 
v e lo c ity  change

-0.34 -0.11 -0.11 0.15 0.03 -0.08 -0.26 0.29

A fte r suspected 
v e lo c ity  change

-0.46 0.32 -0.27 -0.09 -0.03 0.00 -0.01 -0.03

9 10 11 12 13 14 15

0.05 -0.10 -0.07 0.05 -0.07 0.21 -0.06

0.01 0.03 0.19 -0.03 0.18 -0.31 0.06

The te s t s ta t is t ic  fo r  the Y co-ordinate data is

K -  (Y -j  -  Y g )  '^'1*^2 

no2(l+3)2

= (8.717-13.464)^ 50 50
100 86.335 (1-0.630)2

47.74

which is  h igh ly s ig n if ic a n t, as is  to be expected on comparing the 

correlogram in  Figure 8.3 to tha t o f Figure 8.2.

In order to draw accurate conclusions about the a b i l i t y  

o f the te s t w ith  Series I & I I  data, nine fu rth e r simulations were 

constructed. The resu lts  are given in  Table 5, together w ith 

the re su lts  already obtained in  the above analysis using random 

number seed 19.
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Table 5

Random No. Test S ta t is t ic
seed X data y data

11 1.60
k-kk

24.18

12 0.81
kkk

22.47

13 0.04
ic'k

3.98

14 0.23
kkk

26.48

15 0.39
*

2.83

16 0.06 36.38

17 0.46
kkk

20.49

18
*

3.21 28.40***

19 0.85 47.74***

20 0.02
***

9.56

* * *
denotes s ig n if ic a n t a t 10%; denotes s ig n if ic a n t a t 5%;

•k'k'k
denotes s ig n if ic a n t a t 1%.

As in the previous chapter, the te s t detects both a constant 

v e lo c ity  o f 10 m.s’  ̂ and the ve lo c ity  change from 10 m.s”  ̂ to 14 m.s”  ̂

w ith  a high p ro b a b ility  in most cases. I t  appears tha t the constant 

v e lo c ity  re s u lt fo r  the X co-ordinate data is  unperturbed by the 

v e lo c ity  change in  the Y co-ord inate, even though the data sets are 

not s t r ic t ly  independent.

The d i f f ic u l t y  in drawing a d ire c t comparison between these 

resu lts  and the corresponding resu lts  in Chapter 7 is  tha t fo r  

cartesian data converted from bearing-range measurements, we cannot 

estab lish  the theore tica l value o f based on the fou r standard 

deviations in the data f i l e .  In view o f the more complicated nature 

o f the data, we would not expect the te s t to perform be tte r using
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converted cartesian data than w ith pure cartesian co-ordinate 

measurements. However the resu lts  in Table 5 appear to be more 

conclusive on average in th is  chapter than in Chapter 7. This can

be a ttr ib u te d  to the fa c t tha t since the random variab le  K is  

inverse ly  proportional to the standard deviations on the noise 

components in the data f i l e  have a lesser e ffe c t as a whole than 

those in Chapter 7, thus y ie ld in g  a smaller overa ll variance. These 

standard deviations are believed to be set a t sensible values, and 

the re su lts  ind ica te tha t the te s t is  s t i l l  su itable fo r  cartesian 

data converted from bearing-range measurements.

With Series I I I - V I I I  defin ing the same ve lo c ity  changes as in 

the previous chapter, i .e .

Series I I I V e loc ity  increase from 10 m.s to 12 -1m.s

Series IV II decrease II 10 m.s II 5 ” 1m.s

Series V II increase II 10 m.s'^ II 16 —1m.s

Series VI II II II 5 m.s'T II 8 —1m.s

Series VII II II II 5 m.s"^ II 10 —1m.s

Series V III II decrease II 16 m.s"^ II 10 -1m.s

the re su lts  using the te s t are given in  Table 6 below. The 

remaining components in the data f i l e  presented e a r lie r  in  th is  

section are applicable to a ll the data sets. The resu lts  ind icate 

th a t the v e lo c ity  change is  detected at the 99% sign ificance level 

in  Series IV, V, V II and V III  w ith every sim ulation. The resu lts  

o f Series I I I  and VI are s l ig h t ly  less conclusive, as is  to be 

expected, since a smaller ve lo c ity  change is  being examined in  

these cases.
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Table 6

Seed Series I I I Series IV Series V Series VI Series V II Series V II I

11
* * *

9.62
* **

21.32 45.71*** 14.81***
* * *

34.01 31.87***

12 3.74*
* * *

24.41 55.18*** 13.31***
kkk

40.23 36.37***

13
* * *

8.14 182.05*** 66.47*** 0.07
* * *

48.79 234.17***

14 2.33 33.21***
*■**

30.21
* * *

15.66 21.84***
kkk

47.83

15 0.96 61.46***
* * *

18.05 0.37 11.31***
* * *

80.61

16
* *

5.42 25.19*** 41.46*** 23.01***
kkk

30.83 38.47

17 2.05
***

34.07 31.21*** 11.29*** 22.21***
* * *

48.68

18 0.35 11.72***
kkk

28.26 19.37*** 18.33***
kkk

18.86

19 15.43***
* * *

38.20
***

100.25 28.85
* **

70.68
★★★

55.86

20 2.96*
***

22.20
kkk

29.37
**

4.93 19.87***
* * *

30.23

The s e n s it iv ity  o f the te s t is  examined fu rth e r by considering 

d if fe re n t standard deviations fo r  the noise components in the 

basic data f i l e .  By increasing the standard deviation o f the 

bearing noise from 0.07 to 0.1 , decreasing tha t o f the range noise 

from 0.5 to 0.1 and leaving the system noise variance unaltered, 

the overa ll e ffe c t is  tha t o f an increase in the variance o^. 

T yp ica lly  the increase is  from 70 to 85 in p ractice . Using

Series I -V I I I  as before, the fo llow ing values fo r  the s ta t is t ic  K 

were obtained.
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Table 7b

Seed Series I Series I I Series I I I Series IV

11 1.64
* * *

24.36 9.44 24.61***

12 1.32 21.24***
* *

5.29
* * *

23.51

13 0.06 3.51*
* * *

9.59 214.65***

14 0.13
* * *

25.56
*

3.24 31.53***

15 0.34 2.37 0.86
* * *

56.94

16 0.02 42.94 5.96**
* * *

30.47

17 0.48
* * *

20.27 2.71*
* * *

34.00

18 1.10 34.00*** 0.99 13.98

19 1.07 65.37***
* * *

15.83 54.16***

20 0.03 9.47 2.65 26.19***

Seed Series V Series VI Series V II Series V III

11
★**

44.10
kkk

15.02
kkk

33.28
kkk

34.80

12
***

77.47
***

12.64
* * *

63.38
kkk

34.77

13 74.78 0.00 61.11***
kkk

268.24

14
* **

36.73
* * *

15.29
kkk

26.67
* * *

44.33

15 15.93*** 0.26
kkk

10.46 73.15***

16
•kkk

47.88
kkk

27.22
* **

36.26 46.51***

17
* * *

38.34 11.16***
kkk

29.20
kkk

48.78

18
kkk

41.94
kkk

23.35
* * *

27.38
***

22.21

19
kkk

97.25
kkk

39.63
***

73.05 74.08

20
* * *

27.73
**

4.70 18.46
***

35.25
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Although the variance is  increased, the value o f the

s ta t is t ic  K has remained about the same, comparing the values in

Tables 5 and 6 w ith  th e ir  counterparts in Tables 7a and 7b. This 

is  because the only terms in the s ta t is t ic  K which depend on the

standard deviations o f the noise components are and g in  the

product

G2(l + B)^ .

Not only has increased, but so has |g |,  so the product 

o2(l + g)^ remains about constant. Thus the s e n s it iv ity  o f the 

te s t has been unaffected by the change in  the standard deviations.

The re su lts  in Tables 7a & 7b fu rth e r support the a p p lic a b il ity  o f 

th is  te s t fo r  cartesian data converted from bearing-range 

measurements.

One possible e ffe c t o f d iffe re n t combinations o f values fo r  

the standard deviations on the noise components is  tha t the subroutine 

fo r  evaluating g might f a i l  to converge on every sim ulation. This 

problem can be overcome by increasing the number, m, o f sample se ria l 

co rre la tio ns  in the estim ation equation fo r  g, equation (7 .3 .10).

In p rac tica l s itua tions  i t  may be o f prime importance to keep the 

computer load to a minimum, and so re s t r ic t  m and maybe also the 

to ta l number o f observations. In such cases i t  is  necessary to 

balance the r is k  o f the te s t fa i l in g  to detect a manoeuvre owing to 

in s u ff ic ie n t data against minimising the ca lcu la tion  time o f the 

computer. The procedure is  s t i l l  qu ite va lid  i f  there are fewer 

observations a fte r  than before the ve lo c ity  change, but one would 

expect the power to be reduced. As in the previous chapter, the 

v e lo c ity  change w il l  not be as discrete in p ractica l s itua tions  as 

the simulations suggest, but i t  is  expected tha t the te s t would have 

the scope to  deal w ith non-discrete ve lo c ity  changes in the data.



-  150 -

C H A P T E R  9 

SUMMARY

The main ob jective  o f th is  work is  to present simple procedures 

fo r  evaluating V/n, the covariance m atrix fo r  the e f f ic ie n t  

estimators o f the parameters o f s ta tionary lin e a r time series models. 

The form ulation is  obviously o f in te re s t to p ra c titio n e rs  engaged in 

f i t t i n g  such models to data, but i t  is  a general problem which seems 

to have a ttrac ted  ra ther l i t t l e  comment in  the l i te ra tu re .  Two 

re la ted problems which are also o f in te re s t are the spe c ifica tion  o f 

the inform ation m atrix and the generalised variance. Furthermore a 

subclass o f non-stationary time series models has been shown to have 

s im ila r properties to polynom ial-projecting dynamic lin e a r models 

under ce rta in  conditions. This enables c lass ica l s ta t is t ic a l tests 

to  be employed as a lte rna tives  to state estimation schemes; the 

usefulness o f th is  re s u lt is  considered la te r  in re la tio n  to the 

active  tracking problems encountered by control engineers.

A v e r y  general s ta tionary  time series model is  the 

autoregressive moving average (ARMA) model o f order (p,q) 

defined by

h *  “iVl +---+ “pVp " =t  + V t - q

where is  a sequence o f uncorrelated Gaussian random variables

w ith expectation zero and a common variance a^. E ither p or q 

may be zero, y ie ld in g  pure moving average (MA) and pure

autoregressive (AR) models respective ly. In Chapter 2 the basic 

s ta t is t ic a l properties o f these three classes o f time series models
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are established. The estimation o f the parameters o f these models 

is  b r ie f ly  considered together w ith methods fo r  tes tin g  fo r  

sp e c ifica tio n . State space models are also defined.

In Chapter 3 the pure autoregressive model is  considered.

The model is  treated separately not only fo r  reasons o f i t s  

s im p lic ity . The pure MA and AR models are used widely in p rac tice , 

and the algorithms presented here provide the basis fo r  several o f 

the re su lts  given in la te r  chapters where models containing more 

parameters are considered. Based on a re s u lt o f Durbin (1959) the 

covariance m atrix V/n is  expressed in  terms o f two tr ia n g u la r 

matrices whose elements are the parameters o f the model. The 

example demonstrates the ease w ith which V can be evaluated; i t  

appears to be quicker to f in d  the information matrix by inve rting  

the re s u lt fo r  V than to use a Quenoui11 e-type algorithm . The 

generalised variance is  obtained from a fa c to riza tio n  o f det V 

in to  fou r constituen t parts. This fa c to riza tio n  is  also seen to 

g re a tly  s im p lify  the s ta t io n a r ity  conditions o f these models. 

Analogous re su lts  e x is t on the whole fo r  pure moving average models, 

but fo r  the sake o f completeness the resu lts  are stated in the f in a l 

section fo r  an MA(q) process.

The addition o f ju s t  one moving average parameter to the models 

o f Chapter 3 makes the spec ifica tion  o f V, i t s  inverse and also the 

generalised variance considerably more complicated. In Chapter 4, 

we re s t r ic t  a tten tion  to ARMA(p,l) and ARMA(l,q) models. Since p 

and q are generally qu ite small in p rac tice , i t  seems l ik e ly  tha t 

i f  a pure model is  not su itab le  to  the given s itu a tio n , then th is  

subclass o f mixed models may contain the appropriate model. The 

inform ation m atrix is  given in a pa rtition ed  form w ith the blocks on



-  152 -

the diagonal given by resu lts  in  the previous chapter. A proof is  

given o f an elegant expression fo r  the generalised variance which is  

based on augmenting the tr ia n g u la r matrices defined in the previous 

chapter. This re s u lt, together w ith the concise expression fo r  the 

off-d iagonal block o f the information matrix eases the spec ifica tion  

o f V. The a b i l i t y  to w rite  V e x p l ic i t ly  is  seen to be o f great 

assistance in  examining the adequacy o f the f i t te d  model.

The general ARMA(p,q) model is  considered in Chapter 5. The 

off-d iagonal block o f the information matrix is  no longer simply a 

vecto r, but a pxq m atrix. The p+q-1 d iffe re n t elements can be 

found in d iv id u a lly  by applying a Quenoui11 e-type algorithm to 

W h ittle 's  formula, but th is  is  a very lengthy procedure. By defin ing 

two fu r th e r upper tr ia n g u la r matrices and carrying out some simple 

products and add itions, a pxp m atrix is  formed, the inverse o f which 

contains the off-d iagonal block o f the information m atrix in  i t s  f i r s t  

q columns. An example shows how ea s ily  the formula can be applied. 

An algorithm  is  presented fo r  evaluating V in  a form pa rtition ed  

conformably w ith the information m atrix ; the variances and 

covariances o f the estimators can thus be found in cases where these 

moments are not too complicated.

In Chapter 6 a class o f state space models are examined whose 

forecast functions are polynomials in the pred iction lead time. In 

the steady state comparisons are made between these models and a class 

o f non-stationary time series models which possess the same property. 

The degree o f d iffe renc ing  required to restore s ta t io n a r ity  is  equal 

to or one more than the degree o f the polynom ial-projecting model.

The former model also has a de te rm in is tic  term, representing the 

mean o f the process. In order to apply inference techniques o f time
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series we require tha t the model be in v e rtib le  and th is  condition 

w il l  usua lly  mean th a t only one o f the models is  appropriate. 

Procedures fo r  estim ating the mean and the moving average parameters 

o f the chosen model are described.

The accurate tracking o f manoeuvring objects in the sea or a ir  

is  o f in te re s t to control engineers. One way to detect manoeuvres 

is  to estimate the v e lo c ity  before and a fte r  a suspected manoeuvre in 

the ob ject and tes tin g  the d iffe rence fo r  s ign ificance . A te s t 

s ta t is t ic  is  formulated in  Chapter 7, based on Student's t  te s t.

The te s t is  applied to  simulated cartesian co-ordinate data o f the 

o b je c t's  pos ition  re la tiv e  to  the observer, and the a b i l i t y  o f the 

te s t to  detect d if fe re n t manoeuvres is  assessed using a wide va rie ty  

o f v e lo c ity  changes, or no v e lo c ity  change a t a l l .  The simulations 

give encouraging re s u lts , showing tha t the te s t is  capable o f 

detecting a wide range o f manoeuvres.

Chapter 8 examines fu rth e r the active tracking problem o f the 

previous chapter but using data representing the bearing and range 

o f the ob ject instead o f i t s  cartesian co-ordinates. The data in 

th e ir  present form cannot be used to detect v e lo c ity  changes since 

e ith e r bearing or range may remain constant while the object is  in 

fa c t manoeuvring. However the bearing and range data can ea s ily  

be converted to cartesian co-ordinates and then the te s t can be 

applied as before. Unfortunately i t  appears to be d i f f i c u l t  to 

show prec ise ly  tha t the te s t is  s t i l l  va lid  fo r  such data, but the 

re su lts  give a strong ind ica tion  tha t the te s t is  s t i l l  an 

e ffe c tiv e  method fo r  detecting manoeuvres.
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