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Abstract
Let f(x) 2 Z[x] be a monic irreducible reciprocal polynomial of degree 2d with roots

r1, 1=r1, r2, 1=r2, . . . , rd, 1=rd. The corresponding trace polynomial g(x) of degree d is
the polynomial whose roots are r1 +1=r1, . . . , rd +1=rd. If the Galois groups of f and g
are Gf and Gg respectively, then Gg �= Gf=N , where N is isomorphic to a subgroup of
Cd2 . In a naive sense, the generic case is Gf �= Cd2 oSd, with N �= Cd2 and Gg �= Sd. When
f(x) has extra structure this may be re
ected in the Galois group, and it is not always
true even that Gf �= N oGg. For example, for cyclotomic polynomials f(x) = �n(x) it
is known that Gf �= N o Gg if and only if n is divisible either by 4 or by some prime
congruent to 3 modulo 4.
In this paper we deal with irreducible reciprocal monic polynomials f(x) 2 Z[x] that

are `close' to being cyclotomic, in that there is one pair of real positive reciprocal roots
and all other roots lie on the unit circle. With the further restriction that f(x) has degree
at least 4, this means that f(x) is the minimal polynomial of a Salem number. We show
that in this case one always has Gf �= N oGg, and moreover that N �= Cd2 or Cd�12 , with
the latter only possible if d is odd.

1. Introduction
Let

f(x) = x2d + f2d�1x2d�1 + � � �+ f0
be a monic irreducible reciprocal polynomial of degree 2d with integer coe�cients. For
our purposes, reciprocal means that f(x) = x2df(1=x), so that in particular f0 = 1. The
roots of f(x) fall into reciprocal pairs, and we can conveniently label them

r1 ; 1=r1 ; r2 ; 1=r2 ; : : : ; rd ; 1=rd : (1�1)
The corresponding trace polynomial,

g(x) = xd + gd�1xd�1 + � � �+ g0
has roots

s1 = r1 + 1=r1 ; s2 = r2 + 1=r2 ; : : : ; sd = rd + 1=rd : (1�2)
Let Gf , Gg be the Galois groups of f , g respectively. Since the splitting �eld of g is
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contained in that of f , the Galois group Gg is a quotient of Gf | there is a natural group
homomorphism � : Gf ! Gg with kernel N , say. Thus Gg �= Gf=N and one speaks of
Gf as being a group extension of N by Gg. Such an extension is said to split if one of
the following equivalent statements holds (Theorem 6.5.3 of [3] and xI.7 of [2]):

� Gf �= N oGg;
� there is a group homomorphism  : Gg ! Gf such that � = 1;
� there is a subgroup H of Gf satisfying (i) H �= Gg, (ii) H \ N = f1g (such a
subgroup H is called a complement of N in Gf );

� there is a set of representatives of the cosets of N that forms a subgroup of Gf .
For some reciprocal polynomials f(x) the extension of N by Gg splits, and for some

it does not. For example, if f(x) = �n(x) is the nth cyclotomic polynomial then in [6]
it is shown that the extension splits if and only if either 4 j n or p j n for some prime p
with p � 3 (mod 4). In this cyclotomic case N = C2 is cyclic of order 2, generated by
complex conjugation.
In general, since elements of N send each ri to either ri or 1=ri, we see that each

element of N swaps certain pairs of reciprocal roots, and that N is therefore a subgroup
of Cd2 . In particular, N is abelian. The generic case (treated in [6]) has Gg �= Sd (the
symmetric group acting on the d roots of g) and N �= Cd2 .In this paper we shall consider the case where f(x) is a Salem polynomial, the minimal
polynomial of a Salem number. This means that f(x) 2 Z[x] is irreducible, reciprocal,
monic, has degree at least 4, that exactly one pair of reciprocal roots are real and positive,
and that all other roots have modulus 1. These polynomials may be thought of as being
close to cyclotomic, but we shall see that the Galois theory is (unsurprisingly) strikingly
di�erent. In Section 2 we show that either N �= Cd2 or N �= Cd�12 , and that the latter is
only possible if d is odd. Then in Section 3 we complete the proof of our main theorem:
Theorem 1�1. Let f(x) be a Salem polynomial of degree 2d, let g(x) be its trace poly-

nomial, and let Gf , Gg be the Galois groups of f(x), g(x) respectively. Then
Gf �= N oGg

where N is the kernel of the natural map � : Gf ! Gg. Moreover either N �= Cd2 or
N �= Cd�12 , with the latter possible only if d is odd.
To illustrate that both possibilities for N may be needed when d is odd, consider the

following two examples with d = 5:
(i) f(x) = x10 � 9x9 � 10x8 � 10x7 � 10x6 � 10x5 � 10x4 � 10x3 � 10x2 � 9x+ 1 ;
(ii) f(x) = x10 � 2x9 � 6x8 � 10x7 � 10x6 � 10x5 � 10x4 � 10x3 � 6x2 � 2x+ 1 :

In both cases the trace polynomial has Galois group S5; in the former case N �= C52 , butin the latter case N �= C42 .In related earlier work, Lalande [4] showed that if K is a real number �eld of degree
2d for which the group of units has rank d, and L is the Galois closure of K, then K is
generated by a Salem number if and only if the Galois group of L over Q is a subgroup
of Cd2 o Sd.

2. The structure of N when f(x) is a Salem polynomial
Let �f , �g be the splitting �elds of f , g respectively. Let �i = ri � 1=ri (1 6 i 6 d).

Plainly �f = �g(�1; : : : ; �d). Any element of N changes the sign of some �i (perhaps
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none) and �xes others; elements of Gf send �i to ���(i) where � is some permutation of
1, . . . , d. With f(x) a Salem polynomial, there is a unique pair of reciprocal real positive
roots rj , 1=rj , and the corresponding �j is real; for all other i, the number �i is purely
imaginary (has real part equal to 0) since 1=ri = ri.
Reordering r1, . . . , rd, we may suppose that

�f = �g(�1; �2; : : : ; �k)
with k minimal. For 1 6 i 6 k, let �i be the �eld �g(�1; : : : ; �i), and for convenience we
also de�ne �0 = �g. Thus �0 = �g, �k = �f , and jN j = [�f : �g] = 2k. For 1 6 i 6 k,
de�ne �i to be the automorphism of �i that changes the sign of �i and �xes �i�1 (such
an automorphism exists since �i = �i�1(�i) and �2i = s2i � 4 2 �g � �i�1).
We aim to show that k > d�1, under the assumption that f(x) is a Salem polynomial.

For this we are helped by the following Lemma, which applies more generally.
Lemma 2�1. With notation as above,

�d = �
kY

i=1
�eii (2�1)

for some � 2 �g and, for each i between 1 and k, some choice of ei 2 f0; 1g.
Proof. (This is trivial if k = d, but there is no need to exclude this case from the

following proof.)
We certainly have �d 2 �k, and so can write

�d = w�k + w0
where w, w0 2 �k�1. Applying �k gives

�k(�d) = �w�k + w0 :
Since this must equal ��d (for �2d = s2d � 4 2 �g and �k �xes �g) we deduce that either
�d = w�k or �d = w0.
Relabelling w0 as w if needed, we have �d = w�ekk with ek 2 f0; 1g and w 2 �k�1. We

then write
w = w1�k�1 + w01

with w1, w01 2 �k�2. Applying �k�1 we deduce as above that one of w1, w01 is zero, andrelabelling we have w = w1�ek�1k�1 with ek�1 2 f0; 1g. Thus
�d = w1�ek�1k�1 �ekk :

Proceeding similarly we write w1 = w2�ek�22 , and so on, until we reach (after a �nite
number of steps) the desired equation (2�1).
We now use this expression for �d to show that k > d� 1, and that if k = d� 1 then

each ei is 1.
Lemma 2�2. With notation as above, and with f(x) a Salem polynomial, one must

have k > d� 1, and if k = d� 1 then
�d = �

d�1Y
i=1

�i (2�2)
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for some � 2 �g. Moreover if k = d� 1 then d must be odd.
Proof. If k = d then there is nothing to prove.
If k 6 d� 1, then by Lemma 2�1, after some relabelling, we can write

�d = �
mY
i=1

�i ; (2�3)

where � 2 �g and m 6 k 6 d� 1. We now show that in any equation of the shape (2�3)
we must have m > d� 1, and hence k = d� 1. Suppose to the contrary that m < d� 1.
Let j be the unique index between 1 and d for which �j is real (all others being purely
imaginary). If �j does not appear on either side of (2�3), then m must be odd, so that
the right hand side of (2�3) is purely imaginary. Then applying an element of Gf that
sends rd to rj would make the left side of (2�3) become real, but would keep the right side
purely imaginary (� is sent to some element of �g � R), giving a contradiction. Thus
�j must appear on one side of (2�3), and m must be even. Then applying an element
of Gf that sends rm+1 to rj , we again derive a contradiction from (2�3), with one side
becoming real and the other side becoming purely imaginary. Thus m = d� 1 = k. And
we must now have d odd, or else one side of (2�3) would be real and the other purely
imaginary.
Notice where we used the hypothesis that f(x) (with degree at least 4) is a Salem

polynomial: we needed �g � R, which requires all ri + 1=ri to be real; we needed all but
one of the ri � 1=ri to be purely imaginary, which (together with r1 + 1=ri real) forces
ri to be on the unit circle; and we needed one of the ri� 1=ri to be real, giving a unique
pair of reciprocal real roots ri, 1=ri. We needed f(x) irreducible so that its Galois group
acts transitively on the roots. We did not need the real roots to be positive, and of course
the Galois group of f(�x) is the same as that of f(x).
We have done most of the work in establishing the structure of N , which we record in

a Proposition.
Proposition 2�3. Let f(x) be a Salem polynomial of degree 2d with splitting �eld �f

and Galois group Gf ; let g(x) be its trace polynomial with splitting �eld �g and Galois
group Gg. Then Gg �= Gf=N , where either N �= Cd2 or N �= Cd�12 .
If N �= Cd2 , then as a group of permutations of the roots of f(x) given by ( 1�1), N

is generated by all transpositions of the form (ri 1=ri). If N �= Cd�12 , then d is odd and
N is generated by all the (ri 1=ri)(rj 1=rj). This latter case occurs if and only if the
discriminant of f(x) is a square in �g.
Before proving this, let us note that one consequence of Proposition 2�3 is that if d

is even then the discriminant of f(x) is not a square in �g. One can see this directly as
follows. Let �f , �g be the discriminants of f(x), g(x) respectively. Using the identity

�(ri + 1=ri)� (rj + 1=rj)�2 = (ri � rj)(ri � 1=rj)(1=ri � rj)(1=ri � 1=rj)
one checks that

�f = �2g�21�22 � � � �2d : (2�4)
Now for the unique j such that rj is real we have �2j > 0, and for all other i (such that
jrij = 1) we have �2i < 0. If d is even, it follows that �f < 0, so it is not a square in
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�g � R. One might ask whether there is anything more that can be said in the event that
the discriminant of f(x) is actually a square in Q: for this, see Proposition 4�2 below.
Proof of Proposition 2�3 The �rst part follows from Lemma 2�2, using jN j = jGf j=jGgj =

[�f : �g] = 2k.
For the second part, note that N is certainly a subgroup of the group T generated

by all transpositions of the form (ri 1=ri). Since T has order 2d we are done in the case
jN j = 2d. For the case N �= Cd�12 , note that any permutation in N must be even, for
applying an odd permutation in T to (2�3) (with m = d � 1) would change the sign of
one side but not the other (recall that �i = ri � 1=ri). To see that this case (N �= Cd�12 )
occurs if and only if the discriminant of f(x) is a square in �g, notice that the square
root of the discriminant of f(x) is �xed by N (and hence lies in �g) precisely when N
contains only even permutations (see (2�4)).

3. Proof of Theorem 1�1
We �rst dispose of the case N �= Cd2 , which is routine but sets the scene for the more

delicate case N �= Cd�12 . The group Gf is a subgroup of the symmetric group S2d acting
on the roots (1�1). More strongly, Gf is a subgroup of P2d, which we de�ne by

P2d = �� 2 S2d j if �(ri) = rej (with perforce e = �1) then �(1=ri) = r�ej 	 :
Let � be any element of Gg (a subgroup of Sd, permuting the roots (1�2)), and let b� 2 Gf
be a preimage of � under �. If � cyclically permutes si1 , . . . , sit , then b� acts on ri1 , 1=ri1 ,. . . , rit , 1=rit either by a permutation of the shape

(ri1 re2i2 � � � retit )(1=ri1 1=re2i2 � � � 1=retit ) (3�1)
for some e2, . . . , et 2 f1;�1g, or alternatively of the shape

(ri1 re2i2 � � � retit 1=ri1 1=re2i2 � � � 1=retit ) (3�2)
for some e2, . . . , et 2 f1;�1g. We count 2t possibilities for permutations of the shape
(3�1) or (3�2). Multiplying over all the cycles that make up � , we see that there are 2d
elements of P2d that induce the permutation � on the roots of g(x). These include all
the elements in the coset Nb� . Since we are supposing here that jN j = 2d, all of the 2d
possibilities in P2d that induce � must actually be in Gf . In particular, if

� = (si1 � � � sit) � � � ; (3�3)
then there is an element e� 2 Gf given by

e� = (ri1 � � � rit)(1=ri1 � � � 1=rit) � � � ; (3�4)
copying the way that � acts on the list s1, . . . , sd to each of the lists r1, . . . , rd and 1=r1,
. . . , 1=rd simultaneously. The set of all the e� as � runs through Gg forms a subgroup eGg
that is a complement of N in Gf (visibly eGg �= Gg, and eGg \N = f1g).
For the case N �= Cd�12 the above argument breaks down: we do not know which 2d�1

of the possible 2d lifts of � 2 Gg to P2d lie in the coset Nb� , and it is not immediate that
we can pick lifts that form a subgroup. But in the case N �= Cd�12 we have that d is odd
(Proposition 2�3). If we let Tf be a Sylow 2-subgroup of Gf (necessarily containing N ,
since N is normal in Gf ), and let Tg = �(Tf ), then Tg will be a Sylow 2-subgroup of Gg.
Since Tg has order a power of 2, and the number of roots of g(x) is odd, there must be a
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root of g(x) that is �xed by Tg. Relabelling, we may suppose that sd is �xed by Tg. Then
each element of Tf sends rd to one of rd or 1=rd. Let � be the transposition (rd 1=rd),
acting on the roots of f(x). By Proposition 2�3, � 62 N , and hence � 62 Tf .
Take any � 2 Tg. Let b� be any element of P2d acting on the roots of f(x) that induces

the action of � on the roots of g(x). Then at most one of b� and b�� is in Tf , for if both
were then so would be �. We deduce that of the 2d elements of P2d that induce the action
of � on the roots of g(x), exactly one of each of the 2d�1 compatible permutations of r1,
1=r1, . . . , rd�1, 1=rd�1 occurs for some element of Tf , and for each of these the roots rd,
1=rd are of course either �xed or swapped.
De�ning e� 2 P2d as above, permuting each of the lists r1, . . . , rd and 1=r1, . . . , 1=rd

in the same way that � permutes s1, . . . , sd, we see that Gf contains an element e��e(�) ;
where e(�) 2 f0; 1g. Note that here e� �xes rd and 1=rd. The set of all such lifts forms
a subgroup H: we must have e(�1�2) � e(�1) + e(�2) (mod 2) or else we would get the
contradictory conclusion that � 2 Tf . Thus H gives a subgroup of Tf that is isomorphic
to Tg, and this H is a complement of N in Tf (the intersection of H and N is f1g).
Now we appeal to Theorem 7.43 of [5] (Gasch�utz, 1952): a normal abelian p-subgroup

of a �nite group G has a complement in G if and only if it has a complement in a Sylow
p-subgroup of G. Our group N is a normal abelian 2-subgroup of Gf , with a complement
in Tf , so it has a complement in Gf , completing the proof of Theorem 1�1.

4. Finding an explicit complement of N
Extending the notation of the previous section, let eGg be the subgroup of P2d (per-

muting the roots of f , as before) comprising all the e� given by (3�4) for � 2 Gg given
by (3�3). Then eGg is a subgroup of P2d that is isomorphic to Gg, but viewing Gf as a
subgroup of P2d we might not have eGg � Gf . In any event, we note the following:
Lemma 4�1. With notation as above, Gf �= N eGg.
Proof. Let Gg be a complement of N in Gf (still viewed as a subgroup of P2d), with

� 7! � being an isomorphism from Gg to Gg. Since � and e� induce the same action on the
roots of g, we must have that if �(ri) = rej then e�(ri) = r�ej . Hence, from the structure
of N (generated by the (ri 1=ri) or (ri 1=ri)(rj 1=rj) in the two possible cases) we see
that

e�ne��1 = �n��1
for all n 2 N . Hence

ne� 7! n�
de�nes an isomorphism between N eGg and Gf = NGg.
Hence if we have computed Gg explicitly as a subgroup of the group of permutations

of its roots (1�2), then we have an explicit construction of a subgroup of P2d that is
isomorphic to Gf . In many cases we have more than an isomorphism and in fact Gf =
N eGg. The �rst part of the proof of Theorem 1�1 establishes this whenever N �= Cd2 , andthis is part (i) of the next Proposition.
Proposition 4�2. Let f be a Salem polynomial of degree 2d, discriminant �f , and

with trace polynomial g. Let Gf and Gg be the Galois groups of f and g. We view Gf as
a subgroup of P2d (a subgroup of the group of permutations of its roots ( 1�1)); and Gg
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is a subgroup of the group of permutations of its roots ( 1�2). For � 2 Gg given by ( 3�3),
we de�ne e� 2 P2d via ( 3�4), and then de�ne eGg to be the set of all the e� for � 2 Gg. Let
N be the kernel of the natural map from Gf to Gg. Then

(i) if N �= Cd2 , then Gf = N eGg;
(ii) if N �= Cd�12 and p�f 2 Q, then Gf = N eGg.
Proof. The �rst part was established in the proof of Theorem 1�1, so we are left with the

case where N �= Cd�12 andp�f 2 Q. Then N is generated by the pairs of transpositions
(ri 1=ri)(rj 1=rj), and Gf comprises only even permutations of the roots of f . Take any
� 2 Gg, and let b� be any lift to Gf . For each cycle

(si1 � � � sit) (4�1)
in the cycle decomposition of � , the corresponding part of b� will look like either (3�1)
or the odd permutation (3�2). Since b� is even, there must be an even number of cycles
in the decomposition of � for which the relevant part of b� has the form (3�2): given any
pair of such cycles, say (4�1) and

(sj1 � � � sju) ;
applying the element (rit 1=rit)(rju 1=rju) (which is in N) to the right of b� breaks both
the relevant cycles of b� into the shape (3�1). After a �nite number of such `breaks', we
transform b� into a product of disjoint pairs of cycles of the shape (3�1), and we may now
suppose that b� is of this form.
Next we apply elements of N to transform b� into e� , as given by (3�4). If for one of

the pairs of cycles of the shape (3�1) we have e2 = �1, then apply (r1 1=r1)(r2 1=r2) on
the right to change the sign of e2; then if e3 = �1, apply (r2 1=r2)(r3 1=r3); and so on,
working our way through all pairs of cycles. We conclude that eGg � Gf , and it is easily
seen to be a complement of N , completing the proof of the Proposition.
If p�f is in �g but not in Q, then the hypotheses of the Proposition fail, and it is

possible that the conclusion fails too. For example, with
f(x) = x6 � 5x5 + 3x3 � 5x+ 1

one can check that eGg is not contained in Gf .
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