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Abstract

Let f(z) € Z[z] be a monic irreducible reciprocal polynomial of degree 2d with roots
r1, 1/, ro, 1/79, ..., 74, 1/r4. The corresponding trace polynomial g(x) of degree d is
the polynomial whose roots are r; +1/r1, ..., 74+ 1/rg. If the Galois groups of f and g
are Gy and G, respectively, then Gy, = G¢/N, where N is isomorphic to a subgroup of
C4. In a naive sense, the generic case is Gy =2 C¢ x Sy, with N & C§ and G, = S;. When
f(z) has extra structure this may be reflected in the Galois group, and it is not always
true even that Gy = N x G,. For example, for cyclotomic polynomials f(z) = ®,(z) it
is known that Gy = N x G, if and only if n is divisible either by 4 or by some prime
congruent to 3 modulo 4.

In this paper we deal with irreducible reciprocal monic polynomials f(z) € Z[z] that
are ‘close’ to being cyclotomic, in that there is one pair of real positive reciprocal roots
and all other roots lie on the unit circle. With the further restriction that f(x) has degree
at least 4, this means that f(x) is the minimal polynomial of a Salem number. We show
that in this case one always has Gy = N x G, and moreover that N = C§ or C¢~!, with
the latter only possible if d is odd.

1. Introduction
Let
flz) = 2 4 fog1 2?4 fy

be a monic irreducible reciprocal polynomial of degree 2d with integer coefficients. For
our purposes, reciprocal means that f(z) = 22¢f(1/z), so that in particular fy = 1. The
roots of f(z) fall into reciprocal pairs, and we can conveniently label them

ri, 1/ri, ro, 1/ra, oo, ra, 1/rg. (1-1)
The corresponding trace polynomial,
g@) =2+ ga 12"+ + g0
has roots
si1=r14+1/r, so=ro+1/ra, ...,8q=rq+1/rg. (1-2)

Let G¢, G4 be the Galois groups of f, g respectively. Since the splitting field of g is
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contained in that of f, the Galois group G| is a quotient of Gy — there is a natural group
homomorphism 7 : Gy — G, with kernel N, say. Thus G, = G¢/N and one speaks of
G as being a group extension of NV by G4. Such an extension is said to split if one of
the following equivalent statements holds (Theorem 6.5.3 of [3] and §L.7 of [2]):

Gf =N x Gg;

there is a group homomorphism 9 : G, — G such that m = 1;

there is a subgroup H of G satisfying (i) H = G, (ii) HN N = {1} (such a
subgroup H is called a complement of N in Gy);

e there is a set of representatives of the cosets of N that forms a subgroup of G.

For some reciprocal polynomials f(z) the extension of N by G, splits, and for some
it does not. For example, if f(z) = ®,(x) is the nth cyclotomic polynomial then in [6]
it is shown that the extension splits if and only if either 4 | n or p | n for some prime p
with p = 3 (mod 4). In this cyclotomic case N = Cs is cyclic of order 2, generated by
complex conjugation.

In general, since elements of N send each r; to either r; or 1/r;, we see that each
element of N swaps certain pairs of reciprocal roots, and that IV is therefore a subgroup
of C¢. In particular, N is abelian. The generic case (treated in [6]) has G, = S, (the
symmetric group acting on the d roots of g) and N = C{.

In this paper we shall consider the case where f(z) is a Salem polynomial, the minimal
polynomial of a Salem number. This means that f(z) € Z[z] is irreducible, reciprocal,
monic, has degree at least 4, that exactly one pair of reciprocal roots are real and positive,
and that all other roots have modulus 1. These polynomials may be thought of as being
close to cyclotomic, but we shall see that the Galois theory is (unsurprisingly) strikingly
different. In Section 2 we show that either N = C§ or N = CJ~", and that the latter is
only possible if d is odd. Then in Section 3 we complete the proof of our main theorem:

THEOREM 1-1. Let f(z) be a Salem polynomial of degree 2d, let g(z) be its trace poly-
nomial, and let Gy, G, be the Galois groups of f(x), g(x) respectively. Then

GngNGg

where N is the kernel of the natural map m : Gy — G,. Moreover either N = C¢ or
N = Cg_l, with the latter possible only if d is odd.

To illustrate that both possibilities for NV may be needed when d is odd, consider the
following two examples with d = 5:

() f(z) = 2% - 92% — 102% — 1027 — 102% — 102° — 102* — 102> — 1022 — 9z + 1,

(i) f(z) = 2'° — 229 — 628 — 1027 — 1025 — 102° — 102 — 102> — 62> — 22 + 1.

In both cases the trace polynomial has Galois group Ss; in the former case N = C3, but
in the latter case N = C3.

In related earlier work, Lalande [4] showed that if K is a real number field of degree
2d for which the group of units has rank d, and L is the Galois closure of K, then K is
generated by a Salem number if and only if the Galois group of L over Q is a subgroup
of C§ x Sg.

2. The structure of N when f(z) is a Salem polynomial

Let I'y, T'y be the splitting fields of f, g respectively. Let 6, = r; — 1/r; (1 < ¢ < d).
Plainly I'y = T'4(d1,...,04). Any element of N changes the sign of some d; (perhaps
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none) and fixes others; elements of Gy send d; to £6,(;) where o is some permutation of
1, ..., d. With f(z) a Salem polynomial, there is a unique pair of reciprocal real positive
roots r;, 1/r;, and the corresponding d; is real; for all other i, the number §; is purely
imaginary (has real part equal to 0) since 1/r; = ;.

Reordering r1, ..., r4, we may suppose that

Ff = F9(517627"'76k)

with k£ minimal. For 1 <4 < k, let T'; be the field I'y(é1,...,d;), and for convenience we
also define Iy = T'y. Thus Ty =Ty, Iy =Ty, and |[N| = [[; : T,] = 2%. For 1 < i < k,
define o; to be the automorphism of T'; that changes the sign of d; and fixes I';_; (such
an automorphism exists since I'; = T;_1(d;) and 67 =s7 —4 €Ty CT;_q).

We aim to show that k& > d—1, under the assumption that f(x) is a Salem polynomial.
For this we are helped by the following Lemma, which applies more generally.

LEMMA 2-1. With notation as above,
k
da= Ao (2:1)
i=1

for some A € Ty and, for each i between 1 and k, some choice of e; € {0,1}.

Proof. (This is trivial if k = d, but there is no need to exclude this case from the
following proof.)
We certainly have §; € T'j,, and so can write

0g = woy, + w'
where w, w' € T'y_1. Applying o}, gives
0, (0q) = —wdy +w'.

Since this must equal +d4 (for 43 = s2 —4 € I'y and oy, fixes I'y) we deduce that either
(Sd = wék or 6d =uw'.

Relabelling w' as w if needed, we have 04 = wé;* with e € {0,1} and w € T'y_;. We
then write

w = w1 + wy

with wy, w] € Tx_». Applying 011 we deduce as above that one of w;, wj is zero, and
relabelling we have w = w;8,* " with ey € {0,1}. Thus

_ €k—1 CCL
ba = wi 60655 |

Proceeding similarly we write w; = wad,"~>, and so on, until we reach (after a finite
number of steps) the desired equation (2-1). [

We now use this expression for §; to show that & > d — 1, and that if £ = d — 1 then
each e; is 1.

LEMMA 2-2. With notation as above, and with f(x) a Salem polynomial, one must
have k >d—1, and if k =d — 1 then

d—1
sa=X]] o (2-2)
i=1
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for some A € I'y. Moreover if k =d — 1 then d must be odd.

Proof. If k = d then there is nothing to prove.
If £ < d—1, then by Lemma 2-1, after some relabelling, we can write

g = /\H(SZ, (23)
i=1

where A € 'y and m < k < d — 1. We now show that in any equation of the shape (2-3)
we must have m > d — 1, and hence k = d — 1. Suppose to the contrary that m < d — 1.
Let j be the unique index between 1 and d for which §; is real (all others being purely
imaginary). If §; does not appear on either side of (2-3), then m must be odd, so that
the right hand side of (2-3) is purely imaginary. Then applying an element of Gy that
sends r4 to r; would make the left side of (2-3) become real, but would keep the right side
purely imaginary (A is sent to some element of Iy C R), giving a contradiction. Thus
d; must appear on one side of (2-3), and m must be even. Then applying an element
of G that sends 7,41 to r;, we again derive a contradiction from (2-3), with one side
becoming real and the other side becoming purely imaginary. Thus m =d — 1 = k. And
we must now have d odd, or else one side of (2-3) would be real and the other purely
imaginary. [

Notice where we used the hypothesis that f(z) (with degree at least 4) is a Salem
polynomial: we needed Iy C R, which requires all r; + 1/r; to be real; we needed all but
one of the r; — 1/r; to be purely imaginary, which (together with r; + 1/r; real) forces
r; to be on the unit circle; and we needed one of the 7; — 1/r; to be real, giving a unique
pair of reciprocal real roots r;, 1/r;. We needed f(z) irreducible so that its Galois group
acts transitively on the roots. We did not need the real roots to be positive, and of course
the Galois group of f(—=) is the same as that of f(x).

We have done most of the work in establishing the structure of N, which we record in
a Proposition.

PROPOSITION 2:3. Let f(x) be a Salem polynomial of degree 2d with splitting field T';
and Galois group Gy; let g(x) be its trace polynomial with splitting field Ty and Galois
group G,. Then G, = G /N, where either N = C§ or N = C§ L.

If N = C¢, then as a group of permutations of the roots of f(x) given by (1-1), N
is generated by all transpositions of the form (r; 1/r;). If N = C;l_l, then d is odd and
N is generated by all the (r; 1/r;)(r; 1/r;). This latter case occurs if and only if the
discriminant of f(x) is a square in T';.

Before proving this, let us note that one consequence of Proposition 2-3 is that if d
is even then the discriminant of f(x) is not a square in I';. One can see this directly as
follows. Let Ay, A, be the discriminants of f(z), g(z) respectively. Using the identity

(i + 1) = (3 4 1/r3))” = (71 = 1) = 1) (1 = 1) (s = 1)
one checks that
Ay = A;éf&% ‘e 6?,. (2-4)

Now for the unique j such that r; is real we have 5]2» > 0, and for all other ¢ (such that
|r;] = 1) we have §7 < 0. If d is even, it follows that Ay < 0, so it is not a square in
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I'; € R. One might ask whether there is anything more that can be said in the event that
the discriminant of f(x) is actually a square in Q: for this, see Proposition 4-2 below.

Proof of Proposition 2-3 The first part follows from Lemma 2-2, using |N| = |G|/|G,]
[[;:T,] = 2%

For the second part, note that IV is certainly a subgroup of the group T generated
by all transpositions of the form (r; 1/r;). Since T has order 2¢ we are done in the case
|N| = 24, For the case N = 051717 note that any permutation in N must be even, for
applying an odd permutation in T to (2-3) (with m = d — 1) would change the sign of
one side but not the other (recall that §; = r; — 1/r;). To see that this case (N = CJ™1)
occurs if and only if the discriminant of f(z) is a square in I'y, notice that the square
root of the discriminant of f(x) is fixed by N (and hence lies in I';) precisely when N
contains only even permutations (see (2-4)). [

3. Proof of Theorem 1-1

We first dispose of the case N & C¢, which is routine but sets the scene for the more
delicate case N = C’g‘l. The group G is a subgroup of the symmetric group Szq acting
on the roots (1-1). More strongly, G is a subgroup of P4, which we define by

Py = {0 € Saq|if o(r;) = r§ (with perforce e = 1) then o(1/r;) = rj_e} .

Let 7 be any element of G, (a subgroup of Sy, permuting the roots (1-2)), and let 7 € G¢

be a preimage of 7 under 7. If 7 cyclically permutes s;,, ..., s;,, then T acts on r;,, 1/r;,,
.., i,y 1/7;, either by a permutation of the shape

(roy rig - ri ) rey /vl - 1)) (3-1)
for some es, ..., e; € {1,—1}, or alternatively of the shape

(ray mig oord Vi Ve - /i) (3-2)
for some es, ..., e; € {1,—1}. We count 2! possibilities for permutations of the shape

(3-1) or (3-2). Multiplying over all the cycles that make up 7, we see that there are 2¢
elements of Py; that induce the permutation 7 on the roots of g(z). These include all
the elements in the coset N7. Since we are supposing here that |N| = 24, all of the 2¢
possibilities in P54 that induce 7 must actually be in G;. In particular, if

T:(Sil Sit)"'; (33)

then there is an element 7 € Gy given by
T=(riy i) iy e i) (3-4)
copying the way that 7 acts on the list s1, ..., sq to each of the lists r1, ..., rq and 1/rq,

..., 1/rq simultaneously. The set of all the 7 as 7 runs through G, forms a subgroup G,
that is a complement of N in G (visibly G, = Gy, and G, N N = {1}).

For the case N = CJ~" the above argument breaks down: we do not know which 2¢-1
of the possible 27 lifts of 7 € G, to Py4 lie in the coset N7, and it is not immediate that
we can pick lifts that form a subgroup. But in the case N = C’g_l we have that d is odd
(Proposition 2-3). If we let Ty be a Sylow 2-subgroup of G (necessarily containing N,
since N is normal in Gy), and let T, = n(T), then T, will be a Sylow 2-subgroup of G,.
Since T, has order a power of 2, and the number of roots of g(z) is odd, there must be a
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root of g(x) that is fixed by T,. Relabelling, we may suppose that s4 is fixed by T};. Then
each element of Ty sends r4 to one of rq or 1/rq. Let o be the transposition (rq 1/r4),
acting on the roots of f(x). By Proposition 2-3, o € N, and hence o ¢ T¥.

Take any 7 € T,. Let T be any element of P4 acting on the roots of f(z) that induces
the action of 7 on the roots of g(x). Then at most one of 7 and 7o is in T}, for if both
were then so would be o. We deduce that of the 2¢ elements of Py, that induce the action
of 7 on the roots of g(z), ezactly one of each of the 2! compatible permutations of 7y,
1/r1, ..., rq—1, 1/rq_1 occurs for some element of T, and for each of these the roots 74,
1/rq4 are of course either fixed or swapped.

Defining 7 € P4 as above, permuting each of the lists ry, ..., rqg and 1/ry, ..., 1/rq
in the same way that 7 permutes sy, ..., sq4, we see that Gy contains an element Foelm)
where e(7) € {0,1}. Note that here 7T fixes r4 and 1/r4. The set of all such lifts forms
a subgroup H: we must have e(1172) = e(11) + e(m2) (mod 2) or else we would get the
contradictory conclusion that o € Ty. Thus H gives a subgroup of T that is isomorphic
to Ty, and this H is a complement of N in T (the intersection of H and N is {1}).

Now we appeal to Theorem 7.43 of [5] (Gaschiitz, 1952): a normal abelian p-subgroup
of a finite group G has a complement in G if and only if it has a complement in a Sylow
p-subgroup of G. Our group [V is a normal abelian 2-subgroup of G';, with a complement
in T%, so it has a complement in G'¢, completing the proof of Theorem 1-1.

4. Finding an explicit complement of NV

Extending the notation of the previous section, let C~¥g be the subgroup of Pyy (per-
muting the roots of f, as before) comprising all the 7 given by (3-4) for 7 € G, given
by (3-3). Then G, is a subgroup of Py4 that is isomorphic to G, but viewing G as a
subgroup of P»y we might not have ég C G¢. In any event, we note the following:

LEMMA 4-1. With notation as above, G ¢ = Nég.

Proof. Let G, be a complement of N in G (still viewed as a subgroup of Py4), with
T — T being an isomorphism from G, to G,. Since 7 and 7 induce the same action on the
roots of g, we must have that if 7(r;) = r$ then 7(r;) = r]j-“. Hence, from the structure
of N (generated by the (r; 1/r;) or (r; 1/7;)(r; 1/r;) in the two possible cases) we see
that

Tt =77t
for all n € N. Hence
nT = NT

defines an isomorphism between NG, and Gy = NG,. [

Hence if we have computed G, explicitly as a subgroup of the group of permutations
of its roots (1-2), then we have an explicit construction of a subgroup of P4 that is
isomorphic to G'y. In many cases we have more than an isomorphism and in fact Gy =
Nég. The first part of the proof of Theorem 1-1 establishes this whenever N =2 C§, and
this is part (i) of the next Proposition.

PROPOSITION 4-2. Let f be a Salem polynomial of degree 2d, discriminant Ay, and
with trace polynomial g. Let Gy and G, be the Galois groups of f and g. We view G as
a subgroup of Paq (a subgroup of the group of permutations of its roots (1-1)); and G,
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is a subgroup of the group of permutations of its roots (1-2). For T € G, given by (3-3),
we define T € Pyq via (3-4), and then define G, to be the set of all the T for 7 € G,. Let
N be the kernel of the natural map from Gy to G4. Then

(i) if N = C4, then Gy = NG,; N
(i) if N = C¢ ! and \/A; € Q, then Gy = NG,.

Proof. The first part was established in the proof of Theorem 1-1, so we are left with the
case where N = C¢~! and \/Tf € Q. Then N is generated by the pairs of transpositions
(r; 1/r;)(r; 1/r;), and Gy comprises only even permutations of the roots of f. Take any
T € G4, and let 7 be any lift to Gy. For each cycle

(siy - s4,) (4-1)

in the cycle decomposition of 7, the corresponding part of 7 will look like either (3-1)
or the odd permutation (3-2). Since 7 is even, there must be an even number of cycles
in the decomposition of 7 for which the relevant part of 7 has the form (3-2): given any
pair of such cycles, say (4-1) and

(851~ Sju)s

applying the element (r;, 1/r;,)(r;, 1/r;,) (which is in N) to the right of 7 breaks both
the relevant cycles of 7 into the shape (3-1). After a finite number of such ‘breaks’, we
transform 7 into a product of disjoint pairs of cycles of the shape (3-1), and we may now
suppose that 7 is of this form.

Next we apply elements of N to transform 7 into 7, as given by (3-4). If for one of
the pairs of cycles of the shape (3-1) we have e; = —1, then apply (rq 1/r1)(r2 1/r2) on
the right to change the sign of es; then if e3 = —1, apply (r2 1/r2)(r3 1/r3); and so on,
working our way through all pairs of cycles. We conclude that 69 C Gy, and it is easily
seen to be a complement of N, completing the proof of the Proposition. []

If \/Ay isin I'y but not in Q, then the hypotheses of the Proposition fail, and it is
possible that the conclusion fails too. For example, with

flx)=2% —52° + 323 — 50 + 1
one can check that ég is not contained in G/.
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