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Abstract

This thesis investigates the implementation of secure log file handling mechanisms in
the light of recent smart card improvements.

Initially, we examine how smart cards evolved from single application cards into true
multi-application cards. Additionally, we present the most recent architectures (client
application interfaces) that enable client applications to interface with smart card ap-
plications.

Previous proposals for maintaining log files in smart cards are very limited and mostly
theoretical. We examine those most related to smart cards along with presenting the
very few real world examples of log files.

We go on to examine the new events that require logging along with the requirements
of the entities involved. Subsequently, we describe an ideal event-logging model for a
multi-application smart card environment.

To meet the identified requirements, we describe the details of a smart card entity that
is responsible for dynamically updating the smart card log files. In that context, along
with providing adequate log file space management, we propose a possible standard log
file format for smart cards.

In the core part of the thesis we describe three different smart card log file download
protocols, the selection of which depends on the requirements of the entities involved.
These protocols download audit data to another entity that does not suffer from imme-
diate storage restrictions.

Finally, we describe implementation details and performance measurements of both the
log file download protocol and the standard log file format in two of the most advanced
multi application smart cards.
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1.1 Motivation and Challenges

1.1 Motivation and Challenges

Smart cards are becoming an essential security instrument in the light of the explosive
increase in electronic services. In applications where magnetic stripe card technology
and its security features are not sufficient (e.g. banking, electronic purses, access control,

etc.) smart cards appear to be the most prominent alternative candidate.

Since smart cards are involved in security sensitive applications it is evident that a
number of protection layers are required. The required protection is offered either at
the hardware level (i.e. as part of the physical security of the chip) or at the software

level (e.g. the smart card operating system, or higher at the application protocol level).

During the last three years, smart card technology has developed considerably. Fol-
lowing improvements at the smart card hardware level, smart cards have evolved from
multi-functional to multi-application cards. In simple terms this implies that the smart
card operating systems are capable of securely hosting multiple applications. Although
this might sound simple, given that in computer systems the issues involved have been
addressed over many years, in a smart card environment the situation is more complex

due to hardware and software restrictions.

Despite these difficulties, smart card technology developers have responded successfully,
and, for example, the concepts of secure application download or deletion, secure inter-
application communication, and application isolation are no longer an issue. One thing
of importance here is that the introduction of multi-application cards introduces new
vulnerabilities that require additional security mechanisms which are not yet available.
For example, in a smart card environment application execution can easily be inter-
rupted (e.g. by removing the card from the reader); it is then important to have a
mechanism that will recover the smart card application to a safe state. Another mech-
anism could be responsible for logging certain events in order to provide evidence as to

whether the security of the card or an application has been compromised. Finally, it

15



Introduction

could be the case that some smart card applications rent or sell part of their functional-
ity to other applications. In such cases it will be helpful to have a mechanism that will

identify when an application has used the functionality offered by another application.

The above mechanisms have some common characteristics. They have to identify the
relevant events and make sure that they are adequately reported. Therefore, smart
cards need to store certain information internally in the card. The ideal place to store

this information is in dedicated log files.

Although a lot of work has been done in providing logging architectures for traditional
computer systems, the literature on smart card log file handling mechanisms is scarce.
Log file mechanisms in computer systems are regarded as one of the essential instruments
for monitoring system activity along with helping a system to recover to a “safe state”

after a crash. Log files can be used to:

- record security critical events to enable users to be held accountable for their

security related actions,
- resolve possible disputes about events,
- detect security breaches after they have happened, and

- recover the system to a safe state after fatal failures.

However, smart card log file handling mechanisms have not yet received the necessary
attention mainly due to the smart card’s technological limitations and its previous
single application architecture. Recent advances in smart card technology — more
memory and increased processing power, advanced operating systems — suggest that
log file mechanisms could be implemented as an enhancement to the overall smart card

security.

In a smart card environment with limited storage and processing resources (unlike

16



1.2 The Contribution of this Thesis

most modern computer systems) the use of log files needs very careful thought and
investigation. For example, whatever space is allocated for the smart card log files will
eventually be used up. The obvious question is what happens in such a case. The
currently favoured approach suggests that smart card log files should be overwritten in
a cyclic mode. When following this approach and when the smart card is frequently
used (i.e. a lot of information is written to the log files) it could be the case that
certain valuable information might be lost. In any case, access to the log files should be
controlled in order to ensure that the log file space is not overused by a single application

or that the log file information is not disclosed to unauthorised entities.

In addition to the usual design problems when providing solutions to the above, one has
to take into account the limitations of smart card micro-processors. Among the most

notable limitations are the following:

- limited memory in the card, thus the complexity of any algorithms and the amount

of data to be stored should be minimised,

- restricted communication bandwidth when receiving or sending any information

to/from the card,

- processing difficulties when handling large smart card files (e.g. larger than 255

bytes), these are restrictions mainly imposed by the card’s file system.

1.2 The Contribution of this Thesis

Currently, a great deal of emphasis is placed on cryptography and security. In other
words, great efforts have been placed in improving the performance of smart card cryp-
tographic algorithms. At the same time, similar efforts (e.g. application isolation, etc.)
aim to provide adequate security protection so that the concept of multi-application

smart cards becomes a reality. Although we are using cryptography we provide an al-

17



Introduction

ternative security mechanism that gives the necessary evidence after a security relevant

incident has happened.

This thesis addresses the topic of secure log file handling mechanisms in smart cards, a
way to securely generate and maintain log files taking into account the characteristics

and limitations of current smart card technology.

The main goal of this thesis is to propose new concepts and techniques that lead to smart
card log file handling mechanisms that can be applied in practice thereby bridging the
gap between research and real-life applications. The results of this thesis may promote
the development of improved smart card log file handling mechanisms and serve as a
basis for understanding the issues involved in smart card event logging. Therefore, we

proceed in the direction of providing answers to the following three questions:

- what are the new events that require to be logged, taking into account the recent

smart card improvements,

- how can we efficiently manage the smart card log file space, and

- what happens when the smart card log file becomes full.

In order to highlight the issues involved we present a model for smart card logging
that will form a foundation for the rest of the thesis. In this model we identify the
entities involved, and define the characteristics of their behaviour. Once the entities
are identified, it also becomes clear which types of events are of particular importance
for each entity. Having identified the new events that require logging we also define the

characteristics of the mechanism that will perform smart card logging.

The significance of our logging mechanism, which also distinguishes it from other pro-
posals, is that the logged events can be used to identify pay-as-you-use details or to

dynamically monitor the behaviour of a downloaded application.

18



1.3 Organization of the Thesis

Furthermore, in order to allow adequate log file space management we propose a stan-
dard log file format. Such a standard format will prevent smart card applications from
over consuming valuable log file space and also will simplify the dispute resolution phase,
since it will be easier for the arbitrators to access the content of the log files in case of

a dispute.

In order to provide an answer to the problem of overwriting log files and avoiding the
destruction of valuable evidence we present the core idea of the thesis, i.e. secure log
file download protocols. These protocols securely extract the log files from the card and
send them to another entity that does not suffer from immediate storage restrictions.
Three different protocols are presented according to the different requirements of the

entities involved.

Finally, in order to bridge the gap between the theoretical work and real world imple-
mentation of the proposals we present experimental implementation details and per-
formance measurements for the standard log file format and the first of the secure log
file download protocols. Both prototypes are based on two of the most widely used

multi-application smart cards.

1.3 Organization of the Thesis

This thesis is organised as follows. Chapter 2 provides an overview of smart card
technology. We explain the characteristics of today’s multi-application smart cards in
order to identify the new events that require logging, and subsequently demonstrate
that a possible real implementation of our proposals is feasible. In this context we also
examine the characteristics of programming interfaces that allow client applications to
interface with smart card applications. In this chapter we also present clear definitions

of smart card concepts that will be used throughout the whole of this thesis.

In Chapter 3, we examine existing proposals for smart card log file handling. Each of

19



Introduction

the proposed schemes looks at the log file handling problem from a different angle and
thus help to highlight the issues involved. Additionally, in order to maintain a balance
between the theoretical log file handling proposals and real world implementation ex-
amples, we examine the use of log files in the Mondex purse and the MPCOS cards

from Gemplus.

In Chapter 4, we present our ideal model for smart card log file handling. We consider
a set of general requirements for the protection of log files. Additionally, we examine
the different entities that will benefit from the existence of log files. We also identify
the new events that require logging in the light of recent smart card improvements. The
issues covered in this chapter will help us to better understand the exact magnitudes

of smart card based logging.

In Chapter 5, we introduce a new concept referred to as “dynamic logging”. Within
this scheme we log the use of certain smart card application primitives dynamically.
This operation is performed by the first entity of our smart card model called the Log
File Update Manager (LFUM). We also define the operational behaviour of the Log
File Browse Manager (LFBM), as the second entity of our model, that will provide
controlled access to the smart card log files. Additionally, in order to improve log file

space management we propose a possible standard log file format.

In Chapter 6, the core part of the thesis, we describe the third entity of our model, the
Log File Download Manager (LFDM). This entity is responsible for securely download-
ing the log files from the card to an external entity that does not suffer from immediate
storage restrictions. We define three different log file download protocols, the choice of

which will depend on the different requirements of the entities involved.

In Chapter 7, we provide the experimental implementation details and execution timings
results both for the LFDM and the standard log file format. The significance of the

results are discussed and further work is suggested. Our implementation remarks should

20



1.3 Organization of the Thesis

be considered as a reference point when implementing smart card applications since
they present certain features and limitations of the smart card application development

phase.

Finally, Chapter 8 gives the conclusions of this thesis.
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Smart card Technology
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Over the last three years the smart card scene has changed considerably, both at the
hardware and software level. More powerful micro-processors and new software tech-
nologies (e.g. application code interpretation and dynamic application downloading)

have made multi-application smart cards a reality. The aim of this chapter is to outline

the main characteristics of smart card technology.
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2.1 Introduction

2.1 Introduction

Smart cards are already playing a very important role in information technology (IT).
The public at large encounter smart cards as public telephone cards, bank cards or

Secure Identity Modules (SIMs) in mobile phones.

Among the key issues in the acceptance of smart card technology are security, upgrad-
ability and programmability. These features are the consequences of improvements both
in the performance of current smart card microprocessors |14, 33] and in more advanced

operating system architectures [10, 13, 53].

In smart cards, as in many computerised devices, the operating system is a security
critical system component that determines the internal and external behaviour of the
whole system. The development of Smart Card Operating Systems (SCOSs) offered
the same benefits as the development of operating systems in the early computers. The
main benefit is that application developers are free from any concerns about the specific
hardware constraints of their device, and users benefit from a variety of new applications

(e.g. transport, banking, retail, health care, etc.).

Among the most notable changes in smart card technology is that smart card operating

systems have developed from multi-function [10] into multi-application [19, 31].

We open with an overview of “traditional” smart card technology. We then describe
the current status of the true multi-application smart cards that we consider for testing
our techniques, explaining their main characteristics, advantages and disadvantages.
Finally, we follow this by clarifying the techniques used for communicating (interfacing
from an application running in a PC or a general purpose terminal) with the smart card

applications.
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2.2 Smart card Technology

In this section we describe the fundamental characteristics of smart card technology.

2.2.1

Smart card Microprocessors

Smart cards are the latest and most advanced member of the identification card (ID-1)

family [41]|. Certain aspects of smart card technology are standardised in the form of

ISO standards described in §2.2.2.

The heart of the smart card consists of a microprocessor chip. The chip contains four

main functional blocks:

L

I1.

III.

IV.

The Central Processing Unit (CPU). Most of today’s smart cards are based on 8
bit micro-controllers. These controllers operate within the clock range of 4Mhz—

32Mhz and their operating voltage varies from 3V to 5V.

The Read Only Memory (ROM) contains all the information that will remain
unchanged during the life-cycle of the card. The ROM typically contains the

operating system of the card, the transmission protocols, security algorithms, etc.

The Random Access Memory (RAM) is the volatile memory the contents of which
are lost when power is removed from the card. It is used for storing transmission

data and intermediate results.

The Electrically Erasable Programmable Read Only Memory (EEPROM). This
type of memory is used for storing information that will be used between power
on/offs. It can hold certain information that will be necessary for the card’s

lifecycle, personalized data like PIN numbers and smart applications.

Certain smart card microprocessors contain additional entities e.g. cryptographic co-
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processors, intrusion detection mechanisms (e.g. low/high power supply voltages or

changes in clock operating frequencies).

The aforementioned smart card chip is bonded in a circuit board and is connected to
electrical contacts on the metallic board. This metallic board is in turn glued to the

base of the plastic card.

Cl: Vcc Cl C5 C5: Ground
C2: Reset c2 cé C6: Vpp
C3: Clock C3 Cc7 C7:1/0

C4:. RFU C4 C8 C8: RFU

Figure 2.1: Naming and numbering of the smart card contacts according to ISO 7816-2.

The eight contacts (C1-C8) that provide the chip’s interface to the outside world are
shown in figure 2.1. In accordance with ISO/IEC 7816-2 [43] two of the eight contacts
(C4 and C8) are reserved for future use. This is the reason why certain cards are
produced with only 6 contacts in order to slightly reduce production costs. The rest
of the contacts are as follows: C1-Supply Voltage, C2-Reset, C3-Clock Frequency, C5-

Ground Mass, C6-External Programming Voltage, C7-Input/Output.

2.2.2 Smart card Standards

The most important and basic ISO standards for smart cards are now complete.

- ISO/IEC 7810 |41] defines the characteristics of the plastic card (card dimensions,

toxicity of plastic, etc.) on which the smart card chip is bonded.

- ISO 7816-1 [47] defines the physical dimensions of the contacts along with their

electromagnetic radiation and mechanical stress.
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- ISO 7816-2 [43] defines the location, purpose and electrical characteristics of the

card’s metallic contacts.

- ISO 7816-3 [45] defines the operating voltage and the transmission protocol re-

quirements.

- ISO 7816-4 [42] establishes a set of commands that provide file access, basic se-

curity functionality and transmission of card data.

- ISO 7816-5 [40] defines the rules governing the numbering and naming of smart

card applications.

- ISO 7816-6 [44] describes the details of the physical transportation of device and

transaction data, answer to reset (ATR) and transmission protocols.

In addition to the above, there are further ISO smart card specific standards, e.g. specific
security related inter-industry commands [49], structured card query language (SCQL)

commands [48].

Currently, major companies producing smart card related products are forming consor-
tia in order to provide unified and interroperable smart card products (e.g. MULTOS
[19], Java Card [50]). Since these proposals are still evolving, it will be some time before

they are adopted as complete cross-industry standards.

2.2.3 Smart card Life Cycle

From the manufacturer to the application developer and the card holder, the production
of the smart card is divided in different phases. There are five main phases that aim to
test the functionality of the smart card chip along with ensuring the secure initialisation
and personalisation of the chip’s different functions. We briefly discuss each of them

below.
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I1.

ITI.

IV.

. Chip and card manufacturing phase is carried out by the chip manufacturers.

In this phase the silicon chip is manufactured and tested. Certain fabrication
data will be written to the chip and it is then ready to be delivered to the card

manufacturer.

Pre-Personalisation. This phase is carried out by the card suppliers. The main
operation of this phase is that the chip is mounted on the plastic card. The chip
is connected to the printed circuit board and the smart card operating system is
also installed. If it is required, at this stage the functionality of the smart card

can be tested.

Personalisation. This phase is carried out by the card issuers. It is regarded as
the main operation since the logical data structures (e.g. data files, directories
and applications) are written to the card. Additionally, information about the

card holder identity will be written to the card.

Utilisation Phase. This phase includes the use of the card by the card holders.

. Termination Phase. There are two ways that the card can be moved into this

phase. Firstly, the smart card operating system or an application may block access
because certain security features (e.g. PIN numbers) are blocked. Secondly, the

smart card may become physically damaged, e.g. the chip is broken.

A slightly different smart card life cycle (dedicated for financial transaction cards) is

presented in ISO 10202-1 [39].

As we examine the multi-application smart card technology, in section §2.3.1 we point

out that the the above life cycles are not absolute. For example, it could be the case

that the smart card operating system is not installed in the pre-personalisation phase

but in the chip and card manufacturing phase. Similarly, with the feature of dynamic

smart card application download the card can accept or remove further applications

while it has moved into the utilisation phase.
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Although the actual chip and the smart card operating system provide the required
security, it is the personalisation operation which creates and enables the card’s func-
tionality. Therefore, personalisation is the central process in the smart card production

phase.

2.2.4 Multi-function Smart cards

In the following subsection we outline the main characteristics of one of the most well-
known multi-function smart card operating systems. In doing so, we highlight the
characteristics and inadequacies of smart cards before the advent of multi-application

cards.

MPCOS Smart card Operating System

The Multi-application Payment Chip Operating System (MPCOS) [10], as its name
implies, is an operating system adapted to multi purpose and payment applications.
The fact that the MPCOS name contains the word “multi-application” does not imply
that applications can be downloaded at any stage of the card’s life cycle. It rather
means that applications can coexist on the same card, but they have to be installed

during the personalisation phase.

The MPCOS smart card operating system comes with the matching MPCOS smart
cards. It is compatible with the ISO 7816-4 standard data structures and commands
(one difference is that it supports a single level of sub-directories). It is also compatible

with its predecessor, the Multi-application Chip Operating System (MCOS) [9].

The MPCOS cryptographic security features can be summarised as follows:

- Secure messaging, which implies protection of the administration command trans-

missions between cards and terminals, as defined in ISO 7816-4. This is actually
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achieved either by encrypting the data sent to the card, or by sending 3 bytes of
a cryptographic checksum along with certain smart card commands. Thus, the

receiver can verify the integrity of the transmission.

- Card/Terminal authentication, is a two-way authentication process. The process
is achieved with a simple challenge-response system and a shared key between the

two entities.

- Administration command transmission verification using secure messaging, em-

ploying cryptographic checksums.

- Sensitive command monitoring, which generates a cryptographic certificate based
on a sensitive command counter and the previously executed sensitive command

header, details of which are stored internally in the card.

- Payment command cryptograms are issued during payment transaction sessions.
The MPCOS cards and terminals generate cryptograms that can be used to verify

the integrity of the transmission.

Another multi-function SCOS which offers very similar functionality to the MPCOS is

called OSCAR [13].

2.3 Multi-Application Smart card Technology

In this section we describe the multi-application smart card technology. We open our
discussion by explaining the need for multi-application smart cards. Subsequently, we
describe two of the most advanced and well known smart card technologies, the Java

Card and Multos.
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2.3.1 The Need for Multi-application Smart cards

Most SCOSs are largely concerned with the management and protection of data files
along with the provision of cryptographic algorithms. Although the ISO 7816-4 standard
claims to provide an abstract view of a multi-application operating system, it is obvious
that SCOSs built around this proposed methodology will not be true multi-application
SCOS. This is true since if more than one application is to reside in the same card,
application developers will have to agree and define their application structures and

inter-application relationships in advance.

In the past, before the emergence of multi application smart cards, developing a smart
card application was often a difficult process. Although the ISO 7816 series of standards
attempted to standardise certain aspects at the smart card application level, the smart
card’s internal working varied between different smart card vendors. This is the main
reason for the large number of application programming interfaces (APIs) dictated by

the specific hardware characteristics of the different smart card microprocessors.

Given that smart card manufacturers were reluctant to provide information and pro-
gramming tools for their products, it was very difficult for smart cards to be utilised
by anyone outside a small numbers of experts, mainly working for the large smart card
manufacturing companies. Furthermore, due to the different steps involved in the per-
sonalisation phase (section §2.2.3), smart card developers had to wait for a period of
time (from a couple of weeks to a couple of months) in order for their application to be

delivered within the smart card mask.

Since the applications were designed to run on proprietary smart card micro-processors
they were not able to run on different smart cards. This implies that there was no
platform independence and applications had to be completely re-written in order to

become portable between different smart card platforms.
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It is obvious that application developers require new techniques that will enable smart
cards to host multiple applications securely. For example, these applications might
originate from different companies, share certain information and more importantly
they could be installed at any later stage in the card’s life cycle without reference to
the existing applications. Finally, strong guarantees should be present to make sure
that applications will not interfere with each other (i.e. they should be restricted within
their own application space) and that resources should be accessible only through well

defined operating system calls.

2.3.2 Java Card APIs

The Java Card Application Programming Interface (API) 1.0 was released in October
1996. This was the initial attempt to bring the benefits of Java to the smart card
world. The minimum smart card environment needed to run the Java Card API 1.0 is
a 300 KIP (kilo instructions per second) CPU, 12 Kbytes ROM, 4 Kbytes EEPROM
and 512 bytes of RAM. The Java Card API supports the following data types needed
for Java Card applications: Boolean, byte and short data types, all object-oriented
scope and binding rules, all flow control statements, all operators and modifiers, uni-
dimensional arrays. The API consists of the java.iso7816 package which defines the

basic commands and error codes as specified in ISO 7816-4.

In September 1997, the Java Card API 2.0 was released by JavaSoft with more advanced

features and extended functionality. The API 2.0 consisted of three different documents:

I. The Java Card Virtual Machine Specification [29], that defines the behaviour of
the virtual machine, e.g. Java Card supported and unsupported features, how

exceptions are caught, etc.

II. The Java Card 2.0 Programming Concepts [30], contain information about the

Java Card 2.0 classes and how they can be used in smart card applets. Some of
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the concepts covered are: transaction atomicity, ISO 7816-4 file system, applet

life time, etc.

ITI. The Java Card API 2.0 Specification [31], describes all the Java Card packages,

classes and methods.

Among the most notable supported features of the API 2.0 [25] are the following:

- Packages are used exactly the way they are defined in standard Java.
- Dynamic Object Creation of both class instances and arrays is supported.
- Virtual Methods and Interfaces, may be defined as in standard Java.

- Exceptions are generally supported, apart from some exceptions and error sub-
classes which are naturally unsupported (e.g. exceptions for multi-dimensional

arrays, etc.).

The minimum smart card microprocessor requirements for supporting the API are 16
Kbytes of ROM, 8 Kbytes of EEPROM and 256 bytes of RAM. The Java Card API 2.0
is compliant with ISO 7816 parts 6, 7 and 8 [40, 44, 42]. A more detailed coverage of

the API is provided in section §2.3.4.

In February 1999 Sun released the latest version of the Java Card API 2.1 [32]. The

major enhancements and changes from Java Card API 2.0 are the following:

- The cryptography extension package has been reconstructed. This implies that
the javacard.security and javacard.crypto packages provide extended func-
tionality for security primitives. Additionally all the export control classes are

transferred in javacard.crypto.

- The applet firewall is more robust and more restrictive. From now on applets are
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allowed to customize access control via a very well defined sharable interface for

object sharing.

- Particular importance has been placed on the design of the specification in order
to allow applets from different smart card application developers to become more

portable.

- The ISO7816-4 file system extension package javacardx.framework has been

deleted.

- Since Java Card API 2.1 classes, i.e. the java.lang package, are re-defined as a
strict subset of Java and since transient objects are created using factory methods,

the model can be conveniently simulated on a workstation.

2.3.3 The Benefits of Java on Smart cards

When smart card manufacturers decided to enhance smart card technology they also
realised that they needed to overcome the limitations mentioned in section §2.3.1. This
led to the conclusion that: “the problem faced is similar to that of loading code into the

World Wide Web browsers, a problem that Java attempted to solve” [5].

When using the Java programming language the development of smart card applica-
tions is simplified and improved. The primary reason behind this improvement is that
Java Card developers are presented with a variety of standard off-the-shelf integrated
Java development environments along with their supporting documentation. Java Card
applications could be written much more quickly since the details of smart card com-

plexities are hidden.

The Java programming language paradigm provides a secure model that prevents pro-
grams from gaining unauthorised access to sensitive information. This implies that if
Java Card applications adhere to the general Java programming model they will be

restricted within their own operational environment.
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Since Java is based on a runtime byte-code interpreter the portability issue is success-
fully addressed. This implies that with the usage of interpreters in the cards, Java Card
applications would be portable between different smart card microprocessors. Upgrad-
ing the smart card’s functionality could take place with new improved applications that

could be installed at any time during the life cycle of the smart card.

Finally, the major problem that had to be solved was the migration of the general Java
scheme into a smart card environment (taking into account the smart card hardware

and memory constraints).

2.3.4 Java Card Technology

The internal architecture of the Java Card specification is illustrated in the right hand
side of figure 2.2. At the bottom layer of the smart card architecture there is the smart
card microprocessor. Immediately above the hardware layer we observe the smart card
operating system (SCOS). On top of the SCOS we have the Java Card Virtual Machine
(JCVM). Both the JCVM and the SCOS are written in the native language of the
microprocessor. The JCVM hides the manufacturer’s proprietary technology with a
common language interface. It is actually a reduced subset of the standard Java Virtual

Machine (VM), as a result of memory and hardware constraints.

In contrast with the normal Java virtual machine the JCVM does not support garbage
collection. Application developers should not assume that objects which are allocated
are automatically de-allocated. This feature, along with the limited memory space of
the card, implies that application developers should be very careful when they develop
Java Card objects. They have to make sure that their applications are small enough to
fit within the memory of the card. Additionally, the Java Card does not support object

cloning. This is mainly a restriction imposed by the card’s limited storage memory.

In the Java Card there is no separate Security Manager which enforces the policy
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decisions. The security policy decisions are embodied within the JCVM. A security
policy decision could be, for example, the mechanism which defines the inter-application
communication (i.e. Gateways as described in the following paragraphs). Threads are
not supported and a Java Card system is not able to load classes dynamically. The
latter is the result of the external (not in the card) byte code verification phase.

Java Ca}rd Code

v
Standard Java Compiler

v I
Java Byte Codes i \
) Download % Java Card i Java Card Byte Code
> Applet |[= Applet
v 1
Byte Code Verifier Java Card Framework Bye Code O
v Virtual Machine _
Java Card Byte Code . . Machine Code
. OS & Native Functions
v
N Hardware
Application Loader ... \ /

Figure 2.2: The Java Card application development and the Java Card architecture.

The system classes are either masked in the ROM of the card during manufacture or they
can be loaded through a controlled installation process (after verifying the necessary

application certificates) at any later stage of the card’s life cycle.

The lifetime of the JCVM is, in a sense, equivalent to the life time of the card. Since
information must be preserved even when power is removed from the card, most of the

persistent information is stored in EEPROM memory.

Some of the most important features of the Java Card technology are transaction atom-
icity, exceptions, and inter-application communication. Transaction atomicity guaran-
tees that any updates to a single persistent object or class will be atomic (either fully
performed or not performed at all). Automatic transaction integrity describes how the
virtual machine shall behave in case power is lost during the update of a field in an
object. On the other hand block transaction integrity describes the virtual machine

behaviour when the application programmer defines a specific part of his code which
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must be executed in one piece.

Exceptions and their subclasses represent serious errors usually thrown up by the JCVM
(when internal runtime problems are encountered) or programmatically (Checked excep-
tions or Unchecked exceptions). The exceptions that are not caught by the application
are caught by the JCVM. The Java Card application programmers can define their own

exceptions by declaring subclasses of the class Exception.

Among the most notable improvements of API 2.0, compared to API 1.0, is the inter-
application communication. For example, applications can communicate and exchange
information with each other in a controlled manner. According to the Java Card API
this inter-application communication is achieved via a complement to the Java Sandboz
security model called the Gateway model. This model allows flexible bilateral agree-
ments between applets willing to share information. The Gateway model is based to
a large extent on Capabilities as it maintains a table of shared objects. The model is
implemented as a system class which allows specific objects to be declared sharable, and
access to these objects is then controlled. To make an object sharable, the sharing ap-
plication must create an authorisation object called a TicketChecker. The details of the
sharing application, sharable objects, and the TicketChecker are stored in the Gateway.
An application asking for access to a shared object must provide to the Gateway a valid
Ticket object. The Ticket objects are in turn checked by the Gateway model in order

to grant or refuse access to the corresponding object.

On top of the JCVM we have Java Card framework. The Java Card API 2.0 defines

four main packages:

- javacard.framework, as the core package present in all Java Card implemen-
tations which defines the following classes (Applet, PIN, Util, System, AID,
APDU). The javacard.framework package also provides an object oriented view

of ISO 7816-4.
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- javacardx.framework might contain specific commands for specific applications

(e.g. EMV, GSM, etc.).

- javacardx.crypto and javacardx.cryptoEnc provide support for cryptographic
functionality (e.g. RSA, DES, SHA-1) that might be required by smart card ap-

plications.

The javacardx.* packages are considered as extensions and they might not always be
present in all Java Card implementations. In addition to these packages, a subset of the
java.lang package is also included. Detailed explanations of each package, are given

in the API 2.0 specification [31].

The steps for creating a Java application, downloading it and executing it on the smart
card are presented in the left hand side of figure 2.2 and described below. Firstly, the
application programmer must conform to the Java Card API, develop and compile a
Java Card application by using a standard Java development environment. Due to the
fact that there is no byte code verifier in the card, the newly created Java code classes
must be verified externally producing signed loadable byte code. This is checked by
the JCVM before accepting code from an external source. As soon as the Java classes
are verified the application code is ready for loading onto the card via the external

application loader.

2.3.5 Multi-Application Operating System (MULTOS) Technology

Multos is offered as a high-security Multi-Application Operating System (MAOS) for
smart cards. It enables a number of different applications or products to be held on the

smart card at the same time, separately and securely.

Multos has been designed with security in mind. Thus, issues like secure application

download and application isolation are a major concern. In Multos each application
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carries an application certificate that is verified prior to the application download.

The Multos operating system checks the validity of the application it has received,
allocates the program a protected and — through the use of special “firewall” programs
— isolated area in memory, and locks the new program into place. Subsequently, each
new application is kept separate by these firewalls from those already installed on the

card.

Mondex International has developed a smart card optimised language: MEL (Multos
Enabling Language). MEL applications interface with the Multos operating system
via the MAOS-API (Application Programming Interface). The operation of writing

applications for Multos is similar to writing Java Card applications as described in

figure 2.3.
C Java b
. . Architecturally:

Multos
Executable ; card
Language ava

g1 JCB V/ Bytecode
I mplemented I
to ITESEC6 MULTOS-API JavaCard-API

\i: MULTOS GPOS
Hardware Hardware

Figure 2.3: Contrasting Java Card technology and Multos technology.

Applications to run on Multos can be programmed in C which is then translated into
MEL. Finally, Multos Ver. 3 on Hitachi H8/3112 smart card micro-processor was certi-
fied, in September 1999, at ITSEC [37] level E6.
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2.4 Interfacing With Smart card Applications

Smart card application programming interfaces form one part of smart card technology.
We will also cover the APIs that will allow “client” applications to communicate with

smart card resident applications.

We start by describing a traditional but effective method, i.e. the smart card manu-
facturer specific drivers. Subsequently, we examine the most recent and popular card
interface APIs (PC/SC and OCF) that aim to enable interoperability between smart
cards and smart card readers. We aim to highlight the main characteristics of each
different proposal in order to justify our selection for the implementation described in

chapter 7.

2.4.1 Manufacturer Specific Drivers and DLLs

Until very recently there were no card reader independent application programming

interfaces. Two specific reasons for this are:

- The smart card and the card reader device were very closely coupled; there was

no need for a card to be used with a different card reader and vice-versa.

- Card reader programming interfaces were not standardised, whereas smart card

interfaces were standardised.

Thus, the most common method employed when smart card programmers want to
communicate with a smart card application via a smart card reader is the following:
obtain the drivers specific for the smart card reader, install them in the system and
subsequently integrate them within the client applications. This architecture requires
that each manufacturer provide a device driver that will transport Application Protocol

Data Units (as described in ISO 7816-4) with its proprietary host-reader protocol.
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Client Application | Reader Driver | Smart Card Reader |

Command
APDU

ICC

Figure 2.4: Communicating with the card-reader via manufacturer specific drivers.

The whole procedure is summarised in figure 2.4. The client sends an APDU via the
card reader driver to the card reader and in turn to the card. The reverse steps are

followed when an APDU is send from the card to the client.

2.4.2 The Personal Computer Smart Card Specification (PC/SC)

The Personal Computer Smart Card (PC/SC) specifications [24, 66] were created by the
PC/SC workgroup (formed in mid 1996), as a joint effort between Bull CP8, Gemplus,
Hewlett-Packard, IBM Corporation, Microsoft, Schlumberger, Siemens Nixdorf, Sun
Microsystems, Toshiba and Verifone. The first documents became public in Decem-
ber 1996 and are formally known as “Interoperability Specifications for Integrated Cir-
cuit Cards (ICCs) and Personal Computers”. They are more commonly referred to as
PC/SC. Currently, the PC/SC workgroup retains the ownership of the specification

until it is accepted by a formal standards body.

The main goal of the PC/SC architecture is to allow interoperability of smart card read-
ers and cards in a PC environment running the Windows operating system. According

to the PC/SC consortium the main reasons for creating the specifications were:

- Current lack of interoperability of smart card technology (software tools and hard-

ware devices) in a PC environment.
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- No widely accepted application programming interface (API) for developing “client”

applications that interface with smart card applications.

- The mechanisms that permit multiple applications to share and serialise access

to a single smart card simply do not exist.

The main components of the PC/SC architecture are presented in figure 2.5 and ex-

plained in the following subsections.

ICC SP )

Service Provider

Cryptographic SP ]

IFD IFD IFD
Handler Handler Handler

Figure 2.5: The PC/SC architecture.

The Smart card Resource Manager

The central entity of the PC/SC architecture is the smart card Resource Manager. It
is responsible for controlling all accesses to the smart card relevant resources within
the system. The resource manager is considered as the privileged component of the
architecture and thus is very likely to be provided as part of the operating system.
There should be only one smart card Resource Manager within a system. The smart

card Resource Manager is responsible for the following two tasks:

- Tracking the smart card relevant resources: This implies tracking all the available

and installed Interface Devices (IFDs) and smart cards and making this informa-
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tion available to other applications. Similarly, it has to identify which cards are

inserted or removed from specific readers.

- Control allocation of IFDs and resources: This is done by providing the means

for attaching specific IFDs in shared or exclusive modes of operation.

As the smart card Resource Manager is considered a privileged component, its instal-

lation or removal must be a carefully controlled process.

The Smart card and Interface Device Components

A PC/SC compliant smart card must adhere to the smart card standards defined by
ISO/IEC. Similarly, the IFD is the actual interface between the smart card and the

outside world.

In order to enable the smart card Resource Manager to perform its tasks it is expected
that each IFD will be identified to the smart card Resource Manager as part of the IFD’s
installation process. At this stage the Resource Manager IFD database will be updated
in order to reflect the latest installed device. Similarly, each smart card manufacturer
should provide a setup utility that will permit initial installation of the smart card

within the Resource Manager.

The IFD handler component is the device driver for a specific reader. This driver maps

the functionality of the specific reader to the native Windows services.

The Service Provider

The Service Provider is responsible for making available the functionality of a specific
smart card to an application through a high level programming interface. The current

version of the specification divides the Service Provider into two independent compo-
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nents, namely the smart card Service Provider and the Cryptographic Service Provider.
In the future these interfaces may be extended in order to meet further specific appli-

cation requirements.

The Cryptographic Service Provider exists as a separate entity because of its specialised
task of making available the smart card’s cryptographic functionality to PC applications

and because of the export controls associated with cryptographic devices.

The smart card Service Providers interface directly with an application. They make
available a predefined set of services and further assumptions/restrictions regarding

these services to PC applications.

Smart card Aware Application

The smart card aware application is a software program that requires access to the
smart card. It can be written in many high level languages (Visual Basic, Java, or C++)
that can access the COM service providers [18]. Although the PC/SC specification is
platform independent there are some general assumptions about the functionality of

the operating system for which the application is targeted:

- Multi-threading capability,
- Asynchronous event and message handling,

- A shared library mechanism with dynamic linking to shared code.

Assuming that this functionality is present, the application could determine which re-

sources are available (either at installation or at run time) and proceed accordingly.
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2.4.3 The OpenCard Framework (OCF)

The OpenCard consortium |24, 38| was founded in March 1997 by computer and smart
card technology manufacturers. Initially the consortium’s focus was on the use of smart
cards with networked computers (NCs). Later, they realised that the main areas that
needed addressing were independence from the host operating system and transparent

support for a number of different multi application smart cards.

OCF Overview

OCF was specified as an open standard providing an architecture (i.e. an API) that
helps terminal application providers to build their smart card aware applications in any
terminal that supports Java and subsequently OCF. This is actually achieved via two
distinct interfaces. Firstly, there is a high level API that hides the characteristics of a
smart card or terminal component from application/service developers. Secondly, there
is a common provider interface that enables the seamless integration of smart cards and

readers from different vendors.

The core architecture of the OCF [24, 38] consists of two components: the CardTerminal

and the CardService. The OCF components are presented in figure 2.6.

The CardTerminal component contains all classes that allow access to smart card ter-
minals and their slots. For example, using certain classes of this component, smart card

insertion or removal could be tracked.

The CardService component contains all the infrastructure required in order to access
the functionality of a smart card. Each card service implements a high level API through
which applications gain access to a specific smart card’s functionality. Examples include
the file access card service which enables applications to access an ISO 7816-4 style file

system. Both the CardTerminal and the CardService components are designed using
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the abstract factory and singleton pattern [8].

Applications I
|
Application
Management —
CardService
CardService
Registry
C;Eﬂi Vie® ———  Smat —— cadiD OCF Core

CardTerminal
Registry

Figure 2.6: The OpenCard Framework Architecture.

In OCF, the PC/SC’s central resource manager is divided into two distinct objects, the
registry and factory objects. Each respective manufacturer supplies a factory object
that contains the manufacturer’s product specific details. To determine which factory
to use, OCF uses the singleton registry. This registry object contains the configuration
of an OCF component and creates the respective factory objects as required. The rest

of the OCF components are described in more details in the following sections.
The CardTerminal Component

The CardTerminal provides access to card terminals and subsequently to smart cards.
All this functionality is encapsulated in the CardTerminal class, the Slot class and the

CardID class.

Each CardTerminal object can contain one or more Slot objects. Each Slot represents
the physical card slots of that card terminal. Whenever a smart card is inserted into a
slot, a SlotChannel gate object is activated. Access to the smart card occurs through
this specific object. The CardTerminal object ensures that at any given point in time

at most one SlotChannel object exists for that particular slot. Similarly, at most one
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object will obtain access to that SlotChannel.

The CardTerminal class is also responsible for checking the card presence or card absence
within a reader along with sending and receiving Application Protocol Data Units

(APDUs).

The CardTerminal Factory and CardTerminal Registry objects are responsible for han-
dling the attachment (and subsequent removal) of a reader to a computer (or similar
device). Each terminal manufacturer that supports OCF will provide a CardTermi-
nal Factory subclass which holds all the characteristics of the specific terminal. The
CardTerminal Registry object keeps track of the installed card terminals. It also pro-

vides methods for enumerating, registering and de-registering CardTerminal objects.

The CardService Component

The CardService component is an abstraction of the different Smart Card Operating
Systems (SCOSs). The main sub-components of the CardService component are the
CardService class, the CardServiceRegistry class, the CardServiceScheduler, and the

SmartCard class.

The core of the CardService component implements an API that maps smart card
commands onto specific APDUs. An example of a card service currently included in

OCF is the FileSystemCardService.

The CardServiceScheduler is responsible for serialising access to a given smart card and
maintaining the state of that card. For example, the CardServiceScheduler class allows

multiple instances of card services to gain access to a specific smart card.

Access to OCF methods is mainly through the SmartCard class. This class along with

the CardID class are used by the application programmer to identify a given card and
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associate it with a slot in a reader.

The main advantage of OCF is that it is completely independent of the underlying
operating systems since it is implemented in Java and thus all its components become

available on any platform (PCs, NCs, etc.) supporting Java.

2.4.4 Security Requirements for the PC/SC and OCF Architectures

Both architectures have certain entities or components that have significance from a
security perspective. For example in PC/SC the main entity is the Resource Manager.
Thus, in order to give increased protection to this entity, it is suggested that it will be
part of the operating system. However, this component holds the databases of all the
installed IFDs and smart cards along with their cross-references and their availability
status. If the entries in the databases are modified then at least one can mount denial
of service attacks. Similarly the mappings of specific smart cards to their associated
Service Providers or interfaces could be mixed up, etc. If the PC/SC is running under
Windows 95 or Windows 98 then there is little that can be done. When PC/SC is
installed in an operating system that offers basic security functionality (e.g. Windows

NT or Linux) then the Resource Manager could be more adequately protected.

In OCF the functionality found within PC/SC’s Resource Manager is divided into two
sets of registry and factory objects. Taking into account the fact that OCF is “com-
pletely” independent of the underlying operating system does not minimise the chances
of the above security breaches taking place. Therefore, the obvious countermeasure
would be to use OCF or PC/SC in an environment that restricts logical accesses to

certain components.

As one would expect, both architectures provide a range of cryptographic services.
Both specifications include cryptographic services (public key and secret key algorithms)

along with identification and authentication mechanisms (authentication to remote en-
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tities or to the smart card; cardholder or application verification).

The notion of exclusive access to a smart card is defined in both PC/SC and OCF. This
feature is of significant importance since under certain circumstances an uninterrupted
sequence of smart card operations (e.g. “sensitive” or payment applications) must be

executed.

When developing smart card aware applications under OCF, the general security model
of the Java language applies. In particular, when executable code is downloaded from
the Internet (applets) extra security concerns arise. For that reason the specification
describes the steps required for writing “secure” applets with OCF and the Java Plug-In

or the standard Java Platforms, Version 1.2.

2.4.5 Card Applications as Remote Objects

This development methodology is promoted by GemXpresso [12] and considers smart
card applications as distributed objects where communication between them and client
applications is abstracted from low level protocols. This implies that client applications
are regarded as remote objects in a distributed system. The procedure is summarised

in figure 2.7.

Smart card application functions are called through a client stub (application proxy)

handling the communication interface.

Each application defines an application interface that describes the functionality of the
application. This interface is used as a basis on which to construct the application proxy.
The proxy will be marshaling and un-marshaling processes on the method invocations.
Finally, a Remote Procedure Call (RPC) protocol [6] will be used for transporting, via

the smart card reader driver, the calls between the terminal and the reader.
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Figure 2.7: Communication modules in more object oriented architecture.

2.5 Summary

Without doubt the Java Card API and the Multos API revolutionise both the way smart
card applications are designed and implemented, and also the smart card technology

itself.

With the above technologies it becomes easier to develop smart card applications. Simi-
larly, the important issue of securely isolating the smart card applications is successfully
addressed. Additionally, smart card applications can also be downloaded or deleted at

any stage of the smart card’s life cycle.

The procedure for developing smart card client applications has also been simplified.
Both PC/SC and OCF hide the underlying IFD architecture with a more abstract

programming interface.

Although currently PC/SC runs on the Windows 95, 98 and NT platforms efforts by
individual developers aim to migrate the PC/SC architecture on other platforms (Linux)
[34]. This will increase PC/SC’s availability on different computer platforms. On the
other hand OCF is completely independent of the underlying operating system and thus

it could be used on any platform that supports Java.
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The aim of this chapter is to introduce the reader to related work in the area of log file
mechanisms in smart cards. We must make clear that both theoretical work on, and

real implementation examples of, log files in smart cards are very limited.
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3.1 Introduction

In the previous chapter we reviewed the current status of smart card technology. We
now examine proposals for log file use in smart card environments or more generally
in untrusted machines or machines with limited memory. The work presented in this
chapter is related to the new techniques presented in this thesis. This chapter highlights
certain aspects of the problem along with presenting the relevant work which inspired

the development of the new techniques presented in this thesis.

We open with the problem of providing support for secure logs on untrusted machines.
We then describe a proposal related to the subsequent work in this thesis which in-
troduces a property called “forward integrity” for log files. Finally, we describe a real
world example of how log files are used both by Mondex International in the Mondex

electronic purse and in the MPCOS cards from Gemplus.

3.2 Secure Logs on Untrusted Machines

In [59] Schneier and Kelsey consider the dual problem of an untrusted machine (U)
generating and maintaining log files, and a trusted machine (7)) periodically checking

the logs in U. Although U is “untrusted” it is not generally expected to be compromised.

The authors of [59] state that applications that will benefit from such a mechanism
abound. For example, U could be an electronic wallet, a smart card or even a PC. On
the other hand T could be a bank Automated Telling Machine (ATM) or a server in a

secure location.

It is clearly stated that their system aims to provide strong security guarantees about
the authenticity of the logs on U. In particular if we suppose that an attacker gains

control of U at time %, she/he will not be able to alter or delete log entries made before
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time ¢ in a way that these manipulations will not be detected when U next interacts

with 7.

The need for such an architecture is explained by the fact that there are many systems
in which the owner of a device is not the actual owner of the secrets within the device.
In that case auditing can help to determine if there was an attempted fraud. Note that,
as in the majority of the logging architectures, this proposed system aims to detect

possible fraud after it happened and not to prevent possible attempts.

3.2.1 A Brief Description of the Method

We provide a few of the most characteristic assumptions and statements that the above
authors mention in their work. We believe that they will highlight the exact dimensions
of the issues involved, acting as a reference point for our proposals:

- “...no security measure can protect the audit log entries written after an attacker
has gained control of U. All that is possible is to refuse an attacker the ability to

read, alter or delete log entries made before the machine was compromised.”

- “If there is a reliable, high bandwidth channel constantly available between T and
U, then this problem won’t come up. U will simply encrypt each log entry as it

is created and send it to T over this channel.”

- “No cryptographic method can be used to actually prevent the deletion of log
entries: solving that problem requires write-only hardware such as CD-ROM disk,

”

etc

- “The long term storage of U (holding the logs) is sufficiently large and filling it

up is not a problem.”

The behaviour of the proposed architecture is divided into four steps. Firstly the two

entities exchange some information in order to enable U to create the log file. The main
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information exchanged is an authentication key A; which is used in the generation of
the encryption key K that will encrypt the 4§ entry in the log file. The initial value
of the authentication key is denoted as Ag and contains some fixed values as defined in

the paper.

The second step involves the creation of each log file entry according to some predefined
procedure. This procedure requires that the data to be inserted in the j* entry will be
encrypted with the encryption key K. This key is derived from A; along with some
information which is used as a permission mask for a verifier entity V. Entity Vis a
moderately-trusted verifier, who will be trusted to review certain kinds of records, but

not trusted with the ability to change records.

In the third step the log file is closed. This is done simply by writing a final-record
message Dy (which includes the data and a timestamp along with a text message “Nor-

malCloseMessage”). Additionally the values of Ay and Ky are irretrieveably deleted.

The last step addresses the verification of the log files. There are two variations in this
phase. In the first, T can receive a closed log file and validate it since it knows all the
encryption keys and thus can read the whole audit log. In the second, V may need
to verify the log file records while they are still stored on U. This last case involves V'
generating a list with an index of each entry to which it requests access, and sending
it to T. T then verifies that the log file has been properly created on U and that V is
authorised to work with the log. If there are no problems 7T forms a list or responses
to the requests of V. Note that T computes the required keys based on information
provided by V. Thus, if this information is incorrect then the response keys will be
incorrect. With this architecture the protocol guarantees that V will get only the log

entry decryption keys which he/she is authorised to decrypt.

In addition to the above verification methodologies the authors propose off-line or voice

line variants of the verification protocol.

53



Related Work

3.2.2 Discussion on the Secure Logs on Untrusted Machines

In this subsection we review the above methodology. The major assumption in order
for the proposed architecture to work is that the log file is sufficient large and that
filling up is not a problem. This can be true if Uis a PC or even a smart wallet, but it

is relatively unreasonable (due to the restricted memory space) if U is a smart card.

A particular problem arises from the following observations:

- apparently, the authors assume that the owner of U is a legitimate user, and

- it is nowhere stated that Ag should only be known internally in U.

Since the owner of U knows Ag he/she can create a whole sequence of fake log files.
Thus, in this case the legitimate users are provided with the capability of attacking the
system. Having said this, the authors are partially covered against this case by stating

the first assumption presented in §3.2.1.

Another potential problem arises from the requirement that U must be available for the
verification of the log files. Potentially the user can destroy U and as a result destroy the
logs (i.e. all the available evidence). This type of attack is described as the “Watergate
Attack” [58].

Finally, in their second assumption (refer to §3.2.1) the authors assume that if there is a
constant and reliable channel between the entities, then the problem of maintaining log
files is simplified. In a smart card environment this is not always a valid assumption.
Thus, in our proposals in chapter 6 we examine the scope of the problem when the
smart card periodically interacts with a trusted server in order to download the log
files. In our proposed architecture we try to overcome some of the above problems and

limitations.
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3.3 Forward Integrity For Secure Logs

In [3] Bellare and Yee introduce a security property referred to as forward integrity
(FI). The method involves generating message authentication codes (MACs), mainly
for audit logs, in such a way that even when the MAC key is compromised it will not be
possible to forge past “log” file entries. Similarly to the previous proposal this implies
that an attacker can erase log entries, but cannot modify existing entries without being

detected.

More formally the FI scheme works as follows: the time is divided in “epochs” (E). If
a machine is compromised at time T, during an epoch Ej ie. T, € E; ={t:T; <t <
Tj+1}, then the attacker cannot forge log entries that appear to be generated at times
t < Tj. This implies that no guarantees are provided for any log entries produced after

;.

FI is achieved since the MAC key is variable, i.e. it evolves over time periods. For
example, K; in epoch i is obtained from a non-reversible function (hash) of the key
K;_1 of the previous epoch. Additionally, upon starting epoch ¢ the key K; 1 is deleted.

Meanwhile K can be used to verify the MAC of all log entries, regardless of the epoch.

3.3.1 Discussion on the Forward Integrity Property

With this proposal the authors claim that they avoid remote logging, continous logging

or log replication.

The authors also state that among the key factors for the success of the system is the
need to be able to quickly change epochs. Thus, they suggest different options for

changing epochs: either every 100ms or after a certain number of log entries.

The most notable characteristic of the above work is that it actually contains specific
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implementation details and results. The authors provide a web page reference to the
source code for their implementation along with presenting experimental figures on the

performance of their proposed system.

3.4 The Mondex Log Files

The Mondex purse is an electronic cash scheme. The smart card holds a certain amount
of a currency which is used for payments or transfers between other cards (e.g. merchant
cards or normal user cards). The Mondex electronic purse scheme uses a secure value
transfer protocol and along with a number of log files maintains the integrity of the
system. The three types of log files maintained by the Mondex purse are described

below:

- The Pending log maintains details of the current payment. Thus, this log file
consists of a single entry (record). The log record information can be used to
resume an interrupted payment (payment recovery). After certain commands the

payment log record is moved to the Exception log or the Payment log.

- The Payment log keeps details of the ten most recent successful payments. It is a
circular log, thus the oldest entry is overwritten with the most recent one. Assoon
as the balance in a purse changes, a payment log record is created. For example,
this happens during the processing of the Payment Request command in the payer
purse, or Payment Value command in the payee purse. In the case of the payer
purse, the payment log record is marked as incomplete, since the payee purse
has not yet acknowledged receipt of the value. When the payer purse receives
a valid Payment Ack command, the payment is complete. Once the payee purse
balance changes, the payment is considered complete and no further messages are

expected.
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- The Exception log stores the details of payments that failed to complete success-
fully. This log file will eventually ensure that lost value can be restored. The
entries in this log file are never overwritten but they can be erased by a purse
provider after being transferred elsewhere. The log file holds three records and

payments are not permitted when the exception log is full.

3.5 The MPCOS Log Files

Log files are used in MPCOS cards in their simplest form. Sensitive commands (e.g. cre-
ation of files, payment commands, etc.) can be monitored by computing cryptographic
certificates (e.g. pMonitor command) that can be transmitted to the smart card ter-
minal for future reference. This feature is used to record and trace the aforementioned

commands.

The cryptographic certificate is based on the sensitive command counter value (3 bytes)
and the previously executed sensitive command header. Thus, a very simple file that
will hold this sensitive counter value is required. The Sensitive Command Counter is
stored in a Transaction Manager File and it is updated automatically every time a

sensitive command is used.

Details on where and how this file is created or maintained do not appear in the MPCOS
reference manuals. It seems that this log file is maintained by the MPCOS smart
card operating system and it is automatically updated and provided to the pMonitor

command whenever is required.

3.6 Summary

The main concluding remarks of this chapter are the following. Firstly, there are a

few applications using smart card log files. Secondly, there is limited theoretical work
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on handling log files and each proposal examines the problem from a different point of

view.

For example, Schneier and Kelsey assume that the card can be compromised and that
there should be a trusted entity that will periodically check the validity of the log
files. This scenario is not unrealistic but not very suitable for smart cards. The work
of Bellare and Yee is important, since, apart from its theoretical contribution it also
provides details and performance measurements from an experimental implementation

of the proposed architecture.

As we describe in the next chapters our proposal examines what happens when the
smart card log files fill up and need to be downloaded to another entity which does not

suffer from storage restrictions. We know of no previous work in this area.
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Traditionally smart card log files are mainly used for storing receipts for the successful
or otherwise completion of certain events. In today’s multi-application smart cards
a whole range of new events require logging. This last point introduces significant
changes not only in the nature of the events to be logged but also in the definition and
implementation of the actual event logging mechanisms. This chapter highlights the
issues involved when maintaining different types of log files in smart cards in the light
of the recent technological advances. It also introduces a proposed event logging model

for smart cards.
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4.1 Introduction

Audit log mechanisms are very powerful tools for monitoring a system’s activity. Al-
though much work has been done in the area of audit log design and implementation for
databases and general computer systems [35, 51, 36], the distinctive nature and techno-
logical characteristics of current smart card technology impose specific constraints that

demand careful investigation.

Audit logs for smart cards are potentially of great importance, since they increase the
evidence available in the event of fraud, while at the same time providing evidence of
the completion of important events. This is particularly true nowadays, as smart cards
are moving away from their traditional focus based on single application smart card

operating system [9, 13, 42] towards multi-application environments [12, 55].

As in the past the usage of log files in smart cards was limited, obvious questions can

be raised as to why log files were of limited use and why the situation has changed.

The answer to the first question is rather simple: the limited storage capacity of the
smart cards, along with the restricted functionality of the smart card operating systems,
made audit logs virtually impossible to implement. These restrictions forced the smart
card application developers to seek alternative methods in order to avoid providing the

log file functionality.

The answer to the second question is more complicated and will be answered in the
following paragraphs: Recent improvements in existing smart card operating systems
[19, 31, 61, 62| along with related theoretical work [16, 20, 52, 54| and further improve-
ments at the hardware level 11, 14, 17, 33| have made the whole idea more feasible.
At the same time this new type of technology, as described in chapter 2, introduces
further complexities which require revised and more dynamic log file handling mecha-

nisms. The need for new techniques primarily arises because there are new events to
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be logged, both in the operating system and the application level.

Additionally, there is often some confusion when the term smart card log file is men-
tioned. It appears that most of the entities involved (smart card holders, smart card
manufacturers, application developers) maintain their own notion of smart card log

files, and each expect different functions from such files.

In order to better understand the issues involved, together with the roles, requirements
and characteristics of the entities involved, we use the following hypothetical example
of a multi-application smart card. This smart card will hold the following applications:
an electronic purse application, a loyalty points application used in conjunction with
the purse application, a health care application, and an application for digitally signing

emails or other information. We will refer to this example in the following sections.

In this chapter we outline the main characteristics of the different types of smart card
log files. Subsequently, we present the different entities involved in a smart card logging
scenario. Similarly, we present an overview of the new events to be logged. Finally, we

describe our ideal log file handling model for a smart card environment.

4.2 Smart card Log File Types

In a real world smart card environment, log files will mainly be used in order to allow
the SCOS to recover from fatal failures and to provide evidence regarding the progress
of certain events. The latter implies that the log files might also be used in an audit-
ing procedure in order to resolve certain disputes. In this section we also provide a

classification of smart card log files.

The uses of log files in a smart card environment may be divided according to the

following criteria:
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- purpose: audit trail or recovery log,

- architectural level: operating system or application.

The details of each category are presented in figure 4.1 and analysed in the following

paragraphs.
Operating System Level I Application Level I
Recovery Application
Recovery I Log File Specific
Recovery

All applications LogFile

Monitoring Receipts

1
1
1
F ! Log File
Audit Log File ! g
:
1
1
1

Untrusted applications Trusted applications

Figure 4.1: The different types of log files.

In the recovery category we come across two different types of log files, depending on
whether the log files are handled by the SCOS or by the smart card application. The
benefit from the existence of a recovery mechanism at the SCOS level is that smart
card applications will not have to replicate their own recovery code. On the other hand
the disadvantage is the complexity of such a mechanism since it will have to constantly
monitor and identify the events to logged. An example of a recovery log file is the

Pending Log maintained by the Mondex purse (refer to §3.4).

An example of a recovery mechanism at the application level involves the scenario that
the electronic purse mentioned in §4.1 crashes. Then, a recovery mechanism that will
take advantage of the information stored in this log file could help the application to
recover the next time that it is selected for execution. The obvious advantage is that
since the recovery mechanism is defined by the application programmers it will not rely
on the SCOS in order to constantly monitor the application currently executing. The

disadvantage is that each application has to replicate its own recovery mechanism
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A different type of smart card application recovery is proposed by Trane and Lecomte
in [64]. The authors suggest that certain recovery information is partially kept in the
smart card terminal, and thus, recovery is achieved the next time the card interacts
with the terminal. Clearly, the recovery log files will typically not be used as evidence
in cases of dispute. The details of the recovery mechanisms are outside the scope our

research.

In the audit trail category, the light grey area in figure 4.1, we also encounter two
different types of log files, again depending whether the log files are handled by the

SCOS or by the smart card application.

An example of a log file maintained by the SCOS in the audit trail category is the
Monitoring log file. The Monitoring log file will hold information for identifying licensing
or pay-as-you-use details of the downloaded smart card applications. For example
consider the scenario of the electronic purse application mentioned in the previous
section, which might offer certain smart card programming primitives which will be used
by other applications (i.e. in our example by the loyalty application). It could be the
case that these primitives are offered at a pay-as-you-use basis. Therefore, the loyalty
application will be charged for the number of times it used the purse’s functionality.
When the Monitoring log file is examined it could provide all the required information

as to which applications used which primitives and how much they should be charged.

The Receipts log file is an example of an audit log file maintained at the application
level. It will hold information generated by smart card applications. In our example
this log file will hold the payment receipts generated by the electronic purse application.
Similarly, the email signing application should also generate evidence on the digital
signatures performed. The Receipts log file will remain in the smart card application
space. Permission to make entries in this log file will only be granted to authorised
and trusted applications (i.e. the applications carrying valid application certificates).

Generally, both the Monitoring and the Receipts log files will be subject to auditing.
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In the following subsections we propose an architecture that will identify certain events
to be placed in the Monitoring and Receipt log files. Additionally, we are interested in
what happens when the smart card log files become full. We have excluded provision
of smart card application recovery, although in order to get a better understanding of
the issues involved we highlight certain recovery aspects, since it would either require
knowledge of the application structure or the internals of the SCOS. In the following

section we describe our log file handling model.

4.3 The Event Logging Model for Smart Cards

In this section we describe an event logging model and we also highlight certain issues

that need to be taken into account when addressing log files in smart cards.
4.3.1 The Entities of the Model

In a smart card environment there are a number of different entities which might benefit

from the existence of log file mechanisms [22]. The principal participants and relation-
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ships between participants are depicted in figure 4.2.

@
T A
vYwYy

VV}’,’
()—>w ﬁ’f@—’

o ¢
=) N LF

Figure 4.2: Graphical representation of the relationships among the participants.

1. C represents the smart card. Typically this is a sufficiently tamper resistant

device which is relatively difficult to compromise and has access to a variety of
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10.

cryptographic algorithms.
U is a smart card holder, the user.
AP is an application running on the smart card.

SP is a service provider which offers certain services and provides the relevant

applications (APs) for the cards.

M is a malicious user with possibly enough knowledge of the internal structure
of the card. It can also eavesdrop the exchange of messages during the log file

download procedure.

ALSS stands for an Audit Log Storage Server. This entity will receive and store
the transmitted log files in dedicated locations. Depending on the environment
the ALSS could be a “smart wallet”, a personal computer used in conjunction with

the smart card or even a repository server connected to the Internet.
LF is the log file which will be downloaded.

LFM is the log file manager, a smart card operating system entity. This is the
only authorised entity for updating, browsing and downloading the log files from

the card.

A is the arbitrator who informs the entities involved and receives the downloaded

log files in order to resolve any disputes.

PD (Personal Device) is the smart card reader/writer or personal wallet used by

the smart card in order to communicate with the outside world.

4.3.2 How to Record Events

Smart card operating system logging is a way of storing data to facilitate transaction

atomicity [29] and failure recovery [64]. In [64] Trane and Lecomte propose three kinds

of logs that can be used for transaction recovery. These are presented in figure 4.3.
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- Value log: this type of log file stores the previous value of a variable in a previous
value log and the new value in a current value log. An undo operation requires a
simple computation that will recreate the initial value of the variable. The main
advantage of this type of log is the relatively low memory consumption which
makes it appropriate for smart cards. On the other hand it is not sufficient when
extra details of the logged event are required. For example, consider the case that
our health care application updates a large amount of card holder medical data.

In that case it will be difficult to store the previous and after values.

Value Log Transition Log Action Log
12 » 13 1 Purse Credit, 1
13> 5 8 Purse Debit, 8

Figure 4.3: Types of recovery log files.

- Transition log: this log stores the “difference” between the old and the new values
along with the actual direction of the operation (e.g. plus, minus, etc.). Since the
new value is stored in memory and the “difference” in the log file, simply applying
the inverse operation will restore the initial value. The main advantage of the
transition log file is its low memory consumption compared with the other two
kinds. This type of log file works well with numeric values, although it has major

drawbacks with other types of logged events, like the previous log file type.

- Action log: this log file contains the names of operations on variables, their ar-
guments, and even sometimes their results. This type of log file is useful when
ending transactions after failures. It is more generally useful, e.g. for resolving
disputes, since it contains more details of the operations performed. On the other
hand it requires large amounts of memory since it stores a significant number of
details. Undoing any operations becomes harder since a “reverse” or compensation

operation must be logged for each operation.
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The notion of smart card transaction atomicity is introduced in [31] and “defines how
the card handles the contents of persistent storage after a stop, failure or fatal excep-
tion”. This is a programming concept in order to enable the application developer to
know what values the updated data fields contain, either in case power is lost during
any memory updates or after a smart card application protocol is aborted. The afore-
mentioned mechanism rely on the application programmer to define a section within an

application that need to be executed atomically.

We realise that the above mechanisms address the recovery issue. On the other hand
in respect of the SCOS and auditing there are no mechanisms defined or implemented

that will dynamically, as the application is executed, identify the events to be logged.
4.3.3 Structure of the Log File

A smart card holder of the multi-application smart card example mentioned in §4.1
might be interested in logging the successful or otherwise completion of an electronic
purse transaction or the calculation of a digital signature by the email signing appli-
cation. Conceptually, it would be beneficial for the smart card holder to be able to
maintain a representation of the log file structure of the type presented in figure 4.4.

Transaction Log Action Log Digital Signature Log

Application UIDA Operation B1 UIDAS Signature
Payment UIDA / Signature B2— UIDB2 Signature
Application UIDB Receipt C3

Payment UIDC /

Figure 4.4: The ideal relationship among the card holder smart card log files.

Each entry in the transaction log file would contain the unique identifier for the down-
loaded application, which will serve as a pointer to the action log file containing the
exact operations performed by each application. If for example an application performs

a digital signature, a pointer will be created in the digital signature log file.
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Some basic knowledge of the internal structure of a smart card will soon reveal that the

aforementioned log file architecture is not feasible for the following reasons:

- limited memory space allocated for the log files,

- due to the cross-references between the log files there will be difficulties when the
log files are to be downloaded to some other medium [21], or when it is necessary

to verify their integrity as described in [59], and

- more importantly some application developers might not be willing to make the
internal structure of their applications widely known or exactly when a digital

signature is completed within their payment protocols.

Thus, the above observations indicate that a practical implementation of a log file

mechanism requires that the events need to be logged in a single log file.

4.3.4 Interested Parties

Naturally, the smart card holders are interested in maintaining some evidence of the
transactions performed by their smart cards. Note that, smart card holders might have
some interest in the information stored in their cards but on the other hand it could

also be in their interest to avoid logging certain details.

Obviously, legitimate service providers need to be protected from any artificial claims
against them or against legitimate card holders. Thus, the existence of substantial

evidence is considered crucial.

Consider the following scenario where the electronic purse and health care applica-
tions perform the following transactions, (1:Debit, 2:Payphone Debit, 3:Update
Medical Data, 4:Credit, 5:Debit). The user goes back to the electronic purse ser-

vice provider and claims that something went wrong between transactions 2 and 4. The
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interested parties can then easily examine the log files providing both their customers

and themselves with enough evidence of exactly what happened.

Additionally, the service providers might wish to obtain specific feedback concerning
the testing of certain functions or applications or even evidence from any intrusion

detection mechanisms within the cardholder’s smart card.

4.3.5 The Dispute Resolution Phase and the Arbitrators

In a smart card environment disputes might arise and of course, they need to be resolved.
Dispute resolution requires the existence of evidence. The required evidence may reside
in the audit logs. The dispute resolution might involve a trusted entity e.g. an arbitrator.
Therefore, if an arbitrator is involved then he/she will need to verify that the logs are
not tampered with. Similarly, the availability of the log files is another issue. This

means that the log files should become available whenever they are needed.

4.3.6 Threat Model

We now describe the assumptions made about security threats to the smart card and
its operational environment. These assumptions underlie the definition of the log file
handling model and also the definitions of the operation of components of the model
which are given in the next two chapters. Note that we only consider those threats
which may effect the integrity and/or confidentiality of the log file information. We
are not concerned with more general threats to the smart card and its operational

environment.

- We suppose that the smart card holder might attempt to modify or delete the
log file information. In some cases the smart card holder will wish to protect

the content of the log files, although in other cases the cardholder might wish to
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prevent the logging of certain events (and/or delete the log information after the
event). The log files could be attacked while stored in the card, either by physically
attacking the smart card microprocessor or by attempting to bypass the SCOS
and Java Card security. Additionally, the log files could be attacked while they are

transmitted to the ALSS, e.g. by subverting the log file downloading protocols.

We suppose that the smart card is a physically secure device with adequate tamper
resistance mechanisms. Therefore, we assume that certain information can be
securely stored internally to the card. Having said this, we also assume that there
are potential threats to the integrity and confidentiality of the log file arising from

the need to download portions of it.

We suppose that smart card applications may be a threat to the log files. Certain
rogue applications could potentially attack both the smart card log files in order to
modify certain valuable information but also data and application code belonging

to other smart card applications.

We treat the ALSS as a trusted entity. Thus we assume that the ALSS ensures
that the log files are properly received, i.e. by following the steps of the log file
download protocol. The ALSS will also have to protect the integrity, confiden-
tiality and availability of stored log files. In summary, we assume that the ALSS
is trusted by the cardholder to properly receive and store their log files and by

arbitrators when they request the log file of a cardholder.

We suppose that the arbitrators are trusted entities in the sense that they receive
the log file information and that they honestly try to resolve any disputes using

this evidence.

The dependence of the components of our model on the smart card reader device is
minimal, and therefore we assume that any standardised (e.g. PC/SC compliant)

smart card reader device could be used.
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Arising from our threat model we can identify a fundamental set of security requirements

which need to be met by the log file handling system.

- In order to minimise the chance of the log files being attacked while stored in the
card, we suggest that the log files should only be accessible through the LEBM. In
order to increase the protection of the log files in transit, careful LFDM design is
considered essential. If the log file transmission uses a relatively insecure channel
(e.g. the Internet), the assumption underlying the design of the second and the
third log file download protocols in Sections 6.3.3 and 6.3.4, we assume that the
transmitted data may be subject to passive and active attacks. Where the log files
are transmitted in the cardholder’s PC, i.e. the assumption underlying the first
log file download protocol in Section 6.3.2, we assume that only the cardholder can
attack the communications channel. In such a case security measures to protect
the transmitted data are unnecessary, since the cardholder will have free access

to the log files once they are stored on the cardholder PC.

- Smart card applications should be subject to the general Java Card security model

and they should also adhere to the security of the underlying SCOS.

- The log file download protocol must take measures to ensure that it always takes
place between a genuine card and a genuine ALSS. The measures must be appro-
priate to the environment within which the protocol is used. The measures will
typically rely on certain information (e.g. cryptographic keys) being maintained

as secrets internally to the card.

- All the components of the model internal to the card should be adequately pro-
tected from modifications when placed within the SCOS. For example, by placing
certain functionality at the SCOS any EEPROM modification attacks are elimi-

nated; however such an approach makes components more difficult to upgrade.
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4.4 What Information Should be Logged?

The question as to which information should be logged in a smart card environment
is significantly more difficult to answer than it would be for a conventional computer
system. The main reasons are the hardware and software characteristics of the smart
card processors that seriously restrict both the amount and the nature of the events to
be logged. In this section we highlight the issues that influence the decision on which

events should be logged.

The decision is highly dependent on the following factors:

the system’s security policy,

the space allocated for the log file,

- how often the log file is downloaded, and

who decides which events should be logged.

If, for example, a large number of events are characterised as critical, and thus they
should be monitored, then the risk of running out of log file space is increased. On
the other hand, if just a few events are to be monitored, there is always a chance that
some important events might be missed. A summary of the type of events that might

be logged in a smart card environment is given in Table 4.1.

Precisely which events and actions are to be logged depend on the system’s security
policy. The policy should be sufficiently detailed to enable identification of the types of

event which require logging.

Another important factor influencing the nature and the amount of information to be
logged is the space allocated for the smart card log files. Ideally, the allocated space

should permit logging of all significant events without the need for overly frequent
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download operations, which probably means at least 4-5 Kbytes. Although this memory
space would allow the logging of sufficient information, more realistically speaking the
space offered by the smart card manufacturers and the service providers would be within
the range of 1.0-1.5 kbytes. Another difference compared with computer based logging
is that it is not possible to have a data reduction tool in a smart card. Thus, the data
to be stored should be reduced to the minimum prior to its storage in the smart card

log files.

Table 4.1: Suggested events to be logged.

Receipts Application Monitoring
Transaction Type (credit, debit, etc.) Application Download/Delete
Total Transaction Value Use of Cryptographic Primitives
Transaction Status Freeze Operations
Type of Currency Certificate Updates/Changes
Transaction Time/Datestamp Intrusion Detection Results
Transaction ID/code Invalid PIN Presentations
Digital Signatures Certain EEPROM Updates
Log File Downloads File Deletions/Updates

Reading, Browsing Files

Flushing Memory Space

In a smart card environment it is currently impossible to implement the post-selection
method described in [36], i.e. log as many events as possible and decide later which ones
should be audited. Obviously, the main restriction is the limited space assigned for the
log files. Thus, the events to be logged should be pre-selected. The main advantage of
the pre-selection method is that only a number of pre-selected events are logged. As a
result, there is more efficient log file space management. The obvious disadvantage is
that it is relatively difficult to predict the events which might be of security interest at
a future date. Hence, if the table containing the events to be logged is stored in ROM
of the card (in order to be more adequately protected) it would be impossible to add
new events. If the table is stored in the EEPROM of the card then it becomes easier
to update the list of logged events, but on the other hand it becomes more vulnerable.
Probably, the most efficient solution would require that certain events are stored ROM

and some other in EEPROM.
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The supporting infrastructure for downloading log files is another critical factor. For
example, if the log files can be downloaded from the card often, then the amount of
data to be logged may increase. The log file downloading procedure could be enhanced
by offering the facility in secure public terminals or even over-the-air transmission (by

using mobile phones).

Finally, another influencing factor is which entity decides the events that should be
logged. Is it the card holder, the card issuer or the service providers? Actually in an
environment of so many conflicting interests it is not easy to find a solution acceptable
to all interested parties, and the answer to the above question should appear in the
system’s security policy document. For that reason we do not try to explicitly define
which events should be logged. Instead, we just provide an indication of the events

which are of significance for the above entities.

4.5 The Smart card Log File Manager

In this section we describe an event logging model for the use and operation in a smart
card. The main entity of the model is the Log File Manager (LFM) as the only entity
authorised to access the smart card log files. The LFM has to perform the following

three tasks:

- create and update the log files,
- take control of the log file download procedure, and

- browse the log files while stored in the card.

The functionality of the LFM is divided into the entities presented in figure 4.5.

The above entities are briefly analysed in the following paragraphs.
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- the Log File Update Manager (LFUM). The LFUM is responsible for identifying
the events to be logged both at the application and the operating system level.
Therefore, the LFUM will identify security critical events and will update the

audit log files. The details of the LFUM are presented in chapter 5.

Operating System Intrusion Application

Events Detection Events
: l—'—_J
'..".-. e LFUM L
Operation B1 * v P :
— OperationB2 _* ; b Y v
p ........... <, Transaction Log File
' :
Payment LFBM LFDM
| Download
Payment @
User Screen

Figure 4.5: Relationships among the entities authorised to access the log files.

- the Log File Download Manager (LFDM). The main role of the LFDM is to
securely download the log files from the card to an Audit Log Storage Server
(ALSS). Upon the successful completion of the log file download procedure the
LFDM will communicate with the LEUM in order to inform about the successful

or otherwise result. The exact behaviour of the LFDM is defined in chapter 6.

- the Log File Browse Manager (LFBM). The LFBM is responsible for providing
the cardholder with browse functionality to the transaction log file. The details

of the LFBM are presented in chapter 5.

4.6 Summary

This chapter serves two objectives: Firstly, it provides a classification of smart card log
files. This classification is essential in the light of the recent technological advances, e.g.

real multi-application smart cards.
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Generally speaking the smart card log files are divided into recovery logs and audit logs.
Recovery logs are maintained by the smart card applications or by the SCOS. They are
mainly used to recover applications or the SCOS in a consistent state after a “crash”.
As it becomes evident our work focus in the audit log category. The audit log files are

examined by external entities, arbitrators, in order to reconcile any disputes.

Secondly, it introduces our model for smart card based logging. The major three entities
of the model are: the Log File Update Manager, the Log File Download Manager and
the Log File Browse Manager. The exact behaviour of each of the entities will be

described in the subsequent chapters.
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Effective Smart Card Log File
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In this chapter we describe the behaviour of the Log File Update Manager as a tool
for implementing dynamic logging. Additionally, we very briefly describe the main
characteristics of the Log File Browse Manager. Finally, we propose a standard format

for smart card log files in order to make the dispute reconciliation procedure easier and

faster and to help efficiently manage the valuable log file space.
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5.1 Introduction

The information to be recorded by the LEFUM in the log files can be divided into receipts
and dynamic logging. In the following paragraphs we analyse the characteristics of each

category.

Receipts are log file records generated by the smart card applications, and indicate the
successful or otherwise completion of certain events. In this category we mainly en-
counter receipts from financial transactions, e.g. the information stored in the Payment
log file of the Mondex purse. We assume that smart card applications authorised to add
entries (receipts) to the log file should carry a valid application certificate. Currently,
an application certificate provides assurance of the origin of the application. In our
case the application certificates will also indicate that the corresponding applications
are “trusted” to append entries in the log file. The application certificates can be com-
patible with the application certificates as defined in Multos API or the Java Card 2.1

APL

In order to achieve adequate smart card log file space management, the smart card
developers should either have defined their own fixed receipt format or they should
comply with the proposed standard log file format as defined in §5.5. Since the receipt
information can easily be generated by the smart card applications, and appended to

the log files, we will not be examining the issue any further.

The main task for the LFUM is to perform dynamic logging or application monitoring.
Dynamic logging involves identifying the events to be logged while the smart card
application is executing, without having any prior knowledge of the content of the
application. For example dynamic logging can be used either to identify pay-as-you-use
details or to log the events generated by applications that do not carry application

certificates (e.g. less “trusted” applications).
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In order to better understand the concept of dynamic logging, consider the case when
the electronic purse application introduced in chapter 4 provides certain functionality to
be used by the loyalty application, see figure 5.1. In our example, in order for the loyalty
application to calculate the loyalty points earned it has to obtain certain information
(e.g. GetAmmount (Y) the amount spent, and Sign(Y) a signature on the amount) from

the electronic purse application.

Electronic Purse I Loyalty Application I
Begin Begin
éétAmount(Y)

. Cale( ¥, T)
Sign(Y) <

End End

Figure 5.1: An example where certain functionality of an application is shared with
another application.

Subsequently, the electronic purse providers might wish to charge, the loyalty applica-
tion on a pay-as-you-use basis whenever it uses the purse’s functionality. In that case,
the charging details could be identified (e.g. application monitoring or dynamic logging)
by the LEFUM and stored in the smart card log files.

We start by presenting the advantages and disadvantages of the candidate mechanisms
that will perform smart card application monitoring. We then describe some security
properties of these smart card logging mechanisms. Subsequently, we describe the
characteristics of both the Log File Update Manager (LFUM) and Log File Browse
Manager (LFBM). Finally, we present the details of a proposed standard log file format

for smart cards.

5.2 Dynamic Logging of Smart card Applications

In this section we describe the issues involved in smart card dynamic logging.
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5.2.1 Dynamic Logging Mechanisms

In order to achieve application monitoring or dynamic logging we can use various meth-
ods. The advantages and disadvantages of each method are presented in the following

paragraphs.

- Compiler Inserted Trace Points: During compilation of the smart card appli-
cation code the compiler inserts special marks at specific code portions to be
monitored. When the application is interpreted by the smart card microprocessor
a SCOS based monitoring mechanism will constantly examine and log the events
surrounded by these specific trace points. This method reduces the SCOS com-
plexity. On the other hand, the complexity of the smart card application compiler
is increased, and thus, a lot of trust is placed in the compiler. The security of this

scheme depends on the integrity of the smart card application compiler.

- Re-defining the Smart Card Commands: Re-write the smart card commands that
need to be logged. Therefore, every modified command will include the necessary
logging statements. For example the write(x) command, that writes value x
in EEPROM, will be replaced by check.write(x). All methods and commands
starting with ¢‘check.’’ will create the necessary entries (for the relevant events) in
the log file in addition to performing their normal operations. The advantages of
this approach is that it imposes no further interpreter and compiler complexities,
and it is relatively easy to implement. The main disadvantage is a relatively small

increase in the size of the smart card primitives.

- Smart Card Application Certificates: If the smart card applications carry appli-
cation certificates they can be granted permission to append entries in the log
file. With this method logging is achieved through minimal changes in the smart
card’s hardware and software architecture. On the other hand, the application

download procedure is restricted only to authorised applications.
- Smart Card Operating System Monitoring Mechanism: Introduce a monitoring
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mechanism (LFUM) that will constantly monitor and log the behaviour of certain
smart card applications. The main advantage is that the mechanism is effective,
since it does not rely on external resources (e.g. the compiler or application cer-
tificates) for performing part of the logging procedure, and thus it will be easier to
be accepted by the smart card application providers and smart card holders. The
obvious disadvantage is that the size and complexity of the in-card interpreter or

the SCOS is increased and the application execution becomes slower.

5.2.2 Observations for Smart card Dynamic Logging

In the Orange Book [37] and in the Guide to Understanding Audit in Trusted Sys-
tems [36], audit log security and the requirements for logging mechanisms are defined
informally in Requirement 4 and section §5.4 respectively. When migrating these re-
quirements into a smart card environment they are no longer entirely applicable due to

the smart card hardware and software characteristics.

In our design, as long as the Trusted Computing Base (TCB) — the SCOS — retains
its integrity, and the LFUM (when provided as part of the SCOS) is responsible for

enforcing the logging policy, the log files should of course, retain their integrity.

In a smart card environment the entries of the log file should be created after the
actual completion of the corresponding task. For example, consider the digital signature
command Sign(Y) of the electronic purse application in figure 5.1. If the command
Sign(Y) is considered as a security relevant event and should be monitored, then the
digital signature will take place first and subsequently an entry will be created in the
log file. This design decision will avoid the situation when an event is logged in the log

file, and subsequently the task is not completed for various reasons.

Let us consider the following scenario: a smart card command is being executed but

when the corresponding event is about to be logged there is an execution error, e.g.
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the card is removed form the reader. Although, this is not a very realistic scenario
since in order to be planned in advance it will require accurate synchronization, it could
always take place by chance. A simple solution will require another file with a “pointer”
to the actual command line number or some other indication as to which command is
currently executing. Before each command is executed, this pointer will be inserted
in the aforementioned file. Subsequently, the command will be executed and then an
entry will be created in the log file. If the creation of the log file entry fails the next
time the application is selected for execution the current command to be executed will
be identified as an entry (i.e. the “pointer”). If the command should have been logged
and the corresponding entry does not appear in the log file, then a new attempt will
be made. Generally speaking the proposed architecture could be part of a general
application recovery mechanism that will be responsible to recover the application to a

safe state after a smart card application crashes.

5.3 The Log File Update Manager

In this section we extend the notion of sensitive command monitoring of the MPCOS
cards already presented in §3.5. Instead of generating a certificate and transmitting
it to the terminal we propose a mechanism (LFUM) which will dynamically identify
the events to be logged and update the corresponding log files. Thus, in this section
we present the mechanisms that will identify the events to be logged along with their

advantages and disadvantages.

5.3.1 Operation of the Log File Update Manager

In the following paragraphs we demonstrate that designing a more dynamic logging
mechanism, that will identify the events to be logged “on the fly”, is not a very difficult
task. A simple and efficient enough implementation would require access to the smart

card operating system (SCOS). Placing the LFUM in the SCOS will clearly achieve
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faster execution times (since it will be written in the microprocessor’s machine language)
and will ensure that it is relatively difficult to be modified since it will be masked in
ROM. Following the above strategy will also ensure that the logging policy is enforced

by all smart card applications. The behaviour of the LFUM is outlined in figure 5.2.

EEPROM ROM

BJFE / SC Application | |

g Auditable Event Table

Y= (X+10) Write |Sign | | Debit
WEite (V) T\ e ;o1 |2 | .. | Ibn

Log File

Figure 5.2: The behaviour of the Log File Update Manager.

One major component of the LFUM is the Auditable Event Table (AET), stored in the
ROM of the card. If the AET table is placed in the EEPROM memory of the card it will
become easier to be updated with new commands that require logging. In our example
this table is shown in the right hand side of figure 5.2 and it is stored in the ROM of the
card. This table contains all the events, mainly smart card commands, to be monitored
along with their corresponding identification string (IDn). The identification string of
each command could be stored in the log file instead of the actual commands. The size
of the AET depends on the number of events to be monitored, and might typically be

200-300 bytes.

Different applications could be subject to different logging policies according to their
logging level. The logging level of an application indicates the number of events that
will be logged or otherwise monitored, in each application. The logging level of each
application can be stored in a table (refer to table 5.1) maintained by the SCOS, this
implies that the SCOS will be the only entity accessing this table, and it will be stored
in the EEPROM memory of the card.

Whenever an application is downloaded in the smart card the SCOS, based on in-
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Table 5.1: The Application Logging Table (ALT).

Application ID Logging Level
MON14PURSE477890 1
TIC987KJL64ET788F 3

formation provided by the application loader, will create an entry in the Application
Logging Table (ALT). For each application downloaded, the ALT contains an entry of

the application’s unique identifier [40] along with its corresponding logging level.

For example let us suppose that our electronic purse and loyalty applications, have the
following application identifiers ¢MON14PURSE477890°’ and ¢“TIC987KJL64ET88F’’ respec-
tively. The logging level of the purse application “1” indicates that it has trustworthy
origins. This implies that the application’s operations should not be dynamically logged
and that the application is granted permission to add entries (mainly receipts) in the
log file. On the other hand, the logging level of the second application “3” indicates

that the application should be monitored.

Another critical decision concerns how dynamic logging is initiated. When an appli-
cation is selected for execution, the SCOS will check the ALT in order to identify the
logging level of the selected application. As soon as the logging level is obtained it is

passed to the LFUM.

The role of the LFUM is to constantly monitor the execution of each smart card com-
mand according to the previously identified logging level. If an entry is found in the

AET, the LFUM will immediately create a corresponding entry in the log file.
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5.3.2 Miscellaneous Characteristics of the LFUM

If the the ALT is stored in the EEPROM of the card, the SCOS developers can define
additional logging levels simple by partitioning the AET into smaller sections. For
example, they could place a certain set of commands to be monitored (i.e. the first five
commands of the AET) under the logging level "2a". Another set of more sensitive
commands could be placed under a different logging level. The above model works well
when the applications to be downloaded contain unique application identifiers. In any
other case the SCOS should allocate a locally unique application identifier. This task is
actually simplified due to the global attempts to standardise the smart card application

identifiers [40].

Apart from being used for dynamic logging the LFUM can be useful when adding receipt
information in the log files. It can act as the entity to receive the receipt information,
check if it conforms to a pre-defined receipt format, and finally append the receipt

information in the log file or simply reject it along with issuing a relevant message.

5.4 The Log File Browse Manager (LFBM)

The LFBM is responsible for providing the cardholder with the capability to browse
the log files while they are still stored in the smart card. Thus, in order to crystallise
the features of the LFBM we can think of it as the only entity which can access and

present the content of the log files to the card holder.

In order to make it more difficult to modify it would be ideal for the LFBM to be part
of the SCOS and masked in the ROM of the card. It will simply read the content of the
log file and present it to the user’s terminal (smart card reader, PC, etc). In other words
the LFBM offers an interface between the smart card log files and the card holder. The

LEFBM should verify the cardholder’s PIN prior to allowing read access to the log file.
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5.5 Smart card Log File Format Standardisation

In this section we present a possible standard format [23| for the smart card log files.
We start by justifying the need for a standard audit log file format. We then describe
the format of the log file and finally, we provide a short discussion on certain practical

issues around the proposed architecture.

5.5.1 Why Standardise a Smart card Log File Format?

A similar proposal of a standard audit trail format for a computerised system is pre-
sented by Bellare and Yee in [4]. The two main issues that the authors addressed are

extensibility and portability of the audit log files.

A standardised log file format in a smart card environment introduces several benefits.

- It makes automated log file analysis and reconciliation easier. Suppose that two
smart cards are involved in a financial transaction. Subsequently, one of the smart
card holders denies the transaction and contacts an arbitrator. The arbitrator’s
task when accessing the log files is simplified if the log files conform to the stan-
dardised log file format. As a result the dispute resolution procedure can be

speeded up.

- It will allow more effective log file storage management. If, for example, an upper
limit is set on the amount of data which can be stored in the log file by each
application, then the problem of an application over-using valuable log file space

is eliminated.

- Similarly, addressing the portability issue is of importance since it will allow the
log files to be transferred and handled by various systems (PCs, Electronic Wallets,

or large Audit Log Storage Servers). For example, a smart card log file should
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have a format that should not make difficult its smooth transportation between

the above entities.

- We also believe that if the smart card log files conform to a standardised log file
format, the use of log file filter engines [4]|, which take as input the smart card
log files as they are created and translate (post-processing) them into a standard
format, is made redundant. Post-processing the smart card log files might be a
problem since the whole log file might be encrypted and/or signed before being
extracted from the card. Thus, it would be difficult to make the smart card log
files conform to a standardised format after they have been extracted from the
card. This implies that log file processing has to take place while the log files are

still stored in the card.

5.5.2 The Content of the Log File

We start by specifying the characteristics of the smart card log file. The log file can
be a transparent file (i.e. a simple linear file) [42]. Its size will depend on the number
of applications downloaded in the card and the technical characteristics of the card;

realistically speaking a smart card log file will probably have size around 1.0-1.5 Kbytes.

We assume that the log file consists of a list of data entries (DEs), which represent a
record for the events to be logged by each application, and each data entry is assigned
a unique serial number in numerically increasing order. The maximum number of data
entries (w) depends on the size of each data entry and the size of the log file. Thus, if
we denote the i data entry in the log file by DE;, the log file F will have the following

form

for some j <w and 1 <17 < 7.

87



Effective Smart Card Log File Logging

Ideally each data entry should correspond to multiple auditable “events”, and take the
form specified below. Note that we assume that the card’s LFUM is the only entity

responsible for updating the entries in the log file. We further assume that:

DE; = DeBind; fk ,.(DE;_; || DeBind) || E

where

DeBind = AID || N¢ || (LE1; LEs;. ..; LE,)

(%)

The separator character between fields is ‘;’ and "||" represents concatenation of data
items. The DeBind variable contains the unique application identifier (AID) field
as described in the ISO 7816-5 standard [40], the value of N¢ which is a monoton-
ically increasing sequence number, and the actual data field of the logged events is
(LEy; LE9;---; LE,), where e is the maximum number of logged events. The value of
e will be a variable number depending on the size of the log file and the number of the
DEs (see §5.5.3). Each LE;, where 1 < i < e, will either hold data from a transaction
receipt or the unique event identification information (EID) for the corresponding event

to be logged.

The fr,.(DE;_; || DeBind) field represents the result of applying the MAC function
f using as input a secret key K4 ¢ and as data the previously generated data entry
(DE;_1) along with the current DeBind. The secret key K¢ could be generated by
a trusted entity but will be known only internally in the card. The latter could be
securely installed in the card either during the personalisation phase or at any later
stage during the card life cycle when the card owner decides to activate the logging
policy. The fx,.(DE;_1 || DeBind) field links the previous data entry with the most

recent one. Finally, ‘E’ denotes the end of this data entry.

In general, log files contain a timestamp. A smart card will not possess a real time

clock and would need to rely on external devices for the value of the timestamp. Hence
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in this environment a timestamp would be of limited value. Thus, it was decided to
make the inclusion of a timestamp optional. We assume that the sequence number N¢
is generated using a counter held internally to the card, and which cannot be reset
or otherwise modified by any external events. In particular, downloading the log file
contents to an Audit Log Storage Server (ALSS) will not involve resetting the sequence
number counter. The sequence numbers of the data entries (DEs) can thus be used
to order downloaded data entries, and gaps in numbers can be used to indicate lost or

deleted log file data entries.

As previously stated, the purpose of including a message authentication code (MAC)
of the previous generated data entry is to effectively link pairs of successively generated
data entries. Eventually, this will create a chain of linking information [63] of all the
generated entries, and along with the sequence number N¢, will act as a protection

mechanism against unauthorised insertion or deletion of LFEs.

5.5.3 The Size of the Log file Data Entry (DE) Field

The length in bytes of each field of the data entry (DE) is as follows. The end character
(E), along with the field separating characters (;) will be one byte each. Please note
that the (||) field, indicating the concatenation of two data items, is not taken into
account when calculating the size of each DFE. The AID field could be represented as
a 16 byte string, as defined in [40] and N¢ could be represented as a 4 byte number
(i.e. ‘0001’, the counter for the initial data entry). The MAC of the linking information

field will contain 4 bytes.

Let us assume that the size of the unique event identification (EID) information of each
event is around 5 bytes (e.g. ‘D056, indicates an Update operation). Furthermore, let
us assume that applications contain a maximum number (e) of LEs to be stored in each
data entry, where (e.g. e < 15). A simple calculation will reveal that the LE entries, i.e.

(LE1; LEs;...; LE,), of each data entry along with the separator characters between
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the fields will have an expected length in bytes of LeLength = (5¢) + (e — 1).

If a number of events (e) is used then the formula which derives the total space occupied

by each data entry (DE) is the following:

DE SpaceA = 6e + 25

where 25 is the number of bytes for the separator characters between the fields, the rest

of the actual fields, and finally the ending character.

The proposed standard log file format maintains a high level of flexibility towards suc-
cessfully adapting itself and logging information from a variety of different applications.
Therefore, although it is suggested that the LE field of each data entry (DE) should
contain a number e of events, allocation of this space can be left to the discretion of the
application designer. In this case the formula which derives the total space occupied by

each data entry is the following:

DE SpaceB = 26 + ¢

where ¢ represents the total number of bytes in the (LE) entries and 26 is the number
of bytes for the rest of the fixed fields, (separator and other characters). Following this
approach the application developers are left with the task of how effectively they can
use these LFE entries, to best suit their needs. For example, instead of having multiple
LEs the same space could be regarded as a single larger entry that the application
developers can use as they want. The above observation also addresses the extensibility

of the log files since they maintain a very flexible structure.
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5.5.4 Number of Data Entries in Each Log File

There are two different options when calculating the number of data entries in each log

file, depending on the number of events to be logged.

The first proposal assumes that the log file contains a fixed number of events in each
data entry e.g. e = 15. The maximum space (in bytes) of each data entry will be
calculated according to the above formula i.e. DE SpaceA = (6 x 15+ 25) = 115. With
this approach the number of data entries in a log file (of size LFS) is the following:
w = [(LFS/DE Space)|. For example, when a log file of 1.5 Kbytes is used we will

get w = [(1536/115)| = 13 entries, which is not very restrictive at all.

The second approach assumes that each data entry might not contain the maximum
number of logged events. For example, if a data entry logs 5 out of its 15 events and
another data entry logs 10 out of 15, and so on, there might be space for extra data
entries. The number of the data entries to be claimed will be assigned dynamically by
the smart card operating system. On average around 2-3 extra data entries will be

added by the existence of such a mechanism.

5.5.5 Practical Issues of the Log File Standard Format

Our proposals indicate a small number of events which need logging in a truly multi-
application smart card environment. We believe that logging such information in the
smart card log files provides extra evidence on the successful or otherwise completion

of certain events.

Currently, due to the limited storage capacity of smart cards, a real world implemen-
tation of smart card log file size (LFS) will only be around 1-1.5 Kbytes. With our
proposed standard log file format, the maximum number of data entries (w) will vary

within the range 13-16. This implies that the smart card log file will hold a reasonable
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number of data entries before it fills up and needs to be downloaded (as described in

chapter 6) or simply over-written.

Furthermore, if the second approach defined in §5.5.4 is to be followed when allocating
the data entries, and all the unused space of each data entry along with the truncated
space resulting from formula w is collected, then extra space for a small number of

additional data entries might be created.

Finally, another issue which needs to be taken into account is the relation between the
data entry size and the log file download frequency. For example, if the log files are
regularly downloaded from the card, then the size of the data entry could increase in

order to record any additional events.

5.6 Summary

In this chapter we examined different techniques that could be used for smart card
application monitoring. Having examined the characteristics of the different proposals
we concluded that the most appropriate method would be to provide a monitoring
mechanism as part the SCOS. Today’s smart card technology offers both the required
processing power and the storage capacity in order to fulfill the requirements of the

proposed dynamic logging mechanism.

Our mechanism can be used both for smart card application monitoring (identifying
pay-as-you-use and licensing details), and for “filtering” receipt requests before they are

added in the log files.

Finally, we explained the advantages of a standardised log file format. The log file
format described in this chapter successfully meets the requirements of today’s multi
application smart cards, since it effectively utilises the relatively small amount of smart

card memory.
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The Log File Download Manager
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In this chapter we present various computationally practical methods for downloading
the log files from a smart card to another device which does not suffer from immediate

storage restrictions.
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6.1 Introduction

The advanced processing power and the relatively unlimited storage capacities of today’s

computer systems simplify the use of log file handling mechanisms.

In a smart card environment, specific application prerequisites, different operating en-
vironments, or even slight variations of the trust relationships among the participants,
often impose different log file uses. As we explained in the previous chapter, among
the most important restrictions for an effective implementation of a log file handling

mechanism is the limited storage space of the smart card.

Whatever space is allocated for the storage of a smart card log file will not be enough,
as sooner or later it will fill up. Our goal here is to push the state-of-the-art a little
further and deal with the complex and realistic issue of securely extracting the log files

from the card and storing them in some other location.

In this chapter we discuss protocols and policies that need to be considered when the
space available for log files in smart cards is filling up and the log files are about to be
downloaded to some other device. We start by highlighting the general requirements
for a secure log file transfer model. We then describe our approach to secure smart
card log file transfer by presenting three different log file download protocols. Finally,
we describe common implementation details and discuss several practical issues that

highlight certain design restrictions.

6.2 Operational Requirements of the Log File Download
Model

In this section we present some general requirements and observations for the Log File

Download Model.

94



6.2 Operational Requirements of the Log File Download Model

We assume that the Log File Download Manager (LFDM) has access to the crypto-
graphic functions residing in the card, and is capable of assigning unique sequential
numbers to the log files about to be downloaded. Secondly, we require that the log files
will be linked with each other in order that it will become difficult to add, delete or
modify any entries without such changes being evident. When the log files are linked
together substantial auditing evidence is automatically created. In order to achieve

appropriate log file chaining when the log files are downloaded we require the use of

cryptography.

The main use of cryptography here is that the LEFDM appends a cryptographic check
value (MAC) on the downloaded log files. In our proposals we require that once a key
is stored in the card it will never appear outside the card. For example, if the key is
shared between an ALSS and the card it will only be known between these two entities.
This key could be generated by a trusted entity and subsequently, stored in the card
during the personalisation phase, along with publishing the key identification number

or a corresponding public key certificate in a trusted public key directory.

In the log file download process we have to ensure that a log file stored in the card
is securely transmitted and stored in an ALSS with the minimal number of messages
exchanged. The steps involved in order to establish and accomplish communication
with an ALSS is another responsibility of the LFDM. For example, the next time the
card is used and the default storage space for the log file has reached a preset threshold,
the LFDM proceeds with one of the download mechanisms described in §6.3. Upon
successful completion of the download process the LFDM will permanently flush the
space occupied by the log file only after it receives an acknowledgement by the ALSS

indicating that the log file is successfully received.

While the log files are stored in the ALSS we assume that they are adequately protected
against deletion. In one of our proposed solutions we favour the idea of assigning a

more active role for the ALSS than just simply accepting any log files. In these cases
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we require the ALSS to check if the log files have been tampered with. This feature will

simplify the arbitration procedure, speed it up, and make it more efficient.

Finally, in all the protocols described below, we require the parties involved to have
access to accurate directories that provide specific details on digital user IDs and key
certificate IDs. Similarly, some of the protocols require the entities (C, A) to establish

a secure connection [60] in order to exchange various messages.

6.3 Secure Log File Transfer

In this section we present our protocols for downloading log files into some external
storage entity (i.e. the ALSS). We assume throughout that the ALSS has unlimited
storage capabilities, a reasonable assumption given the current low price of high-speed
disk storage. We then describe three different sets of protocols for downloading log files

to an ALSS, appropriate for three different scenarios.

- The first scenario (§6.3.2) applies to the case where the ALSS is implemented on

a cardholder-controlled device, e.g. their own PC.

- The second scenario (§6.3.3) covers the use of a remote ALSS, where confidentiality

of the log file contents is not an issue.

- The third scenario (§6.3.4) again applies to a remote ALSS, this time providing
confidentiality protection for the log file, i.e. the ALSS should not be able to read

the log file contents.

We summarise our notation in Table 1. This notation is an extended version of the
one defined in [46]. Descriptions of cryptographic algorithms appropriate for use in the

protocols defined below can be found, for example, in [28, 57].
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Table 6.1: Notation and terminology.

Notation Description
(2) The result of encipherment of data Z with a symmetric enci-
K pherment algorithm (e.g. DES) using key K.
h(Z) The one way hash of data Z using an algorithm such as SHA-1.
F1(2) The result of applying a MAC function f using as input a
K secret key K, and an arbitrary data string Z.
(2) The result of encipherment of data string Z using a public key
AVx algorithm (e.g. RSA) with key V.
The signature resulting from applying the private signature
transformation on data Z using the private signature key Sx.
ssx (2) We assume that the signature scheme in use is a signature
scheme with appendix [28], i.e. the data Z cannot be recovered
from the signature.
e A secret key shared between entities X and Y'; used in sym-
XY metric cryptographic techniques only.
Ix A unique key identification information for key K.
Tx A timestamp issued by entity X.
Nx A sequence number issued by entity X.
Sx A private signature key associated with entity X.
Px A public verification key associated with entity X.
Bx A private decryption key associated with entity X.
Vx A public encryption key associated with entity X.
Ex The unique identification information for entity X.
X — Y : W | Entity X sends entity Y a message with contents W.
Y| Z Represents the concatenation of the data items Y, Z.
S The ALSS.

One example of how the above signature scheme might be realised is as follows. The

data Z is input to a hash-function, and the resulting hash-code is then formatted and

padded prior to application of the RSA function using the signer’s private RSA key.

6.3.1 Security Requirements for the Log File Download Manager

In the following paragraphs we present a set of general requirements for the behaviour

of the LFDM.
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1. No Log Files are Lost During Transmission. This implies that both the ALSS and
the LEDM will have to make sure that they receive the appropriate acknowledge-

ments before accepting or flushing any log files respectively.

2. Privacy and Integrity. The system must be secure in the sense that it should be
very difficult for the participants (U, SP, A, ALSS) involved to deny the existence
and origin of the log files. The privacy and integrity of the log files should be
addressed by using encryption and Message Authentication Codes (MACs) or

digital signatures.

3. Performance. Communication between the entities should take place with a min-
imal exchange of messages. Moreover the format of the messages exchanged be-
tween the participants should minimise the use of cryptography, given the relative

limited computational capabilities of smart cards.

4. Auditable. The log file chain should be auditable. It will also be necessary to
be able to identify changes and modifications in the log entries after the log files

have been transmitted.

6.3.2 Using an ALSS on a Cardholder-Controlled Device

In our first scenario the log files are downloaded to an ALSS belonging to the cardholder
(e.g. aPC or PD). This might be appropriate in situations where the cardholder does not

trust a third party ALSS, or when the log files are simply kept for the user’s reference.

The assumptions about the operational environment of this protocol are the following:
It is not likely that there will be “external” attackers between the ALSS and the card.
On the other hand, the cardholder may decide to attack the system, since it might
have some interest in deleting certain information from the log files. Errors in the
communication link between ALSS and the card are not likely to appear since they are
almost directly connected. In other words, we simply have to protect the integrity of

the log files after they are transmitted to the ALSS.
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Additionally, we assume that the card shares a key (K4¢) with a trusted entity e.g.
an arbitrator. This key can be stored in the card during the personalisation phase or
securely transmitted to the card at any later stage of the card’s lifecycle. In either
case, once the key is securely stored in the card it will never leave the card. This will
ensure that only a card, possessing such a key, can be involved in the log file download

protocol.

We also assume that the card is maintaining a sequence number N¢ which cannot be
modified by any external events. The initial value of the message sequence number
variable will be N¢ = 0. The initial value of C'Bindy, variable could be a standard
pre-defined string of fixed length. Prior to downloading any log files, we require the
cardholder to be authenticated by the card in order to ensure that the log file download
procedure is authorised by the legitimate cardholder. An existing unilateral authenti-
cation scheme, e.g. verifying the cardholder’s PIN, can be used for this purpose, the

details of which are not within the scope of this thesis.

The protocol starts with the LFDM sending message (1) to the ALSS.

(1) LFDM — ALSS : My, || fKac(Mn,)
where

My = (F'|| No || Lac || B(h(Mng—1) || h(F))

F is the log file data, N¢ is a sequence number (current message sequence number
stored internally in the card and incremented by one), I4¢ is the key identifier for key
K 4¢ (e.g. this identifier can be used as a reference point by the ALSS or the arbitrators
in order to identify the key used in the MAC operation, or to obtain the expiry date of

the key or any other key specific information).

The last part of My, creates the hash chain. When adding linking information in the

form of a hash chain [2, 63] of all the previously generated messages with the current
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message, we create extra auditing evidence [1, 58]|. Thus, this part of the message links
the previously sent messages (M, 1) with a hash of the current log file. At this stage
the LFDM stores, in protected memory of the card, a hash of the current message sent
(Mpy,,) and a hash of the current log file (F'). Note that the LFDM has not yet flushed

the space occupied by the log file.

Depending on the system design, the ALSS could perform various checks on the validity
of the previous message (1) received. For reliability purposes in this protocol we simply
require the ALSS to acknowledge every message received. On receiving message (1)
the ALSS extracts the log file (F') from message (Mp,). The ALSS reply to the card

consists of the following message (2).

(2) ALSS — LFDM : h(F) || “Log File Received”

where, h(F') is a hash of the log file received, along with a data string indicating that

the message is successfully received.

On receiving the response message, the LFDM checks for the correct hash value of the
log file. The LFDM has already computed and stored a copy of h(F'), in the construction
of My, in order to speed up the verification of the ALSS’s reply. Alternatively, in
the construction of message (1) the LFDM should simply calculate h(h(Mpy,—1) || F)
instead of h(h(Mn.—1) || h(F). Subsequently, the LFDM should send the message and
while waiting for the ALSS’s reply it should compute A(F'). In either case, if a correct
hash value of the log file is present, the LFDM flushes the memory space utilised by the

log file and replaces the previous value of h(My, 1) with the current value of h(My,,).

Given users have interest in the information stored in the log files, it is reasonable to
expect them to ensure their adequate protection after they are downloaded and stored
in the ALSS. On the other hand, it should be clear that this solution does not prevent

the users from downloading the log files and subsequently deleting them, i.e. “Watergate
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Attack” [58].

What can go wrong?

If the LEDM receives an invalid reply, it will request the ALSS to resend message (2)
once more. If problems persist the LFDM will assume that there is a communication
problem and will refrain from sending further messages. If that is the case, the LFDM
simply ignores the previous operations and returns to the state before starting the
log file download protocol. Another problem which might arise is the possibility of a
malicious user (M) attacking the ALSS and somehow gaining access to the log files.
Obviously, the attacker will gain access to the content of the log files, but since they
are protected with a MAC, generated with a key known only internally in the card, any

alterations will be detected when arbitration will take place.

6.3.3 Using an ALSS in a Remote Location

In our second scenario the LFDM securely transmit the log files to a physically secure
ALSS located remotely in the network. The major difference from the previous proposal
is that the ALSS is not within the immediate control of the user. Evidently, this
approach prevents the “Watergate Attack”. It also removes the user’s concern on where

exactly the log files or the log file backup copies will be stored.

The assumptions about the operational environment of the protocol are the following.
First of all we assume that confidentiality is an issue and that communication between
ALSS and C should be protected. This will prevent an attacker monitoring the network
traffic from getting access to the content of the log files. Therefore, we require that all
the participants have access to a number of cryptographic algorithms. We also assume
that ALSS has the ability, processing and communication power, to deal with a large

number of card requests for service at the same time. On the other hand, each card will
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be dealing with a single ALSS. Furthermore, we assume that ALSSs are trusted entities
in a sense that they will do their best not to lose or disclose any properly received log

files.

A further major difference from the previous proposal is that the ALSS is assigned a
more active role. The ALSS has to verify the integrity of the transmitted log files prior
to their acceptance. The verification will enable ALSS to reject any non legitimate log
files, and at the same time help the arbitration procedure since in case of a dispute the

arbitrators will be presented with already “filtered” information.

In this scenario we favour the use of public key cryptography, which has advantages and
disadvantages. The main advantage is that it simplifies the verification procedure, as
will be shown later. Furthermore, it eliminates the need to keep secure files of shared
keys. On the other hand, public key cryptography is computationally expensive and
might involve validating chains of key certificates. In this scenario the cards have to
obtain a pair of cryptographic keys from a trusted entity. The card’s private key will
be available only internally in the card and the corresponding public key will become

available to the ALSS. Communication with an ALSS involves two phases.

- The Card and ALSS Registration phase, where the entities are introduced to each

other.

- The Secure Log File Transmission phase, where the log files are transmitted to

the ALSS.

Card and ALSS Registration

The card and ALSS registration phase takes place once, in order to establish a fixed
relationship between a card and an ALSS. This phase could be omitted from our pro-

posals, if all the necessary information (ALSS related public keys and certificates) is
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written into the card’s memory during the personalisation phase. The real benefit of
this phase is that it offers the users the freedom to select their favoured preferred ALSS
or re-establish communication with an ALSS in case of key and certificate revocation
problems [26]. As previously mentioned, confidentiality is an issue and therefore the

communication between the ALSS and the card is encrypted.

We assume that the card verifies the ALSS’s certificate. This process will verify that
the ALSS’s public encryption key (Vs) belong to the specific ALSS. The protocol starts
with the LFDM sending the following message (1) to the ALSS:

(1) LFDM — ALSS : zy,(Mn,) || $s.(Mn,)
where

My, = (“Directory Initialisation” || N¢ || CBindn,,)

The “Directory Initialisation” field is a text entry used to indicate the card’s intention
for future communication, N¢ is the incremented internally stored sequence number
and

CBindn, = (Es || Ec || I¢)

where Eg is the ALSS’s unique identification information, F¢ is the card’s identifica-
tion information, and I¢ is the unique identification information of the card’s public

verification key. At this stage the LFDM stores h(CBindy,,) internally.

On receiving the previous message the ALSS decrypts its first part. Subsequently it
checks the following: whether it has already received a similar message before (i.e. a
valid sequence number), and finally whether the message was intended for it. The
latter is achieved by checking the presence of Eg in C'Bindy,. The next step requires
the ALSS to obtain (by using the Io value as an index), a copy of the card’s public
verification key. This key will be used in order to verify the signature in the second
part of the message. Upon successful signature verification the ALSS sends the following

message to the LFEDM.
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(2) ALSS — LEDM : 2, (L) || sss(Lns)

where

Ly, = (“Initialisation Message Received” || Ng || SBindyy)

The “Initialisation Message Received” is a text entry to denote the successful receipt
of the previous sent message, Ng is the server incremented sequence number which is

unique for each card, and

SBindyg = h(Ec || h(Mn,))

The linking variable (SBindy) contains a hash of the card’s identity (E¢), along with

the previous received message h(Mpy,,).

On receiving the response message, the LFDM decrypts its first part by using its pri-
vate decryption key B¢. Subsequently it checks for the unique identification string
Ec and finally for a correct hash of the linking variable Mpy,. Using the ALSS’s
public signature key it verifies the digital signature in the second part of the mes-
sage. Successful signature verification will verify that message (2) was sent by the
ALSS. Finally, the LFDM copies the linking variable SBindy, to the CBindy,, vari-
able (i.e. CBindy, = SBindyg). Upon the successful completion of the registration
protocol both entities have successfully established the required relationship and the

required linking information has been created.

What can go wrong?

If the ALSS receives an invalid first message it will send back to the card a message
with a data entry “Error Message” and a short description of the problem. When the

LFDM receives such a message, it resends the original message.

104



6.3 Secure Log File Transfer

If the LFDM does not receive a reply from the ALSS it assumes that either the message
(1) never reached the ALSS, or message (2) never reached the LFDM. In either case
it will resend the message once more. If the problems persist in the next message
exchanged both the LFDM and the ALSS will avoid sending any other messages and

the communication will terminate.

Secure Log File Transmission

The second phase involves the actual transmission of the log files to the ALSS. From
the previous phase we assume that the ALSS has created a log file storage directory
for the corresponding card. Similarly we assume that the ALSS possesses a copy of the
card’s information. The information exchanged between ALSS and C will be encrypted
in order to achieve confidentiality. As previously described, we favour the use of public

key cryptography.

The protocol starts with the LEDM sending the following message to the ALSS.

(1) LFDM — ALSS : ZVS(MNC) || SSC(MNC)

where

My, = (F'|| N¢ || Es || Ec || CBindy,)

and F'is the log file data, N¢ is the current message sequence number, stored internally

in the card, Fg and E¢ are unique identification information of ALSS and C, and

CBindy, = h(h(CBindy,_1) || Nc || F).

Once more, the CBindy,, variable serves the role of the linking information. Thus, it
contains a hash of the following: a hash of the previous sent message h(Cbindn,_1)

stored internally, a message sequence number N¢ and the current log file F'. At this
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stage the LFDM stores internally a copy of h(CBindy,). Alternatively, the LFDM
can send the previous message and while waiting for the ALSS’s reply it could compute

h(CBindy,,). This will reduce the time spent on the first part of the protocol.

On receiving message (1) the ALSS decrypts the first part of the message by using its
private decryption key Bg. Subsequently, it verifies the details of the message My,
by checking the sequence number N¢ along with the ALSS’s identification information
Eg and the card’s identification information (E¢). If these details are present and
valid, the ALSS assembles the message data My, in order to verify, by using a copy
of the card’s public verification key P¢, the digital signature on the second half of the
message. Upon successful signature verification the ALSS assumes that the message
originated from a card which knows the secret signing key S¢ and subsequently it sends

the following message.

(2) ALSS — LFDM : zVC(LNs) H SSS(LNS)
where

Ly, = (“Log File Received” || Ns || Ec || SBindyy)

As previously the field “Log File Received” is a text entry to denote the successful
receipt of the log file, Ng is the ALSS’s incremented sequence number for this card, E¢

the identification information of the card, and

SB’L"ndNS = h(CB’L"ndNC || NS)-

The SBindy, variable serves the role of the linking information maintained by the
ALSS. Thus, it links the previous information sent to the ALSS, with the current

sequence number.

On receiving message (2) the LEDM decrypts (by using its private decryption key B¢)

the first part of the message. Subsequently it makes sure that its name is correctly
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present. It then assembles the linking variable Ly, in order to verify the signature
in the second half of the message. If everything appears to be correct, the LFDM is
confident that message (2) is a reply to message (1). In that case it flushes the space
occupied by the current log file, and overwrites the value of the old linking variable
CBindy, with SBindy,. In case of any problems in the messages exchanged, both

entities proceed as described in the “What can wrong?” subsection of §6.3.3.

6.3.4 Using an ALSS in a Remote Location and Encrypted Log Files

In our previous example we addressed the problem of securely transmitting the log files
to an ALSS. In that particular example we were not concerned about the confidentiality
of the log files while stored in the ALSS. This means that while the log files are stored

in the ALSS, their content is accessible to the ALSS.

In this section we slightly modify our requirements and propose a solution in which
ALSSs do not have access to the content of the log files. The proposed solution is an
extended combination of the previous two. Similarly to the previous example we assume
that the information exchanged between ALSS and C is vulnerable and thus, it should
be encrypted. The initialisation phase remains exactly the same as presented in §6.3.3.

The protocol starts with the LFDM sending the following message.

(1) LEDM — ALSS : 2y, (Mn,) || sso(Mn,.)

where

My, = (Nc || Ec || Es || eKac(F) || CBindy,).
N¢ is the current message sequence number stored internally in C, E¢ and Fg are
the identity information of the card and ALSS respectively, eK 4¢(F) is the log file en-

crypted under the key shared between the card and a trusted entity (e.g. an arbitrator),

and
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CB’i’I’LdNO = h(h(CB’L"ndNC_l) || eKAc(F) || Nc).

CBindy,, contains a hash of the card’s previous linking variable h(CBindy,_1), a copy
of the encrypted log file eK o (F'), along with the current message sequence number
N¢. Note that the log file F' is encrypted before it is actually included in the linking
variable. At this stage the card stores internally a hashed copy of the encrypted log
file h(C'Bindy,,) or alternatively it sends message (1) and while waiting for the ALSS’s

reply it computes h(CBindy,,).

On receiving the message, the ALSS decrypts the first half by using its private decryp-
tion key Bg. Subsequently, it looks for an appropriate sequence number N¢, along with
the correct entity identifiers (i.e. E¢ and Eg), and a valid hash value on the CBindy,,
component. Then by using a copy of the public signature key of the card P¢ it verifies
the digital signature in the second part of the message. If everything is correct, i.e. the
message decrypted correctly and there is valid digital signature in the second half of

the message, the ALSS sends the following message.

(2) ALSS — LEDM : 2y, (L) || sss(Lny)-

where

Ly, = (“Log File Received” | Ng || E¢ || SBindyy,).

As previously, the “Log File Received” is a text entry to denote the successful receipt
of the log file, Ng is the ALSS’s incremented sequence number for this card, E¢ is the

identification information of the card (E¢), and
SBindyng, = h(CBindy, || Ns).

Once more the SBindyg variable serves the role of the linking information maintained
by the ALSS. Thus, it links the previous information sent by the ALSS with the current

sequence number.
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On receiving the message, the LFDM uses its private decryption key B¢ and decrypts
the first half. It then checks for a valid sequence number, a correct unique card identifier
and for a valid hash of the linking variable. This will ensure that the ALSS has correctly
received the transmitted log file. Subsequently, by using the ALSS’a public verification
key Ps it verifies the signature in the second part of the message. If everything appears
to be correct the LFDM flushes the space occupied by the log file, and overwrites
the value of the previous linking variable C'Bindy, with SBindyg. Similarly to the
previous protocol, in case of any problems in the messages exchanged both entities

proceed as described in the “What can wrong?” subsection of §6.3.3.

6.4 Common Implementation Details

In this section we present certain issues which could be common between the three

different scenarios.

6.4.1 The Behaviour of ALSS

We assume that in a real world implementation of the log file download proposals the
ALSSs will communicate with a large number of cards. Due to the possible large number
of transactions involved we would like to ensure that ALSSs will be able to respond back
to the cards within a reasonable time. On top of the ALSS processing overhead, we
must also take into account the communications overhead, for example the time spent
for the messages to travel from one entity to the other. The latter will depend on the

traffic over the network, e.g. the Internet or the air link when using mobile phones.

6.4.2 Using Secret Key Cryptography

In case that public key cryptography is considered as inappropriate for encrypting the

first half of each message, secret key cryptography could be used instead. In such a
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case the two entities, the ALSS and the card, should share a secret key. This key could
be generated in advance (i.e. during the personalisation phase of the card) or it could
be securely distributed to the ALSS at a later stage. If the key is installed during
the personalisation phase, then the registration phase could be considered as minimal,
since the ALSS can create a log file storage directory as soon as it receives a copy of the
shared key. Alternatively, the two entities can be involved in a key agreement protocol
in a slightly modified registration phase. In either case, this shared key should be used

in order to encrypt the first part of message (1).

Another issue is how the ALSS will identify the secret key used by each card and
subsequently decrypt the first part of the message. In order the ALSS to uniquely
identify each card it has to obtain the card’s ATR. Subsequently, by using the card’s
unique serial number, it will search its database in order to obtain the card’s secret key.
The construction of the messages along with the digital signature at the second half of

each message should remain the same.

6.4.3 Termination of the ALSS and Smart card Relationship

During the period of communication between the ALSS and the card, either of the two

entities might decide to terminate their relationship.

We believe that in a real world implementation of the aforementioned protocols, the
cards will not be permitted to switch over to a different ALSS. This could be a policy
decision enforced by the card providers in order to satisfy their commercial interests,
e.g. established relationships with certain ALSSs. On the other hand, offering the
ability to terminate an existing ALSS and card relationship increases the confidence of
both the cardholder and the ALSS. Although this is an implementation decision which
depends on the systems security policy, for clarity purposes we briefly describe the main

operations involved.
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If the ALSS decides to terminate its relationship with a specific card, we propose the
following procedure. The next time the ALSS is contacted by the specific card, it will
decide whether to accept or reject the received log file depending on the security policy.
Whether or not the log file is accepted, the ALSS forms a reply as described in the
protocols but with a single difference. The text entry of the reply message will be like
“Terminate Relationship”. On receiving the message, the card verifies both the digital
signature and the linking information, and subsequently switches into the registration

mode described in §6.3.3 along with terminating any communication with the ALSS.

The card can also issue a similar message using the following procedure. The LFDM
generates message My, as described in the first step of the log file transmission phase.
Subsequently, it includes an additional text entry “Terminate Relationship” and, de-
pending on whether is permitted to proceed with submitting the log file, it proceeds
accordingly. On receiving such a message the ALSS verifies its details and acknowledges
with a reply similar to the one described above. As in the above example the card will

switch into the registration phase mode and terminate any communication with the

ALSS.

6.4.4 Dispute Resolution and the Arbitration Phase

In case a dispute arises and an arbitrator is involved, we have to consider two cases,
depending on whether the log files are stored in a user controlled ALSS or in an ALSS

somewhere on the network.

When the log files are stored in a user controlled ALSS the arbitrator will have to
contact the user involved by using conventional methods (e.g. telephone or email), in
order to obtain a copy of the log files. The user will have to establish a secure connection
with the arbitrator and transmit his/her log files. The arbitrator, by using his/her copy

of the shared key K¢, will verify the linking information of the log files.
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Let us suppose that the ALSS transmits the following sequence of log files presented in
figure 6.1. In this example the valid sequence of log files from 45 to 47 is interrupted with
two non legitimate log files with sequence numbers XX. When the arbitrator verifies
the linking information, the two “fake” entries will be identified, firstly because they will
not be encrypted with the valid key, and secondly, because their corresponding linking

information will not make sense.

Log File Log File Log File Log File Log File

1:Signature  1:Update I:Transfer  1:Update  1:Signature
2:Update  2:Update  2:Transfer  2:Signature 2:Update
.:Signature _.:Transfer  ..:Signature ...:Update ...:Update

Seq: 45 Seq: 46 Seq: XX Seq: XX Seq: 47

Figure 6.1: Sequence of log files stored in the ALSS.

When the log files are stored in an ALSS located somewhere in the network, the ALSS
will be asked to submit a copy of the log files (i.e. the actual messages exchanged between
ALSS and C) to the arbitrator or to the dispute resolution entity. Subsequently, the
arbitrator will verify the authenticity of the log files by using the public encryption key
Pg of the card.

6.4.5 Verification of the Log Files While Stored in the Smart card

If a dispute arises while the log files are still stored in the card, a simple solution requires
the LEFDM to offer the functionality of downloading the log files on the cardholders

request, even when the log file space is not full.

In such a case the LEFDM generates a text entry “Requested Log File Download” which is
included in the current message (My,,) variable and in the linking variable (C'Bindy,,).

Subsequently, it follows one of the protocols described in the previous sections in order
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to securely download the log files to an ALSS.

This functionality enables the card holder to empty the log file space before it actually
becomes full, and therefore, participate more effectively in the log file space management

process.

6.5 Summary

In this chapter we have presented several variations of a scheme that allows the log
files to be securely transmitted from a card to another device which does not suffer
from immediate storage restrictions. Our proposals successfully address the problem
of securely transmitting the log files, by using only the absolutely necessary exchange
of messages between the participants along with only the necessary computationally

expensive cryptographic protection.

The first protocol simply extracts the log files from the card and transfers them to an
ALSS, which is under the control of the card holder. The second and third protocols
have a common registration phase in order to enable the two entities to be introduced
to each other. Their main difference with the first protocol is that the ALSS is located
somewhere in the network and is not under the control of the card holder. The main
difference between the second and the third protocols is that in the latter the ALSS
should not have access to the content of the log files. Their common issue is that, since
the ALSS is located in the network, the log files need to be protected while they are in

transient.
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Implementation Results
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While there are a number of theoretical security protocols integrating smart cards in
a variety of systems, there are very few test implementations.
present details of an experimental implementation of both the secure log file download
protocol and the proposed log file standard format. We also provide a discussion of

the performance results along with our experiences from implementing the theoretical

designs in a real multi-application smart card environment.
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7.1 Introduction

7.1 Introduction

This chapter describes results from test implementations [23, 27| of the ideas presented
in chapters 5 and 6. The work in this chapter can also be considered as a reference

point when designing more complex smart card applications.

For the test implementation we used two of the most popular Java Card API 2.0 [29,
30, 31] compliant smart card currently available in the market, namely the GemXpresso
Java Card [12] from Gemplus and Cyberflex Open 16K Java Card [56] from Schlumberger.
Notably, both these implementations allow dynamic application download/deletion and
provide application isolation. Although Java Cards offer multi-application capabilities,
there are still certain limitations, such as the limited size of EEPROM and RAM, the
limited processing power, and the lack of cryptographic functions in general, that need
to be taken into account when developing smart card applications. These factors forced

certain design decisions which will be explained in the following subsections.

This chapter serves two purposes. Firstly, it provides performance measurements for
the first log file download protocol specified in §6.3.3, and the audit log standard format
given in §5.5, and thus proves that a real implementation of the concepts is feasible.
Secondly, it highlights issues which are relevant when developing Java Card applica-
tions. This last point is of particular importance since there are very few Java Card

applications available today and we expect a substantial increase in the future.

7.2 Common Design Details

Software solutions that use smart cards can be separated into the client-side application
and the smart card application or applet. Thus, in order to test the performance of
the log file download protocol or the standard log file format, two distinct entities

have to be developed. The first one will reside in the card (e.g. the LFDM) and the
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second will reside in the user’s PC (e.g. the ALSS). The technology for implementing
these two entities is already described in chapter 2. In the following subsections we
present various limitations and architectural characteristics, in order to give the reader

an understanding of the issues involved.

7.2.1 The Client Application

The interfaces that enable the client to interact with the Java Card are presented in

section §2.4. In our implementation we used the PC/SC and the DMI interfaces.

7.2.2 Smart card Application Development Tools

Two widely known development tools that allow pre-processing, downloading and exe-
cution of Java Card applets are presented below. Both tools enable developers to write

and test Java Card applets, and they are Java Card API 2.0 compliant.

- The Gemplus GemXpresso Rapid Applet Development (RAD) Kit [12], contains
the first Java Card implementation on a 32-bit RISC smart card micro-processor.
It is Java Card API 2.0 compatible but it also differentiates itself with a cut-down
version of an RPC (Remote Procedure Call) [6] style protocol called DMI (Direct
Method Invocation) [65]. Finally, it has 15 Kbytes of memory, of which 5 Kbytes

are used for heap memory.

- The Cyberflex Open 16K [7], can accept applets with a total size of 16 Kbytes
including the heap memory, and it has a stack size of 128 bytes. The heart of the

smart card is an 8-bit micro-processor.
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7.2.3 Limitations of the Smart cards and the Development Kits

During the development of the test applications we encountered the following limitations
that had to do either with the smart card capabilities or the development kits that

accompanied them.

Of the two Java Cards, only the GemXpresso supports garbage collection. However,
garbage collection, by nature, does not take place immediately after the memory ceases
to be used, but after some implementation specific delay. Furthermore, in many JVM
implementations, garbage collection takes place when memory gets exhausted and such
a procedure would adversely affect the potential speed of the given Java Card. Due to
these issues, special attention had to be given when coding not to use local variables
and not dynamically allocate memory in frequently called functions. In extreme cases,
“frequently” is defined as twice or more. When a local variable is instantiated, the
memory of the stack is used. When a dynamic allocation is requested, the memory of
the heap is used. In both cases, after the exit of the function, no memory is claimed
back, and we gradually become short of memory. The solution is to use global variables,
and reuse them as much as possible within the applet. It is desirable to restrict memory
allocation to inside the constructor of the applet, because this is a guaranteed location
that is executed only once, and it is a location where the memory has not become
fragmented. We must note that garbage collection is not a prerequisite for Java Card

2.0 API conformance.

Usually, when sending data (Application Protocol Data Units [42]) from the smart card
to the client and vice versa, a limit of approximately 255 bytes exists. Actually, for
the GemXpresso card the maximum packet of data that can be send from the client to
the card is limited to 56 bytes. In order to solve the problem of sending larger data
packets, special programming has to be used to send the data in blocks. This slows the
applet execution significantly when communicating with the client, because switching

from receiving to sending, and vice versa, is a slow procedure.
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The (lack of) availability of cryptographic functions on the Java Cards is a two-fold
problem. First, the export control restrictions imposed by many governments dissuade
manufacturers from implementing them. Secondly, the JVM already takes up much of
the resources of the Java Card, and manufacturers need to invest heavily to put the
cryptographic core with the rest of the functionality. Both Java Cards used do not

currently support real cryptographic functions.

The development environment usually offers a “simulator” that enables the programmer
to easily test the applet without downloading it to the Java Card every time it is to be
executed. In the case of the development kit of the Open 16K, the simulator was not
reliable enough, and attempts to use it had to be abandoned. The GemXpresso Java

Card simulator was significantly better and quite usable.

The time from the generation-compilation of the applet on the development environment
until the applet is running on the Java Card was computed to determine the compile-
to-run cycle. It was noticed that the resulting times were between 25-55 seconds. These
times are very long and in some cases involve a series of repetitive steps. This often leads
to errors such as failing to correctly update the applet on the Java Card and carrying

out tests on the previous applet. This was the case with the development environment

of the Open 16K card.

7.3 Implementing the Log File Download Protocol

In this section we describe the implementation details from the first secure log file

download protocol as described in §6.3.3.
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7.3.1 Design Goals for the Log File Download Protocol

The following are among the design principles followed while implementing the log file

download protocol.

Ensure that the log file download protocol will start only after the smart card

holder’s approval e.g. after the user presents the correct PIN to the card.

- Effectively identify restricted smart card resources in order to allow more adequate

application design.

- Perform application code optimisation in order to achieve better application per-

formance.

- Design dummy cryptographic primitives, since the available cards do not offer
such functionality, and when offered it is not fully accessible, as explained later

on.
- Evaluate the usability of the Java Card development tools.

- Examine the application execution performance for both platforms.

7.3.2 Common Implementation Details Between the two Java Card
Platforms

Since cryptographic functionality was unavailable, dummy functions were implemented
to cover the lack of hash and MAC functions. The input to the dummy MAC and
hash functions was a buffer of arbitrary size and the output was a 16 byte string. The
dummy hash was implemented using the modulus operation over the input and the
dummy MAC was implemented using the dummy hash by adding an “exclusive or”

with a key value.
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Although log files of 1-1.5 Kbytes may be more desirable (as described in §5.5.5) we use

smaller log files along with simple cryptographic functions for the reasons given below.

It is rather difficult to manage “large” files on the card, more than 248 bytes, and
problems were encountered when reading such “large” files. It would also be time-
consuming to perform cryptographic functions on “large” blocks of data. Additionally,
a large log file space would further delay the protocol execution since a number of
packets would need to be transmitted due to the 54 or 255 byte restriction on the

APDU data buffer, depending on the smart card development platform.

Another issue that forced the common choice of log file size as 40 bytes, and such simple
dummy cryptographic functions, was the poor performance of the card reader for the
Cyberflex Java Card. As described in §7.3.4, this card reader does not support long
processing in the Java Card due to the de-synchronisation of client/card communica-

tions.

ALSS JavaCard
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Hash the log Send to
file and appen

timestamp,
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Figure 7.1: The three steps (Validation, SendData, VerifyReply) of the log file download
protocol

The log file information could have been spread across more than one file to accommo-

date the limitations on the file system of the Java Cards. However, such a solution was
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not adopted, as it would require changes to the log file download protocol and generally
to the overall security design of the system. Therefore, it was decided that the log file
should be relatively small, i.e. maximum of 248 bytes when running on the simulator
and 40 bytes when running on the card. As previously mentioned, it was impossible to
make the protocol work (on the card) when the log file was more than 40 bytes. The

steps of the log file download protocol are presented in figure 7.1.

Note that for the protocol to be implemented, the following functionality needs to be
available. The card has to implement a hash and a MAC function (§7.3.3 and §7.3.4).
The card must also be capable of storing certain transient information (N¢, CBindy,,)
while waiting for the ALSS’s reply. The ALSS has to implement the same cryptographic

functions as the card.

The protocol functionality is encapsulated within three essential functions:

I. the VerifyPIN, accepts the PIN and compares it with a default one,

II. the SendData, implements the part of the protocol that sends, among other in-

formation, the log file data, and

III. the VerifyReply, implements the last step of the protocol that enables the LFDM

to verify the ALSS’s reply.

7.3.3 GemXpresso Implementation

In this section we present the implementation details when using the GemXpresso de-

velopment kit.
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GemXpresso Characteristics and Limitations

Note that, although the GemXpresso card contains certain dummy cryptographic func-
tions (DES, 3DES, and hash), these were not used since the actual Java classes imple-
menting the cryptographic functionality (e.g. DES) were not fully usable. Instead, the
dummy functions specified in §7.3.2 were used in both implementations to facilitate the

comparison between the two experimental platforms.
Implementation Architecture

In this section, we present a more detailed design for the GemXpresso Java Card appli-
cation. The application is written according to the DMI specification in Java, refer to
§2.4.5. In order to maintain compatibility with the Open 16K platform we did not use
any 32-bit data types (specifically in the hash and MAC functions). We have shared
the functionality of the log file download protocol between an applet and a library, as

it can be seen in figure 7.2.

Terminal Application I Smart Card I

Client Application Reader .
Application Proxy Driver | Applet | Library
| heck PIN
Connect .
] NBa Verify PIN Get Log File
GenerateHash
: ! GenerateMac
Terminate 1 Verify Reply
| Flush Log File
1
1

Figure 7.2: The architecture of the LEDM residing on the GemXpresso card and the
Client application residing on the user’s PC

The Java Card applet contains all the functions accessible to the outside world (i.e. the
client). These functions provide an external interface for the functions, defined in the

library, directly accessing the log file.
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With this architecture, the sensitive log file information will only be accessed through
the library classes (as the library is the sole owner of the log file). The library exposes, in
the form of public procedures, only a limited number of functions and thus, a malicious
client application can not directly call the procedures for accessing the log file. Since
the library contains the basic log file access procedures (such as a log file API), these

functions could be securely shared among other trusted Java Card applications.

To see the advantages of this architecture, suppose the log file download protocol is
to be upgraded. Then, a new Java Card applet, implementing the new protocol and
using the existing library, can be loaded into the smart card, without endangering the
library functions. Also, a potential log file library owner, e.g. a Log File API, could

easily provide controlled access from the library to other smart card applications.

Results and Performance Evaluation

Different results were generated depending on the actual size of the log files and whether
the application ran on the card or on the simulator. The implementation and the testing
of the client and LFDM applications used a 400Mhz PC with 128 MB of RAM under
Windows NT with Service Pack (SP) 4. The Java code was written using Microsoft
J+-+ and Microsoft Java SDK Ver 2.02. The GemXpresso card was communicating
with the client application through the GCR410-X reader provided by Gemplus. When
the client was communicating with the Java Card, the results were largely PC speed

independent because the operations were mostly I/O intensive.

The results from the protocol execution on the simulator with a log file size of 248
bytes and after ten consecutive executions are presented in Table 7.11 and a more
condensed version of this table is presented in Table 7.1. The Connect figure indicates
the time spent by the client application connecting to the reader or the simulator. The
next three values indicate the time spent in the following procedures: the VerifyPIN

function verifies the user password, the SendData function forms the packets as defined
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by the protocol and the VerifyReply verifies the ALSS’s reply. The Disconnect figure

represents the time spent closing the connection with the reader or the simulator.

Table 7.1: GemXpresso simulator results using a log file of 248 bytes.

Part name Time (ms) || Std.Deviation
Connect 11246 34.62
Verify PIN 210 4.97
Send Data 200 0.42
Verify Reply 200 0.52
Disconnect 401 0.47
Total 12257 40.99

It is worth mentioning that the Connect figure, at least for the simulator, is not very
accurate. This is because when the client is connecting to the simulator and tries to
select the applet, in most cases it returns “false”, i.e. the applet could not be selected.
Surprisingly though, the applet execution continues as if the applet was properly se-

lected.

When the protocol is executed in the simulator with a log file of 40 bytes we get the

results presented in Table 7.12. A more condensed version is presented in Table 7.2.

Table 7.2: GemXpresso simulator results using a log file of 40 bytes.

Part name Time (ms) | Std.Deviation
Connect 11246 24.18
Verify PIN 210 4.20
Send Data 140 0.32
Verify Reply 200 0.48
Disconnect 400.5 0.50
Total 12197 29.68

From the figures in table 7.1 and table 7.2 we observe that the Connect and Disconnect
values are almost identical. Similarly, the VerifyPIN procedure consumes the same
amount of time in both cases. When the log file is 40 bytes the SendData function
takes less time since less data are involved in constructing the protocol packets. The

VerifyReply procedure takes the same time in both implementations since the opera-
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tions involved are independent of the log file length.

The main reason for providing execution results on the simulator, which does not suc-
cessfully simulate the card’s behaviour, is as follows. Firstly, it provides an indication
of the differences in execution times. Secondly, it shows that the only reason that the
log file download protocol does not operate on the card with relative large log files is

the limited memory space.

Timing results when the protocol was executed in the card are provided in Table 7.13
and the condensed version is presented in Table 7.3. When the protocol is executed in
the card, we tend to get slightly increased values, as was expected. This shows that the

simulator does not correctly simulate the card processing time.

Table 7.3: GemXpresso Java Card results using log file of 40 bytes.

Part name Time (ms) || Std.Deviation
Connect 2689 12,76
Verify PIN 371 6.13
Send Data 1091 5.27
Verify Reply 1862 9.81
Disconnect 130 4.59
Total 6143 15,57

The Connect time is very large, compared with some results for the Open 16K Java
Card, as presented later. We could partially attribute this to the fact that, in this
case, the client is implemented in Java, while in the second case it is implemented in
Visual Basic. In other words, this implies that since Java is interpreted it could be
slower when executed but mainly due to the different architectures when requesting
access to the reader and the card. The above observation, along with the fact that
the client application interfaces (i.e. PC/SC and DMI) are using different strategies or

methodologies for connecting to the reader, contribute to the different results obtained.

To remove the influence of the timings for the “dummy” cryptographic functions, the

execution times for the dummy hash and MAC over a 20 byte buffer were measured
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(see Table 7.14), and the overall results are given in Table 7.4.

Table 7.4: Dummy hash and MAC execution times on the GemXpresso Card.

Java Card || Hash (ms) | MAC (ms)
GemXpresso 128 139

The results in Table 7.4 were used to estimate the time needed to execute the protocol
on the GemXpresso Java Card, assuming that a hash takes z milliseconds and a MAC

takes y milliseconds (see Table 7.5).

Table 7.5: GemXpresso Java Card with variable hash and MAC times.

Part name Time (ms)
Connect 2689
Verify PIN 371

Send Data 824+ x+vy
Verify Reply 1584 4 2z
Disconnect 130
Total 5598 + 3z +y

The size in bytes of each of the above three entities when implemented in Java and
downloaded in the GemXpresso card are as follows: The smart card library (LFDM) is
1939 bytes and the smart card application calling the LFDM is 757 bytes. The client
application is 8.342 bytes along with the proxy interface which is 3524 bytes. The proxy
file is automatically generated by the GemXpresso development kit. The above file sizes

are for the Java source code files.

7.3.4 Cyberflex Open 16K Implementation

In this section we present the implementation details when using the Cyberflex Open

16K Java Card.
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Design and Limitations

The software that accompanies the Cyberflex Open 16K Java Card provides the de-
veloper with management utilities to download applets to the Java Card and offers a

rather simple interface to test them.

As noted in §7.3.2, the same dummy cryptographic functions were used in both im-
plementations. Because of constraints in the Java Cards, and to maintain consistency

between implementations, the protocol was implemented using a 40 byte log file.

The Open 16K JVM only supports data types of one and two bytes because the Java
Card has an 8-bit microprocessor. Also, an integer of 4 bytes as defined in GemXpresso,
is not offered in Cyberflex. This means that all results of arithmetic operations should

be “type casted” or converted to the one-byte or two-byte data types.

For the Open 16K Java Card, a relative “dumb” card reader (i.e. the Litronic 210
serial port reader) was available. Dumb card readers are relatively unsophisticated, and
synchronisation problems often arise, causing frequent problems with the experimental
implementation, e.g. requiring PC reboots, mainly during the application development

phase.

The simulator supplied for the Open 16K Java Card did not operate correctly and a
direct implementation to the Java Card had to be carried out. However, despite the

difficulties, a stable implementation of the protocol was eventually produced.

Implementation Architecture

The functionality of the VerifyPIN, SendData and VerifyReply functions is described
in §7.3.2 and depicted in figure 7.3. The PIN is a 4-digit number and, once the user has

been validated, the rest of the functions will be invoked.
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I Client Application I Reader Driver

I Smart Card Applet

Command
APDU

Check PIN,
GenerateHash,
GenerateMac,
SendL ogFileData,
ReceiveAL SSReply

Figure 7.3: The architecture of the LFDM residing on the Cyberflex card the Client
application residing on the user’s PC

The client side of the application was written in Visual Basic Ver. 5 using a COM
component provided with the Cyberflex Development kit that enables communication

with the smart card application through the PC/SC framework.

Results and Performance Evaluation

The results of the 10 consecutive execution timings are presented in Table 7.15 and a

more condensed version appears in Table 7.6.

Table 7.6: Open 16K Java Card using a log file of 40 bytes.

Part name Time (ms) || Std.Deviation
Connect 200 4.90
Verify PIN 190.5 5.22
Send Data 2473 5.14
Verify Reply 2173 4.28
Disconnect 951 0.42
Total 5987.5 19.97

The Connect time also includes the initialisation time that is needed to access the COM
component, to configure the connection with the card reader and select the applet. Once
this is done, validation can take place. Afterwards, the client sends a request to the
Java Card to receive the Log File. Finally, the client parses the response and answers

to the card providing a hash that the latter has to verify.
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The Connect phase includes initialisation procedures carried out on the client, such as
the Java Card’s selection of which applet to run. The relatively small time is explained
by the fact that much of the processing is done on the host PC and as previously

mentioned the specific implementation details of PC/SC.

The VerifyPIN process is very short, and involves comparing the given PIN with the

correct one and informing the user whether it was correct.

The SendData function is the most time-consuming function. It makes use of array
copies as described in §7.3.2 to create the message sent to the client. Also, it computes
a dummy hash and a dummy MAC. The execution time of this function is higher than
for the GemXpresso card. The only explanation would appear to be either that reading
and updating files in the Cyberflex card is slower or that generally the Cyberflex Open

16K micro-processor is slower than the GemXpresso.

The VerifyReply function accepts the client’s reply, and following the necessary checks

it finally notifies the client whether the hash was properly verified.

The Disconnect function takes a relatively long time, compared with the Connect time.
It can be assumed that this is PC/SC specific, or more precisely, it is related to the
drivers that implement the support for the Open 16K. Note that the Connect time is
very short compared with the GemXpresso, although exactly the opposite is true with
respect to the Disconnect time. Again the explanation is that there are implementation

differences on how to connect or disconnect with a card.

Table 7.7: Dummy hash and MAC execution times on the Open 16K Card.

Java Card | Hash (ms) | MAC (ms)
Open 16K 177.75 187.75

The time to execute the dummy hash and MAC over a 20 byte buffer were measured
(see Table 7.16) and the results are given in Table 7.7. The MAC and hash performance

measurements on the Cyberflex Open 16K card appear to be slower compared with the
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ones obtained by the GemXpresso card, for reasons already analysed in the previous

sections.

Using the figures of Table 7.7, we can estimate the protocol performance assuming that

a hash takes x milliseconds and a MAC y milliseconds, see Table 7.8.

Table 7.8: Execution times on the Open 16K Card with variable hash and MAC times.

Part name Time (ms)
Connect 200
Verify PIN 190.5

Send Data 2107 +z +y
Verify Reply 1817.5 4+ 2z
Disconnect 951
Total 9266.5 + 3z +y

The size in bytes of each of the above entities when implemented in Java and downloaded
in the Cyberflex card are as follows: The smart card application calling the LFDM is
5867 bytes. The client application is 17 Kbytes. All figures indicate the compiled

versions of the corresponding files and not of the source code files.

7.4 Implementing the Standard Log File Format

In this section we describe the implementation details from the log file standard format

as described in §5.5.

7.4.1 Implementation Analysis

In a practical implementation of the log file standard format the data entries (DEs)
would be generated either by the SCOS or by applications. As the standard requires
that information from either source will have to be transformed into the specified format,

both the SCOS and the applications will have to be provided with this functionality.
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The required functionality will be provided with the GenerateDataEntry function that

will perform the following tasks:

- take as input the LEs information,
- generate the format required by the standard (DE), and

- append the new entry to the log file.

Ideally this function should be implemented as a SCOS primitive-service for the follow-

ing reasons:

- it will be more adequately protected if masked in ROM,
- it will run faster since it could be written in machine native code, and

- it will probably eliminate the possibility of having applications passing information

outside their own application space.

The last observation is of particular importance since in both Java Card API and partic-
ularly in Multos, applications are restricted within their own application space. Thus,
it would be more efficient to call a SCOS primitive that will securely receive the log-
ging information and perform the above steps, rather than having applications passing
information to other applications, outside their own application space. Additionally, it
will be more secure for the log file, which holds information from multiple applications,

to be accessed through a SCOS call rather directly by each smart card application.

Another approach, which is more convenient to implement with our currently available
Java Card tools [12], suggests that the required functionality will be provided in the
form of a shared library. The specific functions can be made publicly available through

a shared library that will be written in Java Card code and will be accessible by the
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smart card applications. Actually, this provides an indirect method of extending the

functionality of the smart card operating system.

Certain issues that need to be taken into account when implementing the log file stan-
dard format are the following: the (GenerateDataEntry) should be called only once
during the execution period of an application, and preferably after all changes to vari-
ables are committed to their final values. This will prevent a single application filling
up the space of the log file by repeatedly calling the GenerateDataEntry command.
A further protection mechanism would be to maintain a database (Application Log-
ging Table, described in §5.3) of all the trusted applications and subsequently grant

permission to use the command only to these specific applications.

However, certain information need to be stored in the card in order to be able to
construct the messages in the format specified by the standard. For example, the
GenerateDataEntry must be provided with the means to get the unique application
identifier (AID) of the currently running application. Additionally, a unique sequence

counter is required in order to serialise the data entries, as described in §5.5.2.

The standard requires that a hash of the previous data entry DF;_; will always be
available in order to link the previous generated messages with the current one. If the
log file is overwritten in a cyclic mode, then the previously generated hash will be always
available. If the log file is to be downloaded as described in §6.3.3 then a hashed copy

of the last data entry should be securely stored in the card.

7.4.2 Further Implementation Details

For implementing the standardised log file format functionality we used the GemXpresso
development kit from Gemplus. As in the previous example this implementation design
consist of three different components: the shared library, the smart card application,

and the client application.
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The “shared” library contains the actual class, i.e. GenerateDataEntry, that implements
the standard log file format functionality. This function accepts the LE entries i.e.
(LE1; LEy;---; LE,) and constructs the data entry DE (115 bytes) as required by the
standard. Additionally, prior to generating a data entry it also verifies that the currently

running application has not previously called the GenerateDataEntry function.

The log file used for the implementation of the standard log file format is relatively
small consisting of 235 bytes when running on the card and 800 bytes when running
on the simulator. As already mentioned, in the implementation of the LFDM we could
not read files larger that 248 bytes. In case the D FEs were distributed in more that one
log file (in order to reach the required 1.0-1.5 Kbytes log file size) then, the security

architecture of the system changes and therefore such a proposal had to be abandoned.

Although with a log file of 235 bytes there is space only for two D FEs the concept has
been proved since at later stages when the card file system is improved it will be possible

to keep all the entries under a single log file.

The smart card application simply calls the GenerateDataEntry function of the shared
library and returns the results to the client. It does not perform any further operations

since in that case the timing measurements involved will not be accurate.

The client application provides the means to call the smart card application and also

measures the time spent while each data entry (DE) is created.

7.4.3 Results and Performance Evaluation

We have generated a set of results depending on the actual size of the log files and
whether the application runs on the card or on the simulator. The implementation and
the testing of the client and smart card application used the same setup as the one used

for the implementation and testing of LEDM.
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The Connect figure indicates the time spent by the client application in order to
connect with the reader or the simulator. The next value indicates the time spent
in the GenerateDataEntry procedure. The Disconnect figure represents the time
spent to close the connection with the reader or the simulator. The results when the
GenerateDataEntry is executed on the simulator with a log file of 800 bytes, after ten
consecutive executions, appear in Table 7.17. A more condensed version is presented in

Table 7.9.

Table 7.9: GemXpresso simulator results using a log file of 800 bytes.

Part name Time (ms) || Std.Deviation
Connect 11266 46.81
CreateDataEntry 200 3.34
Disconnect 400 5.84
Total 11866 55.99

For example, the figure for the CreateDataEntry function also includes the aforemen-
tioned communication overhead when calling the function from the client application
and sending the results back to the client. Obviously, when the function will be called
within the smart card application it will not have to send any information back to
the “client”. At the time of implementation we did not had access to the tools that
will accurately measure the time spent when a function is executed in the card (e.g.
by measuring the actual smart card clock cycles) without been invoked within a client

application.

Table 7.10: GemXpresso card results using a log file of 235 bytes.

Part name Time (ms) || Std.Deviation
Connect 2704 39.96
CreateDataEntry 2293 62.81
Disconnect 120.5 4.86
Total 5117.5 107.63

When the GenerateDataEntry is executed in the card with a log file of 235 bytes we get

the results given in Table 7.10, for an extended version with the actual measurements
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please refer in Table 7.18.

As we can see from Tables 7.9 and 7.10 the Disconnect figure presents smaller variation
compared to the Connect figure. This could be explained by the fact that when the card
terminates any communications there is a small number of fixed steps to be followed. On
the other hand, when establishing connection with the reader there are more processing
steps involved. The results from the simulator are provided in order to demonstrate

that our implementation actually works with large files as proposed in the standard.

The size in bytes of each of the above three entities (client, applet and library) when
implemented in Java and downloaded in the Java Card are as follows: The smart card
library, offering standard log file format functionality, is 1287 bytes and the smart card
application calling the GenerateDataEntry function is 253 bytes. The client application
is 5500 bytes. The client is using the proxy interface which is 2691 bytes. Similarly to

the implementation of the LFDM the above file sizes are for the Java Card source files.

7.5 Observations for Both Implementations

The availability of a working simulator is very important in the development phases of
the Java applet. It is not practical to have to download the applet to the Java Card in
order to test it. Also, it would be very useful for the simulator to be able to simulate

aspects of the Java Card, such as memory restrictions and smart card processor speed.

From our testing implementation we actually discovered that the more times the smart
card application is downloaded to the card the slower the application execution becomes.
It seems somehow that the card is affected after a number of application downloads.

This was certainly the case for the GemXpresso card.

From the overall execution results of the protocols, it is shown that a real-world im-

plementation of the proposals should be considered viable in the near future. Once
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the cryptographic functions become available and the Java Card performance is further
enhanced (towards better handling of larger data structures, faster execution times),
it is expected that more complex applications will become a reality. In order to get
a better understanding of the issues involved, more realistic implementations that will

provide the proposed functionality as part of the operating system are required.

Unfortunately, when implementing the proposals it was very difficult to get hold of any
development tools that will enable us to provide the log file standard format functional-
ity as part of the SCOS. When we contacted Gemplus, they suggested that their testing
environments and development tools are relatively expensive and contain proprietary

designs that make them very difficult to be used outside the Gemplus laboratories.

Furthermore, in order to be able to provide accurate measurements on the actual time
spent by the smart card applications, specialized tools are required. If these tools are
provided as part of the development kits they will help the application developers to

obtain more accurate performance measurements.

Finally, from the performance timings of the standard log file format we observe that
the figures do not add substantial delay on the overall performance of a smart card
application. Similarly, the size of all the Java Card byte code applications, for both
implementations, is relatively small. The smart card application sizes will become
smaller since at this stage they also contain the functionality for generating and handling

the actual log files.

7.6 Summary

Although certain compromises had to be made with regard to the small log file size and
the use of dummy cryptographic functions, we believe that we demonstrated that the

concepts of secure log file download and standard log file format can be implemented.
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The conclusion to be drawn from the speed of the hash and MAC functions [15] is

that these dummy functions do not contribute substantially to the speed of the LFDM

protocol and the standard log file format. Other factors, such as file system access,

internal array copying and communicating to/from the smart card contribute to the

speed slowdown.

7.7 Overall Performance Tables

In this section we provide the tables containing the actual measurements from the test

implementations of the log file download protocol and the log file standard format.

Table 7.11: Ten consecutive measurements on the GemXpresso Java Card simulator
using log file size of 248 bytes.

GemXpresso Java Card Simulator with a log file of 248 bytes

Connect | Validate | StepOne | Verify | Disconnect | Total

1 11260 210 201 200 401 12548

2 11296 210 200 200 401 12668

3 11196 210 200 200 401 12468

4 11226 210 200 200 401 12498

5 11246 210 200 200 401 12518

6 11196 200 201 200 401 12468

7 11276 221 200 200 400 12478

8 11206 211 200 201 400 12478

9 11246 211 200 201 400 12518

10 11266 211 200 201 401 12538
| Median || 11246 | 210 200 [ 200 401 | 12508 |
| StDev [ 3462 | 4097 042 [ 052 047 | 60 |
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Table 7.12: Ten consecutive measurements on the GemXpresso Java Card simulator
using a log file of 40 bytes.

GemXpresso Java Card Simulator with log file of 40 bytes

Connect | Validate | StepOne | Verify | Disconnect | Total

1 11271 210 140 200 401 12248

2 11236 210 140 201 400 12207

3 11256 201 140 200 401 12228

4 11256 211 140 200 401 12225

5 11256 211 140 200 401 12228

6 11236 210 140 201 400 12207

7 11186 210 140 201 400 12157

8 11236 200 140 200 400 12207

9 11236 210 141 200 401 12208

10 11266 211 140 200 401 12238
| Median || 11246 | 210 | 140 [ 200 | 401 [ 12216 |
| StDev || 2418 | 420 | 032 [ 048 | 050 [ 2508 |

Table 7.13: Ten consecutive measurements on the GemXpresso Java Card using log file
size 40 bytes.

GemXpresso Card with log file of 40 bytes

Connect | Validate | StepOne | Verify | Disconnect | Total

1 2683 381 1092 | 1872 120 6168

2 2694 361 1091 | 1863 130 6169

3 2704 371 1091 | 1873 130 6189

4 2714 380 1082 | 1862 130 6188

5 2703 371 1081 | 1872 130 6189

6 2684 371 1082 | 1892 120 6208

7 2684 370 1092 | 1882 131 6179

8 2684 380 1092 | 1882 121 6179

9 2684 370 1092 | 1862 130 6158

10 2674 371 1081 | 1873 130 6159
| Median [| 2689 | 371 [ 1091 | 1862 | 130 | 6179 |
| StDev [ 12,76 | 6,13 [ 527 | 980 | 459 ] 1557 |
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Table 7.14: GemXpresso Java Card measurements for four Hashs and four MACs.

GemXpresso Java Card measurements
Four Hashst | Four MACs
1 621 521
2 551 521
3 551 521
4 951 o511
5 551 510
6 561 510
7 561 511
8 560 511
9 560 511
10 550 521
| Median | 5555 | 511 |
| StDev || 2139 [ 535 |

Table 7.15: Ten consecutive measurements on the Open 16K Java Card using a log file
of 40 bytes.

Open 16K Card with log file of 40 bytes

Connect | Validate | StepOne | Verify | Disconnect | Total

1 200 200 2464 | 2173 951 5988

2 201 190 2474 | 2173 951 5989

3 190 190 2474 | 2173 951 5978

4 200 191 2473 | 2163 952 5979

5 200 190 2464 | 2173 951 5978

6 201 190 2474 | 2163 951 5979

7 201 190 2474 | 2173 951 5989

8 190 200 2464 | 2173 951 5978

9 200 201 2473 | 2173 952 5999

10 191 200 2463 | 2174 951 5979
| Median | 200 | 1905 | 2473 [ 2173 | 951 | 5979 |
| StDev || 490 | 522 [ 514 | 428 [ 042 [ 7,24 |
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Table 7.16: Open 16K Java Card measurements for four Hashs and four MACs.

GemXpresso Java Card measurements
Four Hashst | Four MACs
1 701 751
2 711 751
3 711 751
4 701 761
5 701 761
6 711 751
7 711 761
8 711 751
9 701 761
10 711 751
| Median | 711 \ 751 |
| StDev | 5,16 | 516 |

Table 7.17: GemXpresso Java Card simulator measurements for a standard log file
format of 800 bytes.

GemXpresso Card Simulator standard log file format
Connect | Create Entry | Disconnect | Total
1 11348 190 381 13189
2 11316 201 400 12287
3 11277 200 401 12248
4 11207 200 401 12178
9 11236 201 400 12207
6 11227 200 401 12198
7 11256 201 400 12227
8 11286 200 400 12257
9 11206 201 400 12177
10 11286 200 401 12258
| Median | 11266,5 | 200 | 400 | 122375 |
| StDev || 46,81 | 384 | 587 [ 30661 |
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Table 7.18: GemXpresso Java Card Measurements for a standard log file format of 235
bytes.

GemXpresso Card standard log file format

Connect | Create Entry | Disconnect | Total

1 2800 2360 131 9875

2 2734 2353 130 8913

3 2694 2353 121 8573

4 2774 2183 120 8512

5 2674 2283 120 8702

6 2694 2303 120 8602

7 2694 2213 131 8553

8 2694 2343 120 8602

9 2714 2253 121 8402

10 2716 2260 121 8380
| Median | 2704 | 2293 | 1205 [ 85875 |
| StDev | 3996 | 6281 | 486 [107,63 ]
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In this chapter we provide some concluding remarks along with suggestions for future

work.
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8.1 Summary and Conclusions

The main goal of this thesis was to explore how smart card log files can be used in the
light of recent smart card software and hardware developments, and also to provide an
alternative to the currently favoured solution of overwriting smart card log files as soon

as they fill up.

We have explained that smart card log files should be considered as a vital part of
the overall concept of smart card security. We have also provided what appears to
be the missing link for most of the earlier theoretical smart card work, namely smart
card application performance measurements. Throughout our proposals, we aimed to
provide schemes that can be applied in current smart cards without sacrificing security
and without restricting the cardholder’s behaviour. In the following paragraphs we
highlight the essential contribution of this thesis, in order to identify which problems

have been addressed and how they have been solved.

Initially we presented a detailed coverage of smart card technology in order to help
the reader to understand its characteristics. Subsequently, when examining the related
work in this area, it became clear that until recently smart card log files have only
been used for auditing or recovery purposes in a single application platform. In the new
multi-application smart card environment, the number of entities involved has increased
and the relationships among the entities are becoming more complex. Therefore, we
have proposed an event logging model for smart cards and we have identified the char-
acteristics of each of the participants. In this logging model there is a whole new class
of events that require logging. For example, it is not good security practice to rely
on the smart card application programmer in order to log certain events. Thus, we
identified those events that require logging and we also proposed a centralised entity
(i.e. the LFM) to be responsible for enforcing a logging policy instead of relying on the

good will of the applications to comply.
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In order to provide a more detailed coverage of the logging concept in multi-application
smart cards, we divided it into three phases: generating the evidence in the log files,
providing controlled access to the log files and extracting the log files to another entity
as soon as they become full. This categorisation helps to understand the problem and

also makes implementation easier since the behaviour of each entity is carefully defined.

The fact that the LFUM is a trusted SCOS entity responsible for performing indepen-
dent and unbiased logging, makes it possible for smart card applications and dispute
resolution entities to rely on this service in order to obtain the required information.
As we explained in chapter 4, this information can be used for pay-as-you-use purposes

by other applications or for auditing purposes.

Since the log files contain sensitive information, it is obvious that access to these files
(when stored in the card) should be controlled; this is achieved by the LFBM. We
also pointed out that in an environment where resources are limited, it is likely that
without proper log file space management, this space might be misused. As a result
we proposed a standard log file format for smart cards. This format provides an upper
limit to the information that each smart card application can write to the log files. We
also proposed that the mechanism enforcing the standard log file format can also collect
any truncated space which is left unused by applications, and subsequently, reallocate
the space to be used by other applications. The standard log file format also aims to
speed up the dispute resolution phase since the context of the log files can easily be

interpreted.

Moving on to the central theme of the thesis, we provided a solution to the full smart
card log file problem. We suggested that the log files should be downloaded to another
entity (i.e. an ALSS), which does not suffer from immediate storage restrictions. We
provided some theoretical contributions in the form of three log file downloading pro-
tocols the choice of which depends on the characteristics of the participants. The log

file download protocols take into account the characteristics of smart card technology,
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and by using appropriate cryptographic protection, they successfully protect the log
files both in transit and when they are stored in an ALSS. These protocols are useful
primitives for more complex systems and therefore, we believe that their functionality

should be extended.

Finally, in order to prove the applicability of our proposals to current smart card tech-
nology, we provided their implementation details for two of the most widely available
multi-application smart cards. We implemented the standard log file format and the
first of the log file download protocols in order to get an idea of their size and perfor-
mance in real smart cards. Both results indicated that a real world implementation is
perfectly feasible since their execution is not substantially delayed by the performance of
the smart card processor. Furthermore, their implementation can fit within the limited

storage space of the current smart cards.

Since the protocols require cryptography and the cards did not have any cryptographic
primitives, we designed our own dummy cryptographic functions. For the LFDM the
hash and MAC functions were 16 bytes long, whereas for the standard log file format
the MAC function was 4 bytes. The main reason for choosing a smaller MAC size for
the standard log file format is that in this case for each DE a MAC function have to
be stored in the log file. Thus, by using a MAC of a smaller but still adequate size we
gain extra log file space. The second and the third log file download protocols require
additional cryptographic primitives, in order to protect the log file while in transit or
when stored in the ALSS. Thus, we decided not to implement them, since such work
would mainly involve smart card cryptographic function implementation rather than
actual protocol implementation. When cryptographic primitives become available with
newer versions of the development kits, it will become straight forward to implement

the remaining protocols.

The major conclusions that can be drawn from the work presented in the thesis are the

following. It is assumed in many cryptography papers that smart cards are “anaemic
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devices” that should do as little computation as possible. At the same time, these
authors tend to assume that communications come for free. For example, they tend to
provide improvements in the performance of cryptographic algorithms assuming that
it is the major delaying factor in smart card performance. Actually, our measurements
show the direct opposite. Therefore, we can claim with a high degree of confidence that
special attention should be paid to improving smart card communication protocols,

rather than only improving the performance of cryptographic functions.

The size of APDUs is another critical factor affecting the performance of smart card
applications. For example, when sending/receiving large amounts of data, i.e. more
than 250 bytes to/from the card, then special programming is required in order to
disassemble and reassemble a large packet. When this process is taking place at the
client side, “speed” is not an issue since the processing power is available. When the
process is taking place in the card, this operation becomes very time consuming. In
the Java Card API 2.1 there is an initial attempt to make the problem more abstract
by providing the functionality for handling large packets of data, within the underlying
APL

Another issue that appears to increase the overall application execution time is file man-
agement in the card and generally the speed at which data are read/written, from/to
the EEPROM memory of the card. For applications that require a large number of
file accesses, such as the moving of data between arrays, etc. the execution time is also

increased.

Smart card logging mechanisms can improve the overall level of security found within
smart cards. We demonstrated that multi-application smart card technology introduces
new events that require logging. We also pointed out that, since smart cards can
be involved in a large number of transactions the possibility of disputes is increased,
therefore it is important that log file information should be preserved for the longest

possible time. We also derived the essential requirements for a smart card logging
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mechanism. The implementation results from both our standard log file format and the
log file downloading protocols indicate that a real implementation of the proposals is
feasible. Finally, we believe that with the issues raised from our work the smart card

logging mechanisms will receive the attention they deserve.

8.2 Suggestions for Future Work

Our intention in this work was to highlight the issues involved in smart card log file
logging. We have achieved this goal but there are a number of suggestions for further

improvements and directions for future research.

For example, in order to get performance figures for the log file download protocol and
the standard log file format we used the PC’s clock within the client application. This
implies that the resulting figures also contain the communication overhead when data
travel to/from the smart card. Thus, it would be very convenient if the development
kits provided the functionality for measuring the time spent executing a function in the
card. Although GemXpresso does offer the ability to measure the time spent when an
APDU is executed in the card, this feature does not work when the APDUs are replaced

by DMI calls, as in our implementation.

Smart card development kits need further refinement and improvement. For exam-
ple the compile-to-run cycle must be reduced by improving the development kit user
interfaces or by merging certain tasks, e.g. the smart card byte code verification and ap-
plication download procedure. Similarly, simulators should become more reliable (since
they crash very often) and they should also simulate the exact performance of the card
(e.g. smart card processor speed, EEPROM and RAM restrictions, etc.) and not just

the application execution behaviour.

There are two further observations about smart card development kits: Firstly, we en-

countered problems when declaring and handling smart card files larger than 248 bytes.

147



Conclusions

Certainly, this is an issue that must be addressed by the smart card manufacturers, since
other types of applications (e.g. health care) will inevitably require large files. Secondly,
the more frequently a smart card application is executed the slower it becomes. Since
this was certainly the case for the GemXpresso card we have reported these findings to

Gemplus France.

It would also be helpful to examine the two client application proposals (i.e. PC/SC
and OCF) and comment on their performance. This will reveal which of the proposals
might perform better in terms of speed. The above work will also indicate how much
time is spent when a smart card application is executed and how much time is spent

on communications.

To get more accurate results on the performance of the proposed architectures and pro-
tocols they should be implemented as part of the SCOS. For example, the LFUM could
not be implemented at the application level since in order to achieve the required func-
tionality it requires detailed low level knowledge of the SCOS. When the functionality
is within the SCOS and stored in ROM (i.e. it could also use certain SCOS primitives
which are not available at the application level) it may be that the overall performance

might improve and the application size might be reduced.

As a concluding remark we have to mention that a real world implementation of the
proposals presented in the thesis is inextricably linked to the following: the type of
the card (merchant card, user card, high value transaction card, etc.), its technological
characteristics and limitations (e.g. size of EEPROM memory, SCOS functionality, etc.)
along with the whole surrounding infrastructure (e.g. the number of ALSSs). And
finally, one must again stress the importance of defining appropriate security policies
that clearly address the relationships of the participants along with the exact legal

framework for the arbitration procedure.
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Glossary and the Java Source Code
Program Listings
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In this section, we provide a glossary of the abbreviations used in the dissertation along
with the code listings from the experimental implementations mentioned in the previous

chapters.
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A.1 Glossary

A collection of selected acronyms and abbreviations used in the dissertation.

A
AET
AID
ALSS
ALT
AP
APDU
API
ATM
ATR
C
CPU
DE
DLL
DMI
EEPROM
EID
EMV
GSM
GPOS
JCVM
IFD
KIP
LE

LF
LFM
LFS
LFBM
LFDM
LFUM

Mask
MAOS
MCOS
MEL
MPCOS
NC
OCF
PC/SC
PD
RAM
ROM
SCOS

an arbitrator responsible for resolving any disputes
auditable event table

application identifier

audit log storage server

application logging table

the application running in the smart card
application protocol data unit

application programming interface

automated telling machine

smart card answer to reset

a smart card

central processing unit

data entry to be included the log file

dynamic link libraries

direct method invocation

electrically erasable programmable read only memory
unique event identification information, of the event to be logged
Europay, Mastercard, Visa Specification

global system for mobile communications

general purpose operating system

a Java Card virtual machine

smart card interface device

kilo instruction per second

the actual logged event

the smart card log file

the smart card log file manager

log file space

log file browse manager

log file download manager

log file update manager

a malicious user

the smart card operating system and other data stored in the card
multi application operating system
multi-application chip operating system

multos executable language

multi-application payment chip operating system
network computer

opencard framework specification

personal computer smart card specifications
personal device

random access memory

read only memory

the smart card operating system
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SCQL
SIM
SSL.
SPp
TCB
U
VM

structured card query language

secure identity module

secure sockets layer

the smart card application service provider
trusted computing base

the smart card holder

virtual machine
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A.2 The GemXpresso Log File Download Manager Code
Listings

In this section we provide the code listings from the Log File Donwload Manager im-

plementation on the GemXpresso Smart Card.

A.2.1 The LFDM Interface

// File Details  : ilfdm.java, 1999/7/16, 16:47, File Size: 1243 bytes
// Description  : The interface for the Log File Download Manager using DMI.

//

// Author Constantinos Markantonakis

// Date : 28/10/1998

//

e — —

package PhD.FirstDMI ;

import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.util.IApplet ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.SimpleOwnerPIN ;
import com.gemplus.gemxpresso.library.mylibrary.Constants;
import com.gemplus.gemxpresso.library.mylibrary.Core;

public interface ILFDM extends IApplet

{

e
* Initialise the MF and the Log file.
Y/

public byte InitializeMFandLogFile() throws UserException;

Vaks

* Present the Cardholder or the Authority PIN.

public byte Present(byte[] TypedCode, byte CodeNumber)
throws UserEzception;

Vol

* Sends message to ALSS

Y/

public byte[] Send_LogFile123() throws UserException;

e

* Verify the ALSS reply.

Y/

public byte ALSS_Reply123(byte[] Dataln) throws UserException;
}
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A.2.2 The Log File Download Manager Application

// File Details  : lfdm.java, 1999/7/16, 16:47, File Size: 3049 bytes
// Description  : The actual Log File Download Manager (LFDM) using DMI.

// Author  : Constantinos Markantonakis
// Date : 10/9/1998

package PhD.FirstDMI ;

import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.SimpleOwnerPIN ;
import com.gemplus.gemxpresso.library.mylibrary.Constants;
import com.gemplus.gemxpresso.library.mylibrary.Core;

public class LFDM extends Applet
implements ILFDM

{
Vakd
* The Aythorization for enabling the LFDM to do download the log file
Y/
private SimpleOwnerPIN thePIN ;
Vais
* Access to the Core package
Y/

private Core theCore;

// This variable is used in the ALSS_Reply function

int Incoming_Packet_No=0;

// This variable controls the packet number sent by the Card
int Outgoing_Packet_No=0;

// Use in Initialize and Present_PIN procedures

byte Result;

Vol
* Construct the LFDM.
¥

public LFDM(byte[] code, byte tryLimit)
throws UserException
{

thePIN = new SimpleOwnerPIN(code, tryLimit) ;
Core theCore = new Core();

}

/**************************

* Selects the LEDM applet.

**************************f/

public boolean select()

{
thePIN.reset() ;

return true ;
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/**************************************

* Initialise the MF and the Log file.

**************************************f/

public byte InitializeMFandLogFile() throws UserException

{

try

if (theCore.Initialize_File_System() &&
theCore.Initialize_LogFile())
{

Result = 1 :
}
else
{

Result = 0 ;

}

catch (Exception e)

{

throw new
UserException(Constants. PROBLEM_INITIALIZING_FILE_SYSTEM);

}

return Result;

}

/**********************************************

* Present the Cardholder or the Authority PIN.
HAFFHRREAAAR IR KEAAASFRHRIEAA SRR EEAAAFHRRAAA |

public byte Present(byte[] TypedCode, byte CodeNumber)
throws UserException
{

try

{
Result = theCore.PresentCode(thePIN, TypedCode, CodeNumber);

}

catch (Exception e)

{
throw new UserException(Constants. PIN_.IS_.BLOCKED);

}

return Result;

}

/************************

* Sent the First packet.
L EE LY

public byte[] Send_LogFile123() throws UserException

{

// This function simply calls the send first packet procedure
return theCore. LEFDM_Step_One();

}

/************************

* Verify the ALSS reply.

************************f/

public byte ALSS_Reply123(byte[] Dataln) throws UserException
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boolean Value=false;
try

if (theCore.Verify_ALSS_Reply(Dataln))
{

return (byte)l;

return (byte)0;

}

catch (Exception e)

{

throw new
UserException(Constants. PIN_.NOT_VERIFIED _or_FILE_NOT_FULL);
}
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A.2.3 The Constant Definition for the Core Library (Constants)

// File Details  : constants.java, 1999/7/16, 16:47, File Size: 975 bytes
// Description  : This interface simply defines the constants that are shared

// by all the applications that may use the core package.

//

// Author Constantinos Markantonakis

// Date 0 16/10/1998

//

e ——
package com.gemplus.gemxpresso.library.mylibrary;

Vaid

* This interface simply defines the constants that are shared by all the
* applications that may use the core package.
Y/

public interface Constants

{
//
// Status codes used in exceptions
//
public static final byte PROBLEM_INITIALIZING_FILE_SYSTEM = 0x30 ;
public static final byte PROBLEM_INITIALIZING_FILES = 0x31 ;
public static final byte PIN_LIS_.BLOCKED = 0x32 ;
public static final byte PIN.NOT_VERIFIED_or_FILE_NOT_FULL = 0x33 ;

}
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A.2.4 The Core Library Implementing the LFDM

// File Details  : core.java, 1999/7/16, 16:47, File Size: 11074 bytes

// Description  : The core library containing all the functions

// accessing the log file.

//

// Author Constantinos Markantonakis

// Date : 10/11/1998

//

A — —

package com.gemplus.gemxpresso.library.mylibrary;
import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.*;

public final class Core implements Constants

{
Vakd
*The reference to the Files.
Y/
private static FileSystem MF ;
private static DedicatedFile PIN_DF ;
private static DedicatedFile LogFile_DF ;
private static TransparentFile LogFile ;
private static TransparentFile CBindFile ;
private static TransparentFile KeyID_File ;
private static TransparentFile SequenceNumber_File ;

Vais
* The initialization status variables.

*/

private static boolean MFInitialized = false;
private static boolean LogFilelnitialized = false;
private static boolean LogFile_is_Full= false;

Vaks
* This section holds the global variables
*/

//This holds the Log file

static byte [] buffer = new byte[40];
//An array indez variable

static int Index;

//These variables are used in the initilaize log files variable
static byte [] Temp_CBind = {0,0,0,10,0,0,0,8,0,0,0,5,0,0,0,11};
static byte[] ID = {0,1,2,3,4,5,6,7,8,9};

static byte[] Seq = {0,0,0,1};

//These variables are used in LFDM_Step_One()
static byte[] Tc = {2,5,0,5,1,9,7,3};

static byte[] Message = new byte[20];

private static byte[] Mn= new byte[94]; //was 78

//These variables are used in Verify_ALSS_Reply
static boolean Verified_Reply = false;
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static byte[] write={0,0,0,0} ;
static int NewNc = 0;

Vaks
* This section holds the global variables
Y/
private static int Execution_Step = 0;
Vi

* This is the basic constructor. The initializations are in fact taking place

* later on in the following functions.
*

public Core ()

{
}

/**

* The following section is added by me I do not know if it is working

* properly.
*

public boolean select()

{

MF .reset() ;
return true ;

}

/***************************************************************

* Create the file system structure.
HAAAAA KRR EKRKEKEAEAAAAAAAAA I ERKEKAAAAAAA IR IEAARK ]

public static boolean Initialize_File_System () throws UserException

{
try
{
MF =
new ISOFileSystem((short)0x3F00, null, (byte)2) ;
PIN_DF =
new DedicatedFile((short)0x4000, null, (byte)2) ;
LogFile_DF =
new DedicatedFile((short)0x5000, null, (byte)4);
LogFile =
new TransparentFile((short)0x5001, (short)40);
CBindFile =
new TransparentFile((short)0x5002, (short)16);
KeyID_File =

new TransparentFile((short)0x5003, (short)10);
SequenceNumber_File =
new TransparentFile((short)0x5004, (short)4);

// The READ access control for the files

MF .setSecurity (File. ACCESS_READ, File. ALLOW_ANY) ;

PIN_DF .setSecurity (File. ACCESS_READ, File. ALLOW_AUTH?2) ;

LogFile_DF .setSecurity (File. ACCESS_READ, File. ALLOW_AUTH]1) ;
LogFile.setSecurity(File. ACCESS_READ, Filee ALLOW_AUTH]I) ;
CBindFile.setSecurity (File. ACCESS_READ, File ALLOW_AUTH]1) ;
KeyID_File.setSecurity (File. ACCESS_READ, File ALLOW_AUTH]1) ;
SequenceNumber_File.setSecurity(File. ACCESS_READ, Filee ALLOW_AUTH]1) ;

// The WRITE access control for the files
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MF .setSecurity (File. ACCESS_WRITE, File. ALLOW_AUTH]1) ;

PIN_DF .setSecurity (File. ACCESS_WRITE, File. ALLOW_AUTH]1) ;

LogFile_DF .setSecurity(File. ACCESS_WRITE, Filee ALLOW_AUTH]1) ;
LogFile.setSecurity (File. ACCESS_WRITE, Filee ALLOW_AUTH]1) ;
CBindFile.setSecurity (File. ACCESS_WRITE, File. ALLOW_AUTH]1) ;
KeyID_File.setSecurity(File. ACCESS_WRITE, File ALLOW_AUTH]1) ;
SequenceNumber_File.setSecurity (File. ACCESS_WRITE, Filee ALLOW_AUTH1) ;

// Now, create the hierarchy
MF.addChildFile(PIN_DF) ;
MF.addChildFile(LogFile_DF) ;
LogFile_DF.addChildFile(LogFile) ;
LogFile_DF.addChildFile(CBindFile) ;
LogFile_DF.addChildFile(KeyID_File) ;
LogFile_DF.addChildFile(SequenceNumber_File) ;

MPFInitialized = true;

3
catch (Exception e)
{
throw new
UserException(PROBLEM_INITIALIZING_FILE_SYSTEM);
}

return MFInitialized;

}

/*>k*>k*>k*>k*>/<*>k*>k*>l<*****>/<*>k*>k*>k*>k*>/<*>k>k*>k*>k**********************

* Initializes the file system and the files.
KA FHRKEAAAR IR RKEAA SRR EREEAARFIRREAASFHRKEAASFIHKEAAAIRRAA |

public static boolean Initialize_LogFile () throws UserException

{
// The Buffer which holds the initialization for the files

// ATTENTION: IF the value is > 50, we get memory full messages
// ( When the applet is running in the card)
try
{
//Create the log file entries
for (Index =0; Index<buffer.length; Index++)
buffer[Index] = (byte)Index;

// Initialize the contents of the files
Util.array Copy( buffer, (short)(0),LogFile.getData(), (short)0,
(short)40) ;
// For the Cbind VAriable or the Mn
Util.arrayCopy( Temp_CBind, (short)(0), CBindFile.getData(), (short)0,
(short)16) ;
// For the KeylD
Util.arrayCopy(ID, (short)(0),KeyID_File.getData(), (short)0,(short)10);
// For the Sequence Number
Util.arrayCopy(Seq, (short)(0), SequenceNumber_File.getData(), (short)0,
(short)4) ;

LogFilelnitialized = true;
LogFile_is_Full= true;

catch (Exception e)

{
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throw new UserException(PROBLEM_INITTIALIZING_FILES);

}

return LogFilelnitialized;

/**********************************************************

* Presents a code or a PIN number.
i L

public static byte PresentCode(SimpleOwnerPIN thePIN, byte[] code, byte which)
throws UserException
{

//Present the the user code or PIN
MF .setAuthFlag((byte)l ,false) ;
thePIN.check(code) ;

if (thePIN.getTriesRemaining()==0)
{

throw new UserException(PIN_IS_BLOCKED) ;

}

else
//if PIN is validated
if (thePIN.isValidated()==true)

{

MF .setAuthFlag((byte)l ,true) ;

}

return (byte)thePIN.getTriesRemaining();

/********************************************************

* Reads the LogFile.

R
public static byte[] ReadLogFile()
{

if (MF.getAuthFlag((byte)l) == true )

{

return LogFile.getData() ;

}

else

{
byte[] Failure={0,0,0} ;

return Failure ;

}
}

/**********************************************************

* This function flushes the log file space
HAAAAA KRR HEEEKRKEKEEEAAAAAAAAA IR KEEEKAEAAAAA AR RK |

private static void Flush()

{
byte [] buffer = new byte[40];
int I;

for (I =0; I<buffer.length; I++)
buffer[I] = (byte)l;

// Re-write the contents of the log files
Util.arrayCopy (buffer, (short)(0),LogFile.getData(), (short)0,(short)40) ;

160



A.2 The GemXpresso Log File Download Manager Code Listings

}

/**********************************************************

* This function computes a MAC or Hash
R

public static byte[] ComputeMAC_or_Hash( byte[] inBuffer, int wantMACorHash )
{

byte[] outBuffer = new byte[16];

outBuffer[ 0 | = inBuffer[ 0 |;

outBuffer[ 1 ] = inBuffer[ 1 ];

outBuffer[ 2 | = inBuffer[ 2 |;

outBuffer[ 3 | = inBuffer[ 3 |;

int counterB = 0;
// The following hiccups on the Openl6K :(

byte [] CA_Key = {2,8,9,5};
if ( wantMACorHash == 1)

outBuffer[0] = (byte )((byte )outBuffer[0] ~ (byte )CA_Key[0]);
outBuffer[1] = (byte )((byte )outBuffer[1] ~ (byte )CA_Key[1]);
outBuffer[2] = (byte )((byte )outBuffer[2] ~ (byte )CA_Key[2]);
outBuffer[3] = (byte )((byte )outBuffer[3] ~ (byte )CA_Key[3]);

// Some major optimization. :)
counterB = 0;
int counter =0;

for ( counter = 0; counter < 4 — 1; counter++ )

{

counterB = (short )(counterB + 4);
Util.arrayCopy( outBuffer, (short )0, outBuffer, (short)counterB, (short )4 );

}

// outBuffer has the result.
return outBuffer;

}

/*******************************************************

* Sends the log file information from the card to ALSS
HAFFHRKEEAAR R HRKEAA AR RREEAA IR REAAA SRR EAASFHAEAAAS |

public static byte[] LFDM_Step_One() throws UserException

{

if ( (MF.getAuthFlag((byte)l) == true) && (LogFile_is_Full=true) )
{

//Get Timestamp, in this case we have fized timestamp since there is no way
// currently to get a valid timestamp from the card.

//Compute a Hash for the CBind variable

Util.arrayCopy( CBindFile.getData(), (short)(0), Message, (short)0,
(short)16);

Util.arrayCopy( SequenceNumber_File.getData(), (short)(0), Message,
(short)16, (short)4);

Util.arrayCopy( ReadLogFile(), (short)(0), Mn, (short)0,
(short)40);
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Util.arrayCopy( Tc, (short)(0), Mn, (short)40, (short)8);

Util.arrayCopy( SequenceNumber_File.getData(),(short)(0),
Mn, (short)48, (short)4);

Util.arrayCopy( KeyID_File.getData(),(short)(0), Mn,
(short)52, (short)10);

//Compute a Hash, 0 indicates a Hash.
Util.arrayCopy( ComputeMAC_or_Hash(Message, 0), (short)(0),
Mn, (short)62, (short)16);

//Compute a MAC, 1 indicates a MAC.
Util.arrayCopy(ComputeMAC_or_Hash(Mn,1), (short)(0), Mn,
(short)78, (short)16);

//Indicate the next step i.e. Verify_-ALSS_Reply.
Execution_Step = 1;

return Mn;

}

else

{

throw new
UserException(Constants. PIN_.NOT_VERIFIED_or_FILE_NOT_FULL);
3
}

/*******************************************************

* Verify information sent by the ALSS.

KK 3K oK K K K oK oK K K K oK K K K K oK oK K K K oK oK K K K oK oK K K Kk oK K K K K Kk oK K K K K Kk oK oK K K K Kk Kk K K K K

public static boolean Verify_ALSS_Reply(byte[] Reply) throws UserException
{
//Check if the PIN is validated and if the data are already sent to the ALSS
if ( (MF.getAuthFlag((byte)l) == true) && (Execution_Step == 1) )

//Check the hash of the log ifle just received.
if ( Util.arrayCompare(ComputeMAC_or_Hash(ReadLogFile(), 0),
(short)0, Reply, (short)0, (short)16) == 0)

{
Verified_Reply = true;
}
Vs
* This is the Commit Value Section where all the values
* (Nc, CBind, ) are updated in the corresponding files.
*
if (Verified_Reply==true)
{

//This section updates the Nc Value

NewNc¢ = Util32.getInt(SequenceNumber_File.getData(), (short)0);
NewNc = NewNc + 1;
short k=Util32.setInt(write, (short)0, (int)NewNc);

Util.arrayCopy( write, (short)(0), SequenceNumber_File.getData(),
(short)0, (short)4) ;

//1) This section updates the Cbind Variable in the file

Util.array Copy( ComputeMAC_or_Hash(Mn, 0), (short)(0),
CBindFile.getData(), (short)0, (short)16) ;

//2) Call the Flush() function in order to Flush the Log File space
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Flush();
}

Execution_Step = 0;
return Verified_Reply ;

}

else

{

return false;

}
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A.3 The Cyberflex Log File Download Manager Code List-

ings

In this section we provide the code listing from the Log File Donwload Manager imple-

mentation on the Cyberflex Open 16K Smart Card.

Y s
//File Details : logmanager.java, 1999/7/16, 17:18, File Size: 12462 bytes

//Secure logfile download for Java Cards.
// Implementation for Openl6K Javacard by Schlumberger.

//

// Date: 26Apr1999
LI1TTTTT77777 7777777777777 T 77777777777 777777777777

import javacard.framework.*;

{

import javacardx.framework.*;

public final class LogManager extends javacard.framework.Applet

static final short MACTEMPSIZE = 4;

static final short MACSIZE = 16;

static final short REPLYSIZE = 34;

// Must change following if change above for MACTEMPSIZE.
static final byte WANT_MAC = (byte )0x0;

static final byte WANT_HASH = (byte )0x1;

// Holds the value of Mn.

static final byte MNSIZE = (byte ) 94;

// Common filenames on smartcard

static final short RootDirectory = (short ) 0x3F00;

static final short LogDirectory = (short ) 0x1065;

static final short LogFile = (short ) 0x1060;

static final short KeyIDFile = (short ) 0x1062;

static final short CBindFile = (short ) 0x1068;

static final short SeqNumFile = (short ) 0x1069;

// Constants declaration

// Code of CLA byte in the command APDU header

static final byte LogManager_CLA = (byte)0x00;

// Codes of INS byte in the command APDU header

static final byte INS_Validate = (byte ) 0x10;

static final byte INS_TestHASH = (byte ) 0x20;

static final byte INS_TestMAC = (byte ) 0x30;

static final byte INS_SendLogFileData = (byte ) 0x40;

static final byte INS_ReceiveALSSReply = (byte ) 0x50;

// mazimum number of incorrect tries before the PIN is blocked (Ozf for tests)
static final byte PinTryLimit = (byte)0x0f;

// mazimum size PIN

static final byte MaxPinSize = (byte)0x04;

// status words (SW1-SW2)

static final short SW_NOT_VERIFIED = (short ) 0x5AAA;

static final short SW_WRONG_PIN = (short ) 0x5BBB;

static final short SW_COULD_NOT_STATE_FILE = (short ) 0x5CCC;
static final short SW_FILE_SIZE_DISCREPANCIES = (short ) 0x5DDD;
static final short SW_INVALID_SIZE = (short ) Ox5EEE;
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static final short SW_FIRST_STEP_ONE_THEN_VERIFY= (short ) Ox5FFF;

// Value for timestamp. We do not have a time mechanism to provide timestamps
// so we assume the following one.
byte TC[]; // - {2; 5.0,9,1,9 7, 3};

// We allocate memory for this one. It will be recieved.
byte Ts[]; // = { 0,0, 0,0, 0,0, 0,0};

// File variables. The files are read in here.
byte[] CBind_FILE;

byte[] PreviousCBind_FILE;

byte[] SequenceNumber_FILE;

byte[] ReadLogFile_FILE;

byte[] KeyIDFile_FILE;

byte[] machash;

byte[] CA_Key;

// We save memory here also. We set Mn to be the buffer of APDU class :)
// We use it as a pointer, that we will point to “buffer” when we use it.
byte Mn[];

byte[] LogFileRec_STR;
byte[] Message;

byte[] CBind;
byte[] fKca;

/* instance variables declaration */
OwnerPIN pin;

byte buffer[]; // APDU buffer

// A wariable for the “for” loops, whoever needs it.
byte var;

short counter;

short counterB;

short FileSize = —1; // File size in bytes.
boolean StepOneTookPlace = false;
boolean theResult;

private LogManager()

{
// It is good programming practice to allocate all the memory that an
// applet needs during its lifetime inside the constructor.

pin = new OwnerPIN(PinTryLimit, MaxPinSize);
PreviousCBind_FILE = new byte[20];
SequenceNumber_FILE = new byte[4];
ReadLogFile_FILE = new byte[40];
KeyIDFile_FILE = new byte[10];

CBind_FILE = new byte[16];

machash = new byte[16];

Message = new byte[20];

LogFileRec_STR = new byte[10];

LogFileRec_STR[0] = (byte )0Ox4c;

LogFileRec_STR][1] = (byte )0x6f;
LogFileRec_STR[2] = (byte )0x67;
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}

LogFileRec_STR[3] = (byte )0x46;
LogFileRec_STR[4] = (byte )0x69;

LogFileRec_STR[5] = (byte )0x6c;
LogFileRec_STR[6] = (byte )0x65;
LogFileRec_STR[7] = (byte )0x52;
LogFileRec_STR[8] = (byte )0x65;
LogFileRec_STR[9] = (byte )0x63;
Tc = new byte[8];

Tc[0] = (byte ) 0x2;

Tc[1] = (byte ) 0x5;
Tc[2] = (byte ) 0x0;
Tc[3] = (byte ) 0x5;
Tc[4] = (byte ) 0x1;
Tc[5] = (byte ) 0x9;
Tc[6] = (byte ) 0xT7;
Tc[7] = (byte ) 0x3;

Ts = new byte[8];

Mn = new byte[MNSIZE];
CA_Key = new byte[4];
CA_Key[0] = (byte )0x4;
CA_Key[1] = (byte )0x6;
CA_Key[2] = (byte )0x8;
CA_Key[3] = (byte )0x2;

// PreviousCBind has to be initialised so as to be used.
Util.arrayFillNonAtomic( PreviousCBind_FILE, (byte ) 0xDD );
Util.arrayFillNonAtomic( machash, (byte ) 0xDD );

register();
// end of the constructor

public static void instal(APDU apdu)

{

}

// create a LogManager applet instance (card)
new LogManager();

public boolean select()

{

}

// reset validation flag in the PIN object to false
pin.reset();

StepOneTookPlace = false;

return true;

// end of select method

public void process(APDU apdu)

{

buffer = apdu.getBuffer();
if (buffer[ISO.OFFSET_CLA] != LogManager_CLA)
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

switch (buffer[ISO.OFFSET_INS])

{
case INS_Validate : validate(apdu); return;
case INS_TestHASH : testHASH(apdu); return;
case INS_TestMAC : testMAC(apdu); return;
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case INS_SendLogFileData : sendLogFileData(apdu); return;
case INS_ReceiveALSSReply : receiveALSSReply(apdu); return;
default: ISOException.throwIt( ISO.SW_INS_NOT_SUPPORTED );

}
}

private void validate(APDU apdu)
{
byte byteRead = (byte)(apdu.setIncomingAndReceive());
if (Ipin.check(buffer, ISO.OFFSET_CDATA, byteRead))
ISOException.throwIt(SW_WRONG_PIN);
}

private final void ComputeMAC_or_Hash( byte[] inBuffer, byte[] outBuffer,
byte wantMACorHash )

{

outBuffer[ 0 ] = inBuffer[ 0 ];

outBuffer[ 1 | = inBuffer[ 1 ];

outBuffer[ 2 | = inBuffer[ 2 ;

outBuffer[ 3 ] = inBuffer[ 3 ;

counterB = 0;

// The following hicups on the Openl6K :(

if ( wantMACorHash == WANT_MAC )

{
outBuffer[0] = (byte )((byte )outBuffer[0] ~ (byte )CA_Key[0]);
outBuffer[1] = (byte )((byte )outBuffer[1] ~ (byte )CA_Key[1]);
outBuffer[2] = (byte )((byte )outBuffer[2] ~ (byte )CA_Key[2]);
outBuffer[3] = (byte )((byte )outBuffer[3] ~ (byte )CA_Key[3]);

// Some major optimization. :)

counterB = 0;

for ( counter = 0; counter < MACTEMPSIZE — 1; counter++ )

{
counterB = (short )(counterB + 4);
Util.arrayCopy( outBuffer, (short )0, outBuffer, counterB, (short )4 );

}

}

// The value returned is Mn, we do not use return to avoid excessive
// memory usage. (Well, it does not work otherwise).
private final void sendLogFileData(APDU apdu)
{
// access authentication
if (! pin.isValidated() )
ISOException.throwIt(ISO.SW_PIN_REQUIRED);
// we want to send data out.
apdu.setOutgoing();
// indicate the number of bytes in the data field
apdu.setOutgoingLength((byte)MNSIZE);
// Read the Logfile.
readLogFile( ReadLogFile_FILE, LogFile );
// Read the saved (previous) value of CBind.
readLogFile( PreviousCBind_FILE, CBindFile );
// Read the sequence number file.
readLogFile( SequenceNumber_FILE, SeqNumFile );
// Read the unique key identifier for the corresponding CA Key.
readLogFile( KeyIDFile_FILE, KeyIDFile );
// Construct the message Mn
Util.arrayCopy( PreviousCBind_FILE, (short )0, Message, (short )0, (short )16 );
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Util.arrayCopy( SequenceNumber_FILE, (short )0, Message, (short )16, (short )4 );
// Compute the hash of Message

// OPTI: CBind was initialised dynamicaly, waste of memory.

CBind = machash;

ComputeMAC_or_Hash( Message, CBind, WANT_HASH );

Util.arrayCopy( ReadLogFile_FILE, (short )0, Mn, (short )0, (short )40 );
Util.arrayCopy( Tc, (short )0, Mn, (short )40, (short )8 );

Util.arrayCopy( SequenceNumber_FILE, (short )0, Mn, (short )48, (short )4 );
Util.arrayCopy( KeyIDFile_FILE, (short )0, Mn, (short )52, (short )10 );
Util.arrayCopy( CBind, (short )0, Mn, (short )62, (short )16 );

// Compute the MAC of the Message.

// OPTI: fKca was initialised dynamicaly, waste of memory.

fKca = machash;

ComputeMAC_or_Hash( Mn, fKca, WANT_MAC );

// Copy fKca (size:16) to the end of Mn.

Util.arrayCopy( fKca, (short )0, Mn, (short )78, (short )16);

// move the data into the APDU buffer starting at offset 0
Util.arrayCopy( Mn, (short )0, buffer, (short )0, (short )MNSIZE);
StepOneTookPlace = true;

// send MNSIZE bytes of data at offset 0 in the APDU buffer to the client.
apdu.sendBytes((short)0, (short)MNSIZE);

}

// Receives data from the client and checks for validity.
private final void receive ALSSReply( APDU apdu)
{
// access authentication
if (! pin.isValidated() )
ISOException.throwIt(ISO.SW_PIN_REQUIRED);
if ( StepOneTookPlace == false)
ISOException.throwlt(SW_FIRST_STEP_ONE_THEN_VERIFY);
// We need to read from the terminal the reply to LFDM_StepOne
var = (byte)(apdu.setIncomingAndReceive());
if ( var != (byte )REPLYSIZE )
ISOException.throwIt(SW_INVALID_SIZE);

ComputeMAC_or_Hash( ReadLogFile_FILE, machash, WANT_HASH );

// Verify hash send by the ALSS

// The first 16 bytes of the information send, are the mac to check.

if ( Util.arrayCompare( machash, (short )0, buffer, (short )ISO.OFFSET_CDATA,
(short )16 ) I=
||
Util.arrayCompare( buffer, (short )((short )ISO.OFFSET_CDATA + (short )16),
LogFileRec_STR, (short )0, (short )1 ) !=10)

// This is the message for unsuccesful verification.
ISOException.throwIt(SW_NOT_VERIFIED);
}

else

{
// We need more time on this!
apdu.waitExtension();
// This is the Commit Value Section where all the values
// (Ne, CBind, ) are updated in the corresponding files.
// This may be ugly. . .
if ( SequenceNumber_FILE[ 0 ] < (byte )Oxff )
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SequenceNumber_FILE[ 0 ]++;
else

if ( SequenceNumber_FILE[ 1] < (byte )0Oxff )

SequenceNumber_FILE[ 0 ] = 0;
SequenceNumber_FILE[ 1 ]++;

}
else
if ( SequenceNumber_FILE[ 3 ] < (byte )0Oxff )
{
SequenceNumber_FILE[ 0 | = 0;
SequenceNumber_FILE[ 1 | = 0;
SequenceNumber_FILE[ 2 |++;
}
else
{

SequenceNumber_FILE[ 0 | = 0;
SequenceNumber_FILE[ 1 | = 0;
SequenceNumber_FILE[ 2 ] = 0
SequenceNumber_FILE[ 3 |++;

// Write next sequence number to file.

writeLogFile( SequenceNumber_FILE, SeqNumFile );

// Compute the MAC of Mn.

ComputeMAC_or_Hash( Mn, machash, WANT_HASH );

// Flush, that is, write file to disk!

Util.array Copy( machash, (short )0, CBind_FILE, (short )0, (short )16 );

// Write CBind to the CBind file.

writeLogFile( CBind_FILE, CBindFile );

// We retain a copy of Ts for possible future processing.

Util.arrayCopy( buffer, (short )((short )ISO.OFFSET_CDATA +
(short )16), Ts, (short )0, (short )8 );

Util.arrayFillNonAtomic( ReadLogFile_FILE, (byte )0);

writeLogFile( ReadLogFile_FILE, LogFile );

}

private final boolean readLogFile( byte[] bufferFile, short filename )

{

FileSystem.selectRoot();

if ( FileSystem.selectFile( LogDirectory ) = ST.SUCCESS )
ISOException.throwIt(SW_COULD_NOT_STATE_FILE);

if ( FileSystem.selectFile( filename ) I= ST.SUCCESS )
ISOException.throwIt(SW_COULD_NOT_STATE_FILE);

if ( bufferFile.length > (short )FileSystem.getFileSize() )
ISOException.throwlt(SW_FILE_SIZE_DISCREPANCIES);

if ( CyberflexOS.readBinaryFile(bufferFile, (short )0, (short )0,
(short )bufferFile.length) I= ST.SUCCESS )
ISOException.throwIt(SW_COULD_NOT_STATE_FILE);

return true;

}

private final boolean writeLogFile( byte[] bufferFile, short filename )

{

FileSystem.selectRoot();
if ( FileSystem.selectFile( LogDirectory ) = ST.SUCCESS )
ISOException.throwIt(SW_COULD_NOT_STATE_FILE);
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if ( FileSystem.selectFile( filename ) = ST.SUCCESS )
ISOException.throwlt(SW_COULD_NOT_STATE_FILE);

if ( bufferFile.length > (short )FileSystem.getFileSize() )
ISOException.throwIt(SW_FILE_SIZE_DISCREPANCIES);

if ( CyberflexOS.writeBinaryFile(bufferFile, (short )0, (short )0,
(short )bufferFile length) I= ST.SUCCESS )
ISOException.throwIlt(SW_COULD_NOT_STATE_FILE);

return true;
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A.4 The GemXpresso Standard Log File Format Code List-
ings

In this section we provide the code listing from the Standard Log File Format imple-

mentation on the GemXpresso Smart Card.

A.4.1 The Interface of the Log File Standard Format

// File Details  : ilfdm.java, 1999/7/16, 13:25, File Size: 987 bytes
// Description  : The interface for the Standard Log File Format Smart card
// application.

//

// Author : Constantinos Markantonakis

// Date : 16/3/1999

//

—~-— e

package PhD.Standard.StandardFormat ;

import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.util.IApplet ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.SimpleOwnerPIN ;
import com.gemplus.gemxpresso.library.standard.Constantsl;
import com.gemplus.gemxpresso.library.standard.Corel;

public interface ILFDM extends IApplet
{
Vi
* This function will create a Data Entry entry in the log file
Y/
public byte Get_Information(byte[] Information, byte How_Many);

}
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A.4.2 The Log File Standard Format Application

o lfdm.java, 1999/7/16, 16:47, File Size: 1797 bytes
: This smart card appletion calls Log File Standard
format from the core library.

Constantinos Markantonakis
2 16/3/1999

package PhD.Standard.StandardFormat ;

import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.SimpleOwnerPIN ;
import com.gemplus.gemxpresso.library.standard.Constantsl;
import com.gemplus.gemxpresso.library.standard.Corel;

public class LFDM extends Applet

implements ILFDM

Vaks
* The Aythorization for enabling the create the DE
Y/

private SimpleOwnerPIN thePIN ;

Vaks
* Access to the Core package
Y/

private Corel theCore;

int Incoming_Packet_No=0;

// This variable controls the packet number sent by the Card
int Outgoing_Packet_No=0;

// Use in Initialize and Present_PIN procedures

byte Result;

Vol
* Constructs the Log File Standard Format (LFSF).
¥

public LFDM(byte[] code, byte tryLimit)
throws UserException
{

thePIN = new SimpleOwnerPIN(code, tryLimit) ;
Corel theCore = new Corel();

}

/**************************

* Select the LFSF applet.

**************************f/

public boolean select()

{
thePIN.reset() ;

return true ;
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/*>k*>k*>k*>k*>/<*>k*>k*>l<*****>/<*>k*>k*>k*>k**********************

* This function create’s the Data Entry.
R

public byte Get_Information(byte[] Information, byte How_Many)

{

}
}

return theCore.GenerateDataEntry(Information, How_Many);
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A.4.3 The Constant Definitions for the Core Library

// File Details  : constantsl.java, 1999/7/16, 16:47, File Size: 976 bytes
// Description  : This package simply define the shared constants that

// may be used by the core package.

//

// Author Constantinos Markantonakis

J/  Date : 16/3/1999

//

ff —

package com.gemplus.gemxpresso.library.standard;

Vaid
* This interface simply defines the constants that are shared by all the
* applications that may use the core package.

*/

public interface Constantsl

{
//
// Status codes used in exceptions
//
public static final byte PROBLEM_INITIALIZING_FILE_SYSTEM = 0x30 ;
public static final byte PROBLEM_INITTALIZING_FILES = 0x31 ;
public static final byte PIN_IS_.BLOCKED = 0x32 ;
public static final byte PIN.NOT_VERIFIED_or_FILE_NOT_FULL = 0x33 ;

}
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A.4.4 The Core Library Implementing the Log File Standard Format

// File Details  : corel.java, 1999/7/16, 16:47, File Size: 8261 bytes
// Description  : The core library containing all the functions that

// offer the standard log file format functionality.
//

// Author Constantinos Markantonakis

//  Date : 25/4/1999

package com.gemplus.gemxpresso.library.standard;

import javacard.framework.* ;

import javacardx.framework.* ;

import com.gemplus.gemxpresso.library.iso.ISOFileSystem ;
import com.gemplus.gemxpresso.library.util.*;

public final class Corel implements Constantsl

{
private static byte[] Data_Entry = new byte[141];
private static boolean Already_Called = false;

Vakd
*The reference to the Files.

*/

private static FileSystem MF ;

private static DedicatedFile LogFile_DF ;

private static TransparentFile LogFile ;

private static TransparentFile SequenceNumber_File ;

Vaks
* This section holds the global variables
Y/

//This holds the Log file

static byte [] buffer = new byte[1024];
//An array indezr variable

static int Index;

//These variables are used in the initilaize log files variable
static byte [] Temp_CBind = {0,0,0,10,0,0,0,8,0,0,0,5,0,0,0,11};
static byte[] ID = {0,1,2,3,4,5,6,7,8,9};

static byte[] Seq = {0,0,0,0};

Vakd

* This section holds the global variables

Y/

private static int Execution_Step = 0;

Vakd

* This is the basic constructor. The initializations are in fact taking place
* later on in the following functions.

Y/

public Corel ()

{
}
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/**

* The following section is added by me I do not know if it is working
* properly.
*

public boolean select()
{
MF reset() ;
return true ;

}

/********************************************************

* Compute a MAC or a HASH

KAAEEEIRKRRRKRRRRIIIIRR A AAAAAASAARIEAIIIS ARSI IIRIRRK |
public static byte[] ComputeMAC_or_Hash( byte[] inBuffer, int wantMACorHash )
{

byte[] outBuffer = new byte[16];

outBuffer[ 0 | = inBuffer[ 0 |;

outBuffer[ 1 | = inBuffer[ 1 ];

outBuffer[ 2 | = inBuffer[ 2 ];

outBuffer[ 3 | = inBuffer[ 3 |;

int counterB = 0;

byte [] CA_Key = {2,8,9,5};
if ( wantMACorHash == 1)

outBuffer[0] = (byte )((byte )outBuffer[0] ~ (byte )CA_Key[0]);
outBuffer[1] = (byte )((byte )outBuffer[1] ~ (byte )CA_Key[1]);
outBuffer[2] = (byte )((byte )outBuffer[2] ~ (byte )CA_Key[2]);
outBuffer[3] = (byte )((byte )outBuffer[3] ~ (byte )CA_Key[3]);

}

// Some major optimization. :)
counterB = 0;
int counter =0;

for ( counter = 0; counter < 4 — 1; counter++ )

{

counterB = (short )(counterB + 4);
Util.arrayCopy( outBuffer, (short )0, outBuffer,
(short)counterB, (short )4 );
}

// outBuffer has the result.
return outBuffer;

}

/*******************************

* Get the sequence number
R FHRKEAAR IR RREEAAFIRREAAARIS |

private static byte[] Get_Nc()

{
}

/*******************************

return SequenceNumber_File.getData();

* Get a Timestamp
R L

private static byte[] Get_Tc()
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byte[] Timestamp = {2,5,0,5,1,9,7,3};
return Timestamp;

}

/*******************************

* Retrieve the Application ID
ARRKRRR RIS KRR R EIRRRRR IR AEER |

private static byte[] Get_AID()

{
byte[] Application_AID = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
return Application_AID;

}

/******************************************************************************

* Check if the calling application ahs already called the GENERATE_DE function
HAAAAA KRR ERKKKEEEAAAAAAAAA IR HEERKEEAAAAAAA ST RKEKEAAAAAS IR |

private static boolean Check_ifalready_Called()

{

boolean Called = false ;
if (Already_Called == true)

//Indicate that the command has already been called once from within this

// application.
Called = true;

}

return Called;

}

/********************************************************

* Update the Data_Entry in the log file
AR HRRAAAAA SR HRKAAA AR KHRAAAA AR AAAASKERAAAAFRHAAAAASA |

private static byte Write_DataEntry(byte[] Data_In)

{

short Copy_in_Position =0;

byte Write_Status = 0;

int Sequence_in_Int = Util32.getInt(SequenceNumber_File.getData(), (short)0);
int Sequence_Number_Value;

Sequence_Number_Value = Sequence_in_Int;
Sequence_in_Int = (Sequence_in_Int % 7);

Copy-in_Position = (short)(Sequence_in_Int *141);

Util.arrayCopy( Data_In, (short)0, LogFile.getData(), (short)Copy_in_Position,
(short)141);

//Check in order to raise the flag that the log file is full
if (Sequence_in_Int==6)

LogFile_is_Full= true;
3

//Increment the seqeunce numebr and write the new value to the file

Sequence_Number_Value = Sequence_Number_Value + 1;

short Value_To_Write = Util32.setInt( SequenceNumber_File.getData(), (short)0,
(int)Sequence_Number_Value);
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///ATTENTION:
// FOR MULTIPLE CECKS UNCOMMENT THE FOLLOWING LINE
// Already_Called = true;

return (byte)Sequence_in_Int;

}

/*>l<*>I<*******>l<*>I<*>I<*******>l<*>I<*******>l<>I<*>l<*>l<**>l<*>I<**************************

* This function will create an entry in format required by the standard
HAAAAA KRR KKKKKEAEAAAAAAA IR HEERKKEEEAAAAA AR RIKKRAAAAA |

// Convert to private
public static byte FormatDataEntry(byte[] LE, byte Number_of_Events)

{

byte Creating_Status = 0;

//Temporary Value to check the status of an application
boolean Get_Application_Priviledges = true;

byte[] DeLink = new byte[16];

short Counter=0;
int Inner_Counter = 5 ;
int Semicolumns_Found = 0;

if (LE.length>89) //Make sure that some entries are present

{

Creating_Status = 2;

else if (Get_Application_Priviledges == false) //if application is authorised
//to add an entry in the log file
{

Creating_Status = 3;

}

else

if (Number_of_Events!=0)

{
while (((LE.length/5)—1)>Counter)

if (LE[Inner_Counter]==0x3B)
{

}

Inner_Counter=Inner_Counter+6;
Counter++;

}

Semicolumns_Found = Semicolumns_Found +1;

//Make sure that the application provided the number of entries
if (Number_of_Events == Semicolumns_Found)
{
//Construct the first half of the DE
Data_Entry[0]=83;
Data_Entry[1]=59;
Util.arrayCopy( Get_AID(), (short)(0), Data_Entry, (short)2,(short)16);
Data_Entry[18]=59;
Util.arrayCopy( Get_Tc(), (short)(0), Data_Entry, (short)19,(short)8);
Data_Entry[27]=59;
Util.arrayCopy( Get_Nc(), (short)(0), Data_Entry, (short)28,(short)4);
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}

Data_Entry[32]=59;

//Add the DATA entry of the LEs
Util.arrayCopy( LE, (short)(0), Data_Entry, (short)33,(short)LE length);

int Array_Index=33+LE.length;

Data_Entry[Array_Index]=59;

//Compute the DeLink Variable

Util.array Copy (ComputeMAC_or_Hash(LE, 1), (short)(0), Data_Entry,
(short)(Array_Index+1),(short)16);

Data_Entry[Array_Index+16+1]=59;

Data_Entry[Array_Index+16+2]=69;

//Indicate that everything is OK
Creating_Status = 1;

else

//The number of semicolumns found, doesn’t match with the number provided

Creating_Status=8;

// Return the value for the command status
return Creating_Status;

/***>/<*>l<*>l<*>l<*>/<*>/<*>/<*>l<*>l<*>/<*>/<*>/<*>l<*>l<*>l<*>/<>/<*>l<*>l<>/<*>/<*>/<>l<*>l<*>/<>/<*>/<************************

* This function is the interface to outside world, appedning the DE in the LF
R

public static byte GenerateDataEntry(byte[] LE, byte Number_of_Events)

{

byte Status_Value=0;

//Check if function has already been called
if (Check_ifalready_Called() == true)

//Indicate that the command has already been called once from within this

// application.
Status_Value = 5;

}

else

//Create the format required by the standard
byte Format_Status = FormatDataEntry(LE, Number_of_Events);
if (Format_Status==1)
{
//*** UPDATE THE ENTRY IN THE LOG FILE
//Status_Value = (byte)100;
Status_Value = Write_DataEntry(Data_Entry);

}

else

}

return Status_Value ;

Status_Value = Format_Status;
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