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ABSTRACT

The dichromatic polynomial of a graph [16]
(or the Tutte polynomial) is a polynomial function
of two variables from which a large amcunt of
important information about the graph may be
obtained , including the chromatic polynomial and
the complexity of the graph. Some properties of
the Tutte polynomial and an algorithm for its
computation are given.
A recursive family of graphs is defined to
be a family of graphs whose Tutte polynomials
satisfy a homogeneous linear recurrence relation.
The smallest possible order of such a recurrence
relation is called the recursiveness of the family.
The existence of such a recurrence relation enables
us to consider the Tutte polynomials of large graphs.
Some elementary properties of recursive families
are found and two large classes of recursive families
of graphs are defined. The proof that the families
in these classes are recursive is constructive and
the methods used are applied to some families frbm
the two classes with small recursiveness. The
problem of the location of the chromatic roots of
a graph is considered in the light of the information
thus gained and several conjectures are made.
The most important of these is a generalisation of
Biooks' theorem [6] and states that for a graph
whose greatest valency is k +the chromatic roots
all have modulus not greater than k + 1.

Much of the work may be generalised immediately



to matroid theory and where this is so the appropriate

results are stated.
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1. introduction
A graph G is an ordered triple (V, E, i1 ) where

V and E are finite sets and 1 is an incidence

function "
Lo E — v,v*™
\
( \/‘1 denotes the set of unordered pairs of elements
of Vo, ) The elements of V and E  are

called the vertices and edges of G.

If e ¢ E and ey = ve V then e
is called a loop, and may sometimes be denoted by {v;v}
If e) = tuvlice V 2\ we usually do not dis-
tinguish between e  and Lu,vi udess there
are two edges e, , e, such that ce,) =
ey = o, v} in which case G is said

to have multiple edges.

~ther graph theoretic terms, where not explicitly
defined are used according to the definitions if\ 221
(where the structure defined above is called a pseudo-
graph).

ror a graph G = (V,m,i, define the cycle rank

«rank, m (G) and the co-boundary rank (co-rank)

m* (G) by
m(6) = \E\-ivl + g (&)
m (@) = Wl- g (6D
where o (g) denotes the number of connected

components of G.



Define the Whimey Rank Polynomial of G,
R (G; x, y) by

R(G; x, y) = Z w MR %mu-g
A
where the summation is taken over all spanning
subgraphs H of G. ( see (21} fe2] ana (17)
Tuis definition is equivalent to that given in {17].)
For a graph G = (V, E, i) and an edge e € ©
define the deletion of e +to be the graph

/

G‘e, = ‘(VVE_Y-G‘-&>.\:>
where

v E-ey —= Vo V'

is the restriction of i to E - {e}
If in addition e is not a loop, so that
L (ed
to be the graph
Go = ((v-wawd)uixt | E-fl )

|

iVs,VzE define the contraction of

where
) = oW, e () =
U)o fwawd S Q) = awd
CE) = el HE) L e
C®) = % SR\ LR DR
for all adges (— c E -3} with W, , Y

denoting any two distinct vertices in V- iV”V&} .



Temma l.1:
R(G) K,‘s» = R(G';) X, 3"' 3“2(6';3",‘-35 ‘)

for any edge e of G which is not a loop.

Proof: We set up a bijection between the set
of spanning subgraphs of G and the union of
the sets of spanning subgraphs of C,-e_' ond C:;'
as follows.

let G, v€ a spanning subgraph of G with

edge set &, . If e ¢ €, then G,
is a spanning subgraph of u; . If ee €,
then G \: - is a spanning subgraph of &« . .

et a , be a spanning subgraph of G; .

Then G is a spanning subgraph of . Iet G,

2

”

be a spanning subgraph of G, with G = (\/,"Ez, L,‘)
Then let H= ((V-{x1)viv,v.}, Exuled, i)

where the notation is that of the definition of w_
above and j 1is the restriction of i to E vie}
H is clearly a spanning subgraph of u.

We now observe that

m(G2) = «(c) |

* (G ) = ¥ (e) - U,

M (H) = +m(e) ’
and m* (R) = X (&) + 1\

and the result follows from the definition of

R G; X, F )



A colouring of a graph o is an assignment of
colours to the vertices. lore precisely it is a
mapping

c: V — C
of the vertices into any finite set C.
A colouring is said to be proper if o has

no loops and for every edge v, vl of G

cv) # <)

For a graph G tne chromatic polynomial of

G, P (G; o ) is a function whose value for
non-negative integer values of A is the number of
proper colourings of a with a set of o distinct
colours. We shall assume mahy of the elementary
properties of P (G; A ) which are described in
[13] including the factthat ¥ (G; n ) is a
polynomial of degree \V\ in o . dhe (v

zeros of P (G; A ) are called the chromatic roots

of u.:

Iemma 1.2 : ‘ o

= P (G a) = Pleesn) - P& 5 0)
for any edge e of « that is not a loop.

rroof : If L,(é§== iv.,val. then the proper

: /
colourings of G o for which c(v)) # C-(V,.)
correspond to the proper colourings of G. On

the other hand those for which < (v,) = (V)

correspond to the proper colourings of (}:
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The following result is due to Birkhoff [5]
and was also proved by Whitney [21} as an applica-
tion of his formalisation of the principle of inclu-

sion and exclusion.
‘Theorem 1.1 P(G30> = QW R(Gﬂ“%> ”3. 3)

Proof: If Wl +\&\ = 2 or 3 the

only possibilities are

V) . . w) . . d
i) <D vy (<D
i) -—s

and for these graphs both sides in the above equation

take the value n*, O, ﬂ(r\—\§, a* O respectively.

if Wl e\l $2 and \€E\ S0 let eet,

Then proceeding by induction

P(G;a) = PG n) -~ PG N by lemma 1.2
- “N\Q(an‘%\fﬂ> - AVt R(ey _%,_0
=AM (RGE R R RS 5 ko)
= AR (6, %57) by lemma 1
Tinally if e\ =0 then  P(G,a) = ™
and Re, ;4,%5 =\ . O
Tne dichromate of a graph was introduced by Tutte in
{16} " It is now often known as the Tutte
polynomial and is defined as followséh_ (In his most
is

recent papers Professor ‘lutte calls/the dichromatic

polynomial and leaves the polynomial Q(G; x,y),
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defined in [17] and called the dichromatic
polynomial, nameless.)

Consicer a spanning tree T of a connected

/

graph G. For any e¢dge e of T , T e has

two components T | and T . with vertex sets
vV, and V o (V,qu= V) . Toe cut sect ol e
wiua respect to i is the set of edges {v,,vulec €
such that v, & V, and v, eV, , For any edge

e = Lu,uw} et (not a loop) not in

T there is a unigque path (e,,ep , - ,ee§_=
(i‘*uﬁ’&i".yi, s iv‘,.\ ,u,_i) in T such that Vo # Vi
QGT- ."' = 1)_’5) LR ?_l and VL #' k&\ N V?‘l ¢ \'&1 .
The set of edges lehe1,... ,e?i in tnis pauin is

the circuit of c with respect to T.
SUpposSe Thc edges B or G are ordered by
a totai ordering < . an edge e of T

is defined to e internally active witn respect to

T if for every cdge - €’ in the cut set of e
' e > e’
an eage e of G not in 4 is externally activs

witnh respect to T ir for every edge e’ in the circuit
d@ e e > e .

an isthmus of &« is intermalily acvive with respect

To alt spanning vreces of G. A loop of G is
exterually active witn respect to all spanning trees

of «.
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For a spanning tree ot 1' of the graph G the

internal aud external activities of ', i (T) aﬁd

e (T) are the number of edges of G which are
internally and externally active with respect to T.

For a connected graph G the Tutte polynomial

X (G; x, y )of G is defined by

xX(& x,s) - L if lel =0
X(G-', X, \s> = ; 3w %‘"U—» otherwise,

where the summation is taken over all spanning trees
T of G.

Tutte proves in [161  that this polynomial
is independent of the ordering << placed on the
set E.

The definition is extended to graphs which are
not connected by defiﬁing the Tutte polynomial of a
graph G to be the product of the Tutte polynomials
of the connected components of G.

We state with out proof some elementary

properties of X (G; x, y) given in [161 .

i) X (G; x, y) is a polynomial of degree
m*(G) in x and wm(G) in y.

ii) For any edge ee C which is neither

a loop nor an isthmus

X @G x,9) = XGL 3 x,59) ~
X(@e 5% 7). )




13

iii) If G 4is a graph with a(G) loops and b(G)

isthmuses and no other edges then
, _ (@ o)
X(G,X,ASB = X . 5

iv) If G+ is composed of two connected graphs
G G
b}

|}

a having just one vertex in common then

'X(G—-,x,ug = X(Cr‘-,*,@.X(%zx,%\ 6)

The number of spanning trees of G 1is called

the complexity of & and denoted by C (G).
v) X (G 1, 1) = c (G)
w0 (&
Theorem 1.2 : X(Q..)x,\g = G < 5({(&)11: "S‘) o7

Proof : If G has a{(G) loops and b\G)

isthmuses and no other edges then

X wE&) oled
X(G'3X,LB> = N ‘%
A spanning subgraph S of & with i isthmuses

and J loops has
m(SB
n*(e) =

Hence ({(G-, " "’9

u

‘ b(&) G.QG-)B Yy
2 GOy
= @#\)bq’) (%&\30‘&3 )
N\-(Ja(CrS

e TR ) = e ) () e

SRACNVE

For other graphs « we proceed by induction on

Ivi+ lEl , If WAUSIE\ = 2 or 3 there are 5 possible
G (wee Theorem 1l.1) and the theorem is true for these by

+
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the argument above.

if Wl«lgl > 3 let e be an edge of

G that is neither a loop nor an isthmus. ihen

"

X(G; "-)“(35 X (G ':K,\-g) + X(G'J',*,‘3> , lemma 1.2

(x_ow\-\’.,(c')R (G_; . Tt?\ X ‘5_‘>

1n

" (\&— ‘>\\Il —?a(.(t)‘\ R (G_; . \_ X \s.-b
w\-e,(cr) , et .
(k”\B (K(G’a '>>_\§:\ ’3_\\) * ;\:\ R(Gfg;il?n ‘6—\>>

n

WA - (&) .
(K"> v R(G"a *-h‘b“B , lemma 1.1 . Ol

Corollary . ’P(G;n} = (—\BM‘?"KAQ"A@ x(G", \—n)cb. 8)

Proof: This is an immediate consequence of

theorems 1.1 and 1.2. A
+n other words
*
led T C
P(G,n) = a z_ o (V=) 9)
where o is the number of spanning trees of G

whose internal activity is 1 and whose external
activity is O.

Because of theorem 1.2 and its corollary
statements 1,, 2) and 4) are different interpretatioans
of the same relation. This relation is fundamental

in what follows and will be referred to as relation X
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we are primarily concerned with properties of
colourings. of graphs. dowever a graph may be
considered as a particular kind of matroid and
some of our results will be expressed as results
about these more general structures.

A matroid M over a finite set ® is
defined by a class of[gg;sets of E called the
circuits of M and satisfying

1, No circuit is a proper subset of another ;

2) If X and Y are two circuits of ™

and €e,, e , &, are such that e, e XaAa¥Y

and e, e X-Y then there is a circuit 2

of M such that e,e Z < XoNX -y,
ithe elements of #  are the cells or edges of M
If E 1is the set of edges of a graph G then the
circuits of & form the circuits of a matroid, called

the circuit matroid of G, and the cut sets of G

form the circuits of the bond matroid of u. A matroid

which is the bond matroid or circuit matroid of a
graph is calledegraphic or esgraphic respectively
(see [20] ).
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If S 1is a subset of B , S 1is called

inaepenaent if it contains no circuit of M .

The rank of any set S ¢ E is the number of
cells in a maximal independent subset of 8. It
is a consequence of axiom 2, that rank is well
defined. 1he bases of M are tne maximal independent
subsets of E. If S ek is maximal améng subsets
of E with the same rank, then 35 is closed.

vonsider an order < placed on the cells of a
matroid M and extended lexicographically to an
order on subsets of # having the same number of
elements. 1et 1 be a basis of M . Bfine T~
to be the smallest subset of (ieast number of
elements,; such that the < maximum basis of M
containing T~ 1s T , and define T¢ to be the

largest set containing T such that the < minimum

basis of M contained in T' 4s T. Put
Ty = ‘-7,
e(t) = | T*- 7T\

Define the Tutte polynomial of K by

X (M, x)%\ _ Z‘: Sy gcr}

with the summation taken over all bases T of M.

This is a direct generalisation of the definition
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for graphs and is due to Crapo |8 who showed
that the definition is independent of the ordering

X

<. 4also if ™ denotes the dual matroid of i

(see LEOX ) then
KM Faw) = XM, @,

C.A.B. Smith LIS] proposes an alternative
mode of definition for the Tufte polynomial which
is as follows.

For a matroid M over ¥ with e &€ 1let the
reduction of M by e | R e__M be the matroid over
E -3} whose circuits are those of M which do

not contain e . Iet the contraction of M

by < Co M be the matroid over E - T}
mininad  sets  Grom Ko crcus
whose circuits are/these of Re M together with
those subsets S © & such that S o {e}l 1is a
circuit of M.
Acell @ of M 1is an isthmus if it is contained

in no circuit of M and is a loop if §e} is a

circuit of M. A sequence of matroids is a condensa-
tion of ¥ 1if it is obtained from M by successive
replacement of matroids M’ by ReM'  ana
CM for any cell e of M’  which is neither a
loop nor an isthmus. & matroid is degenerate if all
its circuits are loops (or it has no circuits).

A complete condensation of M is a condehsation, all

of whose members are degenerate. Smith shows that

there is only one complete condensation of M.



The Tﬁtte polynomial of a degenerate matroid

M with |E| cells and a(M) loops is defined

to be

' - E‘.—o-M) [V
')((M?,x,~3> o let-e ‘SLMB

The Tutte polynomial of any matroid M 1is the
sum of the Tutte polynomials of the members of the
complete condensation of M.

It is not difficult to show the equivalence of

these two definitions.

It is often convenient to denote any of the
polynomials defined above for a graph G (or matroid
M) just by G = GGLW (or M= MGu))
instead of X (G, “ﬂ‘55 etc. and where the
context makes it clear which polynomial is being

referred to, this will be done.

18



19

2 an algorithm.

In this chapter we descrive an algoritham for
the computation of the Tutte polynomial of a
graph.

Jet G= (V, B, 1 ) bYe a grap‘n. with no loops.
'(A loop Just introduces a factor ¥ 1into the Tutte
polynomial so this restriction involves no loss of
generality. ) Iet V= L%, ... ,v,\i , n=\W1L,
and E = e, e, . el , mn=1\g\ ., For
each eec ©  define an ordering on the pair i()cecV"Y™

s0 that & may be written W, V) e VxV.

The incidence matrix F = (QL> of G is an
nxn matrix whose entries are given by
Qw = ‘Q ey = (\/; ,VQ for any Wk |
Q.\.& = -\ AN ey = (Vk,V;.> for any \
Q“\S = 0 otherwice.
Denote by #, the (-\)xm matrix whose
rows are the first -\ rows of F. For any

set B/ of n-\ edges partition F, into Y.F‘\ F,l

where ¥ 1s an’ (n-\) — square matrix whose
columns correspond to the edges of E' F.,is
accordingly an (A=1) x (m-n+ \> matrix.

Iemma 2.1 F,is non-singular if and only if the ‘edg;es

[
E form a spanning. tree of G.
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Proof : If E' 1is a tree it is a spanning tree
since it has n - 1 edges (see (121 ).

I E' 1is not a tree then some subset of B’
must form a circuit. in this case the columns of
P corresponding to the edges of the circuit are
linearly dependent and so det F, = O.

Conversely suppose E' is a tree. Consider
the vertices of G to be ordered accofding to their
distance in the tree from v, , with the furthest
vertices first in the ordering, and the ordering of
vertices the same distance from V. Dbeing arbitrary.
rurther consider the edges of E ' to be ordered
according to the position of their end points remote
from v, in the ordering of the vertices.
Permuting the rows and columns of F , according to

these orderings yields a matrix F.I having

ldet F/L = Ldet ¥\

Also F : is a lower triangular matrix whose
diagonal elements are all * 1.

Hence: det F  # 0 1
For a spanning tree T of the directed graph G
define the circuit matrix Cy = (c}k and the

cut set matrix Ko = (k133 of T with respect

to G as follows.



Cr isan (m~-n+1) xm matrix whose rows
correspond to the edges of G not in T and whose
columns correspond to the edges of G. CQ; will

be used to denote the entry of C - corresponding

to edges e, ey rather than the (i,j) entry.
1f e, 1is an edge not in T +then the direction

of e. induces a direction on the edges of the circuit

of e with respect to 1 in the obvious way.

Put cly =+ if e, is in the circuit
of e and has direction the same as that induced
| by ey
o = if e is in the circuit
of e and has direction
different to that induced
by e,
C}% = O otherwise.

K - is an (n - 1) x m matrix whose rows correspond
to the edges of . 1t is defined similarly to C-.
Namely \/3:.3 =+| of e is in the cut
set of e, and has direction the same as that induced

by eU
k:& = -\ if e is in the cut set of
e. and has direction
different to that induced
by e.
\:‘:S = O otherwise.

for the purposes of this algonthm we assume that an

21
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edge is a member of its own cut set or circuit so by
suitably permuting the columns of C and K-

we can partition them into

[_IM-B+\\ C\T l and ‘-Kﬁ‘\ —If\_‘] respectively.
Iemma 2.2 : i) Cow = - (;-\*‘ Fz.3t
11, We = 'R,

(index t denotes the transpose of a matrix).

Proof: We show that
i') F.C" = O
ii') Cr¥e® = O

which may be written in terms of the partitions as

and K\'r + C o« = O

respectively, which yield the results.

Row i of ¥ has a non zero entry for each edge'
incident at vertex v,.mow jJj of C., has a non zero entry
for each edge in the circuit of e@ ‘with respect to T
there are either O or 2 edges in this circuit incident
with vertex v in the former case (QTOCqF)LS = O

clearly. +n the latter case let e,

s S, be the
two edges in the circuit incident with v. . I'here are
two possibilities. sither the directions of e, ond e,
are both the same as or both different to the direction
induced by e@ or one has direction the same as and the
other has direction different to that induced by ey

.n the first case one of e, ,e, is directed
N . z



towards v, and the other away from V.,

-

in the second both are directed to or both away
from V.

. < -+ _Q
In the first case . = S, and Q;k;= Wy
i A - - T - .
and in the second case ¥ =-cf and Gin, = Qo
: T _ .
Hence S, ka,_ Us—\«,_ = 0O in any case

and i') follows.

A similar argument yields ii‘') ,

1

Now an edge e not in a spanning tree T

-

of G 1is externally active with respect to T if

and only if c{‘; =0 for all 3> L
and an edge <.  in T is internally active with
respect to T if and only if k.. =o0

“y

for all 5 > L

Hence lemmas 2.1 and 2.2 enable us to find
the Tutte polynomial of a graph « from its
incidence matrix F simply by checking the
determinants of all possible F | matrices and dwhere
appropriate looking at 7 FTFi_ . A computer
program based on this algorithm is simple to write
using standard subroutines for the matrix operations
and the only data input required is the incidence
matrix.

it should be noted that this is not the best
possible algorithm from the point of view of computer
time, the inversion of a matrix being a fairly

lengthy operation. However the alternative is to

23



24

base the algorithm on the recursion X , and the
choice of the edge to delete and contract at each
stage and the recognition of graphs that require no
further processing botn increase the complexity of
the program and the amount of data input required

by a large factor.

a8 an appendix to this chapter we list the
chromatic polynomials and chromatic roots of some
small graphs, including all trivalent graphs with
no more than lu vertices as listed in [1] ,
which were computed by the matrix method on the

vniversity of London €DC 6600 machine.
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Appendix.
in the following list the graph diagrams are
followed by a sequence of coefficients &, G0, o0 3Ot

where M|

'P(G',AB = N . A (- f\>

=\
and then by the roots of the equation
.P(333A\> = O
\these roots being correct to 3 decimal places).

4.1 2,3,1 ;
\ 0,1,2,3.
601 4’978)4,1;
0,1,2,2.453, 1,773 £ 1,4681
6.2 5,11,10,4,1;
0,1,1.859 £ C.492i, 2.141+% 1.949i
801 11,52,40329, 575
,1,1.2581 1. 8561, 1 863% * 0.3%391,
2.399 + 1.3041
8.2 12,34,42,3%31,15,5,1;
0,1,2,2.4%33, 2+i, 1.284% 2.0271i.
843 : 8,2%,29,33, 15 5,1;
0,1,2,2. 529, 226 C.9301
1,110 = 1,5911i. ’
N~
8.4 / 4,12,16,15,11,5,1;
/ c,1,2,2, 2.545 = 0.7161,
0.955 + 1. 1741.
8.5 10,28,3%5,27,14,5,1;

0,1,2,2.526, 2+1i, 1.237 £1.7951.



/".\\\~ ‘/'/‘7‘

10.1 /. I \ 4,16,32,44 44 ,%2,17,6,1;
VARV 0,1,2,2,2.544, 2.544,
o) 1.228 + 1,11%5i, 1.228% 1.115i.

/I;\
10.2 T 8,28, 44 47 42 51,17,6,1;
0,1,2,2,0.654 £1,147i,
1.851% 1.2731, 2.495¢ 0.5801.
1u.3 / / 8,30,52,60,53,%6,18,6,1;
T T 0,1,2,2, 0.85%% 1.2551,
Y 1.748+ 1.3181, 2.399+ 0.475i;

, 0,1,2,2.379, U.667 t 1.5041,
=R 1.708 % 1.2961, 2.435 ¢ 0.4251.

10.5 P4 10,36,60,66,57,39,19,6,1;
\/L}// 8 0,1,2, 2.450, 0.797+ 1.2301,

1.941* 0.517i, 2.058 + 1.6661.

//>
10.4 [\k\l 16,54 ,83,83,63,38,18,6,1;

10.6 5 87,67,41,19,6,1;
2,2.,265, 0.735+ 1.4661,
2 6

451, 1.901 +1.4611.

t O.

10.7 16,5

6,90,95,71,42,19,6,1;
2,2.271, 0.786+* 1.5691i,
7+1.328i, 2.302 £ 0.6531i.

10.8 q/// l$101775943’1996’l;
478, 0.761 £1.6281,

.558i, 2.344 £0.6251.

HMO

10.9 20,68,106,107, 79,44,19,6,1;
0,1,2,2.193, 0.781* 1.7361,
1.565+ 1.298i, 2.558 * 0.5521.

10.10 | 20,68,107,108,80,46,20,6,1;
——<| 0,1,2.2.347, 0.814 + 1.el8i,
, 21087 0.7971, 1.926 £ 1.492i.

10.11 24,81,125,123,88,48,20,6,1;
0,1,2,2.366, 0.804* 1.780i,
1.714 £ 1.4231, 2.299 £ 0.689i.

10.12 22,76,119,117,84,47,20,6,1;
- 0,1,2,2.468, 0.772 +£1.7001,
2.106 * 0.63%3%i, 1.888 « 1.5341.




10.13%

10.14

10.15

10.16

10.17

10.18

1u.19

27

27,92,142,1%7,96,51,21,6,1;
0,1,1.923 +0.269i, 0.802 + 1.8171,
1.902 + 1.4311, 2.373 + 1.083i.

26’90’140,135’94’51’21’691;
0,1,2,2.304, 0.788=x 1.7691,
2.057+ 0.700i, 2.003 & 1.7031i.

30,101,155,149, 102,53, 21,6,1;
0,1,2,2.407, 0.809=+ 1.931i,
2.157 « 0.785i, 1.830% 1.487i.

25,8%,129,128,92,50,21,6,1;
0,1,0.846 % 1. 7559 1.975+ 0.2821i,
1.873 +1.2031, 2.306 * 1.357i.

52,107 163,156,106,54,21,6,1;
0,1,2, 592 0. 805+ 2. 0121,
1.726+ 1. 191, 2.273% + 0.7711.

%6,120,180,170,114,56,21,6,1;
0,1,2,2 205 1. 574*:1 3751,
0.775 + .1571, -549 + 0.6811.

(Petersen's Graph)

317,1%25,2662 , 3415, %243, 2431,
1492, 764 ,3%30,120,36,8,1;
0,1,1.784 = 0.427i, 1.042 +1.6951,
0.218 £1.9981, 1.797 + 1.485i,

- 2.547 £ 0.6041i, 2.61% £1.1144.

(Heawood's Graph)



11,25,20,7,1;
0,1,2,2.547, 3.227 +1.4681.

?73,119,219,129,45,9,1;
U,1,2.554 £ 1.%611, 2.8V2 * 3.0971,
2.14%3+ ¢.1571.

The final two polynomials, which follow, were not
obtained using the algorithm of chapter 2 but are

included for completeness. pecause of the size of the
coefficients they -have been left in the form in which

they were found.

(Icosahedron)

20170, -40240, 36408,
—19698,6999,-1670,260,

-24,1;

0,1,2,3,2.618,3,225%,

3,617 £1.776i, 3.755 £ 0.4041,
1l.7207 £ 2.7211.

The coefficients given are E°s b, ..., %

where P(G&;0) = ala-D(-2)(~-) i_o b-j\"‘,

(Dodecahedron)

The coefficients given are < c,,...,¢,

?

where P (G',f\> = “(ﬁ")(z"ﬁ i e (\_ﬂ>'\. |

4412 ,21%02,50648, 80332,
96556, 94118,777C2, 56048,
26052, 20890, 10912, 5104,
2112,759, 230,56,10,1;
0,1,2,2.660, 2.366 * 0.9161,
2.089 £0.%6%1, 1.85%3 t1.4011,
2.539t 0.2351, 1.311 +1.5211,
- 00656 * lo 999i, -OOO()9t 1.4691,
1.385 +1.8621i.

28
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Notes:
1) The chromatic polynomial of Heawood's
graph was found in co-operation with N.L. Biggs
and R.M. Damarell.
2) The chromatic polynomial of the Icosahedron
is due to Whitney [22l‘
3) The chromatic polynomial of the Dodecahedron
was found using a reduction for graphs containing

the configuration.

9'\. .

with other edges of the graph incident only at the
univalent vertices of this configurations.
ihe dodecahedron contains the configuration twice
and the chromatic polynomial is readily found.

+he calculations have been careﬁully checked but
if further verification is required this polynomial
gives 7,200 3-colourings of the dodecahedron which
agrees with the 144 given in [2] after taking
account of permutations not considered there. Also,
at the suggestion of Ekrofessor Tutte, the value at
l« T (= 2-6\R... , see chapter 6 ) has been
compared with that of the dual of the truncated
icosahedron [}O} and shown to satisfy 2.2 of {;Eﬂ .



5. Yroperties of the Tutte rolynomial.

The first results in this chapter are reductions of
the Tutte polynomial of composite graphs; which are
related to the basic relation %

K(Gsxn) = X(Gesxy) + X(&l ey
for any edge e of G +that is neither a loop nor
an isthmus. The rest of the chapter is made up of
relations between the coefficients of the Tutte
polynomial and such invariants of the graph as the
girth and connectivity.
emma 3.1: Iet H be the graph constructed from the
graph & = (V,E,e) by introducing a new vertex v and
joining it by an edge to each member of a subset WeV

So H = (\/uﬁyz ,EZ\JVJ',jS> Cowl = twy
where S\E = L

5(\,3’> = {w,vy Qm— W' ew

t+hen the Tutte polynomial of H is given by

"* = (’Q"\\) G’ + 2 CT/S l)

Sew

where S ranges over all non-empty sub-sets of W
and GV% denotes the graph obtained from ¢ by identi-fying
all the vertices in S .
S/ (Vomt -5, €, +)
where if c) = '2‘“”;“'53
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is(e)

]

iu‘,u&,}s if W, W, 4-_ S
iw‘,\li if UL'z_eg ’ “\¢‘%

v if w,w, €S

If W=V, H is sometimes called the cone on G.

Proof. Iet the vertices of W be ordered by a total

ordering <, and denote themby (1,2, Py -
Denote by ¥, the graph obtained from H by deleting

those edges joining v to vertices weW satisfying

WSk, vhus H 0 = H.
ror SeW , \slyl | S =%Vv,Va,... , Vel with
V< Vo< L. <V , denote by G b the graph

obtained from G'/S by joining by an edge not in G

the vertex v to those vertices weW satisfying v.  <w<v,
Finally denote by K°v the graph constructed

from G by joining vertex g+l by an edge to each

vertex weW satisfying W < S (cv< 93 :

Now applying x we have (all for Tutte polynomials)

H( = K-G— )
H\L = Hk-\ + Kk-\ , \ < \‘ < ? y
H o= W
and so
H = %G+ K+ W+ .. + K, 2)
Also \(k - Gyik‘s &+ G-i‘,\t*\‘*. G,tl’k"'“s_‘__ o (\L,k«\& k < P-\
Mkl G Do ket y Tk, o2\ )
Ghte Gy GRS AN

and generally
[} see - G' ‘knkn— --kr-\,\‘-r-\*\,\s‘-&
G—iu ’k" >k 1 e /T-khk‘y-..)k\"X ‘k- G—

Kaperss Wy et
NS s 33 3)

for Ww.<ki<... <kco<p

Note that G'/gk’g = G for all WewWw and if

Sx ke, ke kerd &S = G5
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dence using 2) and 3) we obtain an expression for

H in the form

G
H = G o+ é;‘, Cq /$
SRS
G/ :
= - < 4
NG+ 2 s S )

for some coefficients < .
10 complete the proof we show by induction that
for all v . satisfying \<v+v <po in the partial

expansion of H - %G involving only terms s
- ,

and & where sl < vy cand \T\ <+ all
coefficients are +1 (except C’/ylﬂ having coefficient
0).

squation 2) yields the result for r =2 on
substituting once for the W,,Ky, -+, YKe-r

if IS\ = e« let S= T, kend K<<
Then applying 3) to the v* partial expansion of
H-«G a term G only occurs in the expansion of
TRt and in that expansion it has coefficient 1.
similarly for terms G/'S

Thus by induction the result is true when r = p

so in &) s =\ for all S <W,

(|
iemma 5-2 H Iet G = (\/\, E\’ '\-b N H = (VL:EZ,LT-S
Le graphs and let e, ey, , ‘»\@«5 = »ovid and
e,eb, | e B R A Denote by (3-',

1 /

o > H” H the graphs Ge’. ,Cye" 5 He_,_ , HQI,L
respectively. let G, be the graph formed by
identifying in G / anda H' the vertices u, and u,

and the vertices v, and v, and let G, be the



graph formed by identifying wu and H the edges <,
and e, (so that G, is just G, with an additiomnal
edge).
Then the lutte polynomials of G, and G, are given
by
. o ¢y v o7 ) “ "l
i) G, = %%-x-si_('-g\\)('r\—\ - G H -G R ¢ )G

ii) G, = :,5‘.‘:3[(‘3-\}6—'&4'— GW'- G'H - (e y- ‘BG"‘*"} .

( This second result reduces to the well known
result for chromatic polynomials given in \;5K

when the value y = O is substituted. )

iroof : i) We proceed via the Whitney Rank polynomial

and theorem 1l.2.

Recall that &(G; x, y) is defined by

2 x.M*(H) \QM (e 5)
v

R (C”') x, ‘3\) =
the summation being over all spanning subgraphs H of G.
Now there is a bijection between the spanning
subgraphs of G, and pairs of spanning subgraphs of
G' ana H'

Represent this by

G, < (ol ,d)
Then the expression ) for R (G ; x, y) may be
split.- into four parts corresponding to the four

possibilities of whether or not w, and Vv,

are in the same component of G | and W, ond v,
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are in the same component of H. .

Also R (G'; X, §y) = S xM*(G{)‘QM(G{\)
G’

and this in turn may be split into two parts
according as w,,Vv, are/are not in the same
component of G/ .. Iet the two parts be R, (x,4)
and Rl(x,;g  respectively. similarlty split up
R (H'; x, y) so that
R w) = Ribagd + RGugd
R (R, 0) Ry (xw) + Ry 4wy 6)

Considering subgraphs of G and H in a manner

similar to that used in lemma 1.1 we readily obtain

REG", %, = (%) Ry « Rl
RO wq) = (%) Rilew) + Ry, 7

Now in the case when u, and v, 6 are in the same
component of G.: and u, and v, are in the same
component of H : then the number of components in

G . is one less than the sum of the number of

components in G.: and " . In the other three

-

cases the number of components in G . is two less
than th.at sum, and in all cases the number of
vertices in G, 1is two less than the sum of the number

of vertices in G, and H T Hence
R(G‘ . YK, \-55 = (%/_&3 R\(X,\s> ({3(%,\3> Y R\(*"ﬁs (aq,(’\.\3>
-A—QIQKILS)R&(X,US) + Rlb\, \33\1,*_6\,\33 . 8)

Equations 6), 7) and 8) together yield a relation

' 114

between the whitney Rank polynomials of G, , G | G,
/

H' and B :
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6, = (= \LI D (6- o NW-R) « G- D -3

| 73
v (67— 26 -r") ¢ (6 -9 W3R
i.e.
" (o et "
G, = TE’»LX_“?:C’H —ew -GH+GH-& %)

wi-p (&)

Now X(GB"‘»",}B = Q&.—\> R(G’ Y :-i:-( ’%~\>

\

and so by transforming 9) by x = T and
W —> ‘6”\ and multiplying by (x-\y‘“‘"?"“')
gives o
W -0, (&
(Y.—\) AN AU "Hon
. = HMa-EH e -GH G
X(Gonu) = s oD 1

where on the right hand side

¢ = R(Cr", . ‘3“\> , etc.
since G' and H' have one less vertex than G’ and #'
respectively, the result follows.

ii) This follows from i) by a simple application

fx.
(&) . E

It should be noted that the results of lemma 3.2
may he considered as the interpretation to cographic

matroids of theorem 6.15 of Brylawski [7] .

Iet t(i,j) be the number of spanning trees of the
graph 4 with internal actiwity i and external activity J
(so that t(i,j) is the coefficient of 33
in X(&,x,4)) 5, () = O,
Iet Vi =, \El = en | girth G = Y 5




" and edge connectivity of G

A

Assume G has no isthmuses or loops (for every

isthmus or loop Jjust multiplies 7((G>

factor x or y respectively).
Iemma 3.3%: i) tln-1,0) =1

11)  £(a3,0) = monnl

-0+
i11)  k(as,oy < (T

iv) h(o,m-h+\> =\
v) t(uY) >0 <«

viy \:(\,LB SO <>

vii, k(,0) = klo,)

x,> by a

if G has no

multiple edges,
with equality if
¥> 3

L n- X

?

Le M-Ns2Z-n

Proof: The first three results may be deduced

from the corresponding properties of the chromatic

polynomial of G , but we shall prove then as results

concerning the internal and external activities of

spanning trees so that the analagous results for

matroids can be seen to be true.

Ali the proofs depend on the crucial theorem of

Tutte [16] that the Tutte polynomial is independent of

36
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the ordering of the edges. For simplicity we
represent the ordering as a labelling of the edges
by the integers {1,2,..., m} .
i) TIet the edges of G be labelled so that the
largest labels are assigned to the edges of a spanning
tree T. Then it is clear that e(T) = 0 and
i(T) = n -1,
wow if ' is any other spanning tree of G let a
be an edge (and the label aséigned to the edge) of T’
not in T. We show that a is not internally active
with respect to m! , and ﬁQ;% that 1 1is the only
spanning tree with internal/external activities n-l/CJ.
Let C Dbe the circuit of a with respect to T
8o that o 1is a path in G between the two components
of ' - fal . rhen at least one edge of C is in
the cut set of a with respect to T’ and so a is not
internally active in ol
ii, Iet the edges be labelled as in i) and let I and
a have the same meaning. et C Dbe the circuit of a
with respect to T and let b be the smallest edge
(edge having the smallest label) of C. Denote by T
the spanning tree (T -%ﬁ)u oy (making no distibction
between the tree and its edge set as the meaning is
clear). As above a 1is not internally active with
respect to T o, but every other edge of T, 1is,

since the only edges having b in their cut sets are
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those of(C - ingaigl and by definition these are

all greater than b (except a), If any edge of C

other than b is choseh for interchange with a then
in the resulting tree both a and b are not internally
active.

Since there are no multiple edges the only edge
which could be externally active with respect to T
is b, but the circuit of b with respect to T, 1is
@;-isngigi and by definition this containé an
edge greater than b.

Thus we have constructed M- spanning
trees of G contributing to t(a-2,0). But in i)
we showed that any edge of T/ not in T is not
internally active so these are the only spanning
trees with internal/external activities n-2/0O.
iii) . Again from i) we see that we need only consider
those spanning trees of G which have no more than two
edges not in the spanning tree T (as defined in 1i)).
prurther the methods of ii) show that there are just

m-a+\ spanning trees of ¢ with dinternal/
external activities 043/C> and containing Jjust one
edge not in T. These are ( - i_d.’s>u§,°:§ where 4
is the second smallest edge of C .
All spanning trees contributing to t(ﬂr%,ch

and containing two edges not in % may be constructed
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by a single insertion and deletion from the m-A+|
trees found in ii) (for the construction can always

b% reversed) and provided there is no circuit of length
(- +) (m~n)

% this yields ) trees.
‘'hus t(n-3, 05 < 63%&“3 + (m-ax \>

- (i)

with equality if Y 3 2

iv) Assigning the n-\ smallest labels to a spanning
tree. together with an argument similar to that
used in i), yields the result.

alternatively the graph mmy be considered as a
matroid and duality invoked. |

ihe results dual to ii) and iii) are omitted.
v) Iet the edges of G be labelled so that the
iargest label is assigned to an edge of a circuit C
of length ¥ , and the next n-\ labels arg assigned
to the edges of a spaning tree T of & that contains

every other edge of C.

Then clearly WT) = a-¥ , e() =1

Now let T, ©be a spanning tree of G with lCﬂ3=3>0, e (T =1\.

Iet e be the smallest edge of T, which is internally

active and let €, be the largest edge in the cut set

of e with respect to T . Iet T, be the

' \

tree (T‘ - ‘{e,i)u e}
Tuen e(T,.) = | and (T, )= -V
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The result follows by induction, and the observation
that if e 1is externally active with respect to T4
then every edge in the circuit of e is not internally
active so (M) € a-¥%

vi) This is proved similarly to v) or by the duaiivy.

vii) Iet T be a spanning tree with internal activity
1 and external activity u. Then the edge m 1is in T
for otherwise it is extérnally active, and thus the edge
m-1 is aot in T, for otherwise both m and m-1 are
internally active. Also m-1 1is not externally active
so m is in the circuit of m-1.

iet T' be the spanning tree ('l‘ - {m'ﬁ)u -

Clearly (™Y = o and e () =\

This construction sets up a bijection between the two

3

sets of spanning trees so b(O,‘> = b(‘,0> .

The nature of the proofs given above is such that
the validity of the results when applied to matroids is
clear (using Crapo's generalisation of internal and
external activity). |

Finally we note that observation suggests that the
conjecture stated by Read [15} concerning the coefficients
of the chromat#ic polynomial may be extended to the Tutte
polynomial as follows.

With the notation of lemma 3.5 not both of

eli-1,y) > €LY < Blsyy)
and not both of e G,y > B Y < )

are true for any i,Jj.




4, Recursive Families of Graphs.

A recursive family of graphs is defined to be an

infinite eequence {&,} of graphs whose Tutte polynomials
satisfy a homogeneous lLinear recurrence relation of the
form

G“*? +—Q‘(x,u§)G-m?_‘ + % ch?(x,\g G. = O

where o GG WY, lsv < p is a fixed poly-

>
nomial in x and Y.

In order to eliminate uninteresting cases we
further stipulate that no subsequence of a recursive
family may be a recursive family. For instance if

{G,\—i and i\-\ng are both families

satisfying 1) above then the sequence %&idefined by

Kzr = G". N . Kl\--\ = \—\‘_ s - >\
satisfies the reiation
Kneze * 3 GaudRauzez ¢ o+ Splip¥a = ©

but we do not call the sequence {WK.{ a recursive
family.
The smallest integer p such that iG@i satisfies

a relation of the form of 1) is called the recursiveness

of the family, {Ga3 -
The next chapter is given over to the consideration
of some particular families, but as a simple example

let C~ ©Dbe the graph whose vertices and edges are

those of an n - gon.

41
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Using the recursion X,

. / 4
G = G, v G

we readlly obtain the recurrence relation

C’f\*z, - (K+l> C‘(\+\ * X"C‘f\ = O
2)
For the Tutte polynomial of C,. . Thus the
recursiveness of the family of n-gons is 2. The
recurrence relation 2) may be solved in the usual way
(see, for example {111 ) to give
RS -
Co = (ER)-0) + o
= A IRVL ST

which may be verified by induction.
Temma 4.1 : If {G.} is a recursive family of graphs,
with  Go = (Va,En, ) then {\WV.\} ama UE.N
are both monotonivally increasing sequences.
rroof: The highest powers of x and y appearing in
X (G, xwu5> are (v, \-\ and G, |-V lv)
respectively. since the coefficients CLin%§’ leisp,
are polynomials in x and y containing only non-
negative powers Wil =t = W =) , ne 2,
and Y= e VR B S (S B AV , a2,
Thus Wal = Wa,\ = O
and TSI WS 1RO R T (VR B AN G S
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lemma 4.2 : If {G,} is a recursive family of
graphs and qS(GQ denotes the average valency of
G. (g = 2EG ),

then either Tuﬁ((rﬁai is a bounded sequence or
fval is constant for all but a finite number
of G, .

Proof: If §\.\} is an unbounded sequence at
least one of the coefficients o Lw,~5> contains

a non zero power of x.
Thus i§ A (n) is the highest power of x in

X(G’,\',*, 5
R A\L’\\) = Y_%-& +$|

for some constant B, depeding on the first p graphs

n
in the family. So ALY > Zp

also if A (~) is the highest power ofy in

'X(C"r\; x, "§>
AW < nR, + 8,

where B, 1is the highest power of y appearing in
any of the coefficients & (x,w) , and B,

is a constant depending on the first p graphs in the

family.
wWOW ALY = Wil -
AL ) = &= WLl
c. A, A AL
so glo) = = c:x‘zm;*\ 2
<R o< BEER s

[

AR, ~ 2_"_;’-3 + 2

for all n » p. |
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(If W,\ is constant for all but a finite number of

G, 1t is constant for all n’p . ~urther since
the term of  X(G.ix», w ) including the
power M has coefficient 1 (lemma 3.3 i) )

it follows that only one of the 0\(%,3\ , v 4L2,P

is non-zero and that that non-zero b, is
of the form y" for some - >0 | In this
case G, 1is obtained from G ._, by adding r loops.)

Lemma 4.5: If EG,\Z is a recursive family of graphs
and C(GQ denotes the complexity of Gn then

the sequence ¥ ﬂJC,(G,J ?ﬂ is bounded.
croof: Cley = X(G,5 0\, ‘> and so we have

C(G—,N?\) . o\(\)@ C(C"\*P-b .. Qe(\)\>C(G,\‘) = O,
Hence

C(G“B = (—\‘t:\ . F\.‘_b: L. +(:\?t\:\

where Re, V=i < is constant and &k, k., ... )k,

Y >

are the roots of the equation
\:‘Qv c.‘(\,\\t(,—‘-& + C\?(\'\§ = QO

Thus Cea) < AL+ 1AM v+ 1A e

< plmex (RN maxe te1)"

Veigp Vsespe

0

As a consequence of these lemmas we see that such
families as iu,ﬂs , the complete graphs, %K,\',\1 \
the complete bipartite graphs, and Q. 3%

)
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the n-dimensional cubes are not recursive families.
note that if G is planear for all na  then

the dual family EGM*'E is defined in the natural

way, and if 2}%2 is recursive with recurrence relation
1), then iG{kg is recursive with recurrence relation

Grep * 040G = v 04 OCh = O

1the following theorem describes a large class of
recursive families of graphs and demonstrates the
construction of the recurrence relation satisfied by
their Tutte polynomials. We reguire the following
notation, and lemma.

Iet X and Y be graphs with vertex sets V, W.
Iet V' be an independent subset of V (i.e. no pair in
V'are joined by an edge in x) with W'\l =n . Tet ¥
be connected, and if X is not connected let V'
contain at least one vertex from each component of X.
Iet 2 be a subgraph of Y with vertex set W' satisfying
Wiha, Iet o, R be total orderings of the sets v'
and W' and denote the ordered sets by Vu, Whq .

et G = Xo¥ (Ve ,W¢) be the graph
obtained from X and Y by identifying the sets V' and W',
preserving the ordering.

et r be a partition of Ww'= W, oW, u... v W,
Denote by Kﬁp the graph constructed from Y by
identifying all the vertices in each subset w.' lSeg v

v o

(so that Y7§ has Wl -+ + vertices).
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Lemma 4.4 : The Tutte polynomial of C}='XaY<V;,M$3
may be expressed in the form

G = Z W (x,v,®) Ve
where the summation is taken over all partitions
P of V' (which induce partitions P of W' ) and
where b(X,V,P) is a polynomial dependent only on

A,v' and P.

rroof: Once again we use the fundamental relation X

"

’)((G-,x,%B = 'X(G;;x,35+ X (G 3&3\ ,
on this occasion applying it repeatedly to every
edge of X +that is neither a lbop nor an isthmus of G.
In this way the iWiutte polynomial of & is expressed as
the sum of Tutte polynomials of graphs which are \75
together with some loops and isthmuses joined at the
vertices of VJ2§ . This is an expression of the
required form.

it remains to show that this expression is
independent of the order in which * is applied to
the edges of Ji. 1his requires only a slight
modification of Smith's proof that his definition of
the Tutte polynomial is valid [}5} , and is omitted.

U

Let X,Y,4 be three (possibly isomorphic) distinct
graphs and let £,, X, be two isomorphic subgraphs of X

(not necessarily disjoint,, Y, Y., two isomorphic
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subgraphs of i, 2 Z two isomorphic subgraphs

[ A
of 4 with

X > %, =Y, ~X, =2 ~ 2,

!

et the vertex sets of X,Y,2, X, , X,,..., 2 be

2 2

u,v,W,U, , U, , ... , W, .
Now any ordering « on U, induces an ordering R
on 'V, by the isomorphism and so if Y’ is the graph
obtained by deleting those edges of Y having both
vertices in V, , then the graph X _ Y’ (Uie.Vi,)

is the graph obtained by identifying the subgraphs

X, and Y, . Denote thisgraph by XY ( X, Y.)
Iet H, = XY (X, ,‘(‘> and inductively define
Ha= WYV, YY) 3)

where the subgraphs X and 1., of H_ are defined
inductively to be the subgraphs X 6 of H,_, and
Y, of Y in 3).
Define two classes of families of graphs as follows;
vlass i) is those families of graphs whose typical

member is

G..'\ = \"\,\e 2(\(1,2'>
Class ii) 1is those families of graphs whose

typical member is
G.= RaoWa (Yo, %)
this slight abuse of notation meaning that the
identification of subgraphs takes place in one graph

H,\(i.e. we are not joining two isomorphic graphs.)
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As an example if X, Y, Z are all isomorphic to

the graph V‘I'_”'_ S A
!
Wom e Wy,
and X | Y 2, correspond to
W, Va
while Al,YhZ,\ correspond to

then the family of class i) as defined above has.

typical member

Vi Va vy V, Voar

15

"

W, Wa g,

Wa L Waay

—e

and the corresponding family of class ii) has
typical member T, the skeleton of the

prism on 2 vertices

Theorem 4.1: The families of classes i) and ii, are

all recursive families of graphs.

Proof: i) Iet uwa = HoZN,,Z2) Dbea
typical member of a family of class i). Then by
lemma 4.4 (and the definition of the construction

Hae 2 (Y, 2‘) the Tutte polynomial of G, may be
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expressed in the form
Hn
G, = 21;_ BW(Z,wW,,P) " Iy

the summation being over all partitiovns P of w,

Now for any P

Hr\/
"P

1

oY Y
L2 PR /'p (\(2.> ‘5 provided that

Y, and Y, are disjoint and so the wutte polynomial
of Ha/p is given by
Ha-
HMP - % o (Y -V, Q) Uy, 5)
the summation being taken over all partitions Q of

v, (= W)

5) may be rewritten in matrix form as below, where

A , Ry ? represents the set of partitions
of v r N
\ ( ™
Hn,LP‘ H,\-‘/,p'
\4'\/-?7_ = g H:\q/—P_L
: : 6)
H.>/ Hm/
- . J

where B is a gq-square matrix whose entries, b;;\ R
are the coefficients © (Y/-p.b , V, Q_;Pb ,
Now if ?(t) is the minimum polynomial of B then
o
each of the sets of Tutte polynomials i’H“/p- zh
. =\
(fixed i) satisfies a recurrence relation whose auxiliary
equation is
T = ©
-]
Thus from 4), i,G'.\zg,\z. also satisfies this
recurrence relation which is both linear and finite,

and so 16,\'& is a recursive family.
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If Y\ and 1 are not disjoint

a

Y
H'\/’P - HA-l/'P © \(/’P (Vz/? » I/'P>

and so equation 5) is still valid in this case.
1i)  If G, = HaieW (Y., %) is a typical
member of a family of class ii) define W,.inductively
by K, = |

Kna = Kaoy o ¥ (Y,_,Y,S

and then

G.= Kans x((\’\ 0¥, ), (% Xf)}

and so by lemma 4.4 the Tutte polynomial is given by

Gr\ = E. B(X, uz‘-’uﬂ >’P> \<’\/‘p

= 7)
the summation being taken over all partitions P of ‘(A,u\l, .,
The proof now proceeds similarly to i) with H, replaced

by WKa.

U

Iemma 4.,5: The auxiliary polynomial (of the
recurrence relation for the “wutte polynomials) of
a family of class ii) contains as a factor the

auxiliary equation of the corresponding family of class i).

Proof: The result may be deduced from the

elementary matrix theory result that the minimum
polynomial of a matrix A aivides any polynomial

satisfying ?(E\_) = O .
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We give the following proof in order to demonstrate
the construction of the other factor.

wquation 7) is

Y
Ga = T b (X, U oW, ,®) e
P ranging over all partitions of W, v and
we have _ z
\Lr\/—v‘ W K,\.V‘P
\
KA/.PL - ’\SSV K"-‘/'P‘,- 8)
K/ Ka-ys
L Py J L 3

Partitioning B according to those P, which

have no part containing vertices from both U, and U,

(P, %, ... ) and those that do (’PUH ,'PCVB
we have N - N
W
A/fu\ KN%P.
W Va WAt
«'?Ul - 1%! ‘/ﬁi
9)
K,\/’P"’v KA-\/,PCV
. - - o

Now each of the families {%~/- % \< L < & is

[% ]
of class i) and satisfies the same recurrence relation,
since they only differ in the graphs X and Z (in the
notation of theorem 4.1 1) ) and the matrix B there
only depended on Y. Represent this recurrence
relation by

A, (%) = 0 | sis ©

Then operating on 9) by A, ,



~
rA‘ (K'\/’Pe*J [ 8 h
o (| :
e A, %)
' o, (L)
TANS <KA/?V>J
- i A (whﬁ/?gv‘) )
and so if A, (%,\3 =0 is the recurrence

relation whose auxiliary equation is Q,_ () = ©
where %;(%5 is the minimum polynomial

of B (which is the last (q - t, columns of B, )
Kn .
A\A:?_< /"\>‘_> = O , l< v <5y

Thus from 7)
ao, (60 = O

and this recurrence relation has auxiliary equation
NOH G - O

where Q\(b> =0 is the auxiliary equation of

o, (S = O.

1

As an example we prove the following theorem.
Theorem 4.2: With the notation of theorem 4.1, if
X, (=X, =N, et ) is the graph

and X ana X, are disjoint and Y and Y,

52

10)
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are disjoint, then the class i) family has recursiveness

at most 13.

Proof: 1) It is convenient to have a diagrammatic

representation for the graphs. oince the only
significant edges are those of X, , X, etc. these

are the only edges shown. the diagram for G, 1is

w ow oy
% Y[Y[ ] lz_'
G o, " b

and it is hoped that the meaning is clear.
10 reach equation 4), X is applied to all edges of Z

except iyﬁ,wgg that are neither loops ner isthmuses.

we o = L., Wl so there are just two partitions
P‘ = i\/.\ , ""Ag
P, = Va3, %%

Thus
Gn = o (7—>w\ :P\B HN/P. * \3 (1»\’\11 )'?15‘4}’??-

and 6) becomes

Hf\/,P \3 (Y/?‘ ’V' (ﬁc\,\)‘> >—P\> B(V?‘ ’V\;P1-> Hn-/p
H'\/,Pz b (Y/'Pl > V\ > —Pu > b(\(/’Pz sV "P7'> HNyP-,_

and so G o has recursiveness at most 2.

The diagrams fér ¥4“/§‘ end H“/§L are
JPr— \/‘q_‘w__ .. - ~— - ava
Ha/. P ) X Y X o I I
\ ol lam b b I R

S K 5 N A

e \.D_° _—
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and so the Tutte polynomial of H“/'pz_ contains a

factor y. Thus the chromatic polynomials of u (3=<§>

satisfy a recurrence relation of order 1 as expected.

(FP(G,\',KB _ Pl i) Pl )

)L("k%-\>
ii) The diagram for G in this case is
Vs . )V,\
s \( ? "v°r
SNARE RS
SR NS /Y
) I V.‘_
w,_/l-
and A, is the set %,w ¢, W, is the
set ?_v,\’w,\'g

By lemma 4.5 we need only consider those partitions

of

. v, for which there is a part

containing vertices from both L and W,

2

the others yield only a factor of degree 2, obtained

above, in the auxiliary polynomial.

the only possible such partitions of W,y L, are
LR IO S TPURE S (VA W A VAV, QUK PR L YIS,
LTI PO O TR O 2V SN AV A R P 36 105
P = Ve, V%, @AY, S0} A B AVAURVAN S S 15T S
Tt fve, 008, Y, Py = e, 031y,
Tyt vave, 0,0 % RS PO S EVARVA S SE SN
Bz el W0l
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The theorem follows from theorem 4.1.

The notion of a recursive family may be extended

in the natural way to matroids. 1the basic
construction in the definitions of class i) and
class ii) families of graphs is that of combining
two graphs by identifying isomorphic subgraphs.

the corresponding construction for matroids is that
of identifying isomorphic closed subsets. iremmas
4.4 and 4.5 and Theorem 4.1 all have their
generalisations valid for matroids and if the

notion of identifying vertices is replaced in the
proofs given by that of contracting edges, the proofs
of the more general results should be clear.

(There is no necessity for the identified subsets to
be closed but the assumption involves no loss of

generality.)
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5. Examples of Families

A major benefit gained from the methods described
in the previous chapter is that we can consider the
Tutte and chromatic polynomials of very large graphs
by regarding them as members of families of graphs.
In this chapter we shall derive the Tutte polynomials
of some large graphs and in the next chapter we shall
discuss the location of their chromatic roots.
5.1 The simplest example of a family of class i)
is the one whose typical member G, is just n edges

L. . sevieg
joined in peratieit, thus

In this trivial case the Tutte polynomials satisfy
the relation

G’n*\ "’LG'P\ = 0O
and so G, = »x" and the family has

recursivess 1.

5.2 As a second example of a family of class i) we
consider the family {W.{ whose typical member is the
"ladder" on 2a+ 2 vertices which was mentioned

briefly in the discussion preceding theorem 4.1.

Vo Ny A Va- Va

Mt




An investigation of this family is a
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necessary

preliminary to consideration of the next example . the

family of prisms (see lemma 4.,5,.

It will also be

useful to show this investigation in complete detail

as it is fairly straightforward, and then omit some of

the voluminous and tedious computations involved in the

later examples.

00, using identily x for Tutte polynomials,

we have

[ I

Also

O\

f

[t

’

G. = GL Cye.
I Ve A\ Vo Yoy ‘V'\ Vo Vi N
[ + ] -
. o /
v,
N % T NS
<X'+x”4>\4nt\ + //<“
2 Ha-
(e \> Hay + n ‘/,\3 say.
‘/o \,/- :’f\“l Vl\— ' \’n V‘ - VI\TO
L TP |
Lo P
Geysg) Hao + % VS
SV \ Hao
XLY Y H A
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thus Hq (and Hn/%, ) satisfies a recurrence

relation whose auxiliary equation is
(Y.."-r'rL*- \ -—b>(&6—b> - ()Lk-b+k6> = O

i.e. e - (&1'4-’&*—&3 1—\>t +)&\s = 0
and so we have

Hara = GCexaur OHan v Ly =0

and the recursiveness of the family ${HA} is 2.

Solving the recurrence in the usual way gives
H‘.\ = F\b:\ + %t:

where A and B are functions of x and y independent

of n and
L, = -‘—7:(11+7L+\.6~\-\ - o((w,\s§>
L, = l-_L ()(,7‘*— }L+t3"\. — cx(x>vb>>

\

where X (x,u) = J(’&mﬂy& - Ay

1he constants A and B are found from the Tutte

polynomials of graphs 4, and H, which are

3E e x v x Y

and
w4+ 2xY o KSR, N h*_1x13+ 1"\6*\6* S
respectively.
we find A+ = ')L)
A-R = (-;C5+-y_"- +}L.-i—2_‘,6 —x|3> /«(&"33
and so A (’&*’&*"*2‘5"“33/&(*.‘535 )

'S

L e (Gt 42 - ’“‘33/“(*:“5” '
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in particular the chromatic polynomial of H,
(putting W= © and

P (\"\r\ > 2)

yw=\-2 ) is

-z (\ —-z> R_(\—ESL*‘ (‘*1\/‘ l-k'\
%(iﬂx(i&3%+l§«

as we should expect using elementary methods.

1

{t

Finally, putting x
complexity is

=y =1 we find that the

- 5 (0B C-BGR)

= 22 (@RY"- 2-1Y )

5.5 Wwe define two related families of graphs, the
prisms and the A prism,

TTA is the skeleton of an n-gonal prism.

’ AN
w LA
T, [/ e

1he graphs known as the imobius ladders are defined
in L9'S . We denote by M,

on 2, vertices.

(even) Mobius Iadders.

the even Mobius laddaer

Va v,
e
-
M. /k\\7/“/ )vl
Ma  is not planar, \ yat
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The odd Mobius ladders defined in 9] are #4-valent
and will be considered later.

poth (M. and (M.} are families of class ii)
and we first note that the recurrence relations
satisfied by the .utte polynomials of both families
are the same, for following theorem 4.1 the matrix

B is the same for both families although the graphs

called there Ka /P; differ between the two
cases in the same way as M, differs from Va.

+he following is the submatrix of B comesponding

to those ““/v

[

which have connectivity > 2

(i.e. those of class ii) ).

t R
\ 2 O O
O > @) \
O ) o \
O e > «2
L D

Because of lemma 4.5 the auxiliary polynomial of
the recurrence relation satisfied/by the Tutte
polynomial of 1V, (and M, ) 4is the product of
the minimum polynomial of this matrix and the
polynomial of degree 2 derived in 5.2.

The rows and columns of the submatrix above
correspond to the graphs

Kﬁ/ﬁ - ‘Trq , b(qz?k

Vo .
ﬂ\,n

Vi

WKa
yz
?3

N

respectively.



(The other partitions given in theorem 4.2 ii) are
either equivalent to these or redundant.)

Hence the recurrence relation has auxiliary equation

(1= - h>(x.~3— LXHS-}.)‘: + " >(£_\3 - Ve +E&) = O

and so the Tutte polynomial of LN satisfies

Mo *o VT + - + o ¥, = O

where

o, = mOEr 2y v A,

G2 = 2> & 60+ Qv 2xﬁ34r3u¢s +:§“&S%yvs X

oy = — (xS Bl ¥w 4 4»8%5+'%nﬁ3 R

"’3‘3 *'“&ng 2x«.&'+g+ 2.3 ,

Oy = >xF e d+ I+ Ln +7~x‘*~s +77¢3\3 +7K1U5
YAy o+ 1‘4‘}\&\' Z»&&I« Zx«&‘ R

Qg = "(:ZJC"xb *%Y}b* wl'ub«-x‘\'\s*. 7\7‘}\&‘*- )&&B S

o, = x“u&

We could now solve the recurrence relation to
obtain an explicit expression for the Tutte polynomial

of Y

clearly be rather messy and is unnecessary since most

n and M . However this will

information that can be found from the Tutte polynomial
can be found directly and more simply from the

recurrence relation.

61
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For example, the chromatic polynomial of the
prisms is found by putting y = O. This reduces

the auxiliary equation to
(\-by(x—\:\ (7L+'l-—'c\) (& wxrt —*::3 = O
and so substituting w=\-= we obtain

P(Wasz) - 2(A B C@a) +D (-3

where A, B, C and D are polynomials in =% , independent
of wmn . the chromatic polynomiale of M,
is given by a similar expression differing only in
the constants. Using the chromatic polynomials for
V. and M, when = 2,3,4 and 5 ,
which are given in the appendix to chapter 2 we

calculate the coastants and obtain

2N A A
P, z\) = 2 2zal A+ (@002 « @-OG-2) + (@3
and

P(Mas '2-_§ = = - (1-—\3(\-1)« + (=- Q(E-‘t.}t\ + (F-3zd)

In a similar way we find the complexity of 1T,
and M, by putting x =y = 1 in the recurrence
relation, reducing its auxiliary equation to

(- (-acr ety = o
so

CEY = An+® v (Cav D@ (En FICRY



63

for some real constants A4,B,C,D,E and F and
similarly for C(M.)

Using direct methods to calculate CL(TE:> and
C_(N\«\ for small values of m yields

c(m) = S(@EY « @8 -a

i

CMYy = T @Y+ G-REYY) + o

the second of which is given in (14

Now T, is planar and so has a dual graph which
is easily seen to be the skeleton of the double
pyramid on an n-gon, which we shall call also a

double pyramid, and denote by Ja.

The chromatic polynomial of T, is found by

]

putting x O 1in the iutte polynomial of T,

This substitution reduces the auxiliary equation of

the recurrence relation to
(\-ts(\gﬂ-l-t»(\a*\ —t,B = O

and so
P(Tz) = 2(A+R G2 cz-2) )
yielding
PT.,2) = GOEACAE Iz+0) 4 z(z—\)(z-:&)/\ v 2(2-2)

as expected.



The Mobius ladders, being non-planar, have no

dual graphs.
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S 4 In the next chapter we shall be particularly

concerned with the chromatic roots of trivalent graphs
and so to complement the information gained from the

prisms and Mobiusa ladders above we now consider the

graphs r‘;)s consisting of i ©polygons
>0y - O , with each consecutive
pair 9\*,(:“‘ joined by J edges.

For example, the diagram shows Fs,,*

” ! \"\/ \ ’
*——a ~—e ‘}\/J\ — - .
/
,: f
1

These may be grouped into families by fixing
either i or Jj . lw’ai)_‘ is a
recursive family of class ii) for any ¢« % 2 and

i?“- 1 is a recursive family of
“3) vVE A
class i) for any yo» v In particular
EV,”-&-& is the family of prisms and T'.&‘s
is the dodecahedron.

The family i}"%s‘g is found to have

recursiveness greater than %0, demonstrating one

difficulty involved in dealing with families of class ii),
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[
On the other hand the families LVﬂ45§._l have

comparatively small recursivess and for small values of
3 the recurrence relation may be found.

the family L%k is trivial.
The family iw;‘Li is of recursiveness 2

and the matrix is
G DO Lnr N \3 2o v e
"\7) =
VL IRRVLNPVN *Sﬂ-la* 7.{‘36-1&&%2*3 (‘Q‘ ‘\)L
KL’l/_P

with the rows and columns rorresponding to

and Kﬁ“‘/%a respectively.

The relevant recurrence relation for the chromatic

polynomial is readily solved and .VH,Z and (g,

are in the list in the appendix to chapter 2 and we
obtain X (V. x, o) = A (‘;_— O+ 23+ 2@+ Joea2 & G(%X))L-\

N N CICIRE R N SR AN

where
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P o U A= o ey )
and
B - I)':Im( W ”‘7(%,(»«3>
where
RO = ,J O v 23+ 'sx"».'swfz)z + /J‘,>c}(x+\>‘

which expression may be transformed to the chromatic
polynomial using the corollary to theorem 1.2.

when the dual family (U, % } is considered the
expression for the chromatic polynomial simplifies even

further (the recurrence relation is of order one) and

we find
.~ ( V‘.":’: S 1) = zE@E-Nz —2§L((;—1§(1*1>5b-\

as we would expect from theorem % of Y_J.El,

The family UH,;S
the matrix B is (b"-5>

has. recursiveness 3 and

where

" HE S 4 b \OC & Vot + \\ae +‘2% v 4~ Ea

b\l B3+ G - b+ %‘\‘(ﬁ
b

(X

5 \o\’!:: ?;x-\-u3+9.,

1 Bt 63+ Al e Vo l‘&"f(ms'*'l\a + 7)&\3-\-373\3 +7C*-.s+qw.3 *v«\& ,
\:’11 = Lt~ T 3\6"‘-\-(1.,_5*—6 + 1{‘\34—7%‘3 \

\0“ = (ws w* ’Jb(oy—\\) ;
b:s\ = WL WE \-A,.x.-\-lt&* G\:;*'(" a*'l"" 31’5\6‘"?»&\5«- \gl‘r (31:'3* Q»LS'# O\K&3>
b= %(7“‘6* \5(‘3+ S- N by, = (‘3*‘33

Once again in the case of the chromatic polynomials
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%
of the dual family ijﬁL 2 g everything is

very easy and we obtain
P( VL?; X —2—_> = 2 (VDN E-2r 222 »
as expectéd (. %(i'Q(%‘iYEQLQQIIWzQE§ being the chromatic
polynomial of the octahedron ).
On the other hand we find that to obtain the
chromatic polynomial of Yﬂkx itself it is

necessary to solve the recurrence relation whose

auxiliary equation is
£3 - (e 2T+ e WO + o + B+ \(5&1

+ x(x'7+4.w(’+- A\.n;— S Ao — Qe - Ao '7> A RV \> =0

which has no "reasonable" linear factor. As we
already have a complete analysis of two trivalent
families there seems little point in performing the
long winded calculations required to fimd (W z)

(but see chapter 6).

ihe family i\_';_’&i has recursiveness 6.
1he matrix B has been found but its nature is such that
it is not practical to deal with it, as might have been

expected following {Vl'si .

5.5 We now consider a 4-valent family, the
family of antiprisms. ILet 1., the n-gonal
prism have vertices 3 V,2, ... ,n, \,2'  «'{with

vertex i joined by edges to L', i-t , cad i

(modulo a ). vhen the n-gonal antiprism A,
has the same vertices and edges as ’\T-\ - together

4

with edges joining i and i + 1 for v LA, ..,



N N
. j\ 2
A-la. ‘-\’ . \ﬁf
D : X
r_\ . \;.o st 2! / \\
" -
o
ey

The antiprisms are clearly closely related to the

odd Mobius ladders, LL.3 191 .

As with the prisms and Mobius ladders both
these families are of class ii,) and both satisfy
the same recurrence relation.

the recurrence relation for the corresponding
families of class i, (see lemma 4.5, has auxiliary

equation
EY - (x2e Liryl +2 e 0k ¢ g = O

_and the residual submatrix of g is found to be
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4 )

0o &\ O e N \ us(vu-\a&\) ) o

e X*b#\ R & &) o \.b(uu W« 0 @)

o \ 0 XA yeZ %Q.y 2) ) o)

(@) \ o Qe \ Ls(\s%— \s (@) o

O N \ @) @) Ub(\ﬁ* \> )

¢ o o @) gy-\ \ %§%§C>
~ J
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where the rows and colums of the matrix correspond

to the graphs

K
"‘/,P = ﬂn
\
‘—\
G —e
\ﬂy- 1;1“’
P Tl
4 .
a-t ~
A Q:v// A
K, mﬁiii//i* -
/P'? ) v
\\\_//// respectively so (A%
and Ly are of recursiveness 9. (K"/'ps ,K"/-p‘mé\ \&,\/?7

are not precisely as defined in theorem 4.1 - loops
have been omitted - but this does not affect the
recyrrence relation.)
In this case the characteristic polynomial of
the matrix factorises. It is
R O R DU CEVCES SYE- (e v gn)
(- oty g 43N (Er2aa Doyt 2+ O -2 ).

1hus X(ALs %, O) and X (Lasx, 05 may be

expressed in the form

A+ E(‘x-\y\*-c,(\f\\)iﬂ + D (7“_":_*:;_;:@ >‘\ + E (Zvu& -FE\)

for suitable polynomials in x A,8,C,D,E independent
of n. The chromatic polynomials of the first

five Q,\ have been calculated (starting



with ’P (p‘\.) %> = O 3 7

A e .

and we obtain the following values of the constants

for R, )
=\ \
A = w:f\ » B =0, C= 33 >
. >
O == R
Since A, is planar there is a dual graph A J

and e
T~

X(F\f ;x,o\) ;= ’)((C\,\-’O,x5 S is of the form

A+ R (et e (D" «-DbC‘«vx-\y\-n-E.t? *—S“_t;\.

i

where . + (17'+7;:u-3 o+ 8(3455

Y

S

2 —\7: (¢ ng-\-l) - S("L).g ,

A)

S(\&)= ,\/K‘**‘A\v’é* O+ 12 +S

with 4,B.C.D.E and F independent of n .

The polynomials A,B,C,D,E and F have not been
found in this case but X (AKX, x,o\>  has been
calculated for n = 1,2,%5 and 4 and these are

discussed in chapter 6.
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5.6 Finally we consider a family of graphs
which does not satisfy the definition of a recursive
family given in chapter 4. these are the complete
graphs and we use lemma 5.1 to obtain a non-linear recur-
sive expression for their .utte polynomials.

(For this section only) we define the following
notation.

Ka denoted the complete graph on wn vertices.

%

3 denotes the graph constructed from

K.., Dby joining a new vertex v by Jj edges to every
vertex of K (that is inserting (i-1).(j-1)
edges into K; ).

cG is the cone of G as defined in lemma 3.1
and inductively "G = (' G).

All equations are relations between Tutte

polynomials.

K, = = &' for all i.
T

Vit Nty T A=

Xs = CY.\* LS

Ay = o)
. -t S (e

Cl\'»', = Y (Cv',*\)“vm%«z“' Hy-t Zk ““> >

for kK >t

By lemma 3.1
K. - (x«—«\-l} Kooy * | ((\;\‘) 3\’\:-1* (ﬂ;l )\g\&lﬂ_l ..

-ty - (-Na-2d A
+(T>b5l)\<c\-r*"' "\3 2 \<‘ , A
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which we abbreviate to

Ko = B Koy v B KL, « 0 =B KT 1,

n-2 \

Now applying the reduction * to successively

delete all but one of theedges of K'; incident
at v gives
_ -2 -
3 W~ \ LY 4
Ky = YKo o * (°V;, 1) E—\ SRR T 2)

Again applying * , this time to insert (j-\)

edges in WKt to give K?_H yields
y \ AT
C Kt = K-u_‘ - °v§ \< . 3)
and  so
- e - v\ 1Y% ! w-i el
R T KT - ey, KT (Y )eysﬂc\,m\cg_l
W el \
e v OO e e, W)
and so from 2)
K = Yo * (o ) S ST KE
N A k> P YVl Hpgn N, 5)

where the product CVSuCijz"' OVIM-* is taken to be
1l when p = 1.

Reversing the order of the summation signs in 5)

gives



3 ‘ w ek
‘< \ = \6 ’\s \ki”\ ¥ ‘:\ <. \( ‘.H. 6)
and now substituting this repeatedly in 1, gives

Kn = BIK 8D Ky ¥ + XS0 K, + 380 KR 7)

A=y Y

[\

where ‘%°v is defined recursively by

) n \ 2 -

- A - AT Lge

8"\( S“v" N, o2 " Sw-?. F\ﬂ‘wﬂ,w-& * 4%&&ﬂ-’-,z +gcy-\
for Y > 3 and

) A
83 - &z

the final result probably looks better in matrix
form.

6) may be written

r r
¥ Ky | WE
\6 \< n- — Y
.3 N - fP" Kf\-z
-2
g K, K7
~ - ~ S
(
_ . 2 -4
\ LT EE Y N, Qw@a
\ n-3
= Q n3,3 A A3 %
-1\
where ’P,\ =




and then ') is simply

f
X, K,\_-slW
- ¥y Ka-
Ka= BWay = (@, . R0)T TR + 3
You K,
Lo

This may be m ore amenable than the expression given
by Tutte {[17] .

1he first few Ats are

D
"

\ - ‘ - -s* 3
a2 \,34—\ , Rss = \&'-H:y—\ , AU\' =W \3*\5*-\ ,

Az - 1(3*‘5 , A = 7*(‘31’”6“\%

SO

A ~(‘3“)(‘§+"§3 > A:'s = - '3(‘51‘*3‘“51 >

»
(4l el
N

1l

\S’" (3*— \SL(“-Li Ls-b-\B >
e ~ \.g(\sﬂ‘)l (g&“#\s#\\)(kg-’r% -H_S. \\> S
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and for example we have

> s s z Y
BY =y, By m6y B AL R - ¢

and so

KS = (’L+1>K4_ * ("&*—\QSE K:L + (‘{'*kx’-vi} gi-K' "'\35

NOW S; = Ei = by
and gi - gi F\;,‘ + %i = @\3(5*0* 4.\&"
and thus assuming X, =1, KX, = x, and

Ko = @0 3o 2oc s Ao v2y +3 X
we find

v\s=(\\5”§‘§“§"§ “S>r0(au'(,\“ (]

This raises the question of whether it is possible
to extend the notion of recursiveness usefully to
include such families as the complete graphs.

1he recursion given above for K certainly
suggestsnot, as it is not linear, not homogeous, and

most relevant it cannot be 'solved' to give a general

expression for the Tutte polynomial of K . It
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seems likely that the definition in chapter 4 is

the best possible in this context.
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6. The TLocation of the Chromatic Roots.

In this chapter we report on the location of the
chromatic roots of the graphs discussed in chapter 5
and attempt to generalise theege results to statements
about the chromatic roots of any graph. 1this is in
fact being rather ambitious; nevertheless some light
is shed on the problen.

1the information we have for a particular family
of graphs is of two sorts. rirst, using the
University of wondon <CDC 6600 machine the vhromatic
roots of those members of families which have less
than about 38 vertices have been computed. In
most cases these results show a very clear pattern
which we may confidently claim is followed by the
larger members of the family. (The pattern is
usually that the roots lie on one or more closed
curves in the complex plane.) In other cases,
while there is a pattern to the location of the
chromatic roots it is not clear at some points how
the pattern will extend to the larger graphs (e.g.
when the roots lie on a curve in the complex plaﬁe
that is not closed).

It is in this second case that information of
the other kind is most useful. This is deduced from

the explicit form of the chromatic polynomial and
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can either be in the form of a Rouché's Theorem
type of result, putting a bound on the modulus of
the chromatic roots or, less usefully, in a similar
form to Tutte's result on the existence of the
"golden root" 7|, (18l  \19) . This is a
theoretical explanation of the presence of a

chromatic root of certain graphs at 2.618.. = (+¢

- o+ ‘i;gs and states that
PG, ) € 1
if G  has '3 vertices.

Such results are not very useful for our purposes

for two reasons. They are not really conclusive;
*

the graphs s

(see 5.4) satisfy
the conditions of Tutte's theorem but have no
chromatic root nearer 1+ T than 2.547...

for all i. Also we are unlikely to be able to
account for every chromatic root of a graph by such
methods.

Note also that as a consequence of theorem 11
of {181 (c.f. lemma 3.3 ii) the centroid of
the chromatic roots of a graph &, in the complex
plane lies at the point ( ¢(G>Q. 5 <3> where

b (&) is the average valency of G.
The first non trivial case to be considered is

5.5, the prisms and even Mobius ladders. These

have chromatic polynomials
N
2% - qz+l «+ (z~\>(l-1\)(\ + (E~\>(1-1’>“ + (%32 +3>

and U - (0GR + (e S5Ca-2Y + (@-22+3)"



respectively.
The chromatic roots of both these tend to 1lie

near the cardiod-like curve C, shown in figure 1

or near that portion of the line Re z = 2 which
lies inside C, . (A reasonable form of the
equation of C, has not been found but the possi-

bility that it is a cardiod in the strict sense has
been eliminated.)

This pattern has been confirmed by the following
lemma due to R.M. Damarell {4 .

lemma 6.1 The chromatic roots of the prisms and

even Mobius ladders have modulus not greater than 3.

Proof: The proofs for the two families being

similar we give only that for the prisms.

When \2z\ = 3 we have by elementary calculus

gy (-2 < (2'-2=2+3]|

<‘.4,> (\—-?;\ < =z -3= +3‘§\

)

3

A

(2*-3=z +3\
Iv-z=\ < 4

Thos
\27'—3z¢\\ , = % \?-L—TSz-r:S\
KY

A
|
™,

ol
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Hence when =\ =3
|z 3zt + (%_\>(\-‘t\)ﬂ + (z-\y&—z;y\
< |22z ¢ \z—\\(\\~%\"+ \1-?—\“>

< ("“f“t\ ~+ % \:3_7“_3;_5*-3\'\

= \%2":")2«— —\S\(\ Q\:C' Az Y7

applying Rouchés theorem we have that
[a
(11‘31»3>> + (1-0(\—15" « (=- lX&-i\)’\ - NN | has

the same number of zeros inside the circle |=|=3

as (2}-—’12 *&\)’\ namely 2n, for n>7,

Direct computation confirms the result for n<"=v,

1\

The duals of the prisms, the double pyramids have

chromatic polynomial

2 @-0E3Y « 2(z2) - Y = (F —124—\>

where the graph Jo. has O+ 2 vertices, and
the chromatic roots are as shown in figure 2.
There are real roots at 0,1,2, near \+ T (see above),

and when n is odd at 3. There are roots (including

Teal roots) on the curve made up of
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Hence when =\ =3
O\ (A G c Wl
< |z*-2=2 <\ ¥ \z-\\(\\*%\n + \3-1\A>

< (G 5 Yemear

S EL I SR (= oz 7.

applying Rouché's theorem we have that
~N
<11'31~2>> + (2-0(%%3'\ + (%* \X?s-i\”)’\ﬁ- 25z +\ has

the same number of zeros inside the circle \|z|=3
as (2"-—11 +&\)’\ , namely 2n, for n>7.

Direct computation confirms the result for n< 1,

The duals of the prisms, the double pyramidas have

chromatic polynomial

Fa (2— (\)(’?_—:sy + Z (z —zy\ * (-\f)ﬂz(%} :gz-z_\>

where the graph J has 02 vertices, and

LAY
the chromatic roots are as shown in figure 2.

There are real roots at 0,1,2, near (R (see above),
and when n is odd at 3. There are roots (including

Teal roots) on the curve made up of
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the two arcs of circles ((;a\

2 -3\ =\ T < are (2-3) € g3

and the remminder lie on what appear to be straight
lines, as shown in the figure.

The chromatic roots have only been computed
for n < 30. With this information the best result

we can prove is as follows.

Iemma 6.2 : The chromatic roots of the double

pyramid with n+2 vertices have modulus not

greater than 3%n for all n.

rroof: For all n 2 %0 and izl= 32n

1(z-0G-3D"' % Ga-D@EA-3Y
> (@) ¢ Ja Qv
2 -2+ D@ -0,
Hence by Rouché's theorem all the chromatic roots
of J. have modulus less than 3%n, for n > 30.
Direct computationsconfirm the result for n < 3o0.

T

Now our computations suggest that this result

is not nearly the best possible. For any unboundedly
increasing function of n | () there is o®
0o such that for A 0, and \z\=~V)

\(z-OGEaYT = \E@2) « Y (e -3v=+0)
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Thus if we can show that the modulws of the chromatic
roots of T, ate bounded by YY) for n<n,,
then v () is a bound for all n. It appears
that V(Y = 2.2 « oSGy , where S ()

is a decreasing function lying between 0.3 and +
(e a2 4D is the form of the best bound.
Certainly V() = 2.2 « 03 will do, assuming
that the regular behaviour shown in figure 2 is

maintained for larger n.

the chromatic roots of some of the members of

the families AV and  $%(,a8
are given in figures 3 and 4 respectively.
™. has X (T, ;=,0) = AE v o
where
L - (M-
AT s g (U T “hes)
1
@(’Q - ,J (xﬁ*lﬁ-\-zvf +3‘L+23L A OGCee)

in this case there is no obvious way to apply
aouché's theorem and the pattern of the chromatic
roots of the small members of the family give only
an incomplete indication of the likely location of

the chromatic roots of the larger graphs. The
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chromatic roots seem to lie on two curves C; and C,
(see figure 3) which vary with n and appear to have
the limiting position shown, but it is not clear,
inter alia, how (or even whether, we should expect
to extend C+ to describe all possible chromatic
roots of Pgl

rhe chromatic roots of Vﬂ)m apparently
lie near a curve Cg  as shown in figure 4 although
in this case the convergence towards such a smooth
convex curve is much slower than in the other examples
we have considered, and here again there 1is uncertainty
as to whether or not Cg crosses the line Rez =0O
indeed there are almost certainly two or more
components to any limiting curve, and we notice that
the maximum modulus of the chromatic roots is
increasing. (See A on figure 4.)

Our final example is 5.5, the 4-valent antiprisms.

these have chromatic polynomial

P(Agsz) = \-Bzear s (-5« (C(E-2edT0-2)
“(S-2- .]“/4;2>“]

The chromatic roots of Aqn lie on or near the

curves C, and C, shown in figure 5. (We
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expect the chromatic roots of the odd wmobius ladders?'
1 L,\i to follow the same pattern - c.f. the
prisms and even Mobius ladders - and the location of the
chromatic roots of the first four odd mobius ladders
suggests that this is the case.)

For the antiprisms the best result that we can
obtain from Rouché's theorem using the computations
that have been done is as follows.
Iemma 6.3 . The chromatic roots of the antiprisms
lie in the region of the complex plane defined by

\z-2\ < 2.§

Proof : When |2-2\ = 2-S

|-t (e B S e (52 B Y) |
<13+ 2x3-5, (325 w23 )
= F) say,

since | %_'1*,1‘3’4,-3 k < 2~z + 4| N2-z | +%
< S l2-zl« 2zl
2x2-S FAPES

and F((\) < 2. for a %\

1

= \l—i?ﬂ

Thus by Rouché's theorem and direct computation

-

up to n = 18 the result follows.
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The chromatic roots of the duais of the antiprisms,

3—‘\:1 for n=2,3,4, are shown in figure 6.

rrom these results and considering other inform-
ation such as that given in the appendix to chapter 2,
and the chromatic roots of the dual of the truncated
icosahedron given in [101 (we are concerned with
vertex alourings, [}O} deals with face colourings)
we make the following conjectures about the location
of the chromatic roots.

1hese conjectures are based on complete inform-
ation on 70 or wore graphs with up to %8 vertices, and
bounds and suggestive trends for several infinite
families. 1t must be remembered however that the
large members of the families considered possess
considerable symmetry, and although their chromatic
roots follow a pattern the first few members of the
family usually exhibit considerable variation from
the pattern. Most large graphs have no symmetry and
are not 'large' members of a recursive family (although
of course any graph may be considered as the first

member of many families).
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Flgqure 7 shows the location of the chromatic roots
of all the trivalent graphs whose chromatic polynomials

are known to the author.

vonjecture 1: For trivalent graphs the chromatic

roots all satisfy \z2\ <3 with equality only
in the case of the complete graph K‘V which has no
proper 5-colouring.
's+re.r\c\\%\'\r\
This is a papticulaxléhse of conjecture 2, below,
and the comments there apply.
I'he evidence in favour of this conjecture is shown

in figure 7, and speaks for itself.
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The only suggestion of doubt arises from the families
AR and Uil for bpth of which

the maximum modulus of the chromatic roots increases

with i, However here, the evidence suggests that

the maximum modulus may approach 3 but never exceed it.

vonjecture 2: If G 1is a graph with maximum

valency W then the chromatic roots of G satisfy
120 < W

In Kﬂ] it is conjectured that there is a function

B(k) such that for all regular graph s of valency k

the chromatic roots satisfy

Izl < (W)
The evidence available suggests that +| is suitable
for BN . Indeed the only graph known to the
author having a chromatic root with \z| > W is

the complete bipartite graph qua which has a chromatic
root with modulus 4.177... .

1he conjecture is a generalisation of Brooks?
theorem [6].

The evidence for the conjecture is more than just
that all the graphs investigated satisfy it. The
complex chromatic roots seemto form a discernable
pattern with the following properties.

i) They can (for large graphs) be reasonably said

to lie on segments of smooth curves.
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ii) The point on these curves extreme from the
origin is much closer to the real axis than the
imaginary axis.

iii) The larger real roots follow the pattern set
by the complex roots.

iv) (The remark on page ™ ), The centroid
of the chromatic roots lies at ( #&/ ,0)

v) (Brooks' theorem). The largest integer root
is not greater than k - 1 (except for complete
graphs, which have no complex chromatic roots).

Taking these five observations together, the
behaviour of the chromatic roots of any counter-
example to the conjecture must clearly be very unusual.

We conclude with a less significant observation.
Conjecture 3%: For any graph G none of the complex
chromatic roots of G 1lies inside the rhombus whose
vertices are at (0,0), (2,0) and (1, +« %) in the
complex plane.

Combining these conjectures gives a very res-
tricted region of the complex plane for the location
of the chromatic roots. In addition the only one of
our examples has a chromatic root with negative real
part (the dodecahedron, which has a root at
-0.009 + 1.4691) so it is almost certain there is a
bound of the form Re = % -« , for some

real xX >0 probably with X<\,
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