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1. INTRODUCTION

Voice communications still rely to a considerable extent on
narrow band channels, such as telephone or radio links. The
ease with which conversations over such links can be monitored
has led to a continuing wide requirement for means to protect
the secrecy of such conversations.

Given that the channel has a narrow bandwidth, the measures
that can be taken to protect the secrecy of the voice signal
are somewhat limited. This is because, even with expensive
and sophisticated modems, bit rates over such channels are
normally limited to 2000-3000 bits/second. Thus, if the voice
signal is to be encrypted digitally, special low bit rate voice
coders must be used. These coders are not only relatively
sophisticated and hence relatively costly, but are also highly
sensitive to errors.

So if the requirement is for a security system of modest cost -
and high reliability over poor channels then analogue "scrambling"
techniques must be used. This requirement remains an extremely
common one, and so analogue voice scramblers remain an important
part of the market for security and privacy equipment.

Most analogue speech security systems operate by scrambling
the voice signal in either the time domain or the frequency
domain, and some operate in both domains. A variety of techniques
can be employed to scramble the signal, but we are concerned
here with one particular technique for scrambling in the time
domain. This technique, known as time element scrambling (TES),
is an extremely popular method and can be readily combined with
scrambling effects in the frequency domain.




| 232 MITCHELL

The time element scrambling technique is one of the most
effective and easily implemented speech scrambling techniques;
speech is divided into segments in the time domain, and then
these segments are re-ordered prior to transmission; see, for
example, [2]. Properly used, this technique can render the
transmitted signal extremely difficult to decipher, and, as
| a result, this type of technique is widely used in commercially

available equipment. However, this technique necessarily
i introduces a delay into the communications path, which must be (
3 minimised for the sake of user convenience.

Thus strategies must be devised for re-ordering the speech
segments which minimise the time delay, whilst at the same time
maximising the diversity of patterns available in order to

1 maximise the security level. In order to achieve this, a
number of different strategies have been produced, and a

i description and comparison of some of the various different
f rearrangement methods can be found in [5].

For some of these strategies, the problem of assessing the
wf diversity of rearrangement patterns available reduces to a
I permutation enumeration problem. For many such systems the
il enumeration of the possible usable permutations remains an
| intractable problem. \

‘ The purpose of this paper is to consider two such strategies 3
{ for which the permutation enumeration problem is equivalent

N to evaluating the permanent of certain (0,1) matrices. Computing
; the permanent of a (0,1) matrix is known to be a hard problem

I in the general case, [3], [4]. This paper will describe new

il work of the author, which, in conjunction with other recent

joint work of Beker and the author, [1], means that it is now |
possible to compute the permanent for a larger number of the 3
I relevant matrices than was previously possible.

il The new results on bermanent evaluation take the form of

il proving that the permanent of certain (0,1) matrices of ‘
dimension n by n is equal to the sum of certain entries in the

nth power of another matrix of size independent of n. These

results will form the central part of this paper.

i Although time element scramblers are still of considerable
} commercial importance, they do represent just one type of
speech security device. For a general introduction to speech
| security techniques, the interested reader is referred to the
I recent book of Beker and Piper, [ 2], which appears to be the only
f book dedicated to this subject.
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2. TWO STRATEGIES FOR TIME ELEMENT SCRAMBLING
2.1 The two techniques

The two techniques described here both represent compromises
between pattern diversity and minimal time delay, but have
different targetted security levels. The first strategy we
consider is that described in [ 5] as Overlapping Frame Sliding
Window Scrambling, which has a somewhat limited security level.
The second strategy however, called Disjoint Frame Sliding
Window Scrambling in [5], has a level of security approaching
the maximum possible from a time element scrambling system.

2.2 Overlapping Frame Sliding Window Scramblers

The first technique involves dividing the clear speech
signal into frames of n segments for some pre-selected n,
where each segment represents T seconds of speech. For this
technique it is necessary to choose a second integer k<n which
determines the system delay (in conjunction with the value T
chosen for the segment length). In fact the total system
delay will equal (k+1)T seconds, and this is a relevant factor

in the choice of k. Thus if k=16 and T=3xlO"2, then the system

delay will be 0.51 seconds. It is important to note that n
does not affect this delay. Having chosen k we then select
permutations from Sn for use in rearranging the speech segments.

We select and use these permutations so that each segment
is transmitted within kT seconds of entering the scrambler.
This is achieved by limiting the scrambling patterns to those
permutations m € Sn satisfying:

[TT(i)]n e {[i—l]n, [i-2]n, cees [i—k]n } for every i (lgign),

where [i]n represents the residue class of i modulo n.

We now describe both formally and by means of an example
how these permutations are used. Formally, if we assume that
time t=0 occurs at a frame boundary, then the segment
transmitted between t=(s-1)T and t=sT is the segment input to
the scrambler between t=(r-1)T and t=rT, where l<s-rgk, r'=m(s'),
— . - 1]
[e] =[] and [s] =[s'] .

The way in which these patterns are used is illustrated in
Figure 1, where we show a system for which n=8, k=3 and =
satisfies m(l)=6, m(2)=1, ©(3)=8, w(4)=3, ©w(5)=2, 7w(6)=5,
m(7)=4 and m(8)=7. In the figure we have used different letters
to distinguish between different frames. So, for instance,

Al is the first segement of the first frame while Bl is the first
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segment of the second. Note that the values of n and k used in
this example are not realistic in that they are much too small
to offer any real security.

Time (t) t=ILO Eeaftie & . tTBT Frame B t=|1 6T

< P rI‘

Speech input

|
|
o Al A2lA3,A4,A5|A6lA7|A8 B1,B2 33|B4|85|BG|B7|BB c1|ﬂ

| | | |
| | | |
| | | |

;’ |a] {As A2|A5|A4|A7 Ag| B1 A8|33|32||35|B4|B7 B6[c1]
]' | | |
|

|

|

|

|

Transmitted
speech

Speech output
at receiver

Jﬁ11A2]A3|A4 A5|A6 A7,A8|B1|B2I83!B4 BS]B—GT
=
|

| |
|
?
[

l System delay I
4T seconds

Fig. 1 Overlapping Frame Sliding Window TES

One advantage of this system is that it is not necessary to
complete the transmission of the segments from one frame
before commencing the transmission of segments from the next
frame, thus increasing the diversity of patterns available.
However this leads to practical implementation restrictions
(discussed in more detail in [2] and [5]); in particular it is
normally necessary to force the system to re-use the same segment
permutation for a period of time. This in turn limits the
security of this scheme.

2.3 Disjoint Frame Sliding Window Scramblers

In the second technigue, we again choose a segment leng th
T, and then also select a positive integer h, both of which
values affect the system delay. We then select a second
positive integer nzh, which determines the "size" of the
permutations used. We then use as our scambling patterns those
permutations w Esn with the property that Ii—n(i)|<h foxr all 4,

To do the scrambling we first divide the clear speech into
frames of n consecutive segments, and a separate permutation
is then used to determine how to rearrange the segments within
each frame. Suppose that a frame of speech begins at time t=0
and ends at t=nT, and that permutation ™ € Sn is to be used to
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re-order the segments within this frame. As before we label
the segments 1,2,...,n so that segment i was originally spoken
between t=(i-1)T and t=iT. The segments of the frame are then
transmitted between t=hT and t=(n+h)T in such a way that, for
any i between 1 and n, the segment transmitted between
t=(h+i-1)T and t=(h+i)T is m(i). The total system delay is
then 2hT seconds.

As an illustration of this type of system consider Figure 2,
where we give an example having n=8 and h=2. Suppose that
T is used to permute the segments of the first frame, and T is
used for the second, where w,T satisfy w(l)=2, w(2)=1, w(3)=3,
m(4)=5, w(5)=4, w(6)=7, w(7)=6, w(8)=8, T(l)=1l, T(2)=3, 1(3)=2,
T(4)=5, T(5)=4, T(6)=6, T(7)=8 and 1(8)=7. As before, we label
the segments of the first frame Al, A2, ..., A8 and the

segments of the second frame Bl, B2, ..., BS8.
t=2T 1t=4T
Time (t) t=0 (=hT) (=|2hT) t=18T Frame B t:I16T
i A s el

A1]A2 A3|A4 A5[A6]A7lA8 B1]|32 Ba[B4|ss|Be|B7]BB c1|ch

’l‘ 7!‘
|
|

Speech input
to transmitter

| | | |
| | | |
| | | |

|
|
|
TA2|A1 A3’A5IA4|A7 A6IA8 B1[BS|BZ[BS|B4IBG Ba|B7|

Transmitted
speech

Speech output
at receiver

A1]A2|A3|A4 A5|As A7|A8|B1|32183|B4 HEY
A
i |
| |
I

I System delay I
4T seconds

Fig. 2 Disjoint Frame Sliding Window TES

An important advantage of this system over the Overlapping
Frame technique, is that it is now straightforward to arrange
for a different permutation to be used for each frame of speech.

2.4 Permutation selection and enumeration
One problem which is common to both types of scrambler

discussed here is the choice of usable permutations. This is
of great importance because the variety of available scrambling
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patterns to a great extent determines the security level of
the system. For overlapping frame sliding window scramblers
we are restricted to those permutations T esn which satisfy:

[n(i)]n e { [i—l]n, [i—2]n, P [i—k]n } for every i.

We denote this set of permutations by A*(n,k), and if we
denote the cardinality of this set by a(n,k), i.e. a(n,k)=|A*(n,k)I,
then in order to assess the security of such a system we need
to evaluate a(n,k). In fact it can be shown that a(n,k) is
equal to the permanent of the cyclic (0,1) n by n matrix having
(11...100...0) as its first row, where the number of ones in
this row is k. Note that the permanent of an n by n matrix
(a,.) is

i]

. és %1m (1) "®2m(2) " *®nn(n)

n
i.e. the definition is exactly the same as the definition of
determinant except for the omission of the sign(m) term.

For disjoint frame sliding window scramblers the permutations
we are interested in are those nESn which satisfy:

Iﬂ(i)-i|<h for every i.

We call the set of all such permutations C(n,h), and as before
we let c(n,h)=|c(n,h)|. This enumeration problem also turns
out to be equivalent to the evaluation of the permanent of an
n by n (0,1) matrix, this time one with a 1 in position (i,3)
iff |i-j|<h.

We now proceed to give results which enable these
permanents to be readily computed for values which might be
typical in genuine applications. Certainly, evaluating these
permanents for such practical values of n, k and h would not
be straightforward without some such result.

3. COUNTING SCRAMBLING PATTERNS AND PERMANENTS OF (0,1)
MATRICES

Just as in [1], for the purposes of the theory that follows
it is convenient to consider the set

A(n,k) = {nesn : [ﬁ(i)]ne{[i]n,[i+l]n,...,[i+k—l]n}vfor all i}

(3.1)

and it is clear that IA(n,k)l = a(n,k) = IA*(n,k)I.
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Before proceeding to specific results we need some notation..
Firstly, if nesn and ie{1,2,...,n} then define

X (m,i) = {r3) [j]n € {[i]n.[i+l]n,..-,[i+k-2]n} and

[r(i] e {[J]n,[J+l]n,---,[1+k—2]n}}. (3.2)
We can now state the following key lemma.

Result 3.1 (Lemma 4.1 of [1]) If 7€A(n,k) then there exists

an integer re{0,1,...,k-1} such that:
le(ﬂ,i)I = r for every i€{1,2,...,n}. (3.:3)
Because of this result, for every rE{O,l,...,k—l} we define:

A(n,k,r) = {m€a(n,k) : lxk(n,i)l=r for every i}. (3.4)

In addition we set a(n,k,r)=|A(n,k,r)
the following result is trivial.

. Using this notation,

Result 3.2 (Lemma 4.2 of [1])

k-1
a(n,k) = I a(n,k,r). (3.5)
r=0

To complete this introductory material now suppose that k and r
are integers satisfying Ogrgk-1, and let t=k—lcr' Label the t

21---1
for every i€{1,2,...,t} let S; = { j+1 : jERi—{O} }. We now

distinct r-subsets of {0,-1,...,-k+2}: Rl,R Rt' and then

define the t by t (0,1) matrix H(k,r) = (hij) by:

h,. =1 iff S, CR,.
1] 1 B)

We can now state the following result which gives a direct
means of computing a(n,k,r) and hence a(n,k).

Result 3.3 (Thereom 4.4 of [1])

a(n,k,r) = trace( H(k,r)n). (3.6)

We now show how a similar result may be achieved for c(n,h)
for the situation where n>2h-1>3. This restriction on the
values of n and h is necessary for the following theory, and is
therefore implicitly assumed for the remainder of this section.
In most speech scrambling applications the values of n and h
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used will satisfy the above inequalities, a typical pair of
values being n=16, h=8,

*
We first need some further definitions. Tet C (n,h) be

* *
the set: {7 ESn: there is 7 €C(n,h) with [m (i)]n=['rr(i)+h—l]n

*
for all i} and clearly c(n,h) = [ (n,h)|. Then we have:
*
Lemma 3.4 ]C (n,h)[ = ]D(n,h)l, where

D(n,h) = { T€A(n+2h-2,2h-1) - T(n+i)=n+i+h-1 (lgigh-1) and
T(n+i)=i-h+1 (hgig2h-2) }. (3.7)

Proof We establish the lemma by exhibiting a 1-1 Correspondence

*
between the elements of C (n,h) and D(n,h).

* * *
First suppose that m™ €C (n,h). Then let 1=0(m ) Dbe the
following element of sn+2h—2:

]

*
[t(i)] [ (1)1 + hgt(i) sn+n-1, l<ign
T(i) i+h-1, n+lgign+h-1
T(1) = i-n-h+l, n+hgign+2h-2. (3.g)

]

*
Then ¢ is a 1-1 Correspondence between C (n,h) and D(n,h) ang
the result follows. O

We now need some further notation. Let E be the class of
all (2h-2)-subsets E of (-2h+3, -2h+4, ..., 2h-2) satisfying
the broperty that E contains brecisely h-1 elements of
{ -2h+3, -2h+4, --«s O}. Further, if E€E, then let U(E) be the
set of all (2h-2) -tuples E?(cl,cz,...,CZh_2), where

{cl,c2,...,c2h_2} = E and c; € { i-2n+2. i-2h+3, ..., i } for
every i€{1,2,...,2n-2}.

Then if EEE, and if CEU(E) , we let vn(E) = [P(g)], where

P(EQ is defined to be the set of permutations TEA(n,2h-1,h-1)
satisfying:

(

lci if m(3)<j
m(3) = where j = n-2h+i+2, 1gig2h-2.

c;*tn if m(j)2j -
(3.9)
The fact that vn(E) is well defined follows immediately from

Lemma 5.3 of [1]. we can now state the following result whose
proof is implicit in the proof of Theorem 4.4 of [1].
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Result 3.5 As before let Rl' R2, ooy Rt be a labelling of the

t distinct (h-1)-subsets of { O, -1, ..., -2h+3 } (where

= . T iti
t 2h—2ch—l) n addition let
c, = { j+2n-2 : jE{O,—l,...,~2h+3}—Ri}, lgigt,
and let the t by t matrix W(n) = (wij) be defined by

w,, = v (RU Cj)-
ij n i
Then we have:

n-2h+2

W(n) = H(2h-1,h-1) (3.10)

Using this result in conjunction with Lemma 3.4 we now have

Theorem 3.6 If the labelling Rl' R2, ey Rt is chosen so that
Rm = (0, -1, ..., -h+2), then

c(n,h) = the(m,m) entry in H(2h—l,h—l)n. (3.11)
Proof First note that, by Lemma 3.4: c¢(n,h) = ]D(n,h)l, where

D(n,h) is the subset of A(n+2h-2,2h-1) defined in the statement
of the Lemma. Then, using the notation following Lemma 3.4, it

is straightforward to see that [D(n,h)l = vn+2h_2(E), where

E = {-h+2,-h+3,...,0} U {1,2,...,h-1} = R UC . Note that to
make this latter observation we need to establish that

D(n,h) C A(n+2h-2,2h-1,h-1). But this follows by noting that,
by definition, X2h_l(w,n+l) = {n+h,n+h+1,...,n+2h-2} for every

T €D(n,h).

(R_UC The theorem then follows

= Va+2n-2'Rn m)'
immediately from Result 3.5. O

Hence c(n,h)
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