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ABSTRACT

The aim of this work has been to evaluate fairly.
reliable wavefunctions for electrons in the conduction
band of lithium, mainly with the aim of bringing some
light to the question of whether or not there is a marked
variation of the wavefunction throughout k-space.

| An approximately self-consistent potentiél was
constructed, based on the Hartree-Fock-Slater equations
and the atomic wavefunctions given by Holﬁien. The
one-electron equation describing the electrons in the
conduction band was solved by the method of orthogonalized
‘plane Qaves, using up to 70-80 waves. The solutions were
determined at the four points of highest symmetry in the
" Brillouin zone and at 14 other points on axes of symmetry.
In effect, 126 points throughout the Brillouin zone were
thus considered.

The eigenvalues are in fair agreement with those
obtained by previous calculations, despite the use of
a somewhat different potential. It should be stressed
that the potential employed was an approximation to the
true self-consistent potential in the metal, and not a

"pseudopotential",



The main conclusions to be derived from the calculated

wavefunctions are
1- Outside the region of the atomic cores the electrons
: behave‘essentially as free; near the nuclei the wavefunpt—
ions behave as a combination of s and p atomic functions.
2—- The form of the wavefunctions does not change much
throughout the occupied part of the Brillouin zone. This
is particularly true for points with the same magnitude |
of k.

The Fermi surface is found to be distorted from a

sphere, in the 110 direction. However, it does not touch

the zone face, as previously predicted.



Acknowledgements

It is my pleasure to thank Dr. L. Pincherle for
his constant guidance and encouragement throughout
this work.,

I am very grateful to Miss. C., Stratford for her
expert assistance in programming.

. The financial support received from the U.A.R.

Government is greatly appreciated.



CONTENTS

I: THEORY
1~ Main Assumptiohs
2- Hartree Equations
3— Hartree Equationsby Variational Method
L- Hartree-Fock Equations
5-;Physical Meaning of Hartree-Fock Equations
6— Symmetry in Solids
7- The Unit Cell
8~ Bloch Theorem
9- Recipfocal,Spéce
10- Periodic Boundary Conditions
11— Representation of Point Groups

12- The Orthogonalized Plane Wave Method

II: CALCULATIONS

1- Real Space and Reciprocal Space of Li
2= The Crystal Potential

3- Atomic Eigenvalues and Eigenfunctions

o O

13
15
17
18
21

23
25
32

39

L3

L6



L- Fourier Coefficients of the Crystal Potential - ’ 52
5= The Orthogonality Coefficients j . 59
6- The Trial Wave Function | 65
7- Matrix Elements of Unity 67
8- Matrix Elements of the Hamiltonian 68
9~ The Secular Determinant - 70
1o~ Difficulties in Applying the OPW Methed 71

11~ Numerical Calculations 73

ITI: RESULTS AND DISCUSSTION

1= Survey of Previous Work . 79
2- Eigehvalues and constant energy surfaces 83
3- Momentum Eigenfunctions 87
L- Wave Functions h ) “ 93

References 120



-
1: THEORY

1= Main Assumptions

In @eriving the equation to be satisfied by an
electron in a solid we presuppose the validity of the
following assumptions. '

I) The electronic motion could be treated separafely

from the nuclear mofion.

II) The electrons in the solid are classified into two
categories, the core electrons and the valence electrons.
The core electrons are considered as completely localised
arounq their respective nuclel, and hence their effect on
tﬁe valencevelectrons could be represented by a potential
term similar to.the term representing the effect of the
nuclei on them: this approximation makes it possible to
treat the valence electrons as though they were present
in a flield of ion-cores formed by the nuclei and the inner
electrons surrounding each of them.

III) The wave function of the syétem of valence electrdns
can be represented by a combinatibn of one¥electron

functiona.

2- Hartree Equations

Hartree assumed that one can write the wave function

of a system of n valence electrons as the product of n
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one-electroﬂ functions, viz.,,

V(XysXnseee9Xn) = ¥1(Xy)¥a(Xa)e e e¥n(Xn)
where the y's are normalized, Xy 1s the spacial coordinates
of the 18 electron. The one-electron function ¥ (%) would:
satisfy‘a one-electron Schrodinger equation; the potential
in this eqﬁation contains two terms, one repreéenting the
Coulomb effect of the ion-cores and the sécond acéounting
for the Coulomb field of the other valence electrons. He
considered the latter as the classical electrostatic poteﬁtial

2
of the (n-1) normalized charge distributionstwj(zj)l « Thus

: - .
he assumed that the one-electron function y; (x;) satisfies *

-v2 yy (x) + { Vi(xy) + Z [ hlf;(xJ ) | dxj} bllﬁ'i,(}.i.)
| e (x) T

V2being the kinetic energy operator. The prime on 3 shows
that the term i=] is excluded. The}e wiil be n such equat-
~ions for i=1,2,...,n. These could be solved éimulfaneously
by applying the self consistent technique. ‘Although'Hartree's
derivation of his equations is not rigorous, yet as we ;hall
see in the next section, the applicafion of rigorously
mathematical treatment would lead us to them.
**Throughout this work we use atomic units,i.e. we set

f=1, m=%, and e?=2. ‘ ‘
The Unit of length: 1 Bohr radiua=5.3x1o-9cwm
The Unit of energy: '1 Rydberg =13.6»ev,



3- Hartree Equations by Variational Method

The Hamiltonian of n electrons in a crystal contalning

m ion-cores is

/

. 0 ‘ ,
H = Z-—WLB + iVL +;z 2 2/ Iy ; (2)

i L=t A EY
where Vi is the potential energy of the electron i due to
the different ion—corés; 2/ry; is the coulomb interaction
between the :ly—1 and jEE electrons, the prime on the last

term means that we exclude the terms for which i=j.

Equation (2) could be written more compactly

H:ZH., + Z /2 | - (3

i L2
s
where H =-V +V;

It is clear that Hi depends only on the variables Xx; of the

electron i, and that it is the same function of them as szof Xje
Let ¥(Xys ZzsoeesZn) =ﬁ v(xi) (L)
__— t=1 ' ‘
A , =Wi(l1)¢b(£z)---¢h(zn)
where / &L Y dxiy = 1 for all 1i. (5)

The variational method tells us that the "best" wave function

is the one which minimizes the expectatlion value of the energy

)
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i.e. they are those for which & /' v* Hy dx = (6)
subject to the condition (5). .
equation (6) could be written
* . A
[OWHde + Y H 6Y dx =0 (7)

now substituting from (3) and (5) in (7) we get
Z/ L P O
t ,a'. . q.. :
b E bl v, + (st i 2 )0 (0

The variational équivaaant to (5) is

M[f yioYLdx |+ j ¥ Wi dzsa] =0 (9)

“where \ is a Llagrangian multiplier; the result of adding (8)

to (9) is
)] vr-f{ Z /wkﬂkwk o+ )[4 |t | v ()
3 LT kFL s Tk
ax; dxx + Z / ‘ﬂjlz dxj + M} Oy dxi
r\.j ,
*
+ similfar expression in &y; = o (10)

Since H 1s Hermitian we can reverse the position of Oy, and
* . -
¥i » also since Oy and owf are independant variations and
: . .
are ind¢pendant of the variations of Oy, and oy, (k#i), the

necessary and sufficient condition that (10) is satisfied

[}



is that the coefficients of both OWL and owl ‘d&zzero. We

need only consider one of them since the other would be the

complex conjugate of it. Thus we get
! 2
H W +{2Z _1--wjld.>sj}m {Z[%H‘ ¥; dx
Ty
J .
Z ][_ dxjdm + M ] W =
J?

if we let

Z/ VJ* Hj y; dx; + 2 Z /;1_ l.'ﬁjr Iiﬁkladz_] ax. +h, e,
Tk

L7 4, k#L

we ge

which is Hartree's equations,

ad;cj} o o=¢€ id

L- Hartree-Fock Equations

In deriving the Hartree equations we have made two
important simplifications. First we neglected the spin
funtions, and second we neglected the Pauli princple

which requires that the total wave function of the whole
system should be completely antisymmetric. These tw& '

simplifications are avoided in deriving the Hartree-Foch

equations. . \
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' First we shall introduce the spin by writing the
wave function of an electron as
8(z) =) ()
where  is the spacial part and.??ia the eigenfunction‘of'the .-
z-component of spin ladled as n%(;),or n_%(g); the spih
cOordina%éxg may have either of the values *1,
It is customary to write n*% = n_% = ﬂ.,so that
a(1) = 1 sy a(-1) =o0
B(1) = o s B(-1)

The only completely antisymmetric wavefunction that

1

"

could be constructed from a complete set of n orthonormal
functions ¢ each corresponding to one of the electrons-in

the system is

T(E;:Ea’oovyzn) =[ n. ]_72- Z(‘1§ .P [¢1(£1)¢2(£2)'°¢n<£n)] (11)

where P runs over the n} permutatiohs of tge variables, p is

. 2
the parity of the permutation P, and [n!] is a normalisation
factor. Equation (11) can be written in the determinantal form
% ¢s (ry) ¢1 (L) eeeds(rn)

¥ =E_,_ J $a(rs)  $2(re)...$a(zn)
 Lhe- ¢n(£1) ¢n(£2)°°°¢n(£n)

Before proceeding to minimize the energy expectation
- value, we shall wrife down a useful mathematical theorem.,
'If ¥ is a normalized determinantal wave function with

diagonal elements ¢,(r,),¢3(rz)seeesdn(rn), where the ¢'s
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are orthogonalized} f4nd if 'F is a symmetric operator;
Then
: , y .
/"i’ FVvar=[n!]? f PrF ¢1(r1)¢a‘(rz)'{'¢n(rn) dr

Now the energy expeétation value is
Tk
E=’[‘lJ H\ﬂdz

where H is the Hamiltonian (11) and where dr means ihtégration
over all spéce coordinates plus summation over all spin
coordinates. Since H is symmetric we can apply the above

stated theory

=
]

[n!]? [ V*H ¢, (21 )#2(La)eeedn(Zn) drydrg...dr,

~1)P Pl¢f(rs) .. ¢n(En 2
[{ZPU) P[g3(ry) 0 - di(z )1}[Z[v2+vt+

Y] ] #4(21) e+ fa(En) Arydrse.adrn
= Tij ‘

Due to the orthonormality of the ¢'s the integral for
the first and seéond terms in the Hamiltonian will vanish
except when P is the identity operator. As for the last term in
the Hamiltonian the integral will be non-zero onlyvfor the
identity permutation operator and for the operator that permutes

* *
¢. and ¢; . Hence we get
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= B—[ g (2 ) (-9, + Vi 1o () ar

[[¢L(£L)¢J(£J) ¢L(£J)¢J(rb)] - ¢L(.I_‘L)¢J(£j)d£5;d£‘j

now we shall separate the space and spin varisables

' E=y Z /vr.,(xb)[ V.,+V Wi (x) [n,.(%) |d&

_+1

Z > [1_ lm(;ﬂl”lw(zs)Izlni(z-b)lﬂni(gj‘”g%

> Ty
byd  ¥,8;= t1

; >_/ [ ¥ (QSJ)‘/’J (x; )WL (xu )WJ(XJ)dedﬁJ
iy i 1G;=% L

al(g;)a( Yol )alZ;)
X BCz;)B(g, ) BlL, ) Bg;)
a(z;)B(g )aly, ) B(L;)

It is clear that the first and second terms give results
whatever the spin states are whereas the last term contributes
only when the spin functions have similar states i.e. have

parallel spin, Thus

Z/ W (m ) =740, m)]m(xnaxb

¥ ZH l%(&)lzlh(y?l?dzs.dz;
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, ) ,
* * -
- ZH A v () v () v () w; (x5 ) axgdx; : (12)
=, Ly ’
LYy ..
I |

We can remove the primes on both the second and third
terms since if we include the value 1=J in both these terms
the additional termé cancel each other. The derivation of
| Hartree-Fock equations proceedsin a similar way to that of
deriving Hartree's equations. Thus we minimize equation (12)

subject to the condition that the ¢'s should remain ortho-

normalized. Finally we get for the orbital y; (xi)

.{ -Vf+ VL(Ei) +2§£I/'_%T. ij(zj)ladéj } v (x)
J Ly

-2 Z/LL :;.:?j,w?(zs)m(g)dm} ) =) M nk)

J
where the A's are undetermined multipliers. Since we can
always find solutioqs such that A is’a diagonal matrix, we
need only consider the A{; which we call Ei. |
‘The last term in the left hand side could be improved
in appearance by multiplying and deviding by W:(LL)¢1(£L)’

thus Hartree-Fock equation take the form
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{"V’?+ Vo(xg) + 2 Z/J?:J IWJ(E.J)Izd;J}'m(&) -‘

2 ‘ L 1 L (XL A4 ) —_ L(_L)
| Z{%{(zwm(z_uf%(xw )y w (s rufh}w .

=B viki) : o (13)

5- Physical Meaning of Hartree-Fock Equations

The first and second terms on the left hand side have
a sfraightforward interpretation. The first is the Léplacian
kinetic energy operator for the electron of coofdinateslzil
-ahd the second is the Coulomb field of all the lon-cores
acting on that electron. .

The third term is the Coulomb potential energy acting
on the electron at position x; of all the &alence electrons
including itself. The last terﬁ, called the exchange term,

in some way corrects the inclusion of the i—— wave function

in the third term since an electron does not act upon itself.
The exchange term may be interpreted as the exchange
potential energy at position ZL due to the presence of an

exchange charge density

2N e v e e ()
ZJWL(&NL(EL) : =¥ 2

at position Xx;. ‘A detailed consideration of the interaction

between the exchange charge and the electron at x; indicates



L

that the exchange' interaction has the effect of removing
from the vicinity of X; one electron of the same spin. It
.1s as though the electron.carries with it a hole. The
occurrence of this effect is expected since by using a
determinantal wave function we took into account the
exclusion principle which prevents any two electrons
having the same quantum number (including spin) from
getting together. However, the correlation effect due

to the electrostatic repulsion hetween électrons does: nat
appear in the Hartree-Fock equations. The absence of this
effect is not surprising since we are working in the frame-
WOrk'of‘the one-electron approximation which assumes that.
the electrons move independently of each other.

The shape of the exchange hole depends upon the y;
under consideration; however,‘ii is not very different for
the various Wt's specifying an electron system. Thus we
can form a weighted mean of the exchange charges, weighted
and averaged over the -various electronic wéve functions at
each.point of space and use this average in the exchange
interaction term in each equation. This approximation
would let all the electrons in the system move in the same
potential field. Slater [13] suggested that one can even
repiace the average exchange charée‘by'the corresponding
value it would have in a free—electronvgas whose local

density i1s equal to the actual density at the position in
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question, i.e., the exchange term takes the form

12/8

-6 {% Z wﬁamcm)} v (x)
J

Finall& the quantity E; which appearson the right hand
side of equation (13) represents,according to Koopman's [ /3]
theorem,the negative of the energy required to remove the

13& electron from the system.

6- Symmetry in Solids

A so0lid is not formed by a mere packing of its
constituents (atoms or molecules ) in any random fashion
but —épart from a few exceptions - these constituents tend
to come together in a particular ofder which is aiways'the
same for any particular solid. The regularity of the solid's
structure makes it possible:to classify a solid according ‘

‘to the way its constituents are arranged; moreover, because
of this regularity solids exhibit symmetry properties which
help immensely in describing the phenomena occuring in them.
| Crystallographers have found that in a three dimensional
space it is possible to arrange points ( representing either
atoms or molecules ) only in one of 320 ways. In each of
these possible ways one can move from one point in the
structure to another - which is geometrically identical -
by applying a symmetry operation. The symmetry operations

in each of these arrangements form a gfoup called the space

\
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group. The operations in a space group may be translations,
" reflections, rotations, glide reflections, ‘and screw
displacements. The structure we are going to be congefned
with does not include any oberations'of_the ias;ﬂtwo types,_
thus we shall confine our discussion of space groups to
thosd. who do ﬁot contain screws and glides.

Such a space group contains two sub—gfoups,:the first
has as its members all the translation operations presént
and is called the Translation Group. The other, called
~the Point Group, includes the rest of the operations ( rotat—
ions and reflections ).

We shall write Hartree-Fock equations in the simple"form
2
[ -v + V()] ¥(r)=E ¥(r)

where V(r) is the crystal potential energy. Since this
potential is due to the presence.of the constituent elements
- of the solid, and since the arrangement of these has a
definite symmetry, it is evident that the potential should
possess the same symmetry as the crystal.

Thus the symmetry operations of this structure.will
commute with the Hamiltonian. And hence we should take into
account while seérching for solutions to our problem the
general principle of Quantum Mechanics that states that the

wave functionsof a quantum system must form basis functions
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for the irreducible representations of the group of operators
which commute with the Hamiltonian of the system.

We shall discuss the consequences of the commutation
of the Hamiltonian with both the translation group and the
boint group each on its own because the'members of the former.

commute with each other whereas the members of the latter do not

7—- The Unit Cell

We can dgvide the crystal into small identical célls,
Each of these cells is called a uniﬁ cell. Obvioﬁsly the
.division of a particular crystal structure into unit cells
is not unique; however once a unit cell is chosen one cgh
think of the crystal és being generated by the shifting of
this unit cell along the directionsbof its three axes.
Moreover, because of this characmteristic the properties of
the crystal at corresponding points in any two unit cells
are identical. The smallest possible unit cell one can find
is called the primitive cell. Let a,,az,a; be the three basic

vectors of the primitive cell, then any translation of the form

Ry = my18; + W83 + Mi383 ‘
where the m's are po:sitive or negativé integers including
zero, will take us from one point in the crystal into another
point which is geometricaiy identical. For every translation
lg;twe define an'operator T, which has the effect of adding to

the coordinates of any function it operates on the translevion
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the translation R;.  The set of operators T;form the translation
group of the crystal. This group is Abelian since all its
members commute With each other. This is because sucéessive
translations can be carried in any order. We shall be
considering the consequences of this property in the next
section. ' It should be noted that for a particular structure
the choice of the primitive cell is not unique; nevertheless,
all the primitive cells that one can chope for this structure
have the same volume., It is usually more convenient to use .-
the so-called the Wigner-Seitz cell which is the volunme
enclosed by the planes bisecting perpendicularly the lines
joining an atom to the nearest and second,third,...neafest
neighbours. This primitive cell has the advantage of

showing clearly the rotational symmetry of the crystal.

8- Bloch Theorem

Blochs theorem states that for any Wave function that
describes an electron in a crystal theré exists.a vector k
such that translation by a lattice vector Ry is equivalent
to mﬁltiplying by a phase factor exp.ik.R;y .

Although"Bloch theorem could be deduced formally from
Group Theory as a corgollary to the theorem that states
vthat " In the field of complex numbers any representation
of an Abelian ‘group can be reduced to a sum of one dimen-

sional representations. " we are not going to give 1ts proof

)
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' from that standpoint but pfoceed instead as follows.
Our main problem is to solve the one-electron
equation which could be written in the simple form
HY(r) = B¥(z) -
where the Hamiltonian is
H = —V2 + V(g)
and V(r) is the potential energy.

The periodicity of the crystal infers that the pbtential

has the same periodicity of the crystal, i.e.
V(z+Ry) = V(z)
gabeing any translation vector.

Because of this property of V all the members of the
translation group commute with the'Hamiltonian. And since
they alsb commute with each other 1t is always possible
to find an eigenstate of H which would diagonalize all the
operétors simultaneously. Hence if W(g) was an eigenstate
of H , then

T, ¥%z) = o, ¥r) ywhere o, is a constant

v

=¥ (z + R;{) , by definition
~or
[z + &)1 = o] v@]
but since the probability density should have the same
periodicity.as the crystal it follows that _ ‘
o] = 1

We shall write
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“where k is a real vector which is the same for all the
operations. This is clearly a consistent way of writing
o, since the application of two transformations Ti, Tj,: mul-
.tiplies the wave function by
exp. ik.(Ry +Rj)
Thus
T, ¥(z)=exp. (ik.R; ) ¥(z) (15)

which is Bloch's Theorem,

The particuiar vector k which appears in the eigenvalue
of each operator characterises the eigenstate of the
Hamiltonian.,

We define the function Ux(r) by the relation

Y (z) = exp.(ik.r) Uc(z) (16)
Now we shall show that Ux(r) has the periodicity of
the érystal
¥(z + Ry) = exp.ik.R; ¥(z)

substituting from (16)

exp.ik.R; exp.ik.r Ug(z)
‘also from the definition (16) directly

¥(z + Ri) = exp.ike(z + Ri) Uk(z'+ Ru)
Hence

Uk(z + Ri) = Uk(z)
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. 9= Reciprocal Space

"We define the vectors b,, by, and bz by the relation
ai.Dj = 27 O (17)

where the a's are the basic vectors of the primitive cell

in real space. Relation (17) has the solution

by =2r 22 T8 ; pyoop B TE o p oo TR (18)
il 1 '

where | L =2,.(22 x 25)
is the volume of the primitive cell in real space.
The vectors b are said to be reciprocal to the vectors

a on account of their relation. The end poinis of the
vectors of thé form | A

Kn = hpibs + hpgls + hpsks (19)
where the b's are positive or negative inteéers, form a
lattice of points, namely, the Reciprocal Lattice.**
| 'Thé volume of the primitive cell in reciprocal space
is inversely proportional to the volume of the primitive
cell in real space. If f denotes the volume of the
primitive cell in reciprocal space, then ﬂp=8n?/ﬂ.

Let F(r) be a periodic function in real space ji,e.

F(z + R)=F(z) | (20) |

**Strictly speaking the lattice defined by the vectors (19) should [

be called K space,for the reciprocal space does not have a factor2m‘
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where R is a lattice translation of real space. We know

that any such function can be expressed as a Fourier

series, viz.
F(r) = 2 A(m) exp.iKger ' (21)
m B

where the vectors X, are of the form (19).

The coefficients A are given by
A(m) = /.F(g) exp-iKg.r d4r (22)

From. the condition (19 one can easily verify that the

expansion (21) implies (20).
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10- Periodic Boundary Conditions

Let the crystal have dimensions Nja,,N;83,N;8; in the

direction of the éxes of the unit cell; hence the crystal

contains N = N;N;N; unit cells.

We shall impose the boundary condition that the wave

function should have  the same value after undergoing the

translation

Ry = N2y + Npap, + Njag

N
¥(r + By) = ¥(z)
but from Bloch's Theorem
¥(z + Ry) = exp.ik.Ry  ¥(z)
hence
exp.ikRy = 1 (23)

If we write

X = g,0, + 8b, + 83b; (214)

where the b's are the basic vectors of the reciprocal space,

then equation (23) requires that

g2:N; + gzNg; + g3N; = integer

or
integer . integer . _ integer
g1 = y B2 = > 83 =
N1 ) N N3

This shows that the k vectors lie very closely on
the reciprocal space, since there are N, allowed values
along the vector b,;, N, along b,, and N; along Dbgj.

We observe that the total number of allowed -values

(25)

of.
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kX in the primitive cell in reciprocal space is N%NiNzNa,
i.e. precisely the same number of primitive cells in direct
space. In the same way as we constructed the Wigner-Seitz
cell in real space we construct in reciprocal space the first
Brillouin Zone (BZ). The BZ will have the same volume as
the primitive cell in reciprocal space and therefore accommo-
date the same number of k vectors.
It is sufficient to confine ourselves to values of k
in the BZ, since 1if we consider any yector g‘outside it'we
can write it in terms of. a vector ‘in mhe BZ, viz.
K=k + Kn |
where K, is a reciprocal lattice vector{ moreovef the two states
k and k'will be identical since
€XpP.ik.Ry = exp.igign for all R,

- If we choose to limit ourselves to k vectors in the
BZ, then we shall be working in what is known as the reduce@
zone scheme.. In this scheme the energy curves are quasi;
continuous bands of energy levels separated by forbidden
energy regions. However , in many cases it is more convehient
not to restrict the values of k to the BZ and work instead
in the extended zone scheme, These two appréaches are closely
connected and one can actually start with either of them

and reduce it to the other,
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11— Representation of Point Groups

Let G be the space group of the direct lattice.
As we héve'mentioned before, this space group contains
two sub-groups, the translation group T and the point
group P. This can be written symboiically
G=T+ P

We have found that the iatrices.representing the’
translation operators could be diagonalized simul-~
taneously, where all the diagonal elements are
one-—dimensional matrices. Thus the matrix repre-—
senting the operator T will have along its diagonai'
the numbers exp.i k.R , and k takes values inside
or on the surface of the Brillouin zone.

Now we shall focus our attention on the point
group. Let p be the number of operations in P. It
turns out that the reciprocal space is invariant
under the operations of the point group P. If we
apply the operations of P to a particular k-vector,
then they will either leave it unchanged or change
it to a different k-vector. The figure of these
k~vectors is called the star of k. The operations

of P that transform k to a member k' of the star,
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having the property

k' =k + K, (4)
where K, is a reciprocal lattice vector, ( XK, could
be the zero reciprocal lattice vector ) form a sub-
group Q of the point group, which is called the point

group of the k-vector.

( zzz )

of the cubic structure. If we operate on A with each

As an example, consider the point A

of the L8 operations of the cubic point group, we
shall find that every 6 of them will transform the -
coordinates of A into one of the following 8 coof-'
dinates, 4%, Luh, 454, L&4, 445, LLL, L4, Ll
These 8 points will form the star of A. Only the
first of these points satisfy relation (A), with
K, = o. Thus the 6 operations of Q that do not
change the coordinates of A when they are applied to
it, will form the point group of A. These are
Qu=XyZ; Qu=2XY; Qa=V2X; Qu=yX2; Qs=2yX; Qg=X2y.
As another example, consider the point N = ( %0
on the surface of the BZ for the B.C.C. structure.
Again applying the U8 operations of the cubic point
group to the coordinates of N, we shall find that -

every 4 of them will transform the coordinates of N
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to one of the following 12 coordinates : #z0, =%0,

z0, 20z, 2037,

N |

1
20,

N

ob, ob; ok, oit, oy, oib.
These 12 points will form the star of N. We observe
that only the first and second of these pbints satisfy’
condition (A), with the reciprocal lattice vectors

oob, énd 110 respectively. Hence, the 8 operations
which when applied to the coordinates of N produce

the coordinates %%6 and %%o, will form the point

group of N. .

To find the solutions of the one-electron equation'
at a particular k-vector, one has to classify the wave
functions at this point according the their symmetry
with respect to the operations of the point group of
k. To do this one has to determine the irreducible
representations of the point group of k. We shall
describe the procedure for the general case, and, at
the same time, apply it to the point A, s0 a8 to give
a concrete example.

Suppose that Q, the point group of the k-vector,
contains q elements which form s classes. We imme-~
'diately deduce that Q will have s irreducible repre-
sentations. In the case of A, gq=6 and these 6

operations fall into 3 classes. Hence we have 3
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irreducible representations which we denote by
Ayy Az, and Aj.

If we denote the dimensionality of the irfe-
ducible representation i by d;, then we can find the
dimensionalities of all the irreducible representations

from the relation

S
2
I
i=1
which has a un;que solution.

In our example this relation becomes

which gives 4, =1 , d; =1 , and d; =é.

For each irreducible representation we have to
determine the matrices representing the different
operations, and find a set of orthonormal functions:
that could serve as basis functions. The first thipg
to be done is to form the multiplication table of
the group and then to construct ﬁhe character table.
The chafactgr table shows the essential properties
of the representation, for it does not depend on

the basis functions employed but only on the irre-
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ducible representations and the classes of the group.
"In our example of the point A, the character table

is given below.

Class
irr. ré Cs = Qs |Gz = Qa+Q3|Ca=Qe+Qs+Qe
Ay 9 T
Az 1 1 -1
Ag _ 2 -1 » e

The numbers in the character table indicate the
trace of the matrices representing the operafidns,'
We notice that all the operations that are in the same
class have the same trace. Obviously the numbers in
the first column - i.e. the traces of the identity
operator in the different irreducible representations-—
indicate the dimentionality of the representations.

For a one dimensional'representation a glance
at the character table will tell us that for the
representation A,, all the six operators are represented
by the number +1. Again for the representation A,
the operators Q,, Qap£Q3{EE§%%§%>are represented.by:+twngl
gad Qs and Q, by -1,
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The matrices fbr the fwo—dimensional repre-
sentafion can not be deduced immediately from
the character table, and one has to make usé of
the multiplication table. Thus we get for the
operators of the point group at A, for the Ag4

representation, the matrices

= (5 9) s w=(721),  @=C(11),
W= (910 =19, =l

The existence of a two-dimensional representation.'
implies that there are two independeht functions
such that each would transform either into itself
or. into the other,'under every operation §f the
group. These two functions belong to the same
energy value and are therefore degenerate.

Now we shall show how to find a solution
that transforms sccording to one of the irreducible
representations of the group of the wave vector,
Let F be any arbitrary function. The function @?5

defined by

¢§J = E: IR QF , (B)
5 B
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is a function which transforms according to the jzﬁ row

of the iEg irreducible representation of the point group
¥

of the vector k. In relation (B),Q represents an

operation; the sum is taken over all the operations; and °

[Q]is 5 is the jjzg matrix element in the il irreduciple

representation of the operator Q.
Applying this in our example for the first row bf the

third irreducible representation, while taking the arbitrary

function as
ei(E + K)oz

" where K, is of the form 110, we get

A
D34 = @ F = QgF = QgF + QgF
= eilgt i, 0) e _ 1541, 8,841) .

AL AT DR SN S A

1(E+1,541,8) e _ L1(Z,5+1,241).2

** J, Callaway, Energy Band Theory ; Academic Press (1964)
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The Orthogonalized Plane Wave Method - -

Consider a crystal. Let a,,a,,a, be the vectors
- defining the unit cell in the crystal; the unit cell
has a volume 1 = g;.gg X gg. Let Nya,,N,a,,N,a, be
the dimensions of the crystal along the axes of the
unit cell; the crystal contains N = N;N,N; unit cells.
We assume periodic boundary conditions. Let each unit
cell contain s atoms; the number of atoms in thévi
crystal is s8N,

We arerinterested in finding solutions of the
Hartree-Fock one-electron equation

HY%(z) = Ex¥%(z) (26)
which correspond to the valence electrons; where
H=-v +V(z) (27)

The OPW method emphasises the fact that these
solutions we are seeking for must be orthogonal to the
solutions representing the lower states, i.e. the core
states,

Since we assume that the core states in the isolated
atom do notlchange appreciably when the atoms come together
to form the crystal, the crystal core states could be
described by atomic functions, which are modified to
have ‘the Bloch form so that they satisfy the periodic
boundary conditions. Let |

Unln(z) = L Rog (2)Ygn(6,¢)
r LY

U;(z)
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denote an atomic wave function for which the nucleus
is at the origin of the coordinates; j stands for the
three?g?i,m which are respectively the principal;
angular momentum, and magnetic quantum numbers. A
similar localised atomic wave function situated at the
lattice point Ry is denoted by Uj(z = Ry )e..

The crystal core wave function of wave vector

k is written

4 .
Gip= (o] T ) ew(B)UE-R) (29)
L
Evidently the function (28) satisfies all our requirements.
Since the valence electrons in the crystal are
almost free, it is reasonable to represent a valence
electron by a plane wave '

1

[va]  exp.(ik.r) . (29)

The OPW method requires that (29) should be orthogonalized
to all the core functions (28), having the same k vector,
which are associated with lower elgenvalues. Thig

could be achieved by subtracting from (29) appropriate
multiples of these functions. Thus the OPW for the

wave vector k is
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N}

X = W] ematir - Y MBLRO K (30)
g ‘ o

where the‘orthogonality coefficients u are to be
‘determined by the Schmidt procéss.

To determine the solutions of equation (26) for
a particular k vector, we apply the variational principle.
We use as a trial function a finite linear combination
of OPW's having wave vectors which differ from the k i
vector under consideration by a reciprocal lattice
vector. The ‘coefficients in the linear combination
are treated as variable parameters so as to minimize

the energy. Thus we take as a trial function

G | |
¥ (z) = Zugm)x(gm) . (31) -

=0

where ko = K + Kn 5 Kn is a reciprocal lattice
vector, Kd = 0
By analogy to equation (30)

-
2

- x(ka) = X + Kn) = [80) Texptiger = (3, ka)0sn (32)

In this equation we wrote ®;,, instead of the formal

Qj,km. This is because by looking at equation (28)

defining ¢ we observe that its value depends only on
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-k and does not change by adding a Kp We assume the

¢'s to be orthonormal solutions of H

Hesnc = Eibas ] } (33)

¥
f Cjrk@jlskdr = 05
Relation (33b) implies that the atomic functions U

situated at different lattice sites do nof overlap.

The u's are determined from the condition

. .
[ #exten)ar = o (3u)

where the integration is taken over the volume of the

crystal; in the limit we take this volume to occupy the

whole of space. We shall get the u's explicitly, thus

1

* -2
[‘bj’k}((ﬂm)d?_ = [Na] ['@’;’keXP-igm‘E dr

. %*
= Zu(dlykm)/ Dy Pjyk dr

le

1 . .
= [Nn] f‘b“k exp.ikny.r dr - u(J,kn) =o

or
L

-2
u(3rkn) = [NQ] /@’LK exp.iky.z Az  (35a)

[Nn] [sN] o Z/ exp.-ik.R, U} iz -R) X

€Xp.ikpe.r dr

il [sq) Z/exp.i&n.(;,— R) . Uiz - &) ar
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- [s/a)" j‘ exp.ikp.r Ui(z) dr (35b)

Now we proceed to apply the variational method.
The equations which detérmine the coefficients A of

equation (31) that minimize the energy are

ZP { f?z(gn)Hx(ism) dr - E/ X" (kn)x(kn) dr } A(ka) = o
= for n = 0,1,e0eyD (35) |

The condition for this set of equations to have a
non-trivial solution is that the determinant of the

coefficients of the A's must vanish, i.e.

@t{ /f@ﬂw@@ag-Effmnng>@ j=o D

From this determinant we get the eigenvalues‘EOLEi,...,Ep.

Substituting for each of them in equation (36) we

obtain the coefficients Aé,Ai,...,A% corresponding to ..
We shall consider more closely the matrix elements

appearing in equations (36) and (37)

j"X*(En)HX(Em) dr = I + II + III + IV
where

I = [Na]

[N
[N

[Na] f €XD.. (knor H exp.ik,.r dr
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2
I=5knox k + V(En - Kn)
m n
where '

V(Kn - Kn) = f exp.i(Ky - Kn)er V(z) dz

I1I = j. ;E:ﬂ*(jggn)QJGKH EZ;#(J’Km)QJ’k dr
J-l

7
) Z ZEJ#(J,l_im)u*(:i',lgn)OJJ’
KR

) %
XEJu(j,zm)u(j,g n)
J
1 | |
-z
[Na] fexp- -ikn.r H Zu(J.Km)@J,k dr
7
_.% -
[xa) }: 13 rkn )E; ] exp. -ikn.T ®j,k Ar
J

Z Eju(d sk (35kn)

J

III

\
-2
IV = [NQ] f Zp*(j.gn)ﬁm dr H exp.iky.r
J

since H is Hermitian

f £'HE, dar = /(Hfﬁ'f2 dr = { ff:Hf; dr}

*

~_hence .

-% . . _ *
v = [NQ] . { /exp- -ikp.r H Z pu(3Xn)@jsx dr }
' . J .
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*

{ Z Eju(dskn )i (39kn) }

J

Iv

]

]

%
}Z}EJ#(J’Em)N (j:En)
J
In simplifying the above written integrals we made

use of equations (33) and (35a). TFinally we get .
* 3
[ X (en)i(ia) a2 = Knonn + V(Ka - K) -

Z Ej[l(j:l{_m )/J*(Jrzn)

J

. by a similar procedure we get

[ X Cen)x(n) a2 = Oan = ) (3ka ) (35kn)
J

Although the procedure just outlined for obtaining
the matrix-elements of the Hamiltonian and Unity between
- OPW's as basis functions is the one formally applied
when we are dealing with a general k vector, yet.in
practice where we are usually concerned with k vectors
of high symmetrx,this procedure hés to be modified.
- This is because in such cases we would use symmétrized
combinations of OPW's as our basis functions.
We shall not develop this modification in the general
case but postpone its discussion 'till later when we .

apply the OPW method in the case of Li.
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II: CALCULATIONS

1= Real Space and Reciprocal Space of Li.

We have considered the body centred cubic structure of
metallic Li , taking the cube side to be 6.6317 a.u.[27]. The
structure is illustrafed in fige.1+ The unit cell ind%cated
in this figure contains two atoms; one can also look upon the
structure as being composed of two penetrating simple cubic

sub-lattices defined Dby
L=a( 131 + 13 + 1k )
'
L'=al (1,+3)i + (1p+8)1 + (13+3)k ]
where 1,j,k are the three rectangular axes of the cube, and
1,,1;,1; are positive or negative integers including zero.

a is the side of the cubé.

)

FanY

\

N

=

T G {
) e \% ..
> e /\/ \\‘9 o
G (/ 47 - é
4] @ @
K/\ g' N Fos Vi) >,

Fig.1. The B.C.C. structure.

)
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A possible primitive cell, fig.2, could be obtained by

writing
ay =5 (-i+i+k)
22 =3 (1i-3+k)
a5 =3 (i+1-k)

Pig.2. A primitive cell for the B.C.C. lattice.

Now any lattice point could be reached by a translation

Ry = mp48; + W28, + W 385

where the m's are integers. According to whether
Myy + Mg + Mz 1is odd or even;we shall find ourselves

at a cube centre or corner respectively.
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In fig.3 we show the.Wigner—Seitz cell for the body
centred cubic ( B.C.C. ) structure. This cell‘disﬁlays all
the rotational symmetry of the crystal, for besides showing
that i,].k &are axes of fourfold symmetry, it also Shows .
clearly that a,,a,,a; are axes of threefold rotational'bu
symmetry, since they pass through the hexagonal faces of the

cell.

Fig.3.The W-S cell for the B.C.C. structure

The volume of the Wigner-Seitz cell is
2

a
il =84.8, X8 =75

The reciprocal lattice is a face centred cube whose
side is Eg; The basic vectors of the primitive unit cell
are
b, =Lom( 14k ), bo=Lom( i+ ), By =L 2m( 14k )
Any point in the reciprocal lattice is reachéd by the

translation
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Kn = hpaby + hpzbs + hpgbs
where the h's are positive or negative integers.

We write below some of the reciprocal lattice vectors listed

in order of magnitude

1 vector of the form K, = 1 2w(o000)

12 vectors of the form K, = z 2m(110)

6 n n n " K. = 1 271'(200)
: 2 " a

24 " " n " Ky = ‘%‘ 2’”—22121;

12 " " " " Ky = Py 7r ©

n " " " " K, = 1 277(31 0)
a

8 L] " " " Ke = % 2,”(222)

L8 " " i " K-, = 13 211’(321)

6 " Mwo.on n K. = 1 27?'()400)
8 T a

The Brillouin Zone for a F.C.C. reciprocal space is a rhombo-
dodecahedron; in fig.l4 we show the BZ and the symmétry points,
The main symmetry pbints are Kz |
= 2n/a (ooo,
=27/a (o00Z) ;o0<Z<1
2m/a (o0o1) |
2n/a (gzo) ;o<g<z
= 2n/a (z%0)
= 2w/a (gzy) ;0<4<z

= 27/a (233

r
A
H
5
N
A
P

Fig.4. The BZ of the B.C.C. crystal
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2- The Crystal Potential ' T T

Our starting'pbint in constructing the pqtential for
our problem is the potential as given by the Hart;ee-Foék (H.F.)
equation I(13), except that we apply the Slater approximation
to the exchange term. Slater [23] replaced the exchange term
by an exchange po£ential, which is the same as the average
exchange potential of a free-electron gas having the same
local charge density at all points of space as the cryétal.
In the derivation of the H.F. equation given in section ﬁ of
chapter I, we have assumea the widely accepted approximation
that a valence electron in a solid moves in the field of the
ionic cores -formed of the nuclei and'the inner electrons-
and of the valence electrons present. Since this approxima-
tion reduces the effect of the interaction between the inner
electrons and the valence electrons we are trying to describe,
we felt that it might affect the potential considerably and
therefore we decided to reject it and consider the valepce
electron to be moving in the field of the nuclei plus the
field of the other electrons. This quification does not
require too much édditional computational effort because of
the rather special case of the Li. atom containing a few
electrons. We assume the crystal to contain N primitive unit
| cells, i.e. each contains one atom only. Since the atomic

number of Li. is three, we have 3% electrons. From what we

have said above the crystal potential takes the form -

[}



V(r)=_6i1£_1_gl +2ji1[ ‘—y’;l._irf)——“[;%)_ d/._I:'
N

The first term rebresents the nuclei coulomb poteﬁtial,
the second the electronic coulomb poteﬁtial, and the third the
electronic exchange potential as given by Slater's'free-electron.
approximation.

The functions ¥ appearing in this equation are the wave
functions of the electrons in the crystal, -which are the
solutions of the crystal Hamiltonian with V(g) repfésenting
the potential.energy. In other ﬁords, the wave functions and
the crystal potential have to be calculated se}? consistently.
However, we approximate the expression for V(g) by substituting
atomic wave functions U(r) for the ¥'s. We split ﬁhe summationr
6ver the 3N electrons into two sums, the first running over
the electrons of one atom and the other over all atoms.
Moreover, we simplify ihe last term by taking the summation
over the N atomsvoutside the bracket which is raised to the

power of one third.
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Hence we get

V(z) = -6 iT{_ .o i i/vj (z'- Rn)U;(z' - Rn) @_)
6

i { E?F Zj Uiz - -fin)UJ(.# ~Rn) } (1)

n

This is the final form of our crystal potential; however,
in gn orthogbnalized plane wave calculation one employs

the Fourier coefficients of the potential not the potential-
itself. The method by which we obtain the Fourier
coefficients of the potential V(g) as defined by equation
(1) will be described in section 4.
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3= Atomic Eigenvalues and EigenfunctidhEA

From equation (1) defining the crystal potential we
observe that we can write it as the sum of potential functions

each located around one of the atoms present,viz.

N~ .
v(z) = Z v (z = Rn) (2)
where 3
6 U,S J j / /
v (o) = - —|?-_| + 2 }; ] liziuz(z) ar’ -
() e ]
6 3 ) Ui(p)u;(z) (3)
8w J——:i |

Since the crystal core functions are assumed to be solutions
of the crystal Hamiltonian, then from equations (2), I(28),
and from the simplest form of the tight binding approximation,
we deduce that the atomic wave functions U(r) should satisfy

the equation
[ -v® + v (2) 1 Uy(z) = €; U;(z) W)

Before continuing to describe the procedure for obtaining
the atomic wave runctions and the corresponding energy values

we shall simplify the terms occuring in Va(g)

* , 2 2 e
iUJ(L)UJ(g) =2 [Ug(r)] + [Upg(r)] = py(r) - (5)

Js1 \
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where pg(r) denotes the electronic charge density in the
isolated atom,

Also,

“3 “‘ * y -; ¢
2 Z [ U5(2)us(L) ar' = 2 / pa(r) ar’
J=1 g )

¢z -z |z -z
T - (1)
= pa r ’
=2 [’-&'n’rﬂpz(r’)dr'.;. 2 /’411’1"2 — dr
r o
‘ +
Hence we get
6 2 ;r 2 : = ’
- < € / /e, s
va(z) =V (r) = -2+ < /.unr po(r)ar’ + 2 j.uwrph(r)dr
’ o »
1/3
- 6[ 2. ] (6)
8w

We have started by the wave functions of the free Li.

atom given by Holoien [11l], namely

Ujg = Alexp.(-2ar) +h exp.(=bar)] . (7))
Uy = Blr exp.(=-kr) - % exp.(Qgr)] + DU, o

where

A = 1.9907kLo ; a=1.233120

B= .128134 ; h = .323568

D = -.09L4727 k= .672
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' Hence, substituting in equation (5)

- 20
pa(r) = >L?Jr exp.(-o;r)
‘ J=z

where

Fy = 833555 3 ny=o0 3oy =
Fp = 5.152271 ; ng=o0 5 og =
Fga = .012681 | i 'na =0 s Oy =
F, = 7.961651 3 Dy =0 3 Ay =
Fg = 039190 ; ng =o0 5 ag =
Fg = 010797 5 Dg =0 3 ag =
F, = -.026629 5 on, =1 ;o =
Fo = -.048326 ; Dy =1 ;oo =
Fy = -.015637 ; Dy =1 P oag =
F,o= .016L18 5 Dyo= 2 H o‘1o=.

We re-write equation (6)

1/3

| s
v (r) = - { % + 3021771 6S(r) ] / } +

where 10

> P : r n; + 2
I= / r p:(ﬁ) ar = j{;FJ /‘ r exp.(-
o o

J=1

(8)

9.86496

7.39872
6.16560
L.93248
3.69936
2.46624
1.90512
3.13824

5-60hh8 )

1-3“&00

8w [1I
r

a;r) dr

++II] (9)
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9
2 ' — 3
F; | r exp.(-a;r) dr + >_;FJ r exp.(-a;r) dr
0 e o
J=7 _
r

4
+ Fu / r exp.(-ay,r) dr
(o) B

~a

«.
i)

i

8

- a, "1 2 ~1 2 -1
= }E}FJ {'23 -[2(aj) + 2r(a;) + r (aj) lexp.(-a;r) }
J=1 %

- - - -3 p -2 4 -
+ ZFJ {6(aj) - [60(J + 6ra3 + 3r aj; + r aj

J=7

]e—ajr}

- =5 -5 -4 2 =3 3 =2 4 ";l -0y AT
+ Fio{ 2ua10—[2ua10+2ura10+12r 04 o+UT 04 o+T Oy0)] € 10

' 1}
-3 o —h
Fja; [2 - (2+2a_;r+oc§r2)e R ZFJQJ (6 - (6+6a;r+

. J=7

6
J=1

3 3 -t : 2 2
308r2+a;r )e S9T] & Pyooyolh = (2U+2hay or+120; o7 +

3 3 4 4
Ll'aior +a1°I' ) exp. (_aior) ]

and
IT = FI (I'I) d].": 30 FJ /Q/Iq;n_j-)-" e a;r dI‘l
r g Py
=1
e o9
\ T 3T AN R =T, B oty T 4t
= >L!FJ re 4 dr + F; | ¢ e "3°dr+F o/ r e 107 4r
J=1 o S g r r '

9
= }i}FJa32(1+ajP) e %It 4 >4 Fja33(2+2ajr+a§P2) e~ T

J=1 J=7
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Hence the second term in equation (9) is

.

87r [I+rII] = —lrr- [ ypjaﬁ[z,
/ ,

e-ajr(2+2a3r+a§r2-ajr—a%r2)]

J 1
9

+ F5a3u[6 - e" % (6+6a; r+3a r +a3 3

J 7

—2aJr-2a r —a3r3)]

(2h+2uaior+12afor

+ Floa:2[2u

3 3 L

+hafor +a10ru—6a10r—6afor2-3afor3—éﬁ)] }

-1
= Q%F ﬁ ;EJ 3[2—(2+a r)e %jr]
._l
J

1
9
+ E:F aJu[G (6+haJr+a r2)e %7 ]

J 7

+a;°r3)e-a1°r] v }
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Now we can re-write ¢quation (9) in the form:

Vo(r) = -0 &4 3D 0wy,

where
10
v, = 8 EZ? ®(o;)
1= L JONA
J 2
and
o(aj) = o522 - (2+0;r)e 7]
= a}u[6 - (6+uajr+a?r2)e_a5r]

“35[2h - (2u+18ajr+6a§r2+agr3)e-ajr]

(10)

(11)

for j=1,6

for j=7-9

for j=1o

By the aid of equations (10) and (11), we were able to

solve equation (4) numerically. The eigenvalue obtained

is E;s = -4.53 Ryd., which is -comparable to the

experimental value =L4.o3 [15]. As to the core wave function

needed in applying the OPW method,'we used the U ;4 given

by equation‘(7).
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L- Fourier Coefficients of The Crystal Potential

We write the crystal potential

V(z) = v (z) + v (z)

where Vc(g) and Ve(g) denote respectively the Coulomb,
and the exchange parts. We Fourier analyse each of the

two terms of the crystal potential separately,'viz.

V.(z) = ) W (Kn) e tEmeZ (a) |
@ Z c S
Ve(z) - Zwe(ﬁm) iKm.l" (b) .

so that the Fourier coefficient of the crystal potential is

W(E ) = W, (Kn) + W (Kn) (13)

We shall first calculate the Coulomb potential Fourier .
coefficient Wc(Km).

Poisson's equation is
. . | .
v v (z) = 8up(z) ()

We write the total chérge density
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p(z) = p™(z) + p°(z) (15)

where p(r) and p°(r) are respectively the total nuclear
and electronic charge densities in thé crystal.

Thus

N :
p™Nz) = 3 Z 8(x - Rn) (a)
and It | (16)
p°(2) = - ) pellz - EaD) (v)
n=1
Fourier analysing the comﬁonents oftfﬁg'totéfnéharge
density, we get
PP2) = ) Ol eTHnE (a)
. m | (17)
P°(2) = ) O(ka) oTHneE (b)

m

hence the Fourier analysis of the total charge density is
T n e -iKp.r 8
p(z) = [6°(Kn) + 0 (Kn)] € (18)
' m
substituting from equations (12a) and (18) in (14), we get

W_(Kn) = -8u/Kn [0™(Kn) + o°(Kn)] (19)

Now we shall proceed to calculate the charge &ensityj
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from equation (17a), we have

cn(gm)

(o]~ [ pM(p) etn-Z gp

[Nan { 3 ZN o(z - Ry) eBnZ ar

n=1

N
3[nq] ™! Z[ ln- (2 = RAg(x - ) ar
n=1
]
= 3 (20)
‘similarly from equation (17b) we have
o (Eq) = [Nﬂ]"r/ p(z) elm+L gp

substituting for pe from equation (16b)

N

)™ [0 eRtE - BaD) | etEnE o

N=1

I

Oe(zm)

= Ll K, ] ] PZ(P) Sip(Kmr)rdr

substituting for_pg from equation (8)

10

€/ . ‘ . — : ,

o (Kp) = - —%%: EZ;FJ /..rn4+1.e 4T sin(K,r) dr = (21)
‘ J=1 )
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using the mathematical relation

—{p+1]
/mrP e™ % Sin(dr) dr = (a°+q) ° [(p+1)sin[ (p+1)Tan™

]

d
q

equation (21) becomes

10 -[ni"!'ZJ . -1
®(Ky) = - 2E Fj(Kotay) ° )!sin[ a}(22
o°(Kn) = - 2F 5 (Kp+o; (n;+1)isin[(n;+2)Tan 3
. m J
Jj=1

By calculating the right hand side of equatioh (22)
and substituting it together with equation (20) in
equation (19),we obtain the Fourier coefficients of the
Coulomb part of the crystal potential,

Similarly from equation (12b), we obtain for the

Fourier coefficients of the exchange potential

We(gm) - [Nﬂ]_1 /'ve(g)' eilim.?. dr

- ™[ -g,—rz:_uj-‘@-gnmj(yan)11/3}eil<-m°£a:.

1/3

==6[Na]~ }C}/ e pa(]r - Rn)} glfn.Z dr

1/5 :
= - %%f' [[ g; pz(r) } Sin(K,r) rdr (23)

.\\.
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The integral in the right hand side of equation (23)
has been calculated nﬁmerically for every reciprocal
lattice vector needed. In each case the integral was
taken over the unit cell. The treatment Just applied
fails when we are dealing with the average potential
Fourier coefficient i.e. W(ooo) ; hence we have to
consider this case separately.

For the Coulomb Fourier coefficient we use the

" relation given by Woodruff [25), namely

2
Wc(ooo) = - l%%} /Q)r*pz(r) dr ‘(Zk)
(o]

‘substituting for pZ(r) from equation (8)

2 _ v
167 : pRie=iT
WC(OOO) == —BT /q [ *SFJ Je T } dr
'._.J
_ 16n’ Ez;/ Fjr +nJe T 4

using the mathematical relation

[00 - [}

X ax dx = 2n+1 ; n>-1 9 a>o
0

we get
2
167 (n; + h)'
W (000) = = ——— L
o(000) S )RRl (25)
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Now, to obtain the exchange Fourier coefficient for -
the average potential, we take the limit of equation (23) ”

as K»o0. Hence
m

We(ooo) = L]i(':liowe(Km)
1/8 Sin(K,r)~ .
_ _ 2um 2 € __ "
=~ n f { B Pa(r)} Ligﬂ[ K } rdr
127 3 e e
= -5 p: pa(r) r< dr . (26)
(o] )

The Fourier coefficients of the potential as
calculated by the procedure described in this section

are listed in table 1 .
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Table 1: Fourier coefficients of the crystal potential

K= <2~ (mympmy) = W(Ky)
myMyMg m
0,0,0 0 1.039575197
1,150 2 .183726855
2,0,0 L 075644488
251,1 6 076228281
2,2,0 8 075829212
3;110 10 .062300727 -
2,2,2 12 .oLl9L2192
3,2, 1k 031788743
L,o0,0 16 .025324893
4113330 18 . 0204129932
h,2,0 20 - « 025395408
3,3,2 22 026662782
L,2,2- 2L . 026554485
510;431 26 024790762
552,1 30 .015395227
L,4,o ' 32 .013168823
LL1;433;530 34 .011966883
LL42;600 36 . . 011708036
6113532 38 - .012123981
6,2,0 Lo ‘ .012885606
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5- The Orthogonality Coefficients

From the géneral discussion given in chapter I about
the orthogonalized plane wave method, we find that equation
I1(35) defining the orthogonality coefficients takes,in
the case of LiJ the form

-z
u(18,kq) = (0] [eiﬁm--f-' U, (r) ar (@)
where U1B(r) is given by equation (7).
' We shall take k, in the z direction

eigm.g - eika Cosb6

Z [lnr(21+1)]% 11J1(kmr) Y)o(6,9) (28)
¢=0

where the J 's and the Y 's are respectively spherical
Bessel functions, and spherical harmonics.

If we write

Uss(r) = L Ry (r) Yoo(6,9) " (29)

then by substituting from the above two relations in

equation (27), we get
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' e R, (1) :
p(18,kn) = [2]7% y[lnr(2l+1)]12-11/qt (kpr) —=—r dr f Yg o Yo odw
=0

w m
Where /ooodw = ooood¢[ coSine de
(o] (o}

3—51 [Lbr(2141)]% 11 [% (KnT)Ryo(r) rdr 840

lu( 18 !.}_(.m )

(a]7% [ua)? / To(kar) Ryq(r) rar

()7 T [ U33(r) Stnleer) rar (30)

The last step follows upon substituting from equation (29)

and by using the relation

Sin(kyr)

Jo(kpr) = NLm T

Now to get a general expression for u, we consider
the vector k, whose coordinates are (k,,6,¢) as shown
in the figure '

ik..r ik.r Cosa
. e =n°< = € n At:(ln)&')fl) g:!)},ﬁ)‘ﬁ

where ois the angle between the

- two vectors r and k,

:



0
eiEn-E = }i}(gl + 1) 11 Ji(knr) El(Cosa)

using the addition theorem of sphepical harmonics

- 1

ikn'r = Z(Ql+1) i (k P) 21+1 ZY,lm(eﬁ¢)YIm(e'9¢')
=0 m=- '
- &
- Z L () 11 3, (kar) Yyn(0,¢)Y5a(6)4)
g:O m=-4 ‘
hence
p(teka) = [)7F [ 02 vy (r) ap

[a]"2 ZZ (um) 11 ¥9n(6,¢) /J (Knr) ﬂfﬁ r’ ar

x[nm(e.qs)roo(e.m aw

1°(r) 2

[a] -2 Lo Yoo(e ¢) / Jo(kpr) —— r

(2)"% b (ba]™2 [ 3o (kar) Ryo(r) rar

[n]’éL ﬁ—:"'[uﬁ(r) Sin(k,r) rdr (31)

From equation (30) and equation (31) we deduce that
for any k-vector k, the orthogonality coefficient is given
by the relation :
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-1 -
pltoskn) = u(toskn) = (2175 T [0,4(x) Sin(ker) rar (32)
Now substituting for U,, from equation (7)
1
p(18,k.) = bw[Q]™? %m /(e—br + he—2br) Sin(kypr) rdr (33a)
where b=2a=2.46624 ; finally we get
- 2 -
p(1eykn) = [2]7F HE ((148) ™ snl 2188 (ica/b) ]
2 o2 - .
+ h(ky+4b )™ ' sin[2Tan’ (k,/2b)] (33p)

From equatioh (33b) we obtain the orthogonality
coefficients needed in our calculations; they are listed
in table 2,

The orthogonality coefficient for the vector k,=o0

needs special treatment

p(18,0) = Lim  u(18,k_)
Kw=70
substituting from (33a) oe)
: - - Sin(kgpr
p(18,0) = [a]°% Ler/ (e™T4ne™?T) Lin {_k_“‘_ } rdp
’ m

Ka=>0

[ﬂ]-% LmA [ (e7PT4 he-zbr) rdr

= .287372 | ,
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Table 2: Orthogonality coefficients (cont.)'

b) along the 3 azis ; k = gg; (o)

K, K+Kn ‘ /-‘( ll{_*‘l{.m I)

- T =.01 =.125 Z=.25 =.575
000 %, % ,0 |.287356 |.284816 |.277354 |.265567
110 Z-1,2-1,0 | 175873 |.193769 | .2134L43 | .232600
110 Z=1,%+1,0 | «174335 «173156 .169668 . 164091
101 Z+1, & 41 | 173574 «164091 152774 .14088u
110 Z+1,Z41,0 | «172818 | .155738 | .138343 | .122382
200 -2, Z ,0 | 118522 «128110 138343 }1h802u

c) along the A axis ; k = gg; (zzz)

Kp K+Kp u( [E+Eq |)

L=.01 Z=.125 l=.25 1(1:.375
000 Z s & 44 | .287348 .283552 «2725L45 255604
110 Z-1,%-1,% | 175869 | .193069 | .210221 .2241155
110 Z41,2-1,% | 174332 | 172567 | .167403 | .159310
110 el L1, 8 | 172814 | 155238 | .136688 | .119333
200 2, & ,% | .118520 .1277Lo .136688 « 1439419
200 %42, £ ,%|.116855 |.107104 | .096473 | .08617L4
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6- The Trial Wave Function

When dealing with a k vector having high symmetry'we
use, as basis functions; a set of symmetrized combinations
of OPW's that transform according to the particular
A irreducible representation We sre interested in. <Thus‘
instead of writing the trial wave function as a linegrd
combination of OPW's, as we did in the general case (cf.
eq. I31), we expand it in é series of symmetrized linear

combination of OPW's, namely,

el
x
\

—Z}@+5m@@+ga (34)

m
where

ok + Kn) Zﬁuu@+5b

J

1 J
[Nm]"‘{ [va) "2 Z o et (E+En) oz

J

—WT%MMM)?%@-&@ (35)

The summation over J in the first term runs over selected

reciprocal lattice vectors as 18 done in a symmetrized
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combination of plane waves (cf.page 31); the coefficients

C in this combination are exactly the same as the coefficients
‘in the symmetrized combination of plane waves. N, is a
normalization factor calculated so as to normalize ¢ over

the volume of the crystal.

N, = { Zcﬁ + u(keKp)[1 - QZJ:CJ-] } (36)

J

The coefficiénts A in equation (34) satisfy the

set of equations -

z {[ 2" (k + Kq)Ho(k + K,)dz - E / &* (k+Kn ) #(k+Kq)dr }
A(k + Kp) =0 (37)

for m=0,1,+..,D. This set of equations has a solution if
det| ]®*(.ls+1<.m)ﬁ®(h+zsn>dz - E / 0 (k+Kn) ®(k+En)dr  |=o (38)

To solve this determinant we have to find the matrix elements
of both the identity and the Hamiltonian, which we now

proceed to calculate, '
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7- Matrix Elements of Unity

/ * (k+Kn ) @(k+Kn)dr = [NpNa]1™' [I + II + IIT 4+ IV ]

where
i(KJ' KJ)
I = [nNn]™" EZ:CJCJ'/ er\&n T &m/eL gp
Jsd’
= E{;CchﬁmnOJY

JJ

v
tr L

1T = ()7 g aCieiy) ) ot (BOES >/ U(e-R)U (2R Dax

p(k+Kp ) u(k+K,)
| 3
11 = (87 a) Fu(xek,) c; [ e 1(B*En) L y(ppy) ap
_ RS ,
; 3
= [0 ) (k) cye~iEn-BU [ ~1(k+En) L y(p)ap

= y(k+Km)p{k+Kn) Cj
\ )
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J’ i’

[N (0] 72 (ke Zy cyetln-Ri / et (B+En) 2 y(z) ar

i

Iv

plicsty ulicrk) ) oy
J!

hence

*
[ ) (K+Km)¢(£+l§n)d£ = N1N [ Omn y C;Cyr 655
mNn /

ERM

+ u(k+Kp ) pu(k+K,) [1 —%’CJ-ZCJ'] } (39)
. . J
In particular

1
2
Nm

j' 8" (k+Kn) 2(k+Kq )ap =

{ijcjw (k+Km)[-1-22J:Cj] } = 1

8- Matrix Elements of The Hamiltonian

/ ¢*(_lg+gm)ﬁ@(g+gn)dg = T 11\1 [ I+ II + IIT + IV ]
m-'n e

where

1 = [Nq]-1 j'[)zcje'i(ﬁ+ﬁi)-£ DM Cfei(§+£i).g ] ar
3

JI
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A ‘ 1Y} .
- Y 2 J_ J
I = [na)™! { EJCJ'[ |+ | ] [ei(gn Kn) .z dr

Jad’

N
+ No Z C;jC;W(K, - Kp) }

iy’

i 2 - i
ZCJCJ'[ |k+Kn | ] omndy 5 ZCJ'CJW(Kn‘Km)

iy J ird’

D )
= (97" (g Do) Z}efﬁ'(-@f'ﬁ” Bis 800
= (e ) (KK -
111 = ()7 ) i) [ che’i@fﬂi)'ﬁ}n{ ) (R Jar
‘ b v

[

; o ] J ~
(]~ [n]‘§u<k+Kn>E“§ LCJ' [ e 1(&+En) 2 o IK-Riy(pp)ar
J i ’

(M) [0) 7 2u(keKn)Egs Y ) C;

0
L

. J J '
[ e-l(b&m).(z-&') eiﬁmhﬂt' U(E-EL’) dar

[N]“y(k«»Kn)EisYelﬁfi'&’ Zcﬂn]"f[ ¢~ 1(E+En) L y(p) ar

i.'

p(k+Kn ) u(k+K, )E, o ycj

—
J )
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v = [N]"[n]”%[{ ye’i-lﬁ‘géu*(z-&)}fl{ C.JJ'ei(K"E'J‘)‘g‘} dz

i J

p(k+Kp ) u(k+Kn )E o ZCJ-'

N4

J

Hence, finally we get

1Nn { ZZCJCJ'[ J+n |1 055 G
T
Y Voicaosd
7T

+ p(k+Km)p(k+Kn)E13[1—ZCJ *ZC,}']} (L4o)
3 7

f o* (k+Kn )HO(ktK,, )dr =

9~ The Secular Determinant

We are now in a position to calculate the elements of
the secular determinant., Substituting from equations (39)

and (4o) in equation (38), we get for the mn element

Dpn = N 5 { Z[ | x+Kq | —E]C Cjd; Omn + ZZw(Kn K )c ;Cy
m+'n

= s ety ) (BB, ) [1- ZcJ Zc 1] @

Once the elements of the determinant of a particular

k vector in the BZ are calculated we solve the determinantal 4q.

and thereby obtain the energy values.
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10- Difficulties in Applying the OPW Method

To obtain satisfactory results, one would wish
to use something around 6o OPW's. /\t a k-vector with
high symmetry, the symmetry frequired‘for the wave
function has the consequence that many of the coeffi-
cients of the OPW's will be dependant. Therefore the
degree of the secular equation will be reduced, say,
to the order of 6 or 7, and hence the labour needed ‘
in solving the problem will be within a reasonable
limit. However, for a general k-vector, all the
céefficients are independant, and so the secular
equation will have the same order as the number of
OPW's included. This makes the OPW method impracti--
cable for such.points. ‘We have compensated for not

considering any general k-vector by calculating at ﬁény

points with high symmetry. Apart from the pointé T,H,
N,and P, we calculated for 6 points on the A.axis, and
for 4 points on each of the 2 and A axes, -

Another difficulty arises when the wave function
of the state we are considering, is, by reason of
symmetry, automatically orthogonal to the core wave
functions, and hence the ofthogonality coefficients.

will be identically zero. In this case the OPW
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expansion will reduce to a plane wave expansion, with
the possible consequence of a poor convergence.
Callaway [4~] has suggestea that in such cases,
instead of calculating the orthogonality coefficients,
we choose them so that ¥, would have a form near the
nuclei, as one would expect the crystal wave function
to have. Obviously this is not a rigorous treatment,
and one has to judge it by the merit of the convergence
achieved. 1In our calculation we came across this
difficulty at the points H,P, and N, where for ihe
valence band the wave functions there are p-type,
and therefore orthogonal to the core wave functions.
. However, we found that the convergence at these points,
usihg a plane wave expansion, was so good that it did

not seem necessary to apply the correction mentioned.
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11- Numerical Calculations

Most of the calculations that we had to perform in
this work, have been carried out on the University of
London ATLAS computer using the EXCHLF language. To give
aﬁ example of a computer program we write below the program
used for finding the eigenvalues and eigenvectors of the
secular equation (37). Before doing so we shall put the
pfoblem in a férm sultable for numerical computation.

The secular equation has the form

—_ e —————

[H11_B11E]A1+[H12_B12E]A2"}°°°+[H1n'B1nE]An = 0
(Hg1=Bz4E]A;+[Hpg-BgE]Az+e s e+[Hon=BanE]An = 0
(Hpy-BnsEJA +[Hno=BroE]Ag+es e+ Han=BonEJA, = ©
which can be written in the matrix form
[H-EB]JA = o
. or .
HA = EBA (42)

where both H and B are symmetric and By; = 1 for all 1.
It was noted that thereAwas a library routine, R925,
which finds the solutions of an eigenvalue problem of the form
SA = EA (43)
where the matrix S is symmetric. It is cleér that equation:(43)

\
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is a special case of equation (42), which one obtains when
the basis functions employed are mutually orthogonal. In
- this case the matrix B reduces to the identity matrix. We
tried to put equation (42) in the form (43) so that the
library routine could be utilized. This was possible as
shown in the following analysis.

If the matrix B is a positive definite matrix ( i.e.
ZtBZ > 0 where Z#o ; the suffix t denotes the transpose )f

then it can be written as a product of an upper triangular

matrix** and its transpose, viz,
t .
B =U"U (Lk)

bconversely, if it is possible to put the matrix B in this

form then it is a positive definite matrix. o
All the matrices B that we had to'deal with were found

to be positive definite since they could be written in the

form (44). This was achieved by applying another library

routine, R9oo ; ‘actually only a part of this routine was used.
Now substituting from (LL4) in (42)

t

HA = EU UA ‘ 45)

If we write

X = UA | (u6)

** An upper triangular matrix is a matrix for which the
element Uy ; = o for i > J
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"equation (L45) becomes

1 t

HU"'X = EU'X

multiplying by [Ut]-1 from left

[u*] '~ 'x = Ex (Lu7)

Since .

[ut17! = [(v7'7?

equation (47) can be written

[u™'1%[u™" )% = EX

or
PX = EX (L48)

where

P = (U7 ]%(u™] (49)

The matrix P is symmetric i.e. equation (48) is just the
same as equation (L43), and so we can apply the library
routine R925 .

‘It is clear that the eigenvalues will not be effected
by the transformation applied, however, the eigenvectors of
equation (L2) can be readily obtained from those of equation

(48) using relation (46), viz.

A:Um1

X
v Besides the two library routines mentioned above,

Ithe program consists of the two chapters following.
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CHAPTEFR 1

A=>44

F->320 : -

B->117
U->9
v->81
Y—>()
W->Q

3)I=N

M=1

E=,01N
JUMPDOWN (RO25)

NEWLINE

J=1(1)N

PRINT (UJ,0,8)
REPEAT
*7(300)V(1),N
350=%206(0, 300,N, 1,N)
*6(350)W(1),N
Z=0

J=1(1)N

Z=Z4+WIWJ

REPEAT

Z=*SQRT(Z)
NEWLINE
J=1(1)N
WI=WJ/Z

PRINT (WJ,0,8)
"REPEAT

UP

CLOSE

CHAPTER O

A->44
R->44
D->44
E=>44
c->8n
G->80
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K'=1(1)3
J=0(1)44
READ (DJ)
REPFAT

J=0(1)44
RFAD (EJ)
REPFAT

1=0
N=3(1)L
M=-1
0=L+2
P=-1~1
J=N
J'=1(1N
0=Q-1
P=P+Q
I'=P-1
J=J-1
K:o(l)I
M=M+1
I'=I"+1
BM=FI1'
AM=DT'
REPEAT
REPFAT

JUMPDOWN (RQO00)

. K=0r
I=1(1)N

I'=1-1

M=NT'

J=I(1)N
C(M+J-1)=BK
G(M+T-1)=AK
K=K+1

REPEAT

JUMP 2,1=1

Q=I-1

R=0

S=N

J=1(1)Q
C(M+J-1)=B(I+R-1)
G(M+J-1)=A(I+R-1)
S5=8-1 :
R=R+S

REPFAT

2)REPEAT



Q'=NN

*7(0)Cc(0),Q"'
*7(50)G(0),Q"
100=+16(0, N, N)
150=*20(50,0,N,N,N)
200=*206(100, 150, N, N, N)
*6(200)G(0), Q"

I=0

J=0

M'=S"

I'=0(1)S"'
I=1+1'
K=0(1)M'
AT=GI
I=I+1
J=J+1
REPERAT
M'=M'-1
FPFAT
NOWN 3/1

_ REPFAT
REPEAT
END

CLOSE
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ITI: RESULTS AND DISCUSSION

1- Survey of Previous Work

Due to the fact that the Li atom has only three
electrons attached to it, the band structure of the
Li. crystal has been a subject of many investigations”‘
using the different methods proposed to sdlve the one-
electron equation. The earlier work, [19,14, 1,21,22,
10,20, 2 ], has been mostly concerned with the cohesive
energy of Li. Apart from Millman,—[idj_%ho-ﬁégé‘a free
atom potential and proceeded to integrate Schrodinger's
equation numerically, they use the Seitz semi-empirical
potential [19]. This potential reproduces the observed
spectrographic energy values of the free atom.

Parmenter [16] constructed an approximately self-
" consistent potential which he took to be the sunm éf

atomic potentials. The atomic potential had the form

Zp(r)
r

V =-2 ,. Where Zp is an effective charge deter-

mined on the basis of an electronic configuration
(18)2(és)5/a(2p)3/8, and was calculated using the
self-consigtent wave functions of the free atom given
by Fock and Petrashen [4 ]. He also took account of the
exchange effects by including Slater's freeeélectron

exchange potential. The OPW method was employed and,
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for the 1s core function needed in this type of calcu-
lation, he used a single exponential. The corresponding
energy E;s was obtained by numerical integration and
was found to be -L.57 Ryd.‘which is qui%é cloéé_fo the
value -4.53 Ryd. which we obtained. Although Parmenter'é
procedure is the nearest to our's, unfortunately we can
not compare our results for the eigenvalues with his
because whereas his results are qualitatively correct
they have no quantitative significance. This is because
his crystal potential contained two terms, the fifstuis
small and dependent on position, and the other large and
independent of position; whereas this latter term was not
accurate he did not attempt to correct it because he was
mainly interested in the shape and separation of the energy
bands which are not effected by the presence of a constant
term in the potential. Parmenter obtained for the width
of the filled portion of the band the value .30l Ryd. and
for the effective mass the value ,808 .

Wainwright and Parzen [24] used the corrected form of
the Seitz potential {12]. They employed a variational
method based on the Wannier functions of the crystal, their

results do not compare well with those obtained by. other

methods using the same potentisal.
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Schiff [18] calculated a semi-empirical potential
using the method of Prokofiev. His potential is weaker near
the nucleus than the Seitz potential, and therefore probably
less accurate. He used the improved cellular method of |
Howorth and Jones, and obtained the eigenvalues for the
states Iy ,Nj,H,5,N,,H;,, and H,; theselare respectively
-.615, =-.3%304, -.120, -o11L4, .202, and .55 Ryd. The energy
gap at the centre of a face of the zone is'

E(N,)-E(N}) = .190 Ryd.

Kohn and Rostoker [12] employed a variation-iteration
method (Green's function method) which requires the potential
to be spherically symmetric within the inscribed,SPherés
of the atomic polyhedron and constant in the space between
them. Since the Seitz potentiel does not fulfil the second
of these requirements they had to modify it to suit the
-.restrictions of the method. Thus their potential'ﬁad the

form V' (r) = V(r) for r<r;

= Vg for ro>r;
.where r; is the radius of the inscribed sphere, and V(r)
is the Seitz potential, and V, is the average value of v(r)
in the region between the inscribed sphere and the
boundaries of the polyhedron. This method requires a

great deal of labour ; however it must be noted that most
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of the labour required is spent in calculating certain
geometr;cal structure constants which need to be found
6nce.and for all for each type of lattice.

Brown and.Krumhansl [ 3] apply a variational procedure
which does not specify at the outset the core functions to
which the plene waves are to be orthogonalized. Thus one
can consider the OPW method to be a special case of it.
The freedom of not specifying the core functions at the
beginning makes it possible to choose them such that the
valence electron wave function is expressed as a linear
combination of mutually orthogonal functions. Thus the
matrix equation will contain the eigenvalues on the main
diagonals only. Hence the calcuiations for this method
will be simpler than the calculations for the OPW method,,
in which the matrix equations have E along the off dia-
gonals because the different OPW's are not orthogonal.
Invview of the fact that most calculations howadays are
carried out by electronic computers, this simplificaﬁion
does not seem important.

Glasser and Callaway [6 ] use the Seitz potential
and the OPW method to find the energy values at the
symmetry points.Tl,H,N, and P of the Brillquin;zone.

Callaway [ 5 ] has extended these calculations to points

4
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on the symmetry axes 4, 2, and“A, after slightly modi-
fying the Seitz potential so as to take into account the.
fact that the normal componeht of ﬁhe gradient of the
crystal potential must vanish at many points on the sur-
face of the atomic polyhedron. |
Ham [8 ] recently studied the whdle group of the
alkali metals using the Green's function method. Because
he wanted to avoid using an explicit potential, he had toj
determine the values of the logarithmic derivatives on

the inscribed spere as required by the method and this

he did by the Quantum Defect method.

2- Eigenvalues and Constant Energy Surfaces

We have calculated the enérgy for states corresponding .
to the lowest band of the conduction electrons. In table 3
we list our results for the states I'y,H,;,N;, and P&(cf.p.u2).
In table 3 we also list for comparison the results reported
by Glasser and Callaway [6], Callaway [5], and Ham [8].

We have also calculated the energy for 6 points'bﬁ
the A=2 2(0,0,%) axis for %=.01,.125,.25,.5,.75,and .875.
Also for L points on each of the 25'2g;(g,g,o) and
Azgg;(g,g,g) axes for Z=.01,.125,.25, and .375A. The

results for these points are shown in table 4 together
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with Callaway's [5)] results for comparison. Callaway had
actually calculated the energy at points whose parameter Z

is different from our's; however to facilitate comparison

we interpolated his results so as to correspond to our points.
The convergence for all the points considered was very good.
In the table given below we show the convergence for some

of the points considered

Point 3x3 Lxl | 5x5 6x6 7x7
A=(0,0,%) ;%4=.5 =.541 -.543 -.547 -.552 -.552
3=(%,%,0) ;4=.25 -.632 =-.632 -.633 -.634 -.6L0
A=(Z2,2,%) ;Z=425 =.589 =.590 =—,602 -.605 -.606

It is clear from tables 3 and 4 that our energy values
differ for all points, from those obtained by the others
by‘apprbximatel& «05 Ryd. This difference is well within
what we would expect, regarding the fact that we used a
different potential and a different value‘for the cube edge.
Also, one should bear in mind that the degree of accuracy
of the calculations based on the Seitz potential is £.05 Ryd.
This is due to the fact thai whereas the crjé£;iwpotential
is required by symmetry to have a vanishing normal derivative -

on the surface of the atomic'polyhedron the Seitz potential

does not have this property.
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We draw below constant energy contours in the xy

plane of reciprocal space, for E= -.636, -.506, and -.477 .

The last value is the Fermi ehergy obtained by interpolating

Ham's results to fit our calculated bands.

Although the

contour for E= -.636 is almost spherical, those for higher

h%?ﬁ become more and more distorted in the 110 direction. From

the Fermi'energy contour we see that the bulge does not

touch the zone, in agreement with previous predictions.
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Energy values for points on symmetry axes

axis Z present Callaway
.01 -.733
125 -.723
. 025 _o688 _0636
22T (0,0,2)
. .5 -.552 ~-.506
075 _0359 "0276
0875 -0280
« 01 _0728
.125 -.707 -.658
2:27; ((‘;1 Zuo) :
25 -.6L0o -.592
0375 "'-530 —-LL9L¥
« 01 -.730
125 | =.701 ~.6L5
A=2T(, 2, 2)
25 -.606 -.545
375 | -.bbh | -.387
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3—- Momentum Eigenfunctions

The momentum eigenfunctions - i.e. the coefficients A
in the expansion II(34) - which correspond to the energy
values E, at the vector k, are obtained by substitﬁting
for E, in the set of equations II(37), and solving this

set subject to the condition that

Y[A{‘]? = 1

The momentum eigenfuncpions thus obtained are listed
in tables 5,6, and 7, for the vectors along the ool1, 110,
and 111 axes respectively. First we give a few remarks
on the tables. In table 5, we observe that the wvectors
obtained by permutation and/or chahge of sign of the first
two coordinates of the vectors listed, are equivalent.
We also notice that for the different combinations of
the vectors k and K; which have the same modulus, the
coefficient A(k + K,) has the same value. For example,
the value of A when k is o001 and K; is 000, is the same
as when k is ool and K; is oo2. This shows that our
calculation of the momentum eigenfunctions is self cohsist-
ent. The reciprocal lattice vectors that differ from
‘those listed in table 6 by permutation of the first two

arguments and/or a change in the sign of the third
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argument, are equivalent.

In fig.5 we plot the momentum elgenfunctions in the
extended zone scheme for vectors along both the ool and
the 110 directionse¢ The curve along the ool direction
starts at the centre of the zone with a value almost equal
to one, and maintains it until about 3/4 of the way towardé
the end of the first zone. Then it drops quite quickly;
becoming zero at the end of the.first.zqne.

The second peak on the curve occurs as soon as we
enter the second zone, and again there is a maximum at
the end of the second zone. In the third zone the curve
has many fluctuaﬁions.

The curve along the 110 direction behaves in a

similar manner.

\
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Fig .5. Momentum eigenfunctions alpng the o001 axis
(continuous line), and the 110 axis (dotted line).



_93_

L- ‘Wave Functions

In spite of the fact that the band structure of metallic
Li has been studied extensively (cf.e pP.79) yet the wa&e funct-
| ions have been scarcely obtained.

It is important to obtain the wave functions because
they are employed in the theoretical evaluation of some of
the properties that can be experimentally observed, such as
the Knight shift. Moreover, in order to compare the wave
functions obtained by different methods, one has to evaluate
them explicitly. This comparison is particularly desirable
in view of the fgct pointed out by Pincherle [17] ﬁhaf since
most of the methods applied in solving the one-electron
equations involve using a variational procedure, there is no
guarantee that the correct energy values obtained will
necessarily bring about with them the correct set of wave
functions.

We express the wave function as a function of inter-
nuclear distances, i.e. we draw a line through the,di?ect
lattice and find the real and imaginary parts of the complex
wave function at points along this line, drawing separate
curves for each of them. We take the lines, along the three
edges of the cube and along its diagonal; the reason for
'choosing the latter is that the atoms are closely packed in

this direction for the -lattice structure we are investigating.
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The wave functions plotted in figures 6-17 correspond
to different k—-vectors taken along the axes of symmetry in
the BZ. We shall first point out the common features among
the curves. The most striking feature is the complete
resemblance of the wave functions, in the region between the
atomic cores, to plahe waves having k-vectors in the first BZ.
As one would expect, the wave functions neér the cores
fluctuate violently to take an atomic function shépe. Here
again one finds a feature which occurs in most of the curves,
namely, that the same crystal wave function may have near one
nucleus an s-like character and near another nucleué a p-like
character. The occurance of both of these forms for the same
function indicates clearly that the crystal wave function is
actually a mixture of atomic wave functions having different
angular momentum qgantum numbers.,

Now we consider the curves separately. In fig. Ea,b we
' draw respectively the real and imaginary parts of the wave
function corresponding to a k-vector on the A axis, whose
parameter Z=.25 . Thé\plotting is done along the 2z direction
of the direct lattice. In 6a, we can see clearly the phenom-
enon already mentioned concerning the presence of both the:
s and p-like types of the wave function near the nﬁclei.
Around the first nucleus on the left of the curve the wave

function has s-like properties, whereas around the second it

e
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has p-like properties. In fig. 6b - the imaginary part

Y
of the wave fg? which fig.ba is the real part - we find
that the s and p-like types have interchanged their roles.
The function represented in fig.7 differs from that repre—
sented in fig.6 in that the value of ¥ in the former is .5.
We observe that the real part of fig.7 has extra nodes
midway between tﬁe nuclei. These nodes are not due to
the 2s atomic functions, since each of these has only one
nodé; they are due to the modulating plane wave. Figs.10-13
show wave functions with k-vectors along the I axis. In
10 and 11 the function is plotted along a cube edge, and,
in 12 and 13, ,8long a cube diagonal. The parameter Z is
25 in 10 and 12, and is .375 in 11 and 13. We observe‘
that the wave functions, corresponding to ?he same parameter,

exhibit the same behaviour when plotted along either a cube

edge or diagonal.

Finally, figs.14-17 exbress the wave functioﬁs haVing
wave vectors along the A axis. The value of £ is .25 in
14 and 16, and is .375 in 15 and 17. The plotting is along
a cube edge in figs.14-15, and along a cube diagonal in
figs.16-17. As we approach the zone surface, we note that
the wave functions lose, to some extent, their resemblance

"to a plane wave.
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