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ABSTRACT

Some problems which arise in the analysis and 
design of multilayer filters are discussed in this thesis. 
The filters consist of sequences of parallel-sided media 
which reflect and transmit electromagnetic radiation. The 
cases considered are those appropriate to the optical region 
of the spectrum although the analysis is quite general.

In the optical region, the refractive index of a
\thin film is generally measured by the Abeles method, which 

entails determining the angle of incidence at which the film 
and the bare substrate have the same value of R^. The 
presence of a small amount of absorption can produce errors 
in measurements of this kind. Two ways of estimating the 
magnitude of this error are given.

Considerable broadening of the reflectance band of 
a multilayer may be obtained by ’staggering* the layer 
thicknesses in such a way that they form either an arith
metic or geometric progression. Results are shovm for 
fifteen, twenty-five and thirty-five layers. The presence 
of the narrow band transmission peaks exhibited by the 
symmetric filters is explained, and the advantages of the 
use of this type of filter as an interference filter are



discussed. A closed form expression for the matrix product 
of staggered layers is obtained for the case when the dif
ference in thickness is small.

A * least squares* method of filter design is 
introduced. This method may be used either to design a 
filter automatically if no initial design is available, or 
to *refine * an existing design. The method is applied to 
the design of antireflection coatings, beam splitters, low- 
and high-pass filters and broad-band high reflectance 
coatings. In addition, one or two well-known filter designs 
are used to test the method.
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CHAPTER I. BASIC THEORY OF THE PROPAGATION OF 
LIGHT WAVES THROUGH THIN FILMS

§1.1. Introduction

In this thesis we shall consider some problems in 
the propagation of plane-polarised monochromatic light 
waves through thin dielectric films. This is one particular 
aspect of the subject of Electromagnetic waves in stratified 
media. We restrict ourselves to homogeneous, isotropic 
films. Mathematically, a ’thin* film is one whose thickness 
is of the order of the wavelength of light and whose extent 
is infinite compared to its thickness. The film is charac
terised by its refractive index, its absorption coefficient 
(if the film is absorbing) and its thickness. A combination 
of a number of thin films is sometimes called a ’multilayer*. 
The branch of optics which deals with the propagation of 
light waves through single films and multilayers is knovm as 
Thin Film Optics. Several books and reviews on the subject 
derive the basic formulae for thin film calculations. (See, 
for example, Baumeister, 1963; Berning, 1963; Heavens,
1955; Heavens, I960; Vas reek, I960; Weinstein, 195^0

There are two distinct basic problems in thin film 
optics; the first is that of computing the spectral charac



teristics of a multilayer in which the thicknesses and 
optical constants of the component films are knô -m - this 
is a problem of analysis and its solution is fairly 
straightfonmrd. The second problem is vastly more compli
cated and consists of determining the optical constants and 
thicknesses of the component films in order that the mu*̂ li- 
layer will have specified spectral characteristics. This is 
the problem of synthesis. In practice, only a limited num
ber of materials is available for use in optical filters, 
unlike the cases of electrical and microwave filters. The 
problem is therefore to design a multilayer, consisting of 
some or all of these available materials, which gives the 
best approximation to the required spectral curve.

In Chapter II, the effect of absorption on the 
measurement of refractive index of a single film by the 
Abeles method (Abeles, 1949) will be considered. This is 
an example of the method of analysis applied to a basically 
simple problem. The work in later chapters deals with 
transparent, non-dispersive media only, although the calcu
lations could be generalised to include the effects of 
absorption and dispersion. The results in Chapter III for 
staggered broad-band reflecting multilayers were obtained 
by a method which could be considered as a combination of 
analysis and synthesis. The aim was to produce filters 
with a very wide reflection band, which specifies the
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spectral characteristics to a certain extent. However, 
the results were obtained by changing the thicknesses of 
the films in the multilayer from those of a quarter-wave 
stack in a specific, partly intuitive, way and computing 
the spectral characteristics from the basic equations. Thus 
the method is mainly one of analysis. The general problem 
of Optical filter synthesis will be discussed in Chapter 
IV, which will also include a review of the current methods 
of design for optical filters. A * least squares* method for 
filter design will be given in Chapter V and some of the 
results obtained from the method will be discussed. The 
final chapter, Chapter VI, will consist of an analysis of 
the results obtained in the previous chapters, and plans 
for future work based on the results reported in this 
thesis will be outlined. Some of the flow diagrams and 
Programs used in the computations will be included in the 
Appendix. Before starting on the original work to be 
presented in this thesis, the notation will be defined and 
some of the basic formulae to be used in the single film 
and multilayer calculations will be derived. These are 
mainly standard known results, except where otherwise 
indicated.
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§1*2. Notation

Several different methods have been used to evalu
ate the properties of a multilayer and thus several differ
ent notations have evolved as a result* The notation to be 
used here is similar to that used by Heavens (1955), follow
ing Abeles (1948a).

For the case of normal incidence on an isotropic 
medium it is unnecessary to show the direction of polarisa
tion, so we can denote the electric and magnetic vectors of 
the positive-going wave in the mth layer by H^ and 
those of the negative-going wave by H*. The only case 
where non-normal incidence will be considered is the Abeles 
condition work (Chapter II) in which the light is polarised 
with the electric vector parallel the plane of incidence 
throughout, so no confusion need arise as we shall there
fore need to use only the p-component of polarisation.

An alternative notation more generally used in 
multilayer theory is one in which the resulting equations 
are analogous to the equations for the electrical proper
ties of transmission lines. are expressed in terms
of the components of B, H, the electric and magnetic vec
tors by

-f- (1.2.1)
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where 0  jjj for the p-component of polarisation
and ~ n^Gos ^  ̂  for the s-component of polarisation.

Clearly, yCC^ = n^ for normal incidence, 
n^ is the refractive index of, and S  ^ ±s the angle of 
incidence in the mth layer.

The change of phase of the beam on traversing the 
mth layer is given by

s zrr<r'n.r^d7^e»se^ (1 .2 .2)

where (T* is the wavenumber of the light and d^ is the geo
metrical thickness of the layer. The quantity n^d^ is 
called the *optical thickness* of the layer. The index of 
the incident medium is n^ and the films are numbered sequen
tially to the substrate which has refractive index n_ (sees
Figure 1.1).

The equation of propagation of a wave entering an 
absorbing medium may be expressed in a similar form to that 
for a transparent medium if the refractive index, n, is 
replaced by a complex quantity n = n-iK. K is a measure of 
the energy absorption; the attenuation of the amplitude of 
the wave in a path of one vacuum wavelength is exp(-27TK). 
The Fresnel coefficients for reflection and transmission are 
denoted by r^ and t^ respectively; for the case of a single 
absorbing film they are replaced by "tf̂ exp (~^oi^ (0/1
interface), m^exp(-^^2) (1/2 interface).
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The reflectance R and transmittance T of a thin 
film system are defined respectively as the ratio of the 
reflected and transmitted energies to the incident energy. 
The reflected and transmitted amplitudes are in general com
plex quantities whose arguments represent phase changes on 
reflection or transmission by the film.

§1.5. Single Film Calculations

The reflection and transmission coefficients for 
a single transparent film may be expressed in terms of the 
Fresnel coefficients of reflection and transmission for the 
two interfaces. For light incident from a medium n^^^ onto 
a medium the Fresnel coefficients are given by

a Titn-i ~ 7) m  Co&ôfn-i (1.5.1)
n m ;  006 09» ’t-n-», CoS 07»,.,

nn,-,OoS0nf CoS 09»-,
(1.5.2)

for the p-component of polarisation, while for the s- 
component we have

Ayns - CoS
CoS Y' û>5 &7n

(1*5.5)
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3 ^  ^ 7*r-i B _____ (1.5 4.)
72^-, CoS&tr,̂ t -^^7^ Cc»5̂ 7>,

Consider now a parallel beam of light of unit 
amplitude and wavenumber CT" , incident on a plane, parallel- 
sided, homogeneous, isotropic film of thickness index
n^, bounded by semi-infinite, non-absorbing layers^indices 
n^, n2# The reflected and transmitted amplitudes are 
obtained by summing the multiply-reflected and transmitted 
beams. (See Figure 1.2.) We neglect the polarisation sub
script as the results are valid for either direction of 
polarisation, provided r and t are given the appropriate 
values.

The reflected amplitude is given by

fi z Af i-Ax 6
’X

where

(1.3.5)

5“, = %Tf<r7i,(L,eos6, (1.3.6)

and the transmitted amplitude is given by

The energies of the corresponding beams are n^RR^, 
n2TT^ respectively (» denotes complex conjugate) so the
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reflectance and transmittance of the film are given by

^  = A./^ -t ^A,Ax Cos2S, (1.5.8)
I -h ZA, Ax cos 

z
zz % ^

%  d  - h Z A A x  CosZS, -f-A,^Ax') (1-5.9)

We know from energy considerations that for non
absorbing media

6: 'U ~ ^ (1.5.10)

The amplitude reflection and transmission coef
ficients, R and T are complex quantities and may therefore 
be written R = yO e  ̂and T = ZTe where ̂  , %  are real. 
Then $ y the phase changes on reflection and trans
mission are given by

Ÿ  - -  XSi
A, (H-Ax) -tAz lH-Af)casXS, (1.3.11)

-àcun y = — (l-AtAxJ-àoun/i
( d A , A z )  (1.3.12)

The expressions for ̂  and ̂  for an absorbing film 
may be obtained in a similar way by substituting the
corresponding complex expressions for the Fresnel coeffi-
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cients# The latter are obtained by putting n instead of n 
in equations (1.3.1) to (1.3.4). In this case, Snell’s law 
becomes

77/

SO that is a complex quantity, not an angle, except for 
the case of normal incidence, =0. A discussion
of refraction in an absorbing medium is given in Ditchbum, 
1963, p.590. The expressions for R and T are rather cumber
some, so will not be given explicitly here. (For explicit 
expressions, see Bom and Wolf, 1959.) The expression for 
reflectance for the p-component of polarisation will be 
given in Chapter II.

§1.4. Multilayer Theory

Several methods have been used to compute the 
reflectance and phase change of a system of thin films.
Crook (1948) extended the method of multiple summation, 
which was outlined above for a single film, to two layers 
and indicated the procedure for a further extension to N 
layers. However, this method quickly becomes very complica
ted. Rouard (1937) and Vasicek (1950) use^the fact that 
since a single film may be represented by an effective



reflection coefficient and phase change, so also may a thin 
film system be represented by effective single surface. 
They perform the calculations using a step-wise procedure. 
Rouard*s method is slightly more tractable than that of
C/ /wVasicek; Rouard starts with the layer next to the substrate 

and works to the top of the system whereas Vasicek starts 
with the top layer and moves downwards to the substrate.

The most convenient method for computation both 
by hand and by digital computer is the matrix method (see 
Heavens, I960). Application of the boundary conditions to 
the equations of wave propagation at the interface between 
the (m-l)th and mth layers yields the following relationship 
betv/een E~, :

f  a   ̂ ]
(1.4.1)

£■»,-/ = _L s B-m &  J

An alternative recurrence relation in terms of the 
components of E, and H is obtained from equations (1,2.1), 
giving

1 «• / Sl. aUao ll
U  ! / }\ Ll  ̂ (1.4.2)
nyrj-l I Ŷ MniSî ŷr, tOSCyy, J \ H**1
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so that for an îJ-layer combination

(1.4.5)

where

AinSm

Applying boundary conditions to the substrate surface, 
remembering the negative-going wave in the substrate vanishes, 
it can be shown

(1.4.5)

The reflectance and phase change of the multi
layer are then given by

/? =  I K E o  -  Ho 1^

There are two main advantages of using the formu
lation given by (1.4.5) rather than that of (1.4.^). The 
first is that in the former case, each matrix contains
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quantities characteristic of one layer only, whereas in the 
(1.4.J) formulation indices of two layers are involved.
This is particularly important if it is desired to change 
the characteristics of one layer of the multilayer during 
the computations. (See, for example, Baumeister, 1962).
The second advantage is that the matrices M have unity 
determinant. Hot only does this provide a useful numerical 
check at any stage hut it also enables simple closed for
mulae for ’periodic’ multilayers to be obtained (Mielenz,
1959).

A ’periodic’ multilayer is one in which the same 
sequence of films is repeated twice or more. According to 
Herpin (I9^?a), any sequence of films may be represented by 
a fictitious bi-layer . Then if this sequence
occurs q times

(1.4.8)

Sometimes, one considers a ’periodic symmetrical’ 
multilayer which is of the form

 ̂) = (AT. Aîijk (;J a . . . „

In both cases the basic matrix is represented by

(1.4.10)
<li2
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Herpin (1947b) showed that the product (Mĝ M̂ )̂  may be 
expressed in terras of Lucas polynomials and Abeles (1948b) 
observed that these may be reduced to Tschebyscheff poly
nomials when the basic matrix is of unity determinant. 
Writing

X  =% a.,, ^  CL2.X (1.4.11)

=  S(p̂ , (s)(MoLMh)~ (1.4.12)

where (ijis the unit matrix. The Tschebyscheff polynomials 
S^(X) are defined by

S<p (x) = X  5|., ( X ) -  S _̂2 (x) (1.4.15)

where

= I J s . a )  = X

or, alternatively,

^  ( j A  l} 0  J X ^ 2 c o s & ^  I K  I

(1.4.14)
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This method is particularly useful for computing 
the properties of quarter wave stacks. A quarter wave stack 
consists of alternate high- and low-index quarter wave layers

In this case represent individual

layers and hence, if the films are non absorbing, the 
Tschebyscheff polynomials will have real arguments. This 
greatly simplifies the calculations. Thus, for normal inci
dence on a quarter wave stack, we have

aTid ^ “ 7/ Ao = J-i. (1.4.15)
^ / T X  z  <Ta

Thus
^  M/y^0 (1.4.16)

r^r^L '
An example of a numerical calculation performed 

using this method will be given in the Appendix.

gl.5* The concept of ’.Equivalent* index

According to Herpin*s theorem, any multilayer is 
equivalent, at one wavelength, to a two film combination. 
Each film in this equivalent bi-layer may be represented by
matrices of the type M^. Thus, four equations are obtained.
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from which the two equivalent indices and the two thick
nesses of the films in the bi-layer can be determined. 
However, the matrices are unitary so in fact there are only 
three independent parameters. For symmetric multilayers, 
Epstein (1952) has shovm that the ’Herpin equivalent’ is a 
single film characterised by an equivalent index N and an 
equivalent thickness îf . He shows further how this kind 
of analysis may be used in the design of optical filters, 
particularly in Antireflection coatings. The use of these 
symmetrical thin film combinations has also been studied by 
Weinstein (1954) and Berning (1962). These applications to 
filter design will be discussed more fully in Chapter IV.

Returning to the general case where there are 
three independent parameters, it is clear that one of the 
four parameters of the equivalent bi-layer may be chosen 
arbitarily. Epstein suggests that one of the indices is 
chosen to be that of its neighbouring surrounding medium, 
so that the final matrix px*oduct for the mutlilayer may be 
written

\iC pj COSo(
(1.5.1)

where H* is the equivalent index of the first layer and 0(
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are the equivalent phase thicloiesses. We have extended the 
analysis to include this general case and evolved fairly 
simple expressions for E \  ^  ̂ in terms of the final 
matrix product. These expressions are useful for numerical 
computations of equivalent index and thickness. Writing 
X ~ cos OC' , y = for simplicity, we obtain from
(1.5,1)

A - X!U - 0 - - x ^ y ^ (1.5.2)

= J- +  ±_ H  (1.5.5)
Vs».b ^ N *

C = f A/̂  (1.5.4)

Substituting from (1*5.2) into (1*5.5) and (1*5.^)

v =  f - y ^ s l b (1.5.5)

C  -= X*- 7)Jib (1.5.6)

and, squaring (1*5,2)

(1.5.7)

Subtracting (1.5,7) from (1*5.5) and (1.5*6) in turn, v/e 
obtain
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%r  ̂ 'TIsuh (1,5.8)
—  Tfsub )

— Vŝ b ^ ^
^ Vs^i,^ (1.5*9)

From (1.5*4) and (1.5*3) we have

7isL(N'^B-c.f =  (1.5.10)

and, using (1.5*9) and (1.5*10)

cz ̂ 5aA 0-6<̂ ) "" A +  A (1.5,11)
/ 4 ^ 6̂ 7i$ut> )

However, since M is unitary, AD + BC = 1 so
(1.5*11) becomes

A/'* = Vsib 0 *~ /) (1.5.12)

Finally, Of , ^  may be found by substituting this
value of R'^ in (1.5.8), (1.5.9). For a symmetrical com- 

P 2bination A = D = 1-BC, so we obtain

^   ̂ Cc^ o( z; Ay ^  (1*5*15)

which agree with equations (4) and (5) in Epstein's paper.
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gl.6. Graphical methods

When the Fresnel coefficients for a single film 
are small, we can approximate the denominator of (1.5*8) by 
unity, so the reflectance is given by (Heavens 1955):

f (1.6.1)

Physically, this means we are neglecting multiple reflec
tions and considering only "two beam interference" in which 
the amplitudes of the beams are given by the Fresnel reflec
tion coefficients r^ with a phase difference f , which 
is, of course, dependent on the film thickness (see Figure 
l*5(a)). The resultant amplitude R is given by the vector 
sum of and T2 (see Figure 1.5(b))

^  /t, (1.6.2)

For two films, approximating in the same manner as above

R  = A, A^ ex.p i-XiS,) cat^£_2iC/<'#-<S)j(1.6.5)

and again R is determined by the vector sum of the coeffi
cients. This can be extended to include a n y  nu-ber of 
films, provided the reflection coefficients r^, rg, 
are small compared with unity. Although this latter condi
tion severely limits the range of application of this 
method, there are many cases of practical interest, espe-
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cially in the design of Antireflection coatings, where it 
is of great value. This application will be discussed 
further in Chapter IV.

Several exact graphical methods have been devel
oped for computing the reflectance of a multilayer (see 
Baumeister, 1965)• Two of the most useful of these are the 
Smith chart and the Kard calculator. The former has been 
widely used in Electrical transmission line theory (details
of its use are given in Potter and Fich, 1965) and makes
use of the continuity of 'Optical Admittance' across any 
interface. Tie optical admittance is defined by

y  « H  (1.6.4)

The Kard calculator (Kard, 1956) is a rather more 
convenient device. It is a mapping of the conformai trans
formation

^  =: ^  (1.6.5)Z
and enables to be determined from known values of

^m+l’ ^ m*
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CHAPTER II. INFLUENCE OF ABSORPTION ON MEASUREMENT
OF THE REFRACTIVE INDEX OF FILMS BY
THE ABELBS METHOD

§2.1. Theory of the Aheles method for measurement 

of refractive index of transparent films

One of the simplest yet most reliable methods for 
measuring the refractive index of thin transparent films is 
that introduced by Abeles (19^9)• This method makes use of 
the fact that for light polarised with the electric vector 
parallel to the plane of incidence, the reflectance of a 
film, index n^, deposited on a substrate of index at an
angle of incidence 0^ = 0^, given by

6  f\ =r ^1 (2.1.1)
7ja

is equal to that of the uncoated substrate, (n^ is the 
index of the medium of incidence.) This relationship is 
easily proven. From Snell's law, we have

Til n  (2.1.2)

For ^  0 - we obtain from (2.1.1)

e o  +  0, ^ I L
z
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Using (2.1.2) equation (1.5.1) may be written

■•ào/r) (Bjn -f B tt)-! )
so that

-&o)

■àa/n ̂ (02. ̂

(2.1.4)

(2.1.5)

A. ■= O (2.1.6)

'tO/» (02-Bt)

•éoAft (&2 ")

Hence, from (2,1.5)

A-j - -Ao/n (Bx ~^ o )

'tarn (02 -t-0e)
The reflectance of the film is given by

3  A f  XA, Jt2 't’̂ Z

/ -h R A , A 2 <̂ s ZS + A,^A2

so for ^  ̂  ^

s A2 = ^ 2̂  ̂ (^2 " 0Q )
'ict/n*' (0% + Bo")

which is the value of

(2.1.7)

(2.1,8)

(2.1.9)

Ho%fever, the value Q ^  is not the only value of 
©Q for which the reflectance of the une oat ed. substrate



3Z

and the film on the substrate are equal. The condition for 
equal reflectivity was obtained by Catalan (1964) as

-yU,] S

(2.1.10)
The first solution given by this equation is

^  (2.1.11)
For the s-component of polarisation, one obtains the 
trivial solution that the index of the film is equal to that 
of the incident medium; i.e. there is no film present. For 
the p-component, an angle of incidence ^ ^  may be found to 
satisfy (2.1.11), given by

é o m  OCo ^ 2h. (2.1.12)
7\e>

This means that (X̂  is the Abeles angle. Another solution 
is given by

(2.1.13)

which again gives a trivial solution ng = n^ for the s- 
component of polarisation, but for the p-component the angle 
of incidence ̂  ̂  for equal reflection is given by

^aynfSp - ______ ______________ , (2.1.14)
W i n i  -f

However, in the usual case when the incident medium is 
index 1.0, for  ̂to be real we must have
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(2.1.15)

For a glass substrate, iig = 1.50, say, and condition
(2.1.15) requires the index to be less than 1.32, so 
that y(3 Q ^80^. These rather impractical values have led 
to this solution being neglected in most literature on the 
subject. A third solution of (2.1.10) is given by

S = ̂  (2.1.16)
Cwhich means à = This is in fact the well-known result

that for an optical path difference of an integral number 
of half-wavelengths the optical properties of the film are 
precisely those of the substrate (Heavens, 1964). This is 
true for both states of polarisation.

A word about the nomenclature should perhaps be 
mentioned here. In much of the literature on the subject, 
the term 'Brewster angle’ is used for 0^. However,
Catalan (1964) points out that as the p-component of 
polarisation does not actually vanish, this term is rather 
misleading, so here it will be called the 'Abeles angle' 
instead, to avoid confusion.

The Abeles angle solution does not depend on the 
film thickness, nor on the refractive index of the sub
strate. However, the sensitivity of the method does depend
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on the film thickness and is greatest for films whose phase 
thicknesses (in the direction of the beam) are in the 
neighbourhood of 7T/2, Fig,2.1 shows the Reflectance vs, 
angle of incidence curves for various phase thickness of a 
film of index 2*50 together v/ith the reflectance of the 
substrate of index 1.4-6. For a film whose index lies within 
-0.5 of that of the substrate, an accuracy of within 
- 0.002 is attainable, using this method of measurement 
(Abeles 1950, 1965). Traub and Osterberg (1957) designed 
an experimental arrangement which greatly facilitates 
routine index measurements. Fig.2.2 shows the apparatus 
they used which included a comer mirror system forming a 
constant deviation reflector to eliminate the need for 
manually tracking the reflected beam. The use of the second 
telescope overcomes the difficulty of alternate focussing 
on the sample and on the pin hole image. The variation of 
angle of incidence is obtained by rotating the sample; its 
value is determined from measurement of the angle through 
which the second telescope moves from position A to posi
tion B. Using this apparatus, accuracies of within 0.1% of 
the index value were obtained under optimum conditions.
For films whose indices were in the region of 2.5, deposi
ted on a glass substrate, the accuracy was not quite so 
good, but measurements within a probable error of - 0.005 
were obtained.
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The condition (2•1.11) for equal reflectance of 
film and uncoated substrate depends on the assumption that 
the film shows no absorption. If absorption is present in 
the film, the reflectance for the filmed surface is less 
than that for a transparent film, so the refractive index 
is underestimated in this case. It is important to deter
mine the extent to which the presence of absorption may 
introduce errors in refractive index measurement. A quanti
tative solution to this problem has been obtained in two 
ways. Firstly, values of the reflectance of the sub
strate, and R^, the reflectance of the film for values of 
0^ in the neighbourhood of the Abeles angle were obtained. 
Graphs of R^^^ and R^ angle of incidence were dravm for

Xseveral values of K, and the shift in the Abeles angle for
these values of K were obtained from the graphs. In the

ubsecond method, expressions for R^, — g- , ^ —  were

expressed as a power series in K and the value of was
then obtained, also in the form of a power series in K, so

Xthat the shift in Abeles angle for any value of K may be 
obtained directly. The variation of 0^, K is such that 
the reflectances of the filmed surfaces and substrate are 
maintained equal. Hence 0 q - when no absorption is 
present. In both cases, a film of index 2.50 on a sub
strate of index 1.46 was considered, the medium of incidence



3S

being air (n^ = 1.0). This corresponds to Cerium Dioxide 
deposited on quartz, at 5 0 for a wavelength, of 440 nm.

.2. Graphical method of determination of 

error due to absorption

When absorption is present in the film the 
expression for the reflectance of the film, R^, is very much 
more complicated than that for the case of a transparent 
film. It may be most conveniently expressed in the follow
ing way (see Bom and Wolf, 1959)# For convenience, we drop 
the subscripts on the optical constants of the film and 
denote by n = n-iK.

f(j _ ^ - f -  m  e (hx~ ^
y. ^  Zvij

'(2 .2 .1)
where

l(y)‘̂ -h')u>SGo + ‘h>'U-T+ l^TrKCcsGo-f-rioV']*^ (2.2.2)

2 2 
m = K^) COS J  -h {J»K cos&j_ ~ Thy2

L('h'̂ -h.*')(-f>̂ 0x+7jxZcĴ + [jZ-nAcosG^ f (2.2.5)
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^ X  (2.2.4)

“tcun fof ~ XTioCosOofXyiKiL - {n^^H^)vJ
(n^K^fcoS^Bo- (2.2.5)

<f>n z- ^
(7l^ H^)^CoŜ 02. ~ ^x CU^+y^) (2.2.6)

and u, V are obtained from the relations

'o L (2.2.7)z: ~ ^ 710'S ùn^ôi

tLV zr T7A
^  2 ^0 related by Snell's law, so the

value of may be calculated from the above equations for
any value of K, for a given film* For the film we are
considering here, n = 2.50, so in the absence of absorption 

\the Abeles angle is given by
= &JLC>éa^ (U,'3o) =r 66^3o*i^ (2.2.8)

The values of R^ for several angles of incidence 
in the range 65^ 50* to 67^ 50* were calculated for values 
of K = 0.00, 0.005, 0.01, 0.02, 0.05, 0.05. The value for 
K = 0.00 corresponds to the value of R^ given by equation



î
(l.J.ürêf). The value of the reflectance of the sub
strate, was also calculated for these angles of incidence. 
The calculations could be performed on a desk calculator, 
but it was more convenient to obtain the results using a 
digital computer. This latter method had the additional 
advantage that, once the program was written, values for 
other films could be obtained fairly easily if desired. 
Further details about the program, which was written in 
Extended Mercury Autocode and run on the London University 
Atlas computer, will be given in the Appendix. The results 
are given in Table 2.1.

TABLE 2.1

6
0 ®SUB ^

% %

K=0.00 K=0.005 K=0.01 K=0.02 K=0.05 K=0.05

65°50’ 1.619 2.698 2,660 2.625 2.554 2.489 2.372
66°0' 1.837 2.581 2.345 2.511 2.246 2.185 2.077
66°15' 1.953 2.227 2.193 2.160 2.097 2.059 1.935
66°50' 2.075 2.076 2.045 2.011 1.951 1.896 1.798
66°45• 2.202 1.929 1.897 1.867 1.809 1.755 1.661
67°0* 2.337 1.785 1.755 1.726 1.670 1.619 1.529
67°50' 2.616 1.510 1.482 1.455 1.405 1.358 1.278
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These results are shoim graphically in Pig.2.$.
\

The shift in the Aheles angle was obtained from the graph 
and the corresponding errors in refractive index measurement 
were calculated. These values are given in Table 2.2.

TABLE 2.2

K
Change in ^  

(mins)
Error in derived 
refractive index

0.005 -1.5 -0.005
0.01 -5.5 -0.007
0.02 -7.0 -0.015
0.05 -10.0 -0.018
0.05 -16.0 -0.029

The change in ^  given in column 2 of the above 
table is obtained from the graph to within an accuracy of 
0.5 mins. This corresponds to a possible inaccuracy of 
Z 0.0006 in the derived refractive index.

§25. Power series expansion method for 

determining error

The method for determining error in measurement 
due to absorption, described above, is very convenient if
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estimates of error for several different films are required
and if a digital computer is available. However, if only
one film is to be considered, it is sometimes more useful

\Q
to obtain a value for in terms of K, so that a direct
estimate of the error can be made for any K. In this sec
tion we consider only variation of 0  ̂and K such that the 
equality of reflectance = ^sub preserved. In order
to work only in terms of one angle, the angle of
incidence, G g, must be expressed in terms of 0^ by means 
of Snell*s law. Then (2.2.5) and (2.2*6) are replaced by

(2.5.1)

(2.5.2)
For equality of reflectance to be preserved

- O  (2.5.5)

Considering only values of which satisfy (2.5*5) we have 

%  -  ”  ^  (2.5.'*)

^  ( i l i  -  3I&W.A 
I >e. I i 7  )



3 ̂ sub ^We therefore have to obtain expressions for , -r-—
à do de o

and . As the expressions for and are rather
cumbersome those for their derivatives are even more so, so 
it is most convenient to obtain them in a stepwise method. 

Letting
(̂Su.b = k %

/tS

where

(2.5.5)

(2.5.6)
!> = [yio xkw 9o - 9o (* t^ - 7to J

q =■ [(fit ' )^ - n o 9^ J ̂
A  = [n«Mh9o -t- 'torn 9o ('nx-noM^*-9o)^J

À  s. £(77/ - no Mm9o^àoyH90'3

we have

and from (2.5.6)
cih C ̂  [}}ff Ai^ Bo ^̂ d£C 0oĈ x'“ P o ^
clfip ('̂ x̂ TloACn̂ 9o) z J

d<L = if4̂  00 écmSpMit 0oJ[^Caf&o ^

2 ^ [̂ 'HoAàix00“̂ 'éd/yt 0o (%%— SoJl^oCf^fio

^  r £jdt9o
' (2.5.8)
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R , is obviously independent of the opticalSUD V
properties of the film so can be calculated
directly from equations (2.3*5) to (2.3*8) if n^, Ug, ^  ̂ 
are known. We may similarly break down the expression
(2.2.1) to obtain values for R^, » yg- as follows.
Let

Then

(2.5.9)

(2.5.10)

where

7tj (2.5.12)

Then

b9o d9o L J 3A)( ' J(2.5.14)



where

3? = 1  £e*^J + ̂  i / n , i ^ ' ^ J \ l  
g  3A &  %

(2.5.15)
where
1  ^

?

1
*<

5 S  ‘• ' » ‘

j .  4-(à ^01ÙH
k L  . I , 1 . 1

-'XP^yn

Similar expressions may be obtained for
^ -X

by replacing: ^ —  by must now obtain expressions
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Wo' ^ o ’ % ) '  W o ’ tel' 'èl
corresponding partial derivatives with respect to K.

From (2.2.7) we obtain
2^ = nX^eoOsôo f z“ M3 0 ,  /(*- J

(2.5.16)
'̂ V —r 7/X %> Ài}i\&o Cûfûo % f  I ^ H ^

and from (2.2.4)

2j IVAi/xt So CosBo (23 17)
W o

Qt/ QTo find expressions for -pr— , -;5™ »  we let 
-/= m = J so that

'X.O
i f h  - / ^ )
T  L Wo 3é>oi (2.5.18)

=  jL  f —  —  ^  ^  /
et  ̂9^0 'dBoJ

*dJ 9and here again we obtain similar expressions for 
simply by substituting for 7̂ -*

Then
^  X -xI[(n*̂ -K̂ ‘)û̂ Bo-'7jouJ[(r>’--K*)uiè»,9t»-*-no3iL 7
W, ( 9ft> 1

^  IXnKco&êo "'PjoVjiZ'nM'^ 60 f %, 9v 1 /
30, J

~àk ^ -A9&*4, -*̂ noV.][n,hi ' (n'^-PC)^9ôJ
30, L Wo

•̂’Q'^KCos&o -^noVlf-Zn/c^ 9a- 4 ^ ^  1
W,



30, 4Qnk(7iz^-),̂ 4^fio)i.7i/vXyJz^  ̂ +Zrikinl-hf44:>*̂ o\%iJtU&oCo>a:}̂

 ̂4- [2hkCnx- n*'̂ J[»x*-'̂ "-Zrti(
. 3&, . (2.5.19) ■'

c)y 01 901 pTo obtain expressions for — -— , we make
the following substitutions

Y = /ô(Vn
% /̂ 2/M !̂X

(2.3.20)

so that
y

X / 9x 
9ft> ('/ f x U  900

= / -- H
30, 90,

(2.5.21)

where
 ̂  ̂f%,M i t 9o[2 yiku~(*i*^)yfJ + nc‘àsee,L(^*-i^y^''Z'»*:^ J

? X  = 1 ; , , 3^, -, ) %.
^  -  X .  C(7l^4k*) CoSfio ^  f V W  )  j y

(nHK^Ÿcoŝ fio - ^ V’*)

j£ ' ♦JtC?fcVi>*«*)iwA fea» A  •» ».*

( n U K ' y ^ én.*-̂ v̂ y

(2.5.22)
Returning to (2.2.2) tlirough (2.2.?) we obtain 

the following expressions for partial derivatives with
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respect to K to obtain a value for from (2.5.11) et seq

3K

4 -
9K I

Xv 3v s ^ f3K I

and

(2.5.25)

f( f CZ'h*'- (?»*- y»o ^ - I 1
1 [(n*. K*- f 4« * 4 * J
f [Xn*-- (n*- %  - Kp] i , 7 (2.5.

3K I X*- 4»»VJ^ J

ana
M  iz z f  lZnlict>s9o-}7ov'][X7i£os9t,-'nô l

3|C  ̂ - fCh^-I^CoSOo ~ 7ioU][X7

24)

K 4»3 0, -# >fe^ ]?
PIC J

^  ^ ZfüTtKc^fic 4 7,0̂ 3 [Zncoi^o ■^-no'^]

3k  ̂ - [(n^~K^)CM0, 4n»'u ,')[2K cx>s9t>-n ,^3  i

Is ^Xff2nKl7i2'-no^'^^^4to)^~rj^vyX'n(>i^~rto.44tt'Ayt.yi^^J ̂ ~l3n^K*)Cn^V6-4^*'9e)^^'»^l[xKtvi~*f^'^'^9o)^4r\g^^jl

3k I )̂ ‘'
(2.5.25)

Also

3x _ {Xhs<^A^n*L4Z>yt^ 4ÂK\/-(n^fi*yjlïl 
^  ^ - %  Üik(ni*k̂ )ù>s*9o ' }

C('h*tk̂ )̂ ces *-9̂ - ]

c/|%         3JC
4 «̂VA:* ) - n/ £ u v J  ( 2.5.26 )
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We are now in a position to be able to calculate 
and -yg-' using the above equations. For any given film 

these expressions may be calculated in the form of a power 
series in K. For values of K up to K = 0.05 it was found 
unnecessary to include terms of ^(K^). The coefficients 
in the power series for - yg-$ ' " were evaluated for 
the case mentioned above in which n = 2.3» =1.0,
TÏ2 = 1.46» = 66^ 30.1*. From the expressions given
above, the following results were obtained (Heavens and 
Liddell, 1965)

®film 0.020755 - 0 .067418K + 0.24540IK^
âRf = -0.341265 + 0.567719K - 0.510771K^

^ = -0.067418 + 0.486825K - 1.002804K^)R

From (2.5.6) it was found 

^^sub = +0.284557o
^9We can now obtain yg- from (2.3*3)» giving

= -0.107727 + 0.680172K - 0.899454K^
The above expression may be integrated to give the shift

2 O OOOiZic;tr3

\in the Abeles angle in terras of K
à 9 a = «O.IO7727K + 0.340086K^ - 0.299145K-
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This formula may be used to calculate the change 
in and resulting error in measured refractive index for 
K = 0.005» 0.01, 0.02, 0.05» 0.05. We see from Table 2.5 
below, that these results agree very well with the values 
obtained by the graphical method.

TABLE 2.5

K
Change in ^  

(mins)

Error in derived refractive index

Power series method Graphical method

0.005 —1.82 -0,004 -0.003
0.01 -3.59 -0.007 -0.007
0.02 -5.95 -0.013 -0.013
0.03 -10.1 -0.019 -0.018
0.05 -15.7 -0.029 -0.029
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CHAPTER III! BROAD BAND HIGH-REFLECTING
I4ULTILAYERS

.1. Use of dielectric high reflecting 

' films in‘interferometry

The transmission at normal incidence of the Fabry- 
Perot interferometer is given by (Baumeister, 1963):-

sr “T̂'TfjAX

"1
where

* 7 -  T Ti
‘ y I r —  (3.1.2)

(/ -

F  -  _Ji3_  , (5.1.5)

R^i R2 Sind T^, Tg are the reflectances and transmittances of 
the mirror coatings.

'tj s iOT'ndir - (3.1.4)
where n, d are the refractive index and the thickness of the 
spacer and is the average value of the phase changes
on reflection in the spacer at the spacer/mirror boundaries 
for wavenumber OT , Suppose a light wave whose electric 
vector is represented by
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£  = znscr) (3.1.5)

is incident on boundary 1; then the electric vector of the 
reflected wave may be represented by

£/t = exff'^Ct^t-t-SJTscr ̂ hi',) (3.1.6)
where V> is the phase change on reflection at boundary 1*

We see from (5.1.1) -̂ hat transmission bands will 
occur when « mTT. The integer m is called the * order 
number’. If the transmittance and absorptance of the coatings 
are T, A respectively

T  -hA / (3.1.7)

and the maximum transmittance is given by

T  - /' fna-K ' (I + A Ÿ  (5.1.8)

Thus, it is important that the absorption should be as low 
as possible. Typical values for silver coatings (Heavens, 
1955) are R = 0.95» T = 0.01, A = 0.04 so from (5.1.8) we 
see that the maximum transmittance is only 4%. A much 
better performance is achieved by the use of dielectric 
multilayers, for which maximum transmittances of more than 
90% may be obtained (Baumeister, 1965).

The method of analysis of the performance of the 
Fabry-Perot interferometer outlined above may be used to
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analyse other multilayer filters. The filter may be con
sidered as a Fabry-Perot system by selecting one layer and 
treating it as a spacer layer and then treating the layers 
between this layer and the substrate as one ’effective 
interface’ and those between the spacer layer and the medium 
of incidence as the other ’effective interface’. This idea 
was developed by Smith (1958).

The width at half-maximum (sometimes referred to 
as the ’half-width’) of the pass-band of an interference 
filter is given by (Baumeister and Jenkins, 1957):-

= Rilînvci- av 3'
3<r

Por metal films, the dispersion of phase change is negligible 
so that (5.1.9) becomes

A < r  _  j(~ / Ù _____
" ntTTR^ (5.i.io)

since t 7T in this case. For dielectric films, the 
dispersion of phase change is significant and its sign in 
the high-reflecting region is such as to decrease ,
Much narrower pass-bands may therefore be obtained by the 
use of dielectric films in place of silver. Later in the 
chapter we shall discuss several types of broad-band reflec
tor which exhibit extremely rapid variation of the phase 
change on reflection with wavenumber. The broad-band 
reflectors have the additional advantage that their high-
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reflecting region covers the whole of the visible spectrum, 
whereas that of the ’classical* quarter wave stack covers 
only about one half of this range. This is the one big dis
advantage of using quarter-wave stacks rather than the con
ventional silver coatings for the Fabry-Perot system, but 
this can be overcome by use of broad-band reflectors*

•2. The ’classical’ stack and previous work 

on broad-band reflecting filters

The classical quarter-wave stack consists of a 
number of alternating high-and low-index layers which have 
an ’optical thickness* of . Then at the wavenumber

= l/\o % the beams reflected from the various interfaces 
between the layers will all be in phase so that the reflec
tance obtained is a maximum* Fig. 5.1 shows the computed 
reflectance vs. relative wavenumber of 1, 5, 9, 15-layer 
stacks of CeÛ2 (n^ = 2.56) and M^Fg (n^ = 1.59). From the 
graphs it is seen that the maximum reflectance (which is the 
value of the reflectance at =1.0 for this type of
filter) increases with increase of the number of layers, 
whereas the total width of the high-reflectance band remains
substantially constant. In fact, the limiting width of the
high-reflectance band of a classical stack is determined
solely by the ratio n̂ /n̂ .̂ Following the analysis outlined
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by Weinstein (1954) and from (1.4.12), we see

[A]"^ =  Sn,., C x )  [ 4 ]  -  ( 3 . 2 . 1 )

where

f A l  = 1 ,L J ( ûji <^tzj & a ^  eos^ J

X = a„ + a%2 =

a c  7 T  < T  
/ ;% (H,

For wavenumbers such that / X / ^ 2 ,  the reflectance in
creases steadily as m increases and tends to unity as m tends 
to infinity. Such a zone is known as a ’stopping zone’ or 
’high-reflectance zone’. The limit of this zone is
given by .

> /X/ P Z  (3.2.2)

i.e

7T or -  OAC JinZ 9- f-Vn*nt. J (5.2.3)
The high-reflectance zone is symmetrical about 

^/(Tc = 1.0. '̂ he expression for the distance A  from
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the centre of the zone, to the edge (J~ = <T"̂  is
given by

^  W "  3T— I U.fyiL/

Hence, we have

—  7̂T
(3.2.4)

The bandwidth may, in principle, be increased by 
using a very high ratio of n̂ r̂iĵ , but there are severe 
practical limitations to this procedure # For the' visible 
region, it is difficult to find materials to give 
greater than 2. In the near infra-red, semiconducting 
materials of high index may be used, giving a ratio of 
up to $.65, which corresponds to a total bandwidth of

A possible approach to the problem of obtaining 
greater bandwidths than those given by (3*2.4) for the 
classical stack, is to assume practical values for the 
refractive indices of the layers and to evolve suitable com
binations of layer thicknesses to produce a specified band
width. This method has been used by Baumeister and Stone 
(1956) and by Penselin and Steudel (1955)*

Baumeister and Stone computed the reflectance curve
A#for a system of N layers with optical thicknesses and con

sidered variations S\j in thickness which produced varia
tions ^R(\ ) in reflectance, and expanded in a Taylor series
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fi
^^(A) = z  (3.2.5)

where Ai - ( I= (■3x / V

They thus obtained a set of simultaneous equations 
for wavelengths X at which R(X ) has prescribed values 
and solved these for the using a computer. The pro-j
cess was repeated for as long as the computer was hired.
For a 15-layer ZnS-Cryolite system (n^ = 2.30, n^ = 1.35)$
the number of independent variables was reduced by imposing
arbitary relationships on the JA . to simplify the problem.
The resultant reflectance vs. wavelength curve is shown in
Fig. 3*2, together with a table giving the final values of
the A ^ . d

Penselin and Steudel give some examples of 
reflectance bands which have been obtained for a multilayer 
in which the layer-thicknesses vary in an arithmetic pro
gression. Their experimental results are shown in Fig, 3*5« 
Theoretically, for the thirteen-layer stack of films with 
indices 2.30 and 1.38, the reflectance should exceed 90% 
over the range 380nm to 610nm (Jenkins, 1958). This work 
suggests that the use of staggered stacks may lead to a 
significant broadening of the high-reflectance band.
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The results reported in the next section were 
obtained by staggering the layers in such a way as to form 
either an arithmetic or geometric progression. They show 
that this method can produce very much larger bandwidths 
than those obtained by Penselin and Steudel.

.3. Reflectance characteristics of the 

staggered multilayers

The thicknesses of the layers in the systems 
studied were varied either from the first layer (asymmetric 
filters) or from the central layer (symmetric filters) in an 
arithmetic or geometric progression, as shown in Figure 3.4-, 
The refractive indices of the high- and low-index materials 
and the substrate were taken to be 2.36 (Ce02), 1.39 (MgF2) 
and 1.55 (glass) respectively. A computer was programmed to 
obtain values of reflectance and phase change on reflection 
of the filter, using the matrix method. /Equations (1.4-.2) 
to (1.4*.727. Values of the common ratio of the geometric 
progression ranged from 0.95 to 1.05> and for the arithmetic 
progression, common differences in the range -0.05 to -fO.05 
were used. The initial calculations were made over a range 
of from 0.0 to 2.0 at an interval of = 0.1.
The most favourable cases were then investigated in greater
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detail and values of R and ^  over the range 0.0 (0.01) 5.0 
of (T'/<T3 were obtained. The calculations were repeated 
for filters of different total numbers of layers (2q+l).
Most of the computations were carried out using a program 
written in Extended Mercury Autocode on the London Univer
sity ’Atlas* computer, but some of the initial computations 
were performed on Elliott *805*, using a program written in 
Elliott Autocode.

In general, for the values of the ratios and 
differences considered, the geometric filters showed 
slightly broader reflectance bands than the arithmetic 
filters with the same number of layers (see Table 5.1$ 
below). For filters consisting of fifteen films or less, 
the improvement in bandwidth over a classical filter is 
quite small. However, with increasing number of layers, 
the bandwidth is greatly increased and there appears to be 
no * limiting* width as in the classical case. Some of the 
results for the fifteen, twenty-five and thirty-five layer 
asymmetric geometric filters are shown in Figs. 5.5 to 3.9. 
It may be noted that the bandwidth appears to increase 
as the ratio of the thickest to thinnest film in the 
filter. A comparison of the bandwidths of various broad
band reflecting multilayers is given in Table 3.1.
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TABLE 5.1

Type of Filter Bandwidth for R >90% ^0 r: ^

15 layer classical stack 450 nm - 610 nm 500 nm
Limiting value for infinite 425 nm - 620 nm 500 nm

stack
Penselin and Steudel 580 nm - 610 nm

(15-layers)
Baumeister* and Stone 410 nm - 740 nm

(15-layers)
Asymmetric Arithmetic Filters

(K = -0.02)
15-layers 419 nm - 625 nm 600 nm
25-layers 418 nm - 725 nm 700 nm
55-layers 550 nm - 840 nm 800 nm
(K = +0.02)
15-layers 584 nm - 550 nm 400 nm
25-layers 577 nm - 655 nm 400 nm
55-layers 580 nm - 750 nm 400 nm

Asymmetric Geometric Filters
K = 0.97
15-layers 594 nm - 625 nm 600 nm
25-layers 542 nm - 750 nm 700 nm
55-layers 500 nm - 826 nm 800 nm
K - 1.05
15-layers 400 nm - 580 nm 400 nm

25-layers 400 nm - 780 nm 400 nm

55-layers 5o5 nm - 790 nm 500 nm
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The results for the symmetric filters (see Figs.
5.10, 5.11) are somewhat similar to those for the asymmetric
ones, apart from the presence of a number of narrow band
transmission peaks. The reason that these transmission
bands occur will be explained in the next section when the
phase characteristics of the multilayers are discussed. The
regions of these bands were investigated more closely, at an
interval of = 0.0005. The bands were fairly narrow;
in some cases their half-widths were smaller than 4-T = 0.002

<To

§5.4. Phase characteristics of the 

staggered multilayers

The phase change on reflection vs. wavenumber 
curves for some of the asymmetric goemetric filters are 
shown in Figs. 5*5 to 5.9» together with the reflectance 
curves. We see from these curves that the dispersion of 
phase change over most of the high-reflectance region is 
very large compared with that of a classical filter (see 
Table 5.2).

The (2q + l)-layer symmetric filters can be con
sidered as two q-layer asymmetric filters surrounding the 
central layer which acts as a spacer. We know from equa
tions (5.1.1) and (5.1.4) that transmission bands will occur
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when

XTT97cL<r- = ±  w T T  (5.4-.i)

*nd* is the 'optical thickness* of the central layer, and 
is the average phase change on reflection of the two q-layer 
asymmetric filters. The phase changes are those occurring 
in the spacer layer at the spacer/filter boundaries. The 
maximum transmission at these points is given by

= B -  (3.^.2)
£/ -

In general, and R2 differ only by a small
amount since one q-layer filter is bounded by the medium of 
incidence and the other by the substrate, so for the most 
the transmission is greater than 95^ for these bands.

The value of at the centre of the high- 
reflectance region of a classical stack (i.e. at the central 
wavenumber <T5) is TT* The phase dispersion for this case is 
small compared with that for the staggered stack, although 
greater than that of a metal reflector. Thus, for a filter 
consisting of two classical stacks (or two metal reflectors) 
separated by a spacer, condition (5.4-.1) is satisfied only 
at the central wavenumber. However, if two broad-band 
reflecting multilayers are used in an interference filter, 
condition (5.4.1) is fulfilled at several points in the
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high-reflectance region. This occurs for two reasons:
(i) the reflectance band is much wider than that of a 
classical stack (ii) the phase dispersion is an order of 
magnitude, or more, greater than in the classical case.
The phase dispersion characteristics of the Baumeister and 
Stone filters are discussed by Baumeister and Jenkins (1957) 
and Baumeister, Jenkins and Jeppesen (1959).

In the (2q+l)-layer symmetric filter, several 
transmission bands would be expected in the high-reflectance 
region as approaches 2.0, the point at which the
central layer has a phase thickness of • Figs. 5.12,
5.15 show the graphs of ^  (^ ) and 2TTnd<^ as functions of 

for the 25 and 55-layer filters respectively ('Y' 
is the average phase change of the component 12- or 17-layer 
filters). The points of intersection give the positions of 
the transmission bands. These points agree with the posi
tions of the bands as shovm in Figs. 5.10, 5.11.

The reflection characteristics of the asymmetric 
filter may also be analysed in a similar manner to that 
used above. In this, case, the 'spacer* is again the layer 
which has a phase thickness of II when = 2.0.
However, the spacer is now surrounded by a 2q-layer stag
gered filter on one side and the medium of incidence on the 
other. The reflectances of these 'effective interfaces*
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will obviously be considerably different. Thus, we see 
from equation ($.4.2) that the transmission peaks at wave- 
numbers satisfying (3.4.1) will be very small, and this is 
indeed apparent from Pigs. 3.5 to 3*9*

Giacomo, Baumeister and Jenkins (1959) have 
investigated the influence of random variations in layer 
thicknesses on the width of the pass-band, when various 
types of broad-band reflecting multilayers are used as the 
reflecting elements of an interference filter. A necessary 
condition for such variations to have minimum effect on the 
position of the pass-band of an interference filter is

1 ^ 1  =

where is the geometrical thickness of one of the mirrors 
and n is the refractive index of the spacer. Table 3.2 
gives some examples of the values of 4*ÏÏ"nT̂  and foi"
various filters used with a cryolite spacer of index 1.35.

We see that both the Baumeister and Stone filter 
and the filters reported here come nearer to fulfilling 
condition (5.4.3) than a classical filter. Thus, the use 
of broad-band filters as the reflecting elements of an 
interference filter renders the filter far less sensitive 
to monitoring errors than if classical stacks are used.



TABLE 5.2

79

Type of filter Ae>(nm, ) 4TTn T^ m
(ywn-radians )

A^^rox.value of
1 clover the high- 
reflectance region 

(^-radians)

Baumeister and Stone 
(13-layers) 20,4 10-23

13-layer Asymmetric 
Geometric 600 17.3 11-30

25-layer Asymmetric 
Geometric 700 29.9 13-55

35-layer Asymmetric 
Geometric 800 42.0 15-70

15-layer Classical 
Stack 550 20.8 1.8

13.5. Closed Form expression for 'staggered* 

multilayers

In Qiapter I, the closed form expressions for 
periodic multilayers were obtained in terms of Tschebyscheff 
polynomials (of the second kind). Far small variations in 
layer thicknesses from this classical form, the corresponding 
expressions for staggered reflectance filters may also be
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obtained.
We consider multilayers of the form Mg

where the phase thicknesses of the layers are yS , yS + 5* ♦
+ 2^, ... ,y5+ 2q5. We assume 2q^ is small compared with 

yg , so we can make the following approximation:-
COJ + m S )  = c o s ^  ^ m S  siryg

_ f ^ / (3.5.1)sin(^ 4- mo) = sin^ + mO cos^ 
for m = 1,2, ... 2q. For layers of equal thickness

(3.5.2)
and for the staggered case /neglecting terms 0 ( 5  )7

I ̂  ̂ -f é¥n-3)S(^

- "na jimy-

4 + (Hfn-sHSB +L̂ vn'2')itC'

(3.5.5) _ 

(3.5.4.)
where

#? - /
»M Tli. C =
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Then the matrix product for the staggered case is given by

^  A 4>5cSB f ̂ jLSCS) ' ' ' (A 4£2̂ 2̂jiSĈ

(3.5.5)
which may be written in the form

[ ^ H S A B A - + (k<i-2)f^'Bmti'l-*
(3.5-6)

to first order in ^ . We know from (1.4.12)

. S m -,(x ) 4 - s.^^(x)r

where
X  - a„ + <Lix

Thus in general,

t " B  4^"^= [ S n . ^ C x ) A - 3 ^ M x 3 B

(3.5.7)
I'hen, using (3.5.6)
[^H ^  ^ (X)^J-HSj^ASA è  4^-  ̂)^~7.^-yn-i

-B A  [ (  Î  A f )
%  ~(lt%r3)Sĉ t̂.J

+  0£(Z, )■%•:* J C5.5.o;>1-2̂ ^1iW
f4c4 £  - C4

-JWsZ *
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Bxpreesing 8^(X) in the form given by (1.4.14)

S m  (S') =  ̂X - I x l ^ Z .

J%„ (x) s IXl̂ ZCâ<f̂  ̂pi. Ixl

and using 
1-*
2  =r JiAt (3-5.9)

Z A * ) n 0

i -
23 ■=■ Cea(2%^l>'i)^ -^C&id'k)€)
’»*s2

E  (p-Zm'jCâi (!>-2'>n)0 s  ^  f y
#, ■»

= /6-;z)w r/»' f (if ̂ 2)0!A(Z % ' A)é)

(3.5.10)
For I X I ^ 2 we may express (5.5.8) in the form

fMkMi,l*^= "T^Cîr-i)® —  4un(i'^•('iriiCffiCt'Zm[ ^0 J [ W 0 p i ( g )  j
[a<i.-4ABA ̂ Cpf)AcA]
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- < [A ^ (< îr -2 )(S > (A i0  ~ C9~zyc»iCt-4>0lUp-OB^*%^A'i^^irS)A6i(<lrZ)AeJ

4- / I A m ( % - 2 ) 0  __ - t)Bf-(frt)X^l

Z 4 ^ 0  L (3.5.11)
(^-^>0 f(49-2}ff f6Ẑ -z)c] - fa<f-2)4c4̂ 6A+(/i9-3»4al]L  A ^ 0  i '‘J

For / X / ^ 2, the corresponding form is given by

1 ^ 4 .  £  Ai^if J [Za h A^I -  ^

y [(2i->)m UfrO*^J
f V

L aUhÆ 2’
f_i__ f/û^2)e«tA CfrSyj -.AtiXf^-iyi ]l(ZjrO^ +(t'iX ] ,% = ig\ 
ZAtHK*̂   ̂ A AtA£ ji

-AZrckCV’tH [(iû̂2VfC4- BA 4(H~3)Aôl-̂ V̂f)€({49'̂)B*■ ^ 7 /
" l a #  J

This analysis is immediately applicable to the 
arithmetic filters. Hovr, for small variations, the ratio of 
the geometric progression is of the form (1 +é) whevelSI^< f 
Then we may approximate

Cl4-S)'^= / f -f oa*) = (3.5.15)
for l^Sl < c / . Thus the results for the geometric case
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are similar to those for the arithmetic case for the values 
of S for which v/e may use the above analysis; i.e. for 
very small variations.
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CHAPTER IV: REVI#J OF DESIGN METHODS USED
IN OPTICAL FIIÆER PRODUCTION

Basic Methods of Filter Design

The problem of designing a multilayer combination 
with specified properties is very complex and there is no 
simple method of solution for all problems. In general 
there is usually no means of obtaining the 'true* solution 
although very good approximations may be obtained. The 
advent of large, high-speed digital computers has proved a 
great asset both to basic thin film calculations and to 
approximate design methods. Several design methods have 
evolved in the last few years, which owe their existence to 
the availability of these computers. Until recently, the 
design methods fell into one of two main types - namely, 
analytic methods and successive iteration methods. In the 
last year or so, one or two 'automatic' design methods have 
appeared in the literature. These are automatic because, 
unlike the successive iteration methods, they need no start
ing design.

Theoretically, one might expect to achieve a
desired result by writing down the explicit expressions for 
the reflectance R or transmittance T at different wavelengths
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and solving them for the values of the design variables which 
give the required values of R and T at these wavelengths. 
However, in general, for more than one or two layers, the 
resulting equations are far too difficult to write down so 
their solution becomes almost impossible. In any case, the 
desired function is usually a continuous curve, so an infinite 
number of design variables would be needed to obtain an exact 
solution. In some cases, both the desired function and the 
explicit expressions for the inverse of transmittance may be 
expressed as a series expansion in terras of wavenumber.
The coefficients of the power series may then be equated and 
the solution of the resulting simultaneous equations will 
yield the required construction parameters for the multi
layers. This method has been used by Pohlack (I960). In 
other cases, analytic methods which are used in electric 
filter synthesis may be applied. These electrical engineer
ing techniques could prove extremely useful, but there is a 
minor problem of different language and training to be over
come in communication between Electrical Engineers and 
Opticists.

In the successive iteration methods one must start 
with a design which is a fairly good approximation to the 
required curve. Small changes are made in the design 
variables (usually the layer thicknesses) to improve the 
performance of the system and the process is repeated until
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either a satisfactory approximation to the required design 
is achieved or until no further improvement may be obtained. 
An automatic design method chooses the best starting.point 
from a range of values of the design variables, so one need 
not know an approximate design in this case.

Much of the early design work was applied to the 
production of low-reflecting coatings, so initially, a brief 
discussion of some of the methods used in this application 
will be given.

§4.2. Design Techniques for Low-reflecting 

coatings

From equation (1.3.8) it can be seen that for a 
single layer to have zero reflectance at normal incidence 
for some wavelength ^ , such that the thickness of the layer 
is 2̂  , its index must be given by

n, , (4-.2.1)

i.e. its index must be the geometric mean of the indices of 
the surrounding media. The film is then said to 'match* the 
surrounding media for this wavelength. However, condition
(4.2.1) is often difficult to fulfill and it is usually 
advantageous to use two or three layer coatings for this



purpose. The latter have low reflectance over a wider 
spectral range than that of a single-layer coating .

The thicknesses of the double-layer coatings have 
usually taken either the 'double quarter wave' form or the 
'quarter-wave, half-wave* form, whereas the most common 
arrangements of thicknesses for the triple-layer coatings 
are 'triple quarter-wave' and * quarter-wave, half-wave, 
quarter wave.' The spectral reflectivity for some of these 
coatings is given in Fig. 4.1. The exact formulae for zero 
reflectance were first given by Mooney (1945) and Lockhart 
and King (1946). For a double quarter-wave coating to have 
ipfjo positions of zero reflectance one must have

 ̂ nonsub (4.2.2)

and the condition for a triple quarter-wave filter to have
three positions of zero reflectance is

n, n J 2 2̂ - nensu.b (4.2.3)

One of the most useful methods for producing 
coatings which anti-reflect at one particular wavelength is 
by use of vector diagrams (see §1.6). This is an approxi
mate method (it ignores multiple reflections) but neverthe
less can produce results accurate enough to serve as a guide. 
We saw that the resultant reflectance, R, of a system of N 
films may be obtained from the vector sum of the Fresnel
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coefficients rg ••• the layers /Figure l.$(b^7.
Hence, if r^, r̂ ^̂  ̂form a closed polygon, the resultant
reflectance will be zero. Then for any given materials for 
a two layer coating, it is possible to obtain the required 
thicknesses such that the reflectance will be zero for a 
particular wavelength, by applying the cosine and sine laws 
to the triangle obtained by the vectors r^, rg, r^. Thus, 
in this method, the ’design variables* are chosen to be the 
layer thicknesses - this can be particularly useful if one 
has only one or two available materials. The method is best 
illustrated by an example:- Consider the design of a low 
reflecting coating using tivo layers, Ce02 and MgF2 on glass 
which is to give zero reflectance at 632.8 nm. n^(air) = 1.0, 
n^(MgP2) = 1.38, n2(Ce02) = 2.30, n^^^ = 1.32 so that
r^ = -0.16, T2 = -0.25, r^ = +0.204. A triangle may be 
constructed whose sides are proportional to r^, r2, r^ (see 
Figure 4.2) and from this, values for 9 2  ̂the phase
thicknesses of the two layers at 632.8 nm., may be obtained. 
The optical thicknesses are then determined from (1.2.2).
In this case

^1 ̂ 1 * 110.3 nm. 
n2 0̂2 “ 281.5 nm.

As a check that these values of thickness gave a very low 
value for R, the reflectance was calculated exactly using 
the matrix method and was found to be less than 0.0001.
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For some applications a coating is desired to anti- 
ref lect at more than one wavelength. Such a coating is said 
to be achromatised. Methods of achromatising two and three 
films have been discussed by Vasicek (1955) and Turner (1950). 
In order that the coating be achromatised at two points the 
vector diagram must close in symmetric positions on either 
side of some reference phase position /Fig.4.J(a)7. For a 
three-layer coating to be achromatised at three wavelengths, 
the vector diagram must also close at the central phase 
position /Fig.4.3(b^/# This means that the algebraic sum of 
the Fresnel coefficients should be zero. Thus, the quadri
lateral formed by r., r^, r%, r^ circumscribes a circle and

ri r^ r^
this fact may be used to calculate p = — , q = — , r = -=-

^2 3
so that the values of n^, n2, n^ may be obtained for given 
phase thicknesses (Vasicek). Turner suggests using film 
thicknesses in the ratio 1 : 2 : ... : N for an N-layer
filter, the thickness of the first layer being a quarter-wave
at the centre of symmetry. Again the method is best illus
trated by a practical example:- The He-Ne laser may be made 
to operate at 3590 nm. and at 632.8 nm. If elements are to 
be inserted in the resonant cavity, it is convenient if they 
are anti-reflected at both these wavelengths. Consider a 
design of an anti-reflecting system for use on quartz 
(n^ub for quartz = 1.457 at 632.8 nm and 1.409 s.t 3590 nm).
As the ratio of the wavelengths to be achromatised is 5»557»



95

uJ
uZ
Üw
JIIuJ
d

S>AkR.EL Gl_̂ ss

o
TT ïï

(cl) COaVTInJCS ACH«.0M>^TISE.D AT TWO POINTS

WU2
0
u
JILui
d

SARS (3LASS

o
rr'-S TT Tî

(b) COATING ACH^ON1AT|SE.O AT THR.ELE. PoiNTS

Fi<5. 4-.3 A c h r o m a t i s e i d c o a t i n g s



44

the periodic property of reflectance may he used, so that 
one considers reflectance zeros at ^  t Ŝ and ^ i  ̂ . 
For real refractive indices^values of ^ ? 5°, 6° and 7.5° 
will give exact achromatisation. However, it is seen from 
'fable 4.1, below, that the reflectivity is low at both wave
lengths for values of S up to 50°. We may thus obtain 
approximate achromatisation for any value of 0 - < 30°.
If x-|̂, Xg, Xj are the phase thicknesses of the layers at 
7T C^ - à (%2 = 5̂ ~ ^ series of values of » ^2’ ^3
may be obtained for 60° < < 90°. If are
plotted against x̂  ̂ (see Fig,4,4), then for any value of x^, 
a set of values U2» n^ is obtained which may be used as 
an anti-reflecting coating achromatised at 632.8 nm. and 
3390 nm.

TABLE 4.1

8 5° 7.5° 15° 20° 25° 27.5°
85° 82.5° 75° 70° 65° 62.5°

p 0.5671 0.5823 0.6830 0.8440 1.2995 2.1567
q -1.0315 -1.0731 -1.3660 -1.8794 -3.5016 -6.7959
r -4.849 -4.6639 -3.7322 -2.8794 -1.9383 -1.4631

"l 1.2641 1.2784 1.2903 1.3319 1.4716 1.8052

“2 1.9634 1.9574 1.8785 1.8722 1.9782 2.3595

“3 1.5288 1.5354 1.5594 1.6085 1.7752 2.1682
continued
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Table 4.1 continued.

^652.8 nm? 0.0025 0.002 0.0098 0.0247 0.098 0.015
^5590 nm.^ 0.0257 0.0192 0.0573 0.066 0.0547 0.1696

The monitoring tjavelength for any set of indices is given by

X o -
450+ S

é>3i-S "̂yn.

U^o ^ (3;% «

5  < s  < y - s "

S > 7  î î
ĵ sô S

As an example one may consider the result for 
S = 25° for which an achromatised anti-reflecting coating 

may be produced for 652.8 nm. and 5590 nm by monitoring at 
Xq = 669.4 nm.

15 ^  layers of Lead Fluoride

10 ^  layers of Tin Oxide

5 layers of Barium Fluoride (n^ = 1.47)

The result may be checked by the matrix method,
and for this coating it was found nm “ 0.085/&,
%  = 0.097%, showing that the graphical method givesnm
an adequate result.

(zig = 1.76)

(ng = 1 . 9 6 )
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§4.5• Use of equivalent index in thin 
film design

In §1.5 the concept of 'equivalent index* was 
introduced. This can be very useful in filter design work, 
especially in the production of low-reflecting coatings 
(Epstein, 1952; Berning, 1962) and Band-pass filters 
(Baumeister, 1965; Epstein, 1952).Epstein showed that a 
symmetrical combination of thin films is equivalent at any 
wavelength to a single film, characterised by an equivalent 
index N and an equivalent thickness & . It is seen from 
Figure 4.5 that for multilayers whose component thicknesses 
are small compared with wavelength, the equivalent index 
assumes a nearly constant value which lies between the 
values of the component film indices, and the equivalent 
thickness is nearly equal to the sum of the component thick
nesses.

For the design of low-reflecting coatings, let us 
consider three layer symmetric combinations. Berning shows 
that for small thicknesses in this case

\ % f /

( 71, \

(4 .5.1)

(4.5.2)
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where q. is the ratio of the thicknesses and cT = 2<T̂  + S 
the total thickness of the layers in the combination. Then 
N is approximately a constant whose value lies between n^ 
and Ug and depends on the ratio of the component thicknesses. 
Thus any particular value for N may be obtained by varying q. 
These results are most useful if one wishes to 'match' two 
media, for in this case the index of the 'matching' layer 
should be the geometric mean of the indices of the two 
surrounding media. In fact the range of application of
(4.5.1) & (4.5.2) is surprisingly large; equation (4.5.2) 
will hold for values of ^ up to and exceeding 90°. Film 
coatings for which the total thickness equals 90° or 2?0° 
are of especial interest in the design of antireflecting 
coatings. Epstein gives some results for equivalent indices 
of some symmetric thin film combinations, used in low 
reflecting coatings. These are shoTO in Table 4.2.

TABLE 4.2

= 2 ^  + <5*2
"1
ng

90°
1.58
2.50

90°
2.50
1.58

270°
1.58
2.50

270°
2.50
1.58

N N N N

0° 1.580 2.500 1.580 2.500
10° 1.514 2.096 1.258 2.525
20° 1.657 1.916 1.151 2.758

continued
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Table 4.2 continued

S = 2^^ + S 2
ni
Ü2

90°
1.58
2.50

90°
2.50
1.58

270°
1.58
2.50

270°
2.50
1.58

30° 1.800 1.765 1.060 2.995
40° 1.958 1.658 0.985 5.222
50° 2.061 1.54-0 0.926 5.4-26
60° 2.162 1.4-68 0.882 5.598
70° 2.258 1.4-18 0.852 5.726
80° 2.285 1.590 0.854- 5.806
90° 2.500 1.580 0.828 5.855

The values obtained from S = 270^ are very interesting 
because they give values of N lower than air (1.0) and much 
higher than that of the high index layer.

We know from (1.5*13) that for a symmetric
filter

(4.3.3)

So for W to be real, /^n/ ^ 1* This condition occurs in 
the pass-band. Inside the stopband / > 1. The edge
of the stopband occurs when a^^ = 1. Band-pass filters are 
required to have low reflectance in one spectral region 
(the pass-band) and high reflectance in the adjacent region



loi

(the stop band). The point of transition is Joiovm as the 
* cut-off’ point. A normal multilayer stack would fulfil 
these conditions with the edge of the high reflectance zone 
being the ’cut off* if the subsidiary reflectance maxima 
were suppressed (Fig.5.1). Now a stack can be considered as 
a three-layer film combination ^ ̂ ) repeated q times.
This differs from the normal type of stack in that it con
tains layers of an eighth-wave optical thickness at each 
end. This total stack is therefore equivalent to a single 
layer whose equivalent index is that of the basic period 
and whose equivalent thickness is q times that of the basic 
period. Thus, one can estimate the Herpin equivalent index 
for the stack at the points where the unwanted reflectances 
occur and apply a coating which "matches" the stack and the 
substrate at the stack/substrate interface and another which 
matches the stack and air at the air/stack interface. As 
the dispersion of equivalent index is usually large at 
these points, a solution which attempts to suppress more 
than one subsidiary reflectance maximum is necessarily a 
compromise.
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§̂ r»4* Application of Circuit Theory Methods

In recent years, much independent development in 
the theory of filter design has talien place in the fields of 
linear circuit theory and microwave quarter-wave transformer 
theory. Some of the results of this work may be applied to 
the design of optical filters. Many of the methods used are 
the outcome of years of research on filter synthesis. A 
fairly sophisticated theory has evolved from this research 
and many of the techniques are unlike those used for optical 
filter design, so it would be impossible to give a complete 
account of the methods here. Instead, some of the basic 
concepts of network synthesis will be mentioned and a brief 
outline of a method of filter synthesis which could well be 
modified to be directly applicable for multilayer filter 
design will be given. Full details of electrical filter 
synthesis are given in Van Valkenburg (I960).

The characteristic impedance of a medium is 
inversely proportional to the refractive index and the 
characteristic admittance is defined as the reciprocal of 
the impedance. We thus have

y, . 2. . & 
y, 2,
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For normal incidence, the amplitude reflection 
coefficient at the boundary between two media is given by

f %
There are trv/o important types of response of a 

lumped constant network. These are the time-domain response, 
represented by f(t) and the frequency-domain response,
F(icù). These are related by means of a Fourier transforma
tion

•CO (4.4.3)
4-00

It is usually more convenient in circuit theory 
to work in terms of a complex frequency defined by

jé s (T* /CĈ  (4.4.4)

where F(s) is related to f(t) by a Laplace transformation

FCS) = J ^Cé) 6
Û i )  = _ L  /  F ( $ ) é ^ d s  

XTli

(4.4.5)
S t

-caO

The œsponse of the network is generally given in
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terms of the insertion loss function, which is defined 
as the ratio of the available (or incident) power to the 
transmitted power. Thus

Pu = - L (4.4.7)T
and it is related to the amplitude reflection coefficient by

i n ^  =  (4.4.8)'u
The expression for the impedance of the net’jork is given by

T A )  r zrs) - Z . W  (4.4.9)
2  rs) +

where 2^ is the load impedance. Thus, if is known, the 
expression for Z(s) may be obtained from P^(s). Brune 
(1931) showed that for Z(s) to represent a physically 
realizable L C R circuit, it must be a 'positive real' 
function. Pull details of the mathematical properties of 
these functions are given by Van Valkenburg.

The procedure for circuit filter synthesis is as 
follows:- The specification is given as a function of 
frequency. Per a finite number of circuit elements, the 
specification will not, in general, be exactly realisable. 
Thus a permissable degree of tolerance will also need to 
be given. This tolerance is allowed for by employing a 
curve—fitting procedure, using Tschebyscheff polynomials
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of the first kind. The higher the degree of the polynomial, 
the better will be the fit to the specified curve. This 
type of polynomial is a realizable response function for 
some network which may be found using a method such as the 
classical procedure of Darlington (1939). Darlington's 
method is essentially a means of constructing lossless 
transmission circuits with a resistive termination to 
obtain the optimum realizable performance.

The Tschebyscheff polynomials may be defined by

I Co6 ( ft OACCOS tô") j ^  itôl ^  I 

^  \c«iA.lnci/i.oc»iA,M)y / t  /t5/ >/

Graphs of these polynomials for n = 2,5»4,5»6 are 
shown in Fig.4.6. They have the following properties:-
(1) T̂ (&3) oscillates between + 1 in the interval -1^ ^  ̂  + 1
(2) The zeros are all located in the interval -1 ̂  ̂  ^ + 1 

with intervening maxima and minima with values + 1 
respectively

(3) Outside the interval -1 ^ t3 ̂  + 1 the polynomial 
becomes very large in comparison with unity. For large 
values of ^

If-/ ^
T n  (CÔ)

The application may be extended to include trans
mission line theory by use of the transformation (Richards,



w

lOb

W

CO



iOl

194-8)
^ - I éd/yt 6

where ^  is the electrical length of a section of trans
mission line. This is based on the following assumptions:
(1) The elements of the transmission line are lossless;
(2) the elements are commensurate. Because of the similarity 
between transmission lines and multilayers, the transforma
tion effectively extends applications of network theory
into the optical region. In general, for multilayer design, 
the configuration is fixed and some of the design data 
(e.g. the refractive indices) may also be fixed. In this 
case, the circuit prototype must be manipulated to accept 
these restrictions on data.

Young (1961) and Seeley (1961) apply the method 
of exact synthesis to multilayer design; the former designs 
antireflecting coatings, while the latter considers the 
synthesis of interference filters. Seeley's transmittance 
function is of the form

2h gives the amplitude of the 'ripple' - its value is 
obtained from the allowed tolerance of the specified func
tion. Another form of response used by Seeley is the 
’maximally flat' (Butterv;orth) function of the form
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T   ---------1__________  ,
/ f (<2,}-»]̂  (4.4.12)

A comparison of the two types of function when h = 1 is 
given in Figure 4.7.

Both Seeley and Young considered fixed thicknesses 
for the layers and used the method of synthesis to obtain 
values for the refractive indices in order that the desired 
transmission function be obtained. However, only a few 
dielectric materials are available for use in optical 
filters, so the synthesised design almost certainly will 
not be realisable. In this case, it may be more advantageous 
to have the layer thicknesses as design variables and fix 
the values of the refractive indices. This problem has 
been discussed by Chen, Seeley and Williams (1964), who 
suggest that the optimum multilayer design may be obtained 
(a) by varying the phase thicknesses (b) by varying the 
impedances (refractive indices) (c) by any combination of
(a) and (b). They also suggest a method for desifcn by 
relaxation in which the matrix product of the filter is 
equated directly to the specified insertion loss function 
and the resulting algebraic equations are solved by a 
relaxation calculation. This is somewhat similar to the 
method suggested by Pohlack (I960), except that the latter
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fixes the values of the thicknesses so the only design 
variables are the refractive indices. The types of filter 
discussed by Pohlack are antireflecting filters requiring 
only a few layers, so the solution of the resulting algebraic 
equations is fairly straightforvrard.

For multilayer filters vd.th varying thicknesses, 
the multilayer-circuit analogue will hold for only one 
frequency. However, this frequency may be chosen at a 
fairly critical point (e.g. the point of cut-off for a 
band-pass filter) so the method can still be extremely 
useful.

§4.5. The method of successive iterations
' f

The method of successive iterations (Baumeister, 
1958) is a 'relaxation* multilayer design procedure. Small 
changes are made in the design variables in order to 
produce a better approximation to the desired result than 
that given by the initial design. The process may be 
repeated as many times as necessary to produce the required 
improvement in performance. Usually» the specified function
takes the f orm of a given transmission or reflection curve »■ r
although the .method has been generalised to include modifi
cations of ^ » the phase changes on reflection and
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transmission or sometimes ^  ^  JA. or if
} 3cr ’ acr ô<r

non-riormal incidence is to be included values for both states
of polarisation of ~  are included/ dr oB
(Dobrov;olski, 1965 ).,

I .

. '' The transmittance or reflectance of an jW-layer
icombination(of thin films depends on the optical thiclaiess

ti = n^CL » the refractive index n^, and the v/avenumber <T
of the incident light. Then» for some wavenumber (T\ » the
change in transmission JT, » or reflection R . » caused byd d
alterations t^ in the optical thicknesses of the layers, 
is given by

N

SU, ,-STj , f O i U l Ÿ  (4.5.1)

if the indices of the layers remain constant. Then if a 
known combination of layers has a spectral reflectance which 
is approximately such that it differs from the required 
design at a finite number, m, of points only, this combina
tion may be used for the initial design. We may estimate
the changes in reflectance S required to produce the

 ̂■ 3^4required spectral curve at these m points and the may
be calculated. Tiis calculation may be done either by using
a finite difference approximation or by an exact method
(Baumeister, 1962). Thus a set of m simultaneous equations
with R unlmowns is obtained, and a subsidiary condition
that ^  ( tf)^ be a minimum is also specified. The equa-

i=l
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tions may be solved for the and the cycle repeated.
In order that the second order terms in (4.5.1) may be 
neglected» the changes S should be small, so many itera
tions are often necessary to produce the required result.

In Chapter III details were given of the broad
band reflector Baumeister and Stone designed using this 
method. The starting design for this coating was obtained 
by combining two 'mismatched* stacks. Baumeister (1958) 
gives another example - a high-pass filter design. The 
initial design is a 17-layer classical stack and Baumeister 
uses the method of successive iterations to remove the sub
sidiary reflectance bands. The initial and final designs 
are shovm in Figure 4.8.

Three conditions are necessary for the method to
be successful; first, the initial design must bear some

3 Rresemblance to the desired curve; second, the must 
exist and be of sufficient magnitude for second order terms 
to be neglected; finally, the system of simultaneous 
equations must possess a solution. In many cases, it is 
not always easy to see if the third condition will hold in 
a particular case, and it becomes increasingly difficult 
when factors other than reflectance and transmittance are 
taken into account.

' Baumeister (1962). has also applied the method of 
successive iterations to the problem of improving the
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design of a multilayer containing some absorbing films. For 
absorbing films, the resulting equations for the multilayer 
are very much more complicated and analytic methods of syn- 
thesis would be extremely difficult to apply.

The problem of choosing a suitable initial design 
may be fairly difficult and this is a severe limitation of 
the method of successive iterations. In the next section $ 
we shall discuss methods by.which the problem may be overcome.

§4.6. Automatic Design Methods

In order to design a multilayer, which has a 
specified performance, without providing an initial design 
which itself gives a fairly good approximation to this per
formance, values of the reflectance (or one of the other 
spectral characteristics mentioned above) must be obtained 
for a range of values of the design variables, dhe best 
approximation may then be selected. One must define a func
tion which will measure the performance of the multilayer. 
Dobrowolski calls this the ’merit function*. This function 
will depend on all the design variables of the multilayer. 
It will become more and more complicated as the number of

r

layers increases and will have an increasing number of 
minima so it becomes very difficult to find the lowest
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minimum. However, actually obtaining the lowest minimum 
(i.e. the best approximation to the required curve) is not 
always important in thin film design; the design will be 
acceptable as long as the final multilayer performance is 
within the limit of the allowable tolerance.

In order to obtain the lowest minimum for an 
N-layer filter (i.e. 2N design variables) when each of the 
variables may take p different values (this defines the 
'mesh* nf the search net) one must calculate the merit 
function (p) times. It is easy to see that as N increases, 
the machine time needed for the search would soon become 
formidable even on a large computer. A variation of this 
design procedure was applied by Eisner (1964), but in order 
to keep down the number of calculations, he fixed the values 
of the refractive indices and some of the layer thicknesses 
and allowed the remaining thicknesses to take the values

-7j- where the integer m = 1, ...6. He imposed the following 
condition on the transmittance

P,(K) ^ T ( k ) i F^fK) , /Co S K i K, (4,6.1)

where •< = Every time a value of the design variables
satisfying (4.6.1) was obtained, the region of permissable 
values of T(K) was increased. The final region of acceptable 
values of T(K) is fixed and the optimum value of the
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parameters corresponding to these final boundaries was 
determined. Eisner applied the method to the design of a 
broad-band reflector. His results for an eleven-layer 
system are given in Fig.4.9* The computation time required 
for the calculations was 5)̂  hours. (The Moscow State 
University Computer was used.) However, in general a 
refractive index/thickness net of this type will not be fine 
enough to give the best solution.

Shatilov and Tyutikova (1963) employed a method 
which does not use such an exhaustive search procedure. To 
simplify the problem, the refractive indices of the layers 
were again fixed. The desired curve was given by R(<̂ ) and 
the curve for an N-layer system by Rm(̂ *>, t̂ ,...tjj-). The 
merit function was defined to be

ù-f» = t,- (4.6.2)

the integration being taken over the spectral range of the 
design. In order to find the final values of t^, the syn
thesis of the system took place in stages; at each stage 
only one additional layer was added to the multilayer and 
A  m was minimised. The value of the integral A m was 
obtained, using Simpson's rule, for eleven values of t^ 
for each layer and the value which gave the minimum value 
of m^ was chosen as the thickness of the layer. In this 
way, systems of up to eight layers were designed, without
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the use of electronic computers. Their design for an eight- 
layer low reflectance coating is given in Fig.4.10 (Curve A). 
The method gives a fairly,good result in this instance, but 
there are other problems where the method breaks down. One 
of the most obvious examples is the design of a thin film 
system with the properties of a quarter-wave stack.

Dobrowolski (196$) manages to overcome the diffi
culty by adding a group of two or more layers at a time to 
the existing design. In each group both the refractive 
indices and the thicknesses may take several values and the 
most favourable combination is then added to the previous 
layers. After the addition of each group of layers, the 
combination is refined further using the method of successive 
iterations. The merit function used in the method is

"  ' It 1 1

where P P  . and T . are the desired value, the actual value d o  d
and the tolerance of the desired property at the point CT,.d
Thus when all the functions are just within tolerance of 
their desired values, M = 1. K may take any of the values 
1,2,4 or 16. Tie results for five and six-layer achromatic 
beam-splitters with fixed indices are shovm in Pig.4.11 
(Curves A and B respectively). Qirve 0 represents a four- 
layer beam splitter with variable indices. Dobrowolski
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also applied the method to the examples given by Shatilov 
and Tyutikova. This final result after nine iterations is 
shown in Curve B of Figure 4.10.

Clearly, this method is a very powerful one, but 
there may still be problems where it v/ill not find the 
solution. However, it is certainly a very useful method of 
automatic synthesis which does not rely on an exhaustive 
search procedure. Much of its power lies in its adaptability 
for all kinds of design conditions.

,r
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CHAPTER V . LEAST SQUARES METHOD OF FILTER DESIGN

§5*1* Discussion of Design Considerations

In Chapter IV, an account was given of the various 
design methods used at present for producing optical filters* 
In general, no single method will be suitable for all prob
lems, but a knowledge of the various approaches enables the 
designer to choose the most suitable method or combination 
of methods for his particular problem.

One must therefore consider several important 
criteria for the design of optical filters before presenting 
a new method. First, one must consider the realities of the 
problem; if only one or two materials are available, one 
must obtain the best possible design using only these 
materials; if the monitoring system used is fairly primitive, 
one may have to consider designs in which the thicknesses 
may only take certain values. Finally,.one must consider 
economy of computing time, both in developing the design 
program and in production of results once the program has 
been tested. In the method to be reported in this Chapter, 
use was made of a facility of modern large computers - the 
existence of library subroutines. These subroutines have
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not only been already tested, thus economising on develop
ment time, but they have been written by programming experts 
and are therefore economical to use in production runs. The 
method of least squares is basically very straightfoirward; 
its usefulness lies in its adaptability to different design 
conditions* It may be used either to improve existing 
designs by a ‘refining* technique or to design a filter 
automatically when no initial design is given*

§5*2* Theory of the least squares method

One way of specifying the design for a particular 
filter is to require that the reflectance R*(X) take certain 
values at wavelengths K = 1, ... m. A multilayer con
figuration may then be chosen which has a particular number 
(N) of design variables. The most general configuration for 
non-absorbing media is that given in Fig.5*l(a) in which all 
the refractive indices and all the thicknesses (measured at 
the central wavenumber) are design variables. Because of 
the difficulty of obtaining suitable materials, a more prac
tical approach is to consider the type of configuration shown 
in Fig.5il(b) in which the indices are fixed and the only 
design variables are the layer thicknesses. Alternative 
types of configuration are possible if more than two
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materials are available, but for simplicity of calculation 
and manufacture, designs containing only two materials were 
considered*

Suppose the design variables have values 
^1» ^2’ represented by the vector x in the N-
dimensional parameter space of the variables. The reflec
tance x) of the multilayer at the wavelength may
be obtained using the matrix method* We therefore require

/ - K ( X k , ï -)| = o (5.2.1)

for all A K  = 1, ... m. If the set of simultaneous equa
tions given by (5.2.1) is to possess a unique solution, one 
must have m = N. However, for many design problems it may 
be preferable to consider the problem where m > N so that 
condition (5*2.1) is replaced by the condition that the 
function

X, where ra > K (5.2.2)
Az I

should be minimised. In order that bhe terms in the summa
tion are all positive, p must be an even integer.

Powell (1965) has described a method for minimising 
a sum of squares of functions of several variables, and has 
written a Fortran library subroutine (VA^^A) based on the 
method. The subroutine will minimise a function of H
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variables of the form
yri

^ (^1, ̂ x, ■ >c.̂ ) a ^  yn^rJ (5.2.5)

In principle, the only limitation to the number 
of variables is set by the size of the computer. Clearly, 
this method may be applied directly to the problem of filter 
design by setting

pC C26) = [^'(Xk ) - /? (ï: J (5.2.4)

and performing the summation over a range of wavenumbers.
The function P(x) will become very complex as N increases 
and the subroutine will not always find the lowest minimum, 
but will converge to the nearest minimum to its starting 
point. Thus, for use in automatic design methods an initial 
scan must be incorporated in the program. For filters with 
only a small number of layers, a complete scan of all pos
sible combinations of layer thicknesses is possible if the 
mesh of the scan is fairly large (a maximum of five different 
values of layer tîiickness were considered for each layer).
For more than five layers, another type of scan must be 
used. Each layer is given an initial thickness value, then 
the thickness of each layer in turn, starting with the first 
is allowed to vary through a fixed range of values (these 
values specify the mesh of the scan). The thickness of the 
layer is then fixed as that value for which F is least. The
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process is repeated a further N-1 times, the second time the 
second layer is varied first, working through to the Nth and 
finally the first, and so on. This type of scan will be

preferred to as the *N -scan*. Thus if each layer is allowed 
to take q values of thickness, the total number of times F

pis calculated during the initial scan is q x N in the latter
case. This may be compared with the number of calculations,
Nq , which is required for a complete scan.

For some design problems, a good approximation to 
the desired curve may be known, so in this case the scan may 
be omitted and the initial thicknesses are set as the values 
corresponding to those in the known design. The subroutine 
will then 'refine* the thicknesses until the performance of 
the filter approaches the specified curve.

Later in the chapter, results will be given of 
designs obtained by the least squares method using

(a) A complete initial scan
p

(b) the E -scan method
(c) the refining method.

First, however, a description of the program will 
he given since its structure is fairly complex.

§5.5. The Program r

A flow diagram and a copy of the program used for
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pAutomatic design, incorporating an N -type scan^will be 
given in the appendix. However, it will not be out of place 
to mention some features of the program here.

The program was written in the Fortran language 
for two reasons; (1) it may then be used on many different 
computers as most of the world's large computers have a 
Fortran compiler. (This is not the case for most other 
programming languages); (2) the library minimisation 
routine was written in Fortran, so it could immediately be 
incorporated into the program. This routine appeared to be 
the best available for least squares minimisation and curve 
fitting.

The program consists of the main program, a sub
routine CALFUN which calculates the fg for a particular 
value of X and the library subroutine VAq2A, which calls 
another library subroutine VDq̂ Â. The subroutine CALF UN 
calls a subroutine GHiiAMP to perform the matrix multiplica
tions. The complete scan main program also calls a sub
routine VALTRS which calculates F(x) and decides whether it 
is the minimum of the values obtained in the initial scan. 
Fig.5«2 shows the link between the main program and the 
various subroutines. The main program consists of the 
format statements for data input and output and if necessary, 
the initial scan procedure. The following data is read in:
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Pr og«>^M
START

T R A M S P E R  To SUBROUTINE CA>UFUN
RETURKJ PfROM C/^UFUN

TR/XN5FER TO SuaROUTiiNE V A 0 2 A
RE-TURrsi PR.Ofs%| VA 02 A

ErslO

0>=Ki-F=UNj VA02 a
3TA R.T START

TRANJSFER TO CWMANiP t r a n s f e r , t o  VD O lA

RETURN FROM CHMANIP RC.TURIN PROM VOO<A

Re t u r n  to m a im  p r o g r a m RETURN TO MAIN PROGRAM

CHMAMP
START

RE-Tu Rnj To CAUPUKI

V D olA

RETURN To VA0 2A

Pig 5.2. LINK. SE.TWEEN MAINJ PROCÎRAM 
An d  Th e  Subroutinies
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(i) Information about refractive indices.
(ii) The nujnber of layers, N, in the filter and the number 

of wavenumbers, M, considered.
(iii) The specification of the desired curve.
(iv) Information about the limits and mesh of the initial 

scan; if no scan is employed, the initial thicknesses 
are read in instead*

(v) The absolute accuracy parameters for each design 
variable.

(vi) The maximum number of times the minimisation routine 
should call the routine CALFM - this sets a time 
limit for the procedure.

(vii) The frequency at which a print-out of the variables 
should occur during execution of VAq2^*

The last three items are required by the library 
subroutine specifications.

The output consists of the heading for the filter, 
a list of the refractive indices, and a list of the wave- 
number (-“ ), the given reflectivity H*(A. ) and the calcula- 
ted reflectivity R(\g, x) for all values of The latter
is given before and after the minimisation subroutine is 
called. The values of the design variables x^ ... x̂  ̂and 
the functions f̂ . at the beginning and end and at several 
points during the execution of the minimisation procedure
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are also given. An example of the form of output obtained 
is given in the Appendix.

§5.4. Results

Although the least squares method may in principle 
be used to design a filter with any given spectral charac
teristics, the results given here will show its application 
to several standard types of filter, as these designs are in 
demand at the present time. In all cases, indices corres
ponding to available materials are used. The designs are to 
seir/e merely as examples to illustrate the method, so the 
number of iterations of the subroutine was limited in order 
to economise on computing time.

Obviously, if one were designing a filter for mass- 
production, it would be profitable to obtain the best pos
sible design by decreasing the mesh of the scan and by 
increasing the number of iterations of the subroutine, so 
that a minimum is reached in each case. This is most 
important for filters with many layers because then the 
reflectance may become a very complex function in the 
parameter space of the design variables and in order to 
locate a suitable minimum, one needs a scan with a relatively 
fine mesh, compared to that needed for filters with fewer 
layers.
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The results reported here were obtained using the 
London University Atlas Computer and the Atlas at the S.R.O. 
Atlas Computer Laboratory at Chilton. A table showing the 
thicknesses of the layers at the beginning and end of the 
minimisation procedure will be given for each design. The 
initial thicknesses for the refining method will be those 
corresponding to the approximate design, whereas in the 
automatic design methods, the optimum set of values obtained 
from the initial scan provide these initial thicknesses.
The values of the function F, defined by equation ($.2.$) 
will be given in each case and also the number of iterations 
needed to obtain the final result. The graphs were obtained 
by computing the spectral characteristics of the final 
design over a given wavelength range at intervals of <T/(T̂ s=0.02, 
The specified values of R*(A^) and the values of x)
obtained by the design method for wavelengths will be 
shown on the graphs by the symbols X and O  respectively.

(1) Antireflection coatings
For this type of design, the aim was to produce 

as low a reflectance as possible over the wavsnumber range 
0.60 to 1.40 using alternate layers of MgFg 1.58)
and ZnS (n = ̂  2.50). This corresponds to a wavelength 
range from 520 iim. to 750 nm. if A ̂  = 4-50 nm. For both
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the three layer and five layer coatings, the designs produced
2by the complete scan method and the N -scan method were the. 

same# They are shown by curves A (Three-layer coating) and 
B (Five-layer coating) in Fig.5,5. The reflectance of the 
uncoated substrate is also shovm. In both cases, during the 
initial scan, the phase thicknesses (at A^) were allowed to 
assume the values 50^, 60^, 90^, 120^, 150^, 180^. (A phase 
thickness of 90^ corresponds to an optical thickness of 
A^/4). It is seen that even by using fixed indices, one 
may obtain a design which will lessen considerably the 
reflectance over a wide spectral range.

Table 5.1» Low Reflectance Coatings
5-layer-coating(Curve A) 5-layer-coating(Curve B)

Layer Initial
Thicknesses
(Degrees)

Final
Thicknesses
(Degrees)

Initial Final 
Thicknesses Thicknesses 
(Degrees) (Degrees)

1 90 110.44 90 89.25

2 50 10.96 180 . 191.91

5 50 28.26 50 26.87

4 50 50.57

5 180 187.57

No. of design wavenos. (M) 9 9

Initial value of F 1.72 X 10"^ 5.63 X 10"5

Final value of F 2.28 X 10"5 2.57 X 10"5

No. of iterations 10 8
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(2) Achromatic beam splitters with 50/ reflectance 
for normal incidence

As a second example to illustrate the least 
squares method, the design of•achromatic beam splitters was 
considered. In this case the given reflectance was equal 
to 50% at a number of points over the range = 0.70 to

= 1.30. The results are shown in Figure 5-4. Curve A 
is the reflectance of the five-layer coating obtained using

pthe N"-scan method y Curve B is that obtained with a complete
initial scan, and Curve C shows the performance of a seven-

2layer coating, again using the N -scan method. The indices 
of the layers were taken to be 2.36 and 1.59 on a substrate 
of index 1.53. It is seen by comparison with Fig.4.11, 
that even though fixed indices are used, these results com
pare very favourably with those given by Bobrowolski. All 
three curves satisfy his design requirements that the 
reflectance in the spectral region 400 to 700 nm. should be 
equal to 50 + 5%, for a suitable choice of A 0

The computing time on Atlas for the five-layer
2complete scan was approximately 5*5 mins., whereas the N - 

scan method was much shorter. In the latter case, the five- 
layer design took 45 seconds and the seven-layer one 75 
seconds. The tliicknesses corresponding to these designs 
are given in Table 5*2.
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Table 3*2, Beam splitters

Layer

5-layer coatings
Scan 

(Curve A)
Initial Final 
Thick- Thick
nesses nesses

Complete Scan 
(Curve B)

Initial Final 
Thick- Thick
nesses nesses

7-layer coatings

Curve C
Initial Final 
Thick- Thick
nesses nesses

1
2
3
4
3
6
7

90
90
60
30
30

87.93
95.47
57.87
30,72
29.66

70
110
70
30
30

92.57
97.11
52.61
58.42
28.05

90
90
30
30
30
30
30

99.42 
99.70 
57.47
34.42 
16.65
5.64
20.91

Ko.of design wavenos. 
Initial value F 
Final value F 
Ko. of iterations

13
2.96 X 10 
2.88 X 10 

20

-2
-2

.-2
13

3.27 X 10 
2;29 X 10"'^ 

20

-2
13

9.64 X 10 
7.99 X 10~5 

21

(3) Double-Half-Wave Interference filters
In order to test the design program, the spectral 

characteristics of one or two well-hnovm filter designs were 
given as the specified curve. The first of this type of 
^test * design was the production of a three-layer Double 
Half-Wave interference filter. The design was first sugges-
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ted by Smith (1958) as a means of producing interference
filters with a rectangular shape transmission band rather
than the Airy shape shovm by a conventional Fabry-Perot
type interference filter. Both the complete scan and the 
2N -scan methods were used. The values of the allowed thick
nesses in the initial scan for the former method were 50®, 
80°, 110°, 140°, 170°. The values 90°, 180° were 
deliberately omitted in order to test the minimisation sub-

proutine. In the N -scan method, the thicknesses took the 
values 60°, 80°, 100°, 120°, 140°, 160°, 180° during the 
initial scan. The final designs obtained are shown in Pig. 
5*5 (Curves A and B represent the N -scan and the complete 
scan respectively), and the corresponding*thicknesses are 
given in Table 5.5# The values of reflectance for the 
specified curve were estimated approximately from the pub
lished curve, so the final values of the thicknesses 
obtained by the least squares method are correct to within 
the accuracy one might reasonably expect.

Table 5#5# Double Half-Wave filters...
Scan Complete Scan

Layer Initial
Thicknesses

Final 
, Thicknesses

Initial Final 
Thicknesses Thicknesses

1 180 182.5 170 177.65
2 120 92.9 110 92.49
5 160 175.5 170 181.22

continued
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Table f). 3 • c ont imied

luo

No. of design wavenos. (M) 10 10
Initial value of F 2.02 X 10“^ 9.48 X 10"^
Final value of F 3.94 X 10~5 1.98 X 10~5
No. of iterations 2 4

(4) Classical stacks
The other tj^e of test design to which the least 

squares method was applied was the classical quarter-wave 
stack. Both a five-layer and a nine-layer system were con
sidered* In the five-layer case, both the complete scan 

2and the N -scan methods were used* The results are shown
in figure 5*6, (Curve A represents the complete scan design,
Curve B that of the N^-scan) and Table 3*4. In the former
case, the thicknesses in the initial scan were allowed to
assume the values 50^, 80°, 110°, 140°, 170°. For the N^-
scan, the corresponding values were 30°, 60°, 90°, 120°,
150°, 180°. In both cases the curves obtained from the
design are very close to the given curve, although in the 
2N -scan case, the thicknesses of the layers have not 
attained their quarter-wave values. The result for the 
nine-layer filter is shown by Curve A of Fig.3.7# Curve B 
represents the reflectance of a nine-layer classical stack.
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Again the curve obtained from the design method is reasonably 
close to the given curve, although from Table it is seen 
that the thicknesses deviate considerably from the quarter- 
wave values* However, in this case, the system is fairly 
complex and in the minimisation subi'outine the function had 
not converged to its minimuia value because of time limita
tion. The initial scan was over the same range of thickness

pvalues as that of the H -scan for the five-layer filter, but 
an improvement could be made by decreasing the mesh of this 
scan. In both cases, one can easily see that this type of 
design is fairly insensitive to deviations in the layer 
thicknesses, especially with respect to the outermost 
layers, since the design curve does not differ mai'kedly 
from the given curve for a quarter-wave stack.

Table 5.4. Classical stacks

5-layer stack 9-layer stack

layer
Complete Scan
Initial Final 
Thick- Thick
nesses nesses

N^-Scan
Initial Final Thick- Thick
nesses nesses

rr-Scan
Initial Final Thick- Thick
nesses nesses

1 80 89.21 120 101.92 120 128.98
2 110 90.61 60 81.20 60 41.54
5 80 91.07 90 89.86 120 117.58
4 80 87.49 120 100.15 60 84.08
5 110 92.58 50 66.54 90 78.67

continued



Table 5.4. continued

6
7
8 
9

120
60
90
180

102.24
86.10
82.54
179.00

No.of design wavenos. 9 Qy 9
Initial value of F 1.37 % 10"^ 8.38 X 10”^ 6.78 X 10“^
Final value of F 9.75 X 10"® 2.06 X 10"5 2.90 X 10"^
No. of iterations 12 24 24

(5) High- and Low-Pass Filters
The next type of design to which this method was 

applied - namely, the design of low- and high-pass filters - 
was very much more complex than the designs given in the 
previous examples. The criteria one must consider for this 
type of filter are generally (1) very good rejection proper
ties (H > 99.9^) in the stopping region; this is usually of 
maximum importance, (2) steepness of cut-off, and (5) good
passing performance. The automatic least squares method 

2with the N -scan was used to design thirteen layers low- and 
high-pass filters. The results are shown in Figs. 5*8 and 
5*9 (Curves A). In the low-pass case, the rejection proper
ties and steepness of cut-off are very reasonable, but the



passing propertios are not particularly good. This is 
partly due to the high index of the substrate and an 
improvement could be made by the application of an anti
reflection coating. However, the latter would affect the 
steepness of cut-off. The design points around the point 
of cut-off give quite a large contribution to the function 
F if the steepness is reduced, and in this case tliis is 
greater than the effect’of poor passing performances at one 
or two design points in the pass-band. The relative sensi
tivity of the method to passing performance and steepness 
of cut-off may be altered by applying some kind of weighting 
procedux'e. The passing performance is better in the high- 
pass case (there are more design points in the pass-band) 
with a resultant lessening of the cut-off steepness.

An alternative way of approaching this design 
problem is to use a refining method. The initial approxi
mate design was obtained by Seeley (1965) using a multilayer/ 
circuit analogy method. The components of the electric 
filter whose performance corresponds to a Tschebyscheff 
response may be obtained (Microwave Engineers Handbook, p.92 
(1964)). At the point of cut-off, the thicknesses of a 
multilayer with fixed refractive indices may be found 
approximately, using Seeley*s method, so the multilayer/ 
circuit analogy is established. The refined results for
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fifteen layer filters are shovm by Curves B of Pigs. 5.8,
5*9* In both cases an antireflection coating was applied 
in order to improve the passing performance of the filters.
In the low-pass case this was, applied at = 0.65» in
the high-pass case at /̂<T̂  “ 1 .?0. Much of the cut-off 
steepness is lost by using this antireflection coating - the 
effect is more apparent in the low-pass case. Thus, in the 
latter case, the value of P(x) is much larger than one would 
perhaps expect for a minimum - most of the contribution to F 
comes from the design points around cut-off. The refining 
program has little effect on the low-pass design; obviously, 
the approximation is good in this instance. However, the 
multilayer-circuit approximation is only applicable over a 
limited range and in the high-pass case this range of 
applicability is much smaller than that for the low-pass 
design.. Thus, the initial approximation used for the high- 
pass filter is not so well justified as that for the other 
case, and the design is considerably changed by the refining 
method.

The indices used were 2.2 and 5#1, corresponding 
to ZnS and FbTe respectively, on a substrate of Germanium 
(index 4.0). The filters were designed for Infra-red work. 
The initial and final thicknesses for all the high- and 
low-pass filters are shown in Table 5»5*
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Table 5«5» Low- and High-Pass filters

K -scan method kefined design
Layer low--Pass High-pass Lov;--pass High-pass

Ini
tial

Thick
ness

Final 
Thick- 

- ness
ini
tial
Thick
ness

Final
Thick
ness

Ini-
tial

Thick
ness.

Final
Thick
ness

Ini
tial

Thick
ness

Final
Thick
ness

1 150.0 162.7 60.0 54.5 128.0 127.9 58.0 56.2
2 60.0 55.1 100.0 102.5 56.0 56.1 144.0 157.2
5 60.0 58.9 120.0 119.8 55.1 52.8 126.9 155.8
4 60.0 65.8 120.0 109.5 58.5 58.9 121.5 151.6
5 60.0 55.1 120.0 118.5 62.4 61.9 117.6 115.4-
6 80.0 94.9 120.0 115.9 62.6 62.0 117.4 117.6
7 60.0 50.8 120.0 125.5 64.4 65.5 115.6 116.5
8 80.0 79.5 120.0 114.1 m.o 64.2 116.0 114.9
9 60.0 60.7 120.0 115.9 .4 6̂1 .0 115.6 115.8
10 60.0 57.4 120.0 124.7 65.0 65.1 117.0 115.9
11 60.0 69.1 120.0 128.9 65.4 65.9 116.6 120.6
12 50.0 4-7.5 120.0 150.1 61.5 60.1 118.7 109.2
15 60.0 71.2 120.0 150.0 58.6 59.8 121.4 115.8
14 52.2 51.6 127.8 150.9
15 55.4 55.4 144.6 155.2

Wo.design points 17 17 17 17
Initial value of F 5.56x10“^ 6.75x10"^ 4.810x10"^ 4.27x10"^
Final value of F 2.96x10'^ 4.55x10"- 4.750x10“^ 1.96x10“^
Mo.of iterations 46 49 152 122
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(6) Broad-band reflecting multilayers
The final design problem which was considered was 

that of obtaining broad-band reflecting multilayers. In 
Chapter III, a method for producing reflecting multilayers 
with fixed indices was given. In this case, it was seen 
that the bandwidth increased with increasing number of 
layers. The least squares method was applied to the problem 
of designing a broad-band reflector with fixed indices and a 
fixed number of layers. Again, this is a fairly complex 
problem for automatic design, as there are fifteen indepen
dent variables in a fifteen-layer filter - the type con
sidered here. The method was again applied in two ways; 

o(1) the N^-scan method was used for automatic design, in 
which the thicknesses were allowed to take the values 60^, 
80^, 100°, 120°, 140°, 160°, 130° in the initial scan;
(2) a mismatched stack was fed in as the initial design for 
the minimisation routine and the least squares program was 
used to x'efine this design. The results are shown in Fig. 
5.10. Curve A represents the automatic design, curve B 
shows the performance of the refined design. The limiting 
width of a classical stack with materials of the same 
indices (2.56 and 1.39) is also shovm. The thicknesses of 
the designs are given in Table 5*6. These results show that 
a marked improvement in bandwidth over that obtainable for a
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classical stack may be produced, using this method. The 
computing time on Atlas was 7 minutes for the automatic 
design and two minutes for the refined design.

iSt

Table 5.6, Broad-band reflecting multilayers
------

N -scan design Refined design
Layer Initial

Thicknesses
Final

Thiclmesses
Initial

Thicknesses
Final

Thicknesses

1 80 91.50 75 60.29
2 160 156.81 75 76.70
5 100 94.74 75 75.39
4 120 121.60 75 77.82
5 80 85.86 75 74.59
6 160 162.62 75 65.54
7 100 89.21 75 72.95
8 80 ' 82.45  ̂ 90 100.15
9 80 80.58 110 102.58
10 80 80^50 110 110.62
11 80 85.62 110 116.46
12 80 76.77 110 99.96
13 100 95.91 110 117.85
14 60 67.47 110 107.32
15 80 72.60 110 109.28

continued



Table 5.5, continued

153

No. design points 17 15

Initial value F 8.91 X 10"2 1.68 X 10"!

Final value F 8.18 X 10"2 1.59 X 1 0 "!

No. of iterations 65 152
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CHAPTER VI. CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK

§6.1. The Abeles Condition Work

The results reported in Chapter II show that even 
a small amount of absorption can cause a considerable change 
in the measurement of refractive index, using the Abeles 
method. For the film considered, it was found that values 
of K greater than 0.005 cause an error in measurement which 
is greater than the experimental inaccuracy, so a correction 
must be applied if absorption is present in the film. For a 
film whose index differs from that of the substrate by less 
than 0.05, the experimental error in measurement is much 
smaller than that for the film considered in this work, and 
it may well be that a value of K smaller than 0.005 will 
cause an error in measurement outside the expected experi
mental error.

Two methods for determining the error in the film 
measurement were outlined. The graphical method is suitable 
for use if only a discrete number of values of K are con
sidered for several films, and if a digital computer is 
available. However if one wishes to obtain a general 
expression for the variation of & . with K for a particular
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film, the power series method should he used. The results 
from both methods were seen to be in very good agreement.

§6.2. Broad-band reflecting filters

The results in Chapter III show that really broad 
reflectance bands may be obtained using two materials of 
fixed indices and staggering the thicknesses of the layers. 
The bandwidth of such filters is not limited by the ratio 
of the refractive indices of the layer materials, as in the 
case of classical stacks, but can be seen to increase with 
increasing number of layers.

For materials of refractive indices 2.36 and 1.39, 
symmetric staggered layers exhibit broad reflectance bands 
over a range of which extends from 1.03 to 2.30 for
the 35-layer stacks. Throughout the range narrow-hand 
transmission peaks occur approaching 100% transmission in 
value. Asymmetric filters exhibit considerably wider 
reflectance bands than the symmetric systems and show only 
slight variations in reflectance. Both the nari’ow band 
transmission peaks in the symmetric filters and the fluc
tuations in reflectance in the asymmetric case have been 
explained by reducing the multilayers to two effective
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interfaces and performing a Fabry-Perot-type of analysis.
These staggered stacks exhibit a very large dis

persion of phase change on reflection. One result of this 
is that when the stacks are used as the reflecting elements 
of an interference filter, the transmission bands of the 
filters should be extremely narrow. Another consequence of 
the high dispersion of phase change is that the filters are 
stabilized so that the reflectance properties are not 
seriously modified by the presence of small errors in layer 
thickness.

Finally, a closed form expression was obtained 
for the matrix product of the layers in a staggered stack, 
if the difference in thicknesses of the layers is small. 
This expression has been checked numerically with the com
puted values for a nine-layer asymmetric arithmetic filter, 
using a common difference K = 0.005* It may well be pos
sible to explain reflectance characteristics of the 
staggered stacks, using this expression, in a similar 
manner to that used for classical stacks.

.5. The least squares design method

In Chapter V a fairly simple method of general 
filter design has been developed. This method makes use of
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a particularly suitable Fortran library subroutine and is 
therefore economical on computing time. Many of the best 
results obtained by other methods were produced by varying 
the refractive indices of the materials in the filter. In 
this work a more practical approach has been made in that 
the indices of the materials are regarded as fixed and 
instead the thicknesses of the layers have been allowed to 
vary.

The method has been applied both to automatic 
filter design and to the problem of ’refining* existing 
designs. Results were given for several types of filter 
including anti-reflection coatings, achromatic beam splitters, 
low and high-pass filters and broad-band reflectance filters. 
The method is also tested for the design of classical stacks 
and double-half-wave transmission filters. The results show 
that this type of design procedure can be very useful, 
especially for the design of filters with only a few layers, 
where a complete initial scan may be used to locate a suit
able minimum. Filters with many layers present a more com
plex problem, but the method can produce some useful results 
in these cases too; striking examples are the designs 
produced for broad-band reflectance filters. It may also 
be used to check approximate designs and to refine them if 
necessary. This was illustrated by the low- and high-pass
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filter design examples. The least squares method was also 
shown to produce good results for the test filter designs, 
although the time limitation in the minimisation subroutine 
prevented the minimum being attained in one or two instances.

§6.4. Suggestions for Future Work

The results of the Ibeles condition work reported 
in Chapter II show that absorption can have considerableI
effect on the performance of a single film. It may there
fore be important to include the effect of even a small 
amount of absorption in a general multilayer system.
Another phenomenon for which allowance should be made is 
that of dispersion of refractive index. Apart from analy
sing the result of absorption and dispersion, it may be 
possible to use these effects constructively in the design 
of a multilayer filter. Very little work has been done on 
this subject, although Baumeister (1962) has mentioned the 
possibility of allowing for absorption, and Seeley and 
Smith (to be published) have considered the use of semi
conductor absorption edges in Infra-red blocking filters.

It is seen from the results reported in Chapter V 
that design methods are generally most successful if a good 
approximation to the required design is known initially. In
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order to provide more information about the initial approxi
mation, much more analytic work needs to be done so that 
details of the general behaviour of any multilayer system 
may be obtained, A certain amount of analysis has been done 
for the classical stack, but there is still a lot to be 
leamt even about this fairly simple system. One way of 
tackling the problem is to consider the behaviour of the 
equivalent index of the filter; the formulae derived in 
Chapter I should extend the application of this concept to 
the case of a general multilayer system, rather than 
restricting its use to symmetric multilayers. Another method 
which may well prove extremely useful is one used by 
Electrical ihgineers for the analysis of electrical filters; 
namely, the analysis of the behaviour of a system in terms 
of the poles and zeros of the insertion loss function in the 
complex frequency plane. This technique has proved to be 
very useful in electrical filter synthesis problems.

There are various ways in which improvements may
be made in the least squares design method. A weighting

— pprocedure may be used in the summation fg- . i.e. f^ may
instead be represented by

(6.4.1)
Wk
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where is the weighting for the point ^ This method
could be employed to improve the fit to the desired curve at 
certain critical points. An initial scan of the type sugges
ted by Dobrowolski, where more than one layer is added at a 
time, could be incorporated into the automatic design method 
before the minimisation subroutine is called. More than two 
materials may be used in the design; ideally, one might 
provide a list of the indices of available materials and 
program the computer to choose the best combination of 
materials. However, these refinements will obviously increase 
the complexity of the method and the amount of computing 
time required; the resulting improvement in design may not 
justify the additional expense*

One factor which is of great importance in the 
manufacture of filters, especially for designs containing 
unequal thicknesses of the layers, is the effect of monitor
ing errors on the performance of the system. If these are 
detected during manufacture, it may be possible to compen
sate for them in later layers. For this reason, from the 
practical point of view, there is an urgent need for an 
investigation to be made into a general analysis of errors 
and their correction.
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Example to illustrate the use of Tschebyscheff 
polynomials in multilayer calculations

The reflectance of several quarter-wave multilayer 
stacks was computed at ^ the monitoring wavelength,
for the cases of normal incidence and 10^ angle of incidence. 
The high index material was Ce02 (n^ - 2.36) and the low 
index material was MgFg = 1.39). The films were 
deposited on a substrate of index 1.53. The calculations 
for the 13-layer stack are shown below and the results for
other stacks are also given. These agree with the results
obtained by the computer.

a) Normal incidence
2

Using (1.4.16), X = 2 - = 2.286824

S g ( X )  = X ®  - 5X ^  + 6 X ^ - 1  = 5 6 . 6 5 4 9 4
s ^ ( x )  = x 5  _ 4 X 5  + 3X = - 2 1 , 5 6 4 6 5

(MjjMĵ')®Mjj = Sg(X)Mjj - 8̂ (X)M^-^

0 i 56.65494 - 21.56465 \/l^ 2 : # - -  ~-T75T~ I
1(2.56 X 56.65494 - 1.59 x 21.56465) O / V ’55

IBS
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2
R = ■ -  Hg I = 99.810

b) 10° angle of incidence
(i) S-component of polarisation
Using Snells law, 0 ^  = 4° 13.177’, = 7° 10.592',

Og = 6° 51.001'
= 2.555603, /«L = 1*579097, y*g = 1*520115, f-^ = 0.%48C6 

X = -2.292277 
S^(X) = -21.9875
S^(X) = 12.846525

(Mjjl'lj.) = j -0.585850 0.0085181 \

0.0548471 -1.706429 /

 ̂\ = /_0.585850 S^(X) - S^(X) 0.008518 S^(X)i\Mg/ 1 \ ̂  
Q j V 0.0548471 S^(X) -1.706429 S^(X) - S^(X)/ ^.5201151

= /0.430599 0.0140291 \ / l \ tt +
58.0680591 0.4516 

R = 99.825 %

)/ " )
j\ 1.520115/

(11) p-component of polarisation 
/tjj = 2.566414, = 1.400989, = 1*539949, = 1.015427

X = -2.280854
S^(X) = -21.107084 
S^(X) = 12.456312
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(Tl
(-0.591928 0.0082461\
0.0351211 -1.688906/
0.418584 + 0.0256621 \

(0.654468 + 54.8771871
R = 99.7925 %

J
Other results:-

Table A.l

Wo.of layers Normal 
Incidence R%

10° Angle of Incidence

Ss * ..................5p. % . . .

1 32.575 35.004 31.745
5 68.226 68.914 67.514
7 ' 95.517 95.714 95.299
11 99.450 99.504 99.410
13 99.810 99.825 99.793
17 99.978 99.981 99.974



Program for Abeles^condition work

TITLE
ABELES CONDITION MEASUREMENT OF REFRACTIVE INDEX

CHAPTER 0 
U 10 
C -^10 
D -»10 
G 10 
H -»10
V -»10
X ->10 '
Y ->10 
Z ->10 
B -> 10 
F ̂ 1 0

1) I « 0(1)2 
READ (UI) 
REPEAT 
READ (L)
J = 1(1)L 
READ (BJ) 
REPEAT

r
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READ (B)
READ (M)
I = 1(1)M 
READ (A)
HEliTLINE 
NEWLINE 
CAPTION 
K =
PRINT (A)0,5 

J = 1(1)L
DO = Ÿ  SIN (BJ7T/180) 
D2 = U0D0/U2 
D2 = 1 - D2D2 
D = 1/D2 
D2 = D2 - 1 
02=1^ SQRT (D2)

2) 00 = Ÿ COS (BJ7T/180)
C2 = Ÿ  COS (P)

B = UlUl - UOUODODO 
B = y  SQRT (E)
E = 1/E 
E = O.5VB
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G1 = UlUl - UOUODODO - AA 
02 = 0101 + 4U1U1AA
02 SQRT (02)
03 = 01 + 02 
03 = 0.5 03 
Gl = 02 — 01 
01 = 0.5 01
02 = Ÿ  SQRT (01)

HI = UlUl - AA 
HI = HICO 
H2 = U004 
H3 = HI - H2 
H4 = HI + H2 
H3 = H3H3 
H4 = H4H4 
H5 = 2U1AC0 
H6 = U002 
H7 = H5 - H6 
H7 = H7H7 
H8 » H5 + H6 
H8 = H8H8
H7 = H5 + H7 r

H8 = H4 + H8 
H = H7/H8 
Hn = Ÿ SQRT (H)
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VI = UlUl - AA 
VI = V1C2 
V2 = U2G4 
V3 = VI - V2 
V4 = VI + V2 
V3 = V3V3 
V4 = V4V4 
V5 = 2U1AC2 
V6 = U2G2 
V? = V5 - V6 
V8 = V5 + V6 
V7 = V7V7 
V8 = V8V8 
V7 = V3 + V7 
V8 = V4 + V8 
V = V7/V8 
Vn SQRT (V)

XI = 2U1AG4 - U1U1G2 + AAG2
X2 = 2U0C0X1
X3 = UlUlCO + AACO
X3 = X3X3 - Ü0U0G3 - UOUOGl
X = X2/X3 ^
Xn = Ÿ  ARCTAN (1,X)
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Y1 = 2U2C2X1
Y2 = Ü1U1C2 + AAC2
Y2 = Y2Y2 - U2U2G3 - U2U2G1
Y - Y1/Y2
Yn = V'AECTAN (1,Y)

Z1 = Yn - Xn + 2G4B 
Z1 = i'COB (Zl)
Z1 = 2HnVnZl
Z2 = Yn + Xn + 2G4B
Z2 = ŸCOS (Z2)
Z2 = 2HnVnZ2 
Z5 =■ f  EXP (2G2E)
Z4 = 1/Z5 
D = B - BJ 
JUMP 3, D> 0 
JUMP 4

3) FJ = -1.0 
JUMP 5

4) FJ = +1.0 
-JUMP 5

5) Z5 = IB3 + VZ4 + FJZl 
Z6 = Z5 + UVZ4 + FJZ2 
Z = Z5/Z6



RSWLINE
NEWLINE
CAPTION
ANG. OF INC. =
PRINT (BJ) 0,6
NEWLINE
NEWLINE
PRINT (Z) 0,6
REPEAT
REPEAT
PSA
f  SIN
V SQRT
If'EXP
ŸARCTAN
PSA
CLOSE
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Program for computing reflectance and phase 
of staggered multilayers

TITLE
MimriL.\YBR OPTICAL FILTER CAIX3ULATI0NS

ROUTINE 50 
AO = XOYO - X1Y2 
A1 = XOYl + X1Y3 
A2 = X2Y0 + X5Y2 
A3 = X3Y3 - X2Y1 
T = 1(1)4 
X(T-l) * A(T-l)
REPEAT
RETURN
3€ *

CHAPTER 0 
A ->3 
X-»3 
Y-^3 
C ̂ 5 0  
W -=>200 
U -^3
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B -»3 
H -41 
V ~+l 
D -42

READ (UO)
READ (Ul)
READ (Ü2)
READ (U3)
9) READ (N)

READ (Q)
10) NEWLINE 

PRINT (N) 2,0 
READ (L)
READ (Z)
Ln = L + 4 
S) = Ln)
JUMP (S)

11) NEWLINE 
NEWLINE 
CAPTION 
K =
PRINT (Z) 0,3 
READ (P)
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In-= 1(1)P 
I = In - 1 
HEAD (WI)
Sn) = L)
JUMP (Sn)

12) XO = f  COS (CO) 
X3 = Y  SIN (CO) 
X2 = X5U2 
XI = X3/U2 
X3 = XO 
Nn = N - 1 
J = 2(2)Nn 
Jn = J - 1 
YO = Y  COS (CJn) 
Y3 = f SIN (CJn) 
Y1 = Y3/U?
Y2 = Y3U3 
Y3 = YO
JWIPDOWN (E50)
YO = Y  COS (CJ) 
Y3 = Y SIN (CJ) 
Y1 = Y3/U2 
Y2 = Y3U2 "
Y3 = YO
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JUMPDOWN (R50) 
REPEAT 
œ-JLINE 
KETw’LIWE
PRINT (XO) 0,6
PRINT (XI) 0,6
PRINT (X2) 0,6
PRINT (X3) 0,6
BO = X0Ü0 - U1X3
BO = BOBO
B1 = XOUO + U1X5
B1 = BlBl
B2 = X1Ü1U0 - X2
B2 = B2B2
B3 = XlUlUO + X2
B3 = B3B3
BO = BO + B2
B1 = B1 + B3
B = BO/Bl
NEWLINE
NEWLINE
HIINT (WI) 0,3
PRINT (B) 0,6
VO = U1U1X3X1 - X0X2
VO = 2U0V0



VI = UOUOUIUIXIXI + UOÜOXOXO - U1Ü1X5X3 - X2X2
V = Y aRCTAN (VI, vo)
V = 180V/7T 
PRINT (V) 0,6 
REPEAT

Q  = Q  - I 
JUMP 10, q> 0 
JUMP 9

1) 00 = 0.31TWI
K = 2(1)N 
G(K-l) = ZC(K-2)
REPEAT
JUMP 12

2) CO = O.^TTWI 
K = 2(1)N
C(K-l) = CO + KZCO - ZCO
REPEAT
JUMP 12

5) Vn = 0.5N + 1.5
R = Tf'IOTPT (Vn + 0.01)
C(R-2) = 0.5'WWI
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K = 3(1)R 
In = E - K 
En = E + K
CTn = C(R-2) + KZC(R-2) - 2ZC(E-2)
C(En-4) = CTn 
EBEEAT 
JUMP 12

4) Vn = 0.5W + 1.5
E = f  lETPT (Vn + 0.01)
C(E-2) = 0.5TTWI 
K = 3(1)E 
Tn = E - K 
Rn = R + K 
CTn = ZC(Tn+l)
C(En-4) = CTn 
REPEAT 
JUMP 12

5) CAPTION
-LATER ASTMMETEIC GEOMETRIC PIIffiBE. REFLECTANCE AND PHASE.

. JUMP 11

6 ) CAPTION
-LATER ASYMMETRIC ARITHMETIC FILTER. REFLECTANCE AND PHASE 
JUMP 11
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7) CAPTION
-IiAYEE 8YT#IBTRIC ARITHMETIC FILTER. REFLECTANCE AND PHASE 
JUMP 11

8) CAPTION
-LAYER SYMMETRIC GEOMETRIC FILTER. REFLECTANCE AND PHASE. 
.TUMP 11

PSA 
Y COS 
f  SORT 
fARCTAN 
PSA 
CLOSE



,12 :.LAY(fR
K=’~ 9 . ‘30 0 , ' -

1.0446/n 

6 . 000 , -1 

1.254244 
6.20U, -1

^ 1.351248
8.400, -1 

.. 1.316277 
8̂ ,60 0 , -1
1.139536 
8.800, -1 

6.220809,
9 . 0 0 0 , - 1.

3.764475,
9 . 20 0 , -1 

-ll736295,
9.400, -1 

-7.943437,
9.600, -I 

-1.440748 
9.800, -1

-2.074378 
.000 

-2.636400

A S Y M M E T R I C  G E O M E T R I C  F I L T E R ,  R E F L E C T A N C E  A N D  P H A S E .  

1 ' ' ‘ .

-4.884423, -1 -1.81,471.4 1 . 087688, -1
3.882874, -1 6.474931, 1

-3.236579, -1 -1.586750 3.878319, -1
4.358562, -1 5.261437, / 1 ^ _

-1.118189, -1 -1.236517 6.377369, -1
4.412395, -1 4.227890, 1.

1 . 326966, -1 -7.934081, ,_~-l 8 . 397034, -1
4.026255, -1 3.295969, 1

3.918652, -1 -2.946637, -1 9.788794, -1
3.185421, -1 2,573996, 1

-1 6.451470, -1 2.176953, -1 1.045584
2.095667, -1 2.533164, 1

-1 8.708365, -1 7.003982, -1 1.036181
1.643986, -1 4.115654, 1

-1 1.047543 1.112658 9.535038, -1
2.819579, -1 5.370308, 1

-1 1.155699 1.419808
4.852798, -1 4.956402, 1

3.178992 1.596557
6.502883, -1 4.0998/1, 1

1.105616 1.629580

7.535205, -1 3.272321, 1
9.292509, -1 1.519233

8.067919, -1

6.111367, -1

3.864/23, -1

1.561784, -1
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pMain Prorrram for least squares desiem with N -scan

* FORTRAN 
C MAIN

COMMON W, FREQ, GIVREF, CAIRE?, RAIR, RSUB, RA, KB
DlfffiNSION A(2,2),B(2,2),C(2,2),X(25),F(25),FRBQ(25),GIVR3F(25),CAL
1RSF(25), Y(25), E(25), W(IOOO)

C REFRACTIVE INDICES
READ 10, RSETSR

10 F0RI4AT (14)
27 READ 11, RAIR, RSUB, RA, RB
11 FORMAT (4E 12.4)

PRINT 12, HAIR, RSUB, RA, RB
12 FORMAT (22 REFRACTIVE INDICES ,/40 H (|) RAIR ̂ S U B  .0ÎA

1. 0HB., /4E 12E.4)-
READ 28, WDL

28 FORMAT (14)
C HO.LAYERS, NO. FILTERS,AND NO. FREQUENCIES 
26 READ 15, N, IQ, M 
15 FORMAT (514)

PRINT 14, N 
14 FORMAT (14, 15H - LAYER FILTER)

C FREQUENCIES AND GIVEN REFLECTIVITIES
17 READ 15, (FREQ (I), GIVREF (I), I = 1,M)
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15 FORT-UT ((6B 12.6))
READ 51, IXIN, IXINC, IXMAX, IXBEG 

51 FORMAT (4X6)
C ABSOLUTE ACCURACY PARAMETERS 

READ 19, (E(I), I = 1,N)
19 PORIUT ((6E 12.6))

READ 21, ESCALE
21 FORMAT (E 12.6)

READ 22, IPRITdT, MAXFUN
22 PORIUT (214)

DO 71 I = 1,N
X(I) = FLOAT? (IXBEG)
Y(I) = X(I)

71 CONTINUE
TRSUM = 10.0 
DO 76 J = 1,N 
DO 72 I = J,N
DO 75 ITH = IXIN, IXMAX, IXINC 
X(I) = FLOAT? (ITH)
CALL CALFÜN (M,N,F,X)
RSUM =0.0
DO 74 IK = 1,M
RSUM = RSUM + F(IK) + F(IK)

74 CONTINUE
IF (RSUM - TRSUM) 75, 75, 75
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75 Y(I) = FLOAT? (ITH)
TRSUM = RSUM

75 CONTINUE 
X(I) = Y(I)

72 CONTINUE
IF (J-2) 76, 79, 79 

79 JMl = J - 1
DO 77 X = 1, JMl
DO 78 ITH = IXIN, IXMAX, IXINC
X(I) = FLOAT? (ITH)
CALL CAI.FUN (M, N, F, X)
RSUM =0.0
DO 81 IK = 1,M
RSUM = RSUM + F(IK) 0 F(IK)

81 CONTINUE
IP (RSUM - TRSUM) 82, 82, 78

82 Y(I) = FLOAT? (ITH)
TRSUM = RSUM

78 CONTINUE
X(I) = Y(I)

77 CONTINUE
76 CONTINUE

C CALCULATION OP REFLECTIVITIES 
CALL CAEPUN (M, N, P, X)
PRINT 20, (FRBQ(K), GIVREF(K), CALREF(K), K = 1,M)
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20 FORMAT (51 H 5 PH-®)! 16 GIVREF 14 C AI,REF, /(JE 
120.6))
CALL VA02A (M, H, F, X, S, ESCALE, IPRIKT, MAXFÜN) 
CALL CALFUN (M, H, F, X)
PRINT 25, (FREQ(K), GIVREF(K), CALREF(K), K = 1,M) 

25 FORMAT (14 H FINAL VALUES, /(JE20.6))
IQ = IQ - 1 
IF(IQ) 18, 18, 17 

18 NUL = NUL - 1
IF (NDL) 24, 24, 26

24 NSETSP. = NSBTSR - 1
IF (NSBTSR) 25, 25, 27

25 CONTINUE 
END



E X E C U T I O N  S T A R T E D  ON  P b / 1 0 / 6 5  AT l b . A 9 . l S  W I T H  T H E  I N S T R U C T I O N  C O U N T E R  R E A D I N G 1 7 6
r e i r a c t i v e  in d i c e s
RAIR. RSUB.

1.UÜUÜfc+ÜO 1.Ü8UUE+UÜ 
3 - L A Y E R  f i l t e r  

FREQ
1. 2 0 II 0 Ü 0 E + 0 U 
1.10ÜCIU0É + ÜÜ 
1 . 0600 UOE + ÜÜ 
1. OOUnU,OE + QO 
9.40ÜÇU0E-01 
9 . 0 0 U 0 Ü 0 E - 01 
fa.OOUnüOE-Ql 
à .OOOOUOE-Ül 
4.UOOOÜOE-Ul 
b.OOUOOOE-ül

RA. R8.
4 . 0 0 U 0 E + U 0  1 . S 5 Û 0 E + 0 0

G I V R E F
M.bOüÜOOE-Ol 
2.ÜÜ00U0E-U1 
0.OOQOOÛE+00 
9.ÜOOÜÜüE-02 
0.ÜOOOOÜE+OO
2.UüOUOOE-01 
a.büoooüE-üi 
9.60000UE-01 
8.300Ü00E-01
3.Ü00000E-02

c a l r e f
6. /540B9E-01 
1.17846b£-01 
2 .256116E-01 
3.217640E-01 
1.6360U4E-01 
2 . U 2 8 3 3 9 E - 0 1  
6.B11296E-01 
9.682816E-01 
8.89&888E-01 
2.200142E-01

IIERATION 0 
VARIABLES 

1 . 8 Ü Ù U 0 0 Ü 0 U 0 0 Ù 0 Û E + Û 2  
FUNCTIONS 

1 . 2 4 B 9 4 0 8 3 / 5 6 9 9 2 E - 0 1  
- 2 . B 3 3 b 6 8 8 3 1 6 b 5 9 B E - 0 3

4 CALLS ÜF C A L F U N
1.2ÜOOOUOÜOUOOOOE+Û2

3.215351260B4478E-Û2
-2.1129O338493604E-Û2

F= 2. Q2208028799034E-01

1 . 6 0 0 0 0 0 0 0 0 0 0 ü 0 0 E + 0 2

-2 .2b61l565254Ü59E-01 
-8.26162528345001E-03

- 2 . 3 1 7 6 3 9 5 7 3 3 5 3 3 5 E - 0 1
- 5 . 9 5 8 8 8 0 3 5 4 9 6 1 3 2 E - 0 2

■1.63600375415802E-
•1.90014215890314E-

VAÜ2A FINAL VALUES OF FUNCTIONS AND VARIABLES

I IERATION 2
v a r i a b l e s

1.82S3B712B01406E+U2
FUNCTIONS

- 1 . U 9 B 1 6 1 8 8 9 6 / 7 4 0 E - 0 3
1 . 6 5 8 2 2 6 1 7 4 1 8 7 4 9 E - U 2

f i n a l VALUES.
1.20U0U0E+Q0 
l.lOUOUOE+00 
1.06Ü0UUE+ÜÜ 
1. 0 0 U 0 0 0 E + Ü U 
9.40U000Ë-01 
9.üOünuoÈ-üi
а . ooootioE-oi
б.O0ÜO00E-01 
4.00Ü0U0E-Ü1 
3.0000ÜOE-U1

REIRACTIVE INDICES 
RAIR. RSUB.

1.U0U0E+0Û 1.P300Ë+Ü0

11 CALLS OF CALFUN

9 . 2 9 3 2 5 O 1 8 0 5 O 1 4 9 E + 0 1

3.4171Ü497669138E-02 
-1.31862993221543E-02

8.3ÜOOOOE-01 
2.OOOOOOE-Ol 
0.UÜOUOüE+ûO 
9.0ÜÜUÛ0E-02 
U.UOOÛÜÜE+OÜ
2.ÜÜÙ000E-01 
8.30U000E-01 
9.&ÜÜ00ÜE-Ü1 
8.300ÛÜÜE-01
3.UU0Ü00E-Ü2

RA.  RB.
2.36U0E+Ü0 1.3900E+Ü0

F= 3.93736224012559E-03

1.755135017208758 + 02

-3.044926306600268-02 
-1.57847197987840E-03

8.3109528-01 
1.658290E-01 
3 . 0 4 4 9 2 6 8 - 0 2  
1.1688488-01 
2 . 3 2 7 6 4 8 8 - 0 2  
1.8341778-01 
8.431863E-01 
9.8157858-01 
8.3944158-01 
2.3977478-02

-2.688484669172518-02 
-9.44153 4464740738-03

- 2 . 3 2 7 6 4 8 3 4 3 8 4 1 5 4 E '
6. 0225321154q q 56E-
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One of the sim plest methods of determ in ing refractive  indices 
of th in  film s is the now classic method due to Abelès.^ L ig h t 
polarized w ith  the e lectric vector in  the plane of incidence is d i
rected onto a surface (re fractive  index %) p a rt ly  covered w ith  a 
film  (index n). A t  an angle of incidence 6b =  arc tan(n/no), the 
reflectance of the film ed and uncoated parts of the substrate are 
equal, n/no is the refractive  index o f the medium  of incidence. 
The angle 6^ is read ily determ ined experim entally. The condi
tion  is independent of film  thickness, b u t the sens itiv ity  of detec
tion  is greatest fo r film s whose phase thickness ( in  the direction 
of the beams) is in the neighborhood of t t /2.

I f  the m ateria l of the film  shows absorption a t the wavelength 
used, the results given above no longer apply. I t  is im portan t, 
therefore, to  determ ine the extent to  which the presence of ab
sorption m ay introduce errors in  the measurement of refractive 
index by  th is method. Th is  note gives expressions enabling th is 
determ ination to be made and illu s tra te  the results by  considering 
typ ica l s lig h tly  absorbing film s.

The reflectance of the substrate fo r the p component is s im ply 
given by

=
tan  ̂ (02 — ^o) 

tan  *(02 ~l" 0o) (1)

where 0q is the angle of incidence and 02 is the angle of refraction. 
W ith  the help of Snell’s law, the value of Rj, m ay be determined 
read ily  fo r any value o f 0o, given the values o f no and ?i2. For the 
case o f an absorbing film  of index n  — tk, the expression fo r the 
reflectance E /  is cumbersome, b u t m ay be w ritten *

Z*ê '” ’ - f  m*e - f  2lm  cos(<?!)i2 — <poi - f  2%%)
=  — ------------------------------------------------------------------------------------------------------------------------

where

Z* =

e2vv 4 - +  2 lm  cos(<Z>i2 +  <f>oi +  2 u r ,)  ’

[(n* — fc*) COS0O — uquY  +  [2nk cos0o — no?;]* 

[(n* — &*) COS0O - f  non] * +  [2nk cos0o -j- no?;] *'

(2)

(3)

[(n* — A*) (n2® — no* sin*0o)'/* — no*n] *
________________+  [2nfc(n2* — no* sin*0o)'^* — no*??]*
[(n* -  &*) (n2* -  no* sin*0o)'/' - f  nz*n]* '

+  [2n/c(n2* — no* sin*0o)'/“* -f- no*?;]*

tâ/ii 001 —

2(n* -  no* sin*0o)'/:'

2no cos0o[2n/cn — (n* — k^)v]

(n* -h &*)* cos*0o -  no*(n* +  ?;*)

2no* (no* — no* s in*00)''’'* [2n&n — (n* — A:*)?;] 
tan 012 ^^2 4_ ^ 2)2 (%2* — no* s in*00) — no  ̂ (n* - f  %*)

and n, v are obtained from  the relations

?<* — ?;* =  n* — A:* — no* sin* 
uv =  nk

(5)

(6)

(7)

(8)

F or values of A: < <  1, these expressions m ay be conveniently 
expanded as a power series in  k.

A t  the Abeles angle 0g, R -̂ =  R^. Hence, fo r va ria tion  of k 
and 00 to preserve equa lity  of reflectance

c)0o _  0^  /  /  dR p \

àk ô t / \  Ô0O àdo ) (9)

which also m ay be expressed, w ith  the help of Eqs. (1) to (8) as a 
power series in  k. For values o f k up to  0.05 i t  is unnecessary to  
include terms of the order of (A:^).

We m ay illu s tra te  these results by  considering a film  of index 
n =  2.30 on a substrate of index Ui =  1.46. This corresponds to 
cerium dioxide deposited on quartz a t 50°C fo r a wavelength of 
0.440 pm . The change in  the Abeles angle corresponding to  values 
of k  of 0.005, 0.01, 0 .02, 0.03, and 0.05 are given in  Table I ,  which 
also gives the error in  the derived refractive  index i f  the effect of 
absorption is neglected. ;

Table I. Error in Derived Refractive Index if Absorption 
is Ignored

K
Change in  0^ 

(m in .)
E rro r in  derived 
refractive  index

0.005 - 1 .8 2 -0 .0 0 4
0.01 - 3 .5 9 -0 .0 0 7
0.02 - 6 .9 5 -0 .0 1 3
0.03 - 10.1 - 0.020
0.05 - 1 5 .7 -0 .0 2 9
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