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Abstract

We show the potential for classifying images of mixtures of aggregate,
based themselves on varying, albeit well-defined, sizes and shapes, in or-
der to provide a far more effective approach compared to the classification
of individual sizes and shapes. While a dominant (additive, stationary)
Gaussian noise component in image data will ensure that wavelet coeffi-
cients are of Gaussian distribution, long tailed distributions (symptomatic,
for example, of extreme values) may well hold in practice for wavelet coef-
ficients. Energy (2nd order moment) has often been used for image char-
acterization for image content-based retrieval, and higher order moments
may be important also, not least for capturing long tailed distributional
behavior. In this work, we assess 2nd, 3rd and 4th order moments of mul-
tiresolution transform — wavelet and curvelet transform — coefficients as
features. As analysis methodology, taking account of image types, mul-
tiresolution transforms, and moments of coefficients in the scales or bands,
we use correspondence analysis as well as k-nearest neighbors supervised
classification.

Keywords: image grading, wavelet and curvelet transforms, moments, vari-
ance, skewness, kurtosis.



1 Image Grading as a Content-Based Image Re-
trieval Problem

Physical sieves are used to classify crushed stone based on size and granularity.
Then mixes of aggregate are used. We directly address the problem of classifying
the mixtures, and we assess the algorithmic potential of this approach which
has considerable industrial importance.

The success of content-based image finding and retrieval is most marked
when the user’s requirements are very specific. An example of a specific appli-
cation domain is the grading of engineering materials. Civil engineering con-
struction aggregate sizing is carried out in the industrial context by passing the
material over sieves or screens of particular sizes. Aggregate is a 3-dimensional
material (images are shown later in this article) and as such need not neces-
sarily meet the screen aperture size in all directions so as to pass through that
screen. The British Standard and other specifications suggest that any single
size aggregate may contain a percentage of larger and smaller sizes, the mag-
nitude of this percentage depending on the use to which the aggregate is to be
put. An ability to measure the size and shape characteristics of an aggregate
or mix of aggregate, ideally quickly, is desirable to enable the most efficient use
to be made of the aggregate and binder available. This area of application is
an ideal one for image content-based matching and retrieval, in support of au-
tomated grading. Compliance with mixture specification is tested by means of
match against an image database of standard images, leading to an automated
“virtual sieve”. Previous work includes Murtagh et al. (2005a, 2005b).

In this work we do not seek to discriminate as such between particles of
varying sizes and granularities, but rather to directly classify mixtures. Our
work shows the extent to which we can successfully address this more practical
and operational problem. As a “virtual sieve” this classification of mixtures
is far more powerful than physical sieving which can only handle individual
components in the mixtures.

In section 2 we will review the properties of multiresolution transform co-
efficients, given our planned use of these coefficients to discriminate between
images and thus support image retrieval and/or grading. In section 3 we carry
out a detailed study to assess the moments of multiscale transforms, wavelet
and curvelet transforms, and use of images of different smoothness and edginess
characteristics. In section 4 we carry this work further into a practical domain
of application of image grading, viz. that of the civil engineering construction
materials.

2 Distributions of Multiresolution Coefficients

2.1 Gaussian Distribution of Wavelet Coefficients

Noise filtering from a wavelet transformed image, based on a Gaussian model, is
highly developed in theory and practice. The monographs Starck et al. (1998a)



and Starck and Murtagh (2006) study in great detail wavelet-based noise filter-
ing. Unlike e.g. smoothness criteria in noise filtering (Donoho and Johnstone,
1995), our perspective in this work has been towards, or based on, definable
noise models in the data. Such noise filtering is generalized there for the Poisson
case, through variance stabilization. Alternative noise thresholding approaches
are studied for other distributions, including small count Poisson and Rayleigh.
The noise filtering is also studied in the perspective of optimal image restoration
(see Starck et al., 1998Db), and is incorporated into image deconvolution.

The Gaussian statistical model for images is particularly appropriate for the
case of CCD (charge coupled device) image detectors, where Gaussian read-out
noise is dominant.

The Gaussian model leads to a close relationship between multiscale (Shan-
non) entropy, wavelet energies, and variances (Starck et al., 1998b). This lends
weight to the use of the second order moment as an important multiscale feature.

The conclusion here is the following: when data is Gaussian distributed,
then the modeling is very well understood.

2.2 Variance or Energy of Multiresolution Coefficients

The analysis of texture has used Markov modeling of spatial context (Cross and
Jain, 1983) and a wavelet transform provides another way to incorporate local
spatial relationships. Unser (1995) used co-occurrence matrices and concluded
that second order statistics may be best for segmentation of microtextures. The
use of a wavelet transform for this purpose was first proposed by Mallat (1989).
Scheunders et al. (1998) discuss multiband features, which they use with 3-band
color data. In Livens et al. (1996), energy in different bands is used. This does
not provide image rotational invariance and for this a sum of energies over bands
at a given resolution scale is proposed. Fatemi-Ghomi (1997) uses window size
related to resolution scale within which to define features, and she discusses
adaptive window sizes.

2.3 Long Tailed Distribution of Wavelet Coefficients

In the general use of multiresolution transforms, it is well known that wavelet
coefficients can be of long tailed distribution (Belge et al., 2000; Buccigrossi
and Simoncelli, 1999; Murtagh and Starck, 2003). Long tailed distributed data
include data characterized by long range interactions, long memory processes,
fractal or multifractal or self-similar processes, multiplicative noise regimes (An-
teneodo and Tsallis, 2003), and signals with burstiness, abrupt changes, and
spikes (Bezerianos et al., 2003). Applications to thresholding are in Murtagh

and Starck (2003) and Wang and Chung (2005). The Lévy distribution char-
acterizes many such cases: L(z) oc (1—(1— q)%)l/(l_Q). When parameter
q — 1, this power law approaches an exponential law: exp (—%), which typifies

Boltzmann-Gibbs thermodynamics and Gaussian statistics.



2.4 Multiresolution Tsallis Entropy

Starck et al. (1998b) and Starck and Murtagh (2006) used multiscale Shannon
entropy for image filtering, showing how it is clearly related to the second order
moment in the Gaussian case.

In 1928 Hartley developed the entropy of equiprobable events, and in 1948
this was generalized by Shannon and widely applied as a basis for the theory of
communications. As opposed to the coding objectives based on events, a statis-
tical mechanics objective based on system states was developed, such that the
same Boltzmann-Gibbs-Shannon entropy results. In 1960 Rényi generalized the
recursive rather than linear estimation. From 1988 onwards Tsallis developed a
generalized form of entropy, which happens to differ from Shannon and Rényi
entropies in being non-logarithmic, to cater for fractal and self-similar systems,
i.e. systems where invariance across resolution scales is of importance. (See
Kaniadakis and Lissia, 2004.) The roots as such of Tsallis entropy go back to
1970 (Abe and Rajagopal, 2000). The Shannon or Boltzmann-Gibbs-Shannon
entropy is: S = — >, p;Inp;. In the thermodynamics perspective, as opposed
to the event space view, p; is the probability that the system is found in the ith

configuration.
The non-extensive or Tsallis entropy, with parameter ¢, a positive real, is
given by ST = fq%l ! —pi)) = fq%l (3>, pf —1) As for the Shannon

entropy we may consider a constant of proportionality here, the Boltzmann
constant, which we have set to 1.

The Tsallis entropy has been proposed for long tailed data. Tsallis entropy of
wavelet transformed data was used in Rosso et al. (2002). An image thresholding
approach was related to Tsallis entropy in Portes de Albuquerque et al. (2004).
Sporring and Weickert (1999) considered Rényi entropy in scale spaces: Tsallis
entropy, as we have suggested above, may be more appropriate. Tsallis entropy
was used on scale space transformed data by Tanaka et al. (1999). In Costa et al.
(2002) Tsallis entropy is applied to one-dimensional signals on a regular discrete
range of resolution scales, and plotted, in order to characterize biomedical data.

2.5 Distribution of Wavelet Coefficients in Practice: a
Case Study

In this section we will take an empirical standpoint, using a batch of images.
We ask: How do we assess Gaussianity or long tailedness of wavelet coefficients?

The image shown in Figure 1 is from the application which motivated this
work. It is characterized by textured signal, and the image’s distributional
model may be useful to us for handling irregular variation in texture. The
distributions of wavelet scales 1, 2, 3, 4 and 5, furnished by a Bg spline a
trous wavelet transform, were determined using, in each case, a histogram with
100 bins. Figure 2 shows these distributions. Wavelet scales 1, 2 and 5 look
somewhat long tailed; on the other hand wavelet scales 3 and 4 look more
symmetric.

We tested the distributions shown in Figure 2 (Markwardt, 2004), using the



Figure 1: An image of construction aggregate. The properties of the aggregate
are defined by size for larger pieces, and by granularity for finer pieces.
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Figure 2: Distributions of wavelet scales of the image shown in Figure 1. The
higher peaked curves are from wavelet scales 1, 3, and 2, respectively, from left
to right. The second lowest peaked curve, and the lowest one, are from wavelet
scales 4 and 5, respectively.



Table 1: MSEs of fits. For scales 1, 2, and 5, the fit by a Lorentzian outperforms
the fit by a Gaussian. However, for scales 3 and 4, a Gaussian fit is better.

Wavelet scale Lorentzian fit Gaussian fit

1 1.24 4.90
2 0.07 29.55
3 1411.76 594.46
4 73890.6 50390.1
5 156515.0 271948.0

mean square error (MSE) of the fits by a Lorentzian (also called Cauchy, a long
tailed distribution) and a Gaussian to the wavelet scales. Results are shown
in Table 1. We conclude that both Gaussian and Lorentzian distributions may
well be relevant to practical image analysis situations of the sort considered.

Taking the 6 images to be discussed below (Figure 8), we looked at the fits
of Lorentzian and Gaussian distributions. Table 2 shows the results. For each
of the selected images we look at Lorentzian versus Gaussian peak fits to 5
wavelet coefficient levels. Sometimes the long tailed Lorentzian gives a better
result, maybe even a spectacularly better result. However this is not always the
case. Sometimes the Gaussian fit is far better, and we also note that high MSE
values may indicate that neither distribution is particularly good.

2.6 Role of Multiresolution Coefficient Moments

Wavelet coefficients are often of long tailed (hence not Gaussian) distribution
but we find them also sometimes to be close to Gaussian. The Shannon entropy
is appropriate for Gaussian distributed data, whereas the Tsallis non-extensive
entropy is associated with power law, long tailed data. In practice, distribution
mixtures, at different wavelet resolution scales, of long tailed and Gaussian
distributed data must be handled.

We find that both Gaussian/Shannon and long-tailed/Tsallis perspectives
are potentially useful in practice. While we can proxy the former with the second
order moment (Starck et al., 1998b, Starck and Murtagh, 2006), the situation is
not the same for the latter because of the many possible distributions, and the
importance of higher order moments. (A Gaussian is completely characterized
by moments of order 1 and 2.)

For general analysis where multiresolution coefficients follow a mixture of dis-
tribution families, a convenient and practical way to carry out the analysis is by
using higher order moments of the multiresolution coefficients as proxies of the
unknown, underlying distributions. In the absence of a clear distribution hold-
ing for the multiresolution scales, we are better off keeping to multiresolution
coefficient moments for reasons of effectiveness, practicality and convenience.



Table 2: Image sequence number chosen: these are the images shown (in succes-
sion, from upper left) in Figure 8. For each image, 5 wavelet resolution scales
are studied. 2D Lorentzian and Gaussian fits are shown: MSE (mean square
error) used. An asterisk indicates whether Lorentzian or Gaussian fit is better.

Seq. no. Scale Lorentzian Gaussian
1 1 * 31.9 43.3

2 13972 * 9.1

3 * 2982.0 10404.7

4 * 771354 122607.0

5 * 192195.0 276682.0

60 1 376 * 28.7
2 * 18.7 134.8

3 * 22180.5 26668.1

4 * 37069.2 44615.1

5 * 859.6 875.7

120 1 * 3.3 5.6
2 * 2.7 8.1

3 * 23.8 214.8

4 20 * 0.0

5 86422.3 * 1.4

180 1 49.1 * 6.6
2 * 0.6 5.4

3 9817.3 * 74.0

4 7739.2 * 5.5

5 51196.0 75436.2

240 1 0.5 0.8
2 0.3 23.4

3 88.0 * 5.8

4 591.3 46947.3

5 3315.3 85459.2

300 1 3.8 12.2
2 2506.9 * 10.3

3 39793.6 * 48.3

4 13137.1  * 108.6

5 * 211860.0 243913.0




2.7 Third and Fourth Order Moments as Features

The use of higher order moments, beyond the first and second, for texture
analysis is well-established (Tsatsanis and Giannakis, 1992; Chandran et al.,
1997; Avilés-Cruz et al., 2005). Spatial modeling is used in Popovici and Thiran
(2004). We use spatial models as part and parcel of the multiscale transforms.
Other, less typical, applications of texture analysis using higher order moments
include Kim and Strauss (1998), who apply this approach to the “textures” of
point pattern distributions.

We have motivated higher order moments in the context of long tailed distri-
butions of multiscale transform coefficients. In the next section we will illustrate
experimentally the potential usefulness of higher order moments in the multi-
scale transform context.

3 Selection of Multiresolution Features: Setting
the Context

3.1 Wavelet Transform and Curvelet Transform

With the Bs spline & trous redundant wavelet transform (Starck et al., 2007),
there are no aliasing effects due to decimation, and the wavelet function (similar
to a Mexican hat function) is symmetric, and within the limits of separability
of use in horizontal and vertical image directions it approximates an isotropic
function. See Starck et al. (1998b), Starck and Murtagh (2002), and Starck
et al. (2006). The (pixelwise additive) decomposition of the image was, for
all experiments described below, 5 wavelet resolution scales plus the smooth
continuum image.

This wavelet transform uses a particular set of basis functions, which are
defined by roughly isotropic functions present at all scales and locations. Hence
this wavelet transform is appropriate for isotropic features or mildly anisotropic
features. To move beyond the wavelet transform, a range of other basis function
sets have been used, with properties relating to alignments, elongations, edges,
and indeed curved features. Non-wavelet multiresolution transforms therefore
target the detection and characterization of non-Gaussian signatures in the im-
age data.

In Starck et al. (2004, 2005) the kurtosis (fourth order moment) was used
to understand the nature of complex non-isotropic features in cosmology. The
skewness and variance (third, second order moments) were also discussed. Con-
sequently we wished to investigate the use of these moments in our work.

The ridgelet transform uses wavelet-like functions which are constant along
lines 1 cos@ + xosinf = Const., where a fixed set of angles 6 is used; and
x1, w2 are related to scaling through a dyadic multiplicity factor. The ridgelet
transform can be shown to be the application of a 1-dimensional wavelet trans-
form to constant angle slices of the Radon transform. The ridgelet transform
is a good pattern matcher for sheets at varying scales and positions, whereas



the redundant & trous wavelet transform targets (isotropic or near isotropic)
clusters.

To find curved features the curvelet transform is used. The curvelet trans-
form first decomposes the image into a set of wavelet bands. Then each band
is analyzed with a local (i.e., blockwise) ridgelet transform. See Starck et al.
(2002). The curvelet transform is an effective tool for curve finding at multiple
resolution levels. The command cur_stat in the MR package (MR, 2004) was
used for the curvelet transform. Six scales were used, with a ridgelet block size
of 16. This gave a total of 19 curvelet coefficient bands.

3.2 Data

In this section we will present, using a simple procedure, how we can show that
(i) multiscale transforms other than wavelet transforms, and (ii) higher order
moments, may provide the most discriminating features, This is a “proof of
concept” demonstration, based on a simple but non-trivial image classification
problem.

We took four images with a good quantity of curved edge-like structure for
two reasons: firstly, due to a similar mix of smooth, but noisy in appearance,
and edge-like regions in our construction images; and secondly, in order to test
the curvelet as well as the wavelet transforms. To each image we added three
realizations of Gaussian noise of standard deviation 10, and three realizations
of Gaussian noise of standard deviation 20. Thus for each of our four images,
we had seven realizations of it. In all, we used these 28 images.

Examples are shown in Figure 3. The images used were all of dimensions
512 x 512. The images were the widely used test images Lena and Landscape, a
mammogram, and a satellite view of the city of Derry (Londonderry) and River
Foyle in Northern Ireland.

We expect the effect of the added noise to make the image increasingly
smooth at the more low (i.e., smooth) levels in the multiresolution transform.

Figure 3: Four images used (top row), and (bottom row) each with added
Gaussian noise of standard deviation 20.



The data used therefore was the set of multiresolution transform coefficients
for each of the 7 images relating to one of our four test images. What we will seek
to do is to find very clear similarity between the 7 images that are all derived
from one initial image. So we will seek a very clear discrimination between the
four clusters of image, each cluster having 7 images.

Our analysis aims at distinguishing between clusters of images, and deter-
mining the most useful features for this. We address these analyses in an inte-
grated way, taking all data into account simultaneously.

The 28 images are each characterized by:

e For each of 5 wavelet scales resulting from the a trous wavelet transform,
we determined the 2nd, 3rd and 4th order moments at each scale (hence:
variance, skewness and kurtosis). So each image had 15 features.

e For each of 19 bands resulting from the curvelet transform, we again deter-
mined the 2nd, 3rd and 4th order moments at each band (hence: variance,
skewness and kurtosis). So each image had 57 features.

The 28 images were therefore characterized by 72 features, taking spatial
and frequency resolution scale into account. We did not normalize the images,
notwithstanding the varying pixel means. This decision was made in order to
avoid the choice of any ad hoc way of doing this. For the analysis of feature
importance, and of how well we can cluster our 28 images into four clusters,
an important requirement ensues: we must only use relative values, or what we
can term a profile of values, and not the absolute values.

This issue of relative values is very adroitly handled by correspondence anal-
ysis (Murtagh, 2005). Just as with principal components analysis, the inherent
dimensionality of both our 28 images in a 72-dimensional space, and our 72
features in a 28-dimensional space, must be the minimum of 28 and 72. Call
the value on feature j for image ¢ x;;, and convert it to a fraction bounded by 0
and 1: fi; = /2 where . = ), Zj x;j. Correspondence analysis forms pro-
files both by row (image) and by column (feature): x;;/x; for each row, where
x; is the column sum; and w;;/x; for each column, where z; is the row sum.
Assume f;; > 0. Given the Gaussian noise, this was not always the case: our
sole modification was to enforce a mass, f; or f; to be > 0.

The x2? metric is used, defined for two rows ¢ and i’ as: Zj 1/ fi(fij/ fi —
firj/fir)?. A new set of coordinate axes are found to best fit the data in both
feature (28-dimensional) and image (72-dimensional) spaces. This output fac-
tor space is endowed with the Euclidean metric, allowing visualization. Unlike
principal components analysis, the scales of both feature and image spaces are
the same, so that both rows and columns can be displayed in the output repre-
sentation.

The percentage inertia explained by the first factor (tantamount to the over-
all information content explained by this factor) was 86.9%, indicating a highly
one-dimensional underlying manifold in the dual spaces of images and of fea-
tures. Note again that while the absolute input values varied greatly in ac-
cordance with originating image, the use of profiles in correspondence analysis
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guarantees that this very pronounced one-dimensionality is a characteristic of
the data.

Figure 4 shows both images and features on the principal factor plane. The
images in cluster 3 (the mammogram ones) are completely superimposed. The
images in cluster 4 (the Derry ones) are close. The images in the two other
clusters (cluster 1: Lena; and cluster 2: landscape) are arrayed somewhat diag-
onally. In all cases there is clear distinction between image clusters.

To assess influence of features, we can avail of the contributions, defined as
sum of mass times projected distance squared, of the features relative to the first
(predominant) factor. For feature j, its mass is f;. Let its projected value on
factor 1 be F(j). Then its contribution to this factor is f; FZ(j). Contributions
are commonly used in correspondence analysis to interpret the results (Murtagh,
2005). Just two features are found to be important. These correspond to the
two “blips” with contribution values 0.116 and 0.437 in the histogram shown in
Figure 5. These features relate to the curvelet transform in both cases. Firstly
band 12 and secondly band 16 are at issue. In both cases it is a matter of the
4th order moment.

That these contributions are so pronounced should manifest itself in image
cluster low dimension projected locations: if anything, the use of these two
features alone should make our image clusters even more compact. We see this
in Figure 6. Many labels of images are superimposed there. So we extensively
jittered the points displayed there in Figure 7. This is an erroneous display but
it helps to understand Figure 6.

It is obvious that for a given collection of images, some multiresolution fea-
ture, or set of features, may do just the right job in providing a best discrim-
ination. Our assessment framework has found that two curvelet, 4th order
moments, are far and away the best for the image collection used.

4 Application to Image Grading

The image grading problem related to construction materials and involving dis-
crimination of aggregate mixes, is exemplified in Figure 8. The data capture
conditions included (i) constant height of camera above the scene imaged, and
(ii) a constant and soft lighting resulting from two bar lamps, again at fixed
height and orientation. It may be noted that some of the variables we use,
in particular the variance, would ordinarily require prior image normalization.
This was expressly not done in this work on account of the relatively homo-
geneous image data capture conditions. In an operational environment such a
standardized image capture context would be used.

The British Standard specification sets out nominal proportions of con-
stituent materials in a mix, which we call a class, in terms of sieve size. Classes,
in such constituent property space, are overlapping. Our first approach was
therefore as follows. With different feature sets we carried out extensive testing
of the discrimination properties, initially with training sets from class boundary
regions, and testing on images from the central regions of the classes. But with

11
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contributions of 0.116 and 0.437.
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Figure 8: Sample images from classes 1 through 6, in sequence from upper left.




overlapping classes of irregular and unknown morphologies in any constituent
property space, this was not a productive approach. We instead therefore used
training images from central regions of the classes, and test images from class
boundaries. Our training data consisted of 12 classes of 50 images, and we se-
lected 3 classes (classes 2, 4 and 9, spanning the 12 classes) each of 100 images
as test data.

As before we used 5 wavelet scales from a B3 spline a trous redundant wavelet
transform, and for each scale we determined the wavelet coefficients’ variance,
kurtosis and skewness. Similarly, using the curvelet transform with 19 bands,
for each band we determined the curvelet coefficients’ variance, kurtosis and
skewness. As before we used therefore 72 features. Our training set comprised
three classes, each of 50 images. Our test set comprised three classes, each of
100 images.

Our features are diverse in value, and require some form of normalization.
However we know from the discussion in section 2 that, for instance, reduction
to unit variance would be inappropriate if the feature values are non-Gaussian.
So we again use a correspondence analysis of all the data available to us, a
superset of the data so far described, — in all 12 classes (incorporating the 3
classes defining our training data) of 50 images each, and the 300 test images.
The correspondence analysis was carried out on 900 images, each characterized
by 72 features. One important aim was to map the data, both images and
features, into a FEuclidean space as a preliminary step prior to using k-nearest
neighbors discriminant analysis.

The first axis was very dominant (75.7% of the inertia was explained by it),
and again a curvelet coefficient feature was the most dominant in the definition
of this factor: it related to the 16th band in the curvelet transform, and (again)
the 4th order moment, or skewness.

The assignments of test data (three classes, called here classes 2, 4 and
9, each of 100 images) to the training data (these three classes, each of 50
images) was assessed using k-nearest neighbors. This supervised classification
approach was used in view of the difficulty level of this data (we looked at
low dimensional displays resulting from the correspondence analysis) and the
nonlinear properties provided by k-NN. We used k = 1. We assessed:

e The 72-dimensional feature space.

e The 71-dimensional factor space. (71, because of a linear dependency
through centering the factor space cloud; if there are n rows and m
columns, then this Euclidean embedding dimensionality is min(n — 1,
m—1)).

e Then we explored all low dimensionality spaces, using the ordering of
factors. This would make no sense if we did not have a coordinate system
with an ordering (of “importance”, provided by the percentage inertia
explained) of the coordinates.

The assignments found are shown in Table 3. Justification for the choice of
the 7-dimensional best Euclidean reduced-dimensionality embedding is derived

17



Table 3: Assignments, to classes labeled 2, 4 and 9, for the successive sets of 100
images in the test set. In total, there are 300 images in the test set. Discrim-
ination with the 7-dimensional data is far purer than with the 72-dimensional
data.

Original data, 72-dimensional

(found) class | 2 4 9

(real) class 2 | 22 51 27
4| 6 8 9
9 5 11 &84

7-dimensional factor space: factors 1-7
(found) class | 2 4 9
(real) class 2 | 60 19 21

4 1 97 2
9 2 7 91

from Figure 9. For the original, full 72-dimensionality data (Table 3), the correct
assignments were respectively for the three classes 22, 85 and 84, all out of 100
images. For the best Euclidean embedding, viz. the 7-dimensional one, furnished
by correspondence analysis, the correct assignments were respectively for the
three classes 60, 97 and 91, all out of 100 images.

As can be seen, the analysis of the low dimensional, correspondence analysis
result is impressive relative to analysis of the input data. In this 7-dimensional
factor space, we ask next what are the predominant features. Looking at his-
tograms of the contributions (i.e., sum of mass times projected distance squared
from the origin) by features to factors 1 through 7, a threshold of 0.1 is either
a natural one, or else is a reasonable choice. This furnishes the following pre-
dominant features as follows:

e wavelet scale 5, 4th order moment

e curvelet band 1, 2nd order moment

e curvelet band 7, 3rd and 4th order moments

e curvelet band 8, 4th order moment

e curvelet band 11, 4th order moment, for two of the factors
e curvelet band 12, 4th order moment

e curvelet band 16, 4th order moment, for two of the factors

e curvelet band 19, 2nd and 4th order moments, in the case of the 4th for
two of the factors
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What is apparent here is that the 4th order moment has clear discriminatory
power, although it is not unique in this capability. It is also apparent that the
curvelet transform is very powerful in furnishing discriminatory features.

5 Conclusions

Second order moment, or energy, has traditionally been used in image retrieval,
including retrieval supported by multiple resolution transforms. For example,
see Fatemi-Ghomi (1997), who uses energy at multiple scales; Kubo et al. (2003),
using energy and standard deviation at multiple scales; and Kokare et al. (2005),
using up to second order autocorrelations, again at multiple scales. In Starck et
al. (1998Db) it was shown how, under a Gaussian model assumption, the second
order moment could be viewed as a Shannon entropy. For some types of imagery,
the second order moment is a useful discriminator. But not for all, and while
wavelet coefficients may be long-tailed they are not — as we have shown in this
article — always so.

We have shown that taking the second, third and fourth moments as features,
at multiple resolution scales, may enhance discrimination between images in the
image set used. Clearly the first order moment is of no use to us in the context
of such transforms.

Our results point very clearly towards the importance of 4th order moments
of curvelet transform coefficients.

These moments provide a proxy or substitute for the appropriate entropy to
characterize the information, from among the mixture of appropriate entropies.
Starck et al. (2004, 2005) take this work in the direction of characterizing non-
Gaussian signatures (e.g., degree of clustering, filamentarity, sheetedness and
voidness) in the data. For this, we use a battery of multiresolution transforms
(discussing, inter alia, the product of kurtosis values yielded by different mul-
tiresolution transforms at given scales or bands).

In this article we have applied this perspective to new classes of image and
found excellent results in doing so.
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