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R-matrix propagation with adiabatic bases for the photoionization spectra
of atoms in magnetic fields
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The photoionization spectrum of an atom in a magnetic field is calculated by combining R-matrix propaga-
tion with local adiabatic basis expansions. This approach considerably increases the speed and the energy range

over which calculations can be performed compared to previous methods, allowing one to obtain accurate
partial and total cross sections over an extended energy range for an arbitrary magnetic field strength. In
addition, the cross sections for all atoms of interest can be calculated simultaneously in a single calculation.
Multichannel quantum defect theory allows for a detailed analysis of the resonance structure in the continuum.
Calculated cross sections for a range of atoms at both laboratory and astrophysical field strengths are presented.
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I. INTRODUCTION

The spectrum of an atom in a magnetic field has played an
important role in the development of quantum theory and in
atomic structure [1]. For a long time, the effect of the exter-
nal field on the atom was treated perturbatively. However,
with the discovery of large magnetic fields in white dwarf
(10>-10° T) and neutron stars (107=10° T) in the 1970s,
attention has focused on nonperturbative treatments of the
field-atom interaction [2]. For laboratory strength magnetic
fields (6 T), the potential due to the applied field becomes
comparable to the intrinsic Coulomb potential only for an
electron in a high Rydberg state or continuum state of the
atom. In the 1980s and 1990s, research was focused on at-
oms in laboratory strength fields, as these systems have an
inherent nonseparability arising from the competing spheri-
cal symmetry of the atom and the cylindrical symmetry of
the applied field, which leads to the classical system exhib-
iting chaotic behavior [3]. An atom in a field thus provides
an experimentally realizable quantum system whose corre-
sponding classical phase space is chaotic, serving as a pro-
totype for studying classical and quantum chaos. This led to
fruitful developments in the theory of quantum chaos [4].

For bound states of atoms in a magnetic field, large-scale
basis set calculations have proved very successful in finding
the energy eigenstates and photoabsorbtion spectra of atoms
in moderately strong fields [2]. For superstrong fields such as
those found in neutron stars, the field can modify the atomic
structure of the ground state of the atom, and different theo-
retical techniques have to be used. Currently, for these cases,
the energy eigenstates and photoabsorbtion spectra are
known for only some low levels of a few light atoms [5].

The positive-energy or continuum spectra of an atom in a
field proved more challenging, particularly in calculating
photoionization cross sections at laboratory strength fields.
The three main theoretical methods that have been successful
at calculating cross sections at both laboratory and astro-
physical strength fields are the complex coordinate method
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of Delande e al. [6], the R-matrix method of O’Mahony and
Mota-Furtado [7,8], and the diabatic by-sector method of
Watanabe and Komine [9]. A detailed comparison between
theory and experiment was possible due to the high-
resolution experiments carried out by Iu et al. [10] on lithium
in a field of about 6 T. Although all three approaches have
recreated the experimental spectrum of Iu ef al. over a nar-
row energy region, they are not particularly suited to calcu-
lating the photoionization spectrum over a large energy re-
gion. We present here a major improvement on previous
R-matrix methods applied to this problem by using local
adiabatic basis states to propagate the R-matrix from low r to
the asymptotic region. This leads to a large saving in both the
CPU time and computer memory required to perform the
calculation. In addition, for a given value of the field
strength, the cross sections for all atoms of interest can be
calculated in one step without the need for any additional
propagations. We demonstrate that, by using a combination
of R-matrix propagation with local adiabatic basis states and
multichannel quantum defect theory (MQDT) [11] one has a
method that can be used to calculate photoionization cross
sections of any atom over very large energy regions and field
strengths. MQDT can also be used to analyze the resonance
structure in detail where, in general, several Rydberg series
interact with a set of complex short-range perturbers. An
efficient approach to calculating such cross sections is of
importance in many areas where magnetic fields play a role,
for example, in calculating stellar opacities for magnetic
white dwarfs or for evaluating recombination rates for an
atom or ion in a magnetic field at low temperatures (e.g.,
antihydrogen), where one has to calculate the cross section
over very large energy regions for a given field strength.

In Sec. I we give the theory used to evaluate the photo-
ionization cross section of an atom in an external magnetic
field by combining R-matrix propagation with local adiabatic
basis states and MQDT. In Sec. III all the required details of
the computation are given. The results of the calculations are
presented in Sec. IV for a variety of atoms at both laboratory
and astrophysical field strengths, and a conclusion is given in
Sec. V. In the Appendix we give details on how to construct
the Hamiltonian matrix for the propagation.
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II. THEORY

The Hamiltonian for a hydrogen atom in a magnetic field
(taken to be in the z direction) in the symmetric gauge can be
written using atomic units (A=m=e=1) as [1]

H=—?—%+BLZ+%ﬁ2r2 sin” 6 (1)
where the magnetic field B is measured in atomic units by
B=B/B, with By=4.701 08 X 10> T. (We neglect the spin as
it only produces a uniform shift in the energy scale.) The
Hamiltonian has two conserved quantities in addition to the
energy, namely, the z component of the angular momentum
L, and m, the z parity. The eigensolutions can thus be stud-
ied for fixed values of m, the azimuthal quantum number,
and for 7, =+ 1. The linear Zeeman term in Eq. (1) thus adds
only a uniform shift to the total energy.

When a photon excites an electron to the continuum, for a
given magnetic field strength, one can in general identify
three regions of interaction with the continuum electron [8].
Typically, for low r the spherically symmetric Coulomb po-
tential dominates over the cylindrically symmetric diamag-
netic term or the quadratic term in Eq. (1), at intermediate
values of r the Coulomb and magnetic potentials are of com-
parable strength (the strong-mixing region), and at high val-
ues of r or asymptotically in r the cylindrical symmetry of
the diamagnetic potential predominates. For a general atom
(or molecule) one adds a fourth region, the core, where the
excited electron interacts with the multielectron core before
emerging into the Coulomb region described by the Hamil-
tonian in Eq. (1). Exploiting this natural partition in configu-
ration space forms the basis of the R-matrix approach to
solving atomic and molecular problems, where solutions are
sought in each region and then matched together at the
boundaries between the regions to form the solution over all
space [12]. A novel aspect of the magnetic field problem is
having to deal with the change in symmetry from spherical
to cylindrical, which involves introducing two-dimensional
matching procedures [8]. We describe below how the
R-matrix is propagated through the regions described above
and how the two-dimensional matching procedure is imple-
mented to give the reactance matrix and the photoionization
cross section.

A. Propagating the R matrix

An atom in a magnetic field is assumed to be excited from
an initial state, either a ground or low-lying excited state, by
a polarized photon, leading to an electron in the continuum
with specific values of m and ,. The electron emerges from
the first region, the core region, into the second or Coulomb
region with energy € where Eq. (1) can be approximated by
the field-free Hamiltonian because the diamagnetic terms are
negligible in comparison with those from the Coulomb po-
tential of the atomic core. [We shall assume here that the
field strengths for nonhydrogenic atoms are not large enough
to significantly distort the core (i.e., B<1). For B>1 a dif-
ferent treatment would be required for the core, although the
propagation outside the core could still be implemented. ]
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Therefore, at some radius r=a in the Coulomb region, the
radial form of the Ith partial wave of the wave function,
Fj(r), of the continuum electron can be written in terms of a
linear combination of the energy-normalized regular s and
irregular ¢ Coulomb functions [13] in spherical coordinates
or a phase-shifted Coulomb function, giving the general form
of the solution as

\Pez 2 Fle(r)Ylm(Bs ¢)
l
= 2 A{lsf(r) + cf(tan(mw) 1Y ,,(6, 4). (2)
l

where the Aj are constants to be determined and Y,,(6, ¢)
are the spherical harmonics. The quantum defects wu; repre-
sent the effects of the nonhydrogenic field-free core [11] and
can be calculated ab initio or taken from experiment. [For
the most general case, where the ionic core could be left in
different excited states, a coupled multichannel solution
would be appropriate at r=a with tan(u;) being replaced by
a reactance matrix. This is a straightforward generalization
of the method.] Knowing the phase-shifted Coulomb func-
tion and its derivative at r=a, the R matrix [12] or log-
derivative can be constructed on the outer boundary of this
region as

Ry =[s7(a) + cf(a)tan(w,u,)]( %[S/e(”)

+cj(r)tan(mu)]

-1
) o » (3)

since the coefficients A; cancel out in the above expression.
In the third or strong-mixing region the effects due to the
Coulomb potential of the core and those due to the magnetic
field are of a comparable size. This region is defined by a
<r<b where the radius b is taken to be large enough such
that the Hamiltonian is separable in cylindrical coordinates.
The change in symmetry of the potential, from spherical to
cylindrical, is therefore completely contained within this re-
gion. We wish to propagate the initial R matrix in Eq. (3) to
obtain the R matrix at the outer boundary of this region r
=b [14,15]. To do this we divide the region into N radial
sectors with radii a—a;, a;—a,,..., ay_;—b. The size
of each sector and the number of sectors N are important
parameters in the calculation, and we show later how these
are optimally determined. Within each of the sectors we con-
struct a local adiabatic basis as follows. For the nth sector we
take a radius 7 within the sector a,_,<r,<a,, which is
usually the midpoint of the sector, and we diagonalize the
fixed r or adiabatic Hamiltonian H ,;
L 1 1
H (1 0,4) = —2(r2)2 -+ 5132(’,2)2 sin® 6 (4)

a

in a basis set of spherical harmonics such that
A5 0.9) = 2 dp Y, (6, 9), (5)
1

where the d;, are constants, giving the eigenvalue equation
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FIG. 1. First 20 adiabatic eigenvalue curves obtained from di-
agonalizing the adiabatic Hamiltonian H ,; in a basis set of spherical
harmonics at successive r. The magnetic field strength used was
6 T. The centrifugal barrier can be seen at small r and the Coulomb
potential plus equal Landau spacing is seen as r— . There is a set
of avoided crossings in between.

H by = U\(7) by (6)

The adiabatic states form a locally optimized basis set for
each sector. An adiabatic set of potential curves can be pro-
duced by plotting the eigenvalues obtained from diagonaliza-
tions at a continuous set of successive values of r. A typical
set of curves is shown in Fig. 1. At small r the adiabatic
eigenfunctions are spherical harmonics and the potential ex-
hibits a centrifugal barrier. At large r these curves have the
equal energy spacing of Landau states (combined with the
—1/r falloff), and the eigenfunctions are localized in the cy-
lindrical coordinates p and ¢. The change in symmetry hap-
pens predominantly around a region of avoided crossings
that can clearly be seen in the diagram. The functions ¢, are
therefore a very good basis with which to represent the an-
gular part of the wave function in the local region around r/,
namely, within the sector n.

To propagate the R matrix from sector to sector, we use
these basis states within each sector and diagonalize the full
Hamiltonian [Eq. (1)] plus the Bloch operator L or surface
term [16],

1 d d
L= E(é(r—an); - 5(r_an—1)z.)’ (7)

in a basis set consisting of a product of orthogonal radial
functions fj(r) and the adiabatic functions generated for that
sector, ¢,(r; 0, @). The radial basis functions used are de-
fined in terms of Legendre polynomials P; as follows [15]:

2j-1

ay—ap_y

fi(r)= Pjy(u), (8)

where
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2 { (an+an_l>]
u= r— .
ap—ap— 2

The eigenvalue equation is thus

(H+ L)W"=E ¥k, 9)

The eigenfunctions obtained from diagonalizing this operator
are therefore

E c,ﬂr—@ 10,6). (10)

The total continuum wave function at any energy €, WV,
can be expanded in terms of these R-matrix eigenstates W¥,
Since the general solution in the nth sector can also be writ-
ten as W =2, F\(r) ¢y (1 6, @) it is straightforward to show
[15], using the operator H+L and Eq. (9), that the values of
the functions and derivatives on the boundaries of the sector

are related by
Fla,.) =r3F'(a,) - r{F'(a,_;)

F(a,) =14F'(a,) —¥5F'(a,_;), (11)

where the matrices of r/ to rj, called the sector R matrices,
are given by

n) E glk(an l)glk(an 1)

Ek — €
n gtk(an l)g k(a )
(Vz)ij 2 Tf
12 gik(az?g{k(an—l), 4)11 2 lk(a 1 Ay
Kk— € k — €
(12)
and

(=3 ) i (13)

In summary, knowing the eigenvalues and eigenvectors of
Eq. (9), one can construct the sector R matrices r} to rj
above, which, through Egs. (11), relate the radial solutions
and their derivatives on the boundaries of the sector. The R

Fla,)
=R(a,)F'(a,), and a simple manipulation of Eq. (11) yields
the relationship between the R matrix on the inner and outer
boundaries of the sector,

matrix relates the function to its derivative, i.e.,

R(a,) =} - rj[r| + R(a,_,)]'r}, (14)

where R(a,) and R(a,_,) are represented in the same adia-
batic basis set as the sector R matrices.

As the adiabatic basis changes from sector to sector, we
need finally to change the basis representation of the R ma-
trix. The matrix with elements
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(T = (75 0,8)] ¢y (F:60,8)) (15)

is thus constructed. One uses this transformation to change
the basis representation of R, giving

ﬁ — Tn—l,nRTn—l,n’ (16)

where T is the transpose of T.

Starting with some initial R matrix, it can thus be propa-
gated from sector to sector using Egs. (14) and (16). Using
the initial input R matrix given by Eq. (3), the propagation
gives the final R matrix on the outer boundary in the
asymptotic region at r=>b, with the final R matrix being rep-
resented in the local adiabatic basis of the last sector.

Although it is possible to propagate the R matrix itself at
each of the sector radii as described above, it is more prac-
tical and efficient to derive global sector R matrices (R}, R,
R;, and R,) relating the first and nth sectors [17], which can
be built up sequentially using Eq. (11). One initially gener-
alizes Eq. (11) to relate the values of the functions and de-
rivatives on the boundaries of the first and nth sectors,

F(al):RgFl(an)_erlF,(al)’

F(a,) = RiF'(a,) - RAF ' (ay). (17)

The operator relations for these global sector R matrices,
including the change in basis, have been derived by Stechel
et al. [17], and can be obtained by matching the wave func-
tion and its derivative on the boundaries between each of the
n sectors. They are

R’ll — erl—l _ Rg—lTn—l,nznTn—l,nRg—l i
n _ pn-lmpn-1ngn.n
R!=R!'T 1z,
f31 - rglznTn—l,nRg—l ,

R} =r)-riZ"r;, (18)

where
Zn — (rrll + Tn—l,nRZTn—],n)—l .

In these equations, R are the global sector R matrices for all
sectors up to n, r;’ are the sector R matrices for sector n, and
T~ is the transformation matrix between the adiabatic
bases used in sectors n—1 and n. In an analogous way to Eq.
(14) the global sector R matrices at the end of the propaga-
tion through all N sectors are used to relate the R matrix at
r=a to the R matrix at r=>b,

R(b) =R} -Ri[R} + R(a)]'R}. (19)

Note that RIIV to Riv , determined from Eq. (18) above, are
independent of which atom one uses, so that once they are
calculated from the propagation then R(b) for a whole set of
atoms can be evaluated at once using Eq. (19) by just using
the appropriate quantum defects to calculate R(a) in Eq. (3).
Hence, for given values of B, m, and m,, the cross sections of
all atoms of interest can be calculated simultaneously with-
out the need for any additional propagations.
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B. Asymptotic region

Having found the R matrix at r=b by propagation, we
must match this to the asymptotic solutions at r=>b to find the
solution over all space. For large r, r> b, the magnetic field
dominates. Since the motion in p is bounded —1/r——1/z,
and the Hamiltonian in Eq. (1) is separable in cylindrical
coordinates,

H=—ld—2—l+H +0<l> (20)
2d7% 7 O F )’
where H; is the Hamiltonian for the Landau states,
Hp=- lli(;)i) + m_22 + L, + 1,82,32. (21)
2pdp\ dp/ 2p 2

H, has eigenvalues EX=(2i+|m|+m+1)B, i=0,1,2..., and
its eigenfunctions are the Landau states ®;(p, ) [1]. The
asymptotic region c=z=», 0=p=o with c less than the
radius r=>b is therefore chosen to conform with the cylindri-
cal symmetry of the problem. In this region, a set of j lin-
early independent solutions may be written, as is standard in
scattering theory [11], in terms of the solutions of Eq. (20).
These are a product of Landau states ®; and a linear combi-
nation of energy-normalized regular and irregular Coulomb
functions s and c, in z, evaluated at an energy E,:G—Ef‘,
namely,

V=2 Dip.Ps5(2) 8y, + ci(2)Ky,]. (22)
ik

The constants Kyjs the reactance matrix or K matrix, are to be
determined by the matching procedure.

The R matrix R(b), having been evaluated using Eq. (19),
is now matched through a two-dimensional matching proce-
dure to these asymptotic solutions on an arc at r=>b [8]. To
perform this matching the integrals

<¢}\(b;9’¢)|q,ej>=f d)}\\I’ede (23)

must be evaluated, i.e., the asymptotic solutions must be pro-
jected onto the local adiabatic solutions on the radial arc at
r=b. This is done by evaluating numerically the four matri-
ces P, Q, P', Q' with elements

ij(b) =f (pr(D3 0, ¢)E Di(p, ¢)Sij(z))r:hdﬂ,
Qx,‘(b) =f (p(b3 0, (15)2 CDi(pv¢)cij(Z))r:bdQ»
P} (b) = f (4r(b:0. D)X D(p. $)s7(2)) -

Q),\j(b)=f (¢)\(b;05¢)z (bi(P’ﬁﬁ)C;j(Z))r:bdQ, (24)

where the prime indicates the derivative with respect to z.
This gives the regular and irregular components of the solu-
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tions at r=>b and allows one to calculate the outer R matrix
from the asymptotic region at r=>b in terms of K, the reac-
tance matrix. Equating the inner and outer R matrices at r
=b gives

R=[P+(QK)][P'+(Q'K)]". (25)

Rearranging this expression gives us the equation for the K
matrix,

K=[(RQ) - QI"'[(RP") - P]. (26)

Knowing K, we have the energy-normalized solution over all
space and we can calculate both partial and total photoion-
ization cross sections. However, we first describe how
MQDT can be used to obtain K efficiently before showing
how the dipole integrals and photoionization cross sections
are calculated.

Multichannel quantum defect theory

For a given total energy € there are two possibilities for
the behavior of the Coulomb solutions in Eq. (22). If ;=€
—E*>0 the channel is open and the Coulomb functions os-
cillate at r=>b and all the way to infinity. If ;<0 then the
channel is closed and the solutions must decay as z— oc. The
physical K matrix therefore is a square matrix with the di-
mension of the number of open channels. However, with
multichannel quantum defect theory one exploits the known
analytic properties of the Coulomb functions to enforce the
boundary conditions for the closed channels. For the closed
channels there are two possible scenarios at r=b. Either the
channel is strongly closed and is already exponentially small
at r=>b, or it is weakly closed, i.e., the Coulomb functions are
still oscillating at r=>b before decaying at infinity. In MQDT,
for a weakly closed channel, one instead uses Coulomb func-
tions in Eq. (22) which do not decay at infinity, and one
treats the channel as if it is open, enforcing the boundary
condition at infinity analytically only in a final step [11].
Therefore the resonance structure due to these weakly closed
channels can be calculated analytically. Hence the K matrix
calculated by doing the matching using MQDT, denoted by
KC, has dimension given by the number of open plus weakly
closed channels. In general U has a slow dependence on
energy as opposed to the rapid energy dependence present in
K, because the Rydberg series of resonances converging on
the Landau thresholds corresponding to the weakly closed
channels have not as yet been included.

The open part of the actual physical reactance matrix K
can be recovered from the matrix K by the formula [11]

KOO = ’COO - ICOC[tan(qTV) + ICCC]_IICCO' (27)

The o and c¢ subscripts refer to the open and closed channels
of I and the tan 7rv’s form a diagonal matrix where the v’s
are related to the energies ¢; by

1
V= ———. (28)
V2|l

This way of obtaining the K matrix has two major advan-
tages. First, it is much quicker computationally since K rep-
resents a reactance matrix with a lot of the resonance struc-
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ture removed. Hence it varies much more slowly with energy
than the full reactance matrix K. This allows one to calculate
IC on a coarse energy mesh with fairly large energy spacings.
These IC’s can then be used to calculate K over an arbitrarily
fine energy mesh using the analytic formula in Eq. (27). This
allows the propagation stage to be performed at fewer energy
points, ultimately speeding up the calculation enormously.
The second major advantage of this approach is that the reso-
nance structure converging to a particular Landau threshold
can be identified by removing it from K. This is done by
keeping open the relevant Landau channel in the evaluation
of Eq. (27). By comparing a spectrum with all resonances
converging on a particular Landau threshold removed with
the full spectrum it is possible to determine which reso-
nances converge to which thresholds [8,18]. This technique
is demonstrated in Sec. IV.

C. Photoionization cross section

The photoionization cross section is given by
o=4mao|(V e AV, (29)

where « is the fine structure constant, w the photon energy, €
the polarization direction, W, the initial bound state, and W
the energy-normalized “incoming” wave function [19]. There
is a standard transformation to go from the K-matrix form
given in (22) to the S matrix or incoming form W7 [11]. Once
the K matrix and hence the asymptotic form are known from
the matching, the photoionization cross section is evaluated
by calculating the amplitude of the wave function near the
origin, and hence the dipole integrals, as follows.

The incoming wave function solution on the inner bound-
ary of the strong-mixing region (r=a) can be written as

V=D F(a)Y,,(6,¢). (30)
1

The wave function on the outer boundary of the strong-
mixing region can be written as

V.= Gi(b) b (b:6,¢), 31)
A

where G, is the energy-normalized incoming asymptotic so-
Iution calculated from the matching procedure in Sec. II B.

The radial solutions 7~ and G~ are linked by the global sec-
tor R matrices as given in Eq. (17) so that

F~(a)=RYG'~(b) - RVF'~(a). (32)

The radial solutions at r=a can be written in terms of the

field-free solutions S as F~=SA~ from Eq. (2), where S is a
diagonal matrix with elements

sj(a) + cj(a)tan 7y, (33)

and A~ are the field- and energy-dependent amplitudes. Sub-
stitution into Eq. (32) yields the equation

(S +RYSHA-=RYG'(b). (34)

The coefficients A~ can therefore be evaluated by solving the
above set of linear equations because G'~(b) is known once
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the K matrix is known. Using the coefficients f;‘, one can
then simply calculate the dipole integrals in terms of the
field-free dipole integrals multiplied by the appropriate com-

ponents of A7, since the coefficients A~ are by definition the
amplitudes that multiply the field-free solutions appropriate
near the origin. For example, for excitation from the s state
of hydrogen using linearly polarized light (Am=0), only the
[=1 component of the final state will be accessed. The photo-
ionization cross section in this case is therefore given by

a(e) =|A7(&)|*Tp. (35)

where o is the field-free photoionization cross section for
hydrogen.

III. COMPUTATIONAL DETAILS

The first point to address is the choice of the radii a and
b. The inner radius must be taken larger than the core
(~1 a.u.) for nonhydrogenic atoms, yet small enough that
the diamagnetic term is still negligible compared to —1/r.
For example, we took a=200 a.u. for laboratory strength
fields. For the asymptotic radius b, extensive calculations
show that it is surprisingly large, indicating that the long-
range coupling due to the terms of O(1/z%) falls off very
slowly. Based on our experience, we used the following em-
pirical formula for an arbitrary field:

( —3)2/3
b=700\ —| . 36
s (36)

The number of sectors between r=a and r=>b and their
sizes are chosen in the following way. First one chooses the
maximum energy to be used in the calculation, €,,,. The
transformation matrix (7"~!"),,, between adiabatic functions
evaluated at two radii 7/~ and 7 for consecutive sectors can
be calculated using Eq. (15). If /' was equal to r’,
(7"-'"),,» would be the identity matrix. As the distance
|rﬁ_1 — 7| increases, the corresponding adiabatic functions be-
come more different. The effect this has on T is that the
diagonal elements get smaller and the off-diagonal elements
get bigger. The maximum sector size for the angular adia-
batic basis is found by choosing a limit on how small any of
the diagonal elements of 7 can become. Choosing a value of
0.5 for the smallest diagonal element restricts the size of
each sector for a laboratory strength field to those shown in
Fig. 2. One can see that for small and large r the adiabatic
functions do not vary much with r, being close to spherical
harmonics and Landau states, respectively, leading to large
sector sizes. The intermediate range of r, where the avoided
crossings in the potential curves shown in Fig. 1 are present,
is where the angular functions are changing rapidly and one
requires small sectors.

The radial basis sector widths are chosen by comparison
with the local wavelength of the Coulomb functions, namely,

Radial sector si const (37)
adial sector size= —————.
[2(€max + 1/1)]"?

If a radial basis of ten Legendre polynomials is taken, it is

found that const=6.0 is sufficient to produce an accurate
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FIG. 2. Sector radii obtained using the angular condition only,
the radial condition only, and both conditions as described in the
text. The first and last sector radii are 200 and 12 000 a.u., respec-
tively. The magnetic field strength is 6 T.

description of the wave function [15]. For the maximum en-
ergy used, the sectors resulting from this criterion are also
shown in Fig. 2. There are therefore two criteria for choosing
the sector sizes; one from the radial basis and one from the
angular basis. The smaller value of these two determines the
actual sector sizes, and these are also shown in Fig. 2.

The adiabatic functions ¢,(r}; 6, ) are obtained by di-
agonalizing the adiabatic Hamiltonian H,; in a basis of
spherical harmonics. The number of spherical harmonics
used must ensure that the functions ¢,(r’; 6, ¢) are properly
converged. At the matching radius r=>b, the ratio between the
diamagnetic term and the potential term in H,; will be at its
greatest. It is therefore at this radius that the largest number
of spherical harmonics will be required, because it is here
that the adiabatic functions will have their greatest degree of
cylindrical symmetry. We choose the number of [’s so that
the eigenvalue corresponding to the second closed channel at
r=b for an energy ¢, is accurate to 0.5%. It has been
verified that this is sufficient to give convergence in the final
cross section.

When the R matrix is propagated from r=a—r=>b, it is
necessary to retain, within any one sector, all of the locally
open channels plus a few of the locally closed ones. The
number of closed channels required is directly related to the
threshold value on the adiabatic angular functions used to
determine the sector sizes. The number of closed channels
needed, however, is constant for all of the sectors. For a
given energy €, because the number of locally open channels
changes with radius (see Fig. 1), the total number of chan-
nels retained in any one sector varies. Because it is very
difficult to include a channel halfway through the propaga-
tion, the number of channels retained in a sector is found by
the following method. First, the maximum number of open
channels retained for a given €,,, in any one sector is found,
and this sector is labeled k. In every sector up to and includ-
ing k the number of channels retained is this maximum num-
ber of open channels plus the number of extra closed chan-
nels. After sector k the number of channels retained is the
number of locally open channels plus the number of closed
channels. The redundant channels in the global sector R ma-
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TABLE 1. Number of open channels and total number of chan-
nels used in each sector of the propagation for a magnetic field
strength of 470 T. Two extra closed channels are retained in each
sector.

No. of local No. of channels
open channels used

Outer sector radius
(a.u.)

23.41

43.94

72.05
108.04
141.02
189.01
247.23
313.78
388.78
472.01
563.75
663.93
700.00

—_— = = = = N WA N WW
W W W W Wk Ui O 0 O O 0 0

trices are removed for any given energy € by a simple trun-
cation as it is required during the propagation stage. Essen-
tially, once the saddle point of the adiabatic curves (see Fig.
1) is passed, the number of channels retained in the R-matrix
propagation can be reduced. An example of the number of
channels retained in a program run for a magnetic field
strength 470 T is shown in Table I, showing that from about
190 a.u. on the number of channels propagated decreases
with increasing r.

The number of channels needed to match the R matrix to
asymptotic solutions in order to obtain the X matrix was
checked for each spectrum to ensure convergence. Once the
K matrix was obtained, however, the number of channels
needed for the calculation of the cross section was reduced to
the number of open channels plus the number of weakly
closed channels. Weakly closed channels were taken to be
those that were within an energy (in a.u.) of 1/b of their
corresponding Landau energy.

The cross section is obtained over a coarse mesh of ener-
gies initially and then MQDT is used to calculate the cross
section over an arbitrarily small energy range. The conver-
gence of the cross sections was tested by varying the inner
and outer radii, a and b, and the other parameters in the
calculations.

IV. PHOTOIONIZATION CROSS SECTIONS
FOR LABORATORY STRENGTH FIELDS

Calculations at laboratory strength fields are the most de-
manding numerically as the radial distances over which one
needs to propagate the R matrix are large. The number of
channels needed in the calculation can also become quite
large. We focus on the photoinization spectrum of lithium in
a magnetic field of 6.1143 T (8=1.3 X 1073), where experi-
mental data exist (Iu et al. [10]). Lithium is excited from the
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FIG. 3. Photoionization cross section of lithium in arbitrary
units versus the energy in wave numbers measured relative to the
field-free ionization threshold. Excitation is from the 3s state in a
field strength of 6.1143 T using linearly polarized light. The final
state has m=0 and m,=—1. The top panel shows the full spectrum
and the second, third, and fourth panels show the spectrum with all
the resonances converging on the nearest, second-nearest, and third-
nearest thresholds removed using multichannel quantum defect
theory.

3s state using linearly polarized light, giving a final state
with m=0 and m,=-1 or odd z parity. We show in Fig. 3 the
calculated spectrum between the photoionization threshold
(i.e., i=0 or the first Landau level) and the second Landau
level or threshold, i=1.

The only significant quantum defect is for /=1, w,
=0.053. (The /=0 continuum partial wave does not play any
role for excitation from s states.) The photoionization cross
section is given in arbitrary units but it can be put on an
absolute scale if the field-free cross section is known. The
radius a is 200 and »=12 600. The adiabatic matrix thresh-
old was taken to be 0.1. Together with an €., of 3.9
X 1075 a.u., this gives the number of sectors as 64. The
maximum number of locally open adiabatic channels is 27,
and taking 13 extra closed channels the maximum number of
channels overall is 40; hence the maximum size matrix to be
diagonalized is 400 since there are ten radial basis functions
per sector. The cross section is calculated over a coarse mesh
at 400 energy points between the thresholds. The full spec-
trum is then calculated semianalytically using MQDT and
Eq. (27) with over 10 000 energy points. The spectrum ob-
tained from this calculation is displayed in the top panel of
Fig. 3 showing the complete resonance structure between the
thresholds. MQDT can also be used to examine the reso-
nance structure by keeping individual weakly closed chan-
nels open, i.e., by not enforcing the closed channel condi-
tions asymptotically. For a single threshold this is equivalent
to a Gailitis average [11,20] over the resonances converging
to that threshold. For several thresholds this is a type of
generalized Gailitis average over the resonance structure, and
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FIG. 4. Photoionization cross section of lithium in arbitrary
units over a very small energy range just below the first excited
Landau threshold. This demonstrates the arbitrary resolution of the
theoretical technique.

would be similar to convoluting the actual spectrum with a
Gaussian of a certain width [18]. The differences between
the first and second panels allows one to identify the per-
turbed resonances which converge to the second Landau
level or threshold, i=1. The third panel in Fig. 3 has reso-
nances converging on the next two thresholds removed (i
=1 and 2) and the final panel has resonances converging to
the i=3 threshold also removed. Some of the remaining
modulations may be resonances converging on higher Lan-
dau levels, but cannot be removed because the wave func-
tions of these resonances are completely contained within the
radius b=12 600. A lower matching radius would be required
to further reduce the spectrum. Note that the final panel con-
tains only about 20 resonances, compared to the very large
number in the first panel, indicating that much of the com-
plex resonance structure is due to several Rydberg series in-
teracting with a finite number of short-range perturbers.

In addition to helping in the analysis of the spectrum,
MQDT allows one to calculate the resonance structure to an
arbitrarily small resolution. This is demonstrated in Fig. 4
where an enlargement of the spectrum in a very small energy
region just below the first excited Landau level is shown.

However, the real power of the combination of R-matrix
propagation with adiabatic bases can be seen in Fig. 5, where
we calculate the photoionization cross section over an ex-
tended energy region covering over six Landau thresholds
from the ionization threshold. Because the number of open
channels increases with energy, the sizes of the matrices to
be diagonalized are slightly larger. The total number of sec-
tors increases also but, even for the highest energy, the num-
ber of channels did not exceed 50, so that the largest matrices
that need to be diagonalized are of the order of 500. The
cross section was calculated on a coarse energy grid of 500
points over each of the thresholds before applying MQDT.
The method scales in a reasonable way, thus allowing one to
calculate the photoionization cross section of an atom over a
large energy range above the ionization threshold.
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FIG. 5. The extension of the photoionization spectrum of
lithium in arbitrary units in a magnetic field of 6.1143 T, shown in
Fig. 3, to an energy range covering over six Landau thresholds.
Each panel shows the spectrum over one Landau threshold.

V. PHOTOIONIZATION CROSS SECTIONS FOR
ASTROPHYSICAL STRENGTH FIELDS

Photoexcitation and photoionization cross sections of
light elements such as hydrogen and helium are important in
understanding the properties of white dwarf and neutron
stars [2]. The method detailed in Sec. II can equally well be
applied to atoms in astrophysical strength magnetic fields. In
fact, the computation is much easier in this case compared to

Cross Section (Mb)
>
T
L

0 1 | 1 1
0.05 0.1 0.15 0.2 0.25 0.3

Energy (a.u.)

FIG. 6. Photoionization cross section of hydrogen in megabarns
versus the energy in a.u. measured relative to the field-free ioniza-
tion threshold. Excitation is from the 1s state in a field strength of
23 500 T using linearly polarized light. The final state is m=0 and
m,=—1. The energy range covers the first two Landau thresholds.
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FIG. 7. Photoionization cross section of helium in arbitrary units
versus the energy measured relative to the field-free ionization
threshold. Excitation is from the ground state in a field strength of
4700 T using linearly polarized light.

laboratory strength fields as the radius / is much smaller and
the number of channels and sectors is smaller too. We give
just two examples to illustrate the point. We first consider the
photoionization spectrum of hydrogen from the ground state
using linearly polarized light in a field of 23500 T (B
=0.05 a.u.). (See Fig. 6.) The radius ¢ was 1 a.u. and b
=50, the number of sectors used was 20, and up to ten chan-
nels were used in the propagation. This spectrum has also
been calculated using the complex coordinate method [6,21].
Excellent agreement is found between the two methods away
from the energy region near the ionization thresholds. As the
complex coordinate method uses a finite basis it cannot rep-
resent all of the Rydberg structure just below the ionization
thresholds.

The second example is the photoionization spectrum of
helium from the ground state in a field of 4700 T (B
=0.0001 a.u.). The only significant quantum defect is for [
=1, u,=-0.012. (The /=0 continuum partial wave will play
a role only for excitation from the 1s2p state.) The radius a
was 5 a.u. and b=150, the number of sectors used was 20,
and a maximum of 12 channels were used in the propagation.
Resonances converging to the first four excited Landau
thresholds are shown in Fig. 7. The resonance structure is
that of strongly perturbed Rydberg resonances converging to
the individual thresholds.

The spectra in both cases, when calculated over an
extended energy range, repeat the patterns shown in Figs.
6 and 7.

VI. CONCLUSIONS

We have presented a detailed description of a method to
evaluate the photoionization cross section of an atom in an
external magnetic field. By combining R-matrix propagation
with local adiabatic bases, we have shown that is possible to
calculate the cross section over an extended energy range for
a range of field strengths. We have calculated cross sections
for a range of atoms in both laboratory and astrophysical
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field strengths to illustrate the generality of the method. In
addition, for given values of B, m, and r,, the spectra of all
atoms of interest can be calculated without the need for any
additional propagations. By using MQDT one is able to cal-
culate quickly all of the resonances in the spectrum and to
analyze some of their main characteristics. Partial cross sec-
tions to individual Landau levels are evaluated when calcu-
lating the total cross section, enabling one to calculate their
distributions. The method can be used to calculate the large
amounts of data needed for such problems as stellar opacities
or for calculating recombination rates at low temperatures for
an atom in a magnetic field.
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APPENDIX

In constructing the matrix representation of the Hamil-
tonian plus Bloch operator in each sector one has to con-
struct matrices for the operators

14 1(I+1) 1
-+ -- Al
2 dr? 272 r (A1)

and r* with the radial basis set of shifted Legendre polyno-
mials. For an arbitrary sector with inner radius r=a and outer
radius r=b, the coordinate r can be rescaled to the coordinate

u such that
2 [ <b+a)]
u= r— .
b-a 2

The limits of the integrals in r over the limited range a — b
therefore become —1 — 1 in the coordinate u. The orthogonal
radial functions are thus

2n—1
£ =5 P,

where P, is the Legendre polynomial of order n. The kinetic
term can be evaluated by integration by parts and by using
the relation ([22], p. 282)

f“ dP,(u) de(u)d {n(n+ 1) if m—n even,
i i) =

(A2)

(A3)

.1 du du 0 if m—n odd,
(A4)
for m=n, or
1 fb df, df,,
—| ———dr
2), dr dr
_—
1Vv2n-1)2m-1) .
— —1) if m—-n even,
12 ey "D
0 if m—n odd,
(AS)

where m=n.
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The potential term /,,,, is given by

. (on—DOm—-1)
Lyn= J fn(r)<‘ l)fm(r)a'r V@Vl
a r b -
+1
P,_i(w)P,,_(u)
Xf_l ut(b+a)b-a)" o
Using the relation
+1
f P0)P,x) 2P,(2)0,(2), (A7)
—1 =X

where m=n and Q,,(z) is a Legendre function of the second
kind [22], the potential term becomes

- V@2n—1)2m - 1)2Pn_1<— (b+a)) m_1<_ (b +a)>.
b—a b— b-a
(A8B)
Since
P,(=2)=(-1)"P,(2),
0,(-2)=(-1)""'Q,(2), (A9)
one gets finally
_—
= '(2}’1 - 1)(2m - 1)2(_ 1)n+m+l
b-a
X P (b+a) (b+a) A10)
n—1 b—-a Qm—l b—a . (

The centrifugal term requires the integrals J,,,,

b 1
Jnm = f fn(r)ﬁfm(r)dr

Pn—l(u)Pm—l(u) u
G lu+b+ra)b-a)P

(A11)

_N@n-DEm-1) [+
- (b-a)?

The integral in this equation can be evaluated by differenti-
ating Eq. (A7) to obtain

f”mmmm

-2
(z—x)2 = 2- 1[(n+ DP,41(2)0,,(2)
-1

+(m+ 1)P,y(2) Qi1 (2)
+(n+m+2)zP,(2)0,(2)], (A12)

where the following relations have been used:
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dP,(z)
d

(Z-1) =(n+1)P,1(z) — (n+ 1)zP,(2),

@—U@%Q=W+D®m@—W+UwMA
(A13)

Substituting the appropriate value for z and using the rela-
tions in Eq. (A9) the final result is

I
n-DEm-1 (2 ..
s S AL T CTONIE)

+ mPn—l(C)Qm(c) - C(I’l + m)Pn—l(C)Qm—l(C)]s

(A14)
where

_b+a
T b-a

c (A15)

To evaluate the integral involving 72, the recurrence rela-
tion
2n+ DuP,(u)=(n+1)P,,(u) +nP,_(u) (A16)

is used. This yields

b
f fn(r)rzfm(r)dr
_w—@T

nn+1)
(2n+1)\2n—1\2n -3

mn+2

4

2cn n?

e |
Vn—1\2n+1 ™! (C 2n-1)(2n+1)

(n-1)»>2 )5 2¢(n—-1) 5
|+ ="
Cn-1)2n-3)) """ \op—1\an—3 ™!

(n-1)(n-2)

Ll (A17)
2n-312n—-1\2n-5 " 2}

To evaluate Eq. (A10) and Eq. (A14) the functions P,(c) and
0,/(c) must be calculated. To calculate the Legendre polyno-
mials P,(c), the standard recurrence relation

P = 2 (6 - p (o

Al8
+1 +1 ( )

is used, where the first two Legendre polynomials are given
by Py(c)=1 and P;(c)=c. The method required to calculate
0,/(c) depends on the value c. For ¢ <1 the same recurrence
relation as Eq. (A18) can be used with Qo(c):%ln[(cﬂ)/(c
—1)] and Q,(c)=(c/2)In[(c+1)/(c—1)]-1. For ¢>1 the re-
currence relation in Eq. (A18) should only be used for de-
creasing values of n. The first two values can be evaluated
using the expression
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0,(0)= P(c)ln( ’f)—wn_l(c), (A19)
where
W€ = s P65 P
- mé iPm_l(x)Pn_m(x). (A20)
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The first values could also be calculated using hypergeo-

metric functions via
7?2 Tm+1) 1 nl n 3 1
ol + .o+ oint+ o5
22 2 2
(A21)

Qn(c) 2n+lr( ) n+1

for |c| > 1; however, in the calculations described in this pa-
per the expression in Eq. (A19) was used. The Legendre
functions of the second kind can therefore be evaluated using
the recurrence relation

0,(c) = Qn+2( ) - CQn+1(C) (A22)
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