SOME APPLICATIONS OF MATHEMATICS

CODING THEORY

Elizabeth Jane Dunscombe

Royal Holloway and Bedford New College

(University of London)

Submitted for the degree of Ph.D.

TO

ProQuest Number: 10090155

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10090155
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

This thesis deals with the transmission of data over a channel that is subject
to noise, or interference. There are many different methods of trying to achieve
reliable communication of data in the presence of noise. This thesis considers
some of these methods, in particular, those aspects involving the use of error-
correcting codes. A number of specific applications are considered, as well as

some more general theory.

One general class of codes is that of cyclic codes (where every cyclic shift of
a codeword is also a codeword). Chapter 2 of this thesis reviews a decoding
scheme for cyclic codes proposed by Professor P.M. Cohn. The scheme is a
modification of standard array syndrome decoding. It is shown that Cohn’s

scheme does not perform as well as the original version of syndrome decoding.

Chapter 3 considers Cyclotomieally Shortened Reed Solomon codes (a class of
codes introduced by J.L. Dornstetter) and their relationship with the Chinese
Remainder Theorem codes of J.J. Stone. The blocklength and dimension of
these codes is established, together with the best possible lower bound on the
minimum distance. The notion of cyclotomie shortening is then extended to

Alternant codes.

Chapter 4 deals with the subject of interleaving for channels that are subject to
bursts of errors. An optimal solution is given to a problem posed by Inmarsat

when interleaving is used with a convolutional code. It is shown how to improve

the method of interleaving which feeds data column-wise into an array and
then transmits row-wise, by careful selection of the order in which the rows are

transmitted.

The final chapter discusses the concept of an error-correcting code with two dif-
ferent codeword lengths. Some general results about such codes are presented.
A method of forming these codes is given for the case when one wordlength is
twice the other. A specific example of this type of code is considered. Both

theoretical and simulated performance results are presented for the example.

ACKNOWLEDGEMENTS

I wish to thank Professor F.C. Piper for his guidance and support throughout
this research and for always being right about the next phase of post-graduate
life. My thanks also to Dr. M. Walker of Racal Research Ltd. for his help and

for giving me his time despite a busy schedule.

I am grateful to everyone in the Mathematics Department at RHBNC for mak-
ing my stay as a post-graduate such a pleasant one. Particular thanks to Dr. P.
Wild for spending many hours listening to my ideas (both good and bad) and
for his helpful suggestions. Also thanks to Dr. J.D. Knowles for his help with

Statistics.

I wish to thank my husband, Chris, whose faith in my abilities always exceeded

my own, for his constant encouragement and support.

I gratefully acknowledge the financial support for this research from the Science

and Engineering Research Council and Racal Research Ltd.

I lift my eyes to the hills -

from where does my help come ?
My help comes from the Lord,
the Maker of heaven and earth.

Psalm 121, v. 1 - 2.

Chapter 1

Chapter 2

1.2.1

1.2.2

1.2.3

1.3.1

1.4.1

1.5.1

1.5.2

1.6.1

1.7.1

1.7.2

1.7.3

1.8.1

CONTENTS

Tt P A C ittt e 1
ADSIIACT ottt e 2
Acknowledgements.....ccoieerieienineeee e 4
Table 0f CONTENS ..ottt 6
Table Of FIgUIES. .ottt 9
INtrodUCTION coouiciieiiiiicce et 10
INErOdUCTION oottt ettt 10
BlOCK C O @S ittt 12
Decoding Linear Block Codes...cccevieviniicieneecieeeeeeeeeeee 17
CYCHC COA@S . iuiiiiiiieiiiieiieieee ettt ettt ae e e aeeeae s 20
Reed Solomon Codes...iiiinieieiieiesieceeereeee e 22
Convolutional Codes ..ot 24
Random Errors and Burst Errors..cccccevieceecicieccce 26
Block Codes vs Convolutional Codes....ccvevenecerccncncnnennene. 28
INEETICAVINEG oiiiiiiiieiieiieiee ettt 30
Variable Length Codes..cooiiiiviiiieciiiieieiececeeeeiee e 31
Discussion of Variable Length Codes and Noiseless
Channels .ot 32
Variable Length Codes and NoisyChannels......ccccceveveriennne 34
S UM M ATY ettt ettt st ettt et e s st e e e 35
A Study of P.M.Cohn’s DecodingScheme for Cyclic

COALS ittt s 36

2.1.1
2.1.2
2.2.1
222
2.3.1
24.1
2.5.1
2.5.2

2.6.1

Chapter 3

3.1.1
3.1.2
3.1.3
3.14
3.2.1
3.3.1
33.2
333
334
34.1
3.5.1
3.6.1

3.6.2

INErOAUCTION ittt eeaes 36
LA 01 7214 1o} 4 RO 37
Standard Array Decoding....cccccecenivieniinieiinieieneeieseeeeee e 37
Cohn’s SCHEME.c.uiiiiiiiiiiireeee e 39
Background ResultS..coiiiiieiiieeie e 39
Probability of Correct Decoding.....ccceceeeeneeeeneeienesienieeene 42
Threshold Values for Cohn’s Scheme......cococevececeinccnncnes 45
Computer ReSUILS..oociviiieiiiieee e 46
SUM M ATY cetetiriieieitete ettt st et eaeen 48
POSTSCTIP ittt 48

A Study of Reed Solomon Codes,Chinese Remainder

Theorem Codes and CyclotomieShortening......cccceeeeeenenee. 50
INtrodUCTION coeeiiiiiiicccecee ettt 50
Introduction to CRT Co0Odes..cccririnineneieiiinincncicrceeieenens 51
Reed Solomon Codes....cnninenicieieinineseseeeecee e 54
Introduction to CSRS Codes ..o 55
Preliminary ReSUILS . .cooooiiiiriieriiieeeeeeceeeee e 57
Dimension of CSRS Codes...cocoeeiinininiinincicicicieceeneenene 58
Blocklength of CSRS Codes...cccoviniininieiiieieeeeee e 58
Minimum Distance of CSRS Codes...ccccovnvininiinineiiineneenn 62
CSRS Codes as Binary Codes...ccoevireieninieniineeieneeeeeeeenen 64
CSRS and CRT CodeS it 65
Encoding and Decoding....cccooceveeeninieeneiiieneeeeeeee e 71
Dornstetter CodesS. .ottt 73
CSRS Codes and Dornstetter Codes...covimeneneneeniencneneennen 74

3.7.1
3.8.1
Chapter 4
4.1.1
4.1.2
4.1.3
42.1
422
4.3.1
4.4.1
442
443
4.5.1
Chapter 5
5.1.1
5.1.2
5.1.3
5.2.1
5.2.2
523
5.3.1
5.3.2

5.4.1

5.4.2

SUM M ATY ettt ettt sttt 78
Interleaving for Convolutional Coding.....cccceevvveieninennnne. 80
INtroduCtioN oo 80
O D C IV ES cuieiieiietiriieie sttt ettt st ettt ettt et e saeeneenees 82
N OLALTOM cueuiiieieiieiieieet ettt sttt et s ene 82
A Simpler Problem ..o 83
Discussion of the Case b = @ — 1 ccccovvevinininenciecinceeee 85
An Optimal SCheme.....ccooieieiiieieeeeeee e 88
Recommendations for the Usage of Scheme 1cccceeeee. 94
Interleaving and Random ET1rors......ccocveviieveninieiiniecenenen. 94
Using Scheme 1 with Unknown @ccceeeeevevieiinceenienceeniennenen. 95
CONCIUSION .ttt 97
Binary Two-Length Codes with Error-Correction.............. 98
INErOAUCTION ctieiiiiiciiecie ettt ettt et saeseeebesteesaense e 98
O D C IV ES cuieieriieieiieteete et ete ettt et ste et ettt et e beereestesaeensesseeneenes 99
Initial Td@as.ccooioerieiriiiiiieccc e 100
Linearity Considerations...ccccoecereerienieeieneeeeneseee e 102
A DiStance MEaSUTIC...cccoevririririeniiienteieieeieee st seesieeereeneeieees 105
A t-Error-Correcting Decoding Scheme......coceveevirienennne. 107
Two-Length Binary Codes with 7i2 = 20 i.eviciiiiiinnne I11
Bounds on Blocklength and Dimension......ccccceceveeeecuenennnen. 113

Investigation of the Synchronization Properties of
Binary Two-Length Codes with 7i2 = 2ni.vceceeieienn, 115

Eos when LCa C SC ULCp and LC C LCpX LCa............ 123

5.5.1

5.5.2

553

5.6.1

5.6.2

5.7.1

Appendix 1

Appendix 2

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

1.1

1.2

2.1

3.1

5.1

5.2

53

5.4

5.5

A Binary Two-Length Code for the English Alphabet... 125

Synchronization Properties for Two-Length Codes

Formed from the Hamming (7,4) Code..cccooeninvervriencnnnne 128
Why Restrict Attention to tiz = 201 ? ccovveveciniecieneeeeneeneen 130
Simulation of Code Performance.......cccoceceevncnincnciencenncne. 131
Simulation Results ..ot 135
CONCIUSIONS ..ottt 138
R ETCICNCES ittt 150
Program for Chapter 2 ...cooievieiieieeeeeeeeceeeeeee e 152
Programs for Chapter 5 ..o 154

Table of Figures

State Transition Diagramcccccerciieciieniienienieeie e 25
Waveforms for One and Zero.....cccocevieeeciesieceeseeieieeeeie e 27
GTaPh Of F(X) coeeeeeeeetee et 43
Table of Possible Blocklengths......cccoooveviininieniiiiiiiieiee, 62
Decoding Scheme Flow Diagram......c.cccoevvecieniecieceniecieneennn, 109
Markov Chain Transition Diagramccceoveevenenceeiencnncnne 116
Markov Chain Transition M atriX.....c.ceevevnininineneneecnennes 120
Frequency Table for English Alphabet.....cccooenevncinininnnnne. 126
Description of Codes used in Simulation.......ccceeeeeveverciennne 132

Figures 5.6-5.15 Simulation Results....ccoooeiiiiieiinieiiieiee e 140

Chapter 1

INTRODUCTION

§1.1.1 Introduction

This chapter gives an overview of the subject of Coding Theory from a math-
ematical viewpoint. It pays particular attention to those topics which will be
considered further in this thesis. However, only those results which are widely
presented in the literature are discussed here, the lesser known results will be

detailed in the introduction to the chapter to which they are relevant.

For the world to function as it does today, there has to be a large amount
of information transferred from one place to another, this may be done ver-
bally or by written text of some form. Information is transferred through a
communication system. In general, a communication system consists of an
information source, a communication channel and a receiver. The communi-
cation channel can take many forms, for example a public telephone circuit
between Glasgow and Bangor or the link between a satellite and a ground sta-

tion.

The large amount of data that is transferred, together with the nature of the

physical world, results in most communication channels being subject to ‘noise’.

10

Noise is some event that occurs whilst data is passing through a channel so that
the data that is received is not exactly the data that was sent. The effects of
the noise on the data will be described as errors on the channel. If redundancy
(extra data that is derived in some way from the original information) is added
to the data before it is transmitted over the channel, then at the receiver it
may be possible to use this redundancy to detect or even correct the errors that
have occurred. As a rough guide, the more redundancy that is added the more
errors that can be dealt with. The term information will be used to describe
that which the information source produces. The term data will be used to
describe that which is actually transmitted over the communication channel,

i.e. the information with the redundancy added.

A code is a set of sequences of data symbols, called codewords, that contain
redundancy. The process called encoding is the assigning of codewords to infor-
mation sequences. To enable the information to be recovered at the receiver, the

code must contain a unique codeword for every possible information sequence.

In summary, a source produces information which is encoded to codewords,
these codewords are then transmitted across a communication channel and er-
rors occur. A codeword with errors added is received, this will be called the
received word. The process known as decoding uses the redundancy in the re-
ceived word to try to recover the transmitted codeword. Once a codeword is
obtained it is then mapped to its corresponding information sequence, but this

is not usually considered as part of the decoding process.

11

The speed at which the information is transmitted between the information
source and the receiver is often important and, assuming that data symbols can
only be transmitted across the channel at a fixed rate, the more redundancy

that is added, the slower the receiver collects the information.

Thus the aim of Coding Theory is to try to balance the conflicting requirements
of transmitting data accurately (i.e. with as few errors as is possible) and

efficiently (i.e. as fast as possible).

Throughout this thesis, the symbol g will be used to represent a prime power
and it will be assumed, unless otherwise stated, that the information source

produces a sequence of symbols from the Galois field GF{q) .

§1.2.1 Block Codes

A block code divides the information produced by the source into fixed length
blocks of symbols and encodes each block to a fixed length codeword indepen-

dently of the surrounding blocks.

Let M be the number of different sequences of £ symbols from GF{g) that the

information source can produce.

Definition 1.1 A block code of size M over GF{q) is a set of M codewords

of length n over GF(q) . O

To use a block code it is necessary to define a one-to-one map from the set

of M sequences of length & produced by the information source to the set of

12

codewords. Encoding is then performed by taking the first £ consecutive sym-
bols produced by the information source, mapping them to the corresponding
codeword and repeating the process with the next k£ consecutive symbols, until
all the information has been encoded. Each codeword is transmitted as it is

produced.

Often M = that is the information source may produce all possible sequences
of length k over GF(q) . In this case the code is called an in, k) code, n is the
blocklength of the code and k is the dimension of the code. Notice that the

codewords may be considered as vectors over GF(q)" .

Deitinition 1.2 A linear code is an (n,fc) code over GF{q) , where the set

of codewords is a subspace of GF(q)” of dimension k. O

A vector space of dimension £ can be generated by any set of £ linearly indepen-
dent vectors from the space. This result enables the encoding procedure for a
linear code to be defined in terms of an X n matrix, called the generator matrix
of the code. The rows of the generator matrix are taken to be any k linearly
independent codewords. Encoding is then performed by representing the £

information symbols as a row vector, i, in GF{q)” and then

c- 1G

where ¢ is a codeword vector and G is the generator matrix of the code.

Let Cbe a code, then

13

Deidinition 1.3 The orthogonal complement, , of Cis the set of all vectors
which are orthogonal to every vector in C. can also be thought of as a code

and is called the dual code of C .o

The dual code of a linear (n, k) code is linear with dimension n —k and therefore
any n —k linearly independent vectors of generate the dual code. Let H be

a generator matrix for the dual code, then for any ¢ GC,

cH" =0 1.1)

because ¢ is orthogonal to every row of H. In fact, any vector over GF{q)" is

a codeword iff it satisfies (1.1). H is called the parity-check matrix of C.

An important parameter in Coding Theory is the distance between codewords,
the most frequently used distance measure is given by the following four defi-

nitions.

Deinition 1.4 The Hamming distance , d(x,y), between two n-tuples x

and y is the number of places in which they differ. o

Deiinition 1.5 The minimum Hamming distance, d, of a code C, is the

least Hamming distance between any pair of codewords. O

Deunition 1.6 The Hammins Weight, w/c), of a codeword ¢, is the number

of non-zero entries in ¢.D

Dennition 1.7 The minimum Hamming weight, w, of a code Cis the small-

est Hamming weight of any non-zero codeword contained in C. O

14

The following theorem shows the relationship between Hamming distance and

Hamming weight for linear codes.

Theorem 1.1 For a linear code, the minimum Hamming distance is equal

to the minimum Hamming weight. That is

Proof [HI], page 46 (Thm 3.1.3). O

In this thesis, Hamming distance will be refered to simply as distance and
Hamming weight simply as weight, except where two distance measures are in
use at one time, when the full name for each distance will be used to avoid

confusion.

For a linear code, the minimum distance can be found very easily from the

parity-check matrix, H.

Theorem 1.2 The minimum distance, d, of a code, C, is the largest value

of X, such that every set of x —1 columns of H is linearly independent. O

Proof [BI], page 48 (Corollary 3.2.3). O

There is a well-known upper bound on the value of d for given n and k for a

linear code.

15

Theorem 1.3 (The Singleton Bound) The minimum distance of any {n,k)

linear code satisfies

d n—AT 1
O
Proof [BI], page 50 (Theorem 3.2.6). O
Definition /.8 Any linear code whose minimum distance satisfies
d=n—kF1I

is called maximum distance separable. O

Lastly, a measure of how much using an {n,k) code slows down the speed at

which information is transmitted over the communication channel is introduced.

Deiinition 1.9 The data rate of an (n, k) code is the quantity k/n. O

This section has described block codes and also linear block codes. An encoding
method has been introduced for linear block codes and the Hamming distance
measure has been defined. The majority of work in coding theory has been per-
formed on linear codes. These codes have a strong structure which helps in the
search for good codes (i.e. those which correct many errors whilst maintaining
a high data rate). Also linear codes are the only block codes for which practi-
cal decoding algorithms have been found. The next section looks at decoding

methods for linear block codes.

16

§1.2.2 Decoding Linear Block Codes

There are several different families of linear block codes, formed by imposing
restrictions on either the generator matrix or the parity-check matrix, specific
decoding methods have been developed for each of these families. However, this
section will consider only general decoding methods that could be used for any

linear block code.

Most decoding schemes aim to decode the received word to the closest codeword,
that is the codeword that is the least Hamming distance away (with a choice
being made in the event of a tie). The object of a good decoding scheme is to
reduce the number of codewords that have to be searched through before the

closest one can be found.

Correct decoding occurs when the received word is decoded to the codeword
that was transmitted, otherwise erroneous decoding takes place. Suppose that
t symbols in the received word are in error (that is different from the ones that
were sent), then correct decoding occurs if all codewords (other than the one

transmitted) are at distance > ¢ from the received word. This occurs if

d>2t +1

Thus a code can be guaranteed to decode a received word correctly if it contains
at most = t errors. Such a code is called t-error-correcting and ¢ is called
the error-correcting capability of the code. Erroneous decoding occurs if so

many errors have occurred that the received word is closer to a codeword other

17

than the one that was sent, that is the error-correcting capability of the code

has been exceeded.

Suppose a word y G GF/q)'" has been received, then it is required that ¢ GC,
the closest codeword to y, is found. Perhaps the simplest algorithm for doing
this is using a standard array. A standard array has dimensions {q)"~" x [g)"

and one method of forming it is as follows :

(i) Take the first row to be the set of codewords, with the all-zero codeword
in the first position (the remaining codewords may be in any order). Set

i=2.

(i) To obtain the row of the array, form a set of vectors which consists
of all vectors in GF(gq)'” which do not already appear in the array. Select
from this set a vector of least weight (in the event of a tie, a free choice
may be made). This vector is placed in the first position in the row.
Each of the remaining positions are filled with the sum, over GF/q) , of
the chosen vector and the codeword at the top of the column in question.

Seti=2-f1.

(ii1)) Repeat Step (ii) until i = {g)"~"+ 1

To decode y, find y in the standard array and decode it to the codeword at the

head of the column in which y is found.

The standard array contains all the elements of GF{g)" , that is the set of

all possible received words. Each column in the array consists of those received

18

words that have the codeword at the top ofthe column as their closest codeword.

The reader is refered to [Bl], § 3.3 for further details.

It is clear that for large n and k, the standard array would be too large to store
or to list. However, there is a variation on standard array decoding that requires
only the first column of the array to be stored, along with another column of
vectors of length n —k over GF{q) . For this decoding method it is necessary

to introduce the concept of the syndrome of the received word.

Definition 1.10 For any received word y, the syndrome, s, of y is defined

by

s = yH”"

Now y = ¢ + e, where ¢ is a codeword and e is the error pattern. Thus
s= (¢ + e)H”

= cH”" + eH"

= eH"
Therefore the syndrome of a received word depends only on the error pattern.
Notice that all the elements in a row of the standard array have the same
syndrome, because each row consists of all the codewords with the same vector
added to each. Thus decoding may be performed by listing the first column of
the standard array together with the syndrome of each vector in this column.
Then decoding may be performed by calculating the syndrome of the received

word, finding the syndrome in the table and taking the corresponding vector as

19

the error pattern. Subtracting the error pattern from the received word gives

the required codeword.

Syndrome decoding may be used for any linear block code and the principle is
used in many decoding schemes for specific codes (although not always explic-
itly). The next section examines the sub-class of linear block codes called cyclic

codes.

§1.2.3 Cyclic Codes

Definition 1.71 A linear {n,k) code over GF[q) is a cvlic code if, when ¢

is a codeword, every cyclic shift of ¢ is also a codeword. O

Cyclic codes are best described by using polynomials. First, recognise that
each vector in GF[g)” can be represented as a polynomial in x of degree <
n —1. The components of the vector become the coefficients of the polynomial.
The set of polynomials formed from all the vectors of GF/qY' forms the ring
GF[q)[x\I(x'"* —1). Thus any cyclic code is a subset of this ring. Suppose
the polynomial c(&) is a codeword, then a cyclic shift of this codeword can be

written in terms of multiplication within the ring as follows

xe(x) = [ec()]

where [p(2)] denotes p{x) modulo x* —1. It is recognising that a cyclic

shift can be written in this form that leads to the following theorem.

20

Theorem 1.4 In the ring GF(q)[x]/{x" —1), a subset is a cyclic code iff

the subset is an ideal of the ring. O

Proof [BI1], page 97 (Theorem 5.2.1). O

Now, in the subset of polynomials that forms a cyclic code there exists a unique,
non-zero, monic polynomial of least degree /= n— fc), ([Bl], page 97). This

polynomial may be used to generate the code (seeTheorem 1.5)and hence s
called the generator polynomial of the code and is denoted by g{x). For g(x)
to generate the code, the information symbols are represented as a polynomial,

a(z), of degree < A—1 over GF/q) .

Theorem 1.5 A cyclic code consists of all multiples of g[x) by polynomials

of degree k — 1 or less. D

Proof [BI], page 98 (Theorem 5.2.2). O

The generator polynomial replaces the generator matrix for an ordinary linear
block code. In the same way, it is possible to define a parity-check polynomial,

but first Theorem 1.6 is needed.

Theorem 1.6 There is a cyclic code of blocklength n, with generator poly-

nomial g[x) iff g{x) divides »—1. O

Proof [BI], page 98 (Theorem 5.2.3). O

Definition 1.12 The parity-check polynomial, h(x), is given by

g(x)hix) = x* —1

21

The definitions of standard array decoding and syndrome decoding can be writ-
ten in terms of polynomials for cyclic codes. This will be considered in Chapter
2, where the effects of choosing a different vector from each row to be placed
in the first column will be examined. The next section deals with a particular

class of cyclic codes called Reed Solomon codes.

§1.3.1 Reed Solomon Codes

Reed Solomon codes are defined over the extension field GF/[q”) , so, for this
section, an information source producing elements of GF[q¢”) will be assumed.

The codes are defined by describing how to form the generator polynomial.

Deiinition 1.13 Let a be a primitive root of unity in GF{q'") and jo a
positive integer. Then a t-error-correcting Reed Solonaon code over GF{q") of

blocklength n | —1 is a cyclic code with generator polynomial

gi) = {x- e -

and has dimension n —2¢. O

Reed Solomon codes are maximum distance separable ([Bl], page 175 (Theorem
7.3.1)). Encoding and decoding processes for Reed Solomon codes are well-
known and the interested reader is refered to [Bl], [PW] or [MWS], as these

processes are not relevant to this thesis.

22

It is also possible to define Reed Solomon codes in terms of Galois-field Fourier

Tranforms, which are the subject of the next definition.

Detinition 1.14 Let v = be a vector of GF{g)" , where
n I —1 for some m, and let @ be an element of GF{g”") of order n. The
Galois-Field Fourier Transform!G FFT), of v is the vector
V = (Vo,Li,..., Vn-i) given by

n-1

Vi = "Na'"Vi i=0,1,..,n- L
0

Definition 1.14 gives the GFFT of a vector over GF{q)as a vector over GF{q").
The following theorem takes a vector over GF[q”) and shows when its inverse

GFFT is a vector over GF/[q) .

Theorem 1.7 Let Y be a vector of length n over GF{q") where n | g™ —1.
Then the inverse GFFT v is a vector of elements of GF[q) iff the following

equations are satisfied :

= ((91)) 1=20,...,71- 1

where the double brackets indicate modulo n —1 arithmetic. O
Proof [BI], page 221 (Theorem 8.2.1). O

Theorem 1.7 plays an important role in Chapter 3 of this thesis. The only

further definition that will be presented here is the GFFT definition of Reed

23

Solomon codes. The theory behind this definition and of GFFT as a whole may

be found in [BI], Chapter 8.

Definition 1.15 A t-error-correcting Reed Solomon code over GF(q") , of
blocklength n | g~ —/ and dimension n —2t, may be formed by taking a vector
of length 71, setting 2¢ consecutive terms equal to zero, and filling the remaining
places with the information symbols. The codeword is then the inverse GFFT
of this vector. To form the complete set of codewords, the 2¢ consecutive zeros

must occur in a fixed place. O

Thus far, only block codes have been discussed. The next section introduces
the other fundamental group of codes that are part of Coding Theory, that is

convolutional codes.

§1.4.1 Convolutional Codes

Unlike block codes, convolutional codes do not break up the sequence of infor-
mation symbols into blocks and encode each block independently. The sequence
is split into blocks (called frames) of ko symbols, where ko is small (and is of-
ten equal to one). At each time interval a frame is fed into the encoder and
70 > ko symbols are output from the encoder, however these 7o symbols will
depend upon the input frame and also the previous k& — 1/ frames (Ais called

the constraint length of the code).

Perhaps the best way to describe a convolutional code is in terms of a state

transition diagram. Each state is labelled with the values in the & current

24

frames, two states are joined if the input of a single frame can take the first
state to the second. The branches are labelled with the no symbols that the

encoder outputs given that this transition takes place.

Example 1.1 Consider a binary convolutional code with ko = l,no =

2 and k£ = 3, and state transition diagram as in Figure 1.1.

Figure 1.1

Then an information sequence 1101 will be encoded to 01110001. (Note : the
encoder starts in state 000 and all sequences of bits are read from left to right).

O

To decode a convolutional code, in principle the whole received sequence must
be compared with every possible sequence that the encoder could produce,

25

the closest one being chosen. However, in practice this is impossible for any
reasonable length message as the number of possible sequences grows rapidly
with the length of the message. So a decoder that only searches through some
of the possible sequences must be found. The best known such decoder is
the Viterbi decoder ([Bl], pages 377 - 382), which considers, at any one time,

sequences of length only akriQ, where a is a small positive integer.

Observe that, because decoders for convolutional codes operate by selecting a
sequence generated by a state transition diagram in which the states are not
fully interconnected, once an error occurs in the decoded sequence several more
will follow immediately, as it takes time to return to the correct sequence. Thus
convolutional codes suffer from error propagation. Convolutional codes perform
differently under different channel conditions, this will be discussed in §1.5.2,

the next section will introduce the two main types of channel conditions.

§1.5.1 Random Errors and Burst Errors

The term ‘channel conditions’ refers to the type of errors a channel is subject
to. Consider a channel that has the binary digits, 0 and 1, as the data symbols
that it can transmit. On most practical channels, it is waveforms of energy that
are transmitted over the channel. Suppose that 0 and 1 are transmitted as the
waveforms shown in Figure 1.2, this may be thought of as positive and negative

energy.

26

Zero

One !

Figure 1.2
At the receiver, if positive energy is received in a time interval, then this is
interpreted as a zero, in the same way negative energy is interpreted as a one.
The noise that causes errors comes from other waveforms passing through fhe
same region as the channel. Suppose that the effect of all these other waveforms
is compounded together and can be considered as a single noise wave. The data
waveform and the noise waveform are added by the principle of superposition.
An error occurs in a given time interval when the superimposed waveforms have

energy of a different sign from that of the data waveform.

The channel conditions are determined by the statistical behaviour of the noise
waveform. One type of noise is Additive White Gaussian Noise, (AW GN), this
occurs when the average energy level of the noise waveform in each time inter-
val follows a Gaussian distribution, with mean zero and the variance dependent

on the amount of noise. This produces random errors and the probability of a

27

received bit being in error can be easily calculated from the Gaussian distribu-

tion.

Because the Gaussian distribution is symmetrical, the probability of a one
being received as a zero is the same as that of a zero being received as a
one. A binary channel where the crossover probabilities are equal is called

a Binary Symmetric Channel, (BSC).

The other main type of noise causes burst errors. This is when the noise level is
very low (and thus very few errors occur) for long periods of time, but these are
interspersed with quite long bursts of continuous high level noise, producing
a long burst of erroneous bits. An example of such a channel is a mobile
telephone link from a moving vehicle. The low noise level occurs when the
vehicle is moving through open ground and a burst may be caused by the
vehicle travelling through a tunnel. The maximum number of consecutive bits

that may be received in error is called the maximum burst length, b.

The above ideas have been expressed in terms of binary transmission, but sim-

iliar ideas extend to the transmission of other types of data symbols.

§1.5.2 Block Codes vs Convolutional Codes

The two different types of errors described above have different effects on error-
correcting codes. When random errors occur with a low probability of a symbol
being in error, then the number of errors that occur is usually within the error-

correcting capability of the code. As the probability of a symbol being in error

28

increases, the error-correcting capability of the code with be exceeded more

often and more decoding errors will occur.

Convolutional codes are relatively slow to decode even with a Viterbi decoder.
However they do perform well in the presence of AWGN when it is acceptable
for the received information to contain a few errors. Block codes can provide
a higher data integrity under AWGN, but may have a slower data rate, which
again may be offset by a faster decoder. Thus, under AWGN, each individ-
ual situation must be considered before deciding whether a block code or a

convolutional code would be best.

Burst errors, however, provide long periods of time when virtually no error-
correction is needed. But a burst of errors will normally exceed the error-
correcting capability of the code. Convolutional codes do not perform well with
burst errors. This is because a long burst of errors will cause the decoded
sequence to deviate a long way from the transmitted sequence and recovery

may take a long period of time.

In the presence of burst errors, block codes always perform better than convo-
lutional codes. This is because the nature of block codes restricts the decoding
errors that result from the burst to just those codewords affected by the burst,
that is there is no error propagation. The longer the blocklength of the code
the better able it is to cope with burst errors. For example, given 100 bits to
transmit, it is advantageous to use a 10-error-correcting code with blocklength
100 than a 1-error-correcting code with blocklength 10. Although both codes

can correct 10 errors in 100 bits, the first code will correct this many errors

29

even if they all occur together in a block of ten whereas the second code can

correct 10 errors only if one error occurs in every 10 bits.

[BPP] provides a very good comparison between block codes and convolutional
codes and expands on this section. The next section looks at a technique for

randomising burst errors.

§1.6.1 Interleaving

The previous section demonstrated that, supposing a fixed number of errors
where to occur during the transmission of a message, better data integrity may
be obtained if they are spread out rather than all occurring in a block. However,
as data sometimes has to be sent over a channel that is subject to burst errors,
is there anything that can be done to transform a bursty chanel to make it look
like a channel that produces random errors ? This section describes a technique

called interleaving, which is fairly successful at randomising bursts of errors.

In this section a codeword will be either a block code codeword or a sequence

of some given length produced by a convolutional code.

The principle behind interleaving is to transmit all the symbols of a codeword
at widely spaced (compared with the maximum burst length of the channel)
intervals with the intervening spaces being similarly filled by symbols of other
codewords. At the receiving end, the symbols are placed back in their codewords
and decoded in the normal way. In this manner a burst of errors appears as

random errors spread over many codewords.

30

One method of interleaving is to feed the data into the columns of an n x m
array and then transmit row by row. At the receiving end, the inverse process
is performed. This ensures that a given burst of errors can affect at most one
symbol in any column, provided that the maximum number of symbols that a

single burst can affect (the maximum burst length) is less than or equal to m.

However interleaving introduces a time delay into the system because the whole
array has to be filled before transmission can begin and, more importantly, the
whole array has to be received before decoding can commence. Therefore it
may not be practically possible to make the rows of the array sufficiently long
so that m is greater than or equal to the maximum burst length. Chapter 4
will consider a method of overcoming this problem which involves transmitting

the rows of the array in non-sequential order.

§1.7.1 Variable Length Codes

When transmitting information across a channel, one important parameter is
the data rate. Much work has been done on improving the data rate for trans-
mission. Consider first a noiseless, binary channel, then to transmit a message of
English text each character of the text must be given a unique binary represen-
tation. Suppose each character is represented by the same number of bits, then,
if just the 26 alphabetic characters are considered, each must be represented by
at least 5 bits. But in English text some characters occur more frequently than
others (e.g. the letter E occurs about twice as often as the letter S). If the con-

dition that each character is represented by the same number of bits is removed

31

and the frequently occuring characters are represented by fewer bits than the
less common ones, then the overall length of the message may be reduced. Such

codes are called Variable Length codes.

§1.7.2 Discussion of Variable Length Codes and Noiseless Channels

Consider a set of information symbols

associated with each symbol, 5% is a probability, that the symbol will be

transmitted at any given instant. Denote the set of codewords by

C = -[co,ci,...,

where each ci consists of Wi symbols from some code alphabet, 4. For a variable
length code to be useful, there must be no confusion as to how any sequence of
symbols from the code alphabet is to be split into codewords. (Assuming that
the sequence is formed from a series of codewords). Thus any useful code must

satisfy Definition 1.16.

Deiinition 1.16 A Variable Length code is uniquely decodable if a sequence

of symbols from A can be split up into codewords in at most one way. O

Example 1.2 IfC= {1,0,11,10}, then this code is not uniquely decodable,

e.g. the sequence 1011 could be split as 1011 or 10 11 or 101 1or 101 1. O

32

The main problem with variable length codes is synchronization at the receiver.
That is knowing where codewords begin and end as they arrive. (Unique de-
codability only guarantees that once the whole message is received, thhre is
only one way of splitting it into codewords). One solution is to have a very
distinct sequence of symbols, which is transmitted in between the transmission
of each codeword. However, this adds extra symbols to the message, when
the object is to decrease the message length. The usual method of main-
taining synchronization is to ensure that none of the smaller codewords form
the start of a longer codeword. Any code satisfying Definition 1.17 is called

instantaneously decodable.

Deidinition 1.17 A code is called a prefix code if no codeword is a prefix

for any other. O

Example 1.3 1iC = {01,11,011} then this code is not a prefix code because the
codeword 01 is a prefix of the codeword Oil. However, the code C = {0,10,110}

is a prefix code. O

Lemma 1.8 A prefix code is uniquely decodable. O

Proof [McE], page 239. o

The average wordlensth of a variable length code is the average number of code
symbols that are used to represent a source symbol. An optimal variable length
code is one that minimizes the average wordlength for a particular source. Given
a source and its associated p/s, then Huffmann codes, [McE], pages 243 - 248,

are always optimal.

33

This section has assumed a noiseless channel. The next section will consider

the problems that occur when errors may be present on the channel.

§1.7.3 Variable Length Codes and Noisy Channels

The problem here is that an error may cause a group of short codewords to
appear as a long codeword and vice-versa. If the decoder makes an error in
the length of the codeword it outputs, this is called a synchronization error.
When the decoder looks at the next sequence of received symbols, having made
a synchronization error, it is probably out-of-synch, because it is unlikely to be
looking at the beginning of a codeword. The decoder will remain out-of-synch
until some event occurs so that it aligns once again with the beginning of a
codeword. This event may be, the occurrence of another error, outside inter-
vention or the decoder may decode some out-of-synch symbols to a codeword

of such a length that the decoder regains synchronization by itself’.

Work has been done on finding codes with good synchronization recovery prop-

erties. One good example of such codes is Titchener’s T-codes, [Ti].

However, there appears to be little work done on error-correcting variable length
codes. That is codes that correct data errors rather than just recovering from
synchronization errors. One paper on this topic, [BS], has some nice theoretical
results, but the conditions imposed on the channel (namely that the error ranges

of codewords of different lengths be distinct) are unrealistic as far as practical

34

implementation goes. Other work, [Ha], has been done using group theoretic

ideas, but again this seems to have little practical relevance.

The purpose of Chapter 5 is to find a variable length code with some error-
correcting capability, which has a shorter average wordlength than the block-
length of a block code with comparable error-correcting capability. This code

should also have a feasible means of implementation.

§1.8.1 Summary

This chapter has outlined the basic results of coding theory that are relevant
to this thesis and has tried to demonstrate some of the aims of Coding Theory.
The following chapters examine some work of others and then go on to tackle
two major issues, interleaving and variable length error-correction coding. In-
terleaving is important for block codes and convolutional codes. As stated in
[BPP], the world is becoming less Caussian and more bursty, therefore over-

coming bursts of errors has increasing importance for Coding Theory.

Error-correcting variable length codes seem to combine most effectively the two

aims of Coding Theory, efficient and reliable communication.

35

Chapter 2

A STUDY OF PROFESSOR P.M.COHN’S DECODING SCHEME

FOR CYCLIC CODES

§2.1.1 Introduction

Cyclic codes are usually decoded by an algorithm which, in some way, makes
use of the syndrome of the received word. One such algorithm uses the standard
array, as was described in §1.2.2. In an early version of a chapter for an algebraic
text book, Cohn proposed a decoding scheme with an alternative method of
choosing the row leaders for standard array decoding. The work described in
this chapter examines in what way the different choice of row leaders affects
the error correcting capabilities of standard array decoding. The conclusion
reached is that Cohn’s scheme gives much poorer performance in most practical
situations. Professor Cohn was notified of these conclusions and has, as a result,

withdrawn the decoding algorithm from the book.

More recently. Dr. R. Hill (Salford University) has also analysed Cohn’s scheme
and has derived even more conclusive arguments to expose its weakness. Hill’s

argument is also included.

36

§2.1.2 Notation

The notation of §1.2.3 is followed in this chapter, but is stated explicitly here
for completeness. Cis a cyclic code, over GF(¢), of blocklength » and dimension
k that can correct up to ¢ errors.

C has generator polynomial g/x) of degree n —k and parity-check polynomial

h(z), such that

glx)h[x) = x" —1

c{x) is a polynomial of degree less than or equal to n whose coefficients form a
codeword in C.

() is a polynomial of degree less than or equal to n representing a received
word.

S{x) is the syndrome polynomial.

af[x) is the message polynomial and has degree less than or equal to k.

e[x) is the error polynomial and has degree less than or equal to n.

§2.2.1 Standard Array Decoding

This section considers standard array decoding written in polynomial notation.

Deiinition 2.1 The syndrome volvnomial is given by

S(x) = v{x)h[x) mod (x —1)

37

The dependence of the syndrome on the error pattern is now demonstrated in

terms of the polynomial notation.

vix) = ci{x) + efx)

Thus S(x) may derived as follows
S{x) = [c(e) + efx)]h{x) mod —1)

= [c{x)h[x) & e[x)h{x)] mod (x —1)

= [a[x)g{x)h[x) *+ e[x)h[x)] mod (&" —1)

= [/i(x)e(xe)] mod (& —1)
Thus the syndrome depends only on the error pattern and not on the particu-
lar codeword that was transmitted. Therefore the syndromes may be used to
partition the set of all possible received words into cosets. A standard array is
formed by taking the rows to be the cosets. The first row is the coset containing
all the codewords, the all-zeros codeword being placed first in the row. For each
of the remaining cosets one element is chosen to be the coset leader, this ele-
ment is placed first in the row. The remaining elements in the coset are placed
so that each one is the sum of the coset leader and the codeword at the head of
the column in which it is placed. A received word is decoded to the codeword
at the head of the column in which the received word is found. In practice this
is done by calculating the syndrome of the received word and then subtracting
from the word the coset leader associated with the calculated syndrome. Thus
an error pattern is correctable if and only if it is a coset leader. Hence the way
the coset leaders are chosen greatly affects the error-correcting capabilities of
this method of decoding. The traditional way to choose the coset leaders is to
take the polynomial whose coefficients have least weight, as in §1.2.2. Therefore

38

a f-error-correcting code has all words of weight ¢ or less as coset leaders (n.b.

some words of weight greater than ¢ may also appear as coset leaders).

§2.2.2 Cohn’s Scheme

This scheme differs from the above only in the way the coset leaders are chosen.
In this scheme a coset leader is taken to be the polynomial of least degree, rather
than that of least weight. Now there exists at most one polynomial of degree
less than n —k = r in each coset, because any two elements in the same coset
differ by a codeword, which has degree greater than or equal to r. There are

codewords and hence ¢" elements in each coset. There are ¢” possible received
words and therefore ¢g"~" = ¢” cosets. There are ¢" polynomials of degree less

than r, thus the set of coset leaders is the set of polynomials of degree less than

It can be seen from the above, that Cohn’s scheme corrects an error pattern if

and only if it has zeros in the last & places.

§2.3.1 Background Results

This section introduces some results not related to syndrome decoding, but

which are used to prove later results.

Define the function:

/(x) = (ita=r-"-;"~Q x'
i=0

39

Consider the following results:

@)

(2)

3
fix) =
[0 =
f (0) <

4)

1(0)

Il
(==Y

]
o

{n- k){lx)"

(n —k) —n

—k

40

A

A

(5)

iT7 +U-1

~
o

n —1
t-1

(6) Consider f(x) when f{x) = 0. From (3)

n —1
S = gex
1=0
1
| X
1=0
Y RN T e
(7) Consider
h =
09 (1pyns
then
(1+x) (1 + 2 AH
a+ [t + tx —nx + kx/
0+ [—(n —k —Z)#]

It can be seen that, starting from &= 0, 4{x) increases to a single maxi-

mum and then decreases to zero as & —» 00.

(8) It has been shown that:

i m =,

(i) /'(0) < 0.
Now, because n —k > t, f{x) —o00 as & — oo. Hence f{x) must

41

cross the positive @-axis an odd number of times (and at least once).
Suppose that < 22 < 23 are the first three values of x greater

than zero for which f/x) —0. Then it follows that:

(®1)>0, /[(x2)<0, /['(273)>0.

That is
This gives

> - T >

« n(n7_V) _ (I+ Xz)n—k
and

1+ zay"-» -
However, (7) shows that this is impossible, hence there is only one point >0
such that f{xi) = 0. Therefore, the curve of f/x) has the form shown in

Figure 2.1.

§2.4.1 Probability of Correct Decoding

The probability of correct decoding is the probability that the codeword pro-

duced by the decoder is the codeword that was transmitted.

A comparison is now made between the probabilities of correct decoding of

traditional standard array decoding and Cohn’s scheme. Let

42

Figure 2.1

P j denote the probability of correct decoding for the traditional scheme.

denote the probability of correct decoding for Cohn’s scheme.

Consider a Binary Symmetric Channel (BSC) with cross-over probability p,

then
-Pt>0-vT + (%)(!- + wet+ (1) ~

The RES of this inequality is the sum of the probability of occurrence of each
error pattern of weight < ¢ (There is an inequality, rather than equality,

because more error patterns than those of weight # may be corrected). P " is

43

given by the probability of an error pattern with all zeros in the last &k places.

P2 = (1 - AA A -

(I-p)”

(1-P)" [(I-P +P)"-']

(I-p)*

To form a comparison between the two schemes, consider the following inequal-

ity:

Pf>Pi 2.1)

Determining the values of n, & and ¢ for which this inequality is satisfied will
give the parameters of possible codes for which Cohn’s scheme is as good as or
better than the traditional scheme, (n.b. The measure of ’goodness’ has been
taken to be the probability of correct decoding, this is not the only possibility.)

Set

then (1) becomes

i=0

Recall the function f{x) of §2.3.1, then (2.1) is satisfied iff f/x) > 0. Thus,
from Figure 2.1, the inequality is not satisfied for some range of & 0 < & < @i

and then is always satisfied for x > Xi.

44

§2.5.1 Threshold Values for Cohn’s Scheme

This section shows that when comparing and P ", it is not necessary to

consider all values of p between [0,1].

Lemma 2.1

then, for these

Iffor some given values ofn,k and t, P™ < P” for allp <

values of n, k and t, it is always better to use the traditional

scheme (in some cases with bit inversion). O

Proof

Case 1:

Case 2:

Case 3:

Case 4:

p < I and no bit inversion.

By assumption P~ < P j, therefore it is better to use the tra-

ditional scheme.

p > 1 and bit inversion.

Inverting every bit takes the probability of bit error from p to

g=1—p, but ¢ and this reverts to Case 1.

p > I and no bit inversion.

The assumption does not rule out the situation that P~ > Pj
forp = Pi > However P » is strictly monotonie decreasing in
the range [0,1], therefore P*{pi) < P"{qi), where qi = 1 —p1i.
But P*[qi) < Pj'(qi), by the assumption, therefore better can

be acheived by using bit inversion.

p < » and bit inversion.

45

Probability of bit error again maps to ¢ in this case g > |.
Therefore P*{q) > P"{q) may occur, but, by similar reasoning
to Case 3, it can be seem that this is not as good as using the

traditional scheme and the original p. O

Thus, if bit inversion is possible, then to prove that the traditional scheme is

better forall probabilities, p, it is sufficient to prove that P~ < P” for p < |

Combining Lemma 2.1 and §2.4.1 shows that P~ < P~ for all probabilities, p,

iff /(I) < 0 (@ = 1 corresponds to p = |).

§2.5.2 Computer Results

The Pascal program of Appendix 1 finds and prints, for given n, k£ and t, the
range of &, of width 0.01, in which f{x) becomes positive, providing that this
range occurs before x = [(i.e. p = |). Otherwise the program prints a * to
denote that P~ < P’ for all P < | It does this for all values oi n, £ and ¢ in

the following ranges
3<n <100

n
<A<n-2
L2J

Nn—k
I<t<

Examination of the results file showed that, for given n and % mainly stars
appeared when ¢ was large, but ranges could be found when ¢ was small. An

exhaustive computer search through the results file showed that

46

Result 2.2 For any fixed n and k in the above ranges, /(1) > 0 only if

n —k
t < +1
O
Corollary 2.3 For given n and k, and for t in the range
{/l__:_lg)_ 1 t A n _k

4 2
it is always better to use the traditional scheme. O
For most practical coding schemes, only bit-error probalities in the range

0<p < 0.1
are considered. If the above calculations are repeated replacing x = [/ with
X —0.11 p ~ 0.1, the following result is obtained.
Result 2.4 For any fixed n and k in the above ranges, /(O .11) > 0 only if
r< "R
16
O

Corollary 2.5 For given n and k, for p in the range 0 < p < 0.1, and for t
in the range

T Tt

16 2
it is always better to use the traditional scheme. O

47

§2.6.1 Summary

Cohn’s scheme and traditional syndrome decoding differ only in the way that
the coset leaders are chosen. In Cohn’s scheme this choice is made in a more
mathematically succinct way than for the traditional scheme. However, it has
been shown above that Cohn’s scheme does not perform well unless ¢ is much
less than the Singleton bound. Certainly, for all practical values of p (that
is p < |), only codes with very poor error-correcting ability perform better
under Cohn’s scheme. Also, there is no apparent advantage in the practical

implementation of Cohn’s scheme over the traditional one.

Hence, in all practical circumstances and for fixed n and fc, a code could be
chosen and decoded using the traditional scheme and perform better than it

would be possible to achieve using Cohn’s scheme and the same »n and £.

Postscript

In written correspondence, Dr. R. Hill (Salford), has remarked that a stronger

result than that presented here can be obtained from the following observations.

Section 2.2.2 showed that Cohn’s scheme will decode correctly iff the last &
bits of the codeword are received correctly. Hence, the probability of correct

decoding for Cohn’s scheme is

Pi=(-P)”

48

(as was obtained in a slightly more roundabout way in §2.4.1). This is just the
probability of an uncoded /z-bit message being received without error. Thus,
Cohn’s scheme is useless, because the same result can be achieved, with less

time and decoding effort, by simply transmitting the message uncoded.

Dr. Hill has also shown that > Pfi* always. If it were possible for Pj* < P,
then this would imply that the use of a linear code (with nearest neighbour
decoding) could give a lower probability of correct decoding than using no

coding at all.

Observe that the worst way of adding redundancy to A;-bit messages is to add
n —k zeros to every message vector. The coset leaders for this code are precisely
»

the 2”“*vectors having zeros in the last k places. Thus, the use of this code is

equivalent to the use of Cohn’s decoding scheme for any (n, k) code and hence,

for this code.

Consider the ‘standard form’ generator matrix

JAT]

then the 2”“* vectors having zeros in the last k& positions are all in different
cosets (since no two of them add up to a codeword), though they will not in

general be the coset leaders. This leads straight away to

for any code (with equality iff the 27" vectors with zeros in the last k£ places

are all cosets leaders). Thus the result follows.

49

Chapter 3

A STUDY OF REED SOLOMON CODES. CHINESE REMAINDER

THEOREM CODES AND CYCLOTOMIC SHORTENING

§3.1.1 Introduction

This chapter was motivated by the work of Dr. J.L. Dornstetter, [Do] and
[Do,85], and its relationship with Reed Solomon codes and Chinese Remainder
Theorem codes, [St] and [PW]. In [Do], Dornstetter describes (albeit briefly) a
class of codes called Cyclotomically Shortened Reed Solomon codes (hereafter
denoted as GSRS codes). This chapter reiterates the definitions of [Do] and
establishes values for the dimension and blocklength of GSRS codes, together

with a (best possible) lower bound for the minimum distance.

It can be shown (see [PW]) that Reed Solomon codes can be defined in terms
of a particular class of Chinese Remainder Theorem codes (hereafter denoted
as CRT codes). Here it is shown that GSRS codes are equivalent to a different

(although related) class of CRT codes.

Dornstetter’s patent application,[Do,85], is for a decoder for a class of CRT
codes and it is implied in [Do] that this class of CRT codes is equivalent to

GSRS codes, however Lemma 3.14 shows that this is not the case.

50

Lastly this chapter will consider the possibility of cyclotomically shortening Al-
ternant codes. It is shown that although the shortening is possible, the resulting

codes are not apparently useful.

Note that this chapter assumes an information source that produces symbols

from GF{q") .

§3.1.2 Introduction to CRT codes

The remainder, (&), of a polynomial, i(&), when divided by a polynomial,
mj(), gives little information about i(&). However, given increasing numbers
of residues ofi/x) modulo different polynomials, there comes a point when these
residues determine i(x) uniquely. The precise conditions for this will be given

in Theorem 3.1. First some notation.

Let i{x) be a polynomial of degree < k — 1 over GF(q")

Let mj{x) be a polynomial of degree dj over GF{q")" forj = 0,1,...,n —1.

Theorem 3.1 The polynomial i(x) can be reconstructed from the remainders

ri{x) = i{x) mod mj{x) j=0,1,...,n—1,

provided the Tnj{x) are relatively prime in pairs and that

n—

di >k —1
j=0

51

Proof This is just the Chinese Remainder Theorem for polynomial rings.

For a formal proof, see [PW]. O

Theorem 3.1 may be used to form a block code of dimension k£ and blocklength
n. Blocklength is used a little loosely here, as, if the rrijfx) do not all have the
same degree, not all the n symbols will have the same size. The codes will be

introduced by describing the method of encoding.

To encode the k information symbols (from GF{q")), write them as the coeffi-
cients of a polynomial i{x) of degree < A—1. Select n polynomials, mj/x) that
satisfy the requirements of Theorem 3.1 and find the residues of i/x) modulo
each of the mj¢x). The codeword is formed by placing the coefficients of each

residue in turn in a vector of length

=0
over GF(q'") . Thus the codeword contains n' elements of GF{q'") , but the

blocklength, n, is taken as the number of component residues.

Now consider what happens at the receiver. Suppose a codeword is transmitted
and received with no errors. If the residue polynomials are reconstructed from
the codeword, then Theorem 3.1 guarantees that the polynomial i/x) can be
recovered and hence the information symbols may be obtained. The codes

formed in this way are called Chinese Remainder Theorem codes.

52

Error Correction and CRT codes

The requirements of Theorem 3.1 allow the recovery of the information in the
absence of errors. However, if the mj{x) are chosen so that

n —I

Nldi N k—1

j=o
and 3 > 1 subsets of the rrijfx) are such that the sum of the degrees of their
elements is > A —1, then some error-correction may be performed. Suppose
that one GF[g”) symbol is received in error, then one of the residues will also
be wrong. If each of the s subsets is used separately to construct a polynomial
of degree < A —1, then each of the subsets that contains TUe(x), the mj(x)
corresponding to the residue that is in error, will produce a polynomial. The
remaining subsets (not containing mg(z)) produce the correct polynomial. Now,

if 7Tie(e) appears in less than half the s subsets and a majority decision is used

on which polynomial to accept, the error can be corrected.

Thus, if each rrij(x) appears in less than half the s subsets, one error can be
corrected. Note that this is one erroneous residue, up to all the GjF(g™)symbols

that form this residue may be in error.

It follows that, ifeach mj{x) appears in less than one quarter of the subsets, then

two erroneous residues may be corrected. Thus, the error correcting capability
k

of the code can be increased by restricting each rrijfx) to a smaller proportion of

the subsets. It may also be possible to increase the error-correcting capabilities

of the code by restricting the occurrences of pairs, triples etc. of the rrijfx), but

this is not the subject of this work.

53

A more formal definition of CRT codes is now given

Definition 3.1 A Chinese Remainder Theorem (CRT) code over GF(q")
of dimension & and blocklength n is formed by writing the & information symbols
as the coefficients of a polynomial of degree < A—1. The codeword is formed
from the n residues mod rrij/x), where the rrij/x) are polynomials of degree dj
over GF[q”") that are relatively prime in pairs and are such that

Ndj> k-l
i=i

An example of CRT codes is given in the next section, where it is shown that

Reed Solomon codes can be defined in terms of CRT codes.

§3.1.3 Reed Solomon Codes

There are many ways of defining Reed Solomon codes, two of which were given
in §1.3.3. A third definition can be made in terms of CRT codes. Reed Solomon

codes are a subclass of CRT codes, formed by a particular choice of the mj(x).

Definition 3.2 A t-error-correcting Reed Solomon code over GF(g”), hav-
ing blocklength » and dimension n —2t is formed by taking the information
symbols to be the coefficients of the polynomial i(x) in the definition of a CRT

code. The mj/x) are taken to be

rrij(x) = {x —a”®)

54

That is, the Reed Solomon codeword is formed from the set of residues

rj[x) = i[x) mod (& —a”)

where a is a primitive root of unity in GF{q") . O

The details of this definition are given in [PW], page 263. In this particular

CRT code, all the mj{x) have degree 1 and thus n = n’.

This chapter will deal with Reed Solomon codes of blocklength 2 —1 and will

sometimes use the notation 2t = 7.

§3.1.4 Introduction to CSRS codes

Given a code, C, it is possible to form a subcode, 5, by selecting those codewords

of Cwhich satisfy

SirO0s 1y cme 222y —

where / is some function. If/ is carefully chosen, then the codewords of 6"satisfy
an equivalence relation, r. This relation may be between groups of the 4 if a
knowledge of any particular group determines the remainder of the codeword.
The choice of a specific / leads to the definition of CSRS codes. These codes

are now introduced.

Let C bea(2™—1,2""—1—1,r + 1) Reed Solomon code . Denote the codewords

of C by

C (cQ,Cl1,C2,.+.,C2%—2)

55

Let 5 be a subset of C defined by the constraint

cGeS iff @i=¢ VzG 3.1)

where the indices are calculated modulo 2 —1.

In the notation above, this gives /(c{, Gi) = Ci~c| and the equivalence relation
G r CGi Each codeword contained in S can be considered to have its elements
partitioned into equivalence classes, called cosets, by the constraint (3.1), with
any element in the coset determining the remainder of the coset. The term
coset is used here because of the link between the equivalence classes and cyclo-
tomie cosets, which will become apparent later. Because any element of a coset
determines the remainder of the coset, the codewords of S could be shortened

so as to contain just one element from each coset. This gives

Definition 3.3 A Cyclotomically Shortened Reed Solomon code consists
of the codewords from a (2~ —1,2" —1 —r,r-|-1) Reed Solomon code that
satisfy constraint (3.1), shortened so as to consist of one element from each

coset. O

Example 3.1 Let m = 4 and C = RS(15,7,9). Then cosets defined by the

constraint (3.1) are as follows

{co}

{¢i,C2,C4,Cs}

{C3,C6,Cg,Ci2}

{c51Cio}

{C7,C11,C13,C14}

56

So to form a CSRS code, C', the codewords in Cwhich satisfy (3.1) are selected

and then these are shortened by taking only the elements

GGGGG

Thus the codewords of C ' consist of five GjP(16) symbols, that is twenty bits.

a

§3.2.1 Preliminary Results

This section examines the properties of GFFT of vectors with certain constraints

on their elements.

Lemma 3.2 A vector over GF[2") oflength 2~ —1 that satisfies constraint

(3.1) has a GFFT that consists entirely of zeros and ones. O

Proof Refer to Theorem 1.7. The proof of this Theorem remains valid if
V and V are interchanged and the GFFT is taken rather than its inverse. Using

this second version and setting ¢ = 2 yields the desired result. O

However, from Definition 1.15, each Reed Solomon codeword has r consecutive

zeros in its GFFT. This gives

Lemma 3.3 The GFFT of a codeword ¢ E S has r consecutive terms that
are zero and the remaining 2™ —1 —r terms can take the value either zero or

one. O

57

§3,3.1 Dimension of CSRS codes

The dimension of the CSRS code is determined by the number of Reed Solomon
codewords that satisfy the constraint (3.1). From Definition 1.15 a (2" —1,2" —
1 —r,r + 1) Reed Solomon code consists of all vectors of length 2~ —1 over
GF{2”) whose GFFT has r specific consecutive elements equal to zero and
the remaining elements members of GF{2”). Lemma 3.3 shows that the set
S consists of aR vectors of length 2”"—1 over GF{2'~) whose GFFT has r specific
consecutive elements equal to zero and the remaining elements contained in

GF{2). There exists a unique CSRS codeword for each element of S , therefore

Lemma 3.4 The dimension of a CSRS code, derived from a (2~ —1,2" —

I —r,r + 1) Reed Solomon code, is 2" —1 —r over GF(2) . O

\
Thus, ifa GFFT method of encoding is used for the Reed Solomon code, the set

S consists of all those codewords produced to binary input to the Reed Solomon

encoder.

Example 3.2 The CSRS code, C', of Example 3.1, has dimension 7 over
GF{2), i.e. the codewords of C ' consist of the first, second, fourth, sixth and
eighth elements of all RS(15,7,9) codewords produced by binary input to an

appropriate GFFT encoder. O

§3.3.2 Blocklength of CSRS codes

The blocklength, N, of a CSRS code in terms of symbols from GF{2") is

58

determined by the number of cosets into which the constraint (3.1) partitions

the integers modulo 2~ —1. Now the coset

where ij G 227-1 is called a cvclotomic coset. Hence the constraint (3.1)
partitions the indices of the codeword elements into cyclotomie cosets. Thus,
to find the blocklength of a CSRS code, the number of cyclotomie cosets of

GF{2”) over GF[2) should be calculated.

Any element in a coset can be used to determine the remainder of the coset, so

let 3 be the coset representative for a given cyclotomie coset.

Definition 3.4 The minimum polynomial over GF(2) oi 3 E GF[2'") is

the polynomial of least degree over GF [2) that has /? as a root. O

The following argument uses results from [MWS] and finds an expression for
the number of cyclotomie cosets of GF/2'") over GF{2). This expression then

determines the blocklength of a CSRS code.

Lemma 3.5 All the members of a cyclotomie coset have the same minimumr

polynomial. O

Proof See Property M6, page 103 of [MWS]. O

Denote this polynomial by Then

Lemma 3.6

59

Proof Put p = 2 into Property M7, page 105 of [MWS]. o

All minimum polynomials are irreducible (Property M1, page 99) and have

degree < m (Property M4, page 100).

Lemma 3.7 —Xx — the product of all irreducible polynomials over

GF {2), whose degree divides m. O

Proof Putp = 2 in Theorem 10, page 107 of [MWS]. O

Let him) be the number of polynomials of degree m, irreducible over GF (2),

then

Lemma 3.8

%2 (m) =
where
ri ifj =i
= S (—)" ifj is the product of r distinct primes;
Lo otherwise.
O
Proof Putg= 2 in Theorem 5, page 115 of [MWS]. O
Lemma 3.9 The number of irreducible polynomials over GF{2), whose de-
gree divides m is
Y.~2{d)
d\m
O

60

Proof This follows directly from the definition of /2{m). ©

The blocklength of a CSRS code can now be stated

Theorem 3.10 The blocklength, N, of a CSRS code, formed from a (2~ —

1,2 —1 —r,r + 1) Reéd Solomon code, is given by

N=Y,h{i)-1
d\m

Proof Notice that —x — x{x" —1) and & is a polynomial irre-
ducible over GF{2), whose degree divides m. Hence, the number of irreducible
polynomials whose degree divides m that make up the factors of x*"~" —1 is
3.2)

dim
(from Lemma 3.9). Hence, the number of minimum polynomials is also given

by (3.2) (using Lemma 3.6). Thus the result follows. O

The following example evaluates N for a specific code. Figure 3.1 gives the

values of N for a range of m.

Example 3.3 Consider again the code, C % of Example 3.1. In this case,

m = 4 and thus. Theorem 3.10 gives
WV=51j2(d4)-1

d\4
=MN0)+ M) -fM0GE)—1

61

Now

f2(1) = 1]Me)2"" = 2MI) = 2

el|l

~2(2) = - /N(e)2M M
el

i(4p(l) + 2p(2)) = i(4 - 2) = 1

4(4) = \Y I Xe)2"l= = ~(16/i(1) + 4p(2) + p(4)) = i(16 -4 + 0) = 3
e4

Hence

iV=2+1+3—1=5

as was shown in Example 3.1. o

Table of possible blocklenaths

m 2 I @ -1
d\m 2
1 1
2 2
3 3
4 5
5 7
6 13
7 19
8 35
Figure 3.1

§3.3.3 Minimum Distance of CSRS codes

This section states a lower bound for the minimum distance of CSRS codes. This
bound is derived by using the minimum distance, r + 1, of the Reed Solomon
code which was used to form the CSRS code.

62

Lemma 3.11 The minimum distance, D, of a CSRS code formed from a

(em_ 22" —1—1,7%+ 1) Reed Solomon code is such that

where [®] denotes the least integer > cc. O

Proof Consider the set S , which consists of all those Reed Solomon code-
words that satisfy constraint (3.1). The minimum distance of Sis at least r + 1,
as this is the minimum distance of the Reed Solomon code. Take s,s' GS, then

if

4 - 4y

Thus, for each pair of codewords, the elements of the same coset either all agree
or all disagree. Now, between each pair of codewords in § , there must be
sufficient cosets which disagree to give at least r +1 symbols that disagree. The
minimum number of cosets in disagreement to give a fixed number of symbols

in disagreement, occurs when it is the largest cosets that disagree. Thus,
Minimum number of cosets that disagree =

Now the number of cosets that disagree between two codewords in S, determines
the number of GF{2”) symbols that disagree in the resulting CSRS codeword.

Hence

63

The following example shows that this bound is the best possible.

Example 3.4 Suppose that the RS(15,7,9) code is encoded using a GFFT
decoder. This encoder takes the inverse GFFT ofa vector in which the first eight
places are zeros and the remaining seven places contain the information symbols.
Suppose that the encoder uses the Galois field formed with p/z) = +z+ 1

and a = z as the primitive element.

The code, C', of Example 3.1 is formed by cyclotomically shortening those Reed
Solomon codewords formed from binary input. Now, binary input 0000000 gives
the codeword 00000 and binary input 1111101 gives the codeword Oa”™a”lO.
These codewords differ in 3 symbols. From Lemma 3.11, for the CSRS code in
question

r9i

D >
4

thus, the code C' of Example 3.1 satisfies the bound with equality. O

§3.3.4 CSRS Codes as Binary Codes

It is possible to consider CSRS codes as binary codes. It has already been
shown that CSRS codewords are derived from binary input to a CFFT Reed
Solomon encoder. The GF{2”) symbols that make up a CSRS codeword can
be written in binary notation. Hence, a CSRS code is an [m N, 2°*—1 —1) code

over GF{2). When considered over GF{2), CSRS codes are linear. Also the

minimum distance of the code in terms of bits is still bounded below by ,

64

because each disagreement between a pair of GF{2”) symbols may be caused

by a difference of only 1 bit, as the following example shows.

Example 3.5 The code, C, is a (20,7) code. Consider the binary expansions
of the two codewords given in Example 3.4, they are

00000000000000000000
00001000100000010000

The distance between these words is 3, hence, even as a binary code, C reaches

the lower bound on the minimum distance. O

Notice that the shortest blocklength, single error-correcting, binary code of
dimension 7, has blocklength 11. Thus, this CSRS code is a long way from the

best that can be achieved.

Examples 3.4 and 3.5 demonstrate that the lower bound for the minimum dis-
tance of CSRS codes, either over GF(2'") or GF{2), cannot be improved with-

out further constraints on the codes.

§3.4.1 CSRS codes and CRT codes

It is now shown that there is an equivalence between CSRS codes and a partic-
ular class of CRT codes. For clarity in the proof of Theorem 3.11, this section
will use slightly different notation from other sections. This new notation will

now be introduced.

65

Let the integers modulo 2* —1 be partitioned into ¥ cyclotomie cosets of the

form

"AY)Y-2, 02 .0} J=0,1,...,iv—1.

Let a be a primitive element of GF{2”) and define

Aj = I Gcej;

Let mj(x) be the minimum polynomial associated with the coset cj, then

cecj

and Mj/x) is the minimum polynomial V/? G 4;.

The following, alternative definition of CSRS codes uses the CRT code definition

of Reed Solomon codes.

Definition 3.5 A Cvclotomicallv Shortened Reed Solomon code, C may be
defined as follows :

Select a representative «j G 4 for eachj ¢ [0,..., A —I1]. Use the k information
bits to form the coefficients of a polynomial, i{x), of degree < k — 1. The

codeword is the vector (cq, ...,cn-i), over GF{2'"), where

G = i{x) mod {x —aj) = i{aj)

The following example gives another CRT code, using the mj(x) as the rrij(x).
This code is then used in Theorem 3.11 to show that CSRS codes can be defined

in terms of CRT codes.

66

Example 3.6 The CRT code C" is formed by encoding the binary polyno-

mial i{x) (of degree < A—1) to the following sequence of elements of GF{2)[x]

(cQ(aj),..., cTV_1(a3))

where
Cj{x) = z(®) mod Mj{x)
Theorem 3.12 The codes C and C” are equivalent codes. O
Proof Define the mapping
f:C C
by
/(eq (a3), ...,CjV—1(®)) — (cg (0!0o), *.*5Cj\f—1I (cKn,))

This map is well defined because 3 i{x) with

i{x) = q{x)Mj{x) + cj{x)

by definition of C”. Hence

i{x) mod [x —aj) = i(ctj)

because Mj(aj) = 0.

This map, /, is onto because given i{x) such that

G = z(@) mod (x —aj) = i(aj)

67

set

i(x) = q{x)Mj{x) + Cj{x)

then

G = %(«) = cfaj)

/ is a GF(2) homomorphism because

I((<ro(®)} ***)GV—=(®)) "h)NV—(®)))

= ff{co{x) + Co(=),...,CN-T{X) + ¢~ _i(=))

(co(ao) + oo CAr-i(«Ti) + c”-i(«n))

(co(ai),..., Clv_i(a*i)) + (cq(ag), ***2"n —i(*"))

/(cg(e),..., Cjv_i(®)) + /(co(&),..., c”_i(a))
Therefore, to prove that / is an isomorphism, it remains only to show that / is

one-to-one. Suppose that Cj/aj) = c'j{aj) then this implies that aj is a root of

Cj(ze) - c'.(®) G CF(2)[=]

But Mj¢{x) is the minimum polynomial of aj, so

Cit{x) —c'j(x) = 0 mod Mj{x)

because both Cj¢{x) and c¢’jfx) have degree less than that of Mj/x). Thus, the

codes are equivalent. O

The following example gives a specific case of this mapping.

68

Example 3.7 Take m = 4, then the five (j are
Co= {0}
Cl={1,2,4,8}

Cz

{3,6,9,12}

Cs = {5,10}
Cs = {7,11,13,14}
Suppose that GF/2") is generated using p/z) = +z+ 1 and a = zis a

primitive element. Then the 4; are

wo = {a%)
Al = {cKAan, a®}
Az = {alalala::"}
As; = {a®,a"®}

As = {cK*aMa"®,a"}

The coset representatives, aj, for each 4j will be taken as the first element
in the coset. Thus, the minimum polynomials are given by (remembering that
+1 = — over GF(2))
Mox) = (& —1)
M\[x) = [x —a)(& —a™)[x —a")(e —a®)
= + &t
M:[x) = (& —a®)(& —a®)(e —a")(& —a™)
= +a®+ +a&t
Mz{x) = (@ —a®)(& —a’®)

= + 2+ 1

69

M"[x) = (@ —a){x —a)z —a)z —a)

= + a®+ |

Take i(x) = a®+a&” + & +1 as the information polynomial to be encoded. From

Definition 3.5, it can be seen that the corresponding codeword in C' is given by

(z(a®),i(a"),2(a®),i(Q;®),i(Q:")) = (0,a®, a®, 1 ,a®)

written in binary notation, this becomes

(00001010101000011010)

Now look at the code C”

cof{x) = a® + + 1 mod (% —l)
=0
ci(e) = &R+ + 1 mod (&’ &+ 1)
= a®+ &
C(e) = a®+ + 1 mod (& a®+ + &+ 1)
= a®
G(e) = a®+ + 1 mod X"+ &+ 1)
=1
G(e) = aB+ + 1 mod (&"+ a®+ 1)
= &t

The equivalence between the two codewords comes by evaluating Ci(ai), which
gives

(co(a®),ci(a’),C2(a%),C3(a®),C4(a%)) = (0,a®, a®, 1 , a®)

A similar routine may be followed for all information polynomials. O

70

§3.5.1 Encoding and Decoding

This section will look at encoders and decoders for the three classes of codes

mentioned above.

There are well-known encoders and decoders for Reed Solomon codes, see [Bl],

[PW] or [MWS], and these will not be described here.

Turning attention to CRT codes, the general method of encoding CRT codes was
implicit in their definition (see Definition 3.1). The general decoding method

for CRT codes was outlined in Section 3.1.2 and is stated explicitly here.

Decodins Scheme for CRT codes

Take the set of mjfx) that was used to form the codewords, form all distinct
subsets of this set such that the sum of the degrees of the elements of the set
is > f£t—1. Each mj{x) is associated with a position in the codeword, i.e. the
position in which the residue i/x) mod rrij(x) is placed. For each received word,
i{x) is calculated using each of the distinct subsets in turn and the symbols
in the received word in the associated positions of the rrij(x) of the subset in
question. The received word is decoded to the coefficients of the i{x) which

occurs most often, some predefined choice can be made in the event of a tie. O

The problem with this decoding scheme (as with most schemes that involve
the calculation of several possible decodings followed by some form of compari-
son) is that for most practical situations any implementation will take too long

to run. To the writer’s knowledge there are no implementations of encoders

71

and decoders for arbitrary CRT codes. However, more feasible encoders/ de-
coders have been developed for certain specific classes of CRT codes (e.g. Reed

Solomon codes and the codes to be described in Section 3.6.1).

Lastly, consideration is given to CSRS codes. There is one obvious method of
encoding and decoding CSRS codes, that is to use the encoder and decoder for
the Reed Solomon code from which the CSRS code was derived (the base Reed

Solomon code).

Encoding and Decodins scheme for CSRS codes

The encoding scheme is as follows. CSRS codes encode binary information, so
take the k information bits and write each of them as a GF{2'") symbol. Encode
these GF[2”) symbols using a GFFT encoder for the base Reed Solomon code.
Cyclotomically shorten the resulting Reed Solomon codeword using constraint
(3.1) and transmit the resulting CSRS codeword. (It was shown in §3.3.1 that
binary input guaranteed that a Reed Solomon codeword would satisfy constraint

(3.1) and can therefore be shortened).

Decoding is then performed by lengthening the received word, using constraint
(3.1), and then using a GFFT decoder for the base Reed Solomon code. It
would be necessary to adapt a standard Reed Solomon decoder so that it could

decode only to those codewords that satisfy constraint (3.1). O

The major problem with this scheme is that it introduces severe error propaga-
tion. This is because any channel error that causes one received symbol to be

in error may produce up to m symbols in error in the word that enters the Reed

72

Solomon decoder. The number of additional errors caused depends on the size
of the cyclotomie coset in which the error occurred. It is clear that this scale of

error propagation will seriously degrade the performance of the system.

The question of an encoder and decoder for CSRS codes will be returned to at

the end of Section 3.6.2.

§3.6.1 Dornstetter Codes

In [Do,85], Dornstetter describes an encoder and decoder for a family of codes,

which will be refered to as Dornstetter codes. These codes are defined as follows

Definition 3.6 A Dornstetter code, C, of blocklength n and dimension £,

has codewords that consist of the residues

¢i = i{x) mod Pj¢x) J = 0,1,2,..., 0 —1.
where i(x) is a binary polynomial of degree < A—: whose coefficients are the
k information bits. The Pjfx) consist of all the irreducible factors of —1

over GF{2) of degree m and any polynomials of degree m that can be formed
from the remaining factors of —1 such that the pjsx) are all mutually
coprime in pairs. Note that the blocklength, n, of the code is determined by

the number of Pjfx) that can be formed. O

Example 3.8 of the next section gives a specific example of a Dornstetter code.

73

§3.6.2 CSRS codes and Dornstetter codes

The following Lemma compares Dornstetter codes with CSRS codes by using
the equivalent CRT codes. The Lemma is followed by a specific example, to

clarify the distinction between the two sets of codes.

Lemma 3.13 CSRS codes and Dornstetter codes do not define the same set

of codewords. O

Proof Compare the code of Example 3.2, which Theorem 3.11 showed
to be equivalent to a CSRS code and the Dornstetter code of Definition 3.6.
The two sets of mj/x) used in the definitions are different. The set of mj/x)
in Definition 3.6 takes the set of #ij(e) of Example 3.2, leaves some of them
unchanged, takes the product of others and discards the remainder so that all

the mjsx) of Definition 3.6 have degree m. ©

In the following example a larger value of m is taken than for previous examples,
this is necessary to demonstrate clearly the distinction between the two sets of

codewords.

Example 3.8 Let m = s,then the base code is the Reed Solomon (255,255 —
r,r+ 1) code. Theorem 3.10 gives that the blocklength, N, of the derived CSRS

code is given by

N =Y, 12{d)-1
48

—/2(f) + M)+ M)+ a2(s) —1

74

Recall the values of /2(1) - /2(s+) from Example 3.3.

M s) = = i(256A*(1) + 16*(2) + V (4) + "c¢(8)

e|8
= 256 - 16+ 0+ 0) = 30
Therefore

=2+ 1+3+30-1= 35

So, the blocklength of the derived CSRS code (over GF{256)) is 35.

Now consider the Dornstetter code for m = s . The irreducible factors of —1
can be found in [PW], Appendix C. There are 30 of degree s, 3 of degree 4, 1
of degree 2 and 1 of degree 1. (Notice that these are the minimum polynomials
of the cyclotomie cosets as defined in the CSRS code). However, any 2 of the
degree 4 polynomials may be combined to give another degree s polynomial
that is mutually prime to the original 30 degree s polynomials, but no more
mutually prime degree s polynomials can be created. Therefore, the Dornstetter

code with m = s has blocklength 31. o

The Patent Application [Do,85] is essentially for a decoder, however it is unclear
from Dornstetter’s work whether this decoder is for CSRS codes or Dornstetter
codes (or even both). Dornstetter appears to make no distinction between the
two sets of codes. However, Lemma 3.14 shows that they are in fact different.
The decoder in [Do,85] uses an adaptation of the Berlekamp Massey algorithm
and works for a particular class of CRT codes because of ‘the pertinent choice of
the 77ij(a&)’. It is therefore unlikely that the decoder can be adapted to decode

many (if any) other classes of CRT codes.

75

§3.7.1 Alternant Codes

These codes are very closely related to Reed Solomon codes and this final section
will consider the application of the ideas of the previous sections to Alternant

codes. Firstly, Alternant codes are defined.

Definition 3.7 An Alternant Code. D(C, fi), is defined as follows.

Let h = (ho,hi,..., he a vector in GF(q'*)" , which has every coordinate
distinct from zero. Then ft consists of all ¢ = (cq, ci,..., Cn-i) G GF(g)" which
satisfy

Ch = (cofiojCifii, ...,Cm-l&n-1) GC

where C is a Reed Solomon code over GF/q”)" as defined in Definition 1.15. O

This definition may be expressed in terms of Galois-Field Fourier Transforms.
Let H = be the GFFT of and C = (Co,Ci,..., Cn-i)
the GFFT of c. Then D may be defined as the set of all words whose GFFT,

(Cq, Cl,..., Cn-i) over GF[gq") satisfies

n-1
(0 X/ =0 j=Jo,...,Jo+2t- 1

fe=0

(inc(,) = (€H»

(z) ensures that ch is a Reed Solomon codeword and [ii) ensures that c is over

GF{q) (refer to Theorem 1.7)

Consideration is now given to the possiblity of cyclotomically shortening Alter-
nant codes. The codewords of D are over CF(g), where gis a power of 2. If

constraint (3.1) is applied to an Alternant code then it partitions the elements

76

of a codeword into cyclotomie cosets and the codewords that satisfy constraint
(3.1) may be shortened in the same manner as before. Note that the blocklength
of the Alternant code is the same as the Reed Solomon code, C , which is used
in its formation. Thus, a Cyclotomically Shortened Alternant (CSA) code, will

have the same blocklength as the CSRS code obtain from C. More forma(lly

Theorem 3.14 The blocklength, n, of a CSA code derived from an Alternant

code of blocklength 2~ — 1 is given by

n— Mfd) —a
d\m
where
eld

and where

(1 ifj =1;

m(c) = < (—)" ifj is the product of r distinct primes;
Lo otherwise.

For the dimension of a CSA code, the GFFT definition of the codes is used.
The dimension, A, of an Alternant code is not known precisely in general, but

it is known to satisfy the following inequality.

Lemma 3.15 The dimension, k, of an Alternant code formed using a Reed

Solomon code of designed distance 2t + 1 is such that

k > — 1~ 2im

(Note the dimension is over GF{q)). O

77

Proof See [BI], page 230. o

By the same argument used for CSRS codes the dimension of a CSA code is

given by

Lemma 3.16 The dimension of a CSA code, derived from an Alternant code

of dimension k over GF(q), is also k, but over GF{2). 10O

The minimum distance of a CSA code is bounded below in the same way as for

CSRS codes.

Lemma 3.17 The minimum distance, D, of a CSA code formed from an

Alternant code with minimum distance d satisfies

rd
D > -
m

Proof As for CSRS codes. o

§3.8.1 Summary

This study has introduced Chinese Remainder Theorem codes and several meth-
ods of defining Reed Solomon codes (one in terms of CRT codes). Cyclotomi-
cally Shortened Reed Solomon codes have been described and expressions given
for their dimension and blocklength. A lower bound for the minimum distance
of CSRS codes has been given, together with a code that satisfies the lower

bound with equality. The equivalence between CSRS codes and a particular

78

class of CRT codes has been demonstrated. Another class of CRT codes, called
Dornstetter codes has been defined and it has been shown that CSRS code and

Dornstetter codes are non-identical.

Encoding and decoding schemes have been examined for the above mentioned

codes "and the confusion over Dornstetter’s Patent Application discussed.

Lastly, the possibility of cyclotomically shortening Alternant codes has been
examined. Whilst it is obviously possible to cyclotomically shorten any code
formed over GF{2'"), there is no apparent gain in general, unless the resulting
codes are equivalent to a class of CRT codes and Dornstetter’s decoder can be

adapted for use with them.

79

Chapter 4

INTERLEAVING FOR CONVOLUTIONAL CODING

§4.1.1 Introduction

The concept of interleaving using an n x m array was introduced in §i .6.1. The
situation considered here is that when the maximum burst length exceeds m.
This problem was posed by Mr. E. Jones of Inmarsat at the 4th RSRE coding
meeting, Manchester, May 1987. Inmarsat (International Maritime Satellite
Organisation) were considering the requirements of a mobile satcoms operator.
A part ofthe communications system involved interleaving using an n x m array,
data being fed into the columns and transmitted row-wise. The nature of the
system was such that it was not feasible to make the row length, m, greater than
the maximum expected burst length. Inmarsat considered sending the rows of
the array in non-sequential order. They had found, ad hoc, the order in which
to send the rows of an array with n = 64 to achieve the maximum spreading of
errors for their particular channel conditions. The ad hoc approach was adopted
because they could find no theoretical results for the problem. The purpose of
this chapter is to rectify this situation, by providing a general solution to the

problem. A more precise description of the problem is now given.

80

Suppose that the maximum length burst of errors is such that it can affect at
most a rows (either completely or in part). Then, to minimize the effect of such
a burst of errors, rows that are within a of each other in the array (that is rows
that are close enough together to be affected by the same burst, if the rows were
transmitted in sequential order) should be transmitted as far apart as possible.
Although this does not change the number of errors in each column, it does

space them throughout the whole column rather than them occurring in one

solid block.

Now, if the interleaving is being performed on data encoded with a block code
whose blocklength is greater than or equal to n, the spacing of the errors has no
effect because most block codes can correct a fixed number of errors irrespective
of whether they occur spaced out or in a block. However, if the blocklength
of the code is less than n or convolutional coding is being used, this spacing
of the errors can improve the performance of the system. In the block coding
case the improvement occurs because the number of errors the burst causes in
a column may be beyond the error-correcting capabilties of a single codeword,
but the spacing could spread them over two (or possibly more) codewords,
each codeword being able to correct the reduced number of errors. In the
case of convolutional coding, it is well known that convolutional codes perform
significantly better in the presence ofrandom errors than they do in the presence

of burst errors.

81

§4.1.2 Objectives

This chapter has two main objectives. Firstly, to find the optimal scheme
with which to transmit the rows of the array so that any two rows that are
within a of each other are sent as far apart as possible. Secondly, to give some

recommendations about the usage of this optimal scheme.

§4.1.3 Notation

Let n be the number of rows in the array.

Let a be the maximum number of rows that can be affected (either totally or
in part) by a single burst of errors.

Let the rows of the array be labelled 0,1,... ,n —1. (Note: a row will always
be identified by its original position in the array.)

Letn = aa + ¢, where 0,6 GZ and a > 0,0 < 6 < a.

Let #ij be the number of rows transmitted between the transmission of row i

and row j. For example, if the following sequence of rows is transmitted

0369258147

then ~35 = 3.

Two rows i and j are within a of each other if and only if

li-j 1< a1

Let t = min tij. That is ¢ is the minimum number of rows transmitted

between any two rows that are within a of each other in the array.

82

The first objective is therefore to find a scheme that maximizes ¢ But first a

simpler problem will be considered.

§4.2.1 A Simpler Problem

Consider the rows of the array to be placed in the following cosets.
Co— — 1}
Cl ={(ZeL+ 1,a + 2,-%<2(z —1}

C: —"2u,2d + 1,2d + 2, ¢+, 3d —1f

Coi— — {(o: —Dd,(o; —1)d + 1, "', &Kd—1}

Ca = {aa,ad + 1,°°e,ad + ¢ —1}

Cosets Co, C [, , Ccx-i have size a, coset Ca has size b

Notice that each element of a coset is within a of every other element in that
coset and that some elements within different cosets are also within a of each
other. Now consider the simpler problem of transmitting elements of the same
coset as far apart as possible. Let ¢ be the minimum number of elements
transmitted between the transmission of two elements from the same coset.
Theorem 4.1 gives the maximum values of ' and a scheme which can achieve

these values.

83

Theorem 4.1 If the cosets CQ CI,... ,CQ are as defined above, then the

maximum value for t' is as follows:

If b= a—1then maxi' = a
else maxt' =a —1
O
Proof The optimal scheme for transmitting elements from the cosets so as

to transmit elements in the same coset as far apart as possible is the following:
“Starting with coset Co, cycle through the cosets in numerical order, sending
one element (which has not already been sent) from each coset in turn.”
Thus, between the transmission of two elements from one coset, exactly one
element is transmitted from each of the other cosets. This is the optimal scheme
because to increase the number of elements transmitted between two elements.
Ol and G, from coset C{, an extra element would have to be sent from some
coset ¢j and this would decrease the number of elements transmitted between
two elements from the coset Cj. (There could be at most 1 element from each

of a —1 cosets, rather than a cosets).

To determine ¢’ for this scheme it is necessary to consider two cases:

Case 1: 6 = a—1.

In this case 3 a cosets of size a and 1 coset of size a—1. During the first
a—1 cycles through the cosets, an element (which has not already been
transmitted) can be chosen from each of the cosets (because there are
at least a —1 elements in each coset). During the last cycle it is not
possible to send an element from coset Ca, because there are none left.

84

However, because the first cycle starts with the coset Cq, the coset Ca
is always the last in a cycle. Thus the sequence of transmitted elements
is just 1 element ‘short’ at the very end of the sequence. Now there are
a + 1 cosets, therefore there are a elements transmitted between the
transmission of two elements from the same coset (the fact that the
sequence is one element short at the end does not affect the distance

between the previous elements). Therefore, in this case, ¢’ = a.

Case 2: b< a—2.

In this case the coset Ca will run out’ of elements before the last cycle,

so some cycles will contain only a elements. Therefore, in this case,

Clearly, ¢’ for the optimal scheme is equivalent to max P. O

Corollary 4.2 If b= a—1 then t < a otherwise b<a—2 andt < a —1. O

Proof This problem tries to transmit some elements that are within a of
each other as far apart as possible, but not all such elements. Therefore the
constraints on this problem are weaker than those on the problem of §4.1.2
and so maxf provides an upper bound for the maximum value of z. Thus ¢ is

bounded above as shown. O

§4.2.2 Discussion of the Case b= a —1

This section shows that the upperbound for + when » = a — I can be reduced

85

from a to a —1. The full interleaving problem of § 4.1.2 is considered once

again.

Theorem 4.3 If for n = aa + b there is a scheme with t = a, then there
exists a scheme for n' = {fa —l)a + bwitht =a —1. O

Proof Take the scheme for » and remove the rows labelled with the «a
highest numbers, i.e. if n = 7.3 + 2 = 23 and the scheme is described as

a sequence of the rows in the order in which they are to be transmitted (e.g.
036912151821 1471013161922 255 11 14 17 20) then remove from this
sequence the numbers 20, 21 and 22 (to give 036 912 1518 14 710 13 16 19 2
5811 14 17). This new sequence then has t = ¢ — 1. The reason for this is as

follows:

Let the numbers to be removed form the set S , then each element of S is
within a of every other element of S, therefore in the original scheme, each
element of S must be separated by at least a terms from any other element
of § . Now consider two rows i and j, not in § , such that |z— |< a —1,
in the original scheme they are separated by at least a terms and up to
a of these terms could be contained in § . Suppose one term between z
and j was in S , then, when this term is removed, i and j are separated
by at least a —1 terms. Now suppose that two terms between z and j
were contained in S, then, when these two terms are removed, the number
of terms between z and j decreases by two. However, the two terms in
S were separated by at least a terms, therefore there must have been at

least a + 2 terms between z and j in the original sequence. Thus, on

86

the removal of two terms, they are still at least a apart. In general, if
X >2 terms between i and j were from § , they were each separated from
every other by at least a terms, therefore there must have been at least
(@ —1)a + @ terms between i and j. Thus, on the removal of x terms, i
and j are still separated by at least (@ —1)a>a terms.

Thus, in all possible cases, i and j are still separated by at least a —1

terms.

So, the sequence, which forms a scheme with ¢t = a for n = aa + b, with the a

highest numbers removed forms a scheme with t = a —1 for n' = {a —l)a b
O
Corollary 4.4 Iffor n = aa+(a —1)3 a scheme with t = a (i.e. acheiving

the upper bound in the corollary to Theorem 4-1) then 3 a scheme for n' =

(a—)at(a—) witht = a—I (also achieving the upper bound of the corollary).

O

Proof Substitute ¢ = a —1 in Theorem 4.3. O

Lemma 4.5 There is no scheme with t = I for n = 2a —1. O

Proof The row labelled a is within a of all the other rows in the array (there

are a —1 rows each side of it). Therefore, wherever the row labelled a is placed
in the new scheme, it has to have at least one other row placed next to it, that
is a row that is within @ of it must be placed next to it, hence t = 0. Therefore

there is no scheme with t = 1. O

87

Theorem 4.6 Ifb = a—1I then the upper boundt = a can never be achieved.

d

Proof Corollary 4.4 shows that if there exists a scheme achieving the upper

bound for n = aa + (a —1) then there exists a scheme achieving the upper
y

bound for n’ = (a —Il)a + (a —1). The contrapositive of this statement shows

that if there does not exist a scheme that achieves the upper bound for n’' =
(a —l)a + (a —1) then there does not exist a scheme which achieves the upper
bound for n = aa + (a —1). Lemma 4.5 shows that there does not exist a

scheme achieving the upper bound for n = 2a —1 = a + (a —1). Therefore,
by induction, there does not exist a scheme achieving the upper bound for any

value of ¢ with b=a —1. O

Corollary 4.7 For all values of b t <a —1. 0O

Proof Combine Corollary 4.2 and Theorem 4.6. O

§4.3.1 An Optimal Scheme

Corollary 4.7 shows that ¢+ < a — I for all values of n,a and ¢, therefore, if a

scheme can be found that achieves ¢t = ¢ — I, then this scheme is optimal.

Scheme 1

If (n,a) = d, then at time interval z send the row Ri as determined by the

following;

(1) Set z= 0.

(2) Evaluate
Forj = tod—1do

For k= 0to d—]) do

(Ri = {ak+j) modn, z=z+ 1)

O
It is now shown that this scheme achieves ¢t = a — I, providing ¢ > 0.
Theorem 4.8 Ifn =aa F bb > 0 and (n,a) = d, then Scheme [sends all
n rows of the array and achieves t = a — 1. O
Proof Firstly, it is shown that Scheme 1 does send each row of the array.

Now for each of the d values of j, k takes " values, hence there are n rows
transmitted. The same row is not transmitted twice because d is the highest

common factor of » and a and j < d— 1L

Secondly, the value of ¢ is found. Consider the sequence of the row numbers in

the order in which the rows are transmitted, i.e.

0,a,2a,...,aa, a —b2a —b,...

Split this sequence into ordered blocks, each block commencing with an element
< a and consisting of the immediately following terms in the sequence (in order)

up to, but not including, the next element < a. Whilst j is fixed and % is

89

incrementing, any block has the following form:

a—"Y
2a —7
aa —

(a+Da- 177
callthis Block Y. The ? after the last element denotes that this element may
or maynot be contained in Block Y, depending on the ratio of @ and 7 to
n. Notice that any two elements in the same block are not within a of each
other. Now look at the distances between elements of consecutive blocks by

considering Block Y and Block (Y +1). There are two cases to consider.

Case 1: (a + 1)a —7 is not contained in Block Y.

Now the first element in Block (Y+1) is

(a+1Da— —(aa+s¢)=a—s—

Consider how many elements of Block Y are within a of the first ele-
ment of Block (Y+1). Now a— and a —s —7 are within a of each
other. Also

lra— —(a—s—)|=]a+6 |> a

So 2a — is not within a —s —7 As the elements of Block Y increase
in size, no other element in Block Y is within a of a —s —7 . In this
case , Block Y contains a elements , therefore the number of elements

transmitted between the transmission ofa — and a —s —7 is a —1.

90

The elements in every block are all the same fixed distance apart, i.e.
the third and fourth and elements in a block are the same distance
apart as the fourth and fifth and this is true (with the same distance)
for any block. Hence there are a —1 elements transmitted between
any element in Block Y and the first in Block (Y +1) that is within a

of this element.

Case 2: Block Y does contain (a + l)a —7 .

In this case, the first element in Block (Y +1) is

(a+2)a— —(aa+s6)=2a— —

Now 2a —s —7 and a — are within a of each other. Also

lra—s— —(a—)|=|—6|<a—

therefore 2a —s —7 and 2a — are within a of each other. But,

lra—b— —Ba—)I—1—C@—5| a

thus 2a— is the last element in Block Y that is within a of2a — 6 — .
However, in this case , Block Y contains a + 1 elements and therefore
the number of elements transmitted between the transmission of2a—7
and 2a —¢ —7 is a —1. Hence, by the same argument as in Case 1,
there are a —i elements transmitted between any element in Block Y

and the first element in Block (Y+1) that is within a of this element.

Thus, whilst j is fixed and k is incrementing, at least a —I rows are transmitted
between the transmission of any two rows that were originally within a of each

91

other. When j is incremented, this affects which block is transmitted next, but
not the structure of the block. It is now shown that incrementing j does not

affect the distances between elements in consecutive blocks.

Consider increasing j to j + 1. Let Block Y' be the block before j is incremented
and Block (Y '+1) the block after. Let the first element of Block Y' be a —7 ,
the first element of Block (Y '+1) isj + 1. The last element of Block Y' iseither

aa —2 or (a+ l)a — , but this element is equal in value to (a —l)a +¢6 + j.

a- 7 J+
28 - 7 atj+.
aa —7

(a+ la— ?

Block Y' Block (Y'+1)

Again there are two cases to consider:

Case1 : (a—la+6¢+j =aa —
which gives v = a —b—j
As before, consider the number of elements of Block Y' that are within

a of the first element of Block (Y '+1). Now a— and j + 1 are within

a of each other because j + 1 < d < aand a— < a. Also

Ira— —(j+1)I=Tra—(@——j) —(j+1)|=|a+f—1 |>a

because £ > 0. Hence 2a —7 and j + 1 are not within a of each

other. Thus Blocks Y' and (Y '+1) follow the same pattern as Blocks

92

Y and (Y +1) in case 1. Therefore, rows within a of each other are

transmitted at least a —1 apart.

Case:2 : (a—la+s+j=(a+1a—
which gives 7 = 2a —¢ —j

Again, a — and j + 1 are within a of each other. Also

lra— —(j+1)1=12a—a+e6+t]—J—1 |=16 —1 |< a

and thus 2a — and j + 1 are within a of each other. But

[3a— —(G+t1)]=la+tes—11>a

Hence, 2a — is the last element in Block Y' that is within a ofj + 1.
Again, Blocks Y' and (Y '+1) follow the same pattern as Blocks Y and

(Y+1) in case 2.

Thus, incrementing j does not affect the number of rows transmitted between
any two rows originally within a of each other. Hence, Scheme 1 achieves

t=a-1. O

Notice that this scheme, in effect, interleaves the rows of the array into an
(a + 1) X a array. However, the last row of this array is incomplete. Asking
whether or not a column of the (a + 1) x a array contains an element in the
(a + 1)** row is equivalent to asking if a Block Y (in the proof of Theorem 4.8)

contains the ? element.

If a divides n, then Scheme 1 achieves t = ¢ —2. In this case it is suggested
that the value of @ used should be the least integer greater than the actual a,

such that this new value does not divide n.

93

The next section considers when Scheme 1 may be used.

§4.4.1 Recommendations for Usage of Scheme 1

The situation being considered is one in which interleaving is performed using
an n X m array and m is less than the maximum length burst of errors, this
maximum length burst affecting at most a rows. The object of the previous
sections has been to develop a scheme (this being the order in which the rows
are to be transmitted) which enabled rows within a of each other in the original

array to transmitted as far apart as possible.

The purpose of this Section is to consider how far apart it is necessary to
transmit such rows and to make some recommendations about the use of the
scheme when the characteristics of the channel, over which the information is

transmitted, are unknown.

§4.4.2 Interleaving and Random Errors

Consider first an interleaving scheme in which the rows are transmitted in se-
quential order. This scheme in effect performs a permutation of mn data sym-
bols and the reverse process at the receiving end performs the inverse permu-
tation. Now supose that the errors occur at random, that is, there is a fixed
probability that a symbol is in error and this probability is independent from

symbol to symbol. Hence the probability of a given error pattern depends only

94

on the number of errors in the pattern and not their positions. Therefore per-
muting the data does not alter the probability of any given error pattern, as

permutation affects the positions of the errors and not the number of them.

Now, if interleaving is used where the rows are not transmitted in sequential
order, this merely performs an second permutation on the data symbols. Re-
peating the above argument shows that with this scheme again, the probability
of a given error pattern is the same as when no interleaving takes place. Thus,
if random errors occur, the probability of a given error pattern is independent
of whether or not interleaving is performed and, if interleaving is performed,

whether or not the rows are transmitted in sequential order.

§4.4.3 Using Scheme 1 with Unknown a

The object of interleaving is to randomize bursts of errors. Now the maximum
number of rows a single burst can affect is a, thus, if there exists a scheme
such that no two rows that were within a of each other in the original array are
transmitted within a of each other, then this achieves sufficient randomization.
This is because, when the rows are considered sequentially again at the receiver,

any block of @ rows can contain at most one row affected by any given burst.

Therefore, once ¢t = a — [can be achieved, it is not necessary to increase ¢

further.

Now consider the situation where the value of @ is unknown, what is the best

policy to adopt ?

95

Policy 1 If interleaving is performed using Scheme 1, where the dimensions
of the array are fixed (i.e. n is fixed), but the maximum number of rows that can
be affected by a single burst is unknown, then choose a to be the greatest integer

such that a < a and n = aa -\-b,b < aande E Z. (This gives a = [>/n —1j). O

Suppose Policy 1 is used, what happens if the maximum length of burst that

can occur is not the chosen a ?

Case 1: The maximum burst length is less than g, say a'.

In this case, the transmission scheme is forcing apart rows that it is
not necessary to separate. Now if Scheme 1 had been used with the
knowledge that the maximum burst length was a’, then it is possible
that a larger value of ¢ could have been obtained. However, Policy 1
has t > a—1 and as a' < @, t > a'. Hence, no advantage could be

gained by having a larger value of .

b

Case 2: The maximum burst length is greater than a, say a”.

In this case, the transmission scheme does not force apart all rows
that are within a” of each other. However, using Scheme 1 with a
knowledge of a” would give t < a" —i and therefore some rows orig-
inally within a” of each other will be transmitted within a” of each
other. Thus a knowledge of a” does not improve the situation. This
case demonstrates that (as was to be expected), once a becomes larger

than a certain value. Scheme 1 has decreasing effectiveness.

96

§4.5.1 Conclusion

An optimal solution has been found for the problem proposed by Inmarsat. A
policy for using the given scheme when the channel characteristics are unkown
has been presented. The scheme provide a means of increasing the effectiveness
of interleaving for convolutional coding, without introducing extra time delay.
It is noted however, that Scheme 1 has a cut-off point after which it has a

decreasing effect on performance.

97

Chapter 5

Binary Two-Length Codes with Error Correction

§5.1.1 Introduction

The subject of variable length codes was introduced in §1.7.1. Variable length
coding is of use for a message over any set of characters where the characters
are not all equally likely to occur, e.g. English text. However, there has been
very little work done on error-correcting variable length codes. This chapter

studies the concept of an error-correcting code with two different wordlengths.

First some theoretical results are presented. These include considerations of
linearity and a distance metric for two-length codes. Also, a general decoding

scheme is given for such codes.

It is intuitive that taking one wordlength to be a multiple of the other will
produce better synchronization properties. This work considers the case when
one wordlength is twice the other (this choice is also justified). The idea of using
a known, linear block code to form the two-length code is presented, together

with necessary bounds on the blocklength and dimension of this block code.

98

Theoretical results are given for the expected synchronization properties of two-
length codes when one wordlength is twice the other. These are quite encourag-
ing. The remainder of the Chapter considers a specific two-length code, formed
from the Hamming (7,4) code. It seemed natural to test the performance of

this code on the English alphabet, as frequency tables are readily available.

The performance of the two-length code was simulated, along with that of 5-bit
ASCII, a (9,5) block code and an appropriate Titchener code. The results of
the simulations are in line with the theoretical results. The chosen example
code has good synchronization properties and produces relatively low character

error rates in the received message.

§5.1.2 Objectives

The aim of this chapter is to develop a theory which will then enable the con-
struction of a binary, two-length code which is capable of correcting bit errors
that occur on the channel, so that more information characters are correctly
decoded and some synchronization errors are averted. This code should have
a faster data rate over a fixed-length, 1 -error-correcting block code and should
be such that there is no transmission of a fixed sequence to mark the end of a
codeword. Thus the code must be uniquely decodable in the absence of errors.
It is also desired that the code have some form of recovery ability, that is when a
synchronization error occurs, the decoder remains out-of-synch for some period

of time and then regains word synchronization. Recovery should occur because

99

of some inherent property of the code, rather than manual alteration of the

decoder.

§5.1.3 Initial Ideas

In the codes considered in this chapter, each character will be encoded to a
unique binary sequence called a codeword, the number of bits in the codeword
will be called the wordlensth. A variable length code may consist of code-
words of several different wordlengths. For example, one of the codes in [Ti]
has codewords of wordlengths 4,5,6,7,8,9,10,11,12,13,14 and 15 bits. However,
for convenience, the codes considered here will have codewords of only two dif-
ferent wordlengths. Let these wordlengths be rii and ri2 where nj < ri2. Such
codes will be called two-length codes. The length rii codewords will be called
short codewords and the length ri words. lons codewords. Each letter of the
alphabet will be associated with either a short codeword or a long codeword,
therefore the probability of sending a particular length codeword may be cal-
culated. Let Pi and p: be the probability of sending a short and long codeword

respectively.

Let the first rii-bits of a long codeword be called the preiix and the remaining

(ti2 —ni)-bits the addon.

It was seen in §1.7.3 that one of the problems with variable length codes is
maintaining word synchronization. When using fixed-length block codes, pro-

viding that no bits are lost on the channel, maintaining word synchronization is

100

not a problem because the receiver always knows exactly how many bits form
a codeword. When using variable length codes, the receiver has to decide how
to split the incoming sequence of bits into the varying length codewords. For
two-length codes, the term word synchronization will be used to describe the
state at a receiver when a received word is correctly identified as either a short
codeword or a long codeword. Because this work deals with transmission over
noisy channels, the received message will contain errors which may cause confu-
sion between prefices and short codewords, thus it may not always be possible
to maintain word synchronization. The term synchronization error will be used
to describe the situation where a codeword of a different length from that which
was sent is decoded. The term out-of-svnch will be used to describe the state of
the decoding process once a synchronization error has occurred and before the
decoder returns to decoding codewords of the same length as those which were
sent. Whilst the decoder is out-of-synch it is usual for character errors to occur
(but see [Ti] for an exception). Now, a synchronization error may be caused by
a single bit error and once the synchronization error has occurred the decoder
may remain out-of-synch for some time. Thus, variable length codes suffer from

error propagation.

To ensure that the two-length code is uniquely decodable in the absence of errors
it is chosen to be a prefix code according to the Definition 1.17. However, in the
presence of errors, this is not very robust. Unless the code is carefully designed,
it may take just one bit error to interchange the prefix of a long codeword and

a short codeword. Based on the definitions of t-error-correcting and minimum

101

Hamming distance from fixed-length block codes, the concept of a prefix code

is generalised for the purposes of this work as follows:

Definition 5.1 A two-length code is a t-prefix code if any prefix to a long

codeword and any short codeword differ in at least 2t -- 1 places. O

Notice that, if ¢ is large, a decoder is unlikely to confuse a prefix and a short
codeword, hence synchronization errors are unlikely to occur. This will prevent
error propagation. Clearly much more structure is required in the code ifit is to
prevent character errors. This will be discussed later when a specific two-length
code is considered, the next few sections are concerned with what can be said

in general about two-length binary codes.

§5.2.1 Linearity Considerations

The main area of successful work on block codes has been with linear block
codes. It is linear codes for which practical encoding and decoding algorithms
exist. Once codewords can have different lengths, it is not possible to talk of
a code being linear. This is because the linearity of a block code is defined in
terms of a vector space and it is meaningless to talk about vector spaces when

more than one length of vector is under consideration.

However, the codewords of a two-length code break down easily into smaller
sets, each containing vectors of only one length. If some of these sets can be
made linear, then this will give the two-length code some structure, which may

be beneficial either for forming a code or for encoding and decoding schemes.

102

The purpose of this section is to determine which sets can be linear and the
effect the linearity of any particular set has on the other sets. The sets that
will be considered are : the set of short codewords, the set of long codewords,

the set of prefices and the set of addons.

Some notation for these sets is now presented ;

Let SC he the set of short codewords and let s denote a member oi SC.
Let LC denote the set of long codewords, LCp the set of prefices and LCa the

set of addons.
If p € LCp and a E LCa are the prefix and addon for a long codeword, then

denote this member of LC by (p : a)

Note that it is not assumed that every prefix is paired with every addon in
LC, but this is not excluded either, thus it is not necessarily true that LC =

LCp X LCa (where x denotes the Cartesian product).

It is possible to make any one of the four sets linear, but now consider how the

linearity of one set affects that of another.

The prefix condition demands that at least SC DLCp = 0, therefore SC and
LCp cannot both be linear as they cannot both contain the all-zero vector.
However, it is not necessary that SC HLCa = 0 or that LCp HLCa = 0- Hence
it is possible for both SC and LCa lo he linear and similarly for LCp and LCa-
If the addition of long codewords is taken to be ordinary vector addition, then

it is clear that

LC linear => LCp linear and LCa linear

103

The contrapositive of this gives

LCp not linear or LCa not linear LC not linear

The converse statement

LCp linear and LCa linear => LC linear

is true if LC = LCp x TCa, otherwise no conclusion may be drawn.

Applying the above gives the following conditions on the linearity of the sets
that form the two-length code.
(i) If 5C is linear, then this forces LCp to be non-linear and therefore LC is
non-linear. Also zero, one or two of the following may be true
(a) SC LCp is linear.
(b) LCa is linear.
(i1) If LCp is linear then 5C is non-linear. This forces oneof (a) or (b) to be
true and furthermore (¢) may or may not be true.
(a) LC is linear and therefore LCa is linear.
(b) LC is non-linear and therefore nothing can be said asto whether ornot
LCa is linear.
(c) §C LCp is linear.

(iii) If LCa is linear this forces no constraint on the other sets.

The next section considers a distance measure for two-length codes.

104

§5.2.2 A Distance Measure

The object of this section is to find a distance metric for a two-length code. A

distance measure d(x,y) is a metric if it satisfies the following three axioms.

(1) d(x,y) > o with equality iff x = y.

(i) d(x,y) = d(y.x).

(ii1) d(x,y)4+-d(y,z) > d(x,z).

The Hamming distance is a metric for block codes and it therefore seems nat-
ural to try to extend it to two-length codes. Denote Hamming distance by
dfj and Hamming weight by wH- The distance measure, d¢, as given below
appears an obvious choice for the two-length code. Take Si,S: E SC and
(Pi :ai),(P2 :ag) GLC, then
dt(si,§2) = d#(si,S2)
cM((Pi :ai),(pi :ai)) = d//((pi :ai),(p2 :a"))
c<(si,(pi :ai)) = d#(si,pi)
Unfortunately, dt is not a metric because it does not always satisfy (iii). (Take,
for example x and z to be short codewords and y to be a long codeword). It
does however satisfy (i) (the distance between a long codeword and a short

codeword can never be zero because SC HLCp = 0) and (ii).

The next distance measure introduced overcomes this problem and is a metric,

as will be shown in Theorem 5.1. But first the formal definition.

105

Definition 5.2 The distance measure, dj-, of a two-length code is defined

as :
dT(si,S2) = d#(si,S2)
dT({pi :ai),(p2 :ag)) = ""((pi :ai),(pg :ag))
ar(st,(p1 :ai)) = ~~((pi :ai),Si) = d#(si,pi) + wn(ai)
O
Theorem 5.1 The distance measure d” is a metric on the set of codewords.
O
Proof Consider the set, S *, of ri2-bit words that consists of all the

short codewords, each with (722 —72% zeros added on the end, and all the long
codewords. Then dj- on the two-length code is equivalent to dfj on 6**, and

therefore dy is a metric on the two-length code. O

Note that the definition of dy extends to length Ui and length 722 words that
are outside the set of codewords. However, if it is possible for an 72:-bit word
to be the prefix of an 722-bit word and LCa contains the all-zero word, then
d{T is no longer a metric, because the distance between a long codeword and a
short codeword may be zero. Thus, d” is not necessarily a metric on the set of

received words, if the two-length code is used on a noisy channel.

It is also possible to define the minimum distance of a two-length code.

Definition 5.3 The minimum distance , d', of a two-length code is the

minimum value of dT(x,y) between any pair of codewords x and y. O

106

The next section will present a decoding scheme which guarantees to correct ¢

errors provided that the code used is a t-prehx code and that d/ > 2t 4-1.

§5.2.3 A t-Error-Correcting Decoding Scheme

Given a t-prefix code such that d/ > 2t+1, then the following decoding algorithm
may be used and guarantees to correct ¢ errors in a single codeword, whether
long or short. The scheme is a general one and certain processes may be reduced
for specific codes. The scheme assumes that no bits can be lost or gained on
the channel, that is the same number of bits are received as were sent, but this
is no more than is required when using a block code. The scheme decodes the

bits in sequence as they are received.

Decoding Scheme

Step 1 Compare the next nj-bits with a short codeword, if the distance
between them is < t then decode to this codeword, otherwise repeat until all
short codewords have been compared. If a codeword has been found then halt,

otherwise proceed to Step 2.

Step 2 Take the ni-bits of Step 1 and also the next (ri2 —ni)-bits from
the received sequence. Compare these "2-bits with a long codeword, if the
distance between them is < t then decode to this codeword, otherwise repeat

until all long codewords have been compared. If a codeword has been found

halt, otherwise proceed to Step 3.

107

Step 3 Decode to the codeword that was found to be nearest in all the

comparisons of both Step 1 and Step ». Halt

A flow diagram of this scheme is given in Figure 5.1.

Theorem 5.2 The decoding scheme described above will correct up tot er-
rors per codeword for either length codeword, if the code used is a t-prefix code

with minimum distance > 2t + 1. O

Proof There are two cases to consider. Firstly, assume that a short code-
word, s, was sent. During transmission, s was corrupted by a binary error
vector, e, of length nj and weight at most . Thus, s - e is received. Step 1
calculates the distance between s fe and all short codewords until possibly one

is found at distance < ¢ away. Suppose that s is the last of the short codewords

to be compared with s + e. Then for any s" G SC, ANos
dT(s + e,s') = -fe,s"
now dnis,s -4e) + 4 e,s') > c?h(s,s")

= dnis + e,s") > dnis, s') - ""(s,s -fe)

=4 c?h(s -fe,s") >t 1
as dnis, s') =dy(s,s') > 2t4-1 and df/(s,s 4« e) = wWH{") < t. Thus s+ e will
not bedecoded toa short codeword that is not s, and it will bedecoded to s
because " (s,s + e) = dH{s,s -fe) < t. Hence, if a short codeword is sent and

< t errors occur, correct decoding occurs.

Secondly, assume that a long codeword, (p :a), was sent. During transmission

this is corrupted by a binary error vector (ei : eg) of length ri2 and such that

108

READ nl-BITS

SELECT SHORT

CODEWORD
YES DECODETO
ND
READ NEXT
UNSELECTED SHORT (n2-n1)-BITS
CODEWORD ?
YES
SELECT A DIFFERENT SELECT A
SHORT CODEWORD LONGCODEWORD
DECODE TO YES
ND
DECODE TO CLOSEST ND UNSELECTED LONG
CODEWORD, EITHER CODEWORD ?
LONG OR SHORT
YES
SELECT A DIFFERENT
LONG CODEWORD
Figure 5.1

109

:62)) < t. Now 6i contains nj-bits and 62 contains (P2 —rii)-bits and
the errors may be distributed in any way between them. In Step 1, the first
rii-bits, that is p + ei, will be compared with short codewords. Let s be any
short codeword, then c/t(p + ei,s) = ""(p + ei,s) and

<*h(p,P + ei) + dnip + ei,s) > d//(p,s)
= dH{p + ei,s) > dH(p,s) - dn(p,P+ ei)
dnip + ei,;s) > t + 1
because the code is a t-prefix code, dj/(p,s) > 2t -b 1, also dff(p,p + ei) =

t- Thus the first ni-bits will not be decoded to a short codeword.

Now (p + :a -f 62) will be compared with the long codewords, when it is

compared with a codeword, (p' :a'), other than the one that was sent,

driiP + ei :a -b62),(p' :a')) = dn((p + ei :a -f62),(p' :a"))

and
dHUP :a), (p -bei :a-b62)) + dniip + ei :a -b02), (p' :2a"))
> dHUP :a),(p' :a"))
dHUP + 01 :a -b02),(p' :a")) > dnUP :a), (p' :a))
- dnUP :a),(p -b 0l ;a -b02))
= dH((p + 01 :a-b 02),(p' :a')) > t-b 1
because (p :a) and (p' :a') are both codewords and therefore at least 2t -b 1
apart and dn((p :a),(p -b0i :a+ 02)) = wH{{*1 '02)) < L Therefore the
7i2-bits will not be decoded to a long codeword other than the one that was
sent. They will be decoded to the one that was sent, because ""((p + 01
a-b02),(p :a)) = dnUP + 0i :a-b02), (P :a)) = w;f((0i : 02)) < L Thus, if

110

a long codeword is sent and less than ¢ errors occur, correct decoding will take

place. Therefore the theorem is proved. O

The discussion so far has been involved with decoding a single word. If the
scheme’s performance is to be assessed, then it must not be forgotten that
once synchronization is lost, there will be knock-on errors to be dealt with.
How synchronization errors are handled is seen in the decoding scheme of the

specific example, which follows later.

So far, only general results about two-length codes have been given, attention

is now turned towards a specific method of forming two-length codes.

§5.3.1 Two-Length Binary Codes with n? —2ni

This section will use the same notation as previous sections for short codewords,
long codewords etc. It will specify a method of forming two-length codes with
72 = 2rii. The reason for this choice of codeword lengths is to permit the
decoder to regain synchronization without outside intervention, why this occurs

will become apparent in §5.4.1. First consider the construction of the code.

Let 72 = 2t2i and choose 2%to be the blocklength of a known, linear, binary
t-error-correcting block code, 5. This code will be called the base code. Choose
some of the codewords of S to be short codewords and some to form the set of
prefices, LCp. This choice must be such that SC HLCp = 0 and thus the code
is a t-prefix code. The set of addons, LCa, is also made up of codewords from

S , with no restriction on the choice that can be made, thus some codewords

111

from the base code may appear in LCa and one of LCp and SC.
The long codewords are formed by pairing prefices and addons, each addon may
be paired with more than one prefix and vice versa. The size of the sets must be

such that a unique codeword exists for each character in the source alphabet.

Thus a two-length code is formed from one existing block code, such codes
will be called Derived codes. Each letter of the source alphabet is assigned
a codeword, either long or short, depending on the relative probability of the
letter being sent. Encoding can then be performed by using a look-up table,

that is a table that lists each source letter together with its codeword.

At the decoder the received sequence is first considered as nj-bit blocks and
passed through a decoder for the base code. This decoder will, by definition,
correct ¢t errors in every ni-bit block. The second process is to split the ni-bit
blocks into codewords, this is done sequentially. That is, if the first block is in
SC then it is considered as a short codeword and if the next block is in LCp,
then this block and the next block are considered to be a long codeword. Note
that if the third block is not an addon for the second block, i.e. they do not
form a codeword, then a ? is output. The decoding process continues in a like

manner for the whole received sequence.

If Pi and p: are as in §5.1.3, then the average wordlength, N, obtained by using

a two-length code is given by

N =PITli-\- P2L2

112

but p> — I —Pi and for Derived codes, Tk = 2tii, which gives

Np = PiTii 42ni(l - pi)

=nif2-pi) (5.1)

One of the aims of using two-length codes is to reduce the average wordlength
to less than the blocklength of a comparable fixed-length block code, the next
section examines some bounds on the blocklength and dimension of the base

code for this aim to be achievable.

§5.3.2 Bounds on Blocklength and Dimension

There are well tabulated bounds on the blocklength, dimension and minimum
distance of block codes, see [Ve], with improvements by R. Hill and K.L. Traynor
(to be published). Thus for a given alphabet, it would be easy to find the
shortest blocklength code with sufficient codewords that would correct ¢ errors.
Let the blocklength and dimension of such a code be n and k respectively. Let
Til and ki be the blocklength and dimension of the base code used to form the
Derived code of §5.3.1. Suppose that the source alphabet has a letters, each
with probability fi of being output by the source, with the letters arranged so

that fi > /i-fi Vi. Let 5 =| 5(7 | and L =| LCp |, then

Now, for a Derived code to be worth using it is required that Njj < n, thus

71i2 —Pi) < n

thus ni < -— —s— - (5.2)
2)Ni=1Ji

113

It is clear that nj < n, otherwise the Derived code can never do better than

the block code.

Now S codewords from the base code have been used as short codewords, but
any of the remaining 2" —S codewords may be used as prefices and any of the
2% codewords from the base code may be used as addons. Thus the maximum

number of codewords for the Derived code is

5+ (201 5)2%

and this must be at least as great as the number of letters in the alphabet.

Therefore

5+ (21 - 52*%= > a

(2*1)2 _52%i +(5-a) > 0

NS5+ visa2 - 45+ 4a

A 2m >

or

However, a > 5=~ 5% —45 + 4a > 57, therefore the second bound on 2%*i

cannot be true, thus

ki > log2(5 + VS~ - 45 + 4a) - 1 (5.3)

Now, because rii < n and both codes have minimum distance at least 2t + 1

and n is the shortest blocklength code with dimension A, it is clear that ki < k.

Equation (5.2) provides an upper bound for ni and Equation (5.3) provides

a lower bound for Aji, which is upper bounded by £ Both (5.2) and (5.3) are

114

dependent on 5 and for a given S it may not be possible to find rii, ki that both
satisfy the bounds. The next section will examine the effects of synchronization

errors on Derived codes.

§5.4.1 Investigation of the Synchronization Properties of Binary

Two-Length Codes with n, —2n,

This section is concerned only with synchronization errors and not with char-
acter errors. Thus it is the length of a codeword that is important, not the
character that it represents. The possible sequences of rii- bit blocks that can
be transmitted and those that could be received can be regarded as a Markov
chain. Consider the following specific example. (Note that it is assumed that the
decoder for the base code always produces a codeword). Let all the codewords of
the base code be used as either a short codeword or a prefix, let LCa = SCULCp
and let LC = LCp x LCa- These codes will be called complete Derived codes.

The Markov chain for such a code is given in Figure 5.2.

The sequences that are sent and received look like sequences of codewords from
the base code. Let Wi be the set of those codewords from the base code which
are short codewords and W: the set of those codewords which are prefices. Then
a word received that is in Wi may be a short codeword or an addon, similarly
a word received that is in W: may be the start of a long codeword or the end of
one. In Figure 5.2, the states are numbered for ease of identification. For states
1 to 13, the top line describes the word that was sent and the bottom line the

word that was received, e.g. state 4 indicates that the current ni-bits were sent

115

0*

Figure 5.2

116

0

as a prefix to a long codeword, because of channel errors the base code decoder
has output a word from Wi and, because of the current position in splitting the
ni-bit words into codewords, this word will be taken as a short codeword.
State 0 is passed through when the received sequence of ni-bit words is split
so that the current codeword ends where a codeword ends in the transmitted
sequence. State o is passed through after every codeword when the received
sequence is in-synch and it marks the point of regaining synchronization when

the decoding of the received sequence has been out-of-synch.

The Markov chain assumes a BSC and that, if the decoder for the base code
outputs an incorrect codeword, the codeword produced is equally likely to be
any of codewords other than the one that was sent. The symbols used on the
branches of the Markov chain diagram to indicate the probability of passing
from a particular state to another denote the following quantités :

(1) p = pi, the probability that a short codeword is sent.

(i1) qi is the probability that a word in W: is received, given that a word in Wi
was sent.

(iii) - is the probability that a word in Wi is received, given that a word in
W: was sent.

(iv) r = that is the probability that an addon is in Wi.

The Markov chain demonstrates why choosing 7.2 = 2ni leads to good synchro-
nization recovery. For example, the paths 0,4,8,0 and 0,4,9,0 only exist because

the addon of a long codeword can also be a short codeword.

117

A path through the Markov chain which leaves state 0 will pass through one
of two distinct state sets, the out-of-synch states {4,5,6,7,8,9,10,11,12,13}

or the in-synch states {1,2,3} before returning to state 0. One property of a
variable length coding scheme that it is desirable to know is the expected length
of time that the decoder will be out-of-synch, given that a synchronization error
occurs. That is, the expected length of time before synchronization is regained.

(There is another parameter which could be considered, that is the average time-
out-of-synch over the whole transmission). For the Markov chain in question,
passing through each state (except state o) represents the decoding of one ni-bit
block. Thus, it is possible to calculate the average number of ni-bit blocks that

will be out-of-synch, given that a synchronization error occurs. This is done by
finding the average length of the path through the out-of-synch states between
two consecutive visits to state o, assuming that the out-of-synch states where
entered on leaving state 0. Consider the following :

E(time out-of-synch, given that a synchronization error occurs) = E (time in
out-of-synch states between two successive visits to state o, given that the out-

of-synch states are entered) = E(time out-of-synch between two successive visits

to state o)/p(go out-of-synch from state o).

Let SE be the expected time out-of-synch between two successive visits to state

0. Then SE may be found from the stationary distribution of the Markov
chain. The following is taken from [GS], §6.2, pages 119 - 125. The Markov
chain in question is finite, irreducible and therefore recurrent with stationary

distribution II, where IIP = II. The transition matrix, P, of the Markov chain
is the matrix of probabilities of transfer from each state to every other. Now

Hi = where pi is the mean recurrence time of state i. Let pi{k) be the

118

mean number of visits of the chain to state i between two successive visits to
state k. Then, if Ais a non-null state of an irreducible, persistant chain, then

there is a stationary distribution Il with Hi = pi{k)//jLk- Now the mean of a

sum equals the sum of the means and therefore

13
SE

The Markov chain of Figure s .» satisfies all the necessary constraints and has

transition matrix P as in Figure 5.3.

To find the stationary distribution it is neceessary to solve IIP = II from the

following set of equations :

Ilo = II> + IIs £1la + Ilg + IT12 + ILis (1)
Hi = (1 - p)(I - 92)110 (2)
H2 (3)
115 = p(l - oi)llo (4)
1: = (1 —p)02%0 @)
115 = POrIlQ 6)
lie = rgi(Il4 -f Ilio -f flu) (7)
7 = (1 —r)(1 —o2)(Ils T Ilio + ITii) (s)
IIs = r(l —oi)(Ils -f Ilio + Hu) 9)
Ilo = (1 —T)o2(Ils + Ilio + Hu) (10)

119

(I-p)di2) 0 plHD (l-p)g2

gl (n(-q2) ol-q) (Hg2 0 0
(px2 [-p)-q2) p(l-ql) pal
(p}2 (-pll-q2) pl-ql) pal
(p2 (-p)il-g2) pl-gl) pal

rql (-2 (-ql) (Hjq2
rql - (0)(-q2) - 1(l-q]) [lr)g2

Figure 5.3

120

io— (1 —p)ye2q1s -f 11e + 117) (11)

nil = (1 - P)(1 - 92)(H5 4-Ho + H7) (12)
Hi: =p(i-9i)(nS5 + n6 +n7) (13)
Hi3 = P9i(Hs + Ile + 07) (14)

As the Hi form a probability distribution, there is the following additional

constraint :

13

En; =1 (15)
1=0
Because the Markov chain is finite and irreducible the above 15 equations have
a unique solution. Hence the first fourteen equations have solutions forming
a l-dimensional vector space. Thus, wlog, set Ho = 1 and consider the first
fourteen equations only, then use equation (15) to find the particular solution.
Setting Ho = 1 gives

H2 + H3 + Hg + Hg + Hi2+ Hi3 =1

I =(@-p) -92)

Ho = —p)(1 —o2)
1 = p(l - 9i)

s =« - pq2

11s = P9i

from equations (1) - (6) respectively. Combining (7) and (8) and substituting

for H4 gives
Ho + Hr= (a0 —r1)(l —o2) + "9i][(l ~ p)>2 + Hio + Hu]

Combining (11) and(12) andsubstituting for ILs gives

Ilio + Hii = (1 - P){pgi + lie + HY)

121

Combining these last two equations gives

He + 117 = a0 - r)(1 - 92)+ ™iJ[(l - p)C2 + (1 - p)(pgi + He + 1I7)]
Rearranging gives

n in _ [(1- - 92) + roi][(1 - p)(92 4 P9i)]

Substituting (16) into the equation for Ilio +- Hu and rearranging gives

It is now possible to remove all the Hi from the LHS of (15), therefore to obtain

the particular solution it is necessary to solve

\Vf, 1 I [G - 52) +T-gi)(1-p)(?2 +pgi)
a -p)[(- r)(1 - I2) H-rei]
(a -p)(pqi + - r)(l - gz) mrgil(l =Pp)gaj ~
-cr SPYI - (! -C2) +orqi]

Rearranging gives

1+ (2 -p)(1 +P9i) + (1 -p)[(1 -r)(1 92)4roi][ps-202 - P92 ~ 3]) ~
| I- (I-p)[(1 - r)(1 - 92)+ r9i] /

(18)
To obtain the particular solution, put Illo = A and solve for the remaining Iii.

However recall that

SE

Ho
1—(Ho 4-Hi 4 H. 4 H:)

" H/\

Thus, from equations (2),(3) and (4)

1 - A3+ 202(p- 1) - p(ci 4 1)]
Se = A

122

Substituting for A from (18) and rearranging gives

It can be seen from Figure 5.2, that the probability of entering the out-of-synch

states is pgi -f (1 —p)qz2 = p{qi —92) + 92 and therefore

Theorem 5.3 The expected number of ui-bit blocks that are out-of-synch,

given that a synchronization error occurs, is Eos where

i -p2) (P91 + 92)(2 - p)

%3_— i] .
Plgi - o2)+ R - (1 -p)[(1 - 1) - o2)+ Bi])(p(oi - 92)+ 92)

Notice that it is not surprising that +%and +> appear in the formula for Fos.,
even though they are associated with going out-of-synch. This is because one
of the ways to regain synchronization is for (in effect) another synchronization

error to occur.

This section has developed a measure of the average time the decoder will be
out-of-synch once a synchronization error occurs for complete Derived codes.
The next section considers Fos when less severe restrictions are placed on the

sets LC and LCa-

§.4.2 E.. when LC. C SC ULCj, and LC C LCj, x LCg

The codes of this section are Derived codes, with each codeword of the base code
being either a short codeword or a prefix in the two-length code. But, unlike

123

complete Derived codes, the set of addons does not consist of all the prefices and
all the short codewords, i.e. LCa C SCULCp. Also the constraint that the long
codewords be the Cartesian product of the prefices and the addons is relaxed.
Instead, it is insisted that each prefix has the same number of addons associated
with it, & of these addons come from SC and y come from LCp, where x and y

are fixed for all prefices. These codes are called hxed-ratio Derived codes.

In this case it is possible to decode an Tij-bit block to a prefix and for the
next ni-bit block not to be a possible addon. In this situation specify that the

decoder will consider the two blocks to be a long codeword, but that this word

will be flagged as uncertain.

With all the above assumptions, the Markov chain for the decoding process for

this code is the same as for complete Derived codes, if » is defined as follows

X
r =

xFy

This is because the Markov chain deals with synchronization errors, not char-
acter errors and no different synchronization errors can occur with the codes of
this section as from the codes of the previous section. Hence, the formula for

FEos is also valid for fixed-ratio Derived codes.

The next section introduces a specific two-length code for the 26 characters of

the English alphabet, based on the ideas of §5.3.1 - §5.4.2.

124

A Binary Two-Length Code for the English Alphabet

The binary, linear, 1-error-correcting block code with the shortest blocklength
that has at least 26 codewords, is a (9,5) code. Consider forming a Derived
code for the English alphabet as used in normal text. The relative frequency of

the occurrence of each letter is given in Figure s .4 .

If the chosen base code has minimum distance 3, then this forces the prehces
and the short codewords to have a minimum distance of 3. Thus the Derived
code formed will be a f-prefix code with ¢+ = ;. Refer to equation (5.3), the
least value of 5 is 1, otherwise the code is not two-length. If 5 = 1 then
~1 " log2 (1 + \/101) —1, thus the least value of ki is 3. The binary, linear,
1-error-correcting block code of dimension 3 with the shortest blocklength is a

(6,3) code. With n = 9 and rii = s, to satisfy (5.2), it is required that

from Figure 5.4 it can be seen that this requires 5 > . Now the (6,3) code has
s codewords, if ¢ become short codewords there are a maximum of > prehces.
All the codewords of the (6,3) code can be addons, therefore such a Derived
code can have at most ¢ 4 (2 Xs) = 22 codewords and thus is insufficient for

the English alphabet.

Lengthening the blocklength of the base code merely makes things worse, there-
fore consider a base code of dimension 4. For this code to be 1-error-correcting

it must have blocklength 7. Can a Derived code be formed from 16 codewords

125

Relative Cumulative

Position Letter Frequency Relative Frequency

1 E 12.702 12.702

T 9.056 21.758
3 A 8.167 29.925
4 0 7.507 37.432
3 I 6.966 44.398
6 N 6.749 51.147
1 s 6.327 57.474
8 H 6.094 63.568
9 R 5.987 69.555
10 D 4.253 73.808
11 L 4.025 77.833
12 c 2.782 80.615
13 U 2.758 83.373
14 M 2.406 85.779
15 W 2.360 88.139
16 F 2. 208 90.367
17 G 2.015 92.382
18 Y 1.974 94.356
19 F 1.929 96.285
20 B 1.492 97.777
21 v 0.978 98.755
22 K 0.772 99.527
23 J 0.153 99.680
24 X 0.150 99.830
25 o) 0.095 99.925
26 z 0.074 100.00

Figure 5.4

126

of length 7 ? Equation (5.2) gives

Figure 5.4 shows that this requires 5 > 10. A (7,4) code has 16 codewords, if 10
become short codewords then there are at most s« prehces, but each prehx can
have up to 16 addons. Thus such a code has a maximum of 10 + (¢ x 16) = 106
codewords, which is quite sufhcient for the English language! It is therefore
possible to have more short codewords than 10, and thus reduce the average
wordlength of the code further, even 15 short codewords and 1 prehx can still

provide sufficient codewords for the English alphabet.

Suppose that it is desired to form a hxed-ratio Derived code for the English
alphabet, then an exhaustive search through all possible ways of splitting the
codewords of the base code into short codewords and prehces shows that only
an 11:5 or a 14:2 split produces a code where each prehx has the same number
of addons. §5.4.2 also requires that each prehx have a given number of addons
from SC. If an 11:5 split is chosen, then each prehx could have o, 1,2 or 3
addons from SC and if the 14:2 split is chosen each prehx may have 5 or s

addons from SC.

The remainder of this chapter will examine the performance of hxed-ratio De-
rived codes formed by choosing the Hamming (7,4) code as the base code and
looking at all six of the splits described in the previous paragraph. These hxed-
ratio Derived codes will be denoted as (S.x) D-codes, where S is the number of
short codewords and x is the number of short codewords used as addons for each
prehx. The Hamming (7,4) code is perfect because the vector space GF {2y can

127

be partitioned into disjoint sets, each set containing a single codeword and those
words that are distance one from it. Hence, a decoder for the Hamming (7,4)

code always outputs a codeword. The next section looks at the values of Eos

for the six codes to be considered.

§5.5.2 Synchronization Properties for Two-Length Codes Formed

from the Hamming (74) code

Recall the formula for EFos and consider sending messages of English text. For
a given code, the number of short codewords, S , determines p (this being the
sum of the probabilities of occurrence of the first S letters in Figure 5.4), but
r is determined by the number of short codewords that are used as addons
for each prefix. The probabilities gi and ¢ depend upon the error statistics
for the channel in use. Assume a BSC with bit error probability then the
probability that the decoder for the base code ouputs an incorrect codeword is
given by

0 =1- (1- BT" - nipb{l - PbT~"

Now, because it was assumed (§5.4.1) that when the decoder outputs an erro-
neous codeword, it is equally likely for this to be any codeword other than the

one that was sent, gi and ¢ are given by

= 5+L-1n¢

where S =| Wi land L =\ W2 |-

128

The formula for can be written in terms of p, go,r, S and L as follows

E = ~ ; (p£ +.5)(2-p)
p(L-S) +S (p(1_5)+5)(i_(i_p)[i_, +ioM [£7])

This section will obtain upper bounds for Eos for each of the (S,x) D-codes.

There are six cases to consider.

(I) (11,0) D-code (p = 0.77833).

-6p (5p+ 11)(2-p)

Eo = b1l * iy et (topy] |- o)

To maximise Eo, it is necessary to minimize go- Thus,
E,, <2955

(2) (11,1) D-code (p = 0.77833).

- 6P (Gp4 112 - p)
-ept o M an - ep)(- a - p)[f - "90]D

To maximize Fos if is necessary to minimize ¢Q. Thus
Eo. < 2.635

(3) (11,2) D-code (p = 0.77833).

—p (S5p+- 11)(2 —p)
-sp4-11 ~ (11 - sp)(1 - (1 - p)[| - "90])

As before, minimize go to give
Eo. < 2.365

(4) (11,3) D-code (p = 0.77833).

- 6p (S5p4-11)(2 - p)
-6p4-n (11-6p)(1-(l-p)[lgo])

129

This time, to maximize Eo,, maximize on. Thus

Eo, <2365
(5) (14,5) D-code (p = 0.85779).
E = »rr2p (2p + 14)(2-p)
14 - 12p (14 _ I2p)(l - (1-p)[l - Agu]

To maximize Eo,, minimize go- Thus
E, <2183

(s) (14,6) D-code(p = 0.85779).

(2p-114)(2-p)

-12p
"Bl a% P ac12p)(-(-p) g

To maximize EQ, maximize go- Thus

E,,., < 2.159

The above bounds on Eq. show that these (S,x) D-codes have very good ex-
pected synchronization recovery properties. Remember that Fos represents the
number of n"*-bit blocks that are out-of-synch, the number of characters will be

less because some blocks will be paired into long codewords.

§5.5.3 Why Restrict Attention to = 2ni ?

For two-length codes, it is intuitive that taking ng = T%i, where 7 is an integer,
will produce better synchronization properties than if ri> is not a multiple of

130

nj. But why choose 7 = 2 ? The choice to study codes with 7 = 2 was made
because it was felt that such a ratio of wordlengths would provide the best
synchronization properties. (The better the synchronization properties, the less
error propagation and so, hopefully, the better performance). This feeling can
be justified by using the results of §5.5.2. If Tb = 7 Th then, if a synchronization
error occurs, the minimum number of ni-bit blocks that are out-of-synch is 7 .
This is because when a synchronization error occurs, it must somehow involve a
long codeword and thus the length of a long codeword determines the minimum
number of nj-bit blocks that are out-of-synch. Therefore, the expected number
of Til-bit blocks out-of-synch, EAX?) > 7 - §5.5.2 shows that Eog(2) < 3 for
certain values of p,g,r. Now Eo.(3) > 3 for any p, g r and so on for larger
7. Thus, as it is known that there exist two length codes which achieve a
lower average out-of-synch burst length than the best that can be hoped for by

choosing a larger 7, these seemed the most appropriate codes to study.

§5.6.1 Simulation of Code Performance

The performance of each of the six (S,x) D-codes of the previous section has
been simulated along with that of a s-bit ASCII code, a Titchener code, [Ti],
and a (9,5) block code for the 26 letters of the English language. The simulation
was done using the Pascal programs of Appendix 2, together with a 73 line file

of English text taken from a magazine article.

Figure 5.5 gives the parity-check matrix for the Hamming (7,4) code used to

form the (S,x) D-codes. Also given is the parity-check matrix for the (9,5) block

131

o 1 110 0 0 10

\70 0O 0 1 0 0 0 1

Parity-check matrix

of the Hamming (7,4) code. Parity-check matrix
of the (9,5) blockcode

E =100

T = 101

A =0000

0 = 0001

1= 0011

N = 0101

S = 0111

H = 1111

R = 00100

D = 00101

L =01101 Codewords of the

C =11100

U = 11101 T-code.

M=010000

W = 010001

F = 010011

G = 110000

Y = 110001

P = 110011

B = 110101

vV = 110111

K= 0100100

J = 0100101

X =1100100

Q = 1100101

Z = 1101100
Figure 5.5

132

code. The order in which the codewords of both these codes are used does not
affect the simulation. The T-code (also given in Figure 5.5) was formed as in
the method of code construction ([Ti], page 1), at each stage it was the first
element in the list that was sacrificed as the prefix. A comparison was made
between T-codes and D-codes because T-codes are relatively new and seem to

show good synchronization properties.

There is one program for each different type of code. Each program reads the
data from the English text (the message), encodes the data in the appropriate
code and errors are then added to the encoded data. The program then decodes

the corrupted data and produces the received version of the message file.

The errors are added to the encoded data by reading bit-wise from a file of zeros
and ones, where a one occurs with a fixed probability, and adding these bits
(modulo 2) to the bits of the encoded message. The error files were generated
using the Random Bernoulli function on the Minitab system. This function
produces the results of Bernoulli trials with a specified probability of a one

occurring.

The simulation for each code produced a value for the probability of a character
being in error in the received version of the message. For the fixed length codes
this was obtained simply by comparing the received message and the transmit-
ted message character by character and recording an error if the two characters
differ. For the variable length codes, the message and the received data do
not always contain the same number of characters and regaining character syn-

chronization often requires skipping more characters in one file than the other.

133

The number of character errors was taken to be the number of characters in the

transmitted message that could not be recovered from the received message. For

example, if the top line is the transmitted message and the bottom line what

is received, the following has a string of three errors and then a single error.
YOULLFINDMEVERYDIFFICULTANNOUNCES
YBELFINDMEVERYTEIFFICULTANNOUNCES

This can be seen by replacing erroneous characters in the received message by

spaces so that character synchronization is maintained, thus the above example

becomes
YOULLFINDMEVERYDIFFICULTANNOUNCES

Y LFINDMEVERY IFFICULTANNOUNCES

The errors were counted in this way, as it appeared the most accurate method
of imitating how a person would read the message. For each received file the
number of character errors was counted using an interactive Pascal program.
This program also recorded the maximum number of consecutive character er-
rors (the maximum burst length of character errors) and also the average burst

length of character errors.

For the (S,x) D-codes, the amount of time out-of-synch is also measured. This
is done by creating two extra files each consisting of the characters ‘S’ and ‘LO".
The first file is created as the message is encoded, each time a short codeword is
produced an ‘S’is written to the file and each time a long codeword is produced
‘LO’is written. A similar process is performed at the decoding end as the final
file of text is written. The two files are read character by character, whilst the

files agree the received data is in-synch, when they disagree it is out-of-synch

134

and the number of characters which disagree is the number of n”-bit blocks that
are out-of-synch. Both the average and the maximum number of ni-bit blocks

out-of-synch are recorded for each received message.

Thus, the simulation produces two measures for (S,x) D-codes, time out-of-
synch and character error burst length. Both these measures are useful. The
amount the data is out-of-synch is a measure of how much error propagation
is caused by the fact that the code is not of fixed blocklength. The error burst
length is important to the user, who is essentially interested in how much data

he can recover.

Note, the synchronization properties of T-codes are not measured here as Titch-
eners own results are given in [Ti]. The next section gives the results of the

simulations.

§5.6.2 Simulation Results

The results are presented in two forms, graphs and tables.

Figure 5.6 compares the performance of the four (ll,x) D-codes. It can be
seen that the more short codewords that are used as addons the better the
performance. This follows because word-synchronization is regained quicker
and there is thus less error propagation. Word-synchronization is recovered
quicker because :

(i) Suppose that a prefix is mistaken for a short codeword, but its addon is

received as it was sent. If the addon is from the set of short codewords,

135

(i1)

then it will be decoded as a short codeword and word-synchronization is
regained after two nj-bit blocks. However if the addon is from the set of
prehces then it will be decoded to the prefix of a long codeword and the
next n”-bit block, which was sent as a short codeword or as a prefix, will be
taken as an addon, thus word-synchronization is not regained for at least
three ni-bit blocks.

Suppose that a short codeword is mistaken for a prefix, but the following
Til-bit blocks are received as sent. The next rii-bit block will be taken as
an addon for the prefix. If the next block is a short codeword then word-
synchronization is regained after two Tii-bit blocks. If the next block is the
prefix to a long codeword and the next is an addon from the set of short
codewords, then word-synchronization is regained after three rii bit blocks.
If the next block is a prefix with an addon from the set of prefices then this
addon is taken to be a prefix and word-synchronization is not regained for

at least four ni-bit blocks.

Figure 5.7 compares the performance of the two (14,x) D-codes. (There are in

fact two lines on this graph). Although there is little difference between them,

the one with the most short codewords as addons gives the better performance

for the same reasons as above. Figure 5.8 compares the best (11,x) D-code

with the best (14,x) D-code. The one with 14 short codewords gives the best

performance. This follows from similar reasoning to the above, the more blocks

from the set of short codewords, the easier synchronization is regained.

136

Figure 5.9 compares the performance of the best (S,x) D-code (the (14,6) D-
code) with that of the 9-bit block code, the s-bit ASCII code and the T-code.
This graph does not account for the fact that they all have different data rates.
Under this method of comparison, the graph shows that D-codes give the better

performance.

Figures 5.10, 5.11 and 5.12 compare the various codes, compensating for the
different data rates. The comparison was done by assuming a BSC with AWGN,
the relationship between the bit-error probability and the quantity E[/NQis
given in [Pr], page 146. Such a comparison is necessary if the data is being

transmitted over a bandwidth limited channel.

The reason for this necessity is that for binary signalling, the required band-
width is inversely proportional to the time taken to send one bit on the chan-
nel. Now, to achieve the same information rate with codes of different average
wordlengths, the bits of the longer codes must be sent quicker than the bits
of the shorter codes. Hence, the longer codes require more bandwidth. This
causes problems if the amount of bandwidth available is limited. Plotting the
character error probabilities against E¢/No in effect, compares the character

error rates when the same bandwidth is used for bits from each code. Further

details may be obtained from [Pr], page 156.

Figure 5.10 shows that T-codes do appear better on bandwidth limited channels.
However, Figure 5.11 shows that the (S,x) D-code does much better than the
9-bit block code, whereas Figure 5.12 shows that the T-code does not have such

a significant gain over the s-bit ASCII code. From Figure 5.9, the (S,x) D-code

137

is better than the 9-bit block code, even when the differing data rates are not
compensated for. Whereas the 5-bit ASCII performs better than the T-code

until the differing data rates are compensated for.

Figure 5.13 compares the average character burst error properties for (S,x)
D-codes and T-codes and the first table of Figure 5.15 gives the maximum
character burst error length for these codes. Figure 5.14 plots the average
number of nj-bit blocks before synchronization is regained for (S,x) D-codes and
the second table of Figure 5.15 gives the maximum value. The points of Figure
5.14 compare favourably with the theoretical results of §5.5.2, remembering that
each point comes from just one observation whereas the theoretical result is the

expected value.

The simulations gave the following average wordlengths, for the T-code N =
4.34956 bits per character, for the (11,x) D-code, = 8.59197 bits per char-
acter and for the (14,x) D-code Np = 8.02591 bits per character. The values for
the (S,x) D-codes are close to the expected average wordlengths given by equa-
tion (5.1). This equation gives, for the 11 short codewords, Nu = 8.55169 and
for the 14 short codewords, = 7.99547. The expected average wordlength

for the T-code used is TV= 4.32539

§5.7.1 Conclusions

The concept of an error-correcting two-length code has been introduced, to-

gether with some linearity considerations and a distance measure. Also, a gen-

138

eral decoding scheme was presented. Two-length codes with 712 = 2tii have

been discussed and theoretical results on their synchronization properties have

been given.

Next the concept of forming two-length codes with x: = >7ii from a known code
was introduced. One specific example for a given alphabet was then considered,
but the method of formation could be used with any known code and for any

alphabet where the characters are not all equally likely to occur.

A two-length code formed from the Hamming (7,4) code was studied in detail.
This code was shown to have good synchronization properties. It also improved
both the average wordlength and the output character error rate over the nearest
comparable block code. The last of these is particularly pleasing, because most

variable length codes sacrifice data integrity for data rate.

The writer suggests that this method of forming two-length codes could have
wide-ranging applications and that these initial results give indications that
good performance may be achieved. Also, the idea of using wordlengths that
are multiples of 2 of the shortest wordlength could be extended to multi-length
codes. For example, a k-length code with wordlengths rii,7i2,..., rijt where

rii = 2ni_i, i = 2,... ,k. This is perhaps an area for future research.

139

Sro~ O 8
8z0-0 3
spo- O

st 0 o

3.

c\J

co

Iou ©

Do

(el ée)

=0 o

™M

co

JOJJO jepBJBqo)cl

Figure 5.6

140

o

S mCENLSOQ O

oB.o
oo

(JOJJO JOPBJBLI1O)d

Figure 5.7

141

M

o
00
Q.
t
193]
m
o
o

o™ wn

e

CompE Gon

0) @
8 8
0 o

9

(JOJJO jepBJEqo)d

Figure 5.8

142

™M

o0

E)H |° S

S %0 ©

M

05 EU | O vt

SIS

oo

ioe)

™M

00 of ;R0

o0
fO
- —
0
g
84
=

J910OBJBqo)d

(JoJ1i9

Figure 5.9

143

SN0 FoX ey eYe MES

::OH._.

CO

C]

E1, Ne)

r 10

- M

(J0JJ8 jepBJBMo)d

Figure 5.10

144

—_— ®3

T

oNmZ

Aaw

@ o MC@\& ~® £z

- M

Vo7 LEORO0O

(osr9 JOPBJBL|O)

Figure 5.11

145

—
Ta

EQR=E00 O > 0 a0l Ay

=

=1

e
5 AW

(JOJJ9 je;oBJBLio)d

Figure 5.12

146

0.0

LU

o~ oe elgo™o g8« o ~

Qo= NS0

@

8 © <oS=
Q <o}

N

™

0.0

CD

moé6uli isjng Joug JBMQ 'AV

Figure 5.13

147

30

Vo<

-

S3V oyt 0 n ooos o ~

C e Bye0

00

CL

LU

™

SO s)joolq ijg-LU "ou A\/

Figure 5.14

148

N 0 v

11, 0

~N N o & O O

o)}

10

0 0 0 0
1 1 1 0
1 1 1 1
4 3 2 2
4 4 4 3
4 4 4 4
5 5 5 5
7 7 6 4

_ n A~ W

Bit Err
T-code prop

1 0.0001
0.0014
0.0093
0.0201
0.0300
13 0.0398
12 0.05006

0.0663

0.0748

0.1017

o O A

Maximum length of a burst of character errors

1. 1 11. 2 11, 3 14,5

0 0 0 0
0 0 0 0
4 3 3 2
8 5 3 4
6 5 5 3
8 5 3 3
6 5 4 3
8 7 7 4
8 7 5 4
8 5 5

Maximum number of ni-bit blocks

Figure 5.15

149

14,6

0
0
2
3
3
3
3

w» W A

Tecod Bit Err
-eode Prob

0.0001
0.0008
0.0106
.0192
.0298

.0396
.0490

S o o O

[e)

.0662
.0743
0.0988

o

out-of-svnch.

[BS]

(BI]

[BPP]

[Do]

[Do,85]

[GGW]

[GS]

[Ha]

REFERENCES

Some Combinatorial Results on Variable Length Error-Correcting

Codes, M.A. Bernard and B.D. Sharma, BCC 1987.

Theory and Practice of Error Control Codes, R. E. Blahut, Addison

Wesley.

The Application of Error Control to Communications, E.R. Berle-
kamp, R.E. Peile and S.P. Pope, IEEE Comms Magazine, Vol.25,

No.4, April 1987, p.44-57.

The Digital Cellular SHF 900 System, J. L. Dornstetter.

French Patent Application No. 8508098, J. L. Dornstetter, filed

30/05/85.

Comma-free codes, SW. Golomb, B. Gordon and L.R. Welch, Can.

J. Math., 1958, 10, p.202-209.

Probability and Random Processes, G.R. Grimmett and D.R. Stirza-

ker, Oxford Science Publications, 1982.

Foundations of Coding Theory, W.E. Hartnett (ed), D. Reidling

Publishing Co., Dordretcht, Holland, 1974.

150

[McE]

[MWS]

[Pr]

[PW]

[St]

[Ti]

[Ve]

The Theory ofInformation and Coding, R.J. McEliece, Encyclopedia

of Mathematics and it Applications, vol 3, Addison Wesley.

The Theory of Error-Correcting Codes, F. J. MacWilliams and N.

J. A. Sloane, North Holland.

Digital Communications, J.G. Proakis, McGraw-Hill, 1983.

Error-Correcting Codes, W. W. Peterson and E. J. Weldon, MIT

Press.

Multiple-Burst Error Correction with the Chinese Remainder The-
orem, J. J. Stone, J. Soc. Indust. Appl. Math., Vol. 11, No. 1,

March 1963, p.74-81.

Digital Encoding by means of new T-Codes to provide improved
data synchronization and message integrity, M.R. Titchener, 1EE

Proceedings, vol.131, Pt.E, No.4, July 1984, p.151-153.

Updated Table of Upper and Lower Bounds on dMAX{n, k)™ T. Ver-

hoeff, IEEE Trans. IT, vol. IT-33, no. 5, Sept. 1987, p.666.

151

Appendix X

program cohn (output,resfile);

(* This program evaluates the probability of correct *)
(* decoding for both traditional standard array *)
(¥ decoding and a variation on this by Prof. P.M.Cohn *)
(* Final Version : 10th December 1987 *)
type
matrix = array [3..100,0..100] of real;
var
ncr : matrix;
n,k,t,mink,maxt : integer,;
Cohn,Trad,x,lastx,minp,maxp : real;
resfile : te x t;
satisfied : boolean;

procedure calcncr;

(¥ Calculates and places in the array mncr the values *)

(* of n choose r for all n and r between 3 and 100. *)

r : integer;

begin {ncr}

for n:= 3 to 100 do
begin
ncr[n,0]:=1;
for r:=1 to n do
ncr[n,r]:=ncr[n,r-1] * (n-r+1)/r
end
end; {ncr}
procedure calcrhs (n,k : integer; Xx:real;
var Pec c real);

(¥ Calculates the probability of correct decoding *)

(* for Cohn's scheme *)

i : integer;

begin {calcrhs}
Pc :=1;
for i:=1 to (n-k) do
Pc:=Pc * (1+ x)

end; {calcrhs}

procedure calclhs (n,t : integer; x:real;

var Pec o real);

152

procedure calclhs (n,t : integer; X :real;

var Pec creal);

{* Calculates the probability of correct decoding for *)
(* the traditiomnal scheme *)

var
i : integer;
power c real;

begin {calclhs}

Pc =1
power = 1
for i:= 1 to t do
begin
power:=power*x;
Pc = Pc + ncr[n,i]*power
end
end; {calclhs}
begin {main}

calcncr;
rewrite (resfile);
writeln (resfile, 'n'Z4,'k':4, 't ': 4, 'Min p ' :7,
'Max p': 7);
for n:=3 to 100 do

begin
mink := n div 2;
for k :=mink to (n-2) do
begin
maxt:= (n-k) div 2;
for t :=1 to maxt do
begin
lastx :=0;
x:=0.01;
satisfied:=false;
while (not (satisfied) and (x<=(1/9))) do
begin
calclhs (n,t,x, Trad),;
calcrhs (n,k,x,Cohn);
if Cohn > Trad then
begin
satisfied :=true;
minp:= lastx /(1 + lastx);
maxp:= X/(1+x);
writeln (resfile,n:4 ,k:4,t:4,
minp:7 ,maxp:7)
end;
lastx :=x;
X:=x+0.01
end
end
end
end;
close (resfile);
writeln (chr(7))

end .

153

program asciisim (input,ascicode,

letterorder,datarcvd,

AppendiK 2

message,datasent,

ascifinal, errors,output);

(* This program encodes the English text of the file *)
(* message in 5-bit ASCII, writing the resulting bits *)
(* in the file datasent. The contents of this file are *)
(* then added sequentially to the bits in the file *)
(* errors, the bitwise sums being placed in the file *)
(* datarcvd. The bits of this file are decoded in 5-bit*)
(* blocks to the appropriate English character. *)
type
col =array [1..26] of char;
word =packed array [1..5] of char;
codearray =array [1..26] of word;
var
ascicode, message,errors,datasent,datarcvd,
ascifinal,letterorder tex t;
codewords codearray;
c col;
bitcount,charcount integer;
biterrp real;
procedure progheader;
{writes initial info to the screen }
begin{procedure progheader}
writeln ('This program simulates a 5-bit Ascii code for
the English');
writeln ('capital letters!');
writeln ('Please supply the bit error probability of the
current error file');
readln(biterrp)
end;{procedure progheader}
procedure setupcode (var infile text;
var code codearray);
{copies the codewords from infile to the array code}
var
i,count integer;
begin{procedure setupcode}
reset(infile);
count:=0;
while not (eof(infile)) do
begin
count:=count + 1;
for i:= 1 to 5 do
read(infile,code[count,i]);

readln(infile);

154

end

end;{procedure setupcode}

procedure writew (var outfile Dotextg cwno : integer);

{writes a single codeword to outfile}

i : integer;
begin{procedure writecw}
for i:= I to 5 do
write(outfile,codewords[cwmno,i])
end;{procedure writecw }
procedure writecword (var outfile ttext; ch:char);

{writes the codeword corresponding to c¢ch to outfile}

begin{procedure writeword}

case ch of

'"E "’ writew outfirle, 1) ;
Lrp 1 writew outfile,2);
A writew outfile,3);
'O’ writew outfile,4);
‘T writew outfile,5);
‘N’ writew outfile,6);
'S writew outfile,7);
'H' writew outfile,8);
'R writew outfile,9);
'D! writew outfile,10)
'L writew outfile,11)
'C writew outfile,12)
‘U’ writew outfile,13)
‘M’ writew outfile,14)
'W writew outfile,15)
'"F! writew outfile,16)
'G!' writew outfile,17)
'Y! writew outfile,18)
'P! writew outfile,19)
'B"' writew outfile,20)
'V writew outfile,21)
'K writew outfile,22)
vy writew outfile,23)
X writew outfile,24)
'Q! writew outfile,25)
VA writew outfile,26)

end {case}

end;{procedure writecword}

procedure encode (var infile,outfile Dotex t);

{reads an English message from infile and writes to}

{outfile a codeword for each alphabetic character}

var

155

count : integer;

ch : char;

begin{procedure encode}
reset (infile);
rewrite(outfile) ;
bitcount:=0;
charcount:=0 ;

while not (eof(infile)) do

begin
count :=0;
repeat
read (infile,ch);
if (ch in [ta'.."z"']) then
ch:=chr(ord(ch)-32);
if (ch in ["A'"..'"Z"']) then
begin
charcount:=charcount+1;

writecword(outfile,ch);
count :=count+l

end

until ((count=10) or (eof(infile)));

writeln(outfile);
end;
close(outfile)

end;{procedure encode}

procedure adderrors(var infilel,infile2 ,0outfile

{reads bitwise from infilel and infile?2

{mod 2 sum of each pair to outfile}

var

chi,ch?2 : char;

begin
reset(infilel);
reset(infile?2);
rewr rite(outfile);
while not(eof(infilel)) do
begin

and

writes

tex t);

the}

while not ((eoln(infilel)) or (eoln(infile2))) do

begin
read (infilel,chi);
read(infile2,ch?2);
if (chl=ch2) then
write(outfile,'0")
else
write (outfile,"'l")
end;
if eoln(infilel) then
begin
readln(infilel);
writeln (outfile)
end

else

156

readln (infile?2)
end ;

close(outfile)

end ;
procedure setletord (var order:col);
{ Reads the alphabetic characters in order of }
{ decreasing probability }

i : integer;
begin{procedure setletord}

reset (letterorder) ;

for i:=1 to 26 do

readln(letterorder,order[i])

end;{procedure setletord}
function compare(wl,w2:word):boolean;
begin{function compare}

compare :=wl=w2
end; {function compare}

procedure decode (var infile,outfile ttext);

{Reads bits from infile in 5-bit blocks and writes the}

{corresponding character to outfile}

var
recword : word;
i,j,count,linecount : integer;
match : boolean;
begin

reset(infile);
rewr rite(outfile);

writeln(outfile,' Bit error probability = s biterrp);
writeln(outfile, '"Average wordlength = "',
bitcount/charcount) ;
match:=false;
for i:=1 to 5 do
read (infile,recword[i]);
linecount:=0;

while not(eof(infile)) do

begin
i :=0;
repeat
i =1+ 1;
match:=compare(recword,codewords[i])

until ((match) or (i=26));
if match then
begin
write(outfile,c[i]);

match:=false

157

end

else
write(outfile,'?2"');
linecount:=linecount+1;
if (linecount = 79) then
begin
linecount:=0;
writeln(outfile)
end ;
if not(eof(infile)) then
begin
if eoln(infile) then
readln(infile);
if not(eof(infile)) then
for i:= 1 to 5 do
read(infile,recword[i])
end
end ;

close(outfile)

end;

begin{main body}
progheader;
setupcode(ascicode,codewords) ;
encode(message,datasent);
adderrors(datasent,errors,datarcvd);
setletord (c);
decode(datarcvd,ascifinal);

Writeln(chr(7))

end.

158

program blocksim

A

(* This program
(* message in a
(* bits in the f
(* are then adde
(* errors, the b
(* datarcvd. The
(* blocks to a ¢
(* appropriate E
type

col = ar

word = pa

codearray = ar

var

blockcode,mess

codewords

C

App.e.ndiK .2

(input,blockcode, message,trans,

letterorder,mat?2,

received,firstdecode,

errors,blockfinal,output);

bitcount,charcount

encodes the English text of the file *)
(9,5) blockcode, writing the resulting *)
ile datasent. The contents of this file *)
d sequentially to the bits in the file *)
itwise sums being placed in the file *)
bits of this file are decoded in 9 -bit*)
odeword which is then decoded to the *)
nglish character. *)
ray [1..26] of char;
cked array [1..9] of char;
ray [1..26] of word;
age,errors, trans, received,mat2,
blockfinal,firstdecode,letterorder ctex t;
:codearray;
tcolg
rinteger;
creal;

biterrp

procedure proghe

{writes initial
begin{procedure

writeln ('This

ader;

info to the

progheader}

program simulates

screen }

a l-err

writeln('for the English capital letter
writeln ('Please supply the bit error pr
curren
readln(biterrp)
end;{prcedure progheader}
procedure setupcode (var infile te x t;
var code codearr
{copies the codewords from infile to the
var

i,count

gin{procedure
reset(infile);

count:=0;

integer;

setupcode}

159

or-correcting
blockcode');

s ')

obability of the
t error file');
ay);

array code}

while not

begin
count
for i:

(eof(infile))

do

read(infile,code[count,i]);

readln(infile);

end

end;{procedure

procedure

{writes a

var

i integer;

begin{proceure

for i:= 1
write

bitcount

(outfile,codewords[cwno,

to

end;{procedure

procedure

{writes the

begin{procedure

setupcode}

writew

single

(var

outfile

codeword

writecw }

9

do

:=bitcount+ 9

writecw }

writecword

codeword

case ch of

'E writew
'T writew
"A writew
'0 writew
"1 writew
'N writew
'S writew
'H writew
'R writew
'D writew
'L writew
'C writew
'U writew
'M writew
'W writew
'F writew
'G writew
'Y writew
’pP writew
'B writew
'V writew
'K writew
'] writew
'X writew
'Q writew
'Z writew

end{case}

end;{procedure

(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o
(o

(
(
(o
(
(o
(o
(o
(o

(o
(o

(

corresponding

var

writeword}

utfi
tfi
tfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi
tfi

i~

1
1

1

1
1
1
1

€

€

€

(5]

€

(4

€

(4

€

(4

€

[

e

¢

€

(4

€

€

s 1)
,2);
.35
,4);
.55
,6);
7))
,8)3
.95
,10)
, 1)
,12)
. 13)
. 14)
. 15)
. 16)
17)
. 18)
. 19)
,20)
,21)
,22)
.23)
. 24)
. 25)

utfile, 26)

ritecword}

te x t;

to outfile}

outfile

160

cwno
i]);
ttex t; ch
to c¢ch to

integer);

:char);

outfile}

procedure encode (var infile,outfile cotext)

{reads an English message from infile and writes to

{outfile a codeword for each alphabetic character}

var
count 1 integer;
ch : char;g

begin{procedure encode}
reset(infile);

rewrite(outfile);

bitcount:=0;
charcount:=0;
while not (eof(infile)) do
begin
count :=0;

repeat

read (infile,ch);

if (ch in ['a'. ."'"z"']) then
ch:=chr(ord(ch)-32);
if (ch in ['"A'"..'Z']) then
begin
charcount:=charcount+1 ;

writecword(outfile,ch);
count :=count+]l
end
until ((count=10) or (eof(infile)));
writeln(outfile);
end;
close(outfile)

end;{procedure encode}

procedure adderrors(var infilel,infile2,o0outfile otex t)

{reads bitwise from infilel and infile?2 and writes the

{mod 2 sum of each pair to outfile}

chi,ch?2 : char;

begin
reset(infilel);
reset(infile?2);
rewrite(outfile);
while not(eof(infilel)) do
begin
while not ((eoln(infilel)) or (eoln(infile2))) do
begin
read (infilel,chi);
read(infile2,ch?2);
if (chl=ch2) then

write (outfile, '0")
else
write (outfile,'1")

161

f

1

end;

eoln(infilel) then

begin
readln(infilel);
writeln(outfile)

end u

s e

readln(infile?2)

end;
close(outfile)
end;
procedure fstdecode (var infile,outfile te x t);
{reads a block of 9 bits from infile, simulates a }
{decoder and outputs the resulting codeword to outfile
{Repeats for whole infile}
var
recword rarray [1..9] of integer;
mat rarray [1..4,1..9] of integer;
s rarray [1..4] of integer;
found :boolean;
i,i,count rinteger;
ch :char;
procedure setupmatrix;
{reads the parity check matrix of the block code into
{the array mat}
var
i,] integer,;
begin{procedure setupmatrix}
reset(mat2);
for i:=1 to 4 do
begin
for j:= I to 9 do
read(mat2,matf[i,j]);
readln(mat2)
end
end; {procedure sectupmatrix}
procedure correct (i,] integer);
begin{procedure correct}
recword[i]:=(recword[i]+]1) mod 2;
recword[j]:=(recword[j]+1l) mod 2
end;{procedure correct}
begin{procedure fstdecode}

reset(infile);

rewrite(outfile);

setupmatrix,;

=0

count

162

-

while not(eof(infile)) do
begin
while not (eoln(infile)) do
begin
for i:= 1 to 9 do
begin
read (infile,ch);
recword[i]:= ord(ch) - ord ('0")
end;
for i = 1 to 4 do
s[i]:=0;
for i:= 1 to 4 do
begin
for j:= I to 9 do
s[i]:=s[1i] + (mat[i,j] * recword [j]);
s[i]:=s[1i] mod 2
end;
count :=count+1;
if ((s[l]1=0) and (s[2]1=0) and (s[3]1=0) and
(s [4]1=0)) then
for i:=1 to 9 do
write(outfile,recword [i]:1)
else
begin
found:=false;
i =0
repeat
i t=i+1;
if ((mat[1,i]=sT[1]) and (mat[2,i]=s71[2])
and
(mat [3, i] =s [3]) and (mat [4, i] =s [4]))
then
found:=true
until (found or (i=9));
if found then
recword[i]:=(recword[i] + 1) mod 2
else
if ((s[l]1=1) and (s[2]1=1) and (s [3] =0)
and (s[4]1=1))
then
correct (1,9)
else
if ((s[l]=0) and (s[2]=1) and
(s[3]=1) and (s[4]=1))
then
correct(4,5)
else
if ((s[1]=0) and (s[2]1=0) and
(s[3]=1) and (s[4]=1))
then
correct(8,9)
else
if ((s[1]=1) and (s[21=0) and
(s[3]=1) and (s[4]=1))
then correct(2,9)
else

163

{Matches codewords to English

v

if

th

el

for i:=1 to 9 do
write(outfile,
end;
if (count=28) then
begin
writeln (outfi
count :=0
end;
end ;
readln(infile)
end;
writeln(outfile);

close(outfile);

nd;{procedure fstdecode}

((s[1]=0)

(s[3]1=0)

en correct
se

and (s[2]1=1) and

and

(1,5)

correct(3,5);

recword [i]:

le);

rocedure setletord (var order :col);
ar
i : integer;

egin{procedure setletord}
reset(letterorder);
for i:=1 to 26 do

readln (letterorder,orde

nd;{procedure setletord}

unction compare(wl,w2:word

egin{function compare}

compare :=wl=w?2

nd; {function compare}

rocedure decode (var infile

r[i])

):boolean;

,outfile

ar
recword : word;
i,j,count,linecount : integer;
match :boolean;
egin

reset(infile);

rewrite(outfile);

writeln(outfile,' Bit error probabil

writeln(outfile, 'Average
bitcount/charcount);

match:=false;

wordlength

164

1)

ttext);

characters}

ity =

(s[4]1=1))

', biterrp);

for i:=1 to 9 do
read(infile,recword[i]);
linecount:=0 ;

while not(eof(inflie)) do

begin
i:=20;
repeat
ir=1i+1;
match:=compare(recword,codewords[i])

until ((match) or (i=26));
if match then

begin
write(outfile,c[i1]);
match :=false
end
else
write(outfile, "2 ')
linecount:=linecount+1;
if (linecount = 79) then
begin
linecount:=0;
writeln(outfile)
end ;
if not(eof(infile)) then
begin
if eoln(infile) then
readln(infile);
if not (eof(infile)) then
for i:= I to 9 do
read(infile,recword[i])
end

end;
close (outfile)

end;

begin{main body}
progheader;
setupcode(blockcode,codewords) ;
encode(message,trans);
adderrors(trans,errors,received);
fstdecode(received,firstdecode);
setletord (c);
decode(firstdecode, blockfinal);
writeln(chr (7))

end .

165

program

twolgthsim

AppendiK 2

(input,basecode,letterorder,message,

trans,errors,received,abmess,abfinal,firstdecode,

dfinal, matfile,output);

(* This program asks which (S,x) D-code is required and?*)
(* then forms this code from Hamming (7,4) codewords, *)
(* which are stored in the file basecode.lt *)
(* then encodes the English text of the file message in%*)
(* this code, writing the resulting bits in the file *)
(* datasent. The contents of this file are then added *)
(* sequentially to the bits in the file errors, the *)
(* bitwise sums being placed in the file datarcvd. The *)
(* bits of this file are decoded in 7-bit blocks to a *)
(* Hamming (7,4) codeword. These codewords are then *)
(* into short and long codewords which are then decoded?*)
(* to the appropriate English character. *)
type

col = array [1..26] of char;

nlbits = array [1..7] of integer;

word = array [1..14] of char;

wordarray = array [1..26] of word;
var

basecode,letterorder,message,trans, errors,received,

firstdecode,dfinal, matfile,abmess,abfinal

te x t;
sizewl,sizew2,r,numbaddons,bitcount,charcount
integer,;
valid boolean;
codewords wordarray;

procedure

{Prints

begin

c
b

v
w

£

iterrp

alid:=

and

geti

{procedure

true;

n fo (var

var

reads user

riteln ('This program

real;

sizel,size2,ratio,noadds

valid ; boolean);

information and

getinfo }

sim

riteln('error-correcting

riteln

("the

Hamming

(7.4)

ulates

code

code

166

data}

integer;

the performance of a
2-length ")
for the English
language, formed from?')
with the length of the

long

codewords')

writeln (’being twice that of the short codewords."');
writeln;
writeln ('Please enter the number of short codewords,

(11 or 14):');
readln(sizel);

if ((sizel <> 11) and (sizel <> 14)) then
valid:=false;
size2:=16 - sizel;
writeln ('Please enter the number of short codewords to
be wused as addons');
writeln('for each prefix:"');
readln(ratio);
writeln('Please supply bit error probability of current

error file');
readln(biterrp);

noadds:= (26 - sizel) div size?2;

if ((ratio < 0) or (ratio > noadds)) then

valid:=false;
if ((noadds - ratio) > size?2) then
valid:=false
end; {procedure getinfo}
procedure formcode (var code : wordarray;

var sizel,size2,r,noadds : integer);

{calculates the codewords according to specifications of}

{getinfo and writes them to the array codewords}

var

wlno,i,j,count,next nteger,;

begin{procedure formcode}

reset (basecode);

for i:= 1 to sizel do
begin
for j:= 1 -to 7 do

read(basecode,codel[i, j])
for j:= 8 to 14 do
codel[i,j]:=" '3
readln(basecode)
end;
count:=sizel + 1;
while (count <= 26) do
begin
for j:= 1 to 7 do
read(basecode,codef[count,j]);

readln(basecode) ;

for i:= 1 to (noadds-1) do
for j:= 1 to 7 do
code[count+i,jlJ]:=code[count, j] ;
count :=count+noadds
end;
count:=sizel + 1;
wlno:=1;

while (count <= 26) do

begin

167

for i:= 1 to r do

begin
if (wlno > sizewl) then
wlno:=1;
for j:= 8 to 14 do
code[count,jl]:=code[wlno,j-7];
count :=count+1l;
wlno:=wlno+1
end;
next :=count+noadds ;
for i:= (r+1) to noadds do
begin
if (next > 2 6) then
next:=sizel + next - 26;
for j:= 8 to 14 do
code[count,j]l]:=code[next,j-71;
next :=next + noadds;
count :=count+1

end
end

end;(procedure formcode}

procedure writeword (var outfile Totex tg

cwno : integer);

{writes to outfile 1 codeword according to its size}

var
i tinteger;
begin {procedure writeword}
if (cwno <= sizewl) then
begin
for i:= 1 to 7 do
write(outfile,codewords[cwmno,i]:1);
bitcount:=bitcount+ 7;
write (abmess, 's')
end
else
begin
for i:= 1 to 14 do

write(outfile,codewords[cwno,i]:1);
bitcount:=bitcount+14;
write(abmess,'lo')
end

end;{procedure writeword}

procedure writecw (var outfile ;text; ch:char);

{writes out the codeword for a given letter]

begin {procedure writecw }
case ch of
'"E':writeword(outfile, 1)
'T':writeword(outfile,?2)
'"A ':writeword(outfile, 3)

168

0"
o
N
g
.
R
D
L
e
e
‘M
'W
VR
G
Cy
po
B
Y
K
Dy
X
Q
g

T

£ £ £ 2 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ 2

T

[write

i

i

te

end {case}

end;{procedu

procedure

{reads

an

{outfile

a

en

English

codeword

£ £ £ £ £ £ £ £ £ £ £ £ £ £ g £ g 2 2 %

w

=}

=]

=]

[

o

rd (outfile,

rd (outfile,

rd(outfile,
rd (outfile,
rd (outfile,
rd (outfile,
rd(outfile
rd(outfile

rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o
rd (o

word (o

word (o

T

code

€

utfi

utfi

utfi
utfi
utfi
utfi
utfi
utfi
utfi
utfi

utfi

utfi

utfi

utfi

utfi

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

writecw }

(var

i

for

(&

e

€

(4

€

[

[

n

5
>

B

f

message

e

4);
5);
6);
7);
8);
9);
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

ile,outfile text);

from infile and writes

ach alphabetic character}

r
ch char;
count integer;
gin {procedure encode}
reset(infile);
rewr rite(outfile);
rewrite(abmess);
bitcount:=0;
charcount:=0;
while not (eof(infile)) do
begin
count:=0;
repeat
read (infile,ch);
if (ch in ['"a ' 'z ']) then
ch::chr(ord(ch)—32);
if (ch in ["A " 'Z ']) then
begin
writecw (outfile, ¢ch);
charcount:=charcount+1;
count :=count+]
end
until ((count=5) or (eof(infile)));

169

to }

writeln(outfile);
writeln(abmess)
end;
close(outfile);

end;{procedure encode}

procedure adderrors (var infilel,infile2 ,0utfile otext);

{reads Dbitwise from infilel and infile?2, mod 2 adds each}

{pair of bits and outputs the result to outfile}

var
bl,b2,i : integer;
P : real;
ch : char;
begin

reset(infilel);
reset(infile?2);

rew rite(outfile);

while not(eof(infilel)) do

begin
while not((eoln(infilel)) or (eoln(infile2))) do
begin
read(infilel, ch);
bl:=ord(ch)-ord('0"');
read(infile2,ch);
b2:=o0ord(ch)-0ord('0");
write (outfile, ((bl+b2) mod 2) :1)
end;
if (eoln(infilel)) then
begin
readln (infilel);
writeln(outfile)
end
else

readln(infile2)
end ;
close(outfile)

end;{procedure adderrors}

procedure hammingdecode (var infile,outfile Dotex t);

{reads a block of 7 bits from infile, simulates a}

{Hamming decoder and outputs the resulting codeword to}

{outfile. Repeats for whole infile}

var

recword tnlbits;

mat rarray [1..3] of nlbits;
s rarray [1..3] of integer;
found :boolean;

i,i,count cinteger;

ch :char;

procedure setupmatrix;

170

ds the par

into the arra

i,] : intege

ity check matrix of the Hamming (7,4) code

y mat}

r;

begin{procedure setupmatrix}

reset(matfile);

fo

37do

1 to 7 do

read(matfile, mat[i,j]);

r i:=1 to
begin
for j:=
readln(m
end

atfile)

end; {procedure sctupmatrix}

begi
re
re
se

co

n{procedur

set(infile

write(out
tupmatrix;
unt :=0;

e hammingdecode}
) s
file);

while not (eof(infile)) do

begin

while not(eoln(infile)) do

begin
for
be

en

i:= I to 7 do

gin

read (infile,ch);

recword[i]:= ord(ch) - ord('0")
d;

begin

en

for j:= 1 to 7 do

s[i]:=s[1i] + (mat[i,j] * recword[j]);
s[i]:=s[1i] mod 2
d;

count :=count+1;

if
fo

else
be

((s[1]1=0) and (s[2]1=0) and (s [31 =0)) then
r i:=1 to 7 do

write(outfile,recword [i]:1)

gin
found:=false;
i =0,
repeat
ir=1i+1;
if ((mat[1,i]l=s1[11]) and (mat[2,i]=5s1[21])

and (mat[3,i]=s [3]))

then

found:=true
until found;
recword[i]:=(recword[i] + 1) mod 2;
for i:=1 to 7 do

write(outfile,recword [i]:1)

171

}

end;
if (count=10) then
begin
writeln(outfile);
count:=20
end;
end;
readlIn(infile)
end;
writeln(outfile);

close(outfile);

end;{procedure hammingdecode}

procedure setletord (var ordertcol);

{reads into an array the English alphabet in the order}

{of the respective probabilities of occurrence}

var
i : integer;
begin {procedure setletord}

reset (letterorder);
for i:= I to 26 do
readln(letterorder,order[i])

end;{procedure setletord}
function compare(wl,w?2 : word; start :integer) :boolean;

{returns a value true iff the two supplied 7 b it}

{sequences are the same}
var
check :boolean;

i rinteger;

begin{function compare}

i =1
check :=true;
while ((i <= 7) and check) do
begin
check :=wl[i]=w2[start+i];
ir=1i+1
end;
compare :=check

end; {function compare}
procedure readnlbits (var cwordiword; var finished

boolean;

var infile :text);

i : integer;

begin

172

en

pr

d
ocedure
ransla
r

cword

eof(infile)

then

finished:=true

f eoln(infile) th
readln(infile)/
eof(infile)

s e i

then

finished:=true;

not(finished) then

for

i:=1 to

7 do

en

read(infile,cword [i])

{procedure

readnlbit

englishdecode

tes a file of bit

i,count,j

match,finished

gin

reset(infile);

word;
intege

boolea

rewr rite(outfile);

rewrite(abfinal);

writeln(outfile,"Average number of

count:=20;

finished:=false;

s}

(var infile,outfile

s into Emnglish

T

n;

ctex t);

letters }

bits per character

',bitcount/charcount);

while not(finished) do
begin
readnlbits(cword,finished,infile);
if not(finished) then
begin
count :=count+l;
match:=false;
i :=0;
while not(match) do
begin
i i=i+1;
match :=compare(cword,codewords[i],0)
end;
if (i <= sizewl) then
begin

write(outfile,c[i]);

write(abfinal,'s")

end

else

begin

write(abfinal,'lo"');

readnlbits(cword,finished,infile);

if

not(finished) then
begin
i =03
match:=false;
while (not(match)

173

numbaddons-1))

do

begin
match :=compare(cword,
codewords[i+ j],7);
ji=3+1
end;
if match then
write(outfile,c[i+j-11)
else

write (outfile, '2")

end
else
write(outfile,"'*")
end
end;

if count=70 then
begin
writeln(outfile);
writeln(abfinal);
count :=0
end ;
if count=35 then
writeln(abfinal)
end;
close(outfile)

end;{englishdecode}

begin {main body}
getinfo(sizewl,sizew2,r,numbaddons,valid);
if valid then
begin
formcode(codewords,sizewl,sizew2,r,numbaddons);
encode(message,trans);
adderrors(trans,errors,received);
hammingdecode(received,firstdecode);
setletord (c);
englishdecode(firstdecode,dfinal);
end
else
writeln('Invalid input');
writeln (chr (7))

end .

174

Ap£>.endiK 2

program tcodesim (input,tcode,message,trans,letterorder,

received,tfinal,errors,output);

* This program the English text of the file message *)

(* using a T-code, which s stored in the file tcode.*)
(* The resulting bits are written to the file *)
(* datasent. The contents of this file are then added*)
(* sequentially to the bits in the fiile errors, the *)
(* bitwise sums being placed in the file datarcvd. *)
(* The bits of this file are then decoded in order to*)
(* the appropriate English character *)
type

col array [1..2 6] of char;

word packed array [1..7] of char;

codearray array [1..26] of word;
var

tcode,message,errors,trans,received,tfinal,

letterorder textg
codewords :codearray;
c ccol;
bitcount,charcount cinteger;
biterrp treal;

procedure progheader;

{writes initial info to the screen}

begin{procedure progheader)
writeln ('This program simulates a Titchener code for
the English');
writeln ('capital letters');
writeln ('Please supply the bit error probability of the
current error file');
readln(biterrp)
end;{prcedure progheader)

procedure setupcode (var in file Totextg

var code : codearray);

{copies the codewords from 1infile to the array code)

var

i,count integer;

begin{procedure setupcode)

reset (infile); -3
count:=0;
while not(eof(infile)) do
begin
count:=count + 1;
for i:= 1 to 7 do

175

end;[p

proced

{write

begin {

for

end; {p

proced

{write

B

code[count,i] := '

i 1=0;
while not(eoln(infile)) do
begin
ir=1i+1;

read(infile,code[count,i])
end;

readln(infile);

rocedure setupcode}

ure writew (var outfile Dotex tg cwno

s a single codeword to outfile }

integer;

proceure writecw }

i:= 1 to 7 do

(codewords[cwmno,i] o ' 'y then
begin

bitcount:=bitcount+]l1;

write(outfile,codewords[cwmno,i])
end

rocedure writecw }

ure writecword (var outfile ttext;

s the codeword corresponding to <ch

begin{procedure writeword}
case c¢ch of
'"E' writew (outfile,l);
ttp 1 writew (outfile }"2);
'A' writew (outfile ,3) ;
'O' writew (outfile,4);
'"I' writew (outfile ,5);
'N' writew (outfile ,6);
'S' writew (outfile ,7) ;
'"H' writew (outfile,8);
'R' writew (outfile , 9);
'D' writew (outfile ,10)
'L' writew (outfile,ll)
'C writew (outfile , 12)
'U' writew (outfile [13)
'M' writew (outfile ,14)
'W writew (outfile ,15)
'F' writew (outfile , 16)
'G' writew (outfile ;17)
'Y' writew (outfile ,18)
'P' writew (outfile ,19)
'B"' writew(outfile,ZO)
'V writew (outfile,21)
"K' writew (outfile,22)
'J' writew (outfile ,23)

176

integer);

chrchar);

to

outfile}

'X 'iwritew (outfile,24)

'Q':writew (outfile,25)

'Z'iwritew (outfile,26)
end{casc}

end;{procedure writecword}

procedure encode (var infile,outfile otex t);

{reads an English message from infile and writes to

{outfile a codeword for each alphabetic character}

var
count : integer;
ch : char;

begin{procedure encode}
reset(infile);
rewrite(outfile) ;

bitcount:=0;

charcount:=20;
while not (eof(infile)) do
begin
count:=20;
repeat
read (infile,ch);
if (ch in ['a'..'z"']) then
ch:=chr(ord(ch)-32);
if (ch in ["A'..'"Z"']) then
begin
charcount:=charcount+1;

writecword(outfile,ch);
count :=count+l1
end
until ((count=10) or (eof(infile)));
writeln(outfile);
end;
close(outfile)

end;{procedure encode}

procedure adderrors(var infilel,infile2 ,o0outfile Totext);

{reads bitwise from infilel and infile?2 and writes the

{mod 2 sum of each pair to outfile}

var

chl,ch?2 : char;

begin
reset(infilel);
reset(infile?2);
rewrite(outfile);
while not(eof(infilel)) do
begin
while not ((eoln(infilel)) or (eoln(infile2))) do
begin
read (infilel,chi);

177

read (infile2,ch?2);
if (chl=ch2) then
write(outfile,'0")
else
write(outfile,'l")
end;

if eoln(infilel) then

begin
readln(infilel);
writeln(outfile)
end
else

readln(infile?2)
end;

close(outfile)

end ;
procedure setletord (var ordericol);
var

i : integer;

begin{procedure setletord}
reset(letterorder);
for i:=1 to 26 do
readln(letterorder,order[i])

end;{procedure setletord}

-

unction compare(wl,w2:word):boolean;

o

egin{function compare}

compare :=wl=w?2

o

nd; {function compare}

procedure decode (var infile,outfile ttext);

{Reads from infile bits which are then matched to}

{codewords and decoded to English characters}

var
recword,temp,temp?2 : word;
i,j,count,linecount ; integer;
match : boolean;
begin

reset(infile);
rewr rite(outfile);
writeln(outfile,'" Bit error probability = s biterrp);
writeln(outfile, 'Average wordlength = ",
bitcount/charcount);
for i:=1 to 26 do
begin
writew (outfile,i);
writeln (outfile)

end;

178

writeln(outfile);
writeln(outfile);
match:=false;

for i:=1 to 7 do

read(infile,recword[i]);

linecount:=0;
count :=3;
for i:=1 to 7 do

temp[i]:= ;

for i:=1 to count do
templ[i]:=recword [i] ;
while not (eof(infile)) do
begin
repeat
i:=0;
repeat
ir=1i+1;
match :=compare(temp,codewords/[i])

until ((match) or (i=26));
if match then

begin
write(outfile,c [i])
linecount:=linecount+1;
if (linecount = 79) then
begin
linecount:=20;

writeln(outfile)

end ;
end
else
begin
count :=count+1;
if (count < 8) then
temp[count]:=recword[count]
end
until (match or (count=8));

if not(match) then

begin
for i:=1 to 6 do
recword[i]:=recword[i+1];

if not(eof(infile)) then
if not(eoln(infile)) then

read(infile,recword[7])

else
begin
readln (infile);
if not(eof(infile)) then
read(infile,recword [7])
end

else recword[7]:=

end
else
begin
match :=false;
for i:=1 to (7 - count) do

recword[i]:=recword[i+tcount];

179

for i:= (7 - count +1) to 7 do
if not(eof(infile)) then
if not(eoln(infile)) then
read(infile,recword [i])
else
begin
readln(infile);
if not(eof(infile)) then
read(infile,recword [i]
else recword[i]:=" !
end
else

recword [i]" '

end B
count :=3 ;
for i:= 1 to 7 do
tem p[i]:=" "3
for i = 1 to count do
templ[i]:=recwordl[i];

end;
close (outfile)

end;

beginfmain body}
progheader;

[

etupcode(tcode,codewords)

encode(message,trans) ;
adderrors(trans,errors,received);
setletord (c);
decode(received,tfinal);
writeln(chr (7))

end .

180

B

