
SO M E A P P L IC A T IO N S OF M A T H E M A T IC S TO

C O D IN G T H E O R Y

E liza b eth Jan e D u n scom b e

R oyal H ollow ay and B ed ford N ew C ollege

(U n iv ers ity o f L ondon)

S u b m itted for th e degree o f P h .D .

1

ProQuest Number: 10090155

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10090155

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A B S T R A C T

This thesis deals w ith the transm ission of da ta over a channel th a t is subject

to noise, or interference. There are many different methods of trying to achieve

reliable com munication of data in the presence of noise. This thesis considers

some of these m ethods, in particular, those aspects involving the use of error-

correcting codes. A num ber of specific applications are considered, as well as

some more general theory.

One general class of codes is th a t of cyclic codes (where every cyclic shift of

a codeword is also a codeword). C hapter 2 of this thesis reviews a decoding

scheme for cyclic codes proposed by Professor P.M. Cohn. The scheme is a

modification of standard array syndrome decoding. It is shown th a t C ohn’s

scheme does not perform as well as the original version of syndrome decoding.

C hapter 3 considers Cyclotomie ally Shortened Reed Solomon codes (a class of

codes introduced by J.L. D ornstetter) and their relationship with the Chinese

Rem ainder Theorem codes of J .J . Stone. The blocklength and dimension of

these codes is established, together with the best possible lower bound on the

m inim um distance. The notion of cyclotomie shortening is then extended to

A lternant codes.

C hapter 4 deals w ith the subject of interleaving for channels th a t are subject to

bursts of errors. An optim al solution is given to a problem posed by Inm arsat

when interleaving is used with a convolutional code. It is shown how to improve

the m ethod of interleaving which feeds da ta column-wise into an array and

then transm its row-wise, by careful selection of the order in which the rows are

transm itted .

The final chapter discusses the concept of an error-correcting code with two dif­

ferent codeword lengths. Some general results about such codes are presented.

A m ethod of forming these codes is given for the case when one wordlength is

twice the other. A specific example of this type of code is considered. Both

theoretical and sim ulated performance results are presented for the example.

ACKNOWLEDGEMENTS

I wish to thank Professor F.C . P iper for his guidance and support throughout

this research and for always being right about the next phase of post-graduate

life. My thanks also to Dr. M. Walker of Racal Research Ltd. for his help and

for giving me his time despite a busy schedule.

I am grateful to everyone in the M athem atics D epartm ent at RHBNC for m ak­

ing my stay as a post-graduate such a pleasant one. Particu lar thanks to Dr. P.

W ild for spending many hours listening to my ideas (both good and bad) and

for his helpful suggestions. Also thanks to Dr. J.D . Knowles for his help with

Statistics.

I wish to thank my husband, Chris, whose faith in my abilities always exceeded

my own, for his constant encouragement and support.

I gratefully acknowledge the financial support for this research from the Science

and Engineering Research Council and Racal Research Ltd.

I lift my eyes to the hills -

from where does my help come ?

My help comes from the Lord,

the Maker of heaven and earth.

Psalm 121, V. 1 - 2.

CONTENTS

T itle -p a g e ... 1

A bstract ..2

A cknowledgem ents... 4

Table of C o n ten ts ..6

Table of F igures... 9

C hapter 1 In tro d u c tio n ...10

1.1.1 In tro d u c tio n ...10

1.2.1 Block C o d es ...12

1.2.2 Decoding Linear Block C o d es ..17

1.2.3 Cyclic C odes.. 20

1.3.1 Reed Solomon C odes...22

1.4.1 Convolutional C o d es ... 24

1.5.1 Random Errors and B urst E rro rs ... 26

1.5.2 Block Codes vs Convolutional C o d es 28

1.6.1 In terleaving .. 30

1.7.1 Variable Length C odes... 31

1.7.2 Discussion of Variable Length Codes and Noiseless

Channels ... 32

1.7.3 Variable Length Codes and Noisy C hannels........................... 34

1.8.1 S um m ary .. 35

C hapter 2 A Study of P.M .Cohn’s Decoding Scheme for Cyclic

Codes ...36

6

2.1.1 In tro d u c tio n ...36

2.1.2 N o ta tio n ...37

2.2.1 S tandard Array D ecoding ..37

2.2.2 Cohn’s Schem e...39

2.3.1 Background R esu lts ... 39

2.4.1 Probability of Correct D ecoding..42

2.5.1 Threshold Values for Cohn’s Schem e...................................... 45

2.5.2 Com puter R esu lts ...46

2.6.1 S um m ary ...48

P o stsc rip t...48

C hapter 3 A Study of Reed Solomon Codes, Chinese Rem ainder

Theorem Codes and Cyclotomie S ho rten in g 50

3.1.1 In tro d u c tio n ...50

3.1.2 Introduction to CRT C o d es..51

3.1.3 Reed Solomon C odes... 54

3.1.4 Introduction to CSRS C o d es..55

3.2.1 Prelim inary R esu lts ... 57

3.3.1 Dimension of CSRS C o d es ..58

3.3.2 Blocklength of CSRS C odes..58

3.3.3 M inimum Distance of CSRS C odes.. 62

3.3.4 CSRS Codes as Binary C o d es .. 64

3.4.1 CSRS and CRT C o d es..65

3.5.1 Encoding and D ecoding... 71

3.6.1 D ornstetter C o d es..73

3.6.2 CSRS Codes and D ornstetter C odes.. 74

7

3.7.1 A lternant C o d es ... 76

3.8.1 S um m ary .. 78

C hapter 4 Interleaving for Convolutional C o d in g 80

4.1.1 In tro d u c tio n ...80

4.1.2 O b jectives...82

4.1.3 N o ta tio n .. 82

4.2.1 A Simpler P rob lem .. 83

4.2.2 Discussion of the Case b = a — 1 ... 85

4.3.1 An O ptim al Schem e...88

4.4.1 Recom mendations for the Usage of Scheme 1 94

4.4.2 Interleaving and Random E rro rs ...94

4.4.3 Using Scheme 1 with Unknown a ..95

4.5.1 Conclusion.. 97

C hapter 5 Binary Two-Length Codes with E rro r-C orrection 98

5.1.1 In tro d u c tio n ...98

5.1.2 O b jectives...99

5.1.3 Initial Id eas .. 100

5.2.1 Linearity C onsiderations..102

5.2.2 A Distance M easure...105

5.2.3 A t-Error-Correcting Decoding Schem e.................................. 107

5.3.1 Two-Length Binary Codes with ri2 = 2 n iI l l

5.3.2 Bounds on Blocklength and D im ension 113

5.4.1 Investigation of the Synchronization Properties of

Binary Two-Length Codes with ri2 = 2 n i115

5.4.2 Eos when LCa C S C U LCp and LC C L C p X L C a 123

5.5.1 A Binary Two-Length Code for the English A lp h ab e t. . . 125

5.5.2 Synchronization Properties for Two-Length Codes

Formed from the Hamming (7,4) C o d e 128

5.5.3 W hy Restrict A ttention to ti2 = 2ni ?130

5.6.1 Simulation of Code Perform ance... 131

5.6.2 Simulation R esu lts ... 135

5.7.1 Conclusions...138

R eferences..150

A ppendix 1 Program for C hapter 2 ... 152

A ppendix 2 Program s for C hapter 5 ... 154

Table o f F igures

Figure 1.1 S tate Transition D iag ram ..25

Figure 1.2 Waveforms for One and Z ero ..27

Figure 2.1 G raph of f (x) ...43

Figure 3.1 Table of Possible B locklengths... 62

Figure 5.1 Decoding Scheme Flow D iagram ... 109

Figure 5.2 Markov Chain Transition D iag ram .. 116

Figure 5.3 Markov Chain Transition M a tr ix ..120

Figure 5.4 Frequency Table for English A lp h ab e t.................................... 126

Figure 5.5 Description of Codes used in S im ulation132

Figures 5.6-5.15 Simulation R esu lts ..140

C hap ter 1

IN T R O D U C T IO N

§1.1.1 In tro d u ctio n

This chapter gives an overview of the subject of Coding Theory from a m a th ­

em atical viewpoint. It pays particular attention to those topics which will be

considered further in this thesis. However, only those results which are widely

presented in the literature are discussed here, the lesser known results will be

detailed in the introduction to the chapter to which they are relevant.

For the world to function as it does today, there has to be a large am ount

of inform ation transferred from one place to another, this may be done ver­

bally or by w ritten text of some form. Inform ation is transferred through a

communication system . In general, a com munication system consists of an

inform ation source, a communication channel and a receiver. The com muni­

cation channel can take many forms, for example a public telephone circuit

between Glasgow and Bangor or the link between a satellite and a ground s ta ­

tion.

The large am ount of da ta th a t is transferred, together w ith the nature of the

physical world, results in most communication channels being subject to ‘noise’.

10

Noise is some event th a t occurs whilst data is passing through a channel so th a t

the d a ta th a t is received is not exactly the data th a t was sent. The effects of

the noise on the da ta will be described as errors on the channel. If redundancy

(ex tra da ta th a t is derived in some way from the original inform ation) is added

to the da ta before it is transm itted over the channel, then at the receiver it

may be possible to use this redundancy to detect or even correct the errors th a t

have occurred. As a rough guide, the more redundancy th a t is added the more

errors th a t can be dealt with. The term information will be used to describe

th a t which the inform ation source produces. The term data will be used to

describe th a t which is actually transm itted over the com munication channel,

i.e. the inform ation with the redundancy added.

A code is a set of sequences of data symbols, called codewords, th a t contain

redundancy. The process called encoding is the assigning of codewords to infor­

m ation sequences. To enable the inform ation to be recovered at the receiver, the

code m ust contain a unique codeword for every possible inform ation sequence.

In summary, a source produces inform ation which is encoded to codewords,

these codewords are then transm itted across a com munication channel and er­

rors occur. A codeword with errors added is received, this will be called the

received word. The process known as decoding uses the redundancy in the re­

ceived word to try to recover the transm itted codeword. Once a codeword is

obtained it is then m apped to its corresponding inform ation sequence, bu t this

is not usually considered as part of the decoding process.

11

The speed at which the inform ation is transm itted between the inform ation

source and the receiver is often im portan t and, assuming th a t da ta symbols can

only be transm itted across the channel at a fixed rate , the more redundancy

th a t is added, the slower the receiver collects the inform ation.

Thus the aim of Coding Theory is to try to balance the conflicting requirem ents

of transm itting data accurately (i.e. w ith as few errors as is possible) and

efficiently (i.e. as fast as possible).

Throughout this thesis, the symbol q will be used to represent a prim e power

and it will be assumed, unless otherwise stated, th a t the inform ation source

produces a sequence of symbols from the Galois field GF{q) .

§1.2.1 B lock C odes

A block code divides the inform ation produced by the source into fixed length

blocks of symbols and encodes each block to a fixed length codeword indepen­

dently of the surrounding blocks.

Let M be the num ber of different sequences of k symbols from GF{q) th a t the

inform ation source can produce.

Definition 1.1 A block code of size M over GF{q) is a set of M codewords

of length n over GF(q) . □

To use a block code it is necessary to define a one-to-one map from the set

of M sequences of length k produced by the inform ation source to the set of

12

codewords. Encoding is then performed by taking the first k consecutive sym­

bols produced by the inform ation source, m apping them to the corresponding

codeword and repeating the process w ith the next k consecutive symbols, until

all the inform ation has been encoded. Each codeword is transm itted as it is

produced.

Often M = th a t is the inform ation source may produce all possible sequences

of length k over GF(q) . In this case the code is called an in, k) code, n is the

blocklength of the code and k is the dimension of the code. Notice th a t the

codewords may be considered as vectors over GF(q)^ .

D eûnition 1.2 A linear code is an (n,fc) code over GF{q) , where the set

of codewords is a subspace of GF(q)^ of dimension k. □

A vector space of dimension k can be generated by any set of k linearly indepen­

dent vectors from the space. This result enables the encoding procedure for a

linear code to be defined in term s of an X n m atrix, called the generator m a trix

of the code. The rows of the generator m atrix are taken to be any k linearly

independent codewords. Encoding is then performed by representing the k

inform ation symbols as a row vector, i, in GF{q)^ and then

c - iG

where c is a codeword vector and G is the generator m atrix of the code.

Let C be a code, then

13

Deûnition 1.3 The orthogonal com plem ent, , of Cis the set of all vectors

which are orthogonal to every vector in C . can also be thought of as a code

and is called the dual code of C .□

The dual code of a linear (n, k) code is linear w ith dimension n — k and therefore

any n — k linearly independent vectors of generate the dual code. Let H be

a generator m atrix for the dual code, then for any c G C,

cH ^ = 0 (1.1)

because c is orthogonal to every row of H. In fact, any vector over GF{q)'^ is

a codeword iff it satisfies (1.1). H is called the parity-check m atrix of C .

An im portan t param eter in Coding Theory is the distance between codewords,

the m ost frequently used distance m easure is given by the following four defi­

nitions.

D eûnition 1.4 The H am m ing distance , d(x, y), between two n-tuples x

and y is the num ber of places in which they differ. □

Deûnition 1.5 The m inim um Ham m ing distance, d, of a code C , is the

least Hamming distance between any pair of codewords. □

Deûnition 1.6 The H am m ins W eight, w[c), of a codeword c, is the num ber

of non-zero entries in c.D

D eûnition 1.7 The m inim um H amm ing weight, w, of a code Cis the small-

est Hamming weight of any non-zero codeword contained in C . □

14

The following theorem shows the relationship between Hamming distance and

Hamming weight for linear codes.

Theorem 1.1 For a linear code, the m inim um Hamming distance is equal

to the m inim um Hamming weight. That is

d —w

□

P roof [HI], page 46 (Thm 3.1.3). □

In this thesis, Hamming distance will be refered to simply as distance and

Hamming weight simply as weight, except where two distance measures are in

use at one tim e, when the full name for each distance will be used to avoid

confusion.

For a linear code, the minim um distance can be found very easily from the

parity-check m atrix , H .

Theorem 1.2 The m inim um distance, d, of a code, C , is the largest value

of X, such that every set of x — 1 columns of H is linearly independent. □

P roof [Bl], page 48 (Corollary 3.2.3). □

There is a well-known upper bound on the value of d for given n and k for a

linear code.

15

Theorem 1.3 (The Singleton Bound) The m inim um distance o f any {n,k)

linear code satisfies

d n — Âî T 1

□

P roof [Bl], page 50 (Theorem 3.2.6). □

Definition 1.8 Any linear code whose minim um distance satisfies

d = n — k F 1

is called m axim um distance separable. □

Lastly, a m easure of how much using an {n,k) code slows down the speed at

which inform ation is transm itted over the communication channel is introduced.

D eûnition 1.9 The data rate of an (n, k) code is the quantity k / n . □

This section has described block codes and also linear block codes. An encoding

m ethod has been introduced for linear block codes and the Hamming distance

m easure has been defined. The m ajority of work in coding theory has been per­

formed on linear codes. These codes have a strong structure which helps in the

search for good codes (i.e. those which correct many errors whilst m aintaining

a high da ta rate). Also linear codes are the only block codes for which p rac ti­

cal decoding algorithm s have been found. The next section looks at decoding

m ethods for linear block codes.

16

§1.2.2 D eco d in g Linear B lock C odes

There are several different families of linear block codes, formed by imposing

restrictions on either the generator m atrix or the parity-check m atrix , specific

decoding m ethods have been developed for each of these families. However, this

section will consider only general decoding methods th a t could be used for any

linear block code.

Most decoding schemes aim to decode the received word to the closest codeword,

th a t is the codeword th a t is the least Hamming distance away (with a choice

being m ade in the event of a tie). The object of a good decoding scheme is to

reduce the num ber of codewords th a t have to be searched through before the

closest one can be found.

Correct decoding occurs when the received word is decoded to the codeword

th a t was transm itted , otherwise erroneous decoding takes place. Suppose th a t

t symbols in the received word are in error (that is different from the ones th a t

were sent), then correct decoding occurs if all codewords (other than the one

transm itted) are at distance > t from the received word. This occurs if

d > 2 t + l

Thus a code can be guaranteed to decode a received word correctly if it contains

at most = t errors. Such a code is called t-error-correcting and t is called

the error-correcting capability of the code. Erroneous decoding occurs if so

m any errors have occurred th a t the received word is closer to a codeword other

17

than the one th a t was sent, th a t is the error-correcting capability of the code

has been exceeded.

Suppose a word y G GF[q)'^ has been received, then it is required th a t c G C ,

the closest codeword to y , is found. Perhaps the simplest algorithm for doing

this is using a standard array. A standard array has dimensions {q)^~^ x [q)^

and one m ethod of forming it is as follows :

(i) Take the first row to be the set of codewords, w ith the all-zero codeword

in the first position (the rem aining codewords may be in any order). Set

i = 2.

(ii) To obtain the row of the array, form a set of vectors which consists

of all vectors in GF(q)'^ which do not already appear in the array. Select

from this set a vector of least weight (in the event of a tie, a free choice

may be made). This vector is placed in the first position in the row.

Each of the remaining positions are filled with the sum, over GF[q) , of

the chosen vector and the codeword at the top of the column in question.

Set i = 2 -f 1.

(iii) Repeat Step (ii) until i = {q)^~^ + 1

To decode y , find y in the standard array and decode it to the codeword at the

head of the column in which y is found.

The standard array contains all the elements of G F{q)‘̂ , th a t is the set of

all possible received words. Each column in the array consists of those received

18

words th a t have the codeword at the top of the column as their closest codeword.

The reader is refered to [Bl], § 3.3 for further details.

It is clear th a t for large n and k, the standard array would be too large to store

or to list. However, there is a variation on standard array decoding th a t requires

only the first column of the array to be stored, along with another column of

vectors of length n — k over GF{q) . For this decoding m ethod it is necessary

to introduce the concept of the syndrome of the received word.

D efinition 1.10 For any received word y, the syndrom e, s, of y is defined

by

s = yH ^

□

Now y = c + e, where c is a codeword and e is the error pattern . Thus

s = (c + e)H ^

= cH^ + eH^

= e H ^

Therefore the syndrome of a received word depends only on the error pattern .

Notice th a t all the elements in a row of the standard array have the same

syndrome, because each row consists of all the codewords with the same vector

added to each. Thus decoding may be performed by listing the first column of

the s tandard array together with the syndrome of each vector in this column.

Then decoding may be performed by calculating the syndrome of the received

word, finding the syndrome in the table and taking the corresponding vector as

19

the error pattern . Subtracting the error pa tte rn from the received word gives

the required codeword.

Syndrome decoding may be used for any linear block code and the principle is

used in many decoding schemes for specific codes (although not always explic­

itly). The next section examines the sub-class of linear block codes called cyclic

codes.

§1.2.3 C yclic C odes

Definition 1.11 A linear {n,k) code over GF[q) is a cvlic code if, when c

is a codeword, every cyclic shift of c is also a codeword. □

Cyclic codes are best described by using polynomials. F irst, recognise th a t

each vector in GF[q)^ can be represented as a polynomial in x of degree <

n — 1. The components of the vector become the coefficients of the polynomial.

The set of polynomials formed from all the vectors of G F[qY' forms the ring

GF[q)[x\l(x'^ — 1). Thus any cyclic code is a subset of this ring. Suppose

the polynomial c(æ) is a codeword, then a cyclic shift of this codeword can be

w ritten in term s of m ultiplication within the ring as follows

xc(x) = [æc(æ)]

where [p(æ)J denotes p{x) modulo x^ — 1. It is recognising th a t a cyclic

shift can be w ritten in this form th a t leads to the following theorem.

20

Theorem 1.4 In the ring GF(q)[x]/{x^ — 1), a subset is a cyclic code iff

the subset is an ideal of the ring. □

P roof [Bl], page 97 (Theorem 5.2.1). □

Now, in the subset of polynomials th a t forms a cyclic code there exists a unique,

non-zero, monic polynomial of least degree [= n — fc), ([Bl], page 97). This

polynom ial may be used to generate the code (see Theorem 1.5) and hence is

called the generator polynomial of the code and is denoted by g{x). For g(x)

to generate the code, the inform ation symbols are represented as a polynom ial,

a(æ), of degree < A; — 1 over GF[q) .

Theorem 1.5 A cyclic code consists of all multiples o f g[x) by polynomials

of degree k — 1 or less. □

Proof [Bl], page 98 (Theorem 5.2.2). □

The generator polynomial replaces the generator m atrix for an ordinary linear

block code. In the same way, it is possible to define a parity-check polynom ial,

bu t first Theorem 1.6 is needed.

Theorem 1.6 There is a cyclic code of blocklength n, with generator poly­

nom ial g[x) iff g{x) divides x~̂ — 1. □

P roof [Bl], page 98 (Theorem 5.2.3). □

Definition 1.12 The parity-check polynomial, h(x), is given by

g(x)h{x) = x^ — 1

21

□

The definitions of standard array decoding and syndrome decoding can be w rit­

ten in term s of polynomials for cyclic codes. This will be considered in C hapter

2, where the effects of choosing a different vector from each row to be placed

in the first column will be examined. The next section deals w ith a particu lar

class of cyclic codes called Reed Solomon codes.

§1.3.1 R eed S o lom on C odes

Reed Solomon codes are defined over the extension field G F[q ^) , so, for this

section, an inform ation source producing elements of G F [q^) will be assumed.

The codes are defined by describing how to form the generator polynomial.

D eûnition 1.13 Let a be a prim itive root of unity in GF{q'^) and jo a

positive integer. Then a t-error-correcting Reed Solonaon code over G F { q ^) of

blocklength n | — 1 is a cyclic code with generator polynomial

g{x) = { x - • • • (æ -

and has dimension n — 2t. □

Reed Solomon codes are m axim um distance separable ([Bl], page 175 (Theorem

7.3.1)). Encoding and decoding processes for Reed Solomon codes are well-

known and the interested reader is refered to [Bl], [PW] or [MWS], as these

processes are not relevant to this thesis.

22

It is also possible to define Reed Solomon codes in term s of Galois-field Fourier

Tranform s, which are the subject of the next definition.

Deûnition 1.14 Let v = be a vector of GF{q)'^ , where

n I — 1 for some m, and let a be an element of GF{ q^) of order n. The

Galois-Field Fourier Transform!G F F T) , of v is the vector

V = (V o , L i , . . . , Vn- i) given by

n - l

Vj = '^ a '" ^V i j = 0 ,1 , . . . ,n - 1.
i = 0

□

Definition 1.14 gives the G FFT of a vector over GF{q)as a vector over G F { q ^) .

The following theorem takes a vector over GF[q ^) and shows when its inverse

G FFT is a vector over GF[q) .

Theorem 1.7 Let Y be a vector of length n over GF{ q^) where n | g’̂ — 1.

Then the inverse G FFT v is a vector of elements of GF[q) iff the following

equations are satisfied :

= ^((9i)) i = 0 , . . . ,71 - 1.

where the double brackets indicate modulo n — 1 arithmetic. □

Proof [Bl], page 221 (Theorem 8.2.1). □

Theorem 1.7 plays an im portant role in C hapter 3 of this thesis. The only

further definition th a t will be presented here is the G FFT definition of Reed

23

Solomon codes. The theory behind this definition and of G FFT as a whole may

be found in [Bl], C hapter 8.

Definition 1.15 A t-error-correcting Reed Solomon code over G F (q ^) , of

blocklength n | q ^ — 1 and dimension n — 2t, may be formed by taking a vector

of length 71, setting 2t consecutive term s equal to zero, and filling the rem aining

places w ith the inform ation symbols. The codeword is then the inverse G FFT

of this vector. To form the complete set of codewords, the 2t consecutive zeros

m ust occur in a fixed place. □

Thus far, only block codes have been discussed. The next section introduces

the other fundam ental group of codes th a t are part of Coding Theory, th a t is

convolutional codes.

§1.4.1 C on vo lu tion a l C odes

Unlike block codes, convolutional codes do not break up the sequence of infor­

m ation symbols into blocks and encode each block independently. The sequence

is split into blocks (called frames) of ko symbols, where ko is small (and is of­

ten equal to one). At each time interval a frame is fed into the encoder and

77-0 > ko symbols are output from the encoder, however these 7io symbols will

depend upon the input frame and also the previous k — 1 frames (A; is called

the constraint length of the code).

Perhaps the best way to describe a convolutional code is in term s of a s ta te

transition diagram. Each state is labelled with the values in the k current

24

frames, two states are joined if the input of a single frame can take the first

state to the second. The branches are labelled with the no symbols th a t the

encoder outputs given th a t this transition takes place.

Exam ple 1.1 Consider a binary convolutional code with ko = l , no =

2 and k = 3, and state transition diagram as in Figure 1.1.

Figure 1.1

Then an inform ation sequence 1101 will be encoded to 01110001. (Note : the

encoder starts in state 000 and all sequences of bits are read from left to right).

□

To decode a convolutional code, in principle the whole received sequence m ust

be com pared with every possible sequence th a t the encoder could produce,

25

the closest one being chosen. However, in practice this is impossible for any

reasonable length message as the num ber of possible sequences grows rapidly

w ith the length of the message. So a decoder th a t only searches through some

of the possible sequences m ust be found. The best known such decoder is

the Viterbi decoder ([Bl], pages 377 - 382), which considers, at any one time,

sequences of length only akriQ, where a is a small positive integer.

Observe th a t, because decoders for convolutional codes operate by selecting a

sequence generated by a state transition diagram in which the states are not

fully interconnected, once an error occurs in the decoded sequence several more

will follow immediately, as it takes time to re tu rn to the correct sequence. Thus

convolutional codes suffer from error propagation. Convolutional codes perform

differently under different channel conditions, this will be discussed in §1.5.2,

the next section will introduce the two main types of channel conditions.

§1.5.1 R an d om E rrors and B u rst Errors

The term ‘channel conditions’ refers to the type of errors a channel is subject

to. Consider a channel th a t has the binary digits, 0 and 1, as the da ta symbols

th a t it can transm it. On most practical channels, it is waveforms of energy th a t

are transm itted over the channel. Suppose tha t 0 and 1 are transm itted as the

waveforms shown in Figure 1.2, this may be thought of as positive and negative

energy.

26

Z ero

+

One

i i+

' t

Figure 1.2

At the receiver, if positive energy is received in a time interval, then this is

in terpreted as a zero, in the same way negative energy is in terpreted as a one.

The noise th a t causes errors comes from other waveforms passing through fhe

same region as the channel. Suppose th a t the effect of all these other waveforms

is com pounded together and can be considered as a single noise wave. The da ta

waveform and the noise waveform are added by the principle of superposition.

An error occurs in a given time interval when the superim posed waveforms have

energy of a different sign from th a t of the da ta waveform.

The channel conditions are determ ined by the statistical behaviour of the noise

waveform. One type of noise is A dditive W hite Gaussian Noise, (A W G N), this

occurs when the average energy level of the noise waveform in each tim e in ter­

val follows a Gaussian distribution, w ith mean zero and the variance dependent

on the am ount of noise. This produces random errors and the probability of a

27

received bit being in error can be easily calculated from the Gaussian d istribu­

tion.

Because the Gaussian distribution is symmetrical, the probability of a one

being received as a zero is the same as th a t of a zero being received as a

one. A binary channel where the crossover probabilities are equal is called

a Binary Sym m etric Channel, (B SC).

The other m ain type of noise causes burst errors. This is when the noise level is

very low (and thus very few errors occur) for long periods of tim e, but these are

interspersed with quite long bursts of continuous high level noise, producing

a long burst of erroneous bits. An example of such a channel is a mobile

telephone link from a moving vehicle. The low noise level occurs when the

vehicle is moving through open ground and a burst may be caused by the

vehicle travelling through a tunnel. The m axim um num ber of consecutive bits

th a t may be received in error is called the m axim um burst length, b.

The above ideas have been expressed in term s of binary transm ission, bu t sim-

iliar ideas extend to the transm ission of other types of da ta symbols.

§1.5.2 B lock C odes vs C onvolu tion al C odes

The two different types of errors described above have different effects on error-

correcting codes. W hen random errors occur w ith a low probability of a symbol

being in error, then the num ber of errors th a t occur is usually w ithin the error-

correcting capability of the code. As the probability of a symbol being in error

28

increases, the error-correcting capability of the code with be exceeded more

often and more decoding errors will occur.

Convolutional codes are relatively slow to decode even with a Viterbi decoder.

However they do perform well in the presence of AWGN when it is acceptable

for the received inform ation to contain a few errors. Block codes can provide

a higher da ta integrity under AWGN, but may have a slower da ta rate , which

again may be offset by a faster decoder. Thus, under AWGN, each individ­

ual situation m ust be considered before deciding whether a block code or a

convolutional code would be best.

Burst errors, however, provide long periods of time when virtually no error-

correction is needed. But a burst of errors will normally exceed the error-

correcting capability of the code. Convolutional codes do not perform well w ith

burst errors. This is because a long burst of errors will cause the decoded

sequence to deviate a long way from the transm itted sequence and recovery

may take a long period of time.

In the presence of burst errors, block codes always perform better than convo­

lutional codes. This is because the nature of block codes restricts the decoding

errors th a t result from the burst to just those codewords affected by the burst,

th a t is there is no error propagation. The longer the blocklength of the code

the be tte r able it is to cope with burst errors. For example, given 100 bits to

transm it, it is advantageous to use a 10-error-correcting code with blocklength

100 than a 1-error-correcting code with blocklength 10. A lthough both codes

can correct 10 errors in 100 bits, the first code will correct this m any errors

29

y

even if they all occur together in a block of ten whereas the second code can

correct 10 errors only if one error occurs in every 10 bits.

[BPP] provides a very good comparison between block codes and convolutional

codes and expands on this section. The next section looks at a technique for

random ising burst errors.

§1.6.1 In terleaving

The previous section dem onstrated th a t, supposing a fixed num ber of errors

where to occur during the transm ission of a message, better da ta integrity may

be obtained if they are spread out rather than all occurring in a block. However,

as da ta sometimes has to be sent over a channel tha t is subject to burst errors,

is there anything th a t can be done to transform a bursty chanel to make it look

like a channel th a t produces random errors ? This section describes a technique

called interleaving, which is fairly successful at randomising bursts of errors.

In this section a codeword will be either a block code codeword or a sequence

of some given length produced by a convolutional code.

The principle behind interleaving is to transm it all the symbols of a codeword

at widely spaced (compared with the m axim um burst length of the channel)

intervals w ith the intervening spaces being similarly filled by symbols of other

codewords. At the receiving end, the symbols are placed back in their codewords

and decoded in the norm al way. In this m anner a burst of errors appears as

random errors spread over many codewords.

30

One m ethod of interleaving is to feed the data into the columns of an n x m

array and then transm it row by row. At the receiving end, the inverse process

is performed. This ensures th a t a given burst of errors can affect at most one

symbol in any column, provided th a t the m axim um num ber of symbols th a t a

single burst can affect (the maximum burst length) is less than or equal to m .

However interleaving introduces a time delay into the system because the whole

array has to be filled before transm ission can begin and, more im portantly , the

whole array has to be received before decoding can commence. Therefore it

may not be practically possible to make the rows of the array sufficiently long

so th a t m is greater than or equal to the maximum burst length. C hapter 4

will consider a m ethod of overcoming this problem which involves transm itting

the rows of the array in non-sequential order.

§1.7.1 Variable L ength C odes

W hen transm itting inform ation across a channel, one im portan t param eter is

the da ta rate. Much work has been done on improving the data rate for tran s­

mission. Consider first a noiseless, binary channel, then to transm it a message of

English text each character of the text m ust be given a unique binary represen­

tation. Suppose each character is represented by the same num ber of b its, then,

if ju st the 26 alphabetic characters are considered, each must be represented by

at least 5 bits. But in English text some characters occur more frequently than

others (e.g. the le tter E occurs about twice as often as the le tter S). If the con­

dition th a t each character is represented by the same num ber of bits is removed

31

and the frequently occuring characters are represented by fewer bits than the

less common ones, then the overall length of the message may be reduced. Such

codes are called Variable Length codes.

§1.7.2 D isc u ss io n o f V a ria b le L e n g th C o d es a n d N o ise le ss C h a n n e ls

Consider a set of inform ation symbols

associated w ith each symbol, 5 ,̂ is a probability, th a t the symbol will be

transm itted at any given instan t. Denote the set of codewords by

C = - [c o ,c i, .. . ,

where each ci consists of Wi symbols from some code alphabet, A . For a variable

length code to be useful, there m ust be no confusion as to how any sequence of

symbols from the code alphabet is to be split into codewords. (Assuming th a t

the sequence is formed from a series of codewords). Thus any useful code m ust

satisfy Definition 1.16.

Deûnition 1.16 A Variable Length code is uniquely decodable if a sequence

of symbols from A can be split up into codewords in at most one way. □

Exam ple 1.2 If C = {1,0,11,10}, then this code is not uniquely decodable,

e.g. the sequence 1011 could be split as 1 0 11 or 10 11 or 1 0 1 1 or 10 1 1. □

32

The m ain problem w ith variable length codes is synchronization at the receiver.

T hat is knowing where codewords begin and end as they arrive. (Unique de-

codability only guarantees tha t once the whole message is received, thhre is

only one way of splitting it into codewords). One solution is to have a very

distinct sequence of symbols, which is transm itted in between the transm ission

of each codeword. However, this adds extra symbols to the message, when

the object is to decrease the message length. The usual m ethod of m ain­

taining synchronization is to ensure th a t none of the smaller codewords form

the s ta rt of a longer codeword. Any code satisfying Definition 1.17 is called

instantaneously decodable.

Deûnition 1.17 A code is called a prefix code if no codeword is a prefix

for any other. □

E xam ple 1.3 lîC = {01,11,011} then this code is not a prefix code because the

codeword 01 is a prefix of the codeword O il. However, the code C = {0,10,110}

is a prefix code. □

Lem m a 1.8 A prefix code is uniquely decodable. □

P roof [McE], page 239. □

The average wordlensth of a variable length code is the average num ber of code

symbols th a t are used to represent a source symbol. An optimal variable length

code is one th a t minimizes the average w ordlength for a particular source. Given

a source and its associated p /s , then Huffmann codes, [McE], pages 243 - 248,

are always optimal.

33

This section has assumed a noiseless channel. The next section will consider

the problems th a t occur when errors may be present on the channel.

§1.7.3 Variable L ength C odes and N o isy C hannels

The problem here is th a t an error may cause a group of short codewords to

appear as a long codeword and vice-versa. If the decoder makes an error in

the length of the codeword it ou tputs, this is called a synchronization error.

W hen the decoder looks at the next sequence of received symbols, having made

a synchronization error, it is probably out-of-synch, because it is unlikely to be

looking at the beginning of a codeword. The decoder will rem ain out-of-synch

until some event occurs so th a t it aligns once again with the beginning of a

codeword. This event may be, the occurrence of another error, outside in ter­

vention or the decoder may decode some out-of-synch symbols to a codeword

of such a length th a t the decoder regains synchronization ‘by itse lf’.

Work has been done on finding codes with good synchronization recovery prop­

erties. One good example of such codes is T itchener’s T-codes, [Ti].

However, there appears to be little work done on error-correcting variable length

codes. T hat is codes th a t correct data errors rather than just recovering from

synchronization errors. One paper on this topic, [BS], has some nice theoretical

results, bu t the conditions imposed on the channel (namely th a t the error ranges

of codewords of different lengths be distinct) are unrealistic as far as practical

34

im plem entation goes. O ther work, [Ha], has been done using group theoretic

ideas, bu t again this seems to have little practical relevance.

The purpose of C hapter 5 is to find a variable length code with some error-

correcting capability, which has a shorter average wordlength than the block­

length of a block code with comparable error-correcting capability. This code

should also have a feasible means of im plem entation.

§1.8.1 S u m m ary

This chapter has outlined the basic results of coding theory th a t are relevant

to this thesis and has tried to dem onstrate some of the aims of Coding Theory.

The following chapters examine some work of others and then go on to tackle

two m ajor issues, interleaving and variable length error-correction coding. In­

terleaving is im portan t for block codes and convolutional codes. As stated in

[BPP], the world is becoming less Caussian and more bursty, therefore over­

coming bursts of errors has increasing im portance for Coding Theory.

Error-correcting variable length codes seem to combine most effectively the two

aims of Coding Theory, efficient and reliable communication.

35

C hapter 2

A S T U D Y OF P R O F E S S O R P .M .C O H N ’S D E C O D I N G S C H E M E

F O R C YC LIC C O D E S

§2.1.1 In trodu ction

Cyclic codes are usually decoded by an algorithm which, in some way, makes

use of the syndrome of the received word. One such algorithm uses the s tandard

array, as was described in §1.2.2. In an early version of a chapter for an algebraic

text book, Cohn proposed a decoding scheme with an alternative m ethod of

choosing the row leaders for standard array decoding. The work described in

this chapter examines in what way the different choice of row leaders affects

the error correcting capabilities of standard array decoding. The conclusion

reached is th a t Cohn’s scheme gives much poorer performance in most practical

situations. Professor Cohn was notified of these conclusions and has, as a result,

w ithdraw n the decoding algorithm from the book.

More recently. Dr. R. Hill (Salford University) has also analysed Cohn’s scheme

and has derived even more conclusive argum ents to expose its weakness. Hill’s

argum ent is also included.

36

§2.1.2 N o ta t io n

The notation of §1.2.3 is followed in this chapter, but is stated explicitly here

for completeness. Cis a cyclic code, over GF(ç), of blocklength n and dimension

k th a t can correct up to t errors.

C has generator polynomial g[x) of degree n — k and parity-check polynomial

h(æ), such th a t

g[x)h[x) = x^ — 1

c{x) is a polynomial of degree less than or equal to n whose coefficients form a

codeword in C .

'ü(æ) is a polynomial of degree less than or equal to n representing a received

word.

S{x) is the syndrome polynomial.

a[x) is the message polynomial and has degree less than or equal to k.

e[x) is the error polynomial and has degree less than or equal to n.

§2.2.1 Standard A rray D eco d in g

This section considers standard array decoding w ritten in polynomial notation.

D eûnition 2.1 The syndrome volvnomial is given by

S(x) = v{x)h[x) mod (x^ — 1)

□

37

The dependence of the syndrome on the error pa tte rn is now dem onstrated in

term s of the polynomial notation.

v{x) = c{x) + e{x)

Thus S(x) may derived as follows

S{x) = [c(æ) + e{x)]h{x) mod — 1)

= [c{x)h[x) 4- e[x)h{x)] mod (x^ — 1)

= [a[x)g{x)h[x) + e[x)h[x)] mod (æ"" — 1)

= [/i(æ)e(æ)] mod (æ^ — 1)

Thus the syndrome depends only on the error pa tte rn and not on the particu ­

lar codeword th a t was transm itted . Therefore the syndromes may be used to

partition the set of all possible received words into cosets. A standard array is

formed by taking the rows to be the cosets. The first row is the coset containing

all the codewords, the all-zeros codeword being placed first in the row. For each

of the rem aining cosets one element is chosen to be the coset leader, this ele­

ment is placed first in the row. The remaining elements in the coset are placed

so th a t each one is the sum of the coset leader and the codeword at the head of

the column in which it is placed. A received word is decoded to the codeword

at the head of the column in which the received word is found. In practice this

is done by calculating the syndrome of the received word and then subtracting

from the word the coset leader associated with the calculated syndrome. Thus

an error pa tte rn is correctable if and only if it is a coset leader. Hence the way

the coset leaders are chosen greatly affects the error-correcting capabilities of

this m ethod of decoding. The traditional way to choose the coset leaders is to

take the polynomial whose coefficients have least weight, as in §1.2.2. Therefore

38

a f-error-correcting code has all words of weight t or less as coset leaders (n.b.

some words of weight greater than t may also appear as coset leaders).

§2.2.2 C o h n ’s Schem e

This scheme differs from the above only in the way the coset leaders are chosen.

In this scheme a coset leader is taken to be the polynomial of least degree, ra ther

than th a t of least weight. Now there exists at most one polynomial of degree

less than n — k = r in each coset, because any two elements in the same coset

differ by a codeword, which has degree greater than or equal to r. There are

codewords and hence q^ elements in each coset. There are q' ̂ possible received

words and therefore q^~^ = q^ cosets. There are q^ polynomials of degree less

than r , thus the set of coset leaders is the set of polynomials of degree less than

r.

It can be seen from the above, tha t Cohn’s scheme corrects an error pa tte rn if

and only if it has zeros in the last k places.

§2.3.1 B ackground R esu lts

This section introduces some results not related to syndrome decoding, but

which are used to prove later results.

Define the function:

/(x) = (i + a = r - ‘ - ; ^ Q x '
i=0

39

C onsider the following results:

(1)

(2)

(3)

(4)

/ (O) = 1n —k

= 1 - 1

= 0

1=0

t

= Z
i = l

t - 1

n — I
n\ i ̂ læ

= n J 2
i = 0

n — 1

f { x) = {n - k) { l x) ^ ̂ ̂ ^V'
i = 0 \ ̂ /

f ' {0) = (n — k) — n

= —k

f (0) < 0

1 = 0
(1+.)E(">̂ = 1 + E

s

= z

m \ (mJ + Li
i = 0

40

(5)

1 = 0

t

n — 1
i T + U - 1

n — 1
t - 1

(6) Consider f (x) when f { x) = 0. From (3)

f ' {x) — 1 -jr X

1
\ X

1
1 + æ

n — 1

1 = 0

— Â;(l + æ)’̂ + n | ̂ læ

1 = 0

n — 1

(7) Consider

then

h(x) =
(1 + 2 :) n —k

(1 + x) (l + æ)71 —A:+l

(1 +
[t + tx — nx + kx]

[i — (n — k — Z)#]
(1 +

It can be seen th a t, starting from æ = 0, h{x) increases to a single m axi­

m um and then decreases to zero as æ —» oo.

(8) It has been shown that:

(i) m = 0 ,

(ii) /'(O) < 0.

Now, because n — k > t, f {x) —> oo as æ —̂ oo. Hence f { x) m ust

41

cross the positive æ-axis an odd num ber of times (and at least once).

Suppose th a t < 2 :2 < 2 :3 are the first three values of x greater

than zero for which f [x) — 0. Then it follows that:

/ ' (® i) > 0 , / '(æ 2) < 0 , / '(2 J 3)> 0 .

T hat is

This gives

> - T _ >
“ n (" 7 ') - (I + X2)n — k

and

(l + Za)"-^ -

However, (7) shows th a t this is impossible, hence there is only one point > 0

such th a t f { x i) = 0. Therefore, the curve of f [x) has the form shown in

Figure 2.1.

§2.4.1 P rob ab il ity o f C orrect D eco d in g

The probability of correct decoding is the probability th a t the codeword pro­

duced by the decoder is the codeword th a t was transm itted .

A comparison is now made between the probabilities of correct decoding of

trad itional standard array decoding and Cohn’s scheme. Let

42

f (x)

► X

Figure 2.1

P j denote the probability of correct decoding for the trad itional scheme.

denote the probability of correct decoding for Cohn’s scheme.

Consider a Binary Symmetric Channel (BSC) with cross-over probability p,

then

-Pf > (1 - v T + (%) (! - + ■ • • + (l) ~

The RES of this inequality is the sum of the probability of occurrence of each

error pa tte rn of weight < t. (There is an inequality, ra ther than equality,

because more error patterns than those of weight t may be corrected). P ^ is

43

n — k

given by the probability of an error pa tte rn with all zeros in the last k places.

-Pj? = (1 - ^ ̂ ^ ~ p'

= (l - p) ^

= (1 - P) ' [(I - P + P) " - ']

= (1 - p) *

To form a comparison between the two schemes, consider the following inequal­

ity:

P f > P i (2.1)

i = o

Determ ining the values of n, k and t for which this inequality is satisfied will

give the param eters of possible codes for which Cohn’s scheme is as good as or

b e tte r than the traditional scheme, (n.b. The m easure of ’goodness’ has been

taken to be the probability of correct decoding, this is not the only possibility.)

Set

P
1 - p

then (1) becomes

i = 0

Recall the function f { x) of §2.3.1, then (2.1) is satisfied iff f [x) > 0. Thus,

from Figure 2.1, the inequality is not satisfied for some range of æ, 0 < æ < æi

and then is always satisfied for x > Xi.

44

§2.5.1 T h resh o ld Values for C o h n ’s Schem e

This section shows th a t when comparing and P ^ , it is not necessary to

consider all values of p between [0,1].

Lem m a 2.1 I f for some given values of n ,k and t, P ^ < P ^ for all p <

then, for these values of n, k and t, it is always better to use the traditional

scheme (in some cases with bit inversion). □

Proof

Case 1: p < I and no bit inversion.

By assum ption P ^ < P j , therefore it is be tte r to use the t r a ­

ditional scheme.

Case 2: p > I and bit inversion.

Inverting every bit takes the probability of bit error from p to

g = 1 — p, but q and this reverts to Case 1.

Case 3: p > I and no bit inversion.

The assum ption does not rule out the situation th a t P ^ > P j

for p = Pi > However P ^ is strictly monotonie decreasing in

the range [0,1], therefore P^ { p i) < P^{qi) , where qi = 1 — p i .

But P^[q i) < Pj ' (qi) , by the assum ption, therefore b e tte r can

be acheived by using bit inversion.

Case 4: p < ^ and bit inversion.

45

Probability of bit error again maps to q, in this case g > | .

Therefore P^{q) > P ^{q) may occur, bu t, by similar reasoning

to Case 3, it can be seem th a t this is not as good as using the

traditional scheme and the original p. □

Thus, if bit inversion is possible, then to prove th a t the trad itional scheme is

be tte r for all probabilities, p, it is sufficient to prove th a t P ^ < P ^ for p < |

Combining Lemma 2.1 and §2.4.1 shows th a t P ^ < P ^ for all probabilities, p,

iff / (I) < 0 (æ = 1 corresponds to p = |) .

§2.5.2 C om p u ter R esu lts

The Pascal program of Appendix 1 finds and prints, for given n, k and t, the

range of æ, of w idth 0.01, in which f { x) becomes positive, providing th a t this

range occurs before x = 1 (i.e. p = |) . Otherwise the program prints a * to

denote th a t P ^ < P'^ for all P < | It does this for all values oi n, k and t in

the following ranges
3 < n < 100

n
L 2 J

< A; < n - 2

71 — k
l < t <

2

Exam ination of the results file showed th a t, for given n and k, m ainly stars

appeared when t was large, but ranges could be found when t was small. An

exhaustive com puter search through the results file showed th a t

46

Result 2.2 For any fixed n and k in the above ranges, / (I) > 0 only if

n — k
t < + 1

Corollary 2.3 For given n and k, and for t in the range

n — k
-)- 1 t ^

n — k--------
4 2

it is always better to use the traditional scheme. □

□

For most practical coding schemes, only bit-error probalities in the range

0 < p < 0.1

are considered. If the above calculations are repeated replacing x = 1 w ith

X — 0.11 p ~ 0.1, the following result is obtained.

Result 2.4 For any fixed n and k in the above ranges, / (O .l l) > 0 only if

n — k
t <

16 + 1

□

Corollary 2.5 For given n and k, for p in the range 0 < p < 0.1, and for t

in the range

n — k ' n - k '
16

T 1 <C t ^
2

it is always better to use the traditional scheme. □

47

§2.6.1 S u m m ary

C ohn’s scheme and traditional syndrome decoding differ only in the way th a t

the coset leaders are chosen. In Cohn’s scheme this choice is made in a more

m athem atically succinct way than for the traditional scheme. However, it has

been shown above th a t Cohn’s scheme does not perform well unless t is much

less than the Singleton bound. Certainly, for all practical values of p (th a t

is p < |) , only codes with very poor error-correcting ability perform better

under Cohn’s scheme. Also, there is no apparent advantage in the practical

im plem entation of Cohn’s scheme over the traditional one.

Hence, in all practical circumstances and for fixed n and fc, a code could be

chosen and decoded using the traditional scheme and perform bette r than it

would be possible to achieve using Cohn’s scheme and the same n and k.

P ostscr ip t

In w ritten correspondence, Dr. R. Hill (Salford), has rem arked th a t a stronger

result than th a t presented here can be obtained from the following observations.

Section 2.2.2 showed th a t Cohn’s scheme will decode correctly iff the last k

bits of the codeword are received correctly. Hence, the probability of correct

decoding for Cohn’s scheme is

P i = (1 - P)”

48

(as was obtained in a slightly more roundabout way in §2.4.1). This is ju st the

probability of an uncoded /z-bit message being received w ithout error. Thus,

C ohn’s scheme is useless, because the same result can be achieved, w ith less

tim e and decoding effort, by simply transm itting the message uncoded.

Dr. Hill has also shown th a t > Pfi^ always. If it were possible for Pj^ < P ^ ,

then this would imply th a t the use of a linear code (with nearest neighbour

decoding) could give a lower probability of correct decoding than using no

coding at all.

Observe th a t the worst way of adding redundancy to A;-bit messages is to add

n — k zeros to every message vector. The coset leaders for this code are precisely
»

the 2” “ ** vectors having zeros in the last k places. Thus, the use of this code is

equivalent to the use of Cohn’s decoding scheme for any (n, k) code and hence,

for this code.

Consider the ‘standard form ’ generator m atrix

[A\I]

then the 2”'“ * vectors having zeros in the last k positions are all in different

cosets (since no two of them add up to a codeword), though they will not in

general be the coset leaders. This leads straight away to

for any code (with equality iff the 2^“ ̂ vectors w ith zeros in the last k places

are all cosets leaders). Thus the result follows.

49

C hapter 3

A S T U D Y OF R E E D S O L O M O N C O D E S . C H IN E S E R E M A I N D E R

T H E O R E M C O D E S A N D C Y C L O T O M IC S H O R T E N I N G

§3.1.1 In tro d u ct io n

This chapter was m otivated by the work of Dr. J.L. D ornstetter, [Do] and

[Do,85], and its relationship with Reed Solomon codes and Chinese R em ainder

Theorem codes, [St] and [PW]. In [Do], D ornstetter describes (albeit briefly) a

class of codes called Cyclotomically Shortened Reed Solomon codes (hereafter

denoted as GSRS codes). This chapter reiterates the definitions of [Do] and

establishes values for the dimension and blocklength of GSRS codes, together

w ith a (best possible) lower bound for the minimum distance.

It can be shown (see [PW]) tha t Reed Solomon codes can be defined in term s

of a particu lar class of Chinese Rem ainder Theorem codes (hereafter denoted

as CRT codes). Here it is shown th a t GSRS codes are equivalent to a different

(although related) class of CRT codes.

D ornste tter’s paten t application,[Do,85], is for a decoder for a class of CRT

codes and it is implied in [Do] th a t this class of CRT codes is equivalent to

GSRS codes, however Lemma 3.14 shows th a t this is not the case.

50

Lastly this chapter will consider the possibility of cyclotomically shortening Al­

te rnan t codes. It is shown th a t although the shortening is possible, the resulting

codes are not apparently useful.

Note th a t this chapter assumes an inform ation source th a t produces symbols

from GF{ q ^) .

§3.1.2 In tro d u ct io n to C RT codes

The rem ainder, r^(æ), of a polynomial, i(æ), when divided by a polynom ial,

m j(æ), gives little inform ation about i(æ). However, given increasing num bers

of residues of i[x) modulo different polynomials, there comes a point when these

residues determ ine i (x) uniquely. The precise conditions for this will be given

in Theorem 3.1. F irst some notation.

Let i{x) be a polynomial of degree < k — 1 over GF (q ^)

Let mj { x) be a polynomial of degree dj over GF{q^)^ for j = 0 , 1 , . . . , n — 1.

Theorem 3.1 The polynomial i(x) can be reconstructed from the remainders

rj{x) = i{x) mod mj {x) j = 0 ,1 , . . . , n — 1,

provided the Tnj{x) are relatively prime in pairs and that

n — l

dj > k — 1
j=0

□

51

P roof This is just the Chinese Rem ainder Theorem for polynom ial rings.

For a formal proof, see [PW]. □

Theorem 3.1 may be used to form a block code of dimension k and blocklength

n. Blocklength is used a little loosely here, as, if the r r i j [x) do not all have the

same degree, not all the n symbols will have the same size. The codes will be

introduced by describing the m ethod of encoding.

To encode the k inform ation symbols (from G F{q'^)), w rite them as the coeffi­

cients of a polynomial i{x) of degree < A; — 1. Select n polynomials, m j [x) th a t

satisfy the requirem ents of Theorem 3.1 and find the residues of i[x) modulo

each of the m j { x) . The codeword is formed by placing the coefficients of each

residue in tu rn in a vector of length

n - l

i=o

over GF(q' ^) . Thus the codeword contains n' elements of G F{q'^) , bu t the

blocklength, n , is taken as the num ber of component residues.

Now consider what happens at the receiver. Suppose a codeword is transm itted

and received with no errors. If the residue polynomials are reconstructed from

the codeword, then Theorem 3.1 guarantees th a t the polynomial i[x) can be

recovered and hence the inform ation symbols may be obtained. The codes

formed in this way are called Chinese Rem ainder Theorem codes.

52

Error Correction and CRT codes

The requirem ents of Theorem 3.1 allow the recovery of the inform ation in the

absence of errors. However, if the m j { x) are chosen so th a t

n —l

^] dj ^ k — 1
j=o

and 3 > 1 subsets of the r r i j { x) are such th a t the sum of the degrees of their

elements is > Aj — 1, then some error-correction may be performed. Suppose

th a t one GF[q ^) symbol is received in error, then one of the residues will also

be wrong. If each of the s subsets is used separately to construct a polynom ial

of degree < A; — 1, then each of the subsets th a t contains TUe(æ), the m j (x)

corresponding to the residue th a t is in error, will produce a polynomial. The

rem aining subsets (not containing mg(æ)) produce the correct polynomial. Now,

if 7Tie(æ) appears in less than half the s subsets and a m ajority decision is used

on which polynomial to accept, the error can be corrected.

Thus, if each r r i j (x) appears in less than half the s subsets, one error can be

corrected. Note th a t this is one erroneous residue, up to all the GjF(g™)symbols

th a t form this residue may be in error.

It follows th a t, if each m j { x) appears in less than one quarter of the subsets, then

two erroneous residues may be corrected. Thus, the error correcting capability
k

of the code can be increased by restricting each r r i j { x) to a smaller proportion of

the subsets. It may also be possible to increase the error-correcting capabilities

of the code by restricting the occurrences of pairs, triples etc. of the r r i j { x) , but

this is not the subject of this work.

53

A more formal definition of CRT codes is now given

Definition 3.1 A Chinese Rem ainder Theorem (CRT) code over G F (q ^)

of dimension k and blocklength n is formed by writing the k inform ation symbols

as the coefficients of a polynomial of degree < A; — 1. The codeword is formed

from the n residues mod rrij[x), where the rrij[x) are polynomials of degree dj

over GF[q ^) th a t are relatively prim e in pairs and are such th a t

^ d j > k - l
i= i

□

An example of CRT codes is given in the next section, where it is shown th a t

Reed Solomon codes can be defined in term s of CRT codes.

§3.1.3 R eed S o lom on C odes

There are m any ways of defining Reed Solomon codes, two of which were given

in §1.3.3. A th ird definition can be made in term s of CRT codes. Reed Solomon

codes are a subclass of CRT codes, formed by a particular choice of the mj (x) .

Definition 3.2 A t-error-correcting Reed Solomon code over G F (g ^) , hav­

ing blocklength n and dimension n — 2t is formed by taking the inform ation

symbols to be the coefficients of the polynomial i (x) in the definition of a CRT

code. The mj [x) are taken to be

rrij(x) = {x — a^)

54

T hat is, the Reed Solomon codeword is formed from the set of residues

rj[x) = i[x) mod (æ — a^)

where a is a prim itive root of unity in GF{q'^) . □

The details of this definition are given in [PW], page 263. In this particu lar

CRT code, all the mj{x) have degree 1 and thus n = n'.

This chapter will deal w ith Reed Solomon codes of blocklength 2” ̂— 1 and will

sometimes use the notation 2t = r.

§3.1.4 In tro d u ct io n to C SR S codes

Given a code, C, it is possible to form a subcode, 5 , by selecting those codewords

of C which satisfy

fî ^O J ^ 1) • ■ • ? ^ 2 ’"' — 2) — 0

where / is some function. If / is carefully chosen, then the codewords of 6"satisfy

an equivalence relation, r . This relation may be between groups of the c%, if a

knowledge of any particular group determines the rem ainder of the codeword.

The choice of a specific / leads to the definition of CSRS codes. These codes

are now introduced.

Let C b e a (2 ” ̂—1,2” ̂— 1 — r, r + 1) Reed Solomon code . Denote the codewords

of C by

C (cq , C l , C2 , . • . , C 2”i —2)

55

Let 5 be a subset of C defined by the constraint

cGcS iff C2i = cj VzG (3.1)

where the indices are calculated modulo 2 ^ — 1.

In the notation above, this gives /(c{, C2 i) = C2 i ~ c \ and the equivalence relation

Ci r C2 i Each codeword contained in S can be considered to have its elements

partitioned into equivalence classes, called cosets, by the constraint (3.1), w ith

any element in the coset determ ining the rem ainder of the coset. The term

coset is used here because of the link between the equivalence classes and cyclo­

tom ie cosets, which will become apparent later. Because any element of a coset

determ ines the rem ainder of the coset, the codewords of S could be shortened

so as to contain just one element from each coset. This gives

Definition 3.3 A Cyclotomically Shortened Reed Solomon code consists

of the codewords from a (2 ^ — 1 ,2 ^ — 1 — r , r - | - l) Reed Solomon code th a t

satisfy constraint (3.1), shortened so as to consist of one element from each

coset. □

Exam ple 3.1 Let m = 4 and C = RS(15, 7,9). Then cosets defined by the

constraint (3.1) are as follows

{co}

{ci,C2,C4,Cs}

{C3,C6,Cg,C1 2 }

{c5j Cio}

{ C 7 , C 1 1 , C 1 3 , C 1 4 }

56

So to form a CSRS code, C ', the codewords in C which satisfy (3.1) are selected

and then these are shortened by taking only the elements

C0 C1 C3 C5 C7

Thus the codewords of C ' consist of five GjP(16) symbols, th a t is twenty bits.

□

§3.2.1 P re l im in a ry R e s u lts

This section examines the properties of G FFT of vectors w ith certain constraints

on their elements.

Lem m a 3.2 A vector over GF[2 ^) o f length 2 ^ — 1 that satisfies constraint

(3.1) has a G FFT that consists entirely of zeros and ones. □

P roof Refer to Theorem 1.7. The proof of this Theorem rem ains valid if

V and V are interchanged and the G FFT is taken rather than its inverse. Using

this second version and setting q = 2 yields the desired result. □

However, from Definition 1.15, each Reed Solomon codeword has r consecutive

zeros in its G FFT . This gives

Lem m a 3.3 The G FFT of a codeword c E S has r consecutive terms that

are zero and the remaining 2 ^ — 1 — r terms can take the value either zero or

one. □ '

57

§3,3.1 Dim ension of CSRS codes

The dimension of the CSRS code is determ ined by the num ber of Reed Solomon

codewords th a t satisfy the constraint (3.1). From Definition 1.15 a (2 ^ — 1 ,2 ^ —

1 — r, r + 1) Reed Solomon code consists of all vectors of length 2 ^ — 1 over

GF { 2 ^) whose G FFT has r specific consecutive elements equal to zero and

the rem aining elements members of G F{2‘̂) . Lemma 3.3 shows th a t the set

S consists of aR vectors of length 2” ̂— 1 over GF{2'^) whose G FFT has r specific

consecutive elements equal to zero and the rem aining elements contained in

GF{2). There exists a unique CSRS codeword for each element of S , therefore

Lem m a 3.4 The dimension of a CSRS code, derived from a (2 ^ — 1, 2 ^ —

1 — r , r + 1) Reed Solomon code, is 2'^ — 1 — r over GF(2) . □

\
Thus, if a G FFT m ethod of encoding is used for the Reed Solomon code, the set

S consists of all those codewords produced to binary input to the Reed Solomon

encoder.

Exam ple 3.2 The CSRS code, C ', of Example 3.1, has dimension 7 over

GF{2) , i.e. the codewords of C ' consist of the first, second, fourth, sixth and

eighth elements of all RS(15,7,9) codewords produced by binary inpu t to an

appropriate G FFT encoder. □

§3.3.2 B lock len gth o f C SR S codes

The blocklength, N , of a CSRS code in term s of symbols from GF { 2 ^) is

58

determ ined by the num ber of cosets into which the constraint (3.1) partitions

the integers modulo 2 ^ — 1. Now the coset

where i j G 2j2 ^ - i is called a cvclotomic coset. Hence the constraint (3.1)

partitions the indices of the codeword elements into cyclotomie cosets. Thus,

to find the blocklength of a CSRS code, the num ber of cyclotomie cosets of

G F { 2 ^) over GF[2) should be calculated.

Any element in a coset can be used to determ ine the rem ainder of the coset, so

let 3 be the coset representative for a given cyclotomie coset.

Definition 3.4 The m inim um polynomial over GF(2) oi (3 E GF[2' ^) is

the polynomial of least degree over G F [2) th a t has /? as a root. □

The following argum ent uses results from [MWS] and finds an expression for

the num ber of cyclotomie cosets of GF[2' ^) over GF{2). This expression then

determ ines the blocklength of a CSRS code.

Lem m a 3.5 A ll the members o f a cyclotomie coset have the same minimumr

polynomial. □

P roof See Property M6, page 103 of [MWS]. □

Denote this polynomial by Then

Lem m a 3.6

- 1 =
S

59

□

Proof P u t p = 2 into Property M7, page 105 of [MWS]. □

All m inim um polynomials are irreducible (P roperty M l, page 99) and have

degree < m (P roperty M4, page 100).

Lem m a 3.7 — x — the product of all irreducible polynomials over

G F {2), whose degree divides m . □

Proof P u t p = 2 in Theorem 10, page 107 of [MWS]. □

Let h i m) be the num ber of polynomials of degree m , irreducible over G F (2),

then

Lem m a 3.8

^2 (m) =
Ie | m

where
r i i f j = i ;

= S (—1)^ i f j is the product of r distinct primes;
I 0 otherwise.

□

Proof P u t g = 2 in Theorem 5, page 115 of [MWS]. □

Lem m a 3.9 The number of irreducible polynomials over GF{2), whose de­

gree divides m is

Y .^ 2 { d)
d \ m

□

60

Proof This follows directly from the definition of l 2 {m). □

The blocklength of a CSRS code can now be stated

Theorem 3.10 The blocklength, N , of a CSRS code, formed from a (2 ^ —

1 ,2 ^ — 1 — r , r + l) Reèd Solomon code, is given by

N = Y , h { i) - l
d \ m

□

Proof Notice th a t — x — x{x'^' — 1) and æ is a polynom ial irre­

ducible over GF{2), whose degree divides m . Hence, the num ber of irreducible

polynomials whose degree divides m th a t make up the factors of x^^~^ — 1 is

(3.2)
d \ m

(from Lemma 3.9). Hence, the num ber of m inimum polynomials is also given

by (3.2) (using Lemma 3.6). Thus the result follows. □

The following example evaluates N for a specific code. Figure 3.1 gives the

values of N for a range of m.

Exam ple 3.3 Consider again the code, C % of Exam ple 3.1. In this case,

m = 4 and thus. Theorem 3.10 gives

JV = 5] j 2 (d) - l
d\4

= ^2 (1) + ^2 (2) -f ^2 (4) — 1

61

Now

•f2(l) = l]Me)2''' = 2Ml) = 2
e | l

^ 2 (2) = - /^(e)2^l^ = i (4 p (l) + 2 p (2)) = i (4 - 2) = 1
el2

4 (4) = \ Y 1 Xe)2"l= = ^ (1 6 /i(l) + 4p(2) + p(4)) = i(1 6 - 4 + 0) = 3
e|4

Hence

iV = 2 + l + 3 — 1 = 5

as was shown in Example 3.1. □

Table of possible blocklenaths

m 2 I (d) - 1
d \ m 2

1 1
2 2
3 3
4 5
5 7
6 13
7 19
8 35

Figure 3.1

§3.3.3 M in im u m D istan ce o f C SR S codes

This section states a lower bound for the minim um distance of CSRS codes. This

bound is derived by using the minimum distance, r + 1, of the Reed Solomon

code which was used to form the CSRS code.

62

Lem m a 3.11 The m inimum distance, D, of a CSRS code formed from a

(2 m _ 2 2 ^ — 1 — r,7* + l) Reed Solomon code is such that

D >
m

where [æ] denotes the least integer > cc. □

Proof Consider the set S , which consists of all those Reed Solomon code­

words th a t satisfy constraint (3.1). The minimum distance of S is at least r + 1,

as this is the m inimum distance of the Reed Solomon code. Take s, s ' G S , then

if

l \ 24 = (4)

Thus, for each pair of codewords, the elements of the same coset either all agree

or all disagree. Now, between each pair of codewords in S , there m ust be

sufficient cosets which disagree to give at least r + 1 symbols th a t disagree. The

m inim um num ber of cosets in disagreement to give a fixed num ber of symbols

in disagreem ent, occurs when it is the largest cosets th a t disagree. Thus,

M inimum num ber of cosets th a t disagree =
m

Now the num ber of cosets th a t disagree between two codewords in S , determ ines

the num ber of G F {2 ^) symbols th a t disagree in the resulting CSRS codeword.

Hence

D >
m

□

63

The following example shows tha t this bound is the best possible.

Example 3.4 Suppose tha t the RS(15,7,9) code is encoded using a G FFT

decoder. This encoder takes the inverse G FFT of a vector in which the first eight

places are zeros and the remaining seven places contain the inform ation symbols.

Suppose th a t the encoder uses the Galois field formed with p[z) = + z + 1

and a = z as the prim itive element.

The code, C ', of Example 3.1 is formed by cyclotomically shortening those Reed

Solomon codewords formed from binary input. Now, binary input 0000000 gives

the codeword 00000 and binary input 1111101 gives the codeword Oa^a^lO.

These codewords differ in 3 symbols. From Lemma 3.11, for the CSRS code in

question

D >
r 9 i

4

thus, the code C ' of Example 3.1 satisfies the bound with equality. □

§3.3.4 C SR S C odes as B inary C odes

It is possible to consider CSRS codes as binary codes. It has already been

shown th a t CSRS codewords are derived from binary input to a C F F T Reed

Solomon encoder. The G F {2 ^) symbols th a t make up a CSRS codeword can

be w ritten in binary notation. Hence, a CSRS code is an [m N , 2” ̂— 1 — r) code

over GF{2). W hen considered over GF{2), CSRS codes are linear. Also the

m inim um distance of the code in term s of bits is still bounded below by ,

64

because each disagreement between a pair of G F {2 ^) symbols may be caused

by a difference of only 1 bit, as the following example shows.

Example 3.5 The code, C , is a (20,7) code. Consider the binary expansions

of the two codewords given in Example 3.4, they are

00000000000000000000

00001000100000010000

The distance between these words is 3, hence, even as a binary code, C reaches

the lower bound on the minimum distance. □

Notice th a t the shortest blocklength, single error-correcting, binary code of

dimension 7, has blocklength 1 1 . Thus, this CSRS code is a long way from the

best th a t can be achieved.

Exam ples 3.4 and 3.5 dem onstrate th a t the lower bound for the m inim um dis­

tance of CSRS codes, either over GF(2'^) or GF{2), cannot be im proved w ith­

out further constraints on the codes.

§3.4.1 C SR S codes and CRT codes

It is now shown th a t there is an equivalence between CSRS codes and a partic ­

ular class of CRT codes. For clarity in the proof of Theorem 3.11, this section

will use slightly different notation from other sections. This new notation will

now be introduced.

65

Let the integers modulo 2 ^ — 1 be partitioned into N cyclotomie cosets of the

form

" { ÿ) ÿ - 2 , û -2 , . • • } J = 0 , 1 , . . . , iV — 1.

Let a be a prim itive element of G F {2 ^) and define

A j = I c G C j }

Let M j (x) be the minim um polynomial associated with the coset C j , then

cecj

and M j [x) is the m inimum polynomial V/? G A j .

The following, alternative definition of CSRS codes uses the CRT code definition

of Reed Solomon codes.

Definition 3.5 A Cvclotomicallv Shortened Reed Solomon code, C may be

defined as follows :

Select a representative a j G A j for each j G [0 , . . . , A —1]. Use the k inform ation

bits to form the coefficients of a polynomial, i{x), of degree < k — 1. The

codeword is the vector (c q , . . . , c n - i) , over GF{2'^), where

Cj = i{x) mod {x — a.j) = i{aj)

□

The following example gives another CRT code, using the M j (x) as the r r i j (x) .

This code is then used in Theorem 3.11 to show th a t CSRS codes can be defined

in term s of CRT codes.

66

Example 3.6 The CRT code C" is formed by encoding the binary polyno­

mial i{x) (of degree < A; — 1) to the following sequence of elements of GF{2)[x]

(c q (a j) , . . . , c t v _ i (a ;))

where

Cj { x) = z(æ) mod M j { x)

□

Theorem 3.12 The codes C and C” are equivalent codes. □

Proof Define the m apping

f : C C

by

/ (c q (a ;) , . . . , CjV —1 (®)) — (c g (o ! o) , • . • 5 C j \ f — I (cKn,))

This m ap is well defined because 3 i{x) with

i{x) = q { x) M j { x) + c j { x)

by definition of C”. Hence

i{x) mod [x — a j) = i(ctj)

=

because M j (a j) = 0.

This m ap, / , is onto because given i{x) such tha t

Cj = z(æ) mod (x — a j) = i (aj)

67

set

i (x) = q { x) M j { x) + Cj { x)

then

Cj = % (« ;) = c { a j)

/ is a GF(2) homom orphism because

/ ((< ^ o (®) } • • •) CjV—1 (®)) "h) îV—1 (®)))

= f { c o { x) + C o (æ) , . . . , c n - i { x) + c ^ _ i (æ))

= (c o (a o) + • • ' ,CAr-i («Ti) + c ^ - i (« n))

(c o (a i) , . . . , C]v_ i (a ^ i)) + (cq (a g) , • • • ? ^n —i (^ ^))

= /(cg (æ),. . . , Cjv_i(æ)) + /(co (æ),. . . , c^_ i(æ))

Therefore, to prove th a t / is an isomorphism, it remains only to show th a t / is

one-to-one. Suppose th a t Cj[aj) = c'j{aj) then this implies th a t aj is a root of

C j (æ) - c ' . (æ) G C F (2) [æ]

But M j { x) is the minim um polynomial of a j , so

Cj { x) — c' j (x) = 0 mod M j { x)

because both Cj { x) and c' j {x) have degree less than th a t of M j [x) . Thus, the

codes are equivalent. □

The following example gives a specific case of this mapping.

68

Example 3.7 Take m = 4, then the five Cj are

Co = {0 }

Cl = {1 , 2 , 4 , 8 }

Cz = { 3 ,6 ,9 ,1 2 }

Cs = {5 ,10}

C4 = {7,11,13,14}

Suppose th a t GF[2'^) is generated using p[z) = + z + 1 and a = z is a

prim itive element. Then the Aj are

^ 0 = {a°}

A\ = {cK̂ , a^, a®}

Az = { a \ a \ a \ a : : ^ }

A3 = {a®,a^®}

A4 = {cK^,a^\a^®,a^^}

The coset representatives, aj , for each Aj will be taken as the first element

in the coset. Thus, the minimum polynomials are given by (rem em bering th a t

+1 = —1 over GF(2))

M q[x) = (æ — 1)

M\[x) = [x — a)(æ — a^)[x — a^)(æ — a®)

= + æ + 1

M 2 [x) = (æ — a®)(æ — a®)(æ — a^)(æ — a^^)

= + æ® + + æ + 1

Mz{x) = (æ — a®)(æ — a^®)

= + æ + 1

69

M^[x) = (æ — a){x — a)(æ — a)(æ — a)

= + æ® + 1

Take i (x) = æ® +æ^ + æ̂ + 1 as the inform ation polynomial to be encoded. From

Definition 3.5, it can be seen th a t the corresponding codeword in C' is given by

(z(a®),i(a^),2 (a®),i(Q;®),i(Q:^)) = (0 , a®, a®, 1 , a®)

w ritten in binary notation, this becomes

(00001010101000011010)

Now look at the code C”

c q { x) = æ® + + 1 mod (æ — 1)

= 0

ci(æ) = æ® + + 1 mod (æ^ + æ + 1)

= æ® + æ

C2 (æ) = æ® + + 1 mod (æ ̂+ æ® + + æ + 1)

= æ®

C3 (æ) = æ® + + 1 mod {x^ + æ + 1)

= 1

C4 (æ) = æ® + + 1 mod (æ“̂ + æ® + 1)

= æ + 1

The equivalence between the two codewords comes by evaluating Ci(ai), which

gives

(co(a®),ci(a^),C2(a^),C3(a®),C4(a^)) = (0 , a®, a®, 1 , a®)

A similar routine may be followed for all inform ation polynomials. □

70

§3.5.1 Encoding and Decoding

This section will look at encoders and decoders for the three classes of codes

m entioned above.

There are well-known encoders and decoders for Reed Solomon codes, see [Bl],

[PW] or [MWS], and these will not be described here.

Turning atten tion to CRT codes, the general m ethod of encoding CRT codes was

im plicit in their definition (see Definition 3.1). The general decoding m ethod

for CRT codes was outlined in Section 3.1.2 and is stated explicitly here.

Decodins Scheme for C R T codes

Take the set of m j { x) th a t was used to form the codewords, form all distinct

subsets of this set such th a t the sum of the degrees of the elements of the set

is > fc — 1. Each m j { x) is associated with a position in the codeword, i.e. the

position in which the residue i[x) mod r r i j (x) is placed. For each received word,

i{x) is calculated using each of the distinct subsets in tu rn and the symbols

in the received word in the associated positions of the r r i j (x) of the subset in

question. The received word is decoded to the coefficients of the i{x) which

occurs most often, some predefined choice can be made in the event of a tie. □

The problem with this decoding scheme (as with most schemes th a t involve

the calculation of several possible decodings followed by some form of com pari­

son) is th a t for most practical situations any im plem entation will take too long

to run. To the w riter’s knowledge there are no im plem entations of encoders

71

and decoders for arb itrary CRT codes. However, more feasible encoders/ de­

coders have been developed for certain specific classes of CRT codes (e.g. Reed

Solomon codes and the codes to be described in Section 3.6.1).

Lastly, consideration is given to CSRS codes. There is one obvious m ethod of

encoding and decoding CSRS codes, th a t is to use the encoder and decoder for

the Reed Solomon code from which the CSRS code was derived (the base Reed

Solomon code).

Encoding and Decodins scheme for CSRS codes

The encoding scheme is as follows. CSRS codes encode binary inform ation, so

take the k inform ation bits and write each of them as a GF{2'^) symbol. Encode

these G F [2 ^) symbols using a G FFT encoder for the base Reed Solomon code.

Cyclotomically shorten the resulting Reed Solomon codeword using constraint

(3.1) and transm it the resulting CSRS codeword. (It was shown in §3.3.1 th a t

binary input guaranteed th a t a Reed Solomon codeword would satisfy constraint

(3.1) and can therefore be shortened).

Decoding is then performed by lengthening the received word, using constraint

(3.1), and then using a G FFT decoder for the base Reed Solomon code. It

would be necessary to adapt a standard Reed Solomon decoder so th a t it could

decode only to those codewords th a t satisfy constraint (3.1). □

The m ajor problem with this scheme is th a t it introduces severe error propaga­

tion. This is because any channel error th a t causes one received symbol to be

in error may produce up to m symbols in error in the word th a t enters the Reed

72

Solomon decoder. The num ber of additional errors caused depends on the size

of the cyclotomie coset in which the error occurred. It is clear th a t this scale of

error propagation will seriously degrade the performance of the system.

The question of an encoder and decoder for CSRS codes will be returned to at

the end of Section 3.6.2.

§3.6.1 D o r n ste tte r C odes

In [Do,85], D ornstetter describes an encoder and decoder for a family of codes,

which will be refered to as Dornstetter codes. These codes are defined as follows

Definition 3.6 A Dornstetter code, C , of blocklength n and dimension k,

has codewords th a t consist of the residues

Cj = i{x) mod P j { x) j = 0 , 1 , 2 , . . . , n — 1 .

where i(x) is a binary polynomial of degree < A; — 1 whose coefficients are the

k inform ation bits. The P j { x) consist of all the irreducible factors of — 1

over GF{2) of degree m and any polynomials of degree m th a t can be formed

from the rem aining factors of — 1 such th a t the P j { x) are all m utually

coprime in pairs. Note th a t the blocklength, n, of the code is determ ined by

the num ber of P j { x) th a t can be formed. □

Exam ple 3.8 of the next section gives a specific example of a D ornstetter code.

73

§3.6.2 CSRS codes and Dornstetter codes

The following Lemma compares D ornstetter codes w ith CSRS codes by using

the equivalent CRT codes. The Lemma is followed by a specific example, to

clarify the distinction between the two sets of codes.

Lem m a 3.13 CSRS codes and Dornstetter codes do not define the same set

of codewords. □

Proof Compare the code of Example 3.2, which Theorem 3.11 showed

to be equivalent to a CSRS code and the D ornstetter code of Definition 3.6.

The two sets of mj [x) used in the definitions are different. The set of mj [x)

in Definition 3.6 takes the set of 77ij(æ) of Example 3.2, leaves some of them

unchanged, takes the product of others and discards the rem ainder so th a t all

the m j [x) of Definition 3.6 have degree m. □

In the following example a larger value of m is taken than for previous examples,

this is necessary to dem onstrate clearly the distinction between the two sets of

codewords.

Example 3.8 Let m = 8 , then the base code is the Reed Solomon (255,255 —

r , r + 1) code. Theorem 3.10 gives tha t the blocklength, N , of the derived CSRS

code is given by

N = Y , l 2 { d) - l
d\8

— / 2 (f) + ^2 (2) + ^2 (4) + 1 2 (8) — 1

74

Recall the values of / 2 (1) - / 2 (4) from Example 3.3.

M 8) = = i(256A*(l) + 16^(2) + V (4) + ^c(8))
e | 8

= ^(256 - 16 + 0 + 0) = 30
O

Therefore

= 2 + 1 + 3 + 3 0 - 1 = 35

So, the blocklength of the derived CSRS code (over GF{256)) is 35.

Now consider the D ornstetter code for m = 8 . The irreducible factors of — 1

can be found in [PW], Appendix C. There are 30 of degree 8 , 3 of degree 4, 1

of degree 2 and 1 of degree 1. (Notice th a t these are the m inimum polynom ials

of the cyclotomie cosets as defined in the CSRS code). However, any 2 of the

degree 4 polynomials may be combined to give another degree 8 polynom ial

th a t is m utually prim e to the original 30 degree 8 polynomials, bu t no more

m utually prim e degree 8 polynomials can be created. Therefore, the D ornstetter

code with m = 8 has blocklength 31. □

The P aten t Application [Do,85] is essentially for a decoder, however it is unclear

from D ornste tter’s work whether this decoder is for CSRS codes or D ornstetter

codes (or even both). D ornstetter appears to make no distinction between the

two sets of codes. However, Lemma 3.14 shows th a t they are in fact different.

The decoder in [Do,85] uses an adaptation of the Berlekamp Massey algorithm

and works for a particular class of CRT codes because of ‘the pertinent choice of

the 77ij(æ)’. It is therefore unlikely tha t the decoder can be adapted to decode

m any (if any) other classes of CRT codes.

75

/

§3.7.1 Alternant Codes

These codes are very closely related to Reed Solomon codes and this final section

will consider the application of the ideas of the previous sections to A lternant

codes. Firstly, A lternant codes are defined.

Definition 3.7 An Alternant Code. D(C, fi), is defined as follows.

Let h = (h o , h i , . . . , he a vector in GF(q'^)^ , which has every coordinate

distinct from zero. Then ft consists of all c = (cq, c i , . . . , Cn-i) G GF(q)^ which

satisfy

Ch = (cofiojCifii, . . . , Cm-l&n-l) G C

where C is a Reed Solomon code over GF[q^)^ as defined in Definition 1.15. □

This definition may be expressed in term s of Galois-Field Fourier Transform s.

Let H = be the G FFT of and C = (Co, C i , . . . , C n - i)

the G FFT of c. Then D may be defined as the set of all words whose G FFT ,

(Cq, C l , . . . , C n - i) over GF[q ^) satisfies

n - l
(0 X / = 0 j = Jo, . . . , Jo + 2t - 1

fe=0

(ii)C (,,) = (C t)^

(z) ensures th a t ch is a Reed Solomon codeword and [ii) ensures th a t c is over

GF{q) (refer to Theorem 1.7)

Consideration is now given to the possiblity of cyclotomically shortening A lter­

nan t codes. The codewords of D are over C F(g), where g is a power of 2 . If

constraint (3.1) is applied to an A lternant code then it partitions the elements

76

of a codeword into cyclotomie cosets and the codewords th a t satisfy constraint

(3.1) may be shortened in the same m anner as before. Note th a t the blocklength

of the A lternant code is the same as the Reed Solomon code, C , which is used

in its form ation. Thus, a Cyclotomically Shortened A lternant (CSA) code, will

have the same blocklength as the CSRS code obtain from C . More formally(

Theorem 3.14 The blocklength, n, of a CSA code derived from an Alternant

code of blocklength 2 ^ — 1 is given by

n — ^2 {d) — 1

d\m

where

and where

e\d

(1 i f j = l;
m(c) = < (—1)^ if j is the product of r distinct primes;

I 0 otherwise.

□

For the dimension of a CSA code, the G FFT definition of the codes is used.

The dimension, A;, of an A lternant code is not known precisely in general, bu t

it is known to satisfy the following inequality.

Lem m a 3.15 The dimension, k, of an Alternant code formed using a Reed

Solomon code of designed distance 2t + 1 is such that

k > — 1 ~ 2im

(Note the dimension is over GF{q)). □

77

Proof See [Bl], page 230. □

By the same argum ent used for CSRS codes the dimension of a CSA code is

given by

Lem m a 3.16 The dimension of a CSA code, derived from an Alternant code

of dimension k over GF(q), is also k, but over GF{2). □

The m inim um distance of a CSA code is bounded below in the same way as for

CSRS codes.

Lem m a 3.17 The m inimum distance, D, of a CSA code formed from an

Alternant code with m inimum distance d satisfies

D >
r _ d
m

□

Proof As for CSRS codes. □

§3.8.1 S u m m ary

This study has introduced Chinese Rem ainder Theorem codes and several m eth­

ods of defining Reed Solomon codes (one in term s of CRT codes). Cyclotomi­

cally Shortened Reed Solomon codes have been described and expressions given

for their dimension and blocklength. A lower bound for the minim um distance

of CSRS codes has been given, together w ith a code th a t satisfies the lower

bound with equality. The equivalence between CSRS codes and a particu lar

78

class of CRT codes has been dem onstrated. Another class of CRT codes, called

D ornstetter codes has been defined and it has been shown th a t CSRS code and

D ornstetter codes are non-identical.

Encoding and decoding schemes have been examined for the above m entioned

codes "and the confusion over D ornstetter’s Patent Application discussed.

Lastly, the possibility of cyclotomically shortening A lternant codes has been

examined. W hilst it is obviously possible to cyclotomically shorten any code

formed over GF{2'^), there is no apparent gain in general, unless the resulting

codes are equivalent to a class of CRT codes and D ornstetter’s decoder can be

adapted for use w ith them.

79

C hapter 4

IN T E R L E A V IN G F O R C O N V O L U T IO N A L C O D IN G

§4.1.1 In trod u ction

The concept of interleaving using an n x m array was introduced in §1 .6 .1 . The

situation considered here is th a t when the maximum burst length exceeds m.

This problem was posed by Mr. E. Jones of Inm arsat at the 4th RSRE coding

meeting, M anchester, May 1987. Inm arsat (International M aritim e Satellite

Organisation) were considering the requirements of a mobile satcoms operator.

A part of the communications system involved interleaving using an n x m array,

d a ta being fed into the columns and transm itted row-wise. The natu re of the

system was such th a t it was not feasible to make the row length, m , greater than

the m axim um expected burst length. Inm arsat considered sending the rows of

the array in non-sequential order. They had found, ad hoc, the order in which

to send the rows of an array with n = 64 to achieve the maxim um spreading of

errors for their particular channel conditions. The ad hoc approach was adopted

because they could find no theoretical results for the problem. The purpose of

this chapter is to rectify this situation, by providing a general solution to the

problem . A more precise description of the problem is now given.

80

Suppose th a t the m axim um length burst of errors is such th a t it can affect at

most a rows (either completely or in part). Then, to minimize the effect of such

a burst of errors, rows tha t are within a of each other in the array (th a t is rows

th a t are close enough together to be affected by the same burst, if the rows were

transm itted in sequential order) should be transm itted as far apart as possible.

A lthough this does not change the num ber of errors in each column, it does

space them throughout the whole column rather than them occurring in one

solid block.

Now, if the interleaving is being performed on data encoded with a block code

whose blocklength is greater than or equal to n , the spacing of the errors has no

effect because most block codes can correct a fixed num ber of errors irrespective

of w hether they occur spaced out or in a block. However, if the blocklength

of the code is less than n or convolutional coding is being used, this spacing

of the errors can improve the performance of the system. In the block coding

case the improvement occurs because the num ber of errors the burst causes in

a column may be beyond the error-correcting capabilties of a single codeword,

bu t the spacing could spread them over two (or possibly more) codewords,

each codeword being able to correct the reduced num ber of errors. In the

case of convolutional coding, it is well known th a t convolutional codes perform

significantly better in the presence of random errors than they do in the presence

of burst errors.

81

§4.1.2 Objectives

This chapter has two main objectives. Firstly, to find the optim al scheme

w ith which to transm it the rows of the array so th a t any two rows th a t are

w ithin a of each other are sent as far apart as possible. Secondly, to give some

recom m endations about the usage of this optim al scheme.

§4.1.3 N o ta t io n

Let n be the num ber of rows in the array.

Let a be the m axim um num ber of rows th a t can be affected (either totally or

in part) by a single burst of errors.

Let the rows of the array be labelled 0 , 1 , . . . , n — 1. (Note: a row will always

be identified by its original position in the array.)

Let n = aa + 6 , where o , 6 G Z and a > 0 , 0 < 6 < a.

Let tij be the num ber of rows transm itted between the transm ission of row i

and row j . For example, if the following sequence of rows is transm itted

0 3 6 9 2 5 8 1 4 7

then ^ 3 5 = 3.

Two rows i and j are w ithin a of each other if and only if

\ i - j \ < CL- 1

Let t = min tij. T hat is t is the minimum num ber of rows transm itted

between any two rows tha t are w ithin a of each other in the array.

82

The first objective is therefore to find a scheme th a t maximizes t. But first a

simpler problem will be considered.

§4.2.1 A S im pler P rob lem

Consider the rows of the array to be placed in the following cosets.

C q — — 1 }

C l =-{(Z,cL + l , a + 2 , - * ‘ ,2(z — 1}

C2 — ^2u, 2d + 1,2d + 2, • • •, 3d — 1 j-

C o i —i — {(o: — l)d ,(o ; — l) d + 1 , " ' , CKd — 1 }

Ca = {aa, ad + 1 , • • •, a d + 6 — 1 }

Cosets Co, C l , , Ccx-i have size a, coset Ca has size b.

Notice th a t each element of a coset is w ithin a of every other element in th a t

coset and th a t some elements within different cosets are also w ithin a of each

other. Now consider the simpler problem of transm itting elements of the same

coset as far apart as possible. Let t' be the m inimum num ber of elements

transm itted between the transm ission of two elements from the same coset.

Theorem 4.1 gives the maximum values of t' and a scheme which can achieve

these values.

83

Theorem 4.1 I f the cosets Cq, C i , . . . ,C q, are as defined above, then the

m aximum value for t' is as follows:

If b = a — 1 then max i' = a

else max t' = a — 1

□

Proof The optim al scheme for transm itting elements from the cosets so as

to transm it elements in the same coset as far apart as possible is the following:

“S tarting with coset Co, cycle through the cosets in numerical order, sending

one element (which has not already been sent) from each coset in tu rn .”

Thus, between the transm ission of two elements from one coset, exactly one

element is transm itted from each of the other cosets. This is the optim al scheme

because to increase the number of elements transm itted between two elements.

Oil and Ci2 , from coset C{, an extra element would have to be sent from some

coset C j and this would decrease the num ber of elements transm itted between

two elements from the coset C j . (There could be at m ost 1 element from each

of a — 1 cosets, ra ther than a cosets).

To determ ine t' for this scheme it is necessary to consider two cases:

Case 1 : 6 = a — 1 .

In this case 3 a cosets of size a and 1 coset of size a —1. D uring the first

a — 1 cycles through the cosets, an element (which has not already been

transm itted) can be chosen from each of the cosets (because there are

at least a — 1 elements in each coset). During the last cycle it is not

possible to send an element from coset Ca, because there are none left.

84

However, because the first cycle starts with the coset Cq, the coset Ca

is always the last in a cycle. Thus the sequence of transm itted elements

is ju st 1 element ‘short’ at the very end of the sequence. Now there are

a + 1 cosets, therefore there are a elements transm itted between the

transm ission of two elements from the same coset (the fact th a t the

sequence is one element short at the end does not affect the distance

between the previous elements). Therefore, in this case, t' = a.

Case 2 : b < a — 2.

In this case the coset Ca will ‘run o u t’ of elements before the last cycle,

so some cycles will contain only a elements. Therefore, in this case,

t' = a — 1 .

Clearly, t ’ for the optim al scheme is equivalent to max P. □

Corollary 4.2 I f b = a —1 then t < a otherwise b < a —2 and t < a — 1. □

Proof This problem tries to transm it some elements th a t are w ithin a of

each other as far apart as possible, but not all such elements. Therefore the

constraints on this problem are weaker than those on the problem of §4.1.2

and so m a x f provides an upper bound for the m axim um value of t. Thus t is

bounded above as shown. □

§4.2.2 D iscu ss ion o f th e Case b = a — 1

This section shows th a t the upperbound for t when b = a — 1 can be reduced

85

from a to a — 1 . The full interleaving problem of § 4.1.2 is considered once

again.

Theorem 4.3 I f for n = aa + b there is a scheme with t = a, then there

exists a scheme for n' = {a — l) a + b with t = a — 1. □

Proof Take the scheme for n and remove the rows labelled with the a

highest num bers, i.e. if n = 7.3 + 2 = 23 and the scheme is described as

a sequence of the rows in the order in which they are to be transm itted (e.g.

0 3 6 9 12 15 18 21 1 4 7 10 13 16 19 2 2 2 5 8 1 1 14 17 2 0) then remove from this

sequence the numbers 20, 21 and 22 (to give 0 3 6 9 12 15 18 1 4 7 10 13 16 19 2

5 8 1 1 14 17) . This new sequence then has t = a — 1. The reason for this is as

follows:

Let the numbers to be removed form the set S , then each element of S is

w ithin a of every other element of S , therefore in the original scheme, each

element of S m ust be separated by at least a term s from any other element

of S . Now consider two rows i and j , not in S , such th a t | z — j |< a — 1 ,

in the original scheme they are separated by at least a term s and up to

a of these term s could be contained in S . Suppose one term between z

and j was in S , then, when this term is removed, i and j are separated

by at least a — 1 term s. Now suppose th a t two term s between z and j

were contained in S , then, when these two term s are removed, the num ber

of term s between z and j decreases by two. However, the two term s in

S were separated by at least a term s, therefore there m ust have been at

least a + 2 term s between z and j in the original sequence. Thus, on

86

the removal of two term s, they are still at least a apart. In general, if

X > 2 term s between i and j were from S , they were each separated from

every other by at least a term s, therefore there must have been at least

(æ — l) a + æ term s between i and j . Thus, on the removal of x term s, i

and j are still separated by at least (æ — l) a > a term s.

Thus, in all possible cases, i and j are still separated by at least a — 1

term s.

So, the sequence, which forms a scheme with t = a for n = aa + b, w ith the a

highest numbers removed forms a scheme with t = a — 1 for n' = {a — l)a b.

□

Corollary 4.4 I f for n = a a + (a —1)3 a scheme with t = a (i.e. acheiving

the upper bound in the corollary to Theorem 4-1) then 3 a scheme for n ' =

(a —l) a + (a —1) with t = a — 1 (also achieving the upper bound of the corollary).

□

Proof Substitute 6 = a — 1 in Theorem 4.3. □

Lem m a 4.5 There is no scheme with t = 1 for n = 2a — 1. □

Proof The row labelled a is w ithin a of all the other rows in the array (there

are a — 1 rows each side of it). Therefore, wherever the row labelled a is placed

in the new scheme, it has to have at least one other row placed next to it, th a t

is a row th a t is w ithin a of it must be placed next to it, hence t = 0. Therefore

there is no scheme with t = 1 . □

87

Theorem 4.6 I fb = a — 1 then the upper bound t = a can never be achieved.

□

Proof Corollary 4.4 shows th a t if there exists a scheme achieving the upper

bound for n = a a + (a — 1) then there exists a scheme achieving the upper
y

bound for n' = (a — l)a + (a — 1). The contrapositive of this statem ent shows

th a t if there does not exist a scheme th a t achieves the upper bound for n' =

(a — l) a + (a — 1) then there does not exist a scheme which achieves the upper

bound for n = aa + (a — 1). Lemma 4.5 shows th a t there does not exist a

scheme achieving the upper bound for n = 2a — 1 = a + (a — 1). Therefore,

by induction, there does not exist a scheme achieving the upper bound for any

value of a w ith b = a — 1. □

Corollary 4.7 For all values of b, t < a — 1. □

Proof Combine Corollary 4.2 and Theorem 4.6. □

§4.3.1 A n O ptim al Schem e

Corollary 4.7 shows th a t t < a — 1 for all values of n ,a and 6 , therefore, if a

scheme can be found th a t achieves t = a — 1, then this scheme is optim al.

Scheme 1

If (n, a) = d, then at time interval z, send the row Ri as determ ined by the

following;

(1) Set z = 0.

(2) Evaluate
For j = to d — 1 do

For k = 0 to — 1) do
d

{ R i = {ak + j) mod n , z = z + 1)

□

It is now shown th a t this scheme achieves t = a — 1, providing 6 > 0.

Theorem 4.8 I f n = aa F b,b > 0 and (n, a) = d, then Scheme 1 sends all

n rows of the array and achieves t = a — 1. □

Proof Firstly, it is shown tha t Scheme 1 does send each row of the array.

Now for each of the d values of j , k takes ^ values, hence there are n rows

transm itted . The same row is not transm itted twice because d is the highest

common factor of n and a and j < d — 1.

Secondly, the value of t is found. Consider the sequence of the row num bers in

the order in which the rows are transm itted , i.e.

0 , a, 2 a , . . . , aa, a — b, 2 a — b , . . .

Split this sequence into ordered blocks, each block commencing with an element

< a and consisting of the immediately following term s in the sequence (in order)

up to, but not including, the next element < a. W hilst j is fixed and k is

89

increm enting, any block has the following form:

a — 'Y

2 a — 7

a a — 7

(a + l) a - 7 ?

call this Block Y. The ? after the last element denotes th a t this element may

or may not be contained in Block Y, depending on the ratio of a and 7 to

n. Notice th a t any two elements in the same block are n o t w ithin a of each

other. Now look at the distances between elements of consecutive blocks by

considering Block Y and Block (Y + 1). There are two cases to consider.

Case 1 : (a + l) a — 7 is not contained in Block Y.

Now the first element in Block (Y +1) is

(a + l) a — 7 — (aa + 6) = a — 6 — 7

Consider how many elements of Block Y are w ithin a of the first ele­

ment of Block (Y+1). Now a — 7 and a — 6 — 7 are w ithin a of each

other. Also

I 2 a — 7 — (a — 6 — 7) | = | a + 6 | > a

So 2 a — 7 is not within a — 6 — 7 As the elements of Block Y increase

in size, no other element in Block Y is w ithin a of a — 6 — 7 . In this

case , Block Y contains a elements , therefore the num ber of elements

transm itted between the transm ission of a — 7 and a — 6 — 7 is a — 1 .

90

The elements in every block are all the same fixed distance apart, i.e.

the th ird and fourth and elements in a block are the same distance

apart as the fourth and fifth and this is true (with the same distance)

for any block. Hence there are a — 1 elements transm itted between

any element in Block Y and the first in Block (Y + 1) th a t is w ithin a

of this element.

Case 2 : Block Y does contain (a + l) a — 7 .

In this case, the first element in Block (Y + 1) is

(a + 2)a — 7 — (a a + 6) = 2 a — 6 — 7

Now 2 a — 6 — 7 and a — 7 are within a of each other. Also

I 2 a — 6 — 7 — (2 a — 7) | = | — 6 | < a — 1

therefore 2a — 6 — 7 and 2a — 7 are w ithin a of each other. But,

I 2 a — b — 7 — (3a — 7) I — I —cl — 6 | a

thus 2 a — 7 is the last element in Block Y th a t is w ithin a of 2 a — 6 —7 .

However, in this case , Block Y contains a + 1 elements and therefore

the num ber of elements transm itted between the transm ission of 2 a — 7

and 2 a — 6 — 7 is a — 1. Hence, by the same argum ent as in Case 1,

there are a — 1 elements transm itted between any element in Block Y

and the first element in Block (Y +1) tha t is w ithin a of this element.

Thus, whilst j is fixed and k is incrementing, at least a — 1 rows are transm itted

between the transm ission of any two rows tha t were originally within a of each

91

other. W hen j is incremented, this affects which block is transm itted next, but

not the structure of the block. It is now shown th a t increm enting j does not

affect the distances between elements in consecutive blocks.

Consider increasing j to j + 1 . Let Block Y' be the block before j is increm ented

and Block (Y '+ l) the block after. Let the first element of Block Y' be a — 7 ,

the first element of Block (Y '+ l) is j + 1. The last element of Block Y' is either

a a — 7 or (a + l) a — 7 , but this element is equal in value to (a — l) a + 6 + j .

a - 7 J + 1

2 a - 7 a + j + 1

a a — 7

(a + l) a — 7 ?

Block Y' Block (Y' + l)

Again there are two cases to consider:

Case 1 : (a — l) a + 6 + j = a a — 7

which gives 'y = a — b — j

As before, consider the num ber of elements of Block Y ' th a t are w ithin

a of the first element of Block (Y '+ l) . Now a — 7 and j + 1 are w ithin

a of each other because j + 1 < d < a and a — 7 < a. Also

I 2 a — 7 — (j + 1) I = I 2 a — (a — 6 — j) — (j + 1) | = | a + fe — 1 | > a

because fe > 0. Hence 2a — 7 and j + 1 are not w ithin a of each

other. Thus Blocks Y' and (Y '+ l) follow the same pa tte rn as Blocks

92

Y and (Y + 1) in case 1 . Therefore, rows within a of each other are

transm itted at least a — 1 apart.

Case 2 : (a — l) a + 6 + j = (a + l) a — 7

which gives 7 = 2 a — 6 — j

Again, a — 7 and j + 1 are w ithin a of each other. Also

I 2 a — 7 — (j + 1) 1 = 1 2 a — 2 a + 6 + J — J — 1 | = | 6 — 1 | < a

and thus 2a — 7 and j + 1 are w ithin a of each other. But

|3 a — 7 — (j + l) | = | a + 6 —1 \ > a

Hence, 2a — 7 is the last element in Block Y' th a t is within a of j + 1 .

Again, Blocks Y' and (Y '+ l) follow the same patte rn as Blocks Y and

(Y +1) in case 2.

Thus, increm enting j does not affect the num ber of rows transm itted between

any two rows originally within a of each other. Hence, Scheme 1 achieves

t = a - l . □

Notice th a t this scheme, in effect, interleaves the rows of the array into an

(a + 1) X a array. However, the last row of this array is incomplete. Asking

w hether or not a column of the (a + 1) x a array contains an element in the

(a + 1)*^ row is equivalent to asking if a Block Y (in the proof of Theorem 4.8)

contains the ? element.

If a divides n, then Scheme 1 achieves t = a — 2. In this case it is suggested

th a t the value of a used should be the least integer greater than the actual a,

such th a t this new value does not divide n.

93

The next section considers when Scheme 1 may be used.

§4.4.1 R eco m m en d a tio n s for U sage o f Schem e 1

The situation being considered is one in which interleaving is performed using

an n X m array and m is less than the maximum length burst of errors, this

m axim um length burst affecting at most a rows. The object of the previous

sections has been to develop a scheme (this being the order in which the rows

are to be transm itted) which enabled rows within a of each other in the original

array to transm itted as far apart as possible.

The purpose of this Section is to consider how far apart it is n e c e s s a ry to

transm it such rows and to make some recommendations about the use of the

scheme when the characteristics of the channel, over which the inform ation is

transm itted , are unknown.

§4.4.2 In terleav ing and R a n d o m Errors

Consider first an interleaving scheme in which the rows are transm itted in se­

quential order. This scheme in effect performs a perm utation of m n d a ta sym­

bols and the reverse process at the receiving end performs the inverse perm u­

tation . Now supose tha t the errors occur at random , th a t is, there is a fixed

probability th a t a symbol is in error and this probability is independent from

symbol to symbol. Hence the probability of a given error pa tte rn depends only

94

on the num ber of errors in the pattern and not their positions. Therefore per­

m uting the data does not alter the probability of any given error pa tte rn , as

perm utation affects the positions of the errors and not the num ber of them .

Now, if interleaving is used where the rows are not transm itted in sequential

order, this merely performs an second perm utation on the d a ta symbols. Re­

peating the above argum ent shows tha t w ith this scheme again, the probability

of a given error pattern is the same as when no interleaving takes place. Thus,

if random errors occur, the probability of a given error pa tte rn is independent

of w hether or not interleaving is performed and, if interleaving is perform ed,

w hether or not the rows are transm itted in sequential order.

§4.4.3 U sin g S chem e 1 w ith U n k n o w n a

The object of interleaving is to randomize bursts of errors. Now the m axim um

num ber of rows a single burst can affect is a, thus, if there exists a scheme

such th a t no two rows tha t were within a of each other in the original array are

transm itted within a of each other, then this achieves sufficient random ization.

This is because, when the rows are considered sequentially again at the receiver,

any block of a rows can contain at most one row affected by any given burst.

Therefore, once t = a — 1 can be achieved, it is not necessary to increase t

further.

Now consider the situation where the value of a is unknown, w hat is the best

policy to adopt ?

95

Policy 1 I f interleaving is performed using Scheme 1, where the dimensions

of the array are fixed (i.e. n is fixed), but the maximum number of rows that can

be affected by a single burst is unknown, then choose a to be the greatest integer

such that a < a and n = aa -\-b,b < a and 6 E Z. (This gives a = [>/n — Ij). □

Suppose Policy 1 is used, what happens if the m axim um length of burst th a t

can occur is not the chosen a ?

Case 1 : The maximum burst length is less than a, say a'.

In this case, the transm ission scheme is forcing apart rows th a t it is

not necessary to separate. Now if Scheme 1 had been used w ith the

knowledge th a t the maximum burst length was a ', then it is possible

th a t a larger value of t could have been obtained. However, Policy 1

has t > a — 1 and as a' < a, t > a ' . Hence, no advantage could be

gained by having a larger value of t.

Case 2 : The m axim um burst length is greater than a, say a”.

In this case, the transm ission scheme does not force apart all rows

th a t are w ithin a” of each other. However, using Scheme 1 with a

knowledge of a” would give t < a" — 1 and therefore some rows orig­

inally within a” of each other will be transm itted within a” of each

other. Thus a knowledge of a” does not improve the situation. This

case dem onstrates tha t (as was to be expected), once a becomes larger

than a certain value. Scheme 1 has decreasing effectiveness.

96

§4.5.1 Conclusion

An optim al solution has been found for the problem proposed by Inm arsat. A

policy for using the given scheme when the channel characteristics are unkown

has been presented. The scheme provide a means of increasing the effectiveness

of interleaving for convolutional coding, w ithout introducing extra tim e delay.

It is noted however, th a t Scheme 1 has a cut-off point after which it has a

decreasing effect on performance.

97

C hapter 5

Binary Two-Length Codes with Error Correction

§5.1.1 In trodu ction

The subject of variable length codes was introduced in §1.7.1. Variable length

coding is of use for a message over any set of characters where the characters

are not all equally likely to occur, e.g. English text. However, there has been

very little work done on error-correcting variable length codes. This chapter

studies the concept of an error-correcting code with two different wordlengths.

F irst some theoretical results are presented. These include considerations of

linearity and a distance metric for two-length codes. Also, a general decoding

scheme is given for such codes.

It is intuitive th a t taking one wordlength to be a multiple of the other will

produce better synchronization properties. This work considers the case when

one wordlength is twice the other (this choice is also justified). The idea of using

a known, linear block code to form the two-length code is presented, together

w ith necessary bounds on the blocklength and dimension of this block code.

98

Theoretical results are given for the expected synchronization properties of two-

length codes when one wordlength is twice the other. These are quite encourag­

ing. The rem ainder of the Chapter considers a specific two-length code, formed

from the Hamming (7,4) code. It seemed natural to test the performance of

this code on the English alphabet, as frequency tables are readily available.

The perform ance of the two-length code was simulated, along with th a t of 5-bit

ASCII, a (9,5) block code and an appropriate Titchener code. The results of

the simulations are in line with the theoretical results. The chosen example

code has good synchronization properties and produces relatively low character

error rates in the received message.

§5.1.2 O bjectives

The aim of this chapter is to develop a theory which will then enable the con­

struction of a binary, two-length code which is capable of correcting bit errors

th a t occur on the channel, so tha t more inform ation characters are correctly

decoded and some synchronization errors are averted. This code should have

a faster da ta rate over a fixed-length, 1 -error-correcting block code and should

be such th a t there is no transmission of a fixed sequence to m ark the end of a

codeword. Thus the code must be uniquely decodable in the absence of errors.

It is also desired tha t the code have some form of recovery ability, th a t is when a

synchronization error occurs, the decoder remains out-of-synch for some period

of tim e and then regains word synchronization. Recovery should occur because

99

of some inherent property of the code, ra ther than manual alteration of the

decoder.

§5.1.3 In itia l Ideas

In the codes considered in this chapter, each character will be encoded to a

unique binary sequence called a codeword, the num ber of bits in the codeword

will be called the wordlensth. A variable length code may consist of code­

words of several different wordlengths. For example, one of the codes in [Ti]

has codewords of wordlengths 4,5,6,7,8,9,10,11,12,13,14 and 15 bits. However,

for convenience, the codes considered here will have codewords of only two dif­

ferent wordlengths. Let these wordlengths be rii and ri2 where n j < ri2 . Such

codes will be called two-length codes. The length rii codewords will be called

short codewords and the length ri2 words. Ions codewords. Each le tter of the

alphabet will be associated with either a short codeword or a long codeword,

therefore the probability of sending a particular length codeword may be cal­

culated. Let Pi and p 2 be the probability of sending a short and long codeword

respectively.

Let the first rii-bits of a long codeword be called the preûx and the rem aining

(ti2 — n i)-b its the addon.

It was seen in §1.7.3 th a t one of the problems with variable length codes is

m aintaining word synchronization. W hen using fixed-length block codes, pro­

viding th a t no bits are lost on the channel, m aintaining word synchronization is

100

not a problem because the receiver always knows exactly how many bits form

a codeword. W hen using variable length codes, the receiver has to decide how

to split the incoming sequence of bits into the varying length codewords. For

two-length codes, the term word synchronization will be used to describe the

state at a receiver when a received word is correctly identified as either a short

codeword or a long codeword. Because this work deals with transm ission over

noisy channels, the received message will contain errors which may cause confu­

sion between prefices and short codewords, thus it may not always be possible

to m aintain word synchronization. The term synchronization error will be used

to describe the situation where a codeword of a different length from th a t which

was sent is decoded. The term out-of-svnch will be used to describe the s tate of

the decoding process once a synchronization error has occurred and before the

decoder returns to decoding codewords of the same length as those which were

sent. W hilst the decoder is out-of-synch it is usual for character errors to occur

(but see [Ti] for an exception). Now, a synchronization error may be caused by

a single bit error and once the synchronization error has occurred the decoder

may rem ain out-of-synch for some time. Thus, variable length codes suffer from

error propagation.

To ensure th a t the two-length code is uniquely decodable in the absence of errors

it is chosen to be a prefix code according to the Definition 1.17. However, in the

presence of errors, this is not very robust. Unless the code is carefully designed,

it may take just one bit error to interchange the prefix of a long codeword and

a short codeword. Based on the definitions of t-error-correcting and m inim um

101

Hamming distance from fixed-length block codes, the concept of a prefix code

is generalised for the purposes of this work as follows:

Definition 5.1 A two-length code is a t-prefix code if any prefix to a long

codeword and any short codeword differ in at least 2 t -|- 1 places. □

Notice th a t, if t is large, a decoder is unlikely to confuse a prefix and a short

codeword, hence synchronization errors are unlikely to occur. This will prevent

error propagation. Clearly much more structure is required in the code if it is to

prevent character errors. This will be discussed later when a specific two-length

code is considered, the next few sections are concerned with what can be said

in general about two-length binary codes.

§5.2.1 Linearity C onsiderations

The m ain area of successful work on block codes has been with linear block

codes. It is linear codes for which practical encoding and decoding algorithm s

exist. Once codewords can have different lengths, it is not possible to talk of

a code being linear. This is because the linearity of a block code is defined in

term s of a vector space and it is meaningless to talk about vector spaces when

more than one length of vector is under consideration.

However, the codewords of a two-length code break down easily into smaller

sets, each containing vectors of only one length. If some of these sets can be

m ade linear, then this will give the two-length code some structure, which may

be beneficial either for forming a code or for encoding and decoding schemes.

102

The purpose of this section is to determine which sets can be linear and the

effect the linearity of any particular set has on the other sets. The sets th a t

will be considered are : the set of short codewords, the set of long codewords,

the set of prefices and the set of addons.

Some notation for these sets is now presented ;

Let S C he the set of short codewords and let s denote a member oi S C .

Let L C denote the set of long codewords, LCp the set of prefices and LCa the

set of addons.

If p € LCp and a E LCa are the prefix and addon for a long codeword, then

denote this member of LC by (p : a)

Note th a t it is not assumed tha t every prefix is paired with every addon in

L C , but this is not excluded either, thus it is not necessarily true th a t L C =

LCp X LCa (where x denotes the Cartesian product).

It is possible to make any one of the four sets linear, bu t now consider how the

linearity of one set affects th a t of another.

The prefix condition demands tha t at least S C D LCp = 0, therefore S C and

LCp cannot both be linear as they cannot both contain the all-zero vector.

However, it is not necessary tha t S C H LCa = 0 or tha t LCp H LCa = 0- Hence

it is possible for both S C and LCa lo he linear and similarly for LCp and LCa-

If the addition of long codewords is taken to be ordinary vector addition, then

it is clear tha t

L C linear => LCp linear and LCa linear

103

The contrapositive of this gives

LCp not linear or LCa not linear LC not linear

The converse statem ent

LCp linear and LCa linear => L C linear

is true if L C = LCp x TCa, otherwise no conclusion may be drawn.

Applying the above gives the following conditions on the linearity of the sets

th a t form the two-length code.

(i) If 5 C is linear, then this forces LCp to be non-linear and therefore L C is

non-linear. Also zero, one or two of the following may be true

(a) S C LCp is linear.

(b) LCa is linear.

(ii) If LCp is linear then 5 C is non-linear. This forces one of (a) or (b) to be

true and furtherm ore (c) may or may not be true.

(a) L C is linear and therefore LCa is linear.

(b) L C is non-linear and therefore nothing can be said as to w hether or not

LCa is linear.

(c) S C LCp is linear.

(iii) If LCa is linear this forces no constraint on the other sets.

The next section considers a distance measure for two-length codes.

104

§5.2.2 A D is tan ce M easure

The object of this section is to find a distance metric for a two-length code. A

distance measure d (x ,y) is a metric if it satisfies the following three axioms.

(i) d (x ,y) > 0 with equality iff x = y.

(ii) d (x ,y) = d (y ,x).

(iii) d (x ,y) 4 -d (y ,z) > d (x ,z).

The Hamming distance is a metric for block codes and it therefore seems n a t­

ural to try to extend it to two-length codes. Denote Hamming distance by

dfj and Hamming weight by w h - The distance measure, dt, as given below

appears an obvious choice for the two-length code. Take S i,S 2 E S C and

(P i : a i) , (P 2 : ag) G LC , then

dt(si,S2) = d#(si,S2)

c^t((Pi : a i) , (p i : a i)) = d //((p i : a i) , (p 2 : a^))

c^<(si,(pi : a i)) = d # (s i ,p i)

Unfortunately, dt is not a metric because it does not always satisfy (iii). (Take,

for example x and z to be short codewords and y to be a long codeword). It

does however satisfy (i) (the distance between a long codeword and a short

codeword can never be zero because S C H LCp = 0) and (ii).

The next distance measure introduced overcomes this problem and is a metric,

as will be shown in Theorem 5.1. But first the formal definition.

105

Definition 5.2 The distance measure, dj-, of a two-length code is defined

as :

dT(si,S2) = d # (s i,S 2)

dT({pi : a i) , (p 2 : ag)) = ^ ^ ((p i : a i) ,(p g : ag))

c?t (s i , (p i : a i)) = ^ ^ ((p i : a i) , S i) = d # (s i , p i) + w n (a i)

□

Theorem 5.1 The distance measure d^ is a metric on the set of codewords.

□

Proof Consider the set, S *, of ri2 -bit words tha t consists of all the

short codewords, each with (7 2 2 — 72%) zeros added on the end, and all the long

codewords. Then dj- on the two-length code is equivalent to dfj on 6* *, and

therefore dy is a m etric on the two-length code. □

Note th a t the definition of dy extends to length Ui and length 722 words th a t

are outside the set of codewords. However, if it is possible for an 7 2 1 -bit word

to be the prefix of an 7 2 2-bit word and LCa contains the all-zero word, then

d{T is no longer a metric, because the distance between a long codeword and a

short codeword may be zero. Thus, d^ is not necessarily a m etric on the set of

received words, if the two-length code is used on a noisy channel.

It is also possible to define the minimum distance of a two-length code.

Definition 5.3 The minimum distance , d', of a two-length code is the

m inim um value of dT (x ,y) between any pair of codewords x and y. □

106

The next section will present a decoding scheme which guarantees to correct t

errors provided th a t the code used is a t-prehx code and th a t d! > 2 t 4 - 1 .

§5.2.3 A t-Error-C orrecting D ecod in g Schem e

Given a t-prefix code such tha t d! > 2 t+ l , then the following decoding algorithm

may be used and guarantees to correct t errors in a single codeword, w hether

long or short. The scheme is a general one and certain processes may be reduced

for specific codes. The scheme assumes tha t no bits can be lost or gained on

the channel, th a t is the same number of bits are received as were sent, bu t this

is no more than is required when using a block code. The scheme decodes the

bits in sequence as they are received.

Decoding Scheme

Step 1 Compare the next n j-b its with a short codeword, if the distance

between them is < t then decode to this codeword, otherwise repeat until all

short codewords have been compared. If a codeword has been found then halt,

otherwise proceed to Step 2 .

Step 2 Take the n i-b its of Step 1 and also the next (ri2 — n i)-b its from

the received sequence. Compare these ^ 2 -bits with a long codeword, if the

distance between them is < t then decode to this codeword, otherwise repeat

until all long codewords have been compared. If a codeword has been found

halt, otherwise proceed to Step 3.

107

Step 3 Decode to the codeword th a t was found to be nearest in all the

comparisons of both Step 1 and Step 2 . Halt

A flow diagram of this scheme is given in Figure 5.1.

Theorem 5.2 The decoding scheme described above will correct up to t er­

rors per codeword for either length codeword, if the code used is a t-prefix code

with m inim um distance > 2 t + 1 . □

Proof There are two cases to consider. Firstly, assume tha t a short code­

word, s, was sent. During transmission, s was corrupted by a binary error

vector, e, of length n j and weight at most t. Thus, s -|- e is received. Step 1

calculates the distance between s -f- e and all short codewords until possibly one

is found at distance < t away. Suppose tha t s is the last of the short codewords

to be com pared with s + e. Then for any s' G SC , ^ s

dT(s + e , s ') = -f e , s ')

now dni s , s -4 e) + 4 e, s ') > c?h(s, s ')

=> d n i s + e, s ') > d n i s , s ') - ^ ^ (s , s -f e)

=4 c?h(s -f e, s ') > t -|- 1

as d n is , s') = d y (s ,s ') > 2t 4 - 1 and d f/(s ,s 4 e) = w h {^) < t. Thus s + e will

not be decoded to a short codeword tha t is not s, and it will be decoded to s

because ^^ (s , s + e) = dH{s, s -f e) < t. Hence, if a short codeword is sent and

< t errors occur, correct decoding occurs.

Secondly, assume tha t a long codeword, (p : a), was sent. During transm ission

this is corrupted by a binary error vector (e i : eg) of length ri2 and such th a t

108

YES

ND

YES

YES

ND

ND

YES

DECODE TO

UNSELECTED LONG
CODEW ORD ?

DECODE TO

REA D n l-B IT S

SELECT SHORT
CODEWORD

UNSELECTED SHORT
CODEW ORD ?

READ NEXT
(n 2 -n 1) -B IT S

S E L E C T A
LONGCODEWORD

SELECT A DIFFERENT
LONG CODEWORD

DECODE TO CLOSEST
CODEWORD, EITHER

LONG O R SH O RT

SELECT A DIFFERENT
SHORT CODEWORD

Figure 5.1

109

: 62)) < t. Now 6 i con ta ins n j - b i t s a n d 62 con ta ins (?%2 — r i i) -b i t s an d

th e e r ro rs m ay be d is t r ib u te d in any way be tw een th em . In S tep 1, th e first

r i i -b i t s , t h a t is p + e i , will be co m p ared w ith sh o r t codew ords. Let s be any

s h o r t codew ord , th e n c / t (p + e i , s) = ^ ^ (p + e i , s) an d

<^h(p ,P + e i) + d n i p + e i , s) > d / / (p , s)

=> dH{p + ei , s) > dH(p,s) - d n (p ,P + e i)

dnip + e i ,s) > t + 1

b ecau se th e code is a t-prefix code, d j / (p , s) > 2t -b 1, also d f f (p , p + e i) =

t- T h u s th e first n i - b i t s will n o t be decoded to a sh o r t codew ord .

Now (p + : a -f 62) will be co m p ared w ith th e long codew ords , w h en it is

c o m p a re d w ith a codew ord , (p ' : a ') , o th e r t h a n th e one th a t was sen t,

d r i i P + e i : a -b 62), (p ' : a ')) = d n ((p + e i : a -f 62), (p ' : a '))

a n d

d H Ü P : a) , (p -b e i : a -b 62)) + d n ü p + e i : a -b 02), (p ' : a '))

> d H Ü P : a) , (p ' : a '))

d H Ü P + 01 : a -b 02), (p ' : a ')) > d n Ü P : a) , (p ' : a))

- d n Ü P : a) , (p -b 01 ; a -b 02))

=> d H ((p + 01 : a - b 0 2) , (p ' : a ')) > t - b 1

b ec au se (p : a) an d (p ' : a ') are b o th codew ords an d the re fo re a t leas t 2t -b 1

a p a r t a n d d n ((p : a) , (p -b 0 i : a + 02)) = w h {{^ i ' 02)) < L T h ere fo re th e

7i2-bits will n o t be decoded to a long codew ord o th e r t h a n th e one t h a t was

sen t. T h e y will be decoded to th e one th a t was sen t, because ^ ^ ((p + 01 :

a -b 02), (p : a)) = d n Ü P + 0 i : a -b 02), (P : a)) = w ; f ((0 i : 02)) < L T h u s , if

110

a long codeword is sent and less than t errors occur, correct decoding will take

place. Therefore the theorem is proved. □

The discussion so far has been involved with decoding a single word. If the

scheme’s performance is to be assessed, then it must not be forgotten th a t

once synchronization is lost, there will be knock-on errors to be dealt with.

How synchronization errors are handled is seen in the decoding scheme of the

specific example, which follows later.

So far, only general results about two-length codes have been given, atten tion

is now turned towards a specific method of forming two-length codes.

§5.3.1 T w o -L e n g th B in a ry C o d es w ith n? — 2ni

This section will use the same notation as previous sections for short codewords,

long codewords etc. It will specify a method of forming two-length codes with

722 = 2rii. The reason for this choice of codeword lengths is to perm it the

decoder to regain synchronization without outside intervention, why this occurs

will become apparent in §5.4.1. First consider the construction of the code.

Let 722 = 2 t2 i and choose 72% to be the blocklength of a known, linear, binary

t-error-correcting block code, 5 . This code will be called the base code. Choose

some of the codewords of S to be short codewords and some to form the set of

prefices, LCp. This choice must be such tha t S C H LCp = 0 and thus the code

is a t-prefix code. The set of addons, LCa, is also made up of codewords from

S , w ith no restriction on the choice tha t can be made, thus some codewords

111

from the base code may appear in LCa and one of LCp and SC .

The long codewords are formed by pairing prefices and addons, each addon may

be paired with more than one prefix and vice versa. The size of the sets m ust be

such th a t a unique codeword exists for each character in the source alphabet.

Thus a two-length code is formed from one existing block code, such codes

will be called Derived codes. Each letter of the source alphabet is assigned

a codeword, either long or short, depending on the relative probability of the

le tter being sent. Encoding can then be performed by using a look-up table,

th a t is a table th a t lists each source le tter together with its codeword.

At the decoder the received sequence is first considered as n j-b it blocks and

passed through a decoder for the base code. This decoder will, by definition,

correct t errors in every n i-b it block. The second process is to split the n i-b it

blocks into codewords, this is done sequentially. T hat is, if the first block is in

S C then it is considered as a short codeword and if the next block is in LCp,

then this block and the next block are considered to be a long codeword. Note

th a t if the th ird block is not an addon for the second block, i.e. they do not

form a codeword, then a ? is output. The decoding process continues in a like

m anner for the whole received sequence.

If Pi and p 2 are as in §5.1.3, then the average wordlength, N , obtained by using

a two-length code is given by

N =PlTli-\- P2U2

112

but p 2 — 1 — Pi and for Derived codes, TI2 = 2 tii, which gives

N d = PiTi i 4- 2ni(l - p i)

= n i { 2 - p i) (5.1)

One of the aims of using two-length codes is to reduce the average wordlength

to less than the blocklength of a comparable fixed-length block code, the next

section examines some bounds on the blocklength and dimension of the base

code for this aim to be achievable.

§5.3.2 B o u n d s on B lock len gth and D im en sion

There are well tabulated bounds on the blocklength, dimension and m inim um

distance of block codes, see [Ve], with improvements by R. Hill and K.L. Traynor

(to be published). Thus for a given alphabet, it would be easy to find the

shortest blocklength code with sufficient codewords th a t would correct t errors.

Let the blocklength and dimension of such a code be n and k respectively. Let

Til and ki be the blocklength and dimension of the base code used to form the

Derived code of §5.3.1. Suppose tha t the source alphabet has a letters, each

w ith probability f i of being output by the source, with the letters arranged so

th a t f i > /i-fi Vi. Let 5 = | 5(7 | and L = | LCp |, then

5

Pi = ^ f i
i = l

Now, for a Derived code to be worth using it is required th a t Njj < n , thus

71i(2 — Pi) < n

thus n i < - — — 5 — - (5.2)
2)^i=l Ji

113

It is clear th a t n j < n, otherwise the Derived code can never do better than

the block code.

Now S codewords from the base code have been used as short codewords, but

any of the remaining 2^ ̂ — S codewords may be used as prefices and any of the

2* ̂ codewords from the base code may be used as addons. Thus the maxim um

num ber of codewords for the Derived code is

5 + (2 ^ 1 _ 5)2*'

and this m ust be at least as great as the num ber of letters in the alphabet.

Therefore

5 + (2 * 1 - 5)2*=: > a

(2*1)2 _ 5 2 * i + (5 - a) > 0

^ 2 '“ >
 ̂ 5 + v ' 5 2 - 45 + 4a

or

However, a > 5,=^ 5^ — 45 + 4a > 5^, therefore the second bound on 2*i

cannot be true, thus

ki > log2(5 + V S ^ - 45 + 4a) - 1 (5.3)

Now, because rii < n and both codes have minimum distance at least 2t + 1

and n is the shortest blocklength code with dimension A:, it is clear th a t ki < k.

Equation (5.2) provides an upper bound for n i and Equation (5.3) provides

a lower bound for A;i, which is upper bounded by k. Both (5.2) and (5.3) are

114

dependent on 5 and for a given S it may not be possible to find rii, ki th a t both

satisfy the bounds. The next section will examine the effects of synchronization

errors on Derived codes.

§5.4.1 In vestiga tion o f the Synchronization P rop er ties o f B in ary

T w o-L en gth C odes w ith n-, — 2n,

This section is concerned only with synchronization errors and not w ith char­

acter errors. Thus it is the length of a codeword th a t is im portan t, not the

character th a t it represents. The possible sequences of rii- bit blocks th a t can

be transm itted and those tha t could be received can be regarded as a Markov

chain. Consider the following specific example. (Note th a t it is assumed th a t the

decoder for the base code always produces a codeword). Let all the codewords of

the base code be used as either a short codeword or a prefix, let LCa = SCULCp

and let L C = L C p x LCa- These codes will be called complete Derived codes.

The Markov chain for such a code is given in Figure 5.2.

The sequences tha t are sent and received look like sequences of codewords from

the base code. Let Wi be the set of those codewords from the base code which

are short codewords and W 2 the set of those codewords which are prefices. Then

a word received th a t is in Wi may be a short codeword or an addon, similarly

a word received tha t is in W 2 may be the start of a long codeword or the end of

one. In Figure 5.2, the states are numbered for ease of identification. For states

1 to 13, the top line describes the word tha t was sent and the bottom line the

word th a t was received, e.g. state 4 indicates tha t the current n i-b its were sent

115

(/)

O -*

Figure 5.2

116

as a prefix to a long codeword, because of channel errors the base code decoder

has ou tpu t a word from Wi and, because of the current position in splitting the

n i-b it words into codewords, this word will be taken as a short codeword.

S tate 0 is passed through when the received sequence of n i-b it words is split

so th a t the current codeword ends where a codeword ends in the transm itted

sequence. State 0 is passed through after every codeword when the received

sequence is in-synch and it marks the point of regaining synchronization when

the decoding of the received sequence has been out-of-synch.

The Markov chain assumes a BSC and th a t, if the decoder for the base code

ou tpu ts an incorrect codeword, the codeword produced is equally likely to be

any of codewords other than the one tha t was sent. The symbols used on the

branches of the Markov chain diagram to indicate the probability of passing

from a particular state to another denote the following quantités :

(i) p = p i, the probability tha t a short codeword is sent.

(ii) qi is the probability tha t a word in W 2 is received, given th a t a word in Wi

was sent.

(iii) q2 is the probability tha t a word in Wi is received, given th a t a word in

W 2 was sent.

(iv) r = th a t is the probability tha t an addon is in Wi.

The Markov chain dem onstrates why choosing 712 = 2 ni leads to good synchro­

nization recovery. For example, the paths 0,4,8,0 and 0,4,9,0 only exist because

the addon of a long codeword can also be a short codeword.

117

A path through the Markov chain which leaves state 0 will pass through one

of two distinct state sets, the out-of-synch states {4 ,5 ,6 ,7 ,8 ,9 ,1 0 ,1 1 ,1 2 ,1 3 }

or the in-synch states {1,2,3} before returning to state 0. One property of a

variable length coding scheme tha t it is desirable to know is the expected length

of tim e th a t the decoder will be out-of-synch, given th a t a synchronization error

occurs. T hat is, the expected length of time before synchronization is regained.

(There is another param eter which could be considered, th a t is the average tim e-

out-of-synch over the whole transmission). For the Markov chain in question,

passing through each state (except state 0) represents the decoding of one n i-b it

block. Thus, it is possible to calculate the average num ber of n i-b it blocks th a t

will be out-of-synch, given tha t a synchronization error occurs. This is done by

finding the average length of the path through the out-of-synch states between

two consecutive visits to state 0 , assuming tha t the out-of-synch states where

entered on leaving state 0. Consider the following :

E (tim e out-of-synch, given tha t a synchronization error occurs) = E (time in

out-of-synch states between two successive visits to state 0 , given th a t the out-

of-synch states are entered) = E(time out-of-synch between two successive visits

to s ta te 0)/p(go out-of-synch from state 0).

Let S e be the expected time out-of-synch between two successive visits to sta te

0. Then S e may be found from the stationary distribution of the Markov

chain. The following is taken from [GS], §6.2, pages 119 - 125. The Markov

chain in question is finite, irreducible and therefore recurrent with stationary

d istribution I I , where I IP = II. The transition m atrix, P , of the Markov chain

is the m atrix of probabilities of transfer from each state to every other. Now

Hi = where pi is the mean recurrence time of state i. Let pi{k) be the

118

m e a n n u m b e r of visits of th e chain to s ta te i be tw een two successive visits to

s t a t e k. T h e n , if A; is a non-nu ll s ta te of an irreducib le , p e r s is ta n t cha in , th e n

th e re is a s ta t io n a ry d is t r ib u tio n I I w ith Hi = pi{k)//jLk- Now th e m e a n of a

s u m equals th e su m of the m eans an d therefore

13

S e =

" S s ;

1

' è S " '

The Markov chain of Figure 5 . 2 satisfies all the necessary constraints and has

transition m atrix P as in Figure 5.3.

To find the stationary distribution it is neceessary to solve IIP = II from the

following set of equations :

IIo = II2 + II3 -f- Ila + Ilg + IÏ1 2 + II 13 (1)

Hi = (1 - p)(l - 9 2) 1 1 0 (2)

H2 (3)

113 = p (l - 9 i)IIo (4)

114 = (1 — p)Q2^o ()̂

115 = P9i IIq (6)

lie = rg i(II 4 -f IIio -f f lu) (7)

II7 = (1 — r) (l — 9 2)(Il4 T IIio + II ii) (8)

Ils = r (l — 9 i) (I l 4 -f IIio + H u) (9)

II9 = (1 — T’)9 2 (Il4 + IIio + H u) (10)

119

(l-p)dl2) 0 plHD (l-p)q2

P=

rql (l-r)(l-q2) r(l-ql) (H)q2 0 0

(l-p)q2 |l-p)(l-q2) p(l-ql) pql

(l-p)q2 (l-p|(l-q2) p(l-ql) pql

(l-p)q2 (l-p)(l-q2) p(l-ql) pql

rql (l-r)(l-q2| r(l-ql) (l-rjq2

rql (l-r)(l-q2) r(l-ql) |l-r)q2

Figure 5.3

120

IIio — (1 — p)ç2(Il5 - f Ile + II7) (11)

n i l = (1 - P)(l - 92)(H5 4- Ho + H7) (12)

H i2 = p (i - 9 i) (n 5 + n6 + n7) (1 3)

Hi3 = P9i (Hs + Ile + 0 7) (14)

As the Hi form a probability distribution, there is the following additional

constraint :
13

E n ; = i (15)
1 = 0

Because the Markov chain is finite and irreducible the above 15 equations have

a unique solution. Hence the first fourteen equations have solutions forming

a 1-dimensional vector space. Thus, wlog, set Ho = 1 and consider the first

fourteen equations only, then use equation (15) to find the particular solution.

Setting Ho = 1 gives

H2 + H3 + Hg + Hg + H i 2 + H i 3 = 1

III = (1 - p) (l - 9 2)

H2 = (1 — p)(l — 9 2)

113 = p (l - 9i)

114 = (1 - p)q2

115 = P9i

from equations (1) - (6) respectively. Combining (7) and (8) and substitu ting

for H 4 gives

Ho + Hr = [(1 — r) (l — 9 2) + ’'9 i][(l ~ p) ? 2 + Hio + H u]

Combining (11) and (12) and substituting for IL5 gives

IIio + Hii = (1 - p){pqi + lie + H7)

121

Combining these last two equations gives

He + II7 = [(1 - r) (l - 9 2) + ’’9 iJ[(l - p)Ç2 + (1 - p)(pgi + He + II7)]

Rearranging gives

n i n _ [(1 - - 9 2) + r 9 i][(l - p)(92 4- P9i)]

S ubstitu ting (16) into the equation for IIio 4 - H u and rearranging gives

It is now possible to remove all the Hi from the LHS of (15), therefore to obtain

the particu lar solution it is necessary to solve

\ f , _ I I [(1 - 5 2) + T -g i) (l-p) (? 2 + p g i)
(1 - p) [(l - r) (l - Î 2) H-rçi]

■ . . , (1 - P) g 2 j ^(1 -p) (p q i + [(1 - r) (l - gz) + rg i](l - p)g2

1 - (1 - P) [(l - ’’)(! - Ç 2) + rqi]

R earranging gives

1 + (2 - p) (l + P 9 i) + (1 - p) [(l - r) (l 9 2) 4- r 9 i] [p 4 - 2 9 2 - P92 ~ 3]) ^
I 1 - (1 - p) [(l - r) (l - 92) + r 9 i] /

(18)

To obtain the particular solution, put IIo = A and solve for the remaining Iii.

However recall that

S e =
Ho

1 — (Ho 4- H i 4- H 2 4- H 3)
" H^

Thus, from equations (2),(3) and (4)

1 - A[3 + 2 9 2 (p - 1) - p(çi 4- 1)]
S e = ----------------------Â

122

Substitu ting for A from (18) and rearranging gives

It can be seen from Figure 5.2, tha t the probability of entering the out-of-synch

states is pqi -f (1 — p)q2 = p{qi — 9 2) + 9 2 and therefore

Theorem 5.3 The expected number of u i-b it blocks that are out-of-synch,

given that a synchronization error occurs, is Eos where

z? _ P(9i - 9 2) , (P9i + 92)(2 - p)
■̂ 03 --- / \ 1

P{qi - 9 2) + 92 (1 - (1 - p) [(l - r) (l - 9 2) + 'T9 i])(p (9 i - 9 2) + 9 2)

□

Notice th a t it is not surprising tha t 9 % and 9 2 appear in the formula for Eos.,

even though they are associated with going out-of-synch. This is because one

of the ways to regain synchronization is for (in effect) another synchronization

error to occur.

This section has developed a measure of the average time the decoder will be

out-of-synch once a synchronization error occurs for complete Derived codes.

The next section considers Eos when less severe restrictions are placed on the

sets L C and LCa-

§5 .4 . 2 E . . w h e n L C . C SC U LCj, a n d LC C LCj, x LCg

The codes of this section are Derived codes, with each codeword of the base code

being either a short codeword or a prefix in the two-length code. But, unlike

123

complete Derived codes, the set of addons does not consist of all the prefices and

all the short codewords, i.e. LCa C SC U LC p. Also the constraint th a t the long

codewords be the Cartesian product of the prefices and the addons is relaxed.

Instead, it is insisted th a t each prefix has the same num ber of addons associated

w ith it, æ of these addons come from SC and y come from LCp, where x and y

are fixed for all prefices. These codes are called hxed-ratio Derived codes.

In this case it is possible to decode an Tij-bit block to a prefix and for the

next n i-b it block not to be a possible addon. In this situation specify th a t the

decoder will consider the two blocks to be a long codeword, but th a t this word

will be flagged as uncertain.

W ith all the above assumptions, the Markov chain for the decoding process for

this code is the same as for complete Derived codes, if r is defined as follows

X
r =

x F y

This is because the Markov chain deals with synchronization errors, not char­

acter errors and no different synchronization errors can occur with the codes of

this section as from the codes of the previous section. Hence, the form ula for

Eos is also valid for fixed-ratio Derived codes.

The next section introduces a specific two-length code for the 26 characters of

the English alphabet, based on the ideas of §5.3.1 - §5.4.2.

124

A Binary Two-Length Code for the English Alphabet

The binary, linear, 1-error-correcting block code with the shortest blocklength

th a t has at least 26 codewords, is a (9,5) code. Consider forming a Derived

code for the English alphabet as used in normal text. The relative frequency of

the occurrence of each letter is given in Figure 5 .4 .

If the chosen base code has minimum distance 3, then this forces the prehces

and the short codewords to have a minimum distance of 3. Thus the Derived

code formed will be a f-prefix code with t = 1 . Refer to equation (5.3), the

least value of 5 is 1, otherwise the code is not two-length. If 5 = 1 then

^ 1 ^ log2 (l + \/l0 1) — 1, thus the least value of ki is 3. The binary, linear,

1-error-correcting block code of dimension 3 with the shortest blocklength is a

(6,3) code. W ith n = 9 and rii = 6 , to satisfy (5.2), it is required th a t

from Figure 5.4 it can be seen tha t this requires 5 > 6 . Now the (6,3) code has

8 codewords, if 6 become short codewords there are a maximum of 2 prehces.

All the codewords of the (6,3) code can be addons, therefore such a Derived

code can have at most 6 4- (2 X 8) = 22 codewords and thus is insufficient for

the English alphabet.

Lengthening the blocklength of the base code merely makes things worse, there­

fore consider a base code of dimension 4. For this code to be 1 -error-correcting

it m ust have blocklength 7. Can a Derived code be formed from 16 codewords

125

Position Letter Relative
Frequency

Cumulative
Relative Frequency

1 E 12.702 12.702
2 T 9.056 21.758
3 A 8.167 29.925
4 0 7.507 37.432
5 I 6.966 44.398
6 N 6.749 51.147
1 S 6.327 57.474
8 H 6.094 63.568
9 R 5.987 69.555
10 D 4.253 73.808
11 L 4.025 77.833
12 C 2.782 80.615
13 U 2.758 83.373
14 M 2.406 85.779
15 W 2.360 88.139
16 F 2.228 90.367
17 G 2.015 92.382
18 Y 1.974 94.356
19 F 1.929 96.285
20 B 1.492 97.777
21 V 0.978 98.755
22 K 0.772 99.527
23 J 0.153 99.680
24 X 0.150 99.830
25 Q 0.095 99.925
26 Z 0.074 100.00

Figure 5.4

126

of length 7 ? Equation (5.2) gives

5

1 = 1

Figure 5.4 shows tha t this requires 5 > 10. A (7,4) code has 16 codewords, if 1 0

become short codewords then there are at most 6 prehces, but each prehx can

have up to 16 addons. Thus such a code has a maximum of 1 0 + (6 x 16) = 106

codewords, which is quite sufhcient for the English language! It is therefore

possible to have more short codewords than 1 0 , and thus reduce the average

w ordlength of the code further, even 15 short codewords and 1 prehx can still

provide sufficient codewords for the English alphabet.

Suppose th a t it is desired to form a hxed-ratio Derived code for the English

alphabet, then an exhaustive search through all possible ways of splitting the

codewords of the base code into short codewords and prehces shows th a t only

an 11:5 or a 14:2 split produces a code where each prehx has the same num ber

of addons. §5.4.2 also requires tha t each prehx have a given num ber of addons

from S C . If an 11:5 split is chosen, then each prehx could have 0 , 1 , 2 or 3

addons from S C and if the 14:2 split is chosen each prehx may have 5 or 6

addons from SC .

The rem ainder of this chapter will examine the performance of hxed-ratio De­

rived codes formed by choosing the Hamming (7,4) code as the base code and

looking at all six of the splits described in the previous paragraph. These hxed-

ratio Derived codes will be denoted as (S.x) D-codes, where S is the num ber of

short codewords and x is the number of short codewords used as addons for each

prehx. The Hamming (7,4) code is perfect because the vector space G F {2 y can

127

be partitioned into disjoint sets, each set containing a single codeword and those

words th a t are distance one from it. Hence, a decoder for the Hamming (7,4)

code always outputs a codeword. The next section looks at the values of Eos

for the six codes to be considered.

§5.5.2 Synchron ization P roperties for T w o-L ength C odes Form ed

from th e H am m in g (7 A) code

Recall the formula for Eos and consider sending messages of English text. For

a given code, the number of short codewords, S , determines p (this being the

sum of the probabilities of occurrence of the first S letters in Figure 5.4), but

r is determ ined by the number of short codewords th a t are used as addons

for each prefix. The probabilities qi and q2 depend upon the error statistics

for the channel in use. Assume a BSC with bit error probability then the

probability th a t the decoder for the base code ouputs an incorrect codeword is

given by

ço = 1 - (1 - PbT"- - nipb{l - PbT̂ ~̂

Now, because it was assumed (§5.4.1) th a t when the decoder outputs an erro­

neous codeword, it is equally likely for this to be any codeword other than the

one th a t was sent, qi and Ç2 are given by

s
= 5 + L - l ^ “

where S = | W i I and L =\ W 2 |-

128

The form ula for can be w ritten in term s of p, go, r , S and L as follows

E = ~ , _______________ (p£ + _5) (2 - p) ________________
p (L - S) + S (p (l _ 5) + 5) (i _ (i _ p) [i _ , + î o M | ± ^])

This section will obtain upper bounds for Eos for each of the (S,x) D-codes.

There are six cases to consider.

(1) (11,0) D-code (p = 0.77833).

- 6 p (5p + l l) (2 - p)
Eo. = — + ... 11- 6 p + l l (i i - 6 p) (l - (l - p) [l - üç„])

To maximise Eo, it is necessary to minimize go- Thus,

E„, < 2.955

(2) (11,1) D-code (p = 0.77833).

- 6 p (5p 4- 11)(2 - p)
- 6 p + 1 1 ^ (1 1 - 6 p)(l - (1 - p) [| - ^90])

To maximize Eos if is necessary to minimize çq. Thus

Eo. < 2.635

(3) (11,2) D-code (p = 0.77833).

—6 p (5p 4 - 11)(2 — p)_______

- 6 p 4-11 ^ (11 - 6 p)(l - (1 - p) [| - ^9o])

As before, minimize go to give

Eo. < 2.365

(4) (11,3) D-code (p = 0.77833).

- 6 p (5p 4 -11)(2 - p)
- 6 p 4- n (l l - 6 p) (l - (l - p) [| g o])

129

This time, to maximize Eo,, maximize on. Thus

Eo, < 2.365

(5) (1 4 , 5) D-code (p = 0 . 8 5 7 7 9) .

E = ^ ^ 2 p (2 p + 1 4) (2 - p) ___________

1 4 - 1 2 p (1 4 _ I 2 p) (l - (1 - p) [l - A g u]

To maximize Eo,, minimize go- Thus

E„. < 2 . 1 8 3

(6) (14,6) D-code(p = 0.85779).

- 1 2 p (2 p - 1 1 4) (2 - p)
■̂ 03 — T~4 7% I1 4 - 1 2 p (1 4 - 1 2 p) (l - (l - p) [i g „]

To maximize E q. , maximize go- Thus

E„., < 2.159

The above bounds on Eq. show tha t these (S,x) D-codes have very good ex­

pected synchronization recovery properties. Remember th a t Eos represents the

num ber of n^-bit blocks tha t are out-of-synch, the num ber of characters will be

less because some blocks will be paired into long codewords.

§5.5.3 W h y R estr ict A tten tion to = 2ni ?

For two-length codes, it is intuitive that taking ng = T%i, where 7 is an integer,

will produce better synchronization properties than if ri2 is not a multiple of

130

n j . But why choose 7 = 2 ? The choice to study codes with 7 = 2 was made

because it was felt tha t such a ratio of wordlengths would provide the best

synchronization properties. (The better the synchronization properties, the less

error propagation and so, hopefully, the better performance). This feeling can

be justified by using the results of §5.5.2. If TI2 = 7 TI1 then, if a synchronization

error occurs, the minimum number of n i-b it blocks tha t are out-of-synch is 7 .

This is because when a synchronization error occurs, it must somehow involve a

long codeword and thus the length of a long codeword determines the m inim um

num ber of n j-b it blocks tha t are out-of-synch. Therefore, the expected num ber

of Til-bit blocks out-of-synch, E^X?) > 7 - §5.5.2 shows th a t Eog(2) < 3 for

certain values of p, g, r. Now Eo.(3) > 3 for any p, g, r and so on for larger

7 . Thus, as it is known tha t there exist two length codes which achieve a

lower average out-of-synch burst length than the best th a t can be hoped for by

choosing a larger 7 , these seemed the most appropriate codes to study.

§5.6.1 S im u la tio n o f C o d e P e rfo rm a n c e

The performance of each of the six (S,x) D-codes of the previous section has

been sim ulated along with tha t of a 5 -bit ASCII code, a Titchener code, [Ti],

and a (9,5) block code for the 26 letters of the English language. The sim ulation

was done using the Pascal programs of Appendix 2, together with a 73 line file

of English text taken from a magazine article.

Figure 5.5 gives the parity-check m atrix for the Hamming (7,4) code used to

form the (S,x) D-codes. Also given is the parity-check m atrix for the (9,5) block

131

f \
1 1 1 0 1 0 0

0 1 1 1 0 1 0

^ 1 1 0 1 0 0 1

P a r i ty -ch eck matrix
of the Hamming (7,4) code.

E = 100
T = 101
A = 0000
0 = 0001
1 = 0011
N = 0101
S = 0111
H = 1111
R = 00100
D = 00101
L = 0 1 1 0 1
C = 11100
U = 11101
M = 010000
W = 010001
F = 010011
G = 110000
Y = 110001
P = 110011
B = 110101
V = 110111
K = 01 0 0 1 0 0
J = 0100101
X = 1100100
Q = 1100101
Z = 1101100

0 1 1 1 0 0 0

1 0 1 1 0 0 1 0 0

0 1 1 1 0 0 0 1 0

. 0 0 0 0 1 0 0 0 1V J
P a r i ty -ch eck matrix

of the (9,5) b lockcode

C odewords of the
T -c o d e .

Figure 5.5

132

code. The order in which the codewords of both these codes are used does not

affect the simulation. The T-code (also given in Figure 5.5) was formed as in

the m ethod of code construction ([Ti], page 1), at each stage it was the first

element in the list tha t was sacrificed as the prefix. A comparison was made

between T-codes and D-codes because T-codes are relatively new and seem to

show good synchronization properties.

There is one program for each different type of code. Each program reads the

d a ta from the English text (the message), encodes the data in the appropriate

code and errors are then added to the encoded data. The program then decodes

the corrupted data and produces the received version of the message file.

The errors are added to the encoded data by reading bit-wise from a file of zeros

and ones, where a one occurs with a fixed probability, and adding these bits

(m odulo 2) to the bits of the encoded message. The error files were generated

using the Random Bernoulli function on the M initab system. This function

produces the results of Bernoulli trials with a specified probability of a one

occurring.

The sim ulation for each code produced a value for the probability of a character

being in error in the received version of the message. For the fixed length codes

this was obtained simply by comparing the received message and the transm it­

ted message character by character and recording an error if the two characters

differ. For the variable length codes, the message and the received da ta do

not always contain the same number of characters and regaining character syn­

chronization often requires skipping more characters in one file than the other.

133

T h e n u m b e r of c h a rac te r erro rs was tak en to be th e n u m b er of ch a ra c te rs in th e

t r a n s m it te d m essage th a t could n o t be recovered from th e received m essage. F or

ex a m p le , if th e to p line is th e tra n s m itte d m essage an d th e b o tto m line w h a t

is rece iv ed , th e follow ing has a s trin g of th ree erro rs an d th en a single e rro r.

Y O U L L F IN D M E V E R Y D IF F IC U L T A N N O U N C E S

Y B E L F IN D M E V E R Y T E IF F IC U L T A N N O U N C E S

T h is can be seen by rep lacing erroneous ch a rac te rs in th e received m essage by

sp aces so th a t c h a ra c te r sy n chron iza tion is m a in ta in ed , th u s th e above ex am p le

b eco m es
Y O U L L F IN D M E V E R Y D IF F IC U L T A N N O U N C E S

Y L F IN D M E V E R Y IF F IC U L T A N N O U N C E S

T h e e rro rs w ere co u n ted in th is way, as it ap p e a re d th e m ost a c c u ra te m e th o d

o f im ita t in g how a p erso n w ould read th e m essage. For each received file th e

n u m b e r of c h a ra c te r erro rs was coun ted using an in te ra c tiv e P asca l p ro g ra m .

T h is p ro g ra m also reco rded th e m ax im u m n u m b er of consecu tive c h a ra c te r e r­

ro rs (th e m ax im u m b u rs t len g th of ch a rac te r e rro rs) an d also th e average b u rs t

le n g th of c h a ra c te r e rro rs.

F o r th e (S ,x) D -codes, th e am o u n t of tim e ou t-o f-synch is also m easu red . T h is

is d o n e by c rea tin g tw o e x tra files each consisting of th e ch a rac te rs ‘S ’ an d ‘L O ’.

T h e firs t file is c rea ted as th e m essage is encoded , each tim e a sh o rt codew ord is

p ro d u c e d an ‘S ’ is w ritten to th e file an d each tim e a long codew ord is p ro d u c ed

‘L O ’ is w rit te n . A sim ilar process is perfo rm ed a t th e decod ing end as th e final

file o f te x t is w ritte n . T h e two files are read ch a rac te r by ch a ra c te r , w h ils t th e

files ag ree th e received d a ta is in -synch , w hen th ey d isagree it is o u t-o f-sy n ch

134

and the num ber of characters which disagree is the number of n^-bit blocks tha t

are out-of-synch. Both the average and the maximum number of n i-b it blocks

out-of-synch are recorded for each received message.

Thus, the simulation produces two measures for (S,x) D-codes, time out-of-

synch and character error burst length. Both these measures are useful. The

am ount the data is out-of-synch is a measure of how much error propagation

is caused by the fact tha t the code is not of fixed blocklength. The error burst

length is im portan t to the user, who is essentially interested in how much data

he can recover.

Note, the synchronization properties of T-codes are not measured here as Titch-

eners own results are given in [Ti]. The next section gives the results of the

sim ulations.

§5 .6 .2 S im u la tio n R e su lts

The results are presented in two forms, graphs and tables.

F igure 5.6 compares the performance of the four (l l ,x) D-codes. It can be

seen th a t the more short codewords tha t are used as addons the better the

perform ance. This follows because word-synchronization is regained quicker

and there is thus less error propagation. Word-synchronization is recovered

quicker because :

(i) Suppose th a t a prefix is mistaken for a short codeword, but its addon is

received as it was sent. If the addon is from the set of short codewords,

135

then it will be decoded as a short codeword and word-synchronization is

regained after two n j-b it blocks. However if the addon is from the set of

prehces then it will be decoded to the prefix of a long codeword and the

next n^-bit block, which was sent as a short codeword or as a prefix, will be

taken as an addon, thus word-synchronization is not regained for at least

three n i-b it blocks.

(ii) Suppose tha t a short codeword is mistaken for a prefix, but the following

Til-bit blocks are received as sent. The next rii-bit block will be taken as

an addon for the prefix. If the next block is a short codeword then word-

synchronization is regained after two Tii-bit blocks. If the next block is the

prefix to a long codeword and the next is an addon from the set of short

codewords, then word-synchronization is regained after three rii bit blocks.

If the next block is a prefix with an addon from the set of prefices then this

addon is taken to be a prefix and word-synchronization is not regained for

a t least four n i-b it blocks.

F igure 5.7 compares the performance of the two (14,x) D-codes. (There are in

fact two lines on this graph). Although there is little difference between them ,

the one with the most short codewords as addons gives the better performance

for the same reasons as above. Figure 5.8 compares the best (11,x) D-code

w ith the best (14,x) D-code. The one with 14 short codewords gives the best

perform ance. This follows from similar reasoning to the above, the more blocks

from the set of short codewords, the easier synchronization is regained.

136

Figure 5.9 compares the performance of the best (S,x) D-code (the (14,6) D-

code) w ith th a t of the 9-bit block code, the 5 -bit ASCII code and the T-code.

This graph does not account for the fact tha t they all have different data rates.

Under this m ethod of comparison, the graph shows tha t D-codes give the better

perform ance.

Figures 5.10, 5.11 and 5.12 compare the various codes, compensating for the

different da ta rates. The comparison was done by assuming a BSC with AWGN,

the relationship between the bit-error probability and the quantity E i, /N q is

given in [Pr], page 146. Such a comparison is necessary if the da ta is being

transm itted over a bandwidth limited channel.

The reason for this necessity is th a t for binary signalling, the required band­

w idth is inversely proportional to the time taken to send one bit on the chan­

nel. Now, to achieve the same information rate with codes of different average

wordlengths, the bits of the longer codes must be sent quicker than the bits

of the shorter codes. Hence, the longer codes require more bandw idth. This

causes problems if the amount of bandwidth available is limited. P lotting the

character error probabilities against E t/No in effect, compares the character

error rates when the same bandwidth is used for bits from each code. Further

details may be obtained from [Pr], page 156.

Figure 5.10 shows th a t T-codes do appear better on bandwidth limited channels.

However, Figure 5.11 shows that the (S,x) D-code does much better than the

9-bit block code, whereas Figure 5.12 shows that the T-code does not have such

a significant gain over the 5 -bit ASCII code. From Figure 5.9, the (S,x) D-code

137

is b e tte r than the 9-bit block code, even when the differing d a ta rates are not

com pensated for. W hereas the 5-bit ASCII performs better than the T-code

until the differing da ta rates are com pensated for.

F igure 5.13 compares the average character burst error properties for (S,x)

D-codes and T-codes and the first table of Figure 5.15 gives the m axim um

character burst error length for these codes. Figure 5.14 plots the average

num ber of n j-b it blocks before synchronization is regained for (S,x) D-codes and

the second table of Figure 5.15 gives the maxim um value. The points of Figure

5.14 com pare favourably with the theoretical results of §5.5.2, rem em bering th a t

each point comes from just one observation whereas the theoretical result is the

expected value.

The sim ulations gave the following average wordlengths, for the T-code N =

4.34956 bits per character, for the (l l ,x) D-code, = 8.59197 bits per char­

acter and for the (14,x) D-code N d = 8.02591 bits per character. The values for

the (S,x) D-codes are close to the expected average wordlengths given by equa­

tion (5.1). This equation gives, for the 11 short codewords, N u = 8.55169 and

for the 14 short codewords, = 7.99547. The expected average wordlength

for the T-code used is TV = 4.32539

§5.7.1 C on c lu s ion s

T he concept of an error-correcting two-length code has been introduced, to ­

gether w ith some linearity considerations and a distance measure. Also, a gen­

138

eral decoding scheme was presented. Two-length codes with 712 = 2tii have

been discussed and theoretical results on their synchronization properties have

been given.

Next the concept of forming two-length codes with 1x2 = 2 rii from a known code

was introduced. One specific example for a given alphabet was then considered,

b u t the m ethod of form ation could be used with any known code and for any

alphabet where the characters are not all equally likely to occur.

A tw o-length code formed from the Hamming (7,4) code was studied in detail.

This code was shown to have good synchronization properties. It also im proved

b o th the average w ordlength and the output character error rate over the nearest

com parable block code. The last of these is particularly pleasing, because most

variable length codes sacrifice da ta integrity for da ta rate.

T he w riter suggests th a t this m ethod of forming two-length codes could have

w ide-ranging applications and th a t these initial results give indications th a t

good perform ance may be achieved. Also, the idea of using wordlengths th a t

are m ultiples of 2 of the shortest wordlength could be extended to m ulti-length

codes. For example, a k-length code with wordlengths r i i , 7 1 2 , . . . , rijt where

rii = 2 n i_ i, i = 2 , . . . ,k . This is perhaps an area for fu ture research.

139

0) 0) CD CD~o T3 X) T3o O o OY Y Y Y
Q Q Q Q
o CM CO

zz .

C\J

Iou
6

oco
§
Eo
o

o

CO

o

CDO
d

o

CM

o

CMCO

2
CL
t

LLI

(JOJJ0 jepBJBqo)cl

Figure 5.6

140

0)
■§o

0)
■§o

in CD

CM

g

O

%

Oco
<0zz(üQ
E
ü

o

00

o

o
CM
d o

Q.
t

LU

m

(J O J J 0 J 0 P B J B L l O) d

Figure 5.7

141

0)
8

œ■o
8

CO CO

CVJ

S
?o
X

sCÛ
T3
C
(0

I
co(g
m
Q,
Eo
O

o

o

CD
o
d

o

CM

o
o

o
d

- 2
o_

I
cû

(J O J J 0 j e p B J E q o) d

Figure 5.8

142

o
<
!û
in

0)"Oo0
1
m

0)
■8o

-g 6

I I

CM

Î2o
ü
2m.c

ü
0

1
(0 szQ

iO
CM

g
T3O
O

Co
g
s
Eo

ü

o

o

o

o
d

CM

J o
4_ o
l o
d

CM
dco

c>
in

o

-e
CL

I
LU

ÛQ

(J 0 J J 9 J 9 l O B J B q o) d

Figure 5.9

143

o
■§o

(D
■§O

n
LU
r

s
?u
■D
C
(0
V)
0>
%o
H
Oc0w
1
Eo

ü

r lO

- co

- CM

CM
OCO O

LU

(J 0 J J 8 j e p B J B M o) d

Figure 5.10

144

Q

Q

I
8

Cû

oz
B
LU

(D
1O

XJc
(Q
â>
?o
UO

Cû

co
<2cmQ
Eo
O

r if)

- co

- CM

O
dCM

d

:â
LU

(J 0 J J 9 J0PBJBL|O)d

Figure 5.11

145

0)

1
K<
S
uS

n
LU
r

ü<n<
■Dc
(0
0)

8
A
Ocow’ü
C3Q
E

ü

- CVI

o
dCM

d
co
d

in
d o

LU

(J 0 J J 9 j e ; o B J B L i o) d

Figure 5.12

146

(D■aoo

(D d) ®
" D ■D T 3
O O O
O Y Y

û Q Q

O co CD
-r--

ZZ-

CM

(/)k-Oi_
&-
LU
k-
Bu
£
(0

JZ
ü

o
£
3m
co
o
B0 c
CD_J
Q)

g
1
O

Co
<2zz
(0
Q
Eo
O

o

o
d

CD

O

O

«Û_
g
m

m6u0i isjng Joug jbmq 'av

Figure 5.13

147

<D
■8o

®
8

®-ooo

CO lO
1- "4̂

CO

0 c >,

1
3O
J2oo
.o

c
o
o£l
E
3C
>
(0
0)

cov>■z
s
E
Ü

00

CO

o

CM

C L
t

LU

m

S O s)jOO|q ijq-LU "ou A\/

Figure 5.14

148

1 1 .0 11,1 11.2 1 1 ,3 14 , 5 14,6 T-code
Bit Err
Prob

0 0 0 0 0 0 1 0.0001
1 1 1 1 0 0 4 0.0014
1 1 1 1 1 1 5 0.0093

7 0.0201
4 4 3 2 2 2 9 0.0300

1 3 0.0398

5 4 4 4 3 3 1 2 0.0506
5 4 4 4 4 4 0.0663

8 5 5 5 5 5 0.0748

7 7 7 6 4 4 0.1017

Maximum length of a burst of character errors

11, 0 11. 1 11. 2 11, 3 14,5 14, 6 T-code
Bit Err

Prob

0 0 0 0 0 0 - 0.0001

0 0 0 0 0 0 - 0 .0008

6 4 3 3 2 2 - 0 . 0106

6 8 5 3 4 3 - 0 . 0192
6 6 5 5 3 3 - 0 . 0298

6 8 5 3 3 3 - 0 . 0396
7 6 5 4 3 3 - 0.0490

6 8 7 7 4 4 - 0 . 0662

8 8 7 5 4 3 - 0.0743

1 0 8 7 5 5 5 - 0 . 0988

Maximum number of ni-bit b locks o u t -o f - sv n c h .

Figure 5.15

149

R E F E R E N C E S

[BS] Som e Combinatorial Results on Variable Length Error-Correcting

Codes, M.A. Bernard and B.D. Sharm a, BCC 1987.

[Bl] Theory and Practice o f Error Control Codes, R. E. B lahut, Addison

Wesley.

[BPP] The Application o f Error Control to Communications, E .R. Berle-

kamp, R.E. Peile and S.P. Pope, IEEE Comms M agazine, Vol.25,

No.4, April 1987, p.44-57.

[Do] The Digital Cellular SHF 900 System , J. L. D ornstetter.

[Do,85] French Patent Application No. 8508098, J. L. D ornstetter, filed

30/05/85.

[GGW] Comma-free codes, S.W. Golomb, B. Gordon and L.R. Welch, Can.

J. M ath., 1958, 10, p.202-209.

[GS] Probability and Random Processes, G.R. G rim m ett and D.R. Stirza-

ker, Oxford Science Publications, 1982.

[Ha] Foundations o f Coding Theory, W .E. H artnett (ed), D. Reidling

Publishing Co., D ordretcht, Holland, 1974.

150

[McE] The Theory o f Information and Coding, R .J. McEliece, Encyclopedia

of M athem atics and it Applications, vol 3, Addison Wesley.

[MWS] The Theory o f Error-Correcting Codes, F. J. M acW illiams and N.

J. A. Sloane, N orth Holland.

[Pr] Digital Communications, J.G . Proakis, McGraw-Hill, 1983.

[PW] Error-Correcting Codes, W. W. Peterson and E. J. Weldon, M IT

Press.

[St] M ultiple-Burst Error Correction with the Chinese Rem ainder T he­

orem, J. J. Stone, J. Soc. Indust. Appl. M ath., Vol. 11, No. 1,

M arch 1963, p .74-81.

[Ti] Digital Encoding by means o f new T-Codes to provide im proved

data synchronization and message integrity, M.R. T itchener, lE E

Proceedings, vol.131, P t.E , No.4, July 1984, p .151-153.

[Ve] U pdated Table o f Upper and Lower Bounds on dMAX{n,k)^ T. Ver-

hoeff, IEEE Trans. IT, vol. IT-33, no. 5, Sept. 1987, p.666.

151

App ç n d i x X

p r o g r a m c o h n (o u t p u t , r e s f i l e) ;

(* T h i s p r o g r a m e v a l u a t e s t h e p r o b a b i l i t y o f c o r r e c t *)
(* d e c o d i n g f o r b o t h t r a d i t i o n a l s t a n d a r d a r r a y *)
(* d e c o d i n g a n d a v a r i a t i o n o n t h i s b y P r o f . P . M . C o h n *)

(* F i n a l V e r s i o n : 1 0 t h D e c e m b e r 1 9 8 7 *)

t y p e

m a t r i x = a r r a y [3 . . 1 0 0 , 0 . . 1 0 0] o f r e a l ;

v a r

n c r : m a t r i x ;

n , k , t , m i n k , m a x t : i n t e g e r ;

C o h n , T r a d , x , l a s t x , m i n p , m a x p : r e a l ;

r e s f i l e : t e x t ;

s a t i s f i e d : b o o l e a n ;

p r o c e d u r e c a l c n c r ;

(* C a l c u l a t e s a n d p l a c e s i n t h e a r r a y n c r t h e v a l u e s *)

(* o f n c h o o s e r f o r a l l n a n d r b e t w e e n 3 a n d 1 0 0 . *)

v a r

n , r : i n t e g e r ;

b e g i n { n c r }

f o r n : = 3 t o 1 0 0 d o

b e g i n

n c r [n , 0] : = 1 ;

f o r r : = l t o n d o
n c r [n , r] : = n c r [n , r - 1] * (n - r + l) / r

e n d

e n d ; { n c r }

p r o c e d u r e c a l c r h s (n , k : i n t e g e r ; x : r e a l ;

v a r P c : r e a l) ;

(* C a l c u l a t e s t h e p r o b a b i l i t y o f c o r r e c t d e c o d i n g *)

(* f o r C o h n ' s s c h e m e *)

v a r
i : i n t e g e r ;

b e g i n { c a l c r h s }

P c : = 1 ;
f o r i : = l t o (n - k) d o

P c : = P c * (1 + x)

e n d ; { c a l c r h s }

p r o c e d u r e c a l c l h s (n , t : i n t e g e r ; x : r e a l ;
v a r P c : r e a l) ;

152

p r o c e d u r e c a l c l h s (n , t : i n t e g e r ; x : r e a l ;

v a r P c : r e a l) ;

{ * C a l c u l a t e s t h e p r o b a b i l i t y o f c o r r e c t d e c o d i n g f o r *)
(* t h e t r a d i t i o n a l s c h e m e *)

v a r

i : i n t e g e r ;

p o w e r : r e a l ;

b e g i n { c a l c l h s }

P c : = 1 ;

p o w e r : = 1 ;

f o r i : = 1 t o t d o
b e g i n

p o w e r : = p o w e r * x ;

P c : = P c + n c r [n , i] * p o w e r
e n d

e n d ; { c a l c l h s }

b e g i n { m a i n }

c a l c n c r ;

r e w r i t e (r e s f i l e) ;

w r i t e l n (r e s f i l e , ' n ' : 4 , ' k ' : 4 , ' t ' : 4 , ' M i n p ' : 7 ,

' M a x p ' : 7) ;

f o r n : = 3 t o 1 0 0 d o

b e g i n

m i n k : = n d i v 2 ;

f o r k : = m i n k t o (n - 2) d o

b e g i n

m a x t : = (n - k) d i v 2 ;

f o r t : = 1 t o m a x t d o

b e g i n

l a s t x : = 0 ;

x : = 0 . 0 1 ;
s a t i s f i e d : = f a l s e ;

w h i l e (n o t (s a t i s f i e d) a n d (x < = (1 / 9))) d o

b e g i n

c a l c l h s (n , t , x , T r a d) ;
c a l c r h s (n , k , x , C o h n) ;

i f C o h n > T r a d t h e n

b e g i n

s a t i s f i e d : = t r u e ;
m i n p : = l a s t x / (1 + l a s t x) ;

m a x p : = x / (1 + x) ;
w r i t e l n (r e s f i l e , n : 4 , k : 4 , t : 4 ,

m i n p : 7 , m a x p : 7)

e n d ;

l a s t x : = x ;

X : = x + 0 . 0 1

e n d

e n d

e n d

e n d ;
c l o s e (r e s f i l e) ;

w r i t e l n (c h r (7))

e n d .

153

AppendiK 2

p r o g r a m a s c i i s i m (i n p u t , a s c i c o d e , m e s s a g e , d a t a s e n t ,

l e t t e r o r d e r , d a t a r c v d , a s c i f i n a l , e r r o r s , o u t p u t) ;

(* T h i s p r o g r a m e n c o d e s t h e E n g l i s h t e x t o f t h e f i l e *)

(* m e s s a g e i n 5 - b i t A S C I I , w r i t i n g t h e r e s u l t i n g b i t s *)

(* i n t h e f i l e d a t a s e n t . T h e c o n t e n t s o f t h i s f i l e a r e *)

(* t h e n a d d e d s e q u e n t i a l l y t o t h e b i t s i n t h e f i l e *)

(* e r r o r s , t h e b i t w i s e s u m s b e i n g p l a c e d i n t h e f i l e *)

(* d a t a r c v d . T h e b i t s o f t h i s f i l e a r e d e c o d e d i n 5 - b i t *)

(* b l o c k s t o t h e a p p r o p r i a t e E n g l i s h c h a r a c t e r . *)

t y p e

c o l = a r r a y [1 . . 2 6] o f c h a r ;

w o r d = p a c k e d a r r a y [1 . . 5] o f c h a r ;

c o d e a r r a y = a r r a y [1 . . 2 6] o f w o r d ;

v a r

a s c i c o d e , m e s s a g e , e r r o r s , d a t a s e n t , d a t a r c v d ,

a s c i f i n a l , l e t t e r o r d e r : t e x t ;

c o d e w o r d s : c o d e a r r a y ;

c : c o l ;

b i t c o u n t , c h a r c o u n t : i n t e g e r ;

b i t e r r p : r e a l ;

p r o c e d u r e p r o g h e a d e r ;

{ w r i t e s i n i t i a l i n f o t o t h e s c r e e n }

b e g i n { p r o c e d u r e p r o g h e a d e r }
w r i t e l n (' T h i s p r o g r a m s i m u l a t e s a 5 - b i t A s c i i c o d e f o r

t h e E n g l i s h ') ;

w r i t e l n (' c a p i t a l l e t t e r s ') ;
w r i t e l n (' P l e a s e s u p p l y t h e b i t e r r o r p r o b a b i l i t y o f t h e

c u r r e n t e r r o r f i l e ') ;

r e a d l n (b i t e r r p)

e n d ; { p r o c e d u r e p r o g h e a d e r }

p r o c e d u r e s e t u p c o d e (v a r i n f i l e : t e x t ;
v a r c o d e : c o d e a r r a y) ;

{ c o p i e s t h e c o d e w o r d s f r o m i n f i l e t o t h e a r r a y c o d e }

v a r
i , c o u n t : i n t e g e r ;

b e g i n { p r o c e d u r e s e t u p c o d e }

r e s e t (i n f i l e) ;

c o u n t : = 0 ;
w h i l e n o t (e o f (i n f i l e)) d o

b e g i n
c o u n t : = c o u n t + 1 ;

f o r i : = 1 t o 5 d o
r e a d (i n f i l e , c o d e [c o u n t , i]) ;

r e a d l n (i n f i l e) ;

154

e n d

e n d ; { p r o c e d u r e s e t u p c o d e }

p r o c e d u r e w r i t e w (v a r o u t f i l e : t e x t ; c w n o : i n t e g e r) ;

{ w r i t e s a s i n g l e c o d e w o r d t o o u t f i l e }

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e w r i t e c w }

f o r i : = 1 t o 5 d o

w r i t e (o u t f i l e , c o d e w o r d s [c w n o , i])
e n d ; { p r o c e d u r e w r i t e c w }

p r o c e d u r e w r i t e c w o r d (v a r o u t f i l e : t e x t ; c h : c h a r) ;

{ w r i t e s t h e c o d e w o r d c o r r e s p o n d i n g t o c h t o o u t f i l e }

b e g i n { p r o c e d u r e w r i t e w o r d }

c a s e c h o f

' E ' w r i t e w o u t f i r l e , 1) ;
1 rp 1 w r i t e w o u t f i l e , 2) ;

' A ' w r i t e w o u t f i l e , 3) ;

' O ' w r i t e w o u t f i l e , 4) ;

' I ' w r i t e w o u t f i l e , 5) ;

' N ' w r i t e w o u t f i l e , 6) ;

' S ' w r i t e w o u t f i l e , 7) ;

' H ' w r i t e w o u t f i l e , 8) ;

' R ' w r i t e w o u t f i l e , 9) ;

' D ' w r i t e w o u t f i l e , 1 0)

' L ' w r i t e w o u t f i l e , 1 1)

' C w r i t e w o u t f i l e , 1 2)

' U ' w r i t e w o u t f i l e , 1 3)

' M ' w r i t e w o u t f i l e , 1 4)

' W w r i t e w o u t f i l e , 1 5)

' F ' w r i t e w o u t f i l e , 1 6)

' G ' w r i t e w o u t f i l e , 1 7)

' Y ' w r i t e w o u t f i l e , 1 8)

' P ' w r i t e w o u t f i l e , 1 9)

' B ' w r i t e w o u t f i l e , 2 0)

' V w r i t e w o u t f i l e , 2 1)

' K ' w r i t e w o u t f i l e , 2 2)

' J ' w r i t e w o u t f i l e , 2 3)

' X ' w r i t e w o u t f i l e , 2 4)

' Q ' w r i t e w o u t f i l e , 2 5)

' Z ' w r i t e w o u t f i l e , 2 6)

e n d { c a s e }
e n d ; { p r o c e d u r e w r i t e c w o r d }

p r o c e d u r e e n c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a n E n g l i s h m e s s a g e f r o m i n f i l e a n d w r i t e s t o }

{ o u t f i l e a c o d e w o r d f o r e a c h a l p h a b e t i c c h a r a c t e r }

v a r

155

c o u n t : i n t e g e r ;

c h : c h a r ;

b e g i n { p r o c e d u r e e n c o d e }
r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;
b i t c o u n t : = 0 ;

c h a r c o u n t : = 0 ;

w h i l e n o t (e o f (i n f i l e)) d o
b e g i n

c o u n t : = 0 ;

r e p e a t

r e a d (i n f i l e , c h) ;

i f (c h i n [' a ' . . ' z ']) t h e n

c h : = c h r (o r d (c h) - 3 2) ;
i f (c h i n [' A ' . . ' Z ']) t h e n

b e g i n

c h a r c o u n t : = c h a r c o u n t + l ;

w r i t e c w o r d (o u t f i l e , c h) ;

c o u n t : = c o u n t + l

e n d

u n t i l ((c o u n t = 1 0) o r (e o f (i n f i l e))) ;

w r i t e l n (o u t f i l e) ;

e n d ;

c l o s e (o u t f i l e)

e n d ; { p r o c e d u r e e n c o d e }

p r o c e d u r e a d d e r r o r s (v a r i n f i l e l , i n f i l e 2 , o u t f i l e : t e x t) ;

{ r e a d s b i t w i s e f r o m i n f i l e l a n d i n f i l e 2 a n d w r i t e s t h e }

{ m o d 2 s u m o f e a c h p a i r t o o u t f i l e }

v a r

c h i , c h 2 : c h a r ;

b e g i n

r e s e t (i n f i l e l) ;

r e s e t (i n f i l e 2) ;

r e w r i t e (o u t f i l e) ;

w h i l e n o t (e o f (i n f i l e l)) d o

b e g i n
w h i l e n o t ((e o l n (i n f i l e l)) o r (e o l n (i n f i l e 2))) d o

b e g i n
r e a d (i n f i l e l , c h i) ;

r e a d (i n f i l e 2 , c h 2) ;

i f (c h l = c h 2) t h e n

w r i t e (o u t f i l e , ' 0 ')

e l s e
w r i t e (o u t f i l e , ' 1 ')

e n d ;
i f e o l n (i n f i l e l) t h e n

b e g i n
r e a d l n (i n f i l e l) ;

w r i t e l n (o u t f i l e)

e n d

e l s e

156

readln(infile2)
e n d ;

c l o s e (o u t f i l e)
e n d ;

p r o c e d u r e s e t l e t o r d (v a r o r d e r : c o l) ;

{ R e a d s t h e a l p h a b e t i c c h a r a c t e r s i n o r d e r o f }
{ d e c r e a s i n g p r o b a b i l i t y }

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e s e t l e t o r d }
r e s e t (l e t t e r o r d e r) ;

f o r i : = l t o 2 6 d o

r e a d l n (l e t t e r o r d e r , o r d e r [i])

e n d ; {procedure s e t l e t o r d }

f u n c t i o n c o m p a r e (w l , w 2 : w o r d) : b o o l e a n ;

b e g i n { f u n c t i o n c o m p a r e }

c o m p a r e : = w l = w 2

e n d ; { f u n c t i o n c o m p a r e }

p r o c e d u r e d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ R e a d s b i t s f r o m i n f i l e i n 5 - b i t b l o c k s a n d w r i t e s t h e }

{ c o r r e s p o n d i n g c h a r a c t e r t o o u t f i l e }

v a r

r e c w o r d : w o r d ;
i , j , c o u n t , l i n e c o u n t : i n t e g e r ;

m a t c h : b o o l e a n ;

b e g i n

r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;
w r i t e l n (o u t f i l e , ' B i t e r r o r p r o b a b i l i t y = ' , b i t e r r p) ;

w r i t e l n (o u t f i l e , ' A v e r a g e w o r d l e n g t h = ' ,
bitcount/charcount);

m a t c h : = f a l s e ;

f o r i : = l t o 5 d o
r e a d (i n f i l e , r e c w o r d [i]) ;

l i n e c o u n t : = 0 ;
w h i l e n o t (e o f (i n f i l e)) d o

b e g i n

i : = 0 ;

r e p e a t

i : = i + l ;
m a t c h : = c o m p a r e (r e c w o r d , c o d e w o r d s [i])

u n t i l ((m a t c h) o r (i = 2 6)) ;

i f m a t c h t h e n

b e g i n
w r i t e (o u t f i l e , c [i]) ;

m a t c h : = f a l s e

157

e n d

e l s e

w r i t e (o u t f i l e , ' ? ') ;

l i n e c o u n t : = l i n e c o u n t + l ;

i f (l i n e c o u n t = 79) t h e n
b e g i n

l i n e c o u n t : = 0 ;

w r i t e l n (o u t f i l e)
e n d ;

i f n o t (e o f (i n f i l e)) t h e n
b e g i n

i f e o l n (i n f i l e) t h e n

r e a d l n (i n f i l e) ;

i f n o t (e o f (i n f i l e)) t h e n
f o r i : = 1 t o 5 d o

r e a d (i n f i l e , r e c w o r d [i])
e n d

e n d ;

c l o s e (o u t f i l e)

e n d ;

b e g i n { m a i n b o d y }

p r o g h e a d e r ;

s e t u p c o d e (a s c i c o d e , c o d e w o r d s) ;

e n c o d e (m e s s a g e , d a t a s e n t) ;

a d d e r r o r s (d a t a s e n t , e r r o r s , d a t a r c v d) ;

s e t l e t o r d (c) ;

d e c o d e (d a t a r c v d , a s c i f i n a l) ;

w r i t e l n (c h r (7))
e n d .

158

App.e.ndiK . 2
p r o g r a m b l o c k s i m (i n p u t , b l o c k c o d e , m e s s a g e , t r a n s ,

^ l e t t e r o r d e r , m a t 2 , r e c e i v e d , f i r s t d e c o d e ,

e r r o r s , b l o c k f i n a l , o u t p u t) ;

(* T h i s p r o g r a m e n c o d e s t h e E n g l i s h t e x t o f t h e f i l e *)

(* m e s s a g e i n a (9 , 5) b l o c k c o d e , w r i t i n g t h e r e s u l t i n g *)

(* b i t s i n t h e f i l e d a t a s e n t . T h e c o n t e n t s o f t h i s f i l e *)

(* a r e t h e n a d d e d s e q u e n t i a l l y t o t h e b i t s i n t h e f i l e *)

(* e r r o r s , t h e b i t w i s e s u m s b e i n g p l a c e d i n t h e f i l e *)

(* d a t a r c v d . T h e b i t s o f t h i s f i l e a r e d e c o d e d i n 9 - b i t *)

(* b l o c k s t o a c o d e w o r d w h i c h i s t h e n d e c o d e d t o t h e *)

(* a p p r o p r i a t e E n g l i s h c h a r a c t e r . *)

t y p e

c o l = a r r a y [1 . . 2 6] o f c h a r ;

w o r d = p a c k e d a r r a y [1 . . 9] o f c h a r ;

c o d e a r r a y = a r r a y [1 . . 2 6] o f w o r d ;

v a r

b l o c k c o d e , m e s s a g e , e r r o r s , t r a n s , r e c e i v e d , m a t 2 ,

b l o c k f i n a l , f i r s t d e c o d e , l e t t e r o r d e r : t e x t ;

c o d e w o r d s : c o d e a r r a y ;

c : c o l ;

b i t c o u n t , c h a r c o u n t : i n t e g e r ;

b i t e r r p : r e a l ;

p r o c e d u r e p r o g h e a d e r ;

{ w r i t e s i n i t i a l i n f o t o t h e s c r e e n }

b e g i n { p r o c e d u r e p r o g h e a d e r }
w r i t e l n (' T h i s p r o g r a m s i m u l a t e s a 1 - e r r o r - c o r r e c t i n g

b l o c k c o d e ') ;

w r i t e l n (' f o r t h e E n g l i s h c a p i t a l l e t t e r s ') ;

w r i t e l n (' P l e a s e s u p p l y t h e b i t e r r o r p r o b a b i l i t y o f t h e
c u r r e n t e r r o r f i l e ') ;

r e a d l n (b i t e r r p)
e n d ; { p r c e d u r e p r o g h e a d e r }

p r o c e d u r e s e t u p c o d e (v a r i n f i l e : t e x t ;
v a r c o d e : c o d e a r r a y) ;

{ c o p i e s t h e c o d e w o r d s f r o m i n f i l e t o t h e a r r a y c o d e }

v a r
i , c o u n t : i n t e g e r ;

b e g i n { p r o c e d u r e s e t u p c o d e }

r e s e t (i n f i l e) ;

c o u n t : = 0 ;

159

w h i l e n o t (e o f (i n f i l e)) d o
b e g i n

c o u n t : = c o u n t + 1 ;
f o r i : = 1 t o 9 d o

r e a d (i n f i l e , c o d e [c o u n t , i]) ;
r e a d l n (i n f i l e) ;

e n d

e n d ; { p r o c e d u r e s e t u p c o d e }

p r o c e d u r e w r i t e w (v a r o u t f i l e : t e x t ; c w n o

{ w r i t e s a s i n g l e c o d e w o r d t o o u t f i l e }

i n t e g e r) ;

v a r

i i n t e g e r ;

b e g i n { p r o c e u r e w r i t e c w }
f o r i : = 1 t o 9 d o

w r i t e (o u t f i l e , c o d e w o r d s [c w n o , i]) ;

b i t c o u n t : = b i t c o u n t + 9

e n d ; { p r o c e d u r e w r i t e c w }

p r o c e d u r e w r i t e c w o r d (v a r o u t f i l e : t e x t ; c h : c h a r) ;

{ w r i t e s t h e c o d e w o r d c o r r e s p o n d i n g t o c h t o o u t f i l e }

b e g i n { p r o c e d u r e w r i t e w o r d }

c h o f
w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

w r i t e w

e n d { c a s e }

e n d ; { p r o c e d u r e

c a s e

' E

' T

' A

'0
' I

' N

' S

'H
' R

' D

' L

' C

' U

' M

' W
' F
' G

' Y

’ P

'B
' V

'K
' J

' X

' Q
' Z

(o u t f i l e , 1) ;

(o u t f i l e , 2) ;

(o u t f i l e , 3) ;

(o u t f i l e , 4) ;

(o u t f i l e , 5) ;

(o u t f i l e , 6) ;

(o u t f i l e , 7) ;

(o u t f i l e , 8) ;

(o u t f i l e , 9) ;

(o u t f i l e , 1 0)

(o u t f i l e , 1 1)

(o u t f i l e , 1 2)

(o u t f i l e , 13)
(o u t f i l e , 14)
(o u t f i l e , 15)
(o u t f i l e , 16)
(o u t f i l e , 17)
(o u t f i l e , 18)
(o u t f i l e , 19)
(o u t f i l e , 2 0)

(o u t f i l e , 2 1)

(o u t f i l e , 2 2)

(o u t f i l e , 23)
(o u t f i l e , 24)
(o u t f i l e , 25)
(o u t f i l e , 26)

w r i t e c w o r d }

160

p r o c e d u r e e n c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a n E n g l i s h m e s s a g e f r o m i n f i l e a n d w r i t e s t o

{ o u t f i l e a c o d e w o r d f o r e a c h a l p h a b e t i c c h a r a c t e r }

v a r

c o u n t : i n t e g e r ;

c h : c h a r ;

b e g i n { p r o c e d u r e e n c o d e }
r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;

b i t c o u n t : = 0 ;

c h a r c o u n t : = 0 ;

w h i l e n o t (e o f (i n f i l e)) d o
b e g i n

c o u n t : = 0 ;

r e p e a t

r e a d (i n f i l e , c h) ;

i f (c h i n [' a ' . . ' z ']) t h e n

c h : = c h r (o r d (c h) - 3 2) ;

i f (c h i n [' A ' . . ' Z ']) t h e n

b e g i n

c h a r c o u n t : = c h a r c o u n t + l ;
w r i t e c w o r d (o u t f i l e , c h) ;

c o u n t : = c o u n t + l

e n d
u n t i l ((c o u n t = 1 0) o r (e o f (i n f i l e))) ;

w r i t e l n (o u t f i l e) ;

e n d ;

c l o s e (o u t f i l e)

e n d ; { p r o c e d u r e e n c o d e }

p r o c e d u r e a d d e r r o r s (v a r i n f i l e l , i n f i l e 2 , o u t f i l e : t e x t) ;

{ r e a d s b i t w i s e f r o m i n f i l e l a n d i n f i l e 2 a n d w r i t e s t h e

{ m o d 2 s u m o f e a c h p a i r t o o u t f i l e }

v a r

c h i , c h 2 : c h a r ;

b e g i n

r e s e t (i n f i l e l) ;

r e s e t (i n f i l e 2) ;

r e w r i t e (o u t f i l e) ;
w h i l e n o t (e o f (i n f i l e l)) d o

b e g i n
w h i l e n o t ((e o l n (i n f i l e l)) o r (e o l n (i n f i l e 2))) d o

b e g i n
r e a d (i n f i l e l , c h i) ;

r e a d (i n f i l e 2 , c h 2) ;

i f (c h l = c h 2) t h e n

w r i t e (o u t f i l e , ' 0 ')

e l s e
w r i t e (o u t f i l e , ' 1 ')

161

e n d ;

i f e o l n (i n f i l e l) t h e n
b e g i n

r e a d l n (i n f i l e l) ;

w r i t e l n (o u t f i l e)
e n d ■

e l s e

r e a d l n (i n f i l e 2)

e n d ;

c l o s e (o u t f i l e)
e n d ;

p r o c e d u r e f s t d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a b l o c k o f 9 b i t s f r o m i n f i l e , s i m u l a t e s a }

{ d e c o d e r a n d o u t p u t s t h e r e s u l t i n g c o d e w o r d t o o u t f i l e . }
{ R e p e a t s f o r w h o l e i n f i l e }

v a r

r e c w o r d : a r r a y [1 . . 9] o f i n t e g e r ;

m a t : a r r a y [1 . . 4 , 1 . . 9] o f i n t e g e r ;

s : a r r a y [1 . . 4] o f i n t e g e r ;

f o u n d : b o o l e a n ;

i , i , c o u n t : i n t e g e r ;

c h : c h a r ;

p r o c e d u r e s e t u p m a t r i x ;

{ r e a d s t h e p a r i t y c h e c k m a t r i x o f t h e b l o c k c o d e i n t o

{ t h e a r r a y m a t }

v a r

i , j : i n t e g e r ;

b e g i n { p r o c e d u r e s e t u p m a t r i x }

r e s e t (m a t 2) ;

f o r i : = l t o 4 d o

b e g i n

f o r j : = 1 t o 9 d o

r e a d (m a t 2 , m a t [i , j]) ;

r e a d l n (m a t 2)

e n d
e n d ; {procedure s e t u p m a t r i x }

p r o c e d u r e c o r r e c t (i ,] : i n t e g e r) ;

b e g i n { p r o c e d u r e c o r r e c t }
r e c w o r d [i] : = (r e c w o r d [i] + 1) m o d 2 ;

r e c w o r d [j] : = (r e c w o r d [j] + 1) m o d 2

e n d ; { p r o c e d u r e c o r r e c t }

b e g i n { p r o c e d u r e f s t d e c o d e }

r e s e t (i n f i l e) ;
r e w r i t e (o u t f i l e) ;

s e t u p m a t r i x ;

c o u n t : = 0 ;

162

w h i l e n o t (e o f (i n f i l e)) d o
b e g i n

w h i l e n o t (e o l n (i n f i l e)) d o
b e g i n

f o r i : = 1 t o 9 d o

b e g i n

r e a d (i n f i l e , c h) ;

r e c w o r d [i] : = o r d (c h) - o r d (' 0 ')
e n d ;

f o r i : = 1 t o 4 d o
s [i] : = 0 ;

f o r i : = 1 t o 4 d o

b e g i n

f o r j : = 1 t o 9 d o

s [i] : = s [i] + (m a t [i , j] * r e c w o r d [j]) ;
s [i] : = s [i] m o d 2

e n d ;

c o u n t : = c o u n t + l ;

i f ((s [l] = 0) a n d (s [2] = 0) a n d (s [3] = 0) a n d

(s [4] = 0)) t h e n
f o r i : = l t o 9 d o

w r i t e (o u t f i l e , r e c w o r d [i] : 1)
e l s e

b e g i n

f o u n d : = f a l s e ;

i : = 0 ;

r e p e a t

i : = i + l ;

i f ((m a t [1 , i] = s [1]) a n d (m a t [2 , i] = s [2])

a n d

(m a t [3 , i] = s [3]) a n d (m a t [4 , i] = s [4]))

t h e n

f o u n d : = t r u e

u n t i l (f o u n d o r (i = 9)) ;

i f f o u n d t h e n

r e c w o r d [i] : = (r e c w o r d [i] + 1) m o d 2

e l s e
i f ((s [l] = l) a n d (s [2] = l) a n d (s [3] = 0)

a n d (s [4] = 1))

t h e n

c o r r e c t (1 , 9)

e l s e
i f ((s [l] = 0) a n d (s [2] = l) a n d

(s [3] = l) a n d (s [4] = l))

t h e n

c o r r e c t (4 , 5)

e l s e
i f ((s [1] = 0) a n d (s [2] = 0) a n d

(s [3] = l) a n d (s [4] = l))

t h e n

c o r r e c t (8 , 9)

e l s e
i f ((s [l] = l) a n d (s [2] = 0) a n d

(s [3] = l) a n d (s [4] = l))

t h e n c o r r e c t (2 , 9)

e l s e

163

i f ((s [l] = 0) a n d (s [2] = l) a n d

(s [3] = 0) a n d (s [4] = 1))
t h e n c o r r e c t (1 , 5)
e l s e

c o r r e c t (3 , 5) ;
f o r i : = l t o 9 d o

w r i t e (o u t f i l e , r e c w o r d [i] : 1)
e n d ;

i f (c o u n t = 8) t h e n

b e g i n

w r i t e l n (o u t f i l e) ;

c o u n t : = 0
e n d ;

e n d ;

r e a d l n (i n f i l e)

e n d ;

w r i t e l n (o u t f i l e) ;

c l o s e (o u t f i l e) ;

e n d ; { p r o c e d u r e f s t d e c o d e }

p r o c e d u r e s e t l e t o r d (v a r o r d e r : c o l) ;

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e s e t l e t o r d }

r e s e t (l e t t e r o r d e r) ;

f o r i : = l t o 2 6 d o

r e a d l n (l e t t e r o r d e r , o r d e r [i])

e n d ; { p r o c e d u r e s e t l e t o r d }

f u n c t i o n c o m p a r e (w l , w 2 : w o r d) : b o o l e a n ;

b e g i n { f u n c t i o n c o m p a r e }

c o m p a r e : = w l = w 2

e n d ; { f u n c t i o n c o m p a r e }

p r o c e d u r e d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ M a t c h e s codewords t o E n g l i s h c h a r a c t e r s }

v a r
r e c w o r d : w o r d ;
i , j , c o u n t , l i n e c o u n t : i n t e g e r ;

m a t c h : boolean;

b e g i n
r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;
w r i t e l n (o u t f i l e , ' B i t e r r o r p r o b a b i l i t y = ' , b i t e r r p) ;

w r i t e l n (o u t f i l e , ' A v e r a g e w o r d l e n g t h = ' ,

b i t c o u n t / c h a r c o u n t) ;

m a t c h : = f a l s e ;

164

f o r i : = l t o 9 d o

r e a d (i n f i l e , r e c w o r d [i]) ;
l i n e c o u n t : = 0 ;

w h i l e n o t (e o f (i n f l i e)) d o
b e g i n

i : = 0 ;

r e p e a t

i : = i + l ;

m a t c h : = c o m p a r e (r e c w o r d , c o d e w o r d s [i])
u n t i l ((m a t c h) o r (i = 2 6)) ;
i f m a t c h t h e n

b e g i n

w r i t e (o u t f i l e , c [i]) ;
m a t c h : = f a l s e

e n d

e l s e

w r i t e (o u t f i l e , ' ? ') ;

l i n e c o u n t : = l i n e c o u n t + l ;

i f (l i n e c o u n t = 7 9) t h e n

b e g i n

l i n e c o u n t : = 0 ;

w r i t e l n (o u t f i l e)

e n d ;

i f n o t (e o f (i n f i l e)) t h e n

b e g i n

i f e o l n (i n f i l e) t h e n

r e a d l n (i n f i l e) ;

i f n o t (e o f (i n f i l e)) t h e n

f o r i : = 1 t o 9 d o

r e a d (i n f i l e , r e c w o r d [i])

e n d

e n d ;
c l o s e (o u t f i l e)

e n d ;

b e g i n { m a i n b o d y }

p r o g h e a d e r ;

s e t u p c o d e (b l o c k c o d e , c o d e w o r d s) ;

e n c o d e (m e s s a g e , t r a n s) ;

a d d e r r o r s (t r a n s , e r r o r s , r e c e i v e d) ;

f s t d e c o d e (r e c e i v e d , f i r s t d e c o d e) ;

s e t l e t o r d (c) ;
d e c o d e (f i r s t d e c o d e , b l o c k f i n a l) ;

w r i t e l n (c h r (7))

e n d .

165

AppendiK 2

p r o g r a m t w o l g t h s i m (i n p u t , b a s e c o d e , l e t t e r o r d e r , m e s s a g e ,

t r a n s , e r r o r s , r e c e i v e d , a b m e s s , a b f i n a l , f i r s t d e c o d e ,

d f i n a l , m a t f i l e , o u t p u t) ;

(* T h i s p r o g r a m a s k s w h i c h (S , x) D - c o d e i s r e q u i r e d a n d *)

(* t h e n f o r m s t h i s c o d e f r o m H a m m i n g (7 , 4) c o d e w o r d s , *)

(* w h i c h a r e s t o r e d i n t h e f i l e b a s e c o d e . l t *)

(* t h e n e n c o d e s t h e E n g l i s h t e x t o f t h e f i l e m e s s a g e i n *)

(* t h i s c o d e , w r i t i n g t h e r e s u l t i n g b i t s i n t h e f i l e *)

(* d a t a s e n t . T h e c o n t e n t s o f t h i s f i l e a r e t h e n a d d e d *)

(* s e q u e n t i a l l y t o t h e b i t s i n t h e f i l e e r r o r s , t h e *)

(* b i t w i s e s u m s b e i n g p l a c e d i n t h e f i l e d a t a r c v d . T h e *)

(* b i t s o f t h i s f i l e a r e d e c o d e d i n 7 - b i t b l o c k s t o a *)

(* H a m m i n g (7 , 4) c o d e w o r d . T h e s e c o d e w o r d s a r e t h e n *)

(* i n t o s h o r t a n d l o n g c o d e w o r d s w h i c h a r e t h e n d e c o d e d *)

(* t o t h e a p p r o p r i a t e E n g l i s h c h a r a c t e r . *)

t y p e

c o l = a r r a y [1 . . 2 6] o f c h a r ;

n l b i t s = a r r a y [1 . . 7] o f i n t e g e r ;

w o r d = a r r a y [1 . . 1 4] o f c h a r ;

w o r d a r r a y = a r r a y [1 . . 2 6] o f w o r d ;

v a r

b a s e c o d e , l e t t e r o r d e r , m e s s a g e , t r a n s , e r r o r s , r e c e i v e d ,

f i r s t d e c o d e , d f i n a l , m a t f i l e , a b m e s s , a b f i n a l
: t e x t ;

s i z e w l , s i z e w 2 , r , n u m b a d d o n s , b i t c o u n t , c h a r c o u n t
: i n t e g e r ;

v a l i d : b o o l e a n ;

c o d e w o r d s : wordarray;
c : c o l ;

b i t e r r p • r e a l ;

p r o c e d u r e g e t i n f o (v a r s i z e 1 , s i z e 2 , r a t i o , n o a d d s
: i n t e g e r ;

v a r v a l i d ; b o o l e a n) ;

{ P r i n t s a n d r e a d s u s e r i n f o r m a t i o n a n d d a t a }

b e g i n { p r o c e d u r e g e t i n f o }

v a l i d : = t r u e ;
w r i t e l n (' T h i s p r o g r a m s i m u l a t e s t h e p e r f o r m a n c e o f a

2 - l e n g t h ')

w r i t e l n (' e r r o r - c o r r e c t i n g c o d e f o r t h e E n g l i s h
l a n g u a g e , f o r m e d f r o m ')

w r i t e l n (' t h e H a m m i n g (7 , 4) c o d e w i t h t h e l e n g t h o f t h e
l o n g c o d e w o r d s ')

166

w r i t e l n (’ b e i n g t w i c e t h a t o f t h e s h o r t c o d e w o r d s . ') ;
w r i t e l n ;

w r i t e l n (' P l e a s e e n t e r t h e n u m b e r o f s h o r t c o d e w o r d s ,

(1 1 o r 1 4) : ') ;
r e a d l n (s i z e l) ;

i f ((s i z e l < > 1 1) a n d (s i z e l < > 1 4)) t h e n
v a l i d : = f a l s e ;

s i z e 2 : = 1 6 - s i z e l ;

w r i t e l n (' P l e a s e e n t e r t h e n u m b e r o f s h o r t c o d e w o r d s t o

b e u s e d a s a d d o n s ') ;
w r i t e l n (' f o r e a c h p r e f i x : ') ;

r e a d l n (r a t i o) ;

w r i t e l n (' P l e a s e s u p p l y b i t e r r o r p r o b a b i l i t y o f c u r r e n t

e r r o r f i l e ') ;
r e a d l n (b i t e r r p) ;

n o a d d s : = (2 6 - s i z e l) d i v s i z e 2 ;

i f ((r a t i o < 0) o r (r a t i o > n o a d d s)) t h e n

v a l i d : = f a l s e ;

i f ((n o a d d s - r a t i o) > s i z e 2) t h e n

v a l i d : = f a l s e

e n d ; { p r o c e d u r e g e t i n f o }

p r o c e d u r e f o r m c o d e (v a r c o d e : w o r d a r r a y ;
v a r s i z e l , s i z e 2 , r , n o a d d s : i n t e g e r) ;

{ c a l c u l a t e s t h e c o d e w o r d s a c c o r d i n g t o s p e c i f i c a t i o n s o f }

{ g e t i n f o a n d w r i t e s t h e m t o t h e a r r a y c o d e w o r d s }

v a r
w l n o , i , j , c o u n t , n e x t : i n t e g e r ;

b e g i n { p r o c e d u r e f o r m c o d e }

r e s e t (b a s e c o d e) ;

f o r i : = 1 t o s i z e l d o

b e g i n

f o r j : = 1 - t o 7 d o

r e a d (b a s e c o d e , c o d e [i , j]) ;

f o r j : = 8 t o 1 4 d o

c o d e [i , j] : = ' ' ;
r e a d l n (b a s e c o d e)

e n d ;

c o u n t : = s i z e l + 1 ;

w h i l e (c o u n t < = 2 6) d o

b e g i n
f o r j : = 1 t o 7 d o

r e a d (b a s e c o d e , c o d e [c o u n t , j]) ;

r e a d l n (b a s e c o d e) ;
f o r i : = 1 t o (n o a d d s - 1) d o

f o r j : = 1 t o 7 d o
c o d e [c o u n t + i , j] : = c o d e [c o u n t , j] ;

c o u n t : = c o u n t + n o a d d s

e n d ;
c o u n t : = s i z e l + 1 ;

w l n o : = 1 ;
w h i l e (c o u n t < = 2 6) d o

b e g i n

167

f o r i : = 1 t o r d o

b e g i n

i f (w l n o > s i z e w l) t h e n
w l n o : = 1 ;

f o r j : = 8 t o 1 4 d o

c o d e [c o u n t , j] : = c o d e [w l n o , j - 7] ;
c o u n t : = c o u n t + l ;

w l n o : = w l n o + l
e n d ;

n e x t : = c o u n t + n o a d d s ;

f o r i : = (r + 1) t o n o a d d s d o
b e g i n

i f (n e x t > 2 6) t h e n

n e x t : = s i z e l + n e x t - 2 6 ;

f o r j : = 8 t o 1 4 d o

c o d e [c o u n t , j] : = c o d e [n e x t , j - 7] ;

n e x t : = n e x t + n o a d d s ;

c o u n t : = c o u n t + l

e n d

e n d

e n d ; (p r o c e d u r e f o r m c o d e }

p r o c e d u r e w r i t e w o r d (v a r o u t f i l e : t e x t ;

c w n o : i n t e g e r) ;

{ w r i t e s t o o u t f i l e 1 c o d e w o r d a c c o r d i n g t o i t s s i z e }

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e w r i t e w o r d }

i f (c w n o < = s i z e w l) t h e n

b e g i n

f o r i : = 1 t o 7 d o

w r i t e (o u t f i l e , c o d e w o r d s [c w n o , i] : 1) ;

b i t c o u n t : = b i t c o u n t + 7 ;

w r i t e (a b m e s s , ' s ')

e n d

e l s e
b e g i n

f o r i : = 1 t o 1 4 d o
w r i t e (o u t f i l e , c o d e w o r d s [c w n o , i] : 1) ;

b i t c o u n t : = b i t c o u n t + 1 4 ;

w r i t e (a b m e s s , ' l o ')

e n d
e n d ; { p r o c e d u r e w r i t e w o r d }

p r o c e d u r e w r i t e c w (v a r o u t f i l e ; t e x t ; c h : c h a r) ;

{ w r i t e s o u t t h e c o d e w o r d f o r a g i v e n l e t t e r]

b e g i n { p r o c e d u r e w r i t e c w }

c a s e c h o f
' E ' : w r i t e w o r d (o u t f i l e , 1)

' T ' : w r i t e w o r d (o u t f i l e , 2)
' A ' : w r i t e w o r d (o u t f i l e , 3)

168

' O '

' I '

' N '

' S '

' H '

' R '

' D '

' L '

' C

' U '

' M '

' W
' F '

' G '

' Y '

' P '

' B '

' V

' K '

' J '

' X '
' Q '

' Z '

w r i t e w o r d (o u t f i l e , 4) ;

w r i t e w o r d (o u t f i l e , 5) ;

w r i t e w o r d (o u t f i l e , 6) ;

w r i t e w o r d (o u t f i l e , 7) ;

w r i t e w o r d (o u t f i l e , 8) ;

w r i t e w o r d (o u t f i l e , 9) ;

w r i t e w o r d (o u t f i l e , 1 0)

w r i t e w o r d (o u t f i l e , 1 1)

w r i t e w o r d (o u t f i l e , 1 2)

w r i t e w o r d (o u t f i l e , 1 3)

w r i t e w o r d (o u t f i l e , 1 4)

w r i t e w o r d (o u t f i l e , 1 5)

w r i t e w o r d (o u t f i l e , 1 6)

w r i t e w o r d (o u t f i l e , 1 7)

w r i t e w o r d (o u t f i l e , 1 8)

w r i t e w o r d (o u t f i l e , 1 9)

w r i t e w o r d (o u t f i l e , 2 0)

w r i t e w o r d (o u t f i l e , 2 1)

w r i t e w o r d (o u t f i l e , 2 2)

w r i t e w o r d (o u t f i l e , 2 3)

w r i t e w o r d (o u t f i l e , 2 4)

w r i t e w o r d (o u t f i l e , 2 5)

[w r i t e w o r d (o u t f i l e , 2 6)

e n d { c a s e }

e n d ; { p r o c e d u r e w r i t e c w }

p r o c e d u r e e n c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a n E n g l i s h m e s s a g e f r o m i n f i l e a n d w r i t e s t o }

{ o u t f i l e a c o d e w o r d f o r e a c h a l p h a b e t i c c h a r a c t e r }

v a r

c h : c h a r ;

c o u n t : i n t e g e r ;

b e g i n { p r o c e d u r e e n c o d e }

r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;

r e w r i t e (a b m e s s) ;

b i t c o u n t : = 0 ;

c h a r c o u n t : = 0 ;
w h i l e n o t (e o f (i n f i l e)) d o

b e g i n

c o u n t : = 0 ;

r e p e a t
r e a d (i n f i l e , c h) ;
i f (c h i n [' a ' . . ' z ']) t h e n

c h : = c h r (o r d (c h) - 3 2) ;

i f (c h i n [' A ' . . ' Z ']) t h e n

b e g i n
w r i t e c w (o u t f i l e , c h) ;

c h a r c o u n t : = c h a r c o u n t + l ;

c o u n t : = c o u n t + l

e n d
u n t i l ((c o u n t = 5) o r (e o f (i n f i l e))) ;

169

w r i t e l n (o u t f i l e) ;
w r i t e l n (a b m e s s)

e n d ;

c l o s e (o u t f i l e) ;

e n d ; { p r o c e d u r e e n c o d e }

p r o c e d u r e a d d e r r o r s (v a r i n f i l e l , i n f i l e 2 , o u t f i l e : t e x t) ;

{ r e a d s b i t w i s e f r o m i n f i l e l a n d i n f i l e 2 , m o d 2 a d d s e a c h }

{ p a i r o f b i t s a n d o u t p u t s t h e r e s u l t t o o u t f i l e }

v a r

b l , b 2 , i : i n t e g e r ;

p : r e a l ;

c h : c h a r ;

b e g i n

r e s e t (i n f i l e l) ;

r e s e t (i n f i l e 2) ;

r e w r i t e (o u t f i l e) ;

w h i l e n o t (e o f (i n f i l e l)) d o
b e g i n

w h i l e n o t ((e o l n (i n f i l e l)) o r (e o l n (i n f i l e 2))) d o
b e g i n

r e a d (i n f i l e l , c h) ;

b l : = o r d (c h) - o r d (' 0 ') ;
r e a d (i n f i l e 2 , c h) ;

b 2 : = o r d (c h) - o r d (' 0 ') ;

w r i t e (o u t f i l e , ((b l + b 2) m o d 2) : 1)

e n d ;

i f (e o l n (i n f i l e l)) t h e n

b e g i n

r e a d l n (i n f i l e l) ;

w r i t e l n (o u t f i l e)

e n d

e l s e
r e a d l n (i n f i l e 2)

e n d ;

c l o s e (o u t f i l e)

e n d ; { p r o c e d u r e a d d e r r o r s }

p r o c e d u r e h a m m i n g d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a b l o c k o f 7 b i t s f r o m i n f i l e , s i m u l a t e s a }

{ H a m m i n g d e c o d e r a n d o u t p u t s t h e r e s u l t i n g c o d e w o r d t o }

{ o u t f i l e . R e p e a t s f o r w h o l e i n f i l e }

v a r

r e c w o r d : n l b i t s ;
m a t : a r r a y [1 . . 3] o f n l b i t s ;
s : a r r a y [1 . . 3] o f i n t e g e r ;

f o u n d : b o o l e a n ;

i , i , c o u n t : i n t e g e r ;

c h : c h a r ;

p r o c e d u r e s e t u p m a t r i x ;

170

{ r e a d s t h e p a r i t y c h e c k m a t r i x o f t h e H a m m i n g (7 , 4) c o d e }
{ i n t o t h e a r r a y m a t }

v a r

i , j : i n t e g e r ;

b e g i n { p r o c e d u r e s e t u p m a t r i x }

r e s e t (m a t f i l e) ;
f o r i : = l t o 3 ^ d o

b e g i n

f o r j : = 1 t o 7 d o

r e a d (m a t f i l e , m a t [i , j]) ;
r e a d l n (m a t f i l e)

e n d

e n d ; {procedure s e t u p m a t r i x }

b e g i n { p r o c e d u r e h a m m i n g d e c o d e }

r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;
s e t u p m a t r i x ;

c o u n t : = 0 ;

w h i l e n o t (e o f (i n f i l e)) d o

b e g i n

w h i l e n o t (e o l n (i n f i l e)) d o

b e g i n

f o r i : = 1 t o 7 d o

b e g i n

r e a d (i n f i l e , c h) ;

r e c w o r d [i] : = o r d (c h) - o r d (' 0 ')

e n d ;
f o r i : = 1 t o 3 d o

s [i] : = 0 ;

f o r i : = 1 t o 3 d o

b e g i n

f o r j : = 1 t o 7 d o

s [i] : = s [i] + (m a t [i , j] * r e c w o r d [j]) ;

s [i] : = s [i] m o d 2

e n d ;

c o u n t : = c o u n t + l ;
i f ((s [l] = 0) a n d (s [2] = 0) a n d (s [3] = 0)) t h e n

f o r i : = l t o 7 d o
w r i t e (o u t f i l e , r e c w o r d [i] : 1)

e l s e
b e g i n

f o u n d : = f a l s e ;

i : = 0 ;
r e p e a t

i : = i + l ;
i f ((m a t [1 , i] = s [1]) a n d (m a t [2 , i] = s [2])

a n d (m a t [3 , i] = s [3]))

t h e n
f o u n d : = t r u e

u n t i l f o u n d ;
r e c w o r d [i] : = (r e c w o r d [i] + 1) m o d 2 ;

f o r i : = l t o 7 d o
w r i t e (o u t f i l e , r e c w o r d [i] : 1)

171

e n d ;

i f (c o u n t = 1 0) t h e n
b e g i n

w r i t e l n (o u t f i l e) ;

c o u n t : = 0
e n d ;

e n d ;

r e a d l n (i n f i l e)
e n d ;

w r i t e l n (o u t f i l e) ;

c l o s e (o u t f i l e) ;

e n d ; { p r o c e d u r e h a m m i n g d e c o d e }

p r o c e d u r e s e t l e t o r d (v a r o r d e r t c o l) ;

{ r e a d s i n t o a n a r r a y t h e E n g l i s h a l p h a b e t i n t h e o r d e r }

{ o f t h e r e s p e c t i v e p r o b a b i l i t i e s o f o c c u r r e n c e }

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e s e t l e t o r d }

r e s e t (l e t t e r o r d e r) ;

f o r i : = 1 t o 2 6 d o

r e a d l n (l e t t e r o r d e r , o r d e r [i])

e n d ; { p r o c e d u r e s e t l e t o r d }

f u n c t i o n c o m p a r e (w l , w 2 : w o r d ; s t a r t : i n t e g e r) : b o o l e a n ;

{ r e t u r n s a v a l u e t r u e i f f t h e t w o s u p p l i e d 7 b i t }

{ s e q u e n c e s a r e t h e s a m e }

v a r
c h e c k : b o o l e a n ;

i : i n t e g e r ;

b e g i n { f u n c t i o n c o m p a r e }

i : = 1 ;

c h e c k : = t r u e ;
w h i l e ((i < = 7) a n d c h e c k) d o

b e g i n
c h e c k : = w l [i] = w 2 [s t a r t + i] ;

i : = i + l

e n d ;
c o m p a r e : = c h e c k

e n d ; { f u n c t i o n c o m p a r e }

p r o c e d u r e r e a d n l b i t s (v a r c w o r d i w o r d ; v a r f i n i s h e d :
b o o l e a n ;

v a r i n f i l e : t e x t) ;

v a r
i : i n t e g e r ;

b e g i n

172

i f e o f (i n f i l e) t h e n

f i n i s h e d : = t r u e

e l s e i f e o l n (i n f i l e) t h e n

r e a d l n (i n f i l e) /

i f e o f (i n f i l e) t h e n

f i n i s h e d : = t r u e ;

i f n o t (f i n i s h e d) t h e n

f o r i : = l t o 7 d o

r e a d (i n f i l e , c w o r d [i])

e n d ; { p r o c e d u r e r e a d n l b i t s }

p r o c e d u r e e n g l i s h d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ t r a n s l a t e s a f i l e o f b i t s i n t o E n g l i s h l e t t e r s }

v a r

c w o r d : w o r d ;

i , c o u n t , j : i n t e g e r ;

m a t c h , f i n i s h e d : b o o l e a n ;

b e g i n

r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;

r e w r i t e (a b f i n a l) ;

w r i t e l n (o u t f i l e , ' A v e r a g e n u m b e r o f b i t s p e r c h a r a c t e r

= ' , b i t c o u n t / c h a r c o u n t) ;
c o u n t : = 0 ;

f i n i s h e d : = f a l s e ;

w h i l e n o t (f i n i s h e d) d o

b e g i n

r e a d n l b i t s (c w o r d , f i n i s h e d , i n f i l e) ;

i f n o t (f i n i s h e d) t h e n

b e g i n

c o u n t : = c o u n t + l ;

m a t c h : = f a l s e ;

i : = 0 ;

w h i l e n o t (m a t c h) d o

b e g i n

i : = i + l ;
m a t c h : = c o m p a r e (c w o r d , c o d e w o r d s [i] , 0)

e n d ;
i f (i < = s i z e w l) t h e n

b e g i n

w r i t e (o u t f i l e , c [i]) ;

w r i t e (a b f i n a l , ' s ')

e n d

e l s e

b e g i n

w r i t e (a b f i n a l , ' l o ') ;
r e a d n l b i t s (c w o r d , f i n i s h e d , i n f i l e) ;

i f n o t (f i n i s h e d) t h e n

b e g i n

j : = 0 ;
m a t c h : = f a l s e ;

w h i l e (n o t (m a t c h) a n d
(j < = n u m b a d d o n s - 1)) d o

173

begin
m a t c h : = c o m p a r e (c w o r d ,

c o d e w o r d s [i + j] , 7) ;
j : = j + l

e n d ;

i f m a t c h t h e n

w r i t e (o u t f i l e , c [i + j - 1])
e l s e

w r i t e (o u t f i l e , ' ? ')
e n d

e l s e

w r i t e (o u t f i l e , ' * ')
e n d

e n d ;

i f c o u n t = 7 0 t h e n
b e g i n

w r i t e l n (o u t f i l e) ;
w r i t e l n (a b f i n a l) ;
c o u n t : = 0

e n d ;

i f c o u n t = 3 5 t h e n

w r i t e l n (a b f i n a l)

e n d ;

c l o s e (o u t f i l e)

e n d ; { e n g l i s h d e c o d e }

b e g i n { m a i n b o d y }

g e t i n f o (s i z e w l , s i z e w 2 , r , n u m b a d d o n s , v a l i d) ;
i f v a l i d t h e n

b e g i n

f o r m c o d e (c o d e w o r d s , s i z e w l , s i z e w 2 , r , n u m b a d d o n s) ;

e n c o d e (m e s s a g e , t r a n s) ;

a d d e r r o r s (t r a n s , e r r o r s , r e c e i v e d) ;

h a m m i n g d e c o d e (r e c e i v e d , f i r s t d e c o d e) ;

s e t l e t o r d (c) ;

e n g l i s h d e c o d e (f i r s t d e c o d e , d f i n a l) ;

e n d

e l s e
w r i t e l n (' I n v a l i d i n p u t ') ;

w r i t e l n (c h r (7))

e n d .

174

Ap£>.endiK 2

p r o g r a m t c o d e s i m (i n p u t , t c o d e , m e s s a g e , t r a n s , l e t t e r o r d e r ,

r e c e i v e d , t f i n a l , e r r o r s , o u t p u t) ;

(*
(*
(*
(*
(*
(*
(*

* T h i s p r o g r a m t h e E n g l i s h t e x t o f t h e f i l e m e s s a g e *)

u s i n g a T - c o d e , w h i c h i s s t o r e d i n t h e f i l e t c o d e . *)

T h e r e s u l t i n g b i t s a r e w r i t t e n t o t h e f i l e *)

d a t a s e n t . T h e c o n t e n t s o f t h i s f i l e a r e t h e n a d d e d *)

s e q u e n t i a l l y t o t h e b i t s i n t h e f i i l e e r r o r s , t h e *)

b i t w i s e s u m s b e i n g p l a c e d i n t h e f i l e d a t a r c v d . *)

T h e b i t s o f t h i s f i l e a r e t h e n d e c o d e d i n o r d e r t o *)

t h e a p p r o p r i a t e E n g l i s h c h a r a c t e r *)

t y p e

c o l

w o r d

c o d e a r r a y

a r r a y [1 . . 2 6] o f c h a r ;

p a c k e d a r r a y [1 . . 7] o f c h a r ;

a r r a y [1 . . 2 6] o f w o r d ;

v a r

t c o d e , m e s s a g e , e r r o r s , t r a n s , r e c e i v e d , t f i n a l ,

l e t t e r o r d e r : t e x t ;

c o d e w o r d s : c o d e a r r a y ;

c : c o l ;

b i t c o u n t , c h a r c o u n t : i n t e g e r ;

b i t e r r p : r e a l ;

p r o c e d u r e p r o g h e a d e r ;

{ w r i t e s i n i t i a l i n f o t o t h e s c r e e n }

b e g i n { p r o c e d u r e p r o g h e a d e r)

w r i t e l n (' T h i s p r o g r a m s i m u l a t e s a T i t c h e n e r c o d e f o r

t h e E n g l i s h ') ;

w r i t e l n (' c a p i t a l l e t t e r s ') ;

w r i t e l n (' P l e a s e s u p p l y t h e b i t e r r o r p r o b a b i l i t y o f t h e

c u r r e n t e r r o r f i l e ') ;

r e a d l n (b i t e r r p)

e n d ; { p r c e d u r e p r o g h e a d e r)

p r o c e d u r e s e t u p c o d e (v a r i n f i l e : t e x t ;
v a r c o d e : c o d e a r r a y) ;

{ c o p i e s t h e c o d e w o r d s f r o m i n f i l e t o t h e a r r a y c o d e)

v a r

i , c o u n t i n t e g e r ;

b e g i n { p r o c e d u r e s e t u p c o d e)

r e s e t (i n f i l e) ; -s

c o u n t : = 0 ;
w h i l e n o t (e o f (i n f i l e)) d o

b e g i n
c o u n t : = c o u n t + 1 ;

f o r i : = 1 t o 7 d o

175

c o d e [c o u n t , i] : = ’ ' ;

i : = 0 ;

w h i l e n o t (e o l n (i n f i l e)) d o
b e g i n

i : = i + l ;

r e a d (i n f i l e , c o d e [c o u n t , i])
e n d ;

r e a d l n (i n f i l e) ;

e n d

e n d ; [p r o c e d u r e s e t u p c o d e }

p r o c e d u r e w r i t e w (v a r o u t f i l e : t e x t ; c w n o : i n t e g e r) ;

{ w r i t e s a s i n g l e c o d e w o r d t o o u t f i l e }

v a r

i : i n t e g e r ;

b e g i n { p r o c e u r e w r i t e c w }

f o r i : = 1 t o 7 d o

i f (c o d e w o r d s [c w n o , i] o ' ') t h e n

b e g i n

b i t c o u n t : = b i t c o u n t + l ;

w r i t e (o u t f i l e , c o d e w o r d s [c w n o , i])

e n d

e n d ; { p r o c e d u r e w r i t e c w }

p r o c e d u r e w r i t e c w o r d (v a r o u t f i l e : t e x t ; c h r c h a r) ;

{ w r i t e s t h e c o d e w o r d c o r r e s p o n d i n g t o c h t o o u t f i l e }

b e g i n { p r o c e d u r e w r i t e w o r d }

c a s e c h o f
' E ' w r i t e w
1 tp I w r i t e w

' A ' w r i t e w

' O ' w r i t e w

' I ' w r i t e w

' N ' w r i t e w

' S ' w r i t e w

' H ' w r i t e w

' R ' w r i t e w

' D ' w r i t e w

' L ' w r i t e w

' C w r i t e w

' U ' w r i t e w

' M ' w r i t e w

' W w r i t e w

' F ' w r i t e w

' G ' w r i t e w

' Y ' w r i t e w

' P ' w r i t e w

' B ' w r i t e w

' V w r i t e w

' K ' w r i t e w

' J ' w r i t e w

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

(o u t f i l e

, 1) ;
r2) ;
, 3) ;

, 4) ;
, 5) ;
, 6) ;
, 7) ;
, 8) ;
, 9) ;
, 1 0)
, 1 1)
, 1 2)
, 1 3)
, 1 4)
, 1 5)

, 1 6)

, 1 7)

, 1 8)

, 1 9)

, 2 0)
, 2 1)
, 2 2)
, 2 3)

176

' X ' i w r i t e w (o u t f i l e , 2 4)

' Q ' : w r i t e w (o u t f i l e , 2 5)
' Z ' i w r i t e w (o u t f i l e , 2 6)

e n d { c a s e }

e n d ; { p r o c e d u r e w r i t e c w o r d }

p r o c e d u r e e n c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ r e a d s a n E n g l i s h m e s s a g e f r o m i n f i l e a n d w r i t e s t o

{ o u t f i l e a c o d e w o r d f o r e a c h a l p h a b e t i c c h a r a c t e r }

v a r

c o u n t : i n t e g e r ;

c h : c h a r ;

b e g i n { p r o c e d u r e e n c o d e }

r e s e t (i n f i l e) ;
r e w r i t e (o u t f i l e) ;

b i t c o u n t : = 0 ;

c h a r c o u n t : = 0 ;

w h i l e n o t (e o f (i n f i l e)) d o

b e g i n

c o u n t : = 0 ;

r e p e a t

r e a d (i n f i l e , c h) ;

i f (c h i n [' a ' . . ' z ']) t h e n

c h : = c h r (o r d (c h) - 3 2) ;

i f (c h i n [' A ' . . ' Z ']) t h e n

b e g i n

c h a r c o u n t : = c h a r c o u n t + l ;

w r i t e c w o r d (o u t f i l e , c h) ;

c o u n t : = c o u n t + l

e n d
u n t i l ((c o u n t = 1 0) o r (e o f (i n f i l e))) ;

w r i t e l n (o u t f i l e) ;

e n d ;
c l o s e (o u t f i l e)

e n d ; { p r o c e d u r e e n c o d e }

p r o c e d u r e a d d e r r o r s (v a r i n f i l e l , i n f i l e 2 , o u t f i l e : t e x t) ;

{ r e a d s b i t w i s e f r o m i n f i l e l a n d i n f i l e 2 a n d w r i t e s t h e

{ m o d 2 s u m o f e a c h p a i r t o o u t f i l e }

v a r

c h l , c h 2 : c h a r ;

b e g i n

r e s e t (i n f i l e l) ;
r e s e t (i n f i l e 2) ;

r e w r i t e (o u t f i l e) ;
w h i l e n o t (e o f (i n f i l e l)) d o

b e g i n
w h i l e n o t ((e o l n (i n f i l e l)) o r (e o l n (i n f i l e 2))) d o

b e g i n
r e a d (i n f i l e l , c h i) ;

177

r e a d (i n f i l e 2 , c h 2) ;

i f (c h l = c h 2) t h e n

w r i t e (o u t f i l e , ' 0 ')
e l s e

w r i t e (o u t f i l e , ' 1 ')
e n d ;

i f e o l n (i n f i l e l) t h e n
b e g i n

r e a d l n (i n f i l e l) ;

w r i t e l n (o u t f i l e)

e n d

e l s e

r e a d l n (i n f i l e 2)

e n d ;

c l o s e (o u t f i l e)

e n d ;

p r o c e d u r e s e t l e t o r d (v a r o r d e r i c o l) ;

v a r

i : i n t e g e r ;

b e g i n { p r o c e d u r e s e t l e t o r d }

r e s e t (l e t t e r o r d e r) ;

f o r i : = l t o 2 6 d o
r e a d l n (l e t t e r o r d e r , o r d e r [i])

e n d ; { p r o c e d u r e s e t l e t o r d }

f u n c t i o n c o m p a r e (w l , w 2 : w o r d) : b o o l e a n ;

b e g i n { f u n c t i o n c o m p a r e }

c o m p a r e : = w l = w 2
e n d ; { f u n c t i o n c o m p a r e }

p r o c e d u r e d e c o d e (v a r i n f i l e , o u t f i l e : t e x t) ;

{ R e a d s f r o m i n f i l e b i t s w h i c h a r e t h e n m a t c h e d t o }

{ c o d e w o r d s a n d d e c o d e d t o E n g l i s h c h a r a c t e r s }

v a r
r e c w o r d , t e m p , t e m p 2 : w o r d ;

i , j , c o u n t , l i n e c o u n t ; i n t e g e r ;

m a t c h : b o o l e a n ;

b e g i n

r e s e t (i n f i l e) ;

r e w r i t e (o u t f i l e) ;
w r i t e l n (o u t f i l e , ' B i t e r r o r p r o b a b i l i t y = ' , b i t e r r p) ;

w r i t e l n (o u t f i l e , ' A v e r a g e w o r d l e n g t h = ' ,
b i t c o u n t / c h a r c o u n t) ;

f o r i : = l t o 2 6 d o

b e g i n
w r i t e w (o u t f i l e , i) ;

w r i t e l n (o u t f i l e)

e n d ;

178

w r i t e l n (o u t f i l e) ;

w r i t e l n (o u t f i l e) ;

m a t c h : = f a l s e ;

f o r i : = l t o 7 d o

r e a d (i n f i l e , r e c w o r d [i]) ;

l i n e c o u n t : = 0 ;

c o u n t : = 3 ;

f o r i : = l t o 7 d o

t e m p [i] : = ' ' ;

f o r i : = l t o c o u n t d o

t e m p [i] : = r e c w o r d [i] ;

w h i l e n o t (e o f (i n f i l e)) d o
b e g i n

r e p e a t

i : = 0 ;

r e p e a t

i : = i + l ;

m a t c h : = c o m p a r e (t e m p , c o d e w o r d s [i])

u n t i l ((m a t c h) o r (i = 2 6)) ;

i f m a t c h t h e n

b e g i n

w r i t e (o u t f i l e , c [i]) ;

l i n e c o u n t : = l i n e c o u n t + l ;

i f (l i n e c o u n t = 7 9) t h e n
b e g i n

l i n e c o u n t : = 0 ;

w r i t e l n (o u t f i l e)
e n d ;

e n d

e l s e
b e g i n

c o u n t : = c o u n t + 1 ;
i f (c o u n t < 8) t h e n

t e m p [c o u n t] : = r e c w o r d [c o u n t]
e n d

u n t i l (m a t c h o r (c o u n t = 8)) ;

i f n o t (m a t c h) t h e n

b e g i n

f o r i : = l t o 6 d o

r e c w o r d [i] : = r e c w o r d [i + 1] ;

i f n o t (e o f (i n f i l e)) t h e n

i f n o t (e o l n (i n f i l e)) t h e n
r e a d (i n f i l e , r e c w o r d [7])

e l s e
b e g i n

r e a d l n (i n f i l e) ;

i f n o t (e o f (i n f i l e)) t h e n
r e a d (i n f i l e , r e c w o r d [7])

e n d

e l s e r e c w o r d [7] : = ' '

e n d

e l s e
b e g i n

m a t c h : = f a l s e ;

f o r i : = l t o (7 - c o u n t) d o
r e c w o r d [i] : = r e c w o r d [i + c o u n t] ;

179

f o r i : = (7 - c o u n t + 1) t o 7 d o

i f n o t (e o f (i n f i l e)) t h e n

i f n o t (e o l n (i n f i l e)) t h e n

r e a d (i n f i l e , r e c w o r d [i])
e l s e

b e g i n

r e a d l n (i n f i l e) ;

i f n o t (e o f (i n f i l e)) t h e n

r e a d (i n f i l e , r e c w o r d [i] ;

e l s e r e c w o r d [i] : = ' '

e n d

e l s e

r e c w o r d [i] ' '

e n d ;

c o u n t : = 3 ;

f o r i : = 1 t o 7 d o

t e m p [i] : = ' ' ;

f o r i : = 1 t o c o u n t d o

t e m p [i] : = r e c w o r d [i] ;

e n d ;

c l o s e (o u t f i l e)

e n d ;

b e g i n f m a i n b o d y }

p r o g h e a d e r ;

s e t u p c o d e (t c o d e , c o d e w o r d s) ;

e n c o d e (m e s s a g e , t r a n s) ;

a d d e r r o r s (t r a n s , e r r o r s , r e c e i v e d) ;

s e t l e t o r d (c) ;
d e c o d e (r e c e i v e d , t f i n a l) ;

w r i t e l n (c h r (7))

e n d .

180

