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ABSTRACT

The study of the Nuclear Magnetic Resonance enables people 

to enhance their knowlwdge on scientific phenomena. For its use, 

many examples can be given such as in Solid State Physics, it may 

be used to have more information about the bulk system, in Organic 

Chemistry, one uses NMR for the analysis of complex molecules and

so on

This work is a reformulation and unification of the various 

theories of magnetic relaxation and magnetic resonance.

We start off our discussion on the magnetic relaxation theory 

with an introductory explanation of the Bloch Equations and the 

relaxation processes. It is proceeded v/ith a quantum-mechanical 

treatment introducing the density matrix.

A quantum mechanical theory of frequency dependent suscepti­

bilities of magnetic systems is;examined with the case of linear 

theory which assumes that the external disturbance is always small 

and the response of the system to it is linear. The method used 

to calculate the relaxation function is quantum-statistical. We 

computed the line contour of resonance absorption by using the 

Fourier integral method. (Chapter III)

In the following chapter, the physical meaning of the reduced 

density matrix is discussed. Its usefulness is to obtain all the 

information necessary to evaluate the expectation value.

We continue our discussion with the theory of NI4R in homo-



gênons adsorbed systems for two dimensional systems. It is 

shown that the reduced dimensionality has the effect of decreas­

ing the relaxation times.

With the Pulse NMR technique, we measured the relaxation 

times around 0°C and presented our results in the last chapter. 

The comparison of the result was made with the PPP people’s 

result.



rCHAPTERT~
BASIC NMR THEORY 

I - 1 - INTRODUCTION

Magnetic resonance was first observed just after the Second 

World War and the methods on it have been developed very rapidly. 

Historically, the first good works were done by a group led by 

Bloch (1946) and another group under Purcell’s leadership in the 

same year. They both used continuous wave (CW) technique in 

their initial experiments. Shortly after the first CW experi­

ments pulse methods were developed (Hahn 1950).

Nuclear magnetic resonance (NMR) can basically be studied 

by either nuclear magnetic resonance absorption methods (de­

veloped by Purcell) or the magnetic nuclear induction methods 

(developed by Bloch).

In order to detect NMR signal one either uses the pulse 

NMR spectrometer by which the free precession or Larmor pre­

cession is detected after the removal of the pulse or the limi­

ted oscillator which detects the power absorption signal at 

resonance.

The technique used is to apply a strong magnetic field 

(#»2 tesla) to the sample which is usually a liquid or solid.

A radio-frequency field (1-100 MH#) is imposed at right angles 

and a small detector coil is wound around the sample. As the 

magnetic field is varied the spacing of the energy levels 

changes and at a certain value of the magnetic field, this
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spacing is such, that radio-frequency radiation is strongly ab­

sorbed. This resonance produces a signal in the detector coil.

A plot of detected signal against the magnetic field gives an 

NMR spectrum which can be used for determining nuclear magnetic 

moment s.

NMR techniques are being used in many branches of Physics 

plus other fields of Science. In Physics, it is useful to study 

liquids and solids, particularly in solid state Physics one 

uses NMR technique to have information about the bulk. It is 

also useful in Medicine, Geology, Archaeology especially in or­

ganic Chemistry for the analysis of complex molecules.
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I - 2 - THE NMR THEORY

Magnetic resonance is an effect seen in a system which has 

an angular momentum and a magnetic moment. It is in fact a 

large branch of spectroscopy which deals with the interaction 

between an applied magnetic field (to the magnetic system) and 

non-zero magnetic moments of this system.

Where the word "resonance” comes from is that; the natural
i

frequency of the system (Larmor) is just around the frequency 

of the radio-frequency wave which is applied to the system. 

Energy is transferred from this radio-frequency (r.f.) circuit 

to the magnetic system of nuclear spins immersed in a static 

magnetic field (Hq) due to the transitions among the energy 

levels of the spin system. Each of N non-interacting spins is 

characterized by ”1^” and "m”. ”1” indicates the nuclear spin

quantum number which is i for proton and electron. is

Planck constant divided by 2^ and ”m” is the magnetic moment. 

In quantum mechanics, for each I there are 2 1 + 1  ’yr's (mag­

netic moment quantum number or eigen values of I^ operator). 

The relation is:
- +1, I - 1,  ---- -— , - I

i.e. I ^  yU ^  - I

Energy transitions obey the selection rule which requires 

^  1. = - 1 case corresponds to absorpt­

ion and AyU = + 1 corresponds to emmission.
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I - 3 - THE BLOCH EQUATIONS

We first start off with, the proportionality between the 

magnetic moment of a charged particle and the angular momentum, 

(see Appendix I - 1 for the proof).

m = X J (l-l)

where m is magnetic moment
i J is angular momentum 

y is gyromagnetic ratio

Applying a magnetic field (Hp) to m we get a torque.

Torque = m X H (1-2)

Torque is also given by the rate of angular momentum.

Torque = dJ/dt = j (1-3)

Combining Equations (I - 1), (I - 2) and (I - 3) 

we have,

n — ^ m X M (1—4)

Equation (I - 4) is called the gyroscope equation
Awhen H is in the Z direction (i.e. H = H^k ).

The equations (solutions) of the components of the magnetic 

moment describe a circular motion in the x-y plane. (see 

Appendix 1-2 for the proof).

The magnetic moment vector processes about the Z axis 

with its natural frequency called the Larmor frequency
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and it is given by,
W o = y H, (1-5)

Bloch, combined the components of the gyroscope equation and the 

relaxation times in the following way.

Mx = y ( M X ü ) , - ^

I» j

(1-6)

Equation (1-6) is called the Bloch equation.

Where M is the magnetization ( /volume) and are res­

pectively the spin-lattice and spin-spin relaxation times. 

Introducing,

M; = M% ? i My 

H; = H, f i Hy
we have, /

- M *  % ) -

(1-7)

(1-8)

Equation (1-8) is the Bloch Equations of new notations. The
A

solutions of this equation are the following (when H  ” — )

( i )  = M, fo) exp - i y Hgt exp-i (1-9)

(o) e x p - 1 y Hç't part indicates the Larmor pre­

cession and part indicates the free induc­

tion decay M *  (t) - MlJ" =  [ M j  (oj - M  J* ] exp - Vt, (1-10}

Equations (1-9) and (I-IO) are related to the spin- 
spin relaxation and spin-lattice processes respectively.
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I - 4 - HOW THE SPIN SYSTEM 
ABSORBS ENERGY

Let us consider an isolated system where the spin quan­

tum number is i. The meaning of isolated system is that; spins 

have no interaction with the lattice. When we apply a magnetic 

field H^ to this system, the spin system is split into two 

levels as shown in figure (I-l)

l p >

Figure I - l H splits the spin system into

two energy levels.

Now let and )/S> be respectively the level where the

spins show the same direction as H^ and the level where the 

spins have opposite direction to H^. And let and N^ be 

the number of the spins at these levels respectively. The 

Boltzmann-Maxwell distribution gives us the relation between

and N^

AU _ enp (£^/k T) 
^  ex/> (£^/A TV

where is the energy of level o< 

is the energy of level ̂  
is Boltzmann factor 

T is absolute temperature
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At equilibrium it is obvious that Ncx /̂ /3

In the presence of an external magnetic field whose fre­

quency is equal to the natural Larmor frequency, the spin popu­

lations among the levels change through a probability.

It follows that,

"■ A L  Pcx/i 
<xr ^  (1-12)

where ---- ^^probability of being at level /2>

 — #.p rob ability of being at level o<

Equation (1-12) is known as the "spin equations". From this

equation we have,

(1-13)
eft

with N = and = P and n = - N^

The solution of equation (1-13) is:

Û -  /? (1-14)
where n^ = when t = o

During the transitions from one level to the other, each spin 

absorbs energy from the applied r.f wave. Let é be the energy

absorbed by only one spin. We have,

^ - A E P  (1-15)

where A B — —  (energy difference between two

levels).

For all the spins at level «x , Equation (1-15) becomes

— A B- (1-16)
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The energy rale absorbed from the external effect is

given by:

This equation states that the net energy absorbed from the r.f 

wave is equal to the energy difference between the absorbed 

energy under and emitted energy under transition.

Substituting Equation (1-14) into (1-17) we have,

Now, this equation shows us that the time derivative of absorb­

ed energy from r.f. wave depends on the difference in spin 

population among the levels and it has an exponential term.

In other words, the external effect (r.f.) makes the spin 

population zero with time. At t = o, this difference is equal 

to n^. Then the energy is saturated (i.e. the magnetic reso­

nance stops).
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I - 5 - THE SPIN-LATTICE RELAXATION TIME

As already stated at Chapter (1-3), the Bloch Equations in­

clude the relaxation terms. Due to the interaction between spins 

and the lattice, spins pass energy to the lattice until they reach 

the equilibrium state. The concerned relaxation time because of 

this intractive process is called T^ the spin-lattice or longi­

tudinal relaxation time. There are ways of explaining T^.

a) The Spin-lattice Relaxation Time in Terms of Energy Flux: 

When spin system absorbs energy from an r.f. wave, its tem­

perature increases. (At t=o i.e. before the r.f. is applied

T = T, . ). When the magnetic resonance remains saturatedspin lattice
(T . T, ) energy is conveyed to the lattice system froms p i n l a t t i c e

the spin system, in other words, the spin system loses heat, as

the lattice gains it. Figure (1-2) represents a block diagram of

the heat transfer.

External
effect

SPIN LATTICE

Figure 1-2; Energy is conveyed from system to lattice.



10/

The spin system gives away the energy below

= ""ik (?spin - ^lattice) 
where ^ energy flow constant

spin 
T.

temperature of spin-system

lattice ----^  temperature of lattice system

Now here, can be written in the form of 1/T̂ . T^ is the

measure of the energy change between two systems. The heat
itransfer continues until the equilibrium is reached (i.e.

T = T, ). Therefore, in the absence of an externalspin lattice
effect, new transitions occur between the levels of the spin 

system. The spin equations become in a similar way :

J M  (1-20)

~

where correspond to respectively

and in the absence of r.f. wave.

Rewriting N = N ^  + N^ , n = N ^ -  N^

we have,

T, (1-22)
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Substituting Equation (1-22) and Equation (1-23) into Equation 

(1-21), it becomes,

(1-24)
and the solution of this differential equation is:

The general expression for dn/dt must be the sum of Equa­

tion (1-13) and Equation (1-25)

=  — 2  P/? y- — _  —  (1-26)
c/t /;

At equilibrium dn/dt = o and it follows that;

JE
J é  /-/-ZE7,

(1-27)

(1-28)

We derived a very important equation, because Equation (1-28) 

tells us that dE/dt is inversely proportional to T^ i.e. when T̂  ̂

is short dE/dt is big and the equilibrium is reached in a short 

time.

b) The Spin-Lattice Relaxation Time in Terms of 
Magnetization.

Although it was stated in Chapter (1-2) that magnetization 

in terms of T^ appears in the solution of the Bloch Equations, 

we did not discuss this fact in detail. The Z component of 

the magnetization is related to T̂  ̂ with an exponential express­

ion.

In the NMR theory, the spin system is under two magnetic 

fields // ^
/ - - M) ̂  Z - ^  /// Co6
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which is perpendicular to ^ " And it is

known that resonance is seen when (vU =UĴ . The magnetization 

vector processes about the Z axis, as soon as we cut off , 

the magnetization vector gets bigger exponentially and precess­

ion angle (0) gets smaller. After a certain time, at equilibrium^ 
the magnetization reaches its biggest value and 0 becomes zero 

and because there transverse components precession stops. is

the measure of this process. Figure (1-3) explains the expo­

nential growth of the magnetization.

Figure 1-3: The Exponential growth of M



13/

We can also observe the magnetization growth, without in­

troducing (because of t = o i.e. before we apply )

the magnetization vector has also transverse components. Fur­

thermore the spin-spin interaction (dipole) works against the 

magnetization growth, in other words it works in favour of pro­

cessive motion. In NMR theory, one thing must always be kept 

in mind, it is the biggest mistake to treat relaxation times 

alone. These two processes occur at the same time.

The magnetic energy density (-H.M) decreases as app­

roaches its new equilibrium value because the spin popula - 

tion moves into lower level.

I - 6 - SPIN-SPIN RELAXATION TIME

Because every spin has a magnetic moment there is an interac­

tion among the spins. The most dominant term is the dipole 

interaction term. Magnetic moment of a spin interacts with the 

magnetic field produced by the neighbouring spins. This mag­

netic field is called the local magnetic field.

Let us consider two spins A and B whose magnetic moments 

are respectively m^ and . The magnetic field at A (produced 

by B) is given by:

M l a "  -  (1-29)
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where r ^   > separation distance

-> normal vector

Therefore, spin A sees two magnetic fields: 1 - static mag­

netic field Hof 2 - Local magnetic field JJlA.

H. + H (1-30)— A = — LA -o

(These two spins individually process about the Z axis under 

static field Hq).

Now, in order to study the spin-spin interaction better,it 

is useful to split into two components; one which is parallel

(or anti-parallel) to the static field @LAZ) and the other being 

perpendicular to H© (SlAP)• Figure (1-4) shows this represen­

tation.

Let us first consider what the parallel component of the 

local field does:

Hlaz vector changes only on the Z direction from one spin 

to another depending on r and 9 . Therefore, all "HlAZ s" 

cause the spin system inhomogenity. At resonance, the line 

shape gets broadened. (When Hl = o line shape is sharpest) .
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Figure 1-4; Local lie Ici v. i th ItK iwo components H l AZ and H l AP

We now introduce a distribution function N(‘«) to describe 

the free induction decay (Figure 1-5). N(u>) is a function of

spins with different frequencies. Free induction decay (FID) 

can be expressed in terms of distribution function through a 

transform called Fourier transform. V/e have,

F(^) = / N(oj)e,Kp -ioO écju)
(1-31)

FCt) is the Fourier transfrom of N(co) and indicates the free 

induction decay.
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A/(uü)

FI D

LU

Figure 1-5: The distribution function is a ’bell-shape'
^function.

»» AuJ «» in figure (1-5) is ^nown as the line width and it is 

this phenomenon which describes the lineshape.

For this model, for T2, we can write,

(1-32)

Secondly, let us consider the effect of the perpendicular 

component of the local field:

Hlap vector does a precession motion in the plane(x-y) 

which is perpendicular to Ho* Because the precession frequency 

of Hlap is equal to the precession frequency of spin A (Larmor), 

Hlap creates such a torque which tends to change the direction 

of spin A. In this connection, it shortens the life time of 

spin A at its present state.

What actually happens is that; at t = o, every spin pre-
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cesses about Hq with tbe same frequency (û̂ o) then due to HlAP , 

each spin has different magnetic field and chun^es its first 

frequency with time. Tliis is called the dephusing effect. Fig­

ure (1-6) shows this effect.

0) ( J

Figure 1-6: The dephasing effect.

I - 7 - THE RESONANCE CASE

We start off with writing the Schroedinger Equation in or­

der to discuss the resononance condition.
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^  I (1-33)

wliere^ > Hamiltonian operator (energy operator)

 ► eigen values of eigen states

^ eigen states 

By finding the solution of the Schroedinger Equation, we can 

reach the resonance state. Let us do that for proton which has 

spin i. Let operator show the z component of this spin. In 

Quantum Mechanics, there are two possible spin eigen functions 

(states), namely l<=x> and I 

We have the following:

2
)/?> (I - 34)

Eigen values of operator are i and -i. Writing the relation 

between m and I.

y " (1-35)

where g^ — — nuclear spectroscopic splitting factor 

""  ̂ nuclear magneton

C  > light speed

mp --^  mass for proton

(In our example g„ = gp^oton = 5.5855)
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Hamiltonian operator for proton becomes:

36)

In this equation y/q \  is a constant and therefore 

I ^  and are also eigen states of the Hamiltonian

operator. The solution of the Schroedinger equation (1-33) for 

a proton is :

(1-37)

Equation (1-37) indicates that we have two energy levels as 

shown in figure (1-7).

Energy

^  Magnetic field
Hresonance

Figure 1-7: The NMR Spectrum.
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Energies of these two states are given by

(1-38)

Equation (1-38) is known as the Zeeman energy term.

The energy needed from the r.f. wave, in order to carry 

proton from one state to another is given by:

(1-39)

Equation (1-39) is the equation for resonance case. is

known as the "resonance frequency" and the corresponding mag­

netic field is called the "resonance field".

NMR spectroscopy is observed for either a chosen or Ĥ ,

Each can be calculated from equation (1-39) since h, g^, are 

constant.
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[chapter TF|

GENERAL FORMATION OF THE RELAXATION THEORY 

II - 1 - INTRODUCTION

In Chapter (I) we have had a historical and elementary 

look at the NMR theory in which quantum mechanics was not much 

involved. This chapter is devoted to a more advanced NMR and 

relaxation theory by introducing the density matrix and related 

equation of motion.

It is useful to give a brief account of quantum mechanical 

behaviour of density matrix, the equation of motion and the ex­

pectation value of an operator.

II - 2 - DENSITY MATRIX AND THE EQUATION OF MOTION

We deal with all possible products of amplitudes of the 

wave function with themselves. Let be a basis set. We

have.
Ÿ  = a, f,*  + « n <p,

we could use all the products. The matrix presentation for 

that is : •K-
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This matrix contains all the information about the wave 

function. The diagonal elements of this matrix give the proba­

bility of occupation of a particular eigen state without any 

arbitrary phase factor. In calculating the expectation value

of an operator A, it is these products a. O * which must be1 J
multiplied by the matrix elements so the are

of more direct use.

The density matrix for a system which has I

states is given by:

/  == I y\ f> < f \  (ii- i)

I \j/ ^  and ^  \j/ I can be expanded in terms of the com­

plete orthogonal set I and (̂ . | . Therefore, we

can show that is the matrix of all possible products. We

have,

I ^  ^  I < if l^  (II-2)

A y /  I — ^  G. I (II- 3)
I

setting ^  we get,

/ =  l y / x y / i  cii-4)
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now taking the mn matrix element;

w4er? P7=̂ / /l-i'

<Â \f ~ 0~„c4 (II-5)

Density matrix represents a "pure state" of which we know 

enough information to write a wave function.

In order to derive the equation of motion of the density 

matrix, we take the time derivative of Equation (II-l) ; it 

follows that,

/ =  I 1 1(11-6)

since I (II-7)

(where ^  is Hamiltonian operator)



247

For the Hermitian conjugate equation we have,

< y / |  =  ( I I -  8>

Substituting Equations (II-7) and (II-8) into Equation 

(II-6), we obtain;

/ =  f > < y / \ ^ - X \ Ÿ > <  ^ l ]

/ = - ^ [ A / J  (II-9)

This equation is called the "Von-Neumann" equation. Von-Neumann 

equation describes the equation of motion in the Heisenberg 

picture with opposite sign (Appendix 1 covers the equation of 

motion in both pictures the Schroedinger and Heisenberg).

We now want to obtain the solution of the time dependant 

Schroedinger equation.

/ /  ̂  I y/ j (11-10)

(time dependant of the Schroedinger equation)

I ^  fi) ̂  given by:

I ^  ( t ) >  =  e x p  ( -  j  I f ( o ) y  (11-11)
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This solution is only valid if ̂ i s  independent of time. If 

^  is dependent of time, solution becomes;

Taking the solution as in Equation (II -11) ,we write for the 

Hermitian conjugate of ) as:

< ^ ( i )  I -  <  I//Co) I -e/p (11-12)
n

Establishing the density operator by Equations (11-11 ) and 

(II- 12)

I = (II- 13)

/ a )  =  e x p - - ^ (11-14)
-h

W,lrh
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II - 3 - THE EXPECTATION VALUE OF AN OPERATOR

In Quantum Mechanics, the expectation value of an opera­

tor is defined by:

< ( S . >  = < y ( i e i  y / >  (11-15)

We can express this in terms of density matrix. To do that we 

first prove the following identity.

<A) 6> = Tr [l 6><A l] (II-16)
we have,

| A > = ^ ^ J n > ,  | 6 >  = ̂ b j n >

and
<  A  I =  ^  MI

s°. (11-17)

<!!A I 6 / >  ^ l r [ l  (11-18)

setting
< A \  =<}// , I B >  = (s\i/r>

we obtain.

(11-19)
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and we write,

< ^ l 0 l  = T r [ ^ X ]  CII-20)

II - 4 - MAGNETIZATION VECTOR IN TERMS OF 
DENSITY MATRIX

We are prepared to continue our discussion about mag­

netization at a more advanced level.

We first write the basic relation (for a single nucleus) 

between the spin being I and related magnetic dipole moment 

m.

(II- 21)

And we have already mentioned that (in chapter I) when 

this dipole is placed in a magnetic field Hq which is directed 

along the z axis, the Hamiltonian for the nucleus is given by:

Ho ~ 1̂' He ~ y ii I2 He (II- 22)

is known as the Zeeman Hamiltonian.

The equation of motion for I (in Heisenberg picture) may 

be written as follows:

(II. 23)
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Due to this equation, we find , 1+ and I_

a . . . ,

L  t  X  (1 1 -2 5 )

(11-26)

The expressions we had above are for a single nucleus. We 

now consider an assembly of like nuclei in thermal equilibrium 

at temperature T. To do that we recall the magnetization.

/ V  =  A Z A  A /  (II-27)

Where N is the number of spins per unit volume and '‘C, T  
is the ensemble average of the spin angular momentum.

In the presence of the external magnetic field, the equi­

librium density operator for the system is:

c> .
~T-[exp-AX] (ii-28)

Here, Hamiltonian covers two parts. 1. - Zeeman part G^)

2. - Interaction part. Ignoring the interaction part, we write.

p  _  _
T r { e < P ' ^ X ]
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Where /S = ïy/k̂ 'f k  ^  Boltzmann constant. If

/< T  , we can expand exp -^ a n d  ig­

nore the terms after the first one, we have;

(11-30)

A ,  =

with ^ ̂  and 0

Now, Mg can be written in terms of /eq

-  N  y ^ l l  ^  ^  ^  N  T r  ^ f e q  1%  j  (11- 32)

X - [ l }

Tr j Z  2 j ~ ^  Z  ij and since the

system has 2 1 + 1  energy levels, the density operator has 2 1 + 1  

elements. So Tr j 1 j == 2 1 + 1

l-le N I  k T  (11-34)

Equation (11-34) is known as the Curie Law.
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II - 5 - THE RELAXATION FUNC7IWS FOR THE PULSE NMR CASE

It is possible to manipulate the magnetization vector by 

a 90° pulse. To do that we need to apply a strong radio-frequen­

cy pulse along the axis which is perpendicular to H^ static 

field direction. Let Hi and XT be the magnetic field of r.f.

pulse and duration respectively. The spins will start precess-
I

ing about Hi direction (say the X axis), during X time and 

clearly new precession frequency is given by: tUi = ^ H^ The 

new angle is times T

The 90° pulse rotates I^ into 1̂ . But as soon as the 

pulse disappears, the m a g n e t i z a t i o n p r e c e s s i n g  with its 

natural Larmor frequency (<*̂ ) about H^. Its amplitude decays 

in time due to the spin-spin relaxation time after a 90° pulse 

is applied, equation (11-31) can be written as:

(high temperature approximation)

Expectation value of I^ at time t is:
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Substituting equation (11-35) into this equation

^ 77-{i} (11-36)

x^(-t) - e//) ij{-tlx - iJti

then we have,

< 1 . f7 > = -------------- ^ --------------

(11-37)
coniiàrit

Here the Hamiltonian consists of two terms. 1 - Zeeman term 

2 - Dipolar term. ( ^  = '̂ ‘̂ ip^* the adiabatic case

we take the part which commutes with , namely

(Abragam, terms A + B in «%ip) .

So, we have

\ K  A z ]  =  O

consider

X  - f  K  (11-38)

substituting Equation (11-38) into Equation (11-37), we find.
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< IHAX - (e/p-iX é)
(ex.p-ij{y)j (11-39)

We note that since commutes with ̂ , exp i C<^+<^z) t can 

be written as exp ± J{ t exp t

=  'L^CoS^ai 4- ly

Equation (11-38) becomes

< 7 c  =  / :  / - A

-Ly& jjy/lCOaé

(Abragam)

< / ;  r / y  > =  % : / A  -iH't

(11-40)

We now write the transverse magnetization

H )  = M  (°) F (i) e-xp é uJei (11-41)



33/

(this was zero in the absence of r.f. wave) where F(t) is called 

the transverse relaxation function. Similar to Equation (1-27) we 

write,

r o = A / y . ^ < i ^

^i+(t) j = 0since Tr

then
/yf/t) - / ?  ̂

(11-42)

This may be written in a more symétrie form

A  a ) T . ] / T r f i j

Combining Equations (11-41) and (11-42) 

we find,

F ( 0  = PA/> ----- /  (11-43)

And the longitudinal relaxation function is given by

/  flj ^

(11-44)
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In the case of lattice motion (vibration and rotation) the 

time development of the spin components obeys the Heissenberg 

equation

Now, Hamiltonian includes three parts: 1 - Zeeman («^) which

describes the precession about Hq . 2 - Dipolar which

gives the dipolar interaction. 3 - Motion part (<*̂ > • 

we write,

z/ = A  + A i p

commutes with but,i>^ and ̂  don't commute with^^^^.

(Ĵ dip is much smaller than ̂

In the frame which the spins move with, we can go through the 

analysis. We have new operators.

(11-46)

A,, I
(11-47)

where d̂ Q since j  = 0

similar to Equations (11-24) and (11-25) we have,
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A  a )  -  A

Therefore F(t) and L(t) become

/
?

(11-48)

(11-49)
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CHAPTER III I
KUBO'S GENERAL THEORY ON MAGNETIC RESONANCE ABSORPTION AND 
BROADENING

III - 1 - INTRODUCTION

Shortly after Bloembergen, Purcell and Pound made analysis 

of their experiments on the nuclear magnetic resonance absorption, 

Kubo and Tomita published two elegant papers one after another on 

the same phenomenon (1953-54).
1

We are first going to give an account of the general theory 

on magnetic resonance absorption (Part I), then we shall discuss the 

broadening closely (Part II).

The method used for the general theory of magnetic resonance 

is quantum-statistical and the expressions are derived in the light 

of the linear theory of irreversible process. If each of the mag­

netic moments are independent, the problem is not very complicated. 

But theoretical analysis beccxnes more complicated when the magne­

tic moments are coupled together and the fields on these magnetic 

moments are correlated. The dipolar and exchange interactions are 

the typical examples for this case.

We shall first see a quantum-mechanical theory of frequency 

dependent susceptibilities of magnetic systems. When studying 

this, we shall confine ourselves to the simple case of the linear 

theory which assumes that the external disturbance is always 

small and the response of the system to it is linear. Secondly, 

we shall calculate the relaxation function in a quantum-mechanical
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way.

Part II is devoted to develop the Fourier integral method for 

computing the line contour of resonance absorption and also to 

apply the method to the theory of magnetic resonance absorption.



c;>

38/

PART I

III - 2 - RELAXATION FUNCTION AND SUSCEPTIBILITY

In order to correlate the susceptibility and the relaxation 

function to the dynamical properties of the system, we first need 

to derive basic equations. We do this quantum-statistically and 

use the limitation of the linear theory which means that the res­

ponse of our system to the external disturbance is given by taking 

only the first order of perturbation theory.

We apply an oscillating magnetic field (whose wave length is 

very large compared to the dimension of the sample) to our sample. 

We write this field as;

(III-l)Hi(t) = Hi Coswt 

We can express the induced magnetic moment in the following way:

/ / , . (in-2)
=  ( X  Co_f + x'LFi nuwt ) H ^ V

and we also have,
X  - - c (III-3)

where X  is the complex susceptibility and x' and are the real 

part and imaginary parts of the complex susceptibility respective­

ly.

V is the volume of the sample.

Since we take and H^ as linear, we can now calculate the
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magnetic response of the system in the first order of the external 

field H^.

The function which describes the time change of the response 

after the external disturbance is cut down to zero is called the 

RELAXATION function. Supposing that a constant magnetic field 

is applied from t = -oo to t = tg. Then it is suddenly removed.

For t =-oo to t = we write the density matrix operator as;

/  =
g«p L'A (Zif- Hi M)] 
Tr{exf>[--A ('/'HH)]}

where M and/C are respectively the magnetic moment operator and 

the Hamiltonian of the magnetic system in the absence of H^.

For t J> tQ, we write the Von-Nuemann equation

(III-5)

The time dependent density matrix at t = t is given by,

The expectation value of M is,

(III-6)

M ( V ~  l r { f ( O h ] (in-7)
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Substituting Equation (III-6) into (III-7) we have,

U d - b X ] , .  [ f d - i J X ]
M e

and with the initial condition MCt^) = M (III-IO)

The equation of motion for the magnetic moment in the Heisenberg 

representation is:

it M(t) = [ M(t) ,/f] (III-ll)

By using the expansion method and ignoring the higher order terms 

(than the first term), can be rewritten as; (Kubo and Tomita).

-AX

O
*0{h ) (III-12)

with M (,t̂ ) = M initial condition

Substituting Equation (III-12) into Equation (III-8) we obtain;
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ewith P =r  ---- — —  (density matrix for unperturbation

and -:z j M  j magnetic moment with unperturbed

Hamiltonian! (III-15)

we can now define the relaxation function as a tensor,

M  (t ) —  Ait - ( M i a ) (HI-16)

and the transposed tensor of y

M (t) - Mq = 0  (t-t*) Hi (III-17)

^  (t-t^) and 0^^ (t-tg) can be respectively expressed from

Equation (III-13) as follows

/  /
/ XH —X^ /

0 Ô

A

^ (i-ipii,X)> / A ( i n - 1 9 )

In the classical limit (t— +o) one can obtain:

^  (t-t„) = /9 [<MM(t-to)> - (III-20)

4> ( * - V  = A  [ <  (III.21)
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By assuming Hi(-oo) = o and we can obtain

the quantum-mechanical expression for M(t) for Hi(t). The per­

turbing field has been switched on at t=-o» and applied up to t=t'. 

The expectation value of M at the time t is,

M(i) ~ Me - f j d ' )  c/é (HI-22)

dII-22')

And the Von-Neumann's equation of motion for the relaxation func­

tion is given by

(M ')  = < [M , (é-t'), My\y (III-23)

Through the Equations (III-22) and (III-22'), we can obtain the 

expressions for the susceptibility.

% j ̂  CO T iz
o

-j <p(t)CoSLO

r (III-24)
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- / c u  r  
(p(Z)e c/c (III-25)

where X  is the static susceptibility and it is given by:

(III-26)

Equation (III-25) can also be written as,

X-
X = c / r (IIX-27)

Equation (III-27) gives the relation between the complex sus­

ceptibility and the relaxation time. (The relaxation function is 

the Fourier transform of the frequency dependent susceptibility). 

The relaxation function has the following properties:

a)  ̂ they are conjugates

b) \im(p (0 - O

c) ^  is a symmetric tensor

0  c-t) = ^  (t)
or

(-t)
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d) In the case of a constant magnetic field (app­

lied to our system continually). We have the following;

or

0 = 0 C-t )-Hc>

0  ^  (t , -H^)

•= . -«c>

X("^H ) = -H )

The classical case requires only that the energy differences 

Ejq - Ejj of the various levels of the system connected by matrix 

elements of M should be much smaller than kT.

Using the expansion

M%(t + itA) = M^(t) itAM^(t) -k i(itX)^ M^(t)

and substituting this into Equation (III-19), we obtain,

xy “ox “oy ^ “y ^  + second order
of

(IXI-29)

Condition (XXX-28) tells us ^  is very small i /3 ~ ^
2.that is to say we can ignore ”^  ” terms in Equation (XXX-29),

we then get ;
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= Z  [ <  “y >  -  “ox“oy] 30)

This equation satisfies all the properties of the relaxation funct­

ion. The function ) My (T) ̂  ^ M x  My

is the correlation of M̂ (t-P r ) and My(t) . It is called the x-y 

component of the correlation tensor of magnetic moment at time in­

terval t. In the low frequency cases, we see that, the relaxation 

function (Eq. III-30) is proportional to the correlation tensor of 

the magnetic moment.

Ill - 3 - SYMMETRIC AND ANTISYMMETRIC TENSORS

The symmetric and antisymmetric parts of the relaxation ten­

sor are respectively defined by.

substituting Equation (III-19) in these equations, we have, (t^=o)
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0

____

7 /

/

0 \ t ) < /%  (é- i'f,A)My-M>, d ^ /-//7 /%>cJA
0 ù

(III-34)
~J -£<0AlyCt'/iiX) -'-
0

0  et) is real and even in "t", whereas , 0  (t) is odd inxy xy
"t".

For ^  - small (low frequency approximation) ityf = o and our 

equations become

/;̂y(t) = i /<[M̂ (t)My] + [ M̂ (-t)Mj> -/ M

= &/?<( [Kx"y(t)] + [ -/d "ox *,

= 4 / < [ “x W \ ] - [  V - * ) “y ] >

= i^<-[w *^] * [ “x * V < - « ] >

by
(III-35) 

oy

(III-36)
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Now, we write the symmetric and antisymmetric parts of the sus­

ceptibility tensor as;

Xj ---— y  0  M)  €• c/-é (III-37)
0

.-o . /0 -/a/f
0  (i) ^  J i (III-38)

Neglecting the effect of X' in energy absorption, we write the rate 

of energy absorption by the magnetic system for linearly polarized 

radiation.

we have for andX"sxy

2 v f  e  c/ t̂ (III-40)

— oO

(III-41)

that is because is even in "t", i.6 X)^(t) =M^(-t)

Let us consider that the absorption of radiation linearly 

polarized in the X direction for ^  - small case. We here de­

fine A(w) the absorption coefficient as.
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A(u>) = X  ' (w)XX

with the help of Equation (HI-41) ,

HI-42)

\ — 2.*]

-oo

/A Zu; )

(HI-43)

(HI-44)

with G(t) = Z “ox

(III-45)

Gft) = (III-46)

Equations (III-44) and (HI-46) tell us a very important statement:

A (tu ) is the Fourier transform of the "auto-moment" of and 

conversely the "auto-moment" of G(t) is Fourier transform of A(a»)/t*̂  

We now define the "spectral density" as,

I(ui) - lirrt ^

L  o
> (HI-47)
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it follows that; (Kubo and Tomita) 

Kw) = J  G(t) Cos wt dt = i G(t)ê^^t dt (III-48)
9 êo

G(t) is an even function of t, so we write,

oo oty
G(t) = I(cv)Coswtdw = ̂  j  I(6u)e^^^dw (III-49)

0  — oG

The auto correlation of M^(t) is G(t)/G(o). The distribution of 

A(u;)/ti/2 is the spectral density of the random variation of M^(t) , 

or the Fourier transform of the auto-correlation function.

PART II

III - 4 - BROADENING

We write the Hamiltonian of the system under consideration as;

if =/fo +CZf' (III-50)

where the unperturbed Hamiltonian (^o) is a measure of sharpness 

of the resonance line and the perturbed Hamiltonian indicates

broadening and shifting at this resonance curve. We call £ the 

Interaction Constant. We can expand the Fourier transform or the 

characteristic function of the intensity distribution of the ab­

sorption in successive powers of the perturbation (6 ). To be 

precise, we assume that the logarithm of the characteristic funct­

ion of each of the resonance lines can be expanded in powers of € • 

After obtaining the characteristic function, we shall be able to
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produce the intensity distribution or the shape of the resonance 

line. Doing that we go up to the second order of 6 because the 

second order of 6 gives us most of general feature of the 

general feature of the shape of resonance line. The resonance 

lines with 6 = o (i.e. absorptions corresponding to the unper­

turbed case) are called the Main Lines or the Resonance Lines of 

Zero-th Order. The perturbation of course gives rise to shifts

and the broadening of these lines and causes the appearance of
1

other lines. We call them the satellites or the Resonance Lines 

of Higher Orders.

We make the following assumptions for our theory;

1) Low frequency approximation is made. The absorption 

energy is much smaller than the thermal energy. We write

tw «  kT

2) We consider only a single main absorption. The satellit­

es are not in our concern and they are far enough from the main 

line to neglect their effects (contributions).

3) If the main line has more than one peak, it will not be 

the object of our theory.

4) The absorption curve is smooth and differentiable to any 

order.

Let us introduce the Hamiltonian of the system under con­

sideration as follows
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where is the Zeeman part

<̂ p is the dipolar interaction part

X l is the motion part

Hp dipolar interaction depends on the nuclear spins and space co­

ordinates of nuclei.

In Quantum Mechanics, the averages over the nuclear spins are 

given by (trace operation):

 Tr{i}

and the averages over the motions are,

<( ;>

(HI-52)

nuclear fri
moiion I J

(HI-53)

Therefore, the Fourier transform of the intensity distribution 

function G(t) can be expressed as follows.

Me.

-----------------Z T T — tipj--------------  (HI-54)

= M^M ^  with M^ = e  M e   ̂ M^ = M(t) (III-55)
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Dipole moment operator M represents the interaction of the system 

with radiation field. Equation (III-54) is the same as Equation 

(III-45) and M replaces because as mentioned earlier, the mag­

netic field of the radiation is linearly polarized in the X  direct­

ion.

The calculation of the intensity distribution function is re­

duced to that of the function G(t). This is the basis of the 

Fourier Integral Method. Calculating G(t) requires the knowledge 

of the magnetic moments. We first write the equation of motion 

for M^. (Equation III-ll).

i^Mt = [ Mt,;f ] (HI-56)

with the initial condition M,_ = MX—o
Secondly, we expand the solution of this equation in powers of the 

perturbation (6 ). We have;

M° + e‘ M'̂ + e* +---- + e"

the general term is given by;

r* '  f i . i
- (-10) y  J  • -y (HI-58)

[  — J  ---------J “ ' < v ]
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The magnetic moment and field corresponding to the unperturbed 

motion can be respectively expressed as,

M (III-59)

X'it) = e^^o^ h' (III-60)

We can easily see that, with the expansion of , the function 

G(t) becomes

(III-61)

Now all we need to do is to calculate the terms in G(t). Let us 

first introduce the decomposition of the dipolar interaction in 

the following form:

(HI-62)

where C =

^  is a spherical harmonic

is the direction of r^j 

T^ is an irreducible tensorial spin operator.

We here introduce some ideas related to irreducible spherical
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tensor operator T.
M

T is defined as a tensor of rank L with. (2L + 1) elements, 

has the following communication relation with the angular mo­

mentum operator.

r M 4 r M+1I \  J = I (LTM) (L _+ M + 1 ) (III-63)

- m t : (HI-64)

where I = I + il ± X —  y
Also the spherical harmonic has the same commutation relation 

with angular momentwa operator.

H Ü
(HI-65)

(HI-66)

As an example, let us take rank of 1, (angular momentum by itself)

claearly I^ has three components ( M  = "1^0^ i. )

M  - - L ;  L

These three components are given by :
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-I " '-y)

T o  = 7 %
(HI-68)

(HI-69)

Now, coming back to the decomposition of the dipolar interaction, 

as we consider the interaction between two spins, we must take in­

to account the possible combinations of their components. These 

components would be 1 - Step up I^ 2 - Step down I 3 - Spin

of z-direction I . And the combinations are: z

(a) I I  (b) I I^ (c) I I (d) I I (e) I I (f) I IZ Z  Z +  Z ~  +-I- + — — -

From the last three equations, we can clearly see that items (a) 

and (e) are zero, (b) is +1, (c) is -1 (d) is +2 and (f) is -2.

Therefore, we have the following:

7‘.̂ (HI-70)

(HI-72)
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for L = 2 we write Equation (III-63) as:

-  A  - -Y y[ T ±  > M J ~  0ÿ ̂  (III-73)

we obtain, (we took. C = 1) for simplicity)

< Mt M  O  =  O (HI-75)

/ y

O y  / / >  ̂  - jy i f / i 2  ^  e (111-76)
 ̂ 0 ^

< [ m ],

M/Aere M  CAr^2y~'\j^'^y0)^(ya)jT (HI-77)/ ( y  V  -

Æ  V i f  "II-7G)

Functions "F " are the correlation functions of the coefficients s
of the dipolar interaction which are functions of nuclear coordin­
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ates.

Neglecting the unimportant terms, we rewrite Equation (III-76)

2 . . f'̂ '< My W >  =  ̂7/e c/0i J c/4
T Ù o

f  % j  4  i ' - ' V a ) ,

(HI-79)

with. z - /  - /
The F-Functions in this equation are the correlation functions of 

the tensor components of the local field due to the dipolar forces. 

We define them as :

(III-80)

And they have the following properties,

/  Cz) -  0  ( Z )  =  F  C-Z) (111-81)

We now collect the terms in the expansion which have the time fac­

tor ^ and regard them as the expanded form of an expo­

nential function, which is assumed to be a good approximation to 

the actual characteristic function of the absorption intensity of 

the main line. And we take the function G(t) as
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( 1 1 1 - 8 2 )

{ æ % >  4

(here C^ is a constant)

We are now able to show the proper choice of the combinations of 

the perturbation by looking at the time factors of expanded terms. 

There is a certain mathematical reason for our procedure. Assump­

tion (4) means mathematically that the characteristic function has 

to satisfy an integrability condition. It is to say that G(t) is 

always integrable over (-00,00) when multiplied by t^(nJ>o).

Equation (III-82) is called the second approximation of the 

characteristic function. Limiting ourselves to this approximation 

means that we start from a Gaussian distribution for the ideally 

rigid lattice and treat the change in the resonance shape caused 

by the nuclear motion.

As to the effect of nuclear motion, it is a sort of Gaussian 

process for the random modulation of the resonance frequency of a 

magnetic unit due to the fluctuation of interactions with other 

magnetic units.

In the case of a rigid lattice, all of the F-functions are

constant. The first term in the exponent of Equation (HI-82) be- 
2- I 2 / 2comes LOpty/Z*. OJ ̂  is the second moment of the rigid

lattice due to the dipolar broadening. And all the other terms
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in the heavy bracket in the integrand give rise to the satellites 

at W  = o and uv = They also cause a shift and decrease of the

height of the main absorption.

But for a non-rigid lattice, these terms contribute to the 

broadening of the main line. We take the asymptotic limits of 

Equation (III-82) for |t|— we have,

T A T/ré^ c ) M z r )  c/c
o

s ^
O

(HI-82')

The first term in the exponent of Equation ( H I -82*)
V

-> —  . \ /

0
is called the adiabatic term. The integral in the exponent is

i.e. ;
Û

abat
/ Vproportional to  ̂ 'Z if t is small enough. And this proportion-

2ality constant is exactly the second moment for the rigid

lattice. The second moment of the intensity distribution function 

remains constant throughout the narrowing process. And the non- 

adiabatic broadening is not effective. (The rest of the terms in 

the exponent of Equation (111-82*) is called non-adiabatic terras. 

We can express the adiabatic effect (spin-spin relaxation
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effect) as;

(HI-83)= e y p f - 0 - r ) f C ^ _

wbere — F  ‘ ^^)y^F ) (III-84)

/ Y - V  -  /

Let us write the integrand in the exponent of Equation above 

(with t --^  00 )

J ( é -  z)f (r)/ r  - é/y(z ) c / c - J r / 0 ) c / c  ( i „ _
ê\ </

85)

A :- r / 8
o

where ^  is the correlation time.

If (A) and (B) are convergent, G^^(() becomes:

G^/t) =  eXf>[-y, ry-é/y- w^^jfcz) z 4 r j (IH-86)

The adiabatic term gives a resonance curve which is always 

Lorentzian (or the damped oscillator type) at the centre of the
Z Dresonance, if the lattice is not rigid. And Uĵ  is the

half width of this curve.
  0 y /

The most effective narrowing is seen when ^  ' -
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We here note that for the special case where 

0 ( 0  -  (HI-87)

B p p's- equation can be obtained.

(HI-88)

where > spin-spin relax, time with lattice motion

Tg"  spin-spin relax.time with rigid lattice case.

Kubo and Tomita made some numerical calculations by using 

Equations (IH-86) and (HI-87). They found that the general 

direction of the change in the half width is much similar

to that described by Equation (HI-88) , and the exact curve fits 

well to a modified form of (HI-88). We have

(HI-89)

The figure overleaf shows us the narrowing proceed with the 

decrease of .
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Aiym ptG lc o î a

-  <M

0.5

Figure III-l. Half width due to tlie adiabatic effect frun 

Equatiou(III-8G) and (III-87). The un.it of 

the vvldiJi f/f' find Tomita)

Co /-v>€. k 1a\'A- ,
Nov/ we can express the non-adiabatic effect (spin-lattice

relaxation) with the characteristic function of the form,

///G  Cf) -  ^/-p /-  ̂ )
fioyi-ad V 7 /

(III-90)

The importance of the non-adiabatic effect is two.

1-) It gives rise to a broadening with a Lorentzian form. And 

its half-width is.

(III-91)

2-) It causes a shift of the resonance peak, S which is
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given by;

') I~  / / / ? " '  ’/ ' i r ;  J r .  # / d r j
(III-92)

The relation between the shift and broadening is similar to 

the relation between the absorption and the dispersion. Their be­

haviour is given by Figure (III-2)

If t)io conditicTi Z ^  is satisfied, the ncn-adia-

batio effect becomes important.

I/T,

Figure(lII-2) Curves for the adiabatic half-width 1/T^^ 

the nonadiabatic half-width 1/T^ , the nonadiabatic shift <$ and 

the spin-lattice relaxation rate 1/T, . The assumption for this cal­

culation are: 1) all of the correlation functions are given by

Eq.(87), 2) the atomic arrangement is isotropic , and 3)
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The unit of all of these rates is «/p /L, ■ (subo and Tomita)

It is also interesting to point out the exact relation between 

the non-adiabatic broadening and the spin—lattice relaxation time. 

They are both described by the same characteristic time T^. But 

this is not the case. The spin-lattice relaxation time is defined 

as the time constant characterizing the decrease of temperature 

difference between the lattice system and the spin system. The spin 

-lattice relaxation time is the rate of energy transfer. But the 

non-adiabatic broadening comes from the limitation of the life time 

of each of quasi-stationary levels.

Ill - 5 - THE PHYSICAL EXPLANATION OF THE SHIFT

We shall now give a physical explanation of the non-adiabatic 

shift and its relaxation to the non-adiabatic broadening. The 

shift and broadening are clearly related as they are the Sin,and 

Cos. Fourier transform of the dipolar auto-correlation function.

And in this section we shall see that they are related to virtual 

and real transition between the energy levels of the spin. A vir­

tual transition occurs when a spin is at energy level Ep^ jumps to 

another energy level E^ ( where it remains for a short time be­

fore returning to the initial state). This occurs in violation of 

the conservation of energy, so the time t of the excursion is limi-
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ted by

^ ~  £ „ -  E „

The figure below shows the energy levels caused by the virt­

ual transitions.

Figure IlX-3; The mean energy of the state is no 

longer E ̂   ̂ but E ̂  A  E

Now the lattice or the motion of the spins gives a finite

lifetime to the spin levels of duration

Spins also make their own natural transitions called the

real transitions obeying the selection rules. And the real transi­

tions can disappear if only and only the magnetic field is re­

moved. We must consider the distinguish between the virtual and 

real transitions. Figure (III-4) represents the transitions:
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Vi

real
transitions

virtual
transitions

Figure III-4: The real and the virtual transitions.

We here note that virtual transition process occurs suddenly, 

quickly with high frequency as its life-time is short.

The expression for the shifted energy level ^  is giv­

en by;

. _ —  ( o l / r )  (  l
A E ^  - X  — ................ ....... ......... .- n -

P
~\r
A

In this equation the term (A) in the bracket can be studied 

closely.

a) If f ̂  <C<C j. A becomes zero. That means no vir­

tual transition for such a case P «  V c  (The transit!tion
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frequency (probability) is very small).

b) If ^  i. A becomes 1. That indicates

that the transition occurs when f IQ
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giAi^TEirxvl.

REDUCSD DENSITY JtATP.IX 

IV - 1 - PHYSICAL MEANING OF REDUCED DENSITY MATRIX.

As mentioned in Ctiapter II, in order to have full information 

about a complete system, we introduce the complete density matrix 

” ̂  And also we showed that the expectation value of an

operator is given fay this matrix element. Our concern is here to 

find the expectation value of an operator which is a function of 

only a few of the variables of ^ .

Let A(p) be an operator for our particular interest with the 

variable p. We have the following expression:

< A ( p ) >  = (p ,<p A(p)J. (XV-1)

(where "q”s are the other variables which specify Ÿ  ) • Since 

A is independent of ^ , Equation (XV-1) can be factorised in the 

following way,

< A ( p ) >  = Tr [Tr^ ?( p,q)] A(p) j (IV-2)

T^q 5^.(p,q) is called the "Reduced Density Matrix" and it 

contains all the information necessary-to evaluate the expectation 

value. We will use CT to symbolize it. We write,

O' ( p ) = Tr^ ^ ( p ,q) (IV-3>

C/(p ) can be regarded as a complete density matrix in its 

own right. We don’t have any operators which depend on more 

variables than p. The expectation value of A(p) in terms of «^(p) 

is through Equations (IV-2) and (IV-3) given by:
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<A( p ) >  Tv ^ o' (p) A(p) ̂  (IV-4)

The Von-Neuiaann equation can also be written in terms of 

O' (p)

i^à'(p) O' (p)J (IV-5)

The relation between the reduced density matrix and the density 

matrix for the complete■set is:

(/ = <  f  > (IV-6)

I V - 2  - m E  MASTER EQUATION FOR THE PENS f IT MATRIX

In the case of NMR, v/e are only interested in the spin part 

of the density operator. In fact, our system has the degrees of 

freedom for spin and lattice (bath). Therefore, as already men­

tioned, the total Hamiltonian (Jf) of the system covers 

1 - Zeamann. 2 - dipolar 3-motion parts. V/e can also express the 

Hamiltonian (Abragaia) as a sum of unperturbed and perturbed parts, 

The equation of motion of the density matrix f  can be written 

in the following way:

it p (t) = (t) , ,p] (IV-7)

where and (t) are respectively the unperturbed and
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perturbed parts of the Hamiltonian. The perturbing Hamiltonian 

(t) is a stationary random operator.

We now introduce CT and X ^  (t) in the interaction form

tr = f e ^*^0^ (IV-8)

= e^ (IV-9)

by using these two equations, Equation (IV-7) becomes;

1er - [ c r ,  (iv-io)

And the solution of (IV-10) is (up to second order):

J X

c^H) =  cr(o)-i ^ W ] j
O 0 0

(IV-11)

taking the time derivative of (IV-11)

( r w j - J<Hz o-co)]^

0

(IV-12)

with T =  t-t/

Because we are interested in total spin not the spin of in­

dividual particle, we take the average of Equation (IV-12) over 

all the random Hamiltonians ( . O' is a random operator lil^e

according to Equation (IV-12). When doing the averaging process,
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we make the following assumptions (Abragam):

1 - It is permissible to neglect the correlation between

(t) and ^  (o) in the averaging of Equation (IV-12) and average 

them separately.

2 - It is then permissible to replace O' (o) by O'(t) on the 

right-hand side of Equation (IV-12).

3 - It is permissible to extend the upper limit of the in­

tegral to + oo

4 - All unwritten higher-order terms on the right-hand side 

of Equation (IV-12) can be neglected.

Then we have;
oo

we can also derive this equation from Kubo’s;

(IV-13)

f(t) = f  (o) with I f  (t) >  = j f  (o)>

we average this density operator over the bath variables. Ÿ  (t) is 

given by (time dependent)

Jf (t) = J e x p i y  ^  ( r ) dr j f (o) (IV-14)
o

If f is a function of spin variables only then we need to look at
j ]

'i

(IV-15)
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/i.e. > J z c r ( o )

let f(t) and g(t) be two functions, we have, 

f(t) = e X p — 7 (t-T) g(r) dr

f(t) = -f(t) / g(T ) dr
O

similar to this we have,

(IV-16)

(IV-18)

V - 3 - THE DYNAMICAL THEORY OF NUCLEAR INDUCTION

Wangness and Bloch developed a theory which starts from the 

microscopic viewpoint and derives the dynamics of nuclear induc­

tion by means of statistical methods. In their paper, it was 

assumed that each nucleus under consideration reacts independently 

of the other nuclei in the sample to the external field and the 

inolenuclear surroundings (as a heat reservoir in the thermal equi­

librium). Therefore, the magnetic moments of neighbouring nuclei 

are considered as a part of the heat reservoir.

We shall derive a set of first order linear differential 

equations for the "distribution matrix" which determines the ave-
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rage value of the nuclear polarization or of any other quantity 

which depends on the orientation of the nuclear spin. The equa­

tions for the distribution matrix express the time derivative of

the average value of an arbitrary spin function in terras of the

average value of other spin functions.

We write the Hamiltonian of the system in the form of;

t E + F-f^G (IV-19)

The terra E) gives the energy of the nucleus in the external

field We write,

E = - y I ) (IV-20)

However, the external field contains two parts. 1 - static 

part (strong, time independent and in the z direction). 2 - H^(t) 

part (relatively weak and time dependent). So, v/e have

Therefore, E can be split into two parts.

E = E + E, CIV-22)o 1

where E^ and E^ respectively state the unperturbed and perturbed 

parts of the system.

We write;

Ec = - y H- I with U> = y  Hqo O g z
and E^ = - I) (IV-23)

The second terra (tiF ) in Equation (IV-19) represents the ener­

gies of the molecular surroundings and the last term (kc) gives
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the interaction of the molecular surroundings with the nucleus.

(In a completely general theory, we have to take into account all 

of the nuclei in interaction with each other, but here we left 

this point out).

Tlie energy tiF of the molecular surroundings is expressed in 

an orthogonal set and the eigen values of F will be denoted by a 

frequency "f". Because the molecular surroundings act as a heat 

reservoir, they must have very many degrees of freedom. Therefore, 

its energy levels are highly degenerate. We use symbol "s'* to 

specify one of the possibly many states with the same energy iif.

The density matrix for the complete system describes the dy­

namical behaviour of our system as a whole. We have;

(IV-24)
*where "a" is a probability amplitude and a^â , indicates the oc­

cupation probability of the state m.

With respect to our Hamiltonian, Von-Neumann equation can be 

written as,

i ̂  (t) =j^E + F + G, f] (IV-25)

The density matrix / obeys the normalization condition, we write.

As mentioned earlier, the expectation value of any physical 

quantity is given by For this set, we write,

< Q W > =  I Q  i =  T r  l < 2 m )  n v -27 )
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Now, going back to our symbols in our Hamiltonian, the terms 

and F can be Ufeated as large whereas the terms E^ and G repre­

sent a small perturbation.

Introducing ;

(IV-28)

we write the density matrix ^ in the form of;

Ÿ = A B f * b"^ a"^ (IV-29)

Von-Neumann equation becomes in terms of asterix representation,

r * ♦ * 1
i / (t) = |_ + a , f> j (IV-30)

* -1with E^ = A E A 1

and G* = B - V ^ G A B  /
—1 —1 —1 A E A  = B A E A B

Through Equ. (IV-29), we can easily see that,

at t=o - f (o) (IV-32)

From this initial value, we can obtain (by forward integration in
*

two successive approximations) the value of f (i) at a late 

time t in the form of.

The first-order increment is ;

/ y = - i / [ [G%'), f(o)]dV (iv-34)
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and the second-order increment is approximately,

4  f  [6 f (IV-35)

We are interested only in the expectation value of quantities 

concerning the nuclear spin alone, such as the components of the 

angular momentum of the nucleus I. In other words, we can call 

any quantity concerning the nuclear spin "spin functions". And 

these functions in our representation are diagonal in the vari­

ables f and s, referring to the molecular surroundings. We have,

<^mfs j Cll ^  ^ f Y )  \ Ci \ ' )> 5,5/
' ft (IV-36)

Now, the crucial point is that; since Q is a spin function, we 

don't need to use the density matrix of the complete system which 

has all the information about the whole system. We use the 

"distribution matrix Ct " which is the matrix element of the spin 

system. Doing that, we cleared the theory from the complicated 

unnecessary information.

O’ is defined by;

<fTi ) O') 111 m'f 5 >
(IV-37)

It follows that, the expectation value of a spin function Q is 

given in terms of O

< Q >  =  (ly-ss)
mm'
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In a similar way to the transformation (Equ.(IV-29)), we can 
*"write O' as ;

fs
-1with O' = A O' A

Inserting Equ. (IV-33) in Equ. (IV-39) we get,

(IV-39)

(IV-40)

(IV-41)

with
<^| \ ^ (o ) I m ' f s y

fs

/O

(z)

fs

(IV-42)

A knowledge of the density matrix f at t=o is required in order 

to evaluate Equ. (IV-42). In fact, it is not this matrix f (o) 

which is known but its statistical average (f (o)). It indicates 

the fact that the surroundings are for t=o in statistical equi­

librium at the absolute temperature T. The probability of find­

ing the surroundings in a state is given by the Boltzmann factor 

P(f) which depends only on the energy tf.

The statistically averaged P (o) is given by;

<Ĉ mfs\S(o) = (iv-43)
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Here, the appearance of the arbitrary matrix pr? | iX M  

signifies that we maintain complete generality in regard to the 

initial state of the nucleus.

I V - 4  - THE SPIN-ROTATIONAL INTERACTIONS IN LIQUIDS

The interaction of a nuclear magnetic moment with the mag­

netic field produced at the position of nucleus by the rotation 

of the molecule containing the nucleus is called a spin-rotational 

interaction. Its contribution has been seen to the nuclear mag­

netic relaxation of some liquids.

Gutowsky, Lawrenson and Shimomura have measured the spin- 

lattice relaxation time of the fluorine nuclei fasten than that 

of the protons. And they concluded that the spin rotational inter­

action for the fluorine nuclei was greater than for proton.

It has also been shown by Johnson, Waugh and Pinkerton that 

spin-rotational interactions are important for the relaxation 

mechanism of the fluorine nuclei in liquid CHF^.

Brown, Gutowsky and Shimomura have pointed out that the 

statistical properties of the spin-rotation Hamiltonian in a 

liquid may be quite different from those of the orientation-depen­

dent interactions. They introduced a transient rotation model in 

which molecules jump from one orientation to another at random 

times. The spin-rotational interaction is assumed to operate 

during these jumps when the molecule is actually rotating.
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Hubbard calculated the contribution of spin-rotational inter­

action to the nuclear magnetic relaxation of identical spin i 

nuclei at equivalent positions in spherical molecules in a liquid 

and he employed the semiclassical form of the density operator 

theory of relaxation.

The interaction Hamiltonian cfc.G) of the system can then be 

split into two parts. 1 - the spin-rotational interaction (tG^)

2 - the dipole-dipole interaction (iiGg). term for the ith nu­

cleus can be written

6, = ^ I i C (IV-44)

where is the angular momentum of the molecule containing the

ith nucleus and is a dyadic. Suppose that S^^^ is a coordi­

nate system fixed in the molecule, having its Z axis directed from 

the centre of the molecule to the ith nucleus. Because of the ith 

nucleus. Because of the assumed symmetry of the molecules, 

is diagonal in S^^^ with elements

cl'' s  C„ , c f  > =

We rewrite G^ in terms of the components of and in S^^\

We now define the spherical components of and J|

,  v f  5  + ( I ; x ±  iIiy)/vY =  +
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and we have,

o X s  c , ( K ) “U T' (IV-46)

where C ^ =  C,

The spherical components of a vector constitute a first 

rank irruducible tensor, the components in are re-

lated to the components in the laboratory coordinate system

S by (Hubbard),

, u''i) J-
( Vj ) = . 2  /  (iv-47)

k-i
where (% A ^ are the Euler angles of with respect to

k' n)S. There is a similar relation between the components (J^ ) in
(i) kS and the components J. in the laboratory coordiante system.

The sum of all the spin-rotational interactions

can be written in the laboratory coordinate system as, (Hubbard)

N i  Ic ic
G , -  %  2  U. V- (IV-48)' i-l k="l  ̂‘

where u .A /r\

We write that the spin-rotational interaction in general de­

pends on the orientation of the molecule, since it involves the 

sets of Euler angles which specify the orientation with respect to 

the laboratory system of each body coordinate system in which
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the spin-rotational interaction of one of the spins is diagonal 

If ■» G ,  doesn't depend on the orientation of the

molecule.
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CHAPTER Vl

NUCLEAR MAGNETIC RELAXATION IN

TWO-DIMENSIONAL SYSTEMS

V - 1 - THE IMPORTANCE OF THE STUDY OF TWO- 
DIMENSIONAL SYSTEMS

Throughout the study of the nuclear magnetic relaxation 

theory for two-dimensional systems, it can be shown that the re­

duced dimensionality has the effect of decreasing the relaxation 

times from their expected values by as much as a few orders of 

magnitude. In addition to that. T., and T_ relaxation times are 

to be seen unequal even in the presence of fast atomic motion. 

Cowan (1980) by observing the relaxation times of adsorbed helium- 

3 showed that the theory is in close agreement with the experi­

mental results.

The NMR properties of adsorbed systems behave differently 

from those of the corresponding bulk system for a number of rea­

sons. 1 - The anisotrophy of the intemuclear dipolar interaction 

causes the relaxation times to depend on the orientation of the 

substrate plane with respect to the static field. 2 - The ro­

tational symmetry of the dipolar Hamiltonian can not be complete­

ly averaged by fast planar motion, except when the normal of the 

plane makes an angle of 54.7° (Cos ) with the static

field. 3 - As far as diffusive motion is concerned, the long 

time behaviour of the spin correlation function depends on the di-
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mensionality of the system.

We are now going to present a consistent theory of dipolar 

mediated spin relaxation for two-dimensional systems. Kubo and 

Tomita’s (1954) treatment of NMR lineshape (Chapter III) became a 

light for our theory. However, it is not certain that the Kubo 

theory is valid for two-dimensional systems. Reiter and Boucher 

(1975) checked their result against the Kubo result and found that 

the validity in three-dimensional case can be extended to two-di­

mensional case but not to one.

V - 2 - RELAXATION FUNCTIŒS AND TIMES

In Chapter II, we have already mentioned the theoretical ex­

pressions for the longitudinal and transverse relaxation functions 

((Eq. 11-43) and (Eq. 11-49)). Kubo has introduced a method for 

the relaxation functions by using the expansion in dipolar Hamil­

tonian and he accepted the higher-order terms as an approximation 

of the lower-order ones. His method is known as commulant expans­

ion method. The second term as the first non-vanishing term is 

generally used for the theory.

Following Kubo's idea, Cowan introduced (neglecting small 

imaginary terms) the relaxation functions as; 

for transverse

- 2 2 ?
F(é) - (v-1) ,



84/

and for longitudinal

la) = e a - T)É- 'n% CT)e?<.p('imu>̂r)cJr\
**0 /T7--2

(V-2)

where are the spin-torque correlation functions and

they are the auto-correlation functions of the dipolar Hamil­

tonian components. We have,

6 .  rr; -  ,.v-.
\ r  J.»z

where ^

(in Equation XII-62)

is the time dependence of the being generated only

by the motion Hamiltonian.

In the general case of motion in spin and direct space with 

the spin operators varying we obtain as

Â</ V
(V-4)

where il- indicates the direction (i.e. )

We have introduced a symmetric four-spin correlation function
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If we develop our theory for a four-spin correlation function, we 

can then generalize it for N spins. We have.

(V-5)

T\j(t) tensorial operators are generated by the Hamiltonian for 

motion in spin space. If this Hamiltonian is rotationally invar­

iant then r(t) doesn't depend on spin-flip index m. Whereas the 

spherical harmonics and the r^^ are generated by the Hamiltonian 

for bodily motion in direct space.

We write the zero time value for P  as:

. (V-6)

Taking the spin-torque correlation functions decaying to zero 

fast enough, the upper limits of the integrals in equations (V-1) 

and (V-2) can be extended to infinity leading to exponential re­

laxation. We have,

L(t) ^  exp(-t/T^> (V-7)

F(t) —  exp(-t/Tg) (V-8)

where T^ and relaxation times are :

~  ^  tt/c/ (V-9)

=  - y  ^  J, (V-10)
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where CT̂ (uu) are the spectral density functions and they are 

the Fourier transform of the spin-torque correlation functions.

Cm) = j  Ĝ (i) -ex̂  Livi cJt (V-ll)

For three-dimensional systems with motion the decay of the

G (t) is sufficiently fast and above expression can be true. But m
for two-dimensional systems, it is not always so.

V - 3 - THE CORRELATION FUNCTIONS ON THE 

SUBSTRATE FRAME

It is convenient to consider the correlation functions

(Eq. V-4) on a frame where the polar axis (0 = 0) is parallel to

the static field H . For simplicity, we take the substrate sur- o
face as a reference frame for the spins. The orientation of the 

spins is given by the azimuthal angles in this plane. Using the 

Wigner rotation operators the argument of the Spheri­

cal harmonics can be expressed as:

,9 J- . ..P
^  jD C^/zy) ̂  ( - ^ 9  (v-12)

where are the Euler angles of the rotation. We choose

the direction ^  in the laboratory frame to lie in the sub­

strate plane. For this simplicity, the Euler angles become (O^o)
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With the help of the rotation matrix ) whose elements are tabu­

lated in Brink and Batcher (1968), we express the correlation func­

tions in the following form :

CV-13)

And on substituting in the values for the matrix elements 

we have,

The positional correlation functions g^(t) can be expressed as 

below,

f  ( t ) ^ ±  y  r ,  W
^  r  'M  5j« l

k<{ ^ (¥-14)
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The g^(t) functions can be considered as the determination of the

spin-torque correlation functions. For our theory as mentioned

earlier we go to g (t) term and we know that g (t) does indeed 6 1
vanish. The index "n" means the number of the spins flipped and it 

refers to eigenstates parallel and anti-parallel to the substrate 

normal.

Equation (V-14) has a very important statement. Because it 

shows that the "n" factor in the exponent means that g^^t) does not 

depend on the orientations ^ of the spins but only their

separations r\j, r^^. Whereas the ggCt) depends both on separation 

and orientation. Because the exponential terms give the destruct­

ive interference. Therefore, we expect gg(t) to decay to zero 

very much faster than g^(t).

V - 4  - TWO-DIMENSIWAL FLUIDS

The reasons for considering a fluid are two. 1 - We describe 

the motion classically, treatment is simpler than quantum-mechani­

cal case. 2 - Since the Heisenberg exchange Hamiltonian takes into 

account of spin diffusion in the hydrodynamic limit, we use the 

results of classical diffusive motion.

Then, our next step would be to obtain the correlation funct­

ions for classical motion. As far as random bodily motion of the 

spins is concerned, the positional correlation functions g^(t) are
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treated completely classically.

Combining Equations (V-6) and (V-14) we obtain,

^  r - ( o > C W

(V-15)

. Now we sha.ll be following a probabilistic method in order to 

make a practical calculation for the time dependence of O  and 

0  ĵ (the dynamical behaviour of the spins). We use the proba­

bility function which is related to the time dependent pair dis­

tribution function introduced by van Hove (1954), The idea of 

this probability function is in fact in Boltzmann sense to replace 

the summation over spins. The van Hove correlation function G(r_,t) 

gives us the average density distribution at a time t + t ’ as seen 

from a point where a particle passed at time t'. This function

can be split into two parts, self part G^ and distinct part G^.

We write,

G(£,t) = G^(£,t) + G^(£,t) (V-16)

G (r,t) indicates the correlation between positions of the sames —
particle whereas G^(r^,t) states the correlation for different 

particles.
At t = o we have.
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G^C£,o) = 5 (£) and G^(£,o) = g(£) (V-17)

g(r) is known as the radial distribution function.

For long times: Gg (£,t) is a broad bell shape of unit area

and G,(r,t) is a constant, d —
Let r^(o) and r^(o) be respectively the coordinate of the ith 

spin and jth at t = o. Their initial separation is:

-o " -1^°^ ■ Zj(°)

At t = t they will have a separation distance given by,

£  = r^(t) - £j(t)

Now, the probability that the pair separation will increase by

_R = - £j(t) J " [ - Zj (o) j is expressed as

P C & X )  = / 3,  Câ-£. I) Gs Cc, I)c/r (V-18)

if the motion of the particles is uncorrelated. Here, P(R,t) is 

the convolution of the single particle probabilities.

The radial distribution function g(r) gives the probability 

of a particular initial separation r.

Due to the probabilistic method, we should replace the 

summation over particles (for Equ ((V-17)) by the integral:

P  (C- (V-19)
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The precise details of the radial distribution function are 

not sufficient for the nuclear relaxation properties of a system.

We therefore approximate g(r^) by a step function Q (r^). We

have

0  (r ) = o for r ao o

e (i-q) = «  for r^_> a

0Cr^) then gives a uniform spin density c< for r^ ^  a and 

zero within a hard core sphere of radius "a". Assuming that the 

approximation for the second moment is correct, in two-dimensions 

"a" is given by

J P l l P l  d r

(V-20)

Now in case the separation of the particles is so small, the 

motion of the particles is then correlated and the convolution ex­

pression for P(R,t) is not valid. Therefore, we exclude a sphere 

of radius "a" from the final separation. Regarding to this state­

ment Equa. (V-19) becomes:

— v / v W / y  f  dr P  (r-£> >1)

ipj î / g  r<^

Introducing the spatial Fourier transform of the probability funct-
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ion, the above integral can be rewritten without the double set. 

We then have,

I

Because the convolution expression for P(r,t) is given by the 

square of the Fourier transform of the van Hove function we write,

p(Q,t) = (Q)t)J (V-23)

Combining Equations (V-15), (V-21) and (V-22) we can see that

(V-24)

In this equation, it is seen that the last two integrals are 

mutual complex conjugates and we have,

(V-25)
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We use the Bessel functions of order n and express this equation

as,

^  (fj^ocjja p (q .

(V-26)

We note that in the space integral (Equ. (V-25)), r and ̂  are 

respectively given by (r,^) and (Q,ÿ/ ) . So we write

^ = Qr Cos ) and the integral takes the form of;

A ]
o 0

Because the motion is rotationally invariant in the plane, 

p(Q,t) depends only the magnitude of Q. Therefore, Equa.(V-26) 

can be expressed as,

y
o (V-27)

Apart from rotational invariance, no other nature of the motion 

is given by this equation.
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V - 5 - DIFFUSION

We assume that two-dimensional diffusion equation is good 

enough to describe the motion of the spins. The translational 

probability function P(r,t) can be expressed in the form of a 

gaussian distribution as follows:

(V-28)

Let p(Q,t) be the spatial Fourier transform of P(r,t) we have,

p(&,t) = exp(-2Q̂ P'é) (V-29)

where we shall define "D” as the two-dimensional diffusion cons­

tant .

Putting Q = x/a in p(Q,t) we rewrite Equation (V-27) as be­

low.

A __ (V-30)

with T g  - c^/zv

is the time which takes for a spin to diffuse a distance 

of the hard core dimension "a” . The diffusion may not be describ­

ed by this time scale.
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The numerical calculation of Equa.(V-30) has been made by a 

number of people (Kokin-Izjrtezter (1965) , Chapman and Bloom (1976) 

and Avogadro and Villa ( 1 9 7 7 ) Figure V-1 shows the shape of 

g^(t) functions calculated by them.

o

0 6

t/r,

Figure V-1: Correlation functions for a diffus­
ive fluid. (Cowan)

Here we notice that the decay of g is much slower than g .o ^
We can also see that at t = o and are equal. It is possible 

to prove that through Equation (V-15). The probability function 

is a delta function and the integral can be evaluated giving:

Our next step is now to consider the behaviour of the spin- 

torque correlation functions at long time.
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The long-time behaviour:

The convergence of the integrals for the relaxation functions 

depends on the long-time behaviour of the correlation functions.

We use an expansion in inverse powers of ”t” in order to examine 

the long-time behaviour. Doing the calculation for Equa.(V-30) 

and substituting Equa.(V-31) into the calculation, we have,

(V-32)

(V-33)

For t , the equations above can be approximated by

g^(t) ^  g(o) 2

Sz(t) B(o) C ^ )

(V-32’)

(V-33')

where we must notice that g^Ct) is much smaller than g^(t) .

Through these expressions we reach the consequence for the spin-

torque correlation functions G^(t). Especially, the long-time

behaviour of G (t) affects the transverse relaxation as we shall o
see later.
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V - 6 - THE FOURIER TRANSFORM OF g^(t) FUNCTIONS 

AND RE-EXAMINING OF THE RELAXATION TIMES

In Equa.(V-13'), we expressed the spin-torque correlation

functions in terms of the positional correlation functions g^^t).

Can we also express the Fourier transform of the spin-torque

correlation functions J ( w ) in terms of the Fourier transform ofm
the positional correlation functions uu)? The answer is YES.

Similar to Equation (V-13'), we have.

(V-34)

The spectral functions ) are (from Equa. V-27) :

y' (V-35)o

where pT (Q, w) is the space and time Fourier transform of the
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translational probability function ajid for diffusion, it is given 

by

PCi

(V-36)

The figure below shows a computer calculation of resultant

n ■=■()

n = 2

001

Figure V-2: Spectral functions for a diffusive fluid
(Cowan)

We already know that for non-adiabatic case the longitudi­

nal relaxation time is given by Equa.(V-9)

In figure (V-2), we can easily see that the n = 2 term gives the 

normal behaviour of being almost flat for ^  ̂  •
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There is however, a logarithmic divergence of the n = o tenn which 

causes a reduction in the values in the low frequency - fast 

motion case. Figure (V-3) represents calculated values of as 

a function of ^  for various ratios of <-o . For

= 10  ̂ changes by a factor of 5 between orientation of

~ O and 90^. The limitation of UJô o ̂  ^ indicates 

at one canncthat one cannot go as far as the minimum which should occur at

1-3

Cn

5020

Figure V-3: Spin-lattice relaxation times for a dif­
fusive fluid. (Cowan)
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As to the transverse relaxation function as mentioned earl­

ier (Equa. (V-1) it splits into a product of terms for each m 

value. The non-adiabatic terms give an exponential contribution. 

We have,

CV-37)

where T^^* is the non-adiabatic part of the relaxation time and 

it is given by,

%  — —  J  c^o) J2
2. ^ ^ ■ (V-38)

has contributions from g (t) and g (t) due to the relation 2 o 2
between J functions and g functions. gg(t) term has proportional­

ity to t And since there is no divergence in the integral of 

t”^, the integral of gg(t) can be extended to infinity. This 

part provides the relaxation with an exponential contribution. 

The relaxation rate of this contribution is given by;

/
and with the calculated value of ve have,

CV-39)

-il ̂  <5. Tc S/Z/S cv-40)
T  '
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The g^Ct) function does not decay to zero fast enough, therefore, 

it gives a non-exponential contribution to the relaxation. This 

component of the relaxation function is a factor f(t). We write

f c v -  e z . p  ( t j j r j

(V-41)

f(t) is the dominant part in most cases. Here we introduce the
-1instantaneous relaxation rate T (t) as f(t) cannot be character­

ized by a relaxation time. We then have,

(V-42)

Ve define a phenomenological relaxation time in the form of

(Ÿ-43)

combining Equa.(V-43) and (V-42) we obtain,

6

(V-44)
with the NMR rule of thumb for T^ we have
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7- - • ' ̂ (V-45)'z
The second moment is the mean square value of the local dipolar 

fields (multiplied b y ^  ) which cause the resonance line to have 

breadth. The correlation time TT is the characteristic time as­

sociated with the motion which averages the fields and narrows 

the line.

For our theory, the local field has two parts. 1-) n=o 

2-) n=2 , Combining Equa.(V-13') for G^(t) andEqua. (V-32') +

(V-33') we find,

“2 " “2 + ^2 (V-46)

where

M'F il ^ 6 (v-47)

It is easily seen that for n=2 Kqua.(V-40) becomes;

y-~ ^  0 , 3 Ẑcf (V-48)

As for the n=o part, we first need to know the form of the funct­

ion g (t). We approximate g (t) by an analytic expression which o o
is asymtotically correct at long times and has the correct value 

at t=o.

^
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Adding the n=2 part to the result of Equa.(V-44), we get.

(V-50)

The n=2 part of the local field is averaged in the conventional

way obeying Equa.(V-45),whereas the n=o has not much importance

to the motion. It is only affected by the internuclear separation

and not the orientation. This degeneracy with respect to rotat-
-1ional motion gives the long t tail to the g^(t) function and it 

is the effect of this inefficiency in the averaging process (ex­

pressed by a logarithm factor) which shortens the relaxation time 

from its expected value. Since the logarithm is a very slowly 

varying function of T ^ / ^   ̂ we can obtain a reasonable estimate

of the relaxation time by assuming a typical value for this ratio
-3 -7in the logarithm. T^ ^  10 sec and |0 sec are the typical

values. The figure below represents how T^ varies for such a case,
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PO

Figure V-5: Spin-.spin relaxation times for a diffus­
ive fluid. The .correlation time to re­
maining approximately constant with
Ir̂ Ĉ i/co) ̂  ̂  (Cowan)

When gets shorter, it becomes less than too even in 

the fast motion-low field case for most orientations 

Ordinarily they would be equal. Figure (V-4) also contains 

for this case ( ) and we can see that at /3 ̂  O

= 10 X T^. But for ^ ^  is greater than T^. It may

be surprising for spins to come to equilibrium with the lattice 

faster than amongst themselves, but thermodynamic arguments show 

that in the limit of the spin-spin interaction through the latt­

ice, the limiting requirement is that should be less than

twice T^.
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V - 7 - ANOMALOUS FEATURE OF OF ADSORBED PHASES 
OF ^He

After giving a general theory of NMR in adsorbed systems, we 

shall discuss the linear dependence of the relaxation time on ap­

plied magnetic field for relatively low fields. We shall show a 

weak temperature dependence of the spin lattice relaxation time. 

This anomalous behaviour of is a consequence of the reduced 

dimensionality of the motion.

We approximate the spectral density function in the following 

three forms:

1) Gaussian 2) Lorentzian 3) Exponential

The spectral density functions can be derived from their auto­

correlation function through the relation given by Equa. (V-11). 

For the above three cases, the correlation functions and their 

spectral densities can be written as:

2 21) G(t) = G(o) e x p - t  /2

J( w) = ^(o) / 2 ^  - tA? /2u>
(V-51)

2) G(t) = G(o) exp- LU^111

J(W) = j^2G(o)/LU^j 1^1 + J  CV-52)
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3) G(t) = G(o) / £ i + / / a j

J(UJ) = pto) 7T j exp - ■ / w
/ T w  (V-53)

C

is the characteristic frequency of the atomic motion and 

it is defined by,

S ( o ù )  o ! (JÜ

J J(ui ) duJ (V-54)
“cO

Equa. (V-9) can be simplified by neglecting the double fre­

quency term and therefore T becomes the reciprocal of J(u>). The1 ‘
-1figure below shows J (w) as a function of Larmor.frequency for 

our three cases.
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C C^^dn')

Figure V-5:

The linearity of breaks down at high frequencies. From 

the inverse process of Equa. (V-11) we have,

oo

0  6 é ) = - ^  / JT(uj) d\>JJ (V-55)
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for t = o we obtain,

(V-56)

G(o) is proportional to the second moment of the NMR line and it
— 1is finite. If J(u>) decays faster than w  at high frequencies 

or increases with frequencies faster than a linear law, the in­

tegral above is expected to be convergent.

The even derivatives of G(t) at t = o are

^  sJcou)c]u:>G(o} = (V-57)
0

cfo^ functions are associated with higher moments of the resonance 

line and they are finite too. Therefore, J(w) must decay faster 

than any power of w  . (i.e. expotentially or faster). In other 

words T^ must increase with frequency exponentially or faster.

The linear law is expected to break down for frequencies

However, the linear law works for low frequencies. The low 

frequency behaviour of J ( w ) is determined by the long time part 

of G(t) function. The low frequency case corresponds to the hy­

drodynamic region where the precise microscopic nature of the 

atomic motion is not important. As mentioned at the loginning of 

this chapter, the long-time behaviour of spin correlation func­

tion decays with where d is the dimensionality of the sys-
-1tern. The correlation function has a t tail. Therefore, the
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spectral density has a logarithmic divergence at low frequencies 

We may approximate the correlation function as

(V-58)

And the Fourier transform of this expression is:

/z S {o ) /  uJ

f  I  Wc" (V-59)

where g(x) is the auxiliary function being the sinus and cosinus 

integrals. We have,

oo

Ù (V-60)

We plotted the reciprocal of the spectral density function 

against ^  /(u ̂  in Figure (V-6). It is then seen that the curve 

can be approximated by a straight line over a range ^  2

to within an error of ^  5%.
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ĵ ûr Coj) ù J c /G ( o ) J

4

3

2

1

O 1
L j / U > c ^ <[{?vv2n)

Figure V-6;

A linear law for indicates no variation of relaxation 

rate with temperature. The weak temperature dependencies occur 

when we derivate from this law. The characteristic frequency for 

the atomic motion is a function of the temperature. We shall now 

see how the relaxation time varies with •
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Approximating the linear part of g (x) by its tangent through 

the origin, we find

g“^(x) = 2.87X

and with this the reciprocal of J(4jU) (relaxation time) becomes:

(V-61)

J ^(U/> = 1.43 W  /G(o) (V-61')

Equation (V-61') has à very important statement. It shows that 

the relaxation time is completely independent of . The mini­

mum for T is seen when <ju ̂  uv in all systems. The long 1 €.

time tail causes a dramatic broadening of this minimum. Figure 

(V-7) represents the T^ minimum for different Larmor frequencies.

Tj depends on the frequency for the fast side of the T^ 

minimum. In ordinary systems, for low frequencies J ^ ( W ) is flat 

and T^ is equal to T2 and independent of frequency. But this 

is not the case for a 2-d system. T^ is ill-defined by not being 

exponential in a 2-d system.

We have already given (Equa. V-37) the spectral density func­

tion for spins confined to a flat surface making an angle ^  with 

the external field. We leave the approximations made before for 

g^(t) and y^(W) and confine our attention to the approximation
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of Equa. (V-59). We see that only the j^(w) terms are important 

and we obtain,

J  ( ^ )  =  o  )
° fz a^LOc /

(V-62)

where ”a" is the radius of the closest approach of the spins and

"o< *’ is the number of the spins per unit area.

We have the expression for ,

J ^  =  ù. /S 4 ^  \z-r erf Lu L i
(V-63)

This equation vanishes for f3 - o. But we have made an approxi­

mation by neglecting the jg(w ) terms. For ^  = o, we get no 

anomalous contribution to the relaxation.

For an isotropic system, where there is a uniform spread of 

plane orientations on a porous system where the pore dimension is 

much greater than the atomic dimension, we average the angular 

factor in Equation (V-63). We have ;

4

(V-64)

For a completed monalayer taking d = 3.2 A* we find the follow- 
3ing result for He:

Ti = 7.5 X loT* W  (V-65)
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In calculating we must consider the following cases:

a) The evaluation.of the initial.value G(o) related the spin 

separations depends on the geometry of the surface and differs 

from that for a plane.

b) The averaging process over orientation (5 depends on the 

motion.

We introduce a correlation factor to Equation (V-65) in ord­

er to overcome the difficulties.
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[chapter ~VÎ]

EXPERIMENTAL TECHNIQUE AND THE COMPARISON OF THE 

EXPERIMENTAL RESULTS

VI - 1 - PULSE NMR

NMR experiments can be done with two basic methods.

1. Pulsed NMR technique 2. CW NMR technique.

In addition to dealing with the CW method in our work, we 

mostly considered the pulse NMR case and took measurements with 

this method.

It is useful to give a brief account of the pulsed NMR theory 

The r.f. magnetic field (around the Larmor frequency) is applied 

in the form of pulses. We can manipulate the magnetization with 

either a 90^ pulse or a 180° pulse. We put our sample wound with 

an r.f. coil in the static field ly. A pulsed r.f. magnetic field 

of magnitude makes a right angle with H^. For a short pulse 

duration tp, we have the angle ©  ,

^  K  (VI-1)

Therefore, the magnetization due to will be changed by the r.f. 

pulse and will start precessing about the direction . But at 

the end of the pulse, the magnetization will decay back with a 

time constant T^. The induced r.f. voltage in the coil gives us 

a signal and after amplifying, it can be displayed in an oscillo­

scope.

Let us take H in the Z direction. An r.f. magnetic field O
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can then be given by

H^= 2 H^Cosii/t (VI-2)

And it can be divided into two rotating fields each of amplitude 

rotating in opposite directions.

Hjj rot = Cos Lut

Hy rot Sin cut

In case of resonance, we consider only one field which rotates in 

the same sense as the precession of the moment.

The width of a pulse t must be very much less than the re­

laxation times. (We calculated it around 10/c5ec see appendix VI-1)

VI - 2 - THE MEASUREMENTS OF THE RELAXATION TI?JSS 

WITH SPIN-EŒO METHOD

The spin-echo method has been used since 1950 (Hahn) . It was 

found convenient to measure the relaxation times. If the time in­

terval between the pulses is "C , the echo will be formed at a time 

t = 21:.

It was seen that this technique works better for the sub­

stances (gases and liquids) whose relaxation times are long.

Let us send a 90° and a 180° pulses one after another and 

study the spin-echo case more closely. The figure below represents 

this formation.
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Figure VI-1: The formation of a spin-echo

Diagram A : The static strong field It k sets the resultant magnetic

moment vector at equilibrium along the direction of the 

field.

Diagram B : The first pulse (90°) is sent in the x ’ direction of

the rotating frame and the resultant magnetic moment 

rotates about the direction of ^  .

Diagram C : The resultant magnetic moment vector takes its final

position in the x'-y' plane at the end of the pulse.

Diagram D : The decay of this vector with a constant time

(which is given by 1/ AH) due to the tnhcMnogenity of

the extemal field over the sample.

Diagram E: We now send a 180 pulse after a period of ZT • All the
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incremental vectors flip through an angle 180° about 

the direction of .

Diagram F : After the second pulse is removed, these vectors start

to process but the effect is opposite to that at "D"

such that induction signal is reconstituted.

Diagram G : The maximum signal is obtained at t = 2 ZT

Diagram H ; This maximim signal induced in the coil (echo) decays

away in the same way as it was at case "D".

The shape of the echo can be described as two free induction 

decays back-to-back.

The height of the signal is directly proportional to the mag­

netization and it decreases exponentially with a time constant T^ 

as a function of . We used this technique for measuring T^.

The magnetization expression as a function of %  is given by,

M(t^) = Mo

With respect to the statement we made above, M(1C) can be replaced 

by the height (h), we then write,

h(r) =

Let us take h^ = 1. We have ,

Inh(C) = - (2r ) (VI-3)
It is a linear equation when taking a logarithmic graph paper.

(We must note that if we use a nature logarithmic graph paper we 

must express " Jn" in terms of "log". That is to say
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i o g i o  h -  i n  h /  2 . 3 ) .

y/c also u.S'.’d the .spîn-echo techDique in order to Liea.v.uro . 

Three pels es (Figure V-2) instead of tv.o have been employed for 

this aspect. (Either 180^ - 90^ - 180^ or 90° - 90° - 180° se­

quence) . Tue initial pulse causes a non-equilibrium orientation 

of tlie magnetic moment vectors after the driving pulse has been re­

moved. The magnetization after a period of %  is:

f C )  = Meq. (1-e"

t=T
ECHO FORMED90^PULSE

eq

Figure VI-2: The echo obtained with three pulses.

Figure VI-3 represents the NMR spectrometer used.

Having done the relaxation times measurements, we also seek 

the relaxation between temperature and viscosity. Afterwards, we 

converted the temperatures (for the concerned range) into the vis­

cosities. The information has been obtained ("handbook of Chemist-
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ry and Physics" 44the edition, page: 2261) between -4.2°C and 6°C 

as seen in Graph VI-1.

The relaxation times have been plotted as a function of tempe­

rature and temperature/viscosity as they are represented in Graphs 

VI-2 and VI-3 respectively.

Finally, we summarize our results in Table VI-3.
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VI - 3 - EXPERIMENTAL RESULTS AND COMPARISON

On the following pages, we represent some typical experimental results 

In Table VI-1, we show the T^ values for Glycerol in the temperature 

range between -2.5 and 2.0 °C. And similarly, Table VI-2 repre­

sents the T^ values for the same temperature range.

1 1
(msec)2 1C | 0.4 1.0 1.6 2.0

(volt)h „— £é . 5 j 2.75 1.475 0.79 0.4 7.9365

h-2.0 ' 2.80 1.50 0.9 0.4 8.3334

1
^-1.5 1 2.80 1.40 0.85 0.56 8.3334

h-1.0 ' 2.745 1.52 0.84 0.65 8.6207

I
^-0.5 1 2.80 1.54 1.02 0.78 8.6207

1 2.80 1.65 1.02 0.7 9.0909

^0.5 1 3.2 1.52 1.0 0.715 9.4340

**1.0 2.85 1.7 1.05 0.83 . 10.0

•*1.5 1 2.7 1.73 1.1 0.85 10.8696

1
•*2.0 1

1

2.525 1.72 1.2 0.9 13.1579

Table VI-1; The values for Tg measurement from 2.5 oC to
2.0 V
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Temperature
(Kelvin) (m.sec)

Ti
(m.sec)

q (X  10) 
(cgs)

^/Temp.

270. 5 7.9365 23.8045 13.6 0.5023

271 8.3334 22.72 13.34 0.4923

271.5 8.3334 20.8333 13.06 0.4810

272 8.6207 20.6186 12.76 0.4691

272.5 8.6207 22.9885 12.44 0.4565

273 9.0909 22.9885 12.10 0.4432

273.5 9.4340 22.2222 11.74 0.4293

274 10.0 23.2558 11.36 0.4146

274.5 10.8696 22.9885 10.96 0.3993

275 13.1579 21.9780 10.54 0.3813

Table VI-3:
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VI - 4 - niE BVP PEOPLE’S RESULTS FOR GLYCEROL

Glycerol at low t erjpevatures becomes g i f-ss-like due to its 

viscosity. Blocjnbergev., Purcell aud Pound ( measured re­

laxation time and the inverse lin* width fc" glycerol and they 

concluded that in the region of low viscosity the values show 

the behaviour encountered in alcohol, namely inverse proportionali­

ty between and ^/T, and i n de pen donee of Tj and frequency (*\) ). 

The inverse line width , decreases monotonie ally in the region 

where it could be measured witli a slight tendency to flatten off 

at the highest /T values.

Tĵ  and T ̂  are approximately equal when

The graph below has been taken from the BPP people ' (1948, Pliy 

Rev. Vol. 73, page 705).

10

, \  T,l-rJÜT?

i■s. j CO-CESf! 
\  !

. 7, ct 29t*cAec --. T, 0*. 4 6 vc/sec î\. oj 29 K&/SK. , i ,I \1 N
1 '

1

‘ ■
I i .  Ii '■y . - n/T J

»■* Irccrs/;>£CR2E
Graph VI-4:|Ŷ c re'mxalion time Ti and tlic linc v.-dth parameter Ts, plotted against the ratio of viscosity to ) absolnte temperature; for glycerin- ( UPP")
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VI - 5 - THE NON-SECULAR FREQUENCY SHIFT OF THE N̂ ÎR 

LINE IN SOLID He^

It is interesting to consider the work on the frequency shift 

done by Homer and Richards (1969). They observed the non-secular
3

frequency shift in the NMR line for solid He .

Kubo and Tomita explained that frequency shift can occur in 

the NMR line of a system due to the presence of off-diagonal terms 

in the perturbing Hamiltonian coupling the spins together. The 

moment method was used by Van Vleck and Pyrce to discuss the line 

shapes of the magnetic resonance absorption. The moment expansion 

is basically an expansion of the auto-moment correlation function 

G(t) in powers of t. They calculated the moments of the whole 

spectrum. Kubo was interested in a certain line or a group of 

lines which are observed experimentally. Therefore, they calculat­

ed the moments of the intensity distribution function concerning 

with this particular absorption. Their expansion method was an ex­

pansion in the perturbation not in t.

The expression for the perturbed Hamiltonian ) can be

written for the discrete cases as follows (Kubo 1954).

X ' (  ) Y ( w -  w )

In this expression, the component (o) is called the secular part 

of the perturbation and commutes with thé unperturbed Hamiltonian

The rest of the components is the non-secular parts of the per-
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turbation. Q̂ * (. , w  o) . The secular part gives the narrow­

ing to the magnetic absorption line and the non-secular pertur­

bation contributes the additional broadening. The shifts accom­

pany to the secular and non-secular perturbation. (But called 

usually the non-secular shift).

For the case of dipolar Hamiltonian, the effect can be stud­

ied by traversing the region from Larraor frequency j

where is the frequency with which the local dipole field is

modulated, (e.g. by the motion of the spins) to *

In the transversing process, if '̂'̂o varies we have an extra con­

tribution to the line width, if varies we get a non-secular

shift in the resonance line centre. In the case of complete 

traversal; the effects are independent of the form of the corre­

lation frunctions g(77) which describes the modulation of the 

dipolar field due to the motion of the spins. If it is not possi­

ble to traverse the region completely, we make fin assumption about, 

the form of g(c ) in order to obtain an expression for the shift. 

The spin motion is due to direct nuclear-spin exchange in solid 

He^ below (Homer and Richards). This type of motion can be

described by a Gaussian correlation function

2 2g(c‘) = e X p(-| 7Z > ' Where = J « The ex­

change Hamiltonian is given by;

-  -  y  ^1 1 -L- - 1 .
L  -j
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Assuming isotropy of the relaxation rates with respect to the ap­

plied field direction, the frequency shift expression is;

^ - 'llL
  "Lwhere G7  ^ the second moments of the satellite linesQ

caused by the off-diagonal terms in the dipolar Hamiltonian

t __» imaginary part of the Fourier transform of g ( T ) at6
frequency ^ UJq

T'- .. ..... M .  M/.,.

and the frequency shift becomes:

^ L  t> 0

^ ^  3 ___
where ^ ^ ~  ~  ̂  ^ the se­

cond moment of the main NMR line at ^  (when )

For the calculated value of C7̂  , we have,

with

"S

irtiere F(*^o/ ) = e~ and V is the molar volume of
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the solid in cm .

In the expression tor the it is ensi I) seen th at ^

is directly proportional to F( ). The figure be low has

been taken from Horner and Richard-i shows the variation of F ( /<(/ )/ c
(i.e. the shift) against %  •

;
u.

DS

Grài'h'y]--J>'iF(ojQ/u>j) :is dclined in Eq?. (') and (2) of tho 
text plotted against u q /u '̂ . For a fb.ed J.arrrior fre­
quency u)g ami molar volume. Ft )y/a,v.>) is proportional 
to 6, the nonsecular frequency shiii cn the liMR-line of 
solid Hel (Homer and Richards).

Tlie calculated shift is found maximum when working *
3

They worked with = 0.825 x 27-IilHz and V = 19.3 cm . The

experiment was run by a c w  method by using a superconducting mag­

net and a crystal controlled oscillator. The magnetic field was 

modulated by a triangular sweep through the central portion of the 

NMR line (about 0.05 Gauss) with a period of 50sec. Tlie result­

ant amplitude modulation of the carrier wave was displayed on a 

chart recorder using r.f. amplification and detection. The change 

of the shift S in NMR frequency appears as a change in %, the 

separation of adjacent peaks of the NMR signal.
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TJie I’Oi-r !i ancc .line i 5 first observed in the region of inaxiiuum 

shift. The peek separation X  is measured and the crystal

frequency noted on a counter ( is increased by and

measured. The crystal frequency is returned to u/^ and %, 

measured (%^) . Nov/ the pressure on the sample is dropped to a 

value such that the shift is negligible and measured. Finally

the pressure is dropped in two more stages ending up with a liq­

uid sample. A chocl. is made that X  doesn’t change after these 

two changes. Due to the linearity of the sweep, we have

As it is seen in the figure belo /̂, we find

- -£- c . fn.o ±oy)H, ti ih
2-7L 85t^f  ̂ ‘

This experimental result is very close to the theoretical result. 

Arid also it is in good agreement with Kubo and Tomita’s theory us­

ing published data for the spin-exchange rate.

IÎWU

K!
]3[.f:The peak separation x of adjacent NMR liiy  ̂

under various conditions of sample pressure and crys­
ta l oscillator frequency described on the figure. The 
NMR lines are generated by a triangular sweep of the 
dc magnetic field. (H om er and R ic h a r d s )  .
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IV - 6 - MEASUREMENTS OF LI NE WIDTH FOR ^He

ADSORBED ON GRAFOIL

Cowan, Richards, Thomson and Mullin (1976) measured the NMR
3 olinewidth as a function of the amount of He gas adsorbed at 1 K.

The substate was made up of a multiple sandwich of layers of 0.015 

inch, and grafoil was used (by insulating) in order to separate 

sheets of Mylar. They heated the grafoil to 1000 for 24 hours 

in vacuo and transferred it to a helium atmosphere where the Mylar 

sheets were inserted. The sandwich was sealed into an epoxy chamb­

er with a sealed filling capillary. The chamber was then transferr­

ed to the main apparatus and fixed inside an r.f. coil whose axis 

was the plane of the grafoil sheets. The superconducting magnet 

also had its axis in the same plane.

Using the pulsed NMR at frequencies between 0.3 and 2.0 MHz, 

no significant heating by the r.f. pulses was observed. Hie data 

were taken by progressively adding gas at 1 °K and the warming of 

the samples to 8 for about 20 minutes followed by slow cooling 

back to 1 to take datQ.

The graph below represents their results. T^ relaxation time 

at 1 MHz is plotted against the fraction of a saturated monolayer

(X).

They obtained the data with three clear-cut regions,

a) ^ <0.75, where is nearly independent of but shows a de­

pendence on the applied magnetic field.
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b) 0.75 . 08, v.here is independent of the Magnetic field

but is strongJ:. dependent on %  so ibat,

Tg - 0.18 e X p (0.08'X>/0.06 j msec.

c) 0 .98 1. 5 , where now increases as yC increases so that;

- 0.18 = 3.0 O'-0.98)

-J j_.o.s -L X X10
Fraction nl monotoyer 

Graph IV-7 : Measurements of T;, the NMR transverse re-
icixation time, for Ĥc adsorljecJ on Grafoil at 1 K as a 
function of the fractional coverage x. The measuring 
frequency is 1 MHz, and 1 corresponds to a com­
plete monolayer as defined by a 4.2-K isotherm.

(Cowan, Richards, Thomson and Mullin).

I V - 7  - THE ANISOTROPY OF T̂ AND OF \e ADSORBED ON 

MYLAR FILM

Kent's recent work (1982) was the study of He adsorbed on

Mylar film between 1 and 4.2 °K. He measured the relaxation

times T and T at 4.2 using 180 —90 -180 and 90 -180 pulse 1 JL -
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sequences respectively.

The recovery of longitudinal magnetization kt ̂  =0̂  at

T = 4.2 °K is represented in Graph (VI-8). It is non-exponential

as is found with multilayer films on grafoil. It has been shown

that if the system consists of n separate phases each of which

relaxes exponentially at the rate T., , if the rate of exchange ofIn
particles between these phases is slow when compared with the 

the total relaxation is the sum of each of the exponential decays 

weighted with the number of particles, in each phase, ,

n
h(a>)-h(-c) = y  N^e x p(

L =£

Figure (VI-8) is best described as a sum of two exponentials with 

T ^  100 msec., T 350 msec, and N /N ^  1.6

We plotted the anisotropy of with respect to ̂  (Figure

VI-9). The faster decay time was used in each case since it

could be determined with much greater accuracy than The shape

of the anisotropy curve and the relative values of 1/T^ at 0° and

90° are in good agreement with the theory for a diffusive fluid

with LV .—  10 ^.o é
oThe decay of transverse magnetization following a 90 pulse

was observed to be a single exponential. This seems unexpected

since if the interlayer particle exchange rate is slow compared

to T , it is even slower when compared to the shorter T . It may 1 ^
be that the early part of a non-exponential decay was hidden by
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the receive dead time or the later part lost in the noise as the 

echo became small. There are two decays visible but the relaxat­

ion times are very similar making it hard to discern between them 

on a semilogarithmic plot.

The anisotropy in T^ is represented in Graph VI-10. It shows 

a definite minimum in the region of 32° and the overall anisotropy 

is about 25%. It is not clear from the relaxation times, whether 

we are looking at a solid or a fluid phase, however, the position 

of the minimum seems to agree with the theory for a 2-D solid with 

/'3 10, but the overall anisotropy is less than the theory

predicts.

Neither of the theoretical curves on Graph VI-10 fit the data 

above 55° while below this angle the agreement is good.

The conclusion is that: As far as the anisotropy study of

Helium - 3 on Mylar is concerned, the results appear somewhat

confusing. T^ measurements suggest that we are observing a 2-D

fluid phase while T^ data points to a 2-D solid. Both of these

phases are present and the experimental conditions for T. and T1- 2*

measurement were such that one of these phases was obscured. Al­

ternatively, we do not understand the behaviour of multilayer 

films well enough to explain the results.
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APPENDIX (I - î)

PROOF THAT B = V  i

/n = Z 'X /c (I) by definition

where I 

A 

C

electric current in atom 

area

light speed

Now first, what is

i  time
by definition

t = f ----•> frequency
f

r

A -' ZTtr

where OJ > angular velocity

r  radius

V  velocity



substituting into we have

V
^ (II) with, q =-e for electron

what is A?

/4 = (III)

substituting Equations CHI) and (II) into Equation (I), we have,

m = - evr_ 
2c

define J a s J = m v r  J --- angular momentum— e
m@ — :> mass for electron

’m” becomes

em = -   J and
-

m = y  j[ 2 mgC
with y = - e

^gyromagnetic ratio)



APPENDIX (I - 2)

WHEN H = Hn, k, MAGNETIC MOMENT DOES A CIRCULAR MOTION IN THE 
x-y PLANE AND PRECESSES ABOUT THE Z AXIS WITH THE LARMOR FRE­
QUENCY W r. = y .

The Gyroscope equation:

m = y  m X H CD

Solution for constant g : (H = Hq k)

Equation (I) can be written as
I J t

we have,

rriy

= o

(II)

therefore, mz = constant



The second time derivatives of m^ and my are

f (III)

and the solution of these equations are respectively the following

mx (t) = mx (o) Cos f(îf H q) t ] + m (o) SinTcY H^) t]
 ̂ (IV)

my (t) = -mx(o) Sin [(^^o)  ̂J + ® y (o> Cosj ( )̂ ̂  ) tj

If we square equation (IV) and add them side by side, it follows

that ;

- 'T7^(o) (V)
 ̂ ' "\r '

R"

Equation (V) describes a circle 

General equation of a circle is given by:

if =  /S ^  O

circle equation becomes :
(i.e. centre is on the origin)



APPENDIX II-l

QUANTUM MECHANICAL EQUATION OF MOTION IN THE SCHRÔDINGER AND 
HEISENBERG PICTURES

We postulate that all the information about the state is con­

tained in a multidimensional complex vector - KET.

Let us have the following:

a) We wish to be able to infer a state at time ”t" from the 

knowledge of the state at time "to". (t ^  t^). Equation will be 

the first order in t.

b) Principle of superposition is to hold throughout the un­

disturbed motion. We introduce operator "T" which is: 1 - linear

2 - independent of state 3 - dependent of t and t^ such that

I p-t >  - X   ̂ (1)

c) T T+ = 1  unitary operator 

Lengths of vectors are unchanged

<^Pt I Pt >  = <  Pte 1 Pt«>
Now, from equation (1), we can write

I PO-)P-to>=J(R^c>-|P^o>
(( 2 )



Dividing both sides of equation (2) by (t-t̂ )̂ we get,

I T-l

i-t.  z' -  4
/ ’ 4 > (3)

The left-hand side of Equation (3) is I
We can expand T for small t-t& 

i.e. ^  = 1 + (t-to) u + ------

JTT"̂  = 1 becomes :

|i j  J p f ^  j (4)

Retaining only terms to first order in t-t@, we have,

(t-t^) (u++ u) = o

û  + u = o (5) Antihermitean

Introducing a Hermitean operator j#, we write u in terms of ^

U =: / 1 ̂
  - (6)

With Equation (6), Equation (3) becomes:

(7)

This equation of motion" in SCHRODINGER picture (evolution in 

terms of kets).



Equation of motions can be expressed in terms of the evolution 

of operators rather than kets. This is to refer to the HEISENBERG 

picture.

Let and be two operators used in the Schroder

inger and Heisenberg pictures respectively.

We have the following:

(8)

|/’/ > ^  ; i a ^ >  =  J ’) 6 2 4 >  (9)

from Equations (8) and (9) we write

£<-5 T  I >  =  X ’  I â  >  (10)

(11)

7 ^  T  (12)

We are seeking

Substituting Equation (8) into Equation (7), we get,

, A j L L  ]/>t, >  = é ^ T ) F t ^ >  (13)

and it follows that;



^  r
c/é -----

c/é -  —  -  -

(14) with H +  = K

using Equation (12) in we write

(15)

now we use Equation (14) in Equation (15), so,

c / t
(16)

T+ o c , T  T+ T - T+ T T+ 5 Î

- H  "   ̂ ]

Equation of motion in the new operator

(17)



APPENDIX VI - 1:

THE CALCULATION OF THE PULSE LENGTH

For a 90° pulse ( (9 = ̂ ), from Equation VI-1, we write;

^  (I) vA/'ièi\ ~

The magnetic flux ^  across a coil of inductance L is:

S  - ZH.n/l =. L i  
^  1 (II)

where the field "2H^" is the amplitude of the linearly polarized

magnetic field produced by current i circulating in the coil. "A" 

is the area of cross-section with diameter "d". "n" is the number

of the turns of the coil.

FrcMn (I)- and (II), we have,

■^p=— --  (III) with A = i 7̂  d^

For a coil system the voltage across it is given by 

V = iuJL (IV)

And with this^Equation III becomes :

nVîc!’- r
^  Y  ~  %  Y  (V) with w/= 2 7tfà

If we eliminate n, we have,



From V and VI, we obtain,

(VI)

/V v>
(VII) with Jl,!̂  - \3-

L . =iA^c

1  :> length

V --->> volume

C  capacitance

y^o — » permebility

i î : $ ; à S  

#  :
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