MAGNETIC RELAXATION IN CONDENSED MATTER

```
A thesis submitted in partial fulfill-
ment of the requirements for the degree
of M. Phil. in the Faculty of Science
    Bedford College
    (The University of London)
```

by

Ethem Engin Öngel, B.Sc., M.Sc.

October 1982

ProQuest Number: 10097531

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097531
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
CONTENTS: PAGE NO
ACKNOWLEDGEMENTS
ABSTRACT
CHAPTER I Basic NMR Theory
I-1 Introduction 1
I-2 The NMR Theory 3
I-3 The Bloch Equations 4
I-4 How the Spin System Absorbs Energy 6
I-5 The Spin-Lattice Relaxation Time 9
I-6 The Spin-Spin relaxation Time 13
I-7 The Resonance Case 17
CHAPTER II General Formation of the Relaxation Theory
II-1 Introduction 21
II-2 Density Matrix and the Equation of Motion 21
II-3 The expectation Value of an Operator 26
II-4 Magnetization Vector in Terms of Density Matrix 27
II-5 The Relaxation Functions for the Pulse NMR Case 30
CHAPTER III Kubo's General Theory on Magnetic Resonance Absorption and Broadening
III-1 Introduction 36
III-2 Relaxation Functions and Susceptibility 38
III-3 Symmetric and Antisymmetric Tensors 45
III-4 Broadening 49
III-5 The Physical Explanation of the Shift 64
III-4 Broadening 49
III-5 The Physical Explanation of the Shift 64
CHAPTER IV- Reduced Density Matrix
IV-1 Physical Meaning of Reduced Density Matrix 68
IV-2 The Master Equation for the Density Matrix 69
IV-3 The Dynamical Theory of Nuclear Induction 72
IV-4 The Spin Rotational Interactions in Liquids 78
CHAPTER V Nuclear Magnetic Relaxation in Two-DimensionalSystems
V-1 The Importance of the Study of Two-Dimensional
Systems 82
V-2 Relaxation Functions and Times 83
V-3 The Correlation Functions on the Substrate
Frame 86
V-4 Two-Dimensional Fluids 88
V-5 Diffusion 94
V-6 The Fourier Transform of $g_{r}(t)$ Functions andRe examining of the Relaxation Times97
V-7 Anomalous Feature of T_{1} of Adsorbed Phases of 3_{He} 105
CHAPTER VI Experimental Technique and the Comparisonof the Experimental Results
VI-1 Pulse NMR 115
VI-2 The Measurements of the Relaxation Times with
Spin-Echo Method 116
VI-3 Experimental Results and Comparison 122
VI-4 The BPP People's Results for Glycerol 128
VI-5 The Non-Secular Frequency Shift of the NMRLine in Solid 3_{He}129
VI-6 Measurements of Linewidth for 3_{He} Adsorbed on Grafoil 134
VI-7 The Anisotropy of T_{1} and T_{2} of $3_{H e}$ Adsorbed on Mylar Film 135
APPENDIX
REFERNCES

ACKNOWLEDGEMENTS

```
I wish to thank all the people without whose support this thesis would not have been completed.
First of all, I am indebted to my supervisor Dr. Brian P. Cowan for his guidance and understanding and the staff of the department of Physics at Bedford College for bearing with me throughout.
My very special thanks go to my brother Professor Erkan Öngel, the University of Ankara, Turkey for his constant encouragement and financial support.
```


ABSTRACT

The study of the Nuclear Magnetic Resonance enables people to enhance their knowlwdge on scientific phenomena. For its use, many examples can be given such as in Solid State Physics, it may be used to have more information about the bulk system, in Organic Chemistry, one uses NMR for the analysis of complex molecules and so on

This work is a reformulation and unification of the various theories of magnetic relaxation and magnetic resonance.

We start off our discussion on the magnetic relaxation theory with an introductory explanation of the Bloch Equations and the relaxation processes. It is preceeded with a quantum-mechanical treatment introducing the density matrix.

A quantum mechanical theory of frequency dependent susceptibilities of magnetic systems is nexamined with the case of linear theory which assunes that the external disturbance is always small and the response of the system to it is linear. The method used to calculate the relaxation function is quantum-statistical. We computed the line contour of resonance absorption by using the Fouriex integral method. (Chapter III)

In the following chapter, the physical meaning of the reduced density matrix is discussed. Its usefulness is to obtain all the information necessary to evaluate the expectation value.

We continue our discussion with the theory of NMR in homo-
genous adsorbed systems for two dimensional systems. It is shown that the reduced dimensionality has the effect of decreasing the relaxation times.

With the Pulse NMR technique, we measured the relaxation times around $0^{\circ} \mathrm{C}$ and presented our results in the last chapter. The comparison of the result was made with the PPP people's result.

I - 1 - INTRODUCTION

```
    Magnetic resonance was first observed just after the Second
World War and the methods on it have been developed very rapidly.
Historically, the first good works were done by a group led by
Bloch (1946) and another group under Purcell's leadership in the
same year. They both used continuous wave (CW) technique in
their initial experiments. Shortly after the first CW experi-
ments pulse methods were developed (Hahn 1950).
    Nuclear magnetic resonance (NMR) can basically be studied
by either nuclear magnetic resonance absorption methods (de-
veloped by Purcel1) or the magnetic nuclear induction methods
(developed by Bloch).
    In order to detect NMR signal one either uses the pulse
NMR spectrometer by which the free precession or Larmor pre-
cession is detected after the removal of the pulse or the limi-
ted oscillator which detects the power absorption signal at
resonance.
    The technique used is to apply a strong magnetic field
(~2 tesla) to the sample which is usually a liquid or solid.
A radio-frequency field (1-100 MH:
and a small detector coil is wound around the sample. As the
magnetic field is varied the spacing of the energy levels
changes and at a certain value of the magnetic field, this
```

spacing is such that radio-frequency radiation is strongly absorbed. This resonance produces a signal in the detector coil. A plot of detected signal against the magnetic field gives an NMR spectrum which can be used for determining nuclear magnetic moments.

NMR techniques are being used in many branches of Physics plus other fields of Science. In Physics, it is useful to study liquids and solids, particularly in solid state Physics one uses NMR technique to have information about the bulk. It is also useful in Medicine, Geology, Archaeology especially in organic Chemistry for the analysis of complex molecules.

I - 2 - THE NMR THEORY

```
Magnetic resonance is an effect seen in a system which has an angular momentum and a magnetic moment. It is in fact a large branch of spectroscopy which deals with the interaction between an applied magnetic field (to the magnetic system) and non-zero magnetic moments of this system.
Where the word "resonance" comes from is that; the natural frequency of the system (Larmor) is just around the frequency of the radio-frequency wave which is applied to the system. Energy is transferred from this radio-frequency (r.f.) circuit to the magnetic system of nuclear spins immersed in a static magnetic field \(\left(H_{0}\right)\) due to the transitions among the energy levels of the spin system. Each of \(N\) non-interacting spins is characterized by "Iゐ" and "m". "I" indicates the nuclear spin quantum number which is \(\frac{1}{2}\) for proton and electron. "h" is Planck constant divided by \(2 \pi\) and " \(m\) " is the magnetic moment. In quantum mechanics, for each I there are \(2 I+1 " \mu^{\prime \prime \prime} s\) (magnetic moment quantum number or eigen values of \(I_{z}\) operator). The relation is:
\[
\mu=+I, \quad I-1, \ldots,-I
\]
i.e.
\[
\mathbf{I} \leqslant \mu \leqslant-\mathbf{I}
\]
Energy transitions obey the selection rule which requires
\[
\Delta \mu=\mp 1 . \quad \Delta \mu=-1 \text { case corresponds to absorpt- }
\]
```

```
ion and }\Delta\mu=+1\mathrm{ corresponds to emmission.
```

```
ion and }\Delta\mu=+1\mathrm{ corresponds to emmission.
```


I - 3 - THE BLOCH EQUATIONS

We first start off with the proportionality between the magnetic moment of a charged particle and the angular momentum. (see Appendix I - 1 for the proof).
$\underline{\underline{n}}=\gamma \underline{\mathrm{J}}$
where is magnetic moment
\underline{J} is angular momentum
γ is gyromagnetic ratio

Applying a magnetic field $\left(H_{0}\right)$ to we get a torque.
Torque $=\times$ ㅂ
Torque is also given by the rate of angular momentum.
Torque $=\mathrm{d} \underline{J} / \mathrm{dt}=\underline{\mathbf{j}}$
Combining Equations $(I-1),(I-2)$ and $(I-3)$
we have,

$$
\begin{equation*}
\underline{\underline{m}}=\gamma \underline{\underline{m}} \underline{\underline{H}} \tag{I-4}
\end{equation*}
$$

Equation (I - 4) is called the gyroscope equation
when H is in the Z direction (i.e. $\underline{H}=H_{0} \underline{\hat{k}}$).
The equations (solutions) of the components of the magnetic moment describe a circular motion in the $x-y$ plane. (see Appendix I-2 for the proof).

The magnetic moment vector precesses about the Z axis
with its natural frequency called the Larmor frequency
and it is given by,

$$
\begin{equation*}
\omega_{0}=\gamma H_{0} \tag{I-5}
\end{equation*}
$$

Bloch combined the components of the gyroscope equation and the relaxation times in the following way.

$$
\left.\begin{array}{l}
\dot{M}_{x}=\gamma(\underline{M} \times \underline{H})_{x}-\frac{M_{x}}{T_{2}} \tag{I-6}\\
\dot{M}_{y}=\gamma(\underline{M} \times \underline{H})_{y}-\frac{M_{y}}{T_{2}} \\
\dot{M}_{z}=\gamma(\underline{M} \times \underline{H})_{z}+\frac{M_{0}-M_{z}}{T_{1}}
\end{array}\right\}
$$

Equation (I-6) is called the Bloch equation.
Where M is the magnetization ($\sum_{i} m_{i} /$ volume) T_{1} and T_{2} are respectively the spin-lattice and spin-spin relaxation times.

Introducing,

$$
\left.\begin{array}{l}
M_{\mp}=M_{x} \mp i M_{y} \tag{I-7}\\
H_{\mp}=H_{x} \mp i H_{y}
\end{array}\right\}
$$

we have,

$$
\left.\begin{array}{l}
\dot{M}_{+}=-i \gamma\left(H_{z} M_{+}-M_{z} H_{+}\right)-\frac{M_{4}}{T_{2}} \\
\dot{M}_{z}=-\frac{i \gamma}{2}\left(M_{-} H_{+}-M_{+} H_{-}\right)+\frac{M_{0}-M_{z}}{T_{1}}
\end{array}\right\}
$$

Equation ($\mathrm{I}-8$) is the Bloch Equations of new notations. The solutions of this equation are the following (when $\underline{H}=H_{0} \underline{\hat{k}}$)

$$
\begin{equation*}
M_{+}(t)=M_{+}(0) \exp -i \gamma H_{0} t \exp -i t / T_{2} \tag{I-9}
\end{equation*}
$$

$M_{+}(0) \exp -i \gamma H_{0} t \quad$ part indicates the Larmor procession and $\exp -i t / T_{2}$ part indicates the free induclion decay

$$
M_{z}(t)-M_{z}^{e q .}=\left[M_{z}(0)-M_{z}^{e q .}\right] \exp -t / T_{1} \quad(I-10)
$$

Equations (I-9) and (I-10) are related to the spinspin relaxation and spin-lattice processes respectively.

I - 4 - HOW THE SPIN SYSTEM
 ABSORBS ENERGY

Let us consider an isolated system where the spin quantum number is $\frac{1}{2}$. The meaning of isolated system is that; spins have no interaction with the lattice. When we apply a magnetic field H_{0} to this system, the spin system is split into two levels as shown in figure (I-1)

Figure I - 1: $\quad H_{0}$ splits the spin system into two energy levels.

Now let $|\alpha\rangle$ and $|\beta\rangle$ be respectively the level where the spins show the same direction as H_{o} and the level where the spins have opposite direction to H_{o}. And let N_{α} and N_{β} be the number of the spins at these levels respectively. The Boltzmann-Maxwell distribution gives us the relation between N_{α} and N_{β}

$$
\begin{equation*}
\frac{N_{\alpha}}{N_{\beta}}=\frac{\exp \left(E_{\alpha} / k T\right)}{\exp \left(E_{\beta} / k T\right)} \tag{I-11}
\end{equation*}
$$

where E_{α} is the energy of level \propto
E_{β} is the energy of level β
K is Boltzmann factor
T is absolute temperature

At equilibrium it is obvious that $\quad N_{\alpha}>N_{\beta}$
In the presence of an external magnetic field whose irequincy is equal to the natural armor frequency, the spin poplations among the levels change through a probability.

It follows that,

$$
\begin{align*}
& \frac{d N_{\alpha}}{d t}=N_{\beta} P_{\beta \alpha}-N_{\alpha} P_{\alpha \beta} \tag{I-12}\\
& \frac{d N_{\beta}}{d t}=N_{\alpha} P_{\alpha \beta}-N_{\beta} P_{\beta \alpha}
\end{align*}
$$

where $\rho_{\alpha, \beta} \longrightarrow$ probability of being at level β

$$
\rho_{\beta \alpha} \longrightarrow \text { probability of being at level } \alpha
$$

Equation ($\mathrm{I}-12$) is known as the "spin equations". From this equation we have,

$$
\begin{equation*}
\frac{d n}{d t}=-2 p_{n} \tag{I-13}
\end{equation*}
$$

with $N=N_{\alpha}+N_{\beta}$ and $P_{\alpha_{\beta}}=P_{\beta \alpha}=P$ and $n=N_{\alpha}-N_{\beta}$
The solution of equation ($\mathrm{I}-13$) is:

$$
\begin{equation*}
n=n_{0} e^{-2 P_{t}} \tag{I-14}
\end{equation*}
$$

where $n_{0}=N_{\alpha}-N_{\beta}$ when $t=0$
During the transitions from one level to the other, each spin absorbs energy from the applied r.f wave. Let \mathcal{E} be the energy absorbed by only one spin. We have,

$$
\begin{equation*}
\varepsilon=\Delta E \cdot \rho \tag{I-15}
\end{equation*}
$$

where $\quad \Delta E=E_{\alpha}-E_{\beta}$ (energy difference between two
levels).
For all the spins at level \propto, Equation (I-15) becomes

$$
\begin{equation*}
E=N_{\alpha} \rho \Delta E \tag{I-16}
\end{equation*}
$$

The energy rate absorbed from the external effect is given by:

$$
\frac{d E}{d t}=\Delta E N_{\alpha} \beta_{\alpha \beta}-\Delta E N_{\beta} \beta_{\beta \alpha} \quad(I-17)
$$

This equation states that the net energy absorbed from the ref
wave is equal to the energy difference between the absorbed energy under $P_{\alpha \beta \beta}$ and emitted energy under $P_{\beta \propto<}$ transition.

Substituting Equation ($\mathrm{I}-14$) into ($\mathrm{I}-17$) we have,

$$
\begin{equation*}
\frac{d E}{d t}=\Delta E P n_{0} e^{-2 p t} \tag{I-18}
\end{equation*}
$$

Now, this equation shows us that the time derivative of absorbed energy from ref. wave depends on the difference in spin population among the levels and it h as an exponential term. In other words, the external effect (rif.) makes the spin population zero with time. At $t=0$, this difference is equal to n_{o}. Then the energy is saturated (i.e. the magnetic resnance stops).

I - 5 - THE SPIN-LATTICE RELAXATION TIME

As already stated at Chapter (I-3), the Bloch Equations include the relaxation terms. Due to the interaction between spins and the lattice, spins pass energy to the lattice until they reach the equilibrium state. The concerned relaxation time because of this intractive process is called T_{1} the spin-lattice or longitudinal relaxation time. There are ways of explaining T_{1}.
a) The Spin-lattice Relaxation Time in Terms of Energy Flux: When spin system absorbs energy from an r.f. wave, its temperature increases. (At $t=0$ i.e. before the r.f. is applied $T_{\text {spin }}=T_{1 a t t i c e}$). When the magnetic resonance remains saturated ($T_{\text {spin }} \geqslant T_{\text {lattice }}$) energy is conveyed to the lattice system from the spin system, in other words, the spin system loses heat, as the lattice gains it. Figure (I-2) represents a block diagram of the heat transfer.

Figure I-2: Energy is conveyed from system to lattice.

The spin system gives away the energy below

$$
\begin{equation*}
\frac{d E}{d t}=K_{1} k\left(T_{\text {spin }}-T_{1 a t t i c e}\right) \tag{I-19}
\end{equation*}
$$

where $\mathrm{K}_{1} \longrightarrow$ energy flow constant

$$
\begin{aligned}
& \mathrm{T}_{\text {spin }} \longrightarrow \text { temperature of spin-system } \\
& \mathrm{T}_{\text {lattice }} \longrightarrow \text { temperature of lattice system }
\end{aligned}
$$

Now here, K_{1} can be written in the form of $1 / T_{1} . T_{1}$ is the measure of the energy change between two systems. The heat transfer continues until the equilibrium is reached (i.e. $T_{\text {spin }}=T_{\text {lattice }}$). Therefore, in the absence of an external effect, new transitions occur between the levels of the spin system. The spin equations become in a similar way:

$$
\begin{align*}
& \frac{d N_{\alpha}}{d t}=N_{\beta} W_{\beta \alpha}-N_{\alpha} W_{\alpha \beta} \\
& \frac{d N_{\beta}}{d t}=N_{\alpha} W_{\alpha \beta}-N_{\beta} W_{\beta \alpha} \tag{I-20}
\end{align*}
$$

where $W \beta_{\alpha}$ and $W \alpha_{\beta}$ correspond to respectively $P_{\beta \alpha}$ and $\mathrm{P}_{\alpha \beta \beta}$ in the absence of rif. wave.

$$
\text { Rewriting } \mathrm{N}=\mathrm{N}_{\alpha}+\mathrm{N}_{\beta}, \mathrm{n}=\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}
$$

we have,

$$
\begin{align*}
& \frac{d n}{d t}=\left(W_{\alpha \beta}+W_{\beta \alpha}\right)\left(N \frac{W_{\beta \alpha}-W_{\alpha \beta}-n}{W_{\alpha \beta}+W_{\beta \alpha}}\right)(I-21) \\
& W_{\alpha \beta}+W_{\beta \alpha}=1 / T_{1} \tag{I-22}\\
& n_{0}=N \frac{W_{\beta \alpha}-W_{\alpha \beta}}{W_{\alpha \beta}+W_{\beta \alpha}} \tag{I-23}
\end{align*}
$$

Substituting Equation (I-22) and Equation (I-23) into Equation (I-21), it becomes,

$$
\begin{equation*}
\frac{d n}{d t}=\frac{n_{0}-n}{T_{1}} \tag{I-24}
\end{equation*}
$$

and the solution of this differential equation is:

$$
\begin{equation*}
n=n_{0}\left(1-e^{-t / T}\right) \tag{I-25}
\end{equation*}
$$

The general expression for $\mathrm{dn} / \mathrm{dt}$ must be the sum of Equal_
lion (I-13) and Equation (I-25)

$$
\begin{equation*}
\frac{d n}{d t}=-2 \rho_{n}+\frac{n_{0}-n}{T_{1}} \tag{I-26}
\end{equation*}
$$

At equilibrium $d n / d t=0$ and it follows that;

$$
\begin{align*}
& n=\frac{n_{0}}{1+2 \rho T_{1}} \\
& \frac{d E}{d t}=\Delta E n_{0} \frac{\rho}{1+2 \rho T_{1}} \tag{I-27}
\end{align*}
$$

We derived a very important equation, because Equation (I-28) tells us that $d E / d t$ is inversely proportional to T_{1} i.e. when T_{1} is short $\mathrm{dE} / \mathrm{dt}$ is big and the equilibrium is reached in a short time.
b) The Spin-Lattice Relaxation Time in Terms of Magnetization.

Although it was stated in Chapter (I-2) that magnetization in terms of T_{1} appears in the solution of the Bloch Equations, we did not discuss this fact in detail. The Z component of the magnetization is related to T_{1} with an exponential expression.

In the NMR theory, the spin system is under two magnetic
fields

$$
1-H_{0}=H_{0} \underline{k} \quad 2-H_{1}=H_{1} \operatorname{Cos} w t \hat{i}
$$

which is perpendicular to $\mathrm{Ho}_{0}\left(\mathrm{H}_{0} \geqslant \mathrm{H}_{1}\right)$. And it is known that resonance is seen when $\omega=\omega_{0}$. The magnetization vector precesses about the Z axis, as soon as we cut off H_{1}, the magnetization vector gets bigger exponentially and precession angle (Θ) gets smaller. After a certain time, at equilibrium, the magnetization reaches its biggest value and θ becomes zero and because there transverse components precession stops. T_{1} is the measure of this process. Figure (I-3) explains the exponential growth of the magnetization.

Figure I-3: The Exponential growth of M_{z}

```
We can also observe the magnetization growth without introducing \(\mathrm{H}_{1}\) (because of \(t=0\) i.e. before we apply \(H_{0}\) ) the magnetization vector has also transverse components. Furthermore the spin-spin interaction (dipole) works against the magnetization growth, in other words it works in favour of precessive motion. In NMR theory, one thing must always be kept in mind, it is the biggest mistake to treat relaxation times alone. These two processes occur at the same time.
The magnetic energy density ( \(-\underline{H} . \underline{M}\) ) decreases as \(M_{z}\) approaches its new equilibrium value because the spin popula tion moves into lower level.
```

```
I - 6 - SPIN-SPIN RELAXATION TIME
```

```
        Because every spin has a magnetic moment there is an interac-
    tion among the spins. The most dominant term is the dipole
interaction term. Magnetic moment of a spin interacts with the
magnetic field produced by the neighbouring spins. This mag-
netic field is called the local magnetic field.
    Let us consider two spins A and B whose magnetic moments
are respectively m}\mp@subsup{m}{A}{}\mathrm{ and m}\mp@subsup{m}{B}{}\mathrm{ . The magnetic field at A (produced
```

 by B) is given by:
 $$
\begin{equation*}
\underline{H}_{L A}=\frac{m_{B}}{r_{A B}^{*}} \underline{n} \tag{I-29}
\end{equation*}
$$

```
where
                    r AB}\longrightarrow\mathrm{ separation distance
    n}\longrightarrow\mathrm{ normal vector
```

```
Therefore, spin A sees two magnetic fields: 1 - static mag-
```

Therefore, spin A sees two magnetic fields: 1 - static mag-
netic field Ho, 2 - Local magnetic field HlA.
netic field Ho, 2 - Local magnetic field HlA.

$$
\begin{equation*}
\underline{H}_{A}=\underline{H}_{L A}+\underline{H}_{0} \tag{I-30}
\end{equation*}
$$

(These two spins individually precess about the Z axis under static field H_{o}).
Now, in order to study the spin-spin interaction better, it is useful to split $H_{L A}$ into two components; one which is parallel (or anti-parallel) to the static field (HLAZ) and the other being perpendicular to H_{O} (HLAP). Figure (I-4) shows this representation.

```

Let us first consider what the parallel component of the local field does:
\(\underline{H}_{\text {LAZ }}\) vector changes only on the \(Z\) direction from one spin to another depending on \(r\) and \(\theta\). Therefore, all "HLAZ s" cause the spin system inhomogenity. At resonance, the line shape gets broadened. (When \(\underline{H}_{L}=0\) line shape is sharpest).


Figure I-4: Local field vith j.ts two components Itiz and HLAP

We now introduce a distribution function \(N(14)\) to describe the free induction decay (Figure \(1-5\) ). \(N(\omega)\) is a function of spins with different frequencies. Free induction decay (FID) can be expressed in terms of distribution function through a transform called Fourier transform. We have,
\[
\begin{equation*}
F(t)=\int_{-\infty}^{\infty} N(\omega) \exp -i \omega t d \omega \tag{I-31}
\end{equation*}
\]
\(F(t)\) is the Fourier transfrom of \(N(\omega)\) and indicates the free induction decay.
\(16 /\)


Figure I-5: The distribution function is a 'bell-shape' function.
" \(\Delta \omega\) " in figure (I-5) is known as the line width and it is this phenomenon which describes the lineshape.

For this model, for \(T_{2}\), we can write,
\[
\begin{equation*}
T_{2} \simeq \frac{1}{\Delta \omega} \tag{I-32}
\end{equation*}
\]

Secondly, let us consider the effect of the perpendicular component of the local field:
\(\underline{H}_{\text {LAP }}\) vector does a precession motion in the plane \((x-y)\) which is perpendicular to \(\underline{H}_{0}\). Because the precession frequency of HLAP is equal to the precession frequency of spin A (Larmor),
 of spin A. In this connection, it shortens the life time of spin \(A\) at its present state.

What actually happens is that; at \(t=0\), every spin pre-
cesses about \(H_{0}\) with the sane frequency ( \(u_{0}\) ) then due to MLAP, each spin has different magnetic field and changes its first frequency with time. Thiss is called the depkasing effect. Figure ( \(I-6\) ) shows this effect.


Figure I-6: The dephasing effect.
\[
\text { I - } 7 \text { THE RESONANCE CASE }
\]
```

 We start off with writing the Schroedinger Equation in or-
 der to discuss the resononance condition.

```
\[
\begin{equation*}
\mathscr{H}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \tag{I-33}
\end{equation*}
\]
```

where \nVdash Hamiltonian operator (energy operator)
$E_{i} \longrightarrow$ eigen values of eigen states
$\psi_{i} \longrightarrow$ eigen states

```
By finding the solution of the Schroedinger Equation, we can
reach the resonance state. Let us do that for proton which has
spin \(\frac{1}{2}\). Let \(I_{z}\) operator show the \(z\) component of this spin. In
Quantum Mechanics, there are two possible spin eigen functions
(states), namely \(|\alpha\rangle\) and \(|\beta\rangle\)

We have the following:
\[
\begin{align*}
& \left.I_{z}|\alpha\rangle=\frac{1}{2} \right\rvert\, \alpha> \\
& I_{z}\left|\beta>=-\frac{1}{2}\right| \beta> \tag{I-34}
\end{align*}
\]

Eigen values of operator \(I_{z}\) are \(\frac{1}{2}\) and \(-\frac{1}{2}\). Writing the relation between m and I .
\[
\begin{equation*}
m=\gamma_{n} \hbar I=g_{n} \frac{e \hbar}{4 \pi m_{p} \epsilon} I=g_{n} \mu_{n} I \tag{I-35}
\end{equation*}
\]
```

where g}\mp@subsup{g}{n}{}\longrightarrow\mathrm{ nuclear spectroscopic splitting factor
\mu
c\longrightarrow light speed
m
(In our example gn}=\mp@subsup{g}{\mathrm{ Proton }}{}=5.5855\mathrm{)

```

Hamiltonian operator for proton becomes:
\[
\begin{equation*}
H=-m \cdot H_{0}=-m_{z} H_{z}=-q_{n} \mu_{n} H_{z} I_{z} \tag{I-36}
\end{equation*}
\]

In this equation \(g_{n} \mu_{n} H_{z}\) is a constant and therefore \(1 \alpha>\quad\) and \(1 \beta>\) are also eigen states of the Hamiltonian operator. The solution of the Schrodinger equation (I-33) for a proton is:
\[
\left.\begin{array}{l}
H\left|\alpha>=\left(-g_{n} \mu_{n} H_{z}\right) I_{z}\right| \alpha>=-\frac{1}{2} g_{n} \mu_{n} H_{z} \\
H\left|\beta>=\left(-g_{n} \mu_{n} H_{z}\right) I_{z}\right| \beta>=+\frac{1}{2} g_{n} \mu_{n} H_{z}
\end{array}\right\}
\]

Equation (I-37) indicates that we have two energy levels as shown in figure (I-7).


Figure I-7: The NMR Spectrum.
\[
\begin{equation*}
E_{\alpha \beta}=\mp \frac{1}{2} g_{n} \mu_{n} H_{z} \tag{I-38}
\end{equation*}
\]

Equation ( \(\mathrm{I}-38\) ) is known as the Zeeman energy term. The energy needed from the rif. wave, in order to carry proton from one state to another is given by:
\[
\begin{align*}
& E=g_{n} \mu_{n} H_{z}=h w  \tag{I-39}\\
& E=h \nu_{r} \quad \text { with } \quad w=2 \pi \nu_{r}, \quad h=h / 2 \pi
\end{align*}
\]

Equation ( \(\mathrm{I}-39\) ) is the equation for resonance case. \(\mathcal{\nu}_{r}\) is known as the "resonance frequency" and the corresponding magnoetic field is called the "resonance field".

NMR spectroscopy is observed for either a chosen \(\nu_{r}\) or \(\mathrm{H}_{\mathbf{z}}\). Each can be calculated from equation (I-39) since \(h, g_{n}, \mu_{n}\) are constant.

\section*{CHAPTER II}

GENERAL FORMATION OF THE RELAXATION THEORY

II - 1 - INTRODUCTION

In Chapter (I) we have had a historical and elementary look at the NMR theory in which quantum mechanics was not much involved. This chapter is devoted to a more advanced NMR and relaxation theory by introducing the density matrix and related equation of motion.

It is useful to give a brief account of quantum mechanical behaviour of density matrix, the equation of motion and the expectation value of an operator.

II - 2 - DENSITY MATRIX AND THE EQUATION OF MOTION

We deal with all possible products of amplitudes of the wave function with themselves. Let \(\varphi_{n}\) be a basis set. We have,
\[
\psi=a_{1} \varphi_{1}+a_{2} \varphi_{2}+\cdots \cdots+a_{n} \varphi_{n}
\]
we could use all the products. The matrix presentation for that is:
\[
\begin{array}{ccccc}
a_{1} a_{1}^{*} & a_{1} a_{2}^{*} & a_{1} a_{3}^{*} & \cdots \cdots & a_{1} a_{n}^{*} \\
a_{2} a_{1}^{*} & a_{2} a_{2}^{*} & \cdots \cdots \cdots \cdots \cdots & a_{2} a_{n}^{*} \\
\vdots & & & & \vdots \\
a_{n} a_{1}^{*} & \cdots & \ldots & \cdots \cdots \cdots & a_{n} a_{n}^{*}
\end{array}
\]

This matrix contains all the information about the wave function. The diagonal elements of this matrix give the probebility of occupation of a particular eigen state without any arbitrary phase factor. In calculating the expectation value of an operator \(A\), it is these products \(a_{i} a_{j}^{*}\) which must be multiplied by the matrix elements \(A_{i j}\), so the \(a_{i} a_{i}^{*}\) are of more direct use.

The density matrix \(\rho\) for a system which has \(|\psi\rangle\) states is given by:
\[
\begin{equation*}
\rho=|\psi\rangle\langle\psi| \tag{IIT}
\end{equation*}
\]
\(|\psi\rangle\) and \(\langle\psi|\) can be expanded in terms of the complate orthogonal set \(\left|\varphi_{i}\right\rangle\) and \(\left\langle\varphi_{i}\right|\). Therefore, we can show that \(\rho\) is the matrix of all possible products. We have,
\[
\begin{aligned}
&\left.\left|\psi>=\sum_{i} a_{i}\right| \varphi_{i}\right\rangle \\
&<\psi \mid=\sum_{i} a_{i}^{*}\left\langle\varphi_{i}\right| \\
& \text { setting (II-2) } \\
& \rho=|\psi><\psi|=\text { get, } \\
& \rho=\sum_{i^{\prime}} a_{i} a_{i}^{*}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i^{\prime}}\right| \quad \text { (II-4) }
\end{aligned}
\]
now taking the mn matrix element:
\[
\begin{aligned}
\langle m| \rho|n\rangle & =\left\langle\varphi_{m}\right| \rho\left|\varphi_{n}\right\rangle \\
& =\left\langle\varphi_{m}\right| \sum_{i i^{\prime}} a_{i} a_{i^{\prime}}^{*}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i^{\prime}} \mid \varphi_{n}\right\rangle \\
& =\sum_{i i^{\prime}}\left\langle\varphi_{m} \mid \varphi_{i}\right\rangle a_{i} a_{i^{\prime}}^{*}\left\langle\varphi_{i^{\prime}} \mid \varphi_{n}\right\rangle \\
& =\sum_{i i^{\prime}} \delta_{m i} a_{i} a_{i^{\prime}}^{*} \delta_{i^{\prime} n} \quad \delta_{m i}=1 \quad \delta_{n i^{\prime}}=1
\end{aligned}
\]
when \(m=i \quad n=i^{\prime}\)
\[
\begin{equation*}
\langle m| \rho|n\rangle=a_{m} a_{n}^{*} \tag{II-5}
\end{equation*}
\]

Density matrix represents a "pure state" of which we know
enough information to write a wave function.
In order to derive the equation of motion of the density
matrix, we take the time derivative of Equation (II-1); it
follows that,
\[
\dot{\rho}=|\psi\rangle\left(\frac{\partial}{\partial t}\langle\psi|\right)+\left(\frac{\partial}{\partial t}|\psi\rangle\right)\left\langle\left.\psi\right|_{(I I-6)}\right.
\]
since \(\frac{\partial}{\partial t}\left|\psi>=-\frac{i}{\hbar} \mathcal{H}\right| \psi>\)
(where \(\mathcal{H}\) is Hamiltonian operator).

For the Hermitian conjugate equation we have,
\[
\frac{\partial}{\partial t}<\psi\left|=\frac{i}{\hbar}<\psi\right| \mathcal{H} \quad(I I-8)
\]

Substituting Equations (II-7) and (II-8) into Equation (II-6), we obtain;
\[
\begin{align*}
& \dot{\rho}=\frac{i}{\hbar}\{|\psi><\psi| \mathcal{H}-\mathcal{H}|\psi><\psi|\} \\
& \dot{\rho}=-\frac{i}{\hbar}[\mathcal{H}, \rho] \tag{II-9}
\end{align*}
\]

This equation is called the "Von-Neumann" equation. Von-Neumann equation describes the equation of motion in the Heisenberg picture with opposite sign (Appendix 1 covers the equation of motion in both pictures the Schroedinger and Heisenberg).

We now want to obtain the solution of the time dependant Schroedinger equation.
\[
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\mu|\psi(t)\rangle \tag{II-10}
\end{equation*}
\]
(time dependant of the Schroedinger equation)
\[
\begin{equation*}
|\psi(t)\rangle \quad \text { is given by: } \tag{II-11}
\end{equation*}
\]
\(\left.\left|\psi(t)>=\exp \left(-\frac{i \notin t}{\hbar}\right)\right| \psi(0)\right\rangle\)

This solution is only valid if \(H\) is independent of time. If \(H\) is dependent of time, solution becomes:
\[
\left.\left|\psi(t)>=\left\{\exp -\frac{i}{\hbar} \int_{0}^{t} \mathscr{H}\left(t^{\prime}\right) d t^{\prime}\right\}\right| \psi(0)\right\rangle \quad\left(I I-11^{\prime}\right)
\]

Taking the solution as in Equation (II -11), we write for the Hermitian conjugate of \(|\psi(t)\rangle\) as:
\[
\begin{equation*}
\langle\psi(t)|=\langle\psi(0)| \exp \frac{i \mu t}{\hbar} \tag{II-12}
\end{equation*}
\]

Establishing the density operator by Equations (II-11) and (II-12)
\[
\begin{align*}
& \rho(t)=|\psi(t)\rangle\langle\psi(t)|=\exp -\frac{i H_{t}}{\hbar}|\psi(0)\rangle\langle\psi(0)| \exp \frac{i d_{t}}{\hbar}(I I-13) \\
& \rho(t)=\exp -\frac{i \varkappa_{t}}{\hbar} \rho(0) \exp \frac{i \varkappa_{t}}{\hbar}  \tag{II-14}\\
& \text { with } \quad \rho_{0}=|\psi(0)><\psi(0)|
\end{align*}
\]

\section*{II - 3 - the expectation value of an operator}

In Quantum Mechanics, the expectation value of an operator is defined by:
\[
\begin{equation*}
\langle G .>=\langle\psi| \vec{s} \mid \psi\rangle \tag{II-15}
\end{equation*}
\]

We can express this in terms of density matrix. To do that we first prove the following identity.
\[
\begin{equation*}
\langle A \mid B\rangle=\operatorname{Tr}[|B\rangle\langle A|] \tag{II-16}
\end{equation*}
\]
we have,
\[
|A\rangle=\sum_{n} a_{n}|n\rangle, \quad|B\rangle=\sum_{n} b_{n}|n\rangle
\]
and
so, \(\langle A \mid B\rangle=\sum_{n} a_{n}^{*} b_{n}\)
\[
\begin{equation*}
<A\left|=\sum_{n} a_{n}^{*}<n\right| \tag{II-17}
\end{equation*}
\]
\[
\begin{equation*}
\langle A \mid B\rangle=\operatorname{Tr}[|B\rangle<A \mid] \tag{II-18}
\end{equation*}
\]
setting
\[
\langle A|=\langle\psi, \quad \mid B\rangle=G|\psi\rangle
\]
we obtain,
\[
<\psi|G| \psi>=\operatorname{Tr}[G|\psi><\psi|] \quad(I I-19)
\]
and we write,
\[
\langle\psi| \in|\psi\rangle=\operatorname{Tr}[G \rho]
\]

\section*{II - 4 - MAGNETIZATION VECTOR IN TERMS OF DENSITY MATRIX}
```

 We are prepared to continue our discussion about mag-
 netization at a more advanced level.
We first write the basic relation (for a single nucleus)
between the spin being }\hbarI\mathrm{ and related magnetic dipole moment
m.

```
\[
\begin{equation*}
m=\gamma \hbar I \tag{II-21}
\end{equation*}
\]

And we have already mentioned that (in chapter I) when this dipole is placed in a magnetic field \(H_{O}\) which is directed along the \(z\) axis, the Hamiltonian for the nucleus is given by:
\[
\begin{equation*}
H_{0}=m \cdot H_{0}=\gamma \hbar I_{2} H_{0} \tag{II-22}
\end{equation*}
\]
\(\mathcal{H}_{0}\) is known as the Zeeman Hamiltonian.
The equation of motion for I (in Heisenberg picture) may be written as follows:
\[
\begin{equation*}
\frac{\hbar}{i} \frac{d I}{d t}=\left[\mathcal{H}_{0}, I\right]=\gamma \hbar H_{0}\left[I_{z}, I\right] \tag{II-23}
\end{equation*}
\]
\[
\begin{aligned}
& \text { Due to this equation, we find } I_{z}, I_{+} \text {and } I_{-} \\
& I_{z}(t)=e^{\frac{i}{\hbar} \gamma \hbar H_{0} I_{z} t_{2}} I_{z} e^{-\frac{i}{\hbar} \gamma \hbar H_{0} I_{z} t}=T_{z}(I I-24) \\
& I_{+}(t)=e^{i \gamma H_{0} I_{2} t} T_{+} e^{-i \gamma H_{0} I_{2} t}=I_{+} e^{i \omega_{0} t}(I I-25) \\
& I_{-}(t)=e^{i \gamma H_{0} I_{z} t} e^{-i \gamma H_{0} I_{z}}=I_{-} e^{-i \omega_{0} t}(I I-26)
\end{aligned}
\]

The expressions we had above are for a single nucleus. We now consider an assembly of like nuclei in thermal equilibrium at temperature \(T\). To do that we recall the magnetization.
\[
\begin{equation*}
M=\gamma \hbar\langle I\rangle N \tag{II-27}
\end{equation*}
\]

Where \(N\) is the number of spins per unit volume and \(\langle\perp\rangle \hbar\) is the ensemble average of the spin angular momentum.

In the presence of the external magnetic field, the equilibrium density operator for the system is:
\[
\begin{equation*}
f_{e q}=\frac{\exp -\beta \mathscr{L}}{\operatorname{Tr}\{\exp -\beta \mathcal{H}\}} \tag{II-28}
\end{equation*}
\]

Here, Hamiltonian covers two parts. 1. - Zeeman part \(\left(\mathcal{H}_{0}\right)\)
2. - Interaction part. Ignoring the interaction part, we write,
\[
\begin{equation*}
\rho_{e q}=\frac{\exp -\beta \mathscr{L}_{0}}{\operatorname{Tr}\left\{\exp -\beta \mathscr{L}_{0}\right\}} \tag{II-29}
\end{equation*}
\]

Where \(\quad \beta=1 / k T \quad k \longrightarrow\) Boltzmann constant. If \(\hbar \omega_{0} \ll k T \quad\), we can expand \(\exp -\beta \mathcal{H}_{0} \quad\) and mgnote the terms after the first one, we have;
\[
\begin{align*}
& \rho_{e q}=\frac{1-\beta \mathscr{C}_{0}}{\operatorname{Tr}\{1\}-\operatorname{Tr}\left\{\beta \varkappa_{0}\right\}}  \tag{II-30}\\
& \rho_{e q}=\frac{1-\beta \hbar \omega_{0} I_{z}}{\operatorname{Tr}\{1\}} \tag{II-31}
\end{align*}
\]
with \(\mathcal{H}_{0}=\hbar \omega_{0}\) and \(\operatorname{Tr}\left\{I_{z}\right\}=0\)
Now, \(M_{z}\) can be written in terms of \(f_{e q}\)
\[
\begin{align*}
M_{z}= & N \gamma \hbar\left\langle I_{z}\right\rangle=N \gamma \hbar \operatorname{Tr}\left\{\rho_{e q} I_{z}\right\}  \tag{II-32}\\
M_{z}= & -\frac{N \beta \gamma \hbar^{2} \omega_{0} \operatorname{Tr}\left\{I_{z}^{2}\right\}}{\operatorname{Tr}\{1\}}  \tag{II-33}\\
& \operatorname{Tr}\left\{I_{z}^{2}\right\}=\frac{1}{3} I(I+1)(2 I+1) \quad \text { and since the }
\end{align*}
\]
system has \(2 I+1\) energy levels, the density operator has \(2 I+1\) elements. So \(\operatorname{Tr}\{1\}=2 I+1\)
\[
\begin{equation*}
M_{z}=-(\gamma \hbar)^{2} H_{0} N I(I+1) / 3 k T \tag{II-34}
\end{equation*}
\]

Equation (II-34) is known as the Curie Law.
```

 It is possible to manipulate the magnetization vector by
 a 90' pulse. To do that we need to apply a strongradio-frequen-
cy pulse along the axis which is perpendicular to H}\mp@subsup{H}{0}{}\mathrm{ static
field direction. Let }\mp@subsup{H}{1}{}\mathrm{ and }\tau\mathrm{ be the magnetic field of r.f.
pulse and duration respectively. The spins will start precess-
ing about }\mp@subsup{H}{1}{}\mathrm{ direction (say the }x\mathrm{ axis), during }\tau\mathrm{ time and
clearly new precession frequency is given by: }\mp@subsup{\omega}{1}{}=\gamma\mp@subsup{H}{1}{}\mathrm{ . The
new angle is }\mp@subsup{\omega}{1}{}\mathrm{ times }
The 90' pulse rotates }\mp@subsup{I}{z}{}\mathrm{ into }\mp@subsup{I}{x}{}. But as soon as th
pulse disappears, the magnetizationcontinves precessing with its
natural Larmor frequency (}\mp@subsup{\omega}{0}{}\mathrm{) about (Ho. Its amplitude decays
in time due to the spin-spin relaxation time after a 90' pulse
is applied, equation (II-31) can be written as:

```
\[
\begin{equation*}
\rho=\frac{1+\beta \omega_{0} I_{x}}{\operatorname{Tr}\{1\}} \tag{II-35}
\end{equation*}
\]
(high temperature approximation)
Expectation value of \(I_{x}\) at time \(t\) is:
\[
<I_{x}(t)>=\operatorname{Tr}\left\{\rho I_{x}(t)\right\}
\]

Substituting equation (II-35) into this equation
\[
\begin{align*}
& \left\langle I_{x}(t)\right\rangle=\frac{\operatorname{T}_{r}\left\{\left(1+\beta \omega_{0} I_{x}\right) I_{x}(t)\right\}}{T_{r}\{1\}}  \tag{II-36}\\
& I_{\lambda}(t)=\exp i \not H_{t} I_{x} \exp -i \nVdash t
\end{align*}
\]
then we have,
\[
\left\langle I_{x}(t)\right\rangle=\frac{\operatorname{Tr}\left\{\left(1+\beta \omega_{0} I_{x}\right) \exp i \not X_{t} I_{x} \exp -i \not X_{t}\right\}}{\operatorname{Tr}\{1\}}
\]
\[
\begin{equation*}
\left\langle I_{x}(t)\right\rangle=\underbrace{\frac{\beta \omega_{0}}{T_{r}\{1\}}}_{\text {constant }} \operatorname{Tr}\left\{I_{x} \exp i \nVdash t I_{x} \exp -i \notin t\right\} \tag{II-37}
\end{equation*}
\]

Here the Hamiltonian consists of two terms. 1-Zeeman term 2- Dipolar term. \(\quad\left(\mathcal{X}=\mathcal{X}_{\mathrm{z}}+\mathcal{X}_{\text {dip }}\right)\). For the adiabatic case we take the part \(\mathcal{X}_{\text {dip }}\) which commutes with \(\mathcal{X}_{z}\), namely \(\mathcal{X}^{\prime}\)
(Abragam, terms \(A+B\) in \(\mathcal{O}_{\text {dip }}\) ).
So, we have
\[
\left[H^{\prime}, H_{z}\right]=0
\]
consider
\[
\begin{equation*}
\mathcal{H}=\mathcal{H}_{z}+\mathcal{X}^{\prime} \tag{II-38}
\end{equation*}
\]
substituting Equation (II-38) into Equation (II-37), we find,
\[
\begin{array}{r}
\left\langle I_{x}(t)\right\rangle=T_{r}\left\{I_{x}\left(\text { exp } i X^{\prime} t\right)\left(\text { exp } H_{z} t\right) I_{x}\left(\text { exp }-i H_{z} t\right)\right. \\
 \tag{II-39}\\
\left.\left(\text { exp }-i H^{\prime} t\right)\right\} \quad(I I-39
\end{array}
\]

We note that since \(\mathcal{H}_{z}\) commutes with \(\mathcal{H}^{\prime}\), \(\exp\) i \(\left(\mathcal{H}_{+}^{\prime} \mathcal{H}_{z}\right)\) t can be written as \(\exp i \mathcal{H}^{\prime} \mathrm{t} \exp i \mathcal{H}_{\mathrm{z}} \mathrm{t} \exp i \mathcal{H}_{z} t\)
\(-\operatorname{expir} \mathrm{I}_{z} t I_{x} \exp -i \mathscr{R}_{z} t=I_{x} \operatorname{Cos} \omega_{0} t+I_{y} \sin \omega_{0} t\)
with \(\mathcal{H}_{\mathrm{z}}=\omega_{0} \hbar \quad\) and \(\hbar \rightarrow 1\)

Equation (II-38) becomes
\[
\begin{aligned}
\left\langle I_{x}(t)\right\rangle & =\operatorname{Tr}_{r}\left\{I_{x} e^{i \mathscr{H}^{\prime} t} I_{x} e^{-i \mathscr{H}^{\prime} t}\right\} \cos \omega_{0} t+ \\
\operatorname{Tr} & \underbrace{\left\{I_{x} e^{i \mathscr{H}^{\prime} t} I_{y} e^{-i \mathcal{H}^{\prime} t}\right\} \sin \omega_{0} t}_{0}
\end{aligned}
\]
\[
\left\langle I_{x}(t)\right\rangle=T_{r}\left\{I_{x} \exp i \mathscr{H}^{\prime} t I_{x} \exp -i \mathscr{H}^{\prime} t\right\}
\]
(II-40)

We now write the transverse magnetization
\[
\begin{equation*}
M_{+}(t)=M(0) F(t) \exp i w_{0} t \tag{II-41}
\end{equation*}
\]
(this was zero in the absence of ref. wave) where \(F(t)\) is called the transverse relaxation function. Similar to Equation (I-27) we write,
\[
M_{+}(t)=N \gamma \hbar\left\langle I_{+}(t)\right\rangle=N \gamma \hbar T_{r}\left\{\rho I_{+}(t)\right\}
\]
since \(\quad \operatorname{Tr}\left\{I_{+}(t)\right\}=0\)
then
\[
M_{+}(t)=\beta \omega_{0} N \gamma \hbar \frac{T_{r}\left\{I_{x} I_{t}(t)\right\}}{T_{r}\{t\}}
\]

This may be written in more symmetric form
\[
\begin{equation*}
M_{+}(t)=2 N \gamma \hbar \omega_{0} \operatorname{Tr}\left\{I_{+}(t) I_{-}\right\} / \operatorname{Tr}\{1\} \tag{II-42}
\end{equation*}
\]

Combining Equations (I I-41) and (II-42)
we find,
\[
\begin{equation*}
F(t)=\exp -i \omega_{0} t \frac{T_{r}\left\{I_{+}(t) I_{-}\right\}}{T_{r}\left\{I_{+} I_{-}\right\}} \tag{II-43}
\end{equation*}
\]

And the longitudinal relaxation function is given by
\[
\begin{equation*}
L(t)=\frac{\operatorname{Tr}\left\{I_{z}(t) I_{z}\right\}}{\operatorname{Tr}\left\{I_{z}^{2}\right\}} \tag{II-44}
\end{equation*}
\]

In the case of lattice motion (vibration and rotation) the time development of the spin components obeys the Heissenberg equation
\[
\begin{equation*}
i \hbar \frac{d I(t)}{d t}=[I(t), \mathcal{X}] \tag{II-45}
\end{equation*}
\]

Now, Hamiltonian \(\mathscr{P}\) includes three parts: 1 - Zeeman \(\left(\mathcal{H}_{z}\right)\) which describes the precession about \(H_{0} . \quad 2\) - Dipolar \(\left(\mathcal{H}_{\text {dip }}\right)\) which gives the dipolar interaction. 3 - Motion part \(\left(\mathcal{H}_{\mathrm{m}}\right)\).
we write,
\[
\mathcal{H}=\mathcal{H}_{\mathrm{z}}+\mathcal{H}_{\mathrm{dip}}+\mathcal{H}_{\mathrm{m}}
\]
\(H_{m}\) commutes with \(\mathcal{H}_{z}\) but \(\mathcal{H}_{\mathrm{m}}\) and \(\mathcal{H}_{\mathrm{z}}\) don't commute with \(\mathcal{H}_{\text {dip }}\). \(H_{\text {dip }}\) is much smaller than \(\mathcal{H}_{\mathrm{z}}+\mathcal{X}_{\mathrm{m}}\).

In the frame which the spins move with, we can go through the analysis. We have new operators.
\[
\begin{align*}
& H_{d i p}^{*}(t)=e^{\frac{i}{\hbar} H_{0} t} H_{d_{i p}} e^{-\frac{i}{\hbar} H_{0} t}  \tag{II-46}\\
& I^{*}(t)=e^{\frac{i}{\hbar} H_{0} t} T e^{-\frac{i}{\hbar} H_{0} t} \tag{II-47}
\end{align*}
\]
where \(H_{0}=H_{\mathrm{z}}+\mathscr{H}_{\mathrm{m}}\) since \(\left[\mathscr{H}_{\mathrm{z}}, \mathscr{H}_{\mathrm{m}}\right]=0\)
similar to Equations (II-24) and (II-25) we have,
\[
\begin{aligned}
& I_{+}^{*}(t)=I_{+} \exp i \omega_{0} t \\
& I_{z}^{*}(t)=I_{z}
\end{aligned}
\]

Therefore \(F(t)\) and \(L(t)\) become
\[
\begin{aligned}
& F(t)=\frac{\operatorname{Tr}\left\{I_{+}(t) I_{-}\right\}}{\operatorname{Tr}\left\{I_{+} I_{-}\right\}} \\
& L(t)=\frac{\operatorname{Tr}\left\{I_{2}(t) I_{z}\right\}}{\operatorname{Tr}\left\{I_{2}^{2}\right\}}
\end{aligned}
\]

\section*{KUBO'S GENERAL THEORY ON MAGNETIC RESONANCE ABSORPTION AND BROADENING}
```

III - 1 - INTRODUCTION

```
```

 Shortly after Bloembergen, Purcell and Pound made analysis
 of their experiments on the nuclear magnetic resonance absorption,
Kubo and Tomita published two elegant papers one after another on
the same phenomenon (1953-54).
We are first going to give an account of the general theory
on magnetic resonance absorption (Part I), then we shall discuss the
broadening closely (Part II).
The method used for the general theory of magnetic resonance
is quantum-statistical and the expressions are derived in the light
of the linear theory of irreversible process. If each of the mag-
netic moments are independent, the problem is not very complicated.
But theoretical analysis becomes more complicated when the magne-
tic moments are coupled together and the fields on these magnetic
moments are correlated. The dipolar and exchange interactions are
the typical examples for this case.
We shall first see a quantum-mechanical theory of frequency
dependent susceptibilities of magnetic systems. When studying
this, we shall confine ourselves to the simple case of the linear
theory which assumes that the external disturbance is always
small and the response of the system to it is linear. Secondly,
we shall calculate the relaxation function in a quantum-mechanical

```
way.
Part II is devoted to develop the Fourier integral method for computing the line contour of resonance absorption and also to apply the method to the theory of magnetic resonance absorption.

\section*{PART I}

\section*{III - 2 - RELAXATION FUNCTION AND SUSCEPTIBILITY}

In order to correlate the susceptibility and the relaxation function to the dynamical properties of the system, we first need to derive basic equations. We do this quantum-statistically and use the limitation of the linear theory which means that the response of our system to the external disturbance is given by taking only the first order of perturbation theory.

We apply an oscillating magnetic field (whose wave length is very large compared to the dimension of the sample) to our sample. We write this field as;
\[
\begin{equation*}
H_{1}(t)=H_{1} \text { Coswt } \tag{III-1}
\end{equation*}
\]

We can express the induced magnetic moment in the following way:
\[
\begin{align*}
M_{\text {ind }}(t) & =\operatorname{Re}\left(x^{\prime}-i x^{\prime \prime}\right) H_{1} e^{i \omega t} V \\
& =\left(x^{\prime} \cos \omega t+x^{\prime \prime} \sin \omega t\right) H_{1} V \tag{III-2}
\end{align*}
\]
and we also have,
\[
\begin{equation*}
x=x^{\prime}-i x^{\prime \prime} \tag{III-3}
\end{equation*}
\]
where \(x\) is the complex susceptibility and \(x^{\prime}\) and \(x^{\prime \prime}\) are the real part and imaginary parts of the complex susceptibility respective\(1 y\).
\(V\) is the volume of the sample.
Since we take \(M_{i n d}\) and \(H_{1}\) as linear, we can now calculate the
magnetic response of the system in the first order of the external field \(H_{1}\).

The function which describes the time change of the response after the external disturbance is cut down to zero is called the RELAXATION function. Supposing that a constant magnetic field \(\mathrm{H}_{1}\) is applied from \(t=-\infty\) to \(t=t_{o}\). Then it is suddenly removed. For \(t=-\infty\) to \(t=t_{o}\) we write the density matrix operator as;
\[
\begin{equation*}
\rho^{\prime}=\frac{\exp [-\beta(\mathscr{H}-H, M)]}{\operatorname{Tr}\{\exp [-\beta(\mathscr{H}-H, M)]\}} \tag{III-4}
\end{equation*}
\]
where \(M\) and \(\mathscr{H}\) are respectively the magnetic moment operator and the Hamiltonian of the magnetic system in the absence of \(\mathrm{H}_{1}\).

For \(t>t_{0}\), we write the Von-Nuemann equation
\[
\begin{equation*}
i \hbar \dot{\rho}=[\mathscr{H}, \rho] \tag{III-5}
\end{equation*}
\]

The time dependent density matrix at \(t=t\) is given by,
\[
\begin{equation*}
\rho(t)=e^{\left[-\frac{i}{\hbar}\left(t-t_{0}\right) \mathcal{H}\right]} \rho^{\prime} e^{\left[\frac{i}{\hbar}\left(t-t_{0}\right) \not \mathscr{L}\right]} \tag{III-6}
\end{equation*}
\]

The expectation value of \(M\) is,
\[
\begin{equation*}
\bar{M}(t)=\operatorname{Tr}\{\rho(t) M\} \tag{III-7}
\end{equation*}
\]

Substituting Equation (III-6) into (III-7) we have,
\[
\begin{equation*}
\bar{M}(t)=\operatorname{Tr}\left\{\rho^{\prime} N \mid(t)\right\} \tag{III-8}
\end{equation*}
\]
\[
\begin{equation*}
\text { with } M(t)=e^{\left[\frac{i}{\hbar}\left(t-\dot{t}_{0}\right) \mathcal{H}\right]} M e^{\left[-\frac{i}{\hbar}\left(t-t_{0}\right) \mathcal{H}\right]} \tag{III-9}
\end{equation*}
\]
and with the initial condition \(M\left(t_{0}\right)=M\) (III-10)

The equation of motion for the magnetic moment in the Heisenberg representation is:
\[
\begin{equation*}
i \hbar \dot{M}(t)=[M(t), \mathcal{H}] \tag{III-11}
\end{equation*}
\]

By using the expansion method and ignoring the higher order terms (than the first term), \(\rho^{\prime}\) can be rewritten as; (Kubo and Tomita).
\[
\rho^{\prime}=\frac{e^{-\beta \mathscr{H}}}{\operatorname{Tr}\left\{e^{-\beta \mathscr{H}}\right\}} \times\left[1+\int_{0}^{\beta} d \lambda e^{\lambda \mathscr{H}} H_{1}\left(M-M_{0}\right) e^{-\lambda \mathscr{K}}\right]+O\left(H_{1}^{2}\right)(\operatorname{III}-12)
\]
with \(M\left(t_{0}\right)=M\) initial condition
Substituting Equation (III-12) into Equation (III-8) we obtain;
\[
\bar{M}(t)=\bar{M}_{0}+\int_{0}^{\beta} d \lambda T_{r}\left\{\rho_{0}\right\} e^{\lambda H} H_{1}\left(M-\bar{M}_{0}\right) e^{-\lambda H} M\left(t-t_{0}\right)+O\left(H_{1}^{2}\right) \quad \text { (III-13) }
\]
with \(\rho_{0}=\frac{e^{-\beta \mu}}{\operatorname{Tr}\left\{e^{-\beta \mu}\right\}}\)
(density matrix for unperturbation (III-14)
and \(\quad \bar{M}_{0}=\operatorname{Tr}\left\{\rho_{0} M\right\} \quad\) magnetic moment with unperturbed Hamiltonian)
(III-15)
we can now define the relaxation function as a tensor,
\[
\begin{equation*}
\bar{M}(t)-\bar{M}_{0}=H_{1} \boldsymbol{\Phi}\left(t-t_{0}\right) \tag{III-16}
\end{equation*}
\]
and the transposed tensor of \(\bar{\phi}\)
\[
\begin{equation*}
\vec{M}(t)-\vec{M}_{0}=\phi\left(t-t_{0}\right) H_{1} \tag{III-17}
\end{equation*}
\]
\(\boldsymbol{\varnothing}\left(t-t_{0}\right)\) and \(\oint_{x y}\left(t-t_{0}\right)\) can be respectively expressed from Equation (III-13) as follows
\(\Phi\left(t-t_{0}\right)=\int_{0}^{\beta}\left\langle e^{\lambda \alpha}\left(M-\bar{M}_{0}\right) e^{-\lambda \alpha} M\left(t-t_{0}\right)\right\rangle d \lambda=\int_{0}^{\beta}\left\langle M M\left(t-t_{0} i \hbar \lambda\right)\right\rangle d \lambda-\beta M_{0} M_{0}(\) III I-18)
\(\phi_{x y}\left(t-t_{0}\right)=\int_{0}^{\beta} d \lambda\left\langle M_{y} M_{x}\left(t-t_{0}+i \hbar \lambda\right)\right\rangle-\beta M_{o y} M_{o x}=\int_{0}^{\beta}\left\langle M_{x}\left(t-t_{0}-i \hbar \lambda\right) M_{y}\right\rangle d \lambda-\beta M_{o x} \bar{M}_{y}\)
In the classical limit \((\hbar \rightarrow 0)\) one can obtain:
\[
\begin{align*}
& \boldsymbol{\phi}\left(t-t_{0}\right)=\beta\left[\left\langle M M\left(t-t_{0}\right)\right\rangle-\bar{M}_{0} \bar{M}_{0}\right]  \tag{III-20}\\
& \phi\left(t-t_{0}\right)=\beta\left[\left\langle M\left(t-t_{0}\right) M\right\rangle-\bar{M}_{0} \bar{M}_{0}\right]
\end{align*}
\]

By assuming \(H_{1}(-\infty)=0\) and \(\quad \rho(-\infty)=\rho_{0}\) we can obtain the quantum-mechanical expression for \(M(t)\) for \(H_{1}(t)\). The perturbing field has been switched on at \(t=-\infty\) and applied up to \(t=t^{\prime}\). The expectation value of \(M\) at the time \(t\) is,
\[
\begin{align*}
\bar{M}(t) & =\bar{M}_{0}+\int_{-\infty}^{t}\left\{\frac{d}{d t^{\prime}} \phi\left(t-t^{\prime}\right)\right\} H_{1}\left(t^{\prime}\right) d t^{\prime}  \tag{III-22}\\
& =\bar{M}_{0}+\phi_{(0)} H_{1}(t)-\int_{-\infty}^{t} \phi\left(t-t^{\prime}\right) \frac{d H_{1}\left(t^{\prime}\right)}{d t^{\prime}} d t^{\prime} \tag{III-22'}
\end{align*}
\]

And the Von-Neumann's equation of motion for the relaxation fundlion is given by
\[
\begin{equation*}
i \hbar \dot{\phi}_{x y}\left(t-t^{\prime}\right)=\left\langle\left[M_{x}\left(t-t^{\prime}\right), M_{y}\right]\right\rangle \tag{III-23}
\end{equation*}
\]

Through the Equations (III-22) and (III-22'), we can obtain the expressions for the susceptibility.
\[
\left.\begin{array}{l}
x^{\prime}=x_{0}-\frac{\omega}{v} \int_{0}^{\infty} \phi(\tau) \sin \omega \tau d \tau  \tag{III-24}\\
x^{\prime \prime}=\frac{\omega}{v} \int_{0}^{\infty} \phi(\tau) \cos \omega \tau d \tau
\end{array}\right\}
\]
\[
\begin{equation*}
x^{*}=x^{\prime}-i x^{\prime \prime}=x_{0}-\frac{i \omega}{V} \int_{0}^{\infty} \phi(\tau) e^{-i \omega \tau} d \tau \tag{III-25}
\end{equation*}
\]
where \(\chi_{0}\) is the static susceptibility and it is given by:
\[
\chi_{0}=\frac{\phi(0)}{V}=\frac{1}{V}\left[\int_{0}^{\beta}<e^{\lambda H_{1}} M e^{-\lambda H_{M}} M>_{d \lambda}-\beta \bar{M}_{0} \bar{M}_{0}\right]
\]

Equation (III-25) can also be written as,
\[
\begin{equation*}
\chi^{*}=-\frac{1}{v} \int_{0}^{\infty} \frac{d \phi(\tau)}{d \tau} e^{-i \omega \tau} d \tau \tag{III-27}
\end{equation*}
\]

Equation (III-27) gives the relation between the complex surceptibility and the relaxation time. (The relaxation function is the Fourier transform of the frequency dependent susceptibility). The relaxation function has the following properties:
a) \(\bar{\phi}_{x y}(t)=\varnothing_{x y}(t) \quad\) they are conjugates
b) \(\lim _{t \rightarrow \infty} \phi(t)=0\)
c) \(\varnothing\) is a symmetric tensor
\[
\varnothing(-t)=\varnothing^{(t)}
\]
or
\[
\phi_{x y}{ }^{(-t)}=\phi_{y x}{ }^{(t)}
\]
d) In the case of a constant magnetic field \(H_{C}\) (app-
lied to our system continually). We have the following;
\[
\begin{aligned}
& \phi\left(t, H_{c}\right)=\varnothing\left(-t,-H_{c}\right) \\
& \phi\left(t, H_{c}\right)=\bar{\phi}\left(t,-H_{c}\right)
\end{aligned}
\]
or
\[
\begin{aligned}
& \phi_{x y}\left(t, H_{c}\right)=\varnothing_{y x}\left(t,-H_{c}\right) \\
& X\left(\omega, H_{c}\right)=\tilde{X}^{*}\left(\omega,-H_{c}\right)
\end{aligned}
\]

The classical case requires only that the energy differences \(E_{m}-E_{n}\) of the various levels of the system connected by matrix elements of \(M\) should be much smaller than \(k T\).
\[
\begin{equation*}
\left|E_{m}-E_{n}\right|=\hbar w_{n m} \ll k T \tag{III-28}
\end{equation*}
\]

Using the expansion
\(M_{x}(t+i \hbar \lambda)=M_{x}(t)+i \hbar \lambda \dot{M}_{x}(t)+\frac{1}{2}(i \hbar \lambda)^{2} \ddot{M}_{x}(t)+\ldots-\ldots\)
and substituting this into Equation (III-19), we obtain,
\[
\left.\bigotimes_{x y}(t)+\beta \bar{M}_{o x} \bar{M}_{o y}=\beta<M_{x}(t) M_{y}\right\rangle+ \text { second order }
\]

Condition (III-28) tells us \(\beta\) is very small ( \(\beta=\frac{1}{k T}\) ) so, that is to say we can ignore " \(\beta^{2}\) " terms in Equation (III-29), we then get;
\[
\begin{equation*}
\left.\phi_{x y}(t)=\beta\left[<M_{x}(t) M_{y}\right\rangle-\bar{M}_{o x} \bar{M}_{o y}\right] \tag{III-30}
\end{equation*}
\]

This equation satisfies all the properties of the relaxation function. The function \(\left\langle M_{x}(t+\tau) M_{y}(\tau)\right\rangle=\left\langle M_{x}(t) M_{y}(0)\right\rangle\)
is the correlation of \(M_{x}(t+\tau)\) and \(M_{y}(t)\). It is called the \(x-y\) component of the correlation tensor of magnetic moment at time interval \(t\). In the low frequency cases, we see that, the relaxation function (Eq. III-30) is proportional to the correlation tensor of the magnetic moment.

\section*{III - 3 - SYMMETRIC AND ANTISYMMETRIC TENSORS}

\section*{The symmetric and antisymmetric parts of the relaxation ten-} sore are respectively defined by,
\[
\begin{aligned}
& \phi_{x y}^{s}(t)=\frac{1}{2}\left[\phi_{x y}(t)+\phi_{y x}(t)\right]=\frac{1}{2}\left[\phi_{x y}(t)+\phi_{x y}(t)\right](\text { III }-31) \\
& \phi_{x y}^{a}(t)=\frac{1}{2}\left[\phi_{x y}(t)-\phi_{y x}(t)\right]=\frac{1}{2}\left[\phi_{x y}(t)-\phi_{x y}(t)\right]
\end{aligned}
\]
```

substituting Equation (III-19) in these equations, we have, (t }\mp@subsup{t}{0}{=0

```
\[
\begin{aligned}
\phi_{x y}^{s}(t) & =\int_{0}^{\beta} \frac{1}{2}\left\langle M_{x}(t-i \hbar \lambda) M_{y}+M_{x}(-t-i \hbar \lambda) M_{y}\right\rangle d \lambda-\beta \bar{M}_{o x} \bar{M}_{o y} \\
& =\int_{0}^{\beta} \frac{1}{2}\left\langle M_{y}(t-i \hbar \lambda) M_{x}+M_{y}(-t-i \hbar \lambda) M_{x}\right\rangle d \lambda-\beta \bar{M}_{o x} \bar{M}_{0 y} \quad \text { III -33) }
\end{aligned}
\]
\[
\left.\begin{array}{rl}
\phi_{x y}^{a}(t) & =\int_{0}^{\beta} \frac{1}{2}\left\langle M_{x}(t-i \hbar \lambda) M_{y}-M_{x}(-t-i \hbar \lambda) M_{y}\right\rangle d \lambda  \tag{III-34}\\
& =\int_{0}^{\beta} \frac{1}{2}\left\langle-M_{y}(t-i \hbar \lambda) M_{x}+M_{y}(-t-i \hbar \lambda) M_{x}\right\rangle d \lambda
\end{array}\right\}
\]
\(\phi_{\mathrm{xy}}^{s}(\mathrm{t})\) is real and even in " t ", whereas, \(\phi_{\mathrm{xy}}^{a}(\mathrm{t})\) is odd in " t ".

For \(\beta=\) small (low frequency approximation) it \(\beta \cong 0\) and our equations become
\[
\begin{align*}
\phi_{x y}^{s}(t) & =\frac{1}{2} \beta\left\langle\left[M_{x}(t) M_{y}\right]+\left[M_{x}(-t) M_{y}\right]\right\rangle-\beta \bar{M}_{o x} \bar{M}_{o y} \\
& =\frac{1}{2} \beta<\left[M_{x} M_{y}(t)\right]+\left[M_{x} M_{y}(-t)\right]>-\beta \bar{M}_{o x} \bar{M}_{o y}  \tag{III-35}\\
\phi_{x y}^{a}(t) & \left.=\frac{1}{2} \beta<\left[M_{x}(t) M_{y}\right]-\left[M_{x}(-t) M_{y}\right]\right\rangle \\
& \left.=\frac{1}{2} \beta<-\left[M_{x} M_{y}(t)\right]+\left[M_{x} M_{y}(-t)\right]\right\rangle
\end{align*}
\]
(III-36)

Now, we write the symmetric and antisymmetric parts of the surceptibility tensor as;
\[
\begin{align*}
& x_{s}^{*}=x_{0}-\frac{i \omega}{V} \int_{0}^{\infty} \phi^{s}(t) e^{-i \omega t} d t  \tag{III-37}\\
& x_{a}^{*}=-\frac{i \omega}{v} \int_{0}^{\infty} \phi^{a}(t) e^{-i \omega t} d t \tag{III-38}
\end{align*}
\]

Neglecting the effect of \(X^{\prime}\) in energy absorption, we write the rate of energy absorption by the magnetic system for linearly polarized radiation.
\[
\begin{equation*}
Q=\left(\pi \nu H_{1} \chi^{\prime \prime} H_{1}\right) V=\left(\pi \nu H_{1} \chi_{s}^{\prime \prime} H_{1}\right) v \tag{III-39}
\end{equation*}
\]
we have for \(\chi^{\prime \prime}\) s and \(X^{\prime \prime}\) sexy
\[
\begin{equation*}
x_{s}^{\prime \prime}=\frac{\omega}{2 v} \int_{-\infty}^{\infty} \phi^{s}(t) e^{-i \omega t} d t \tag{III-40}
\end{equation*}
\]
and \(\quad x_{s x y}^{*}=\frac{\omega \beta}{4 V} \int_{-\infty}^{\infty}\left[<\left\{M_{x}(-t) M_{y}\right\}+\left\{M_{x}(-t) M_{y}\right\}>-2 \bar{M}_{o x} \bar{M}_{o y}\right]^{-i \omega t}\) edt
(III-41)
that is because \(\phi^{s}\) is even in " \(t\) ". i.e \(M_{x}(t)=M_{x}(-t)\)
Let us consider that the absorption of radiation linearly polarized in the \(x\) direction for \(\beta=\) small case. We here define \(A(w)\) the absorption coefficient as,
\[
A(\omega)=V x_{x x}^{\prime \prime}(\omega)
\]
with the help of Equation (III-41),
\[
\begin{align*}
& A(\omega)=\frac{\omega^{2} \beta}{2 \pi V} \int_{-\infty}^{\infty}\left[\left\langle\left\{M_{x}(t) M_{x}\right\}\right\rangle-\bar{M}_{o x}^{2}\right] e^{-i \omega t} d t  \tag{III-43}\\
& A(\omega)=\frac{\omega^{2} \beta}{2 \pi V} \int_{-\infty}^{\infty} G(t) e^{-i \omega t} d t  \tag{III-44}\\
& \text { with } G(t)=\left\langle\left\{M_{x}(t) M_{x}\right\}\right\rangle-\bar{M}_{o x}^{2}=\left\langle\left\{M_{x}(t+\tau) M_{x}(\tau)\right\}\right\rangle-M_{o x}^{2} \\
& \text { (III-44) } \\
& G(t)=\frac{Y}{\beta} \int_{\text {(II I-45) }}^{\infty} \frac{A(\omega)}{\omega^{2}} e^{i \omega t} d \omega
\end{align*}
\]

Equations (III-44) and (III-46) tell us a very important statement:
\(A(\omega)\) is the Fourier transform of the "auto-moment" of \(M_{x}\) and conversely the "auto-moment" of \(G(t)\) is Fourier transform of \(A(\omega) / \omega^{2}\)

We now define the "spectral density" as,
\[
I(\omega)=\lim _{T \rightarrow \infty} \frac{T}{2}<\left[\frac{1}{T} \int_{0}^{T}\left\{M_{x}(t)-\bar{M}_{0 x}\right\} e^{-i \omega t} d t\right]^{2}>\quad(I I I-47)
\]
it follows that; (Kubo and Tomita)

\(G(t)\) is an even function of \(t\), so we write,
\(G(t)=\frac{2}{\pi} \int_{0}^{\infty} I(\omega) \cos \omega t d \omega=\frac{1}{\pi} \int_{-\infty}^{\infty} I(\omega) e^{i \omega t} d \omega \quad(\) III -49\()\) The autc correlation of \(M_{x}(t)\) is \(G(t) / G(0)\). The distribution of \(A(\omega) / \omega^{2}\) is the spectral density of the random variation of \(M_{x}(t)\), or the Fourier transform of the auto-correlation function.

\section*{PART II}

\section*{III - 4- BROADENING}

We write the Hamiltonian of the system under consideration as;
\[
\begin{equation*}
x=x_{0}+\varepsilon x^{\prime} \tag{III-50}
\end{equation*}
\]

\begin{abstract}
where the unperturbed Hamiltonian \(\left(\mathcal{H}_{0}\right)\) is a measure of sharpness of the resonance line and the perturbed Hamiltonian ( \(\varepsilon \mathcal{P}^{\prime}\) ) indicates broadening and shifting at this resonance curve. We call \(E\) the Interaction Constant. We can expand the Fourier transform or the characteristic function of the intensity distribution of the absorption in successive powers of the perturbation ( \(\varepsilon\) ). To be precise, we assume that the logarithm of the characteristic function of each of the resonance lines can be expanded in powers of \(\varepsilon\). After obtaining the characteristic function, we shall be able to
\end{abstract}
produce the intensity distribution or the shape of the resonance
line. Doing that we go up to the second order of \(\mathcal{E}\) because the
second order of \(\varepsilon\) gives us most of general feature of the
general feature of the shape of resonance line. The resonance
lines with \(\varepsilon=o\) (i.e. absorptions corresponding to the unper-
turbed case) are called the Main Lines or the Resonance Lines of
Zero-th Order. The perturbation of course gives rise to shifts
and the broadening of these lines and causes the appearance of
other lines. We call them the satellites or the Resonance Lines
of Higher Orders.

We make the following assumptions for our theory:
1) Low frequency approximation is made. The absorption energy is much smaller than the thermal energy. We write
\(\mathrm{hw} \ll \mathrm{kT}\)
2) We consider only a single main absorption. The satellites are not in our concern and they are far enough from the main line to neglect their effects (contributions).
3) If the main line has more than one peak, it will not be the object of our theory.
4) The absorption curve is smooth and differentiable to any order.

Let us introduce the Hamiltonian of the system under consideration as follows
\[
\begin{equation*}
\mathscr{H}=\mathscr{x}_{\mathrm{z}}+x_{\mathrm{L}}+x_{\mathrm{p}} \tag{III-51}
\end{equation*}
\]
where \(K_{z}\) is the Zeeman part
\(\mathcal{X}_{p}\) is the dipolar interaction part
\(\mathcal{X}_{\mathrm{L}}\) is the motion part
\(H_{p}\) dipolar interaction depends on the nuclear spins and space coordinates of nuclei.

In Quantum Mechanics, the averages over the nuclear spins are
given by (trace operation):
\[
\begin{equation*}
\langle(\ldots . .)\rangle_{\text {spin }}=\frac{\operatorname{Tr}_{\text {spin }}(\ldots \ldots)}{\operatorname{Tr}\{1\}} \tag{III-52}
\end{equation*}
\]
and the averages over the motions are,
\[
\begin{equation*}
<(\cdots,)\rangle_{\substack{\text { nuclear } \\ \text { motion }}}=\frac{\operatorname{Tr}\left\{e^{-\beta \phi}(\ldots)\right\}}{\operatorname{Tr}\left\{e^{-\beta \phi}\right\}} \tag{III-53}
\end{equation*}
\]

Therefore, the Fourier transform of the intensity distribution function \(G(t)\) can be expressed as follows.
\[
\begin{align*}
& G(t)=\frac{\operatorname{Tr}\left\{e^{-\beta \phi} \frac{1}{2}\left[M e^{i H t} M e^{-i \alpha t}+e^{i \mathcal{H} t} M e^{-i \mathcal{H t}} M\right]\right\}}{\operatorname{Tr}\left\{e^{-\beta \alpha}\right\}} \quad \text { (III-54) } \\
& =\left\langle M_{t} M\right\rangle \text { with } M_{t}=e^{i \mathcal{H} t} M e^{-i \alpha t}, M_{t}=M(t) \quad \text { (III-55 } \tag{III-55}
\end{align*}
\]

Dipole moment operator \(M\) represents the interaction of the system with radiation field. Equation (III-54) is the same as Equation (III-45) and \(M\) replaces \(M_{x}\) because as mentioned earlier, the magmetic field of the radiation is linearly polarized in the \(\mathcal{X}\) direction.

The calculation of the intensity distribution function is reduce to that of the function \(G(t)\). This is the basis of the Fourier Integral Method. Calculating \(G(t)\) requires the knowledge of the magnetic moments. We first write the equation of motion for \(M_{t}\). (Equation III-11).
\[
\begin{equation*}
i \hbar \dot{M}_{t}=\left[M_{t}, \nsim\right] \tag{III-56}
\end{equation*}
\]
with the initial condition \(M_{t=0}=M\)
Secondly, we expand the solution of this equation in powers of the perturbation ( \(\varepsilon\) ). We have;
\[
M_{t}=\varepsilon^{0} M_{t}^{0}+\varepsilon^{1} M_{t}^{\prime}+\varepsilon^{2} M_{t}^{\prime \prime}+\cdots+\cdots+\varepsilon^{n} M_{t}^{(n)}
\]
(III-57)
the general term is given by;
\[
\begin{align*}
& M_{t}^{(n)}=(-i \hbar)^{n} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \ldots . . \int_{0}^{t_{n-1}} d t_{n}  \tag{III-58}\\
& x\left[\cdots\left[M_{t}^{0}, H^{\prime}\left(t_{1}\right)\right] H^{\prime}\left(t_{2}\right)\right]
\end{align*}
\]

The magnetic moment and field corresponding to the unperturbed motion can be respectively expressed as,
\[
\begin{align*}
& M_{t}^{0}=e^{i \mathscr{H}_{0} t} M e^{-i \not \varkappa_{0} t}  \tag{III-59}\\
& H^{\prime}(t)=e^{i \varkappa_{0} t} H^{\prime} e^{-j \varkappa_{0} t}
\end{align*}
\]
(III-60)

We can easily see that, with the expansion of \(M_{t}\), the function \(G(t)\) becomes
\[
G(t)=\varepsilon^{0}\left\langle M_{t}^{0} M\right\rangle+\varepsilon^{1}\left\langle M_{t}^{\prime} M\right\rangle+\varepsilon^{2}\left\langle M_{t}^{\prime \prime} M\right\rangle+\ldots
\]
(III-61)

Now all we need to do is to calculate the terms in \(G(t)\). Let us first introduce the decomposition of the dipolar interaction in the following form:
\[
\begin{align*}
H_{p}= & c \sum_{m=-2}^{2} \sum_{i<j} Y_{2}^{-m}\left(\theta_{i j}, \varphi_{i j}\right) T_{i j}^{m}(-1)^{m} r_{i j}^{3} \text { (III-62 }  \tag{III-62}\\
& c=\hbar^{2} y^{2} \sqrt{4 \pi / 5} \\
& Y_{2}^{-m} \text { is a spherical harmonic } \\
& \left(\theta_{i j}, \varphi_{i j}\right) \text { is the direction of } r_{i j} \\
& { }_{i j}^{m} \quad \text { is an irreducible tensorial spin operator. }
\end{align*}
\]
tensor operator \(T\).
\(T_{L}^{M}\) is defined as a tensor of rank \(L\) with \((2 L+1)\) elements. \(\mathrm{T}_{\mathrm{L}}{ }^{\mathrm{M}}\) has the following communication relation with the angular momentum operator.
\[
\begin{aligned}
& {\left[I_{ \pm}, T_{L}^{M}\right]=[(L \mp M)(L \pm M+1)]^{1 / 2} T_{L}^{M+1} \quad(I I I-63)} \\
& {\left[I_{Z}, T_{L}^{M}\right]=M T_{L}^{M}}
\end{aligned}
\]
where \(I_{ \pm}=I_{x} \pm i I_{y}\)
Also the spherical harmonic has the same commutation relation with angular momentum operator.
\[
\begin{align*}
& {\left[I \pm, Y_{L}^{M}\right]=[(L \mp M)(L \pm M+1)]^{1 / 2} Y_{L}^{M \pm 1}}  \tag{III}\\
& {\left[I_{z}, Y_{L}^{M}\right]=M Y_{L}^{M}} \tag{III-66}
\end{align*}
\]

As an example, let us take rank of 1, (angular momentum by itself).
\[
\begin{aligned}
& T_{1}^{M}=I_{1}^{M} \\
& \text { claearly } I_{1}^{M} \text { has three components }(M=-1,0,1)
\end{aligned}
\]

These three components are given by:
\[
\begin{align*}
& I_{1}=-\frac{1}{\sqrt{2}}\left(I_{x}+i I_{y}\right)=-\frac{1}{\sqrt{2}} I_{t} \\
& I_{0}=I_{z}  \tag{III-68}\\
& I_{-1}=\frac{1}{\sqrt{2}}\left(I_{x}-i I_{y}\right)=\frac{1}{\sqrt{2}} I_{-}
\end{align*}
\]
(III-69)

Now, coming back to the decomposition of the dipolar interaction, as we consider the interaction between two spins, we must take into account the possible combinations of their components. These components would be 1 - Step up \(I_{+} 2-\) Step down \(I_{-} 3\) - Spin of \(z\)-direction \(I_{z}\). And the combinations are:
(a) \(I_{z} I_{z}\)
(b) \(\mathrm{I}_{\mathrm{z}} \mathrm{I}_{+}\)
(c) \(\mathrm{I}_{\mathrm{z}} \mathrm{I}_{-}\)
(d) \(\mathrm{I}_{+} \mathrm{I}_{+}\)
(e) \(\mathrm{I}_{+} \mathrm{I}_{-}\)
(f) I_I_

From the last three equations, we can clearly see that items (a) and (e) are zero, (b) is +1 , (c) is -1 (d) is +2 and ( \(f\) ) is -2 . Therefore, we have the following:
\[
\begin{align*}
& T_{i j}^{0}=I^{i} I^{j}-3 I_{z}^{i} I_{z}^{i}  \tag{III-70}\\
& T_{i j}^{1}=\sqrt{\frac{3}{2}}\left(I_{z}^{i} T_{+}^{j}+T_{2}^{j} T_{+}^{i}\right)=-\left(T_{i}^{-1}\right)^{+}  \tag{III-71}\\
& \text {(III-70) } \\
& T_{i j}^{2}=-\sqrt{\frac{3}{2}} I_{+}^{i} T_{+}^{j}=\left(T_{i j}^{-2}\right)^{+}
\end{align*}
\]
for \(L=2\) we write Equation (III-63) as:
\[
\begin{equation*}
\left[T \pm, T_{i j}^{m}\right]=[6-m(m \pm 1)]_{i j}^{1 / 2} T_{i}^{ \pm 1} \tag{III-73}
\end{equation*}
\]
we obtain, (we took \(C=1\) ) for simplicity)
\[
\begin{equation*}
\left\langle M_{t}^{0} M\right\rangle=-\frac{1}{6} N I(I+1)\left(e^{i \omega_{2} t}+e^{-i \omega_{2} t}\right) \tag{III-74}
\end{equation*}
\]
\[
\begin{equation*}
<M_{t}^{\prime} M>=0 \tag{III-75}
\end{equation*}
\]
\[
\begin{aligned}
\left\langle\left. M\right|_{t} ^{\prime \prime} M\right\rangle & =-\int_{0} d t_{1} \int_{a}^{t} d t_{2} \sum_{m}^{t_{1}} \sum_{m^{\prime}} \sum_{i j} e^{-i \omega_{z}\left(m t_{1}+m^{\prime} t_{z}\right)} \\
& <\left[M_{t,}^{0} T_{i} m\right]\left[T_{i,}^{m} M \mid\right]>F_{i j}^{-m, m^{\prime}} \quad\left(t_{1}-t_{z}\right)
\end{aligned}
\]

Where \(F_{i j}^{m m^{\prime}}\left(t_{1}-t_{2}\right)=\left\langle\left\{\Phi_{i j}^{m}\left(t_{1}\right) \Phi_{i j}^{m}\left(t_{2}\right)\right\}\right\rangle\)
(III-77)
\[
\begin{equation*}
\Phi_{i j}^{\eta}=y_{2}^{m}\left(\theta_{i j}, \varphi_{i j}\right) / r_{i j}^{3} \tag{III-78}
\end{equation*}
\]

Functions " \(\mathrm{F}_{\mathrm{S}}\) " are the correlation functions of the coefficients of the dipolar interaction which are functions of nuclear coordin-
ates.
Neglecting the unimportant terms, we rewrite Equation (III-76)
\(\left\langle M_{t}^{\prime \prime} M\right\rangle=-\frac{1}{4} N[I(I+1)]^{2} e^{i \omega_{2} t_{0}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}\)
\(x\left\{F^{0,0}(\tau)+\frac{16}{9} e^{i \omega_{z} \tau} F^{1,-1}(\tau)+\frac{8}{3} e^{-i \omega_{z} \tau^{-1,1}} F^{-1}(\tau)+\frac{16}{9} e^{-2 i \omega_{z} \tau} F^{-3, ~}(z)\right\}+\) Conj.
(III-79)
with \(\tau=t_{1}-t_{2}\)
The F-Functions in this equation are the correlation functions of the tensor components of the local field due to the dipolar forces. We define them as:
\[
\begin{equation*}
F^{m}(z)=\sum_{j} F_{i j}^{m m^{\prime}}(\tau) \tag{III-80}
\end{equation*}
\]

And they have the following properties,
\[
\overline{F^{m,-m}(z)}=F^{-m, m}(z)=F^{m,-m}(-z)
\]
(III-81)

We now collect the terms in the expansion which have the time factor \(e^{i \omega_{z} t}\) and regard them as the expanded form of an exponential function, which is assumed to be a good approximation to the actual characteristic function of the absoxption intensity of the main line. And we take the function \(G(t)\) as
\[
\begin{aligned}
G(t) & =\frac{C_{1} N}{6 k T} T(T+1) e^{i \omega_{2} t} \exp \left[-\frac{3}{2} T(I+1) \int_{0} d t_{1} \int_{0}^{t} d t_{2} t_{1}\right. \\
& \left.\left\{F^{0,0}(\tau)+\left[\frac{16}{9} e^{i \omega_{2} \tau} F^{1,-1}(\tau)+\frac{8}{9} e^{-i \omega_{2} \tau} F^{-1,1}(\tau)+\frac{16}{9} e^{-2 i \omega_{z} \tau} F^{-2,2}(\tau)\right]\right\}\right]
\end{aligned}
\]
(here \(C_{1}\) is a constant)
We are now able to show the proper choice of the combinations of the perturbation by looking at the time factors of expanded terms. There is a certain mathematical reason for our procedure. Assumption (4) means mathematically that the characteristic function has to satisfy an integrability condition. It is to say that \(G(t)\) is always integrable over \((-\infty, \infty)\) when multiplied by \(t^{n}(n>0)\).

Equation (III-82) is called the second approximation of the characteristic function. Limiting ourselves to this approximation means that we start Irom a Gaussian distribution for the ideally rigid lattice and treat the change in the resonance shape caused by the nuclear motion.

As to the effect of nuclear motion, it is a sort of Gaussian process for the random modulation of the resonance frequency of a magnetic unit due to the fluctuation of interactions with other magnetic units.

In the case of a rigid lattice, all of the \(F\)-functions are constant. The first term in the exponent of Equation (III-82) becomes \(\omega_{\rho}^{2} t^{2} / 2, \omega_{p}^{2}\) is the second moment of the rigid lattice due to the dipolar broadening. And all the other terms
in the heavy bracket in the integrand give rise to the satellites at \(w=0\) and \(w=2 w_{z}\). They also cause a shift and decrease of the height of the main absorption.
```

 But for a non-rigid lattice, these terms contribute to the
    ``` broadening of the main line. We take the asymptotic limits of Equation (III-82) for \(|\nmid| \rightarrow \infty\), we have,
\[
\begin{aligned}
& G(t)=\frac{c_{1}}{6 k T} N I(I+1) e^{i \omega_{2} t} \exp \left[-\frac{3}{2} I(I+1) \int_{0}^{t}(t-\tau) F^{0,0}(\tau) d \tau\right. \\
& -\frac{3}{2}+(I+1) / t / R_{e}\left\{\frac{20}{9} \int_{-\infty}^{\infty} e^{-\omega_{z} t^{\prime}} F^{-1,1}(\tau) d \tau+\frac{8}{9} \int e^{-2 i \omega_{2},}, z, z d \tau\right\} \\
& -\frac{3}{2} I(I+1) i t_{\operatorname{m}}\left\{\frac{8}{9} \int_{0}^{\infty} e^{-i \omega_{z} \tau^{+} F^{-1,1}}(\tau) d \tau+\frac{16}{9} \int_{0}^{\infty} e^{-2 i \omega_{z} \tau} F^{-2,2}(\tau) d \tau\right] \\
& \text { (III-82') }
\end{aligned}
\]

The first term in the exponent of Equation (II I-82')
(i.e. \(\left.\frac{3}{2} I(I+1) \int_{0}^{t}(t-\tau) F^{0}(\tau) d \tau\right)\)
is called the adiabatic term. The integral in the exponent is proportional to \(t / 2\) if \(t\) is small enough. And this proportionality constant is exactly the second moment \(\omega_{p}^{2}\) for the rigid lattice. The second moment of the intensity distribution function remains constant throughout the narrowing process. And the nonadiabatic broadening is not effective. (The rest of the terms in the exponent of Equation (III-82') is called non-adiabatic terms.

\footnotetext{
We can express the adiabatic effect (spin-spin relaxation
}
effect) as;
\[
\begin{equation*}
G_{a d}(t)=\exp \left[-w_{p}^{2} \int_{0}^{t}(t-\tau) f(\tau) d \tau\right] \tag{III-83}
\end{equation*}
\]
where \(f(\tau)=F^{0,0}(\tau) / F^{0,0}(0)\)
(III-84)
and \(\quad f(-\tau)=f(\tau)\)

Let us write the integrand in the exponent of Equation above (with \(t \longrightarrow \infty\) ) as,
\[
\begin{equation*}
\int_{0}^{\infty}(t-\tau) f(\tau) d \tau=\underbrace{\int_{0}^{0} f(\tau) d \tau-\int_{B}^{\infty} \tau f(\tau) d \tau}_{A=\tau_{c}^{0}} \tag{III-85}
\end{equation*}
\]
where \(Z_{c}{ }^{0}\) is the correlation time.

If (A) and (B) are convergent, \(\mathrm{G}_{\mathrm{ad}}\left(\frac{\mathrm{d}}{}\right.\) becomes:
\[
\begin{equation*}
G_{a d}(t)=\exp \left[-\omega_{\rho}^{2} \tau_{c}^{0} / t \mid+\omega_{\rho}^{2} \int_{0}^{\infty} f(\tau) \tau d \tau\right] \tag{III-86}
\end{equation*}
\]

The adiabatic term gives a resonance curve which is always Lorentzian (or the damped oscillator type) at the centre of the resonance, if the lattice is not rigid. And \(u_{p}^{2} \tau_{c}^{0}\) is the half width of this curve.

The most effective narrowing is seen when \(u_{p} \tau_{c}^{0} \leqslant 1\).
\[
\begin{align*}
& \text { We here note that for the special case where } \\
& f(\tau)=\exp \left(-|\tau| / \tau_{c}^{0}\right) \tag{III-87}
\end{align*}
\]

BPP's equation can be obtained.
\[
\begin{equation*}
\left(\frac{1}{T_{2}^{\prime}}\right)^{2}=\left(\frac{1}{T_{2}^{\prime \prime}}\right)^{2} \frac{2}{\pi} \tan ^{-1} \frac{2 \tau_{c}^{0}}{T_{2}^{\prime}} \tag{III-88}
\end{equation*}
\]
where \(\mathrm{T}_{2}^{\prime} \longrightarrow\) spin-spin relax. time with lattice motion \(\mathrm{T}_{2}{ }^{\prime \prime} \longrightarrow\) spin-spin relax.time with rigid lattice case.

Kubo and Tomita made some numerical calculations by using Equations (III-86) and (III-87). They found that the general direction of the change in the half width \(\Delta \omega\) is much similar to that described by Equation (III-88), and the exact curve fits well to a modified form of (III-88). We have
\[
\begin{equation*}
(\Delta \omega)^{2}=\frac{4 \log 2}{\pi} \omega_{p}^{2} \tan ^{-1}\left(\frac{\pi \tau_{c}^{0}}{4 \log 2} \Delta \omega\right) \tag{III-89}
\end{equation*}
\]

The figure overleaf shows us the narrowing proceed with the decrease of \(\tau_{c}^{0}\).


Figure III-1. Half width due the the abiotic effect from Equation(III-8G) and (III-87). The unit of the width \(1 / T_{2}^{\prime}\) is \(1 / T_{2}^{\prime \prime}\). (Kubo and Tomita) (Curve " \(a\) " is by a rigorous numerical calculation ( \(\varepsilon 9.86\) and 87 ) Curve "b" is by Equ. 88).
Now we can express the non-adiabatic effect (spin-1attice relaxation) with the characteristic function of the form,
\[
\begin{equation*}
G_{\text {non-id }}(t)=\exp \left(-\frac{|t|}{T_{1}}+i t \delta\right) \tag{III-90}
\end{equation*}
\]

The importance of the non-adiabatic effect is two.
1-) It gives rise to a broadening with a Lorentzian form. And
its half-width is,
\[
\frac{1}{T_{1}^{\prime}}=\frac{3}{2} I(I+1)\left\{\frac{20}{9} \int_{-\infty}^{\infty} e^{-i \omega_{z} \tau} F^{-1,1}(\tau) d \tau+\frac{8}{9} \int_{-\infty}^{\infty} e^{-2 i \omega_{z} \tau} F^{-2,2}(\tau) d \tau\right\}
\]
(III-91)

2-) It causes a shift of the resonance peak, \(\delta\) which is
given by;
\[
\delta=-\frac{3}{2} I(\tau+1) \operatorname{Im}\left\{\frac{8}{9} \int_{0}^{\infty} e^{-i \omega_{2} \tau} F^{-1,1}\left(\tau ; \sigma^{i} \tau+\frac{16}{9} \int_{0}^{\infty}-2 i \omega_{z}^{\tau} F^{-2,2}(\tau) d \tau\right\}\right.
\]
(III-92)

The relation between the shift and broadening is similar to the relation between the absorption and the dispersion. Their behaviour is given by Figure (III-2)

If the condition \(\omega_{z} \leqslant 1 / \tau_{c}\) is satisfied, the non-adiabatic efferct bscomes importent.


Figure(III-2) Curves for the adiabatic half-width \(1 / T_{i}^{\prime}\), the nonadiabatic half-width \(1 / T_{1}^{\prime}\), the nonadiabatic shift \(\delta\) and the spin-lattice relaxation rate \(1 / T\), . The assumption for this calculation are: 1) all of the correlation functions are given by Eq. (87), 2) the atomic arrangement is isotropic, and 3)

The unit of all of these rates is \(\omega_{\rho}^{2} / \omega_{x}\). (Kubo and Tomita)

It is also interesting to point out the exact relation between the non-adiabatic broadening and the spin-lattice relaxation time. They are both described by the same characteristic time \(T_{1}\). But this is not the case. The spin-lattice relaxation time is defined as the time constant characterizing the decrease of temperature difference between the lattice system and the spin system. The spin -lattice relaxation time is the rate of energy transfer. But the non-adiabatic broadening comes from the limitation of the life time of each of quasi-stationary levels.
```

III - 5 - THE PHYSICAL EXPLANATION OF THE SHIFT

```

We shall now give a physical explanation of the non-adiabatic shift and its relaxation to the non-adiabatic broadening. The shift and broadening are clearly related as they are the Sin, and Cos. Fourier transform of the dipolar auto-correlation function. And in this section we shall see that they are related to virtual and real transition between the energy levels of the spin. A virtual traasition occurs when a spin is at energy level \(\mathrm{E}_{\mathrm{m}}\) jumps to another energy level \(\mathrm{E}_{n}\) (where jt remains for a short time before returning to the initial state). This occurs in violation of the conservation of energy, so the time \(t\) of the excursion is limi-
ted by
\[
t \sim \frac{1}{E_{m}-E_{n}}
\]

The figure below shows the energy levels caused by the virtual transitions.


Figure III-3: The mean energy of the state is no
\[
\text { longer } E_{m}, \text { but } E_{m}+\Delta E_{m}
\]

Now the lattice or the motion of the spins gives a finite lifetime to the spin levels of duration \(\tau_{c}\)

Spins also make their own natural transitions called the real transitions obeying the selection rules. And the real transttions can disappear if only and only the magnetic field is removed. We must consider the distinguish between the virtual and real transitions. Figure (III-4) represents the transitions:


Figure III-4: The real and the virtual transitions.

We here note that virtual transition process occurs suddenly, quickly with high frequency as its life-time is short.

The expression for the shifted energy level \(\Delta E_{m}\) is given by;
\[
\Delta E_{m}=\sum_{\rho \neq 0} \frac{\langle\overline{m / H(t) / n+\rho\rangle\langle m+p / H(t) / m\rangle}}{\rho} \cdot \underbrace{\left(1-\frac{1}{1+\rho^{2} \tau_{c}^{2}}\right)}_{A}
\]

In this equation the term (A) in the bracket can be studied closely.
a) If \(p \tau_{c} \ll 1\) A becomes zero. That means no virtual transition for such a case \(\quad \rho \ll 1 / \tau_{c} \quad\) (The transition
frequency (probability) is very small).
b) If
\(\rho \tau_{c} \gg 1\)
A becomes 1. That indicates
that the transition occurs when
\(p>1 / \tau_{c}\)

\section*{PEDUCED DENSITY MATEXX}

\section*{\(I V-1\) - PHYSICAL MEANING OF REDUCED DENSITY MATRIX.}

As mentioned in Chapter II, in order to have full information about a complete system, we introduce the complete density matrix " 8 ". And also we showed that the expectation value of an operator is given by this matrix element. Our concern is here to find the expectation value of an operator which is a function of only a few of the variables of \(f\).

Let \(A(p)\) be an operator for our particular interest with the variable p. We have the following expression:
\[
\begin{equation*}
\langle A(p)\rangle=\operatorname{Tr}_{p q}\{\rho(p, q) A(p)\} \tag{IV-1}
\end{equation*}
\]
(where " \(q\) "s are the other variables which specify \(P\) ). Since A is independent of \(p\), Equation (IV-1) can be factorised in the following way,

\(T_{q}\) \(\rho(p, q)\) is called the "Reduced Density Matrix" and it contains all the information necessary to evaluate the expectation value. We will use \(\sigma\) to symbolize it. We write,
\[
\begin{equation*}
\sigma(p)=\operatorname{Tr}_{q} \rho(p, q) \tag{IV-3}
\end{equation*}
\]
\(O^{\prime}(P)\) can be regarded as a complete density matrix in its own right. We don't have any operators which depend on more variables than \(p\). The expectation value of \(A(p)\) in terms of \(\sigma(p)\) is through Equations (IV-2) and (IV-3) given by:
\[
\begin{equation*}
\langle A(p)\rangle=\operatorname{Tr}\{\sigma(p) A(p)\} \tag{IV-4}
\end{equation*}
\]

The Von-Neumann equation can also be written in terms of \(\sigma^{\prime}(p)\)
\[
\begin{equation*}
i \hbar \dot{\sigma}(\rho)=[\mathcal{H}, \sigma(p)] \tag{IV-5}
\end{equation*}
\]

The relation between the reduced density matrix and the density matrix for the complete set is:
\[
\begin{equation*}
\sigma=\langle p\rangle \tag{IV-6}
\end{equation*}
\]
\[
\text { IV - } 2 \text { - THE MASTER EQUATION FOR THE DENSITX BATRIX }
\]

In the case of NMR, we are only interested in the spin part of the density operator. In Hact, our system has the degrees of freedon for spin and lattice (bath). Therefore, as already mentioned, the total Hamiltonian ( \(\because\) ) of the system covers 1 - Zeamann. 2-dipolar 3-motion parts. We can also express the Hamiltonian (Abragara) as a sum of unperturbed and perturbed parts. The equation of motion of the density matrix \(\rho\) can be vritten in the following way:
\[
\begin{equation*}
i \hbar \dot{\rho}(t)=\left[\mathcal{H}_{0}+\mathcal{H}_{1}(t), \rho\right] \tag{IV-7}
\end{equation*}
\]
where \(\mathcal{O}_{0}\) and \(\mathcal{H}_{1}(t)\) are respectively the unperturbed and
perturbed parts of the Hamiltonian. The perturbing Hamiltonian \(\mathcal{H}_{1}(t)\) is a stationary random operator.

We now introduce \(\sigma\) and \(\mathcal{H}_{1}^{*}(\mathrm{t})\) in the interaction form
\[
\begin{align*}
& \sigma=e^{i \mathscr{X}_{0} t} \rho e^{-i \mathscr{X}_{0} t}  \tag{IV-8}\\
& \mathscr{X}_{1}^{*}(t)=e^{i \mathscr{X}_{0} t} \mathscr{H}_{1}(t) e^{-i \mathscr{H}_{0} t} \tag{IV-9}
\end{align*}
\]
by using these two equations, Equation (IV-7) becomes;
\[
\begin{equation*}
i \hbar \dot{\sigma}=\left[\sigma, x_{1}^{*}(t)\right] \tag{IV-10}
\end{equation*}
\]

And the solution of (IV-10) is (up to second order):
\(\sigma(t)=\sigma(0)-i \int_{0}^{t}\left[\mathscr{L}_{1}^{*}\left(t^{\prime}\right), \sigma(0)\right] d t^{\prime}-\int_{0}^{t_{0}} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime}\left[\mathscr{H}_{1}^{*}\left(t^{\prime}\right),\left[\mathscr{H}_{1}^{*}\left(t^{\prime \prime}\right), \sigma(0)\right]\right]\)
taking the time derivative of (IV-11)
\(\dot{\sigma}(t)=-i\left[\mathscr{X}_{1}^{*}(t), \sigma(0)\right]-\int_{0}^{t} d \tau\left[X_{1}^{*}(t),\left[X_{1}^{*}(t-\tau), \sigma(0)\right]\right]\)
with \(\tau=t-t^{\prime}\)
Because we are interested in total spin not the spin of individual particle, we take the average of Equation (IV-12) over all the random Hamiltonian \(\left(\mathcal{H}_{1}\right) \cdot \sigma\) is a random operator like \(H_{1}(t)\) according to Equation (IV-12). When doing the averaging process,
we make the following assumptions (Abragam):
1 - It is permissible to neglect the correlation between
\(\mathcal{H}_{1}^{*}(\mathrm{t})\) and \(\sigma(0)\) in the averaging of Equation (IV-12) and average them separately.

2 - It is then permissible to replace \(\sigma\) (o) by \(\sigma(t)\) on the right-hand side of Equation (IV-12).

3 - It is permissible to extend the upper limit of the integral to \(+\infty\)

4 - All unwritten higher-order terms on the right-hand side of Equation (IV-12) can be neglected.

Then we have;
\[
\begin{equation*}
\dot{\theta}=-\int_{0}^{\infty} d \tau \overline{\left[\mathcal{H}_{1}^{*}(t),\left[\mathcal{H}_{1}^{*}(t-\tau), \sigma(t)\right]\right]} \tag{IV-13}
\end{equation*}
\]
we can also derive this equation from Kubo's;
\[
\rho(t)=e^{i \mathcal{K}_{t}} \rho(0) e^{-i \mathscr{H}_{t}} \text { with }|\psi(t)\rangle=e^{i \mathscr{H}_{t}}|\psi(0)\rangle
\]
we average this density operator over the bath variables. \(P(t)\) is
given by (time dependent)
\[
\begin{equation*}
\rho(t)=\left[e x p i \int_{0}^{t} \partial \rho^{1}(\tau) d \tau\right] \rho(0) \tag{IV-14}
\end{equation*}
\]

If \(\rho\) is a function of spin variables only then we need to look at \(\left\langle e^{i \int_{0}^{t} x^{1}(\tau) d \tau}\right\rangle \quad\) with \(d^{\wedge}=[d f\),
\(\left\langle e^{i \int_{0}^{t} \mathscr{R}^{1}(\tau) d \tau}>\exp -\int_{0}^{t}(t-\tau)\left\langle\mathscr{H}^{1}(0) \mathscr{H}^{1}(\tau)\right\rangle d \tau\right.\)
```

i.e. $\left.\quad \sigma(t)=\exp -\int_{0}^{t}(t-\tau)<\mathscr{H}^{1}(0) \mathscr{H}^{1}(\tau)\right\rangle d \tau \sigma(0)$
(IV-16)
let $f(t)$ and $g(t)$ be two functions, we have,
$f(t)=e x p-\int_{0}^{t}(t-\tau) g(\tau) d \tau$
$\dot{f}(t)=-f(t) \int_{0}^{t} g(\tau) d \tau$
similar to this we have,

$$
\begin{align*}
& \dot{\sigma}(t)=-\int_{0}^{t}\left\langle\mathscr{H}^{1}(0) \mathscr{H}^{1}(\tau)\right\rangle d \tau \sigma(t) \tag{IV-17}\\
& \dot{\sigma}(t)=-\int_{0}^{\infty}\left[\mathscr{H}^{1}[\mathscr{H}(\tau), \sigma(t)]\right] d \tau \tag{IV-18}
\end{align*}
$$

$$
\text { V - } 3-\text { THE DYNAMICAL THEORY OF NUCLEAR INDUCTION }
$$

Wangness and Bloch developed a theory which starts from the microscopic viewpoint and derives the dynamics of nuclear induction by means of statistical methods. In their paper, it was assumed that each nucleus under consideration reacts independently of the other nuclei in the sample to the external field and the molenuclear surroundings (as a heat reservoir in the thermal equilibrium). Therefore, the magnetic moments of neighbouring nuclei are considered as a part of the heat reservoir. We shall derive a set of first order linear differential equations for the "distribution matrix" which determines the ave-
rage value of the nuclear polarization or of any other quantity which depends on the orientation of the nuclear spin. The equations for the distribution matrix express the time derivative of the average value of an arbitrary spin function in terms of the average value of other spin functions.

We write the Hamiltonian of the system in the form of:

$$
\begin{equation*}
\mathscr{H}=\hbar E+\hbar \mathrm{F}+\hbar \mathrm{G} \tag{IV-19}
\end{equation*}
$$

The term ($\hbar \mathrm{E})$ gives the energy of the nucleus in the external field $H_{e x t}$ We write,

$$
\begin{equation*}
E=-\gamma\left(\underline{H}_{\text {ext }} I\right) \tag{IV-20}
\end{equation*}
$$

However, the external field contains two parts. 1 - H_{o} static part (strong, time independent and in the z direction). $2-H_{1}$ (t) part (relatively weak and time dependent). So, we have

$$
\begin{equation*}
\underline{H}_{\text {ext }}=\hat{\underline{k}} \mathrm{H}_{0}+\underline{H}_{1}(t) \tag{IV-21}
\end{equation*}
$$

Therefore, E can be split into two parts.

$$
\begin{equation*}
E=E_{0}+E_{1} \tag{IV-22}
\end{equation*}
$$

where E_{G} and E_{1} respectively state the unperturbed and perturbed parts of the system.

We write;

$$
E_{\dot{\circ}}=-\gamma H_{o} I_{z}=-i \omega I_{z} \quad \text { with } \quad \omega=\gamma H_{o}
$$

and

$$
\begin{equation*}
\mathrm{E}_{1}=-\gamma\left(\underline{H}_{1}+\underline{I}\right) \tag{IV-23}
\end{equation*}
$$

The second term ($\hbar F$) in Equation (IV-19) represents the energies of the molecular surroundings and the last term ($\hbar \mathrm{h}$) gives
the interaction of the molecular surroundings with the nucleus. (In a completely general theory, we have to take into account all of the nuclei in interaction with each other, but here we left this point out).

The energy \hbar_{F} of the molecular surroundings is expressed in an orthogonal set and the eigen values of F will be denoted by a frequency " f ". Because the molecular surroundings act as a heat reservoir, they must have very many degrees of freedom. Therefore, its energy levels are highly degenerate. We use symbol "s" to specify one of the possibly many states with the same energy \hbar_{f}.

The density matrix for the complete system describes the dynamical behaviour of our system as a whole. We have;

$$
\langle m f s| \rho(t)\left|m^{\prime} f^{\prime} s^{\prime}\right\rangle=a_{m f s}(t) a_{m^{\prime} f^{\prime} s^{\prime}}^{*}(t)
$$

(IV-24)
where " a " is a probability amplitude and a a $\mathrm{a}_{\mathrm{m}}{ }^{*}$ indicates the occupation probability of the state m.

With respect to our Hamiltonian, Von-Neumann equation can be written as,

$$
\begin{equation*}
i \dot{\rho}(t)=[E+F+G, \rho] \tag{IV-25}
\end{equation*}
$$

The density matrix ρ obeys the normalization condition, we write,

$$
\begin{equation*}
\operatorname{Tr}\{\rho(t)\}=\sum_{m f s}\langle m f s| \rho(t)|m f s\rangle=1 \tag{IV-26}
\end{equation*}
$$

As mentioned earlier, the expectation value of any physical quantity is given by ρ. For this set, we write,

$$
\begin{equation*}
\langle Q(t)\rangle=\langle m f s| Q\left|m^{\prime} f^{\prime} s^{\prime}\right\rangle=\operatorname{Tr}\{Q f(t)\} \tag{IV-27}
\end{equation*}
$$

Now, going back to our symbols in our Hamiltonian, the terms E_{0} and F can be treated as large whereas the terms E_{1} and G represent a small perturbation.

Introducing;

$$
\begin{array}{ll}
A=e^{-i E_{0} t} & B=e^{-i F t} \\
A^{-1}=e^{i E_{0} t} & B^{-1}=e^{i F t} \tag{IV-28}
\end{array}
$$

we write the density matrix ρ in the form of;

$$
\begin{equation*}
\rho=A B \rho^{*} B^{-1} A^{-1} \tag{IV-29}
\end{equation*}
$$

Von-Neumann equation becomes in terms of asterix representation,

$$
\begin{equation*}
i \dot{f}^{*}(t)=\left[E_{1}^{*}+G^{*}, \rho^{*}\right] \tag{IV-30}
\end{equation*}
$$

with
and

$$
\begin{align*}
& E_{1}^{*}=A^{-1} E A \\
& G^{*}=B^{-1} A^{-1} G A B \tag{IV-31}\\
& A^{-1} E A=B^{-1} A^{-1} E A B
\end{align*}
$$

Through Equ. (IV-29), we can easily see that,
at $t=0 \quad \rho^{*}(0)=\rho(0)$
(IV-32)

From this initial value, we can obtain (by forward integration in two successive approximations) the value of $\rho^{*}(t)$ at a late time t in the form of,

$$
\begin{equation*}
\rho^{*}(t)=\rho(0)+\Delta^{(1)} \rho^{*}+\Delta^{(2)} \rho^{*} \tag{IV-33}
\end{equation*}
$$

The first-order increment is;
$\Delta^{(1)} \rho^{*}=-i \int_{0}^{t}\left[E_{1}^{*}\left(t^{\prime}\right), \rho(0)\right] d t^{\prime}-i \int_{0}^{t}\left[G^{*}\left(t^{\prime}\right), \rho(0)\right] d t^{\prime}$
and the second-order increment is approximately,

$$
\begin{equation*}
\Delta^{(2)} \rho^{*}=-\int_{0}^{t} d t^{\prime}\left(\int_{0}^{t^{\prime}}\left[G^{*}\left(t^{\prime}\right),\left[G^{*}\left(t^{\prime \prime}\right), \rho(0)\right]\right] d t^{\prime \prime}\right) \tag{IV-35}
\end{equation*}
$$

We are interested only in the expectation value of quantities concerning the nuclear spin alone, such as the components of the angular momentum of the nucleus I. In other words, we can call any quantity concerning the nuclear spin "spin functions". And these functions in our representation are diagonal in the variablest f and s, referring to the molecular surroundings. We have,

$$
\begin{equation*}
\langle m f s| Q\left|m^{\prime} f^{\prime} s^{\prime}\right\rangle=\langle m| Q\left|m^{\prime}\right\rangle \delta_{f f^{\prime}} \delta_{s s^{\prime}} \tag{IV-36}
\end{equation*}
$$

Now, the crucial point is that; since Q is a spin function, we don't need to use the density matrix of the complete system which has all the information about the whole system. We use the "distribution matrix σ " which is the matrix element of the spin system. Doing that, we cleared the theory from the complicated unnecessary information.
$\boldsymbol{\sigma}$ is defined by;

$$
\begin{equation*}
\langle m| \sigma\left|m^{\prime}\right\rangle=\sum_{f s}\left\langle m f_{s}\right| \rho\left|m^{\prime} f s\right\rangle \tag{IV-37}
\end{equation*}
$$

```
It follows that, the expectation value of a spin function Q is
given in terms of \sigma
```

$$
\begin{equation*}
\langle Q\rangle=\operatorname{Tr}\{Q \sigma\}=\sum_{m m^{\prime}}\left\langle m^{\prime}\right| Q|m\rangle\langle m| \sigma\left|m^{\prime}\right\rangle \tag{IV-38}
\end{equation*}
$$

In a similar way to the transformation (Equ.(IV-29)), we can write σ^{*} as;

$$
\begin{align*}
& \langle m| \sigma^{*}\left|m^{\prime}\right\rangle=\sum_{f s}\langle m f s| \rho^{*}\left|m^{\prime} f s\right\rangle \tag{IV-39}\\
& \text { with } \quad \sigma=\text { A } \sigma^{*} A^{-1}
\end{align*}
$$

Inserting Equ. (IV-33) in Equ. (IV-39) we get,

$$
\begin{equation*}
\langle m| \sigma^{*}(t)\left|m^{\prime}\right\rangle=\langle m| \sigma^{*}(0)\left|m^{\prime}\right\rangle+\langle m| \Delta^{(1)} \sigma^{*}\left|m^{\prime}\right\rangle+\langle m| \Delta^{(2)} \sigma^{*}\left|m^{\prime}\right\rangle \tag{IV-41}
\end{equation*}
$$

with

$$
\left.\begin{array}{l}
\langle m| \sigma^{*}(0)\left|m^{\prime}\right\rangle=\sum_{f s}\langle m f s| \rho(0)\left|m^{\prime} f s\right\rangle \\
\langle m| \Delta^{(1)} \sigma^{*}\left|m^{\prime}\right\rangle=\sum_{f s}\langle m f s| \Delta^{(1)} \rho^{*}\left|m^{\prime} f s\right\rangle \\
\langle m| \Delta^{(2)} \sigma^{*}\left|m^{\prime}\right\rangle=\sum_{f s}\langle m f s| \Delta^{2} \rho^{*}\left|m^{\prime} f s\right\rangle
\end{array}\right\}
$$

(IV-42)

A knowledge of the density matrix ρ at $t=0$ is required in order to evaluate Equ. (IV-42). In fact, it is not this matrix $\rho(0)$ which is known but its statistical average ($\bar{\rho}(0)$). It indicates the fact that the surroundings are for $t=0$ in statistical equilibrium at the absolute temperature T. The probability of finding the surroundings in a state is given by the Boltzmann factor $P(f)$ which depends only on the energy \hbar_{f}.

The statistically averaged $\bar{\rho}(0)$ is given by;
$\langle m f s| \bar{\rho}(0)\left|m^{\prime} f^{\prime} s^{\prime}\right\rangle=\langle m| \sigma(0) \mid m^{\prime}>p(f) \delta_{f f^{\prime}} \delta_{s s^{\prime}} \quad \quad(I V-43)$

Abstract

Here, the appearance of the arbitrary matrix $\left.<m|\sigma(0)| m^{\prime}\right\rangle$ signifies that we maintain complete generality in regard to the initial state of the nucleus.

IV - 4 - THE SPIN-ROTATIONAL INTERACTIONS IN LIQUIDS

The interaction of a nuclear magnetic moment with the magnetic field produced at the position of nucleus by the rotation of the molecule containing the nucleus is called a spin-rotational interaction. Its contribution has been seen to the nuclear magnetic relaxation of some liquids.

Gutowsky, Lawrenson and Shimomura have measured the spinlat tice relaxation time of the fluorine nuclei fasten than that of the protons. And they concluded that the spin rotational interaction for the fluorine nuclei was greater than for proton.

It has also been shown by Johnson, Waugh and Pinkerton that spin-rotational interactions are important for the relaxation mechanism of the fluorine nuclei in liquid CHF_{3}.

Brown, Gutowsky and Shimomura have pointed out that the statistical properties of the spin-rotation Hamiltonian in a liquid may be quite different from those of the orientation-dependent interactions. They introduced a transient rotation model in which molecules jump from one orientation to another at random times. The spin-rotational interaction is assumed to operate during these jumps when the molecule is actually rotating.

Hubbard calculated the contribution of spin-rotational interaction to the nuclear magnetic relaxation of identical spin $\frac{1}{2}$ nuclei at equivalent positions in spherical molecules in a liquid and he employed the semiclassical form of the density operator theory of relaxation.

The interaction Hamiltonian ($\hbar \mathrm{G}$) of the system can then be split into two parts. 1 - the spin-rotational interaction ($\hbar_{G_{1}}$) 2 - the dipole-dipole interaction ($\hbar \mathrm{G}_{2}$). KG_{1} term for the th nucleus can be written

$$
\begin{equation*}
\hbar G_{1}^{(i)}=\hbar I_{i} C^{(i)} J_{i} \tag{IV-44}
\end{equation*}
$$

where $\hbar_{\sim_{i}}$ is the angular momentum of the molecule containing the ith nucleus and $C^{(i)}$ is a dyadic. Suppose that $S^{(i)}$ is a coordinate system fixed in the molecule, having its Z axis directed from the centre of the molecule to the eth nucleus. Because of the th nucleus. Because of the assumed symmetry of the molecules, $C^{(i)}$ is diagonal in $S^{(i)}$ with elements

$$
c_{z}^{(i)} \equiv c_{11}, \quad c_{x}^{(i)}=c_{y}^{(i)} \equiv c_{\perp}
$$

We rewrite G_{1} in terms of the components of I_{i} and J_{i} in $S^{\text {(i). }}$.

$$
\begin{equation*}
G_{1}^{(i)}=C_{\perp}\left(I_{i x}^{(i)} J_{i x}^{(i)}+I_{i y}^{(i)} J_{i y}^{(i)}\right)+C_{11} I_{i z}^{(i)} J_{i z}^{(i)} \tag{IV-45}
\end{equation*}
$$

We now define the spherical components of I_{i} and J_{i}

$$
\begin{array}{ll}
V_{i}^{0} \equiv I_{i z}, & V_{i}^{ \pm 1} \equiv \mp\left(I_{i x} \pm i I_{i y}\right) / \sqrt{2}=\mp I_{i}^{ \pm 1} / \sqrt{2} \\
J_{i}^{0} \equiv J_{i z}, & J_{i}^{ \pm 1} \equiv \mp\left(J_{i x} \pm i J_{i y}\right) / \sqrt{2}
\end{array}
$$

and we have,

$$
\begin{equation*}
G_{1}^{(i)}=\sum_{k^{\prime}=1}^{1} C_{k^{\prime}}\left(V_{i}^{k^{\prime}}\right)^{(i)}\left(J_{i}^{-k^{\prime}}\right)^{(i)} \tag{IV-46}
\end{equation*}
$$

where

$$
c_{0} \equiv c_{11}, c_{ \pm} \equiv-c_{4}
$$

The spherical components of a vector constitute a first rank irruducible tensor, the components $\left(V_{i} k^{\prime}\right.$, ${ }^{(i)}$ in $S^{(i)}$ are related to the components $\mathrm{V}_{\mathrm{i}}^{\mathrm{k}}$ in the laboratory coordinate system S by (Hubbard),

$$
\begin{equation*}
\left(V_{i}^{k^{\prime}}\right)^{(i)}=\sum_{k=1}^{1} V_{i}^{k} D_{k^{\prime} k}^{(1)}\left(\alpha_{i} \beta_{i} \gamma_{i}\right) \tag{IV-47}
\end{equation*}
$$

where $\left(\alpha_{i} \beta_{i} \gamma_{i}\right) \equiv \Omega_{i}$ are the Euler angles of $S^{(i)}$ with respect to S. There is a similar relation between the components $\left(\mathrm{J}_{i} \mathbf{k}^{\prime}\right)^{(i)}$ in $S^{(i)}$ and the components $J_{i}{ }^{k}$ in the 1 laboratory coordiante system. The sum of all the spin-rotational interactions $G_{i} \equiv \sum_{i} G^{(i)}$ can be written in the laboratory coordinate system as, (Hubbard)

$$
\begin{equation*}
G_{1}=\sum_{i=1}^{N} \sum_{k=-1}^{1} u_{i}^{k} V_{i}^{k} \tag{IV-48}
\end{equation*}
$$

where

$$
u_{i}^{k} \equiv \sum_{k^{\prime}, k^{\prime \prime}=-1}^{\prime} C_{k^{\prime}} \mathscr{D}_{k^{\prime} k}^{(1)}\left(\Omega_{i}\right) \mathscr{D}_{-k^{\prime} k^{\prime \prime}}\left(\Omega_{i}\right) J_{i}^{k^{\prime \prime}}
$$

We write that the spin-rotational interaction in general depends on the orientation of the molecule, since it involves the sets of Euler angles which specify the orientation with respect to the laboratory system of each body coordinate system $S^{(i)}$ in which
the spin-rotational interaction of one of the spins is diagonal.

If

$$
C_{i}=C_{i 1}, G_{1} \text { doesn't depend on the orientation of the }
$$

molecule.

NUCLEAR MAGNETIC RELAXATION IN

TWO-DIMENSIONAL SYSTEMS

V - 1 - THE IMPORTANCE OF THE STUDY OF TWODIMENSIONAL SYSTEMS

Abstract

Throughout the study of the nuclear magnetic relaxation theory for two-dimensional systems, it can be shown that the reduced dimensionality has the effect of decreasing the relaxation times from their expected values by as much as a few orders of magnitude. In addition to that, T_{1} and T_{2} relaxation times are to be seen unequal even in the presence of fast atomic motion. Cowan (1980) by observing the relaxation times of adsorbed helium3 showed that the theory is in close agreement with the experimental results.

The NMR properties of adsorbed systems behave differently from those of the corresponding bulk system for a number of reasons. 1 - The anisotrophy of the internuclear dipolar interaction causes the relaxation times to depend on the orientation of the substrate plane with respect to the static field. 2 - The rotational symmetry of the dipolar Hamiltonian can not be completely averaged by fast planar motion, except when the normal of the plane makes an angle of $54.7^{\circ}\left(\operatorname{Cos}^{-1} \sqrt{2 / 3}\right)$ with the static field. 3 - As far as diffusive motion is concerned, the long time behaviour of the spin correlation function depends on the di-

mensionality of the system.
We are now going to present a consistent theory of dipolar mediated spin relaxation for two-dimensional systems. Kubo and Tomita's (1954) treatment of NMR lineshape (Chapter III) became a light for our theory. However, it is not certain that the Kubo theory is valid for two-dimensional systems. Reiter and Boucher (1975) checked their result against the Kubo result and found that the validity in three-dimensional case can be extended to two-dimensional case but not to one.

V - 2 - RELAXATION FUNCTIONS AND TIMES

```
In Chapter II, we have already mentioned the theoretical expressions for the longitudinal and transverse relaxation functions ((Eq. II-43) and (Eq. II-49)). Kubo has introduced a method for the relaxation functions by using the expansion in dipolar Hamilltonian and he accepted the higher-order terms as an approximation of the lower-order ones. His method is known as commulant expansion method. The second term as the first non-vanishing term is generally used for the theory.
Following Kubo's idea, Cowan introduced (neglecting small
imaginary terns) the relaxation functions as;
for transverse
```

$$
\begin{equation*}
F(t)=\exp \left[-\int_{0}^{t}(t-\tau) \sum_{m=-2}^{2}\left(3-\frac{m^{2}}{2}\right) G_{m}(\tau) \exp \left(i m \omega_{0} \tau\right) d \tau\right] \tag{V-1}
\end{equation*}
$$

and for longitudinal

$$
L(t)=\exp \left[-\int_{0}^{t}(t-\tau) \sum_{m=-2}^{2} m^{2} G_{m}(\tau) \exp \left(i m \omega_{0} \tau\right) d \tau\right]
$$

(V-2)
where $G_{m}(\tau)$ are the spin-torque correlation functions and they are the autocorrelation functions of the dipolar Hamilltonian components. We have,

$$
\begin{equation*}
G_{m}(\tau)=\frac{\operatorname{Tr}\left\{D_{m}(0) D_{-m}(\tau)\right\}}{\operatorname{Tr} I_{z}^{2}} \tag{v-3}
\end{equation*}
$$

where

$$
D_{m}=\hbar^{2} \gamma^{2} \sqrt{\frac{4}{5} \pi} \sum_{i<j} Y_{2}^{-m}\left(\theta_{j}, \phi_{j}\right) T_{i j}^{m}(-1)^{m} / r_{i j}^{3}
$$

$G_{m}(r)$ is the time dependence of the D_{m} being generated only by the motion Hamiltonian.

In the general case of motion in spin and direct space with the spin operators varying we obtain $G_{m}(t)$ as

$$
\begin{equation*}
G_{m}(t)=\frac{4 \pi \hbar^{2} j^{4}}{5 N} \sum_{\substack{i<j \\ k<l}} \frac{y_{z}^{-m}\left(\Omega_{i j}(0)\right) Y_{2}^{m}\left(\Omega_{k l}(t)\right)}{r_{i j}^{3}(0) r_{k l}^{3}(t)} \Gamma_{i j k l}(t) \tag{V-4}
\end{equation*}
$$

where $\Omega_{i j}$ indicates the direction $r_{i j}$ (i.e. $\theta_{i j}, \phi_{i j}$).

> We have introduced a symmetric four-spin correlation function $\Gamma_{i j k l}(t)$.

If we develop our theory for a four-spin correlation function, we can then generalize it for N spins. We have,

$$
\begin{equation*}
\Gamma_{i j k l}(t)=N T_{r}\left\{T_{i}^{m}(0) T_{k l}^{-m}(t)\right\} / T_{r} I_{z}^{2} \tag{V-5}
\end{equation*}
$$

$T_{i j}(t)$ tensorial operators are generated by the Hamiltonian for motion in spin space. If this Hamiltonian is rotationally invariant then $\Gamma(t)$ doesn't depend on spin-flip index m. Whereas the spherical harmonics and the $r_{i j}$ are generated by the Hamiltonian for bodily motion in direct space.

We write the zero time value for Γ as:

$$
\begin{equation*}
\Gamma_{i j k l}(0)=\frac{3}{2}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \tag{V-6}
\end{equation*}
$$

Taking the spin-torque correlation functions decaying to zero fast enough, the upper limits of the integrals in equations (V-1) and (V-2) can be extended to infinity leading to exponential relaxation. We have,

$$
\begin{align*}
& L(t) \sim \exp \left(-t / T_{1}\right) \tag{V-7}\\
& F(t) \sim \exp \left(-t / T_{2}\right) \tag{V-8}
\end{align*}
$$

where T_{1} and T_{2} relaxation times are:

$$
\begin{align*}
& \frac{1}{T_{1}}=T_{1}\left(\omega_{0}\right)+4 T_{2}\left(2 \omega_{0}\right) \tag{V-9}\\
& \frac{1}{T_{2}}=\frac{3}{2} T_{0}(0)+\frac{5}{2} T_{1}\left(\omega_{0}\right)+T_{2}\left(2 \omega_{0}\right) \tag{V-10}
\end{align*}
$$

where $J_{m}(\omega)$ are the spectral density functions and they are the Fourier transform of the spin-torque correlation functions.

$$
\begin{equation*}
J_{m}(m)=\int_{-\infty}^{\infty} G_{m}(t) \exp i w t d t \tag{V-11}
\end{equation*}
$$

For three-dimensional systems with motion the decay of the $G_{m}(t)$ is sufficiently fast and above expression can be true. But for two-dimensional systems, it is not always so.

V - 3 - THE CORRELATION FUNCTIONS ON THE SUBSTRATE FRAME

It is convenient to consider the correlation functions
(Eq. V-4) on a frame where the polar axis $(\theta=0)$ is parallel to the static field H_{0}. For simplicity, we take the substrate surface as a reference frame for the spins. The orientation of the spins is given by the azimuthal angles in this plane. Using the Wigner rotation operators $D(\alpha, \beta, \gamma)$ the argument of the Spherical harmonics can be expressed as:

$$
\begin{equation*}
Y_{2}^{q}(\Omega)=\sum_{p=-2}^{2} D_{p q}^{2}(\alpha \beta \gamma) Y_{2}^{p}\left(\Omega^{\prime}\right) \tag{V-12}
\end{equation*}
$$

where (α, β, γ) are the Euler angles of the rotation. We choose the direction $\phi=\frac{\pi}{2}$ in the laboratory frame to lie in the sub-
strate plane. For this simplicity, the Euler angles become ($O \beta O$).

With the help of the rotation matrix $d(\beta)$ whose elements are tabulated in Brink and Satcher (1968), we express the correlation fundlions in the following form:

$$
G_{m}(t)=\frac{4 \pi \hbar^{2} \gamma^{2}}{5} \sum_{\substack{i<j \\ k<l}} \sum_{\rho_{2} \rho^{\prime}=-2}^{2} d_{-\rho-m}^{2}(\beta)_{\rho^{\prime} m}^{2}(\beta) \frac{Y_{2}^{-p}\left(\pi / 2, \phi_{i j}(0)\right) Y_{2}^{p}\left(\pi / 2, \phi_{k l}(t)\right)}{r_{i}^{3}(0) r_{k l}^{3}(t)} r_{i j k l}(t)
$$

And on substituting in the values for the matrix elements $d_{p m}(\beta)$ we have,

$$
\begin{aligned}
& G_{0}(t)=\frac{27 \hbar^{2} \gamma^{4}}{64}\left\{\left(\sin ^{2} \beta-\frac{2}{3}\right)^{2} g_{0}(t)+\frac{\sin ^{4} \beta}{2} g_{2}(t)\right\} \\
& G_{1}(t)=\frac{9 \hbar^{2} \gamma^{4}}{32}\left\{\cos ^{2} \beta \sin ^{2} \beta g_{0}(t)+\frac{\sin ^{2} \beta\left(1+\cos ^{2} \beta\right)}{2} g_{2}(t)\right\} \\
& G_{2}(t)=\frac{9 \hbar^{2} \gamma^{4}}{128}\left\{\sin ^{4} \beta g_{0}(t)+\frac{\cos ^{4} \beta+6 \cos ^{2} \beta+1}{2} g_{2}(t)\right\}
\end{aligned}
$$

The positional correlation functions $g_{n}(t)$ can be expressed as below,

$$
g_{n}(t)=\frac{4}{3 N} \sum_{i<j} \frac{\exp \left(-i n \phi_{i j}(0)\right) \exp \left(\operatorname{in} \phi_{k l}(t)\right)}{\Gamma_{i j}^{3}(0) r_{k l}^{3}(t)} r_{j k l}(t)
$$

The $g_{n}(t)$ functions $c a n$ be considered as the determination of the spin-torque correlation functions. For our theory as mentioned earlier we go to $g_{2}(t)$ term and we know that $g_{1}(t)$ does indeed vanish. The index " n " means the number of the spins flipped and it refers to eigenstates parallel and anti-parallel to the substrate normal.

Equation (V-14) has a very important statement. Because it shows that the " n " factor in the exponent means that $g_{0}(t)$ does not depend on the orientations $\phi_{i j}, \phi_{k l}$ of the spins but only their separations $r_{i j}, r_{k \ell}$. Whereas the $g_{2}(t)$ depends both on separation and orientation. Because the exponential terms give the destructive interference. Therefore, we expect $g_{2}(t)$ to decay to zero very much faster than $g_{0}(t)$.

v - 4 - TWO-DIMENSIONAL FLUIDS

The reasons for considering a fluid are two. 1 -We describe the motion classically, treatment is simpler than quantum-mechanical case. 2 - Since the Heisenberg exchange Hamiltonian takes into account of spin diffusion in the hydrodynamic limit, we use the results of classical diffusive motion.

Then, our next step would be to obtain the correlation functions for classical motion. As far as random bodily motion of the spins is concerned, the positional correlation functions $g_{n}(t)$ are
treated completely classically.
Combining Equations (V-6) and (V-14) we obtain,

$$
\begin{equation*}
g_{n}(t)=\frac{1}{N} \sum_{i \neq j} \frac{\exp \left[-i n\left(\phi_{i j}(0)-\phi_{i j}(t)\right]\right.}{r_{i j}^{3}(0) r_{i j}^{3}(t)} \tag{V-15}
\end{equation*}
$$

Now we shall be following a probabilistic method in order to make a practical calculation for the time dependence of $\theta_{i j}$ and $\varnothing_{i j}$ (the dynamical behaviour of the spins). We use the probability function which is related to the time dependent pair distribution function introduced by van Hove (1954). The idea of this probability function is in fact in Boltzmann sense to replace the summation over spins. The van Hove correlation function $\mathbf{G}(\underline{r}, \mathrm{t})$ gives us the average density distribution at a time $t+t^{\prime}$ as seen from a point where a particle passed at time t '. This function can be split into two parts, self part G_{s} and distinct part G_{d}. We write,

$$
\begin{equation*}
\mathbf{G}(\underline{r}, t)=G_{s}(\underline{r}, t)+G_{d}(\underline{r}, t) \tag{V-16}
\end{equation*}
$$

$\mathbf{G}_{\mathbf{s}}(\underline{r}, \mathrm{t})$ indicates the correlation between positions of the same particle whereas $G_{d}(\underline{r}, t)$ states the correlation for different particles.

At $\mathbf{t}=0$ we have,
$G_{s}(\underline{r}, 0)=\delta(\underline{r})$ and $G_{d}(\underline{r}, 0)=g(\underline{r})$
$\mathbf{g}(\underline{r})$ is known as the radial distribution function.
For long times: $G_{s}(\underline{r}, t)$ is a broad bell shape of unit area and $G_{d}(\underline{r}, t)$ is a constant.

Let $\underline{r}_{i}(0)$ and ${\underset{\sim}{j}}_{j}(0)$ be respectively the coordinate of the i th spin and j th at $t=0$. Their initial separation is:

$$
\underline{r}_{0}=\underline{r}_{i}(0)-\underline{r}_{j}(0)
$$

At $t=t$ they will have a separation distance given by,

$$
\underline{\mathbf{r}}=\underline{r}_{i}(t)-\underline{r}_{j}(t)
$$

Now, the probability that the pair separation will increase by
$\underline{R}=\left[\underline{r}_{i}(t)-\underline{r}_{j}(t)\right]-\left[\underline{r}_{i}(0)-\underline{r}_{j}(0)\right]$ is expressed as,

$$
\begin{equation*}
P(\underline{R}, t)=\int G_{s}(\underline{R}-r, t) G_{s}(r, t) d r \tag{v-18}
\end{equation*}
$$

if the motion of the particles is uncorrelated. Here, $P(\underline{R}, t)$ is the convolution of the single particle probabilities.

The radial distribution function $g(\underline{r})$ gives the probability of a particular initial separation \underline{r}.

Due to the probabilistic method, we should replace the summation over particles (for Equ. ((V-17)) by the integral:

$$
\begin{equation*}
\sum_{i \neq j} \rightarrow N / d r_{0} \int d r P\left(r-r_{0}, t\right) g\left(r_{0}\right) \tag{V-19}
\end{equation*}
$$

The precise details of the radial distribution function are not sufficient for the nuclear relaxation properties of a system. We therefore approximate $g\left(r_{0}\right)$ by a step function $\theta\left(r_{0}\right)$. We have

$$
\begin{aligned}
& \theta\left(r_{0}\right)=0 \text { for } r_{0}<a \\
& \theta\left(r_{0}\right)=\alpha \text { for } r_{0}>a
\end{aligned}
$$

$\theta\left(r_{0}\right)$ then gives a uniform spin density \propto for $r_{0}>a$ and zero within a hard core sphere of radius "a". Assuming that the approximation for the second moment is correct, in two-dimensions "a" is given by

$$
\begin{equation*}
a^{-4}=\frac{1}{\alpha} \int_{0}^{\infty} \frac{2 \pi g(r)}{r^{5}} d r \tag{V-20}
\end{equation*}
$$

Now in case the separation of the particles is so small, the motion of the particles is then correlated and the convolution expression for $P(\underline{R}, t)$ is not valid. Therefore, we exclude a sphere of radius " a " from the final separation. Regarding to this statement Equal. (V-19) becomes:

$$
\begin{equation*}
\sum_{i \neq j} \rightarrow N \propto \int_{\hat{0}<a} d r_{0} \int_{r<a} d r p\left(r-\underline{r}_{0}, t\right) \tag{V-21}
\end{equation*}
$$

Introducing the spatial Fourier transform of the probability funct-
ion, the above integral can be rewritten without the double set.
We then have,

$$
\begin{equation*}
P(r, t)=\frac{1}{(2 \pi)^{2}} \int d Q P(\underline{Q}, t) e^{i \underline{Q} \cdot \underline{Q}} \tag{V-22}
\end{equation*}
$$

Because the convolution expression for $P(\underline{r}, t)$ is given by the square of the Fourier transform of the van Hove function we write,

$$
\begin{equation*}
p(\underline{Q}, t)=\left[g_{s}(\underline{Q}, t)\right]^{2} \tag{V-23}
\end{equation*}
$$

Combining Equations ($\mathrm{V}-15$), $(\mathrm{V}-21)$ and ($\mathrm{V}-22$) we can see that

$$
g_{n}(t)=\frac{\alpha}{(2 \pi)^{2}} \int d \underline{Q} p(\theta, t) \int d r \frac{\exp [i(\underline{2} \cdot \underline{r}+n \phi)]}{r^{3}} \int d r_{0} \frac{\exp \left[-i\left(\theta \cdot r_{0}+n \phi\right]\right.}{r_{0}^{3}}
$$

(V-24)

In this equation, it is seen that the last two integrals are mutual complex conjugates and we have,

$$
\begin{equation*}
g_{n}(t)=\frac{\alpha}{(2 \pi)^{2}} \int d \underline{Q} p(\underline{Q}, t)\left|\int d r \frac{\exp i(\theta \cdot r+n \phi)}{r^{3}}\right|^{2} \tag{V-25}
\end{equation*}
$$

We use the Bessel functions of order n and express this equation as,

$$
\begin{equation*}
g_{n}(t)=\alpha \int d Q P(Q, t)\left[\int_{0}^{\infty} \frac{J_{n}(Q r)}{r^{2}} d f\right]^{2} \tag{v-26}
\end{equation*}
$$

[We note that in the space integral (Equ. (V-25)), \underline{r} and \underline{Q} are respectively given by (r, ϕ) and (Q, ψ). So we write Q. $\underline{r}=Q r \operatorname{Cos}(\phi-\psi)$ and the integral takes the form of;

$$
\left.\int d r=\int_{0}^{\infty} r d r \int_{0}^{2 \pi} d \theta\right]
$$

Because the motion is rotationally invariant in the plane, $p(Q, t)$ depends only the magnitude of Q. Therefore, Equa.(V-26) can be expressed as,

$$
g_{n}(t)=\frac{2 \pi \alpha}{a^{4}} \int_{0}^{\infty} d x x^{3} p(x / a, t)\left[\int_{0}^{\infty} \frac{T_{n}(y)}{y^{2}} d y\right]^{2}
$$

Apart from rotational invariance, no other nature of the motion is given by this equation.

$$
\mathrm{V}-5-\text { DIFFUSION }
$$

We assume that two-dimensional diffusion equation is good enough to describe the motion of the spins. The translational probability function $P(\underline{x}, \mathrm{t})$ can be expressed in the form of a gaussian distribution as follows:

$$
\begin{equation*}
P(r, t)=\frac{1}{8 \pi D t} \exp \left(-\frac{r^{2}}{8 D t}\right) \tag{V-28}
\end{equation*}
$$

Let $p(\underline{Q}, t)$ be the spatial Fourier transform of $P(\underline{r}, t)$ we have,

$$
\begin{equation*}
p(Q, t)=\exp \left(-2 Q^{2} D t\right) \tag{V-29}
\end{equation*}
$$

where we shall define " D " as the two-dimensional diffusion constan.

Putting $Q=x / a$ in $p(Q, t)$ we rewrite Equation ($V-27$) as below,

$$
\begin{equation*}
g_{n}(t)=\frac{2 \pi \alpha}{a^{4}} \int_{0}^{\infty} d x x^{3} e x p-\frac{t x^{2}}{\tau_{0}}\left[\int_{x}^{\infty} \frac{J_{n}(y) d y}{y^{2}}\right]^{2} \tag{V-30}
\end{equation*}
$$

with $\tau_{0}=a^{2} / 2 D$
τ_{0} is the time which takes for a spin to diffuse a distance of the hard core dimension " a ". The diffusion may not be described by this time scale.

The numerical calculation of Equa. (V-30) has been made by a number of people (Kokin-Izmezter (1965), Chapman and Bloom (1976) and Avogadro and Villa (1977) \}. Figure V-1 shows the shape of $g_{n}(t)$ functions calculated by them.

Figure V-1: Correlation functions for a diffusive fluid. (Cowan)

Here we notice that the decay of g_{o} is much slower than g_{2}. We can also see that at $t=0 g_{0}$ and g_{2} are equal. It is possible to prove that through Equation (V-15). The probability function is a delta function and the integral can be evaluated giving:

$$
\begin{equation*}
g(0)=\pi \alpha / 2 a^{4} \tag{V-31}
\end{equation*}
$$

Our next step is now to consider the behaviour of the spintorque correlation functions at long time.

The convergence of the integrals for the relaxation functions depends on the long-time behaviour of the correlation functions. We use an expansion in inverse powers of " t " in order to examine the long-time behaviour. Doing the calculation for Equa.(v-30) and substituting Equa. ($V-31$) into the calculation, we have,

$$
\begin{aligned}
& g_{0}(t)=g(0)\left\{2 \frac{\tau_{0}}{t}-2 \sqrt{\pi}\left(\frac{\tau_{0}}{t}\right)^{3 / 2}+\left(\frac{\tau_{0}}{t}\right)^{2}+\cdots \cdots\right. \\
& g_{2}(t)=g(0)\left\{\frac{2}{9}\left(\frac{\tau_{0}}{t}\right)^{2}-\frac{\sqrt{\pi}}{12}\left(\frac{\tau_{0}}{t}\right)^{5 / 2}+\frac{1}{6}\left(\frac{\tau_{0}}{t}\right)^{3}+\cdots \cdots\right\}
\end{aligned}
$$

(V-32)

For $t \gg \tau_{0}$, the equations above can be approximated by

$$
\begin{align*}
& g_{0}(t) \sim g(0) 2 \frac{\tau_{0}}{t} \\
& g_{2}(t) \sim g(0) \frac{2}{9}\left(\frac{\tau_{0}}{t}\right)^{2}
\end{align*}
$$

where we must notice that $g_{2}(t)$ is much smaller than $g_{0}(t)$.
Through these expressions we reach the consequence for the spintorque correlation functions $G_{n}(t)$. Especially, the long-time behaviour of $G_{0}(t)$ affects the transverse relaxation as we shall see later.

$V-6-$ THE FOURIER TRANSFORM OF $g_{n}(t)$ FUNCTIONS AND RE-EXAMINING OF THE RELAXATION TIMES

In Equal. (V-13'), we expressed the spin-torque correlation functions in terms of the positional correlation functions $g_{n}(t)$. Can we also express the Fourier transform of the spin-torque correlation functions $J_{m}(\omega)$ in terms of the Fourier transform of the positional correlation functions $j_{m}(\omega)$? The answer is YES. Similar to Equation (V-13'), we have,

$$
\begin{aligned}
& \left.T_{0}(w)=\frac{27}{64} \pi^{2} z^{4}\left(\sin ^{2} \beta-\frac{2}{3}\right)^{2} i(w)+\frac{\sin ^{4} \beta}{2} j(w)\right\} \\
& J_{1}(\omega)=\frac{9}{32} \hbar^{2} y^{4}\left[\cos ^{2} \beta \sin ^{2} \beta j_{0}(\omega)+\frac{\sin ^{2} \beta\left(1+\cos ^{2} \beta\right)}{2} j_{2}(\omega)\right] \\
& \left.T_{2}(\omega)=\frac{9}{128} \hbar^{2} \beta^{4} \sin ^{4} \beta /_{0}(\omega)+\frac{\cos \beta+6 \cos ^{2} \beta+1}{2} /_{2}(\omega)\right\}
\end{aligned}
$$

The spectral functions $j_{n}(\omega)$ are (from Equal. V-27):

$$
\begin{equation*}
i_{n}(\omega)=\frac{2 \pi \alpha}{a^{4}} \int_{0}^{\infty} d x \sqrt{p}\left(\frac{x}{a}, \omega\right)\left[\int_{0}^{\infty} \frac{\pi_{n}(y)}{y^{2}} d y\right]^{2} \tag{V-35}
\end{equation*}
$$

where $\tilde{p}(\underline{Q}, \omega)$ is the space and time Fourier transform of the
translational probability function and for diffusion, it is given by

$$
\begin{equation*}
\bar{P}(Q, \omega)=\frac{4 D Q^{2}}{\omega^{2}+4 D^{2} Q^{4}} \tag{v-36}
\end{equation*}
$$

The figure below shows a computer calculation of resultant $j_{n}(\omega)$.

Figure V-2: Spectral functions for a diffusive fluid (Cowan)

We already know that for non-adiabatic case the longitudinal relaxation time is given by Equa. (V-9)

$$
\frac{1}{T}=T_{1}\left(\omega_{0}\right)+4 J_{2}\left(2 \omega_{0}\right)
$$

In figure (V-2), we can easily see that the $n=2$ term gives the normal behaviour of being almost flat for $\omega_{0} \tau_{0}<1$.

There is however, a logarithmic divergence of the $n=0$ term which causes a reduction in the T_{1} values in the low frequency - fast motion case. Figure (V-3) represents calcuiaied values of T_{1} as a function of β for various ratios of $\omega_{0} \tau_{0}$. For $\omega_{0} \tau_{0}$
$=10^{-3} \quad T_{1}$ changes by a factor of 5 between orientation of $\beta=0^{\circ}$ and 90°. The limitation of $\omega_{0} \tau_{0} \leqslant 1$ indicates that one cannot go as far as the T_{1} minimum which should occur at $\omega_{0}^{2} \tau_{u} \tau_{z} \sim 1$

Figure V-3: Spin-lattice relaxation times for a diffusive fluid. (Cowan)

As to the transverse relaxation function as mentioned earlier (Equal. (V-1) it splits into a product of terms for each m value. The non-adiabatic terms give an exponential contribution. We have,

$$
F(t)=\exp \left(-t / \frac{r_{2}}{}=9\right) \exp \left(-3 \int_{0}^{(t}(t-\tau) G_{0}(\tau) d \tau\right.
$$

where $T_{2}{ }^{n a}$ is the non-adiabatic part of the relaxation time and it is given by,

$$
\begin{equation*}
\frac{1}{T_{2} n a}=\frac{5}{2} J_{1}\left(w_{0}\right)+J_{2}\left(2 w_{0}\right) \tag{V-38}
\end{equation*}
$$

$T_{2}{ }^{\text {na }}$ has contributions from $g_{0}(t)$ and $g_{2}(t)$ due to the relation between J functions and g functions. $g_{2}(t)$ term has proportionality to t^{-2}. And since there is no divergence in the integral of t^{-2}, the integral of $g_{2}(t)$ can be extended to infinity. This part provides the relaxation with an exponential contribution. The relaxation rate of this contribution is given by;

$$
\begin{equation*}
\frac{1}{T}=\frac{81}{256} h^{2} y^{4} \sin ^{4} \beta y_{2}(0) \tag{V-39}
\end{equation*}
$$

and with the calculated value of $j_{2}(0)$, we have,

$$
\begin{equation*}
\frac{1}{7}=0.237 \frac{h^{2} y^{4} \alpha}{a^{4}} \tau_{0} \sin ^{4} \beta \tag{V-40}
\end{equation*}
$$

The $g_{0}(t)$ function does not decay to zero fast enough, therefore, it gives a non-exponential contribution to the relaxation. This component of the relaxation function is a factor $f(t)$. We write

$$
\begin{equation*}
f(t)=\exp -\left\{\frac{81}{64} \hbar^{2} y^{4}\left(\sin ^{2} \beta-\frac{2}{3}\right)_{0}^{2}(t-\tau) g_{0}^{t}(\tau) d \tau\right\} \tag{V-41}
\end{equation*}
$$

$f(t)$ is the dominant part in most cases. Here we introduce the instantaneous relaxation rate $T^{-1}(t)$ as $f(t)$ cannot be characterized by a relaxation time. We then have,

$$
\begin{equation*}
\frac{1}{T(t)}=\frac{81}{64} \hbar^{2} \gamma^{4}\left(\sin ^{2} \beta-\frac{2}{3}\right)^{2} \int_{0}^{t} g_{0}(\tau) d \tau \tag{V-42}
\end{equation*}
$$

We define a phenomenological relaxation time in the form of

$$
\begin{equation*}
T_{2}^{-1}=T^{-1}\left(T_{2}\right) \tag{V-43}
\end{equation*}
$$

combining Equal. ($V-43$) and ($V-42$) we obtain,

$$
\frac{1}{T_{2}}=\frac{81}{64} \hbar^{2} \gamma^{4}\left(\sin ^{2} \beta-\frac{2}{3}\right)^{2} \int_{0}^{T_{2}} g_{0}(\tau) d \tau
$$

(V-44)
with the NMR rule of thumb for T_{2} we have

$$
\begin{equation*}
\frac{1}{T_{2}}=M_{2} \tau \tag{V-45}
\end{equation*}
$$

The second moment is the mean square value of the local dipolar fields (multiplied by γ^{2}) which cause the resonance line to have breadth. The correlation time τ is the characteristic time associated with the motion which averages the fields and narrows the line.

For our theory, the local field has two parts. 1-) $n=0$

2-) $n=2$. Combining Equa. $\left(V-13^{\prime}\right)$ for $G_{0}(t)$ andEqua. (V-32 $)+$ (V-33') we find,

$$
\begin{equation*}
M_{2}=M_{2}^{\prime}+M_{2}^{\prime \prime} \tag{V-46}
\end{equation*}
$$

where

$$
M_{2}^{\prime}=\frac{81}{128} \frac{\pi \alpha h^{2} \gamma^{4}}{\alpha^{4}}\left(\sin ^{2} \beta-\frac{2}{3}\right)^{2}
$$

$$
\begin{equation*}
M_{2}^{\prime \prime}=\frac{81}{256} \frac{\pi \alpha \hbar^{2} y^{4}}{a^{4}} \sin ^{4} \beta \tag{V-47}
\end{equation*}
$$

It is easily seen that for $n=2$ Equa. (V-40) becomes:

$$
\begin{equation*}
\frac{1}{T}=0.329 M_{2}^{\prime \prime} \tau_{0} \tag{V-48}
\end{equation*}
$$

As for the $n=0$ part, we first need to know the form of the function $g_{o}(t)$. We approximate $g_{0}(t)$ by an analytic expression which is asymptotically correct at long times and has the correct value at $t=0$.

$$
\begin{equation*}
g_{0}(t) \sim \frac{g(0)}{1+t / 2 \tau_{0}} \tag{V-49}
\end{equation*}
$$

Adding the $n=2$ part to the result of Equa. $(y-44)$, we get,

$$
\begin{equation*}
\frac{1}{T_{2}}=2 \ln \left(\frac{T_{2}}{2 \tau_{0} e}\right) M_{2}^{\prime} \tau_{0}+0.329 M_{2}^{\prime \prime} \tau_{0} \tag{y-50}
\end{equation*}
$$

Abstract

The $n=2$ part of the local field is averaged in the conventional way obeying Equa. (V-45), whereas the $n=0$ has not much importance to the motion. It is only affected by the internuclear separation and not the orientation. This degeneracy with respect to rotational motion gives the long t^{-1} tail to the $g_{0}(t)$ function and it is the effect of this inefficiency in the averaging process (expressed by a logarithm factor) which shortens the relaxation time from its expected value. Since the logarithm is a very slowly varying function of T_{2} / τ_{0}, we can obtain a reasonable estimate of the relaxation time by assuming a typical value for this ratio in the logarithm. $T_{2} \sim 10^{-3}$ sec and $\tau_{0} \sim 10^{-7}$ sec are the typical values. The figure below represents how T_{2} varies for such a case.

$$
\begin{aligned}
\text { Figure V-5: } & \text { Spin-spin relaxation times for a diffus- } \\
& \text { ive fluid. The correlation time to re- } \\
& \text { maining approximately constant with } \\
& \ln \left(T_{2} / \bar{c}_{0}\right) \sim g \quad \text { (Cowan) }
\end{aligned}
$$

When T_{2} gets shorter, it becomes less than T_{1} too even in the fast motion-low field case for most orientations β. Ordinarily they would be equal. Figure (V-4) also contains T_{1} for this case $\left(\omega_{0} \tau_{o}=10^{-3}\right.$) and we can see that at $\beta=0$ $T_{1}=10 \times \mathrm{T}_{2}$. But for $\beta \geqslant 60^{\circ} \quad \mathrm{T}_{2}$ is greater than T_{1}. It may be surprising for spins to come to equilibrium with the lattice faster than amongst themselves, but thermodynamic arguments show that in the limit of the spin-spin interaction through the lattice, the limiting requirement is that T_{2} should be less than twice T_{1}.

$\mathrm{V}-7-\frac{\text { ANOMALOUS FEATURE OF }}{\mathrm{OF}^{3} \mathrm{He}} \mathrm{T}_{1}$ OF ADSORBED PHASES

After giving a general theory of NMR in adsorbed systems, we shall discuss the linear dependence of the relaxation time on applied magnetic field for relatively low fields. We shall show a weak temperature dependence of the spin lattice relaxation time. This anomalous behaviour of T_{1} is a consequence of the reduced dimensionality of the motion.

We approximate the spectral density function in the following three forms:

1) Gaussian
2) Lorentzian
3) Exponential

The spectral density functions can be derived from their autocorrelation function through the relation given by Equa. (V-11). For the above three cases, the correlation functions and their spectral densities can be written as:

1) $G(t)=G(0) \exp -\omega_{c}^{2} t^{2} / 2$
$J(\omega)=\left[G(0) \sqrt{2 \pi} / \omega_{c}\right] \exp -\omega^{2} / 2 \omega_{c}^{2}$
2) $G(t)=G(0) \exp -\omega_{c}|t|$

$$
\begin{equation*}
J(\omega)=\left[2 G(0) / \omega_{c}\right]\left[1+\left(\omega / \omega_{c}\right)^{2}\right]^{-1} \tag{V-52}
\end{equation*}
$$

3) $\mathrm{G}(\mathrm{t})=\mathrm{G}(0) /\left[1+\mathrm{w}_{\mathrm{c}}^{2} \mathrm{t}^{2} / 2\right]$

$$
\begin{equation*}
J(\omega)=\left[G(0) \pi \sqrt{2} / \omega_{c}\right]^{\exp -\sqrt{2} \omega^{c} / \omega_{c}} \tag{V-53}
\end{equation*}
$$

W_{c} is the characteristic frequency of the atomic motion and
it is defined by,

$$
\begin{equation*}
\omega_{c}^{2}=\frac{\int_{-\infty}^{\infty} \omega^{2} J(\omega) d \omega}{\int_{-\infty}^{\infty} J(\omega) d \omega} \tag{V-54}
\end{equation*}
$$

Equa. (V-9) can be simplified by neglecting the double frequency term and therefore T_{1} becomes the reciprocal of $J(\omega)$. The figure below shows $\mathrm{J}^{-1}(\omega)$ as a function of Larmor.frequency for our three cases.

Figure $\mathrm{V}-5$:

The linearity of T_{1} breaks down at high frequencies. From
the inverse process of Equa. ($\mathrm{V}-11$) we have,

$$
\begin{equation*}
G(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} J(\omega) \exp -i \omega t d \omega \tag{v-55}
\end{equation*}
$$

for $t=0$ we obtain,

$$
\begin{equation*}
G(0)=\frac{1}{\pi} \int_{0}^{\infty} J(w) d w \tag{v-56}
\end{equation*}
$$

$G(o)$ is proportional to the second moment of the NMR line and it is finite. If $J(\omega)$ decays faster than ω^{-1} at high frequencies or T_{1} increases with frequencies faster than a linear law, the integral above is expected to be convergent.

The even derivatives of $G(t)$ at $t=0$ are

$$
\begin{equation*}
G(0)=\frac{1}{\pi} \int_{0}^{\infty} w^{2 n} J(w) d w \tag{V-57}
\end{equation*}
$$

(2n) functions are associated with higher moments of the resonance line and they are finite too. Therefore, $J(\omega)$ must decay faster than any power of ω. (i.e. expotentially or faster). In other words T_{1} must increase with frequency exponentially or faster. The linear law is expected to break down for frequencies $\omega \geqslant \omega_{c}$ However, the linear law works for low frequencies. The low frequency behaviour of $J(\omega)$ is determined by the long time part of $G(t)$ function. The low frequency case corresponds to the hydrodynamic region where the precise microscopic nature of the atomic motion is not important. As mentioned at the beginning of this chapter, the long-time behaviour of spin correlation function decays with $t^{-d / 2}$ where d is the dimensionality of the system. The correlation function has a t^{-1} tail. Therefore, the
spectral density has a logarithmic divergence at low frequencies.
We may approximate the correlation function as

$$
\begin{equation*}
G(t)=\frac{G(0)}{1+\sqrt{2} w_{c} t} \tag{v-58}
\end{equation*}
$$

And the Fourier transform of this expression is:

$$
\begin{equation*}
J(\omega)=\frac{\sqrt{2} G(0)}{\omega_{c}} g\left(\frac{\omega}{\sqrt{2} \omega_{c}}\right) \tag{v-59}
\end{equation*}
$$

where $g(x)$ is the auxiliary function being the sinus and cosimus integrals. We have,

$$
\begin{equation*}
g(x)=\int_{0}^{\infty} \frac{\cos t}{t+x} d t \tag{V-60}
\end{equation*}
$$

We plotted the reciprocal of the spectral density function against ω / ω_{c} in Figure (V-6). It is then seen that the curve can be approximated by a straight line over a range $0 \leqslant \frac{\omega}{\omega_{c}} \leqslant 2$ to within an error of $\sim 5 \%$.

Figure V-6:

A linear law for T_{1} indicates no variation of relaxation rate with temperature. The weak temperature dependencies occur when we derivate from this law. The characteristic frequency for the atomic motion is a function of the temperature. We shall now see how the relaxation time varies with ω_{c}.

Approximating the linear part of $g^{-1}(x)$ by its tangent through the origin, we find

$$
g^{-1}(x)=2.87 x
$$

and with this the reciprocal of $J(\omega)$ (relaxation time) becomes:

$$
\begin{align*}
J^{-1}(\omega) & =\frac{\omega_{c}}{\sqrt{2} G(0)} g^{-1}\left(\frac{\omega}{\sqrt{2} \omega_{c}}\right) \tag{v-61}\\
J^{-1}(\omega) & =1.43 \quad \omega / G(0)
\end{align*}
$$

(V-61')

Equation (V-61') has a very important statement. It shows that the relaxation time is completely independent of ω_{c}. The minimum for T_{1} is seen when $\omega \sim W_{c}$. in all systems. The long time tail causes a dramatic broadening of this minimum. Figure (V-7) represents the T_{1} minimum for different Larmor frequencies. T_{1} depends on the frequency for the fast side of the T_{1} minimum. In ordinary systems, for low frequencies $J_{1}(\omega)$ is flat and T_{1} is equal to T_{2} and independent of frequency. But this is not the case for a 2-d system. T_{2} is ill-defined by not being exponential in a 2-d system.

We have already given (Equa. V-37) the spectral density function for spins confined to a flat surface making an angle β with the external field. We leave the approximations made before for $g_{n}(t)$ and $j_{n}(\omega)$ and confine our attention to the approximation
of Equa. (V-59). We see that only the $j_{0}(\omega)$ terms are important and we obtain,

$$
\begin{equation*}
j_{0}(\omega)=\frac{\pi \alpha}{\sqrt{2} a^{4} \omega_{c}} g\left(\frac{\omega}{\sqrt{2} \omega_{c}}\right) \tag{V-62}
\end{equation*}
$$

where " a " is the radius of the closest approach of the spins and " \propto " is the number of the spins per unit area.

We have the expression for T_{1},

$$
\begin{equation*}
\frac{1}{T}=0.154 \frac{\alpha}{a^{4}} \frac{\hbar^{2} \gamma^{4}}{\omega}\left[2 \sin ^{2} \beta-\sin ^{4} \beta\right] \tag{V-63}
\end{equation*}
$$

This equation vanishes for $\beta=0$. But we have made an approximation by neglecting the $j_{2}(\omega)$ terms. For $\beta=0$, we get no anomalous contribution to the relaxation.

For an isotropic system, where there is a uniform spread of plane orientations on a porous system where the pore dimension is much greater than the atomic dimension, we average the angular factor in Equation (V-63). We have;

$$
\begin{equation*}
T_{1}=12.4 \frac{a^{4}}{\alpha \hbar^{2} \gamma^{4}} \omega \tag{V-64}
\end{equation*}
$$

For a completed monalayer taking $d=3.2 A^{\circ}$ we find the following result for ${ }^{3}$ He:

$$
\begin{equation*}
T_{1}=7.5 \times 10^{-8} \omega \tag{V-65}
\end{equation*}
$$

In calculating T_{1} we must consider the following cases: a) The evaluation of the initial.value $G(0)$ related the spin separations depends on the geometry of the surface and differs from that for a plane.
b) The averaging process over orientation β depends on the motion.

We introduce a correlation factor to Equation (V-65) in order to overcome the difficulties.

CHAPTER VI

EXPERIMENTAL TECHNIQUE AND THE COMPARISON OF THE
EXPERIMENTAL RESULTS

VI - 1 - PULSE NMR

NMR experiments can be done with two basic methods.

1. Pulsed $N M R$ technique 2. $C W$ NMR technique.

In addition to dealing with the CW method in our work, we mostly considered the pulse NMR case and took measurements with this method.

It is useful to give a brief account of the pulsed NMR theory. The r.f. magnetic field (around the Larmor frequency) is applied in the form of pulses. We can manipulate the magnetization with either a 90° pulse or a 180° pulse. We put our sample wound with an r.f. coil in the static field H_{0}. A pulsed r.f. magnetic field of magnitude H_{1} makes a right angle with H_{0}. For a short pulse duration t_{p}, we have the angle θ,

$$
\begin{equation*}
\theta=\gamma H_{1} t_{p} \tag{VI-1}
\end{equation*}
$$

Therefore, the magnetization due to H_{0} will be changed by the r.f. pulse and will start precessing about the direction H_{1}. But at the end of the pulse, the magnetization will decay back with a time constant T_{2}. The induced r.f. voltage in the coil gives us a signal and after amplifying, it can be displayed in an oscilloscope.

Let us take H_{0} in the Z direction. An r.f. magnetic field
can then be given by

$$
\begin{equation*}
H_{x}=2 H_{1} \operatorname{Cos} \omega t \tag{VI-2}
\end{equation*}
$$

And it can be divided into two rotating fields each of amplitude H_{1} rotating in opposite directions.

$$
\begin{aligned}
& H_{x} \operatorname{rot}=H_{1} \operatorname{Cos} \omega t \\
& H_{y} \operatorname{rot}=-H_{1} \operatorname{Sin} \omega t
\end{aligned}
$$

In case of resonance, we consider only one field which rotates in the same sense as the precession of the moment.

The width of a pulse t_{p} must be very much less than the re-
laxation times. (We calculated it around 10μ sec see appendix VI-1).

VI - 2 - THE MEASUREMENTS OF THE RELAXATION TIMES WITH SPIN-ECHO METHOD

The spin-echo method has been used since 1950 (Hahn). It was found convenient to measure the relaxation times. If the time interval between the pulses is τ, the echo will be formed at a time $t=2 \tau$.

It was seen that this technique works better for the substances (gases and liquids) whose relaxation times are long.

Let us send a 90° and a 180° pulses one after another and study the spin-echo case more closely. The figure below represents this formation.

figure VI-1: The formation of a spin-echo

Diagram A: The static strong field $H_{0} \hat{k}$ sets the resultant magnetic moment vector at equilibrium along the direction of the field.

Diagram B: The first pulse $\left(90^{\circ}\right)$ is sent in the x^{\prime} direction of the rotating frame and the resultant magnetic moment rotates about the direction of H_{1}.

Diagram C : The resultant magnetic moment vector takes its final position in the $x^{\prime}-y^{\prime}$ plane at the end of the pulse.

Diagram D: The decay of this vector with a constant time $T_{2}{ }^{*}$ (which is given by $1 / \gamma \Delta H$) due to the inhomogenity of the external field over the sample.

Diagram E: We now send a 180° pulse after a period of \mathcal{Z}. All the

```
        incremental vectors flip through an angle 180
        the direction of H}\mp@subsup{H}{1}{}\mathrm{ .
Diagram F: After the second pulse is removed, these vectors start
        to precess but the effect is opposite to that at "D"
        such that induction signal is reconstituted.
Diagram G: The maximum signal is obtained at t=2\tau
Diagram H: This maximim signal induced in the coil (echo) decays
                away in the same way as it was at case "D".
    The shape of the echo can be described as two free induction
decays back-to-back.
The height of the signal is directly proportional to the magnetization and it decreases exponentially with a time constant \(T_{2}\) as a function of \(\tau\). We used this technique for measuring \(T_{2}\).
The magnetization expression as a function of \(\tau\) is given by,
\[
M(\tau)=M_{0} e^{-2 \tau / T_{2}}
\]
With respect to the statement we made above, \(M(\tau)\) can be replaced by the height (h), we then write,
\[
h(\tau)=h_{b} e^{-2 \tau / T_{2}}
\]
Let us take \(b_{0}=1\). We have,
\[
\begin{equation*}
\operatorname{lnh}(\tau)=-\frac{1}{T_{2}}(2 \tau) \tag{VI-3}
\end{equation*}
\]
It is a linear equation when taking a logarithmic graph paper.
(We must note that if we use a nature logarithmic graph paper we
must express " In" in terms of "log". That is to say
```

$\left.\log _{10} h=\ln h / 2.3\right)$.
Wo also used the spin-echo technique in order to neasure $\mathrm{T}_{\mathbf{1}}$.
Three pulses (Figure V-2) instead of two have been employed for this aspect. (Ejther $180^{\circ}-90^{\circ}-180^{\circ}$ or $90^{\circ}-90^{\circ}-180^{\circ}$ sequence). Tise initial pulse causes a non-equilibrium orientation of the magnetic monent vectors after the driving pulse has been removed. The magnetization after a period of τ_{1} is:

$$
M_{0}\left(\tau_{1}\right)=\text { Meq. } \quad\left(1-e^{-\tau_{1} / T_{1}}\right)
$$

Figure VI-2: The echo obtained with three pulses.

Figure VI-3 represents the NMR spectrometer used.
Having done the relaxation times measurements, we also seek
the relaxation between temperature and viscosity. Afterwards, we converted the temperatures (for the concerned range) into the viscosities. The information has been obtained ("handbook of Chemist-
ry and Physics" 44 the edition, page: 2261) between $-4.2{ }^{\circ} \mathrm{C}$ and $6{ }^{\circ} \mathrm{C}$ as seen in Graph VI-1.

The relaxation times have been plotted as a function of temperature and temperature/viscosity as they are represented in Graphs VI-2 and VI-3 respectively.

Finally, we summarize our results in Table VI-3.

VI $-3-$ EXPERIMENTAL RESULTS AND COMPARISON

On the following pages, we represent some typical experimental results.

In Table VI-1, we show the T_{2} values for Glycerol in the temperature range between $-2.5^{\circ} \mathrm{C}$ and 2.0° c. And similarly, Table VI-2 represents the T_{1} values for the same temperature range.

Table VI-1: The values for T_{2} measurement from 2.5° co $2.0^{\circ} \mathrm{C}$.
TABLE VI-2: The values for T_{1} measurement from $-2.5{ }^{\circ} \mathrm{C}$ to $2.0^{\circ} \mathrm{C}$

$$
1
$$

$$
18
$$

$$
\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \\
\dot{\sim} & \dot{\infty} & 0 & 0 & i & \dot{\infty} & i & i & i & i & i \\
i & & & i & & \text { in }
\end{array}
$$

| Temperature (Kelvin) | $\begin{gathered} \mathrm{T}_{2} \\ (\mathrm{~m} . \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{T}_{1} \\ (\mathrm{~m} \cdot \mathrm{sec}) \end{gathered}$ | $\begin{aligned} & \eta(x \quad 10) \\ & (\mathrm{cgs}) \end{aligned}$ | 2/Temp. |
| :---: | :---: | :---: | :---: | :---: |
| 270.5 | 7.9365 | 23.8045 | 13.6 | 0.5023 |
| 271 | 8.3334 | 22.72 | 13.34 | 0.4923 |
| 271.5 | 8.3334 | 20.8333 | 13.06 | 0.4810 |
| 272 | 8.6207 | 20.6186 | 12.76 | 0.4691 |
| 272.5 | 8.6207 | 22.9885 | 12.44 | 0.4565 |
| 273 | 9.0909 | 22.9885 | 12.10 | 0.4432 |
| 273.5 | 9.4340 | 22.2222 | 11.74 | 0.4293 |
| 274 | 10.0 | 23.2558 | 11.36 | 0.4146 |
| 274.5 | 10.8696 | 22.9885 | 10.96 | 0.3993 |
| 275 | 13.1579 | 21.9780 | 10.54 | 0.3833 |

Table VI-3:

$126 /$

Graph VI-3:

Glycerol at low temperatures becomes glasf-like due to its viscosity. Bloembergen, Purcell and Pound (1918) measured T_{1} relaxation time and the inverse line width T_{2} for glycerol and they concluded that in the region of low viscosity the T_{1} values show the behaviour encountered in alcohol, naady inverse proportionality between T_{1} and γ_{l} / T, and independence of T_{1} and frequency (V). The inverse line width T_{2}, decreases monotonically in the region where it could be measured with a slight tendency to flatten off at the highest η / T values.
T_{1} and T_{2} are approximatoly equal when

$$
2 \pi \nu \pi_{c} \ll 1
$$

The graph below has been taken from the BPP people (1948, Phy. Rev. Vol. 73, page 705).

Graph VI-4: The rehatation time T_{1} and the line-widih perameter T_{3}, ploted against the ratio of viscosity to absolnte temperature; for giycerin. (BPP)

VI - 3 - THE NON-SECULAR FREQUENCY SHIFT OF THE NMR LINE IN SOLID He ${ }^{3}$

Abstract

It is interesting to consider the work on the frequency shift done by Homer and Richards (1969). They observed the non-secular frequency shift in the NMR line for solid He^{3}.

Kubo and Tomita explained that frequency shift can occur in the NMR line of a system due to the presence of off-diagonal terms in the perturbing Hamiltonian coupling the spins together. The moment method was used by Van Vleck and Pyrce to discuss the line shapes of the magnetic resonance absorption. The moment expansion is basically an expansion of the auto-moment correlation function $G(t)$ in powers of t. They calculated the moments of the whole spectrum. Kubo was interested in a certain line or a group of lines which are observed experimentally. Therefore, they calculated the moments of the intensity distribution function concerning with this particular absorption. Their expansion method was an expansion in the perturbation not in t.

The expression for the perturbed Hamiltonian $\mathcal{R}^{\prime}(\omega)$ can be written for the discrete cases as follows (Kubo 1954). $$
X^{\prime}()=\sum_{\infty} x^{\prime}\left(\omega_{\alpha}\right) \delta\left(\omega-\omega_{\alpha}\right)
$$

In this expression, the component $\mathcal{H}^{\prime}(0)$ is called the secular part of the perturbation and commutes with the unperturbed Hamiltonian
\mathscr{H}_{0}. The rest of the components is the non-secular parts of the per-
turbation. $\quad\left(R^{\prime}\left(w_{\alpha}\right), w_{\alpha} \neq 0\right)$. The secular part gives the narrowing to the magnetic absorption line and the non-secular perturbation contributes the additional broadening. The shifts accommany to the secular and non-secular perturbation. (But called usually the non-secular shift).

For the case of dipolar Hamiltonian, the effect can be studied by traversing the region from Larmor frequency $\& H_{0}<U_{m}$, where W_{m} is the frequency with which the local dipole field is modulated, (egg. by the motion of the spins) to w_{0}. k him. In the transversing process, if W_{o} varies we have an extra contribution to the line width, if U_{m} varies we get a non-secular shift in the resonance line centre. In the case of complete traversal; the effects are independent of the form of the correration frunctions $g(\tau)$ which describes the modulation of the dipolar field due to the motion of the spins. If it is not possibile to traverse the region completely, we make an assumption about the form of $g(\tau)$ in order to obtain an expression for the shift. The spin motion is due to direct nuclear-spin exchange in solid He^{3} below $2^{\mathrm{O}} \mathrm{k}$ (Homer and Richards). This type of motion can be described by a Gaussian correlation function

$$
g(\tau)=\text { e } x p\left(-\frac{1}{2} w_{\ell}^{2} \tau^{2}\right) . \text { Where } w_{\ell}=w_{m}=J . \text { The ex- }
$$

change Hamiltonian is given by;

$$
\operatorname{Hex}=-\frac{1}{2} k_{1} \sum_{i \neq j}{\frac{T}{\sim_{i}}}^{H_{j}}
$$

Assuming isotropy of the relaxation rates with respect to the applied field direction, the frequency shift expression is:

$$
\delta=-\sum_{\gamma=-1,1,2} \sigma_{\gamma}^{2} \tau^{\prime \prime}
$$

where $\sigma_{\gamma}^{2} \longrightarrow$ the second moments of the satellite lines
caused by the off-diagonal terms in the dipolar Hamiltonian

$$
\tau_{\gamma}^{\prime \prime} \rightarrow \text { imaginary part of the Fourier transform of } g(\tau) \text { at }
$$

frequency $\gamma \omega_{0}$
$\tau_{\gamma}^{\prime \prime}$ is given by,

$$
\tau^{\prime \prime}=\frac{1}{\omega_{l}} e^{-\gamma^{2} \omega_{0}^{2} / 2 \omega_{e}^{2}} \int_{0}^{\gamma \omega_{c} / \omega_{0}} e^{u^{2} / 2} d u
$$

and the frequency shift becomes:

$$
\delta=\frac{\sigma_{0}^{2}}{3 \omega_{l}}\left\{e^{-\omega_{0}^{2} / 2 \omega_{c}} \int_{0}^{\omega_{c} / \omega_{0}} e^{u^{2 / 2}} d u+2 e^{-2 \omega_{0}^{2} / \omega_{e}^{2}} \int_{0}^{2 \omega_{0} / \omega_{l}} e^{u^{2} / 2} d u\right\}
$$

where $\sigma_{0}^{2}=\sigma_{1}^{2}=\frac{3}{2} \sigma_{-1}=\frac{3}{2} \sigma_{2}^{2} \quad$ is the seconc moment of the main NAR line at $\omega=w_{0}$ (when $w_{0}>w_{l}$)
For the calculated value of σ_{0}, we have,

$$
-\frac{\delta}{2 \pi}=\frac{1.93 \times 10^{9}}{\left(w_{l} / 2 \pi\right) v^{2}} F^{\prime}\left(w_{0} / w_{l}\right) \equiv \frac{1.93 \times 10^{9}}{\left(w_{0} / 2 \pi\right) v^{2}} F\left(w_{0} / w_{l}\right)
$$

with $F^{\prime}\left(w_{0} / w_{l}\right)=\frac{w_{l}}{w_{0}} F\left(w_{0} / w_{l}\right)$
where $F\left(\omega_{0} / \omega_{e}\right)=e^{-\omega_{0}^{2} / 2 \omega_{l}^{2}}$
and V is the molar volume of
the solid in cm^{3}.

In the axpression for the shift, it is easily seen that ס is directly proportional to $F\left(h_{0} / L_{\rho}\right)$. The figure below has been taken from Homer and Richards shows the variation of $F\left(w_{0} / w_{C}\right)$ (i.e. the shift) against $\omega_{0} / \omega_{\ell}$.

Gragh yi-5:F($\left.\omega_{0} / \omega_{e}\right)$ as defined in Ens. (1) and (2) of the toxt jotted against ω_{0} / ω_{c}. For a fived Jarmor frequency ω_{0} and molar vilume, $F\left(\omega_{0} / \omega_{\rho}\right)$ is proportional to δ, the nonsecular frequency shiti on the NMR-line of solid He^{3}. (Homer and Richards).

The calculated shift is found maximum when working $w_{0} \approx w_{l}$. They worked with $w_{0}=0.825 \times 2 \pi \mathrm{MHz}$ and $V=19.3 \mathrm{~cm}^{3}$. The experiment was run by a cw method by using a superconducting magnet and a crystal controlled oscillator. The magnetic field was modulated by a triangular sweep through the central portion of the NMR line (about 0.05 Gauss) with a period of 50 sec. The resultant amplitude modulation of the carrier wave was displayed on a chart recorder using r.f. amplification and detection. The change of the shift δ in NMR frequency appears as a change in χ, the separation of adjacent peaks of the NMR signal.

The rescnance line is first observed in the region of maximum shift. The peak separation x is measured $\left(x_{1}\right)$ and the crystal frequency noted on a counter $\left(w_{c}\right)$. w_{c} is increased by " Δ " and X_{2} is measured. The crystal frequency is returned to u_{c}^{\prime} and χ. measured $\left(\chi_{3}\right)$. Now the pressure on the sample is dropped to a value such that the shift is negligible and χ_{4} measured. Finally the pressure is dropped in two more stages ending up with a liquid sanple. A check is made that \mathcal{X} doesn't change after these two changes. Due to the Jinearity of the sweep, we have

$$
\frac{\delta}{\Delta}=\frac{x_{4}-x_{3}}{x_{2}-\frac{1}{2}\left(x_{1}+x_{3}\right)}
$$

As it is ceen in the figure below, we find

$$
-\frac{\delta}{2 \pi}=\frac{87 \pm 6}{83 \pm 11} \times(11.0 \pm 0.5) H_{z}=11.5 \pm 2 H_{z}
$$

This experimental result is very close to the theoretical result. And also it is in good agreement with Kubo and Tomita's theory using published data for the spin-exchange rate.

Eraph D-5:The peak separation x of adjacent NMR lides under various conditions of sample pressure and cr;3tal oscillator frequency described on the figure. The NMR lines are generated by a triangular sweep of the de magnetic field. (Homer and Richards).

IV - 6 - MEASUREMENTS OF LINEWIDTH FOR ${ }^{3}$ He ADSORBED ON GRAFOIL

Cowan, Richards, Thomson and Mullin (1976) measured the NMR linewidth as a function of the amount of ${ }^{3}$ He gas adsorbed at $1^{\circ} \mathrm{K}$. The substate was made up of a multiple sandwich of layers of 0.015 inch. and grafoil was used (by insulating) in order to separate sheets of Mylar. They heated the.grafoil to $1000{ }^{\circ} \mathcal{C}$ for 24 hours in vacuo and transferred it to a helium atmosphere where the Mylar sheets were inserted. The sandwich was sealed into an epoxy chamber with a sealed filling capillary. The chamber was then transferred to the main apparatus and fixed inside an r.f. coil whose axis was the plane of the grafoil sheets. The superconducting magnet also had its axis in the same plane.

Using the pulsed NMR at frequencies between 0.3 and 2.0 MHz , no significant heating by the r.f. pulses was observed. The data were taken by progressively adding gas at $1^{\circ} \mathrm{K}$ and the warming of the samples to $8^{\circ} \mathrm{K}$ for about 20 minutes followed by slow cooling back to $1^{\circ} \mathrm{K}$ to take data.

The graph below represents their results. T_{2} relaxation time at 1 MHz is plotted against the fraction of a saturated nonolayer (x).

They obtained the data with three clear-cut regions.
a) $x<0.75$, where T_{2} is nearly independent of x but shows a dependence on the applied magnetic field.
b) $0.75<x<0.98$, where T_{2} is independent of the nagnetic field but is strongly dependent on x so that,

$$
T_{2}=0.18 \in \times \mathrm{p}[(0.98-\chi) / 0.06] \quad \text { msec. }
$$

c) $0.98<x<1.5$, where T_{2} now increases as χ increases so that;

$$
T_{2}-0.18=3.0(x-0.98)
$$

Fraction of monolayer
Graph IV-7: Measurements of T_{2}, the NMR transverse reaxation time, for ${ }^{3} \mathrm{He}$ adsorbed on Grafoil at 1 K as a function of the fractional coverage x. The measuring frequency is 1 MHz , and $\boldsymbol{x}=1$ corresponds to a complete monolaver as defined by a $4.2-\mathrm{K}$ isotherm.
(Cowan, Richards, Thomson and Mullin).
IV - 7 - THE ANISOTROPY OF T_{1} AND T_{2} OF ${ }^{3}$ He ADSORBED ON

MYLAR FILM

Kent's recent work (1982) was the study of ${ }^{3}$ He adsorbed on Mylar film between $1^{\circ} \mathrm{K}$ and $4.2{ }^{\circ} \mathrm{K}$. He measured the relaxation times T_{1} and T_{2} at $4.2{ }^{\circ} \mathrm{K}$ using $180^{\circ}-90^{\circ}-180^{\circ}$ and $90^{\circ}-180^{\circ}$ pulse
sequences respectively.
The recovery of longitudinal magnetization at $\beta=0^{\circ}$ at $T=4.2{ }^{\circ} \mathrm{K}$ is represented in Graph (VI-8). It is non-exponential as is found with multilayer films on grafoil. It has been shown that if the system consists of n separate phases each of which relaxes exponentially at the rate $T_{1 n}$, if the rate of exchange of particles between these phases is slow when compared with the $T_{1 n}$, the total relaxation is the sum of each of the exponential decays weighted with the number of particles, in each phase, N_{i},

$$
h(\infty)-h(\tau)=\sum_{i=1}^{n} N_{i} e \times p\left(\tau / T_{1 i}\right)
$$

Figure (VI-8) is best described as a sum of two exponentials with $\mathrm{T}_{11} \sim 100$ msec. $\mathrm{T}_{12} \sim 350 \mathrm{msec}$. and $\mathrm{N}_{1} / \mathrm{N}_{2} \sim 1.6$

We plotted the anisotropy of T_{1} with respect to β (Figure VI-9). The faster decay time T_{11} was used in each case since it could be determined with much greater accuracy than T_{12}. The shape of the anisotropy curve and the relative values of $1 / T_{1}$ at 0° and 90° are in good agreement with the theory for a diffusive fluid with $w_{0} \tau_{d} \sim 10^{-2}$.

The decay of transverse magnetization following a 90° pulse was observed to be a single exponential. This seems unexpected since if the interlayer particle exchange rate is slow compared to T_{1}, it is even slower when compared to the shorter T_{2}. It may be that the early part of a non-exponential decay was hidden by

```
the receive dead time or the later part lost in the noise as the
echo became small. There are two decays visible but the relaxat-
ion times are very similar making it hard to discern between them
on a semilogarithmic plot.
    The anisotropy in }\mp@subsup{T}{2}{}\mathrm{ is represented in Graph VI-10. It shows
a definite minimum in the region of 32
is about 25%. It is not clear from the relaxation times, whether
we are looking at a solid or a fluid phase, however, the position
of the minimum seems to agree with the theory for a 2-D solid with
    \mp@subsup{\omega}{0}{}/J & 10, but the overall anisotropy is less than the theory
predicts.
    Neither of the theoretical curves on Graph VI-10 fit the data
above }5\mp@subsup{5}{}{\circ}\mathrm{ while below this angle the agreement is good.
    The conclusion is that: As far as the anisotropy study of
Helium - 3 on Mylar is concerned, the results appear somewhat
confusing. T measurements suggest that we are observing a 2-D
fluid phase while }\mp@subsup{T}{2}{}\mathrm{ data points to a 2-D solid. Both of these
phases are present and the experimental conditions for T T1 and T}\mp@subsup{T}{2}{
measurement were such that one of these phases was obscured. Al-
ternatively, we do not understand the behaviour of multilayer
films well enough to explain the results.
```


(1) $4-(\infty)$ प

Figure VI-IO; $1 / T_{2}$ as a function of β for Helium-3 adsorbed on Mylar film (coveragevs).

$$
\underline{m}=I \cdot A / c
$$

(I) by definition
where I----- electric current in atom
A ----- area

C----- light speed
Now first, what is I?

$$
t=\frac{1}{f} \quad f \rightarrow \text { frequency }
$$

$$
\left.\begin{array}{l}
w=2 \pi f \\
w=\frac{v}{r}
\end{array}\right\} f=\frac{v}{2 \pi}
$$

where $\omega \rightarrow-\rightarrow$ angular velocity
r $\longrightarrow \longrightarrow$ radius
$v \longrightarrow \rightarrow$ velocity

```
substituting "f" into " I ", we have
\(I=\frac{-e V}{2 \pi r}\)
(II) with \(q=-e\) for electron
```

what is A?

$$
A=\pi r^{2}
$$

substituting Equations (III) and (II) into Equation (I), we have,
$m=\frac{-\mathrm{evr}}{2 c}$
define \underline{J} as $J=m^{v} r$
J $--\rightarrow$ angular momentum
$m_{e} \rightarrow$ mass for electron
" m " becomes
$\underline{m}=-\frac{e}{2 m_{e} c} \underline{J} \quad$ and $\quad m=\gamma J$ with $\gamma=-\frac{e}{2 m_{e} c}$

WHEN $\mathrm{H}=\mathrm{H}_{0}$ 샤 , MAGNETIC MOMENT DOES A CIRCULAR MOTION IN THE
$x-y$ PLANE AND PRECESSES ABOUT THE z AXIS WITH THE LARMOR FREQUENCY $\omega_{0}=H_{0} \gamma$.

The Gyroscope equation:

$$
\begin{equation*}
\dot{\underline{m}}=\gamma \underline{m} \underline{H} \tag{I}
\end{equation*}
$$

Solution for constant $\mathrm{H}: \quad\left(\underline{H}=H_{0} \hat{\underline{\mathbf{k}}}\right)$

$$
\dot{m}_{x} \hat{i}+\dot{m}_{y} \hat{j}+\dot{m}_{z} \hat{k}=\gamma\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
m_{x} & m_{y} & m_{z} \\
H_{x} & H K_{y} & H_{z} \\
0 & 0 & H_{0}
\end{array}\right|
$$

we have,

$$
\left.\begin{array}{l}
\dot{m}_{x}=\gamma m_{y} H_{0} \tag{II}\\
\dot{m}_{y}=\gamma m_{x} H_{0} \\
\dot{m}_{z}=0
\end{array}\right\}
$$

therefore, $m_{z}=$ constant

The second time derivatives of m_{x} and m_{y} are

$$
\left.\begin{array}{l}
\ddot{m}_{x}=-\gamma^{2} H_{0}^{2} m_{x} \tag{III}\\
\ddot{m}_{y}=-\gamma^{2} H_{0}^{2} m_{y}
\end{array}\right\}
$$

and the solution of these equations are respectively the following:
$m_{x}(t)=m_{x}(0) \cos \left[\left(\gamma H_{\sigma}\right) t\right]+m_{y}(0) \sin \left[\left(\gamma H_{\sigma}\right) t\right]$
$m_{y}(t)=-m_{x}(0) \sin \left[\left(\gamma H_{o}\right) t\right]+m_{y}(0) \operatorname{Cos}\left[\left(\gamma H_{0}\right) t\right]$

If we square equation (IV) and add them side by side, it follows that;

$$
\begin{equation*}
m_{x}^{2}(t)+m_{y}^{2}(t)=\underbrace{m_{x}^{2}(0)+m_{y}^{2}(0)}_{R^{2}} \tag{V}
\end{equation*}
$$

Equation (V) describes a circle

General equation of a circle is given by:

$$
(x-\alpha)^{2}+(y-\beta)^{2}=R^{2}
$$

if $\quad \alpha=\beta=0$
circle equation becomes:
$x^{2}+y^{2}=x^{2}$
(i.e. centre is on the origin)

QUANTUM MECHANICAL EQUATION OF MOTION IN THE SCHRODINGER AND

HEISENBERG PICTURES

We postulate that all the information about the state is contrained in a multidimensional complex vector - KET.

Let us have the following:
a) We wish to be able to infer a state at time "t" from the knowledge of the state at time "to". $\left(t>t_{0}\right)$. Equation will be the first order in t.
b) Principle of superposition is to hold throughout the undisturbed motion. We introduce operator "T" which is: 1-1inear 2 - independent of state 3 - dependent of t and t_{0} such that

$$
\begin{equation*}
\left|P_{t}\right\rangle=T\left|P_{t_{0}}\right\rangle \tag{1}
\end{equation*}
$$

c) $\mathrm{T}^{\mathrm{T}}=1$ unitary operator

Lengths of vectors are unchanged

$$
\begin{aligned}
&\langle\mathrm{Pt} \mid \mathrm{Pt}\rangle=\left\langle\mathrm{Pt}_{0} \mid \mathrm{Pt}_{0}\right\rangle \\
& \text { Now, from equation (1), we can write } \\
&\left|\mathrm{P}_{t}\right\rangle-\left|\mathrm{P}_{t_{0}}\right\rangle=\underline{T}\left|\rho_{t_{0}}\right\rangle-\left|\mathrm{P}_{0}\right\rangle \\
&\left|\mathrm{P}_{t}\right\rangle-\left|P_{t_{0}}\right\rangle=(T-1)\left|\mathrm{P}_{t_{0}}\right\rangle
\end{aligned}
$$

Dividing both sides of equation (2) by ($t-t_{0}$) we get,

$$
\begin{equation*}
\frac{\left|\rho_{t}\right\rangle-\left|\rho_{0}\right\rangle}{t-t_{0}}=\frac{I-1}{t-t_{0}}\left|\rho_{0}\right\rangle \tag{3}
\end{equation*}
$$

The left-hand side of Equation (3) is $\left.\frac{d}{d t} \right\rvert\, p_{t}>$

We can expand T for small $t-t_{0}$
i.e. $\underline{T}=1+(t-t o) \underline{u}+\cdots-\cdots$
$\underline{T T}^{+}=1$ becomes :

$$
\begin{equation*}
\left[1+\left(t-t_{0}\right) \underline{u}+\cdots\right]\left[1+\left(t-t_{0}\right) \underline{u}+\cdots \cdot\right] \tag{4}
\end{equation*}
$$

Retaining only terms to first order in $t-t_{0}$, we have,
$\left(t-t_{0}\right) \quad\left(\underline{u}^{+}+\underline{u}\right)=0$
$\underline{u}^{+}+\underline{u}=0$ (5) Antihermitean

Introducing a Hermitian operator $\underset{\sim}{\underset{\sim}{P}}$, we write $\underline{\underline{u}}$ in terms of $\underset{\ell}{\mathscr{\ell}}$

$$
\begin{align*}
& \underline{u}=d / / h \tag{6}\\
& u^{+}=-\underline{H} / i \hbar
\end{align*}
$$

With Equation (6), Equation (3) becomes:

$$
\begin{equation*}
i \hbar \frac{d}{d t}|p+>=H| p t> \tag{7}
\end{equation*}
$$

This iflequation of motion" in SCHRÖDINGER picture (evolution in terms of gets).

Equation of motions can be expressed in terms of the evolution of operators rather than gets. This is to refer to the HEISENBERG picture.

Let Ω_{S} and α_{H} be two operators used in the Schrodinger and Heisenberg pictures respectively.

We have the following:

$$
\begin{align*}
& \alpha_{s}\left|\rho_{t}\right\rangle=\mid Q t> \\
& \left.\left|\rho_{t}\right\rangle=T\left|\rho_{t_{0}}\right\rangle ;|Q t>=T| Q t_{0}\right\rangle \tag{9}
\end{align*}
$$

from Equations (8) and (9) we write

$$
\begin{align*}
& \alpha_{s} T\left|p_{0}>=T\right| Q t_{0}> \tag{10}\\
& \propto_{H}\left|p_{t}>=\right| Q t_{0}> \tag{11}\\
& \propto_{H}=T_{1}^{-1} \propto_{s} T \tag{12}
\end{align*}
$$

We are seeking

$$
\frac{d}{d t} \simeq H
$$

Substituting Equation (8) into Equation (7), we get,

$$
\begin{equation*}
i \hbar \frac{d \underline{T}}{d t}\left|p_{t}>=\underline{H}>\right| p t_{0}> \tag{13}
\end{equation*}
$$

and it follows that;

$$
\left.\begin{array}{c}
i \hbar \frac{d T}{d t}=H I T \\
-i \hbar \frac{d T^{+}}{d t}=T^{+}{H^{+}}^{+}=T^{+}+P
\end{array}\right\} \quad \text { (14) with } H^{+}=H
$$

using Equation (12) in $d \propto_{H} / d t$, we write

$$
\begin{equation*}
\frac{d}{d t} \alpha_{H}=\Gamma^{+} \propto_{s} \frac{d}{d t}-T^{+}+\frac{d}{d t} T^{+} \alpha_{s} \tag{15}
\end{equation*}
$$

now we use Equation (14) in Equation (15), so,

$$
\begin{aligned}
& =\underline{T}^{+}\left[\propto_{S}, \underline{\mathscr{P}}\right] \underline{T} \\
& =\underbrace{T^{+}}_{\alpha_{H}} \underbrace{T}_{1} \underbrace{T}_{\mathscr{H}_{H}} \frac{d \mathscr{T}}{T}-\underline{T}^{+} d T^{+} \underline{Q}_{S} T \\
& =\alpha_{H}{\underset{H}{H}}^{p}{\underset{H}{H}}^{H_{H}} \\
& i \hbar \frac{d}{d t} \propto_{H}=\left[\alpha_{H}, H_{H}\right]
\end{aligned}
$$

Equation of motion in the new operator \tilde{H}_{H}

APPENDIX VI - 1 :

THE CALCULATION OF THE PULSE LZNGTH

For a 90° pulse $\left(\theta=\frac{\pi}{2}\right)$, from Equation VI-1, we write;

$$
\frac{\pi}{2}=w_{1} t_{p} \quad \text { (I) } \quad \text { with } \quad w_{1}=\gamma H_{1}
$$

The magnetic flux Φ across a coil of inductance L is:

$$
\begin{equation*}
\Phi=2 H_{1} \cap A=L i \tag{II}
\end{equation*}
$$

where the field " $2 \mathrm{H}_{1}$ " is the amplitude of the linearly polarized magnetic field produced by current i circulating in the coil. "A" is the area of cross-section with diameter " d ". " n " is the number of the turns of the coil.

From (I) and (II), we have,
$t_{p}=\frac{\pi^{2} n d^{2}}{4 \gamma L i}$
(III) with $A=\frac{1}{4} \pi d^{2}$

For a coil system the voltage across it is given by

$$
v=i w_{L}
$$

(IV)

And with this, Equation III becomes:

$$
V \cdot t_{p}=\frac{n \pi^{2} d^{2} \omega}{4 \gamma}=\frac{n \pi^{3} d^{2}}{2 \gamma} f_{0} \quad \text { (v) with } w=2 \pi_{f_{0}}
$$

$$
L=\frac{\mu_{0} n^{2} A}{l} \times 0.7 \Rightarrow n=\sqrt{\frac{L l}{0.7 \mu_{0} A}}
$$

From V and VI, we obtain,

$$
v t_{p}=\frac{\pi}{\gamma} \sqrt{\frac{v}{0.7 \mu_{0} c}}
$$

$$
\begin{array}{ll}
\text { (VII) with } & \ell \cdot H=v \\
& L=1 / w^{2} C
\end{array}
$$

$1 \longrightarrow$ length
$\mathrm{v} \longrightarrow$ volume
$\epsilon \longrightarrow$ capacitance
$\mu_{0} \rightarrow$ permeability

REFERENCES:

```
ABRAGAM, A., The Principles of Nuclear Magnetism (Oxford, 1961)
AYDIN, F., Contemporary Physics (1979)
BLOCH, F., Phys. Rev. 70 (1946a) 460
BLOCH, F., HANSEN, W.W. and PACKARD, M., Phys. Rev. 69 (1946) 127
BLOEMBERGEN, N., PURCELL, E.M., and POUND, R.V., Phys. Rev. 73
    (1948) }67
COHEN-TANNOUDJI, C., The Physical Explanation of the Shift Lec-
    ture Notes (unpublished)
COWAN, B.P., "Equation of Motion of the Density Matrix" Lecture
    Notes (unpublished)
COWAN, B.P., J. Phys. C: Solid State Phys. Vol. 10, (1977)
COWAN, B.P., J. Phys. C: Solid State Phys., 13, (1980) 4575-99
COWAN, B.P., J. Low Temp. Phys. 50, (1983) 135-142
COWAN, B.P., RICHARDS, M.G., THOMSON, A.L., and MULLIN, W.J.,
    Phys. Rev. Let. Vol. 38, No.4 (1977) 165-1.68
ENCYCLOPAEDIA BRITANNICA 16 (1968) }70
FUKUSHIMA, E., and ROEDER, S.B.W., Experimental Pulse N.M.R. (1981)
HOMER, J.M., and RICHARDS, M.G., Phys. Rev. Let. Yol. 22, No.7
    (1969) }27
HUBBARD, P.S., Phys. Rev. Vol. 131, No. }4\mathrm{ (1963) }115
KENT, A.J., The Anisotropy of T T1 and T T2 of 3 3 He Adsorbed on Mylar
    Film (unpublished)
KITTEL, C., Introduction to Solid State Physics (1971) Chapter 17
KUBO, K., and TOMITA, K., Jour. of Phys. Society of Japan Vol.9,
    No.6, (1954) }88
```

KUBO, R., and TOMITA, K., International Conference of Theoretical Physics, (1954) 779

REDFIELD, A, G, IBM Journal 1 (1957)
TEH, C.K., M.Sc. Thesis, (1980)

