
A /

OPTICAL ' AND IITTSRPEROIIETRIC STUDIES

OP

CROV/TH PHENOIvIENA ON CARBORUNDUM CRYSTALS

BY

AJIT RAM VERFiA

THESIS

PRESENTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE UNIVERSITY OP LONDON



ProQuest Number: 10096577

All rights reserved

INFO RM ATIO N TO ALL U SER S  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10096577

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ©  ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



ABSTRACT.

The theory of the growth of a perfect crystal 
is outlined and a brief description is given of the 
development of this theory, taking into account the 
presence of imperfections, especially dislocations, 
in the crystal. The molecular ’growth spirals’ and 
other features predicted by this theory put forv/ard 
by Burton, Cabrera and Frank require improved exper
imental techniques for their study, which are described. 
The experimental study of the growth features divides 
itself into two parts

(1) Microscopic studies
(2 ) Interferometric studies.

The different growth features observed on the 
faces of silicon-carbide (Si-C) crystals are illustrated 
and explained. The observed ’growth spirals’ can be 
divided into three types:

(1) Elementary spirals with step heights equal 
to the size of the X-ray unit cell

(2) Spirals originating from dislocations of 
multiple strength, the step heights being 
a multiple of the X-ray unit cell

(3) Interlaced spirals in which the step heights 
are a fraction of the unit cell.



The microscopic studies illustrate the information 
about the shape of the spirals, the behaviour and inter
action of growth fronts with one another, originating from 
different sources, the growth pattern for a nuraber of screw 
dislocations emerging on the crystal face fault surfaces, 
and their statidcal properties such as density of dis
locations etc. From these studies the type of information 
obtainable about the conditions of growth is the size of 
the critical nucleus and the supersaturation.

The interferometric techniques utilized for the 
measurement of step heights are discussed. A study of 
the measured step heights leads to an understanding of 
the interesting property of ’polytypism’ as observed in 
silicon-carbide crystals which occur in different types 
as shown by X-ray diffraction data. The ’growth spirals’ 
demonstrate the X-ray predictions and confirm them.
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CHAPTER I.
THEORY OF TEE GRCTOK OF A PSBF3GT CRISTAL.

1.1. INTRODUCTION.
The history^ of the theory of crystal grov/th 

divides itself into two parts. Firstly, the theory of the 
grov/th of an ideally perfect crystal and secondly the 's
growth of real crystals v/hich are imperfect. The essential 
ideas of the growth of perfect crystals were first 
formulated by Gibbs (I878). This theory has been developed 
during the last thirty years by Volmer (I920 onwards),
Kossel (1927), Stranski (I928), Becker and D&ring (1935) 
and Frenkel (19i].5,19ij.é). Burton, Cabrera and Frank (19^9  ̂

1951) vjho have reexamined some aspects of the earlier 
theory, have developed a theory of crystal grov;th which 
takes into account the presence of imperfections, especially 
dislocations. The experimental observations of the present 
investigation are connected with the latter theory, and 
have not only confirmed many of its predictions but have 
also supplemented them with nev/ facts. Hov;ever, for the 
sake of continuity, a brief account of the theory of the 
growth of a perfect crystal will be given, no attempt 
being made to discuss this extensive and well-developed 
quantitative theory. Instead the subject will be presented 
more from a geometrical and pictorial point of view.

1 .



emphasizing those results which have a bearing on the 
later theory in which the dislocations play such an 
important role.

1.2. GROWTH OF A PERFECT CRYSTAL.
A crystal of any shape may be considered as being

bound by close-packed planes of atoms containing steps.
The surfaces which coincide with close-packed planes are
the only ones v;hich are planar in the sense that all the
surface atoms lie on a plane. The vicinal faces may be
regarded as close-packed planes separated by steps. For
the purpose of illustrating the growth of a perfect crystal,
the simple Kossel model may be considered, the molecules

are
being taken as cubes which/stacked face to face. Each cube 
is attracted equally by all its six neighbours and only 
the nearest neighbours attract one another.

The structure of any low-index face of a perfect
crystal at the absolute zero of temperature at which there
are no thermal vibrations may be ^  own as fig. ( ! ,
which represents the profile of a completely flat surface
partially covered by another molecular layer. The boundary
line v;here there is a difference of level equal to an
intermolecular spacing between the two sides of the line is
called a step on the crystal surface. In general this step
will also be incomplete, giving a "kink" of the type marked
’A* in fig. ( |a ), in the step. As shown below, these

2 .



"kinks" play an important part, by acting as "exchange 
sites" in the positioning of new molecules in the building 
up of the crystal in order to complete a new layer.

As the temperature is raised from absolute zero,
the component molecules will start vibrating relative to
one another, the vibrations becoming progressively stronger
as the temperature is increased. Soon molecules will be
shaken from the crystal and will fly about in the space
surrounding it. These free molecules constitute the
vapour. Thus there will be a certain vapour concentration
(average number of vapour molecules per unit volume) in
contact with the crystal surface. Those molecules which
are at the "kink" positions are more likely to leave the
crystal and vapojrize, though this will also happen for
some molecules at other positions. . This can be pictured in
the above model, since the molecules at the "kinlis" are
bound only by three molecules, vjhilst those on the straight

by
portions of the step are bound/four and those on the flat 
portions of the surface by five. The energy needed for a 
molecule to leave the "kink" position such as A  is equal 
to the evaporation energy \\f . Two processes will occur 
simultaneously; while some molecules will be leaving the 
crystal, others will be arriving at the crystal from the 
vapour. An equilibrium state is reached when the rates of 
these two processes are equal. The surface will now look



more like fig. (2), having changed from fig. (la) in tv/o
ways. Firstly the step has acquired a number of kinks such
as A. Secondly a small number of molecules have been
adsorbed on the crystal surface and on the step, s/hown in
fig. (2) as B, and also a similar number of surface vacancies
C, a smaller number of pairs of adsorbed molecules D or pairs
of vacancies have been created. Aggregates of larger numbers

r
of molecules may also be formed but their propojbion will be 
progressively smaller, as the number of molecules in the 
aggregate increases.

(i) Frenkel (19l|5 )̂  Burton and Cabrera (1949^
1951) have studied the structure of a monomolecular step 
and have calculated the number of kinks per unit length.
These kinks will be of two kinds, one may be called a 
positive and the other a negative kink. Suppose the step 
is along the x-axis, follov/ing it along the direction of 
increasing x, points where y increases or decreases by 
a unit spacing ’a ’, the intermolecular distances, are 
called positive and negative kinks respectively. They 
have shown that cif n ^  and n__ is the number of kinks of 
opposite sign per atomic spacing measured along the nearest 
principal direction, then in equilibrium

TV^TU_=  (0

where W  is the energy necessary to form a kink, T is

4 .



the absolute temperature, is the Boltzman’s constant.
They estimate ^  to be of the order of W  , ‘where W

IZis the evaporation energy.

The mean distance between the kinks is given
in terms of ’a ’, the interatomic distance by

Æ. =    <2)

~  ^  a  ixlv Cwl-fe-T) ...............

Introducing ^  , the nearest neighbour interaction,
which is related to the evaporation energy V J  by the 
equation

c|:>rr-LV\/  - C^)

Equation (3) may be written as

Xo 3: 1 CL-Ĉ  C4" /2. "liT)  C5)

For growth under typical conditions, which may be taken 
as such that the temperature lies between O.5 0.8
times , the boiling point in degrees K, j ~  4
and equation (5) gives

X o ~  4 CU   (^)

This concentration of kinks in the steps will remain

5 -



practically unchanged even if the vapour is super
saturated.

(ii) The proportion of the surface sites
covered by adsorbed molecules has been given by Burton,
Cabrera and Prank (1951) approximately

=: (—  W g  )   C 7 )

where VvĴ  is the energy required to transfer a molecule 
from a site A to the plane surface. They have
estimated W .  to be about i. W  . ̂ Z

It was first realized by Volmer that adsorbed 
molecules diffuse with considerable ease over the crystal 
surface. Therefore, the process of growth of a crystal 
surface with steps will be the result of three processes. 
Firstly^a transport of molecules from the vapour to the 
adsorbed layer." Secondly, the diffusion of adsorbed 
molecules towards the steps. Thirdly, the diffusion of 
adsorbed molecules along the edge of the steps towards a 
kinlc. These processes are shown pictorially in fig. (I).
The mean displacement of adsorbed molecules, which
is the average distance a molecule wanders on the crystal 
surfa ce between the time it hits the surface and the time 
it evaporates again is given according to Burton, Babrera

6.



and Prank (I93I) by the equation

OU  ̂( W5 —  U^) I Z } .....

where is the activation energy for surface diffusion
i.e. for migration from one surface site to another, and
this has been estimated to be of the order of jL W  :Zo

is the evaporation energy from the surface to the 
vapour and is given by V\̂  —  3 ^  i.e. half the total
evaporation energy W  • From this ̂ neglecting U5 ̂ we 
can estimate that

X, ~  OL ( 3 <f f ̂  ) ------------ --'S

Z
which is ^  4 x 10 cu — — ---------

for typical values of j ^  4 •

This show3 that CXj from which it follows
that in growth fom the vapour, the rate of direct arrival 
of molecules from vapour at any particular point on a 
crystal surface is generally small as compared with the 
rate of indirect arrival by way of surface migration.

The points where growth actually occurs are the 
kinks in the steps. This can be pictured again in the 
above model, for, when an atom meets a step, it is held

7



at the step where it is more tightly bound to the.crystal, 
being in contact on two of its six sides. Eov/ever, it ^
continues to diffuse along the step until it hits a kink 
or re-entrant angle, where it makes three bonds v/ith the 
crystal. When the crystal is in equilibrium with the 
vapour, molecules join and leave these points with equal 
frequency. The rate of departure depends only on the 
temperature while the rate of arrival is proportional to 
the vapour concentration. Hence when the vapour pressure 
is increased above the equilibrium value, more molecules 
join kinks than- leave them and so the step advances.
The velocity of a ’straight step ’ is given by
Burton, Cabrera and Frank (I95I)

Voo —  2 o " X s Z }3  (II)

ViThere Z. is the frequency with which the molecules
from the equilibrium vapour strike a lattice site in the
surface; ^  is a factor v/hich is unity in simple cases, 
and <r is the.supersaturation defined by

=  I  CI2)
Po

in which ^ is the actual vapour pressure and the
saturation value, CX being called the saturation ratio.
Qualitatively this means that all molecules which hit 
the surface in the "diffusion zone" of width will

reach the advancing step and since there is a large

8.

(T- - (x- I , = -r
Po



concentration of kinks (i.e. exchange sites) in the step 
they v/ill be adsorbed.

A curved step with a radius of curvature ; 'P 

advances with a velocity given by

U .  ( I- j )  -------------------

where , ie the radius of critical nucleus defined by
equation ( 16) is given by

(h<^ I  oc  (|6)

Thus all the steps initially present on the surface 
of the crystal, during the process of growth will travel 
towards the edge of the crystal and disappear forming a 
completed surface, which will contain a few adsorbed 
molecules and perhaps a few vacancies. Any further growth 
will be possible only if new steps can be formed.

1.3. SURFACE NUCLEATION.

Frenkel (l̂ Ij-S) extended the idea of the formation 
of kinks in a step to the formation of steps on a perfect 
crystal face, in a similar way. Detailed calculation by 
Burton and Cabrera (1914.9,1951) shows that steps will not 
be created by thermodynamic fluctuations on a low-index 
face unless the temperature is close to the melting point.



when the surface rapidly becomes rough. Therefore, for 
the growth to continue, steps must be formed, gradually, 
if at all, at ordinary temperatures.

Gibbs (1878) first appreciated that this requires 
the initiation of a new layer which is a nucléation process 
Before a nev/ layer can grow, a nucleus or an island 
monolayer of the type shown in figs. (1 k 3 ) must be 
formed on the surface. The problem of nucleating an island 
monolayer on a close-packed crystal surface is similar to 
the familiar problem of nucleating a water droplet. For 
a given supersaturation, there is a critical radius ^  of 
the nucleus (assuming it to be circular), such that a 
nucleus of radius greater than will grov/ and if less,
it will evaporate. This arises because the line energy of 
the step of the island monolayer causes a local equilibrium 
vapour pressure which is inversely proportional to its 
radius of curvature. Thus a nucleus with a small* radius 
of curvature has a high equilibrium vapour pressure.
Hence, the supersaturation which is the excess of ambient 
vapour pressure over the equilibrium pressure is less^and 
for a sufficiently small nucleus, the supersaturation may 
actually be negative so tha t the nucleus evaporates. The 
formation of a new layer thus depends upon improbable 
fluctuations among aggregates of adsorbed molecules 
ultimately producing a critical nucleus. The probability

1 0 .



of this occurrence was first calculated by Becker and 
During (1935) on the assumption of a rectangular nucleus 
and is of the form

2 (S/s.) -£/ocj\2 (— f̂ o/ )   (1^)

where Zj is essentially the rate of arrival of fresh 
molecules at single surface lattice sites; S  is the 
surface area of the crystal face under examination; So is 
the area per molecule in the layer ; and A o  half the 
total edge free energy of the critical nucleus and is 
given by

A o  —  ^ fc ^ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
a

In the simple case of a circular nucleus , the radius
of the critical' nucleus is given by

—  ou(^ y 2 ^ 1 "  --------------Q V

and therefore /\„ n  ^  ~T ' Cl7)

Recently Burton, Cabrera and Pranlc (1951) have 
re-examined the theoretical basis of this equation with a 
more detailed consideration of the shape of the nucleus in 
various stages of growth, and the influence of molecular 
diffusion on the surface of the crystal. They concluded
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that apart from an unimportant numerical factor, the 
formula ( 14 ) is a correct deduction in view of the 
assumption made.

To make an estimate of this probability typical 
numerical values can be substituted in formula ( 14 ).
r-y »3 _|cannot exceed |0 sec even in a dense

environment, therefore, for a crystal of millimetric
dimensions, the whole factor outside the exponential
must be less than |0 ; generally it is about |0 .
For any observable grov/th rate on the time scale of a

—  3laboratory experiment ( say 10 layers per sec. i.e.
1 micron per month), it follovjs that -&KU 01 must be at
least/(p^ \ which with typical value of <j> j - ^ T

/
signifies a supersaturation pf .at least 25^ to 
Thus the nucléation rate is an extremely sensitive function 
of supersaturation. Above this critical supersaturation, 
the growth rate v/ould increase rapidly with supersaturation, 
the process not being limited by nucléation. Below this 
critical supersaturation, the probability of nuclei 
formation would become rapidly negligible.

These theoretical conclusions are however, not in
agreement with experimental observations. Volmer and
Schultze (1931) trying to verify this result studied the
growth rate of individual iodine crystals in slightly

0
supersatiiated vapour at 0. C •

1 2 .



They found the growth rate proportional to the super
saturation down to a value of 1^. Only helov; this degree 
of supersaturation did it fall below proportionality and 
then not abruptly.

On the other hand, the observations of Haward 
(1959) in agreement with the theory of suiface
nucléation. He studied the deposition of several 
sublimable solids like (4^ on a metal surface, 
coated with a previous deposit of the same substance.
This coated metal target was subjected to a vapour 
’beam* of controlled intensity at a fixed temperature. 
Using a weighing technique to measure the mean overall 
rate of deposition, the theory of surface nucléation 
was verified.

There are, however, no other known experiments 
of this kind. In general for those crystals which grow, 
the growth rate is proportional to supersaturation down 
to values much lower than the theoretical supersaturation 
of surface nucléation theory.

1.1;. SUIvttlARY.

To summarize then, the position is as follows.
Any crystal face with a step will continue to grow 
because of the high concentration of kinks in it created

by Thermal fluctuations. During the process of growth

13.



this step will travel to the edge of the crystal and 
thus disappear leaving a complete crystal surface. 7/hen 
all the steps have been eliminated by advancing and 
forming complete layers, further growth will continue 
only if new steps can be formed. Now on a low-index face, 
steps cannot be created by thermodynamic fluctuations in 
the same way as the creation of kin&s in a step, below a 
certain critical temperature which is close to the 
melting point. Therefore, for further growth on lov/-index 
faces, steps must be formed gradually at ordinary temperatures: 
by some mechanism. This can happen by the formation of a 
two-dimensional nucleus or island of molecules, the edges 
of which will provide the necessary steps. It has been 
shown that the probability of the formation of nuclei is 
a very sensitive function of supersaturation and is quite 
negligible below a certain critical value which for 
typical values of the constants involved is of the order 
of 2^% to $0^. Hov/ever, real crystals grow at obser_jvable 
rates at super saturations of 1^ or lov/er—  infact the most 
regular and well developed crystals are obtained at low 
supersaturations. At these low supersaturations the 
probability of the formation of nuclei is negligible.

This, therefore, leads us to the conclusion that 
the growth of crystals at low supersaturations can only be 
explained by recognizing that real crystals are not perfect.

ÜI-.



This idea first introduced by Frank Burton et al.
19ll9̂  1951 ) for the growth of a crystal, provides us with 
another mechanism by which a surface remains stepped no 
matter how far the steps advance. Therefore, the growth 
of the crystal face will continue. In the following 
chapter a description of the development of this theory 
will be given.

15



CHAPTER II.

GROWTH OP AN IFiPERPECT CRYSTAL

2 .1. DISLOCATIONS
Smekal first pointed out that an important 

difference in the properties of crystals is related to the 
distinction between ideal and real crystals. Certain 
properties of crystals which are essentially independent of 
crystal defects were designated by him as structure- 
insensitive, whilst those depending upon the presence of 
defects were called structure-sensitive properties. Among 
the structure-insensitive properties, may be named the 
specific heat, elasticity, thermal expansion and compress
ibility, the energy of formation, the principal features 
of optical absorption (colour) and dispersion, and finally 
dia - and para magnetism. The important structure sensitive 
properties are, diffusion phenomena, the ionic and electronic 
conductivity in insulating crystals and semi-conductors, the 
internal photo-effect, plasticity, and crystal strength.

The imperfections introduced to explain these 
structure sensitive properties of a real crystal, are of 
tliree different types. The first type of crystal defect 
consists of lattice flaw where foreign atoms have taken up 
the normal positions of the atoms in the crystal lattice, a 
vacant site may be said to be a special case of this. The

second type is known as interstitial atoms. These consist

16.



of either foreign atoms or atoms of the crystal material, 
outside the regular geometrical positions v»v the crystal 
lattice. The third type which is called dislocations, 
consists of purely geometrical faults in the crystal lattice. 
Of these, only the last type has any effect on the lattice 
at distances greater than a few inter-atomic spacings.

The concept of a dislocation arises naturally as a 
result of the crystallographic nature of plastic flow. It 
is observed in strained metals that slip lines mark important 
crystal planes and the plastic strains can be resolved into 
simple shears along these planes, the plastic flow being deter 
mined by the shear stress. Furthermore, gliding occurs in 
the direction of closest atomic packing in the glide plane 
and not in the direction of maximum resolved shear stress. 
Therefore, this shows that the plastic flow occurs by the 
sliding of certain atomic planes called slip planes, the 
structure of which remains crystalline during flow.

Now, if we consider a plane of atoms A , sliding 
in a certain crystallographic direction across a neighbouring 
plane B , different portions of A will, in general, slip 
over B by different amounts. This v;ill be so, because the 
atoms in a crystal are not rigidly bound to each other but 
are elastically coupled so tha^t thermal vibrations and local 
irregularities will malce the forces acting over the glide

17



planes non-uniform. A boundary may be pictured such that 
on either side of this, the two planes A  and S  have 
slipped by different amounts. The type of line discontinuity 
marking this boundary is called a dislocation. There are 
two standard types of dislocations, the ’edge* and the ’screw* 
dislocation, with a series of intermediate cases which can 
be regarded as composed of these two standard types. An 
excellent account of the theory of dislocations has been 
given by Cottrell (l̂ Ij.̂ ) * These dislocations will be briefly 
illustrated by simple models.

2.2 . EDGE DISLOCATIONS

The type of dislocation which was first introduced 
by Taylor (I93U) Polanyi and Crow an (I93U) is called
the ’edge * dislocation. This may be pictured as follows. 
Consider a block of crystal (fig. ( i|. ) ) in which the lower 
half of the crystal is pulled with respect to the upper half 
in the direction shown by arrows. The result is shovm in 
fig. (1| •). We see that the part A B E F has slipped in the 
direction A ’F ’ and the part E P D C has remained unslipped.
E F marks the boundary between the two regions which have :
slipped by different amounts and is the dislocation line.

diThe atomic structure in the side plane per pellicular to E F 
is shown in fig. (5). It will be seen in fig. (5) that atoms 
in the upper half crystal P are compressed along the slip

direction and those in the lower half Q, are extended. The
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situation is analogous to the insertion of an extra half 
plane of atoms from above. The dislocation line lies at 
the edge of this plane and hence its nameo It will be 
observed that the dislocation line E P is perpendicular to 
the slip direction A ’P*.

Dislocations can also exist which are the inverse 
of that shown in figs. (!{.) and (5), and will be created when 
the extra half plane of atoms is inserted from below instead 
of from above. Tliese two types are called the positive and 
negative dislocations. Since, by inverting the diagram, or 
crystal, a positive dislocation can alv/ays be turned into 
a negative one or vice versa, this distinction would be 
trivial. The real distinction between the positive and 
negative dislocations is given by the forces exerted between 
the dislocations, since dislocations which are of the same 
sign repel each other vhile those of unlike sign attract one 
another.

2.3. SCRmV DISLOCATIONS

The second type of dislocation was first introduced
by Burgers (1939) and is called a screw dislocation. This
may again be illustrated by a crystal model. A cut A: B E P 
is made in the crystal (fig. ,{G) ) and the crystal material
to the right of the cut is pushed down by one molecular
diameter. The result is shown in fig. (7). A step had now
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been created, on the surface of the crystal such that on 
the left hand side, the plane of the crystal, surface is 
higher and on the right hand side it is lower. The step 
does not extend throughout the surface of the crystal but 
extends only from the point P to the edge of the crystal.
The line E P is the boundary line between the right and 
left parts of the crystal which have slipped by unequal 
amounts and hence is the dislocation line. The model of 
fig. (8) illustrates the arrangement of molecules for a 
dislocation line meeting the surface of the crystal at right 
angles. The molecules in the crystal no longer lie on planes 
as in the ideal lattice but are continuously displaced. At 
distances larger than a few intermolecular distances from 
the dislocation line, the crystal deviates very little from 
perfection: only very near the dislocation line some 
irregularity seems to appear. In fig. (9) showing arrange
ment of molecules in the slip plane A B C D, a part A B E P 
of this plane has slipped in the direction E P, while the 
remainder P E C D has not slipped. In fig. (9) the dotted 
lines and circles, represent the molecules to the of
the slip plane whereas the molecules to t h e A t g ^ o f  the 
slip plane are represented by full lines and circles. It 
may be pointed out that the dislocation line E P is parallel 
to the slip direction.

A route may be considered on any lattice plane of 
the crystal, along a line drawn through nearest neighbouring
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atoms in such a way that it forms a closed plane loop. Such 
a line is called a Burgers circuit. If by tracing the line 
in the real lattice, corresponding to the circuit in the 
perfect lattice, this line does not form a closed loop, then 
a geometrical fault bf the dislocation type is present. The 
vector required to complete the Burgers circuit is called the 
resultant Burgers vector of the dislocations encircled.

This may be pictured in the above model of figs. (7 & 
8) by considering a route taken from the top of the step, 
going round the dislocation point P back to the bottom of the 
step. Y/e have followed a path on the surface of the crystal 
which was flat before the creation of the dislocation, and 
instead of finishing at the starting point we finish one 
molecule beneath it. In order to complete the Burgers circuit 
i.e. to reach the starting point, a vector equal to the height 
of the step is needed. Burgers gave the name "dislocation 
strength" to the modulus of this vector.

The crystal containing one screw dislocation is not 
built of molecular layers stacked on top of each other as in 
ideal case, but instead consists of a single molecular plane 
in the form of a helicoid of a spiral staircase and hence the 
name screw dislocation; the dislocation line being called its 
axis •

The Burgers vector is independent of the distance of
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the Burgers circuit from the dislocation, giving evidence 
only of the total effect of the dislocations encircled. Pairs 
of dislocations of equal but opposed Burgers vector may escape 
detection unless the Burgers circuit is taken as small as 
possible. A more detailed description of the general behavi^ 
of the Burgers circuit has been given by Prank (I93I). Since 
the Burgers circuit can be continuously displaced along the 
dislocation line without change in its Burgers vector, a 
dislocation cannot terminate within the crystal.

The screw dislocation may be either of the right- 
handed or the left-handed type. In the right-handed type, 
moving along the Burgers circuit from a higher to a lovjer 
level, ' the route v;ill be clockwise, whereas in the left- 
handed type it . will be anticlockv/ise. The right-handed dis
location v;ill be obtained when the crystal material to the 
right of the cut A B E P (fig. 7) has been pushed down with 
respect to the other, the inverse operation will create a 
left-handed screw dislocation. Since these dislocations may

Yv
be turned into one another by tuijing the crystal, this dis
tinction would again be trivial, but as before it is the 
forces exerted between the dislocations that distinguish 
them - like dislocations repel and those unlike attract each 
other. As is shown in the next section right-handed and left- 
handed screw - dislocations give rise to ’growth spirals’ 
which are clockwise and anticlockv/ise respectively. This

22.



distinction is of importance when growth fronts originating 
from different sources interact with one another.

2 . il-. GROV/TH SPIRAL

The dislocations that take part in the grov/th of a 
crystal are of the screw type. As seen in the last section, 
a screw dislocation emerging on the face of a crystal provides 
it with a step. This step is self perpetuating in the sense 
that when one, two or any number of layers of atoms have been 
laid down on the crystal surface, the step remains. Hence 
the steps needed for the growth of a crystal are provided by 
the screw dislocations and the need of two dimensional 
nucléation never arises. This offers an explanation to the 
observed growth of crystals at low supersaturations.

The process of growth under these circumstances in 
the presence of screw dislocations will be similar to that 
outlined for a perfect crystal with a step. The step provided 
by the screw dislocation will have kinks as before and when 
the atoms are adsorbed on the crystal surface, they diffuse 
to the step and finally to the kinks vjhere they are adsorbed 
for the building up of the crystal and the step will advance. 
In the case of a perfect crystal the step extended all the 
way across the crystal surface so that it could advance 
parallel to itself, thereby completing a new layer. However, 
the step provided by the emergence of a screw dislocation, 
terminates at the dislocation point, where it remains fixed.
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Hence, when growth takes place, the step can advance only by 
rotating round the dislocation point somewhat like the hand 
of a clock. At a particular supersaturation each point on a 
straight step will advance with the same speed, therefore, 
the section of step near the dislocation v/ill have a higher 
angular velocity for the same linear velocity and consequently 
make a largei^umber of revolutions in a given time than the 
sections further out. Thus the step will wind itself into a 
spiral. Actually, for the section of the step near the centre 
because of the higher curvature there will be a h i ^ e r  
equilibrium vapour pressure and therefore a lower local super
saturation, so that its rate of advance is slower and its 
curvature is everywhere less than , as seen from equation
(13). V/hen the steady state has been reached, the whole spiral 
will rotate uniformly about the dislocation. Several stages 
of the development of a grov^th-spiral are shown in fig. (10) 
which shows the top of the crystal in fig. (8) looking from 
above. In fig. (10) the spiral has been drawn as a smooth 
curve. The exact shape of the spiral and the more complex 
shapes arising from a number of dislocations is left to a 
later section.

These considerations, which were first put forward by 
Prank (19li-9 )̂  predict that on the surfaces of the crystals 
which have grovm by this mechanism, flat molecular pyramids 
should be observed. An ideally long anneal would get rid of 
these dislocations but in practice some may always be expected
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to remain. The available experimental evidence in support 
of this theory vjill now be given.
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CHAPTER III 
PAST 0B3ERVATIOHS

3.1. DIFFICULTIES OF OBSERVATION

The elementary, molecular growth features (as distinct 
from gross growth features) are the ideally simple features 
which are easily interpreted by theory and are therefore 
likely to reveal considerable information about the mechanism 
of crystal growth. Therefore, it is only these molecular 
growth features, which have not been influenced by any 
accidental disturbances of growth, that have been studied in 
the present investigation.

Before the discovery of electron-microscope only
optical instruments^such as a light microscope,were available
to study these growth phenomena, for whi ch purpose two
resolutions of the ins truments are required viz. the lateral
resolution perpendicular to the direction of observation, and
the resolution of depth. 'The depth resolution needed is of
the order of a few Angstrom units and is characteristic of the
crystal under examination, whereas the lateral resolution in
an optical microscope is limited by the wave-length of light.
Consequently the growth features had to be sufficiently far
apart, to be resolved. This necessitates mailing observations
on almost perfect crystals, molecularly flat over vjide areas;
such crystals are rare. After obtaining such a crystal, the
problem still remains to make visible these features only a
few Angstrom units high. It is only recently that the optical
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techniques of multiple-beam interferometry and phase-contrast 
microscopy have developed sufficiently to make possible the 
study of such features.

The technique of electron microscopy is very superior 
for lateral resolutions but has only a limited resolution in 
depth probably of the order of 50 A e.g. the observation by 
Dawson- and Vand (I93I) of growth spirals of long-chain 
paraffins with step height equal to J4.7 A. This limitation will 
make it impossible to observe most of the growth features of 
step heights less than this. Naturally experimental 
observations of such growth features will be necessarily 
limited.

3.2. EARLIER OBSERVATIONS

Several workers have studied the surfaces of growing 
crystals. Marcelin (I9I8) and Kowarski (1935) studied the 
growth of m-toluidine from alcoholic solutions, which gows 
in extremely thin plates, thin enough to give interference 
colours. Discontinuities in the shade of interference colours, 
vjhich meant discontinuities’ in thicknesses v/ere observed to 
move across the surface of the crystal. It was calculated 
that some of these layers formed were only a few molecules in
thickness. Volmer (I923) observed similar thin layers on
thin crystals of formed by mixing

solutions.

Bunn and Emmett (19ii-9) studied a number of crystals
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using dark ground illumination under high resolution and 
found that on fairly thick crystals of some substances layers 
several hundred Angstrom units high could be seen spreading 
across the On some crystals the layers were so thick
that they could be seen by ordinary transmitted light or in 
biréfringent crystals by using crossed nicols. Non polar 
crystals were not observed to show layer formation and hence 
the studies were confined to ionic or polar crystals. As a 
result of their observations they found that layers often 
start from the centre of the faces spreading outwards, the 
thicknesses of the layers increasing as they approach the 
edges. At rapid growth the boundaries of these layers are 
irregular, but at slow growth these tal-ce regular shapes 
conforming to the symmetry of the crystal face. Dbsjolved im
purities were observed to influence strongly the thickness and 
shape of the layers.

Evidence of the formation of surface nuclei was 
concluded from these observations and they thought that this 
process of layer formation observed for layers of thicknesses 
of several hundred Angstrom units would give the correct 
impression of what happens for molecular layers.

Instead of observing a crystal v/hile it is growing, 
another approach for their study is to observe the surface of 
a crystal on which gowth has been arrested. The observation 
of such a crystal will reveal its history. In this latter
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case of observation much better techniques can be employed 
and is therefore likely to yield more information. The 
present investigation comes under this category.

Growth pyramids of vicinal faces have long been 
observed and were recognized as a normal feature of slow 
grov;th (Miers (1903-i{.). Growth pyramids of this type can be 
seen on major rhombohedral faces of quartz crystals, but 
only limited information can be obtained from them since 
their structures cannot be resolved and bunching of steps is 
very frequent.

At the start of the present investigation, the only 
reported experimental data which demonstrated the grov/th of 
the. crystals by spiral mechanism was that of Griffin (1950)*
He was the first to observe, using ordinary microscopy, line 
markings on the (lOl'O) faces of beryl crystals, which there 
is reason to believe are the edges of growth layers. Calibration 
by multiple-beam interference fringes has shown that the step- 
height at these lines is less than 3U A i.e. less than four 
unit-cells - of the crystal. The behaviour of these steps 
around obstacles, where they neither split nor form multiple 
steps, suggests that eqch is like a unit step. Further these 
lines take the form expected from the edges of "monomolecular" 
growth terraces and in particular regions of the crystal face 
terminate in a manner which v;ould be expected from the 
examination of a growth terrace terminating at a screw dis
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locations In addition, the observed patterns originating 
from a single and double screw dislocations correspond with 
the theoretically predicted shapes. Prom these facts, it was 
concluded that the observed steps "are a unit cell high and üus 
the observed spiral was interpreted as a "growth spiral" in 
accordance with Burton, Cabrera and Prank’s theory (I95I).

Spiral markings on silicon-carbide crystals have been 
observed for some time past. Menzies and Sloat (I929) reported 
such observations and more recently Padurov; (19lj.9) and Kalb 
and Wittborg (I99I) « But none of these \w>rkers has tried to 
offer any explanation as to the spiral formation, nor has any 
measurement of step height been made.

Thus the eixperimental position at the start of the 
present work was that the observations were meagre and 
qualitative. No exact measurement of the step hei^it had 
been reported. In tlie interim period several other experi
mental observations have become available, and these are 
described in Chapber (XI) where the present position of the 
experimental observations is surveyed.
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PART II

SILICON - CARBIDE, ITS FORMATION, CRYSTAL 
STRUCTURE Al/D POLYTYPISM



Gimp TER (IV)
FQHimTIOR OF SILICOH-GARBIDË CRYSTALS. POLYTPISM
• ■  ......... AMD ROTATIONS.

ll.l. FORIvIATION OP' SILICOM-GARBIDE CRYSTALS.
In iSjO Acheson tried to crystallise carbon by

dissolving it in aluininiuxi silicate in an. electric arc, as 
a result blue crystals were obtained whi ch were called 
carborundum. Analyses showed it to be Si-C. Later these 
crystals were made by reducing silica with carbon in an 
electric furnace. * Naturally occurring Si-C crystals have 
been found as small hexagonal plates in a meteorite in 
Arizona, this mineral being called moissanite.

Best commercial grades of carborundum are pale green 
but various green and blue shades as well as black samples 
are common. Carborundum free from traces of iron is without 
colour. The cubic modification of silicon-carbide often 
occurs as yellow crystals, whereas the crystals of the 
rhombohedral and the hexagonal modifications occur in differ
ent colours and this colouring seems to be independent of the 
crystal modification (polytypism, see 1^.2). It may be thought 
that the colouring is due to impurites. . The considerable 
differences observed in the relatively low metallic conduct
ivity of different specimen's have also been attributed to 
impurities (Y/eigel I915) . The crystals studied in the present 
■investigation were pale green, dark green, blue and black in 
colour.

The exact mode of the growth of silicon-carbide 
(Si-C) crystals is not Imown. The melting point of silicon-

carbide has been estimated to be near 22$d' C (Weigel I915) 
and it will probably dissociate at that temperature, so that
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silicon-carbide crystals do not grow from their own vapour. 
Carbon and silica present inside the furnace, react at that 
temperature, generating more volatile gases Su 0 and C O  

which supply C and Si needed for the growth of silicon-carbide 
crystals. It is thought that these gases v/ill be adsorbed 
on the surface of the growing crystal and will undergo surface 
diffusion reacting with one another to form Si-C, the excess 
oxygen being removed as C O 2  (or perhaps 0 ,̂ ) which generates 
C 0 on the hot carbon while C 0 also reduces Si 0 ^ to the 
relatively more volatile Si 0 . The surface of the growing
crystal may ' v have a layer of combined oxygen; the state of 
the surface would vary with temperature and the C O —  C  0;l 
balance in the atmosphere and would be quite complex. (Frank

1951a)'

U .2 . DIFFERENT TYPES OF SILICON-CARBIDE CRYSTALS
. AND ’ POLYTYPISM '

Silicon-carbide, which is strongly homopolar, occurs 
in over 12 knov;n and possibly some more types. Among these, 
only one cubic form has been observed and there is no 
likelihood of anymore. This cubic form has a structure 
corresponding to ^-ZkvS (sphalerite) and hence it is suit
ably called ^  - Si C  . All the remaining types are called 
OC-SiC and are based either on hexagonal or rhomb ohedral 
unit cells. The basal pinacoid is predominantly developed 
and the crystals usually occur as hexagonal plates. The
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opposite faces of the hexagonal plates differ in appearance 
in all modifications. One face is planar, the other often 
stepped^and it is on these plane faces that growth spirals 
have been observed. The various forms are so closely related 
to each other that a special term "polytypism" has to be used 
to distinguish it from the normal "polymorphism" (Baumhauer 
1911, 1919; Thibault 19l|(f); the various modifications being 
called the "polytypes" of silicon-carbide.

i|• 3. DESCRIPTION OF THE TYPES : RAIvISDELL’S NOTATION

The different polytypes of silicon-carbide were called 
type I, II, III etc., in the order of discovery, vjithout 
referring to their crystal structure. As the number of the 
Imown types grew larger, it was soon realised that some 
designation, which will describe the type appropriately, had 
to be found out. Such a designation should be simple and accur
ate, and should describe the structure as fully as possible.

Xrray studies revealed that all types are composed of 
identical layers and differ only in their arrangement of these. 
Each type is uniquely distinguished by the number of layers 
necessary for the arrangement to repeat itself. Thus the 
total number of layers within the length of c 1- axis for the 
types with the hexagonal unit - cell or -fclig^hombohedral types 
referred to the hexagonal unit may be taken to represent the 
type and Ramsdell ,(19i|-7) added to this number the letter "H" 
or "R" depending upon whether the unit cell is hexagonal or
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rhombohedral respectively. The different types are given in 
the table (I) and the unit cell constants as determined by 
X-ray methods are given in table II.

Table I
Ramsdell’s Notation of Different Modifications.

ji-Si C
~r- 

(X - Si C

CUBIC HEXAGONiiL RHOMBOHEDRAL

Notation Old Ramsdell’s Old Ramsdell’s
Notation notation Notation Notation

[i -Si C II 6 E I 15 R
III h H IV 21 R

VI, 33 R

— —— — ---- -

V 51 R

This notation uniquely distinguishes the different 
types and will be used for brevity in future. Hovœver, this 
notation does not reveal the geometry of the regular arrange
ment of the different layers in the unit cell. The different 
notations described below reveal this regularity in a simple 
manner.
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Table II 
Unit Cell Dimensions.
—  - --- ---- --

Type Hexagonal Cell Rhombohedral Cell
8-0 °o ^rh (X

4 H 3.O73A . IO.053A - -
6 H 3.073A I5.O79A ■ - -
15 R .3.O73A 37.70 A 12.69A 13° 5hi'
21 R 3.O73A 52.78 A 17.683A 9° 58'
33 R 3.O73A 82.94 A 27.704A 6° 2ii<
51 R 3.O73A I28.I78A 42.763A 4° 07'

|S -Si C Cubic &Q = 4.349 A.

l|.alj.o INTERVAL SEQ,UENCE

Ott (1925) iïi his report of the type I, I9 layered 
rhombohedral crystal, described the structure in terms of 
the sequence of silicon (or carbon) atoms along the symmetry 
a^es. In a given axis there are five atoms which are 
separated by layer intervals of 2, 1|, 3, i]., 2 . Thus the 
sequence (2l}.3lj2 ) was used to describe the structure. For the 
33 and 51 layered rhombohedral types the interval sequences 
are ( ) and ( 2lj.2i|2i|.33533i|.2l|.242 )

respectively. Not only does this interval sequence become
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more and more unwieldy v;ith the increasing number of layers 
in the unit cell, this method is not equally applicable to the 
hexagonal structures since for them the symmetry, .axes, are not 
all alike, the sequence along the 6-fold axis being different 
from that along the 3-fold axis. Therefore, this notation 
gave place to more superior methods of describing the types.

i}.. 5. CLASSICAL ABC NOTATION

The structure of silicon-carbide crystals may be 
described in terms of the close-packed layers of spheres.
As is well known, equal spheres close-packed in a plane will 
lie with their centres at the corners of equilateral triangles 
each sphere touching six others in its own plane. All three- 
dimensional close-packed structures may be regarded to be 
built up of layers of this sort. These layers when projected 
normally on a plane parallel to one of them fall into three 
possible positions, and may be labelled. A, B and C. The 
possible close-packings correspond to any sequence of these 
letters with' no successive letters alike. The simplest form 
of close-packing is AB AB AB .... etc., and is the hexagonal 
close-packing. The arrangement ABC ABC ABC .... etc., gives 
the cubic close-packing.

In each of the- known structures of silicon-carbide 
crystals we have a silicon-lattice and an identical inter
penetrating carbon lattice, which is displaced relative to the
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other parallel to the c-axis, both structures being infinitely 
extended. Each carbon is tetrahedrally bonded to four silicon 
atoms and vice versa* The lattice of three modifications 
viz: I3R, 6h & l\E is shovm in fig. (11). The c-axis is parallel 
to the vertical direction.

All silicon and carbon atoms lie on the symmetry axes, 
and all s;^Tmnetry axes lie in the ( 1120 ) planes. Therefore, 
the structure is most conveniently represented in a projection 
in the plane perpendicular to the c-axis. Since the carbon 
and silicon lattices are identical and displaced only along'

Ithe c-axis, they will'coincide in this projection; therefore, 
each corner of the net-work of equilateral triangles represents 
both C and Si atoms.

All siliconrcarbide types being built of layers of 
close-packed spheres will have trigonal symmetry by simple 
rotation about the c-axis. Each layer has 2-J and é fold 
symmetry axes normal to its plane. V/hen two or more layers 
are put over one another, the 2-fold axés do not coincide with 
one another and, therefore, vanish. The 6-fold axes ccàicides 
with the 3-fold axes, so that the resultant structure has 
only 3-fold symmetry. The s;ymmetry elements are shown in 
fig. (12a).

Now if in these close-packed layers we represent the 
silicon atoms by Roman letters and carbon atoms by correspond- 
ing Greek letters, the layers may|called layers.
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The different carborimdum types will be built of such layers 
/\oC C  y  of which no two successive layers are
identical. In future for brevity these may be called A, B and 
C layers, remembering that the corresponding Greek letter is 
implied in the case of silicon-carbide crystals.

h,.è. REPRESENTATION OF TrlS PQLYTYPES IE THE CLASSICAL
ABC NOTATION

It is possible to represent the different polytypes 
by specifying the successive layers comprising the unit cell, 
in terms of the A, B, 0 notation. The representation of 
some of the different polytypes is given in table(III).

Table III

Crystal
modification
Old

notation

I
II 

III
VI

Ramsdell’s
notation

I5R
6h

CLASSICAL ABC notation

ABCACBCABACABCB
ABCACB
ABCB ;
ABCACBABCACBCABACBCABACABCBACABCB

In a similar way all the different polytypes consist
ing of larger number of layers can also be represented. It 
will be noted that this representation becomes more and more 
unwieldy with the increasing number of layers and also does
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not directly reveal the relationship hetv/een successive 
layers.

ij.. 7 .  STACKim  OPERATORS, ZHDAKOV SYIvIBOL AMD FRAME'S

I'lOTATIOH

The arrangement of the successive layers is best 
represented in terms of the relationship between two layers 
or in terms of the ”stacking operators” . Though all the layers 
are equivalent to each other, they are displaced or rotated 
through 60 with respect to each other. The pairs AB and BA - 
are to be differentiated from one another. In the case of
silicon-carbide crystals these layers are TBj^ and

A , but as mentioned before for brevity only Roman 
letters may be used, the Greek letter being implied. The 
difference between AB and BA is best seen from figure (12b).
If the layer B is on top of A, each atom of B (represented
by x) lies at the centre of an equilateral triangle formed of
the three atoms of A (represented by o), such that vd. th the 
suitable rotation of the figure, as in the figure drawn, these 
triangles are oriented as A  i.e. the centre of the three 
spheres that provide a dimple, into which the sphere of layer 
B fits, form an equilatral triangle which is oriented as A  • 
If, on the other hand, the layer A lies on top of B, the atoms 
of A lie at the centres of the equilateral triangles formed 
of the atoms of the layer B, such that these equilateral 
triangles are oriented as . Thus the relationship itself
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between the layers may be represented as A  and re
spectively. It can at once be seen that when C follows B 
and A follows C, the relationship is again A  i.e. If A, B 
and C layers follow each other in this cyclic order, the 
relationship betv^een the layers is always A  . However,' 
the other three alternative arrangements i.e. A following B; 
B following C; C follov;ing A, v;ill be represented by ^  .
This representation has mnemonic value also since a rotation 
through 60^ converts the operation into ^  .

This notation used by Frank (lg^lo/)will represent ih e 
various polytypes of silicon-carbide crystal as given in the 
table IV, and will, hereafter, be referred as Prank’s 
notation.

Table IV

Crystal Modi
fication in 
Ramsdell*s 
notation

Prank’s Notation

I5R
6h

A  Z:! V  V  WA. V  V  
â a a  w v ) a a a v w ---

-53R

TT ) A A  V  ̂ ----

A A V V  A  A  A  V  v) A A A  W v A A A  W -----

^ A  A V W  A A A  W  V  A A A  V  A A  A  W  V  - - - -51-R

Thus it will be seen that, for the hexagonal types, 
the number of A  and S/ necessary to repeat itself is the
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same as the number of layers in the unit cell. In the
rhombohedral types referred to the hexagonal unit, the
number of layers vi/ithin the unit cell is 5 times the number 
of A  and ^  operators. The A  and repeat unit
is enclosed within round brackets. This fact will be further
brought out by the interferometric study (see Chapter 10).

This notation can be further contracted in the 
Zhdanov symbol (Zhdanov v;hich consists of pairs of
numbers in vjhich the first is the number of consecutive A s  

and the second the number of consecutive following the
A s  . Thus silicon-carbide of type I5R would be represented 

by the symbol (J2) and the commonest variety of silicon-carbide 
type 6 H by the symbol (53)• The various polytypes of silicon- 
carbide are represented in Zhdanov’s symbol in the table V.

Table V

Crystal Modi
fication ifv 
Ramsdellfe 
notation.

Zhdanov’s Symbol

15 R (■32)
6 H (33)
h  H (22)
33 R (3332)
51 R (33 33 32)
69 R (33 33 33 32)
87 R (33 33 33 33 32)

Ramsdell ( )  in his notation has given these 
numbers a slightly different significance and calls it the
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”zig-zag sequence”, which represents the sequence of succeed
ing atoms in the ( 1120) section. Pig. (IJ) shov;s one such 
section. If a Si (or C) atom lies on A in one layer, in the 
next layer the atom may lie either to the right on B or to 
the left on C. Say it lies to the right. Then the third 
layer may have its atom continued to the right or it may 
change direction and lie to the left. Thus the positions of 
atoms in the succeeding planes when joined together will.give 
a zig-zag pattern in the (112 0 ) section. Such an arrangement 
can be described in terms of the number of layers added in 
each direction in succession and is called by Ramsdell ”zig
zag sequence” . Thus silicon-carbide crystals of types l^R,
6h  etc., vjill be represented by (J2 J2 52) and (33) etc., 
respectively. It may again be pointed out that in rhombohedral 
types, the symbol is always repeated three times. This is 
done to complete the unit cell such that the last layer lies 
directly above the initial layer. In the table II inhich gives 
the unit cell constants of the different polytypes, it may
be noted that this correlates with O/yk d  -L of the lattice«3
parameter c.

Ramsdell pointed out that the various polytypes belong 
to the (3....2) series and predicted the type 69R, with the 
zig-zag sequence (33 33 33 3^)j and also other hexagonal 
structures like ICH, i 6h  etc. He also noted that the numbers 
in the zig-zag sequence are either 2, 3, or Ij., &nd that the
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number 1 does not occur in these structures. He further made 
an important generalization that not only is the (33) structure 
of type 6h the commonest of all modifications, it also occurs 
within most of other structures.

NOTATION USED BY JAGODZINSKI

Some other workers notably Jagodzinski (I9I1.9) ii^ve 
used a slightly different notation. In this notation consider
ation is taken not only of pairs of layers but of one layer 
on either side of a single layer. 'Any layer which is preceded 
and succeeded by the same type of layer is denoted by *h* but 
if the two are different, the layer is denoted by *k*. Thus 
the layer B in the arrangement ABA or CBC will be denoted by 
*h’ and in the-arrangement CBA or ABC, it will be denoted by 
’k ’. Identical*k and"k"notations can be used for A and G 
layers. According to this notation silicon-carbide crystal 
of type I5R v;ill be (h k k h k) and type 6h v/ill be (h k k). 
Jagodzinski, further developed the general equations for the 
interaction between neighbouring layers in the arrangement 
and showed that the most probable layer type consisting of 
more than six layers of close-packed atoms is the silicon- 
carbide type with 15vlayers. This is the second commonest 
variety of silicon-carbide crystals.
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CHAPTER V 
MICROSCOPIC TECHNIQUES

In the present Investigation the experimental work 
may be divided into two parts. Firstly,the observation of 
growth spirals and other molecular features and secondly the 
measurement of step-heights. Therefore, two distinctly 
different techniques were employed for their study. Various 
microscopic techniques v;ere utilized for the observation of 
these features; and for the meas^ement of step heights multiple 
beam interferometric techniques were used.

In both the microscopic and interferometric studies 
the silvering technique is needed; both the crystal surface 
and the optical flat used for interferometric studies have to 
be coated v/ith a highly reflecting layer of silver. The 
silvering of the crystal surface is necessary for two purposes. 
Firstly^for the microscopic observation and secondly for the 
interferometric study when it forms the second (or the back) 
surface of the interferometer. The silvered optical flat forms 
the front or the first surface of the interferometer in the 
reflected system, and, therefore, it is essential:,, in order 
to secure good visibility of the fringes that it should have 
a low absorption. To achieve this, CL/ silvering technique w-o^ 
used CLs described below (see Strong (19^0) and Tolansky (19i{.6, 
19^8) ).

5.1. THE SILVERim TECHNIQUE
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A commercial evaporating unit, built by Edwards and 
Co., of type was used for this purpose. This consists
of a large vacuum chamber in the form of a glass bell jar 

f 60 cm,high and 1|0 cm. in diameter. This can be evacuated by 
a three stage silicon-oil diffusion pump backed by a rotary 
oil pump. The backing vacuum and final vacuum can both be 
read directly by the Pirayti gauge and Phillips ionisation 
gauge supplied in the unit.

The surfaces of specimens must be thoroughly cleaned 
before silvering. The glass optical flat after being cleaned 
v;ith soap water is cleaned vjith hydrogen peroxide ( 0^ )
and distilled water, and then rubbed with clean dry cotton 
wool until no breath figures are obtained by lightly breathing 
on it. For the cleaning of silicon-carbide crystals, which 
are very resistant to chemical action, it was possible to 
use acids and other reagents e.g. nitric acid. Before the 
evaporation of silver, a final cleaning of the surfaces is 
performed inside the evaporation chamber by ionic bombardment 
from a high voltage discharge passed at a pressure of 1 mm. 
of mercury and lower. After this discharge cleaning spectros
copically pure silver is thermally evaporated from a molybde
num strip on to the specimens at as low a pressure as possible 
(Usually \x 10 ^Crv\..  ̂ so that a highly reflecting layer
of silver with a low absorption is obtained.

Under these conditions the silver layer contours the
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surface very closely without imposing any structure of its 
ovm. Electron-microscopic studies show that the distance of 
migration of silver atoms on the substrate, when deposited . 
under these conditions is not more than 300 A ^Picard and 
Duffendack l^k^) and for high rates of evaporation, the mean 
distance of migration may be considerably reduced and it may 
be assumed that this will result in better contouring of the 
surface. (Levinstein I9I4.9) . The usual rate of evaporation 
was such tha t ^0% reflectivity could be achieved in less 
than 10 seconds. In this evaporating unit the filament and 
specimen distance is quite large (nearly 30 cm), so that any 
variation in density over the optical flat (diameter 2.5 cm) 
or over crystal specimens (usually less than 5 iii size) 
is negligible; in fact it can be calculated to be less than 
1% over a circle of 10cm. diameter.

5.2. TECKNIQ,UES OF OBSERVATION

The elementary grov/th features on silicon-carbide 
crystals are only faintly visible because of the small step 
heights (e.g. for type 6 H, the step height is I5 A).
Various optical techniques were tried for the observation of 
these features.
(a) Off-Focus Bright-Field Narrow Pencil Illumination ,

Since the crystals are opaque, they had to be studied 
in reflection. This has the additional advantage that for 
a step of height t, this increases the path difference
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between the rays to 2t.
I

The clean surface of the crystal, when examined by 
a metallurgical microscope, using bri^t-field illumination, 
does not show up any of the molecular grov;th features, the 
surface appearing smooth. Thereof ore, the technique whi ch 
was utilized by Griffin (I95O) for the observation of growth 
features on beryl crystals was next tried. This consists 
first in depositing a thin, highly reflecting layer of silver, 
by the technique described in the previous section. The 
surface is then examined in reflection with a metallurgical 
microscope using bright field illumination, with the field 
iris stopped down to give a narrow illuminating beam. By 
slightly going off-focus, a phase difference is introduced 
between the diffracted wavefronts, which produces an intensity 
distribution, revealing much detail on the crystal surface.
Even this method was not successful for the observation of the 
very elementary growth spirals.

(b ) By Smearing. Impurity on the Crystal Surface
It was soon discovered that a small amount of impurity 

can make these features visible. Pig (3 0 ) is an example 
where by suitably wiping the impurity on to the crystal surface 
(without silvering it) the faint spiral features have been 
made quite visible. This behaviour is easily understood since 
particles of impurity will pile up at tLie edges thereby 
increasing the visiUlity. This method, though it was often
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found helpful is not very satisfactory.

(c) Breathing Technique
This method consists in observing the clean surface of 

the crystal by a metallurgical type of microscope and focuss
ing it sharply on the crystal surface. Breathing lightly on 
the crystal surface while it is under observation increases 
the visibility and the ”lines” flash out because of conden
sation of water vapour but soon disappear when water evaporates. 
The ’lines’ so observed have a dotted and diffuse appearance, 
but the visibility achieved is quite high# This method though 
very convenient and handy for visual observations is not quite 
suitable for photography. However, the utility of this 
technique for a preliminary survey of a large number of crystals 
in the search for the suitable crystals to be studied, is to 
be emphasized.

(d ) Phase-Contrast Microscopy
The technique found most satisfactory for the obser

vation of .the growth spirals consisted first in depositing 
a highly reflecting (about ^0%) layer of silver on the crystal 
and examining it in reflection using phase-contrast illumin
ation.

The principles of phase-contrast microscopy were first 
given by Zernicke (l^^kf 1935) it is now a well established
technique. No attempt will be made to give a detailed 
mathematical account of the theory. The theory o/rulpractice
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of phase-contrast microscopy has been discussed by several 
workers. (Burch and Stock 19l(.2; Kohler and Loos I9UI; Payne 
I9I17; Taylor l^kl^ 19^9) • An excellent account of the 
principles and applications of this technique with an ex
haustive bibliography is given by Bennett, Jupnik, Osterburg 
and Richards (1951)* An elementary qualitative explanation 
of this technique is given below.

For the sake of simplicity, the object specimen will 
be considered as a single particle. This elementary theory 
can be extended to object fields of more than one particle, 
when the particles are far enough apart with relation to the 
resolving power of the objective so that the images of the 
various particles are formed independently of one another.
It will be assumed that the microscope is adjusted for Kohler 
illumination i.e. the source of light is focussed upon the 
iris diaphragm of the substage condenser so that the opening 
of the condenser diaphragm may be regarded as a source of 
illumination. Further in discussing the image formation by 
the objective of the microscope, v;e shall consider the light 
wave radiated by a single point of the condenser diaphragm, 
and it may be assumed that to a first order of approximation 
the main effect of including the light from the remaining 
parts is simply to produce a brighter image of the specimen.

If, the condenser diaphragm is placed near the first 
focal plane of the substage condenser, the light wave radiated 
from a point in the opening of the iris ^in fig. (ll|.a) it is
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shown to be on the axis of the condenser lens for the sake 
of simplification), emerges from the substage condenser as 
a substantially plane wave and, therefore, parallel rays 
pass through the object specimen. If the object specimen 
is an ideally simple one for phase contrast microscopy it may 
be taken as a single transparent particle embedded in a 
homogeneous medium of nearly the same index of refraction. 
Consider a l i ^ t  wave incident upon the specimen and its 
surrounding medium. The light transmitted by the surrounding 
medium and the particle will have the same amplitude because 
of equal absorption but will differ in the optical paths 
traversed i.e. there will be a slight difference in phase. 
Therefore, the light transmitted by the surrounding medium 
and the particle may be represented by the two equal vectors 
S and P respectively (fig. lJ| b), such that P is rotated 
Y/ith respect to S by a small angle corresponding to the
pathe difference. The vector P can be resolved into a 
component parallel and equal to S, and a small component D 
which will be nearly at TT (2 to the vector 8 if is small 
Therefore, the incident wave does not pass v;ithout inter
ruption through the object plane but may be resolved into 
two parts (1) the 8 part which is the undeviated vjave by the 
presence of the object and (2) the remaining part D, v;hich 
may be regarded as the deviated vjave created by the light 
8 in its passage through the object. The deviated wave D 
is zero at all points of the object plane except where there
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is the object detail and vjill be diffracted as a set of 
roughly spherical waves expanding from the individual detail 
etc. These are drawn diagr aramatically in fig. (llj. a) where 
the undeviated part is drawn by the solid line and the 
deviated part by the broken line. The undeviated wave con
tinues on its original course as a set of parallel rays and 
is focussed in the second focal pla ne of the objective where 
the geometrical image of the source of light is formed and 
is subsequently spread uniformly over the image plane. The 
deviated wave originating from the object details is spread 
over the second focal plane of the objective and is sub
sequently focussed in the focal plane of the eyepiece. This 
important distinction betveen the deviated and the undeviated 
wave is the basis of phase-contrast microscopy.

The above analysis shovjs that the image of the 
surrounding medium is illuminated by the undeviated wave and 
therefore the açiplitude and phase of light illuminating this 
region v/ill be determined by the vector S whereas the image 
of the particle is formed by both the undeviated and deviated 
waves and since these two v/aves overlap upon the geometrical 
image of the particle, they interfere with one another to 
give the resultant vector P which will determine the phase 
and amplitude of the light which forms the image of the 
particle. This conclusion is true irrespective of the path 
difference between the particle and the surrounding medium.

Here it has been assumed that no light is diffracted outside
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the objective.

Since the amplitudes of both S and P waves are the . 
same, their vectors differing only in phase, the eye vi/ill 
not detect the specimen, since it does not detect any changes 
in phase, being sensitive only to intensity and colour changes. 
Therefore, an ordinary microscope will fail to reveal the 
presence of the specimen. If, however, the phase of either 
the undeviated wave S or the deviated wave D is changed by 
I T ^2 f the S and D v/aves vjill be either in phase or out of 
phase by IT and therefore the image of the particle will then 
be illuminated by light of amplitude | i  [*3)1 and vjill be 
either brighter or darker than the background, the intensity 
of which is determined only by the vector [ S  | • This is 
exactly what the-phase contrast microscope does. When regions 
of greater retardation are imaged darker than the background 
it is called the positive;^ phase contrast and when brighter, 
than the background it is called a negative phase contrast.
At the back focal plane of the objective, where the geometrical 
image of the condenser diaphagm is formed, a ’phase-plate’ 
is placed which consists of a dielectric layer of optical 
thickness \jq . The undeviated wave is focussed at the back 
focal plane forming the image of the condenser diaphragm, 
and if the phase plate exactly covers this area, the undeviatedt
wave on passing through it will be changed in [)kase.. .

Generally the deviated v/ave D is much weaker than the
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direct light S, in order to obtain optimum contrast the 
amplitudes of the two should be made nearly equal. Since 
we cannot increase D without also increasing S proportionate
ly, we have the only alternative of decreasing the intensity 
of the direct light S. This decrease is accomplished by 
placing on the phase plate in the path of light 8, some 
absorbing material, so that the amplitudes of the undeviated 
and deviated waves are arranged to give maximum contrast.
It may be mentioned in passing that if the phase plate is 
opaque, the S v;ave is completely obstructed, then the particle 
will appear with maximum contrast, but in practice the image 
is not suitable for the usual purposes of microscopy on 
account of the loss of definition in the image. This may be 
accounted for, since it. is the deviated wave alone that forms 
the image and it will reveal the edges rather than the 
surface details. This, in principle, is the working of dark 
ground illumination.

Description of the Apparatus Used

The apparatus used vjas the Cooke Tr ought on & Simms 
phase contrast equipment for incident illumination. This 
equipment can be fitted on the Vicker’s projection microscope.

A diagrammatic scheme of the arrangement is shown in 
fig. (ill c). An annular diaphragm D serves as the entrance 
pupil of the optical system consisting of a field lens, the 

microscope objective, and the reflecting surface of the
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specimen (Si-C crystal). The light source is imaged on the 
diaphragm D by the condenser lens. The field lens and the 
objective form an image D, of the field stop on the specularly 
reflecting surface of the object specimen. The light is 
reflected from the surface of the specimen and passed through 
the objective again to form a real image 3)^ of the diaphragm 
D. Image becomes the exit pupil and therefore the
location of the phase plate.

In this equipment, the optical assembly, 'the micros
copic objective lenses, the beam splitter and the phase plate 
are mounted on the objective. The phase plat,e is located 
between the beam splitter and the eyepiece (shovm by solid 
lines in fig. lij-c) since in this position both the amount of 
stray light and losses of illumination are minimized.
It is a positive phase contrast, vjith a single phase plate 
having 80^ absorption with a phase retardation of Trjii and it 
is found that this single phase plate serves moderately well 
for the entire practical range of small optical path differ
ences.

The surface of the crystal specimen must be adjusted ' 
perpendicular to the optical axis' of the microscope so that 
the image of the diaphragm is centred upon the optical axis 
when the condenser diaphragm has been centred. An auxiliary 
microscope is provided, which can be inserted in place of the 
normal eyepiece. This enables the examination of the back
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focal plane of the objectives so tha..̂ t the image of the 
diaphragm can be made to coincide exactly with the phase plate.

The ring form of the substage annulus together with 
an annular phase plate has a considerable advantage. Since 
this form has complete axial s^^mmetry, it introduces practic
ally no undesirable lack of symmetry in the image, and the 
resolution is improved and depth of focus diminished due to 
the use of a larger objective aperture by direct light. 
Furthermore, less diffracted light is wasted owing to over
lapping betvjeen the higher order spectra and the' retarding 
annulus of the phase plate.

(e) On the Visibility

Phase-contrast microscopy depends upon altering phase 
changes into amplitude changes, conversely it changes real 
opacity into apparent changes of phase and for such features 
this technique is not suitable. Again, phase contrast 
microscopy is based on the physical possicality of complete 
or partial separation of the deviated and undeviated spectral 
orders at the phase plate. For coarser detail it may not be 
possible to isolate the diffraction effects from the direct 
light on account of small separation betv;eeh the zero and 
higher order spectral images. Further the surface of the 
specimen should be in one plane and specularly reflecting in 
order to form a sharp ima^ge of the annular condenser diaphragm

on the phase plate. If the different parts of the surface of
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the specimen form different images of the diaphragm, as 
happens when‘small areas of the specimen though highly reflect
ing are inclined to each other, the advantage of the phase 
contrast technique is lost. In the limiting case, when the 
surface of the specimen diffuses light completely, no image 
of the annular diaphragm can be formed after the light passes 
through the objective the second time and the phase contrast 
can not be used at all.

Silicon-carbide crystals are ideal for this purpose. 
The faces are molecularly flat, .the step-heights between the 
successive arms of the spiral being only a fev/ angstrom units. 
The light from the surface is specularly and coherently 
reflected. There are no prominences or protuberances on the 
surface to scatter light to give unwanted background intensity 
it is only the diffraction at the edges of the spiral steps 
that is solely responsible for the deviated vjave and since all 
the steps in a particular growth spiral are of the same height 
and often with equal spacing between the successive steps, 
the diffraction effect will be occurring in an ideally 
symmetrical way. Further, by silvering the crystal so that 
the surface has a high reflection coefficient, phase plates 
with quite a high absorption can be employed to give a 
correspondingly high contrast in the image, and the time of 
exposure is considerably shortened, thereby cutting down the 
stray background intensity;- Even then it is rather surprising
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that such small steps as I5 A, which will correspond to a 
change in path of 30 A in reflection, have been revealed. 
Hovjever, with the equipment used these features are often 
still faint and only just visible. In order to make these 
features reproduceable, photographic methods for increasing 
the contrast have been employed. (See next section).

In phase-contrast microscopy the best contrast is 
obtained v>?hen the specimen is exactly in focus. This is in 
contrast to bright-f ield microscopy v;here defocus sing is 
used to see specimens of low contrast (Linfoot l^k^)* If the 
inhomogeneties on the surface of the specimen are not confined 
approximately to a thin lamina, in putting the specimen out 
of focus to see these details, the image vmll bear no simple 
correspondence to the object itself. On the other hand, in 
phase contrast microscopy the maximum contrast is obtained 
when the specimen is accurately in focus so that the image 
bears a closer resemblance to the object; the phase contrast 
image is symmetrically diffused above and below the focus. 
Furthermore, the phase contrast microscope is operated at 
full aperture and it is unnecessary to close the condenser 
diaphragm partially as in the case of the bright-field 
microscope, in order to obtain enough edge diffraction to 
see such a specimen. Therefore, in phase contrast microscopy 
there is practically no decrease in resolution and spurious 
images are less likely to occur.

In fig. (82) it is seen that the visibility and 

contrast is much greater than that of fig. (81) which shows
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the photograph, using phase contrast equipment, of the same 
part of the crystal after silvering. In fig. (%2 ) the 
surface of the crystal was not very clean when it was silvered. 
The silver deposit was not uniform, the surface appearing 
mottled. Examination with the same phase-contrast equipment 
gave this surprisingly high visibility. This suggests that 
impurity can make the steps more visible.

(f ) Photographic Processing

The photographic processing consists of the following 
series of operations. Firstly, very contrasty photographic 
plates such as Kodak B-20 Process plates were used, the 
exposure time being critically controlled to bring out the 
edges of the spiral steps prominently. These plates were then 
developed in a contrasty developer such as Kodak D-8 caustic 
developer. In some cases, especially if the step height was: 
comparatively large, this photographic processing provided 
a negative of sufficient contrast, and further contrast was 
obtained in printing, by using extra-hard photographic paper.
In some cases these negatives did not have sufficient contrast 
and by printing them against another contrasty photographic 
plate and again adjusting the. time of exposure critically, 
the contrast was considerably increased - indeed any amount 
of contrast can be achieved by working at the heel portion of 
the exposure - density•curve of the photographic plate, the

only disadvantage being that contrast at unv/anted places of
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the negative also increases. Unless otherv/ise stated, all 
the pictures have been taken by the use of the above phase- 
contrast microscope.

-.Oi 3
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CHAPTER VI
IMTERFEROIjETRIC TEGHHIQ.'UES FOR THE IæEASUREIÆBMT OF STEP

HEIGHT

6.1. GEHERAL
/

For the measurement of step hei^t, multiple-beam 
interferometric techniques were used. Since multiple-beam 
interferometry is quite a well established technique, no 
attempt will be made to give a general treatment of the theory j 
a . full account of which has been given by Tolansky (19i|8).
Only those points which have a special bearing on the present 
investigation, and some new modifications introduced for these 
studies v;ill be indicated.

The crystals of silicon-carbide are opaque, therefore, 
interference fringes in the reflected system were alv/ays ' 
utilized. The theory of the reflected system has been dis-' 
cussed by Eamy (I906) and Holden (19^9)- .The fringes are 
produced by matching the crystal surface on whi ch a thin layer 
of silver (about 3OO A thick and ^0% reflectivity) has been 
deposited, against a similarly silvered optically polished 
glass flat. The optical flat used was supplied by Adam Hilger 
and was true to X/40 ( XS'4 ) over the central area of 
nearly 1 cm. diameter^but v;as certainly flat to a much smaller 
fraction of this over small areas.

In an interferometer of which the two component sur- 
faces are parallel to each other separated by a distance tjare
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silvered such, that the transmission and reflection coefficients 
of amplitude are and respectively, the transmitted series 
of multiple reflected beams when summed up gives the well 
known Airy intensity distribution

Q'-'R)

where S" = Ajudt Cos , is the constant phase lag between 
the successive beams, being the angle formed by the normal
and the ray between the silvered surfaces.

The properties of the reflected system in multiple 
beam interference are much more complicated. The peculiar 
properties of iiie reflected system are due to the fact tha t 
the first reflected beam has a phase change compared w^ith 
the second beam altogether different from that between any 
other two successive beams. It is found that for highly 
reflecting silver films (R >  8C^), the intensity distribution 
in the reflected interference system is very nearly comple
mentary to that in the transmitted system forming narrow 
symmetrical minima.

In order that sharp interference fringes should be 
produced for two highly reflecting surfaces inclined at a 
small angle. Airy summation should apply. But in this case 
the path difference between the successive reflected beams
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is not constant but alters progressively with the order of
reflection so that the beams gradually get out of step
ultimately, the retardation becoming tending to destroy
the condition for the formation of sharp fringes. The path
difference between the first and the beam is 

3̂
where 0 is the wedge angle. Hence the second term 

T\î 0^ "t should be restricted to a maximum value of \jz •
T

Therefore, t should be as small as possible and must in any 
case be less than the critical value.

For the study of the topography of the crystal surface 
it was always found advantageous to utilize high dispersion 
fringes which are produced by having a very small wedge angle 
between the crystal surface and the optical flat. Further, 
in accordance v/ith the previous result the separation between 
the two surfaces was reduced to as small a value as possible —  

normally only 2 or 3 wave lengths of light. This could be 
achieved because the small portions of the surfaces of silicon- 
carbide crystals studied^are exceptionally flat without any 
ridges or protuberances, so that the two surfaces could be 
brought in very close contact. The experimental technique 
for achieving this is simple. A brass jig was used in which 

the optical flat fits in a groove at the base and the crystal 
specimen fixed on to another "^rass plate can be brought close 
to it at any inclination by adjusting the three nuts which 
press against three springs separating the two brass plates.
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Under these conditions extremely sharp multiple-beam
interference fringes were obtained, actually a fringe width
^  -L of an order separation v/ere easily achieved. It may 

SO
be emphasized that since the interference gap was adjusted 
to be very small the multiply reflected beams effectively 
scan the same part'Of the crystal surface and thereby reveal 
the true topography.

In the present study the two types of interference 
fringes used are, firstly Fizeau fringes of equal optical path 
formed,by illuminating the interferometer with a parallel 
beam of monochromatic light ( X 54^1) • The experimental arrange
ment for the production of Fizeau fringes in the reflected 
system U  shown diagrammatically in fig. (I3). Secondly the 
fringes of equal chromatic order formed with white light using 
a spectrograph, were utilized. These fringes were obtained 
by placing the spectrograph such that its slit occupies the 
position previously occupied by the photographic plate in the 
arrangement for Fizeau fringes.

6.2 . USE OF FIZEAU FRINGES

When the step h e i ^ t  Is comparatively large ( 100 A)
it was found possible to determine the individual step heights 
by the shift of Fizeau fringes at these steps. The ..shift of 
the Fizeau fringe at a step,as a fraction .of the order separ
ation (i.e. the distance between successive fringes),gives
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the height of the step as a fraction of \jz • An example of 
this method of the' determination of step height is shown in 
fig. (l6a) which shoves Fizeau fringes passing over the spiral 
steps of fig. (l6b). It is seen in fig. (l6a) that the dis
persion is not constant and therefore for the evaluation of 
the step height an average value was taken.

However, in most of the features the individual steps 
are rather close to each other and the step heights too small 
to be detected by the individual shift of Fizeau fringes at 
these steps. The two simple cases of growth spirals in which 
the average step height can be determined are (a) circular 
spirals and (b) polygonal spirals with straight edges, having 
a regular spacing between the successive arms of the spiral.
The relevant formulae for the determination of the average 
step height of these simple cases are developed below.'

(a) Rounded Spirals

A rounded spiral is effectively a spiral conical hill. 
In the simple cases as illustrated in figs. (21) and (35) etc., 
it may be considered to be a conical hill made of a series of 
concentric steps with a constant spacing d and.a step height 
h (fig. 17a). A Fizeau fringe in the direction AB will be 
shifted by an amount s = EP when it climbs each step, and will 
be broken into small parallel portions CD, EP, G-H .... The 
apparent direction of the fringe will be CEG....O, since these
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portions are small. For the special case when the fringe 
passes over the peak, the apparent direction of the fringe 
will be radial and hence perpendicular to the steps. A 
symmetrical shift will occur in the opposite direction down 
the hill from 0 in the direction OL. If 0 is the angle be
tween the true and apparent direction of the fringe, the 
fringe will bend through an angle 20 at the peak. From the 
figure

S =  d. Slrt 8  —  (  t

By knowing the dispersion X  , the distance between successive 
fringes which corresponds to a difference of \ j z in the 
width of the interference gap, the step height h corresponding 
to fringe shift s is given by:'

—  d. 5lrv 0  ,
X ^

The optical flat is adjusted such that high dispersion 
fringes are obtained with one of the finges passing over the 
peak where it v;ill be observed to bend. This adjustment is 
very delicate especially using high dispersion fringes.
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Prom this Fizeau picture 0 is measured, and knowing d from a 
microphotograph at the same magnification, K is found.

Here the spiral conical hill has been regarded as a 
circular conical hill which is very nearly true. Fig. (l8a) 
illustrates an example of this method v;hich shows a Fizeau 
fringe ( X  5ij.6l) passing over the spiral of fig. (l8b).

Since the step height is obtained from the mean of 
all those contributing to form the peak, irregularities of the 
optical flat and the lack in faithfulness of silver contouring 
are averaged out. This method is, therefore, capable of 
considerable accuracy.

(b) Polygonal Spirals with Straight Edges

In this analogous case the pyramidal hill may be 
regarded to be composed of series of parallel steps on each 
side of the vertex. For a series of parallel steps of step - 
height h and -separation d the Fizeau fringes will have an 
apparent direction at an angle 0 to the real direction. In 
the particular case when the Fizeau fringe has been adjusted 
to run perpendicular to the series of steps on one side of 
the vertex, the apparent direction of the Fizeau fringe will 
be inclined at an angle 0g_ on one side of the vertex and 02 
on the other side, to the true direction of the ftinge. 0J.
and 02 from fig. (l^b) are given by the relations
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SÛYV 0, = -̂---------------------
' d

Sûw 0^= 4-. G « (  e,+ 0;,) -----
et

and putting 0/4-0;^=: 2  0  Ç Z 3 )

From these three equations 9^ and 9^ may be eliminated in 
terms of 9, s and d, giving

—  =  .Sim. 1 6  _  (.2 4 )
^ /7+TcôFTë"

Using the relation

-L =  - i — , A -  “ •----------- --------X ^
the step height h is given by • .

— -----------------(z(>)
J /-f 3 Co/ 2 0 X ^

Here 29 is the total angle through which the fringe appears 
to bend at the vertex. \Vhen 29 is small, as is usually the 
case for small step heists equation (26) reduces to

"K/ oL. SÙKV 20 I ^    f 0*1 \
2 ^  2 ' ^

- A.  CZ2 )
X  z  ^

which is identical with the equation (20) used for circular
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spirals. Pig. (l^b) illustrates an example of this which 
shows the Fizeau fringes passing over the spiral of fig. (l^a).

6.3. USB OF FRINGES OF EQUAL CHROIvIATIC ORDER
Application of fringes of equal chromatic order to 

the evaluation of step height is very much simplified in the 
special case of a Fizeau fringe passing over the centre of 
the spiral. The interferometer is adjusted so that the middle

I
point of the length of the slit of the spectrograph passes 
over the peak of the conical hill, and is parallel to one 
arm of the Fizeau fringe. Then over one half of its length 
along the slit the interferometer will have a constant thick
ness till it reaches the peak after which the gap will in
crease depending upon the number of steps crossed by the slit. 
This will, therefore, lead to a system of fringes of equal 
chromatic order parallel to the spectrum lines in one half 
and sloping towards the red in the other. The increase in 
gap S t  is given by the relation

Z St = nrxy S X    —  )

YJhere is the corresponding change in wavelength in a
X' . ,particular fringe of order YU = -%-— -r, vjhere A  is theA — A

wavelength of the neighbouring order ( YV-h| ). From fig. (20)

S't---------------------------C30)

vi/here N is the total number of steps crossed by the slit.
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and h is the step heigjit. Fig* (l8c) illustrates an example 
of this method which shows the fringes of equal chromatic 
order corresponding to fig. (l8a). The spectrograph used 
in this figure was a Hilger constant deviation spectrograph 
with a dispersion of approximately per m.m. near X 5Uél*

6. 1|.. BY COimTim the NmiBER OF STEPS ON EITHER SIDE OF A
BOUNDARY LIRE

In one case another determination of the step height 
has been possible. In fig. (l8b) starting from the centre 
of the spiral v;e can reach any point A on the line of dis
continuity (running from left to right to the centre of the 
figure) either by going round the ’fish-like* obstruction in 
a clockwise or an anti-clockwise direction. In the former 
case, we encounter^say steps. Therefore, the point A is 

steps lower with respect to the centre of the spiral. In 
the latter case we go down say N2 steps from the peak of the 
hill in order to arrive at A. Thus at A the difference in 
level on the tv/o sides of this line of discontinuity is that 
corresponding to (3̂ 2 - N^) step heights. This difference is 
quite large (over 5O steps) and is, therefore, capable of 
being measured accurately and easily, either by Fizeau fringes 
as shown in fig. (l8d), or by fringes of equal chromatic 
order. Knowing this^the step height has been evaluated but 
it is subject to uncertainty due to the possible presence of 
hidden dislocations in the obstacle and in the line of dis
continuity.
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6.5. SUPER^POSITIOU OF FIZEAU OVER THE MICROPHOTQGRAPH

In this method the microscopic picture and the 
corresponding Fizeau fringes passing over this feature are 
photographed separately as usual, and are then superimposed 
over one another photographically, at the same magnification.
In this way the exact position of the Fizeau fringe, the 
corresponding separation between steps etc., are all kno\m 
with certainty. This method is of particular use when the 
separation between the successive steps is not constant, in 
which case the Fizeau fringes will appear curved. For the 
evaluation of step heights in such cases, two straight portions 
of the Fizeau fringes pa ssing over the vertex of the growth 
hill can be chosen, one on either side of the vertex and the 
corresponding step separation *d’ can be substituted in equa
tion (28). This will, consequently, lead to h i ^ e r  accuracy 
in the determination of step height. Fig. (l^c) illustrates 
anrexample in which the Fizeau fringes fig. (l^b) passing 
over the spiral of fig. (l$a) have been superimposed on it.

6<6. EFFECT OF DIFFRACTION

In all these figures, the effect of diffraction at 
the steps can be observed and this becomes more noticeable 
for molecular steps with high dispersion fringes formed in a 
small interferometric gap. As seen in fig. (léa), a portion 
of the fringe runs along the édge of the step in both
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directions on either side of the fringe and is of minimum 
extension Vi/hen the fringe is perpendicular to the step. Fig. 
(I8e) is an illustration of the effect for the spiral of fig. 
(l8b) under very high dispersion. This diffraction has been 
of considerable assistance since it makes the topographical 
features visible simultaneously with the interference fringe, 
so that it becomes possible to adjust the fringe direction 
and position exactly over a certain feature, e.g. the fringe 
can be made to pass exactly over the peak of the hill or it 
can be adjusted perpendicular to the edges of steps, or the 
exact number of steps crossed by the slit of the spectrograph 
in the case of fringes of equal chromatic order can be deter
mined accurately.
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Part IV

OBSERVATIONS ON SILICOH-CARBIDB CRYSTALS
\

(A) MICROSCOPIC STUDIES

(B) INTERFEROMETRIC STUDIES



(A) MICROSCOPIC STUDIES 

IFTRODUCTION AND CLASSIFICATION OF SPIRALS

Silicon-carbide crystals often have very well de
veloped and molecularly flat surfaces over v;ide areas and 
hence are most suitable for the observation of the molecular 
growth features of the type predicted by Burton, Cabrera and 
Franlc*s theory. Previous observations on Si-C crystals have 
already been quoted.

Simultaneously with the author (Verma I95I), Amelinckx 
(1951) also observed spirals on silicon-carbide crystals. 
Amelinckx could show that the step heights of some spirals 
was up to 35A and thought that some were probably unimolecular, 
but no exact measurements were reported. By comparison v;ith 
Griffin’s work on beryl, these spirals were inferred to be 
growth spirals. However, by the application of improved 
experimental techniques discussed in Part III, it was possible 
in the present investigation to study these features in 
greater detail, the results of v\̂ hich not only confirm many 
of the theoretical predictions but also provide new facts and 
data.

As has been seen in Part III, the experimental 
observation may be divided into two parts viz. the microscopic, 
which will be presented first and the interferometric.

On the (0001) faces or the basal planes of silicon-
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carbide crystals numerous growth spirals have been observed.
The different types of growth spirals observed can be divided
into three types.
(1) The elementary type of spirals originating from a simple 

dislocation in v;hich the step height is equal to the size 
of the X-ray unit cell.

(2) Spirals originating from dislocations of multiple strength 
in which the step height is a multiple of the size of the 
X-ray unit cell.

(3) Interlaced spirals in which the step height is a fraction 
of the size of the X-ray unit cell.
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CHAPTER VII

ELEMENTARY SPIRALS

This first class of spirals are those in which the 
step height between the successive arms of the spiral is equal 
to the size of the X-ray unit cell. These spirals are usually 
faint to observe because of the small step-heights (e.g. for 
type 6 H, the step height is I5 A) and are, therefore, seldom 
seen v;ith the ordinary microscope. It is therefore unlikely 
if this type of spiral had been seen by previous workers.

7.1. SHAPE OF THE SPIRALS

(a ) Circular Spirals

Taking the simplest case, when a single screw dis
location emerges on the face of the crystal, a molecular ledge 
will run from this point of emergence on the crystal surface 
to one of its boundaries. If now the supersaturation of the 
vapour in contact with the crystal is raised, grow'th will 
start when the supersaturation has been raised to such a value 
that the critical nucleus as defined by equation (lb) can pass 
between the dislocation point and the crystal boundary. A s . 
seen in Chapter (H) the ledge will curl up and form a spiral. 
The exact shape of the spiral will depend upon the rate of 
advance of a growth front in different crystallographic 
directions. The simplest case will be that in vhich the rate 
of growth is independent of the crystallographic orientations.
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Such conditions are likely to occur in growth from vapour
when the factor ̂  does not vary with orientation in the
crystal face in the following equation (equation (11) ) which 
gives the rate of advance of a ’straight* step

= a ( I) Z p --------------- (II)

As seen from equations (2) V (9) viz.

Xo •=. X  a  / 2 "4 .T )  ( a.)

Xj =  (Xtodj^ C 3< ^ l z - k T ) ----- — ----------((?)

under v;hich circumstances the estimates of surface diffusion 
distance Xj and mean distance Xo between the kinks on the 
steps are such tha t X^ X q even for orientations of
closest-packed directions. Thus when the distance betv;een 
the ”prevü-:el-kinlcs” ■ or exchange sites is small and the mean 
displacement of the adsorbed molecule is large, the molecules 
will-have a high probability of adhering to the step if 
adsorbed near it, irrespective of the orientation of the step. 
Therefore, the rate of ledge advance will be independent of 
the crystallographic orientation and a rounded spiral will 
result, the shape of which can be calculated under these 
assumptions, as given by Burton, Cabrera and Prank (I95I).

We loiow that a ledge which forms a portion of the 
spiral and has a radius of curvature ^  , will advance v;ith
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a velocity given by

1)^ —  “̂ o o C  < -  ) ------------------

provided the supersaturation is not too high. ^  is given 
by equation (l6) viz.

= (z 1 2 'ftT OL --------- cit;

Let Q (r) represent the rotating spiral in (rotating) polar 
co-ordinates (r, ©). The radius of curvature at a point r will 
be

f  =  ('+ -  .C30
z e ' + t ' V ’+ r s "

where G ’ and G” are the derivatives of © (r). If the angular
velocity of the whole spiral is W, the normal velocity at the
point r is

^ ( T )  = W T  (  C Z 2.)

These three equations give ©-fr) and W. A good approximation 
is obtained by taking an Archimedean spiral

r zi. 2 6 > 0 -   C 33)

which has the proper central curvature. (jJ is then given by

'IJ'OOw  —  — —      (34)
ic
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A better approximation as calculated.'by Burton, Cabrera and 
Prank is

0 ^ - r .
2 ()+3b  

3 ' U o o / a / ^  ( 

=  O' 63 'V'co jZ fô

>

/

- ( 35-)

The value of W  obtained by equation (35) differs from equation 
(3i{.) only by a factor close to 1, showing that W  is insensitive 
to the actual law of dependence of D" on f> in the range in 
whi oh P  ̂  .

The spacing between the successive arms of the spiral 
will be constant and will be given by

=  k i r R —  — — —  ---- —  —  C 3

Such circular spirals are illustrated in figs. (21) 
(33) (35) (36) etc. The spacing between the successive arms 
of the spiral is not constant and in nearly every case the 
spacing is close at the centre, increases gradually, finally 
becoming constant. This may be attributed to increasing 
supersaturation in the last phase of grov̂ th.

(b) Pobrgonal Spirals.
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Any dependence of the rate of advance of a growth 
front on its orientation would impose a distortion of the 
growth spirals. This will happen when the factor yQ in the 
above quoted equation (11) varies with orientation in the 
crystal face. An obvious source of variation is that in whi ch 
the step is parallel to certain close-packed directions. The 
step will, then, have relatively few ’kinks’, the kinlc energy 
being high. Thus the condition ^  X o  will no longer be 
true, so that when the kinks are few and far between and the 
distance moved by the adsorbed molecule is small, polygonal 
spirals will result, the edges of the steps becoming straight 
in directions at right angles to the directions of minimum 
growth. Between these two extreme cases, there will be a 
series of intermediate ones.

Thus for growth taking place under these conditions, 
when the growth spirals become polygonal, they will exhibit 
the symmetry of the crystal faces. When viewing spirals on 
the (0001) planes, the edges of the stacks of monolayers are 
being observed along the c-axis and will therefore exhibit 
syriimetries corresponding to these monolayers. Each monolayer 
of C or Si (and the follov;ing Si or C) by itself has hexagonal 
symmetry, but the two layers put together have only trigonal 
symmetry since the hexagonal axes of one coincide with the 
threefold axes of the other. A hexagonal symmetry can arise 
by virtue of a 6? screw axis.
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Pig. (22) shows the extreme case of a hexagonal 
spiral observed on a crystal identified to be of type é H.
This is a regular hexagonal spiral, showing clearly the 
dependence of the growth rate on the crystallographic orient
ation. The edges very near the centre show a curvature, which 
in accordance with the theory, decreases with the distance 
from the centre. Soon the straight step-lines start rounding 
off at the corners and become gradually curved on moving away 
from the centre. These step lines oLo not meet the line of 
discontinuity sharply, but tend to curve away from it, as 
shown in fig. (22), for the outer five or six step lines.

Pig. (l6b) shows a further example of a spiral with 
straight edges. This spiral has a high visibility under 
phase-contrast illumination. Calibration by multiple-beam 
interference fringes has shown the step height to be nearly 
I3OA. Here the central 1 or 2 turns are nearly circular be
fore it becomes hexagonal. In one corner four edges are 
displaced from the regular shape and the straight edges are 
observed to have ’kinks’ at several places.

Pigs. (23), (26) and (2({) 'are further examples. In 
fig. (25) some 10 turns at the centre stand out from the 

remaining turns. They are very closely spaced as compared to 
the rest of the figure and have an almost constant spacing, 
their shape being nearly circular. It may be noted that the 
step lines have a dotted appearance which may be duB to the
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deposition of impurity or some local etching at the edges of 
steps. Pigs. (26) and (2^) are being commented upon later 
in Sec. (7.2 ).

Pig. (18b) shov/s a spiral observed on a silicon-carbide 
crystal of type 6 ÏÏ. It is nearly circular at the centre and 
gradually takes on the hexagonal symmetry of the crystal face. 
This exemplifies the intermediate case where the conditions 
of growth are not preponderantly either in favour of a circular 
or a polygonal spiral. Pigs. (23) and (2l|.) are further examples 
of such a case.

The central part is circular in many of the polygonal 
spirals. Pig. (3U) shov/s further example of this behaviour.
This indicates .that the grov/th of the central part, v/hich 
represents the last phase of growth, took place under conditions 
such that circular spirals could be formed. It may be assumed 
that in the last phase of growth v/hen the furnace was switched 
off, the super saturation increased as the temperatui’e decreased. 
The shape may be attributed to these two controlling factors. 
Thus in fig. (23), the supersaturation was high in the last 
phase of growth and.it remained fairly constant over such a. 
period that some 10 spiral turns closely spaced could be 

developed.

The reverse case of a circular spiral having a centre 
with straight edges forming polygonal, spiral, has not been 

observed.
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7 *2 . PROPERTIES OF GROWTH FRONTS Aim THE INTERACTION
OF GROWTH SPIRALS

In order to understand the more complex growth patterns 
observed on crystal faces v/here two or more screw dislocations 
emerge, a description of some of the general properties of 
grov/th fronts will be given.

The regular circular spiral shape produced by growth 
controlled by a single screw dislocation v/ill^under constant 
conditions, rotate v/ithout changing its shape, v/hich at leastI
for fast rotation will appear as if circles are being emitted 
from the centre, travelling outwards at a constant speed.
For polygonal spirals the straight portions are actually 
advancing radially and so a similarity to wave emitted from 
a point source does present itself.

The analogy, however useful in many cases, cannot, be 
extended to interference betv/een growth fronts from two sources, 
but the terminology will be adopted to a certain extent.

When the•advancing growth fronts meet an obstruction, 
they can propagate round corners as shown at the upper end 
of the ’fish’ like obstruction in fig. (l8b). It might be said 
that this point behabes like a secondary source of grov/th 
fronts.

The growth fronts emitted by two sources do not inter

fere like ordinary wave fronts. Where the two edges meet,
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they fuse and annihilate each other over the common portion. . 
Numerous examples of this can be seen in figs. (21̂.), (53), (53),
(i|6), (ii-7) etc.

When there are several screw dislocations actively 
emitting growth fronts, a point on the crystal face v/ill be 
in the dominant field of only one of these and this alone deter
mines the number of grov/th fronts passing over it. This is 
illustrated in figs. (55), (33), (I^) etc. By choosing the 
point of observation on the crystal face of fig. (i{i|.) which 
shows the growth fronts emitted by five screw dislocations and 
fixing it, say, near the bottom screv/ dislocation, the number 
of growth fronts passing over it is solely determined as if 
this alone were active.

Sometimes amongst the dislocations emerging on a 
crystal face, one may dominate the rest. This will happen if 
the supersaturation at one centre is slightly^greater than 
that at other centres. The growth pattern originating from 
these weaker sources will continually shrink and if conditions 
remain constant ultimately only one growth pyramid will be seen. 
This is illustrated in fig. (26) where the central screw dis
location is dominant and determines the rate of crystal growth 
of the face. The weaker screw dislocations play little part 
in growth, ^ d  merely pass on the growth fronts received from 
the dominant screw dislocation with a slight delay and in

i/rv
slightly modified form. This is clearly seenjfig. (26). Here
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the central screw dislocation has developed some four turns 
before reaching the point where the second small screv/ dis
location emerges. They quickly accomodate each other and the 
growth fronts issuing from the central screw dislocation, as 
they travel past this dominated screw dislocation, are only 
slightly distorted from their regular shapes. However, in the 
last phase of growth, v/hen the furnace is switched off, the 
growth fronts would stop arriving from the dominant centre, 
and the growth steps attached to the weaker screw dislocations 
would be able to develop one or two turns of their own, as 
seen in fig. (26). Near the edge of fig. (26), some more screv/ 
dislocations emerge on the face of the crystal. Pig. (27) 
shov/s this portion of fig. (26), and fig. (28) is an enlarger- 
mént of this area. . These new screw dislocations also yield 
within a short while to the domination of the central one and 
quickly fall in line; their behavjour also being the same as 
outlined before. A further example of such a behaviour is 
shov/n in fig. (29).

7.5. GRŒfTH PATTSm FOR TWO SCR@V DISLOCATIONS

( a ) Two Screw Dislocations of the Same Sign :
Phenomenon of Co-operation

The growth pattern when two or more screw dislocations 
emerge on the face of the crystal can now be explained. Taking 
the next simplest case of two screw dislocations of the same

hand closer together than Z V  fc. they will generate a pair of
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non-inters0ctinfe growth spirals. In the lower half of fig.
I

(30) this unique example is illustrated where the spiral is 
doubled v/ith the members strictly ’’parallel*’. These two dis
locations may be said to co-operate with one another and will 
behave like one dislocation of double strength.

With the increase of distance betv/een the tv/o dis
locations, the ledges originating from one will intersect with 
the ledges starting from the other. In fig. (3I) the growth 
pattern for two screw dislocations A and B of the same hand 
is drawn schematically for the simple case of circular spirals. 
The step-height and structure of the step v/all originating 
from these two dislocations is assumed to be identical. (The 
more general case, where fault surfaces will be produced is 
discussed in Sec. 7.8). The ledge starting from A goes on 
rotating and generating the spiral until it meets at the 
ledge originating from B, where it terminates. According to 
the properties of growth fronts, the two ledges will fuse 
with one another at . As the 'spirals unfold themselves
the ledges meet at f>, 1 5 5̂- ? in the upper half^and at
k ’  ̂ >---- in the lower half of the figure. (The loci
of. points of intersection are treated in Sec. 7.6). Over the 
coimiion portion, between ĵ, and ^ and [5̂ ) etc., the
two ledges annihilate themselves and the missing parts of the 
two spirals are shown by the dotted line. The resultant 
figure is the solid line curve. Starting at the dislocation

point A and going round the spiral we descend by one step in
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each complete turn until we come to the point jb, • ' Prom 
|d, we go round the spiral B, to the point ^  , and then

again on the spiral A to the point . Thus in going
round the resultant curve once, we descend by two steps from 

to |>̂ to (3̂ and so on. Similarly starting from the dis
location point B and going round we descend by two steps from

ft
to etc. As the curves gradually smooth out at the-

points of contact, the figure will appear to be two spirals
alternately spaced.

\.

Pig. (31) has been drawn for circular spirals, and 
the case for spirals with straight edges can similarly be drawn 
where the behaviour will be the same. Furthermore in fig. (3I) 
the spiral attached to A has been shown to have developed 
two turns and that attached to B only half a turn before the 
two meet each other. It is quite possible for either of them 
to make any number of turns (including less than one turn) 
before meeting. The following figures illustrate the different 
cases. Fig. (32) shows the case of two screw dislocations of 
the same sign where both spirals are circular and the separation 
between the two dislocation points is such that each spiral 
has developed nearly one turn before meeting the other. The 
compound grov/th pattern in accordance with the method outlined, 
has developed in this figure for some two or three turns after 
wliich the ledges from the neighbouring dislocations interact 
with one ano the r •

With the increase of separation between the two
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dislocation points the growth pattern will have a shape similar 
to that drawn in fig. (Jl) and illustrated by figs. (53) and
(35)-

It has been seen that a spiral may not be circular or 
polygonal throughout. The central turns of several polygonal 
spirals have been observed to be circular. The resultant 
growth pattern will be built up by a mechanism similar to that 
drawn in fig. (3I), with the difference that after the central ' 
circular portions, the ledges of the spirals change into straight 
edges. This transition may be gradual or sudden. Pig. 
shows the case of two similar screw dislocations close to one 
another so that growth starts from both of them. The spirals 
are circular at the centre for one or tv/o turns after which 
they settle down as spirals with straight edges. ‘The meetirg 
of the growth fronts from the two dislocations results in small 
kinks in the innermost straight edges. As in the case of 
circular spirals, by going round the resultant figure, we 
descend by two steps in each turn and the figure has the appear
ance of two spirals alternately spaced. The step-height between 
successive lines in any particular direction:'remains one unit.
The spiral of fig. (3U) has been observed on a crystal of type 
I5R, the full spiral being shown in fig. (l$a).

(b) Two Screw Dislocations of Opposite Sign

When two screw dislocations of opposite sign emerge 
on the face of the crystal a ledge will run between them
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^fig. (37))" Growth will start if the super saturation is 
raised to such a value tliat the diameter of the critical 
nucleus ( 2 ) is less than the distance between them. In
the more general case when the critical nucleus is not circular, 
this will be equivalent to a correctly oriented critical 
nucleus passing between the two dislocation points. As long 
as the supersaturation is kept above this value, the adsorbed 
atoms will join the step and therefore the step tends to spiral 
around both dislocations. This is shown in fig. (38) looking 
down from above. However, as the step doubles back on itself 
(fourth stage shown in fig. 38a), the two points A and B which 
are at the same level can join up by atoms filling in the 
lower level C to form a bridge. This stage is shov/n in fig.
(38b). The parts D and E of the step grow very rapidly since
the curvature is negative; tliat is the length of the step 
decreases as the step advances. Thus a closed loop has been
generated and in the final sta^e, the step has returned to
its original position and is ready to start again to go through 
the above cycle agai-n . Therefore, as successive loops are 
developed the surface of the crystal becomes a pyramid, which 
will be composed of sheets or molecular layers. This develop
ment of the growth step is illustrated in three dimensions in

fig. (39).

P ig .  (35) shows this behaviour for circular spirals.
In the left half of the figure, one right handed and the other
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left handed screw dislocation emerge on the crystal surface.
The spiral attached to the left handed screw dislocation is 
developed for about three turns when it meets the ledges 
originating from the right handed screw dislocation. There
after, in accordance with theory, successive closed loops 
are generated. These loops are circular for the most part 
with only a slight distortion over a small portion. The 
step height of these circular spirals has been measured to be 
I5A, the crystal being of type 6 H.

Pig. (i|0) shows a unique case of two screw dislocations
of opposite sign close to each other and equally developed.
Here the spirals have straight edges. The resultant growth
pattern consists of closed sheets except at the centre where
the layer is incomplete and shows its formation from two
screw dislocations of opposite sign. The closed loops are
triangular at the centre, but oyv going away from the centre,
become hexagonal, with three alternate edges longer. The step-
height i.e., the thickness of each layer has been measured to
be nearly 12OA, see fig. (I07) and this indicates that these
features occur on a polytype with a large unit cell (see

\

Sec. 10.2 ).

Pig. (1|1) which is a bright-field plidcograph of an 
unsilvered crystal, shows tvi/o dislocations of opposite sign 
each giving rise to a hexagonal spiral. Vüién’the successive
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arms of the two spirals meet each other, they generate closed 
loops. At the points of intersection, an edge can be observed, 
indicating that the levels of the two steps joining together 
are not the same.

Another rare case is shown in Pig. (i|2) which consists 
of closed hexagonal sheets with no trace of dislocations at 
the centre. The closed hexagonal figures might have origin
ated from two dislocations of opposite sign, alternatively 
there may be some other mechanism.

DISCUSSION OF THE OBSERVATIONS OK PAIRS OP 
SCRBV DISLOCATIONS

Vfhen two dislocations of opposite sign emerge on the 
crystal face, they interact with each other. The forces 
exerted between them have been calculated by Taylor (193i|) 
for tv/o edge dislocations. The radial force and the
tangential force P^ are given by the relations:

c  — .— — ----——  —  —  - -C'^7)
' 'R :œ  Cl-y)

fo u - -   C3S)
ATTCI-V; TS?

Where G is the shear modulus of the material; V  is the 
Poisson's ratio, and \  is the dislocation strength; R is 
the distance between the tv/o dislocations, and OC is the
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angle v/hich the line joining the two dislocations makes with 
the x-axis. Hence dislocations of opposite sign attract 
each other v/ith a force that varies as the reciprocal of the 
distance between them. For dislocations of the same sign, 
the above expressions are reversed in sign and therefore the 
dislocations repel each other.

There is however a constraining force anchoring these 
dislocations to their equilibrium positions between the lattice 
rows. P:elerls (Ijlj-O) first calculated this force, which was 
later on extended by Nabarro (l̂ lj-Y). They find that this 
force depends upon the elastic constants of the medium. 
According to Nabarro?s calculation, the stress required to 
move the dislocation by overcoming the constraining force is :

^  ■ /— ^   -----

where is the theoretical shear stress for a perfect"I
lattice ( ^  QjtO ), and and G are as previously defined.

This, does not talie into account the strength of 
the dislocation, on which, this force should depend in some 
v/ay.

At a certain distance of separation between the two 
dislocations, these forces viz: the attractive and the 
anchoring forces will balance each other. During the process
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of growth of sill con-carbide crystals, when the temperature 
is high, the two dislocations of opposite sign will draw 
towards one another and will finally coalesce, joining to 
form a common centre ( which is a hollow core), unless the 
distance of separation is more than the above equilibrium 
value.

Experimentally, pairs of dislocations of opposite 
sign are seldom observed. Amongst all such pairs observed"so 
far on sillcon-carbide, a pair of dislocation of opposite 
sign close to each other such that the two spirals are equally 
developed (i.e. the first, second, etc., arms of the spiral 
from one dislocation meet the corresponding arms from the 
other) has not yet been observed for the dislocations of the 
elementary Burgers vector of small step height (e.g. I5 A for 
type 6 H). Hov/ever, for a comparatively larger Burgers vector 
one such pair of close dislocations equally developed has 
been observed. This rare case is the one shovai in fig. (I{.0) . 
Since its step height is nearly 12OA, this is possibly duB 
to the constraining force depending upon the strength of the 
dislocation i.e. the Burgers vector.

The closed sheets of fig. (lj.2) have a very faint 
visibility and .consequently the step height is small. In this 
case, the two dislocations of opposite sign can be drawn 
sufficiently close to each other. V/hen they are separated

by a distance such that the critical nucleus cannot pass
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between the two, the growth will cease and no new closed 
loops will be generated.

7.5. GROiii'TH PATTERN FOR THREE AND lARGER ÎHJÎSER OF DISLOCATIONS

(a) Growth Pattern for Three Screw Dislocations

The growth pattern for three or a larger number of
(

screw dislocations can nov; be explained. The growth pattern 
for three screw dislocations of the same hand observed on a 
crystal of type 6 H is illustrated in fig. (h5)• Once more 
the spirals are circular at the centre and become hexagonal 
after a few turns. In the central part the three dislocations 
are at a distance such that the ledges from them intersect 
and fuse with one another so that the growth pyramids inter
leave. When the spirals finally become hexagonal, they co
operate with one another, so that by following any one of the 
edges, the resultant curve descends by three units'in each 
turn. However, it shoud again be emphasized that the step 
height between successive edges in any orientation will be 
only one unit.

At the centre the ledges are more closely spaced 
and once they have settled down, the ledges are more widely 
spaced. This may be attributed to the high supersaturation 
of the final stage of growth. This will also explain the 
non-co-eperation of the three dislocations separated by these

distances, since with the increase of the supersaturation the
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radius of the critical nucleus will decrease and for the 
same distance of separation between the dislocations, they 
may be separated by distances larger than . In the
earlier phase, when the spirals have wider spacing, the two 
spirals on the right co-operate and dominate the one on the 
left. This can be seen from the shape of the first widely 
separated spiral turns.

(b ) Five Separated Screw Dislocations

Fig. illustrates the interaction of five screw
dislocations. Starting with the double screw dislocation at
the extreme right and calling it A, the lower of the two may
be called A^ and the upper one A^• The screw dislocation
points at the top^left^and bottom of the figure are called
respectively B, C, and D. At a point v/hich is slightly to

r
the right of the centre of the figure, a c^wding of grov/th 
fronts occurs. This point which is at the end of a line of • 
discontinuity running to the centre of the figure from left 
to right, may be called 0. Between 0 and B there are five 
growth fronts as arcs of circles emitted by- the dislocation 
point A^. The 6th. growth front meets the growth front 
advancing from B, and at the middle part for nearly over 1 cm, 
they fuse with one another^and over the common portion 
annihilation occurs. The compound growth front assumes a 
characteristic shape of —TL. , This behaviour continues for

the 7th. and the following growth fronts until we come to the
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IJth. growth front. The 13th. growth front meets the growth 
fronts advancing from C where again over a small portion of 
it, annihilation occurs. Now the compound growth front 
assumes another characteristic shape -0 -0 —  . The portion
of the 13th. growth front on the lower side of the annihilated
part is not wholly an arc of a circle with as centre. It
has a point of inflexion and the lower portion bends to the 
left when it meets the boundary or the line of discontinuity, 
coming diametrically from the left of the figure. This kink 
to the left can be seen in the 12th., 11th., 10th., 9th., and 
possibly 8th., and ?th., growth fronts. Beyond the 13th.., 
growth front towards the point C, growth is dominated by C.
In the lower portion of the 13th., growth front a small 
shaded area is visible near the line of discontinuity, the 
left edge of v/hich is an arc of circle with C as centre.
This shading can faintly be seen in the lowest part of the
12th., and possibly the 11th., growth fronts.

At 0 due to the interaction of different growth fronts 
a crowding occurs. Here the compound growth fronts are not 
arcs"Of circles with the different dislocation points as 
centres, but instead there is a gradual change in curvature.

Pig. (Ij-5) shows the growth pattern due to the. 
emergence of six screw dislocations, all of the right-handed 
type. Here again the step lines are nearly circular at the 
centre, finally becoming straight. Since the group of



dislocations is near the edge of the crystal, the resultant 
growth pattern is not fully developed on all sides.

7 . 6 .  RESULTA T  GRgy'TH PATTERNS FOR A VERY LARGE NUIiSER

OF DISLOCATIONS

Interaction of Growth fronts and Curves of Intersection

(i) General Case

When a large number of dislocations emerge on the 
surface of the crystal, the resultant growth patterns are 
quite complicated. Pigs. (i{.6), (I4.7) and (lj.8) illustrate 
some examples. In fig. (ii-6) the step lines are all circular 
they are polygonal with rounded corners in figs. (Il7) and 
(I{.8). These complicated growth patterns arise by the inter
action of the growth fronts spreading from the various 
sources. Some of the properties of the growth fronts have 
been outlined in section (7*2). Some further general principles 
that govern their interaction, and the shape of the locus of 
points of intersection v/ill now be given.

The successive arms of the spirals originating from 
any two dislocation can join with each other only if the two 
dislocations are of the same strength i.e. the two step heights 
are equal. Conversely if successive steps from tv/o dislocations 
join and fuse together, it can be concluded that the step 
heights of the two spirals are equal. Since this joining
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together of steps is observed in figs. (i{.7) and for
the successive steps from all the interacting dislocations, 
the step height must be a fixed unit and its measurement on 
any one of them will give the value of aL1 the rest. There
fore it ma y be concluded tha t in any one region of the 
crystal, the dislocations have the same strength.

If then the n^^ step from one source 0^ meets the m^ 
step from the other sources O2, they will join together if 
they are at the same level. Thereafter pairs of steps that 
can join together are (nf 1)^^ with (mfl)^^; (n + 2)^^ with 
(m4 - 2 ) etc., such tha t the order difference between these 
steps fusing vA th one another is alv/ays constant and equal to 
(n-m) • Microscopically speaking, on either side of the locus 
of points of intersection, the portions of the two pyramids 
should slope in the same direction, i.e. on travelling along 
this lbeus of points of intersection we will be moving from 
a higher to a lower level, or vice versa, for both the 
pyramids. Examples of this can be seen in figs. (i|7) and (U8).

Further, if the spacing be tv/e en the n^h and the 
(n 4-1) arms of one spiral is d^ and between the m^^ and the
(m4-1 ) arms of the other is d^, the two pairs of steps will 
meet the locus of points of intersection at angles and @2 
respectively, such that

sin Q^/sln ©^ = d^/d^  ( 40 )
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The value of (©^ 4- ©p) at a particular point of intersection
is fixed by the initial conditions of the distance of this 
point from the two sources, the distance between the tv/o 
sources and the shapes of the two spirals.

In the more general case d_ and d are the lengths
X

of perpendiculars dropped from the point v/here the (n+1) ’̂^ 
and (m4-l)^^ arms meet each other, upon the tangents drawn 
to the n^^ and m^^ arms of the two spirals at the point 
where they meet. The tangents to the n^^ and (n4-1)^^ arms 
of. one spiral may not be parallel to each other, so that not 
only the spacing between the successive arms changes, but also 
their directions may change, in which case the locus of 
points of intersection will have to turn suitably in order

V

to satisfy the above sine condjtion. This is illustrated in 
fig. (1|9) where v/ith the change of direction by the steps 
through an angle about 6o^, the locus of points of inter
sections also turns through a simila r angle. Other examples 
of the interaction of growth fronts and the loci of their 
points of intersection in accordance with the above conditions 
are seen in figs. (1{.7) and (I|.8), where a large number of 
polygonal spirals with varying spacings are interacting wiih 
one another. Another example of the interaction is seen in 
fig. (50) where as a result of the meeting of the growth fronts 
from three dislocations at the centre of the figure closed 
triangular loops are formed. (The figure includes only tv/o
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out of these tliree interacting dislocation centres. The third 
one will be towards the bottom of the figure).

If the two series of steps originating from two dis
locations, on reaching the same region of the crystal, are 
unable to satisfy any of tie above conditions, e.g. sine 
condition, they will not join with one another. These steps 
will then terminate in such a region. The points where the 
steps terminate will be ends of screw dislocations. Such 
a behaviour is seen in fig. (î 8) along a dotted line (running 
from nearly left to right in the middle of the figure) wi th 
a small gap in the centre, over which region four steps of 
the two spirals are seen to join together. We can reach any 
one of these four steps (say the second from the left) from a 
point A "'in a number of ways. In going from A to the chosen 
step we have to go down 30 steps, this number being independent 
of the path taken. A direct path can be traversed or one in
volving the crossing of different hexagonal spirals by going 
round the right hand end of the line of discontinuity. This 
is to be expected since the different spirals are of the 
same strength.

Pig. (51) illustrates another example where the spiral 
edges, though having the same step height, are unable to fuse 
with one another. These two series of step lines with their 
spacing nearly in the ratio 1:2 happen to meet each other at

right angles. They cannot satisfy the sine condition and
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therefore the steps have to terminate. Thus they create a 
harrier of dislocations between them, shown as a dotted line 
of discontinuity running nearly vertically across ' the., middle of 
figure. Pigs. (53) and (3I1.) are further examples of the 
termination of the step lines. In fig. (5U) at every point 
of termination of the step lines a dot can be seen. This may 
be due to the deposition of impurity at these points.

(ii) Special Case : Circular Spirals

The exact shape of the curves of intersection can 
be calculated in the simple case of rounded spirals. By 
introducing the approximation used for the interferometric 
measurements of step heights, according to vh ich these spirals 
may be regarded as composed of circles of constant spacing 

Zr = Pc } the condition (n-m) = constant directly gives 
the locus of the point of intersection P of the two rounded 
spirals originating from the two source centres 0̂  ̂ and 0^ •
Thus (n-m). Jr v/ill be a constant from which we have O^P _
O^P = constant. This gives the locus of the point of inter
section, a hyperbola which for (n-m) = 0 reduces to a straight 
line perpendicular to 0%02 and passes through its middle 
point (Burton, Cabrera and Prank, I95I).

A locus of points of intersection, which is hyperbolic,
4

is illustrated in fig. (33) for two circular spirals unequally 
developed. The condition (n-m) - 0 corresponds to the

symmetrical* case of two spirals .equally...developed_ and is :
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illustrated in the upper half of fig. (52) where the locus of 
points of intersection for two spirals equally developed is 
seen to be nearly a straight line, perpendicular to the line 
joining the two dislocation points and passing through their 
middle point. Here the two series of steps with equal spac
ing (i.e. d^ = d2) meet the locus of points of intersection 
at equal angles (©^ = ©2 0) • In fig. (33) the spacings
of the two spirals become equal (i.e. d^ = ^2^^ accordance 
with the sine condition ©,will become equal to ©2, and in 
this case the steps tend to be parallel to each other at the 
points of intersection (i.e. ©^ = ©2 = "

As shown by Burton, Cabrera and Prank (I95I) a small 
influence is transmitted along each step from the points where 
the two spirals meet, into the respective centres. This will 
tend to increase the rate of rotation of the spiral whose 
centre is nearer the points of contact (the upper one in 
fig. (33) ) trying to synclironize the two in phase. This will 
smooth out the corners formed by the meeting of the tv/o series 
of steps. This is observed in all the interacting spirals.

7 o7. STATISTICAL PROPERTIES : DENSITY OP DISLOCATIONS

,Por a veiky la rge number of dislocations emerging on 
the surface of the crystal, in addition to the study of the 

. individual behaviour* of the dislocations, certain statistical 
properties of the whole population can be studied, the chief
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amongst them being the density of dislocations, their type 
and strength.

The density of dislocations varies widely on different 
specimens of silicon-carbide (Si-C) crystals. In figs. (l6b) 
(22), (25) etc., there is only one dislocation, the grov/th
fronts from v/hich fill the whole surface. In figs. (21), (2i{.), 
(35)> (3̂ )f (36) there are several. The largest density of
dislocations observed, for circular spirals is shown in fig. 
(ij.6), and for polygonal spirals in figs. (1|7) and (I4.8). In 
fig. (I4.6) the density of dislocations is 10^ screw
dislocations per sq.cm. of the crystal surface whereas in 
figs. (i|.7) and (1̂ 8) it is ^  lO^/cm^ .

A note worthy point is that in fig. (i}.6) there are 
nearly 20 screw dislocations all of v/hich are of the right- 
ha nded type.' Siinilarly all the polygonal spirals shown in 
figs. (1|7) and (lj.8) a re of the left-handed type. Thus, it 
is characteristic that in an.y one region of the crystal, there 
is a large predominance either of right-handed or left-handed 
screw dislocations.

Further, as discussed in Section (7.6) the series of 
successive steps from any two screw dislocations in figs (hi) 

and (1|.8) are observed to fuse with one another. This can 
only be explained if the step-heights of the two series of 
steps, originating from the two dislocations are'the same

i.e. the W o  dislocations are of the same strength. Since
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this is true for all the dislocations in figs. (Ij.7) and (Ij.8), 
it may be concluded that in any one region of the crystal 
the dislocations have the same strength.

Thus it is characteristic that in any one region of 
the crystal, the dislocations are not only predominantly of 
the same sign but also have the same strength.

7.8. FAULT SURFACES

The interaction of tv/o dislocations of unequal strength 
may be considered now. When tv/o steps advancing on the same 
level towards one another, from two sources, meet each other, 
the result is dependent upon the nature of the step wall.
Three cases will arise.

(1) If the two step v/alls are identical i.e. are composed'
of the same number of molecular layers their relative arrange
ments being the same, they will fuse together forming an 
unbroken crystal surface. Thus in fig. (3I) where the simple 
case of the interaction of tv/o identical dislocations ,is 
represented, between the points \>̂ and where the two
steps have fused with one another, the surface of the crystal 
is flat and unbroken. In the case of silicon-carbide, which 
is a polytypic crystal, there are several possibilities of 
forming identical steps, attached to the two dislocations 
e.g. both of them may be of a type with Zhdanov symbol (33)
or (32) or (33 32) etc., the step heights being the simple
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units for these types. Pigs. (36), (ii-ii), ihè), (I4.7) etc.,
I

come under this category.

• •(II; The second case will a^rise when the two step walls
consist of the same repeat unit but have different step heights 
e.g. both may be of a type with Zhdanov symbol (33) but they 
may be different multiples of this structure,- say, n (33) and 
m (33)f(see Chapter 8). In this case, since the structure 
of step walls is identical, they will fuse with one another 
but since their step heights are unequal, they will leave a 
step of height equal to the excess of the repeat unit of one
over the other - equal to (n —  m) (33) in the above example.

Pig,. (55) illustrates this case. Here, over the part 
where the steps from the two hexagonal spirals meet and fuse 
with one another, a faint step can be seen running between the 
two points of contact. Since the two dislocations are of 
opposite hand and the faint step line follows the step lines 
of the spifal on the left hand side, it may be coneluded 
that the dislocation on the left hand side is the stronger.

Pig. (I}.1) was another example v/here two dislocations 
of opposite sign each give rise to a hexagonal spiral. At 
the points of intersection an edge .can be observed, indicating 
that the levels of the two steps joining together are not the 
same. Further examples are shown in figs. (36), (57) and (58).
Figs. (57) and (58) are the enlargements of upper and lower

103



portions respectively of fig. (56). In fig. (58) the faint 
step line v/hich gives the excess of one step height over the 
other can be seen clearly.

(ill) In the third case, the tv/o dislocations may be of
different strength and also may have different structure.
The two step v/alls will now consist of different numbers of 
layers and will also be differently arranged. Thus for example, 
one dislocation may be.of a type with Zhdanov symbol (33) and 
the other with (32). In this case the two steps cannot fuse 
with one another in a perfect way crystallographically. They 
v/ill leave a line of discontinuity v/hich v/ill mark out a fault 
surface.

Examples of fault surfaces are shown in the following 
figures (59 to 63). Consider fig. (63). As the growth steps 
on the right hand side of the figure originating from a screw 
dislocation not included in the figure, advance into the loop 
formed by the line of misfit, it shows that the crystal material 
inside the loop is crystallographically perfect and may be 
termed a "good crystal" (Por definition see Prank I95I J  ̂^ . 
Therefore, misfit in the crystal lattice is confined to the 
boundary line. The step lines are observed to meet the 
boundary line at sharp angles creating re-entrant corners, 
which shows that the step marking out the fault surface does 
not advance appreciably, and may act as a barrier to the pro
gress of growth layers. It is possible that the lines of



discontinuity seen in different figs. e.g. (36), (Ij-li.), (I16)
etc., may be of this nature.

Furthermore, the different dislocations in any one 
region of the crystal may have originated from one dislocation 
with a large Burgers vector. As the step associated with the 
large Burgers vector will not terminate abruptly, but macro- 
scopically speaking taper away, it v/ill actually break into 
discrete dislocations and most likely into dislocations of 
unit Burgers vector. However, amongst the group of dislo
cations, those which are different in structure from the 
majority group, will give rise to the misfit surfaces and 
will be locked at the barriers, leaving only those dislocations, 
the step lines from which fuse with each other perfectly.
The dislocation with a large Burgers vector will naturally 
break into' component dislocations which are of the same sign. 
Since like dislocations repel each other, they will tend to 
spread apart as growth proceeds.

This may offer an explanation to the significant 
observation that in-any one region of the crystal, the dis
locations are of the same sign and have also the same strength.

7<,9. GROUPS OF DISLOCATIONS : SOME GEOIŒTRICAL PATTERNS

Q,uite often groups of dislocations arranged in 
different v/ays emerge to the surface of the crystal and the 
grov/th patterns take complex geometrical shapes. A groyp of
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some 50 dislocations of the same sign arranged along a line 
of length L is seen in fig. to generate a spiral system
of s branches. The resultant activity of the group will be

 L . ±  -------------------

1 +  l/2-n-Pc

times that of a single dislocation (Burton, Cabrera and 
Frank I95I) ̂ where yP is the radius of critical nucleus 
defined by equation ( 16'). Fig. (65) illustrates another 
such group where steps are seen to group together giving a 
repeat pattern.

Some further examples of these geometrical patterns 
are given in the following figures (66 to 69). In all these 
figures, a bunching together of steps has taken place.
Fig. (67) shows the interaction of two groups of dislocations. 
At the points where the series of steps from these two 
sources meet .each other, the step lines are observed to fuse 
with one another. This will be possible only when the step 
walls originating from the two dislocations have the same 
structure. Further, since the steps originating from the 
two dislocations are not elementary, the tv/o series of steps 
on either side of the locus of points of intersection, can 
fuse v/ith one another if they can bunch or dissociate into 
smaller steps so as to bring the crystal level on both sides 
the same. That this is so, is seen in fig. (67) where on
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either side of the locus of intersection, there is a 
continuity in the arrangement of step lines.

7o 10• SOME RESULTS ABOUT THE CONDITIONS OF GROr/TH

The different informations which can be derived, from 
the microscopic observations, about the conditions at which 
the growth of silicon-carbide crystals took place are, the 
radius of critical nucleus and the supersaturation. From 
figs. (36) and (Iji}.), the spacing between the successive arms 
of the circular spiral, when it is nearly constant is, 
approximately, 2.5 m.m. at a linear magnification of 90.
From equation (3 6)

- ^TT fc  ̂ v/e have

This gives the size of the critical nucleus to be about !{. |U> . 

The supersaturation can be calculated from equation ( 16 ) viz.

provided can be estimated. For this estimation Trouton*s

rule may be used according to whi ch

i  = 3*5 Tb ------------  -(43)
kT T •
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and at an absolute temperature of 0.6 of the boiling point
ofSmaterial 4̂ 6. Substituting, the super saturation o( is

kT
given by

(X %  0.2 ^  (Ẑ )̂

This shows that the crystals grew at f ^ l y  low value of 
supersaturation.
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CHAPTER VIII
SPIRALS ORIGINATING PROM DISLOCATIONS OP MULTIPLE 

STRENGTH AND MULTIPLE DISLOCATIONS

8ol. LARGE STEP HEIGHTS AND DISLOCATIONS OF MULTIPLE STRENGTH

The step formed by the emergence of a screv/ dislocation 
on to the crystal surface will have a step height corresponding 
to tĥ e differences in the amounts of slip betv/een neighbouring ' 
regions of the crystal. Because of the existence of discrete • 
atomic structure in the glide plane, this will be limited 
to the value of the X-ray unit cell of the crystal or: in 
some lattices a small multiple or fraction of this. The 
spirals discussed in Chapter (VII) are of the simple type in 
which the step heights are equal to the heights of the X-ray 
unit cell e.g. in type 6 H = 1$A (See Chapter X). Because 
of the small step heights the visibility of these spirals v;as 
lov;.

The spirals described below, have a much higher 
visibility and interferometric measurement shows that they 
have relatively large step heights ; indeed, they can often be 
seen simply with a irvicroscope using bright-fie Id illumination 
without silvering the crystal. However, the following figures 
have been taken using the silvering technique and observing 
them with phase contrast illumination.

As silicon-carbide (Si-C) is a polytypic crystal, a
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large step height may be due to its being equal to (I) the 
height of a large X-ray unit cell (2) a multiple of a smaller 
X-ray unit cell. The latter type of spiral results from a 
dislocation of multiple strength, the BuTgers vector being 
a multiple of the X-ray unit cell.

8.2 . DISSOCIATION OF STEPS
Fig. (70), which is a bright-field photograph of an

unsilvered crystal face, illustrates a spiral originating 
from a dislocation of multiple strength, observed on a crystal 
of type 6 H, as determined goniometrieally (see Sec. (10.2) ). 
The central part of the spiral of fig. (70) is shown in fig. 
(I0I4.), using phase contrast illumination. From the shift of 
the Fizeau fringes (fig. (IO5) ) over these spiral steps, the 
step height between the successive arms of the spiral has 
been determined to be nearly 620 A.

The rate of advance of a multiple step will be 
controlled by the deposition rate at the bottom of the step 
(Frank I95I ^  ) and as long as the bottom of the step is not
privile^ged with respect to the diffusion of the molecules
from the gas, the multiple step will not dissociate into its 
component steps. In fig. (7%)^ showing the right half of-the 
spiral in fig. (70) using phase contrast illumination, the 
edges do not remain straight after three or four turns from 
the centre and become irregular. This behaviour continues for 
a few more turns after which the steps dissociate into five
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visible components (see fig. Y2 ). The edges of these 
multiple steps will not be close packed. The Pizeau fringes 
^ fig. (105)^ passing over these steps are seen to be contin
uous over the edges of tlie steps while climbing them. This
indicates that the edges are not steep. Furthermore the

»
crystal face between the successive edges is not close packed. 
This is illustrated by fig. (72), which is an enlargement of 
the right hand portion of fig. (7I), where some faint step 
lines can be seen between successive edges. Figs. (73) and 
(73&) shov; the behaviour of the steps on the left part of
fig. (70).

The dissociation of a step into its components takes 
place preferentially in certain orientations. In figs. (7I) 
and (72), the dissociation has taken place preferentially in 
one orientation^and at 6o° to this direction, this dissociation 
is much less marked. Fig. (7̂ J is a better example showing 
the dissociation on the three alternate sides of the hexagonal 
spiral. This is easily comprehensible since in Si-C, a growth 
layer which is fastest in any one‘orientation becomes slowest 
in orientatiens at 6o^ to it; the faster moving steps will 
overtake it and pile up behind.

Fig. (75) shows the spiral growth pattern observed on 
a crystal of type Here two spiral step lines start from
a common hollow. They stay as two separate steps for about 
half a turn, after which the step lines come closer together 
finally touching each other along an edge, after which they
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separate out and remain as two for the rest of the'turns.
‘This behaviour is in contrast to that observed in fig. (7i|-).

A spiral showing trigonal symmetry with three corners 
rounded, is illustrated in fig. {76). The step-lines reach 
the edge of the crystal after it has developed for nearly tvm 
turns. However, the spiral continues to unfold itself, and 
as seen at the lower right hand corner of the figure, the 
steps separate out into two components giving each step line 
the appearance of a broad line.

8.3. MULTIPLE DISLOCATIONS

Dissociation is seen to take place quite near the 
origin in the example shown in fig. (78). Here amongst the 
dissociated steps:,- in three orientations, the outermost edges 
(which correspond to the bottom layers of the group) are 
straight and parallel to each other in the successive arms of 
the spiral, v;hereas at the inner edges, the usual irregularity 
is observed. Pig. (77) shows separately the third and the 
fourth arms of the spiral of fig. (78).

Pigs. (79) snd (80) illustrate further examples of
multiple dislocations. In fig. (79), in contrast to fig. (78),
the growth is faster at the six corners, the rate increasing
towards the outer (or bottom) layer in the group. At some of
these corners crosslacing of the step lines (See Chapter IX)
is observed and may be responsible for the faster growth
(c.f. figs. (92) and (93) )•
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CHAPTER (IX)

INTERLACED SPIRALS

9.1. SIMPLE INTERLACED SPIRALS 
Observâtion

This is a new type of spiral which was not predicted 
by theory. The following figures (8l to 99) illustrate 
'spirals* belonging to this type. As seen in fig. (8I) and 
other subsequent figures the appearance of these spirals is 
similar to that of a spider's web. This appearance arises 
because in each of these hexagonal spirals at the six corners 
the edges fork out and meet the neighbouring two edges, and 
since this happens at the six corners for all the steps-, a 
criss-cross appearance results. These interlaced spirals 
may be divided into tv;o classes, firstly simple interlaced 
spirals and secondly banded interlaced spirals in which a 
certain number of steps group together.

Pig. (81) illustrates simple interlaced hexagonal 
spirals, showing interlinking of fbur such interlaced spirals . 
Pig. (81) is the usual phase-contrast micro-photograph. The 
much higher visibility of fig. (82) shewing the same part of 
the' crystal has already been commented upon in Sec. (5.2 e).

Pig (85) shows the interlinking of two interlaced 
spirals at a higher magnification (xl200). In the middle of 
fig. (8l|) a single interlaced spiral is shown, whose central
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few turns are very closely spaced, after v/hich, the spacing 
suddenly increases. Here the step lines follow a pattern 
which resembles fig. (88). Prom the first widely spaced step 
lines, on moving towards the left, in the iniddle of the 8^^., 
step line the emergence of another small interlaced spiral 
can be observed. This interlaced spiral remains under the 
domination of the central one, its behaviour being very much 
similar to the behaviour of domination as outlined for simple 
spirals in section (7.2); it merely passes on, the growth 
fronts received from the central dominant screw dislocation 
and slightly alters the shape of grov/th fronts as they pass 
near it. This is a unique example showing the phenomenon of 
domination in the case of interlaced spirals. Some further 
examples of these interlaced spirals are shown in figs. (85) 
and (86).

BxplaiTdiion
An explanation of this has been given by Prank (I95IÔ/) 

and depends upon the dependence of growth rate on crystallogra- 
phic directions and the change of the growth rate of the mono
layers in different orientations of the crystal. Considering 
say the silicon-carbide of type 6 H, its Zhdanov symbol is 
(33). Using Prank's notation it may be written as

( A A A  V  W )
These six monolayers together, form the X-ray unit cell, and 
will form a step of height I5 A. In this sequence of six
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monolayers, the force field for each monolayer is slightly 
different, and therefore one of these monolayers will haye 
the slowest rate of growth. The other, faster moving, mono
layers will overtake it and pile up behind it, forming a 
step of height corresponding to the whole repetition period.
Thus the slowest growing monolayer v;ill be at the bottom of 
the stack of monolayers and would determine the rate of growth 
of the stack as a vjhole. As long as the conditions of growth 
are such that the monolayers in the stack are not separated 
from one another, this pile will advance as a single unit and 
will constitute a single step line, so that in any one orient
ation of the crystal, step lines I5A high corresponding to each 
stack of monolayers will be observed. But it is not certain 
that the slowest growing monolayer in one orientation say (oil) 
will also remain the slowest growing in orientations 6o° to 
it i.e. (10 I ) orientation. In fact, in type 6 H, the slowest 
growing monolayer in one orientation should become the fastest 
iij orientations at to it. This is easily pictured from
Franlc's notation, wgiich has mnemonic representation also. 
According to this, a monolayer which is represented by A  in 
a certain orientation will be represented by SJ at orientations 
60^ to it, since a A. changes into a ^  by rotation 
through 60^, Hence on alternate sides of the hexagon, the 
growth layers form alternate groupings of

( A  A  V W )  and ( ^ ^ V A A A )

Thus, whichever layer is the slowest growing one in a
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particular orientation, say the first after a series
of A s  f then the third layer after it is necessarily the 
slowest growing in orientations at to it. This alter
nation of velocities will lead to the interlacing of the 
growth steps. This is represented diagrammatically in fig.
(87). Here in the stack of six monolayers the fastest growing 
layer is marked F and the slowest S. Between these two mono
layers there are four other monolayers with intermèdiatè-^rates . 
of growth and for the sake of clarity these have not been 
drawn. Further the separation between the F and S layers is 
exaggerated; actually they are so closely piled up on each 
other, that the whole forms a single step I5A high. The F  

layer is shown to become S layer and vice versa when the 
orientation changes through 6o°. Thus the growth layers will 
be 6 layers high i.e. I5A high on the six sides of the hexagon, 
and only three layers high on the zig-zags, at the six corners 
i.e. the step hei^t will be 7*5A. Amelinckx (1951^̂ )b.as 
measured the step height of an interlaced spiral, similar to 
tha t shov/n in fig. (88), to be "J±2A. This is in accordance 
with the above explanation.

Pig. (88) showing alternate trigonal spirals, assists 
in the above interpretation. Here, in any orientation, the 
three layers are .separated from the other three and the figure 
has trigonal symmetry. This is to be expected since the

ifsymmetry of any one of the monolayers, in the stack of monolayers.
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advancing over another is trigonal. Pig. (89) is another 
illustration of interlacing of two trigonal spirals.

9.2. S O m  FURTHER BXAIÆPIES

Pigs. (90) and (9I) illustrate an example of inter
laced spiral in which the structure of the step lines on the 
alternate sides of the hexagon is markedly different. In 
three orientations, alternate step lines are rugged and 
irregular whereas in the other three orientations all the step 
lines are smooth. In the part ABC of fig. (9I), the step lines 
are smooth, and in part ACD, alternate step lines are irregular 
and have a rugged structure. The continuity of alternate smooth 
step lines in ACD can he traced to ABC. The transition along 
the zig-zag portion AC is clearly shown in the figure. This 
rugged appearance of step lines may be due to slight surface 
oxidation, causing the layers to separate out in certain 
orientations.

Pigs. (92), (93) and (9ij.) showing the same feature in 
three different magnifications illustrate another interesting 
variation of interlaced spirals. The point of special interest 
here is that the six corners appear to grow faster than the 
straight portions. This results in the step lines, between 
any two corners, having a cusp and a concave form. According 
to theory, a step with a re-entrant corner or with a negative 
radius of curvature should rapidly grow out. This cusp in the
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step line and its concave form could only have been maintained 
by the faster growth at the six corners, this pull along these 
corners giving the hexagonal figures the above shape. In 
fig. f which shows the centre of the spiral, it is seen
tha t the step lines are convex near tlie centre, their 
curvature decreasing with the increase of tlie distance, in 
accordance with theory.

A point vhich can be noted in all these figures of 
interlaced spirals is that at the six corners, the extent of 
the zig-zag or criss-cross pattern varies in different cases.’ 
In some of them e.g. figs. (62), (85) and (86) this is
limited over a small area and the transition appears quite 
sharp. Whereas in other figures such as (8ij.) and (9I) this 
transition from the slowest to the fastest monolayers by 
changing the orientation through 6o° is gradual and smooth. 
Further over this transition area the zig-zag portion of the • 
interlaced spiral may be composed of small straight lines as 
illustrated in figs. (83), (85) and (86) or it may be grad
ually curved as seen in fig. (8I4-) . In the diagram fig. (87), 
the transition portion has been drawn, for the sake of sim
plicity, as straight lines.

This alternation of the velocity of growth with the 
change of orientation by 60 v;ill necessarily occur in the 
hexagonal type 6 H, but it is possible that it may occur in
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the rhomhohedral types also, in which case the rhomhohedral 
types will also display these interbd spirals. According 
to this explanation since the change of growth velocity will 
necessarily occur for spirals developed on crystals belonging 
to type 6 they should always interlace. But crystals of type 
é H have been observed to exhibit circular, hexagonal, as well 
as interlaced spirals. Therefore, this explanation, though 
it gives a qualitative explardiion, is incomplete and there 
must be some other factors also controlling the formation of 
these spirals.
9.3. GROUPED INTERLACED SPIRALS AND ITS EXPLANATION

In some of the interlaced spirals a grouping of a 
certain number of steps takes place. Several such cases 
have bee n studied and the number of steps grouping together 
has been found to vary depending upon the number of layers 
in the x-ray unit cell of the crystal. Pig. (95) shows part 
of an interlaced spiral in which in any one orientation seven 
steps are observed to group together having a characteristic 
sequence of spacing between them. These steps can be 
followed in fig. (98), which shows spiral as a whole at a 
lov/er magnification, to the other side of the interlaced 
portion, and the same sequence of spacing repeating itself 
is observed. This characteristic spacing between the success
ive seven steps is seen to repeat itself for the successive 
groups. Under low magnification, these grouped steps give 
an appearance resembling optical band-spectra. In fig. (96),
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showing a different portion of the same spiral, it is seen 
that the high visibility of the step lines is due to the 
deposition of some impurity. In fig. (97), the advancing 
groups of seven steps meet the interlaced steps originating 
from three new screw dislocations. The figure illustrates 
their interaction.

.On another crystal a similar grouping of five steps 
has been observed. This is illustrated in fig. (99). Unlike 
the previous example the grouping of steps together
cannot be followed to the other side of the interlaced portion 
since the interlaced portion is near the.crystal edge. The 
spacing between the successive five steps is not constant 
and therefore it does not have the characteristic appearance 
of figs. (95) and (97).

In addition to these fixed number of steps grouping 
together, on one face of a crystal, the number of steps 
grouped together ha s been observed to change in certain 
regions. Thus in fig. (100) v/hich exemplifies this type of 
behaviour, it is observed that the number of steps that have 
grouped together varies greatly on different parts of the 
crystal.

Explanation

An explanation of these features can be given as 
follows. (Verma I95I ^  )• The different polytypes of silicon-
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carbide have the Raiiisdell’s zig-zag sequence or Zhdanov 
symbol of (33)̂  ̂ 3^ • Using Prank's notation, the structure
can be written as :

As in the previous case of simple interlaced spirals, the 
growth conditions will be different for each of the Si-C 
layers provided atomic interactions are significant as far 
away as the number of layers involved. The most striking 
difference will occur at each change in the 2^ sequence 
i.e. when the first -A. layer occurs after a series of 
layers or vice versa. Now it is not known whether this will 
make the rate of advance faster or slower. If it makes the 
layer grow faster, it will not produce an observable; change 
and hence is unimportant. If, howeger, it makes it grow 
slower then a certain monolayer in this stack of monolayers 
will be the slowest one and the faster following layers vi/ill 
pile up on it, up to and excluding the next one which goes at 
the same rate. Thus if we assume that the first A  after 
a series of '(or vice versa) has the slowest velocity'
in any one orientation, then it will repeat itself after six 
such layers making the growth steps I5A high, until we reach 
the last layer which will be 12.5A high, since it is composed 
of only five:monolayers. After this, the whole sequence will 
go on repeating itself. The case for seven steps grouping 
together is represented as follows :-
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_  Unit Cell

A A A V V v i  A A A V V v !  A A A  V V V  ! A ^ A  V W ;  .A A A  V  W ;  A A A  V V r j  a A A  w j

ISI\ >

Thus depending upon the number n in the Zhdanov- symbol 
|̂ (53)n 32^ we will have a certain number of steps grouping 

together.

In figs. (95) and others the seven steps grouped 
together form the unit cell .and hence the step height at 
successive edges is only a fraction of the unit cell. Similarly 
the step heights of all other grouped steps is also a fraction 
of the unit cell. These steps further break uprinto t?/o parts 
i.e. each is only 3 monolayers high, over the interlaced or 
zig-zag part.

The observation of the changing number of steps 
grouped together suggests a change in type from one part of 
the crystal to another. The different parts of the crystals 
showing grouping of say 9, \\̂  etc., steps means that those 
parts of crystal are the polytypes with Zhdanov symbol
{^(33)8 32J f [j33)io 32j , etc. This may account for the
disagreement between crystal symmetry and x-ray diffraction 
data sometimes observed ( Rams de 11 KoK/̂ /

The observation of this grouping of steps is another 
visual confirmation provided by crystal growth patterns^ of 
the repeat sequence predicted by x-ray phenomena.
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(B) INTERFERQî̂jBTRIC STUDIES.

CHAPTER X .

RESULTS OF INTERFERQIvIETRIG STUDIES AND POLYTYPISM

IN SILICON-CARBIDE

By the application of multiple-beam interferonetric 
techniques as outlined in Chapter VI, the step heights for 
the grow til spirals observed on different Si-C crystals were 
measured. As shown below, the step height between successive 
arms of the spiral differs on the different polytypes and is 
characteristic of the particular type, having a direct corres
pondence with the size of the x-ray unit cell. The step 
heights of these* growth - spirals have been found to be (1) 
equal to the size of the x-ray unit cell .(2) a multiple (3) 
a fraction of the x-ray unit cell, giving the three types of 
spirals discussed in Chapters Vll, Vlll and IX respectively.

’ 10.1. GROWTH SPIRALS WITH ELEMENTARY BURGERS VECTOR
(a) Si-C Crystals of Type 6h

The spirals belonging to the first type are the 
elementary spirals. By far the largest number of these growth 
spirals observed were on the commonest variety of Si-C crystals 
of 1 type 6h. Since the step height of these spirals is equal 
to I5A, it is too small to be measured directly by the shift
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of the individual Pizeau fringes at these steps, and, therefore, 
the methods outlined in Secs. 6.2 to 6.5 for finding the 
average step heights were utilized. The results of inter- 
ferometric measurements are summarised below.

The grov/th spiral of fig. (l8b) was observed on a 
crystal which was quite well developed. By measuring the 
interfacial angles between the. basal plane and other faces, 
by a one circle goniometer available in the laboratory, it 
was found that these angles given in Table VI, agree within 
experimental errors with the data given by Thibault (I9J4I1.) 
for type 6 H and, therefore', this crystal was identified to 
be of type 6 H.

Table (VI)

Angle between-the basal plane 
and the form. Form

Experimentally 
determined value

■ Thibault's' ' ' 
data

49° 8 ' 48° 33i ' n - n 1015

54° 53' 54° 47’ r - r loHj-
62° 5 ' 62° 6' s - s' 1013
70° 29' 70°. 33i' X  -  X  1012
78° 1̂ ' —
89° 53' 90° 00' m 10Ï2
80° 1'' 79° 59i' y - ÿ lOÏl

Another zone
62° O'
70® 29'
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•Three different methods given in Secs. (6.2a), (6.3),
and (6.1{.) were applied for the measurement of step heights. 
Pig.' (I8a) shows Pizeau fringes under high dispersion passing 
over the peak of the spiral hill. That the Pizeau fringe is 
passing exactly over the centre of the spiral can be seen in • 
fig. (18a), where the spiral turns have been revealed by the 
effect of diffraction (see Sec. 6.6). By knowing the angle

tKit
through which\Pizeau fringe bends at the centre, the 
dispersion i.e. the separation between the successive orders 
from fig. (18a), and 'd' the separation between the successive 
steps (changed to the same magnification as fig.(l8a) ) from 
fig. (18b), the step height has been measured using equation 
( 2.0 ). The result is given in column I of Table (VII).
Pig (18c) shows the fringes of equal chromatic order corres
ponding to fig. (18a), and using e q u a t i o n s  (x.̂j?<3o), the measured 
step height is given in column II of Table (VII). In column 
III is given the average step height by Imowing the total 
difference in the level of the crystal on either side of the 
discontinuity line at a point A and then dividing this by the 
difference in number of steps crossed in reaching this point
from the centre of the spiral by going round the 'fish' like

/
obstruction in a clockwise or anticlockv/ise direction.
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Table VII

h, the measured step height for the growth spiral 
in fig. (18a) observed on a crystal of type 6 H

'....- . _ . i

Use of Pizeau 
fringes

Use of fringes of 
equal 

ctoomatic order
By counting the 

steps

15.2 A; A 17.1 A ' 14.8 A

A similar measurement of step-height was done for the 
growth spiral at the bottom of fig. ikk)^ by the use of 
Pizeau fringes. The result of four independent trials for 
the measurement of step-height was :

14.5 A ; 15.5. A ; I5.O A j I5.3 A.

These measurements show that the average step height 
of these growth spirals is 15*2 A with a maximum uncertainty 
of about lA. The lattice parameter 'c ' for type 6 H is equal 
to 15.079 A (See Table (II) ). This shows that^ within the 
limits of experimental accuracy, the step height is equal to 
the lattice parameter c of the X-ray unit cell. This is to 
be expected, since for the spirals observed on the basal plane 
(0001), the step height should be equal to the.repeat distance 
along the 'c' - axis.
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(b) Si-C // Crystals of Type 15R

The type of crystal studied next was the second 
most common variety of Si-C crystal of type I5R. The 
growth spiral observed on this crystal is illustrated in 
figs. (19a) and (plj.). The type of the crystal was again 
identified goniometrically and the interfacial angles 
between the basal plane and other faces are given in Table 
(VIII) belov/, and are, compared with the data given by 
Thibault (19̂ }-) •

Table (VIII)*

Angle between the basal plane and the
form

Form
Experimentally determined 

value
Thibault's 

data

47° 15'
54“ 44' 
63° 45'

47“ 30'
54“ 46 ' 
63* 42-1'

M 10113 
r lOTlO 

j-J IOÎ7

This crystal had only three well-developed faces, 
besides the basal plane, suitable for goniometry. However, 
the measured angles 15^ and 63° 1|5 * show it to be
conclusively of type I3R, since these two angles do not 
occur for type 6 H and occur only for typo I5 R*
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The growth spiral observed on this crystal has 
straight edges (except at the centre) and therefore for the 
measurement of step height, by the application of Fizeau 
fringes, shorn in fig. (l^b) equation { Zi) ) was used. For 
greater accuracy, as discussed in Sec. (6.5), figures (lOa) 
and (19b) were superimposed over one another as shown in 
fig. (19c). The resultr of the measurement of step height 
is given in Table (IX) .

Table (IX)

Crystal
Type

lattice parameter Measured 
step height

c • ^rh

I5R or 37.95A 12.78A 13.0 A
Zhdanov 11.1 A

symbol
(32) 13.1 A

This result of measurement shov/s that the step
height is equal to CX-rfv  ̂ the size of the actual rhomhohedral
unit cell, which is equal to J- the length of the ' c a x i s3
referred to the hexagonal ajces. This is in accordance with 
the true stacking sequence, which for type I5 R is in Zhdanov's 
notation (J2) or in Frank's notation V  V  ).
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(c) Sl-C Crystal of Type 55R •

This interesting result needed some further con
firma tion. To verify this, the type of a large number of 
crystals showing growth spirals was determined amongst 
v/hich one crystal which v/as determined to be of type 33^ 
was found. Since the measurement of step height on this 
crystal wa s crucial, the type of this crystal was determined 
accur§.tely v;ith the goniometer. Fortunately, this crystal 
had a number of faces quite well developed giving excellent 
reflections. In Table (X) the results of the meas.urement of 
the interfacial angles between the basal plane and the 
successive faces are reproduced and are compared with the 
data given by Ramsdell (IÇli-j).
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Table (X)

Angle batween the basal plane and 
f orra

Porm

Pxperiraentally deter
mined value v/ith 
possible error

Ramsdell* 
data

l.O.T.l?-
0,.l. /.11. 
1.0. T. 11.

B; thin 
face80° 53^') 

8 0 °  5 2  f
B, very 
thin face

\JL 1. G. I, l6.1% 0.1. 7. lé.

Two very thin faces not measurable

This close agreement between the experimentally 
measured interfacial angles and tlie data given by Ramsdell 
was taken to prove conclusively that the crystal was of 
type 33R.
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The growth spiral observed on this crystal is tru
fig. (101) or (75)- The behaviour of the growth fronts and 
the resulting shape of the spiral have already been commented 
upon in Sec. (8.2). Pizeau fringes passing over this spiral 
are shown in fig. (102). In accordance with the method of 
Sec. 6.5 for greater accuracy, Pizeau fringes are shown 
superimpos ed over the growth spiral in fig. (IO3). Since 
it is a polygonal spiral, again using the Pormula ( )  the 
step height was determined, the results of which are 
summarised in Table (XI).

Table (XI)

Ramsdell* s 
Notation

Zhdanov and Prank*s 
Notations

Lattice parameter Measured 
step height■ c ■ ■ ■ r̂li ■

33R (33 32)
82.9i4A 27.704A 27.8 A

,23.0 A
28.3 A
31.0 A

The measurement within limits of experimental accuracy
shows conclusively that the step height for type 33R crystal
is equal to a^^ of the actual rhomhohedral unit cell which is
equal to -L its length along the c - axis referred to the '3
hexagonal axis.

Thus it seems reasonably established that in silicon- 
carbide crystals the step heights for elementary spirals on
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the hexagonal crystals is equal to the lattice parameter *c* 
and in rhomhohedral crystals the step height is equal to

of the rhomhohedral unit cell, whi ch corresponds to the 
actual stacking arrangement. Thus in both the cases so far 
studied, the step height is equal to the size of the actual 
X-ray unit cell. Such spirals, therefore,' originate from 
dislocations with unit Burgers vector i.e. these are the

t

elementary spirals.

In another crystal, the growth spiral on which is 
illustrated in fig. (léb), it has been possible to measure 
the step height by the shift of the Pizeau fringes (fig.léa) 
on these individual steps. The step height is equal to I30 A. 
Taking the step height h = a^^, this crystal should be of 
type 159 R with Zhdanov symbol |̂ 33)g 5^J• However, to confirm 
this prediction X-ray diffraction data would be needed.

10.2 . GROWTH SPIRALS ORIGINATING PROM DISLOCATIONS OF
MULTIPLE STRENGTH

Often the growth spirals observed on silicon-carbide 
crystals having a high visibility, belong to this class. A 
typical example of such a spiral is shown in fig. (lOj^), which 
is a part of fig. (70). Pizeau fringes passing on these 
spiral steps are shovm in fig. (IO5). For photograglng these 
Pizeau fringes a lightly silvered glass flat was used with 
the advantage that the spiral turns are visible simultaneously

with the Pizeau fringes. The step height as measured by the
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shift of Pizeau fringes at these steps is equal to 620 A.
The crystal was identified by usual goniometric measurements 
to be of type 6 H. The step height, therefore, is a multiple 
of the X-ray unit cell. This conclusion is further supported 
by the observation that these steps dissociate into component 
steps as shown in fig. (?1).

Pig. (106) or (J4.O) wiiich shows the case of two screw 
dislocations of opposite hand generating closed loops is of 
interest. The shift of the Pizaau fringes (see fig. (IO7) ) 
passing over these steps, gives the step height or the thickness 
of each layer = 120 A. Since the ledges originating from the 
two screv; dislocations fuse with one another without marking 
out a fault suface, it may be concluded that the steps 
originating from the two dislocations are identical and there
fore the tv;o dislocations have the same structure and strength 
Since it is improbable that both these dislocations are the 
same multiple of a dislocation v;ith a smaller Burgers vector, 
it may be concluded that the two dislocations are elementary 
dislocations and the crystal is a polytype with a large unit 
cell. If indeed the step height is equal to the a^^ of the 
'rhomhohedral types, the crystal will be a polytype ikl R with 
Zhdanov s;̂ mibol |̂(33 ) ̂  •

10.3. INTERPRETATION OF POLYTYPISM

These observations on growth spirals lead readily 
to an understanding of polytypism as observed on silicon-
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carbide crystals, in terms of dislocations. The above inter- 
ferometric studies liave shown that the step height of the 
growth spiral is characteristic of the type of crystal on 
which it is observed, and is equal to the size of the X-ray 
unit cell. According to Burton, Cabrera and Prank^s theory, 
the spiral form is obtained, when during the process of growth, 
the initial ledge formed on the face of the crystal by the 
emergence of the screw dislocation, winds itself into that 
shape. Thus the crystal growing by the presence of dislocations, 
is not composed of an indefinite number of layers sbacked upon 
each other as ideally considered, but of a finite number of 
interleaved helicoids. Each helicoid axis is a dislocation.
The structure necessarily repeats with a period corresponding 
to the pitch of the screw. Thus the step height vhll be 
equal to the height of the initial ledge. The step heights 
have already been shovm to be equal to the size of the X-ray 
unit cell, v;hich therefore becomes the crystal building unit 
giving rise to the different polytypes.

It, therefore, remains to explain the creation of . . 
the initial ledge. Prank (1951^)suggests that silicon-carbide 
crystals may initially grow into plates by surface nucléation 
mechanism. These plates will become self stressed, through 
non-uniform distribution of impurities or thermal stresses 
due to partially screened intense radiation, ultimately upto 
its theorètical yield stress, when the thin plate will buckle

and shear. This will raise terminated steps on the crystal
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face, and if tliê  shear is by a uniform amount terminating 
fairly abruptly a ledge will be exposed. The crystal sub
sequently growing will have necessarily the structure corres
ponding to that of the ledge. So if the original crystal has 
a simple initial structure like that of type 6 H, with 

. Zhdanov symbol (33), and the slip is an integral multiple of the 
repetition period of this structure, the crystal growing will 
be of type 6 H. If, however, the slip is by a non-integral 
multiple of^this period, the resulting structure will be a 
polytype. This will explain the structure with Zhdanov s^nabol 
[ (33) n 32]. Since a non-integral slip will leave a misfit 
on the slipped surface, it should be less common than the 
integral slip. This explanation, however, does not explain 
the non-occurrence of structures with Zhdanov symbol [̂(33)-̂ 3]J , 
[(35)n 55J etc.

Vand (1951) has also given an explanation on similar 
lines. An alternative explanation for polytypism is possible.
If the initial structure contains a stacking fault in the 
region whose ledge becomes exposed, we Vi/ill get a polytype 
with period equal to the step height.

V/hatever be the cause of intitial ledge, the X-ray 
unit cell forms the crystal building unit giving rise to the 
different polytypes.
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CHAPTER XI

CONCLUSIONS

/
PRESENT POSITION OF EXPERIIICNTAL OBSERVATIONS.

11.1. CONTRIBUTIONS BY THE PRESENT INVESTIGATIONS

As stated in Chapter III, vjhen the present investi
gation was started the only experimental evidence available 
in support of the spiral mechanism of crystal-growth due to 
the presence of dislocations, were the observations by Griffin 
(1950) beryl crystals. These observations were meagre and 
qualitative. Because of the small number of turns which the 
spiral v/as developed (only two turns) it was not possible to 
make any measurements on the spiral itself. It was shown 
that the step height at the 'line markings' v;as less than 3I1 A 
i.e. less than h, unit cells. It could only be inferred that 
these features are growth features in accordance with the 
theory.

In the present investigation, using improved experi
mental techniques, numerous grovjth spirals have been observed 
and many of the theoretical predictions have been cohfiimied 
and new experimental facts and data have been obtained which 
have supplemented the theory and lead to the understanding of 
new facts.

The theory of crystal growth as developed by Burton,
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Cabrera and Frank (I95I) predicted tliâ t the crystals growing 
by the presence of screw dislocations will ejchibit on their 
faces flat spiral growth pyramids, the step heights being 
”monomolecular”, the exact shape and step height being left 
as an unsettled question. The present investigations soon 
revealed tliat these spirals could be classified into three types. 
Firstly, elementary growth spirals originating from screw 
dislocations with unit Burgers vector. Secondly, grovjth spirals 
originating from screw dislocations of multiple strength. 
Thirdly, interlaced growth spirals. The last tv;o types liad 
not been anticipated by theory. Further, the idea of unit 
Burgers vector needed clarification. The growth spirals were 
said to be ”monomolecular” which is by no means the case. It 
is the X-ray unit cell that acts as the crystal building unit 
which forms the step height. Those spirals which have a 
step height equal to the X-ray unit cell are called the spirals 
originating from dislocations with unit Burgers vector. It 
should be made clear, that even in such a spiral the step height 
is equal to several molecular thiclcnesses e.g. for type II or 
é H, the step height is eqiaL to I5 A which is equal to 6 
molecular layers.

The spirals, whose step heights were determined to 
be equal to a multiple of the X-ray unit cell showed that it 
is possible for dislocations to be of multiple strength and, 
therefore, for defining a dislocation in any material, the.

strength or Burgers vector has to be specified.
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The third type of spiral viz: the interlaced spirals
I

were entirely new. It demonstrated that under certain 
conditions of growth, step heights could also be a fraction 
of the unit cell in certain parts of the growth spiral. 
Further it demonstrated the variation of the dependence of 
growth rate on the crystal surface in different orientations

In addition, the microscopic observations gave 
information about the shape of the spirals. For the first 
time it was demonstrated by tlie growth spirals observed on 
silicon-carbide crystals that the same crystal could exhibit 
both circular and polygonal spirals (regular hexagonal) and 
also intermediate cases. This has not yet been observed in 
any other study - nearly in all observed cases the spirals 
are polygonal.

Besides giving information about the shapes of the 
spirals, microscopic observations have illustrated the 
different properties of grov/th fronts; the interaction of 
growth fronts originating from different sources on the same 
crystal face and the fault surfaces produced. This leads to 
the explanation of the complex growth patterns when 2, 3 or 
larger number of screw dislocations emerge on the crystal 
face. The curves of intersections when the series of growth 
fronts meet eqch other and several complex geometrical 
patterns resulting from groups of dislocations arranged in 
different ways have been illustrated. When a very large
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number of dislocations emerge on the crystal certain 
statistical properties like density of dislocations have 
been studied. A significant observation is that it is char
acteristic that in any one region of the crystal, the dis- 

\ locations are predominantly of the same sign and have the ‘ 
same strength.

Experimentally pairs of dislocations of opposite 
sign are seldom observed. Amongst all such pairs observed 
so far on silicon-carbide, a pair of dislocations close to 
each other and equally developed has not been observed for 
dislocations of elementary Burgers vector with small step 
heights. However, such a rare case was observed for dis
locations giving rise to step heights 120 A. This observation 
could be explained that in addition to the attractive forces 
between the two dislocations of opposite sign, there must be 
a constraining force trying to anchor these dislocations to 
their equilibrium positions between the lattice rows. This 
observation leads to the conclusion that this constraining' 
force which was taken by Pàlerls (Ijlj-O) and Nabarro (IÇll-?) 
to depend upon elastic constants only depends upon the 

' strength of the dislocation, so that the attractive and the 
anchoring forces can balance each other at a certain distance 
of separation between the dislocations.

The step heights have been measured accurately by 
the application of multiple-beam interferometry. It is
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found that the step heights of the growth spirals observed 
on the different types have a direct correspondence with the 
X-ray unit cell. This leads to the understanding of the 
interesting property of polytypism as observed on silicon- 
carbide crystals, in terms of dislocations.

11.2. PKESEM POSITION OF OBSERVATIONS

The volume of experimental observations in support 
of the theory of spiral mechanism of crystal growth has grovm 
considerably in the interim period, and a brief description 
in the chronological order will be given.

Dawson and Vand (I95I) using electron microscopic 
techniques have observed the growth spirals of long-chain 
paraffin crystals (C^g . These spirals are rectangular
in shape. By metal shadow casting they have shov/n the step 
height to be equal to lj.7 + 5 which, within experimental 
errors is equal to the size of the X-ray unit cell.

The growth of cadmium-iodide from aqueous solution 
was first studied by Bunn and' Emmett ( 1914.9) to study the 
layer formation. The spiral mechanism of growth of cadmium- 
iodide crystals was demonstrated by Forty (1951,1952). The 
step heights of the growth spirals on cadmium-iodide crystals 
are not of molecular thicknesses, but are several hundred 
angstrom units high. Nany growth patterns on cadmium-iodide 
were found to have marked resemblance v;ith the growth patterns
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observed on s ilic o n -c a rb id e  c ry s ta ls , and i t  is  concluded 

th a t cadmium-iodide also e x h ib its  polytypism  s im ila r  to  th a t  

observed on s il ic o n -c a rb id e .

Haem atite (Pe^ 0^) c ry s ta ls  also show growth s p ir a l  

fe a tu re s  (Verma I9 5 2 ) .  Both polygonal and c u rv ilin e a r  

s p ira ls  were observed. By the a p p lic a tio n  o f the m u lt ip le -  

beam in te rfe re n c e  fr in g e s , step h e igh ts  have been measured

and shown to be equal to the value of the repeat distance
V

predicted by X-ray phenomenon.

Triangular spiral features have been observed by 
Amelinckx (I952) on chemically deposited gold and from their 
visibility it is inferred that the step heights are large. 
Spiral features have also been observed by Forty (19324^on 
magnesium formed in a furnace. No measurements of step 
heights have been reported. From the visibility it is 
inferred that these originate from dislocations of small 
Burgers vector. Amelinckx (1952^̂ )also reports a sgîral 
formation on mica.

These are the observations reported up-to-date. 
However, it is thought that a number of crystals will 
demonstrate this spiral mechanism of growth, the observations 
on which may be awaited.



11.3. COIvIPARISÛN OF THE OBSERVATIONS ON 3I-G WITH OTHER
OBSERVATIONS

The observations on silicon-carbide crystals are 
unique. No other crystal has yet been observed to exhibit 
all the three types of growth spirals viz: growth spirals 
originating from dislocations of unit Burgers vector, growth 
spirals originating from dislocations of multiple strength, 
and interlaced spirals. The only other crystal observed to 
exhibit the interlaced spiral is cadmium-iodide.

The measurement of step heights of elementary growth 
spirals has been done on only a few crystals. The available 
data of step heights on long-chain paraffin crystals (Dawson 
'and Vand 1951) and on haematite (Verma 1952) show that the 
step heights are equal to the predicted X-ray values. The 
large step heights on cadmium-iodide crystals (Forty 1952) 
have been shown to be large integral multiples of tlie smallest 
repeat unit.

A noteworthy point in the spirals on Si-G crystals 
is that the centre of the spirals is marked visibly by a hole, 
the size of which is observed to vary. (Gompare fig. (22) 
with (35) etc.). According to Frank (195*"̂ ; a. dislocation of 
Burgers vector exceeding about 10 A will be in equilibrium 
only with an empty tube at its core so that there will be 
a hollow at the point of emergence of the dislocation on the 
crystal suiface. However, in the growth spirals observed on

llj.2 .



paraffins which have a step height of It.7 A, the points of 
emergence of dislocations are not marked by a hole. This 
may be attributed to the dissociation of a complete dis
location into weak partial dislocations. It is interesting 
to note that the point of emergence of dislocation in 
haematite crystals of step heights nearly li| A is not marked 
by a hole.
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Observations on Oarborundum of Growth Spirals Originating 
from Screw Dislocations.

B y  A JIT B a m  V e r m a ,
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[Plates XXV.-XXVIII.]

A b s t r a c t .

Numerous growth spirals with shapes ranging from circular to regular 
hexagonal have been observed on carborundum crystals of types I. and II., 
by coating the crystal faces with a thin film of silver of reflectivity nearly 
90 per cent and then working in reflection, using phase contrast 
illumination. The shapes of these spirals, in relation to the crystal 
structure, are shown to be in accordance with the predictions of Frank’s 
theory. On a type II. crystal, hexagonal interlaced spirals have been 
observed. The annihilation of growth fronts where they meet, and other 
properties of growth fronts are illustrated and hence the observed patterns 
for two or more screw dislocations are explained. The observed density 
of dislocations ranges from small values up to a maximum of 
10̂  per sq. cm. For a typical circular spiral the calculated values of the 
radius of the critical nucleus is 2g, and supersaturation is 0-2 per cent. 
By the application of multiple-beam interference, using both Fizeau 
fringes and fringes of equal chromatic order, the step heights in spirals 
have been measured accurately for type II. crystal and found to be 
15 A. This is equal to the height of the unit cell, proving that these are 
growth spirals originating from screw dislocations, in exact accordance 
with theoretical prediction.

§ 1 . I n t r o d u c t io n .

A c c o r d in g  to Burton, Cabrera and Frank (1949) growth of crystals at 
low supersaturations can take place only in the presence of dislocations. 
A crystal should, therefore, have a number of dislocations with a screw 
component terminating on the crystal face. Frank (1949) showed that 
when growth takes place on the molecular terraces so exposed, the edges 
of monomolecular layers develop as “ growth spirals ” centred on the 
dislocation. Experimental evidence supporting this was found on beryl 
by Griffin (1950). The present paper deals with dislocations and growth 
spirals ” found on the faces of carborundum crystals.

* Comnuinicatd by Pofcssor S. 'I’olansky.



1006 A jit Ram Verma 07i the Observations on Carborundum,

§2 . T h e  Cr y s t a l  S t r u c t u r e  a n d  T y p e s  o f  Ca r b o r u n d u m .

Carborundum, a strongly liomopolar crystal, occurs in at least eight 
known types. One of these is cubic, sometimes called ^-Sic. All other 
types (a-SiC) are based on either hexagonal or rhombohedral unit cells. 
All types have identical layers, but differ in their arrangements. Each 
type is distinguished by the number of layers in the unit cell. The basal 
pinacoid is predominantly developed, and it is on this that these growth 
spirals have been observed.

The crystals studied were either pale green, dark green or black. Some, 
which have a few well developed faces, have had their structural types 
determined by a goniometric method (Thibault 1944). X-ray diffraction 
methods will be required for the others.

No cubic crystal has been studied. Most of the crystals examined were 
of the commonest type, carborundum II. Its unit cell is hexagonal 
with six layers, and in Ramsdell’s notation is 6 H (Ramsdell 1947). The 
lattice parameters are

a = 3  073 A, c= 15  079 A.
In this work the only other type available was carborundum I. This 

has a rhombohedral unit cell and referred to the hexagonal axes consists 
of fifteen layers. In Ramsdell’s notation it is 15 R with

a = 3  073  A, c = 3 7  70 A.
§ 3 . V i s ib il it y  o f  G r o w t h  S p ir a l s .

Numerous growth spirals ” have been observed on the faces of 
carborundum (SiC) crystals. These spirals are well developed ; over 
thirty, turns of the spiral can be traced in some cases. The spirals are 
centred on a dot which must mark the point of emergence of a screw 
dislocation on the crystal face.

The clean surface of the crystal when examined by a metallurgical 
microscope, using bright field illumination, does not show up these 
features, the surface appearing smooth. A little amount of impurity 
makes these features slightly visible (fig. 8, PI. XXVI. has been taken 
by this method). Breathing tightly on the crystal face, while it is under 
observation, increases the visibility and the “ lines ” flash out, but soon 
disappear when the water re-evaporates. The “ lines ” seen by breathing 
are dotted and slightly diffuse, but the visibility obtained by this method 
is high. Though convenient for visual observations, the procedure is not 
suitable for photography.

Following Griffin’s technique, contrast was increased by deposition of 
a thin film of silver on the crystal face using thermal evaporation. This 
was improved by the use of phase contrast illumination. The 
photographs have been taken using positive phase contrast, the absorption 
of the phase plate being 80 per cent and phase retardation equal 
to With this equipment many features are often still faint and only



{Reprinted from Nature, Vol. 167, p. 939, Jutte 9, 1951)

Spiral Growth on Carborundum Crystal Faces
I n  1949 Frank^»  ̂ pointed out the possibility that 

growth of crystals at low supersaturations, essential 
for good crystals, could take place because of the 
formation of dislocations in the crystal so that any  
real crystal should have a number of dislocations 
with a screw component, terminating on the face. 
When growth takes place on these exposed molecular 
terraces, the edges of these layers develop into spirals 
centred on the dislocation.

Grhhn® has observed these ‘monomolecular’ layers 
on the (1010) face of a beryl crystal, and has shown 
by multiple-beam interferometry that the height o f 
these steps is less than 34 A ., that is, less than four 
unit cells o f the crystal. I t  was inferred that these 
steps are only one unit cell high.

In the present investigation, numerous ‘growth 
spirals’ have been observed on the faces of carbor
undum and measured with the aid o f phase-contrast 
microscopy and multiple-beam interferometry.

Carborundiun^ occurs in at least eight known types, 
one of which is cubic, whereas the rest are either 
hexagonal or rhombohedral and have identical layers 
but differ in their arrangement and are uniquely 
distinguished by the number of layers in the unit 
cell. The crystals studied here are of type I  (rhombo
hedral, fifteen layers, w ith lattice parameter c =  
37*7 A.), and type II  (hexagonal, six layem, c =  
1 5 1  A.).

These spirals were studied by coating the crystal 
faces w ith a thin film of silver of refiectivity nearly 
90 per cent, deposited by thermal evaporation, and 
then exam ining these faces in refiexion.

Theory shows that for growth taking place from 
vapour, the ledge extending from the point of emerg
ence of the dislocation to the crystal boundary has 
a rate of advance independent of the crystallographic 
orientation, thus forming a simple Aichim edean  
spiral which can be calculated and from which the 
constant of spacing between turns can be predicted. 
These predictions have been com pletely confirmed 
numerically by the circular spirals shown in Fig. 1.

The dependence of the rate of advance of a gi'owth 
front on the orientation of the step line should impose 
a characteristic distortion of the growth of spirals, 
exhibiting the crystal symmetry. In accordance with  
this, Fig. 2 shows a hexagonal sjDirai (crystal type II). 
The straight edges correspond to a sharp minimum  
in the growth-rate as a function of orientation.



The complex growth patterns predicted for two 
or more screw dislocations ending on a crystal face 
and depending on the property o f growth fronts 
which annihilate each other where the two edges m eet 
are illustrated in Fig. 1. Thus for two screw disloca
tions of opposite hand, w ith the unfolding of the two  
spirals the ledges starting from one terminate on the  

'other, generating closed loops.
Various other growth patterns for two, three and  

larger numbers of dislocations ending on crystal faces 
of type I and type II  have been photographed and 
explained.

Interlacing of hexagonal spirals observed on a 
crystal face of type II is illustrated in Fig. 3.

The observed density o f dislocations varies widely 
on different specimens, ranging from a few to a maxi-

u

mum of 10  ̂ per sq. cm. On any crystal they  
are predominantly of one hand.

The calculated radius of the critical nucleus is 2 g 
and the supersaturation 0 2 per cent.

To measure the step height of these spirals, multiple- 
beam interference (Tolansky®) has been employed. 
Fig. 4 shows the Fizeau fringes for X 5,461, passing 
over a circular spiral, in which the height can be 
accurately measured ; and as the number of turns 
is readily visible, the height o f each single step can 
be deduced w ith precision. Analogous measurements



have been made also w ith fringes of equal chromatic 
order. The step heights on a type II  crystal measured 
from two different spirals are respectively 15*2 A. 
and 15*1 A., w ith a m axim um uncertainty o f 2 A. 
I t  is already known from X -ray analysis that, for 
type II, c =  1 5 1  A. Thus it has been proved here 
that the step is a single unit-cell high.

The observation of spiral markings on carborundum  
has already been reported®. The observed shapes o f 
these spirals are in accordance with the predictions 
of theory, and their step height is equal to that of 
a unit cell, showing that these are growth spirals 
originating from screw dislocations.

A more detailed account of this work has been 
communicated elsewhere. I am grateful to Prof. S. 
Tolansky for his interest and encouragement in the 
course of this work, and to the British Council for 
the award of a scholarship.
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just visible. Usual photographic methods for increasing the contrast 
have been employed in some of the photographs given.

In fig. 13 (PI. XXVIII.), it is seen that the visibility and contrast is high 
compared with other photographs. The surface of this crystal was not 
very clean when it was silvered. The silver deposit was not uniform, 
the surface appearing mottled. Examination with phase contrast 
illumination gave high visibility. This suggests that impurity can make 
the steps more visible.

§ 4 . S h a p e  o f  t h e  S p ir a l  f o r  a  S in g l e  S c r e w  D is l o c a t io n .

The growth spiral will have a shape depending upon the rate of advance 
of a growth front in different crystallographic directions.

For growth taking place in accordance with Frank’s ideas two cases 
arise :—

(а) when the Frenkel kinks on the step (exchange sites) are close 
together and the distance moved by an adsorbed molecule before 
it hits a step is large ;

(б) when the kinks are few or the distance moved by the adsorbed 
molecule is smaU.

When the former conditions exist, which are more likely to occur in 
growth from vapour, the molecule will have a high probability of adhering 
to the step if adsorbed near it, irrespective of the crystallographic 
orientation of the step. Thus for growth from the vapour, taking the 
rate of advance of the ledge to be independent of direction, the ledge 
will form a simple spiral under steady uniform supersaturation. The 
form of the spiral can be represented by the Archimedian equation

r=-2p̂ e,
and the constant spacing between turns is

8r=4:7rpf,,

where is the radius of critical nucleus, equal to a^/2/cTlna, and where 
a is the supersaturation ratio, a is the interatomic distance and 4> is the 
neighbour-neighbour binding energy of the crystal.

These predictions are confirmed by the circular spirals shown in 
figs. 1, 2, 3 and 8 (Pis. XXV., XXVI ). It is to be noted, however, that the 
spiral turns are more closely spaced at the centre, and the spacing gradually 
increases on gomg away from the centre until it becomes nearly constant. 
This is in accordance with the prediction of theory (Burton, Cabrera 
and Frank 1951).

Any dependence of the rate of advance of a growth front on the 
orientation of the step-line could impose a distortion of the growth 
spi -̂As, so that they exhibit the symmetry of the crystal face. Sucli an 
effect has been found in fig. 4 (PI. XXVI ), wliere the spiral is nearly circular 
at the centre, and gradually takes on the hexagonal symmetry of the
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crystal face (carborundum type II.). In fig. 7 (PL XXVI.) is a hexagonal 
spiral observed on a crystal identified to be of type II. This is a regular 
hexagonal spiral, showing clearly the dependence of the growth rate on 
the crystallographic orientation. The step-hnes very near the centre 
show a curvature, which, as predicted by theory, decreases with distance 
from the centre. However, soon the straight step-hnes start rounding 
off at the corners and become gradually curved on moving away from the 
centre. These step-lines do not meet the line of discontinuity sharply, 
but tend to curve away from it, as shown in fig. 7, for the outer five or 
six step-hnes.

The straight edges show that under certain conditions there is a sharp 
minimum in the growth rate as a function of orientation.

In figs. 10 and 11 (PI. XXVII.) further spirals are shown. Fig. 10 has 
been observed on a rhombohedral crystal type I.

§ 5 . P r o p e r t ie s  a n d  B e h a v io u r  o f  G r o w t h  F r o n t s .

The growth pattern for two or more screw dislocations ending on a face 
is complex and depends on the properties of the growth fronts. The 
growth fronts starting from a single screw dislocation wih spread on the 
surface of the crystal face in regular shapes, but the presence of a 
boundary or an obstruction wih distort its regular shape. When the 
advancing growth fronts meet an obstruction they can propagate round 
corners, as shown at the upper end of the obstruction in fig. 4 ; this 
point behaves almost as a source of secondary gro’wth fronts.

The growth fronts emitted by two sources of opposite sign annihhate 
each other where they meet. Numerous examples of this can be 
seen in figs. 2 and 3 (PI. XXV.). When there are several screw dislocations 
actively emitting growth fronts, a point on the crystal face wih be in the 
dominant field of only one of these, and this alone determines the number 
of growth fronts passing through it. This is exemphfied in fig. 2 where 
there are five screw dislocations. By choosing the point of observation, 
say, near the bottom screw dislocation, the number of growth fronts 
passing thiough it is solely determined as if this alone were active.

§ 6 . G r o w t h  S p ir a l s  f o r  T w o  o r  M o r e  S c r e w  D is l o c a t io n s .

In fig. 17 is drawn schematically the growth pattern for two screw 
dislocations A and B of the same hand. The ledge starting from A goes 
on rotating and generating the spiral until it meets at the ledge 
originating from B where it terminates. At the two ledges fuse with 
one another. As the spirals unfold themselves the ledges meet at 
Pi, 2hy Ih ' ' ' ill the upper half and at pg, . . . in the lower half
of the figure. The locus of points of intersection for two equal spirals 
has been shown to be a cartesian oval (Burton, Cabrera and Frank 1951). 
Between pj and pg (pg, p^), etc., the missing parts of the two spirals are 
shown by the dotted lines. The resultant figure is the solid line curve.
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Starting from A and going round the spiral we descend by one step in 
caoli complete turn till we come to the point p j. From we go round the 
spiral B to the point and then again on the spiral A to the 
point pg. Thus in going round the resultant curve once, we descend by 
two steps from p  ̂ to pg to pg and so on. Similarly, starting from B and 
going round we will descend by two steps, from pg to pg, etc. . . .  As 
the curves gradually smooth out at the points of contact, the figure will 
appear to be two spirals alternately spaced. Fig. 17 has been drawn for 
circular spirals, and the case for spirals with straight edges can similarly 
be drawn where the behaviour will be the same. In fig. 3 (PI. XXV.) 
the case for circular spirals is illustrated.

Fig. 17.

Fig. 8 (PI. XXVI.) illustrates a unique example in which the spiral is 
doubled with the members strictly “ parallel ”. It may be that the twin 
form arises from two close-by dislocations of the same sign, cooperating 
closely.

In fig. 9 (PI. XXVII.) is illustrated the case of two screw dislocations of 
the same sign close to each other. The spirals are circular and developed 
for two or three turns after which the ledges from other neighbouring 
dislocations interact with them.

In fig. 10 (PI. XXVII ) is shown another case of two similar screw 
dislocations close to each other, so that growth starts from both of them. 
The. s])irais are circular at the centre for one or two turns after which they 
settle down as spirals with straight edges. The meeting of the growth fronts



1010 A jit Ram  Verma on the Observations on Carhornndum

from the two screw dislocations results in small kinks in the innermost 
straight edges. As in the case of circular spirals, here also by going 
round we descend by two steps, and the figure has the appearance of 
two spirals alternately spaced. However, the step height between 
successive lines in any particular direction is just one unit.

Fig. 11 (PI. X X V II ) shows the case in which the central screw dislocation 
has developed several turns before reaching the point where the second 
small screw dislocation emerges. They quickly accommodate each other 
and the behaviour is similar to the previous cases. The central screw 
dislocation is dominant and would determine the rate of crystal growth 
of the face. Near the edge of the figure it is seen that some more screw 
dislocations emerge on the crystal face, and are situated in the same 
direction from the central screw dislocation as the second one. These 
new screw dislocations yield within a short while to the domination of 
the central one and quickly fall in line, passing on the growth fronts with 
slight delay and in slightly modified form.

Now consider two screw dislocations of opposite hand terminating on 
the crystal face. The ledge starting from one terminates on the other, 
and with the unfolding of the spirals the two arms join together generating 
closed loops. This is exemplified in fig. 3 (PI. XXV.), where one of the 
spirals has developed several turns before the other starts growing.

The growth pattern for three screw dislocations of the same hand 
observed on a crystal of type II. is illustrated in fig. 12 (PI. X X V II ). Here, 
again, the spirals are circular at the centre and soon change into hexagonal 
spirals. It can easily be seen that, for three screw dislocations 
cooperating with each other, by following any one of the edges, the 
resultant curve descends three units in each turn. It should again be 
emphasized that the step height in the successive lines will be just one unit.

At the centre the ledges are closely spaced and, once they have settled 
down, the ledges are more widely spaced.

Fig. 2 (PI. XXV.) illustrates the interaction of five screw dislocations. 
The growth fronts emitted by the screw dislocation at the top of the 
figure meet, first, the growth fronts advancing from the screw dislocation 
on the left of the figure and then, later, the growth fronts advancing 
from the bottom screw dislocation. Annihilation occurs over portions of 
the resultant growth fronts which assume characteristic shapes composed 
of arcs of circles with these dislocation points as centre. Near the centre 
of the figure, due to the interaction of different growth fronts a crowding 
occurs. Here the compound growth fronts are not arcs of circles with 
the different dislocation points as centres, but instead there is a gradual 
change in curvature.

§ 7 . H e x a g o n a l  I n t e r l a c e d  S p ir a l .

These features observed on a crystal face of carborundum type II. are 
shown in figs. 13 and 15 (PI. X X V III ). In each of these hexagonal spirals 
the edges fork out at the corners and meet the two neighbouring edges.
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This interlacing gives the hexagonal spiral the “ spider web ” structure 
shown clearly in fig. 13 which shows the interlinking of four such

A double interlaced spiral is shown in fig. 14 (PI. XXVIII.) in which the 
edges do not meet each other. The lines are broad with inner edges sharp 
and the outer diffuse.

An explanation of this interlacing has been given by Frank (1951).

§ 8 . M e a s u r e m e n t  o f  S t e p  H e ig h t .

The step height has been measured by the use of multiple-beam 
interference fringes using both Fizeau fringes of equal thickness and the 
fringes of equal chromatic order (Tolansky 1948).

A rounded spiral, effectively a spiral conical hill, may be considered 
as a circular conical hill made of a series of concentric steps with a constant 
spacing d and step height h. It can be shown that if a Fizeau fringe 
passing over the peak of such a hill appears to bend through an angle 29, 
and if X is the dispersion, i. e. the distance between successive fringes, 
then the step height h is given by

h = d \  sin 0/2X.

By measuring X, 6 and d, h can be evaluated. Fig. 5 (PI. XXVI.) shows 
the Fizeau fringes passing over the spiral of fig. 4 (A5461).

For examination with fringes of equal chromatic order, the image of 
the peak of the hill is projected on to the spectrograph slit. This was 
arranged to prod ce a system of fringes of equal chromatic order parallel 
to the spectrum line in one half of the field and sloping towards the red 
in the other (fig. G, PI. XXVI ).

Since the step height is obtained from the mean of all those contributing 
to form the peak, irregularities of the optical flat and the lack in 
faithfulness of silver contouring are averaged out.

In one case another determination of the step height has been possible. 
In fig. 4 (PI. XXVI ) starting from the centre of the spiral we can reach any 
point A on the line of discontinuity, either by going round the 
“ fish-like ” obstruction in a clockwise or an anti-clockwise direction. 
In the former, we encounter, say, steps. Therefore the point A is 
Nj steps lower with respect to the centre of the spiral. In the latter case 
we go down, say. No steps from the peak of the hill in order to arrive 
at A. Thus at A the difference in level on the two sides of the line of 
discontinuity is that corresponding to (Ng—N J  step heights. This 
difference is quite large (over 50) and is therefore capable of being 
measured accurately and easily either by Fizeau or fringes of equal 
chromatic order. Knowing this, the ste]D height has been evaluated, 
but is subject to uncertainty due to the possible presence of hidden 
dislocations in the obstacle and discontinuity surfaces.
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§ 9. R e s u l t  o f  M e a s u r e m e n t  o f  S t e p  H e ig h t .

It is seen below that the step height measured in the cases so far is 
equal to just one unit cell.

Fizeau fringes
Fringes of 

equal chromatic 
order

Method by 
counting No. 

of steps
Crystals

13-2 Â 

141 Â

171 Â 14-8 Â Spiral in 
fig. 4, Type II.

14 3 Â 
13 3 Â 
13 0 Â 
13 3 Â

Circular spiral, 
right of fig. 2.

§ 1 0 . D is c u s s io n  o f  R e s u l t s .

From fig .2 (PI. XXV), which is at magnification X 90, the spacing between 
the successive arms of the .circular spiral when it is nearly constant is 
approximately 2*5 mm. Using hr=4k7Tpc we have

2-5
P c = mm. 2fi.90x4t7

From /5g=a< /̂2A’T In a and using Trouton’s rule to estimate f/kT  according 
to which </»/À’T =3-5T 5/T =6 at an absolute temperature of 0 0 of the 
boiling point of the material we get

a 0*2 per cent.

§ 1 1 . D e n s it y  o f  D is l o c a t io n s .

The density of dislocations varies widely on different specimens of 
carborundum. In fig. 4 (PI. XXVI.) there is only one which dominates 
the growth of the face. In figs. 1, 2, 3, 11 and 12 (Pis. XXV., X XVII.) 
there are several. The largest density of dislocations observed is shown in 
fig. 16 (PI. X X V III ). Here there are nearly 10̂  screw dislocations per 
square centimetre.
. Another noteworthy point is that in fig. 16 (PI. X X V III.) there are 
nearly twenty screw dislocations, most of which are of the right-handed 
type. It is characteristic that in any one region there is a large 
predominance either of right-handed or of left-handed screw dislocations.

§ 1 2 . S u m m a r y .

Numerous growth spirals starting from points of emergence of screw 
dislocations have been photographed on the surfaces of carborundum 
crystals. These spirals have characteristic shapes. The shape is discussed 
in relation to the crystal structure. The behaviour and properties of
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growth fronts and the growth patterns for two and more screw 
dislocations are illustrated. From the observations on the photographs 
it is shown that the type of information that can be derived is the 
determination of the radius of the critical nucleus, the supersaturation 
and density of dislocations.

The step height has been measured accurately by multiple-beam 
interference fringes. The step height at the edges of these growth spirals 
is found to be one unit cell.
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Pigs. 90
& 9^' An example of interlaced spiral with 

smooth and rugged step lines on 
alternate edges p. 53

Figs. 92 An example of interlaced spiral with
& 93* faster growth at corners producing

a cusp in the middle of the straight
edges p. 5I1.

Pig. 9^* Showing the centre of figs. (92 & 93)*
The edges at the centre are seen to 
be convex p. 55

Pigs. 95 Grouping of seven steps together.
& 96. Deposition of impurity is seen on the 

step lines of fig. (96), to lead to 
high visibility p. 56

Big. 97" Interaction of the advancing groups
of seven layers v;ith three interlaced 
spirals p. 57

Pig. 98. Showing the centre of the grouped
in t e r la c e d  spirals ”

Pig. 99- Interlaced spiral with five steps
grouping together p. 58

Pig. 100. Interlaced spiral with varying number
of steps grouping together ”

iMTEj?FE"RONETRfC. ES
Pig. 101. A double spiral observed on Si-G

crystal type 33^ P- 59
Pig. 102. Pizeau fringes passing over the spiral

steps of fig. (101). Fourth fringe 
from the to p  passes over the centre of 
the spiral ”

Pig. 103. Showing s u p e rp o s it io n  of figs. (101 & 102) p. 60
Pig. lOij.. Showing the centre of fig. (70) p . 6l
Pig. 105. Pizeau fringes passing over fig. (70)

by using a lightly silvered glass flat
P ig .  lOé. Same as f i g .  (4o) p. 62
Pig. 107. P iz e a u  fringes passing over fig.(106) ”



Schematic Description of a Crystal Surface.

ATOM

Pig 1. Crystal Surface at low temperatures

Pig la. Surface at low
temperatures

Pig 3. Surface with 
an island.

Pig 2 . Surface at higher temperatures.

1.



DISLOCATIONS

Pig 1|.. An edge dis
location.

iI
0-

Fig 5* The structure of
an edge dislocation

Pig 6. Pig 7-,
Illustrating the formation of a 

screw dislocation.

?I 9' 9' ?t' t• i' &► ()1 (j.’ t’ t’ t<', p» i ’ f
If 1* ?’f 1 f
Î ? Ifé < k
& 'i
i '& "I 4

a6 ,à .6 (6 (6

(I <|(i (j,, <|(i

" [ f f4" <̂> (j, <>'

(Ĉ//
< 6 #5 16

Fig 9.
The structure of a 
screw dislocation.



r

Pig 8. End of a screw dislocation.

(b)

(c)

Fig 10. Development of a growth spiral



CRYSTAL S t ' R u c t u ' R E  O f Si-c.

4®if
m

Fig 11. liattice of sill con-carbide
(a) modification I5 R. (ta) modification 6 H. (c) modification

1| H.

Pig 12a. Symmetry elements In the projection
on (0001) plane.

i+.



Pig 12b. Projection on (0001) plane. 
A layer marked by o
B layer marked by x

0120)

Fig 13- (1120) section showing zig-zag
arrangement.



OPTICAL AND INTEEPBROMETRIC ARRANGEMENT;

TECHNIQUES AND SOME APPLICATIONS



________ V  Condenser diaphragm

P ig  i l i a .  D iagram  o f  

l i g h t  p a th  th ro u g h  a 

p h a s e -c o n tra s t  m ic ro 

scope .

P la n  v iew  o f phase p la t e  j"

S
P ig  lli-h .

L ig h t  v e c to rs

S -  U n d e v ia te d  vi/ave th ro u g h  
the  su rro u n d in g  medium

P -  th ro u g h  th e  p a r t ic l e

D -  d e v ia te d  wave

P lan  v iew  o f the  condenser 
diaphragm .

0

To eyepiece

Diffraction plate— c

/
Objective

Dx

Condenser diaphragm D

/ N-
I  '1Yield st3p f Light

Specularly reflecting specimen

P ig  llt-c O p t ic a l  system  o f the p h a s e -c o n tra c t  

v e r t i c a l - i l l t i r i i i n a t io n  m icro sco p e .

6.



Glass plaie ai 45°

Condensing

In icrfcrom ctcr Back surface

Pig 15. Optical arrangement for Pizeau
fringes in the reflected system.

7



V

V

Pig l6a. 
Showing shift 
of Pizeau 
fringes pass
ing over the 
spiral steps 
of fiR l6h.

Pig l6b. 
Hexagonal 
spiral with 
step height 
130 A.

X90

8 .



F ig  ly a .  D iagram m atic  r e p r e s e n ta t io n  o f a s p i r a l

c o n ic a l h i l l  as a c i r c u la r  c o n ic a l h i l l  and 

a P iz e a u  f r in g e  p as s in g  over th e  p eak .

F ig  l? b . F iz e a u  f r in g e  p as s in g  over a h i l l  composed 

o f a s e r ie s  o f p a r a l l e l  s te p s .

9-



Fig l8a. showing 
Pizeau fringes 
passing over the 
spiral of fig l8b.

Fig I8h.
A spiral 
v;ith rounded 
edges.

X^o .

10.



r \ "

Pig l8c. Fringes of equal 
chromatic order 
corresponding to 
fig 18a.

Fig I8e. Fizeau fringes under 
high dispersion revealing tope- 
graphical features due to 
diffraction at the edges.

J
.1

X 40 .

S E S -iH S : S a -
1 1 .



n

Pig 19a. A double spiral with straight edges. 
(except at the centre).

X 90
Pig 19b. Pizeau fringes passing over the 

spiral steps of fig 19a.

1 2 .



X90
Pig 19c. Superposition of figs. 19a and 19b

OPTICAL FLAT

Pig 20. sliovâng increase in the interferometer 
gap St -2 IM^ , N being the nmiber of 
steps (each of height h) crossed.

15



EIEIviENTARY SPIRALS  

AND

THEIR INTERACTION



Fig 21. Circular spirals.

X 4 0
Fig 22. Regular hexagonal spiral

14.



Fig 23

Spiral with
six rounded
edges

P ig  21)..

Two hexagonal 
spirals with 
rounded edges.

15



X 2 i o

Pig 25. Hexagonal spiral. At the centre
several turns are rounded and closely 

spaced.

lé.



xqo

Pig 26 • illustrating the phenomenon of ’’domination”

, -

P ig  2 7 .  

showing the 
upper part 
o f f i g  26.

V.90

17



Pig 28. 
Enlargement 
of part of
fig 27.

X 9 0
Pig 29. Another exaraple of the phenomena of "domination".

1 8 .



X/S“o
Pig 30. Two screw dislocations of the same sign at

a distance , co-operating with each other

Pig 31

\

Schematic representation of the resultant growth 
pattern, originating from two dislocations of the 
same sign at a distance

19-



Observed Growth Patterns For Tvjo Screw
Dislocations of the Same Sign.

'fiM

X/6~o

Pig 52. Two left-handed dislocations at a distance>

y.iiro
Fig 33. Two right-handed dislocations at a distance > ^  ;

illustrating hyperbolic curve of intersection.
20.



- -

x z é o  ,

Pig jij-. A pair of ’alternately spaced’ hexagonal 
spirals with the central turns rounded 
observed on a crystal of type I5 R*

21.



y.

A

xa 6T0
Pig 35* Circular growth spirals; left half illustrating 

the formation of closed loops (nearly circular) 
due to two dislocations of opposite sign.

2 2 1



Pig 36 Interaction of circular growth spirals 
and their curves of intersection;
Note the lines of discontinuity running 
across the figure.

23



Tvm Screw Dislocations of Opposite Sign

I

i

Pig 37- A ledge running between two dislocations 
of opposite sign ending on a crystal 
face.

I
(b)

Pig 38. Schematic representation of the formation 
of closed loops from a pair of unlike 
dislocations.

2 i | .



Pig 39

(b)

(c) .

Schematic representation in three dimensions of several stages of, grpvfth from two dislocations of opposite sign.

Pig I4.O. Closed triangular and hexagonal loops from a pair of unlike dislocations.
2 A .



X 90
P ig  Ij.1 . A p a ir  o f u n lik e  d is lo c a tio n s  of unequal s tren g th  

form ing closed loops w ith  an edge running a t the  
. p o in ts  o f co n tac t.

X Ito
P ig  I4.2. Closed hexagonal lay e rs  w ith  no tra c e  o f d is lo c a tio n s  

a t the c e n tre .
2 6 .



.'1%

t.

%

X53-0
P ig  i|-3 * Three d is lo c a t io n s  o f  l i k e  s ig n  c lose  to g e th e r  

g iv in g  r is e  to  th re e  c o -o p e ra tin g  s p ir a ls .  The 

c e n tr a l  or the la s t  p a r t  o f grow th s p ir a ls  is  

c i r c u la r ,  the r e s t  be in g  h exag on al.

,27



r ? %  :
"  ' lYk4%

■*'.4--.. '- /:*••'•"

fe:

::#L X 9 o
Fig ijl|.. Resultant growth pattern from five 

separated screw dislocations.

xzoo
Fig Ji5* A group of six close dislocations.

2 8 .



xqo
Pig ijJj.. Resultant growth pattern from five 

separated screw dislocations.

X 2.00

Pig i|.5* A group of six close dislocations.

2 8 .



f
i

%

X 2 2 0
P ig  Ij-é. A number o f c i r c u la r  grow th s p ir a ls  

o r ig in a t in g  from  d is lo c a tio n s  o f the  

same s ig n . D e n s ity  o f d is lo c a t io n

29



X5~oo
Pig 1|7. Polygonal spirals originating from dislocations

cwith density |o , all of the same sign

30



Pxg 1|8. Large number of polygonal spirals with a barri
of dislocations.

31



i

Pig 1|9. Illustrating curve of Intersection.
X30Û

Pig 50. 
Formation 
of closed 
A  loops 

by growth 
fronts from 
three dis
locations •

X300
32



Pig 51.
Creation of

//a Barrier
of disloca
tions //

X3oo

Pig 52. Upper half of the fig., illustrates the interaction 
of two circular spirals equally developed. The 
curve of intersection is a straight line perpendicular
to the line joining the two dislocation points and 
passes through their middle point.

33



Pig 55

1

X 300

X 9 Oo
Pig 5̂ . Growth steps terminating at points marked by a series 

of dots.
34.



F a u lt  S u rfa c e s .

Pig 55.

X 40

Pig 56

X40

35
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Pig 57

Pig 58.

x/ro

56.



Pig 59

X 90

Pig 60

Y.IOOÛ

37



Fig él.

X46T

Pig 62.

58.



Pig 63.
X 9 0

39



Geometrical Growth Patterns.

x/iro
Pig 61;.. A group of dislocations arranged along 

a line.

%

Xio
Pig 65* Group of dislocations giving a repeat 

pattern.
I4.O.



Pig 66, Several groups of dislocations 
interacting with one another 
giving rise to a complex pattern

Pig 67* Two intersecting groups of 
circular spirals.

Il-l.



 x ^ o

Pig 68. A number of dislocations at the centre. The
growth steps bunch together awiay from the centre.

y<io
Pig 69. Circular spirals with bunching of steps

ij-2 .



SPIRALS ORIGINATING PROM DISLOCATIONS 

OP MULTIPLE STRENGTH 

AND

MULTIPLE DISLOCATIONS f
Ŝ'



\

smMi i j'
X 46-

Pig 70. spiral originating from a dislocation 
of multiple strength (bright field 
illumination) .

I

Pig 71* Right half of fig 70 showing'dissociation 
of steps.

U3-



72. p.

$

% & "  *«Jrat 600lotion "f
K'io.c

X/jD



Pig 7^A. Behaviour of steps further on the left of fig,73-

X90
Pig Yl|_. Dissociation of steps on alternate edges of 

hexagonal spiral.



X/jTO
75* -A. pair of spirals touching each other on one edee.

X 90
Pig 76. A trigonal spiral with rounded corners.

i|.6.



*

Pig 77* Showing part of fig. 78
xqo

X 9 o"
Pig 78• Multiple dislocations showing the straight 

edges in three orientations of the outer
most (or bottom) layers.

47. •



X/5'0
Pig 79. Multiple dislocations with faster growth at corners.

J

X^o ‘
Pig 80. Multiple dislocations with straight edges of growth 

steps. , _



INTERLACED SPIRALS



a

Pis 81

Pig 82.

X 40
Interlinking of four simple interlaced spirals; fig. 8l 
is the usual phase-contrast micrograph whereas fig. 82 
had impurity smeared on it vdiich gives this high visibility

49-



Fis 83.
I n t e r l i n k

in g  o f

two in t e r

s p i r a ls .

X/Aoo

IMS iüï iaK ,n \\\

F ig  81}.. I l l u s t r a t i n g  the phenomenon o f d o m in atio n  fo r  
in te r la c e d  s p i r a ls .  • The dom inated d is lo c a t io n  
is  towards the l e f t  o f th e  c e n tre  and l i e s  on 
the 6t h . ,  edge fro m  the f i r s t  w id e ly  spaced tu rn s

50.



X 40
P ig  85. I l l u s t r a t i n g  s e v e ra l in te r la c e d  s p i r a ls ,  (b r ig h t  

f i e l d  i l lu m in a t io n ) .

X ^ D

F ig  86. The lo w er p a r t  o f  f i g  85
51-



Pig 87. Schematic representation of the interlacing 
of edges. S represents the slowest F the 
fastest monolayer in the stack.

x/roPig 88. • Pig 89.
Double interlaced trigonal spirals.

52-



Pig 90

X40

Pig 91.

X90
An example of Interlaced spiral with, smooth 
and rugged step lines on alternate edges.

53-
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f?

Pig 92

X<?0

Pig 93

X  /6"o
An example of interlaced spiral vjith faster growth at corners producing a cusp in the middle of the 
straight edges.

54-



X30"0
Pig 9^. showing the centre of figs. 92 and 93• The 

edges at the centre are seen to he convex.

55



Grouped Interlaced Soirals

: '.'L

]?lg 95

X 3 0 0

af ;-i^:
KW%W&^g #

Pig 96.

X 3 O 0

Grouping of seven steps together. Deposition of impurity 
is seen on the step lines of .fig.96, to lead to high visibility.

56.



X T

X300
Pig 97. Interaction of the advancing groups of seven 

layers v;ith three interlaced spirals.

xqo
Pig 98# Showing the centre of the grouped spirals

57



X/5-0
Pis 99’ Interlaced spiral with five steps grouping together.

xqo 0
Pig 100. Interlaced spiral with varying number of steps grouping together.

5 8 .



INTERPEROHiSTRIC STUDIES



x q o
Fig 101. A double spiral-observed on Si-C crystal type JJR.

Fig 102. Fizeau fringes passing over the spiral steps of 
fig 101. Fourth fringe from the top passes over 
the centre of the spiral.

59



'V-v

Pig 103. showing superposition of figs
101 and 102.

60 .



X 90
P ig  ici}., showing th e  c e n tre  o f f i g .  70.

X90
P ig  105. F iz e a u  fr in g e s  passing  over f i g .  70

by u s in g  a l i g h t l y  s i lv e r e d  g lass  f l a t .

6 i .



,y.qo


