

```
        4ND EM,TE# CTNW!21,
```



```
    TH:IR IDNTIFTCITTCN.
```

 by
 21.1.17LR

ProQuest Number: 10096370

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096370
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ase

3stmet. i

1. Introduction. 1-4
T. Historical Survoy. $5-15$TT. Cenema account of materi I and methods.. . Itaterial.
Bource. 17
Identification. 18
Cultures. 18
B. Cultural methods.
isolation of the algae. 28
Culture vessels. 28
subcultures. 30
seration of cultures. 30
Other environmental factors. 30
Nutrient solutions. 31
IV. Investigation of charocters used in identificatioif.
Reproduction by motile cells. 4. Method. 34
B. Observations. 36
Shape of terminal and basal cells of the filaments.
R. Observations.
General description. 37
fiffect of culture solutions. 39
Chloroplast size and shape.
2. Method. 41
B. Observations
Under natural conditions. 42
Under cultural conditions. 42
Fragmentation. 45
B. Observations.
General description. 45
Effect of culture solutions. 47
Further investigation of fragmentation.- series of culture solutions.50

- aeration. 52

1. renoids. 54

- Lloservations
Fenergl description 54
惆fect of culture solutions. 55
Cell neasirements 56

1. ouservations
Tnder natiral conditions. 57
Under cultural conditions. 57
Formation of a silky film. 65
A. Ouservations. 6 6
Teneral description. 86
iffect of culture solvtions. 67
Confirination of results. 69
Constriction of the filaments. 71
B. Observations.
General description. 71
fffect of culture solutions. 72
Thickening of the cell wall. 74
\%. Otservations
General description. 74
ffect of culture solutions 76
Iurther investigation of the effect of culture solutions. 78
V. Discussion. 79
VI. Summary 87
VII. References. 93
bppendix I. (Descriptions of algae.) 97
Appendix II. (Culture Solutions.) 121
Figures 1-8.

Clomal enltubes of 21.90 iduntified as Hompi iinn, Totrrix, on tichoroneng afrecies show variation in ahgnaters comnonly meed in distinguishin etween

 ma nffogr to if pend on the nutpiunt suppy. preenoids were pensmlly clencor in culture than maler natirol conditions. $r=1 t u m$ nd the betcetion of twa prenoiln per cell.
 vis 1 (manofu ageencs to dapend on nutrition. The chamacter of n-sme or fronosd for sefrmatinz the sthrrs stichococens irom Hormidinm is therefore considered of donutinl value. Reprodnction notile cells conld not a A tnined althoush the methods sucgested by Klebs and ntilens were used.

Clonal cnltures of Hor idium, Ulothrix, and Stichococcus show variation in the characters commonly used in the iduntification of the species. Cell measlrements atter 0y ag much as + or - 20 when the algae are grown in a diflerent allure solution. The formation of a silky film is a ugeful character only if considered in conjunction with the culture solution. Constriction of the filaments and wall thickness also vary when the algae are grown in different culture solutions.

The lack of precision which marks the boundaries of the genera Hormidium, Ulothrix and Stichococcus is emphasized
for by suitaule culture nlgae can be pushed over the bomdaries.

Glones of albae identified as Uronema species retained the siccial characters of the genus under all conditions under which thry were studied. Reproduction botile cells occured readily and the terminal cells were always acmuinate. The validity of the genvs is supported.
I. INTROUUCTICN.

INTHODUCLION

Hormidium and the related genera Ulothrix, Stichococcus and Uronema are taxonomically troublesome. There is disalrement on the exact limits of the genera and some doubt whether all four genera are valid. Many species have been descrined but few are satisfactory entities. The genera are usually separated by features of reproduction or features vhich are only developed typically in filamentsfrom motile reproductive cells. Stichococcus is distinguislled by the absence of motile reproductive cells and by reproduction by framentation which gives filaments with rounded cells at both ends. Hormidium, Ulothrix and Uronema all have motile reproductive cells but only Uronema has a pointed apical cell. Hormidium and Ulothrix both have a rounded apical cell but are separated by the zoospores of characteristically different form in the two genera. Reproduction by motile cells is however only infrequently recorded or insdequately described for many species of Ulothrix and Hormidium and in some species may never occur. This makes the separation of these genera from one another and from Stichococcus difficult. The majority of identifications and even some initial diagnoses are made from vegetative material using morphological characters to decide on the genus. This is probably the main reason
for confuaion in li its of the genera and for disasreements on the pssigning of species to genera.

Vorphologicel characters such as cell and chloroplast size are used to separate the species in all the four genera. The variation and therefore reliability of the morphological characters has not been fully investigated. The algae of this group being very similar to one gnother in morphological features, uninvestigated variations may be the main cause of confusion among the species. Contributory causes are inadequate knowledge of the morphological features of different phases of the life history of particular suecies and association of filaments of more than one variety.

In this investigation it was expected that growing the algae in unialgal culture and examining them over a period of time would resolve the confusion. Work was limited to plants with slender filaments of 20μ and under because these have proved the most troublesome to identify. Individual filaments from collections of di ferent appearance were selected as representatives of different species and grown in a variety of different media. The use of clonal cultures as representatives of different varieties or species simplifies the problem by ensuring that the subject of study is not a mixture. It

Wes hoped firstly that reproduction mechanisms would occur naturally or would be indaced to occur readily by special methods such as those of Klebs. It was hoped that the occurrence of reproduction would then be of use in determining and classifying the algae and in clarifying the four genera. Secondly, it was hoped that the cultures vould indicate the extent of variation in morphological character within certain limits of variation in environment and that the cultures would reveal various constant and well marked characters which would not only be diagnostic of the species but would elso throw light on the nature of the species in the group. Thirdly, it was hoped that further examination of features such as fragmentation might lead to an explanation of differences I'ound in their description.

The hopes for the investigation proved largely in vain. Except in one group (Uronema) already well defined, reproduction by motile cells failed to oceur. Nany of the morphological characters used to separate the genera and species were found to be unreliable since they vary with the composition of the culture medium. The cultures did not reveal constant and well marked characters which could be used for separating the species. The cultures did possess a certain degree of stability in certain media in respect of some morphological characters usually regarded
as specific. Although the cultures possessed a certain degree of character of their own they could not be sharply differentiated and did not fall into convincing specific groups. They corresponded to existing diagnoses only in a rather vasue imprecise way. The investigation of the morphological characters helps in indicating the possible extent of variation in these characters and shows how confusion in identification and in general descriptions of particular features could arise through incomplete knowledge of variation within a species.

IT • H NTCRTCL sURVAY.

HISTORICAL SURVEY.

The most recent descrittions of species of the genera Ulothrix, Ilormidium, Stichococcus and Uronema axe by Hazen (1902) C7llins (1909), Heering (1914) and Prescott (1951). Fritsch and West list the British species but do not fully describe them. These systematic works are at least partly brsed on those of earlier Phycologists, for instance those OI Kützing, (1833, 1843, 1849), Rabenhorst (1868) and De Toni (1869).

All four genera Ulothrix, Hormidium, Stichococcus and Uronema are recognised by Fritsch and West (1927) and an extract from the key siven by them as an aid to the identification of the genera in the Ulotrichales will indicate the type of characters on which the genera are commonly separated.
la. Filaments not regularly fragmenting into individual cells \quad - 2
b. Filaments readily fragmenting into the individual eells which are more or less cylindrical

- - STICHOCOCCUS

2a. Filaments elongated without a specially differentiated apical cell

- - 3
b. Filaments short with an attenuate apical cell, epiphytic \quad - - URONENA

3a. Chloroplast annular or plate shaqed usually extending round more than half the circumference of the cell and occupying its whole length, zoospores 4 or 2 ciliate, aquatic - ULOTHRIX
b. Chloroplast elliptical or circular in outline, often occupying only half the length of the cell zoospores 2 ciliate, threads readily fragmenting, terrestrial or aquatic $\quad-$ HORMIDIUM

The main characters used for separating the genera Hre firstly metwods of reproduction and secondly the type of terminal and basal cells and the chloroplast. The following cnaracters, tgken from the works of Fritsch and Test (1927) Heering (1914) and Prescott (1951) give the differences in fuller form.

Ulothrix
Fila ents fixed by a special basal cell at least when y ung.

Chloroplast ring or plate shaped extending round more than half the circumference of the cell and with one or more pyrenoids.

Reproduction by 4 ciliate macrozoospores and 2 or 4 ciliate microzoospores produced more than one in a cell (also by aplanospores, akinetes and gametes).

Hormidium

Filaments ithout s special basal cell (sometimes attached by seconarily developed rhizoids).

Chloroplasts usually occupying about half the length of the cell, circular or elliptical in outiine, mostly with one pyrenoid.

Refloduction by 2 ciliate dorsiventrally flattened zoospores roduced singly in the cells (also by aplanospores, ekinetes mad gametes and by fragmentation).

Stichococeus

Filaments kithout special basal cells, readily fragmenting into individual cells.

Chloroplasts frequently occupying only about half the cell wall, without a pyrenoid.

Reproduction solely by Iragmentation.

Uronema.

Filaments fixed by a basal attaching disc, terminal cell acuminate. Chloroplast a parietal plate with one or more pyrenoids. Reproduction by 4 ciliate zoospores (also by aplanospores and gamates).

The recognition of these four genera is not universal and different generic names have been use. The generic name Ulothrix was first used by Kützing (1833a) for Ulothrix zonata. He is also responsible for the erection
of Hormidium aย a separate genus (1843) although in his vartous worts (1843, 1845, 1349) different views are taken. In hit fimal york, Species Algarum (I049) Kützing rewoved two of the three species he had firsh put in Hormidium Hnd salal others to make Formidium a section under Ulothrix tha rot a germs. The derinition of flormidium yiven on the revious page is due to Klebs (1896) that of Kutying being less complete; but it wuld probably include the species of Kützings section Hormidium. Rabentorgt (13bj) and De Toni (1309) used Hormiscia as synonymous with Ulothrix as originally defined by Kützing (1843). Eormiscia Fries (ld35) was originally a genus of two :pecies now included in Urospora and the use of Hormiscia in e different sense, as a synonym of Ulothrix, is contrary to the rules of nomenclature and has been abmindoned.

Stichococcus whs established by Naegeli (1849) who described Stichococcus bacillaris. Many recent authors, for instance Heering and Prescott, recognize this genus as defined by Naegeli but others give different limits to Stichococcus. Hazen and Collins recognise only three genera. Hazen pointed out that zoospore production oceurs only occasionally In species described under Hormidium and that one cannot definitely say that such reproduction never occurs in
species described under Stichococcus. He therefore united the two genera under the name stichococcus as the earlier name. Kützing (1849) although maintaining Naegeli's Mescription of Stichococcus bacillaris considered the alga to have afíinities with the $P_{\text {rrotococeales }}$ and renamed it protococcus brcillaris. This view of Stichococcus bacillaris is not now fenerally acce, ted and disagreement only arises on whether Hazens view is correct or incorrect. Uronema vas established as a fenus by Lagerheim in 188 ? when he found and described Uronema confervicolum. Arguments about its validity have not been resolved. Gaidukov (1903) questioned the validity of the genus because he onserved Uronema-type pointed tips in his form of Ulothrix flaccida. Fritsch and Rich (1929) regarded the absence of accuminate tips in some of their Uronema specimens as being supporting evidence for Gaidukov's conclusions and thought that the pointed tips described for Ulothrix flaccida were really the shrivelled up remants of intercalary cells which sometimes persisted on the broken up lengths of filaments. Mitra (1947) who found all gradations from acuminate to rounded tips in Uronfepa
 but to have close affinities.

The current view seems to be that Hazen erroneously
enfareed the genus Stichococeus and that Uronema is a valid ferms. Four senera Ulothrix, Hormidium, Uronema and Stichococcus with the characters listed on page 5 are recognized although considerable differences arise in the species included.

Most ruthors describe fewer species than did Kutzing but it should be pointed out that some species have on further investigation been u ited or transferred to still other genera. De Toni in particular reduced many of Kützing's species to varietal rank. Differences i ϕ n the placing of a species arise with the acceptance of different generic limits but even Authors who accept the generic Iimits given on page 5 disagree in their practice in placing a species in a genus. For example Heering placed Ulothrix subtilis Kütz. in Hormidium but Fritsch and West disagreed believing that it has the Ulothrix type of zoospore. However, they expressed the view that two species might have been included in Kützings original descriptions, one a Ulothrix and the other a Hormidium species. Stichococeus bacillaris Naegeli is maintained by several authors but Heering believed that the alga described as S.bacillaris has a feebly perceptible pyrenoid and therefore transferred it to Hormidium as Hormidium psen̆ The different species of each genus are distinguished
by the morphological characters, but it must be noted that different authors ive these characters very difierent veight. The characters most frequently used are cell size, chloraplast size and shape, the shape of the cells (i,e whether barel shaped, the filament being constricted Qt the cross septa) the amount of Iragmentation, the number of pyrenoids, the presence of "knee bends" with \neq hizoid like outgrowths and the wall thickness. In certain cases apecies are distinguished by their behaviour in culture, in particular by whether they form a silky film at the suriace of the culture medium. The differences between the species recognized by Heering (1914) may be illustrated by an extract from his key.
I. Cells us to 10μ wide. Chromatophore usually with one pyrenoid.

1 Cells up to 5μ wide. a. Cells $4-5 \mu$ wide …- Ulothrix subtilissima
b. Cells $2-4 \mu$ wide $\ldots-$.
U. fimnetica

2 Cells $5-10 \mu$ vide
a. Nucilaginous covering in layers. Filament attached by a mucilaginous base. -- U.mucosa
b. Mueilaginous covering may be present. Filament fixed by an elongated basal cell.--

Cells $5-7 \mu$ wide $-\ldots$	U variabilis
Cells $7-10 \mu$ vide ----	U.tenerrima

TT. Cells nver $10 \mu \mathrm{wide}$, Chromatophore usually with 2 or more pyrenoids.

1. Membrane thin
A. Selle 10-14 μ wide $\ldots-$ U.0scillarina
B. Ceר1s $15-28 \mu$ wide \ldots U.tenuissima
2. Memorane thick often distinctly stratified
A. Filament usually slightly constricted in the
vegetative state $9-15 \mu$ wide -- U.moniliformis B. Filament only constricted at time of zoospores Pormation Cells $13-16 \mu$ (up to 18μ) wide $-1-2$
tines as long -- U.aequalis
C. Filament of varying form, 11-72 μ wide, usually
$30-40 \mu$-- U.zonata
The use of characters occuring in culture is restricted to a certain species of Hormidium and the chief way in which these syecies differ can also be shown by Heering's key. I. In culture in nutrient solutions forms a silky film
3. Cultures on glucose agar do not become slippery and elistening
A. Cells $5.5-7 \mu$ wide \ldots Hormidium nitens.
B. Cells 6.5-8 μ wide ----- H.crassum
4. Cultures on glucose agar becoming slippery and glistening.
----- H.lubricum.
II. In culture in nutrient S_{q} olutions not forming a silky film

Whe vr'i_inal diagnoses disclose only slight specific distinctions and ofrex little hope of sharp dividing lines. In nödition later descriptions as particular species by VArious authors do not exactly correspond with one another 4ñ ith the oxisinal diagnosis. This results in wideElread coufusion. एox instance Iind (19zz) identified Algae studied by her as Ulothrix rorida Thuret but stated that she suispeoted that aimilar aluae had been identified ne U. aequalis Kätz. or U.oscillarina by other Fhycologists. Lund (I 146) drew attention to the fact that Phycologists studyine soil alsae tended either to describe only Hormidium Ilaceidum or to describe only H.nitems and he pointed out the difificulty of distinguishing between the two species under the usurl conditions used (i.e. absence ol cultures in liquids). Iund also mentions Phillipson's view that Ulothrix subtilis var variabilis as described by Briatol (1920), Ulothrix subtilis, U.variabilis, U.tenerrima as descrined by Gistl (1931-1933), Moore and Karrer (1919), and Moore and Carter (1926) all correspond to Hormidium flaccidum.

Although identi ication of alsae in this group depends mainly on morphologicalfeatures, the number of investigations of the morphology of members at the genera Hormidium and Ulothrix is small, Klebs (1896) studied Ulothrix zonata (Web. and Mohr) Kütz and Hormidium flaccidum A.Br. sensulato and is mainly responsible for the differentiation of species
on behaviour in culture. H.nitens Menegh, enend. Klebs is f earated from H. Flaccidum A.Br. sensu strict. by the formation of s silky film at the surface of the eulture medium by the fosmer only. 上iercy (1926) investigated a form of Hormidium flaccidum which althoush terrestrial she identified as forma aquatica. Hazen (1902) dealt with the species of Hormidium and Ulothrix then recorded in the U.S.A. He made collections of as many algae as rossible and tried by careful observation and comparison to decide on the distinctness of the various Iorns and then ideatified them as far as possible with described species. He does not a pear to have kejt unialgal cultures but did keep sam les of material in glass cylinders, with muslin covered ends, anchored in a running brook. Chodat (1909, 1913) was responsible for further studies of algae in culture and described H. Lubricum. and H.crassum. which are scarcely known out of culture. Purther work on algae in culture was carried out by Str申m (1929) who investigated the effect of pH of the medium on the growth of four morphologically similar forms of Hormidium flacidum. Studies of particular aspects of these algae have also been made. Accounts of Iragmentation were given by Benecke (1898) and by Vischer (1926). Woodhead and Jane (1946) reported the occurence in nature of special thickening of

Whe cell all in Ulothrix zonata and Hormidium filaccidum. Wall thic ening is also reported in Ulothrix mucosa Thuret (Heering 1914), Ilormidium rivulare (Printz 1927), H.mucosum (Lund 1940) and H.crenulatum (Fritsch and John 1942). Investigation of meproduction has been made in only a liuited number of species, Viz: U.zonata (Klebs ld96, Dodel Lort ls7ó, Réel 1923, Grosse 1931, Lind 1932) U.roride (Iind 193t) U.OBcillarina (Gross 1931) and U.variabilis (Cholnoky 1932) The descriptions in reproduction in Hormidium are confined chiefly to those iven by nineteenth century workers (eg Klebs) Later workers (Piercy, Lund) failed to observe reproduction in species for which it had been previously described even though they were using methods similar to those of the earlier investigators.

The total number of Uronema species that have been described is very small. The extent of descriptions of their morphology vary considerably and are confined to the descriptions siven by the Fhycologists who established the species. The speciés described are Uronema confericolum Lagerheim (1886), Uronema elongatum Hodgetts (1921), Uronema sfimplicissinium (Reinsch.) Lagerheim (1886), U. gigas Vischer (1933), U.indicum Ghose (1920), U.terrestre Mitra (1947).

Investigation of Stichococeus species is connected 4 ith study of Hormidium since as mentioned on page 8 . these \&eners are united by certain phycologists. An Assessment of the distinguishing cuaracters of many described species of the genus Stichococcus was made by Grintzesco and Peterfi (193:). They used vehaviour in culture to selarate some species and mention morphological veriation. A comprehensive list of the species of Hormidium, UIthrix, and Stichococcus $A s$ given by various phycologists would be excessively long and confusing. As an indication of the type of differences that oceur in descriptions and in naming algae a short summary (Appendix I) is siven of the characters of algae falling vithin the group investigated.

GENEHAL ACCOUNT OH LATEKIAL AND WETHODS

A. HATHIAI

Source
Collectinng of alga were made from different types of habitat - the soil surface, still and flowing water, and exposed surfaces of stone and wood. The thirteen sources of collections of alba are briefly described in Table 1. Nameत \&lgae were also received from the Cambridee Culture Collection.

Identification.
Freliminary identification of the algae on collection was dade by comparison of their characters with the descriptions of recognized suecies. The collections of alga may often contain several different species or varieties growing together. It was assumed that certain collections contrining filaments of widely different width, although showing little or no variation in other characters, consisted of one or more species. Since keys based on the width of the filaments have been devised by Heering (1914) and since it seems probable that species will give a variation curve with only one mode or maximum, any discontinuities in measurements of width ipn a sample viere taken as indicating the limits of size of different species.

Lieasurements of vioth of filament in the thirteen collections showed that twenty one collections of various tarms (varieties or syecies) had been made. Comparison a) their characters vith one another and vith the descriptions of recognised species showed that some callections from different places consisted of the same alga. The material did not necessarily show ril the features needet for definite identification and very few of the algae studied fitted the descriptions of recognised sfecies exactly. At least twelve distinct species or varieties were represented by the collections of alga. The descriptions of the algae in the various collections, the tentative identifications and reasons for these determinations are given in Table l. Some of the algae Rre illustrated in Figs. 1 - 4.

The algae from Cambridge were already identified but I do not agree vith all these determinations and their inentification is also discussed in Table 1 . Cultures

A total of thirty seven clones were successfully of
isolated. All the types habitat were represented but successful isolations were not made from all the collections, Eighteen of the twenty one collections of different forms were however represented and all the twelve distinct forms
were isolated.

```
In natwing clones the type of habitat of the original
*ource vas indicated by a preliminary letter as follovs
* - - Terrestrial
A - - Aquatic, in still or slow running vater
H - - Aquatic, in swift running water
E - - Aerial (ie on exposed surfaces above soil level)
U - - Aquatic, attached algae-Uronema species.
```

Fach form in these groups was then indicated by a number and durlicates (ie separate isolations of one form from a particular source) by a small letter. The list of cultures kept is included in Table 1. Since I do not agree with the identitication of all the algae from Cambridge, cultures of these algae although indicated by a specific name have (C) after it.

Terrestris
Chobham
Common, Surrey.

Alyae occuz on damp
gravelly
soil in
areas of
heath
disturbed
b, Tenks and
reseeded
ith
grasses.
(1 Wefts of filaments on demp soil. Cell $4-6 \mu$ wide by $2-4$ times as long. Cell all thin. Chloroplast reaching total length of cell and more than half circumference with one distinct pyrenoid of maderate size
Filaments long and not constricted.

Ulothrix
P.1. 8 subtilissima
Very similar to the 1.0
de:cription by
Heering 1914 but the habitat is different No attaching disc was observed but Heering does not mention one in his specific description and Petersen 1935
says that Bolte considers Ulothrix subtilissima to be a soil alga

2 Weits of filaments
on daup soil. Cells t-11u vide by -1 times as long. Most valls thin but some thicker. a few H pieces Chloroplast reaching total length of cell by more than half circumference, vith one large distinct pyrenoid filameints long and not constricted.

3 Wefts of filaments on damp soil.cells $12-10 \mu$ wide by $\frac{1}{2}-$ 1 times as long. Cell wall two layered and with H pieces chloroplast reaching total length and more than half circumference of the cell Filaments long and not constricted Cell wall does not dissolve in chlor

Hormidium
flaccidum $\mathrm{A} . \mathrm{Br}$.
T.2.a
T.2.b
conditions there appears to be only one form -similar to that described by Heering as Hormidium flaccidum sensu ampl. This is a wide description and Heering silits it up into several species and forms with the aid of cultural behaviour.
Hormidium mucósum T. 4
Similar $\frac{\text { Boy.Pet. }}{\text { to descrip- }}$ tion by Lund 1946 but is slightly smaller. The alga differs little from that described by Fritsch and John 1942 as H.crenulatum but they describe a stratified cellwall Lund separates the species by the reaction with chlor-zinciodiae.
zinc－iorille without a writsch and John do cellulase reaction．not mention this test．

Aguatic 17 Frce floating
Ruval
11070 － $10 y$
Colloge，
Suxy y．
Southrest zo．re．
ilocculont masses in standing wacer．Cells ns Iong．Cell wall thin．ChZoroplest $4-6, \mu$ by $3 / 4-1$, timas reaching totrl Iength of cell by moxe than hali circunfucronce， with one inclistinct pronoic per cell． Wilymonts long and not constricted．

Aquatic 2
Chobhem
cormon
St rey． Sphagrum bog near Sumningalale．

I Frce Plonting in
standing water．
Cells $3^{\frac{1}{2}}-4 \frac{1}{2} \mu$ wice by 2－9 times is long。 Celll wall thin Chloroplast not reaching whole length of cell，pale One indistinct pyrenoid per cell．Filments fairly long ani not constricted．

Ulotlurix variabilis

Kittz

If it in assurned that
this 21 sa was originally attoched by a basal cell the nIga could be identilied as U． voriabilis and is as described by rescott 1951．I土 this assumtion is not mne the probable izentifica－ tion would be HORITI IURS subtile as described by Fearing．nb．Kirchner lists U．Variabilis as a variety－H subtilis var Variabilis．

Stichococcus scopulimus A． 2 Hazen \quad ，b．
Whe very sinoll width of
the rilements and the length of the cells very nearly comespond
to those given in
description by Hazen 2902．None of the other described species are described as having such lonğ cells．

Aquatic $3 \quad 1$ Celles $4 \frac{1}{2}-5 \frac{1}{2} \mu$ wide by Aberystwith $1-4$ times as Iong． Alga occurred．in a collection of Iraparnai－ Li OP un－ stated source， sent ior class practical work Cell wall thin． Chloroplast covering total length of cell wall and more than half circumference with one lanie distinct pyrenoid． Filaments I airly long and not con－ stricted．Received in collection of Iraparnaldia and aIready foming a sillay film。

Hormidium Iubricum
A． 3
Chodat．
a，b．

The sillgy film present when the alga was neceived，although not in culture，corresponds together with the other characters to those siven for H．Jubricum by Heering．1914

Actuatic 2. I. Hrom a ctiverub Cenle

Rivir

Churrat,
Tortios.
A2 in col-
lecter by
sent iv x
noneat Prom
it noncalcor-
eous strean,
the Glummot.
$-72)^{1}$ wite by $2-2$
timos ns lone. coll
wi.7.7 moderately thick.
Mloroplast angilar
are cunthated into Dhe cornts ti the coll. Che :hth pryanoic not 1way= istinct. - ilments Ions, constaticted at the croes malls, with with "Jacebenkis末 ${ }^{\ddagger}$ intervaI: .
A. HAIL 51 from irrigated stones

Vireisia
Water,
inçsor
Gront Park, Surrey.
at sicle of waterfall. Cellis $6-7_{-}^{1} \mu$ wide by l-2 times as long. Uhloroplast covering total. length and more thon hale the circurference of the coll. One large pyrenoia por cell. Wilaments long, not constricted but with "Kneebends" 6817 ment thin, and rhiz zoid-like outgrowths.

Cell wall thin.

AOILATC 52 From irrigated stones at as above

Hormi Sum gubtile A. 4
(rutz) Tocring. $3, b$.
Min -1ga is most noarly
like that described as

1. Subile by Hecring but
the imedularity of the chlorojnots is similar to that nescribed for U. ubtilis var variabilis Tirchu.

From irrigated stones at Hormidium rivulare - Kutz R. 2 $7 \frac{1}{2}-12^{1} \mu$ wide by $1-2$ This 1 ga is covered by times as long. Chloroplast covering totel length of the cell and more than half the circurference. One lorge pyrenoid. Cell wall sometimes 2 layered. Filaments long, not constricted and with only a few slight kneebends and rhizoidlike outgrowths.

Homiciun rivilare - rutz R.I Form 2 a,b,c. This l_{ga} is covered by the description of H. rivilare as given by Heering 1914. but is too small to be identified as such by other Authors. The size is nearer that of I. . 1 ㄱutans (Gay) Heering but the filaments do not breal: up readily.
the descriptions of Herivulare given by a number of Authors and shows the typical. features of "Yneebends" and rhizoid like outgrowths.

AQUATIC 6 Royal
\%ownomg
coll.ege
Surrey,
: i.ga i'rom
Stream
invirectly connected with S. . . ลวni.

II
n

1 I'rom raviolly munning strean. Cellis 5-6p wide by 4-1 timer as long. Cicll wall thin but with ixrecular brow "pmery" cont ane. If pieces of same substance. Uhloroplast covering total Iength of cell wall ani nore than holf the circuniscence. One prrenoid not always clear. iflments Ionc not constricted but with lneebends and rhizoid Iike outgrowths.

Hormi ium rivulare Kutz R. 3
Form ?
This Tlgn corresponds to the description of -rivulare given by Heoring (1,14) but is too srmall to be
identilied us such if the de:cription given by other authors are followed. It is nearer It ubtile (Kutz) Heering in cize but has kneebends and rhisoid outgrowths.

2 Cells $8^{\frac{1}{2}-9}{ }^{\frac{1}{2}} \mu$ wide by Itormidium rivulare - Kutz none I-2 times as long. Cell Tlo clonos were isolated (reforred wall thin but cenented fron this alga, so it to as to the substraturn at was unimuortant to decide $\% .1$) intervals. Chloroplast on whether it was a covering the total length distinct form.
oi the cell wall and It falls within eescriotions more than half the of H. rivulare form 3 but circunfercnce, with one not such a wide range of pyrenoid. Filaments filament size was found. long, not constricted but with lmeebends and rhizoid-like outgrowths.

3 Cells 14-15 μ wide by l-2 times as long. Cell wall rather thick. Chloroplast as above. Filanents long not constricted, no lneebends or rhizoid outgrowths.

Ulothrix tenuissima -
This alga is nearest Ulothrix tenuissima although only one
none (referred to as
X. 2)
pyrenoic per cell was seen Lind has neglected pyrenoid number in some of her identifications.
"
"

3 Habitat as above. Cells $10-12 \frac{1}{2} \mu$ wide by $1-2$ times as long. Other characters as 2 above.

```
AGNATIC 7
I.0y:21
*ollown%
GolJage,
unrey.
Loncmote
slab in
straem
belo:% the
M*itu[ing
_001.
Hormidium rivulare
Kutz.
zuning water. Cells
5-6p wide by \(1-4\) tinos
as long. Gell wall thin but irreaularly contec? with brown pwery mubetance. Ghlorozlsot covering the totrl. length of the coll woll and more than hale the oircumererence. One prenoid. I'il unents lona, not constrictod but with triecbends and rhisoid outgrowths.
```

corm 1
Thi: $-I_{\text {ga }}$ resembles the alga described on the previous pace ns .rivulare form 1.

AgUATIC 72 Habitat as above. Cells Homidium rivulare $6-9-\mu$ wide by $1-2$ timos as long. Cell wall thin cementec to substrate nt intervals. Chloroplast as above. Filament os above

As above
none

4 Habitat as above. Cells $15-19 \mu$ wide by $1-2$ times
as long. Cell wall thick: Ulothrix temuissima Kutzo
none (relemod to $2 s$ This alga resembles that described on the previous page but the size diflers slightly and overlaps that of fortin 3

Hormidium rivulare
Kutz.
Form 4 For convenience this is described as a separate form but it has a size within that described for Iorm 3. and two layered. Chloro- The size of this olga plast covering total is greater than that length of cell wall and given for Hormidium more than half the circumf erence. One large pyrenoid. Filament long and not constricted, very slight kneebends and species other than
H. mucosum and Hecren- $^{\text {cos }}$ ulatum and the $=$ appearance is nearer that described for
U. teruissima.

AURLAJ 11 rrom darm tree. Cells Formidium nitens 1.1
Thand $5-6 \mu$ wide by l-2 tines Fonegh emend Kleb's
"urt. as long. Gell mall
tlag irem
folion anm
tisee tiunt moderately thick. Chloroplast dark creon and ruther souare in
hows lin ham outline, covering
vove. total longth. Ijrenoir? difficult to sec, probably one rilanents short rnd dissociating tio mar'ed con-traction orly of thick apmearance when servintin.

NDINT 21 From claym atones. Cells
5-6p wide by l-2 times as long. Ceil woll thin cozllocted
Iron darp
wall and
sent to
Professor
Jane Ior Chloroplast covering total length and more than half circunference of cell. One clear
identirication prrenoid. illaments of

Hormidium nitens. $\quad .2$
A2.
$\rightarrow-$ modurate length ancl some fraguentation occurs

Source and

1rame.

Hormidium
slaccidum
UN BRTTEE
CUS 12 Rex
LO: NaUIION

CeIIs $4 \frac{1}{2}-6 p$ wide by I-2
times as long. Cell wail
thin. Chloroplast
covering the total length of the cell wall and more than alf the circurfierence. One clear prrenoid. ilaments short and framenting, not constricted forming a silky film, in liquid culture.
H. nitens Menegh enend KIebs. The formation of a cillu Allm in cultures makes icentification of this alga as Homidium Placcioum unsuitable unless the name is given in the wide sense H. flaccidum $\mathrm{A} . \mathrm{Br}$ sensytato as described by Heering 1914. As 基nitens is apparently also used by Cambridge the alga is better identified as H. nitens. Memegh emend.

CA DOTIXE:
しU LTO ?
cosuecitoti.

Uronemplicas
GATHIETE
CUINTIE
COINEOTION

G II: -6μ wicle by 1-2
times ve long. Cell moll thin Chloronlnst ocvering totn I lenctio oi' nell matil and more ther. ionlf the circurierence. Une nyrenoic. 147 ments long not constricted.
15μ wide by $\frac{3}{2}-2 \frac{1}{2}$ times as long. Cell wall thin Chloroplast covering total length of cell wall and more than half circumference, 2-3 pyrenoids per cell. Filanents very long with basal attaching disc and acuminate apex.

Not forming regular
filaments but masses of cells with tapering ends The masses of cells sometimes occuring as if germinating zoospores remained in old filment Chloroplast indefinite in outline. Pyrenoids indistinct. Occasionally one pyrenoid discernable.
11. Rseuchostichococus

nai the rorence of a
ni2 \because. "iln in the
a7tizac mize the
ㄷ cutilituation os

Thang is probobly

1. . Sexlostichococcus

Irom Te rinus
3nori tion. Whetlen
this corcerpones to
S.bacill aric ou7. not

Ulotluix subtilissime Raberh.
U. subtilissim.

Thic alm is similar
to thet described
uncer this name by
Heering anc resombles
I.I 110 specialiseत
basal cell mas found
in this clone also.
The characters of the Uronema
alga confirm the gigas identification as

CAVBRIDGE
CUITIRE
COLJECTION
velle: $2 \frac{1}{2}-3 \mu$ wide by $I-2$
tincs is long. LCTI wall
thin. ChIorozlast
coverine tixe total. Ian th
of tire celli whil and more
thas linge tice
civcuntioncnce. Uno
pymowic vory i'cebly
norcentible. -ilyments rut wame ais tue but conrigtira on voxy miort Iom sclack i'2n ment.

Uronema gizas

The culture received Uronema
on agarwas obviously growing abnormally. In subsequent iiquid cultures the alga formed filaments which were similar to Uronema gigas (c)
confervicołum (C)

Sourecg rand
TVO. oi' form
Descrivtion
Inentitication
On turer.

Stour, Fent
A1 zl
collecte?
l'om sinils
molle by

Ce7.15 6R-87u wilue by Tomsibly Uronema figes
U. 1
about as lone as wile but is rather simall
lilgmentr Prirly long
vith basill isisc mal
pointed rpicsl cell
(l) Toronlast roaching whole length of cell ank more then holf circumference. FiTmento mithtly corntricter at the cross sceta.

Sorn Trate
Dietrict. Belham 2hro. Al .
conlceted
from snาils
she lis by
Wies. . しamion.

Malhan
Yorics-on
Placial.
rift nesr
the rield
Station.

Ge71: 40-501 wide at Uronema confervicolum tip to $(2-6.8 p$ at base Thia 2 g : corresponds of filament 2-4 times to the description of as lone as wicle at tip l-2 times as long 23. wide at base. 23renoids usually one sometimes 2 per cell.

Celle $\quad .0-$ C. 2 u wide by I-2 times 35 Ions Filaments fairly long with basal attaching disc and acuminate end cell. Chloroplast mostly reaching whole lencth of cell and surrounding more than half the circunference. Pronoids indistinct. rrobably one per cell.
Iagerheim in all
respects except that he
states that 2 pyrenoids per coll are componer than one.

Uronema confervicolum U. 3

This olge most nerrly corresponds with descriptions of
U. confervicolum
aIthough two pyrenoids per cell were not detected.

B. Ci- minial livtods

Ismetion of the aluse
Clnnes were isolated from most of the collections.
Tha sire lioted in talle l. Single filaments viere taken from the colltactions of alga using sterile glass needles 1. . ick un the jilaments. They ware yareed through a berieg of washes of sterile distilled water in sterile Watch plasse日 enclosed in sterile petri dishes. Finally Whey vere transferred to sterile soil soflition. A number of parallel isolations were made from each collection of HIE日.

Culture vessels
Cultures in liquid medis were, when first established, kept in $l^{\prime \prime}$ diameter specimen tubes plugged with cotton voal. Later cultures were kept in 5 centimetre deep Letri dishes or in 250 mls ., Pyrex conical flasks plugged vith eotton wool.

The vessels ere not treated with chromic acid type cleansers before use as these may be injurious to algae (${ }^{\text {Prvey 194 }}$ 1949). If deposits of lime were present these vere removed with hydrochloric acid. The vessels were then washed in hot water with a detergent and then rinsed under a running tap. Finally they were rinsed with distilled water and left to dry. All utensils were sterilised by autoclaving at 15 lbs pressure per sq-inch above normal
stmospheric resture lor 20 miautes. The, were wrapped in petper ouring autoclaving to prevent excessive chulemsation on their surfaces.

Subcultures.
Cultures vere subcultured at intervals of approximately four weeks. A "massive" samie wis taken and transferred Lo resh cultwre medium in a fresh vessel. ivormal Fecautions ware taken to mantain sterility. Aeration of cultures.

An experiment on the erfect of aeration and consequent Etirrine was carried out. A series of cultures in 5 cms., petri dishes was aerated from a small electric pump. Two tubes in parfallel were run off trom the pump and from each A series of side arms were run to the cultures. Each arm anil the iree en s of the main tubes could be closed down with springclips until the flow through each culture was similar. The ends of the side tubes dipped into the cultures under a slightly tilted lid so the cultures were open to contamination from the air (the use of cotton wool plugged tubes or Plasks ould eliminate this difficulty but were not available at the time.) The side arms were loosely plugged with cotton wool to help in filtering the air. Twenty cultures could be aerated at approximately the same rate of bubbling.

Other environmental conditions
Preliminary experiments were carried out growing the
cultures in artificial light of controlled intensity and duration in thermostatically controlled incubators (20Kh desrees C), and in the woontrolled but differing temperature and light ranges jrovided by outdoor, cool seenhouse, and laboratory conditions. Satisfactory initial growth of clones was maly obtained in the Laboratory in a North facing window at the normal lab. temperature (of 15 degrees centierade in vinter-rising to 20-25 in summer). It was decided to limit work to the effect of the culture solution (nutrients) and grow the elga in the prevailing laboratory conditions ie. vith normal daylight and temperature, the former showing normal drily and seasonal variation, the latter maintained by heating within the range $15-25$ degrees and normally not inigaer than 20 degrees.

Nutrient Solutions.
Earlier vorkers used solutions which were modifications, usually dilutions of the water culture solutions for higher plants. Knops water culture solution has been widely used (eg. Klebs 1896, Gaidukov 1903) and Vischer (1933) states that it is this solution, under the name of Detmer, vhich was used by Detmer (1912), Chodat (1913), Kufferath (1930), and others. Detmers solution appears however to differ in that potassium chloride is substituted for potassium nitrate. Other solutions of mineral salts have been
s,ecially devised for alyae and are commonly used and described by the names of the originators - Benecke, Molisch, Bjeirinck, Moore, Lringsheim, Chu, and many others.

There is :las a tendency to uae water extracts of soil alone or with the addition of partic lar salts, under the mame of soil solution. The exact methods of preparation differ and anyvay the solution has the considerable disadvantage that its composition is unknown and is not exactly repeatable. The advantage claimed is that growth is better and more normal.

Oriy a selection of a few of the great number of culture media which have been devised and used for various nigae, were used. The selection included Knops (Mqclean and Cooky 1941)

Molischs (Pringsheim 1946 pg 35)
Pringsheims (Pringsheim 1946 pg 35)
ioores (Poulton 1930)
Beneckes (Naclean and Cooke 1941)
Bjeirincks (Fringsheim 1946 pg. 35)
Herveys (Hervey 1949)
Godwards (Godward 1941) (this is a modified Chu solution)

Uspenskaja (Uspenskaja 7925)
SCoil solution (Bold 1942)
A Iuller account of these nutrient solutions and of
nny modifications is given in Appendix II.
In qddition to these usual solutions "modified" solutions and a series of solutions intermediate in composition betveen Iringsheim's and Nolisch's solutions were usel. Modified solutions were similar to that descrived by Hervey (194,) as "Hervey's modijied" in that they contained an addition of Soil solution. Knops nooilied, molisch's modified, ete were prepared by mixing eousl חumatibies of Knop's, Molisch's etc with soil solution. The composition of the intermediate solutions between Fringsheim's and Molisch's solutions are given in the table in the Appendix.

The addition of particular substances, generally of areanic nature, to induce better growth or zoospore Pormation, hes been suggested (Pringsheim 1946) Certain additions vere made in this way to Soil solution. Yeast extract ($.2 \%$), Dextrose (0.2%), dibasie potassium phosphate (0.02\%), Calcium bicarbonate (.005-0.02\%) were used.

The pH of ell the culture solations depends on the salts included, and varies as they are utilized. All are approximately nutral or slightly acid pH 5.0-7.0 and in attempts to obtain zoospore production a wider range of pH was required. Alteration of pH was made by one of two methods.

1. The use of acid and alkali - Hydrochloric acid and sodium hydroxide.
2. The use of buffer solutions - Clark and Lubs buffer and Acetic acid/Acetate hufler.

The bulfers were made up as siven in the appendix and used With an equal quantity of nutrient solation. Under these conditions they did not give the exact $2 H$ stated there and chaned with time but over a limited period of culture they tave a wide range of pH and the only gitn in their use was to srow the slga in solutions of widely difiering pH in case thi: was limiting zoospore production.

REPRODUCTION BY NOTILE CELIS

The ansence of reproduction by motile cells is one of the characters used to separate off Stichococcus from related genera. Characters of the zoospores and gametes Are used to separate the genera Ulothrix and Hormidium Although remroduction by motile cells hes not been described Ior all the gpecies. Particular minor characters eg., Aplanospore :hape, fre used in specific descriptions. A. IETHODS.

Refroduction by motile cells occured in all the Uronema clones (U.I, U.2, U.3, U.gigas (C), U.confervicolum (C).) without the use of special methods. These species have been gdequately described for taxonomic use and were not studied further. The aim was to obtain reproduction by motile cells in the Hormidium and Ulothrix clones, since it is in this section that features of reproduction are particularly useful.

Variation in culture solution, pH and aeration, were All used in attempts to obtain the production of motile cells in clonal culture. The methods of Klebs and others, that is change in the strength of the medium and the use of darkness, were employed without success. Briefly sumnarizing the transfers were made as follows:1. From Knops solution to more dilute solutions - $1 / 2,1 / 3$,

1/6. 1/12, of the orieinal strength (6\%)
2. From Knops solution to sterile distilled water.
\%. As 1. above but cultures kept in the dark - separate subcultures examined titer 1, 2, 3, 4, 5, days. 4. As 2. above but in the dark - separate sub cultures examined atter $1,2,2,4,:$, days.
5. Fron soil solution to more dilute solutions - 1/2, l/4, $1 / 2,1 / 16$
c. From soil solution to distilled water.
7. As E above but in the dark - separate sub cultures removed atter $1, k, 3,4$, and 5 days.
3. As 6 above but in the dark - sevarate sub cultures removed after 1, 2, 3, 4, and 5 days.

Observations were made on all the cultures during the day und examinations of certain clones was also made during the night. Clones T.I, T. , T.3, T.4, R.3, A. 4 and freshly collected material of all these except $A .4$ were examined at intervals on niyhts during March 1952, November 1952, and May 1953. Since there was no indication that zoospores and gamete formation would occur in the majority of the clones and since there is no certainty that zoospores and gamete formation can ever occur, attention was transferred to an investigation of the variation in morphological characters.

Althaugh motile cells were never seen, observations were made which made it possible to infer that in some cases such reproduction by motile cells had occured. Samties of the followint clones T.2, T.3, T.4, R.I, R.3, A.I, A. 4 had a few filaments vith empty cells with conspicuous pores. The contents of a few cells in these clones rounded off but failed to emerge. A very small number of spores (probably zoospores which failed to emerge) germinated in situ to form short filaments of a few cells. Examples of these features by which it was inferred that reproduction by motile cells may occur are shown in Figure 5.

The type of texminal and asal cells is an important
getroic character and is used as described on page 5 .
A. METHOD.

The shape of terminal and basal cells was recorded for the variou: clones studied and stnee the terminal and basal cells in a clonal culture may be the result of fragmentation a record was also made of whether motile cells had been 10 rmed.
B. OBSBRVAIIONS.

General description.
The shaf es of the basal and terminal cells differed in the various clones. Either the clones had basal cells vith attaching discs and acuminate terminal cells characteristic of the eenus Uronema or they had rounded basal cells and terminal cells vich ere never of the acuminate shape so constantly found in the Uronema species.
I) Filaments fixed by basal attaching disc and vith terminal cells acuminate.

The clones U.l, U.2, U. 3 and Uronema gigas (C), always contained filaments with basal attaching discs and an acuminate terminal cell. This form, typical of Uronema species, is illustrated in figure 4 . When subcultures were made from old bleached cultures, motile cells were

WIveys tommed in the Iresh so ution, and grew into young M1ants vith bgspl ottaching dises and acuminate terminal cplls. When yreen filaments were transferred to fresh folution motile reprofuctive cells were not rlweys 1. Nodseed but continued vegetative yrowth and fragmentation resulted in free floatine filaments with both erds generally rounded. Clone U.confervicolum (C) when recfived trom Cumbridge was in the form of framments mainly of very irregular filaments as shown in figure $4 D$, ith many cells vedge shrped in section, ie. with rather pointed ends, Nrojecting in all directions. After continual subcultering some suhcultures were obtained which behaved in a typical manner and fosmed the mormm Iilaments of e Uronema species. mis clone finally became as constant in character as the Qther Uronema clones.
II) Filaments without acuminate end cells.

AlT the other clones studied (T.I, T. $2, T .3, T .4, A .1$, A. $九, \mathrm{~A} .3, \mathrm{~A} .4, \mathrm{R} .1, \mathrm{R} .2, \mathrm{R} .3, \mathrm{R} .4$, R.b, E.I, E.2,) were of Wlothrix or Hormidium type ithout acuminate apical cells. Clones T.1, T. R, T.3, A.1, A.2, A.4, R.3, probably formed motile reproductive cells though these were never seen in cultares. The terminal and basal cells were generally both rounded. However in a few of the filaments of clones $\mathbb{T} . \overline{3}$, T.4, A.4, all of which normally formed long filaments, the
end: had projecting cell walls (cf., pg.46.) The demsins of these broken intercalary cells were often crushed and mi ght in a cursory examination have been coniused with acuminate end cells. Small short filaments uf c-3 cells, probably germlings, found in clones T. T , $\mathbb{T} \cdot 3$, De shown in fisure 5 . had a very sliphtly tapering end. No tapering eells as acuminete as those lound in Uronema were round. In clone $k \cdot b$, very long filaments vith attraching discs and rounded ends occured and the number of ends seph in a sample was consequently small.

Eflect of culture solutions on the shape of the end cells of the filaments.

The use of different culture solutions had no effect on the type of basal and terminal cells found nor did culturins itself make any difference. In Uronema ciones acuminate apical cells were constantly found; in other clones they were always absent. The shape of the terminal and basal cells of clones grown in culture and the type of end cells at the time of collection were similar. As the Uronema species all showed such constancy in the formation of acuminate terminal cells and since the other clones never had acuminate cells this character was useful for separating them. The difficulty of examining the small frasments wesent in the natural habitat prevented the assessment of
the shape of the end cells in many rlgae until they were in culture, this was specially so for attached species (U.7, U. . U. U.) which vere browsed by animals.

CHIORORLASI SIZE AND SHALE.

The character of the chloroplast (cf. p4, 4) may be Used as \& Eeneric character and its use emphasized in iffernutiatinf between Hormidium and Ulotbrix. It is
 A. MEAOD.

It uhs difi icult to express the chloroplast size and stupe in terms of messurement as the chloroplast is always a parietrl plate lying close to the cylindrical sarface of tue cell vall. Records were made of the percentage of c-lls in which the chloroplast covered the entire cell wall in one plane and an estimate vas also made of the proportion of the circumference of the cell wall covered by the widest Art of the chloroplast. Observations were made on the uormidium and Ulothrix species only, because in differentiating between these genera the emphasis has been put on Whether the chloroplast is "ring or plate shaped and usually encircling more than half the circumference and frequently occupying the whole length of tae cell" or "an elliptical or circular plate genesally occupying about
half the length of the cell."
B. OBSERVATIONS.
1.AIURAI CONDIMIONS.

Under natarel conditions the chloroplast, in the negority of the algae studied, was remarkably similar. The ehloroplngt extended the full length of the cell and was elliptieal or more or less rectangular plate with the lonsitudinglly lying edees rather rounded. The videst pert of the enloroplast surrounded ebout treee quartera of the cell circumference (ie Cylindrical face) A.:, fiffered in that the chloroplast was very small in relation to the cell size. the shape usually described as Hormidium type, oniy half or less of the length of the cell wall was covered and about half of the circumference. A. 4 , differed in that the chloroplasts were irregular in outline and frequently were contracted into a corner of the cell.

CULIULAL CONDITIONS.

In cultures grown in soil solution the chloroplasts Were generally similar in size and shape to those found under natural conditions. The exceptions were A.2, and A.4, those clones which had small chloroplasts under natural conditions. In culture in soil solution these two had chloroplasts similar to the other algae. This will be described as "normal" for convenience.

In cultures in solutions made u from known amounts of Cnemicals, solutions such as Knops and Volisch's, certain of the algae studied developed chloroplast of the Hormidium type. These algae vere T. A. A.I, A.4, H.I, E.2,. Table 2. summarizes the observations. The variability of the chloroplast was in a few sulficient to alter the entire Appearance of the algae from tae type commonly described for Ulothrix sfecies to that comwoly described for Hommidium species. In the majority of the alyae studied there vas absence of variation in size and shape of the chlorollast. Both the variation within some clones and the absence of difference between most clones prevent this cnaracter being useful in differentiating between the Hlgre.
Table 2

[^0]any,

FRAGREINTATION．

Stichococeus is selsrated from related genera by the frest tendency to fragment so that only few celled t＇il gments are found．The gmount of fragmentation is nLs ased as x specific character in the eenus Hormidium．

A．
Followimg Benecke，Petrrsen，and othess，fragmentation Was iecorded \＆s rapid or slow framentation．In rapid Iracmentation filaments break up into short lensths，the dissociation $⿴ 囗 ⿰ 丿 ㇄$ widde lamellse and rounding off of neighbouring cells． The term rapid fragmentation is slightly deceptive in that it does not oceur suddenly and rapidly but may be a continuous slow process．In slow frasmentation the filaments break up into long lengths and the ends of the resulting filaments show remnants of a projecting cell W\＆11．

B．OBSERVATIONS．
General description
i）RA上ID FRAGMENTATION
Rapid fragmentation resuited in filaments of varied lengths although all were relatively short．The number of cells in filaments were counted and filament length fell naturally into groups without any intermediates． Filaments were of less than 10 cells，20－30 cells long，or
severyl hundice ealis long. No filaments aftroached the length of filaments in cultures in which slow I's mentation was recorded. In the Iatter, filanerits were geveral centimetres long. In the majority of cultures one particular length seemed to predominate. Thrés tapes at rupid fragmentation were therpfore तो:

1) Fila enta absent or composed of less than 10 cells.
2) Filaments short coneisting of about 25 cells.
3) Wilaments of sevesal hundred cells.

A few cultures contained filements of all the lengths from few cella to severel hundred cells. These were described ns type 4.

The filgonts showed the characteristic rig zag aplearance because of the loose connection of cells or the close juxtaposition of short recently separated filaments. There was generally no sign of thickening of any kind, while staining with methylene blue did not show any special accumulation of stainable material at the cross walls.

ii). Slow Frabmentation.

In slow fragmentation the filaments remained several cms. long the oceasional breaks had projecting walls. There was generally a thickened cell wall and occasionel "H"

Leces interomlayy in the filament but not at the ends of filmments. Free floating "H" pieces were not found. It dil tot seem as if the thickenings were directly Associated vith fragmentation. On applying methylene blue dead or disorganised cells stained first, the outer Inyer af" the wall and the "H" pieces stained gradually. Disterial between the cell walls, compsrable vith Piercy's nccumulations of stainable material, oecurred but could not be differentiated clearly from small "H" pieces and thickeried outer cell valls. The ends of the filaments Hiways showed the projecting pieces of wall described by Iund (1940). These Iund attriouted to the remaining nuter whll, seprration of the middle lamella between the inner walls having occurred as in rapid fragmentation. Since projections were found in filaments where a double cell wall was not present, they must, at least in this case, represent torm cells as described by Petersen. Disorganised cells were often bent or the neighbouring cells projected into them. It appeared that tearing did occur. Eifect of culture solutions on Pragmentation.

The various algae investigated showed varying amounts of fragmentation when growing in the different media and when compared with one another.

Table 3 summarizes the results for three solutions and
sterile distilled water. Water was used because it has been sueessted that lack of nutrients causes fragmentation. The tupe of rapid fragmentation is indicated. The Clagsification was normally baser on estimation but table 4 shows numerical records of the number of filaments of different length for certain of the clones. These courts clearly suow the difference in length of the predominating 1ilaments in the types $1,2,3,4$ of table 3 . Types 3 , 2, 1 could be clearly separated but type 4 (a mixture of filamerts of all lengths) might aproach type 2 or type I in having a high proportion of filaments of 25 or a few cells.
cion. Litpe of irm mentntiun in suil Sahn

Trpe aramentation
in Jonoys soln. in Molishs solni In distinled

A blank (-) inficates that the clone was not from in that particular soln

Trable 4 liumber of filanents of diffeent lengths in cultures showing

Revid fragnentation was more characteristic of certain clones than of otrexs and absence of fraguentation $v . t s$ aracteristic of some. The marked effect of the medium on fradmentation in certain clones, particularly A2 where the eeneral form was entirely altered, indicates the possible extent to which environmertal conditions may affect the smount of fragmentation. In all cases where the clone was transierred to sterile distilled water growth Was Asrested and fragmentation did not occur either at ance or later.

Further investigation of fragmentation - the effect of a series of solutions on one clone.

A s ries of solutions intermediste between Pringheim's and Molisch's solutions and having the composition given in the Appendix were set up. The solutions were inoculated with roughly equal portions of clone A. 4 and examined after 4 weeks. Table 5 records whether fragmentation was present or absent.

Sglution
ino.

Mrin Aㄱeration In
Composition

Fragmentation. P-Frisent A-Absent.

1.	Erincsileius saln mimus jron
.	Irinusheims soln
3.	1rimgrheime goln, winus ixon,
	I Ius Ihosprate
-	Erimsheins soln, mimus iron,
	17 us confe. phos hate
\%.	1rinsslreims soln, minus iron,
	flus phosihate ($\mathrm{K}_{2} \mathrm{HPO}_{4}$)
G.	fringsheims soln, plus phosphate
	as in 3 .
7.	Hrimgsheime soln, plus phosphate
	as in 4.
3.	Erins stleims soln, plas phosphate
	8. in 5 .
9.	Eringsheims soln plus MgSo4
10.	Prin sheims soln minus iron, plus
	$\mathrm{N}_{5} \mathrm{SO}_{4}$ \& PO_{4} \&g in 3 .
11.	Pringslieims soln minus iron, plus
	NHSSO_{4} \& PO_{4} as in 4.
12.	Eringsheims soln minus iron, plus
	MgSO 4 \& PO_{4} as in $\mathrm{M}^{\text {a }}$.
13.	Pringsheims soln plus MgSO_{4} plus
	phosphate as in 3 .
14.	Pringsheitns soln plus MgSO_{4} plus
	phosphate as in 4 .
15.	Frimg sheims soln plus MgSO_{4} HIus
	phosphate as in 5.
10.	Molischs soln minus most MySO_{4}
17.	Molischs soln minus some MgSO4
13.	Molischs soln
19.	Molischs soln minus CaSO_{4}
20.	Molischs soln minus iron
1.	Molischs soln minus CaSO_{4} \& iron
22.	Molischs soln minus MgSO_{4} \& $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$,
	- Hf04 plus RNO3.
23.	Molischs soln minus $\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4}$ plus
	$\mathrm{KNO}_{3} \quad \& \mathrm{~K}_{2} \quad \mathrm{HPO}_{4}$
24.	Molischs soln minus (NH_{4}) 2 H 4 plus
	more KNO_{3}, cone $\mathrm{K}_{2} \mathrm{HPO}_{4}$

No Irgmentation occurred vhen MgSO_{4} and additional
thogphate were added to tringsheim's solution or when the N" SO_{4} in Molisch's solution was reduced. The formulae of the golutions in which fragmentation did not occur is listed below:-

No. $\mathrm{MeSO}_{4} \quad \mathrm{KNO}_{3}\left(\mathrm{NH}_{4}\right)_{2} \quad \mathrm{HPO}_{4} \quad \mathrm{CaCl}_{2} \quad \mathrm{FeSO}_{4} \quad \mathrm{~K}_{2} \mathrm{HPO}_{4} \quad \mathrm{CaSO}_{4}$ $\begin{array}{lllll}13 & 0.2 & 0.2 & 0.2 \text { trace trace - }\end{array}$
140.2
0.20 .4
trace trace
$\begin{array}{llllll}15 & 0.2 & 0.2 & 0.2 & \text { trace trace } 0.2 & 0.4\end{array}$
10 0.001 - 0.8 - trace 0.4 0.4
17 0.2 - 0.8 trace $0.4 \quad 0.4$
Fragmentation occurred when MgSO_{4} and different phosphate concentrations were added, but FeSO_{4} not included. When Dtber salts are removed Irom Molisch's solution as well as reducing the MgSO_{4} concentration fragmentation again occurred.

THE effect of aeration (and the resulting stirring) on
fragmentation
Aeration of certain clones was carried out as
described on pg.29. The results are given in Table 6.

Table 6.

In the clones studied aeration appears to have no effect on frå wentation.

FIREINOIDS.

The elsence of pyrenoids is use as a seneric charmiter for separating Stichococcus from related genera. The number of pyrenoids present per cell is also used as a speciric character in the genes Ulothrix, Uronema, and HOTmidium.

METHOD.
The number of pyrenoids per cell was recorded in the cells selected for measurement of size (of. pg 56) Similar examinations were also made after staining with iodine in potassium iodide but this did not reveal any further pyrenoids.

OBSERVATIONS

General description.
One pyrenoid was detected in the majority of cells of the algae growing under natural conditions. Frequently the pyrenoid was very indistinct and particularly so in the Blyge irom which clones A.1, A.2, A.4, E.I, R.3, were isolated. It was in these algae too that a pyrenoid was not detected in every cell. The pyrenoids were large and oval in shape (elongated in the direction of the longitudinal acis of the cell) and were visible as a glistening or slightly more opaque area in the chloroplast. The differences under natural conditions were insufficient to
be of use in getsrating the slgae.
Efrect of culture solutions on the size ana visibility of
pyrenoidg.
In culture the pyrenoid and chloroplast may be obscured hy droplets presumably of oil. Such droplets occurred sporadioally but infrequently in cultures of Th, T.R,
 H.Flacoidum (C) H.nitens (C), Uronema sivas (C), U.confervicolum (C), U.I, U.E, U.Z, but their formation could not be correlated with any known slteration in connitions and was not recorded. The pyrenoids were senarally more aistinct in culture than under natural confitions and were noticeably so in the flourishing cultures in Soil soln. with the exception of only A. 2 and H. nitens (C). These two fragment in soil solution, in Nolisch's solution however they too showed clearer pyrenoids.

Although cuIture made the pyrenoids easier to see, it made no difference to the size and shape or to the number of pyrenoids per cell detectable except in clone R.5. In culture it was possible to detect two pyrenoids per cell in 75% of the cells of this clone, although the use of the pyrenoids for differentiating between the genera and species was not practicable the pyrenoids were clearer in the cultured algae and this was of use in confirming the naming of R .5 as a Ulothrix species with two pyrenoids per cell.
A. EHCHOD.

Measurements vere made using a microscope with 150 mm
tane lemgth a $1 / 6$ inch objective and a xlo ocular
containine a graduated scale. At telis wagnification one division of the scale corvesponded approximately to I. 24μ. Estillations of size were made to the nearest half division.

Before taking a stople with a sterile needle the culture wat mixed by eentle shaking. The samples vere mounted in the cultuxe solution on a slide and covered with a coverelip in the normal way.
heasurements of width of the cells were made for cells along a line transect (say risht to left of the field) in Iilaments crossins this line at about a right anyle (ie top to bottom of the field). It was hoped by this method to sample different filaments as it seemed reasonable to assume that, with care in mounting, filaments would be unlikely to be completely bent back on themselves.

Messurements of length were taken by determining the longest and shortest cells within an arbitary distance along the filaments whose width had been taken. The distance chosen was the field of view and one field on either side of this. These lengths have been termed the maximum and minimum lengths in the subsequent tables.
The number of measurements taken varied. In clonal
cultures it was never less than 25 and in collections of material from natural conditions it was never less than 700 measurements as in the latter case there may be more than one species present and the range in width is greater. The measurements have nou been treated statistically but where 25 ant 100 measurements were taken for the same olone exactly similar liwits for width and length were oltained. B. HESULIS OBSERVATIONS

UNDER NATURAI CONDITIONS

Since collections of alga did not necessarily consist of one species only, measurements of width, in particular, why cover \& wide range vilen the number of filaments of different width is expressed as a histogram, two types are obtained as shown in Histograms 1 and 2. The histogram Ior the alga from the River Churnet (Source Aquatic 4.) has only one maximum. The histogram for a collection of日lea Irom Chobham Common (Source-Terrestrial 1.) shows several maxima or modes which probably indicate the presence of more than one species or variety. If the species do not overlap in their range of width it wauld be easy to determine the limits of their size. As vill be seen from the histogram it is only possible to estimate their limits by the position of minima. The collection
treve whe taken to be three species approximately z. $5-0$. 1, ..5-12. 5 μ, and 21.5-15. 5μ wide.

Similar histograme were constructed for other
collections of alga but are not included. The size of
Tox川s or slecies collected is listed below.
Termestrial 1. (T Ia. 3.7-3.2 μ wide

AQLIAIIC $2 \ldots-$ AR $\ldots .7-4.3 \mu$ wide
AVUATIC $3 \ldots+$ A3 $\ldots .3-5.6 \mu$
AQUAIIC $4 \ldots 5.0-74.4 \mu$
AQUATIC $5 \ldots(\mathrm{RI} \ldots \ldots 7.2-7.4 \mu$
(R2 \quad - - $\quad 7.4-12.4 \mu$
AQUATIC

AERIAL $\quad 1 \ldots 5.0-6.2 \mu$
ABRIAL $2 \ldots 5.0-0.2 \mu$
URONEMA $\quad 1-\ldots-\mathrm{UI}-\ldots .2-8.7 \mu$
URONENA $2-\ldots 42 \ldots+\cdots$
URONEMA $3 \ldots 53 \ldots 5$

H1stogman 1 and 2.

1. Histogram of measurements of ividth of cells in
collection of alg from Chooham Comon (Terrestrial 1)
The histogram shows several maxima or modes.
2. Histogram of measurements of width of cells in a collection of alga from River Chimet (4quatic 4 .) The histogram shows one maximitm or mode.

UNDHK CULIGRAL UONDITIONS

 comaitions mensus ments werm ade of 7 the algae in elonsl dalture in Soil Solution and of meny in otner dolutions, in particuler in Knops and Molischs solations. Thn finel range in width of the cells in μ and the maximum nnd minimum lensth of cells in terms of the width (ie. 2 ti A\& as long as wide etc) is yiven in Teble ?.
Alter the establishment of clones frow a single
filament or after the transfer of clonal material to a diapernint solutinn, thexe was always a gradual chanee in vidth until a inal constant range \vec{i} ar each elone in the
 rital constant mange to be reached was approximately 9 months in cultures started from single filaments and 6 months in cultures started from large samples of clonal material. Thus measurementa Ior slone T.I at $6,9,12$, and 24 months after establishment were $5.0-5.0 \mu, 4.3-5.6 \mu$, $4.3-5 \cdot 6 \mu, 4.3-5.6 \mu$ respectively and for transfers of clonal material to Knops solution after 6 months in Soil solution the measurements $3,3,9,12$, and 18 months later were $3 \cdot 7-4 \cdot 3 \mu$ $3 \cdot 7-4 \cdot 6 \mu, 3 \cdot 7-4 \cdot 3 \mu, 3 \cdot 7-4 \cdot 3 \mu, 3 \cdot 7-4 \cdot 3 \mu$. It is these final constant ranges in width which are given in the table Maximum and minimum lenyth did not vary after 3 months and $n 0$ determinations were made before this as there was insufficient material for continual sampling.

cutitions	Ifoturin		Sutil Soln.		Thope Soln		Mtolischs Soln.	
				$\begin{aligned} & \text { Itencth } \\ & \text { in texye } \\ & \text { of wadth } \end{aligned}$		$\begin{aligned} & \text { Tencth. } \\ & \text { in terms } \\ & \text { ifvirith } \end{aligned}$		Iength of witith
. ${ }^{\text {a }}$.7-6.2	1-2		J-2		2-)	3.7	2-6
-.b.	.7-6. 2		$-.2$				(4.7) $3.7-5.0$	$2-6$
			-2,	. $1-2$			(.2-7.4.	I ${ }^{1}-4$
			(7.8-5. 7	1-2	5.0-7.4		5.0-8.1	$1{ }^{1}-5$
	6.8-11. 2	-1	.0)		(6.1)	$-1 \frac{1}{3}$	(6.2)	
			(9.8) (7-71.	$2 \frac{1}{2}-1$	(7.9) $7.4-8.7$		7.4 .8 .	
			(9.8) 8. $7-17.2$		(7.9)	$1-2$	$7.4-8.7$	1-2
1. 4	17. $8-15.5$	$1-13$	9.7)		(8.0)		,	$1-11$
A.	$1.3-6.8$.0-6. 2	7-2	2.3-5.0	$1-3$	(1.2.4.	1-3
	(5.4)		(5.3)		(4.6)		(5.1)	
4. 2	3.7-4.3		.3-5.0	1-2	4.3-5.0	1-2 ${ }^{\frac{1}{2}}$	4, 3-5.0	1-3
A. 3	4.3-5. 6		. 3.95	1-4.	3.7-4.3		3.7-5.	
	(4.3)		(4.8)		(4.0)		(4.0)	
A. 4.	$5.0-7.4$.0-6.2	I ${ }^{1}-4$	4.3-5.6	11-4	5.0-6.2	$1{ }^{1}-2.4$
	(5.7) 6.7		7.4-8.7		5. 6.7 .4		6.2-7.4	
	(7.2)		(7.9)		(6.8)		(7.2)	
. 1 b .	$6.2-7.4$		7.4-3.7	-2	6.2-7. 4	12-3	6. 2-7. 4	1表-3
1.1 c	(6.8) (.2-7.		7.4.-3.7		(7.2) $6.2-7.4$		6.2-7.4	
	(6.8)		(7.9)		(7.2)		(7.2)	
R. 2	$\begin{aligned} & (.4-12.2 \\ & (9.6) \end{aligned}$	$4+\frac{1}{2}-1$	$\frac{9.3-17}{(10-1)^{2}}$	$\frac{1}{2}-1 \frac{1}{2}$	$(7.9)^{7}$		$6 \cdot 8-8 \cdot 7$	$2 / 3-2$
R. 3	5.0-6. 2	I-2 5	5.0-6.2	1-2	-		-	
	(5.5)	T 2	(5.5)					
. 4	10-12. 4	1-2 10	20-12.4	1-2	-		-	
. 5	14.9-18.6	6 1-2	12.9-16.6	6 I-2	-		-	

Examination a. the table shows that there was no one solution wioh tave the same linal width and Iensth of celig the jound in neture.

Most elones vinen frown in Soil solution remained of tho aque genmal widin and leneth as under natural comitions but some showed differences and all showed restriction in the range of width. The clones showing noticerble changes in widh were A.2, H.1, and R.2.

Most clones grown in Knops solution showed narrower nat longer cells than those found in culture in soil solution or under natural conditions.

AL! the terrestrial algae (T.I, T. $2, \mathbb{T} .3, T .4$,) and gli the aquatic algae except A.2 (A.I, A.3, A.4, R.I, R.2.) showed this smaller size in Knops solution.

Similar results were obtained when clones vere grown in Molischs solution that is the cells were longer and narrower than those of clones srown in Soil solution or of aluae under natural conditions.

From results confined to these three solutions only, it appears that the solutions of known composition prepared from mineral salts give smaller plants. Other nutrient solutions were used for certain of the clones and it was found that they aid not necessarily affect the clones in the same way or affect all clones equally. Histogram 3 shows results for clones $\mathbb{T} .1, \mathbb{T} \cdot 2, \mathbb{T} .3, \mathbb{T} 4$, in the three
solutions already mentioned and in Moores Solution and Knops modified solution.

In the histogram measurements for algae originally yrowing together are plotted on the same scale so that the extent to which the size in different forms coincides can be easily seen. It vill be exceedingly difficult to separate $T \cdot I, T \cdot 2, \mathbb{T} \cdot 3$, when they are erowing together using size as the main character.
exslirdmonts of width or cells filaments in
 Wharampts for the different clones in one solution Wee lotroed on the sane horizontal scale to indicate nov suse of the clones overlaps.
\& antre ants E or different culumpe ablutions are Hotted directly above on d another to show the change in size that ocerrm for any on particular alone.

\square $\nabla / \Delta \mathrm{Clone} T 3$
Cor Clone T. 2.

A 1 results indicated that the nature of the culture solution af ects the cell measurements, that no one solution vill five the size found under natural conditions for all algae, that some solutions aflect the size of all the clones in one generbl direction (e.g making them all smaller than in nature) and that sone affect the difierent clones in different ways.

HORAMIION OF A SILKY HIIM.
This is an important anaracter for separating some species
21 Ilormidian.
A. ETHOD.

Tile resence or obsence of a silky film was recorded for naterinl sroving in diplerent culture solutions.
B. OBSEHVATICLS.

Lenerel Description.
The term "silky film" is applied in this investigation to a layer of floating filaments lying closely side by side in swirling linss. The whole film when viewed at an angle is listening (rather like moire silk). This is distinct from knots of floating filaments frequently held at the surface by bubbles of oxygen in a rapidly photosynthesising culture and also from the film of young germlings phich may form at the surface of the medium in culture of Uronema species. These latter two films never appear silky with
th cnargeteristic Iustre.
Effect of eulture solutions on the Iormation of a silky film. On en ertsin of the clonsl cultures showed a silky filu vhatever the solution used. Cextain clonal cultures forming f silky film in one solution did not iom a silky film when otmat solutions vere asen. Table o records the behaviour of elonnl cultures in three solutions and of certain nonclonsl cultures in Soil solution. The tiwe interval before the formation of a silky film is also included. The time taken for the film to appear varies in various clones. It must he noted that the intervel is not for one cultare but for s series of subcultures of the one algal clone. This may slow down film formation but since a "massive" sample Nas transferred, once \& film was present it invariably occurred in the subculture. The tive taken for a film to pHesr in clonal cultures was never less than eight weeks but these cultures were started from a single filament and were initially slow in starting growth and for several weeks after establishment remaineत as a single short submerged filament. Non-clonal cultures of large samples of material (although grown in larger quantities of nutrient solution) quickly formed a silky film
g characteristic Tustre.
Eflect of culture solutions on the forliation of a silky filal. On enetain of the elomel eultures snoved a eilky filen vhatever the solution use. Cestain clonal cultures forming 5. gilty lilu in one solution aid not 10 m a silky film when otmpr solutions vere usal Mable o reeords the behaviour
 clonel caltures in soil golution. The time interval vefore the formation of a silvy film is also included. The time taken for the filu to aiferr varies in various clones. It mact be noted tnat the interval is not for one culture but for seriec of sukcaltures of the one algal clone. This man s low down film formazion but since a "massive" sample Was humblerred, once film vas present it invariably occurred in the subculture. The tiwe taken for a film to RHfesr in clonil cultures was never less than eisht weeks but the: cultures were started from a single filament and were initially slow in starting grovth and for several weeks after estghlishment remained as a single short submerged fiilament. Non-clonal cultures of large samples of material (althou h grown in larger quantities of nutrient solution) quickly formed a silky film
 silk Pilm。

The alyae formine a silky film at least in certain eulture solutions were one terrestrial alya (7.2) the four aguatic Aleae of still vater (AI, AF, A. Ax, A the subperial alga (E.R) amu one :lge of swift flo ing vater (R.3). All were 01 small size but differ sligntly in vidth of the filaments. All short filaments. AR and $A 4$ glthouzh forming a silk, filn in certain media did not do so in soil solution. These two lgae differed Irom the otner slones in their fraementation behaviour in this solution, A4 having long filkments, $A Z$ single or few celled fragments. Confirmation of Results.

Certain clones formed a silky film in only certain nutrient soiutions and the time for the formation was several veeks. In view oi these unexpected results and to prove that the silky film vas not an aerial contaminant or a mutant the following experiments were carried out:1. Transter experiments.
a. The silky films formed in Molisch's and Knop's solutions by clones $A 2$ and $A 4$ were transferred to Soil Solution.
b. Submerged f゙ilaments of AZ and A4 grown in Soil Solution were transferred to Molisch's and Knop's solutions. c. The silky film formed in Soil Solution by T2 was transferred to Molisch's and Knop's solutions.
d The submerled filaments fomed by T2 in Molisch's and Knop'e solutions vere transjerred to Soil Solution. $\therefore \quad$ Fxposure experiments.

A series of vessels mreviously used for algal cultures vere sterilised the normat way an sterile medium inserted in the arome vay Ha for norms Ibsl cultares. Four dishes for esch of tife nutrient solutions - Soil Solution, Molisch's and Knop's were repared and exposed in the laboratory in the follovine very -
a. Tvo dishes of each solution exposed for one nour. . Tro dishes of each solution exposed continually. The exposed vessels were examined after two and four weeks.

The transiex experiments gave results entirely consistent with those recorded in Table 8. That is a silky Iilm sppeared in the transfers b and d while the silky film was lost, submerged filaments being formed, in the transfers a and c.

In the exposure experiments the evidence was against aerial contamination. No silky film formed in any of the exposed solutions. Contaminents were found particularly Chlorella sp., Penicillium sp ${ }^{P} \neq$., and other fungi and bacteria but no fillamentous algae were ever found.

CONSTHICION OH FILA. EnTS.

This i: regrrded as a minor specific character elthoush
it is the chief cheracter used on separating Ulothrix
moniliformis from other Ulothrix sqecies of similer width

- - U. - equalis.
A. AH2l OD.

The resence (in more than 30% of the jilarents) or ubsence of constriction of the tila ents at the cross septa W.as recorded in filaments selected as when makins cell
widtli measuruments (see J. 5b). The extent of
constriction was recorded by measuring the width of the cells at the cross sppta end midway between the oross septa.
B. OLSERVAIIOI.S

Generil Deseription.
In constricted filaments the cells apleared barrel
sisped and vider at their mid-point. The percentage of
tilaments constricted was normally about 50% of the total, vider filaments being constricted. Thus in A4 the results given below were obteined:-

Width of Percentrge of filaments.

\&. 0μ
6.2μ
6.8μ
7.4μ
filaments of this width in a sample

Fercentage of
filaments of this width which are
$\frac{\text { constricted. }}{30}$
36) percentase
60) of fiilanents
66) in a sample
$100 \quad\left\{\begin{array}{l}\text { vhich are } \\ \text { constricted }\end{array}\right.$

```
Higure s shons tie extent of constriction in the clones
```


section wad idway hetvaen mos-yylis was 1.2μ this
beil? rainstel, 15% vider at the cautre of the cell
tmon at the cross-seyta.
Eliect: ol sulture solutione on conelyiction of the filaments.
Immence al absence of ematriction in tise filaments
as cutt fonm l ad man mat isolstes grovn in 3 nutrient
solut uns is vemonded in Table 9.
TASIE 9

Constriction of the filameats.

Constriction of the filaments was not a common or constant character of the alya studied. Only four clones E.2, T.З, A.l, and R.3 had constricted filaments and these clones only
shown coustriction as the jilaments when grovn in sulture in Soil salution. Hone ol t me algae had constricted 1ilaments ben grawing wnder a tarsl conditions, only A .4 showed constricted filan ats zt the time of collectione Fusthor invigtigelion of tha effect of the nutrient solution on the ghape of the celles vass caraied out using R.3 in non clonal eultures in Benecke's, Bjeirinck's Godwerts, Hervey's, Knou's, Molisch's and Eringsheim's solutions. Constriction of the dilaments was once ayain not cometant character ant was present only in Bjeirinck's thd 子onvard's so utions. (Thr slgae dies in Benecke's solutinn.)

This is an important specific chamacter in that
certain species eg. Hormidium nucosum Boy. Pet. nod
H.cremulatum Tutz. Hie mainly cnaracterised by their
celivall. It is mot hovaver a sen-rally useful character itr wer hein wagtricted to the Jifferentiatime of a few ryecies.
A. WHICD

Records ere mede of the presence or absence and type of thickening in the algae. Vicrochemical tests were carried out after the method of wodhead and Jane (1941). Wethslene blue, Schultze's solution, and Futhenium rea vere amployed, with irnclusive results. Such tests on small n 1 ae are nften ungatiafactory because it is difficult to see tho: lisht colour changes which oceur so thet negative resulte mean li tle.
B. OBSERVATIONS.

General description.
Wall thickening was of three types.

1. Filaments with 2 layered well and localized thicenings (H pieces).

Filaments showed an outer layer of translucent colourless aplearance and variable thickness. The inner wall of normal appearance, was of constant width. Localized thickenings
of the cross seytel, the "月" pieces descrihed by woodnead And Jane and others, vere rather resularly arransed. Thus in \& particular filament of clone T .3 in soil solution the number of cells hetween the if ifeces were successively 10 , $6,4,4,1: 9,-3,4,4,4,4,6,10,10,4,4,8$, Incluaive results here abtained when micro chemical tests were emplyed. The outer vall and "in" ieces stained blue in lethylene blue and the inner wall stained indietinctly parule in Chlorezinc-iodide (Schultze's soln) and in some cases Ruthenium Red stained the outer vall slibhtly ag if a nellicle were present. This does not conlict vith the results of voodnead and Jane vho concluded that the "t" ieces and outer wall were not cellulose but mucilaginous and similar to one wother.
2. GENERAL THIC ENING OF THE WALI, WITHOUT LAYERS BUT WITH

"H" PIECES.

Generally thickened walls in which an outer layer was not discernible ere also found. Small H pieces of similar noture to thoge described above also occurred at infreouent intervals. It was impossible to decide whether this vas distinct from the thickening described above or merely represented a poorer development of a similar thickening. 3. Irregular thickening of the cell wall with "H" pieces. Irregular thickening of the cell wall accompanied by
reularly occurime "Il" pieces both not translucent but brovn and almost opaque were found in certain clones. The tisckenine, which was irresular wrinkled patches, and the H pieces both have s similar apperrance to the brown hassl attaching discs found in cextain algae (eg Uroncme (The colour and opacity prevented satisfactory microchemical tents.

The effect ol the culture solution on the vall thickening. The Table 10 summarizes the results lor t.e clones studied. The number I, 2 , or 3 indicates thic rening of the type described above under these numbers.
4.0.0.

> Mha oftect ou the cul tuce Solution on whll thi enoss.

UTone.
220.......7 un or various conitions

Thick pain of the cell wall was hot a constant or common character in the al ge studied. Or fy six clones A oped tic ending of any kind in culture. Os these only T. 4 hal mind valis in all three solutions investigated, an the thickness of the plater mall varied being greatest in toil solution. R. 5 which seemed to be a si ila alga to 3.4 vest only grown in Soil solution. Further investigation of the effect of the culture solution on wall thickness.

Clone $T .4$ wis grown in a further series of nutrient media - Harvey's modified, and mores solution and in Soil solution with added dextrose, or yeast ext act. Figure 7 shows the extent of the wall hic ending in representative filaments. "he outer wall was very variable in thickness reaching its maximum extent in cultures in soil solution with added dextrose or yeast extract. These results further supported the view that although the ability to form a thickened wall may be a character restricted to some species the actual thickness of the wall is not a constant character.

```
V. SCUSSICN.
```

The Lreaent use of reproduction and morphological characters in the taxonomy of Hormidium and its allies Hms heen sumprrized in the historical survey. Reproduction by motile cells, an imortant genpric character, could not be studied jurther. Motile reproductive cells were not ontained in most clones. In the avsence of motile cells sIl sta es in the noxmal life history may not be obtsined and the work on the variation in morphological characters is consequently open to the criticism that the full rambe in varintion, even within the limited environmental conditions vas not obtained. Failure to o tain reyroduction usins the classical methods has been commented on frequently by other phycologists and the absence of it in this investigation was not unexpected. Failure to o trin reproduction frequently casts doubt on the selaration and identification of Stichococcus on the basis of absence of motile cells.

Although separation of the senera bypeatures of reproduction could not be studied, clear cut differentiation between Uronema and other clones was possible using morphological characters. In culture the former clones retained their clear cut character of pointed apices and specialised basal cells and normally reproduced by motile cells. No other alga developed true Uronema apices.

Tho elrivelled ernde of broken filamenta (Brand l213) coald urver have been contused vith Uroneme. These results contradict the suskestion hast Uronema is a mere stage in the development of ordixary Ulothxix species (Gridukoy I903) I vould support Mitras view that Uroneme is a aistinet -enus.

Tha uge of ottier moribolozical chamacters, commonly used in both gentric arn specific descriptions, was less reliable. Variation in the chloroplast was observed phen airferent culture solutions vere used. Similar variation with habitat as been commented on frequently yet emphasis is still placed on the size and shape of the chloroplast in wenk de:criptions of Hormidium and Ulothrix. It seems to me that not only should richness or poverty of the habitat be taven into account when assessing the significance of the chloroplast but that the relations of the length afto The vidtholthe cells should be considered. The chloroplast is often described as small when it reaches only part of the length of the cell yet in a long cell its size may be the same as that of a chloroplast reaching the entire length of a short cell. Similarly amount of fragmentation has been shown to vary with the nature of the culture solution. It is possibly related to some extent to lack of nutrients. Absence of fragmentation in distilled water may well be
explained by the camplete cessation of rowth. The
drseriptions af enrlier workers could senerally be applied to the clones sturied but recumulations of material of the type described by Fiexcy, rlthough possibly present, were not associated vith frasmentation, neither dï I consider trat Lunds description of Hormidium mucosum explains retrrgens statement on prosection of cell valls. Both broken cellulose membranes and projectine outer valls left after the separation of the middle lamellae may oceur Althoush only one may be observed by one worker. Considerahle chances in the distinctness of pyrenoids were observed. The grenoids were clearly visible in cultures mat this reeulted in the detection of a second pyrenoid in cells of clone R.S and of one pyrenoid per cell in the alja sent by Cambridge as Hormidium nitens. The alga from Cambridee was identified as Stichococeus bacillaris Naegeli when received but in later cultures the presence of one pyrenoid per cell could only be reconciled with identification as Hormidium pseudostichococcus Heering. It seens that the resence of a discernable pyrenoid depends to sone extent on nutrition and the use of absence of pyrenoids for separating off a genus is unreliable. Further investigation of the nature and constancy of pyrenoids is needed before deciding whether the character can justifiably be used to separate Stichococeus and Hormidium. Establishment
of the joget that chrmes in the number of visible morens do pecur i: useful in that it dertly justifies the practice of discounting 7 frererces in renoid number hich hes bun fot lowes in some invertiget ons of Ulotirix speciee. Tho variation found in idth mai leath ou cells, twough alisht, is ingortant since the identilieation of species is Gommonl. mule with artificinl keys unsed on these measurements. Variation in size in tais troup has only
 *agt they coulj use size taxonomically in stichococcus as it मूद vorive to distinguish foul groups based on the relation of leneth to breadth. In the Hormisium syecies stuiied a si ilar srouping was not always possible because of variations in messurements for glgae crown in culture. Thus A.: hed cells 10 times as long as broad when collected but only : lifhtly longer than broad vhen grown in Soil solution. It is clear at least in Hormidium that the length or the cell is not always reliable as a taxonomic character of a species and it seems to me that its value eenerally is likely to be rather linited.

The us of special characters shown in culture is confined to Hormidium and Stichococcus and only one such character, the formation of a silky film, was studied. The results described show that the ability to form a silky film may be more widespread than has been previously
 jilme and hemoved gidi menhy in various solutions, it is tix urgeliable chamater. If fommtion of a silky film

 of eeminating zoospores (Clobat nub Ileerirg 1914) and it मeらms that in paricular culture solutiohs certain clones Tron filsments vict can Ploat in tnet medium. The eraracters taxonomic value seems doubtul and it will be unreliable until further investigeted.

Otaer conmacters investigeted re of limited taxonomic use. The vecurrence of Barrel ${ }^{\mathbf{f}} \boldsymbol{f}$ aped cells (ie constricted filaments) in the vegetative state as well as vinen about to reproduce is considere characteristic of Ulothrix moniliformis Since congtricted filaments were found the vegetative filaments of clones which could not have been identified as Ulothrix moniliformis this character cannot be entirely reliable. Kneebends (using this term in the restricted sense to describe angles formed by firmly attached as ofpposed to lonsely attached or apposed cells) were found only in algae collected from swift flowing vater. The kneebends and $\stackrel{r}{\not p h i z o}{ }^{i} \neq$ Iike outyrowths were substantially lost in culture. It has been suggested that $\stackrel{r}{f}$ fhizofds are
broduced as a result of irritation by the substrata.
Thuse results wul support this. The real assessment of the taxononic value coult be made but it did appear that 1. ane collaeted from swift flowine water soon closely restombled algae of sinilar sise from other habitats when they vere cultured under siosilar conditions. General thickenine of the cell vall and localized thic enines or H Lieces have xIso been reconded for a livited number of species but is important in distinguishing between H. ${ }^{m}$ Uucosum and H. crenulatum. In this investigation vall thic'ening and the occurrence of H pieces were relatively common. The variability of wall thickness was considerable be and il pieces and wall thickness do not appear to generally userul taxononically. In the separation of H.mucosum and . crenulatum this investigation may lead to further confusion in that $I .4$ had a two layered wall yet did not give the reaction expected of H. \quad 月ucosum, with chlor- ${ }^{z}$ ineiodide.

The Iigures given by Lund, and Fritsch and John differ so little that doubt exists in my mind as to the separate of these pwo feres
existence, Luymaly (1924 - not seen) is reported as having established that H. ${ }^{\text {Y }}$ (ueosum is a dry soil form of H.flaccidum. In this investigation the thickening of valls was greater in liquid culture than in collections of

WIge from diamp soil surtiaces and it seene unlikely that dryness elone causes thie form. The reason for wall thickening was not investigated but it is interesting to note that Livimstone (1900) attributes differences in (hickness of mucilage ank wall thic ness in pelmelloid St igeo clonium to differences in the osmotic ressure of his culture media. The formation of H pieces was not iuvetigated and no explanation is commonly advanced. Heeriaes statement that in Ulotbrix mucosa four or eight daughter cells lie between the cross septa of the old 1ilament seems to have been largely overlooked. The Sentrel हHferrance of clones studied in this investigation is, that which vould be expected if H pieces are the remnants of old long estathished cell walls. Evidence has been advariced in support of rriestley and Scotts view, that in higher plants, daughter cells secrete their own cell wall and remain vithin the parent one (Elliot 1891 and Wardrop 1952) and in viev of this, further investigation of the formation 01 [ifieces might yield interesting results.

The present investigation has not led to results which supports the curzent use of morphological characters in separating the genera and species of the group of Hormidium allies studied. Indeed the results may be said to show that the criteria used are much less safe than the authors using
them had realisen. I do not, go as ferr as to state that the characters used are valueless but that they are at Iresont unsafe und their use must continue to leato to conjlict and mistake. I consiano trat much more investisation of these characters under expeximental conditions is needed and I think that a return of the clone culture to the wild conditions might sometimes lead to valuable results.

The present work has shown that culture solutions of different composition produce growths of considerably Gifferent character. The possibility of varying culture colutions is endess and at rresent we know very little of the principles involved.

Vi UUC.RY.

BUMMARY.
Clones were isolated Irom eishteen collections of alga f'rom various tyves of habitat. Thirtyseven clones were studied as repregentatives of difforent species. These clones wese not all different fron one pnother and dia not Hecessarily represent true Fpecies but at leas twelve distinct forms were present.

Thfi clones vere grown under similar light and temperature conditions but parallel cultures were srown in different nutrient solutions and in a few instances vith other factors, such as aeration, varied. Observations Were ade on the effect of these various conditions on the benaviour of the algae in an attempt to investigate the reliability of choracters commnly used to distinguish between Sormidium, Ulothrix, Uronema and related genera and between the species of these genera. These characters Are considered separately.

1. Reproduction

Clones which clearly were, by their other features, Uronema species readily produced motile spores but in clones of Ulothrix and Hormidium a̧sexual and sexual reproduction by motile spores was not obtained sufficiently frequently for observation and often not at all. The common method of reproduction in these clones was by fragmentation. This failure to obtain reproduction readily by motile cells raises

Hountis as to the value, at least in practice if not on thenry, of ifitseratiating between Ilormidium and stichococcus on the ousis of presence or absence of motile reproductive cells.
2. Terminal and basal cells.

Certein clones had acuminate terminal cells and basal cells vith attaching dises throughout the entire period of culture and thus showed the escential characters of Uronema species. The Uronema srecies stand out as a Estisfactory group and the shape of the terminal cell is a setisfactory character for identifying the genus. 3. Chloroplast size and shape.

The chloroplast was always a parietal plate but in all the clones stujied the interpretation the shape (ie an elliptical or circular plate, or collar-shaped) depended on its size in relation to the cell. The size relative to the cell length proved a most unreliable character and the filament from the wild with notably small chloroplasts formed large ones in culture. Chloroplast size and shape appeared to depend entirely on nutrition.

4. Fragmentation.

Fragmentation was more characteristic of some clones than others but the extent of it was highly dependent on the culture solution. Fragmentation did not appear to be

Associated with wall thickening or vith accumulations of any slecial material. Aeration aid not affect framentation. Culture of clones shows that the avarase length of filaments or frequency of Prementation Aepends on the composition of the nutrient solution. In experiwents with one clone (A.4) trasmentation occurred freely when the nutrient solution had a low phosphate concentration, no iron or hish sulptate concentration. Fragmertation occurring under the unknown conditions of nature has been used as a slecific and even as a generic character. This vould clearly be saf'er if regard were paid to nutrient supply. 5. Pyrenoids.

The development of clearly visible pyrenoids depended on nutrition. They were clearer in the better nourished flourishing algae and were generally clearer in culture. All the clones showed a clear pyrenoid in culture but not all did so when collected. Culture made the detection of two pyrenoids per cell possible in one clone.

The character of absence of pyrenoids for separating the genus Stichococcus from ormidium is of doubtful value since clearly visible pyrenoids may be absent at the time of collection of the alga although detectable in culture. The results are perhaps taxonomically helpful in that differences in pryenoid number may be partly discounted in
determining species, a practice which has been followed io some investigations of Ulothrix species.
C. Cell Messurements

When is clone was grown in different culture solutions the mein lenyth and width of the cells (and also the extreme measurements) Eradually differed and each solution Jinally producerl a steady mean. No one culture solution was discovered which pould provide for all clones, cells of the samp size as they had at the time they were collected. The slteration of final mean in different culture solutions was sometimes as much es + or -20%. Since the mean size is sreatly used in discriminating between species I regard ifferences of less than this with suspicion. 7. Silky rilm.

The formation of silky film was characteristic of certain clones in certain solutions only. Sone clones Joru silky films in every solution used while others formed one in a particular solution only. Formation of a silky film is a useful character if considered in conjunction with the culture solution. Its use es a specific character is limited to a lew species and its validity and value will depend on whether its formation is also limited to these species.

- Constriction of the Filaments

Only f fev clones ever bad constricted lilaments. Constricted lilaments in thase clones vere not found uider (a) 17 bouitions. Mus certain clones were eonstricted (in Soil solution but not in other calture solutions or in the riild, mothea clone v.hich had constricted ailaments in the vild lost consixictions in all the cultures established.

Whe presence of constrictions is used as a distirsuishing charecter ior a fev gpecies. Whe present work shows that its use is unreliable unless the conditions of life are lagen into account.
9. Well tuicloness

Wall thichess varied between different clones but degrnacd on the nature of the ealtare solution. The Lerence of H ieces proved a stale feature in certain clones but in other clones "ere variably developed and did not ceur under all conditions. H pieces were only found in culture in clones in which at least some collections fiom the rild showed H pieces. Although viall thickness thi the H pieces vere variable in development, the ability to 10 rm them may be a valid speific character. The investigation did not show the conditions necessary for their greatest development but the development of H. pieces in liquid culture discounts the idea that has been put iorward that the ${ }_{J}$ are caused by dryness alone.

This inv-stisation Iny rll its nesative results, Joes eunport the valiuit. of Jronsma. The t wies investi_eted ret: ?
 thë vere stadied. Further so otrex : Iys, however cuItured assumed the Uronema charactef. On the other hand the lack OI شIPCision vhick mantas the boundswies of bie dencre Stictococcus, Hommidium, ard UI, trmix is enmerssized 土or by suitalle culture many algae car be yusiled over the honumteries.

\cdots - uectoc $\%$	18900	Thect tout tru bracin funcen einiger	$\text { Bot. } 2 \mathrm{t} \cdot \mathrm{EC}$
Wracole	2.895	Techatismus und Bivlorre der Zerrizan ner Conjugaton Fecon in Tic cinzolron	$\frac{\sin h_{0}}{\sin \cdot \operatorname{tat}}:=$
	1923	Berichtrom mosu Iich Cer Algencupmer \qquad thene? \qquad \qquad	$\frac{30}{\operatorname{ces}} \cdot \frac{\text { eutsul }}{3 I:} 0-72$
Bramatal	1920	alli=1 moils.	$\frac{4 n n}{3--30}+3$
30.10	19.2	Whe enltivation ar Igne.	50t...eve, $=$ 89
Ghoint \quad.	7909	Stude critirue et exporimconto sur le pollymorphisme dos al gues	craver 105 pz .
ciountio.	I91.	Horio raphics t'al ues en cultwe aure. INater ant In lore uruet. Guisse., 4 Frac. 2. Born.	
Cholnots 5.von	1532	$\begin{aligned} & \text { I vno gomition - und Gar atonbiliunc } \\ & \text { bor Ulothix vexiabilis. } \end{aligned}$	$\frac{\text { 3eih. }}{49} \cdot(1) \frac{1}{221-3 \mathrm{~S}}$
Te Mori.	1079	SV' are 17 arrum Cmanium hucuscue coritarium VoI.I.	
10cel	1876	Ulutiais: momata ilre "oschlochtIiche ind ungeschlechtliche - ortpilanzung.	$\frac{\text { xincshe Jahe }}{\text { wisc: 50t. }} \frac{70}{=17-550}$
Mliot 3	1951	Formstion or new coll walls in cell Iivision	$\begin{aligned} & \text { II tua:e } 110.4286 \\ & \text { Tec } 22.1951 \end{aligned}$
Erics	1835-7	Corpus florarum provincialium Sueciae. I. Irt 2×2.	
rritsch . . and John R.P.	1942	An ecolocical an toxonomic stuçy of the nlgae of British soils 2.	$\frac{\text { Ann. Bot }}{371-395} \cdot \underline{=}$
$\begin{aligned} & \text { Iritsch } \\ & \text { and West } \\ & \hline \end{aligned}$	1926	A treatise on the British freshwater nlgae. 2nd edit. Cambridge	
Gaidukov IV. T.	1903	Uber die Kulturen und den Uronema Zustand der Ulothrix flaccida	$\frac{\text { Ber. Deutsch. }}{\frac{\text { Bot. Ces. }}{0}} \frac{21}{=22-4}:$
Ghose S. In	1920	A new species of Uronema from Incis	Anno Bot. $\frac{34}{1}$

Gisty ${ }^{\text {P }}$	1.231-2	Eur Mouthis dor irdol, yen	$94 .$ Arck Nrilorobiol. 3
dion myx	2.4 .2	Lhe: Ifice rele of Stijooclonium mocnum Furtz.	$\frac{120: 12 y t o 1}{234} \stackrel{43}{ }$
$\begin{aligned} & \text { Crintzosco } \\ & \text { me } \\ & \text { Cotcrif s. } \end{aligned}$	1932	Sur guelruos especos appertoniat on forme Stichococcus de Rownine	Rev. A7 010 ime, ϵ
Gru se I.	1931	Antwicllunge eschticu to Charenvechua 7 un Socunlitat bci CloI Gottum? yuUlix	$\begin{aligned} & \text { arche rotistonk, } \\ & \underline{\underline{73}: ~} 20(-234 \end{aligned}$
4 acons . 0	7.902	"he Intotrichnceeco thit Unotozhorncems of the ITsited States.	$\frac{\text { Me. Torrev. Bot }}{\text { LI. } \mathrm{b} \cdot \mathrm{O}}$
theorting \cdot	1974	Sthscvasnoxil. Deutschim veotcruniche und C.Schriciz. 6.	
nerves 1.J.	194.9	Whact of chromium on the sfowth of uricellulur ulloronlyecre and Diatoms	$\frac{30 t \cdot \operatorname{cose}}{(1)}, 1112$
Wragette .V.J.	1278	Tronena eloneaturn, a ven PreshWetn monber of the Ulotrichnceac.	$\frac{10 w+t^{t o}}{359-66}=17:$
	1943	Hha I'omntion of "t rieces in the 	$\frac{10 \cdot \operatorname{Bot}}{183-3}=$
Wirchnor 0 .	1375	"Al cen" in Cohns Cryptogrnen 4 Iors von Schlecion 2. Treit. I	
7 Hab ¢	1396	Tie Bectincung Qer rortolilonsung bei einiger Al gen und iluen. Jena	
Nutzing 1 .	1833	AI carmm acuae dulcis Germonioamun	
Kutzing ${ }^{\text {a }}$.	$1833 n$	Uber eine neue Gattunf ier Confervaceen	$\frac{1 \text { ora }}{517-521}=16:$
Futzing - .	184.3	fycolo-ia Fenernis, oder Anatomic rysiologie und Systemiounde der Tonge	
Kutains \triangle.	7845	Inycologia Germanica.	
Kutzine . ${ }^{\text {a }}$,	181.9	Species nl gazum.	
Tragerheim	1886	ote sur I'Uronom, nouveau zence des almes a' eau douce de I'once ChIorozoos oraceer.	Moreinia, 1.

.	150		
.... .	23.46		Lew...2tol. $=$
	21.7	6 , eut . conaty	
\cdots	797	Cn the - matheris - mp ans notion \qquad ก. 52	. 3ot. $220=$
	1920	-位: ics on the mititer 41 nl -'loxe of the Wissouri botanicu. .n.mina.	
RWore o . ne ur T.	2919		$\frac{\text { An: }}{\text { Gos. }_{0}}$
Whe-1i c.	184.9	Cottun-en sinzcllii~en sl-en whesiolo isclic und sustenntinche hoarbeitet.	Zurich
eterson $T .3$.	1955	Stuifish on the biolurg ned taxonory of moil al ne	$\frac{\text { Drasl }}{- \text { Bot. Artivo }}$
iorcen 1.	1517	The tructure and mode of life of nerom of horni iun Ilacialum Broun	$\frac{\text { Aut. }}{513-37} \text { ot. } 231:$
-oulton $\%$.	1930	surther atulies on the Heterokontae	$\frac{\text { hatol. }}{1-26} \cdot 29$
Frercott GW	1251	Algae of the Western Great Lakes	
-ringsheim E. G.	1946	Pure cultures of algae	Cambridge University Press
Rabenhorst G.L	1868	Florae Europeae AIgamum açae dulces et subraorinae	Vol. 3 Leipzig.
Regel is	1923	Uber die Zoosporenbildung bei Ulothrix Zonata	Milcrokosmos, 17
Strom 16. .	1928	Active reactions of the medium ane the rowth of Hormidium	$\frac{\text { Bull. Soc. Bot }}{\text { Geneve, } 20}$
Uspenski . Uspenska.ja î.J.	1925	Reinkultur und ungeschlechtliche Fortpflanzung des Volvox minor und V. globator in einer syrnthetischen IVhrlosung.	$\frac{\text { Zeit. 2ot. } 17}{273-308}$

Vimains is.	1226	马tuder t Algolorivue ox verimentnle	$\frac{\text { Bul1. Soc. Bot. }}{\text { coneve. } 18 \text { I }}$
Vincher -	2.933	Wher gini ge "ritische Gatturg und dic sretemtik Bor Chetomornler	$\frac{\text { Boilh. Bot. }}{(1) \frac{1-100}{\text { (1) }} \text { (ribi. }}$
antrollou A . 3 .	1952	Fomation of now call walls in cell (i- irion	$\begin{aligned} & \text { Inturo No. } 4327 . \\ & \text { Ausy } 23.1952 \text {. } \end{aligned}$

ALI C AAKAC 3 SS OF OKMIDIUN AND ULOTHRIX SIECIES (OF S ALL HIIA BNT WIDTH) AS GIVEN BY NAIN AUTHORS MENTOCAD IN INIRODUCRIOM.

1. lloruidium pseudostichococeus (Naezeli) Fleering (mohnh sy syonymous vith Stichococcus tacillaris Natoeli)
\therefore Hormidilum subtile (Kutz) Terring.
(prometbly smonymous vith Stichococeus subtilis (Kutz)
Klercieer find Ulothrix subtilis Kalz.)
? iormidium मivulare Katz.
(symonymous vitr $\overline{\text { shtichocoecus rivularis (Futz) Hazen) }}$ Hormi ium uit:ns (Gay) Herring
(= stichococcus Hluit=ns Gay)
Hormidium Plecoidum
Descriptions under If. Iraccidum A.Br.sensu ampl. H.flaccidum A.Br.sensu strict. Stichococcus flaccidum (Kutz)Gy

- Hormidium nitene lenegh emend Klebs
(= stichococcus nitens as described by Bristol)

7. Hormidium crassum. Chodat
s. Sormidium dissectum. Cliodet

- Hormidium Iubricum Chodat

10. Eormidium mucosum Boy.ret.
11. Hormidium crenulatum Kütz.
(= Hormidiousis crenulata (Kutz) Heering)

IR. Hormidium Klebsii G. M. Smith
13. Stichococcus scopulinus Hazen.
(= Gloeotila scopulina (Hazen) Heering. As
Stichococcus Hazen includes Hormidium Kütz and the alga is stated to have a pyrenoid it may be a Hormidium species)
14. Ulothrix subtilissima Rabenh.
15. Ulothrix variabilis Kutz.
(= U.subtilis var variabilis Kirchner but Bristol
probably uses this name for Hormidium flaccidum)
16. Ulothrix tenerrima Kutz.
17. Ulotnrix moniliformis Kutz.
le. Ulothrix subconstricts West.
19. Ulothrix rorida Thuret.
20. Ulothrix tenuissims Kutz.

2I. Ulothrix oscillarina Kutz.

1．Hormidium pseudostichococcus，（Irae oli）

$S I Z$
Danp round， $2.5-3 \mu \mathrm{x}$ given to algae
Collins
S．bacillaris
Naegeli
AUIFIOR \＆：IVane HEBILAD \＆\＆CORT

AUITHOR \＆：IVane given to algae	HABI IAS \＆－CRUT	SIT	i4才）		Ui UID	以\＃C．U．	
$\begin{aligned} & \text { Collins } \\ & \text { S.bacillaris } \\ & \text { Naegeli } \end{aligned}$	Danp round， rocks，Ilower pots．Crisped and iloccose masses	2．$-3 \mu \mathrm{x}$ l－4 times as long	－	$2-4 \text { c.2.1. }$	－		
$\begin{aligned} & \text { rescott. } \\ & \text { S. bacillaris. } \end{aligned}$	Most aerial substrates．	$\begin{aligned} & 2-.5 \mu \text { wide } \\ & x 3-8 \mu \\ & \text { Ion } \end{aligned}$	－	$\begin{aligned} & \text { +ils ents } \\ & \text { sli th? } \\ & \text { constaicted. } \end{aligned}$	－	$\begin{aligned} & \text { Daxiet I I te } \\ & \text { or ioli ad iso } \end{aligned}$	Cel1s 100soly comactoe
$\begin{aligned} & \text { Hazen } \\ & \text { S.bacillaris } \end{aligned}$	Fine short filaments $(2-2)$ ， cells）Iarp earth rocks， flower pots etc．	$2 \cdot 5-3 \mu$ winc x 1－4．tines as lons	－	GTincivica celle but－1i congtricted at cux		$\begin{aligned} & \text { tion } \\ & \text { tion an } \end{aligned}$	
Heering．	Green coating to wet walls， trees etc． Ionger îila－ ments in water	2． $5-3 \mu \times 2-4$ times as long （cocasional 1 $\left.4 \frac{1}{2}\right)$	Very delicate	Sincle cella or short ilil ents シIiritly conctricted	$\begin{gathered} \text { vory } \\ 2.20 n o i s \end{gathered}$	$\begin{aligned} & \text { aie wiom } \\ & \text { seen. } \\ & \text { nixi tion to } \\ & \text { cixcul x } \end{aligned}$	Nasily disinte－ Jating sinle cells become Elユiッsoidal îinally －1．u wife by 2－1． uives as lon
Bristol． S．bacillaris	Very short filaments－not more than 3 cells Soil．	$\begin{aligned} & \text { 2. 2. } 11 \times 6-9 \\ & \text { long. } \end{aligned}$	－	－3 celien	Whercois	＂arintrl，cov crina sbout iv lif surize of cel1，	
		2． $5-3 \mu$ wiec by 5－12v．long	－	$\begin{aligned} & \text { lostly one } \\ & \text { celled on } \\ & \text { loossly } \\ & \text { united in } 3 \\ & \text { etc. } \end{aligned}$:o avrenaik	Tar's meen	Gwent tewency to irrgnent

3. Hormidium ${ }^{r}$ A

AUITHOR and Name	FABIIAT \& SOROS	SIL:	HMJI	T 二ISE	CIT	01.0. 3.8	U17 7 -
Hazen $\begin{aligned} & \text { Collins } \\ & \text { S, rivularis } \\ & \text { (Kutz) } \end{aligned}$	Cn rocks and earth, in ranid streams, Brigitt green tuits	$\begin{aligned} & 3-11 \mu \text { wine } \\ & \text { by } 1-2 \text { ties } \\ & \text { xalong } \end{aligned}$	I			Crbicuin riamo	
$\begin{aligned} & \text { Hazen } \\ & \text { S.rivularis } \\ & \text { (Kutz) } \\ & \text { Heering. } \end{aligned}$	Elongated bright green tufts. On rech and earth in rapids of grassy meadow streans	8-11 1 wide by $1-2$ tines as long	Rather trick woll ed	vilamente of I-3 cells developins vhizoican. hocks lrem the terminal coll anc iran those of the knees. So re- what constrict- od colls.	$\begin{aligned} & \text { Che } \\ & \text { Thrye } \\ & \text { Thenot } \end{aligned}$	$\begin{aligned} & \text { Cribicuiar } \\ & \text { to } \\ & \text { bini tion } \\ & \text { or } \\ & \text { whonomi-1 } \\ & \text { witi clony } \\ & \text { ontlic.o. } \end{aligned}$	
$\begin{aligned} & \text { Heering } \\ & \text { H, xivulare } \\ & \text { Kutz } \end{aligned}$	In strongly fllowing water. Bright green submerged tur'ts	4-11 μ wide by $1-3$ times as long	$\begin{aligned} & \text { Relat- } \\ & \text { ively } \\ & \text { thick. } \end{aligned}$	Jonc ilianents of'ten with meebends. hizoic like iormations Irom the end cell and brec colls. Sorewhint constrictec̃.	$\begin{aligned} & \text { One } \\ & \text { cleor } \\ & \text { wre reic } \end{aligned}$	$\begin{aligned} & \text { eculor } \\ & \text { to } \\ & \text { enloticni } \end{aligned}$	Not ensily aisinterrating

4. Hormidium fluitans

AUTHOR and Name	HABITAT \& ecrul	SI2E	WATII		Wram CI	UTTORCO SI	LIT H.
$\begin{aligned} & \text { Collins } \\ & \text { S, fluitans } \\ & \hline \text { Gay } \end{aligned}$	Yellowish green crisped and interwoven on smooth rocl:s swent by rarid water from cascades.	$\begin{aligned} & 6.5-9 \mu \\ & \text { by } 1-3 \\ & \text { timas } \\ & \text { ns } \\ & \text { long. } \end{aligned}$	-	$\begin{aligned} & \text { Urichen exl } \\ & \text { so icwhnt } \\ & \text {-ericulnte } \end{aligned}$	Inconspicurt nearly cuncealed bu chromatontue		
$\begin{aligned} & \text { Hazen } \\ & \text { S.fluitans } \\ & \text { Gay } \end{aligned}$	Yellowish green often crisped and interwoven filaments torulose sometimes geniculate, In cascades, on oblique surflaces of rocks - mrated or with film of water.	6.5-9p by $1-3$ times as long.	-	Grispec or tomplose so ietines cenicula te cellis Bli intIy constricted.	11 cne.	$\begin{aligned} & \text { sre } \\ & \text { ne } \\ & \text { cutype } \end{aligned}$	$\begin{aligned} & \text { Van roadily } \\ & \text { byerve up into } \\ & \text { seple cells. } \\ & \text { by zoospores } \\ & \text { i revernent. } \end{aligned}$
$\begin{aligned} & \text { Heering } \\ & \text { H. iluitans } \end{aligned}$	Short or many celled fillaments. Short yellow green turf in spray from waterfalls or in irrigated positions.	$\begin{aligned} & 6.5-9 \mu \\ & \text { by } \\ & 1-3 \\ & \text { tines } \\ & \text { as } \\ & \text { lon. } \end{aligned}$	-	```Ge]1s usual1y cliglitly borrel shaped.```	-		$\begin{aligned} & \text { isintoryntes } \\ & \text { Zoospore } \\ & \text { Corration } \\ & \text { selGon. } \end{aligned}$

5．Homidium flaccieun

AUIHOR and Name	SA ILAT \＆NOOU：	SILS：	ATI		OT	Mate	a－amtas
$\begin{aligned} & \text { Hazen } \\ & \text { S. flaccidus } \\ & \text { (Mutz) } \\ & \text { Gay } \end{aligned}$	Short filaments forming iloccose masses or inter－ woven strate on wet rociss and bark or trees．	$\begin{aligned} & 6-9.5 u \\ & \text { (occasion- } \\ & \text { a71y } \\ & 6-14 u \text {) } \\ & \text { by } \frac{1}{4}-2 \\ & \text { times as } \\ & \text { Iong. } \end{aligned}$	$\begin{aligned} & \text { Thicker } \\ & \text { than in } \\ & \text { S.subtilis } \end{aligned}$	－ilnmants short． ©lls en mall．： sol anint buaic．	－	$-$	Reprocuction by zooszores ざさも いたat．
$\begin{aligned} & \text { Collins } \\ & \text { S.flaccious } \end{aligned}$	Filaments short forming floccose or interwoven masses．Wet rocks soil，bark or trees．	6－．5u bu $\frac{1}{4}-1$ times as long occesionsily 2 x as long．	$\begin{aligned} & \text { coli want } \\ & \text { foirly } \\ & \text { thick. } \end{aligned}$	$\begin{aligned} & \text { Lelis so entat } \\ & \text { swollen. } \end{aligned}$	$\begin{aligned} & \text { one nonge } \\ & \text { prrenoic } \\ & \text { lev coll. } \end{aligned}$		
$\begin{aligned} & \begin{array}{l} \text { Piercy } \\ \frac{\text { H.flaccidum }}{\text { forma }} \\ \text { aquatica } \end{array} \end{aligned}$	On soil	$\begin{aligned} & \text { 9-13u } \\ & \text { wide } x \\ & 2 / 3-2 \frac{1}{2} \\ & \text { times } \\ & \text { as } \\ & \text { Iong. } \end{aligned}$	－	$\begin{aligned} & \text { Iong iilanents } \\ & \text { (about } 1,200 \\ & \text { cells) } \end{aligned}$	－	Inte s＇oned bei＇t raen covers totn Ien th or cell． about $2 / 3$ circunterence curvea out－ Iire to one or bothi Zonn－ iturinal cages	－orms anl anospores

5 Hormidium flaccidum contd.

AUTHOR and Name	HABITAT \& FORU:	SILS	, TATI	- I A ARTS SIZ	- M1: CI	Jre Cors	"5.anturs
forma montana (Hormiscia flaccida var montana Hansgirg)		8-1.4ax by 1-1 $-1 \frac{1}{2}\left(\frac{1}{2}-\right.$ 2) times as long	Clutinous adhering particles	-	-	$\begin{aligned} & \text { 2ycadish } \\ & \text { I'tat rellowisl } \\ & \text { peen } \end{aligned}$	
forma aquatica	Long filaments in standing water	$\begin{aligned} & 10-140 x x \\ & 1 \frac{1}{2}-2 \end{aligned}$	delicate	-	Weakly visibla		

67．Hormidium nitens

AUHOR and TAMIMAT \＆$H O H E$

Heerin
by $1-3$
tillos
Ione
$.7-10 \mu$
shorter
thon
broad
as lons
5
Ion

\qquad \qquad Sj
しcossi

79. Hormidium ${ }^{\text {C }}$ (rassum Chodat
ancin

-2SOONTE-xET= UO

$$
\begin{aligned}
0 L+ & : L \\
& =T
\end{aligned}
$$

[^1]IV ame
Scarcely
2quTTRI
\[

$$
\begin{array}{rl}
\\
x & n-8-8
\end{array}
$$
\]

$$
\begin{aligned}
& \text { incisse } \quad \text { t } \\
& \text { or en. }
\end{aligned}
$$

10. Hormidium mucosum

Kutz. Sec. Brand.

14.3. Stichococcuss sfonulinus

11. UIOTHRIX TGIRRRIMA Kutz 1843 Ihyoolomia -eneralis

IQ7 ULOTHRIX MONIIIMCRIS
hactiat \＆－ors：
（\％）od on
Thn sEDT T0
aJor－I？
istinctu．
canomicted．

Lnes．nuonis
ズもz
，

$\stackrel{N}{N}$

$$
S I 2 \square
$$

270. ULOMTRIX TMUISSDIA
 Kutz.

 Nu.

 AUTHOR and HABITAT \&
2e21. UJOMRIX OSCITIARIIAA Kutz (Phec.Gemn. I97

A11 EINDIX II.

UUIIURE SOLUTIONS

The formulaf af the solutions used is siven below in ith
a reforence to life source of the formula and notes on any mocitications made.

KLOLS SOYU 10 N

```
Tie compinaition of the solution 4s iven oy melean &
```

Cook (1:4l) is :-

$$
\begin{array}{lll}
\text { 1. } \mathrm{KiNO}_{3} & 1 \text { ramme } \\
\therefore & \mathrm{MeSO}_{4} \quad 7 \mathrm{H}_{8} \mathrm{O} & 1 \text { gramme } \\
\therefore & \mathrm{Ca}\left(\mathrm{NO}_{3} 3\right) & 3 \text { grammes } \\
4 . & \mathrm{K}_{2} \mathrm{HPO}_{4} & 1 \text { sramme } \\
\therefore & \mathrm{FeCl}_{3} \\
& 1000 \mathrm{mls} \text { of distilled water }
\end{array}
$$

The solution was hale un at $\frac{1}{4}$ this strength. The salts I, 2 and 4 were dissolved in 500 mls of the water, 3 was dissolved in the other 500 mls and the solutions autoclaved sefarately and mixed when cooled.

MOLISCHS SOLUNION

The composition of this solution was as given by Eringshein 1946 pg 35.

1. $\left(\mathrm{NH}_{4}\right)$ 2 $\mathrm{H} 上 \mathrm{O}_{4}$
0.8 grammes
2. $\mathrm{K}_{2} \mathrm{HPO}_{4}$
0.4 "
3. $\mathrm{MeSO}_{4} \quad \mathrm{7H}_{2} \mathrm{O}$
0.4 "
4. CaSO_{4}
0.4 "
5. $\mathrm{FeSO}_{4} \quad \mathrm{rH}_{2} \mathrm{O} \quad 1$ drop of 1% in 100 mls 1000 mls of distilled water.

1 nod were Jisso ved in 500 mls of valier, 2,4 , and 5 In the other 500 whit. The Smations vere autoclaved Splaisately.
BHINECIN SOLLIION
The composition as iven hy Melean and Cook (1941)
is

$$
1000 \mathrm{mls} \text { of distilled water. }
$$

Tois is not the "Beneckes" solution ased by some
phycologisus. Some workers use Beneokes agar minus the agar and this in fivilan to Bjeirincks solution (cf. below and aiscussion y sold lכ4z).. The solution given here is as in Berecke 1898a. Bot. Ztg. 56.

BJEIRIVCKS SOLUTION

$$
\begin{aligned}
& \text { The composition tis given by Iringsheim (1946 pg 35) is: } \\
& \begin{array}{ll}
\mathrm{NH}_{4} \mathrm{NO}_{3} & 1 \text { grm } \\
\mathrm{K}_{2} \mathrm{HHO}_{4} & 0.2 " \prime \prime " \\
\mathrm{MySO}_{4} \quad 7 \mathrm{H}_{2} \mathrm{O} & 0.1 \quad " \\
\mathrm{FeCl}_{3} & 0.001 " \\
1000 \mathrm{mls} \text { of vater. }
\end{array}
\end{aligned}
$$

This solution is quoted as heins that of Bjeirinck (Io9s
ZbI. Bakt. 2:4) but Bold giving the same reference includes

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \text { U.b Lig es } \\
& \mathrm{H}_{6} \mathrm{SO}_{4} \mathrm{7H}_{2} \mathrm{O} \quad 0.1 \text { " } \\
& \mathrm{K}_{2} \mathrm{HHO}_{4} 0 .{ }^{\prime} \\
& \mathrm{FeCl}_{3} \text { a trace }
\end{aligned}
$$

$\mathrm{CaCl}_{8} \quad \mathrm{H}, \mathrm{O} \quad 0.01$ gimg but rot FeCl_{3}.
LERVEYS SOLUTION.
The campoition 4ε iven hy firsvey (1949) is:

KnO_{3}	400	11.10	MnSO_{4}	$4 \mathrm{H}_{2} \mathrm{O}$		p.pm
$\mathrm{K}_{2} \mathrm{HPO}_{4}$	50	IV . 171				
$\mathrm{MH}_{6} \mathrm{SO}_{4}{ }^{7} \mathrm{HH}_{2} \mathrm{O}$	250	11.8 m	lia Si	7. $\mathrm{BH}_{2} \mathrm{O}$	500	$\mathrm{p} \cdot \mathrm{pm}$
$\mathrm{CaCl}_{8} \mathrm{2H}_{2} \mathrm{O}$	20	$\mathrm{p} \cdot \mathrm{tm}$	TYI		10	10.
$\mathrm{K}_{2} \mathrm{CO}_{3}$	000	p.	Disti	ed int	1000	oils.

$\mathrm{NaSiO}_{3} \mathrm{yH}_{2} \mathrm{O}$ was omitted Hs it nas not available. As the culture solution vas not to be used for diatoms the ommission al silicate vas not considered important.

GODWAKLS SOLUTIONS

The comingition u Liven by Godwerd (1941) is:

$\mathrm{NH}_{4} \mathrm{Cl}$	0.0000 grms	This solution is a modified	
$\mathrm{K}_{2} \mathrm{HHO}_{4}$	0.0 .8	$"$	Chu solution, $\mathrm{K}_{2} \mathrm{SiO}_{3}$ was omitted
MgSO_{4}	0.08	$"$	as in Hervey's solution and
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0.058	$"$	for the same reason
$\mathrm{K}_{2} \mathrm{SiO}_{3}$	0.0025	$"$	
CrCO_{3}	0.01	$"$	
FeCl_{3}	0.00003	$"$	
KVO_{3}	0.25	$"$	

NOORES SOIUYION
The composition of this solution as yiven by Poulton (1930) is:

$\mathrm{NH}_{4} \mathrm{NO}_{3}$	0.5 grms	
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	$0.2 \quad "$	
CaCl_{2}	0.1	$"$
$\mathrm{MgSo}_{4} 7_{2} \mathrm{H}_{2}$	0.2	

```
\(\mathrm{FeSO}_{4}\) 7H:O is trace
```

$$
1000 \mathrm{kl} / \mathrm{s} \text { distitied veter }
$$

Mis kinution is only one DI those used by Inore (Moore \& Carter 1.28. Inore Karror 1917)

上HINGSIEIN'S Solution.
The composition ns iven hy rringsheim I946 DE 25 is:
KNO_{3}
2%
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4} \quad 0.002 \%$
$\begin{array}{lll}\mathrm{MgSO}_{4} & \mathrm{MH}_{2} \mathrm{O} & 0.001 \%\end{array}$
$\mathrm{CaCl}_{2} \quad \mathrm{HH}_{2} \mathrm{O} \quad 0.00006 \%$
$\mathrm{FeCl}_{3} \quad 0.00005 \%$
This is only one of solutions used by rringsheim.
USFENSKAJA'S SOLUTIOH.
This solution as given by Uspenski and Uspenskaja Igk5 has the composition:-

KHO_{3}	0.025 grms
MieSO_{4}	$0.025 \quad "$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right) 2$	$0.100 \quad "$
$\mathrm{KH}_{2} \mathrm{FO}_{4}$	$0.025 \quad "$
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	$0.0345 \quad "$
$\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$	0.00125 n

SOII SOLUPIUS

Soil solution vas quepsed in the following vay:
A soil extract was first prepared. 300 gremmes of garden or ramble lield soil was veiehed ms collected bat collection Was not mede immedintely after yein. The soil was sutoclaved with 000 mlg of distilled vatal in a Insax filsgk at a pressure of U Ibe per square inch for thirty min tes. The resulting liguid has immediately filtered, the first filtrate being returned as a clear filtrate was not obtained until soil partly blocked the filter paper. The filtrate, which vas collected over ni ht was made up to 500 ml . This soil extract $v a s$ then diluted to make up soil solution, 150 mis . of soil extract and 0.15 yms of potassium nitrate were made up to 1000 mls , vith distilled vater. This solution was then sutoclaved at 20 lbs. pressure for twenty minutes.

This method is a modification of the method described by Bold (1942).

Solutions .istle nijuratos. 2 HI

brion.

2 H	2451020	315 NaOh
0.0	50 cos.	- Q. cor
¢	50 ces.	
		exch unsc.
7.0	To cus	20. $4 . \cos$
7.	50 cos	19.22. ces
3.0	50 ces .	4.65 cos
	O. 2 A Acetic notil	0.2n sucisurn acctate
1.0	4.6. CCS	IO cos
2.5	20.3 ces	21. \cos Nade up to 100 cos in
. 0	1. 0.0 ccs	35.0 cos
5.5	6.0 ccs	
6.0	1. O OCS	48.1 ces

I	0.01	0.2	0.02	twace	-	-	-
2	0.01	0.2	0.02	trucer	tences	-	-
3.	0.07.	0.	0.2	tweer	-	-	-
4	0.47	6	\%.1	Amar	-	-	-
5	0.4	0.8	c. 2	traces	-	c. 2	-
6	0.07	0.2	0.2	trace	E-ace	-	-
7	0.01	c. 2	C. 1.	trace	treco	-	-
3	0.07	0.2	6.2	trac:	trace	0.2	-
9	0.2	c. 2	0.02	trnce	trace	-	-
70	0.2	C.?	0.2	trace	-	-	-
17	6.	0.8	0.1	trac:	-	-	-
72	0.2	0.2	6.2	trescs	-	0.2	-
コミ	0.2	0.2	0.2	tuace	trace	-	-
14	0.2	0.2	0.4	trace	trace	-	-
15	0.2	0.2	0.2	trace	trace	0.2	-
16	0.01	-	C. 3	-	trace	0.4	0.4
17	0.2	-	0.9	-	treoco	0.4	0.4
18	0.4	-	0.8	-	trace	0.4.	C. 4
19	0. 1.	-	0.8	-	trace	0.4	-
20	0.4	-	0.8	-	-	0.4	0.4
21	0. 14	-	0.8	-	-	0.4	-
22	0.2	0.2	0.02	trece	trace	-	-
23	0.4	0.2	-	-	trace	c. 4	0.4
24	0.4	0.2	-	-	trace	0.6	-

The phomhate Snlts wore dis::olved in 500 cc istillled water. Lhe othes salts wore issolver? in a copornte 500 ces of water nerl the two solutions autoclnver? repontoly. 'hoy more mixed when cole

ETURE:

Figure. 1.

Form of the algae collected from natural sumroundings.
Camera lucida drawings of small portions of the filaments. $\times 1200$.
t. source tquatic 1 .
? Ulothrix variabilis (clones .1.)

1 . somrce lanatia 2.
? $\frac{\text { tichococcus scopulinus }}{(\text { clones } 1.2 .)}$
C. Source quatic 3 .
? Hormidium libricum
D. Source aquatic 4 .
? Hormidium subtile

Figure. 2.
For of the algae collected from natural surroundings. Camera lucida drawings of small portions of filaments. x 1200
4. sompee anatic 5. ? Homidium rivulare (forn 2). 1. Source aquatic 5. ? Kormidiun rivinre (form 3). O. Onree tquatic \vec{n}. ? Hormidium rivulare (form 1). P. Source tquatic 6. ? Hormidium rivulare (form 4)

Fig. 2

Figure. 3.
Form of the algae collected from natural surroundings. Canera lucida drawings of small portions of filaments. x1200

1. Source Terrestrial 1. I - ? Ulothrix subtilissima 2- ? Hormidium flaccidum
;
(clones Tl,T2,T3,T4.)
B. Source Aquatic 7.
? Ulothrix tenuissima

Figure. 4.
Form of qlgae identified qs Uronema species.
Camera lucida drawings of small portions of filaments $\times 1200$.
. ource U.I ? Uronema gigas (Clones U.I)
B. Source U.2 ? U.confervicolum (Clones U.2)
C. Source U. 3 ? U.confervicolum (clones U.3)
-. Cambridge Culture Collection, U.confervicolum
(Clones U.confervicolum (C)).
This alga formed normal filaments in cultures in liquid media and would then have been identified as U.gigas
T. Carmbridge Culture collection, U.gigas
(Clones U.gigas (C)).

Figure. 5 .
Possible indications of reproduction.
Camera lucida dmwings of small portions of filaments.
$\times 800$
A. Clone T.3. grown in soil solution.
B. Clone A.l. grown in soil solution.

Filaments show pores and rounded off cell contents. The short tapering filaments may be germlings.

Figure 6.
Constriction of the filaments.
Camera lucida drawings of small portions of filaments $\times 1200$.
A. Clone A.l. grown in soil solution.
B. Clone R.3. $\frac{1}{3}$ \& 2 grown in fodwards solution.
C. Clone T.3. grown in soil solution.
D. Clone T.4. grown in soil solution.

Figure 7.
Variation in wall thickening.
Camera lucid drawings of small portions of filaments.

$$
\text { x } 1200
$$

W. Clone T.4. grown in Knops modified solution.
X. Clone T.4. Grown in soil solution.
Y. Clone T.4. grown in soil soln., with added dextrose. Z. Clone T.4. grown in soil soln., with added yeast ext-

Figure 8.
Vall thickening.
Free hand dravings of clone T.4. stained in methylene
blue.
aterial stoining blue is stippled.
L. Shows material between some cross septa.
. Shows H piece and two lavered wall in some parts.
N. Shows H/piece and completely two layered wall.

Fig. 8

[^0]: Colum 1 shows the percentage of cells in which the chloroplast reaches the cntire Ion th oi tho cell.

 $$
 \begin{aligned}
 & \text { surrounds me hals or more of the } \\
 & \text { sure }
 \end{aligned}
 $$

 chloroplast surrouncs

[^1]: AULTOR and TARINAI \&
 AUITOR and
 ITame

