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Abstract

This paper resolves the problem of predicting as well as the best expert up to
an additive term of the order o(n), where n is the length of a sequence of letters
from a finite alphabet. We call the games that permit this weakly mixable and
give a geometrical characterisation of the class of weakly mixable games. Weak
mixability turns out to be equivalent to convexity of the finite part of the set of
superpredictions. For bounded games we introduce the Weak Aggregating Algorithm
that allows us to obtain additive terms of the form C

√
n.
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1 Introduction

This paper deals with the problem of prediction with expert advice. We con-
sider the on-line prediction protocol, where outcomes ω1, ω2, . . . occur in suc-
cession while a prediction strategy tries to predict them. Before seeing an
event ωt, the prediction strategy produces a prediction γt. We are interested
in the case of a finite outcome space, i.e., ω1, ω2, . . . ∈ Ω such that |Ω| < +∞.
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We use a loss function λ(ω, γ) to measure the discrepancies between predic-
tions and outcomes. A loss function and a prediction space (a set of possible
predictions) Γ specify the game, i.e., a particular prediction environment. The
performance of a learner S w.r.t. a game is measured by the cumulative loss

LossS(n) =
n
∑

t=1

λ(ωt, γt) . (1)

suffered on a sequence of outcomes ω1, ω2, . . . , ωn. In the problem of prediction
with expert advice the learner has access to predictions generated by ‘experts’
E1, E2, . . . , EN that try to predict elements of the same sequence. The goal of
the learner is to predict nearly as well as the best expert, i.e., to suffer loss
that is only little bigger than the smallest of the experts’ losses.

This problem has been studied intensively; see, e.g., [1,2] and the overview in
the recently published book [3]. Papers [4,5] propose the Aggregating Algo-
rithm that allows the learner M to achieve loss satisfying the inequality

LossM(n) ≤ c LossEi
(n) + a ln N (2)

for all i = 1 . . . , N and n = 1, 2, . . ., where the constants c and a are optimal
and are specified by the game. Note that neither c nor a depend on n.

If we can take c equal to 1, the game is called mixable. It is possible to provide
a geometrical characterisation of mixable games in terms of the so called sets
of superpredictions. The Aggregating Algorithm fully resolves the problem of
predicting as well as the best expert up to an additive constant. For the sake
of completeness we formulate one of the results concerning the Aggregating
Algorithm in Subsection 2.4.

There are interesting games that are not mixable, e.g., the absolute loss game
introduced in Subsection 2.1. The Aggregating Algorithm still works for some
of such games, but it allows us to achieve only values of c greater than 1.

In this paper we take a different approach to non-mixable games. We fix c = 1
but consider a(n) that can grow when the length n of the sequence increases.
We study the problem of predicting as well as the best expert up to o(n)
as n → +∞, where n is the length of the sequence. Section 3 introduces
the corresponding concept of weak mixability. The main result of this paper,
Theorem 7, shows that weak mixability is equivalent to a very simple geometric
property of the set of superpredictions, namely, the convexity of its finite part.

If the loss function is bounded, it is possible to predict as well as the best ex-
pert up to an additive term of the form C

√
n, provided the finite part of the

set of superpredictions is convex. This result follows from a recent paper [6].
We shall present our own construction, which is independent of [6] and goes
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back to ideas from [1]. We develop the Weak Aggregating Algorithm based on
the old method of averaging experts’ losses with dynamically updated weights.
Unlike the Aggregating Algorithm, which uses the average logβ(

∑

i piβ
li), the

Weak Aggregating Algorithm uses simple convex combinations
∑

i pili (see Re-
mark 19 for a more detailed discussion); however the way of updating weights
is more complicated.

In [6] (see Remark ‘Deterministic prediction and absolute loss’ at the end of
Section 9 in [6]) a result similar to Corollary 14 was obtained. The algorithm
used in [6] is based on the ‘following the perturbed leader’ idea while ours
belongs to the family of ‘weighted majority’-type algorithms. The extra term
obtained in [6], Theorem 6.ii has the multiplicative constant 2

√
2 as compared

to our 2. On the other hand the analysis in [6] is much more general; some of
the bounds obtained there have extra terms depending on the loss of experts
rather than time. Those bounds make sense even when the experts’ loss is
small, while ours is meaningful only for big losses.

Different algorithms and results leading to various extra terms are widely
discussed in the literature; for an overview see [3], Chapter 2 including bibli-
ographic remarks in 2.12. The general question of lower bounds for additive
terms of the type considered in this paper remains open. The authors derive
some lower bounds in [7] (that paper deals with predictive complexity, but
the results can be easily restated for the problem of prediction with expert
advice) but the bounds are not sufficiently tight.

If the game is not bounded, our construction can be applied in a different form
to predict as well as the best expert up to o(n). The result for unbounded
games as well as the negative result for games that are not convex constitute
the most original contribution of the paper (Appendix A shows that there are
indeed unbounded games that are convex but not mixable).

The question of lower bounds for the additive term for unbounded games
remains open too.

2 Preliminaries

We will formulate the definitions below without a reference to computability.
The negative results of this paper are true in this strong sense. The positive
results are proved constructively and algorithms are presented. Therefore the
theory can be reformulated in a constructive fashion; see Section 7 for details.
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2.1 On-line Prediction

A game G is a triple 〈Ω, Γ, λ〉, where Ω is an outcome space, Γ is a predic-
tion space, and λ : Ω × Γ → [0, +∞] is a loss function. We assume that Ω
is a finite set of cardinality M < +∞; we shall refer to elements of Ω as
to ω(0), ω(1), . . . , ω(M−1). In the simplest binary case M = 2 and Ω may be
identified with B = {0, 1}. We also assume that Γ is a compact topological
space and λ is continuous w.r.t. the extended topology of [−∞, +∞]. Since we
treat Ω as a discrete space, the continuity of λ in two arguments is the same
as continuity in the second argument. These assumption hold throughout the
paper except for Remark 8, where negative losses are discussed.

The square-loss game, the absolute-loss game, and the logarithmic game with
the outcome space Ω = B, prediction space Γ = [0, 1], and loss functions
λ(ω, γ) = (ω − γ)2, λ(ω, γ) = |ω − γ|, and

λ(ω, γ) =











− log2(1 − γ) if ω = 0 ,

− log2 γ if ω = 1 ,

respectively, are examples of (binary) games. A slightly different example
is provided by the simple prediction game with Ω = Γ = B = {0, 1} and
λ(ω, γ) = 0 if ω = γ and λ(ω, γ) = 1 otherwise.

A game G = 〈Ω, Γ, λ〉 is bounded if and only if λ is bounded, i.e., there is
L ∈ (0, +∞) such that λ(ω, γ) ≤ L for each ω ∈ Ω and γ ∈ Γ. If a game is
not bounded, we shall call it unbounded. Examples of bounded games include
the square-loss game, the absolute-loss game, and the simple prediction game.
The logarithmic game is unbounded.

It is essential to allow λ to assume the value +∞; this assumption is necessary
in order to take into account the logarithmic game as well as other unbounded
games. However we impose the following restriction: if λ(ω0, γ0) = +∞ for
some ω0 ∈ Ω and γ0 ∈ Γ, then there is a sequence γn ∈ Γ such that γn → γ0

and λ(ω, γn) is finite for all ω ∈ Ω and all positive integers n (note that
λ(ω0, γn) → +∞ by continuity). In other words, any prediction that leads
to infinite loss on some outcomes can be approximated by predictions that
can only lead to finite loss no matter what outcome occurs. This restriction
allows us to exclude some degenerate cases and to simplify the statements of
theorems.
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2.2 Expert Advice

A merging strategy works in an on-line fashion. On trial t it reads predictions
of experts E (1), E (2), . . . , E (N) and outputs its own. After ωt, the outcome of
trial t, becomes available, the experts and the merging strategy suffer losses.

We want the merging strategy to compete with the experts in terms of the
cumulative loss. The goal of the merging strategy is to suffer loss that is not
much worse than the loss of the best expert. By the best expert after trial t
we mean the expert that has suffered the smallest cumulative loss so far.

Formally a merging strategy M for N experts is a function

M :
+∞
⋃

t=1

(

Ωt−1 ×
(

ΓN
)t
)

→ Γ . (3)

Consider the following on-line protocol:

(1) FOR t = 1, 2, . . .

(2) M reads predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t ∈ Γ

(3) M chooses γt ∈ Γ
(4) M observes the actual outcome ωt ∈ Ω
(5) END FOR

By definition, let the total loss of M after n trials be

LossG

M
(n) =

n
∑

t=1

λ(ωt, γt)

and the total loss of expert Ei be

LossG

Ei
(n) =

n
∑

t=1

λ(ωt, γ
(i)
t ) ,

where i = 1, 2, . . . , N . The upper index G can be omitted when it is clear from
the context which game we are referring to.

One may think of the predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t as output by experts

E1, E2, . . . , EN . Note that the term ‘expert’ is only a convenient metaphor.
In fact we have a full information game between two parties. Our adversary
generates predictions γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t ∈ Γ and outcomes ωt while we gener-

ate predictions γt. When we say below that a certain inequality for the total
loss of the merging strategy is guaranteed, we mean that it holds no matter
what experts’ predictions and outcomes are generated by the adversary.
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Fig. 1. The square-loss game

1

1

Fig. 2. The absolute-loss game

1

1

Fig. 3. The simple prediction game

1

1

Fig. 4. The logarithmic game

2.3 Geometric Interpretation of a Game

Take a game G = 〈Ω, Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} and |Ω| =
M . The following important definition goes back to [4,5].

Definition 1 An M-tuple (s0, s1, . . . , sM−1) ∈ [0, +∞]M is a superprediction
if there is γ ∈ Γ such that the inequalities λ(ω(i), γ) ≤ si hold for every
i = 0, 1, 2, . . . , M − 1.

The set of superpredictions S is an important object characterising the game.
Figures 1–4 show the sets of superpredictions for the sample binary games
defined in Subsection 2.1.

2.4 Mixability

In this subsection we formulate the result concerning prediction with expert
advice for the so called mixable games. It will not be used in our proofs, but
it is important for the motivation.

Take a game G = 〈Ω, Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} and |Ω| =
M . Let S ⊆ [0, +∞]M be its set of superpredictions. Take a β ∈ (0, 1) and con-
sider the homeomorphism Bβ : [0, +∞]M → [0, 1]M specified by the formula
Bβ((x0, x1, . . . , xM−1)) = (βx0, βx1, . . . , βxM−1). We can now give the following
definition (after [4,5]).

Definition 2 We say that G is β-mixable, where β ∈ (0, 1), if the set Bβ(S)
is convex. If G is β-mixable for some β ∈ (0, 1), we say that it is mixable.
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For mixable games and only for them we can predict as well as the best expert
up to an additive constant; the result can be achieved by a merging strategy
following the Aggregating Algorithm (AA) 1 .

Proposition 3 ([4,5]) For every game G = 〈Ω, Γ, λ〉

(i) if G is β-mixable for some β ∈ (0, 1), then for every N = 1, 2, . . . and
for every merging strategy M for N experts that follows the Aggregating
Algorithm, the bound

LossM(n) ≤ LossE(i)(n) +
ln N

ln(1/β)

is guaranteed for all n = 1, 2, . . . and all i = 1, 2, . . . , N ;
(ii) if there is a merging strategy M for two experts and a positive constant a

such that the inequality

LossM(n) ≤ LossE(i)(n) + a

is guaranteed for all n = 1, 2, . . . and i = 1, 2, then G is mixable.

If fact, the results concerning the AA hold for a wider class of games with
infinite sets of outcomes Ω. The AA can also be shown to be optimal: the
constants it achieves in the upper bounds are optimal.

It can be easily shown directly that the square-loss and the logarithmic games
are mixable while the absolute-loss and the simple prediction games are not.
This is also implied by more general Lemmas 16 and 17 from Appendix A.

2.5 Convexity

Take a game G = 〈Ω, Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} and |Ω| =
M . Let S ⊆ [0, +∞]M be its set of superpredictions. Let us give the following
geometrical definition.

Definition 4 We say that G is convex if the finite part S ∩ R
M of its set of

superpredictions S is convex.

Remark 5 Suppose that Γ is a convex set. Then convexity of all the functions
λ(ω(i), γ), i = 0, 1, . . . , M − 1, in the second argument implies convexity of
the game. However the opposite is not true. Indeed, consider a binary game

1 The Aggregating Algorithm as well as the Weak Aggregating Algorithm intro-
duced in this paper leave some flexibility in the choice of the actual predictions;
that is the reason why we do not call them merging strategies in the strict sense.
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Fig. 5. The loss λ(ω(0), γ) for the ex-
ample from Remark 5

1

1
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Fig. 6. The loss λ(ω(1), γ) for the ex-
ample from Remark 5

with Γ = [0, 1] and the loss function specified by Figures 5 and 6. Its set of
superpredictions coincides with that of the absolute-loss game (Figure 2), but
its loss function is not convex in the second argument.

All mixable games are convex, while the opposite is not true. For example,
the absolute-loss game is convex but not mixable. A discussion of convexity
and mixability and more examples can be found in Appendix A. The simple
prediction game provides an example of a non-convex game.

3 Weak Mixability

For non-mixable games it is not possible to predict as well as the best expert
up to an additive constant. Let us relax this requirement and ask whether it
is possible to predict as well as the best expert up to a larger term.

In the worst case, loss grows linearly in the length of the sequence. Therefore
all terms of slower growth can be considered small as compared to loss. This
motivates the following definition.

Definition 6 A game G is weakly mixable if there is a merging strategy M

for two experts and a function f : N → R (here N = {1, 2, . . .} is the set of
positive integers) such that f(n) = o(n) as n → +∞ and the bound

LossG

M
(n) ≤ LossG

E(i)(n) + f(n) (4)

is guaranteed for every n = 1, 2, . . . and i = 1, 2.

We can give an equivalent definition requiring that for every N = 1, 2, 3, . . .
there is a merging strategy M for N experts such that the inequality

LossG

M
(n) ≤ LossG

E(i)(n) + f(n) ln N (5)

is guaranteed for all n = 1, 2, . . . and for i = 1, 2, . . . , N .

Indeed, a strategy merging two experts can be turned into a strategy merging
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N experts by means of the following trick. Let us split the pool of experts
into pairs and merge the two experts’ predictions inside each pair. Then we
can iterate the procedure until we merge all experts’ predictions into one.
(Note that functions f(n) in the two definitions are different because iterative
merging incurs overheads.)

In fact, we shall obtain stronger bounds below. The extra term in the upper
bound for the Weak Aggregating Algorithm grows in N as O(

√
ln N) (see

Corollary 14).

The following theorem is the main result of the paper.

Theorem 7 A game G = 〈Ω, Γ, λ〉 is weakly mixable if and only if it is convex,
i.e., the finite part S ∩ R

M of the set of superpredictions S is convex.

Examples of weakly mixable games are the logarithmic and the square-loss
game, which are also mixable, and the absolute-loss game, which is not mix-
able. The simple prediction game is not weakly mixable.

The rest of the paper contains the proof of the theorem. The ‘only if’ part
follows from Theorem 9 that is formulated in Section 4 and proved in Ap-
pendix B.

The ‘if’ splits into two parts, for bounded and for unbounded games. The
‘if’ part for bounded games follows from [6]. In Section 5 we shall give an
alternative derivation, which achieves a slightly better value of the constant
C in the additive term C

√
n. The unbounded case is described in Section 6.

Remark 8 Let us allow (within this remark) λ to assume negative values;
they can be interpreted as ‘gain’ or ‘reward’. If λ assumes the value −∞, the
expression for the total loss may include the sum (−∞) + (+∞), which is
undefined. In order to avoid this ambiguity, it is natural to prohibit λ to take
the value −∞. Since λ is assumed to be continuous and Γ compact, this implies
that λ is bounded from below, i.e., there is a > −∞ such that λ(ω, γ) ≥ a for
all values of ω and γ.

Consider another game with the loss function λ′(ω, γ) = λ(ω, γ)− a, which is
nonnegative. A merging strategy working with nonnegative loss functions can
be easily adapted to work with the original game: let the learner just imagine
that it is playing the game with λ′. The losses w.r.t. the two games on a string
ω1ω2 . . . ωn will differ by the term an and the upper bounds of the type (4) will
be preserved. On the other hand, the sets of superpredictions for the two games
will differ by a shift, which preserves convexity. Therefore Theorem 7 remains
true for games with loss functions bounded from below.
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4 ‘Only If’ Part

We shall derive a statement that is, in fact, slightly stronger than required by
Theorem 7.

Theorem 9 If a game G = 〈Ω, Γ, λ〉, |Ω| = M < +∞, has the set of super-
predictions S such that its finite part S ∩ R

M is not convex, then there are
sequences of experts’ predictions γ

(1)
t ∈ Γ and γ

(2)
t ∈ Γ, t = 1, 2, . . ., and a

constant θ > 0 such that for any merging strategy S for two experts there is a
sequence ωt ∈ Ω, t = 1, 2, . . ., such that

max
i=1,2

(

LossG

S
(n) − LossG

Ei
(n)

)

≥ θn (6)

for all positive integers n.

For the proof see Appendix B.

5 ‘If’ Part for Bounded Games

5.1 Weak Aggregating Algorithm

In this subsection we introduce the Weak Aggregating Algorithm (WAA). Let
G = 〈Ω, Γ, λ〉 be a game such that |Ω| = M < +∞ and let N be the number of
experts. Let Ω = {ω(0), ω(1), . . . , ω(M−1)}. Although the WAA can be applied
to any game, the performance results we shall obtain hold only for bounded
games, so one may assume that G is bounded.

We describe the WAA using pseudo-code. The WAA accepts N initial nor-
malised weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and a positive

number c as parameters. The role of c is similar to that of the learning rate
in the theory of prediction with expert advice. Let βt = e−c/

√
t, t = 1, 2, . . .

(1) l
(i)
1 := 0, i = 1, 2, . . . , N

(2) FOR t = 1, 2, . . .

(3) w
(i)
t := qiβ

l
(i)
t

t , i = 1, 2, . . . , N

(4) p
(i)
t :=

w
(i)
t

∑N

j=1
w

(j)
t

, i = 1, 2, . . . , N

(5) read experts’ predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

(6) gk :=
∑N

j=1 λ
(

ω(k), γ
(j)
t

)

p
(j)
t , k = 0, 1, . . . , M − 1

(7) output γt ∈ Γ such that λ(ω(k), γt) ≤ gk for all

k = 0, 1, . . . , M − 1
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(8) observe ωt

(9) l
(i)
t+1 := l

(i)
t + λ

(

ωt, γ
(i)
t

)

, i = 1, 2, . . . , N

(10) END FOR

The variable l
(i)
t stores the loss of the i-th expert E (i), i.e., after trial t we have

l
(i)
t+1 = LossG

E(i)(t). The values w
(i)
t are weights assigned to the experts during

the work of the algorithm; they depend on the loss suffered by the experts and
the initial weights qi. The values p

(i)
t are obtained by normalising w

(i)
t . Note

that from the computational point of view it is sufficient to have only one
set of variables p(i), i = 1, 2, . . . , N , one set of variables w(i), i = 1, 2, . . . , N ,
and one set of variables l(i), i = 1, 2, . . . , N to save memory. The subscript t
has been added in order to simplify referring to these variables in the proofs
below.

This algorithm is applicable if the set of superpredictions S has a convex finite
part S ∩ R

M . If this is the case, then the point (g0, g1, . . . , gM−1) belongs to
S and thus γt can be found on step (7). The choice of γt is not necessarily
unique.

Remark 10 Suppose that Γ is a convex set and the functions λ(ω, γ) are
convex in the second argument for all ω ∈ Ω (cf. Remark 5). Then on step (7)

we can take γt =
∑N

j=1 p
(j)
t γ

(j)
t (note that it is not necessarily the only possible

solution).

For bounded games the following lemma holds.

Lemma 11 For every L > 0, every game G = 〈Ω, Γ, λ〉 such that |Ω| < +∞
and λ(ω, γ) ≤ L for all ω ∈ Ω and γ ∈ Γ and every N = 1, 2, . . ., for every
merging strategy M for N experts that follows the WAA with initial weights
q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and c > 0 the bound

LossM(n) ≤ LossE(i)(n) +

(

cL2 +
1

c
ln

1

qi

)√
n (7)

is guaranteed for every n = 1, 2, . . . and every i = 1, 2, . . . , N .

The proof of Lemma 11 is given in Appendix C.

Remark 12 It is easy to see that the result of Lemma 11 will still hold for
a countable pool of experts E1, E2, . . . We take weights

∑+∞
i=1 qi = 1; the sums

in lines (4) and (6) from the definition of the WAA become infinite but they
clearly converge. The point (g0, g1, . . . , gM−1) clearly belong to S because S is
closed (in fact, convexity is sufficient here; a convex combination of countably
many points still belongs to their convex closure; see e.g., Theorem 2.4.1 in
[8]).
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Remark 13 The WAA belongs to the class of merging strategies that on each
step produce a distribution p

(1)
t , p

(2)
t , . . . , p

(N)
t and suffer loss bounded by the

weighted sum of experts’ losses
∑N

i=1 λ(ωt, γ
(i)
t )p

(i)
t . This means that WAA can

be applied to every bounded game in the following randomised fashion. Let us
choose one expert from the pool randomly according to this distribution and
output the prediction of that expert. Our expected loss on each step will be
bounded by the same weighted sum. Therefore (7) will hold with the left-hand
side replaced by E LossM(n), where the expectation E is taken w.r.t. the inter-
nal randomisation. Note that the convexity requirement becomes unnecessary;
introducing the randomisation has essentially the same effect as taking the
convex hull of the set of superpredictions.

Let us take equal initial weights q1 = q2 = . . . = qN = 1/N in the WAA. The
additive term then reduces to (cL2 + (ln N)/c)

√
n. When c =

√
ln N/L, this

expression reaches its minimum. We get the following corollary.

Corollary 14 Under the conditions of Lemma 11, there is a merging strategy
M such that the bound

LossM(n) ≤ LossE(i)(n) + 2L
√

n lnN

is guaranteed.

6 ‘If’ Part for Unbounded Games

6.1 Counterexample

The WAA can be applied even in the case of an unbounded game; indeed,
the only requirement is that the finite part of the set of superpredictions S is
convex. However we cannot guarantee that a reasonable upper bound on the
loss of a strategy that uses it will exist. The same applies to any strategy that
uses a linear combination in the same fashion as WAA.

Indeed, consider a game with an unbounded loss function λ. Let ω0 be such
that the function λ(ω0, γ) attains arbitrary large values.

Suppose that there are two experts E1 and E2 and on some trial they are
ascribed weights p(1) and p(2) such that p(2) > 0. Suppose that E1 outputs γ(1)

such that λ(ω0, γ
(1)) < +∞ (see Figure 7 for a two-dimensional illustration).

The upper estimate on the loss of the merging strategy in the case when the
outcome ω0 occurs is

g0 = p(1)λ(ω0, γ
(1)) + p(2)λ(ω0, γ

(2)) ,
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E1
WAA

λ(ω0, γ
(2))λ(ω0, γ

(1))

g0

E2

Fig. 7. A counterexample for unbounded games in dimension 2.

where γ(2) is the prediction output by E2. Let us vary γ(2). The weights de-
pend on the previous behaviour of the experts and they cannot be changed. If
λ(ω0, γ

(2)) tends to infinity, then g0 tends to infinity and therefore the differ-
ence g0 − λ(ω0, γ

(1)) tends to infinity. Thus the learner cannot compete with
the first expert.

This example shows that the WAA cannot be straightforwardly generalised to
unbounded games. It needs to be altered.

6.2 Approximating Unbounded Games with Bounded

The following lemma allows us to ‘cut off’ the infinity at a small cost.

Lemma 15 Let G = 〈Ω, Γ, λ〉 be a game such that |Ω| < +∞. Then for every
ε > 0 there is Lε > 0 with the following property. For every γ ∈ Γ there is
γ∗ ∈ Γ such that λ(ω, γ∗) ≤ Lε and λ(ω, γ∗) ≤ λ(ω, γ) + ε for all ω ∈ Ω.

The proof of Lemma 15 is given in Appendix D.

In the case of two outcomes |Ω| = 2 obtaining Lε is particularly straightfor-
ward. See Figure 8, where

C = inf
γ∈Γ

λ(ω(0), γ) and D = inf
γ∈Γ

λ(ω(1), γ) ;

we can take Lε = max(L0, L1). If γ is such that the point (λ(ω(0), γ), λ(ω(1), γ))
falls into the area to the right of the straight line x = L0, we can take γ∗ such
that (λ(ω(0), γ∗), λ(ω(1), γ∗)) = (L0, D + ε).

13



D

C + ε

D + ε

C

L1

L0

Fig. 8. Obtaining Lε in the case of two outcomes.

length

Nk+1n

Mk

εk

Nk

Fig. 9. The sequences of Nk, Mk, and εk.

6.3 Merging Experts in the Unbounded Case

Consider an unbounded game G = 〈Ω, Γ, λ〉 and N experts E1, E2, . . . , EN .
Fix some ε > 0. Let Lε be as above. After obtaining experts’ predictions
γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t we can find γ

(1)∗
t , γ

(2)∗
t , . . . , γ

(N)∗
t as in Lemma 15 and then

apply the results from the bounded case to them. By proceeding in this fashion,
a strategy M suffers loss such that

LossG

M
(n) ≤ LossG

E(i)(n) + Cε

√
n + εn (8)

for all i = 1, 2, . . . , N and ω1, ω2, . . . , ωn ∈ Ω, n = 1, 2, . . ., where Cε =
2L2

ε

√
ln N (we are applying WAA with equal weights).

This inequality does not allow us to prove Theorem 7. In order to achieve an
extra term of the order o(n) we shall vary ε.

Take a strictly increasing sequence of integers Nk, k = 1, 2, . . ., and a sequence
εk > 0, k = 0, 1, 2, . . . Consider the merging strategy M defined as follows.
The strategy first takes ε0 and merges the experts’ predictions using the WAA
and ε0 in the fashion described above. This continues while n, the length of the
sequence of outcomes, is less than or equal to N1. Then the strategy switches
to ε1 and applies the WAA and ε1 until n exceeds N2 etc (see Figure 9). Note
that each time n passes through a limit Ni, the current invocation of the WAA
terminates and a completely new invocation of the WAA starts working. It
does not have to inherit anything from previous invocations.

In Appendix E we show how to choose the sequences εk and Nk in such a way
as to achieve the desired extra term of the order o(n).

14



7 Computability Issues

Since the results of this paper are proved constructively, they can be restated
in a constructive fashion.

Let us require in Definition 6 that M is computable. The experts do not have
to be computable in any sense because in our analysis the merging strategy has
no access to their internal ‘machinery’. The merging strategy simply receives
experts’ predictions as inputs. Note that we can choose computable sequences
γ

(1)
t and γ

(2)
t in Theorem 9 though. The sequence ωn can be generated effec-

tively if M is computable.

In order for the merging strategies constructed in the proof of Theorem 7 to
be computable, we need to impose computability restrictions on games. We
require the loss function to be computable so that the operations we need to
do become possible.

We need to be able do the following. First we need to compute the values of
λ. Secondly in order to perform step (7) of the WAA we need to be able to
solve systems of inequalities of the type

λ(ω(0), γ) ≤ t0 ,

λ(ω(1), γ) ≤ t1 ,

. . .

λ(ω(M−1), γ) ≤ tM−1

w.r.t. γ, where ti =
∑m

j=1 pjλ(ω(i), γj) for some set of γj and weights pj (i =
0, 1, . . . , M − 1 and j = 1, 2, . . . , N). Note that we only encounter systems
where the solution is known to exist. Thirdly for unbounded games we need
to compute the values Lε from Lemma 15. If we have the value of Lε, we can
find γ∗ for every γ0 by solving the system of the aforementioned type with
ti = min(λ(ω(i), γ0) + ε, Lε), i = 0, 1, . . . , M − 1.

These requirements are quite natural and every reasonable loss function (e.g.,
specified by a reasonable analytical expression) should satisfy them.

Remark 10 simplifies our task if Γ is convex and λ convex in the second
argument. We can then find γt on step (7) of the WAA by taking a convex
combination on Γ.

Suppose that we have an oracle that can answer the questions of the types we
have listed. Then both the WAA and the algorithm for unbounded functions
we have constructed output the prediction on each step of the on-line protocol
in O(MN) time modulo calls to the oracle.
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Appendix A. Convexity vs Mixability

In this appendix we show that convexity is a weaker requirement than mixa-
bility. All mixable games are convex, while the converse is not true. We shall
give a geometrical proof and construct examples.

Lemma 16 If a game G = 〈Ω, Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} is
mixable, then it is convex.

PROOF. We shall rely on a characterisation of convexity by means of sup-
port hyperplanes (see, e.g., Theorems 8 and 9 in [9]).

Take a point x0 =
(

x
(0)
0 , x

(1)
0 , . . . , x

(M−1)
0

)

∈ R
M on the boundary ∂(S ∩ R

M).

Let β ∈ (0, 1) be such that G is β-mixable and hence Bβ(S) is convex. Through
the point Bβ(x0) there passes a support hyperplane to Bβ(S).

Because the set Bβ(S) contains the whole parallelepiped with the diagonal
from the origin to Bβ(x0), the equation of the hyperplane can be written as
∑M−1

i=0 aiu
(i) = 1, where ai ≥ 0 for all i = 0, 1, . . . , M − 1 (here u(i) are the

coordinates in R
M).

Therefore the set S lies ‘above’ the surface passing through x0 and specified
by the equation

∑M−1
i=0 aiβ

x(i)
= 1 (here x(i) are the coordinates in R

M), where
ai ≥ 0 for all i = 0, 1, . . . , M − 1. Since aβx = βx+logβ a, this surface is a
shift of either the surface

∑M−1
i=0 βx(i)

= 1 or a cylinder over a similar surface

of lower dimension. Since the function βx is concave, the sum
∑M−1

i=0 βx(i)
is

concave and the set
{(

x(0), x(1), . . . , x(M−1)
)

∈ R
M−1 | βx(i) ≤ 1

}

is convex. A
support hyperplane passes through each point on the surface; thus we can
draw a support hyperplane to S ∩ R

M through x0. 2

We shall now construct binary examples differentiating convex games from
mixable. We need the following lemma from [10] (it is in fact a restatement of
results from [2]).

Lemma 17 Let G be a binary game with the set of superpredictions S. Sup-
pose that there are twice differentiable functions x, y : I → R, where I ⊆ R is
an open (perhaps infinite) interval, such that x′ > 0 and y′ < 0 on I and S
is the closure of the set {(u, v) ∈ R

2 | there is t ∈ I : x(t) ≤ u and y(t) ≤ v}
w.r.t. the extended topology of [−∞, +∞]2. Then, for every β ∈ (0, 1), the
game G is β-mixable if and only if

ln
1

β
≤ y′′(t)x′(t) − x′′(t)y′(t)

x′(t)y′(t)(y′(t) − x′(t))
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holds for every t ∈ I. The game G is mixable if and only if the fraction
(y′′x′ − x′′y′)/x′y′(y′ − x′) is separated from the zero, i.e., there is ε > 0 such
that

y′′x′ − x′′y′

x′y′(y′ − x′)
≥ ε (9)

holds on I.

PROOF. Convexity of Bβ(S) is equivalent to concavity of the function with
the graph {Bβ(x(t), y(t)) | t ∈ I}. Because the functions x(t) and y(t) are
smooth, this curve is concave if and only if the inequality

d2βy(t)

d (βx(t))
2 ≤ 0

holds on I. Differentiation yields

dβy(t)

dβx(t)
= βy(t)−x(t) y

′(t)

x′(t)

and

d2βy(t)

d (βx(t))
2 =

βy(t)−2x(t)

lnβ · (x′(t))2

(

(y′(t) − x′(t))y′(t) ln β +
y′′(t)x′(t) − y′(t)x′′(t)

x′(t)

)

.

The lemma follows. 2

Using this lemma, one can check that the square-loss and the logarithmic
games are mixable, while the absolute-loss game is not.

If in the lemma x(t) = t, one can rewrite (9) as

y′′

y′(y′ − 1)
≥ ε > 0 .

The convexity requirement reduces to y′′ ≥ 0. These formulae allow us to
construct various examples of convex games that are not mixable.

If the second derivative of y(x) vanishes inside the interval (but y(x) does not
become constant), then y(x) specifies the set of superpredictions of a non-
mixable game.

The following group of examples shows that mixability can be violated ‘at the
infinity’. Let I = (0, +∞) and y(x) = 1/xm, m > 0. We have

y′′

y′(y′ − 1)
=

(m + 1)xm

m + xm+1

17



and the fraction tends to 0 as x → 0 or x → +∞. Clearly all the games with
the sets of superpredictions specified by such y(x) are convex and unbounded
but not mixable. However if we cut off the ends of the interval and take
I = (a, b), where 0 < a < b < +∞, we get mixable games.

Appendix B. Proof of the ‘Only If’ Part

PROOF of Theorem 9.

We shall use the following simple vector notation. If X = (x1, . . . , xn), Y =
(y1, . . . , yn) and α ∈ R, then X + Y and αX are defined in the natural way.
By 〈X, Y 〉 we denote the scalar product

∑n
i=1 xiyi. Vector inequalities, e.g.,

X ≥ Y , hold if they hold component-wise. Note that the definition of the set
of superpredictions S implies that if X ∈ S and Y ≥ X than Y ∈ S.

For brevity we shall denote finite sequences by bold letters, e.g., x = ω1...ωn ∈
Ωn. Let |x| be the length of x, i.e., the total number of symbols in x. We shall
denote the number of elements equal to ω(0) in a sequence x by ]0x, the number
of elements equal to ω(1) by ]1x etc. It is easy to see that

∑M−1
i=0 ]ix = |x| for

every x ∈ Ω∗. The vector (]0x, ]1x, . . . , ]M−1x) will be denoted by ]x.

There are points B1 =
(

b
(0)
1 , b

(1)
1 , . . . , b

(M−1)
1

)

and B2 =
(

b
(0)
2 , b

(1)
2 , . . . , b

(M−1)
2

)

such that B1, B2 ∈ S ∩ R
M but the segment [B1, B2] connecting them is not

a subset of S. Let α ∈ (0, 1) be such that C = αB1 + (1 − α)B2 does not
belong to S (see Figure 10). Since λ is continuous and Γ is compact, the set
S is closed and thus there is a small vicinity of C that is a subset of R

M \ S.

Without restricting the generality one may assume that all coordinates of B1

and B2 are strictly positive. Indeed, the points B′
1 = B1 + t · (1, 1, . . . , 1) and

B′
2 = B2 + t · (1, 1, . . . , 1) belong to S for all positive t. If t > 0 is sufficiently

small, then C ′ = αB′
1 +(1−α)B′

2 still belongs to the vicinity mentioned above
and thus C ′ does not belong to S.

Let us draw a straight line l through the origin and point C. Let A =
(

a(0), a(1), . . . , a(M−1)
)

be the intersection of l with the boundary ∂S. Such

a point really exists. Indeed, l = {X ∈ R
M | ∃t ≥ 0 : X = tC}. For

sufficiently large t all coordinates of tC are greater than the corresponding
coordinates of B1 and thus tC ∈ S. Now let t0 = inf{t ≥ 0 | tC ∈ S} and
A = t0C. Since C /∈ S, we get t0 > 1 and thus A = (1 + δ)C, where δ > 0.

We now proceed to constructing the sequences γ
(1)
t and γ

(2)
t . There are pre-

dictions γ1, γ2 ∈ Γ such that λ(ω(i), γ1) ≤ b
(i)
1 and λ(ω(i), γ2) ≤ b

(i)
2 for all

18



S

l

B2

B1 A

C

Fig. 10. The drawing for the proof of Theorem 9.

i = 0, 1, 2, . . . , M − 1. Let γ
(1)
t = γ1 and γ

(2)
t = γ2 for all t = 1, 2, . . . If

x = ω1ω2 . . . , ωt, then

LossE1(t) ≤
M−1
∑

i=0

]ixb
(i)
1 = 〈B1, ]x〉 , (10)

LossE2(t) ≤
M−1
∑

i=0

]ixb
(i)
2 = 〈B2, ]x〉 (11)

for all t = 1, 2, . . .

Now let us consider a merging strategy S and construct a sequence xn =
ω1ω2 . . . ωn satisfying the requirements of the theorem. The sequence is con-
structed by induction. Suppose that xn has been constructed. Let γ be the
prediction output by S on the (n + 1)-th trial, provided the previous out-
comes were elements constituting the strings xn in the correct order. There
is some ω(i0) ∈ Ω such that λ(ω(i0), γ) ≥ a(i0). Indeed, if this is not true and
the inequalities λ(ω(i), γ) < a(i) hold for all i = 1, 2, . . . , M − 1, then there is
a vicinity of A that is a subset of S. This contradicts the definition of A. We
let xn+1 = xnωi0. The construction implies

LossS(n) ≥
M−1
∑

i=0

]ixna(i) = 〈A, ]xn〉 . (12)

Let ε = minj=1,2; i=0,1,2,...,M−1 b
(i)
j > 0. We get 〈Bj, x〉 =

∑M−1
i=0 b

(i)
j ]ix ≥ ε|x|

for all strings x ∈ Ω∗ and j = 1, 2. Since A = (1+ δ)(αB1 +(1−α)B2) we get

〈A, ]x〉 = (1 + δ)(α〈B1, ]x〉 + (1 − α)〈B2, ]x〉)
≥ α〈B1, ]x〉 + (1 − α)〈B2, ]x〉 + δε|x|

for all strings x. Let θ = δε; note that ε and δ do not depend on S. By
combining this inequality with (10), (11), and (12) we obtain the inequality

LossS(n) ≥ α LossE1(n) + (1 − α) LossE2(n) + θn
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for all positive integers n.

It is easy to see that

LossS(n) − LossE1(n) ≥ (1 − α)(LossE2(n) − LossE1(n)) + θn ,

LossS(n) − LossE2(n) ≥ α(LossE1(n) − LossE2(n)) + θn .

If LossE2(n) ≥ LossE1(n) the former difference is greater than or equal to θn,
otherwise the latter difference is greater than or equal to θn. By combining
these two inequalities we obtain (6). 2

Appendix C. Proof of Lemma 11

In this appendix we prove Lemma 11. We start with the following lemma.

Lemma 18 Let G = 〈Ω, Γ, λ〉 be a game such that |Ω| < +∞ and let N
be the number of experts. Let the finite part of the set of superpredictions
S ∩ R

M be convex. If M is a merging strategy following the WAA, then for
every t = 1, 2, . . . we get

β
LossG

M
(t)

t ≥ β

∑t

j=1
δ(j)

t

N
∑

i=1

qiβ
LossG

E(i)
(t)

t , (13)

where

δ(j) = logβj

β

∑N

i=1
λ(ωj ,γ

(i)
j

)p
(i)
j

j

∑N
i=1 β

λ(ωj ,γ
(i)
j

)

j p
(i)
j

(14)

for j = 1, 2, . . . , t, in the notation introduced above.

PROOF of Lemma 18. The proof is by induction on t. Let us assume that
(13) holds and then derive the corresponding inequality for the step t + 1.

The function xα, where 0 < α < 1 and x ≥ 0, is increasing in x and it is
also concave in x. For every set of weights pi ∈ [0, 1], i = 1, . . . , n such that
∑n

i=1 pi = 1 and every array of xi ≥ 0, i = 1, . . . , n, we get (
∑n

i=1 pixi)
α ≥

∑n
i=1 pix

α
i .
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Therefore (13) implies

β
LossG

M
(t)

t+1 =
(

β
LossG

M
(t)

t

)logβt
βt+1

(15)

≥
(

β

∑t

j=1
δ(j)

t

N
∑

i=1

qiβ
LossG

E(i)
(t)

t

)logβt
βt+1

(16)

≥ β

∑t

j=1
δ(j)

t+1

N
∑

i=1

qiβ
LossG

E(i)
(t)

t+1 (17)

Step (7) of the algorithm implies that λ(ωt+1, γt+1) ≤
∑N

i=1 λ
(

ωt+1, γ
(i)
t+1

)

p
(i)
t+1.

By exponentiating this inequality we get

β
λ(ωt+1,γt+1)
t+1 ≥ β

∑N

i=1
λ

(

ωt+1,γ
(i)
t+1

)

p
(i)
t+1

t+1 (18)

=
β

∑N

i=1
λ

(

ωt+1,γ
(i)
t+1

)

p
(i)
t+1

t+1

∑N
i=1 β

λ

(

ωt+1,γ
(i)
t+1

)

t+1 p
(i)
t+1

N
∑

i=1

β
λ

(

ωt+1,γ
(i)
t+1

)

t+1 p
(i)
t+1 (19)

= β
δ(t+1)
t+1

N
∑

i=1

β
λ

(

ωt+1,γ
(i)
t+1

)

t+1 p
(i)
t+1 . (20)

Multiplying (17) by (20) and substituting

p
(i)
t+1 =

wt+1
∑N

j=1 w
(j)
t+1

=
qiβ

LossG

E(i)
(t)

t+1

∑N
j=1 qjβ

LossG

E(j)
(t)

t+1

completes the proof on the lemma. 2

By taking the logarithm of (13) we get

LossG

M
(t) ≤

t
∑

j=1

δ(j) + logβt

N
∑

i=1

qiβ
LossG

E(i)
(t)

t

≤
t
∑

j=1

δ(j) + logβt
qi + LossG

E(i)(t)

for every i = 1, 2, . . . , N . We have logβt
qi = −

√
t

c
ln qi. It remains to estimate

the first term.

Recall that L is an upper bound on λ. By applying the inequality ln x ≤ x−1
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we get

δ(t) =
N
∑

i=1

λ(ωt, γ
(i)
t )p

(i)
t +

√
t

c
ln

N
∑

i=1

β
λ(ωt,γ

(i)
t )

t p
(i)
t

≤
N
∑

i=1

λ(ωt, γ
(i)
t )p

(i)
t +

√
t

c

(

N
∑

i=1

β
λ(ωt,γ

(i)
t )

t p
(i)
t − 1

)

By using Taylor’s series with Lagrange’s remainder term we obtain

β
λ(ωt,γ

(i)
t )

t = e−cλ(ωt,γ
(i)
t )/

√
t = 1 − cλ(ωt, γ

(i)
t )√

t
+

1

2





cλ(ωt, γ
(i)
t )√

t





2

eξ ,

where ξ ∈ [−cλ(ωt, γ
(i)
t )/

√
t, 0] and thus

β
λ(ωt,γ

(i)
t )

t ≤ 1 − cλ(ωt, γ
(i)
t )√

t
+

c2L2

2t
.

Therefore δ(t) ≤ cL2/2
√

t and summation yields

t
∑

j=1

δ(j) ≤
t
∑

j=1

cL2

2
√

j
≤ cL2

2

∫ t

0

dx√
x

= cL2
√

t .

This completes the proof.

Remark 19 Let us discuss the intuitive meaning of the term δ(t). We have

δ(t) =
N
∑

i=1

λ(ωt, γ
(i)
t )p

(i)
t − logβt

(

N
∑

i=1

β
λ(ωt,γ

(i)
t )

t p
(i)
t

)

.

This is the difference of two terms corresponding to two different ways of
mixing experts’ predictions. The first is the convex mixture we use in the WAA.
The second is the mixture used in the Aggregating Algorithm (AA) (see [4,5]).
In the AA the transformation Bβ (see Subsection 2.4) is applied, a mixture
is calculated in the image space, and then the inverse image B

−1
β is taken.

This is only possible if the game is β-mixable, while for the WAA convexity
is sufficient. What we have shown is that the loss suffered by the hypothetical
AA-style mixture converges to the loss of the convex combination fast enough
as β approaches 1.

Appendix D. Proof of Lemma 15

For every ε > 0 and γ∗ ∈ Γ the set U(γ∗, ε) = {γ ∈ Γ | λ(ω, γ∗) < λ(ω, γ) +
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ε for all ω ∈ Ω} is open. Indeed, λ is continuous and U(γ∗, ε) is an intersection
of finitely many inverse images of open sets.

For every finite L > 0 let ΓL = {γ ∈ Γ | λ(ω, γ) ≤ L for all ω ∈ Ω}. Fix ε > 0.
The union

⋃

L>0

⋃

γ∗∈ΓL
U(γ∗, ε) is an open covering of Γ. Indeed, consider some

γ0 ∈ Γ. If the values λ(ω, γ0) are finite for all ω, then γ0 belongs to some ΓL. If
some of these values are infinite, γ0 can still be approximated by predictions
that can only lead to finite losses and therefore γ0 belongs to U(γ∗, ε) of some
such γ∗.

Since Γ is compact, a finite subcovering exists and thus a finite L can be
chosen. This proves the lemma.

Remark 20 The lemma can also be proven by constructing a covering of the
set of superprediction S. This way is slightly longer, but arguably more intuitive
because the construction is done in R

M .

Let |Ω| = M and Ω = {ω(0), ω(1), . . . , ω(M−1)}. Let ΓL be as above and consider

the sets PL =
{(

λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)
)

| γ ∈ ΓL

}

.

For every ε > 0 let V (L, ε) be the ε-vicinity of the set PL, i.e., the union of all
open balls of radius ε centred on points from PL. Finally, let S(L, ε) = {X ∈
[−∞, +∞]M | X ≥ Y for some Y ∈ VL,ε}.

It is easy to check that for every ε > 0 we have S ⊆ ⋃

L>0 S(L, ε). One can
show that this covering has a finite subcovering by considering the image under
the transformation Bβ (see Subsection 2.4) with some β ∈ (0, 1).

Appendix E. Choosing the Sequences

Take M0 = N1 and Mj = Nj+1 − Nj , j = 1, 2 . . . Let a positive integer n be
such that Nk < n ≤ Nk+1 (see Figure 9). Applying (8) yields

LossG

M
(n) ≤ LossE(i)(n) + r(n)

for all i = 1, 2, . . . , N , where N is the number of experts and

r(n) =
k−1
∑

j=0

Mjεj +
k−1
∑

j=0

Cεj

√

Mj + εk(n − Nk) + Cεk

√

n − Nk (21)

is the ‘remainder’ (we recall that Cε = 2L2
ε

√
ln N). Note that the former

two terms correspond to the previous invocations of WAA and the later two
correspond to the current invocation.
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We shall formulate conditions sufficient for the terms in (21) to be of o(n)
order of magnitude. First note that

(1) limj→+∞ εj = 0

and k = k(n) → ∞ as n → ∞ is sufficient to ensure that εk(n − Nk) = o(n)
as n → ∞. Secondly, if, moreover,

(2′)
∑∞

j=0 Mj = +∞

then
∑k−1

j=0 Mjεj = o(n) by the following simple lemma.

Lemma 21 If the series
∑∞

i=1 Mi diverges and αi → 0, where all Mi and αi

are non-negative, then
∑k

i=1 Miαi = o
(

∑k
i=1 Mi

)

as k → ∞.

PROOF of Lemma 21 Take a small ε > 0. There is positive integer l such
that αi < ε/2 for all i ≥ l. We thus have

k
∑

i=1

Miαi ≤
l
∑

i=1

Miαi +
ε

2

k
∑

i=l

Mi

for all k ≥ l. Since the series diverges,
∑k

i=l Mi tend to +∞ as k → ∞ and
thus for sufficiently large k

l
∑

i=1

Miαi ≤
ε

2

k
∑

i=l

Mi

and therefore

k
∑

i=1

Miαi ≤ ε
k
∑

i=1

Mi .

2

Thirdly, the lemma implies that if, moreover,

(3) Cεj
≤ 8

√

Mj , j = 0, 1, 2, . . .,

then
∑k−1

j=0 Cεj

√

Mj ≤
∑k−1

j=0 Mj/M
3/8
j = o(n).

It remains to consider the last term in (21). There are two cases, either n −
Nk ≤ M

3/4
k or n − Nk > M

3/4
k . In the former case we get

1

n
Cεk

√

n − Nk ≤ M
1/8
k

√
n − Nk

Nk
≤ M

1/8
k M

3/8
k

Mk−1
=

√
Mk

Mk−1
,
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while in the latter case we get

1

n
Cεk

√

n − Nk ≤ M
1/8
k

√
Mk

M
3/4
k

=
1

M
1/8
k

.

To ensure the convergence to 0, it is sufficient to add

(4) Mj−1 ≥ M
3/4
j , j = 1, 2, . . .

and to replace (2′) with a stronger requirement

(2) Mj → +∞, j → ∞.

Let us show that conditions (1)–(4) are compatible, i.e., construct the se-

quences εj and Mj . Let M0 = max(2, dC8
ε0
e) and Mj+1 = bM4/3

j c, j =
0, 1, 2, . . . The sequence εj is constructed as follows. Suppose that all εj have

been constructed for j ≤ k. If Cεk/2 ≤ M
1/8
k , we let εk+1 = εk/2; otherwise we

let εk+1 = εk. Since Mk → +∞ and Cε is finite for every ε > 0, we shall be
able to divide εk by 2 eventually and thus ensure that εj → 0 as j → +∞.
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