
SOFTWARE Open Access

SCPS: a fast implementation of a spectral
method for detecting protein families on a
genome-wide scale
Tamás Nepusz1*, Rajkumar Sasidharan2, Alberto Paccanaro1*

Abstract

Background: An important problem in genomics is the automatic inference of groups of homologous proteins
from pairwise sequence similarities. Several approaches have been proposed for this task which are “local” in the
sense that they assign a protein to a cluster based only on the distances between that protein and the other
proteins in the set. It was shown recently that global methods such as spectral clustering have better performance
on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly
consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming
and hence they are inaccessible for large parts of the research community.

Results: SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a
spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore
practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose
relationships were extracted from the SCOP database, and its results were extensively compared with those
obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected
component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly
and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other
methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database
(14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences).

Conclusions: Besides the spectral method, SCPS also implements connected component analysis and hierarchical
clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein
descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can
produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive
and effective tool for practical research in computational biology. Source code and precompiled executables for
Windows, Linux and Mac OS X are freely available at http://www.paccanarolab.org/software/scps.

Background
An important problem in genomics is the automatic
inference of groups of homologous proteins when only
sequence information is available. Several approaches
have been proposed for this task which are “local” in the
sense that they assign a protein to a cluster based only
on the distances between that protein and the other
proteins in the set. In fact, the majority of these meth-
ods are based on thresholding a sequence similarity

measure (e.g., BLAST E-value [1] or percent identity)
and considering two protein sequences potentially
homologous if their similarity is above the threshold
[2,3]. However, by considering SCOP superfamilies as
gold standard collections of homologous proteins and
analysing the distribution of sequence distances within
and between superfamilies, it was shown that there does
not exist a single threshold on BLAST E-values that can
be used to cluster homologues correctly [4]. As a conse-
quence, while the existing methods yield adequate
results for close homologues, they are likely to fail in
identifying distant evolutionary relationships.

* Correspondence: tamas@cs.rhul.ac.uk; alberto@cs.rhul.ac.uk
1Centre for Systems and Synthetic Biology, Department of Computer
Science, Royal Holloway, University of London, TW20 0EX, Egham, UK

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

© 2010 Nepusz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.paccanarolab.org/software/scps
mailto:tamas@cs.rhul.ac.uk
mailto:alberto@cs.rhul.ac.uk
http://creativecommons.org/licenses/by/2.0

A possible way to improve these results is to use “glo-
bal” methods, which cluster a set of proteins taking
into account all the distances between every pair of pro-
teins in the set. Paccanaro et al [4] introduced a
global method based on spectral clustering and showed
that it has better performance than commonly
used local methods (namely hierarchical clustering [5]
and connected component analysis [6]) and TribeMCL
[7]. Other authors have also used spectral
clustering successfully in various biological contexts
[8-12]. The development of SCPS (Spectral Clustering
of Protein Sequences) was motivated by the fact
that currently available implementations of spectral
clustering methods mostly consist of a few loosely
coupled Matlab scripts that assume a fair amount of
familiarity with Matlab programming and hence they
are inaccessible for large parts of the research commu-
nity. Moreover, the mathematical formulation of the
algorithm is rather involved and it is not trivial to
implement all the details properly in an ex-novo
implementation.
SCPS provides an implementation of the spectral clus-

tering algorithm [4] via a simple, clean and user-friendly
graphical user interface that requires no background
knowledge in programming or in the details of spectral
clustering algorithms. SCPS is also able to perform con-
nected component analysis and hierarchical clustering,
and it incorporates TribeMCL, thus providing the user
with an integrated environment where one can experi-
ment with different clustering techniques. SCPS is extre-
mely efficient and its speed scales well with the size of
the dataset, allowing for the clustering of protein sets
constituted by thousands of proteins in a few minutes.
Moreover, SCPS is able to calculate different cluster qual-
ity scores, it interfaces with external tools such as BLAST
[1] and Cytoscape [13], and it can produce publication-
quality graphical representations of the clusters obtained,
thus constituting a comprehensive tool for practical
research. For more advanced use-cases (i.e., the integra-
tion of SCPS in automated batch processing pipelines),
we also included a sophisticated command line interface.
SCPS was written in C++ and is distributed as an

open-source package. Precompiled executables are avail-
able for the three major operating systems (Windows,
Linux and Mac OS X) at http://www.paccanarolab.org/
software/scps.
In the rest of this paper, we outline the general frame-

work of our spectral clustering algorithm and then
demonstrate its practical usage and usefulness via a
number of benchmarks ranging from a few superfamilies
to the entire SCOP database and the genome of the
yeast Saccharomyces cerevisiae.

Implementation
Spectral clustering in SCPS
The goal of SCPS is to infer homology relations between
protein sequences based on pairwise sequence informa-
tion only. The input dataset thus consists of either a set
of protein sequences or a list of pairwise similarity
scores between some protein domains. The output is a
partition of the sequences such that each sequence is
assigned to one and only one of the partitions in a way
that the partitions represent groups of homologs.
A typical SCPS workflow starts with either a FASTA

file containing sequences for the protein domains of
interest, or a list of BLAST E-values for all pairs of pro-
teins where significant sequence similarity was reported
by BLAST. Besides spectral clustering [4], SCPS cur-
rently supports connected component analysis, hierarch-
ical clustering and TribeMCL [7], and more algorithms
will be added in the near future. The spectral clustering
approach reformulates the problem of protein homology
detection into that of finding an optimal partition of a
weighted undirected graph G. Each vertex of the graph
corresponds to a protein sequence. Vertices are con-
nected by undirected, weighted edges, each edge denot-
ing a similarity relation between the two proteins it
connects. The weight (label) of the edge is related to the
probability of evolutionary relatedness. Edges with large
weight are more likely to appear between domains of
the same superfamily, hence the problem of partitioning
the graph into subsets of vertices with mostly heavy-
weight edges is an equivalent formulation of the original
protein sequence classification problem. Spectral cluster-
ing solves the problem of finding the optimal partition
by examining random walks on the similarity graph [14].
Our approach is based on the spectral clustering

algorithm of [15]. The general workflow is depicted
on Figure 1. The basic steps of the algorithm are as
follows:

1. If the input file is a FASTA sequence file, we con-
duct an all-against-all matching using BLAST and
store the E-values.

2. Given the pairwise BLAST E-values obtained
either from the previous step or directly from the
input file, we build an affinity matrix based on a
non-linear transformation from E-values to simi-
larity scores. The matrix element in row i and
column j contains the E-value corresponding to
protein j when protein i was used as a query
sequence.

3. Since the BLAST E-value corresponding to a
query protein i matching protein j in the database
is not necessarily equal to the case when the

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 2 of 13

http://www.paccanarolab.org/software/scps
http://www.paccanarolab.org/software/scps

Figure 1 The steps of the spectral clustering algorithm. The main steps of the spectral clustering algorithm. Cylinders represent possible
input file types, boxes represent processing steps. The numbers in the boxes refer to the steps of the algorithm as described in the main text.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 3 of 13

query protein j matches protein i in the same
database, the affinity matrix has to be symme-
trized. To obtain a symmetric matrix, we take the
higher similarity score (i.e. the smaller E-value) in
case of ambiguity. Let sij denote the symmetrized
similarity score between protein i and protein j.
The sij values together constitute the symmetrized
affinity matrix S, whose main diagonal contains
only ones.

4. We conduct a preliminary connected component
analysis on the graph represented by the affinity
matrix S to identify small connected components
containing less than five sequences. It is unlikely
that these components should be subdivided
further, therefore we remove the rows and col-
umns corresponding to these sequences from S,
obtaining a reduced matrix S’.

5. We construct a symmetric matrix L = D-1/2S’D-1/2,
where D is a diagonal matrix formed of the vertex

degrees (d sii ijj
), and find the eigenvectors

corresponding to the K largest eigenvalues of L.
Let us denote these eigenvectors by u1, u2, ..., uK,
respectively.

6. We build a matrix U s.t. the kth column of U is
uk and normalize the rows of the matrix such that
each row in U has unit length.

7. Treating the rows of U as points in the k-dimen-
sional Euclidean space RK, we conduct a k-means
clustering of these points into K clusters. The
initial centroid positions are chosen from the data
points themselves, placed as orthogonally to each
other as possible.

8. We assign node i in the original graph to cluster j
if and only if row i of Y was assigned to cluster k
in the previous step. Small connected components
obtained in step 4 are also merged back into the
dataset in this final stage.

An important advantage of this method is that the
number of clusters (K) can be selected automatically by
evaluating the eigenvalues of S’. In our implementation,
K is set to the smallest integer k such that lk/lk+1 > ε. ε
is adjustable and it is chosen to be 1.02 by default. The
main role of ε is to control the granularity of the clus-
tering obtained: larger ε values tend to produce more
fine-grained clusters, while a smaller ε yields only a few
large clusters. We found that the default choice works
well in a wide variety of biological problems (see the
Results section). Another way to control the granularity
of the clustering is to override K manually either before
the clustering process or after the eigenvalue calculation.
Both methods are facilitated by the SCPS user interface.

The clustering results are presented in a separate win-
dow (see Figure 2) where the user can examine and draw
the clusters one by one, calculate various quality mea-
sures (e.g., mass fraction [16] and modularity [17]), visua-
lize the heatmap of the rearranged similarity matrix or
export the results in plain text or XGMML format.
XGMML files can later be loaded into Cytoscape to facil-
itate further visualisation and analysis. The heatmap of
the rearranged similarity matrix can also be exported in
publication quality to a PNG file. SCPS can also retrieve
human-readable protein descriptions based on GI num-
bers from NCBI to aid the interpretation of the results.
Clusters are drawn using the Fruchterman-Reingold lay-
out algorithm [18], a force-directed iterative layout algo-
rithm where nodes are considered as tiny particles that
repel each other, while edges represent springs that pull
the endpoints of the edge closer. The strength of the
attraction force is proportional to the similarity score
used in our analyses, hence the obtained layout will tend
to place highly similar pairs of proteins close to each
other. Figure 3 shows an example of a cluster drawing
produced by SCPS.
Finally, SCPS includes a command line interface which

runs the clustering without user intervention and writes
the results to the standard output or to a specific output
file. This enables the integration of SCPS in batch pro-
cessing pipelines.

Implementation details
SCPS uses the ARPACK library [19] for eigenvector cal-
culations. The ARPACK library implements the impli-
citly restarted Arnoldi method for eigenvector
calculations, which is an iterative process that is able to
calculate all the eigenvectors and eigenvalues or only
the top K ones. When one can provide a reasonable
upper estimate on the number of clusters, the Arnoldi
method is much more efficient than standard methods
that solve the eigenvector equation directly. On the
other hand, the convergence of iterative methods is
affected negatively in the presence of eigenvalues with
multiplicity greater than one. The multiplicity of the top
eigenvalue of the affinity matrix S is equal to the num-
ber of connected components in the input graph. There-
fore, we first eliminate small connected components of
size less than five sequences from the original graph
(they will not be subdivided further) and then connect
the remaining components by a small amount of ran-
dom edges with weight less than 0.01. This decreases
the multiplicity of the top eigenvalue to one and thus
improve the stability of the eigenvector calculation pro-
cess without affecting the final result.
The number of clusters can be selected using one of

the following methods in our implementation:

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 4 of 13

• Automatic. This method uses the eigengaps to
select the appropriate number of clusters. K is set to
the smallest integer k such that lk/lk+1 > ε. ε is
adjustable and it is chosen to be 1.02 by default.
• Bounded from above. This method is similar to
the automatic selection, but it considers at most a
given number of clusters. It takes advantage of the
fact that the complete eigenspectrum is not needed
in this case when using the spectral clustering, sav-
ing time and resources during the computation. If
the maximum number of clusters is Kmax, SCPS will
compute only the top Kmax eigenvalues and the cor-
responding eigenvectors.
• Exactly. The user can select the desired number of
clusters either before the analysis or after the calcu-
lation of the eigenvalues and eigengaps.

Transforming BLAST E-values to similarities
A crucial step in the application of spectral clustering
methods in the context of protein sequences is the
transformation from BLAST E-values to similarities.
SCPS uses an approach based on the statistical analysis
of E-values within and between SCOP superfamilies. A
randomly selected set of 10,000 E-values chosen from
sequences within the same superfamily and 10,000 E-
values chosen from sequences in different superfamilies
were used to train a logistic regression model that dis-
criminates between intra-superfamily and inter-

superfamily E-values. The posterior probability returned
by the model on any E-value is then interpreted as the
probability of evolutionary relatedness. In case of asym-
metric E-values for a pair of proteins, the lower E-value
(i.e., the higher probability) is used. The proteins used
for training the logistic regression model were not used
later in performance assessments of the algorithm.

Quality measures
This section describes the various quality measures we
implemented in SCPS. In the following subsections, we
will use the following notations:

• sij is the similarity value labelling the edge between
vertex i and j in a graph G. sij = sji since we always
symmetrize the initial similarity values.

• δij is 1 if vertices i and j are within the same clus-
ter, zero otherwise.

We will also need the following definitions:
Definition 1 (Vertex weight) The weight of vertex i is

the sum of the weight (similarity) of all its adjacent
edges:di = Σjsij.
Definition 2 (Cluster weight) The weight of cluster i

is the sum of the weight of all the edges that lie fully
within cluster i (i.e., both their endpoints are in cluster i).
Mass fraction
The mass fraction [16] is an internal quality measure of
a clustering on a given graph G. Intuitively, a clustering

Figure 2 The result viewer. The result viewer of the graphical user interface showing the heatmap of the rearranged similarity matrix based on
the calculated clustering. The individual clusters and other quality measures can be displayed by clicking on the appropriate item on the sidebar.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 5 of 13

is good if the total weight of its clusters is comparable
to the total weight of the whole network; in other
words, most of the heavy-weight edges are within clus-
ters. The mass fraction simply denotes the fraction of
edge weights that is concentrated inside the clusters.
Definition 3 (Mass fraction) The mass fraction of a

clustering defined by dij is given as follows:

MF
sij iji j
siji j

,

,
(1)

A disadvantage of this measure is that it attains its
maximum when all the vertices are in the same cluster,

hence the mass fraction alone cannot be used to decide
whether a given clustering is better than another.
Modularity
Modularity [17] is another internal quality measure of a
clustering on a given graph G. The idea is that it is not
enough for a clustering to be good when it contains
much of the edge weights within the clusters; the clus-
tering is good when it contains more weight within the
clusters than what we would expect if we rearranged the
edges of the graph randomly while keeping the vertex
weights constant. Therefore, the difference between the
actual cluster weight and the expected cluster weight
after such rearrangement is a good indicator of the

Figure 3 Visualisation of a cluster calculated by SCPS. Visualisation of a cluster as calculated and exported by SCPS.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 6 of 13

general quality of the clustering. This measure also
avoids the problem with trivial clusterings: a cluster
containing all the vertices will contain exactly the same
weight before and after rewiring as all the edges will
stay within the same cluster, so the modularity score
will be zero. Similarly, a clustering where each vertex is
in its own cluster will also yield zero modularity as
there are no intra-cluster edges at all.
Formally, the modularity score of a clustering is the

normalized difference between the actual weight of the
clusters and the expected cluster weight after a random
rewiring that preserves the vertex weights. It can be
shown that the expected weight of the edge between

vertex i and j after rewiring is
did j

m2
, where m is the

sum of all edge weights in the graph (m = Σi ≥ jsij) [17].
The modularity formula then follows easily:
Definition 4 (Modularity) Let δij be 1 if vertices i and

j are in the same cluster and zero otherwise. The modu-
larity of the partition defined by δ is then as follows:

Q
m

s
d d

mij
i j

i j

ij

1

2 2
,

 (2)

Positive modularity then means that there is more
weight concentrated within the clusters than what we
would expect from a completely random graph with the
same vertex weight distribution.
Heatmap of the rearranged similarity matrix
This quality measure is not a single numeric value, but
it provides a visual cue to the goodness of a clustering
result. The basic idea is that the initial similarity matrix
can be plotted as a greyscale heatmap where each pixel
corresponds to a single cell of the matrix and the inten-
sity of the pixel is proportional to the weight that the
corresponding cell in the matrix represents. The rows
and columns of the similarity matrix can be arranged in
arbitrary order, but by arranging them in a way that
rows and columns corresponding to the same cluster
are next to each other, one can uncover a block-diago-
nal structure in the matrix if the clustering is good.

Results and discussion
In this section, we present the results of a comparison
of SCPS with other popular clustering methods (hier-
archical clustering [5], connected component analysis
[6] and TribeMCL [7]) on various datasets assembled
from SCOP 1.75 [20], ASTRAL-95 [21] and STRING
v8.1 [22]. First, we will describe the datasets we used,
then we give an overview of the methods we compared
SCPS with and the quality measures we used to evaluate
the performance of each method. After that, the bench-
mark results will be presented in detail. We conclude

the section with a short discussion on the scalability of
SCPS.

Data
Datasets 1-4 and the SCOP≥ 5 dataset in our bench-
marks were taken from SCOP 1.75 [20]. Sequence data
for these datasets were gathered from ASTRAL-95 [21].
Sequence data for the yeast genome benchmark were
downloaded from STRING v8.1 [22] and the corre-
sponding Gene Ontology annotations were assembled
from the Saccharomyces Genome Database [23].
Datasets 1-3 are similar to the ones used in [4], but

they were updated to reflect the changes in superfamily
classification since the publication of the original paper.
Dataset 4 was created explicitly for this study. The list
of SCOP superfamilies used in each of the four datasets
are listed in Table 1.
The SCOP≥ 5 dataset was constructed from SCOP

1.75 and ASTRAL-95 as follows: a database containing
all sequences in ASTRAL-95 was used to conduct an
all-against-all search using BLAST. For each sequence in
ASTRAL-95, the corresponding superfamily was looked
up from SCOP and a gold standard clustering was cre-
ated using all the superfamilies that contained at least
five sequences. Superfamilies containing less than five
domains with associated sequence information were
excluded from the benchmark, as we were interested in
the performance of the methods in case of non-trivial
superfamilies. The final dataset contained 632
superfamilies.
Datasets 1-4 are distributed with the downloadable

SCPS package. The SCOP≥ 5 and the yeast genome
dataset was excluded as it would have disproportionately
increased the size of the package, but it is available from
the authors upon request.

Alternative clustering approaches
Hierarchical clustering
Hierarchical clustering is a family of clustering methods
that start with individual data points (i.e. the sequences)
and then build a tree by iteratively merging the closest
points until only one is left [5]. The final cluster assign-
ment is then determined by cutting the branches of the
tree at a specific level. The various hierarchical cluster-
ing methods usually differ only in the way they define
the distance between two sets of data points and the
way they choose the optimal level to cut the branches of
the tree in the end. The best results in our datasets
were obtained by using the average distance metric, in
which the distance between two sets of data points is
given by the average distance between all possible point
pairs such that one point is chosen from one of the sets
and the other one is from the other set. The tree was
cut at the level where the average distance metric was

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 7 of 13

above 10-6, similarly to [4]. Pairs of proteins where
BLAST did not return an E-value were considered to
have an E-value of 10, which is the default BLAST
E-value threshold.
Connected component analysis
Connected component analysis is a method that has
been widely used in computer vision [6] and was initi-
ally applied to sequence clustering in GeneRAGE [2]
and ProClust [3]. The method starts with a fully con-
nected graph where the edges are labeled by the
E-values or some other suitable distance metric. The
algorithm proceeds by removing edges labelled by a dis-
tance larger than a given threshold, then collecting

groups of vertices that still remained connected. These
groups are then considered as the final result of the
algorithm. The E-value threshold used in our bench-
marks was 10-6, similarly to GeneRAGE [2].
TribeMCL
TribeMCL [7], a variant of the Markov clustering algo-
rithm (MCL), models the random walk of a particle on
a similarity graph, similarly to spectral clustering.
A detailed comparison is given in [4], here we only note
that the fundamental difference between MCL and spec-
tral clustering is the way the random walk is propagated
along the edges of the network. While our spectral clus-
tering algorithm models the random walk exactly and
analyses perturbations to the stationary distribution of
the random walk, MCL modifies the random walk to
promote the emergence of clusters. This approximation
allows MCL to converge faster, but it can potentially
lead to many small clusters. Another, less significant dif-
ference is the way TribeMCL symmetrizes the input
matrix of E-values: while SCPS takes the smaller E-value
in face of ambiguity and then transforms it to a similar-
ity value, TribeMCL transforms both E-values to simila-
rities first by taking the negative base 10 logarithm and
then symmetrizes the pair by taking the average.
A more detailed comparison of the two algorithms is to
be found in [4].
For the TribeMCL benchmarks on Datasets 1-4, we

tuned the inflation parameter of the algorithm by trying
all possible values with a step size of 0.1 in the range [1.2;
5.0], as suggested by the documentation of the algorithm.
The final inflation parameter was chosen in a way
that resulted in the highest F-score. For the SCOP≥ 5

dataset, the inflation parameter was chosen as the aver-
age of the inflation parameters that were the best for
Datasets 1-4.

Comparing clusterings with a gold standard
We used the combined F-score to compare a clustering
result with the gold standard SCOP superfamily classifi-
cation. Let n denote the total number of proteins in the
dataset, ni* the number of proteins in the ith superfam-
ily, n*j the number of proteins in the jth calculated clus-
ter and nij the number of proteins that are in
superfamily i and cluster j at the same time.
Definition 5 (Precision) The precision of cluster j

with respect to superfamily i is the fraction of proteins in
cluster j that are also in superfamily i: pij = nij /n*j
Definition 6 (Recall) The recall of cluster j with

respect to superfamily i is the fraction of proteins in
superfamily i that are also in cluster j: rij = nij/ni*
Now we can define the combined F-score, which com-

bines precision and recall with equal weights.
Definition 7 (Combined F-score) The combined

F-score is defined as follows:

Table 1 List of SCOP superfamilies used in Datasets 1-4

Dataset
name

SCOP
superfamily ID

Size Superfamily name

Dataset 1 46458 111 Globin-like

47473 126 EF-hand

49503 93 Cupredoxins

51445 161 (Trans)glycosidases

52833 178 Thioredoxin-like

Dataset 2 46458 111 Globin-like

47473 126 EF-hand

50494 99 Trypsin-like serine
proteases

51905 100 FAD/NAD(P)-binding
domain

54452 75 MHC antigen-
recognition domain

57095 76 Scorpion toxin-like

Dataset 3 46458 111 Globin-like

47473 126 EF-hand

51735 305 NAD(P)-binding
Rossmann-fold domains

51351 16 Triosephosphate
isomerase (TIM)

51971 9 Nucleotide-binding
domain

Dataset 4 47240 66 Ferritin-like

49899 118 Concanavalin A-like
lectins/glucanases

50494 99 Trypsin-like serine
proteases

50814 72 Lipocalins

51905 100 FAD/NAD(P)-binding
domain

53383 92 PLP-dependent
transferases

53933 13 Microbial ribonucleases

54236 94 Ubiquitin-like

The size of the dataset denotes the number of sequences in ASTRAL-95
corresponding to domains of the superfamily.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 8 of 13

F n
p r

p ri

i
j

ij ij

ij ij

 max

2
(3)

The combined F-score attains its maximum at 1 if the
two clusterings are identical.

Benchmarks on SCOP
The validity of the spectral clustering approach was
tested on several datasets assembled from the SCOP
database, version 1.75 [20]. Sequences were extracted
from ASTRAL-95 [21], i.e. the sequence identity
between any two sequences was at most 95%. Datasets
1-3 contained sequences from 5-8 protein superfamilies
that were hand-chosen to resemble the datasets origin-
ally used in [4] (the original datasets could not have
been re-used due to the changes in SCOP classifications
and to the new sequences added to ASTRAL-95 since
2006). Dataset 4 was conceived specifically for this
study. Finally, the SCOP≥ 5 dataset contains all the
SCOP superfamilies containing at least five sequences.
The datasets were described in detail earlier in the Data
subsection.
The results of the spectral clustering algorithm run-

ning in fully automatic mode with default parameters
(ε = 1.02) were compared to the results obtained from
hierarchical clustering [5], connected component analy-
sis [6] and TribeMCL [7]. The obtained partitions were
compared with the gold standard SCOP superfamilies
using the F-score which combines precision and recall
with equal weight. The results are presented on Table 2,
showing that spectral clustering clearly outperforms all
the other methods at the superfamily level.
Figure 4 compares the obtained clusterings visually

using the heatmap of the similarity matrix when the
matrix is rearranged such that the connections of ver-
tices in the same cluster are placed in consecutive rows
and columns. A good clustering exhibits a block-diago-
nal structure like the heatmaps on Figure 4C (produced
by TribeMCL) and Figure 4D (produced by the
spectral clustering algorithm). The hierarchical cluster-
ing (Figure 4A) and connected component analysis
(Figure 4B) algorithms clearly fail to recover this struc-
ture from the input matrices. TribeMCL does a better
job, but spectral clustering is able to merge some of the
smaller clusters into larger compounds to improve
the block-diagonality of the heatmaps. Note that all
the methods perform worse on Dataset 4 than on Data-
sets 1-3 (see Table 2). This is due to the fact that Data-
set 4 was explicitly chosen to represent a particularly
difficult problem, since the superfamilies in this dataset
are more divergent than those of the previous datasets,
as confirmed by the heatmap visualisation of the similar-
ity matrix (see Figure 5D).

Figure 5 shows the heatmaps of the rearranged simi-
larity matrices for Datasets 1-4 using spectral clustering,
confirming that the quality of the obtained clustering is
indeed very good. It also shows us that Dataset 4 is dif-
ferent from the others as the number of clusters is
much higher than the number of superfamilies used to
construct the dataset, indicating that BLAST misses
many remote homologs in this case. Using an improved
similarity measure derived from PSI-BLAST [24] or
CS-BLAST [25] would probably yield better results in
these cases; however, examining this is out of the scope
of the present paper.

Clustering the genome of the yeast Saccharomyces
cerevisiae
To further test the scalability of our method and to
assess its performance on the genome of a model organ-
ism with multi-domain proteins, we collected 6,690
sequences of the yeast Saccharomyces cerevisiae from
STRING v8.1 [22] and performed an all-against-all
BLAST search on them with the default BLAST para-
meters. The BLAST hits were processed with spectral
clustering, TribeMCL, connected component analysis
and hierarchical clustering and clusters of size less than
three were excluded from further assessment. The para-
meters for the various algorithms were the same as in
the SCOP≥ 5 benchmark.
Owing to the lack of a hand-curated gold standard

family classification for S. cerevisiae and the fact that
proteins in a protein family tend to be functionally and
structurally related, the quality of the clusters obtained
were assessed by comparing them to Gene Ontology
molecular function annotations [26,23]. Electronic anno-
tations (evidence code: IEA) and annotations based on
non-traceable author statements (evidence code: NAS)
were ignored. For the remaining annotations and for
each detected cluster of each method, multiple hyper-
geometric tests were performed to assess the statistical
significance of the occurrence of GO molecular function
terms within the cluster at a significance level of 0.05.
Correction for multiple hypothesis testing was per-
formed by controlling the false discovery rate (FDR)
using the Benjamini-Hochberg method [27]. We treated
a cluster as significant if at least one of the GO terms
were overrepresented within the cluster and then calcu-
lated the total number of significant clusters divided by
the total number of clusters containing at least three
proteins, as well as the total size of significant clusters
divided by the total size of clusters containing at least
three proteins. These ratios along with the exact num-
bers are reported in Table 3. Although hierarchical clus-
tering and connected component analysis achieve the
highest significant cluster ratio (0.829 and 0.792, respec-
tively) when taking into account the cluster counts only,

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 9 of 13

they both generate a high number of singletons and
clusters of size two, therefore the significant clusters
cover only a small fraction of the whole similarity graph
(1,166 and 1,858 sequences out of 6,690). The difference
becomes clear when the same ratios are calculated using
the cluster sizes instead of the cluster counts: spectral
clustering dominates with 4,863 sequences in 235 signif-
icant clusters covering 90.3% of the 5,380 sequences
that are in clusters of at least size three, while Tri-
beMCL comes second with 3,600 sequences in 245

clusters covering 88.9% of the 4,047 sequences in clus-
ters of size ≥ 3. One may argue that this difference can
be attributed to the fact that spectral clustering tends to
produce fewer and thus larger clusters than MCL, but
the same difference between spectral clustering and Tri-
beMCL can also be seen in the unweighted (cluster
counting) case (76.3% versus 73.8%). Similar results
were obtained when we used the MIPS FunCat annota-
tions [28] instead of the Gene Ontology (data not
shown). These results illustrate that spectral clustering

Table 2 Comparison of spectral clustering with other methods

sequences Hierarchical clustering CCA TribeMCL Spectral clustering

Dataset 1 669 0.247 0.530 0.630 0.844

Dataset 2 587 0.373 0.681 0.772 0.905

Dataset 3 567 0.253 0.588 0.625 0.893

Dataset 4 654 0.302 0.497 0.573 0.685

SCOP ≥5 14,183 0.393 0.530 0.576 0.607

The best F-score for each dataset is highlighted in bold.

Figure 4 Rearranged similarity matrices of Dataset 2 obtained from the different clustering algorithms. Rearranged similarity matrices of
Dataset 2 as obtained from hierarchical clustering (A), connected component analysis (B), TribeMCL (C) and spectral clustering (D). Rows and
columns of the similarity matrices are rearranged such that sequences of the same cluster are consecutive. Each dot represents the similarity
score of a sequence pair. Darker dots correspond to higher similarities.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 10 of 13

is a viable alternative to other popular methods even on
a genome-wide scale.

Scalability considerations
The spectral clustering method has two potential bottle-
necks. One of them is the k-means clustering step where
no exact result is known about the number of steps the
algorithm takes in the worst case. However, it was shown
recently that the k-means clustering procedure termi-
nates in a polynomial number of steps with high prob-
ability in high-dimensional spaces when the data points
are drawn from independent multivariate normal distri-
butions [29]. It was also proven that given a clustered

structure in the original input dataset, data points of the
same cluster will be aligned roughly along orthogonal
directions in our k-means step. The normalisation step
then ensures that these points will be situated close to
each other [15], thus they can be approximated well with
multivariate normal distributions. Therefore, the data
points we are likely to encounter in the k-means step
satisfy the conditions of polynomial time complexity. The
other potential bottleneck of the algorithm is the calcula-
tion of the eigenvectors. Typically, the number of
steps required to calculate the top K eigenvectors scales
linearly with the number of non-zero elements in the
input matrix when using the implicitly restarted Arnoldi

Figure 5 Rearranged similarity matrices of Datasets 1-4 obtained from spectral clustering. Rearranged similarity matrices of Datasets 1-4
as obtained from the spectral clustering algorithm. Each dot represents the similarity score of a sequence pair. Darker dots correspond to higher
similarities. The block-diagonal structure of the rearranged similarity matrices confirm the good quality of the obtained clusterings.

Table 3 Comparison of the results obtained on the genome of the yeast Saccharomyces cerevisiae

Hierarchical clustering CCA TribeMCL Spectral clustering

Cluster count Significant 243 243 245 235

All 293 307 332 308

Ratio 0.829 0.792 0.738 0.763

Total cluster size Significant 1,166 1,858 3,600 4,863

All 1,396 2,144 4,047 5,380

Ratio 0.835 0.866 0.889 0.903

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 11 of 13

method [19]. Since SCPS uses this method when a maxi-
mum cluster count is specified, the algorithm is expected
to terminate in polynomial time for real sequence simi-
larity datasets, enabling us to analyse large datasets com-
prising of thousands of protein sequences. In our
experiments, the SCOP≥ 5 dataset was processed in 83
minutes using a single core of a quad-core Intel Xeon
X3360 desktop machine running at 2.83 GHz, using the
top 2000 eigenvalues and eigenvectors of the similarity
matrix. This does not include the CPU time required to
run the all-against-all BLAST query on SCOP, which
took nearly four hours.

Conclusions
In this paper, we presented SCPS, an efficient, user-
friendly, scalable and platform-independent improved
implementation of a spectral clustering method [4],
which can identify protein superfamilies in datasets con-
taining thousands of proteins within a few minutes. The
software along with its source code is available to non-
commercial users free of charge. We would like to
encourage users and developers to provide feedback,
suggest new features or contribute code. Future work
will focus on the improvement of the similarity measure
used by the algorithm and a parallelized implementation
of the method to exploit the power of multiple CPU
cores.

Availability and requirements
Project name: SCPS
Project home page: http://www.paccanarolab.org/soft-

ware/scps
Operating systems: Windows, Mac OS X, Linux
Programming language: C++
License: GNU General Public License (GPL) v3
Restrictions to use by non-academics: None

Acknowledgements
TN was supported by the Newton International Fellowship Scheme of the
Royal Society (grant number NF080750). AP was supported by the
Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/
F00964X/1.

Author details
1Centre for Systems and Synthetic Biology, Department of Computer
Science, Royal Holloway, University of London, TW20 0EX, Egham, UK.
2Department of Plant Biology, Carnegie Institution for Science, 260 Panama
Street, Stanford, CA 94305, USA.

Authors’ contributions
TN designed and implemented the SCPS graphical and command line
interfaces, contributed robustness, stability and scalability improvements to
the original algorithm and performed benchmarks. RS provided important
biological insights and ideas to the algorithm and the datasets and
extensively tested the software. AP conceived and implemented the first
version of the algorithm, contributed valuable ideas to the present
implementation and tested the algorithm. TN, RS and AP contributed to the

writing of the paper. All the authors have read and approved the final
manuscript.

Received: 25 November 2009
Accepted: 9 March 2010 Published: 9 March 2010

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403-410.
2. Enright AJ, Ouzounis CA: GeneRAGE: a robust algorithm for sequence

clustering and domain detection. Bioinformatics 2000, 16(5):451-457.
3. Pipenbacher P, Schliep A, Schneckener S, Schönhuth A, Schomburg D,

Schrader R: ProClust: improved clustering of protein sequences with an
extended graph-based approach. Bioinformatics 2002, 18:S182-S191.

4. Paccanaro A, Casbon JA, Saqi MAS: Spectral clustering of protein
sequences. Nucleic Acids Res 2006, 34(5):1571-1580.

5. Everitt B: Cluster analysis London: Edward Arnold, 3 1993.
6. Ballard D, Brown C: Computer Vision Englewood Cliffs: Prentice-Hall 1982.
7. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-

scale detection of protein families. Nucleic Acids Res 2002, 30(7):1575-1584.
8. Kannan N, Vishveshwara S: Identification of side-chain clusters in protein

structures by a graph spectral method. J Mol Biol 1999, 292(2):441-464.
9. Forman JJ, Clemons PA, Schreiber SL, Haggarty SJ: SpectralNET - an

application for spectral graph analysis and visualization. BMC
Bioinformatics 2005, 6:260.

10. Krishnadev O, Brinda K, Vishveshwara S: A graph spectral analysis of the
structural similarity network of protein chains. Proteins Struct Funct Bioinfo
2005, 61:152-163.

11. Verkhedkar K, Raman K, Chandra N, Vishveshwara S: Metabolome based
reaction graphs of M. tuberculosis and M. leprae: a comparative
network analysis. PLoS ONE 2007, 2(9):e881.

12. Wang G, Shen Y, Ouyang M: A vector partitioning approach to detecting
community structure in complex networks. Comput Math Appl 2008,
55(12):2746-2752.

13. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T: Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res
2003, 13(11):2498-504.

14. Meilă M, Shi J: A random walks view of spectral segmentation.
Proceedings of the 8th International Workshop on Artificial Intelligence and
Statistics (AISTATS) 2001.

15. Ng AY, Jordan MI, Weiss Y: On Spectral Clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems 14 MIT Press
2001, 849-856.

16. van Dongen S: Performance criteria for graph clustering and Markov
cluster experiments. Tech Rep INS-R0012 2000.

17. Newman M: Fast algorithm for detecting community structure in
networks. Phys Rev E 2004, 69(6):066133.

18. Fruchterman T, Reingold E: Graph drawing by force directed placement.
Software Pract Ex 1991, 21(11):1129-1164.

19. Lehoucq RB, Sorensen DC, Yang CY: ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods SIAM
1998.

20. Murzin A, Brenner S, Hubbard T, Chothia C: SCOP - a structural
classification of proteins database for the investigation of sequences
and structures. J Mol Biol 1995, 247(4):536-540.

21. Chandonia JM, Hon G, Walker NS, Lo Conte L, Koehl P, Levitt M, Brenner SE:
The ASTRAL Compendium in 2004. Nucleic Acids Res 2004, , 32 Database:
D189-92.

22. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T,
Julien P, Roth A, Simonovic M, Bork P, von Mering C: STRING 8 - a global
view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res 2009, , 37 Database: D412-416.

23. Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, Binkley G,
Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC,
Krieger CJ, Livstone MS, Miyasato SR, Nash RS, Oughtred R, Skrzypek MS,
Weng S, Wong ED, Zhu KK, Dolinski K, Botstein D, Cherry JM: Gene
Ontology annotations at SGD: new data sources and annotation
methods. Nucleic Acids Res 2008, 36:D577-581.

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 12 of 13

http://www.paccanarolab.org/software/scps
http://www.paccanarolab.org/software/scps
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12386002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12386002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17849010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17849010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17849010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17982175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17982175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17982175?dopt=Abstract

24. Altschul SF, Madden TL, Schffer AA, Schffer RA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

25. Biegert A, Soding J: Sequence context-specific profiles for homology
searching. Proc Natl Acad Sci USA 2009, 106(10):3770-3775.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.

27. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Stat Soc B Stat Meth
1995, 57:289-300.

28. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I,
Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW: The FunCat, a
functional annotation scheme for systematic classification of proteins
from whole genomes. Nucl Acids Res 2004, 32(18):5539-5545.

29. Arthur D, Vassilvitskii S: How slow is the k-means method?. SCG ‘06:
Proceedings of the 22nd Annual Symposium on Computational Geometry
New York, NY, USA: ACM 2006, 144-153.

doi:10.1186/1471-2105-11-120
Cite this article as: Nepusz et al.: SCPS: a fast implementation of a
spectral method for detecting protein families on a genome-wide scale.
BMC Bioinformatics 2010 11:120.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Nepusz et al. BMC Bioinformatics 2010, 11:120
http://www.biomedcentral.com/1471-2105/11/120

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19234132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19234132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15486203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15486203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15486203?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Spectral clustering in SCPS
	Implementation details
	Transforming BLAST E-values to similarities
	Quality measures
	Mass fraction
	Modularity
	Heatmap of the rearranged similarity matrix

	Results and discussion
	Data
	Alternative clustering approaches
	Hierarchical clustering
	Connected component analysis
	TribeMCL

	Comparing clusterings with a gold standard
	Benchmarks on SCOP
	Clustering the genome of the yeast Saccharomyces cerevisiae
	Scalability considerations

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

