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ABSTRACT OF THESIS.

" A s t r u c t u r a l  and metamorphic study of  Moine rocks 

between Loch E i l  and Loch E i l t ,  I n v e r n e s s - s h i r e . "

Research between Loch E i l  and Loch E i l t ,  In v e r n e s s - s h i r e  on rocks from 

a l l  th ree  D i v is i o n s  of  the Moine Succession w i t h i n  the Caledonian Orogen,  

above and to the ea s t  of  the Moine t h r u s t  zone,  has rev ea le d  t h a t ,  w i t h in  

the a r e a ,  a l l  th re e  D i v i s i o n s  share a common sequence o f  polyphase deform

a t io n  and metamorphism. A l l  th re e  D iv is io n s  have been metamorphosed during  

Precambrian and Caledonian  tec ton o - th e rm a l  e v en ts .

The Ardgour g r a n i t i c  g n e is s ,  a = 1000 Ma. pre-D^ i n t r u s i o n ,  s u b - p a r a l l e l  

but t ran s g re ss in g  the j u n c t i o n  between the c e n t r a l  G lenf innan and easte rn  

Loch E i l  D i v i s i o n s ,  has undergone p a r t i a l  a n a te x is  during D^ , u n l i k e  the  

adjacent  m ig m a t i t i c  metasediments.  Major  F  ̂ fo ld s  have not been recognised .

G r e n v i I l i a n  ( s 1000 M a .)  D 2  de form at ion  and high grade metamorphism 

has almost com p le te ly  transposed the D^ g r a n i t i c  gneiss f o l i a t i o n  but th e re  

is no unequivocal  ev idence  f o r  D 2  p a r t i a l  a n a t e x i s .  F 2  major  fo ld s  occur  

in the v i c i n i t y  o f  the g r a n i t i c  gneiss but not e lsewhere .

Caledonian D 3  de fo rm at ion  has produced major  F 3  sub-recumbent f o ld s  

with  c u r v i l i n e a r  hinge l i n e s ,  w i t h i n  the G len f in nan  and Loch E i l  D i v i s i o n s ,  

above a f l a t  l y in g  major  D 3  s imple  shear zone, the Sgurr  Beag s l i d e .  Large 

sca le  WNW t r a n s p o r t  has c a r r i e d  these rocks over the un d er ly in g  Morar D i v 

is io n  rocks .  Only a t  the h ig h e s t  l e v e l s  of  s t r a i n  w i t h i n  the shear zone 

has the G r e n v i l l e  metamorphic assemblage r e - e q u i l i b r a t e d .  Elsewhere the  

e a r l y  isograds are fo ld e d  dur in g  D3 .

P o s t - D 3  m i c r o d i o r i t e  sheet  i n t r u s i o n s  have s u f f e r e d  medium grade (amphi-  

b o l i t e  f a c i e s )  metamorphism d u r in g  D4  d e fo r m a t io n .  D^ heterogeneous,  h o r iz o n 

t a l l y  d i r e c t e d  pure shear d e fo r m a t io n ,  p o s s ib ly  above a f l a t  l y i n g  d é c o l l e 

ment plane such as the Moine T h r u s t ,  has produced major  u p r ig h t  f o l d s  o f  

the D 3  Sgurr Beag s l i d e  and r o t a t e d  Glen f in nan  D i v i s i o n  F 3  sub-recumbent  

i s o c l in e s  towards v e r t i c a l ,  to form the D^ "steep b e l t " .

O5  de form at ion  has produced s p o r a d i c a l l y  d i s t r i b u t e d  minor fo ld s  p o s s ib ly  

r e l a t e d  to r e g io n a l  warps o f  the e a r l i e r  major s t r u c t u r e s .
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1 .1 )  Geographical  s e t t i n g .

The area under i n v e s t i g a t i o n  is cent red on Glenf innan v i l l a g e  and covers 

an area of  appro x im ate ly  65 sq. km. ( 25 sq. m i les  ) .  I t  s t r e tc h e s  f o r

20 km. in an E-W d i r e c t i o n  along the A 830 road from F o r t  W i l l i a m  to M a l l a i g  

and extends northwards 3 to 4 km. from the road ( F ig .1  ) .

The area r i s e s  from sea lev e l  at  Loch E i l t  to over 800 metres and is

p h y s i c a l l y  rugged and mountainous.  I t  i s  d i s s e c t e d  by a number of  N-S 

t rend ing  glens which d i v i d e  the area in t o  a s e r i e s  of  h i l l s  a l l  over 600 

metres high and bounded by deep glens or  lochs on th re e  sides ( Map 8  ) .

The area is a l l  w i t h i n  the old  county of  I n v e r n e s s - s h i r e .

1 .2 )  Regional  g e o lo g ic a l  s e t t i n g .

The area l i e s  w i t h i n  the Northern Highlands o f  S c o t la n d , t h a t  is to  the 

NW of  the Great  Glen f a u l t  ( F i g . 2 ) .  The e a s te r n  end o f  the area is 9 

km. w of the Great  Glen f a u l t  zone. The Moine Thrust  zone is 30 km. NW 

of the western end of  the area and probab ly  extends eastwards to  u n d e r l i e  

the area at depth ( see Chapter  9 ) .

The Moine rocks of  SW In v e r n e s s - s h i r e  occur in th re e  N-S t r e n d in g  s t r u c t 

ural  - s t r a t i g r a p h i c a l  u n i t s  termed,  from W to E, the Morar ,  G lenf innan  

and Loch E i l  D i v is i o n s  (Johnstone e t  a l .  1969. see Fig  2 ) .  East o f  the  

Great  Glen f a u l t  1i t h o l o g i c a l l y  s i m i l a r  ro c ks ,  g e n e r a l l y  termed the C ent ra l  

Highland G r a n u l i t e s ,  have been d iv id e d  i n t o  the C en t ra l  Highland D iv is io n  

and the Grampian Group ( P i a s e c k i ,  1980 ) .  No d i r e c t  s t r u c t u r a l  c o r r e l a t 

ions have been made across the Great  Glen f a u l t .  A v a r i e t y  of  s i n i s t r a l  

and d e x t r a l  d isplacements on the f a u l t  have been proposed { eg. Kennedy,  

1946; Winchester ,  1974; P h i l l i p s  e t  a l . ,1 976 ;  Van der Voo & Scotese ,  1981;  

Estang & P i p e r ,  1984 ) .

The Moine rocks or " Moine nappe " has been carried westwards over the  

s t a b le  f o r e l a n d  of  Lewis ian  A rch aea n -P ro te ro z o ic  basement gne isses ,  uncon-  

formably o v e r l a i n  by T o r r id o n ia n  P r o t e r o z o i c  sediments which are in turn  

unconformably o v e r l a i n  by Cambro-Ordovician s h e l f  sed iments .  The j u n c t i o n  

between the s t a b l e  c r a t o n i c  fo r e la n d  and the Moine rocks o f  the Caledonian  

orogen is  marked by the complex im b r ic a t e  Moine Thrus t  zone.

A s t r a t i g r a p h y  has been e s t a b l i s h e d  f o r  the Morar D i v i s io n  ( P o w e l l , 1974)  

which places the L o c h a i l o r t  p e l i t e  a t  the top o f  the D i v i s i o n ,  s t r a t i g r a p h 

ic a l  ly  in c o n tac t  w i t h ,  and above the Upper Psammit e  of  the Morar D i v i s i o n .
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The Locha i lo r t  P e l i t e  is very s im i la r  to rocks of the Glenfinnan Division  

( Johnstone et  a l 1969, p . 163 ) .  However in the Kinloch Hourn area the 

junction  between the Upper Psammite and the Locha i lo r t  P e l i t e  is held to 

be tec to n ic ,  termed the Sgurr Beag s l id e  ( Tanner,1971 ).

East of th is  junct ion  the Glenfinnan Div is ion comprises a series  of 

str iped  and banded psammitic and p e l i t i c  rocks which are characterised  

by th e i r  general steep d ispos i t ion  and the migmat it ic  segregations often  

seen in the p e l i t i c  and banded l i t h o l o g i e s .

A s e r ie s  of m ig m a t i t i c  g r a n i t i c  gneisses outcrop in the E of  the Glen

f in nan  D i v is i o n  near the con ta c t  w i th  the Loch E i l  D i v i s i o n .  The m ig m a t i t i c  

g r a n i t i c  gneiss in the area under i n v e s t i g a t i o n  is c a l l e d  the Ardgour 

g r a n i t i c  gneiss ( H a r r y , 1953 ) .

The ju n c t io n  between the G le n f innan  and Loch E i l  D iv is io n s  has been 

c a l l e d  the "Loch Quoich l i n e "  { C l i f f o r d , 1957 ) .  D a l z i e l  ( 1966 ) i n t e r 

pre ted  i t  as a s t r a t i g r a p h i c a l  j u n c t i o n ,  w it h  the Loch E i l  D i v is i o n  psamm

i t e s  being younger than the G le n f in n an  D i v i s i o n ,  whereas Piaseck i  & van 

Breemen ( 1979 ) imply t h a t  the j u n c t i o n  is  a te c to n is ed  unconformity b e t 

ween the o ld e r  h ig h l y  deformed basement, the G lenf innan D i v i s i o n ,  and a 

cover sequence, the Loch E i l  D i v i s i o n .

Previous researchers  have e r e c te d  s t r u c t u r a l  sequences f o r  var ious  par ts  

of  the Western H ig h lands .  In gen eral  these tend to be remarkably s i m i l a r ,  

commencing w i th  an e a r l y  phase o f  small  s c a le  i s o c l i n e s  (F  ̂ ) ,  fo l lowed  

by a phase of  t i g h t  to i s o c l i n a l  small  and la rge  s c a le  fo ld s  ( F 2  ) assoc

i a te d  w ith  a very  st rong p e n e t r a t i v e  a x i a l  p lan ar  f a b r i c  ( $ 2  ) in p e l i t i c  

and s e m i - p e l i t i c  rocks .  The t h i r d  phase o f  deformation  is a strong c r e n 

u l a t i o n  ( S 3 ) and f o l d i n g  ( F 3  ) o f  the p r e - e x i s t i n g  f a b r i c s . T h i s  is  f o l l o w 

ed by var ious  l a t e r  open c r e n u l a t i o n s  and warps.

A s u i t e  of l a t e  syn-  to post-metamorphic i n t r u s i o n s ,  m i c r o d i o r i t e s ,  

cut  a l l  th re e  D iv i s io n s  in the area under s tudy.

The metamorphic grade r i s e s  from the W coast  where i t  is  lower green-  

s c h is t  f a c i e s  ( Kennedy,1949 ) to  upper am p h ib o l i te  f a c i e s  in the Glenf innan  

area ( Johnstone e t  a l . , 1969 ) .  The increase  in metamorphic grade is  r e f 

le c ted  in the rocks by a coarsen in g  o f  g ra in  s i z e  and the development o f  

m ig m a t i t i c  s e g re g a t io n s .  Metamorphic grade is  d i f f i c u l t  to  e s t a b l i s h  in  

the Loch E i l  D i v i s i o n ,  a group o f  dominant ly  psammit ic rocks.

I t  is  g e n e r a l l y  b e l ie v e d  t h a t  the main metamorphism is coeval w ith  the 

second phase o f  deform at ion  ( D 2  ) (  Powel1,1974 ) .  The metamorphic p a t t e r n  

is  complicated by r e t r o g r e s s i o n  and f o l d i n g  o f  the isograd surfaces by 

l a t e r  deformation events .

C o r r e l a t io n s  between var io us  areas and tectono-metamorphic i n t e r p r e t a t i o n s
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associated with geochronological  evidence have often proved equivocal .

Former co r re la t io n s  of the top of the Moine succession with the base 

of the Dalradian succession have led to the suggestion that a l l  the deform

ation is Caledonian in age ( Kennedy,1955 ) .  More recent geochronological  

work ( G i l e t t i  e t  a l . ,1961; Long & Lambert,1963; Brook et  a l 1976,1977)  

has produced a number of isochrons and mineral  ages of Precambrian age 

ind ica t ing  that  at  least part  of the deformation and metamorphism occured 

in the la te  Precambrian.

1 . 3 )  Objects of  the i n v e s t i g a t i o n .

The i n v e s t i g a t i o n  was i n i t i a t e d  in t h i s  area f o r  a number of  reasons.  

The area o f f e r s  a s h or t  s e c t io n  across a l l  th ree  D i v is io n s  o f  the Moine 

rocks of  the NW Hig h lands .  Much o f  the ne ighbouring d i s t r i c t  had a l re ad y  

been s tu d ied  in d e t a i l  by Howkins ( 1 9 6 1 ) ,  C la rk  ( 1 9 6 1 ) ,  D a l z i e l  ( 1 9 6 3 a ) ,  

Powell (1963)  and Brown (1964)  (see F i g . 3 ) .  A l l  pa r ts  o f  the area were 

reasonably  a c c e s s ib le .

Attempts a t  s t r u c t u r a l  c o r r e l a t i o n s  ( Brown e t  a l . 1970; Powel1 ,1 974 )  

between neighbour ing  reg io ns  had h ig h l i g h t e d  severa l  problems and geochron

o lo g ic a l  work by Long & Lambert ( 1 9 6 3 ) ,  van Breemen e t  a l . (1974)  and Brook 

e t  a l . (1976 )  o n ly  seemed to c o m p l ica te  these.

I t  was hoped t h a t  mapping the area from the head of  Loch E i l  westwards 

to Loch E i l t  could  shed l i g h t  on the n a tu re  o f  the j u n c t i o n s  between the 

Morar,  G lenf innan and Loch E i l  D i v i s i o n s .  More s p e c i f i c a l l y , i f  the j u n c t i o n s  

turned out to be t e c t o n i c  r a t h e r  than s t r a t i g r a p h i c a l  i t  was hoped t h a t  

i t  would be p o s s ib le  to  e s t a b l i s h  the s t r u c t u r a l  age o f  the j u n c t i o n s  w ith  

respect  to the D iv i s i o n s  on e i t h e r  s id e  of  each j u n c t i o n .  Thus, armed w i th  

a knowledge of  the polyphase de format ion  sequences w i t h i n  each D i v is io n  

and t h e i r  i n t e r - r e l a t i o n s h i p ,  in  c o n ju n c t io n  w i th  geo chronolog ical  evidence  

i t  was hoped t h a t  i t  would become p o s s ib le  to d i f f e r e n t i a t e  between Precamb

r i a n  and Caledonian s t r u c t u r a l  e lem ents .

The study t h e r e f o r e  presents  an i n i t i a l  survey of  some o f  the a re a ,  

toga ther  w i th  a r e - e x a m in a t io n  and r e - i n t e r p r e t a t i o n  o f  the work done in 

o ther p a r ts  o f  the a rea .
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1 . 4 )  Methods of I n v e s t i g a t i o n .

Basic g eo lo g ica l  mapping was c a r r i e d  out on a sca le  of  1 :10 ,00 0  on par ts  

of the publ ished  Ordnance Survey sheets numbers NM8 8 SW : NM8 8 SE : NM98SE 

NN08SW : NM97NW : NM9/NE : NN07NW.

A e r i a l  photographs were a lso  used o c c a s io n a l ly  but these were not  found 

to be p a r t i c u l a r l y  u s e f u l .

Measurements of  j u n c t i o n s ,  bedding,  s c h i s t o s i t i e s , f o l i a t i o n s ,  minor 

f o ld  a x i a l  p lanes ,  minor f o l d  h inge l i n e s ,  minor fo l d  vergence and f a u l t

planes were p l o t t e d  d i r e c t l y  onto the f i e l d  s l i p s  in the f i e l d .  Other ob ser 

va t io n s  of f o l d  s t y l e ,  metamorphic c o n d i t i o n ,  sample l o c a l i t i e s  e t c .  were 

logged in f i e l d  notebooks.

A l l  measurements of the o r i e n t a t i o n  o f  p lan ar  and l i n e a r  elements were 

made using a S i l v a  15 TO CL compass. D i f f i c u l t i e s  were encountered in the

measurement of the plunge d i r e c t i o n  of  l i n e a r  elements on s t e e p ly  dipping

p lanes .  These were overcome using the techniques of  s te re og rap h ic  p r o je c t io n .

1 . 5 )  Degree of  exposure.

With the except io n  of  the f l o o r  o f  Glen Finnan and D r i m s a l l i e  f o r e s t  

the area is  very  w e l l  exposed. Exposures are r a r e l y  more than 50 m. apar t  

and in the west t h e r e  are areas where the exposure is  almost  t o t a l .

U n f o r t u n a t e ly  D r i m s a l l i e  f o r e s t  obscures some o f  the c r i t i c a l  ju n c t io n s  

of the Ardgour g r a n i t i c  gne iss ,and  a newly p lan ted  s t r i p  of  f o r e s t  west  

of Glenf innan v i l l a g e  w i l l  make access onto the h i l l s  of  Sgurr an Utha 

and Fraoch Bheinn more d i f f i c u l t  in the f u t u r e .
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C H A P T E R  2.  

Previous s t r a t i g r a p h i c a l  and s t r u c t u r a l  research

2.1  ) The Morar D i v i s i o n .

2 . 2 )  The Ardgour g r a n i t i c  g ne iss .

2 . 3 )  The Loch E i l  D i v i s i o n .

Concluding remarks.

2 . 1 )  The Morar D i v i s i o n .

This s ec t io n  records the development o f  ideas concerning the s t r a t i g r a p h y  

of the Morar D iv i s i o n  and the r e l a t i o n s h i p  o f  the Morar D iv is i o n  to the  

Glenf innan  D i v i s io n  f u r t h e r  e a s t .  Some d e t a i l  o f  the s t r u c t u r e s  invo lved  

is  included

In the e a r l y  1930 's  o f f i c e r s  of  the Geolog ica l  survey were engaged in  

mapping par ts  of Sheet  52 ( S u n a r t )  and Sheet 61 ( M a l l a i g )  ( Geological  

Survey of  Great  B r i t a i n  [ Scot land ] 1“ to 1 m i l e  ) .  Reports o f  t h e i r  f i n d 

ings (Richey e t  a l . l 9 3 0 ' s )  can be found in the Geo logica l  Survey o f  Great  

B r i t a i n  1931 -  1939. Summary o f  Pro gress ,  (West Highland D i v i s i o n ) .

The f i r s t  record o f  a rec o g n is a b le  s t r a t i g r a p h i c a l  succession w i t h in  

the psammitic and p e l i t i c  rocks in the Morar area is  repor ted  in the summary 

of progress 1935, p . 78.  In 1936 ( p . 74)  t h i s  sequence was termed the Morar  

Succession and cons is ted  o f :

(Youngest)  3)  Upper Psammit ic Group.

2)  S t r ip e d  and P e l i t i c  Group.

( O ld e s t )  3) Lower Psammitic Group.

This succession was r e p o r te d  as forming the o u te r  envelope af  a N-S 

major a n t i c l i n e ,  the core o f  which is  occupied by "much crumpled and fo lded  

sedimentary and igneous g n e is ses ,  d i s t i n c t  from the Morar Succession".

In 1938 ( p . 71) Dr .  Kennedy rep o r ted  t h a t  the rocks of  the lower (c o re )
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s e r ie s  conta ined  o v e r f o l d i n g  not present  in the upper (envelope)  ser ie s  

and he proposed th a t  the lower s e r ie s  be c a l l e d  "the Sub-Moine Series  of  

Morar".  The upper s t r a t i g r a p h i c a l  s e r ie s  was termed "the Moine Ser ies of  

Morar" and both s e r ie s  were included in the term "The Morar Succession".

In 1938 ( p . 71 & 72) Dr.  Simpson extended the mapping eastwards,  recording  

a psammitic u n i t  ( th e  Ardnish Psammit e )  which he c o r r e la t e d  with  the Upper 

Psammitic Group of  Morar .  He noted th a t  i t  passed eastwards in to  a b e l t  

of s t r i p e d  and p o l i t i c  s c h is t s  ( th e  L o c h a i lo r t  P e l i t e ) .

The f i r s t  g e o lo g ic a l  sketch map of  the Morar area was publ ished by Richey  

& Kennedy ( 1 9 3 9 ) .  I t  showed the r e g io n a l  e x te n t  of  the Moine Ser ie s  and 

the outcrop of the Sub-Moine S er ie s  in the core of the major  Morar a n t i c l i n e  

(see F i g . 4 ) .  The Moine S e r ies  was considered as having s u f f e r e d  l i t t l e  

or no d e s t r u c t i v e  deform at ion  and c o n ta in in g  abundant sedimentary s t r u c t u r e s  

whereas the Sub-Moine S er ies  was recognised as a h ig h ly  fo ld ed  complex 

of paragneisses and ortho gneisses  which r e t a i n  very few of t h e i r  o r i g i n a l  

sedimentary s t r u c t u r e s .

These two s e r ie s  "can u s u a l l y  be separated w ithout  d i f f i c u l t y  both in 

the f i e l d  and under the m ic ro s c o p e " ( p .2 7 ) .  Richey & Kennedy concluded th a t  

Sub-Moine rocks belong to a s e r i e s  o ld e r  than the Moine s c h is ts  f o r  the 

fo l lo w i n g  reasons.

1) There are recumbent fo l d s  in the Sub-Moine Ser ies  of  the core which 

are not found in the Moine S e r ie s  o f  the envelope.  I t  is argued t h a t  these  

fo ld s  are recumbent a n t i c l i n e s  which c lo se  to the east  ( c f .  Kennedy,1955) .

2)  In tense  crumpling is  c h a r a c t e r i s t i c  of  the Sub-Moine Ser ies  but not  

of the ad jacent  Moine S e r i e s .

3) The Moine and Sub-Moine rocks are in d i f f e r e n t  metamorphic s t a t e s .

4)  At a number of  places along the western l imb of  the Morar a n t i c l i n e  

the Lower Psammit ic Group a t  the base of  the Moine Ser ies  transgresses  

var ious members of  the Sub-Moine S e r i e s .  I t  i s  s ta te d  ( p . 43)  t h a t  th e re  

is no evidence f o r  t e c t o n i c  s l i d i n g  along t h i s  j u n c t i o n .

W h i ls t  t r y i n g  to  prep are the maps and memoirs on the One Inch Sheets  

61 & 52 MacGregor (1948 )  expressed doubts about some o f  the conclusions  

reached by Richey & Kennedy ( 1 9 3 9 ) .  Both he and Mr V . A . E y le s ,  mapping in 

the Loch nan Uamh area could f i n d  no mappable l i n e  to d e f in e  the base of  

the Moine S e r i e s .  He examined the c r i t e r i a  used by Richey & Kennedy to 

d i s t i n g u i s h  between the Sub-Moine and Moine S e r ie s '  and found t h a t  none 

of them was d ia g n o s t ic  of  e i t h e r  o f  the s e r i e s .  His observat ions  are summ

ar ised  below:

1) F a lse-bedd ing  can be found w i t h i n  u n i t s  o f  the Sub-Moine S er ies  and
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Figure 4.
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the Moine S e r i e s .

2 )  Although c a I c - s i 1i c a t e  r i b s  are not found in the Lower Psammitic 

Group and the lower p a r t  of  the S t r ip e d  and P e l i t i c  Group, " c a l c - s i 1ic a tes  

of Arn ipol  type" are found in both the Sub-Moine Series and the Lower Psamm- 

i t i c  Group and the Lower S t r ip e d  s ch is ts  of  the Moine S e r ie s .

3) The p ro por t io n  of  mica increases g ra d u a l ly  outwards from the base 

of the Sub-Moine S e r ie s .

4) Minor fo ld s  of  the same s t y l e  are found in both the Moine and Sub-

Moine S e r ie s .

5) Obl ique f o l i a t i o n s  can be found in both the Sub-Moine and the Moine 

S e r i e s .

6 ) The sutured quartz -mosaic  t e x tu re s  of the rocks in the Sub-Moine 

Series  decrease g r a d u a l ly  on passing southeastwards out o f  the Sub-Moine 

S e r i e s .

He concluded th a t  th e r e  is a p o s s i b i l i t y  th a t  a l l  the metamorphic "

Sub-Moine sediments of Morar c o n s t i t u t e  a lower p a r t  o f  the Moine Series  

associated w ith  hornblende o r th o gn e iss es" .

The d e s c r ip t io n  by MacGregor of a s t r a t i g r a p h i c a l  passage between the  

Sub-Moine Ser ies  and the Moine S er ies  caused Kennedy t o  re-examine the

area .  The r e s u l t s  of  h is  examinat ion were publ ished in 1955.  Kennedy con

cluded th a t  the lower p a r t  o f  the Moine Succession had been r e - d u p l i c a t e d  

w i t h in  the core of the Morar a n t i c l i n e .  The envelope of  the Moine Ser ies  

rocks ( th e  Morar nappe) had been d r iv e n  westwards over a broken autochthon

ous basement. The s t r a t i g r a p h y  of  the Sub-Moine Series was given as:

(Youngest)  3)  P e l i t i c  Group.

2)  Psammitic Group.

(O ld e s t )  1) Hornblende Group ( L e w is ia n ) .

The Psammit ic and P e l i t i c  Groups of  the core were c o r r e l a t e d  w it h  the  

Lower Psammitic Group and the lower p a r t  o f  the S t r ip ed  and P e l i t i c  Group 

of the Moine Succession r e s p e c t i v e l y .

The s t r u c t u r e  o f  the core was descr ibed  as a broken recumbent a n t i c l i n e  

overturned and c lo s in g  to  the west ( c f .  Richey & Kennedy,1939 ) .  This  

was ascribed to westward t h r u s t i n g  of  the envelope r e l a t i v e  to the core .

In a comparison o f  the s t r u c t u r e s  in Morar with those f u r t h e r  west in 

the Caledonian f o re la n d  area o f  Skye he c o r r e l a t e d  the recumbent f o l d i n g  

of the c r y s t a l l i n e  basement to g e th e r  with the o v e r ly in g  T o r r id o n ia n  and 

Cambro-Ordovician sediments o f  Skye with the recumbent f o l d i n g  and nappe 

formation in Morar .  This phase o f  de format ion had, t h e r e f o r e ,  to be post -  

Arenig in age. Kennedy c o r r e l a t e d  t h i s  phase of  deformation w ith  the mid-  

Ordovic ian  phase o f  deformat ion seen elsewhere in the SE Highlands o f  Scot 
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land.  He noted th a t  i t  was pre-metamorphic whereas the Moine t h r u s t  is  

post-metamorphic and thus subsequently assumed to be a l a t e  S i l u r i a n  s t r u c t 

ure .

Thus i t  is  seen t h a t  the nature  of  the Moine - Sub-Moine boundary was 

h ig h ly  e q u iv o c a l ,  Richey & Kennedy (1939)  had concluded t h a t  i t  was an 

unconformable j u n c t i o n ,  MacGregor (1948 )  s ta ted  t h a t  i t  could be s t r a t i g 

r ap h ic a l  and Kennedy (1955)  concluded t h a t  i t  was a t e c t o n ic  j u n c t i o n .

Lambert (1958 )  p o s tu la ted  t h a t  the Moine s c h is ts  of  Morar had been a f f 

ected by p rogress iv e  and subsequent r e t r o g r e s s i v e  metamorphisms. However, 

only the core s c h is t s  were considered to be a f f e c t e d ,  on a major  s c a le ,  

by t h i s  r e t r o g r e s s io n  and the outer  l i m i t  o f  re -work in g  was regarded as 

the core - envelope boundary which was described as t ra n s g re s s iv e  to l i t h o -  

lo g ic a l  boundar ies.

In 1964 Po w e l l ,  c o n s id e r in g  the area a t  the SE end of the Morar a n t i 

c l i n e  eastwards through the A rdnish ,  L o c h a i l o r t  and Loch E i l t  environs  

found th a t  the outermost u n i t  of  the Sub-Moine S e r i e s ,  which he termed 

the Beasdale P e l ' i t i c  Group, passed upwards s t r a t i g r a p h i c a l  l y  through the 

Lower Psammitic Group of  the Moine S e r ie s .  He gave these Groups loca l  names, 

the Loch nan Uamh P o l i t i c  Group and the Ardnish Psammitic Group r e s p e c t i v e l y  

( see F i g . 5 taken from P o w e l l , 1964)

To the eas t  o f  the Ardnish Psammitic Group he i d e n t i f i e d  a u n i t ,  the 

L o c h a i l o r t  P o l i t i c  Group, which he argued was younger than the Ardnish  

Psammitic Group and t h e r e f o r e  formed a f i f t h  group in the s t r a t i g r a p h i c a l  

succession.

He i d e n t i f i e d  a f o l d ,  the Glenshian synform, w i t h i n  the L o c h a i l o r t  P o l 

i t i c  Group which he b e l ie v e d  repeated the western succession to the east  

of i t s  c o re .  Passing eastwards through the L o c h a i l o r t  P o l i t i c  Group, the  

A r i e n i s k i l l  Psammit ic Group was c o r r e l a t e d  w it h  the Ardnish Psammitic Group. 

F u r th er  e as t  the A r i e n i s k i l l  P o l i t i c  Group was c o r r e l a t e d  wi th  the Loch 

Mama P o l i t i c  Group and in the extreme o f  his  area he c o r r e l a t e d  the Loch 

E i l t  Psammit ic Group w i th  the Loch nan Uamh Psammit ic Group (see F i g . 5 ) .

From the L o c h a i l o r t  P o l i t i c  Group eastwards the rocks are in the "Moine 

I n j e c t i o n  B e l t " .

In 1966 Powell publ ished the f i r s t  d e t a i l e d  evidence o f  the polyphase  

nature o f  the de format io n  in the SE Morar -  L o c h a i l o r t  a rea .  He s ta ted  

th a t  the Moine s c h is t s  had s u f f e re d  a t  l e a s t  f o u r  phases o f  f o l d i n g ;  fo ld s  

of the f i r s t  phase being ex t rem ely  d i f f i c u l t  to  recogn ise .  He reported  

major second phase and fo u r t h  phase f o ld s  w ith  NE-SW t ren d in g  a x i a l  p lanar  

t r a c e s .  Major  f o ld s  of  a t h i r d  phase were found to  be r e s t r i c t e d  to the  

west of  the area and represented  by open warps with  NW-SE t ren d in g  a x ia l
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p lanar  t r a c e s .  The temporal r e l a t i o n s h i p  between the recorded t h i r d  phase 

and fo u r t h  phase is d i f f i c u l t  to e s t a b l i s h  and Powell (pers .  comm.) would

now i n t e r p r e t  the t h i r d  phase as the f o u r t h  phase and vice  versa in t h i s

F-| to F  ̂ sequence.

Johnstone e t  a l . (1969 )  d iv id e d  the Moinian assemblage north of the Great  

Glen f a u l t  in t o  th ree  major  d i v i s i o n s .  The o ld e s t  rocks in the west were 

now termed the Morar D i v i s i o n ,  succeeded eastwards by the Glenf innan D iv 

i s i o n ,  in tu rn  succeeded eastwards by the Loch E i l  D i v is io n .

W hi ls t  accept ing  t h a t  the L o c h a i l o r t  P e l i t i c  Group is a t  a higher  s t r a t 

ig r a p h ic a l  le v e l  than the Ardnish Psammite  (Upper Morar Psammitic Group),  

Johnstone e t  a t .  s ta te d  t h a t  "the ju n c t i o n  is marked a t  l e a s t  l o c a l l y ,  by 

a s l i d e  ( p . 1 6 1 )" .  The L o c h a i l o r t  P o l i t i c  Group was grouped w i t h in  the Glen

f innan  D i v i s io n  w i th  which i t  shares c e r t a i n  l i t h o l o g i c a l  c h a r a c t e r i s t i c s .

Working in the K inloch Hourn area o f  NE Knoydart ,  Tanner (1797)  es tab 

l ished  two successions,  a Runiva l  succession which he c o r r e l a t e d  w ith  par t

of the Morar D i v i s i o n ,  and a K in loch  Hourn succession which he c o r r e l a t e d  

with  the G lenf in nan D i v i s i o n .  He noted t h a t  the j u n c t i o n  between these

two successions was in p laces occupied by small pips of Lewis ianoid  rocks

and th a t  the Runival  succession "younged" upwards in to  t h i s  j u n c t i o n .  Con

sequent ly he argued the ju n c t i o n  must be t e c t o n ic  in o r i g i n  and he termed 

i t  the Sgurr  Beag s l i d e .  Tanner noted t h a t  t h i s  j u n c t i o n  can be traced 16 

km. southwestwards towards Loch E i l t .

As c a t a c l a s t i c  t e x t u r e s  were not  found anywhere along the s l i d e  zone 

he concluded t h a t  movement occurred when the d u c t i l i t y  o f  both basement 

and cover had been c o n s i d e r a b l y  enhanced. S t r u c t u r a l  c o n s id era t io n s  led

him to conclude t h a t  the s l i d e  movement occurred during the second fo l d in g  

episode although he noted the presence of  two sep ara te  p r e - F 2  f o l d i n g  e p i s 

o d e s . ( T h e  s t r u c t u r a l  age o f  the Sgurr  Beag s l i d e  is  considered in more

d e t a i l  in Chapter 7 ) .

Working on al loch thonous i n l i e r s  of  Lewisian  w i t h in  the Moine succession  

Rathbone & H a r r i s  ( 1 9 7 9 ) ,  used s t r a i n  i n d i c a t o r s  to e s t a b l i s h  q u a l i t a t i v e  

s t r a i n  s t a t e s  ad jacent  to  the Sgurr  Beag s l i d e  in severa l  a reas .  They r e p 

or ted  t h a t  high s t r a i n  is  i n d i c a t e d  by loss o f  sedimentary s t ru c tu r e s  in 

psammit e s ,  an increase  in the p ro p o r t io n  of platy psammites, the t i g h t e n i n g  of 

minor f o l d s ,  a r e - o r i e n t a t i o n  o f  q u a r tz  veins and a red u ct io n  o f  g ra in  

s i z e .

In Glen Sh ie l  and Garve in n o r th ern  In v e r n e s s - s h i r e  the presence o f  

Lewisian i n l i e r s  along the  s l i d e  perm it  the in fe ren ce  t h a t  the high s t r a i n  

zones are a lso  t e c t o n i c  s l i d e s .  In the L o c h a i l o r t  area they demonstrated  

high s t r a i n  along the j u n c t i o n  o f  the Ardnish Psammitic Group and the Loch-



34

d i l o r t  P e l l  t i c  Group but as Lewisian pods are not present  along t h is  j u n c t 

ion they made the assumption t h a t  the j u n c t io n  is a t e c to n ic  break (or  

s l i d e )  as wel l  as a zone of high s t r a i n .

2 . 2 )  The Ardgour g r a n i t i c  gneiss .

In t h i s  s ec t io n  the development of  ideas concerning the n a tu re ,  o r i g i n ,  

s t r a t i g r a p h i c a l  p o s i t i o n ,  e x t e n t ,  s t r u c t u r e  and metamorphism of the Ardgour  

g r a n i t i c  gneiss w i l l  be examined. The abso lute  age of the Ardgour g r a n i t i c  

gneiss w i l l  be cons idered in Chapter  3.

The gneiss was f i r s t  recognised in the S t r o n t i a n  area by Peach & Wilson 

( 1 9 0 4 ) ,  who descr ibed  i t  as a f o l i a t e d  g r a n i t e  or augen gneiss comparable 

to the p re -o ro g en ic  Inchbae augen gneiss of  R o s s -s h i r e .  The gneiss was 

shown as "augen gne iss ,  Sgurr Dhomhnui l l" on Sheet 53 (1" to 1 m i l e )  pub

l ished  by the Geo lo g ica l  Survey in 1948.

Leedal (1952)  t raced the outcrop o f  the "Acid orthogneiss  and r e l a t e d  

i n j e c t i o n  gneiss of  Sgurr Dhomhnui l l" from the northern  end of  the Morvern-  

S t r o n t i a n  complex nor theastwards through western Ardgour and f u r t h e r  n o r t h 

eastwards to nor th  of  the C lu a n ie  Complex (see F i g . 6 , taken from L e e d a l , 1952 

p . 3 8 ) . He noted t h a t  t h i s  l i n e  o f  d iscont inuous  outcrops d iv id ed  a "h igh ly  

i n c l in e d "  b e l t  o f  s t r i p e d  and p e l i t i c  rocks in the west from a " f l a t  b e l t "  

composed of  psammites in the e a s t .  He emphasised " t h a t  t h i s  outcrop l i n e  

does not mark a cont inuous t e c t o n i c  s t r u c t u r e " ( p . 3 7 ) .  He c o r r e l a t e d  the 

psammites east  o f  t h i s  d iscont inuous  l i n e  w ith the Upper Psammitic Group 

of Morar.

Harry (1953 )  publ ished the f i r s t  d e t a i l e d  p e t ro g rap h ic a l  and p e t r o g e n e t ic  

study of  the gneiss and n o t in g  t h a t  the "augen g n e iss ,  Sgurr Dhomhnuil l" 

does not outcrop on the summit o f  Sgurr  Dhomhnuil l ,  he renamed i t  *' the 

composite g r a n i t i c  gneiss o f  western Ardgour.  He noted th a t  the composite 

g r a n i t i c  gneiss outcroped w i t h i n  the o l ig o c l a s e  -  b i o t i t e  -  quar tz  gneisses  

(o therw is e  r e f e r r e d  to as the r e g io n a l  i n j e c t i o n  gneisses)  and to the west 

of a wide b e l t  o f  psammites which he c o r r e l a t e d  with the Upper Psammitic 

Group of  the Morar success ion .  The gneisses ,  which he c o r r e l a t e d  with  

the S t r ip e d  and Pel i t i c  Group o f  Morar ,  thus have to occupy the core of  

a major a n t i c l i n e . .

According to H a r ry ,  the composite g r a n i t i c  gneiss contains q u a r t z ,  m ic ro -
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d i n e ,  o l i g o c l a s e  and b i o t i t e  and i t  develops su b -o rd in a te  amounts of  augen- 

gneiss due to growth of  m i c r o c l in e  p o rp h y r o b la s t s . The composite g r a n i t i c  

gneiss and i t s  augen f a c i e s  pass in s e n s ib ly  and i r r e g u l a r l y  in to  adjacent  

r e g i o n a l l y  developed o l i g o c la s e  -  b i o t i t e  -  q u a r tz  gneisses.

He argued t h a t  the o l i g o c l a s e  -  b i o t i t e  - q u ar tz  gneisses formed from 

p e l i t i c  s c h is t s  by f e l d s p a t h i s a t i o n (  the metasomatic in t ro d u c t io n  of  Na, 

Ca, Mg ) .  This f r o n t  of  f e l d s p a t h i s a t i o n  was fo l lowed  by a f r o n t  of s i l i c a -  

potash metasomatism which converted some of  the o l i g o c la s e  -  b i o t i t e  - 

q uar tz  gneiss in to  composite g r a n i t i c  gne iss .  He s ta te s  th a t  " there  is  

good reason to b e l i e v e  t h a t  in Ardgour the g r a n i t i c  gneiss is a replacement 

t h a t  never became separated from i t s  roots  to form an independent, f a r  

t r a v e l l e d  i n t r u s i v e  body" ( H a r r y , 195 3 .p . 3 0 3 ) .

H a r r y 's  evidence th a t  soda metasomatism produced the o l ig o c la s e  -  b i o t i t e  

q uar tz  gneiss from p o l i t i c  Moine s c h i s t s  is based on a comparison of  two 

specimens of  normal p o l i t i c  Moine s c h i s t s  aga in s t  h is  analyses of the 

gne isses .  However B u t l e r  (1965)  publ ished  analyses of  22 p o l i t i c  rocks 

from Ardnamurchan and s t a t e s  t h a t  these p e l i tes are e s s e n t i a l l y  isochemical  

w it h  the r e g i o n a l l y  i n j e c t e d  ( p o l i t i c )  gne isses.

Whi le mapping the area e a s t  o f  Loch Duich on the west co as t ,  C l i f f o r d  

(1957 )  p o s tu la te d  the e x is t e n c e  o f  a nappe s t r u c t u r e  which he termed the 

K i n t a i l  K l i p p e .  In searching f o r  a ro o t  zone f o r  t h i s  nappe he noted c e r t a i n  

p e t r o l o g i c a l  s i m i l a r i t i e s  between some of  the rocks in the nappe and the  

or thogneisses  and i n j e c t i o n  gneisses found in the Loch Arkaig d i s t r i c t  

which are cont iguous w ith  the composite g r a n i t i c  gneiss of  western Ardgour,  

f u r t h e r  south.  He noted t h a t  the j u n c t i o n  between the " h ig h ly  in c l in e d "  

b e l t  and the " f l a t "  b e l t  was a ls o  the ea s te rn  l i m i t  o f  in tense  reg iona l  

i n j e c t i o n  and permeat ion in the Moine.  He termed t h is  j u n c t io n  the "Loch 

Quoich l i n e " .

D a l z i e l  & Johnson (1963)  examined the s t r u c t u r a l  s e t t i n g  of  the g r a n i t i c  

gneiss and t r i e d  to e s t a b l i s h  i t s  age in r e l a t i o n  to the s t r u c t u r e s  w i t h i n  

the gneiss and the surrounding metasediments ( th e y  emphasise t h a t  t h e i r  

use o f  the terms g r a n i t i c  gneiss and metasediment was merely  a convenience;  

they did  not  wish to imply n e c e s s a r i l y  t h a t  the g r a n i t i c  gneiss precursor  

was a g r a n i t e .  Using such c r i t e r i a  as rodding o f  quartzo  -  f e l d s p a t h i c  

m a t e r i a l ,  v e in in g  along f o l d  a x ia l  p lan es ,  f o l d i n g  o f  m ig m a t i t i c  veins  

and c r y s t a l l o g r a p h i c  o r i e n t a t i o n  o f  m in e r a ls :  these authors attempted to  

analyse the chronology of  the events r e l a t i n g  to  the genera t ion  o f  the 

g r a n i t i c  gneiss and i t s  subsequent d eform at io na l  h i s t o r y .

On a l a r g e r  sc a le  they concluded t h a t  the f o l i a t i o n  o f  the gneiss had
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been fo ld ed  by major F 3  f o l d s .  They noted th a t  the gneiss contains numerous 

fo ld s  which they c o r r e l a t e d  with F2  fo ld s  in the metasediments, wherein  

they f o l d  m ic r o c l in e  bearing pegmat i tes .  The main f o l i a t i o n  of  the gneiss  

was noted to be a x i a l  p lan ar  to these fo ld s  and in zones of  strong (D2 ) 

deformation the pegmati tes are very nea r ly  c o -p la n a r  to the a x ia l  planes 

of the F 2  f o l d s .  They concluded t h a t  the pegmati tes are p r e -  or e a r l y  F2  

in age. In some places a f o l i a t i o n  in the gneiss is seen to  be fo lded  round 

the cores of  F2  fo lds  and thus they argued t h a t  the gneiss conta ins at  

l e a s t  two f o l i a t i o n s ;  p r e - F 2  , and s y n -F 2  .

In conclus ion D a l z i e l  & Johnson favoured an o r i g i n  f o r  the g r a n i t i c  

gneiss in vo lv in g  m ig m at is a t io n  o f  the limbs of  a pr imary F̂  nappe which

was subsequently fo lded  in t o  major  F 2  f o l d s .

D a l z i e l  (1963b)  examined z i rc o n s  from the g r a n i t i c  gneiss and compared 

them to z i rco n s  from the surrounding metasediments, the S t r o n t i a n  Gran ite  

and the orthogne isses of  Cam Chuinneag and Inchbae.

In comparison to those in the surrounding metasediments the g r a n i t i c  

gneiss z i rco n s  are s l i g h t l y  less rounded, have more outgrowths and o v e r 

growths and d i f f e r e n t  e l o n g a t i o n -  and le n g t h - f r e q u e n c i e s .  The Cam Chuinneag 

and Inchbae mass, which D a l z i e l  accepted as a pre-metamorphic magmatic 

i n t r u s i o n ,  conta in s  z i rc o n s  which are main ly  euhedral  and have not been 

rounded dur ing the subsequent deformat ion and metamorphism. D a l z i e l  con

cluded t h a t  the Ardgour gneiss is  not a pre-metamorphic magmatic g r a n i t e ,  

r a t h e r  i t  formed by m i g m a t i t i c  processes from Moine metasediments.  The 

s l i g h t  d i f f e r e n c e s  in the morphology of  z i rco n s  in the g r a n i t i c  gneiss

and metasediments he a t t r i b u t e d  to  e i t h e r  i n i t i a l  source d i f f e r e n c e s  or 

to s l i g h t  outgrowths and overgrowths onto o r i g i n a l  metasedimentary z i rc o n  

g r a in s .

D a l z i e l  (1966)  reviewed the s t r a t i g r a p h i c a l  p o s i t io n  of  the Ardgour  

g n e is s ,  no t in g  t h a t  the gneiss occupies the same hor izon as the Beinn an

Tuim Striped group in the area immediately  n o r th eas t  o f  Glenf innan v i l l a g e .  

He e s ta b l is h e d  a local  s t r u c t u r a l  success io n ,g iv en  below;

(H ig h e s t )  3)  Glen Garvan Psammitic Group.

2 )  Druim na S a i l l e  P e l i t i c  Group.

(Lowest)  1) Beinn an Tuim S t r i p e d  Group.

Previous workers ( L e e d a l , 1 9 5 2 ; H a r r y , 1953) had c o r r e la t e d  the Glen Garvan 

Psammitic Group w i th  the Upper Psammitic Group o f  Morar and consequently  

the Druim na S a i l l e  P e l i t i c  Group and the Beinn an Tuim S t r ip e d  Group were 

c o r r e l a t e d  w ith  the S t r i p e d  and P e l i t i c  Group o f  Morar .  D a l z i e l  compared

s t r a t i g r a p h i c a l  th icknesses and noted t h a t  the Druim na S a i l l e  P e l i t i c
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Group and the Beinn an Tuim S t r ip ed  Group f r e q u e n t l y  contain amphibol i te  

bands and lenses,  as does the L o c h a i l o r t  P e l i t i c  Group but not the rocks 

of the Morar succession,  he t h e r e f o r e  proposed a c o r r e l a t i o n  of the Loch

a i l o r t  P e l i t i c  Group w ith  the Beinn an Tuim S t r ip ed  Group and perhaps also  

the Druim na S a i l l e  P e l i t i c  Group. An outcome of t h i s  c o r r e l a t i o n  is to  

place the Glen Garvan Psammitic Group s t r a t i g r a p h i c a l l y  higher than the 

e n t i r e  Morar and L o c h a i l o r t  Succession (see F i g . 7, a f t e r  D a l z i e l , 1 9 6 6 ) .

D a l z i e l  a lso  summarised the s t r u c t u r a l  geology of  the g r a n i t i c  gneiss 

and i t s  surrounding metasediments.  He s ta ted  t h a t  the g r a n i t i c  gneiss and 

the associated metasediments had been a f f e c t e d  by four  p r i n c i p a l  f o l d  e p i s 

odes termed F  ̂ to F^ , w ith  the development of  major fo ld s  of  F2  and F3  

age. D a l z i e l  noted t h a t  the c e n t r a l  outcrop of  g r a n i t i c  gneiss ,  Beinn an 

Tuim S t r ip e d  Group and Druim na S a i l l e  P e l i t i c  Group is  f lanked  on both 

sides by the Glen Garvan Psammitic Group i n d i c a t i n g  t h a t  the c e n t r a l  b e l t  

l i e s  in the core of  a major a n t i c l i n e .  On both sides of  the c e n t r a l  b e l t  

major F 2 synforms (and s y n c l i n e s )  were mapped. In the c e n t r a l  b e l t  the 

F 2  fo ld s  are much t i g h t e r  and more v a r i a b l e  in o r i e n t a t i o n .  The plunge 

of t h e i r  axes f r e q u e n t l y  swings through v e r t i c a l ,  w ith  an t i fo rm s  t u rn in g  

in to  synforms along the a x i a l  plane t r a c e .  D a l z i e l  a t t r i b u t e d  the f o l d  

v a r i a b i l i t y  to l i t h o l o g i c a l  co n t ro l  -  a mobi le  p e l i t i c  and m ig m a t i t i c  core  

being surrounded by massive r i g i d  psammites.

W ith in  the g r a n i t i c  gneiss the s trong S 2  f o l i a t i o n  has l a r g e l y  o b l i t e r 

ated any p r e - e x i s t i n g  Sg-S^ f o l i a t i o n ,  so t h a t  the geometry of  the major  

fo lds  in the c e n t r a l  b e l t  i s ,  o f  n e c c e s s i t y ,  based on in fe rences  and e x t r a 

p o l a t i o n s .  F ig ure  8  ( taken  from D a l z i e l , 1 9 6 6 . p . 142) shows the d i s t r i b u t i o n  

of l i t h o l o g i e s  and the p o s i t i o n  of  major  F 2  fo ld s  in the Glenf innan  area

In an unpubl ished geochemical and m in e r a lo g ic a l  study of  the g r a n i t i c  

gneiss of  western Ardgour,  Gould (1966 )  at tempted to d iscover the o r i g i n  

of the g r a n i t i c  gne iss .

He s t a t e d  t h a t  the composit ion o f  the g r a n i t i c  gneiss is very s i m i l a r  

to the e u t e c t i c  p o in t  in  a NaAlS i3 ÜQ -  KAlSi 3 0 g -  S i 0 2  -  H2 O system at  

PH2 O 5Kb. This e u t e c t i c  would have a m e l t in g  temperature of  660°c -  670°c .  

The s i m i l a r i t y  in composit ion o f  the g r a n i t i c  gneiss and the e u t e c t i c  he 

took as evidence t h a t  the source m a t e r i a l  did not get  very much h o t t e r  

than the minimum m elt  composit ion and t h a t  on ly small percentages o f  p a r t i a l  

melt  were produced.

Gould examined D a l z i e l ' s  conclusions concerning z i rcon  popula t ions ( D a l z 

i e l  , 1963b,see a b o v e ) , t h a t  the g r a n i t i c  gneiss had never been through a 

magmatic stage and po in ted out  t h a t  z i rco n s  i n h e r i t e d  from a metasediment

ary host ,  may have remained almost  in s o l u b l e  in a low temperature a n a t e c t ic
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41

me 1 1 .

Gould's f i n a l  hypothesis involved the in t r u s io n  of  t h in  veins or s i l l s  

of g r a n i t i c  of g r a n i t i c  l i q u i d  in to  the top of  the Beinn an Tuim S t r iped  

Group fo l lowed by p a r t i a l  homogenisation dur ing subsequent episodes of  

fo ld i n g  and metamorphism. To f i t  the s t r u c t u r a l  evidence presented by D a l 

z i e l  (1963a,  1966) the in t ru s io n s  have to be p r e - p 2  in age.

2 . 3 )  The Loch E i l  D i v i s i o n .

This sec t io n  reviews the r e l a t i v e l y  small amount of  work which has been 

done on the Loch E i l  D iv i s i o n  rocks in the Loch E i l - G l e n f in n a n  area and 

also work from o th e r  areas which i n d i r e c t l y  has a bear ing on the geo lo g ica l  

h i s t o r y  of  the Loch E i l t - L o c h  E i l  a rea .

Drever (1940)  mapped the Glen Scaddle complex of  Ardgour,  near Loch 

Linnhe (see F i g . 6 ) and concluded t h a t  the Glen Scaddle complex in truded  

a sequence of  l imestones and p e l i tes which r e s t  d i s c o r d a n t ly  on normal 

Moine g r a n u l i t e s  (= Loch E i l  D i v i s i o n ) .  He noted th a t  the g r a n u l i t e s ,  away 

from the aureo le  e f f e c t s  of  the i n t r u s i v e  complex, conta in  r a r e  p e l i t i c  

gneisses w ith  f i b r o l i t i c  s i l l i m a n i t e .  C a l c - s i 1i c a t e  bands associa ted with  

the " g r a n u l i t e s "  are composed of bas ic p l a g i o c l a s e ,  q u a r t z ,  pyroxene or  

hornblende and some g a r n e t .  Both of  these observat ions  i n d i c a t e  t h a t  the  

rocks have undergone high grade metamorphism.

I t  has a l r e a d y  been noted th a t  Leedal  (1952)  drew a map showing the 

ex ten t  of  the " f l a t "  b e l t  e a s t  of  the " h ig h ly  in c l in e d "  b e l t ,  n o t in g  t h a t  

the " f l a t "  b e l t  was composed of  psammites which he c o r r e l a t e d  w ith  the  

Upper Psammitic Group of  Morar ,  a c o r r e l a t i o n  r e i t e r a t e d  by Harry (1953)  

and C l i f f o r d  ( 1 9 5 7 ) .  C l i f f o r d  f i r s t  used the term "Loch Quoich l i n e "  to  

describe  the ju n c t i o n  between these " f l a t "  and "h ig h ly  in c l i n e d "  b e l t s .

H.M Geolog ica l  Survey r e p o r t s  p e r t a i n i n g  to Sheet 62 (Loch E i l )  were 

publ ished in Summ.Proc.Geo1 .Survey (Law r ie  e t  a l , 1954-1964)  and are here  

summarised: I t  was noted t h a t  the broad b e l t  o f  f l a g g y  psammitic g r a n u l i t e s  

with  moderate e a s t e r l y  dips  s t r u c t u r a l l y  o v e r l i e  the G lenf innan  I n j e c t i o n  

zone on i t s  eas te rn  s ide (Sum .P roc .Geol .Surv .  f o r  1954 p . 4 8 ) .  The psammitic  

g r a n u l i t e  b e l t  is  in genera l  separated from the gneisses to the west by 

a zone of  i n j e c t i o n  p e l i te  w i th  psammitic i n t e r c a l a t i o n s .  L o c a l l y  the gneiss  

is  in d i r e c t  contac t  w i th  the g r a n u l i t e  b e l t ; " t h e r e  is no evidence to in d -
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ic a te  th a t  the gneiss cuts across the marginal s c h i s t / g r a n u l i te zone l i k e  

an i n t r u s i v e  igneous rock" ( f o r  1 9 5 5 ,p . 4 8 ) .  In the psammitic g r a n u l i t e s  

an e a r l y  phase of recumbent fo ld s  was fo l lo wed by near n o r t h e r ly  or  south

e r l y  g en t ly  plunging hinge l in e s  and a set  o f  open fo ld s  with eas t -west  

axes .

I t  has a l rea dy  been noted th a t  D a l z i e l  (1966)  rev ised  the c o r r e l a t i o n s  

of the Loch E i l  D iv i s i o n  w i th  the Upper Psammitic Group of  Morar ,  p lac ing

the Glen Garvan Psammi te  ( th e  base of  the Loch E i l  D i v i s i o n )  above the

L o c h a i l o r t  P e l i t i c  Group and the Glenf innan D i v i s i o n .  He regarded the succ

ession as s t r a t i g r a p h i c a l  and. im p o r t a n t ly  in the present  c o n t e x t ,  recog

nised the same deformation sequences in the Glen Garvan Psammitic Group

and in the g r a n i t i c  gneisses e t c .

In c o n t r a s t  Lambert e t  a l . ( 1 9 7 9 )  c la imed th a t  the s t r u c t u r a l  h is t o r y

of the Loch E i l  D iv i s i o n  was s im ple r  than th a t  of  the Glenf innan and Morar 

D iv is io n s  which have been a f f e c t e d  by a "Morar ian (1000 to 750 Ma.)  event" .  

They f u r t h e r  c laimed t h a t  c a l c - s i 1i c a t e  lenses in the Loch E i l  D iv is io n

show n e g l i g i b l e  r e t r o g r e s s i v e  e f f e c t s .  Thus they concluded th a t  the Loch 

E i l  D iv is io n  is po s t -M o ra r ian  (1000 -75 0  Ma.)  and pre-Grampian.  In a d d i t io n  

they c o r r e l a t e d  the Loch E i l  D iv i s io n  w ith  the Grampian Group ( H a r r i s  e t  

a l . 1 9 7 5 )  eas t  of  the Great  Glen f a u l t .

Without  d e t a i l e d  e v id en ce ,  Lambert e t  a l . ( 1 9 7 9 )  claimed th a t  the s im p l 

es t  ex p lan a t io n  o f  these " f a c t s "  is  to cons ider  the Loch E i l  D i v is io n  as

unconformable on e a r l i e r  metamorphosed G lenf innan D i v i s i o n .

Piaseck i  & van Breemen (1979 )  d iv id e d  the C ent ra l  Highland G ra n u l i te s

ly in g  eas t  of  the Great  Glen f a u l t  in t o  two major  u n i t s ;  a lower Central  

Highland D i v is io n  composed of  gneissose rocks and an upper Grampian Group

of younger metasediments.  The two D iv is i o n s  are described as separated

by a t e c t o n ic  break ( t h e  Grampian S l i d e )  and as having d i f f e r e n t  metamorphic 

and s t r u c t u r a l  h i s t o r i e s .  The d i v i s i o n s  correspond r e s p e c t i v e l y  to a base

ment complex and a cover sequence.

P iaseck i  & van Breemen attempted r e g io n a l  c o r r e l a t i o n s  of these u n i ts

based on l i t h o l o g i c a l  s i m i l a r i t i e s .  The basement complex (C ent ra l  Highland

D i v i s i o n ) ,  they c o r r e l a t e d  w it h  the G len f innan  D iv is io n  and the cover seq

uence ( th e  Grampian Group) w it h  both the Morar and Loch E i l  D i v i s i o n s .  

Such c o r r e l a t i o n s  r e q u i r e ,  in the Glen f innan -Loch  E i l  a rea ,  the "Loch Quoich 

l i n e "  to be a t e c t o n i c  break s e p a r a t in g  d i v i s i o n s  w it h  d i f f e r e n t  s t r u c t u r a l  

and metamorphic h i s t o r i e s .

Strachan (1982)  in mapping the area  around the head of  Loch E i l  d iv id ed  

the rocks near the base o f  the Loch E i l  D i v is i o n  in to  a number o f  fo r m a t 

ions which vary in th ickness  across s t r i k e ;  a v a r i a t i o n  which he a t t r i b u t e d
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to complex tectonic  s l id in g  during an e ar ly  deformation event. Rocks 

on both sides of th is  s l id e  zone have subsequently undergone the same t e c t 

onic h is to ry .  Subsequently Strachan (1985) presented an o u t l ine  of the 

l i tho logy  and s truc ture  of the Loch Ei l  Div ision in the Ardgour-Loch E i l -  

Loch Arkaig area,  in which he considered the e f fe c ts  of s l id in g  to be neg

l i g i b l e .  He mapped sub-recumbent minor and F 2 folds and believed them 

to be of Precambrian ( G ren v i l le  ) age. Caledonian re-working produced 

upright D 3 to Dg st ructures in the area,  with upright N-S trending major 

F  ̂ folds being the dominant s t ruc tu res .  He bel ieved that the more intense  

D/  ̂ deformation w i th in  the Glenfinnan Div is ion fu r th e r  west produced the 

"steep" ( i e .  highly  in c l in ed )  b e l t .

Concluding remarks.

Previous s t r a t i g r a p h i c a l  and s t r u c t u r a l  research has e s ta b l is h e d  an 

E-W t r i p a r t i t e  d i v i s i o n  o f  the Moine Succession.  A loca l  s t r a t i g r a p h i c a l  

succession has been e s t a b l is h e d  w i t h i n  the western Morar D i v i s i o n ,  but  

not w i t h in  the c e n t r a l  G lenf innan or  eas tern  Loch E i l  D i v i s i o n s .  D i r e c t  

s t r a t i g r a p h i c a l  c o r r e l a t i o n s  between the th ree  d i v i s i o n s  cannot be made.

The j u n c t i o n  between the Morar and G lenf innan  D iv is io n s  has been e s t a b 

l ished  as t e c t o n ic  and termed the Sgurr Beag s l i d e .  I t s  age r e l a t i v e  to  

the s t r u c t u r a l  e v o lu t i o n  of  the ad ja cent  d iv i s i o n s  has not been e s t a b l i s h e d .  

The Glenf innan-Loch  E i l  D i v i s i o n  boundary is most probably a s t r a t i g r a p h 

ica l  j u n c t io n  al though i n d i r e c t  c o r r e l a t i o n s  have been used to suggest  

th a t  the j u n c t i o n  should have a basement/cover r e l a t i o n s h i p .

The o r i g i n  of  the Ardgour g r a n i t i c  gneiss and i t s  p re c ise  s t r u c t u r a l  

s e t t i n g  has not y e t  been e s t a b l i s h e d .
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C H A P T E R  3. 

Previous Geochronological  Research.

3 . 1 )  Rubidium-St ront ium h a l f - l i f e  values

3 . 2 )  Previous research .

3 . 1 )  Rubidium-St ront ium h a l f - l i f e  v a lues .

In the l a s t  twenty years the accepted va lu e  f o r  the decay constant  of  

Rb has changed. The va lue  used f o r  the constant  in the papers quoted in 

t h i s  ch ap ter  are l i s t e d  below.

G i l e t t i  e t  a l . ( 1 9 6 1 )  quoted a h a l f - l i f e  o f  ®^Rb of  4 .7  x 10^® y r .  (or  

)^?Rb=1.47 X 10"̂  ̂ y ^ l ) .  Long & Lambert (1963 )  used X®^Rb=1.47 x 10*^'yr"^ 

but they rev ise d  a Sr sp ike c a l i b r a t i o n  and changed 22 of  the 77 Rb/Sr  

ages quoted by G i l e t t i  e t  a l . ( 1 9 6 1 )  downwards by 2.5%. The on ly  value r e l 

evant to t h i s  summary which was changed was 740^25 Ma. to  720±25 Ma. A 

f u l l  l i s t  o f  the changes is given in Long & Lambert ( 1 9 6 3 , p . 2 4 5 . Appendix 

c ) .  Van Breemen e t  a l . ( 1 9 7 4 ) .  Brook e t  a l . ( 1 9 7 6 )  and Brook e t  a l . ( 1 9 7 7 )  

used A®^Rb=1.39 x lOT^^yr\  Van Breemen e t  a l . ( 1 9 7 8 )  c a l c u la t e d  or  r e - c a l c 

u la ted  a l l  the ages given in t h i s  paper using the value f o r  the decay const 

ant recommended by S t e i g e r  & Jager (1977)  of  Xf^Rb=1.42 x 1 0 " l \ r l .

Subsequently Brewer e t  a l . ( 1 9 7 9 ) ,  A f t a l i o n  & van Breemen (1980)  and 

Powell e t  a l . ( 1 9 8 3 )  have used X®^Rb=1.42 x

3 .2  Previous rese ar ch .

Since the e a r l i e s t  g e o lo g ica l  work in the NW Highlands,  the age e q u iv 

alence and metamorphic h i s t o r y  o f  the Moine s ch is ts  has always been a source 

of debate.



45

I t  has been suggested th a t  the Moine sch is ts  may be p a r t  o f  the Lower 

Palaeozoic succession,  metamorphosed during the Caledonian orogeny (F ro d in ,  

1922) .  A l t e r n a t i v e l y  the Moine se r ie s  may comprise Precambrian sediments 

metamorphosed e i t h e r  during a Precambrian orogeny (J.Horne in Peach & Horne,  

193Ü.p , 200-1 )  or during the Caledonian orogeny ( B a i l e y , 1950) or during  

both (R ea d ,1 9 3 4 .p 308) .  They have been considered as e q u iva len ts  of  the 

Torr id on ia n  sediments of the fo re la n d  region (P e a c h ,1892,1913.  B a i l e y , 1950.  

p . 235 -6 )  and indeed sedimentary e q u iva len ts  of  the Lewisian gneisses(Barrow,  

1925 in d iscussion of  T i l  l e y , 1925 ) .

V i r t u a l l y  a l l  permutat ions of these p o s s i b i l i t i e s  have been suggested 

at  some time ( f o r  a shor t  summary see Ph i l  l i p s , 1951) .

Towards the end of the pe r iod  be fore  the a p p l i c a t i o n  o f  techniques of  

i so top ic  d a t in g  the m a j o r i t y  of workers favoured a Caledonian age f o r  the 

metamorphism of  the Moine sediments (eg.  B a i l e y ( 1 9 5 0 ) ,Kennedy(1 9 5 5 ) , Ramsay 

( 1 9 6 3 ) ,  Sutton & Watson(1953 ) ,  Read(1934)  )

The f i r s t  publ ished is o to p ic  dates from the Moine s ch is ts  were presented  

by G i l e t t i  e t  a 1 . ( 1 9 6 1 ) .  Ages from b i o t i t e s  in Moine metasediments ( using  

both Rb/Sr and K/Ar techniques)  lay  in the range from 43 5 i  10 Ma. to 405± 

10 Ma. ,  i n d i c a t i n g  t h a t  metamorphism of  the Moine rocks occurred during  

the S i l u r i a n  or e a r l y  Devonian ( according to the t ime scales of  Ku lp (1959)  

and Holmes(1960) ) .

Rb/Sr ages from moscovites in pegmati tes from Knoydart and North Morar  

gave ages in the range 7 4 0 : 2 5  Ma. to 665:  15 Ma. and these analyses were 

in t e r p r e t e d  as r e l i c t  ages of the pegmat i tes .  As the pegmati tes ap p aren t ly  

are not r e l a t e d  to any o th er  major  igneous in t ru s io n s  i t  was assumed t h a t  

they were produced by a Precambrian r eg io n a l  metamorphism of  an age g r e a t e r  

than 740 Ma.

Long & L am b er t (1963) g e n e r a l l y  conf irmed and e la b o ra te d  on the r e s u l t s  

of G i l e t t i  e t  a t . ( 1 9 6 1 ) .  They reduced s l i g h t l y  the age of  the l a t e - C a l e d -  

onian r e c r y s t a l l i s a t i o n  from 4 1 5 : 1 5  Ma. to 390 M a . , an age which they noted 

is in agreement w ith  the ages of  390:5 Ma. found in the Caledonian g r a n i t e s  

of the Southern Uplands and the Lake D i s t r i c t .

Pegmati te  m ineral  ages (Long & L a m b e r t ,p .288)  ranging from 7 4 0 : 1 5  Ma. 

to 365:10  Ma. were recorded but the "agreement" o f  ages at  730 Ma. appeared 

to the authors to be grounds upon which t o  i n f e r  Moinian sedimenta t ion  

took place not long b e f o r e .

A muscovite age of  550:  15 Ma from a specimen of  Moine s c h i s t  from SW 

Morar was i n t e r p r e t e d  as i n d i c a t i n g  a p re -  la te -C a le d o n ia n  metamorphism,  

the i s o to p ic  s ig n a tu re  of  which was r e t a in e d  because the area a t  the western
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border of  an area a f fe c te d  by the Caledonian metamorphism.

In a study of pegmatites from e ig h t  l o c a l i t i e s  along the L o c h a i l o r t -  

Glenf innan road s e c t io n ,  van Breemen e t  a l . ( 1 9 7 4 )  i d e n t i f i e d  f i v e  types 

of pegmati te  r e l a t e d  tem pora l ly  to the s t r u c t u r a l  h i s t o r y  of  the area ,  

these are:

1) Ear ly  pegmati tes fo lded  by Fp f o l d s .

2 )  Pegmati tes a x ia l  p lanar  to F 2  f o l d s .

3) Pegmatites post-Fp , fo lded  by F3  f o l d s .

4) Pegmati tes post -F g  but p r e - d a t i n g  a s u i t e  of  1amprophyres.

5) Pegmati tes which p o s t -d a te  the 1amprophyres.

Using Kb/Sr analyses of  Muscovites from e a r l y  ( p r e - F 2  ) pegmati tes  

they obtained ages of  727 :  19 M a . , 7 3 0 : 1 7  Ma. and 735:45  Ma. This l a s t  age 

was from moscovites taken from the c e n t r e  of  a pegmati te  w h i l s t  f i n e r  and 

o r i e n t a t e d  moscovites from the margins of  the same pegmati te  y ie ld e d  an 

age of  546 :  105 Ma. Another p o ss ib le  p r e - F 2  pegmat i te  y ie ld e d  an age of  

445:30 Ma. A l l  the remaining pegmati tes were s t r u c t u r a l l y  p o s t - F 2 and y i e l d 

ed ages of 4 5 0 : 1 0  Ma. ,  an age which was i n t e r p r e t e d  as r e l a t i n g  to the 

0 3  de fo rm at ion .  In c o r r e l a t i n g  F 2  f o l d i n g  in the area with the deformation  

sequence seen in the Moine t h r u s t  b e l t ,  the D2  and l a t e r  deformation was 

regarded as po s t -A ren ig  in age.

Im p o r ta n t ly ,  these authors noted t h a t  Morar ian  pegmati tes are found 

in the Morar and G lenf innan D i v i s i o n s ,  an observa t ion  which leads to the 

conclusion t h a t  the Sgurr Beag s l i d e  which separates these d iv is i o n s  cannot 

be a " f r o n t "  d i v i d i n g  b e l t s  of  Morar ian  and Caledonian tectono-metamorphic  

a c t i v i t y .

I t  will be shown l a t e r  th a t  the f o l d  chronology adopted by van Breemen 

e t  a l . ( 1 9 7 4 )  has to be rev is ed  (Chapter  5) w i th  important  consequences 

to the re g io na l  c o r r e l a t i o n s  and thus the " s t r u c t u r a l "  s ig n i f i c a n c e  of  

these i s o t o p ic  ages.

In t h e i r  i n v e s t i g a t i o n  of  the Rb/Sr systematics of  the Ardgour g r a n i t i c  

gne iss.  Brook e t  a l . ( 1 9 7 6 )  using la r g e  whole rock samples obtained an is o -  

chron age of  1050 :46  Ma. w ith  an i n i t i a l  8 7 s r / 8 6 s r  r a t i o  o f  0 . 7 0 8 : 0 . 0 0 2 ,  

thus improving on the " p r e l i m in a r y  isochron" o f  810 Ma. reported  by Lambert  

( 1 9 6 9 ) .  Brook e t  a l .  accepted D a l z i e l ’s (1966 )  i n t e r p r e t a t i o n  of  the o r ig i n  

and s t r u c t u r a l  contex t  o f  the gneiss and thus i n t e r p r e t e d  the age as th a t  

of the l a s t  Sr isotope homogenisation during  the m ig m at is a t io n .  Thus the 

age of  1050 :46  Ma was assumed to rep res en t  the age of  the e a r l y  main meta-  

morphism in the area.
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Brook e t  a l .  f u r t h e r  argued th a t  the p aren ta l  m a t e r ia l  of the Ardgour  

g r a n i t i c  gneiss would have had a mantle 87 S r / 6 6 Sr r a t i o  of 0 .700  at  ca.  

1250 Ma. and t h e r e f o r e  concluded th a t  sed imenta t ion of  the Moine Ser ies  

occured between 1250 Ma. and 1050 Ma. Thus d i r e c t  c o r r e l a t i o n s  between the  

Moine Ser ies  and the Torr id on ia n  sediments of the f o re la n d  are untenable  

because of  the 995:  24 Ma. and 8 1 0 : 1 7  Ma. ages of  the Stoer and Torr idon  

Groups r e s p e c t i v e l y  (M o o rb a th ,1 9 6 9 ) .

In 1977 Brook e t  a l .  publ ished the f i r s t  Rb/Sr whole rock isochron o b t 

ained from a metasediment w i t h in  the Moine S c h is ts .  An age of  1024:96 Ma. 

with an i n i t i a l  ® ^ S r / 8 8 sr r a t i o  of 0 . 7 0 9 : 0 . 0 0 1  was obtained f o r  the Morar  

P e l i te  (= S t r ip e d  and P e l i t i c  Group of  previous workers)  sampled near Druim-  

indarroch on the extreme west coast  of  In v e r n e s s - s h i r e .  Not ing t h a t  the  

rocks of the area underwent t h e i r  h ighest  grade o f  metamorphism ( upper 

greenschis t  to lower a m phib o l i te  f a c i e s )  dur ing an event  which p a r t l y  p r e 

ceded and overlapped the loca l  O2  de fo rm at io n ,  the authors i n t e r p r e t e d  

the age of  1024 :9 6  Ma. as the age of  the main (M2 ) reg iona l  metamorphism.  

The tectono-metamorphic h i s t o r y  of  the Morar area thus appears to in vo lve ;

a) G r e n v i l l e  events :  i s o c l i n a l  f o l d i n g  (F^ ) , l o w  grade metamorphism 

(M^ ) and in tense  p e n e t r a t i v e  deformat ion (O 2 ) accompanied by medium grade  

metamorphism (M2 )

and

b) Caledonian deformat ion and m ild  r e t r o g r e s s i o n .

The authors noted th a t  the acceptance of  the i s o to p ic  age f o r  the Morar

ian pegmati tes suggests an even more complex h i s t o r y  on a regional s c a le .

Van Breemen e t  a l . ( 1 9 7 8 )  at tempted a reg io n a l  synthes is  of  Precambrian  

and Caledonian events in the NW Highlands of  Scot land and Western I r e l a n d .  

They accepted t h a t  ages of  1 0 7 0 :3 0  Ma. and 1 0 0 0 :3 0  Ma. from the Annagh 

gneiss complex of  western I r e l a n d  and the 1020:50  Ma. age of  the Ardgour  

g r a n i t i c  gneiss i n d i c a t e  the e f f e c t s  of  a G r e n v i l l e  orogenic ep isode.  A 

555 :5  Ma. U/Pb z i r c o n  age from a segregat ion  pegmat i te  in the Ardgour gran

i t i c  gneiss is considered to  date a per iod  of  mig mat isa t ion  l a t e r  than  

the form at ion  o f  the g r a n i t i c  gneiss and f u r t h e r  U/Pb monazite analyses  

f o r  e a r l y  pegmati tes in the Moine Ser ie s  y i e l d i n g  ages of  8 1 5 :3 0  Ma. and 

730:20 Ma. were rep o r te d .

Whole rock Rb/Sr data f o r  two semi-pel  i tes from the Morar succession  

are presented which do not  d e f i n e  isochrons ,  r a t h e r ,  van Breemen e t  a l . 

argue t h a t  "best f i t "  l in e s  corresponding to ages o f  700:100 Ma. and 720+130
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Ma. a re ,  in view of the s i m i l a r  ages from the Morar ian pegmat i tes,  geolog

i c a l l y  mean ingfu l .  On the basis of t h is  data these authors c la im ,  f i r s t l y

that  the Morar D iv is io n  is o ld er  than the 815:30 -  730:20 Ma. e a r l y  pegmat

i t es  and, secondly t f iat  the Morar D iv is io n  was not involved in the G r e n v i l l e

orogeny (arguing tha t  the 1024 :96  Ma. whole rock Rb/Sr isochron f o r  the

Morar P e l i t e  (Brook e t  a l . 1 9 7 7 )  is poss ib ly  less convinc ing than t h e i r  

whole rock regress ion  ages of  700:100 Ma. and 720:130 M a . ) .

Thus they conclude tha t  there  is evidence f o r  a G r e n v i l l e  Orogenic cyc le  

ca. 1070-1000 Ma. a Morar ian "episode" ca.  800-700 Ma. and a Caledonian  

Orogenic cy c le .

Using new Rb/Sr whole rock data together  with previous analyses Brewer 

et a l . ( 1 9 7 9 )  reviewed the tectono-metamorphic h i s t o r y  of  the Morar - Glen

f innan area .  Samples from small areas or "domains" produced th ree  new i s o 

chrons and two regress io n  l i n e  ages f o r  p e l i tes in the Morar -Knoydart  a rea.  

The isochron ages are 4 5 9 :32  M a . , 416 :20  Ma. and 3 89 :5 8  Ma. The regress ion  

l i n e  ages are 479: 24 Ma. and 769 :50  Ma. The high 87 S r /^ ^ S r  i n i t i a l  r a t i o s  

of these isochrons and regress io n  l in es  in d ic a t e  th a t  the source m a t e r ia l  

f o r  these p e t i t e s  had a co n s id era b le  pre -Ca ledonian  c r u s t a l  h i s t o r y .  Using 

these r e s u l t s  toge ther  w i th  the data determined f o r  the Morar P e l i t e  (Brook,  

e t  a l . 1 9 7 6 )  these authors showed th a t  a graph of  8 7 s r / 8 5 s r  r a t i o  at  present  

and at  times during the p a s t ,  p l o t t e d  aga inst  t ime (see F i g . 9)  shows th a t  

a l l  the samples had a common i n i t i a l  87 S r /^ ^  Sr r a t i o  of  0 .7092  at  1004±28 

Ma. They conclude tha t  t h i s  common 87 $ r / 8 8 Sr r a t i o  was produced by i n i t i a l  

iso top ic  homogenisat ion during sed imen tat ion  and/or  d iagenes is ,a nd  th a t  

subsequent Precambrian and Caledonian a c t i v i t y  has reworked i s o t o p i c a l l y  

s i m i l a r  m a t e r i a l .  Since the Ardgour gneiss f a l l s  on the a r r a y  of Moine 

p e l i t e  domains, the authors argued th a t  the precursors of  the gneiss was 

an in te g r a l  p a r t  of  the Moine succession.

On a reg iona l  sca le  Brewer e t  a l .  concluded th a t  the Moine rocks of  

the Morar G lenf innan  area have undergone G r e n v i l l e  and Caledonian orogenic  

events,  the l a t t e r  caus in g ,  in p la c e s ,  r e s e t t i n g  of  the e a r l i e r  da tes .  

The mineral  i s o t o p ic  d a t a ,  r e p r e s e n t a t i v e  of  c o o l in g  ages, in d i c a t e  th a t  

the Moine Ser ies cooled a f t e r  the Caledonian orogeny "by a process of  sequ

e n t i a l  u p l i f t  along d i s c r e t e  zones ( S l i d e s )  commencing in the west .

A f t a l i o n  & van Breemen (1980)  examined Rb/Sr data from the Ardgour gran

i t i c  gneiss and surrounding metasediments and compared these w ith  the app

a r e n t l y  c o n f l i c t i n g  U/Pb data from z i rcons  and monazites in the g r a n i t i c  

g n e is s .

They obtained a Rb/Sr regress ion  l i n e  age o f  4 5 5 :6 0  Ma. from ad jacent  

5 - 8  cm. slabs of  s e m i - p e l i t e  in the G lenf innan  D i v is i o n  near the Ardgour 

g r a n i t i c  gn e iss .  The "e r rorchron"  obta ined  implying t h a t  Sr m ig ra t ion  has
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occured on a sca le  of  10 cm. or g re a t e r  during the Caledonian orogeny.

The 1030150 Ma. isochron from the g r a n i t i c  gneiss (Brook e t  a l , 1976)  

was obtained from la rge ( 2 0  cm. + ) whole rock samples and t h i s  age is taken 

to in d ic a t e  th a t  Sr m ig ra t io n  did not occur over distances of  20 cm.+ during  

the Caledonian thermal eve n t ,  thus a G r e n v i l l e  age f o r  t h i s  rock has been 

pres erv e d .

U/Pb z ircon  data obtained by A f t a l i o n  & van Breemen from a segregat ion  

pegmati te  in the g r a n i t i c  gneiss y ie ld e d  d is cordant  po in ts  which appear 

to be a l l i g n e d  along a chord on a choncordia diagram with upper and lower  

i n t e r s e c t io n  ages of  1 5 1 7 i 3 0  Ma. and 5 5 6 i 8  Ma. r e s p e c t i v e l y .  N e i th e r  of  

these ages corresponds to a g e o l o g i c a l l y  re cogn isab le  e vent .  The U/Pb r e s 

u l t s  were model led m ath e m at ic a l ly  by the authors using a theory  of  m u l t i - 

episode lead loss during per iods of  thermal a c t i v i t y  occuring a f t e r  the 

i n i t i a l  or pr imary age of  z i r c o n  fo rm a t io n .  Using these models the best  

s o lu t io n  involves  a 1700-1800 Ma. age f o r  the pr imary z i r c o n s ,  G r e n v i l l e  

metamorphic events a t  ca .  1100-980 Ma. and prograde Caledonian events at  

ca.  465-490  Ma.

A model in v o lv in g  G r e n v i l l e ,  Morar ian and Caledonian metamorphic events  

could not be made to f i t  the d a t a ,  i n d i c a t i n g  t h a t  no or only  a very weak 

in t e r f e r e n c e  by the Morar ian "event" has occured.

Thus these conc lus ions ,  based s o l e l y  on i s o to p ic  d a t a ,  are g e n e r a l l y  

in agreement w ith  those of  Brook e t  a l . (1976 and 1977) and Brewer e t  a l .  

( 1 9 7 9 ) .  Powell e t  a l . (1983)  obta ined  Rb/Sr ages of 776±15 Ma. to 746±15 

Ma. f o r  moscovites from a "Morar ian" pegmat i te  a t  Ardnish in the Morar 

D iv is io n  and showed t h a t  the host  metasediments had been deformed and meta

morphosed p r i o r  to the i n j e c t i o n  of  the pegm at i te .

They suggested t h a t  the Rb/Sr muscovite ages f o r  "Morar ian" pegmati tes  

should not be taken as proof  of  the ex is te n c e  of  an orogenic episode at  

t h i s  t ime.
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(1) L i thology.

The psammi tes of  the Loch E i l  D iv is io n  are exposed in a la rge number

of  small exposures g e n e r a l l y  less than 20 metres long. In the f i e l d ,  l i t h -  

o lo g ic a l  and s t r a t i g r a p h i c a l  c o r r e l a t i o n s  between exposures proved imposs

i b l e ,  consequently each exposure was described and placed in to  one of four  

l i t h o l o g i c a l  sub-groups;

A) Thick psammites 50-100 cm. t h ic k  w ith fewer th in  p e l i t i c  u n i ts  15-  

20 cm. t h i c k .

B) Very th ic k  pure q u a r t z i t e s  w ith  su b t le  colour  banding, micaceous

psaninites and few,  i f  any, pel i t e s .

C) Dominant ly s e m i - p e l i t e s  w i th  occasional  th in  r ib s  of q u a r t z i t e  (

a few cms. t h ic k  ) .

D) Flaggy psammit e s /  s e m i - p e l i t e s ,  10-15 cm. t h i c k ,  plus t h in  q u a r t z 

i te s  .

F igure 10 shows l i t h o l o g i e s  t y p i c a l  o f  the Loch E i l  D iv is i o n .

I n i t i a l l y  in d iv id u a l  exposures were placed f a i r l y  e a s i l y  in t o  one of

the sub-groups.  L a te r  exposures were o f te n  g rad a t io n a l  between the sub

d iv is i o n s  descr ibed  above.* However, a l l  exposures were p laced,  as best  as 

p o ss ib le ,  in t o  one of  the sub-groups.  A map of  these Loch E i l  psammi te  

l i t h o l o g i c a l  sub-groups shows l i t t l e  s t r a t i g r a p h i c a l  sense but when sub

groups A and B, and sub-groups C and D were combined then some suggest ion  

of 1i t h o - s t r a t i g r a p h y  was obta ined  ( f i g . 1 0 ) .  However l i t t l e  s i g n i f i c a n c e  

is placed on t h i s  map.

No mappable p o l i t i c  horizons were found in the a rea .  The ju n c t io n  o f  

the Loch E i l  D iv is io n  psammites with  the rocks of the Glenf innan D iv is io n  

to the west is very p o o r ly  exposed. I t s  na tu re  and s i g n i f i c a n c e  is described  

in Chapter 5.

In the f i e l d  the psammi tes  are g e n e r a l l y  wel l  bedded with t h i n  layers  

of micas along the bedding p la nes .  Bedding is  n e a r ly  always p lanar  al though  

cross bedding was noted in a few places ( F i g . 1 1 ) .  Abundant cross bedding 

has been reported  from the Loch E i l  psammi tes a few Kms. to the south,  

along s t r i k e  from the western end of the Loch E i l  psammi tes in the area  

mapped ( S t r a c h a n , 1982) .

In hand specimen the Loch E i l  psammi tes are t y p i c a l l y  cream or l i g h t  

grey co lo ured ,  w it h  an average g r a in  s i z e  o f  about 1 mm. They vary from 

homogeneous massive q u a r t z i t i c  psammites (eg.  F i g . 1 2 , sec t ion  191/1033)  

to more heterogeneous banded psammites ( F i g . 12, sect ion  97 /3 76 )  where the  

banding is  less wel l  d e f in ed  by mica l a y e r s .  Where the banding is  less  

well  def ined  and the micas more even ly  d i s t r i b u t e d ,  the rocks grade in to  

se m i -p e l i  t e s .
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F igure 11.

Photograph to show cross bedding in the Loch Ei l  D iv is ion psammi tes. 
( Exp.252 Grid Ref. NM 96218092 ).
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Modal analyses of Loch Eil Division Psom m ites.

y
^109 -neo '^29 ^229 ^^29 -^76 ■̂ 279

g y
/301

QUARTZ 4 5 .  3 6 1 . 8 7 9 . 5 5 6 . 8 8 0 . 2 6 4 . 0 7 7 . 1 8 7 . 2 7 9 . 2
FELDSPAR 4 5 . 4 3 0 . 2 9 . 2 1 0 . 5 1 0 . 8 3 . 1 4 . 4 6 . 4 8 . 8
MUSCOVITE 0 . 4 0 . 0 3 . 3 1 7 . 4 5 . 9 2 5 . 7 1 8 . 4 2 . 1 0 .  1
B I O T I T E 8 . 7 3 . 6 7 . 5 1 4 . 9 2 . 5 3 . 5 0 . 1 0 .  3 1 . 6
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 1 3 . 3 0 . 0 0 . 0 0 . 1 0 . 0 0 . 0 3 . 1 9 . 2
CHLORITE 0 . 0 0 . 6 0 . 6 0 . 0 0 . 2 1 . 2 0 . 0 0 . 4 0 . 0
C ALC IT E 0 . 0 0 . 0 0 . 1 0 . 0 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 1 0 . 5 0 . 0 0 . 4 0 . 0 0 . 5 0 . 0 0 . 5 1 . 1

l o y
/&36

i i y
^503

1 2 0 /
4 2 0 4 7 2

190/
<032

19 1 /
4 ) 32

QUARTZ 3 7 . 1 2 5 . 2 5 9 . 2 5 0 . 4 4 1 . 4 7 1 . 5 5 3 . 1 6 5 . Ü 8 1 . 7
FELDSPAR 3 4 . 5 3 0 . 9 3 2 . 1 3 1 . 0 4 6 . 1 1 9 . 0 2 0 . 3 2 5 . 1 2 . 3
MUSCOVITE 4 . 7 2 1 . 0 0 . 7 0 . 3 1 . 0 3 . 5 7 . 4 5 . 2 1 4 . 6
B I O T I T E 2 3 . 5 1 9 . 0 5 . 9 2 . 6 9 . 4 5 . 8 1 3 . 1 3 . 2 1 . 2
GARNET 0 . 0 0 . 0 0 . 0 0 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 2 0 . 8 1 2 . 2 0 . 7 0 . 0 0 . 2 0 . 1 0 . 0
CHLORITE 0 . 0 0 . 0 1 . 2 0 . 8 0 . 2 0 . 0 5 . 5 0 . 1 0 . 0
CALC IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 2 3 . 7 0 . 1 1 . 9 1 . 2 0 . 2 0 . 4 0 . 5 0 . 2

i g y
< 0 3 2

i g y
4)35

i g y
<036

1 9 ^
<037

1 9 ^
<038

1 9 y
<039 Average

QUARTZ 5 0 . 0 7 2 . 7 2 0 . 6 6 5 . 8 6 6 . 6 7 9 . 0 6 1 .  30
FELDSPAR 1 8 . 4 5 . 6 7 7 . 2 1 4 . 1 1 8 . 8 1 6 . 2 2 2 . 0 1
MUSCOVITE 2 2 . 8 1 4 . 6 0 . 8 1 9 . 2 3 . 4 4 . 1 8 . 2 0
B I O T I T E 7 . 2 6 . 6 0 .  3 0 . 5 9 . 2 0 .  3 6 . 2 7
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 , 1 7
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 2 5
CHLORITE 0 . 3 0 . 2 0 . 7 0 . 3 0 . 3 0 . 0 0 . 5 3
C A LC IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2
ACCESSORIES 1 . 3 0 . 3 0 . 4 0 . 1 1 . 7 0 . 4 0 . 6 1

500 Points per section
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(2) Mineralogy and petrography.

Modal analysis of some Loch Ei l  psammi te samples are given in Figure

11. An average of the analyses is also given. I t  is clear from the analyses 

that the rocks are s l i g h t l y  micaceous, fe ldspath ic  quartz i tes and psammites.

Quartz.

Quartz is usual ly  the most abundant mineral in th in  sect ion. Grain size 

varies from 0.2-2.0  mm. with most sections having quartz c rys ta l  sizes 

of 0.5-1.0 mm. Grain shape is var iable  and usual ly  anhedral, except in

some of the more se m i-p e l i t i c  sections where there is often a s l i g h t  elong

ation of c rys ta ls  w ith in  the mica f o l i a t i o n .  Ind iv idual grains can show 

interna l deformation lamellae and the development of sub-grains, whereas 

other c rys ta ls  in the same section may be unstrained.

Feldspar.

Both plagioclase and K-feldspar have been found in many th in  sections. 

Grain size varies from 0.2-3.0 mm. Crystal  shapes are always anhedral.

Par t ia l  a l te ra t io n  to saussuri te and s e r ic i te  is common. Optical  estimates

of the anor th i te  content of plagioclase in d i f f e re n t  sections range from 

An. 19 to An. 47. The presence of K-feldspar is indicated by occasional micro- 

c l ine  twinning (Fig.13a) ,  p e r t h i t i c  textures (Fig.13b) and myrmekit ic t e x t 

ures (F ig .13c) .  Many of the feldspars are s l i g h t l y  a l te red ,  untwinned and 

without myrmekit ic or p e r t h i t i c  textures. These could be e i the r  plagioclase 

or K- fe ldspar.  I t  is estimated that there is more plagioclase than K - fe ld 

spar in the sect ions.

B io t i t e .

B io t i t e  occurs as laths varying in length from 0.3 to 1.5 mm. long. 

I t  shows var iab le  pleochroism. 

cX= Straw ye l low, pale green.

^=)5= Dark brown,blood red,dark green.

These va r ia t ions  are presumed to r e f l e c t  compositional d i f fe rences, 

possibly in the r e la t i v e  amounts of T i ,  Mg and Fe ions.

B io t i te  laths are e i the r  evenly disseminated throughout the rock or 

concentrated in to  micaceous f o l i a e .  In both cases the laths def ine a strong 
f o l i  a t i o n .



60 Figure 13. Photomicrographs of fe ldspar textures in the Loch Eil 

Division psammites ( see tex t  fo r  discussion ).

(a)
microcline
twinning

-ii

( Exp.194/1036 ). crossed polars.

(b) ■ J

Exp.123(c)/539 ) . crossed po la rs .0

(c)

myrmekite

( Exp.123(b)/539 ) . crossed polarsQ mm.
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Muscovite.

Muscovite occurs in two main forms. There is a su ite  of small elongate

muscovite laths in which the grain size varies from 0.3-2.0 mm. The laths 

enhance the b io t i t e  f o l i a t i o n  described above. Larger muscovite laths which 

do not show any preferred or ien ta t ion  occur as porphyroblasts which are 

not elongate along the cleavage and are up to 4-5 mm. long.

Other minerals.

Other minerals found in the Loch Ei l  psammites include garnet, epidote, 

ch lo r i te ,  c a lc i te  i ron ore, sphene, zircon and apat i te .

Garnet was found in two sections (86/276 and 114/503), i t  occurs as 

small anhedral skeleta l  c rys ta ls  up to 0.5 mm. diameter containing some 

small quartz inc lus ions.

Epidote is qu ite  common in some of the th in  sections (eg.114/503, 95/355, 

90/301, 29/180). I t  occurs as anhedral c rys ta ls  0.2-0.7 mm. long. Cleavage

is well developed, pleochroism is f a i n t ,  bire fr ingence is in b r igh t  second 

order colours ( 6 =0.035) and the opt ic  axial  angle is negative. I t  is 

concluded that the epidote is very i ron r ich  ( Deer et a l . 1966).

Chlor i te occurs as an a l te ra t io n  product of b i o t i t e .  Calc i te is found

in some of the more al tered sections. Iron ore, sphene, zircon and apat i te

occur as minor accessory minerals.

4.2c) Glenfinnan Div is ion psammitic rocks.

(1) In t roduct ion.

The rocks of the Glenfinnan Division in the area outcrop over an E-W 

distance of 13 Km. between a junct ion in the west termed the Sgurr Beag 

sl ide and an eastern junct ion  termed the "Loch Quoich l ine "  (see Chapters 
5 and 7).

Exposure w i th in  the Glenfinnan Division is general ly exce l lent .  Outcrops 

are often 50-100 metres long separated from adjacent exposures by a few 

metres or tens of metres. There is poor exposure in the f l o o r  of Glen 
Finnan, in the f l o o r  of A l l t  Feith a Chatha and on the steep slopes 

of the summit of Sgurr a Mhuidhe which are tree clad. Recent re -a f fo re s t 

ation N of the road, W of Glenfinnan v i l l a g e ,  may make access onto Fraoch 

Bheinn and Sgurr an Utha d i f f i c u l t  in the fu tu re .
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(2) L i thology.

Most of the rock types with in  the Glenfinnan Division are banded psamm

ites and pe l i tes  often cal led the Striped Group, together with more homo

geneous semi-pe l i tes. In the east of the Glenfinnan Division a strongly 
gneissose rock, the Ardgour g ra n i t i c  gneiss, is found (see Chapter 4 .6) .

For the most part  the l i t h o lo g ie s  in the Glenfinnan Division were mapped 

as Str iped Group, Psammites and P e l i tes ,  although in the east around Beinn 

an Tuim more deta i led l i t h o lo g ic a l  sub-div is ions were made (F ig .14). The 

local l i t h o lo g i c a l  sub-divis ions used during mapping were:

A) Typical "s tr iped group". Psammitic quartz i tes up to 50 cm. th ick
with th inner p e l i t e s .

B) Uniform, f in e  grained micaceous psammite or semi-pel i te,  gradational 

in to  l i t h o lo g y  (D).

C) Thin ly banded psammitic and p e l i t i c  mater ia l ,  1-3 cm. th ick ,  devel

oping augen-l ike textures in the p e l i tes .

D) Thinly banded micaceous psammites, 2-3 cm. th ick ,  with micaceous 

part ings. Very well banded.

E) F a i r ly  coarse grained psammites/quartzi tes togather with b io t i t e

r ich  pe l i tes ,  non-augen textured. (Could be typ ica l  str iped group(A)).

General sub-div is ions of l i t h o lo g y  w ith in  the Glenfinnan Division are 

given on Map 1.

In the f i e l d  the s trong ly  banded nature of the Glenfinnan Division is 

cha rac te r is t ic  and wh i ls t  th is  ce r ta in ly  re f le c ts  o r ig ina l  bedding, no 

unequivocal examples of cross-bedding, graded bedding or other sedimentary 

structures were observed.

The Glenfinnan Division psammites have an average grain size of 1-2mm. 

They are light-medium grey to cream coloured. B io t i te  is common, usual ly 

f i n e ly  disseminated. Occasional ly a st r iped appearance is developed with 

psammitic layers of 2-3 cm. and migmati t ic  p e l i t i c  layers of 1-2 cm. The 

rocks in the east tend to be more evenly sem i-pe l i t ic  whereas the psammites

in the west appear to be more q u a r t z i t i c .

(3) Mineralogy and petrography.

Modal analyses of some of the Glenfinnan Division psammites are given 

in Figure 15. The rocks are composed of four main minerals; quartz, feldspar, 

muscovite and b i o t i t e ,  togather with a number of accessory minerals.
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Figure 15.

Modal analyses of Glenfinnan Division Psammites.

% . % % % '6 7 2

l e y
^783

i 7 y
'963

1 8 y
4o31

2o y
V36S

2 y
'1087

QUARTZ 4 4 . 6 7 6 . 8 4 8 . 6 5 4 . 0 4 0 . 0 7 3 . 0 6 5 . 8 5 4 . 6 7 1 . 0 6 3 . 8
FELDSPAR 3 8 . 6 1 9 . 2 3 6 . 6 2 3 . 2 2 8 . 2 2 4 . 2 2 9 . 0 2 9 . 8 1 8 . 0 3 0 . 8
MUSCOVITE 0 . 0 0 . 0 0 . 0 1 8 . 2 2 1 . 6 1 . 0 1 . 0 9 . 0 5 . 8 1 . 0
B IO T IT E 1 6 . 8 4 . 0 1 4 . 4 4 . 2 9 . 6 1 . 8 4 . 0 6 . 4 2 . 6 4 . 4
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
CHLORITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 4 0 . 0
C A LC ITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 0 0 . 0 0 . 4 0 . 4 0 . 6 0 . 0 0 . 0 0 . 2 0 . 2 0 . 0

23y
/%)93

23y
/%)93

26y
'm 3

2 6 y
'1164 4l65

2 6 y
'm e

2 6 y 2 6 y

'1168

2 6 y

'1169
QUARTZ 6 4 . 8 2 2 . 2 5 8 . 1 6 8 . 5 6 8 . 5 7 5 . 6 5 0 . 7 7 0 . 9 6 7 . 5
FELDSPAR 2 3 . 4 5 7 . 4 3 2 . 7 2 6 . 4 2 6 . 8 1 4 . 5 4 1 . 5 2 2 . 9 2 4 . 7
MUSCOVITE 2 . 8 0 . 0 0 . 0 1 . 2 1 . 5 6 . 6 0 . 4 2 . 2 2 . 4
B IO T IT E 8 . 8 2 0 . 2 8 . 4 3 . 3 2 . 8 3 . 1 7 . 0 4 . 0 3 . 0
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 3 0 . 0 0 . 8
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
CHLORITE 0 . 0 0 . 0 0 . 1 0 . 1 0 . 1 0 . 2 0 . 0 0 . 0 1 . 2
C A LC ITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 2 0 . 2 0 . 8 0 . 5 0 . 3 0 . 0 0 . 1 0 . 0 0 . 4

500 Points per section
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Quartz.

Quartz is usual ly the most abundant mineral seen in th in  section. Grain 

size varies from 0.2-3.0 mm. with most being from 0.5-1.0 mm. Grain shape 

is highly var iab le, grain boundaries are usual ly curved and sutured. In 

some sections the quartz c rys ta ls  are s l i g h t l y  elongate w ith in  the mica 

f o l i a t io n .  Within the grains deformation bands and sub-grains are common 
but not ubiquitous.

Feldspar.

Feldspar is found in a l l  th in  sections, comprising 14.5% to 57.4% of 

the modal analyses in d i f fe re n t  sections ( F ig .15).

Both plagioclase and K-feldspar are found, although K-feldspar is not 

observed in some of the th in  sect ions. Grain size varies from 0.2-3.0 mm. 

Plagioclase shows mu l t ip le  a lb i te  twinning. Optical  determinations of the 

% anorthi te  content vary from 22% An. to 43% An. in d i f fe re n t  sect ions. K- 

feldspar often shows weak microcl ine twinning and can show myrmekit ic and 

p e r th i t i c  textures. Untwinned feldspar  could be e i ther  K-feldspar or p lag io 

clase. Where both feldspars are present in a th in  section plagioclase always 

seems to be the more common.

B io t i t e .

B io t i te  occurs as laths from 0.2-4.0 mm. long exh ib i t ing  a va r ie ty  of 

pleochroic schemes: 
o<= Straw yellow.

P = X = Dark brown, blood red, dark green.

The smaller laths occur as f i n e l y  disseminated c rys ta ls  in the more 

q u a r tz i t i c  sections. Larger b i o t i t e  laths tend to occur in the more p e l i t i c  

or sem i-pe l i t ic  mater ia l ,  often associated with muscovite la ths .  The b io t i t e  

laths are always or ientated into a well developed f o l i a t i o n  which in some 

sections is highly folded and crenulated.

Muscovite.

Muscovite occurs as laths from 0.3-5.0 mm. long. There seem to be two 

modes of occurence, commonly moscovites are s trongly a l l igned and associated 

with s im i la r ly  sized b io t i t e s  in the micaceous fo l ia e  w ith in  the psammites. 

A less common mode of occurence w ith in  the micaceous f o l i a e ,  is as large 

unorientated and non-elongate muscovite c rys ta ls .
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Other minerals.

Garnet is found occasional ly,  usual ly in the micaceous fo l ia e .  I t  occurs 

as small round crys ta ls  sometimes with small inc lusions, but without good 

inclusion t r a i l s  or zoning. Chlor i te  is found occasional ly growing at the 

expense of b i o t i t e .  Calci te  is very occasional ly found where plagioclase 

crysta ls  are very highly saussur i t ised . Other accessory minerals include 
iron ore, apat i te ,  sphene and zircon.

4.2d) Morar Division psammitic rocks.

(1) In t roduct ion.

The term Morar Division psammite is used here to describe the psammitic 

and str iped l i th o lo g ie s  occurring in an area of 2-3 sq. Km. west of the 

Sgurr Beag s l ide  around Ranochan (see Chapter 7). The term is not intended 

to cover a l l  the psammitic rocks which outcrop in the type area around 

Morar-Arisaig. Figure 16 shows a l i t h o lo g ic a l  map of the Ranochan area

The work of Powell (1964) indicates that the l i t h o lo g y  to the west of 

the mapped area is a th ick  psammitic un i t  termed the Loch E i l t  Psammitic 

Group which he in te rpre ts  as younging eastwards. Thus the Ranochan Pei i te  

should be the eastern equivalent of the A r i e n i s k i l l  P e l i t i c  Group and the 

Ranochan Psammitic and Striped Group the equivalent of the A r i e n i s k i l l  Psamm

i t i c  Group (see F ig .5).

Unt i l  the area between Ranochan and A r i e n i s k i l l  has been mapped in deta i l  

the attempts at corre la t ions  c i ted above can be l i t t l e  more than speculation,

(2) Li thology.

Most of the rocks mapped are psammites, banded psammites and st r iped 

l i tho lo g ie s .  Only in the extreme west did th is  pass gradat iona l ly  into 

a p e l i t i c  un it  (Ranochan P e i i te )  which served to d e l im i t  the area. Exposure 

is good, excel lent on the higher ground where nearly continuous exposure 

is found. The rocks mapped as psammites are f a i r l y  uniform, banded quartzo- 

fe ldspathic rocks with very few i f  any micaceous or p e l i t i c  laminae. The 

str iped group is a banded psammite and s e m i-p e l i te /p e l i te  l i t h o lo g y .  Al l  

samples which were col lected are psammitic rather than q u a r t z i t i c .
In hand specimen the rocks are well banded, cream or l i g h t  grey coloured. 

Grain size is about 1 mm. Fine b io t i t e  laminae occur at 1-2 cm. in te rva ls .
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Some of the samples are f a i r l y  pure quartz-fe ldspar rocks. The specimens 
seem less p e l i t i c  and micaceous than the adjacent Glenfinnan Division 

psammites.

(3) Mineralogy and petrography.

Modal analyses are given in Figure 17, which indicate that the psammites 

are composed of quartz and feldspar with smaller amounts of mica plus acc
essory minerals.

Quartz.

Quartz is the most abundant mineral in a l l  the psammites sectioned. 

Grain size varies from 0.2-3.0 mm., usual ly between 0.5-1.5 mm. Grain size 

and shape is var iab le ,  grain boundaries are often curved or i r reg u la r .  

There is no obvious elongation of quartz c rys ta ls  w ith in  the mica f o l i a t i o n  

of some of the rocks. Internal deformation, sub-grain formation and deform

ation bands can be seen in many quartz c rys ta ls .

Feldspar.

Plagioclase and K-feldspar can be id e n t i f ie d  in many of the rocks. Grain 

size varies from 0.2-4.0 mm. Plagioclase often shows mu l t ip le  a lb i te  twinn

ing and is f requent ly  saussur i t ised. Optical  estimates of the anorth i te 

content (Michel Levy te s t )  range from An 22% to An 52%.

K-feldspar is present in most, i f  not a l l  of  the sect ions. I t  often 

shows microcl ine twinning and myrmekit ic textures.  Myrmekit ic texture is 

not always present in sections which contain both K-feldspar and plagioclase; 

i t s  presence seems to be s t r u c tu r a l l y  contro l led  (see Chapter 7). I t  is 

estimated that plagioclase is more common than K-feldspar in most sections.

B io t i t e .

B io t i te  occurs as f a i r l y  small th in  laths 0.2-1.5 mm. long, which define 

a f o l i a t i o n  pa ra l le l  to the compositional layer ing. The pleochroic scheme 
is usual ly;  

o( = Straw y e l 1ow.

Blood red, dark green, 
but (X = Straw y e l 1ow.

P = dark brown, is also found.
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Modal analyses of Morar Division Psammites.

7iS >y

4094 1097
2 6 7 /

tITO
2 6 ^

4l71
2 6 ^

1172
2 7 0 /

4 l73 %%%
QUARTZ 5 4 . 2 6 1 . 8 7 6 . 8 6 1 . 2 6 1 . 9 6 8 . 3 6 0 . 3 5 8 . 4 6 8 . 2 '
FELDSPAR 3 2 . 8 2 9 . 4 2 0 . 8 2 7 . 6 3 3 . 8 2 7 . 7 3 5 . 6 3 4 . 9 2 2 . 3
MUSCOVITE 2 . 4 1 . 6 0 . 9 0 . 4 2 . 4 0 . 1 1 . 0 0 . 0 3 . 5
B IO T IT E 1 0 . 6 6 . 6 0 . 7 1 0 . 1 1 . 9 3 . 6 3 . 1 5 . 2 5 . 5
GARNET 0 . 0 0 . 0 0 . 1 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C HLORITE 0 . 0 0 . 2 0 ; 4 0 . 1 0 . 0 0 . 3 0 . 0 1 . 5 0 . 3
C A LC IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 0 0 . 4 0 . 3 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1

500 Points per section
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B io t i te  is more common than muscovite in most of the sections and is usual ly 
f a i r l y  evenly disseminated throughout the specimens.

Muscovi t e .

Muscovite crys ta ls  tend to be s l i g h t l y  larger than b io t i t e  crysta ls  

in the same rock, with grain sizes from 0.2-2.0 mm. Muscovite usual ly en

hances the b i o t i t e  f o l i a t i o n .  Some moscovites, although elongated paral le l  

to the mica f o l i a t i o n  have cleavage strongly oblique to the f o l i a t i o n .

Other minerals.

Chlor i te  is sometimes seen growing at the expense of b i o t i t e .  Accessory 

minerals include iron ore, sphene, garnet, epidote and c l in o z o is i te .  Not 

a l l  of  these minerals are found in any one sect ion.

4.2e) Comparison of the psammitic rocks.

In th is  comparison i t  must be stressed tha t  the term Morar Division 

psammite re fe rs  only to those psammites in the mapping area, west of the 

Sgurr Beag s l id e .

The l i t h o lo g i c a l  descript ions above indicate th a t ,  on a large scale, 

the Loch Ei l  Div is ion psammites can be d is t inguished from the psammites 

of the Glenfinnan and Morar Divisions. The Loch Ei l  Division contains f a i r l y  

uniform psammites with very few p e l i t i c  or se m i -p e l i t i c  horizons. An examin

ation of the mineralogical and pétrographie descr ip t ions and the modal 

analyses (F ig s .12,15,17,) of the psammites ind icate  a number of points.  

F i r s t l y ,  no mineral species is spec i f ic  to any of the groups of psammites. 

Secondly, grain s ize, textures etc. do not serve as a means of d is t in g u ish 

ing between the groups. Th i rd ly ,  the modal analysis of any ind iv idua l  sect

ion of psammite w i l l  not serve as a means of placing i t  in one of the psamm
i t i c  groups.

Figure 18 shows photomicrographs of " t y p ic a l "  Loch E i l ,  Glenfinnan and 

Morar Division psammites. The diagrams in Figure 19 have been drawn to 

show any possible di f ferences in modal analysis between the Loch E i l ,  Glen

finnan and Morar Division psammites. While no ind iv idua l  modal analysis 

would ca tegor ica l ly  place a psammite in to  one of the groups, some general 

trends can be seen.

Given the evident l im i ta t io n s  of sampling dens ity  i t  seems that both 

the Morar and Glenfinnan Division psammites tend to contain a lower percent-



Figure 18. Photographs of " t y p i c a l " Loch E i l ,  Glenfinnan and 

Morar Division psammites.

a)

( Exp.190/1036 ). crossed polars. (2 1mm.

. \  ^
( Exp.45(b)/230 ). crossed polars. 0 1mm.

c)

( Exp.269(b)/1172 ). crossed polars. mm.
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Figure 19. 

P S A M M IT IC  ROCKS

74

Feldspars

Triangular diagrams to show 

the composition of the 

Morar, Loch Ei l and 

Glenfinnan Division 

psammites.

O th er m in era ls
\  ( mainly micas I

MORAR
DIVISION

oo

O ther m inerals
I mainly micas 1

Q u a rtz

LOCH EIL  
DIVISION

Feldspars Q u a rtz



Figure 19. 
(cont i  nued)

PSAMMITIC ROCKS

75

O ther m inerals

( mainly micas )

GLENFINNAN
DIVISION

++

Feldspars Q uartz
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age of minerals other than quartz and fe ldspar.  Within the Loch Ei l Division 

psammites f a i r l y  pure quartz i tes can occur. Wide var ia t ions of the ra t io  

of feldspars to other minerals occur w ith in  the Loch Ei l  Division whereas 

the Glenfinnan and Morar Division psammites tend towards a constant ra t io  
of feldspar to other minerals.

Using the data from psammites col lected from a l l  three d iv is ions of 

the Moine rocks i t  has not been possible to draw major conclusions re la t ing  

to the sedimentology, sediment source, sediment matur i ty  etc.

4.3) C a lc -s i1icate rocks.

4.3a) In troduct ion.

Sporadic occurences of c a l c - s i 1icate rocks have been recorded from many 

areas of the Moine rocks NW of the Great Glen f a u l t  (Kennedy,1949; Winch

e s te r ,1972,1974a; Tanner,1976; Powell et a l . 1981). They are reported to 

be absent from the lower part of the Morar Div is ion (Powel l ,1974). In the 

area mapped they occur as lenses up to 3-4 metres long and 30 cm. th ick ,  

although thickness is more often 5-10 cm. C a lc -s i l i c a te  mineralogy is highly 

var iable; as well as always containing quartz and fe ldspar,  they can contain 

smaller quant i t ies of amphibole, pyroxene, micas, garnet, epidote, c l ino -  

zo is i te ,  c h lo r i te ,  ca lc i te  and various accessory minerals. The varia t ion  

in mineralogy is p a r t ly  related to metamorphic grade and thus they have 

been used in attempts to define metamorphic grade in areas which otherwise 

are lacking in l i tho lo g ie s  which develop minerals usable as metamorphic 

grade ind ica to rs . Kennedy (1949) divided the Morvern-Knoydart area (see 

Chapter 6 ,F ig .59) in to  four zones id e n t i f ie d  by the index minerals l is ted  

as fol lows in a prograde metamorphic sequence:

1) Z o i s i t e - ( c a l c i t e ) - b i o t i t e  zone.
2) Zo is i te  zone.

3) Anorthite-hornblende zone.

4) Anorthite-pyroxene zone.

Winchester (1972) used the geochemical r a t i o  of Ca0 / A l 2 0 3  at which 
biotite is replaced by hornblende to produce an " isograd" map of the Fannich 

Forest area. Powell et a l . (1981) have used plagioclase anorth i te  content 

in ca lc -s i l i ca te s  as an ind ica to r  of metamorphic grade.
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In the area mapped a to ta l  of 32 ca lc -s i  l ica tes  were found and col lected 
for  petro logical  and geochemical study. C a lc -s i l i ca tes  from a l l  three d i v i s 

ions were col lected and no s t r i k in g  di f ferences were noted that might re la te  
to s t ra t ig raph ica l  or spat ia l  contro ls .

In the Ranochan area of eastern Loch L i l t  (Fig.1) the metamorphic react

ions and textures observed in the c a lc - s i l i c a te s  togather with s t ruc tu ra l  

mapping have been used to eluc idate the s t ruc tu ra l  and metamorphic h is tory  
of the Sgurr Beag s l ide  (Chapter 7).

4.3b) L i thology.

A l l  the c a lc - s i l i c a te s  were col lected from psammitic l i t h o lo g ie s ,  mostly 

from f a i r l y  thick homogeneous psammites or occasional ly from the psammitic 

portions of the s tr iped l i t h o lo g ie s .  This contrasts with the observations 

of Winchester (1972.p ,405) who reported that the c a lc - s i l i c a te s  from Fannich 

Forest are normally associated with dark b io t i t e  schis ts .

The c a lc - s i l i c a te  layers are always pa ra l le l  to bedding planes in the 

surrounding psammites. L a te ra l ly  c a lc - s i l i c a te s  grade into psammites. The 

change from c a lc - s i l i c a te  to psammite across the bedding plane is abrupt.

From these observations i t  appears that the c a lc - s i l i c a te s  in the mapping 

area are more l i k e l y  to have been s l i g h t l y  calcareous sedimentary lenses 

rather than post- or 1ate-d iagenetic concret ions ( in  concretions one might 

expect to f ind  abrupt la te ra l  boundaries). However Tanner (1975.p ,100) 

suggests that c a lc - s i l i c a te s  probably or ig inated as la te  diagenetic ca lc 

areous concretions and Dalziel  (1963a) has described rare c a lc - s i l i c a te s  

which have grown across the fo reset laminations of current bedded un its .

In hand specimen the c a lc - s i l i c a te s  are d is t i n c t i v e  and quite var iable. 

They are usual ly white, l i g h t  grey or cream coloured, mottled with rusty 

brown garnets up to 5 mm. in diameter and th in  green amphibole laths up 

to 10 mm. long. The amphibole laths def ine an obvious f o l i a t i o n  which is 

often s l i g h t l y  obl ique to the bedding planes. Most of the samples are f a i r l y  

homogeneous across the bedding planes,but some samples eg, 37/229 and 

207/1068 are banded, containing a central  band and equally th ick  margins. 

Sample 37/229 has a feldspar-amphibole-quartz core mantled by quartz-garnet- 

c l in o zo is i te  margins. Sample 207/1068 has a quar tz -ga rne t -c l inozo is i te 

core mantled by feldspar-amphibole-quartz margins.

Modal analyses of the ca lc -s i  l ica tes  are given in Figure 20. These anal

yses were compiled by point counting across areas which were thought to 

be representative of the complete thickness and average composition of 

the c a lc - s i l i c a te  lenses.
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Modal analyses of Cclc-silicate rocks.

'V'229
36^

229 229 440
104.

"451
l o y

"4SI %
QUARTZ 7 9 . 1 7 5 . 3 5 5 . 6 7 7 . 5 7 9 . 0 3 7 . 3 4 2 . 7 4 4 . 3
PLAGIOCLASE 1 0 . 4 1 8 . 4 2 2 . 8 5 . 5 1 5 . 2 1 8 . 7 1 8 . 8 3 2 . 3
AMPHIBOLE 0 . 0 4 . 0 8 . 4 1 . 2 0 . 0 1 0 . 9 1 3 . 1 5 . 0
B IO T IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 0 . 0
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
GARNET 0 . 1 0 . 0 7 . 2 0 . 3 0 . 0 4 . 1 1 . 9 3 . 4
PYROXENE 0 . 0 0 . 0 1 . 9 1 . 3 0 . 0 0 . 0 0 . 0 0 . 0
C A LC ITE 0 . 0 0 . 0 0 . 4 0 . 7 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 5 . 2 0 . 0 0 . 0 0 . 0
C L IN O Z O IS IT E 9 . 9 1 . 5 2 . 5 1 3 . 2 0 . 0 2 6 . 8 2 1 . 6 1 1 . 7
CHLORITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 7
ACCESSORIES 0 . 5 0 . 0 1 . 2 0 . 3 0 . 0 2 . 2 1 . 9 1 . 6

13^
/573

1 3 ^
'582 % "^250

1 6 ^
'8 8 3

1700/
/% 8

170^
/948

1 7 y
956

QUARTZ 5 1 . 8 5 6 . 4 8 3 . 8 6 8 . 2 4 8 . 9 5 2 . 8 4 7 . 8 7 0 . 9
PLAGIOCLASE 3 6 . 9 1 2 . 2 8 . 3 2 4 . 2 2 6 . 5 3 3 . 0 2 9 . 7 1 5 . 7
AMPHIBOLE 2 . 5 0 . 0 1 . 7 0 . 4 1 0 . 2 7 . 3 5 . 6 5 . 1
B IO T IT E 0 . 0 0 . 0 0 . 1 0 . 9 0 . 0 0 . 2 0 . 1 0 . 0
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
GARNET 3 . 8 0 . 0 0 . 3 0 . 0 3 . 7 1 . 8 1 2 . 5 6 . 5
PYROXENE 0 . 0 0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C A LC IT E . 0 . 3 0 . 2 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 3 0 . 6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 2
C L IN O Z O IS IT E 3 . 4 0 . 0 5 . 4 5 . 4 9 . 3 1 . 9 3 . 4 0 . 0
CHLORITE 0 . 0 0 . 2 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 0 . 0
ACCESSCmiES 0 . 6 0 . 6 0 . 2 0 . 9 1 . 0 3 . 0 0 . 9 0 . 6

%
187/ 

4 ]  31
2 0 ^ 2o y

/1065
207/

noee
2 o y

4071 MOST
2 ^

^1087
QUARTZ 4 3 . 5 6 6 . 0 6 3 . 3 6 0 . 5 5 0 . 4 5 3 . 4 5 8 . 2 5 9 . 3
PLAGIOCLASE 3 7 . 9 2 3 . 1 2 6 . 5 2 8 . 0 3 6 . 0 2 0 . 0 3 2 . 9 2 9 . 1
AMPHIBOLE 9 . 5 3 . 6 2 . 7 5 . 6 1 . 9 3 . 7 0 . 1 0 . 1
B IO T IT E 1 . 1 0 . 1 0 . 0 2 . 5 0 . 0 0 . 0 0 . 0 1 . 7
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 7
GARNET 4 . 5 3 . 7 4 . 7 1 . 2 5 . 7 1 6 . 4 2 . 1 3 . 1
PYROXENE 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 1 . 6 0 . 0 0 . 0
C A LC IT E 0 . 1 0 . 8 0 . 0 0 . 0 2 . 0 0 . 0 0 . 0 0 . 4
EPIDOTE 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 9
C L IN O Z O IS IT E 0 . 0 1 . 7 0 . 5 0 . 4 1 . 3 0 . 5 1 . 3 0 . 0
CHLORITE 1 . 3 0 . 3 0 . 3 0 . 5 1 . 5 1 . 7 3 . 5 3 . 1
ACCESSORIES 1 . 6 0 . 7 1 . 6 1 . 3 1 . 2 2 . 7 1 . 9 1 . 6

2 ^

'1088

2 ^

'l091

2 ^

/ m o %2 ^

'm 9

2 ^

'l123

2 5 ^ 2 ^

"̂ 1145
QUARTZ 5 4 . 3 5 2 . 3 5 1 . 3 7 0 . 2 4 7 . 9 7 4 . 2 69  5 5 6 . 2
PLAGIOCLASE 3 6 . 7 3 7 . 9 4 1 . 1 2 4 . 8 3 6 . 7 2 0 . 3 2 1 . 2 3 3 . 1
AMPHIBOLE 0 . 7 0 . 1 2 . 8 0 . 3 6 . 7 0 . 3 0 . 4 3 . 5
B IO T IT E 1 . 3 4 . 4 0 . 7 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0
MUSCOVITE 1 . 4 1 . 7 0 . 5 0 . 3 0 . 3 0 . 3 0 . 2 0 . 6
GARNET 2 . 8 0 . 8 0 . 8 0 . 7 6 . 6 2 . 0 4 . 0 2 . 6
PYROXENE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C ALCITE 0 . 0 0 . 4 0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 0 0 . 0 2 . 5 0 . 0 0 . 0 2 . 1 0 . 0
C L IN O Z O IS IT E 0 . 1 0 . 0 0 . 5 0 . 0 0 . 4 1 . 3 0 . 0 2 . 0
CHLORITE 1 . 9 1 - 5 0 . 7 0 . 3 0 . 9 1 . 1 2 . 0 1 . 1
ACCESSORIES 0 . 8 0 . 9 1 . 6 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6

1000 Points per section.
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4.3c) Mineralogy and petrography.

Quartz.

Quartz is the most abundant mineral in a l l  the c a lc - s i l i c a te s  (F ig .20),

comprising 37.3% to 83.8% of each of the samples. Grain size varies from

0.1 to 3.0 mn. with most sections having grain size var ia t ions from about 

0.5 to 1.5 mm. Some of the sections contain equidimensional quartz grains 

whereas others often show a well developed quartz shape fab r ic  (see Fig.21a) 

with aspect ra t io s  of up to 3:1. In some sections quartz c rys ta ls  contain 

internal deformation bands whereas other sections contain quartz c rys ta ls  

with no apparent in terna l  deformation. In sections with deformation bands 

i t  tends to be the larger c rys ta ls  which show the in ternal deformation.

Occasionally sections show the development of equidimensional sub-grains

rather than deformation bands with in  the quartz c rys ta ls .  Some sections

show quartz c rys ta ls  with a weak crys ta l  1ographic "c" axis o r ien ta t ion

(as seen using a sens it ive  t i n t  p la te, eg.Fig.21b).  Sections showing pre- 

fered crys ta l  1ographic o r ien ta t ions  are most commonly, but not exc lus ive ly ,  

found in the Ranochan area (see Chapter 7: fa b r ic  development around the 

Sgurr Beag s i i d e ) .

There is no co r re la t ion  between the c a l c - s i 1icates showing; in terna l  

deformation, quartz shape fa b r ics ,  quartz crys ta l  1ographic fa b r ics ,  or

c a lc -s i l i c a te s  co l lected from the psammites of the d i f fe re n t  d iv is ions

of the Moine sch is ts .  Figure 22 is a tab le  showing subject ive estimates 

of quartz textures.

Feldspar.

Feldspar and quartz are the only two minerals which were found in a l l  

of the c a lc - s i l i c a te s .  Feldspar is usual ly much less abundant than quartz.  

Rela t ive ly  small percentages of feldspar seem to coincide with r e la t i v e l y  

large amounts of c l i n o z o is i te (see F ig .20).

Grain size varies from 0.1 to 1.5 mm. with average sizes from 0.5 to 

1.5 mm. Feldspar c rys ta ls  often occur as aggregates in which, when h igh ly  

al tered, i t  is d i f f i c u l t  to see grain boundaries. In most sections the 

feldspar c rys ta ls  do not show any preferred o r ien ta t ion ,  however in the 

Ranochan area, in some of the sections the elongate shapes of feldspar 

crysta ls  are a l l igned parallel to the quartz shape fa b r i c .

A l l  the fe ldspar is plagioclase. In some heavi ly al tered sections i t  

is d i f f i c u l t  to see good a lb i te  twins. Plagioclase composition ranges from
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Figure  21a.

Photomicrograph to show the quartz c rys ta l  shape fa b r i c  in a 

c a l c - s i 1icate.

1

( E x p .1 7 0 (b ) /9 4 8  ) .  plane p o l a r s .  0 mm. 1

t
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Figure 21b. Photomicrographs of the quartz c rys ta l  1ographic

C-axis fa b r ic  in a c a l c - s i l i c a t e  ( Exp.204(b)/1065

Cross polars plus gypsum pla te

Same view, with ro ta t io n  of 90° on the microscope stage.

—

10 mm.Crossed polars plus gypsum p la te .
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F igure  22.

Table to show the q u a l i ta t i ve  development of quartz 

deformation textures in c a lc - s i l i c a te  rocks.

Calc-Silicates: Quartz textures.

Div. Sample
Grain
size

Shape
fabric

Apparent 
cryst. fabric

Internai
deformation

min.
(mm)

max.
(mm) / yylittle

or
none

weak
del.
bonds

occas
sub

qrolns
?LE 34/229 0.5 3.0 — —

?LE 36/229 0.5 3.0 — — «III,

? LE 37/229 0.1 3.0 — — —

? LE 40/229 1.0 2.0 — — —

? LE 48/231 1.0 2.0 — — ----- -----

■ Gf 81/250 0.5 4.0 — — ----- -----

LE 103/440 0.3 2.0 — — -----

LE 104/451 0.1 1.0 — — -----

LE 105/451 0.1 1.0 — — -----

LE 119/517 0.3 1.0 — — -----

LE 131/573 0.3 1.0 — — -----

LE 134/582 0.5 2.0 — — -----

Gf 167/883 0.3 1.5 — — -----

Gf 170/948 0.5 1.5 — — ----- -----

Gf 174/956 0.3 1.5 — — ----- -----

Gf 175/961 0.2 1.0 — — ----- -----

Gf 187/1031 1.0 2.0 — — -----

Gf 200/1050 0.3 2,0 — — -----

Gf 204/1065 0.3 1.5 — — -----

Gf 207/1068 0.3 1.5 — — -----

Gf 208/1071 0.2 1.5 — ----- -----

Gf 212/1087 0.5 1.5 — — -----

Gf 213/1087 0.4 1.0 — — -----

Gf 215/1088 0.5 2.0 — — ----- -----

Gf 225/1091 0.5 2.0 — — -----

Morar 252/1110 0.2 1.0 — — -----

Gf 253/1115 0.3 2.0 — — ----

Morar 254/1119 0.2 1.0 — — ----- -----

Morar 255/1123 0.2 2.0 — — -----

Morar 256/1123 0.3 2.5 — — ----- -----

Morar 259/1145 0.3 3.0 — — ----- ----
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an anorth i te  content of 42% to 97% (see Appendix 2) .  An. content was deter

mined o p t i c a l l y  using the Michel-Levy technique and care was taken to meas

ure the angle X^C at high An. values, since these angles can exceed 45°. 

The lower values of anorth i te  content were recorded from sections containing 

very highly al tered or poorly twinned plagioclase. The An. content of the 

c a lc - s i l i c a te s  in the Ranochan area is considered more f u l l y  in Chapter?.

The plagioclase c rys ta ls  show highly var iable  amounts of a l te ra t io n .  

Some sections are only very s l i g h t l y  saussuri t ised w h i ls t ,  more commonly, 

in others the feldspars are a l l  or nearly a l l  t o t a l l y  al tered to f ine  gra in 

ed l i g h t  brown saussuri te (eg.sect ion 134/582). Occasional ly r e la t i v e l y  

large s e r i c i t i c  mica and c a lc i te  c rys ta ls  can be seen. Saussuri t isat ion

of plagioclase is found in c a lc - s i l i c a te s  from a l l  three 1i th o -s t ra t ig ra p h -  

ical  d iv is ions  in the area.

Occasional ly the plagioclase has a texture resembling an exsolution 

or symplect ic intergrowth tex tu re ;  both port ions of the symplect ite being 

plagioclase (see F ig .23). Where th is  textu re , which is developed in calc- 

si l ica tes  from all three d iv is ions ,  is found i t  is common to f ind  vermicular 

intergrowths of c l i n o z o i s i te associated with the feldspars. The sign if icance

of th is  texture is discussed in Chapter 6.

There is no spat ia l  re la t ionsh ip  between feldspars which are saussur i t

ised and those which show symplect ic textures.

Ep ido te -C l inozo is i te .

Re la t ive ly  small quant i t ies  of c l in o z o is i te  or epidote ( fo r  a summary

of opt ica l  propert ies see F ig .24) were found in a l l  of  the sections with 

the exception of section 225/1091. C l inozo is i te  is much more common than 

epidote. No z o is i t e  was found in any of the sections (see F ig .20).

C l inozo is i te  is most commonly found associated with plagioclase, in which 

i t  is usual ly  embedded. I t  always occurs as anhedral c rys ta ls  or vermicular 

intergrowths, never as euhedral c rys ta ls .  Grain size varies from small 

worms 0.1 mm. long to c rys ta ls  3 mm. I t  has already been noted that c l i n o 

zo is i te  is often found associated with two-plagioclase symplect ites (Fig.25b 

Across some sect ions there is a gradation from plagioclase through p iag io

cl ase/cl inozo is i  te in to  c l in o z o is i te  (eg.Fig.25a, section 34/229). The 

large c l i n o z o is i t e  c rys ta ls  contain bands of c rys ta l lo g ra p h ica l l y  d i f f e r 

ent ly  or ientated mater ia l .  The texture can be interpreted as re f le c t in g  

growth at the expense of plagioclase containing a lb i te  twins (see Chapter6). 

C l inozo is i te  is also found intergrown with p o ik i l o b la s t i c  garnets. Epidote 
was recorded from sections 212/1087 and 213/1087 where i t  is found assoc-
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Figure 23. Photomicrographs to show plag ioc lase "exsolut ion- 

symplect i te"  tex tu re  in a c a l c - s i l i c a t e .

( Exp.167(b)/883 ).

(a)

exsolution - symplectite 
texture

Crossed po la rs .

(b )

Crossed po la rs .
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F igure  24.

CLINOZOISITE EPIDOTE
Composition CojAl AlgO OH (SijOyXSiO^)^-»' CogFe^'AIzO OHtSijOyXSiO/,)

Colour in thin section Colourless pale green / yellow

Birefringence 0.005 0 049

2Vy 14 90 116

Cleavage very weak often well developed

Some optical properties of the solid solution series 
Clinozoisite Epidote .
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a)

Figure 25. Photomicrographs of Ep ido te -C i inozo is i te  textures 

in c a l c - s i 1icates ( see te x t  fo r  discussion ).

( Exp.34/229 ) . crossed po lars .

(b)
clinozoisite 

associated with 
exsolution -  symplectite 

plagioclase

îC
r \  c-r

( Exp. 167(b)/883 ). plane polars. 0 mm. 0.5

(c)

r
( Exp.259(c)/ !  145 ).  plane polars. 0 mm.
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Figure 25 (con t ) .  Photomicrographs of Epidote-Cl inozoï si te textures

in c a l c - s i 1icates ( see tex t  fo r  discussion ).

epidote assoc ia ted w ith  
/m a t s "  of 

ch lo r i te  CL /

(d)

1( Exp.212/1087 ).  plane polars. 0 mm.

(e)

epidote

garnet

( Exp.213/1087 ).  plane polars. 0_________ nm.________ 0.5
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iated with mats of c h lo r i te  ( Fig,25d) and also intergrown with garnet 

( Fig.25e).

Optical i d e n t i f i c a t i o n  of Epidote Group Minerals.

Zo is i te ,  c l in o z o is i t e  and epidote have a l l  been recorded from Moinian 

c a lc - s i1ica te s . On tex tu ra l  evidence some of these have been regarded as 

minerals from low grade progressive assemblages wh i ls t  others have been 

regarded as products of re trogressive  mineral react ions (see Powell et 

a l . 1981). I f  such tex tu ra l  and mineralogical di f ferences ex is t  then i t  

becomes important to be able to id e n t i f y  the minerals with some cer ta in ty .

In a l l  the sections examined z o is i te  was not found. Cl inozois i te -epidote  

is a nearly complete so l id  so lu t ion  series (Raith,1976) and some of the 

properties of th is  ser ies are l i s te d  below (F ig .24).

An increase of 2V^ in c l in o z o is i t e  corresponds to a change in highest 

observed b ire f r ingence colours. These change from; anomalous blue/grey- 

blue/yellow- lemon yel low- ye l low /p ink-  p ink/purp le. This change of b i 

refringence and 2Vy is correlated with an increase of Fe^^ in the l a t t i c e

at the expense of Al^*  . The change from c l in o z o is i te  to epidote has been

set a r b i t r a r i l y  at 2V^ 90°. In the sections examined there seems to be

a range of 2V^ from about 40°-50° to 100°-110°.

C l inozo is i te  shows strong d ispers ion, p a r t i c u la r l y  noticeable near the 

ext inct ion pos it ion  which is consequently d i f fu se .  In sections of calc- 

si l icates from the Ar isa ig  area, z o is i te  c rys ta ls  show s im i la r  birefringence 

to co-exist ing c l in o z o is i t e  c rys ta ls  but they always show sharp s t ra ight

ext inct ion and never show dispersion (monocl inic c rys ta ls  show a var ie ty

of dispersive features whereas orthorhombic c rys ta ls  do not) .

Amphibole.

Amphibole is a common component of most of the c a lc - s i l i c a te s  (see F ig .20) 

Grain size varies from 0.2 to 3 mm.,most sections have grain sizes ranging 

from 0.5 to 1 mm. Crystal  shapes are anhedral, occasional ly elongate, def

ining a f o l i a t i o n  which is often s l i g h t l y  oblique to the bedding in the 

sample, but more often the grain shape is f a i r l y  equidimensional. Some 

crystals contain many inclusions of small c rys ta ls  which are usual ly s l i g h t 

ly smaller than the quartz c rys ta ls  in the groundmass. A few sections cont

ain some amphibole c rys ta ls  which are more ac icu lar  in shape and i t  is 

possible that these are a d i f f e re n t  generation of amphibole (see Charnley, 
1976).



94

The amphiboles have a ch a rac te r is t ic  pleochroic scheme;

0<= pale straw.
p= pale/mid green.

pale mid green/blue.

The ex t inc t ion  angle Z^C ranges from 20°-33°. 2V^ 50°-70°. Birefringence 

colours are general ly upper order. Therefore i t  is concluded that the

amphibole is Hornblende, possibly one containing r e la t i v e l y  l i t t l e  i ron.

Amphibole is often seen p a r t l y  replaced by c h lo r i t e ,  and less frequently 

by both c h lo r i t e  and c a lc i t e .  Replacement is often along the amphibole 

cleavage. Globular c l i n o z o is i t e  c rys ta ls  Often seem to grow into amphibole, 

very occasional ly replacing i t  along i t s  cleavage. The relat ionship of 

amphibole to other mineral phases is more d i f f i c u l t  to ascertain. Garnet 

and amphibole are often c lose ly  associated but tex tu ra l  evidence fo r  the i r  

re la t ive  age is equivocal. Amphibole is often found within saussurit ised 

plagioclase and again t h e i r  r e la t i v e  age is equivocal.

Pyroxene.

Pyroxene is found in very small quant i t ies  in a few ca lc -s i l i ca te s  (see 

F ig .20). I t s  s ign i f icance  l ie s  in i t s  possible use as a metamorphic grade 

indicator and as such i t  is discussed in Chapter 6.

Generally i t  is found associated with amphibole, both the massive form 

and the smaller ac icu lar  c rys ta ls .  Pyroxene grain size varies from 0.1 

to 1 mm. I t  is colourless in th in  section and has moderate r e l i e f .  Crystals 

show good cleavage, basal sections with two cleavages are r e la t i v e l y  common. 

Birefringence colours r i s e  to mid 2^^ order. Maximum ext inc t ion angle Ẑ C 

is 44°. Ext inct ion  is always sharp, there is no dispersion. 2V^ 50°-60°. 

The pyroxene is presumed to be e i th e r  diopside or augite ( Winchester & 

Whi t t les,1979 ca l l  i t  sa l i  t e ) .  I t  is most eas i ly  dist inguished from c l in o 

zo is i te-ep idote  which has s im i la r  r e l i e f  and can have s im i la r  birefr ingence, 

by i t s  lack of dispers ion.

Garnet.

Garnet is found in most of the c a lc - s i l i c a te s  (see F ig .20). i t  occurs 

in two main forms; equidimensional anhedral c rys ta ls  0.5-2.0 mm, containing 

quartz inclus ions often smaller than the quartz crys ta ls  in the matrix 

and much more commonly as la rger  sponge textured masses of garnet up to 

10-15 mm. in diameter. Ind iv idual  isolated fragments of garnet in these 

"sponges" are general ly 0.2 to 0.5 mm. long and they frequently contain
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inclusions of quartz.

Garnet is f requent ly  al tered to ,  or replaced by, a va r ie ty  of minerals, 

eg. c h lo r i te ,  c l in o zo is i te -e p id o te ,  amphibole, plagioclase, i ron ore and 

b io t i t e .  Of these minerals c h lo r i t e  and c l in o z o is i t e  are the most common 

and they are also the minerals showing f a i r l y  unequivocal replacement t e x t 

ures of garnet. Neither zoning nor inc lus ion t r a i l s  was seen in any garnet 

in the c a l c - s i l i c a t e s .

B i o t i t e .

B io t i te  occurs in small quan t i t ies  in some of the specimens (see F ig .20). 

When considered along with whole rock major element geochemistry i t  has 

been used as an ind ica to r  of metamorphic grade (see Chapter 6).

B io t i te  c rys ta ls  range from 0.1 to 1.0 mm. long; some are th in  laths, 

others more equidimensional. Pleochroic schemes vary in d i f fe re n t  sections, 

the var ia t ions are l i s te d  below;

(X = Pale straw.
Dark brown, blood red, dark green.

B io t i te  is occasional ly  associated with garnet and also amphibole and 

in such cases react ion re la t ionsh ips  are not apparent. B io t i te  is frequent ly  

altered along i t s  cleavage to c h lo r i t e .

Muscovite.

Very small quan t i t ies  of muscovite are found in the c a lc -s i l i c a te s  c o l l 

ected from the western side of the area (see F ig .20 and Map 6).

I t  occurs in two modes; growing as a product of the saussur i t isa t ion 

of plagioclase where the small unorientated c rys ta ls  range in size up to 

0.5 mm.; and intergrown with c h lo r i t e ,  where the muscovite laths range 

in length from 0.1 to 0.5 mm. In these intergrowths the c h lo r i te  and musc

ovite cleavages are p a ra l le l  and age re la t ionsh ips  are impossible to ascert

ain. As these intergrowths are nearly always associated with the breakdown 

of e i ther  b io t i t e  or garnet i t  is possible tha t  c h lo r i te  and muscovite 

have formed at the same time.

Other m inera ls .

Calcite occurs in small quan t i t ies  in nearly every sample where i t  is 

a product of the saussur i t isa t ion  of p lag ioc lase.
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The minerals termed accessory in Figure 20 are i ron ore, sphene, apat i te 

and zircon. A l l  of these occur in most of the sect ions, iron ore being 
the most abundant.

4.4) Semi-pe l i t ic  and Striped Group L i tho log ies .

4.4a) In troduct ion.

The term semi-pe l i te  is used to describe homogeneous quartz-feldspar- 

b iot i te-muscovite rocks intermediate between p e l i tes and psammites, whereas 

the term str iped group l i t h o lo g y  is used fo r  hand specimens which are banded 

with a l te rna t ing  th in  psammitic and p e l i t i c  bands.

4.4b) L i thology.

In the f i e l d  semi-pel i tes are mid grey/brown coloured rocks. Quartz 

and feldspar grain sizes vary from 0.1 to 3.0 mm. Mica crysta ls  0.2 to 

3.0 mm. long def ine a strong f o l i a t i o n  which is usual ly folded into small 

crenulat ions, occasional ly t i g h t  but usual ly open to close ( Fleuty,1964). 

Within homogeneous semi-pel i tes  bedding is usual ly impossible to detect, 

but frequently i t  can be seen in the adjacent psammitic beds where bedding 

is nearly always close in o r ien ta t ion  to the mica f o l i a t i o n .

The st r iped group l i t h o lo g ie s  are composed of th in  cream coloured psamm

ites 3-20 mm. th ick  containing quartz and feldspar crysta ls  with grain 

sizes from 0.2 to 2.0 mm,interbedded with dark brown/grey pel i t i c  layers 

2-20 mm. th ick ,  predominantly composed of micas, with grain sizes from 

0.2 to 3.0 mm. long.

4.4c) Mineralogy and petrography.

Figure 26 shows the modal analyses of a l l  the samples col lected as semi- 

pel i tes and st r iped group l i t h o lo g ie s .  In general they are seen to be quartz- 

fe ldspar-b io t i te-muscovi te rocks with subordinate amounts of other minerals.

Quartz.

Quartz is found in a l l  sect ions. Figure 26 gives an ind icat ion of i t s
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Figure 26.

Modal ana lyses  of striped and 
semi -  pelitic ro c k s .

-Gtenflnnan Division

% • %
13V.

'5 8 8
1 3 ^

QUARTZ 3 1 . 2 2 2 . 2 2 9 . 8 3 2 . 6 2 4 . 5 1 6 . 2 4 9 . 2
FELDSPAR 2 8 . 4 4 5 . 8 3 3 . 2 3 7 . 2 4 3 - 2 4 7 . 0 1 4 . 8
B IO T IT E 2 0 , 8 2 3 . 4 2 5 . 0 1 0 . 2 1 . 4 2 5 . 6 9 . 6
MUSCOVITE 1 4 . 0 8 . 2 1 1 . 2 1 0 . 6 9 . 4 1 0 . 2 2 6 . 0
GARNET 3 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
IRON ORES 1 . 2 0 . 4 0 . 4 0 . 4 0 . 2 0 . 2 0 . 4
CHLORITE 0 . 0 0 . 0 0 . 2 8 . 8 2 0 . 8 0 . 0 0 . 0
/ACCESSORIES 0 . 6 0 . 0 0 . 2 0 . 2 0 . 0 0 . 8 0 . 0

Glenfinnan Loch Eil

^799
2 0 1 / ,

n086
1 i y ,

• 4̂81
1 2 y ,

^525
1 2 9 / ,

QUARTZ 5 5 . 8 4 1 . 8 2 9 . 6 2 9 . 4 2 3 . 0 4 3 . 6
FELDSPAR 2 7 . 8 1 8 . 8 4 6 . 0 3 6 . 2 1 2 . 4 1 4 . 2
B IO T IT E 6 . 6 1 8 . 4 1 7 . 8 3 2 . 0 3 5 . 4 2 1 . 2
MUSCOVITE 9 . 6 1 7 . 6 5 . 6 1 . 2 2 8 . 4 1 3 . 8
GARNET 0 . 2 0 . 2 0 . 0 0 . 0 0 . 2 2 . 4
IRON ORES 0 . 0 0 . 0 0 . 0 0 . 4 0 . 4 4 . 8
CHLORITE 0 . 0 0 . 0 0 . 8 0 . 0 0 . 0 0 . 0
ACCESSORIES
S IL L IM A N IT E

0 . 2 0 . 6
2 . 6

0 . 2 0 . 8 0 . 2 0 . 0

500 Points per section

Semi-pelit ic rock. 
Striped lithology.
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abundance, ranging from 16.2% to 55.8% in d i f fe re n t  sections. Grain size 

varies from 0.1 to 2.0 mm. with average grain size in most sections ranging 

from 0.5 to 1.0 mm. Crystal  shapes are anhedral, mostly equidimensional, 

but in some sections quartz c rys ta ls  are elongated with in  the mica fo l ia t io n .  

A weak C-axis fa b r i c ,  detected using a gypsum p la te ,  is present in a few 

sections. Deformation bands and sub-grains can be seen in some crysta ls .  

Crystal boundaries vary from polygonal mosaics to bulging,crenulated i n te r 

growths .

Feldspar.

Feldspar is found in a l l  sections, i t  is more abundant than quartz 

in some of the sect ions. Plagioclase can be seen in a l l  the sections. K- 

feldspar showing p e r t h i t i c  and myrmekit ic textures can be iden t i f ied  in 

a few sections though i t  may be present, untwinned, in more sections. Feld

spar grain size varies from 0.2 to 3.0 mm. with most crysta ls  in the range

0.5 to 1.5 mm. Crystal  shape is usual ly anhedral, but with s l ig h t  elong

ation with in  the mica f o l i a t i o n  in some sections. Estimates of the p lagio

clase An. content in d i f fe re n t  sections vary from An.25 to An.51. Most 

of the feldspar is at least s l i g h t l y  saussuri t ised.

B io t i t e .

B io t i te  occurs in a l l  sect ions, although in section 32/217 i t  is almost

t o t a l l y  replaced by c h lo r i t e .  The laths are from 0.1 to 3.0 mm. long and

are always very th in .  B io t i t e  in d i f f e r e n t  specimens shows three pleochroic 

schemes;

(X = Straw y e l 1ow.

P=)^= Dark brown,blood red. dark green.

B io t i te  laths are always aligned in to  a strong planar fo l i a t i o n  which 

is usual ly crenulated by m icro- fo lds .  The laths never show undulose e x t in c t 

ion around the crenu la t ions . Occasional ly the f o l i a t i o n  undulates around 

small quar tz-fe ldspar augen and again the laths do not show undulose ext

inct ion .

Muscovite.

Muscovite occurs in a l l  specimens. A l l  sections contain th in  muscovite 

laths ranging from 0.1 to 3.0 mm. long which enhance the b io t i t e  f o l ia t io n
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described above. They never show undulose e x t in c t ion  around the crenulat ions. 

The laths, although co-planar with b i o t i t e ,  of ten seem to overgrow i t .  

In a few sections there are r e l a t i v e l y  large (1-3 mm.) non-elongate mosc

ovites which show random o r ie n ta t io n .  These c rys ta ls  grow over the composite 

biot i te-muscovite f o l i a t i o n .

Garnet.

Garnet is recorded in only four  of the samples co l lected (see F ig .26), 

although i t  seemed to be more common in the f i e l d .  I t  occurs in minor quant

i t i e s  and i t s  importance l ie s  in i t s  use in metamorphic and s t ruc tu ra l  

considerations. Grain size ranges from 0.5 to 2.0 mm. The mica f o l i a t i o n  

wraps around garnet c r ys ta ls .  Textures w i th in  the garnets vary considerably, 

zoning can be seen in sect ion 8/60 in which one garnet has a central  port ion 

containing small globular  quartz inc lus ions surrounded by garnet without 

inclusions, th is  in turn is rimmed with garnet conta ining many inc lus ions 

(Fig.27a). Section 129/500 contains zoned garnets with "sponge textured"  

rims (Fig.27b) but there are also s im i la r  sized garnets in th i s  sect ion 

which are completely "sponge textured" (F ig .27c) .  Figure 27d shows a poss

ible curved inc lus ion t r a i l  in a garnet in section 8/60.

Other minerals.

Pale green pleochroic c h lo r i t e  is found in a few sections where i t  is 

seen to replace b i o t i t e .  Small quan t i t ies  of i ron ore, apat i te  and zircon 

are found in most sect ions. S i l l im a n i te  was found in r e l a t i v e l y  small quant

i t i e s  in sect ion 163/799 where i t  overgrows large p o ik i l o b la s t i c  muscovite 
crysta ls .

4.4d) Comparison of semi-pel i tes and s tr iped group l i t h o lo g ie s .

The mineralogy and mineral d i s t r i b u t i o n  w i th in  semi-pel i tes and s tr iped 

group l i t h o lo g ie s  show some subt le  d i f fe rences which are ou t l ined below.

In the semi-pel i tes the modal analyses are of r e l a t i v e l y  homogeneous 

rocks, so tha t  quartz,  fe ldspar ,  b i o t i t e  and muscovite are found throughout 

the whole rock. In the s t r iped  group l i t h o lo g ie s  the modal analyses are 

calculated fo r  traverses across bands of psammite and micaceous p e l i t e .  

The psammites are quartz r i c h  with small quan t i t ies  of plagioclase and 

b io t i t e .  Within the p e l i t i c  bands muscovite is more common than b i o t i t e

\
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Figure 27. Photomicrographs of garnet textures in

s e m i -p e l i t i c  and s tr iped  group l i t h o lo g ie s .

(a)

V zoned garnet

( Exp.8/60 ). plane polars. 0 mm. 1

(b )

sponge textured garnet

( Exp. l29(c) /550 ). plane polars.
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Figure 27 (con t ) .  Photomicrographs of garnet textu res in

s e m i -p e l i t i c  and s t r iped  group l i t h o lo g ie s

(c)

A .

\ v ^ l 1

/ [sponge te>fturec 
/ /  garnets \

v\ S
( Exp.129(a)/550 ) .plane polars. mm.

possible S curved 
inclusion trail

( Exp.8/60 ).  plane polars.
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and both o f  these m inera ls  are more abundant than p ia g io c la s e ,K - fe ld s p a r  

and quartz. The modal analyses of  the s t r i p e d  l i t h o l o g i e s  and s em i -pe l i t e s  

show tha t the semi-pel  i t e s  are g e n e ra l l y  less quartz  r i c h  and more f e l d -  

spathic than the s t r i p e d  group l i t h o l o g i e s .  The q u a n t i t i e s  o f  other m inera ls ,  

ch ie f l y  micas, are r e l a t i v e l y  cons tant  (see F i g . 28) .

Figure 28 can be used to compare these rocks w i th  the psammites p lo t t e d  

s im i la r ly  in F igure  19. These f i g u r e s  are combined to give Figure 29. In 

general the semi-pel i t e s  and s t r i p e d  group l i t h o l o g i e s  are less r i c h  in 

quartz than the psammites, they have s im i l a r  f e ld s p a r  con ten ts ,  or  poss ib ly  

s l i g h t l y  more f e ld s p a r  and they have a cons ide rab ly  higher  p ropo r t ion  o f  

other minerals ( e s s e n t i a l l y  micas) than the psammites.

4.5) P e l i t i c  rocks.

4.5a) I n t r o d u c t i o n .

P o l i t i c  l i t h o l o g i e s  were not found in the Loch E i l  D i v i s i o n .  In the 

Morar D iv is ion  a p e l i t i c  ho r izon ,  the Ranochan P e l i t e ,  crops out in  the 

extreme west o f  the area mapped (Map 1) and al though i t  was not mapped 

or sampled in d e t a i l  i t  i s  compared to  the pel i t e s  o f  the Glenf innan D iv 

ision.

4.5b) L i th o lo g y .

There are th ree  mappable p e l i t i c  u n i t s  in the Glenf innan D iv i s i o n ,  the 

Glas Charn, Sgurr a Mhuidhe and Druim na S a i l l e  p e l i t e s  ( F i g s . 10 & 16).

Throughout the s t r i p e d  l i t h o l o g y  there  are t h i n  micaceous and p e l i t i c  

layers between t h i c k e r  psammit ic r i b s .

Exposure in the west i s  good, e s p e c ia l l y  on h igher  ground, however in 

the east exposure o f  the D r im s a i l l e  p e l i te  is  p a r t l y  obscured by a mature 

coniferous f o r e s t .

In the f i e l d  f resh  exposures are medium to  dark grey coloured wh i le  

weathered sur faces are u s u a l l y  r u s t y  brown co loured .  Grain s ize  is  h ig h ly  

variable w i th in  i n d iv i d u a l  samples and between samples. P e l i t i c  rocks in 

the east o f  the Glenf innan D iv i s i o n  (eg. 12/70, 16/106, 17/107, 25/155, 

30/209, 47/231) tend to  be r e l a t i v e l y  f i n e  grained and homogeneous (F ig .30a).
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F ig u re  28.

SEMI-PELITIC AND STRIPED LITHOLOGIES

Other minerals
mainly micas

GLENFINNAN & 
LOCH EIL  
DIVISIONS

• semi pelitic 

© striped

Feldspars Quartz

T r ian gu la r  diagram to  show the composi t ion o f  s e m i - p e l i t i c  

and s t r i p e d  group l i t h o l o g i e s .
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F ig u re  2 9 .

PSAMMITIC. SEM I-PELIT IC  AND 
STRIPED LITHOLOGIES

Other minerals
( mainly micas )

QuartzFeldspars

□ Morar Division psammite. 

o Loch Eil Division psammite.

+ Glenfinnan Division psammite. 

• S em i-p e lite .

© Striped lithology .

T r ian gu la r  diagram to  show the composi t ion o f  psammit ic,  

s e m i - p e l i t i c  and s t r i p e d  group l i t h o l o g i e s .

( composite o f  F igures  19 & 28 )
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P e l s i c  minerals have g ra in  s izes of  1-2 mm, micas have lengths o f  1-3 mm. 

F re q u e n t l y  the s t rong  micaceous f o l i a t i o n  is c renu la ted  by m ic ro fo ld s  (F ig .  

30a). These p e l i t e s  con ta in  r e l a t i v e l y  few co-p lanar  t h in  veins or pegmat

i t e s .

The Sgurr a Mhuidhe Pel i te  and the Glas Charn P e l i t e  in the west o f  

the Glenfinnan D iv is io n  are much more coarse grained and gneissose in t e x t 

ure. Grain s ize  o f  the f e l s i c  m inera ls  is 2-3 mm. but the f e l s i c  m inera ls  

are found as e longate augen wrapped by micaceous f o l i a e .  The augen or l i t s  

have lengths from a few mm. up to a few cm. (F ig .30b )  and grade upwards 

in size in to  la rg e r  co -p lanar  pegmati tes.  Crenu la t ion  o f  the f o l i a t i o n  

is much less common than in p e l i t e s  f u r t h e r  eas t .  Thin selvages o f  b i o t i t e  

are of ten found wrapping the la rg e r  o f  the q u a r t z o - fe ld s p a th i c  augen. In 

the Glas Charn and Sgurr a Mhuidhe P e l i t e s  bedding i s  o f te n  d i f f i c u l t  to 

trace. I t  can on ly  be detected where there  are more semi-pel  i t i c  layers

within the p e l i t e  and then i t  is  u s u a l l y  at  a very low angle to  the dominant

planar mica f o l i a t i o n  in the p e l i t e .

4.5c) Minera logy and petrography.

The p e l i t e s  are composed predominant ly  o f  b i o t i t e ,  muscovi te ,  f e ld s p a r  

and quartz w i th  le sse r  q u a n t i t i e s  o f  g a r n e t , c h l o r i t e ,  s i l l i m a n i t e ,  s tau ro -  

l i t e  and other  accessory m ine ra ls .  Modal analyses o f  the samples c o l l e c te d  

are l i s te d  as F igure  31 (and in Appendix 3 ) .  A comparison o f  t h i s  f i g u r e  

with the modal analyses o f  s t r i p e d  and s e m i - p e l i t i c  rocks ( F i g . 26) shows 

that the p e l i t e s  and s e m i -p e l i t e s  con ta in  s im i l a r  minera l  phases but the 

pel i tes genera l l y  have less quartz  and fe ld s p a r  and more mica and garnet 

plus small q u a n t i t i e s  o f  s i l l i m a n i t e  and s t a u r o l i t e .

Because t h in  sec t ions  o f  Glenf innan D iv is io n  D iv is io n  P e l i t e s  are very 

inhomogeneous, c on ta in in g  v a r ia b le  amounts o f  coarse pegm at i tes , augen e tc .  

modal analyses are on ly  presented as an i n d i c a t o r  o f  minera l  abundances

and no s t a t i s t i c a l  value is  placed on the abso lu te  values recorded in Figure
31.

In the mineral  d e s c r ip t i o n s  given below the f o l l o w in g  terms are used

descr ip t ive ly  w i th o u t  any genet ic  im p l i c a t io n s .  LEUCOSOME i s  used to  des

cribe the q u a r t z o - fe ld s p a th i c  augen and co-p lanar  peg m a t i t i c  p o r t io n s  o f  

pel i t e s .  PALAEOSOME is  used to  descr ibe the remainder o f  the rock .  

Chapter 6 conta ins a more d e ta i le d  d iscuss ion  o f  d e s c r i p t i v e  and genet ic  

terminology used here and by o ther  au thors.
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F ig u re  30. Photographs to  show the t y p i c a l  l i t h o l o g y  o f

(a) eastern Glenf innan D iv is io n  p e l i t e .

(b) western Glenf innan D iv is io n  m iq m a t i t i c  p e l i t e .
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F ig u re  31.

110

Modal analyses of Glenfinnan Division Pelites.

% "4 % 3 %s‘4 "4
QUARTZ 1 5 .6 2 3 . 8 2 0 . 8 2 3 . 4 2 0 . 8 1 8 . 6 4 0 . 8 2 0 . 6 2 1 . 6
FELDSPAR 2 6 . 4 3 1 .4 5 2 .4 3 9 .8 4 6 .2 4 7 . 6 3 5 .6 3 4 .8 1 8 .2
B IO TIT E 3 0 . 0 1 9 .8 2 3 . 6 2 7 . 6 2 4 . 8 1 7 . 8 1 4 . 4 2 3 .2 2 3 . 6
MUSCOVITE 2 3 .2 1 6 .6 1 . 4 7 . 6 5 . 8 1 0 . 0 8 . 8 1 8 . 0 3 4 .8
GARNET 3 .6 5 . 4 0 . 0 0 . 6 1 . 8 6 . 8 0 . 0 3 . 0 0 . 4
CHLORITE 0 . 6 1 .2 0 . 2 0 . 0 0 . 0 0 , 2 0 . 2 0 . 2 0 . 0
ACCESSORIES 0 . 6 0 . 6 1 . 4 0 . 6 0 . 2 0 . 0 0 . 2 0 . 0 0 . 2
IRON ORES 0 . 0 1 .2 0 . 2 0 . 4 0 . 2 1 . 0 0 . 0 0 . 2 1 .2
S IL L IM A N IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0

135/
/% 3

8 2 y
4 s i

82b/
/251

Totd
^609 /?21

160/
475

1 6 ^
/?94

QUARTZ 2 9 . 0 5 . 8 1 7 . 4 1 1 .6 4 4 . 8 2 4 . 8 3 1 .2 7 . 8 3 0 .2
FELDSPAR 0 . 2 2 8 . 0 4 8 . 0 3 8 . 0 2 6 . 0 3 7 .4 1 1 . 8 2 3 . 6 1 8 .6
B IO T IT E 2 2 . 8 5 1 .6 1 7 .4 3 4 .5 0 . 4 3 2 .4 1 8 . 0 8 . 2 1 2 . 6
MUSCOVITE 1 7 . 0 0 . 2 0 . 6 0 . 0 . 4 1 . 6 3 7 .6 3 1 .2 3 2 .4
GARNET 0 . 6 2 . 6 1 . 6 2 . 2 1 5 . 8 3 . 0 0 . 2 8 . 4 3 .8
CHLORITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 1 5 .8 0 . 0
ACCESSORIES 0 . 2 0 . 2 0 . 6 014 0 . 4 0 . 4 0 . 4 0 . 0 0 . 4
IRON ORES 0 . 2 0 . 8 0 . 4 0 . 6 0 . 8 0 . 4 0 . 8 1 . 6 0 . 8
AMPHIBOLE 0 . 0 1 0 .4 1 2 . 6 1 1 .5 1 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C L IN O ZO IS IT E 0 . 0 0 . 4 1 . 4 0 . 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
STAUROLITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 4 0 . 0
S IL L IM A N ITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 1 .2

1 6 y
' æ s

1 7 y
'^y.8

173/ 1 7 y
/%1

1 7 ^ l e y
^986

l e y
/l012

l e y
4)31

QUARTZ 3 1 .2 3 0 . 0 2 8 . 4 4 5 . 4 3 6 .8 1 1 . 8 2 0 . 6 1 9 . 0 3 1 . 0
FELDSPAR 2 7 .2 1 6 .2 1 4 . 6 2 0 . 4 2 7 . 4 6 3 . 0 1 7 . 8 2 7 .2 2 8 . 6
B IO TITE 1 5 .2 2 2 . 6 1 5 . 0 1 1 .2 1 0 . 6 2 1 . 2 3 3 .8 3 0 .2 1 8 . 8
MUSCOVITE 1 8 .4 3 0 .8 3 5 .6 1 9 . 0 2 4 . 2 1 . 6 2 5 . 4 2 1 . 6 1 5 .6
GARNET 5 . 4 0 . 0 5 . 4 2 . 4 0 . 0 0 . 2 1 . 8 1 .2 1 .4
CHLORITE 0 . 0 0 . 0 0 . 0 0 . 2 0 . 2 2 . 0 0 . 0 0 . 0 0 . 6
ACCESSORIES 1 .2 0 . 2 0 . 2 0 . 0 0 . 2 0 . 2 0 . 4 0 . 6 0 . 2
IRON ORES 1 .4 0 . 2 0 . 8 0 . 4 0 . 6 0 . 0 0 . 0 0 . 2 1 . 8

500 Points per section
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Figure 31. 

(con t i  nued

Modal analyses of Glenfinnan Division Pelites.

i9 y
MCW.5

2o y
4)50

203/
4)64

2 o y
4)65

2 y
'1086

2 y
^1089

22y
4 )90

22y
4)90

2 3 y
4)92

2 3 y
4)93

QUARTZ 3 1 .4 3 7 .6 3 8 .8 2 6 . 0 2 1 . 0 2 6 . 6 3 2 .2 2 3 . 4 1 8 .6 2 8 .2
FELDSPAR 1 8 .2 1 2 . 0 1 8 .4 3 3 . 0 3 6 .2 1 7 . 0 3 9 .2 4 1 . 0 2 6 . 8 1 9 . 0
B IO T IT E 1 5 . 6 1 9 . 6 15 2 2 8 .2 2 0 . 0 1 3 .2 2 2 . 8 1 7 .6 3 1 .4 1 4 . 6
MUSCOVITE 3 1 .6 2 9 . 6 2 5 . 4 1 1 .4 1 4 .6 3 9 .4 4 . 2 1 5 . 0 2 1 . 6 3 1 .4
GARNET 0 . 6 0 . 0 0 . 0 0 . 2 5 . 0 0 . 0 0 . 4 1 . 6 0 . 8 2 . 6
CHLORITE 0 . 2 0 . 0 0 . 0 0 . 6 0 . 8 0 . 0 0 . 8 0 . 6 0 . 4 0 . 6
ACCESSORIES 0 . 4 0 .2 0 . 0 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 0 . 0
IRON ORES 1 .2 1 . 0 0 . 8 0 . 2 1 . 6 3 .6 0 . 2 0 . 6 0 . 0 2 . 2
S IL L IM A N ITE 0 . 8 0 . 0 0 . 4 0 . 2 0 . 6 0 . 0 0 . 0 0 . 0 0 . 2 1 . 4

2 y
'1)93

2 y
' 1̂093

2 y
no96

2 < y
nio4

2 U y 2 y 2 u y
4 i04

219/
M101

250/
4101

QUARTZ 9 . 0 2 0 . 4 4 2 . 0 2 9 . 6 2 5 .2 2 3 . 4 1 5 .6 2 2 . 8 2 2 . 6
FELDSPAR 4 5 . 8 4 0 .2 3 7 .2 2 7 . 4 4 4 . 4 3 9 . 6 3 6 .4 4 7 . 4 4 0 . 0
B IO T IT E 3 9 . 0 2 5 . 4 6 . 6 2 2 . 6 2 4 . 6 3 1 . 4 3 3 .8 2 1 .2 2 4 . 0
MUSCOVITE 5 . 8 1 0 .2 1 1 . 8 1 1 . 6 5 .2 5 . 4 1 1 .2 8 . 0 1 2 . 0
GARNET 0 . 0 2 . 0 0 . 2 5 . 4 0 . 2 0 . 2 1 . 4 0 . 0 0 . 8
CHLORITE 0 . 0 1 . 0 1 . 8 0 . 2 0 . 2 0 . 0 0 . 0 0 . 4 0 . 4
IRON ORES 0 . 2 0 . 6 0 . 0 1 . 8 0 . 0 0 . 0 1 . 0 0 . 0 0 . 2
ACCESSORIES 0 . 2 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 6 0 . 2 0 . 0
STAUROLITE 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
S IL L IM A N IT E 0 . 0 0 . 2 0 . 2 1 .2 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0

500 Points per section
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Q uar tz .

Quartz is found in al 1 sec t ions ,  ranging from about 5% to 40% in the 

sections examined. Grain s ize  var ies  from 0.5 to  2.0 mm. in the palaeo- 

somatic po r t ions  o f  the p e l i t e s .  In the leucosomes quartz g ra in  s ize  ranges 

up to 4-5 mm. Crys ta l  shapes are anhedra l , most ly  equidimensional  wi th 

no obvious e longa t ion  w i th in  the s t r o n g ly  developed mica f o l i a t i o n  al though 

a few sect ions show shape e longa t ions  o f  up to 2:1 w i th in  the f o l i a t i o n .  

Quartz is gen e ra l l y  not ,  or  on ly  very weakly s t ra in e d ,  as evidenced by 

weakly developed broad deformat ion bands. S t ra ined c r y s ta l s  are more common 

in the leucosomatic po r t ion s  o f  some sec t ion s .  Well developed c r y s t a l l o -  

graphic C-axis f a b r i c s  were not detected (using a gypsum p l a t e ) .  Crysta l  

edges are e i t h e r  f a i r l y  s t r a i g h t  or convex, o f te n  bu lg ing  s l i g h t l y  in to  

adjacent fe ld s p a r  c r y s t a l s .

Feldspar.

Feldspar is  abundant in a l l  sec t ion s ,  compr is ing about 10% to  60% of 

the modal t o t a l s  (F ig .3 1 ) .  Twinned p iag ioc lase  can be seen in a l l  sec t ions ,  

opt ica l  est imates o f  the a n o r t h i t e  content  in d i f f e r e n t  sect ions range 

from An.22% to  An .54%. V i r t u a l l y  a l l  the p iag ioc lase  c r y s ta l s  are un-zoned, 

ra re ly  some show weak i r r e g u l a r  patchy zoning. In c o n t ra s t  to  psammitic 

and s e m i - p e l i t i c  l i t h o l o g i e s ,  m ic ro c l in e  was not found. Good examples of  

p e r t h i t i c  tex tu res  were not observed al though some o f  the pi ag ioc lase c r y s t 

als are a l te red  along t h i n  veins which may be vein a n t i - p e r t h i t e s . L ikewise 

myrmekit ic tex tu res  were not observed but in some sec t ions  a few p iag ioc lase  

crys ta ls  contained small g lobu la r  in c lus ions  o f  quartz ( F i g . 32).  Thus K- 

fe ldspar has not been p o s i t i v e l y  o p t i c a l l y  i d e n t i f i e d  though most sec t ions 

contain some untwinned fe ldsp a r  c r y s ta l s  which cou ld be K - fe ld s p a r .  S ta in ing  

( using Sodium c o b a l t i n i t r i t e :  Chayes,1952) has not revealed any K - fe ldsp a r .  

The grain s ize  o f  f e ld s p a r  c r y s ta l s  ranges from 0 .5  to  3 mm. in  the palaeo- 

some and up to  10 mm. in the leucosomes. C rys ta l  shapes are anhedral wi th  

no r e la t io n s h ip  between c r y s ta l  edges and c r y s ta l l o g ra p h y .  The fe ldspars  

in most sect ions are f resh  or on ly  s l i g h t l y  s a u s s u r i t i s e d .

B i o t i t e .

B io t i t e  is  abundant in a l l  sec t ions ,  rang ing from 11% to  39% (F ig .3 1 ) .  

I t  occurs as la th s  f rom 0.5 to  3 mm. long which are always elongate and 

or ienta ted, us u a l l y  very s t ro n g ly ,  i n to  a p lanar  f o l i a t i o n  which is  e i t h e r
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Figure 32. Photomicrographs to show q u a r t z / f e l d s p a r  tex tu res  

in Glenf innan D iv is io n  p e l i t e s .

( see t e x t  f o r  d iscuss ion  ).

( Exp.162/794 ) .  crossed polars. 0 mm.

( Exp.162/794 ) .  crossed polars. mm.
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wrapped around q u a r t z o - fe ld s p a th i c  augen or c renu la ted  by a se r ies  o f  m ic ro 

folds. The la t h s ,  a l though o f ten  fo lded  around f a i r l y  t i g h t  c r e n u la t i o n s , 

never show strong undulose e x t i n c t i o n .  In d i f f e r e n t  specimens b i o t i t e  shows 

a range of  p leochro ic  schemes s i m i l a r  to  b i o t i t e s  in the s e m i - p e l i t i c  and 

striped l i t h o l o g i e s .  Maximum p leoch ro ic  co lours  ( p  = )( ) can be dark brown, 

blood red ar dark green.

Musc ov i te .

Muscovite is  abundant in many o f  the t h in  s e c t io n s ,  occur ing  in a v a r i e t y  

of modes. Most c r y s ta l s  occur as f a i r l y  t h i n  la th s  0.1 to  3.0 mm. long,  

aligned co-p lanar w i th  b i o t i t e  l a th s .  There are also some muscovi te c r y s ta l s  

which are up to  5 mm. long, non elongated,  and showing no p re fe r red  o r i e n t 

ation of  the basal cleavage in r e l a t i o n  to  the ub iqu i to us  micaceous f o l i a t 

ion. These la rge p o rp h y ro b la s t i c  c r y s t a l s  occur in  two modes, some are 

f o u n d  enclosed w i th in  micaceous f o l i a e  and are o f te n  mant led by sub-gra ins  

of muscovite. Other la rge  non -o r ien ta ted  porphyrob las ts  cross cut  the domin

ant micaceous f o l i a t i o n .  Of a l l  the muscovites on ly  the augened la rge  porph- 

yroblasts show any sign o f  de format iona l  s t r a i n .

Garnet.

Burgundy coloured garnet is  found in small q u a n t i t i e s  in most o f  the 

sections (F ig .3 1 ) .  Most garnets are small (1-2 m m . ) , f a i r l y  equidimensional  

and qui te f re s h .  C r y s ta l l o g ra p h i c  faces are not p resen t .  No abrupt zoning 

is present but many o f  the small garnets have small numbers o f  small round 

quartz inc lus ions  in the c e n t ra l  zone surrounded by an in c lu s io n  f r e e  zone 

which is occas iona l ly  rimmed by an ou te r  zone c o n ta in in g  s l i g h t l y  la rg e r  

i r regu la r ly  shaped quar tz  in c lu s io n s  (F ig .3 3 a ) .  There are very few i ro n  

ore inc lus ions .  No in c lu s io n  t r a i l s  are found in any o f  the garne ts .  Occas

ional ly p a r t i a l  replacement o f  garne t by aggregates o f  b i o t i t e ,  muscovi te 

and feldspar  has occured.

Larger i r r e g u l a r l y  shaped garnets (up to  6 mm.) occur s p o r a d i c a l l y  in 

a few sect ions.  They con ta in  la rge  quar tz  i n c lu s io n s  and a few i ro n  ore 

inclusions. Frequent ly  they  are h i g h l y  rep laced by b i o t i t e ,  muscov i te,  

fe ldspar, quartz and c h l o r i t e .  These la rge  garnets  form.augen around which 

The mica f o l i a t i o n  is  wrapped ( F ig .3 3 c ) .  Probe analyses o f  garnets f rom 

The Locha i lo r t -G len f innan  area (Anderson & 01ympio,1977) show them to  be 

in te rna l ly  homogeneous, u n l i k e  those f u r t h e r  west which o f te n  show st rong 

internal chemical zoning.



116 Figure 33. Photomicrographs to show garnet tex tu res  in 

Glenf innan D iv is ion  p e l i t e s .

( Exp.25/155 ) . plane polars

( Exp.135/583 ) .  plane polars.

///

( Exp.135/583 ) .  plane polars. mm.
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Si l l imani te  ( F i b r o l i t e ) .

S i l l im a n i te  is found in very small q u a n t i t i e s  in some p e l i t e s  ( F i g . 34).  

I t  occurs as f i n e  needles up to 0.2 mm. long, and always associated w i th  

muscovite. The mats o f  f i b r o l i t e  needles anastomose across s in g le  muscovite 

crystals,  showing no c r y s ta l l o g r a p h i c  r e l a t i o n s h i p  to the enc los ing  mica.

S i l l im an i te  has not been observed in any o f  the elongate la ths  which 

together w i th  the b i o t i t e  c r y s ta l s  produce the s t rong f o l i a t i o n  in the 

pel i tes,  i t  seems to  be r e s t r i c t e d  to the la r g e r ,  c r y s ta l  1o g ra p h ic a l l y  

unorientated porphyrob las ts  which f r e q u e n t l y  have marginal sub-gra ins  and 

are augen wrapped by the s t rong micaceous f o l i a t i o n .  S i l l i m a n i t e  has not 

been observed in any o f  the porphyrobl  asts which appear to  cross cut  the 

fo l i a t i o n ,  and i t  does not grow over the mant le o f  the e a r l y  porphyrobl asts 

i t  is concluded th a t  the f i b r o l i t i c  s i l l i m a n i t e  grew p r i o r  to  the deform

ation of the e a r ly  p o rp h y ro b la s ts .

Other m in e r a l s .

Small q u a n t i t i e s  o f  s t a u r o l i t e  occur in sec t ions  160/776 and 245/1104. 

Fibrous c h l o r i t e  occurs ,  r e p la c in g  b i o t i t e ,  in a few sec t ions .  Accessory 

amounts of i ron  ore ,  a p a t i t e  and z i rcon  occur in  most sec t ions .

4.5d) Morar D iv is ion  p e l i t e .

Although the Ranochan P e l i t e  in the extreme west o f the area has not 

been studied in d e t a i l ,  ce r ta in  po ints  can be made which show i t s  pé t ro 

graphie s i m i l a r i t y  to the p e l i te s  of the Glenfinnan D iv is ion .

Twinned p iagioclase is common, K-feldspars have not been observed. 

Quartzo-feldspathic fa b r ic s  are s im i la r  to those in the Glenfinnan Div is ion 

pelites. Intergrown b i o t i t e  and muscovite def ine a micaceous f o l i a t i o n .  

Si l l imanite is found in large, p a r t l y  deformed muscovite c ry s ta ls .  Garnets 

are 1-2 mm. long and te x tu ra l  l y  inseparable from the small garnets in the 

Glenfinnan Div is ion p e l i t e s .
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Loch Beoroid

153
162
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.206

•199

Loch Eilt

km

0 miles

Map to show s i l l i m a n i t e  ( f i b r o l i t e )  l o c a l i t i e s  

( f o r  Grid References see Appendix. 4 ) .
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4.6) Ardgour g r a n i t i c  gneiss.

4.6a) In t roduc t ion .

A desc r ip t ion  o f  the l i t h o l o g y ,  minera logy and petrography o f  the Ardgour 

gran i t i c  gneiss is included in t h i s  chapter on metasedimentary rocks even 

though the o r i g i n  o f  the gneiss has been the s ub jec t  o f  a g rea t  deal of  

research and debate.  The s t r u c tu r e  o f  the gneiss and i t s  r e l a t i o n s h i p  to 

the surrounding metasediments is  discussed in Chapter 5, and i t s  metamorphic 

history in Chapter 6.

The outcrop o f  the Ardgour g r a n i t i c  gneiss w i t h in  the mapped area is 

shown on Map 1. East o f  Glenf innan v i l l a g e ,  road c u t t i n g s  on the A 830 

expose many e x c e l le n t  la rge  v e r t i c a l  rock faces up to  10-20 m. high and 

100 m. long, and al though the ju n c t i o n  between the gneiss and the surround

ing metasediments is  not exposed, nearby exposures are 1i t h o l o g i c a l l y  grad

ational between s t r i p e d  l i t h o l o g i e s  and the Ardgour g r a n i t i c  gne iss .  Exp

osure away from the road sec t ion  i s  not so good, r e c e n t l y  the western s lopes 

of Glean Dubh have been a f fo re s te d ,  wh i le  the eastern  s lopes o f  Glean Dubh 

are covered by a mature con i fe rous  f o r e s t .  Exposure is  g e n e ra l l y  good on

the western s ide o f  the outcrop o f  the gne iss .

4.6b) L i th o lo g y .

The Ardgour g r a n i t i c  gneiss is  s t ro n g ly  gneissose, o f te n  h ig h l y  deformed, 

and does not resemble any o f  the surrounding s t r i p e d  and p e l i t i c  rocks .  I t  

is character ised by con ta in in g  la rge numbers o f  pegmati tes which have a 

var iety o f  s t r u c t u r a l  r e la t i o n s h ip s  to  the gneissose f o l i a t i o n  ranging

from small deformed pegmati te pods, o f te n  w i th  a b i o t i t e  selvage,  to  la rge  

transgressive pegm a t i t i c  sheets ( F i g . 35) .

Excluding peg m a t i t i c  m a te r i a l ,  the gneiss has a s t rong  gneissose f o l i a t 

ion def ined by p lana r ,  o r ie n ta te d  b i o t i t e  c r y s t a l s  1-2 mm. long which are

discrete and not found as wel l  def ined mica la y e rs .  Quartz and f e ld s p a r  

crystals (1-3 mm. long) are the o ther  main components o f  the gneiss ( F i g . 36). 

Some of the fe ldsp a rs  weather to  a cream or pink  co lou r  but most are f resh  

and white.  Often micas are wrapped around small f e l s i c  augen 10-20 mm. 

long and 2-5 mm. wide. F e ls ic  augen grade upwards i n t o  peg m a t i t i c  lenses 

(10-20 cm. long) which are g e n e ra l l y  concordant w i th  the f o l i a t i o n .  The 

gneiss, w i th  i t s  st rong gneissose f o l i a t i o n  and p e g m a t i t i c  lenses is  o f ten  

folded by l a t e r  f o l d s .

On the southern slopes o f  Beinn an Tuim a la rge  mass and a much smal le r



F i g u r e  35. Photographs to show the f i e l d  appearance of the 

Ardgour g ra n i t i c  gneiss.

isoclinal fold 
c losures

( Exp.1233 NM 91458031 ).

V

late pegmatite

{ Exp.1235 NM 91778020 ).

b io t ite  selvage

( Exp.1235 NM 91778020 ).
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Figure 36.
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Modal analyses of Ardgour granitic gneiss .

% % % s y
<235

QUARTZ 2 8 . 2 3 0 . 6 3 6 . 4 4 0 . 0 3 8 . 6 3 6 . 6 1 4 . 6 4 0 . 0 1 5 . 6
PLAGIOCIASE 2 5 . 0 2 9 . 8 4 6 . 6 3 6 . 4 1 5 . 8 3 9 . 4 4 1 . 8 4 2 . 6 3 1 . 2
K-FELDSPAR 3 0 . 2 2 1 . 6 1 2 . 4 1 6 . 2 1 9 . 2 1 0 . 6 5 . 0 1 . 4 5 3 . 2
MYRMEKITE 6 . 4 2 . 0 0 . 0 2 . 0 4 . 4 0 . 4 0 . 0 0 . 0 0 . 0
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 6 0 . 0 1 . 8 0 . 0
B IO T I T E 9 . 4 1 5 . 4 0 . 4 2 . 6 1 3 . 6 1 1 . 0 3 7 . 0 1 3 . 6 0 . 0
MUSCOVITE 0 . 0 0 . 4 2 . 4 1 . 4 8 . 0 0 . 0 0 . 0 0 . 0 0 . 0
CHLORITE 0 . 0 0 . 2 1 . 4 1 . 4 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0
'EPIDOTE* 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 4 1 . 2 0 . 4 0 . 0
ACCESSORIES 0 . 8 0 . 0 0 . 2 0 . 0 0 . 4 0 . 8 0 . 4 0 . 2 0 . 0

% s <235
278/

<235
Peg

QUARTZ 3 5 . 4 2 8 . 0 3 0 . 6 2 4 . 6 2 9 . 6 2 6 . 6 3 2 . 8 2 3 . 8
PLAGIOCIASE 4 6 . 8 5 3 . 8 4 8 . 6 2 7 . 8 4 1 . 0 2 8 . 0 2 3 . 6 3 8 . 0
K-FELDSPAR 1 . 6 1 . 0 0 . 8 2 8 . 0 2 . 6 6 . 6 1 6 . 0 3 0 . 2
MYRMEKITE 0 . 0 0 . 0 0 . 0 3 . 8 2 . 6 0 . 6 1 . 4 5 . 2
GARNET 1 . 4 2 . 0 2 . 0 0 . 0 1 . 6 0 . 0 0 . 2 0 . 0
BI OT IT E 1 4 . 0 1 5 . 2 1 7 . 4 1 4 . 8 2 4 . 6 2 9 . 2 2 6 . 0 2 . 0
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 8 0 . 0 8 . 8 0 . 0 0 . 8
CHLORITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
'EPI DOTE' 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

ACCESSORIES 0 . 6 0 . 0 0 . 6 0 . 2 0 . 0 0 . 2 0 . 0 0 . 0

500 Points per section



124

mass of metasediment (Map 1) are found w i th in  the gneiss,  but gene ra l l y  

the gneiss is remarkably homogeneous throughout i t s  ou tc rop.

4.6c) Mineralogy and petrography.

Modal analyses o f  the gneiss samples ( F i g . 36) ,  bear ing in mind the he te ro 

geneity of  the gneiss at  hand sample sca le ,  in d ic a te  th a t  the gneiss is 

composed of  q u a r t z , f e ld s p a rs  and b i o t i t e ,  w i th  much smal le r  q u a n t i t i e s  

of muscovite, garnet and o ther  m ine ra ls .  The modal analyses exclude any 

portions of d isco rdan t  l a te  pegmati te in the sec t ion  and l i k ew is e  mineral  

descr iptions are o f  m inera ls  w i t h in  the gneiss exc lus ive  o f  obvious d is c o rd 

ant la te  pegmat i t ic  m a te r i a l .  F igure  36 conta ins  an averaged modal ana lys is  

of concordant e a r l y  peg m a t i t i c  f rom samples 280/1235 and 281/1235 (see 

Chapter 6 .2c) .

Quar tz .

Quartz is abundant in  a l l  s e c t io n s ,  i t s  abundance ranging from 24% to  

40%. Grain s ize  ranges from 0.2 to  1.5 mm., c r y s t a l s  are anhedral w i th  

cuspate margins,  convex towards o ther  m ine ra ls .  Quartz appears to overgrow 

plagioclase and K - fe ldspa r  (F ig .37b ,bo t tom  r i g h t ) .  S t ra in  w i th in  quartz  

crystals is u s u a l l y  weakly developed and can be seen as deformat ion bands 

and occasional sub -g ra ins .  Quartz occurs in minor q u a n t i t i e s  as the small 

"worms" in the myrmekites which o f te n  form between p lag ioc lase  and K - f e l d 

spar c rys ta ls  and also as small g lobu les  w i t h in  p la g io c la s e  c r y s ta l s  where 

myrmekite is not common.

In the deformed concordant e a r l y  pegmatites quartz  c r y s t a l s  have gra in  

sizes up to  2 mm.,anhedral shapes, o f te n  cuspate,  bu lg ing  i n to  fe ld s p a r  

crystals and o c c as iona l ly  quartz  appears to  be i n t e r s t i t i a l  to  much la rg e r  

feldspar c r y s ta l s .

Fe ldspar .

Feldspars make up a la rge  p ro p o r t io n  o f  a l l  the sec t ions  examined. Plag- 

ioclase o f ten w i th  m u l t i p l e  a l b i t e  tw in n in g ,  can be i d e n t i f i e d  in a l l  s ec t 

ions. K- fe ldspar  (m ic ro c l in e )  can be i d e n t i f i e d  o p t i c a l l y  in most but not 

3ll sect ions though i t  may be present as untwinned fe ld s p a r  in a l l  sec t ion s .  

K-feldspar content  va r ies  f rom 1% to  53% in d i f f e r e n t  sec t ion s .  P lag ioc lase  

comprises 16% to  54% in d i f f e r e n t  s e c t io n s ,  g ra in  s ize  ranges from 1-3 

and the a n o r t h i t e  content  v a r ies  f rom A n .17% to  An .46% in  d i f f e r e n t
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Figure 37. Photomicrographs to show fe ldspar textures in the 

Ardgour g ra n i t i c  gneiss.

( see tex t  fo r  discussion ).

(a)
K fe ld s p a r

myrmekitic "worms'

( Exp.6/60 ) . crossed polars. 0 0.5mm.

globular
quartz  — ^(y
inclusions Q

O ^  ,quartz overgrowin
plagioclase

( Exp.77/244 ). crossed polars.
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Figure 37 (c o n t ) .  Photomicrographs to show fe lds p a r  tex tu res

in the Ardgour g r a n i t i c  gneiss.

( see t e x t  f o r  d iscuss ion ).

(c)

plag ioc lase
an t ipe r th i te

( Exp.280/1235 ) .  crossed polars. 0.50 mm.

(d)
myrmeklte
tex tu re

fine m icroc line  
twinning-it-:

( Exp.280/1235 ) .  crossed polars. 10 mm.
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s ec t i ons .  Crystals are genera l ly  unzoned and f a i r l y  fresh with s l i g h t  to 

moderate saussur i t i sa t ion .  c rys ta l  shapes are always anhedral, quartz tends 

to be convex towards p lagioclase.

p iag ioc lase /K - fe ldspar  in te r fa c e s  are o f ten  m yrmek i t ic ,  p lag ioc lase  

being convex towards K - fe ldspa r  w i th  quar tz  worms w i th in  the p lag ioc lase  

(see Fig.37a).  There are no la rge areas o f  replacement myrmekites o f  the 

type described by Ashworth (1972). Where there are no obvious K- fe ldspars  

of myrmekites in a sect ion  p lag ioc lase  o f ten  conta ins  small g lobu la r  quartz 

inclusions (F ig .37b ) .  P lag ioc lase  a n t i p e r t h i t e s , w i th  a chequered appearance 

are f a i r l y  common (F ig .3 7 c ) .

The k - fe ldspa r  does not con ta in  wel l  developed m ic ro c l i n e  cross-hatched 

twinning ( in  common wi th  tha t  in the psammites and semi-pel i t e s ) but i t  

shows d i f f u s e  f i n e  c ross -ha tch ing  which i s  more pronounced adjacent to 

thin f rac tu res  and veins w i t h in  the c r y s t a l s  (F ig .3 7 d ) .

In some sect ions there are t h in  p lanar  zones o f  f i n e  grained quartzo-

feldspathic m a te r ia l  (0.1 mm. wide) which are thought  to have formed as

a resul t  of  deformat ion.  Myrmekites, o f te n  found in the same sec t ions ,  

do not show any p re fe r red  o r i e n t a t i o n .

In the deformed pegmati tes both p lag ioc las e  and K- fe ldspars  are abundant, 

grain s ize is l a rg e r ,  up to 1 cm., and both myrmekites and a n t i p e r t h i  tes 

are common.

Bio t i t e .

B io t i t e  is abundant in nea r ly  a l l  samples (see F i g . 36).  The la ths  which 

are general ly f r e s h ,  range in length  from 1-2 mm. and def ine  an undulose

diffuse f o l i a t i o n .  Only r a r e l y  are they  segregated in to  d i s c re te  planar 

mica layers.  The la ths  are o f ten  wrapped around small q u a r tz o - fe ld s p a th i c  

augen. In some exposures b i o t i t e  c r y s t a l s  are seen which are co-p lanar  

with the ea r ly  pegmati tes and which ( tog e th e r  w i th  the pegmati tes) have 

been folded and deformed in to  the dominant (S2 ) gneissose f o l i a t i o n .  In 

rare instances an e a r ly  gne iss ic  f o l i a t i o n  can be seen which together  w i th  

the early pegmatites is i s o c l i n a l l y  fo lded  and reworked dur ing the format ion 

of the dominant gne iss ic  f o l i a t i o n  ( F i g . 52).  Thus the gne iss ic  f o l i a t i o n  

is a composite f o l i a t i o n  al though more o f te n  than not t h i s  cannot be proved 

3t an ind iv idua l  exposure.

Later fo lds  of  the gne iss ic  f o l i a t i o n  produce m ic ro fo lds  in which the 

bio t i te  la ths  are ro ta ted  to l i e  nea r ly  p a r a l l e l  to the m ic ro fo ld  l imbs 

^ot as there are very few micaceous layers  the m ic ro fo lds  are r a r e l y  seen 

c renu la t ions , so t y p i c a l  o f  the ad jacen t p e l i tes and s e m i - p e l i t e s . In 

3il sections b i o t i t e  c r y s ta l s  are u n -s t ra in e d .
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Muscovite.

Muscovite, which is  present in small q u a n t i t i e s  in some o f  the samples 

(Fig.36), forms up to  8 .8% o f  the modal analyses and has two d i s t i n c t  modes 

of occurence. I t  occurs intergrown w i th  b i o t i t e ,  enhancing the mica f o l 

iat ion of the gneiss and, l i k e  b i o t i t e ,  does not show undulose e x t i n c t i o n .  

I t  also occurs growing as n o n -o r i e n ta te d , non-elongate c r y s ta l s  w i th in  

plagioclase c r y s t a l s .

Garnet.

Garnet is found in small quan t i t ie s  in about h a l f  of  the sect ions exam

ined (F ig .36). The c ry s ta ls  are small (1-2 mm.), round and contain small 

numbers of small round quartz inc lus ions with fewer i ron ore inc lus ions. 

The inclusions tend to be concentrated towards the centre of the garnets. 

No strong zoning or inc lus ion  t r a i l s  have been noted. A few of the garnets 

are larger (3-4 mm.) and contain r e l a t i v e l y  large, i r r e g u la r l y  shaped quartz 

inclusions. Frequently the garnets are p a r t l y  replaced by aggregates of 

bio t i te and fe ldspar  with or without muscovite and epidote.

Other minerals .

There are r e l a t i v e l y  small proport ions of other  minerals in the gneiss, 

these include ch lo r i te ,g ro w in g  at the expense o f b i o t i t e ,  epidote, i ron 

ore, sphene, z ircon and a p a t i te .
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5.7) B r i t t l e  deformation.

5.7a) The Beinn an Tuim f a u l t .  

5.7b) Jo in ts  and Thrusts.

5.1) General in t ro du c t io n .

A detai led s t ru c tu ra l  analysis of the area, t ravers ing a l l  three of 

the major d iv is ions  o f the Moine succession, has not previously been attemp

ted. The area to the west has been the subject  of study and controversy 

since the 1930's (see Chapter 2.1) and the area east of Glenfinnan v i l la g e  

was the subject o f  a s t ru c tu ra l  study of the Ardgour g ra n i t i c  gneiss, the 

study extending southwards from Glenfinnan towards Stront ian ( D a lz ie l ,1966 

and Dalziel & Johnson,1963).

Within th is  chapter the area is d iv ided in to  a number of sub-areas and 

the structure of each sub-area discussed in d e t a i l .  Chapter 7 is a discuss

ion of the s t ru c tu ra l  and metamorphic geology of the Sgurr Beag s l id e .  

Chapter 8 d e ta i l s  the in t ru s iv e  and deformational h is to ry  of the su ite  

of microd ior i te  sheet in t ru s io n s .  Chapter 9 synthesises the complete s t r u c t 

ural h is to ry  of the area and examines i t  in the l i g h t  of proposed models 

of the s t ruc ture  of the NW Scott ish  Highlands.

The general a t t i t u d e  of the rocks w i th in  the area is indicated on Maps 

2,3 & 4 which show tha t  throughout the western par t  of  the area the rocks 

strike NE-SW and have near ly v e r t i c a l  d ips. Fur ther east, in the Loch Ei 1 

Division, the amount of dip decreases ra p id ly  and the dip d i re c t io n  varies 

from NE to SE in a re g io n a l l y  developed " f l a t  b e l t " .

5.2) Recognit ion of fo ld  phases.

Detailed mapping w i th in  the area has revealed the presence of four  fo ld  

phases, and the p o s s i b i l i t y  of a f i f t h  phase, w h i l s t  co r re la t ions  with 

adjacent areas (Powell et  a l , 1981iB a i r d , 1982) reveal the existence of a 

Lifth fo ld  phase. Each of the mapped fo ld  phases is  character ised by several 

features and the recogn i t ion  o f  s t ruc tu res  as belonging to one of these 

fold phases is based on the fo l lo w ing  c r i t e r i a ;
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1) Trend o f  major and minor f o l d  ax ia l  planes and hinge l i n e s .

2) Asymmetry of minor fo ld s .

3) St ruc tu res associated w i th  minor f o l d s ,  eg. ax ia l  p lanar  mica f a b r i c s ,  

axial  p lanar  m ig m a t i t i c  f a b r i c s ,  c re n u la t io n  o f  p lanar f a b r i c s  e tc .

4) Geometrical s t y l e  o f  minor f o ld s .

5) The re - fo ld in g  of s truc tu res  of one phase by those of a la te r  phase.

6) Re la t ionsh ip  o f  f o ld s  to the Sgurr Beag s l i d e .

None of  the c r i t e r i a  l i s t e d  above is  d ia g n o s t i c  by i t s e l f ,  but a cons id

e r a t i o n  of a l l  o f  the c r i t e r i a  us ua l l y  enables f o ld s  to be assigned t o  

one of the episodes o f  f o l d i n g .

The area contains rocks of a l l  three major d iv is io n s '  w i th in  the Moine 

succession. Because of the v a r ie ty  of suggested and impl ied co r re la t ions  

between fo ld  phases in the d i f f e r e n t  d iv is ions  (see, fo r  example, Johnstone 

et a l . 1969; P iaseck i ,1980; Lambert et a l . 1979) the s t ruc tu re  is described 

in a number of sub-areas. The sub-areas l i e  e i th e r  t o t a l l y  w i th in  a d iv is ion  

or across the jun c t io n  between adjacent d iv i s io n s .  Corre la t ions are then 

made between the s t ru c tu ra l  h is to r ie s  in each of the d iv is io ns  and the 

significance of the junc t ions  is  discussed.

5.3) Loch E i1 D iv is ion .

5.3a) S t ruc tu ra l  desc r ip t ion .

The rocks of the Loch Ei 1 D iv is ion form the most eas te r ly  sub-area and 

comprise banded psammites and quar tz i tes  with no mappable p o l i t i c  horizons. 

They are the least  wel l exposed rocks in the area, exposure is reasonable

on Beinn an t-Sneachda ( F ig .38) but decreases eastwards. In Glean Suileag

exposure is good in the stream sect ion but is  very poor elsewhere. Much 

of the eastern area is forested and the exposure from here eastwards to 

the Great Glen f a u l t  is genera l ly  very poor.

I t  is c lear  (Map 2) tha t  the Loch Ei 1 D iv is ion  psammites s t r u c tu r a l l y

overlie the rocks of the Glenfinnan D iv is ion .  The few younging d i rec t ions  

obtained from the cross-bedded un i ts  w i th in  the banded psammites (Map 2) 

indicate that the psammites young eastwards and upwards away from the Glen

finnan Div is ion. Most o f  the psammites are f i n e l y  banded with a bedding 

Parallel s c h is to s i t y  s t rong ly  developed w i th in  f i n e  micaceous laminae separ

ating the quar tzo- fe ldspa th ic  layers.

Bedding or s t r u c t u r a l l y  mod if ied  bedding dips g e n e ra l l y  eastwards, (F ig .  

but in d e t a i l  shows a great  c i r c l e  d i s t r i b u t i o n  about an axis plunging
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F i g u r e  39 .

Stereonets drawn from data co l lec ted  from the Loch Ei l  Division

UOCH EIL DIVISION

N

(A)

2S9 P om li 31 Point»

(C)

29 Point»

( D )

(A) Poles to bedding.

(C) Hinge lines of minor folds 

( Beinn an Tuim Synform )

( 8) Hinge lines of minor Fg folds 

( Druim Beag Synform )

(D ) Hinge lines of minor F4 folds 

( Glen Dubh Lighe Antiform )
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shallowly to 100°. The spread of o r ie n ta t io n  of bedding is re la ted to the 

last phase of deformation which has produced a series of very open large

scale warps which have wavelengths of up to 1 Km. The hinge l ines plunge

shallowly to the E or ESE. No minor s t ruc tu res were seen which could be 

related to these large scale open warps which are F5 w i th in  the local de f 

ormation sequence discussed below.

Map 2 shows the axia l  plane of a major synform, the F3 Drium Beag synform 

which crops out in the extreme east of the area mapped. The axia l  plane 

of the fo ld  dips sha l lowly  to the SE and the plunge of associated minor 

folds is very shallow towards the SW.(Fig.39b). The fo ld  is v i r t u a l l y  i so 

clinal (see Map 2) .  Minor F3 fo lds  re la ted  to the major synform are very 

common on the f l a t  top of Druim Beag and show vergence c le a r l y  re la ted 

to the major synformal ax is .  Where the rocks are s e m i-p e l i t i c  th in  sections 

show that the minor fo lds  have produced very t i g h t  crenul at ions of a pre

existing planar mica f a b r i c .  There are some s t rong ly  zoned garnets re la ted 

to this planar fa b r i c  which have acted as r i g i d  porphyroblasts during the 

crenulation event,  d e f le c t in g  the crenul at ion ax ial  planes of the la te r  

(F3) folds.
Psammites west of the ax ia l  plane trace of the F3 Druim Beag synform

younging upwards and eastwards ind ica te  tha t  the F3 Druim Beag synform

faces upwards. East of the ax ia l  plane trace in the va l ley  of Glean Suileag 

in two places the rocks s t i l l  young upwards and to the east, un fo r tunate ly  

the exposures do not contain minor F3 fo lds  and i t  is suspected tha t  these 

two exposures may be on the shor t  limbs of minor fo lds re la ted to the 

major synform. Strachan (1985) mapping a la rger  area of the Loch Ei l  Div

ision, mapped an F3 an t i fo rm , the Stronchreggan ant i form, immediately to 

the east of the F3 Druim Beag synform. He mapped these fo lds as "up r igh t "  

although Strachan (1983,Table 2) shows tha t  the ax ial  plane of the F3 Druim 

Beag synform trending to 050° and dipping at 0-80° to the SE or NW!

Towards the west o f  the Loch Ei l  D iv is ion  (Map 2) the axial  plane traces 

of two sets of fo lds  have been mapped. The e a r l i e r  fo ld  has (F2 ) has been 

termed the Beinn an Tuim synform ( D a l z i e l ,1966) and a series of l a t e r  cren

ulation fo lds (F^) have been termed the Glen Dubh Lighe ant i form (D a lz ie l ,  
1966).

The minor fo lds  associated with  the Beinn an Tuim synform plunge shal low

ly to moderately to the NE (Fig.39c)  and have steep to ve r t i ca l  axial  planes.

1̂ he minor fo lds  in more pel i t i c  l i t h o lo g ie s  have axial  planar penetra t ive 

'iiica fab r ics .  The fo ld  l imbs are r e l a t i v e l y  open in the psammites of the 

Loch Eil D iv is ion ,  but the trace of the F2 axia l  plane continues WSW Into 

Lhe rocks of the Glenfinnan D iv is ion  where the fo ld  limbs rap id ly  t igh ten  to
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become i s o c l i n a l .  Within some of the p e l i t i c  l i t h o lo g ie s  of the Glenfinnan 

Division near to the Loch Ei l  D iv is ion psammites the rocks are gneissose 

with a migmati t ic  fa b r i c  which is ax ial  planar to minor fo lds  associated 

with the F2 Beinn an Tuim synform. The migmat i t ic  (or gneissose) pel i tes  

of the Glenfinnan Div is ion outcrop as a th in  s t r i p  j u s t  east of the stream 

in Glen Dubh Lighe (Map 2. extreme top l e f t )  and grade eastwards in to  non- 

m ig m a t i t i c  p e l i te s  which themselves become more psammitic as they pass 

eastwards ,  apparent ly conformably, in to  the psammites of the Loch E i l  Div

ision (but see Strachan,1982).

In the psammites of the Loch Ei l  D iv is ion the F2 fo lds  fo ld  a composite 

bedding/schistosi ty fa b r i c  in which the micaceous laminae separat ing th icke r  

quartzo-feldspathic laminae have strong bedding-para l le l  s c h is to s i t y .  Rarely 

there are minor isoc l ines  w i th in  th is  bedd ing /sch is tos i ty  f o l i a t i o n .

The axial  plane traces of the la te r  (?)F^ fo lds  in the Glen Dubh Lighe- 

Glen Fionn Lighe area (Map 2) are v e r t i c a l  and trend NNE-SSW. The plunge

of associated minor c renu la t ion  fo lds  is genera l ly  shal low to the NNE (Fig. 

39d). There is a series of (?)F^ fo lds  in the area which, in  t o t a l ,  produces 

an open "an t ic l in o r ium "  here termed the Glen Dubh Lighe ant i fo rm. The sh o r t 

er axial plane traces, indicated on Map 2 are in fe r red  from minor fo ld  

vergences. The pel i te/psammite junc t ion  is not wel l  enough exposed to j u s t 

i fy the drawing of a s u i t a b ly  crenulated l i t h o l o g i c a l  ju n c t io n .

The minor fo lds  produce wel l developed open c renu la t ions  of the e a r l i e r  

penetrative mica fa b r i c  ( F ig .40). The in te r l im b  angles o f  these crenula t ions 

are always open ( in te r l im b  angles approx.120-150°) even where they are 

crenulating the p e l i t i c  l i t h o lo g ie s  of the Glenfinnan D iv is ion .  Type 1 

re-fold patterns (Ramsay,1967) are common where (?)F4 minor fo lds  r e - fo ld

F2 minor fo lds  ( F ig .41).

The (?)F^ fo ld in g  has folded the more f l a t  l y ing  southern limb o f  the 

F2 Beinn an Tuim synform whereas the o r ie n ta t io n  of the near v e r t i c a l  no r th 

ern limb of the F2 Beinn an Tuim synform is much less a f fec ted .  This r e 

folding appears to be at leas t  p a r t l y  responsible f o r  the opening up east

wards of the in te r l im b  angles of the synform in the psammites o f the Loch 
Fil Division.

5.3b) The r e la t i v e  ages of the fo lds  in the Loch E i l  D iv is ion .

In the preceding paragraph the Druim Beag synform and the Glen Dubh

Lighe anti form have been described, a r b i t r a r i l y ,  as of F3 and (?)F/; ages 

>"espectively w ithout any considerat ion of t h e i r  r e la t i v e  ages.

The Beinn an Tuim synform has an axial  planar penetra t ive f a b r i c  in
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Figure 40. Photograph of F^ crenulat ions in the 

Druim na S a i l le  p e l i te.

( Exp.208 NM 95078117 ).
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Figure 41. Photograph of minor fo lds re- fo lded by F^ fo ld ing

axia l plane 
trace

axial planes

( Exp .681 NM 92598295 ) .
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its core but on i t s  limbs i t  is seen to fo ld  a p re -ex is t ing  bed-para l le l  

schistosity ( S i ) .  Therefore the Beinn an Tuim synform is considered to 

be at least F2 in age.

The minor fo lds  of the Glen Dubh Lighe ant i form are frequen t ly  seen 

to fold minor F2 fo lds  and to crenulate a p re -ex is t ing  planar mica fa b r i c .

The Druim Beag synform is a very t i g h t  to i s o c l in a l  "c renu la t ion"  fo ld ;  

i t  is seen to crenula te  a p re -e x is t in g  planar mica fa b r i c .

Therefore i t  can be argued, most simply, tha t  as both the Glen Dubh 

Lighe ant iform and the Druim Beag synform crenulate a p re -ex is t ing  planar 

fabric, they could be considered to be of the same age, ie .  an F3 c renu la t 

ion of an F2 f a b r i c .  Consequently , using th i s  argument,  the la te s t  warps 

would become Fc in th is  numerical sequence.

However, th i s  simple c o r re la t io n  does not consider the geometries of 

both fo lds. The Druim Beag synform is a very t i g h t  to i s o c l in a l  fo ld  with 

a shallow ESE dipp ing ax ia l  plane. The associated minor fo lds  have hinges 

which plunge to the SW and develop a t i g h t  ax ia l  planar mica crenula t ion 

fabric. The adjacent Glen Dubh Lighe ant i form is a very open series of

folds with v e r t i c a l  ax ia l  planes and open in te r l im b  angles. The minor fo lds  

plunge shal lowly to the NE and associated micro-crenu la t ions are r e la t i v e l y  

open, even in h igh ly  p e l i t i c  l i t h o lo g ie s .

The obvious d i f fe rences  in the fo ld  geometries leads one to suggest a 

difference in age between the two fo ld s ,  with the nearly i s o c l in a l  Druim 

Beag synform being e a r l i e r  than the much more open Glen Dubh Lighe ant i form. 

Consequently the Druim Beag synform has been termed F3 and the Glen Dubh 

Lighe ant iform F^ in the descr ip t ion  above.

I t  is conceivable th a t  i f  the Glen Dubh Lighe ant i form had t ightened

up along i t s  ax ia l  plane then i t  would have become geometr ical ly  i n d i s t i n g 

uishable from the Druim Beag synform. However in the area studied i t  must 

be assumed tha t  i f  the c renu la t ion  fo lds  are nucleat ing and developing 

as a series of fo ld s  w i th in  a s ing le  phase of deformat ion, then the Druim 

Beag synform being the more in tense ly  developed, would be r e la t i v e l y  older 

than the Glen Dubh Lighe ant i form but possibly only by a short  period of 
time.

Arguments are presented la te r  concerning the regional development of 

told geometry which also suggest tha t  the Druim Beag synform is an F3 fo ld  

and the Glen Dubh Lighe ant i fo rm is an F^ fo ld  (Chapter 7.5 & 9) ,  and that 

there may be a considerable time in te rva l  between the two phases of deform

ation (Chapter 8 ).

A l te rna t ive ly ,  from the preceding arguments i t  is  possible to suggest

that, since both the Druim Beag synform and the Beinn an Tuim synform are
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older than the Glen Dubh Lighe an t i fo rm, then both fo lds could be of the

same age. However th is  is extremely d i f f i c u l t  to  v isua l ise  geometr ica l ly 

since the fo lds  are adjacent and both are t i g h t  synforms which have very

dissimi lar geometries and open out towards each other .  I t  can also be noted 

that the Beinn an Tuim synform lo c a l l y  develops an axial  planar mica fa b r ic  

whereas the Druim Beag synform always develops a t i g h t  crenula t ion mica 

fabric.

5.3c) Summary of the s t ru c tu ra l  sequence w i th in  the Loch Ei l  D iv is ion .

1) Development of a bed-para l le l  s c h is to s i t y  with very rare i n t r a -  

f o l i a l  minor i soc l in es .

2 ) F2 major and minor fo lds  with l o c a l l y  developed axial  planar

penetra t ive mica fa b r ic s  ( and axia l  planar migmati t ic  fabr ics  

in some of the adjacent p e l i t e s ) .

3) F 3 t i g h t  to i s o c l i n a l  major c renu la t ion  fo ld s .  Axial  planes

trend NE-SW and dip to the SE. Hinges plunge shal lowly towards 

the SW.

4) Fc r e l a t i v e l y  open up r igh t  c renu la t ion  fo lds  with axial  planes

trending NNE-SSW to NE-SW. Minor fo ld  hinges plunge towards 

the NNE.

5) Very open large scale F5 warps which plunge shal lowly eastwards.

This summary does not include f a u l t i n g  which is  considered w i th in  the 

whole mapping area at the end o f  t h i s  chapter.  The s t ruc tu ra l  se t t ing  of 

a suite of deformed m ic ro d io r i te  sheets is  considered in Chapter 8 .

5.4) Glenfinnan D iv is ion  east of the Beinn an Tuim f a u l t .

5.4a) In t roduc t ion .

The rocks in th is  area show the greatest degree of l i t h o lo g i c a l  va r ia t ion  

and are the most complexly deformed of the whole region mapped. They i n c l 

ude the most no r the r ly  por t ion  o f  the Ardgour g r a n i t i c  gneiss, p e l i t i c  

and striped l i t h o lo g ie s  of the Glenfinnan D iv is ion  and an in fo ld  of the 

Loch Eil D iv is ion  psammites occurring west of the g ra n i t i c  gneiss, near 

Glenfinnan v i l l a g e  (see Map 3).

The q u a l i t y  of exposure is extremely varied in the area, the eastern 

slopes of Glen Finnan, the southern slopes of Beinn an Tuim above Lochan
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na Carnaich and the roadside exposures fo r  3 Km. east of Glenfinnan v i l la g e  

are very well exposed. Elsewhere exposure is not so good, espec ia l ly  in 

Glen Dubh Lighe which is heavi ly  fo rested.  Consequently the in te rp re ta t io n  

of fold axial  plane traces and hinge l in e  trends is  p a r t l y  based on regional 

correlations and ex trapo la t ions  to the h i l l s  south of Glenfinnan,mapped 

by Dalziel in 1963.

5.4b) L i th o lo g ica l  d i s t r i b u t i o n .

Map 3 shows the d i s t r i b u t i o n  of l i t h o lo g ie s  in the area. Typical s tr iped 

l i thologies of the Glenfinnan D iv is ion  crop out high on the southern slopes 

of Beinn an Tuim, these are succeeded southwards by a s t r i p  of much more 

mixed rock types. Outcrops are mainly p e l i t i c  w ith  some more s t r iped  p e l i t e  

and psammite together with at least  three th in  s t r i p s  of g ra n i t i c  or h igh ly  

migmatitic gneiss. A fo r th  h igh ly  m igmat i t ic  or g r a n i t i c  gneiss outcrop 

is exposed in the stream bed of the r i v e r  Dubh Lighe north of Wauchan bothy 

(NM 945820), i t  extends northeastwards out o f  the area mapped and appears 

to continue northwards to the g r a n i t i c  gneiss mapped at the western end 

of Loch Arkaig (1 .0 .5 .1 :50,000 Sheet 62W, Scot land).

The s t r ip s  of g r a n i t i c  gneiss can each be traced a few hundred metres 

along s t r i k e .  They do not appear to be connected to each other nor are 

they at p rec ise ly  the same te c to n o -s t ra t ig ra p h ic  le v e l .

Loch Ei l  D iv is ion  psammites outcrop in the east of the area and occupy 

the core of the Beinn an Tuim synform, the ax ia l  plane trace of which can 

be traced in to  the banded p e l i te s  outcroping below and south of the s tr iped 

l ithology on Beinn an Tuim. The psammites are also folded by the la te r

Glen Dubh Lighe ant i fo rm.

The Loch Ei l  D iv is ion  psammites pass westwards in to  a th ick  p o l i t i c

unit, termed the Druim na S a i l l e  P e l i t e ,  which has a wide outcrop on the

hi l ls ide between Glen Dubh Lighe and Glen Fionn Lighe (NM 9580). This r e l a t 

ively homogeneous p e l i t e  is continuous with and grades in to  the more varied 

pelites and psammites on the slopes of Beinn an Tuim (NM 9382).

The Ardgour g r a n i t i c  gneiss occupies most o f  the southern and western 

portion of the area. Within the g r a n i t i c  gneiss a large area of recognisable 

metasediments (most ly f i n e  grained p e l i te s  and s t r ip e d  p e l i t i c  and psammitic 

l i thologies) outcrop south of Lochan na Carnaich. A smal ler outcrop of

striped metasediments is found w i th in  the g r a n i t i c  gneiss on Mam Chreagain.

SW of the g r a n i t i c  gneiss there are th in  s t r i p s  of the s t r iped  l i t h o lo g y .  

Polite and then psammite which has been co r re la ted  by Dalz ie l  (1966) with 

The psammites east o f  the g r a n i t i c  gneiss, i e .  the Loch E i l  D iv is ion psam-
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mites.
The d i s t r i b u t i o n  of l i t h o lo g ie s  is in a broad arcuate pattern in the 

southern part  of  the area, with the trend swinging from E-W in the west,

through SE-NW to N-S in the south of the area. The eastern par t  of  th is

arcuate outcrop has already been described as the Glen Dubh Lighe ant i form

(F^) in the Loch Ei l  D iv is ion .

5.4c) fo ld in g .

Map 3 shows the trend of bedding and S2 f o l i a t i o n  in the area. These

planar elements are c le a r l y  seen to  be deformed into two arcuate shapes

(see also F ig .45). A series of F̂  minor crenu la t ion  fo lds  have been mapped 

which appear to be re la ted  to these arcuate patterns.The axial  planes of 

the minor fo lds  s t r i k e  approximately NE-SW and have near v e r t i c a l  dips 

(Fig.42a). The hinge l ines of the F̂  minor fo lds  plunge var iab ly  towards 

the NE (Fig .42b).  The F̂  fo lds  produce moderate to t i g h t  crenul at ions of 

the planar mica fa b r i c  (S1 /S 2 ) in the pel i t i c  horizons. In the s t r iped  

l ithologies the psammitic bands are folded in to  moderately t i g h t  ( in te r l im b  

angles 60-90°) genera l ly  asymmetric fo lds  with wavelengths from a few tens 

of cms. up to 2-3 metres (F ig .43a).  Within the g r a n i t i c  gneiss F  ̂ fo lds 

the dominant f o l i a t i o n  (S2 ) in to  moderately t i g h t  fo lds  (F ig .43b).  No devel

opment of an ax ia l  planar penetra t ive f a b r i c  has been observed in any of 

these f o l d s .

Figure 44b shows tha t  the F/̂  minor fo ld  ax ia l  planes have a fanning 

spread of o r ie n ta t io n  about a "common axis"  which is  v e r t i c a l .  The mean

trend of these v e r t i c a l  planes is approximately NE-SW and may def ine the

XY plane of the D^ s t ra in  e l l i p s o i d .  One might assume tha t  the "common 

axis" about which th i s  fanning occurs is  the Y axis of the D̂  s t ra in  e l l i p 

soid, in which case the o r ie n ta t io n  o f  the D^ s t ra in  e l l i p s o id  would be 

constrained to ;  Y axis v e r t i c a l ;  X axis h o r i z o n ta l , NE-SW; and Z axis horizon
tal, NW-SE.

By analogy with fanning cleavage around an ind iv idua l  fo ld  (Fig.44a) 

where one observes tha t  the "common axis"  o f the cleavage fan coincides 

with the hinge l in e  of the f o l d ,  one would expect the "common axis" of 

the F/, minor fo ld  ax ial  planes to co inc ide with the mean trend of the F̂  

iriinor fo ld  hinges. Examination o f  Figures 42a & b shows th is  not to be 

the case. However th is  analogy is consider ing the s im p l i s t i c  case where 

the i n i t i a l  planar surface is co-planar with the YZ plane of the imposed 

strain el 1 i p s o id .

The spread o f o r ie n ta t io n  o f  F4 minor fo ld  hinge l ines  may be due to
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F i g u r e  4 2 .

GLENFINNAN ----- DRIMSALLIE AREA

) Poles to axial planes

• SE of Beinn an Tuim fault 
o NW " " " •• ••

pO^, «

175 Points

0  ) Plunge of minor fold hinges

SE of Beinn on Tuim fault

See text for discussion 

of the relative structural 
age of these folds

140 Pomts

Stereonets from the Glen f innan-Dr imsa l l ie  area.
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F i g u r e  43 .  P h o t o g r a p h s  o f  m i n o r  f o l d s

( Exp.622 NM 93448257 ).

(b) Minor F^ fo lds in the Ardgour g ra n i t i c  gneiss

( Exp.1306 NM 91568030 ).
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F i g u r e  4 4 .

Sketches to show the geometry of 
the Glen Dubh Lighe antiform.

Sketch of the cleavage

( A )

" Common axis" 
of cleavage fan , coincident 

with minor fold hinge lines.Orientation of
strain ellipsoid .

( B)

"Common axis" of cleavage, 
and minor fold axial planes

Spread of minor fold 
hinge lines

Mean axial 
plane trace .

Spread of poles 
to cleavage and  
minor fold axial planes

see Fig. 42b
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a combination of three fa c to rs .  F i r s t l y ,  p r io r  to deformation the s u r f 

aces may have had var iab le  o r ie n ta t io n  so that the F/. minor fo ld  hinge

lines produced were not co-1 inear,  but l i e  w i th in  the XY plane of the 

strain e l l i p s o id .  Secondly, heterogeneous progressive deformation may have 

rota ted the F/, minor fo ld  hinge l ines by varying amounts w i th in  the XY 

plane towards the X axis of the D/, s t r a in  e l l i p s o i d .  T h i rd ly ,  since the

m i n o r  fo ld  ax ia l  planes have a fanning d i s t r i b u t i o n  about the XY plane 

of the Dz, s t ra in  e l l i p s o i d ,  i t  fo l lows that F^ minor fo ld  hinges which

are on th is  fan of F̂  minor fo ld  ax ia l  planes w i l l  have a spread of d i s t 

r i b u t i o n  which fans about the XY plane, trending towards the Z axis.

Thus these three fa c to rs ,  when considered, w i l l  produce a spread of 

orientations w i th in  the XY plane and towards the Z axis of the di, s t ra in  

ell ipsoid, possib ly  producing a d i s t r i b u t i o n  pattern  s im i la r  to tha t  of 

Figure 42b.

I t  would seem that the fanning spread of o r ie n ta t io n  o f  F/̂  minor fo ld  

axial planes can be used to def ine the o r ie n ta t io n  of the imposed s t ra in  

ell ipsoid whereas the o r ie n ta t io n  of the F^ minor fo ld  hinge l ines can

be used, at most, to def ine a l inea r  element w i th in  the XY plane of the

el l ipsoid.

An a l te rna t ive  explanat ion fo r  the d i s t r i b u t i o n  of Fz, s t ru c tu ra l  elements 

(Fig.42) is that the spread of d i s t r i b u t i o n  is  due to subsequent (F5 ) f o l d 

ing.Prior to the l a t e r  fo ld in g  the Fz, minor fo ld  axial  planes may have

had a constant o r ie n ta t io n  ( v e r t i c a l ,  NE-SW) and the Fz. minor fo ld  hinge 

lines a spread of o r ie n ta t io n  w i th in  the v e r t i c a l  NE-SW Fz, ax ial  planes.

Although no fo lds  obviously l a te r  than the Fẑ minor fo lds have been

recorded in the area, fu r th e r  east in the Loch Ei l  D iv is ion there is a 

weak phase of D5 deformation, and in the extreme west of the area mapped, 

at the eastern end o f  Loch E i l t ,  there are numerous la te  minor fo lds  which 

fold the local F3 c renu la t ion  fo lds  and the re g io n a l l y  developed Fẑ major 

folds (see Chapter 5.6c and Chapter 7).

I f  one postulates tha t  par t  of  the spread of o r ie n ta t io n  o f  Fz, minor 

structures is due to D5 deformation i t  becomes impossible to def ine the 

exact o r ien ta t ion  o f  the Dz, s t ra in  e l l i p s o i d  since the o r ie n ta t io n  of the 

X and Y axes w i th in  the XY plane of the s t r a in  e l l i p s o id  cannot be e s t 
ablished .

The o r ien ta t ion  of the regional Dẑ s t r a in  e l l i p s o i d  is considered fu r th e r  

in Chapter 8 . 1b where the 0^ deformation of a su i te  of post-Dg/pre-Dz, micro- 

^iorite sheet in t rus ions  is discussed.

The Fz, Glen Dubh Lighe ant i form is par t  of  the large fo ld  which produces 

Tbe arcuate outcrop pattern  o f the area. The o r ie n ta t io n  o f  F̂  minor fo ld
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hinges and Fẑ  minor fo ld  ax ia l  planes have been re la ted to th is  major fo ld ,  

however i f  the vergence of minor Fẑ fo lds  is studied (see Map 3) i t  is 

seen that the Fz, minor fo ld  vergence shows very l i t t l e  correspondence to 

the geometry of the major fo ld .  However i t  can be argued that the minor 

folds are p a r a s i t i c a l l y  disposed about la rger  fo lds  which themselves para

si t ic to the major Glen Dubh Lighe ant i fo rm. I t  is noted that the outcrop 

pattern of the gneiss and i t s  contained metasediments around Lochan na

Carnaich appears to show fo ld in g  on a scale intermediate between the Fẑ 

minor folds and the regional arcuate Glen Dubh Lighe ant i form.

I t  is in te res t in g  to examine the vergence of Fz, minor fo lds  in the east 

of the area on e i th e r  side o f the trace o f  the F2 Beinn an Tuim synform 

(see F ig .45). South o f  the F2 ax ial  plane the Fẑ minor fo lds plunge NNE 

and verge to ind ica te  the presence o f a synform to the east. North of the 

F2 axial plane the Fẑ minor fo lds  again plunge to the NNE but verge to

indicate the presence of an Fẑ ant i fo rm to the east.  This apparent anomaly 

can be explained by envisaging the two limbs of the F% Beinn an Tuim synform 

being geometr ical ly  on e i th e r  side of the XY plane of the Dz, s t ra in  e l l i p s 

oid and consequently, during Dz, deformation, ro ta t in g  in opposite d i rec t ions  

towards the XY plane of the e l l i p s o i d .

Thus a combination of fo ld  generation on d i f f e r e n t  limbs of the F2 Beinn 

an Tuim synform and ro ta t io n  of opposite l imbs in opposite d i rec t ions  t o 

wards the Dz, XY plane would produce Fz, minor fo lds  with the opposite senses 

of vergence on each limb of the F2 f o ld .

Further, the opening up of the F2 Beinn an Tuim synform during Dz, deform

ation requires tha t  p r io r  to the onset o f  Dz, deformation the F2 fo ld  was 

not isoc l ina l  in th i s  p a r t i c u la r  area.

5.4d) D2 deformation.

5.4d1) Pattern o f S2 f o l i a t i o n .

Map 3 shows the pattern o f  $2 f o l i a t i o n  planes in the area. The F2 Beinn 

an Tuim synform and F2 minor fo lds  are i s o c l i n a l  or nearly so w i th in  the 

area and the $ 2  f o l i a t i o n  pattern is  very s im i l a r  to the pattern of l i t h o l -  

ogical d i s t r i b u t i o n .  Only in the extreme NE of  the area and eastwards in to  

The psammites of the Loch E i l  D iv is ion  is t h i s  not the case. Here the reg

ional F2 Beinn an Tuim synform is a r e l a t i v e l y  open fo ld .  The planar mica 

Tabric in the Loch Ei l  D iv is ion  psammites which is  folded by the Beinn 

3n Tuim synform, though i n i t i a l l y  mapped as S2 is now considered to be 
^1 fo l ia t io n .
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F i g u r e  45 .

Diagram m atic sketch to show the 
F2 Beinn an Tuim synform  “ opening " 

during  deform ation.

F2 Limb rotation during 

Deformation

XY Plane

minor fold

Nearly vertical F 2 

Axial Plane

Compression
Z Axis

minor folds

© @  Progressive Deformation of on 
F2 f^ajor Fold

F Limb rotation 
during D^ Deformation

D,

XY PLANE

© ®

Tight F2 M ajor Fold
Minor F^ Folds 

on limbs of F2 Major Fold.



153

The pattern of l i t h o lo g i c a l  d i s t r ib u t i o n  and $2  f o l i a t i o n  (see F ig .46) 

is controlled by the subsequent F^ fo ld in g  which has produced the arcuate 

patterns in the area.

5.4d2) Nature of the S2 f o l i a t i o n .

The s tr iped and banded psammites and p e l i tes exposed on the slopes of 

Beinn an Tuim (Map 3 and F i g . 38) contain a planar mica fa b r ic  in the p e l i t i c  

units which, except in the cores of F2 f o ld s ,  is  genera l ly  v i r t u a l l y  co- 

planar with the l i t h o lo g i c a l  layer ing.  The fa b r i c  is ax ial  planar to minor 

tight to i s o c l in a l  fo lds (F2 ) and is often crenulated by l a te r  fo lds  related 

to the major F/̂  Glen Dubh Lighe ant i fo rm (F ig .47a) .  In a few places the 

P2 folds in the s t r iped  group are seen to fo ld  not only bedding but also 

an ear l ie r  set of minor fo lds  which themselves possess an axial  planar 

penetrative mica fa b r ic  in the p e l i t i c  layers. At exposure 231 (NM 91278033), 

where both F̂  and F2 minor fo lds  can be d is t ingu ished ,  the fa b r ic  in the 

hinges of the minor F2 fo lds  appear penet ra t ive ,  there are no signs of 

i t  being a very t i g h t  c renula t ion o f  the p re -e x is t in g  S-| planar fab r ic  

(Fig.47b).

Locally the $2  penetra t ive mica fa b r i c  contains lobate lensoid fe ld s -  

pathic segregations, such rocks are termed m igmat i t ic  p e l i tes.  There are 

no indicat ions tha t  the segregations are very t i g h t l y  developed crenulat ions 

of a p re -ex is t ing  m igmati t ic  f a b r i c ,  al though th is  could be the case 

i f  crenulation development was extremely intense. Thus in many areas S2 

is a true penetra t ive fa b r i c  which has t o t a l l y  re-worked and ob l i te ra ted  

the ear l ie r  penetra t ive f a b r i c .

In the homogeneous Druim na S a i l l e  p e l i t e ,  the strong m igmat i t ic  f a b r i c ,  

comprising aligned micas and co-planar lensoid fe ldspa th ic  segregations 

was i n i t i a l l y  mapped as the S2 f a b r i c  even though bedding was f requent ly  

undefined w i th in  ind iv idua l  exposures. However as the fa b r i c  is folded 

by the F2 Beinn an Tuim synform i t  is  now re - in te rp re te d  as an Si f a b r i c .  

Thus on th is  basis there appears to be evidence f o r  two phases of migmati te 

development.

The Ardgour g r a n i t i c  gneiss, the s t ru c tu re  of which is  more f u l l y  con

sidered in Chapter 5.4e contains a very s t rong ly  developed f o l i a t i o n  which 

is composed of micas co-planar with small lensoid quar tzo- fe ldspa th ic  seg

regations . In addi t ion  the gneiss contains abundant deformed lensoid pegmat

ites which are nearly co-planar with t h i s  dominant f o l i a t i o n .  Frequently 

the pegmatites, which have b i o t i t e  selvages, can be seen to be folded into  

this f o l i a t i o n .  Very occasional ly  an e a r l i e r  m igmat i t ic  f o l i a t i o n  can be



F i g u r e  4 6 .

GLENFINNAN DRIMSALLIE AREA

154

O O
OO

/ • : .  •

296 Point» 108 Point»

,o X

X

A ) .  Poles to $2 schistosity

• SE of Beinn an Tuim fouit
O ** ** ** '* **

Q ) Poles to bedding and S  ̂ schistosity
• SE of Beinn on Tuim fault
O ** ** ** ** **
+  S-| schistosity in the Ardgour gneiss

Q ) ,  Plunge of minor F2 fold hinge lines

• SE of Beinn an Tuim fault
o N W

Mineral and ougen lineations in
the Ardgour granitic gneiss

Stereonets from the G l e n f inndn-Dr imsal1ie area.



155

F i g u r e  47 .  P h o t o g r a p h s  o f  m i n o r  f o l d s

(a) F2 fo ld  re- fo lded by F^ crenula t ion fo ld

trend of

( Exp.230 NM 91068047 ).

(b) F2 r e - fo ld  of minor fo ld .

F.J fold Gxicl plane

Fj  fold axial  plane

( Exp.231 NM 91278033 ).
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seen which is h igh ly  deformed in to  near pa ra l le l i sm  with the dominant (S2 ) 

fol ia t ion ( F ig .52).

Both the ax ia l  planar S2 fa b r i c  of the Glenfinnan Div is ion metasediments 

and the dominant f o l i a t i o n  (S2 ) o f  the Ardgour g ra n i t i c  gneiss have been

deformed in the same manner by the fo lds  of the F  ̂Glen Dubh Lighe ant i form.

Throughout most of the area, espec ia l ly  w i th in  the exposure of the Ardgour 

granitic gneiss, the S2 f o l i a t i o n  is so s t rong ly  developed as to transpose

most of the e a r l i e r  s t ru c tu ra l  elements and because minor fo ld  vergences

are often d i f f i c u l t  to d iscern , i t  is very d i f f i c u l t  to pos it ion  accurately 

the traces of F2 fo ld  ax ial  planes. In conclusion i t  is seen that the mig- 

matisation is associated with both S1 and S2 f o l i a t i o n s .  D2 deformation 

has re-worked and o b l i te ra te d  much of the evidence of the ear ly  S1 f o l i a t i o n .

5.4d3) Geometry o f  F2 f o ld s .

In the typ ica l  s t r iped  l i t h o lo g ie s  of Beinn an Tuim and the psammites 

of the Loch E i l  D iv is ion  F2 minor fo lds  are r e l a t i v e l y  common. Within the 

granitic gneiss and associated metasediments around Lochan na Carnaich 

the $2 f o l i a t i o n  is wel l developed but minor fo lds  are much less frequent.  

Much of the s t ru c tu ra l  i n te rp re ta t io n  which fo l lows is based on ex t rapo l 

ation from un fo r tunate ly  l i t t l e  in fo rmat ion .  These inferences are then 

extended southwards by comparisons with the work of Dalz ie l  (1963a,1966).

Beinn an Tuim synform.

The eastern end of t h i s  s t ruc tu re  has already been described where i t  

occurs in the Loch E i l  D iv is ion .  Here and in the metasediments in the upper 

Glen Dubh Lighe (Map 3) the fo ld  is a r e l a t i v e l y  open synform which opens 

upwards and to the NE. Minor fo lds  in a l l  the non migmati t ic  or gneissose 

rocks have associated ax ia l  planar penet ra t ive  mica fa b r i c s .  In the migmat

i t i c  pe l i te  and g r a n i t i c  gneiss on the eastern slopes of upper Glen Dubh 

tighe (which is bel ieved to be the southern end of the Loch Arkaig g ra n i t i c  

gneiss) the f a b r i c  associated with the F2 minor fo lds  is an axial  planar 

migmatitic fa b r i c  o f co-p lanar mica f o l i a e  and oblate quar tzo- fe ldspath ic  

segregations.

The axial  plane o f  the Beinn an Tuim synform can be traced westwards 

into the mixed p e l i te s  and s t r iped  l i t h o lo g ie s  which crop out to the north 

oT Lochan na Carnaich (Map 3).  The bedding planes in th i s  area are co-planar 

with the $ 2  f o l i a t i o n  and the l i t h o l o g i c a l  outcrop pattern indicates that 

The fold is i s o c l i n a l .  The fo ld  ax ia l  plane can be traced and extrapolated
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westwards westwards u n t i l  i t  is cut by the Beinn an Tuim f a u l t .

Figure 48 is a sketch map to show the geometry of observed F2 minor 

folds together with the o r ie n ta t io n s  of in fe r red  F2 minor fo lds and fo ld  

axial planes (Fig.46c shows the o r ie n ta t io n  of F2 minor fo ld  hinge l in e s ) .  

The Beinn an Tuim synform over most of i t s  outcrop has minor fo lds whose 

hinges plunge to the E and NE (e g .F ig .48 f o l d s ( l )  and (2)) but when traced 

westwards along i t s  ax ia l  plane the major fo ld  has minor fo lds which have 

hinge l ines which have passed through the v e r t i c a l  (F ig .48 fo ld  (3 ) ) .  The 

Beinn an Tuim "synform" s t i l l  opens to the east however since the minor 

folds plunge westwards the fo ld  is now geometr ica l ly  an ant i fo rm(Fig .49)

In the area west of Lochan na Carnaich (Map 3,NM 9282) the few F2 minor 

folds which have been observed, when taken together with the geometry of 

S1/S2 in te rsect ions and rodding w i th in  the g r a n i t i c  gneiss, ind icate  that 

there are a series of isoc l ines  in the area ra ther  than j u s t  the cores of 

two major fo ld s ,  the Beinn an Tuim "synform" and the Meall nan Damh fo ld  

(F ig .4 8 , fo ld s (3 ) , (4 ) , (5 ) , (6 )  e t c . ) .

Dalziel (1963a and 1966) has described a f o l d ,  the Beinn an Tuim ant i form 

outcropping to the north of the Beinn an Tuim synform, SE of the Beinn 

an Tuim fa u l t  and trending ENE-WSW. This f o ld  closure was not found in 

the area, although i t  is possible tha t  i t s  ax ia l  plane outcrops fu r th e r  

to the north.

Meall nan Damh fo l d .

This fo ld  takes i t s  name from a h i l l  6 Km. south of Glenfinnan in western 

Ardgour (D a lz ie l , 1963a). In the area under considerat ion the western limb 

is well exposed but the eastern l imb is very poor ly  exposed.

The F2 minor fo lds  in the Ardgour g r a n i t i c  gneiss on the road section 

east of Glenf innan v i l l a g e  and on Mam Chreagain are on the western limb 

of a major fo ld  which l o c a l l y  plunges steeply  northwards and opens out 

to the north (see Fig. 48 , fo lds (7 )  and ( 8 ) ) .  In the exposures fu r th e r  nor th 

eastwards the re la t io n s h ip  o f  the dominant f o l i a t i o n  ($2 ) to the e a r l i e r  

migmatitic fa b r i c  (Sq/S-i ) ind icates tha t  the f o ld  axial  plane has been 
crossed.

Minor fo lds and rodding w i th in  the g r a n i t i c  gneiss ind icate  tha t  the 

structure genera l ly  plunges s teeply northwards with only occasional F2 

minor folds plunging steeply  southwards (F ig .4 8 ,F o ld s (4 ) , (5),  ( 6 ) ) . Occasion

ally F2 minor fo lds  ( F ig .4 8 , f o l d s (4 ) , ( 5 ) , ( 6 ) )  to the northeast of the major 

âxial plane of the Meall nan Damh fo ld  have geometries which ind icate  the 

presence of more than one F2 ax ia l  plane in the area.
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F i g u r e  48 .
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F i g u r e  49 .
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Over most of the area under considerat ion the Meall nan Damh fo ld  is 

a northerly plunging, nearly  i s o c l in a l  synform, however Dalziel  ( 1 9 6 3 a , 1966) 

has mapped a much larger  area which is a souther ly  extension of th is  fo ld  

and over most of th is  area i t s  axis is in fe r red  to plunge steeply southwards 

and i ts  shape is therefore  in fe r red  to be an t i fo rm a l ,  the fo ld  opening 

nor thwards .  Moving northwards along i t s  ax ial  plane trace the hinge l in e  

is inferred to pass through the v e r t i c a l  so th a t  in the extreme north of 

D a l z i e l ' s  area (north of the A 830 road and Gal lop r i v e r .  Maps 3 & 5) the 

fo ld  is a northwards opening synform (see F i g . 50, taken from D a lz ie l , 1 9 6 6 ) .

Dalziel has also mapped an F2 major f o ld ,  the Meall a Bhainne synform 

(see F ig .50) the ax ia l  plane trace of which is extended northwards through 

the northern end of Loch Sh ie l ,  however no evidence fo r  the existence of 

this fold has been found in the rocks north of the r i v e r  Gal lop.

5.4d4) Var ia t ions in s t r a in .

The area east of the Beinn an Tuim f a u l t  (Map 3) is c le a r ly  one of hetero

geneous deformation, demonstrated by the va r ia t io n s  in plunge of F2 minor 

fold hinges and va r ia t ions  of i n te r l im b  angle of F2 major fo ld s .  The hetero

geneity could have been produced during D2 deformation, during D̂  deform

ation, or by a combination of both. The v a r ia t io n  in states of deformation 

across the Glenfinnan/Loch E i l  D iv is ion  boundary is considered in more 

detail la te r  (Ghapter 5 .5 ) .  However even w i th in  the rocks of the Glenfinnan 

Division there are obvious s t ra in  v a r ia t io n s .  I t  is possible to consider 

that the va r ia t io n  in the plunge of F2 minor fo ld  hinges along the length 

of the Beinn an Tuim synform is a r e s u l t  of  fo ld in g  F2 minor fo ld  hinges 

during the D  ̂ deformation ( i e .  by the Glen Dubh Lighe ant i fo rm).  However 

an examination o f  Map 3 shows the western h a l f  o f  the axial  plane of the 

Beinn an Tuim "synform" is  e s s e n t ia l l y  planar ye t  F2 minor fo ld  hinges 

vary in plunge from 30-50° towards the east in the east, through rec l ined 

northerly plunging, eventua l ly  plunging at 25-60° towards the west in the 

west. Thus the plunge v a r ia t io n  cannot be explained by var ia t ions  in D̂ 

strain and consequently must be due to s t ra in  va r ia t io n s  during D2 .

The in ter l imb angle of the major F2 Beinn an Tuim synform t ightens rap id 

ly to isoc l ina l  moving westwards from Glen Dubh Lighe. This seems to corres

pond to the change of plunge of the F2 minor f o ld  hinges from synformal 

in the east, through rec l ined  to ant i fo rmal  in the west. Therefore i t  is 

^iniplest to v isua l ise  the Beinn an Tuim synform forming as a near horizonta l  

on easterly plunging synform, cored by Loch E i l  D iv is ion psammites, which 

been progress ively  more deformed by D2 deformation in the west. The
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F i g u r e  50.

Map to show the trend of major fo ld  ax ial  plane 

traces southeast of the Beinn an Tuim f a u l t .
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.................................. F3 on d .F ^  folds.
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Modified a fte r  Dalziel 1966, fig 10
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p rogress i ve  deformation has presumably rotated the hinge l ines of minor 

folds in the XY plane of the s t ra in  e l l i p s o id  towards the X d i re c t io n  of 

the imposed s t ra in  e l l i p s o i d .

The western sect ion of the Beinn an Tuim fo ld  axia l  plane dips approxim

ately northwards at 50-60° (Map 3).  Rotat ion of F2 minor hinge l ines from 

approximately 30-50° towards the ENE through the rec l ined pos i t io n ,  to 

end up plunging at 25-60° towards the WNW in the west, requires a very 

large amount of r o ta t i o n ,  possib ly  through an angle of more than 90° and 

i f  this is the case then a ro ta t io n  of the p r in c ip a l  axes of stress is

r e q u i r e d .

I t  is noteworthy tha t  only in the extreme east of the area where D2 

strain is r e l a t i v e l y  low is there good evidence fo r  the existence of a 

well developed pre-S2 s c h is to s i t y  (a s c h is to s i t y  which i n i t i a l l y  was pres

umed to be $2 in the psammites and p e l i te s  on Druim na S a i l l e ) .

V i r tua l ly  everywhere else in the area the dominant S2 f a b r i c  appears 

to be the e a r l i e s t  f a b r i c .  Nowhere in the area does the S2 f a b r i c  appear 

to be a crenulat ion of a p re -e x is t in g  f a b r i c ,  i t  always seems to have com

pletely transposed or enhanced the ear ly  fa b r ic  so tha t  the $ 2  fa b r i c  always 

looks axial planar and penet ra t ive .

The Meall nan Damh fo ld  is a northwester ly  opening, s teeply plunging 

synform in the area mapped. I t  changes southeastwards along i t s  ax ia l  plane 

into a northwester ly opening ant i fo rm. By analogy with the Beinn an Tuim 

synform, th is  fo ld  is probably at a lower s ta te  o f  s t ra in  in the south 

and more h igh ly  deformed in the north.

In the northwest o f  the area, near the Beinn an Tuim f a u l t ,  the axial  

planes of the two F2 major fo lds  are in close prox im i ty  and the D2 s t ra in  

is high. Moving eastwards along the trace of the Beinn an Tuim synform 

and southeastwards along the trace o f the Meall nan Damh fo ld  the D2 s t ra in  

decreases, the width between the fo ld  ax ia l  planes increases and the i n t e r 

limb angle of one o f the fo lds  increases. This decrease of D2 s t ra in  tog

ether with the fo ld in g  by the F/̂  Glen Dubh Lighe ant i form and the e f fe c t  

of topography on Druim na S a i l l e  a l l  combine to produce the dramatic change 

in width of the outcrop o f the Ardgour g r a n i t i c  gneiss in the area (see 
Map 3).

5.4e) S t ruc tu ra l  se t t in g  of the Ardgour g r a n i t i c  gneiss.

The term "Ardgour g r a n i t i c  gneiss" here is not used to imply tha t  the 

■"ock had an igneous o r ig i n ,  ra ther  i t  i s  used to  ind ica te  tha t  the rock
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has the composition of a g ra n i te ,  ie .  quartz,  two feldspars and b io t i t e .  

/\ summary of the views of e a r l i e r  workers has been given in Chapter 2.2.

5.4e1) Appearance of the Ardgour g r a n i t i c  gneiss.

The Ardgour g r a n i t i c  gneiss consists  of su i tes of segregations and peg

matites intruded in to ,  or sweated out o f ,  a "host rock" which is composed 

of q u a r t z , fe ldspar and b i o t i t e , i n  the form of a f a i r l y  homogeneous gneiss.

The "host rock" is coarsely f o l i a t e d ,  gneissose and has a mott led black 

and w h i t e  colour when f resh .  The black colour  is due to fo l i a e  of b i o t i t e  

which anastomose around white lenses of quar tzo- fe ldspa th ic  mater ia l  (see 

F i g s . 51a & b).  In some places the b i o t i t e  def ines more pronounced bands 

and the host rock then more c lose ly  resembles some of the adjacent metased

iments.

Typical of the g r a n i t i c  gneiss, and much less common in the mapped meta

sediments, are a whole v a r ie t y  of pegmatites with a va r ie ty  of s t r u c tu ra l  

relationships to the dominant f o l i a t i o n  o f  the g r a n i t i c  gneiss. Most o u t 

crops of the g r a n i t i c  gneiss contain near ly  concordant s t r inge rs  of pegmat

ite 1-10 cm. th ick  and up to 1 metre long, although they are genera l ly  

shorter. They are f re q u en t ly  lensoid and always have a th in  selvage o f  

biotite. The nearly  concordant pegmatite lenses are often hook shaped (Fig. 

51b) and appear to mark the remnants of f o ld  closures ind ica t ing  th a t  the 

pegmatites have been deformed towards the strong $ 2  f o l i a t i o n  in the gneiss. 

In some instances, near to the end of the hook pegmati tes, there is a sugg

estion of a m igmat i t ic  fa b r i c  (S^) co-p lanar with the pegmatites and s l i g h t 

ly oblique to the dominant S2 f a b r i c .  In a few exposures the pegmatites 

are strongly discordant- to the dominant S2 f o l i a t i o n  (F ig .51a),  the b i o t i t e  

laths comprising the selvages are co-p lanar to the pegmatites and crenulated 

into the dominant (S2 ) f o l i a t i o n  (F ig .51a) .

In many exposures there is a suggestion th a t  the dominant s c h is t o s i t y  

(S2 ) is composite, re-working an e a r l i e r  fa b r i c  which was probably migmat

i t ic.  At exp.1323 on Mam Chreagain (NM 91988078) the gneiss is dominated 

by the $2  f o l i a t i o n  and s u p e r f i c i a l l y  the lensiod pegmatites appear v i r t u a l l y  

co-planar with t h i s  f o l i a t i o n  (F ig .52a) .  However, i t  can be seen th a t  the 

lensoid pegmatites have been t i g h t l y  folded to l i e  w i th in  the dominant 

fol iat ion. In add i t ion ,  an e a r l i e r ,  apparent ly m ig m a t i t i c , f a b r i c  is  also 

isocl inal ly folded to l i e  w i th in  the dominant ($ 2 ) f o l i a t i o n  (F ig .52b) .

This exposure also contains two types of l a t e r  "pegmati tes".  A 2-3 cm. 

thick vein of a p l i t e  which cuts ob l iq ue ly  across the S2 f o l i a t i o n  and app- 

ears to be la te r  than the D2 deformation is truncated by a large " la te  

pegmatite", one of many found in the area (see Chapter 5.4e4).
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Figure 51. Photographs to show the gneissic f o l i a t i o n ( s )  

in the Ardgour g ra n i t i c  gneiss.

f o l i a t i o n  is  co-planar to the pegmatites. f o l i a t i o n

is axial  planar to the fo lds of the pegmatites.
remnants of the 
S- foliation(a)

dominant S 
foliation

early pegmatite

( Exp.235 91778020 ).

"Hook" pegmatites t i g h t l y  folded to l i e  almost

co-planar to the dominant f o l i a t i o n .

(b )

early pegm atite 
deformed into parallelism 
w ith the So fo lia tion

( Exp.1305 NM 91458031 ).
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F i g u r e  52.  P h o t o g r a p h s  o f  t h e  A r d g o u r  g r a n i t i c  g n e i s s

a)
a p lite

e a r ly  p e g m a t i t e

N  \

late
pegmatite

( Exp.1323 91988078)7

Detai l  of  the photograph above.

(b)

early pegmatite and foliation 
isoclinally folded into parallelism 
with the dominant 5  ̂ foliation

late pegmatite
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5 . 4 e 2 )  N a t u r e  o f  t h e  e n c l o s e d  s e d i m e n t s .

There are two masses of metasediment enclosed w i th in  the g ra n i t i c  gneiss.

The larger one outcrops around Lochan na Carnaich (Map 3).  I t  is composed 

of metasedimentary types ranging from psammites,through s t r ipes  l i t h o lo g ie s  \  

to garneti ferous p e l i te s .  The junc t ion  between the metasediments and the 

enclosing g r a n i t i c  gneiss is gradat ional over a distance of a few metres 

as the l i t h o lo g i c a l  banding becomes obvious in the metasediments. The $2 

fol iat ion in the metasediments is co-planar with the dominant S2 f o l i a t i o n  

in the g ra n i t i c  gneiss (Map 3).  Both rocks seem to have undergone exact ly 

the same sequence of deformation. There is no evidence of c ross-cut t ing  

relationships, xeno l i ths ,  a metamorphic aureole e tc .  at any of the g ra n i t i c  

gneiss/metasediment contacts which would c le a r l y  ind icate  a high level 

intrusive o r ig in  fo r  the g r a n i t i c  gneiss.

The smaller metasedimentary mass exposed on Mam Chreagan (NM 918810) 

shows s im i la r  s t ru c tu ra l  re la t ionsh ips  to the g r a n i t i c  gneiss as does the 

larger mass described above. The metasediment is d is t ingu ishab le  from the 

granitic, gneiss because i t  i s  more obvious ly laminated or s tr iped than 

the homogeneous "host rock" g r a n i t i c  gneiss. Gradation from metasediment 

into the g r a n i t i c  gneiss occurs in d i re c t io n s  both normal and pa ra l le l  

to the composite f o l i a t i o n  in the metasediment.

There are many fewer ea r ly  pegmatites in the metasediments than in the 

granitic gneiss and they are genera l ly  concordant with S 2 and less h igh ly  

deformed in the metasediments. I t  is suggested elsewhere (Chapter 6.2c) 

that the metasediment is a "palaeosome" w i th in  the "neosome" of the g ra n i t i c  
gneiss.

5.4e3) Formation and deformation of the ea r ly  pegmatites.

The early pegmatites are pe t rograph ica l ly  s im i la r  to the "host rock" 

granitic gneiss, conta in ing quartz ,  two fe ldspars  (microcl ine and p lag io-  

clase togather with p e r th i te s ,  a n t ip e r th i te s  and myrmekites) b i o t i t e  and 

muscovite. They do not contain an in te rna l  f o l i a t i o n .  They occur in a var

iety of states of deformation; as f a i r l y  continuous concordant veins co- 

planar with the dominant S2 f o l i a t i o n  and as te c to n i c a l l y  iso la ted lenses 

slightly discordant to the dominant S2 f o l i a t i o n .  The lenses are often 

isolated hooks or fo ld  noses which have been progress ively  rotated towards 

the dominant S2 f o l i a t i o n .  Less f requen t ly  the pegmatites are markedly 

discordant to the dominant $2  f o l i a t i o n ,  but they too have undergone D2

deformation.
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From the foregoing descr ip t ion  i t  appears that the ear ly  pegmatites 

plus the i r  b i o t i te selvages have been, with increasing s t ra in ,  rotated t o 

wards near p a ra l le l i sm  with the dominant S 2 f o l i a t i o n .  Where the ear ly  

pegmat i tes are s t rong ly  obl ique to the dominant $2  f o l i a t i o n  there are 

f requent  signs of an e a r l i e r  (S^ ) m igmat i t ic  fa b r i c  which is co-planar 

to the pegmatites (F ig .51a).  Figure 52b shows an ear ly  pegmatite co-planar 

to the ear ly m igmat i t ic  f o l i a t i o n .  Both the pegmatite and the ear ly  fab r ic  

are i s o c l in a l l y  folded to l i e  w i th in  the dominant ($2 ) f o l i a t i o n .

In summary the ear ly  pegmatites are apparent ly co-planar to an ear ly 

(S-j j migmati t ic  fa b r ic  in the gneiss and they are var iab ly  rotated in to  

the dominant S2 f o l i a t i o n  by deformation. Since they seem co-planar to 

the Si migmati t ic  fa b r ic  and they have an Si b i o t i t e  selvage, the pegmatites 

must be e i th e r  the product of high grade metamorphism and p a r t ia l  anatexis 

during an ea r ly  (pre- or syn-Fi ) metamorphic event or pre-Fi in t rus ions 

subsequently metamorphosed during Di . No Fi fo lds  were observed so i t  is 

not known whether the pegmatites are pre-Fi or syn-F, segregations. Since

the pegmatites are co-planar with the Si f o l i a t i o n  and contain a co-planar

Si. selvage they cannot be p o s t -F i /p re -p 2 in age.

Examples of pegmatites which have unequivocal ly formed during D2 have 

not been observed. The very wel l developed S2 m igmati t ic  fa b r ic  need not

necessarily s i g n i f y  m igmat i t ic  or p a r t i a l  melt  condi t ions during D2 as 

the fabric  may be the re s u l t  o f  intense s o l id  s ta te  r e c r y s ta l l i s a t i o n  of

the $1 migmati te.

The pegmatites are m ine ra log ica l ly  s im i la r  to the g ra n i t i c  gneiss and 

are thus probably c lose ly  re la ted  to the formation of the g ra n i t i c  gneiss. 

Both the ear ly  pegmatites and the g r a n i t i c  gneiss are r ich  in K-feldspar 

which is genera l ly  lacking in the surrounding metasediments. Dalziel  (1963a) 

noted a su i te  of ea r ly  pegmatites in both the g r a n i t i c  gneiss and surround

ing metasediments which is K- fe ldspar f ree  and he observed tha t  these peg

matites m ine ra log ica l ly  resemble the quar tzo - fe ldspa th ic  f o l i a e  and ground- 

mass of the re g io n a l l y  in jected "o l igoc lase  gneisses" ( ie .  the more gneiss

ose of the regional metasediments). The formation o f the g ra n i t i c  gneiss 

3nd i ts  metamorphism is considered in Chapter 6 .

5.4e4) Late veins and a p l i te s .

An ap l i te  vein has already been described which is la te r  than the form

ation of the dominant ($2 ) f o l i a t i o n  and which is  cross-cut by a member 

of the suite of " la te  pegmati tes".

The th ick la te  pegmatites always post-date D2 deformation , some of them
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appear to post-date fo lds in the Ardgour g ra n i t i c  gneiss although in 

the G le n f innan D iv is ion fu r th e r  west there are la te  pegmatites deformed 

by the D] deformation which produced the Sgurr a Mhuidhe synform.

Thus there may be more than one phase of la te  pegmatite in t rus ion  (c f .  

van Breemen et a l . 1974), a l t e r n a t i v e l y  the in t rus ion  of la te  pegmatites 

may have commenced before Dg and continued u n t i l  post-D^ times. The l a t t e r  

alternative is viewed as u n l i k e ly  since arguments are presented elsewhere 

(Chapter 8.1b) tha t  a post-Dg/pre-D^ su i te  of m ic ro d io r i te  sheet evidences 

a s ign if icant change in the c rusta l  stress f i e l d  during th is  period.

The late pegmatites do not contain a b i o t i t e  selvage but in te rn a l , la y e r  

parallel compositional zoning is common. Books of mica up to 2-3 cm. long 

and 1-2 cm. th ick  are qu ite  common. Where pegmatites are folded by Fg folds 

in the west the books of mica take up a "crenulated"  appearance, that i s ,  

the books of mica previously with random o r ie n ta t io n s  have rotated towards 

the XY plane of the Dg deformation s t ra in  e l l i p s o i d  producing the overal l  

appearance of a crenulated f a b r i c .

5.5) The Loch Quoich l in e .

The Loch Quoich l ine  has already been described in a l l  but name in the 

earlier parts of th is  chapter , however such a v a r ie t y  of in te rp re ta t ions  

have been placed upon i t  by d i f f e r e n t  authors th a t  i t  is worth summarising 

previous descr ip t ions and in te rp re ta t io n s  and then commenting on the r e l 

evant observed f i e l d  evidence from the Glenfinnan-Loch Ei l  area.

Leedal (1952) has described an eastern f l a t  b e l t  composed of "the Upper 

Psammitic Group" ( ie .  the Loch E i l  D iv is ion  psammites) and going westwards 

he took the f i r s t  main outcrops o f  his " P e l i t i c  Group" to def ine the s ta r t  

of the "h igh ly  inc l ined "  b e l t .  He emphasised tha t  th is  outcrop did not 

Mark a continuous tec ton ic  s t ru c tu re .

C l i f ford (1957) working fa r th e r  north in the Loch Arkaig area, postulated 

the existence of a kl ippen of Glenfinnan D iv is ion  rocks res t ing  on top 

of the Morar Succession in K i n t a i l .  Looking eastwards fo r  a root zone to 

this nappe he noted that the junc t ion  between the "h igh ly  inc l ined"  be l t  

and the " f l a t "  b e l t  was also the eastern l i m i t  of  intense regional in je c t io n  

in the Moine. He termed th is  junc t ion  the Loch Quoich l in e .

Dalziel (1966) noted tha t  the Loch Quoich l in e  is broadly pa ra l le l  to 

the axial plane trends of F i ,P2 and F g s t ruc tu res  but F^ fo lds (which
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in this descr ip t ion  are F5 in the Loch Ei l  D iv is ion ,  see Chapter 5.3b) 

have a more E-W trend and are too poorly developed to be c lose ly  connected

with the o r ig in  of th is  fea tu re .  He noted that his Eg Glen Dubh Lighe a n t i -

form axial plane trace crosses the Loch Quoich l in e  and therefore considered 

that the l in e  o r ig inated  p r io r  to the Fg fo ld  movements. He fu r th e r  noted

that the lower and more mobile s t ru c tu ra l  leve ls  were raised to the west

of the l ine  which could there fo re  mark the outcrop of a zone of Decollement 

between un-migmatised, r e l a t i v e l y  r i g i d  cover and a h igh ly  mobile, migmat- 

ised in f ra s t ru c tu re .  He postulated tha t  formation of th is  l in e  may have 

commenced during Di deformation which he bel ieved to have been low grade 

(cf. Chapter 5.4e3).  However he favoured the idea that the Loch Quoich 

line became a " s ig n i f i c a n t  tec ton ic  boundary throughout the Fg deformation".

Lambert et a l . (1979) suggested tha t  the Loch Ei l  Division appeared to

be s t ru c tu ra l l y  and metamorphically simpler and geochemically d i s t i n c t  

from the Morar and Glenfinnan Div is ions and in t h e i r  view the simplest 

explanation of these " fa c ts "  is tha t  the Loch Ei l  D iv is ion rests unconform- 

ably on the metamorphosed Glenfinnan D iv is ion .

Piasecki & van Breemen (1979) described a basement (Central  Highland

Division) and cover assemblage (Grampian Group) separated by a zone of 

sliding in the Central  Highlands east of the Great Glen f a u l t .  They suggest

ed that th e i r  G re n v i I l ia n  basement assemblage is analogous to the Glenfinnan 

Division and tha t  t h e i r  (Morarian age) cover succession is analogous to 

both the Morar and Loch E i l  D iv is ions west o f the Great Glen f a u l t .  They 

concluded tha t  the Loch Quoich l in e  is a tec ton ic  s l id e  zone between the 

Loch Eil D iv is ion  cover and the Glenfinnan D iv is ion  basement.

Strachan (1982), mapping an i n t r i c a t e  set of sub t ly  d i f f e re n t  psammitic 

rocks at the base of the Loch E i l  D iv is ion ,  claimed that the thickness

variations in these un i ts  could not be due to sedimentary fac ies va r ia t ions .  

He therefore invoked the existence of a series o f tec ton ic  s l ides to explain 

their exposure pa t te rn .  However he c i te d  no evidence f o r  the existence

of the sl ides other than his  map o f  l i t h o lo g i c a l  pa ttern . Strachan fu r th e r  

claimed the sequence o f complex s l ides  to have been formed p r io r  to Dg 

deformation and he considered the deformation sequences in the Glenf innan

3nd Loch Ei l  D iv is ions to have been the same.

In contrast to  these views, Roberts & Harr is (1983), in mapping across 

the type area of the Loch Quoich l in e  concluded tha t  the l in e  marks the 

eastern l i m i t  o f  D 3 re-working of an e a r l i e r  metamorphic complex. They

Mapped pre-D]  s t ruc tu res  which are f l a t  ly ing  in the Loch Ei l  D iv is ion ,

whereas west of the Loch Quoich l in e  a l l  the pre-Dg s t ructures have been 

notated towards the v e r t i c a l  during the D3 deformation. West of the l ine
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these authors demonstrate the existence of major F3 folds with ve r t ica l
axial planes and sub-hor izonta l  hinge l ines .

Roberts et a l . (1984) claimed that the i n te n s i ty  of D3 deformation prog

r e s s i v e l y  increases westwards and is re f lec ted  by the ro ta t ion  of F3 hinge 

lines towards the v e r t i c a l  and the development of c u rv i l i n e a r  fo ld  hinge

lines ind ica t ive  of v e r t i c a l  extension w i th in  the v e r t i c a l  F3 axial  planes.

Obviously many of these observations already made in th is  chapter have 

a bearing on these prev ious ly  stated views. Of foremost s ign i f icance is

the observation herein tha t  the s t ru c tu ra l  h is to ry  of the Glenfinnan Div

ision rocks is the same as tha t  of the Loch E i l  D iv is ion .  In both Divisions 

the Beinn an Tuim synform is an Fg fo ld  which fo lds  rocks containing bedding 

and an e a r l i e r  (Si ) f a b r i c .  Consequently the Loch Quoich l ine  cannot be 

considered to be a junc t ion  where the Loch Ei l  D iv is ion psammites res t

unconformably on prev ious ly  deformed and metamorphosed rocks of the Glen- 

finnan Division ( c f .  Lambert et a l . 1979). Likewise by the same evidence 

it cannot be considered to be a s l id e  zone between cover and basement seq

uences (c f .  Piasecki & van Breemen,1979).

The trace of the Glen Dubh Lighe ant i form l o c a l l y  crosses the Loch Quoich 

line, a fac t  which Dalz ie l  (1966) used to suggest that the l in e  or ig inated 

prior to th is  phase of deformation. However by th is  argument he should 

have considered the formation o f the l in e  to pre-date the Fg Beinn an Tuim 

synform which also crosses the Loch Quoich l in e .

The pattern of l i t h o lo g i c a l  va r ia t io n s  in the area can be explained 

by lateral  fac ies changes without the need to invoke the presence of t e c t 

onic sl ides. Strachan (1985) uses fac ies  changes to explain some of the 

largest l i t h o lo g i c a l  va r ia t io n s  and c i te s  no other evidence fo r  the e x i s t 

ence of tecton ic  s l id e  contacts .

D3 deformation in the Loch E i l  D iv is ion  has produced the f l a t  ly ing ,  

nearly i soc l in a l  Druim Beag synform. Thus the Loch Quoich l ine  cannot be 

an eastern l i m i t  of  D3 re-working ( c f .  Roberts & H a r r i s , 1983).

Within the Glenf innan D iv is ion  (see Chapter 5.4 & 5.6) the major F3 

folds have v e r t i c a l  ax ia l  planes and show va r ia t ions  of hinge l in e  plunge 

which are re la ted  to the in te n s i t y  of D3 deformation, but the v e r t i c a l  

orientation of planar elements is due to subsequent D̂  deformation. Pr ior  

fo the D^ deformation the v a r ia t io n  o f  F3 hinge l in e  o r ien ta t ion  occurred 

within F3 fo ld  axia l  planes which dipped shal lowly  to the east (see Chapter 

5'6e, 7.5 and 9 . 1 ) .

The Loch Quoich l in e  represents a f r o n t  of intense D/, deformation: west 

of the l ine p re -e x is t in g  r e l a t i v e l y  f l a t  l y ing  s truc tu res have been rotated 

3od folded in to  a sub -ve r t ica l  o r ie n ta t io n .  East of the l in e  the pre-D^ 

structures remain r e l a t i v e l y  f l a t  l y ing  and l i t t l e  affected by D̂  deformation.
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5 .6 ) West of the Beinn an Tuim f a u l t .

5.6a) D is t r ib u t io n  of l i t h o lo g ie s .

The rocks which outcrop west of the Beinn an Tuim f a u l t  are dominantly 

metasediments of the Glenfinnan D iv is ion .  Morar D iv is ion metasediments 

only outcrop in the extreme west ot the area, west of the Sgurr Beag s l ide  

(Maps 1 & 4).  The de ta i led  s t ru c tu ra l  and metamorphic re la t ionsh ips  across 

the Sgurr Beag s l ide  at the eastern end of Loch E i l t  are considered in 

Chapter 7.

Over large areas the rocks of the Glenfinnan Div is ion are mixed psammites 

and thin p e l i te s  which have proved impossible to sub-divide in to  mappable 

units, however near the summit of Beinn an Tuim and from Sgurr a Mhuidhe 

westwards l i t h o lo g i c a l  sub-d iv is ions  have been mapped (Map 4).

5.6b) Chronology of fo ld in g  and deformation.

The dominant phase o f  deformation in the area (D3 ) has produced major 

steeply plunging F3 fo lds  and associated minor fo lds which have a well 

developed S3 c renu la t ion  f a b r i c .  Loca l ly  an i n t e n s i f i c a t i o n  of D3 s t ra in  

has caused F3 fo lds  to t igh ten  in to  a D3 s l id e  zone (Hutton,1979) termed 

the Sgurr Beag s i id e .

D3 deformation deforms a p re -e x is t in g  planar mica fa b r i c  (?S2 ). Minor 

folds coeval with th i s  planar penetra t ive  mica fa b r i c  were mapped as F2 

folds, but they could equa l ly  wel l be o f  an e a r l i e r  (F^ ) generation. I t  

is not at a l l  c lea r  at ind iv idua l  outcrops whether pre-D3 fo lds  and fabr ics  

are of D̂  or D2 age. None of the exposures west of the Beinn an Tuim fa u l t  

was seen to contain d i r e c t  evidence fo r  two fo ld  phases p r io r  to D3 deform
ation.

Major fo lds  which fo ld  the D3 Sgurr Beag s l id e  and F3 fo lds  in the Loch 

Eilt area are regional fo ld s .  A set of r e l a t i v e l y  open crenulat ion fo lds 

which has a constant sense of asymmetry and plunges steeply to the SE appear 

to be minor fo lds  re la ted  to the major open fo ld  seen south of Loch E i l t  

(Tig.53 and I .G.S 1:63,360 Sheet 61.Scotland) and are F5 f o ld s .

5.6c) D5 deformation.

The episode o f deformation which has produced the least intense fo ld in g  

the most e a s i l y  understood geometry is here termed D5 . I t  has produced 

 ̂ set of open minor c renu la t ion  fo lds  which are found only in the extreme
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west of th is  area around Loch E i l t .  Fold in te r l im b  angles in the psammitic 

layers are usual ly  greater than 90°. Open mica crenulat ions are produced 

in the p e l i t i c  layers.

No exposures have been seen where the open crenula t ion fo lds  fo ld  the 

more common t i g h t  crenu la t ion  fo lds  or vice versa so tha t  t h e i r  r e la t i v e  

structural ages, based on evidence from ind iv idua l  exposures, has not been 

proven conc lus ive ly .  However, the hinge l ines of the open minor fo lds and 

their axial  planes are remarkably constant in t h e i r  plunge and trend ( F ig .54 

a & b) and they show no marked change across the axial  planes of the Fg 

major folds in the area. Where the F g major fo lds  are iso c l in a l  however, 

no change in amount or d i re c t io n  of the plunge o f  the Fg minor hinge l ines 

would be expected. Where the F3 major fo lds  are not i s o c l in a l  and have 

been deformed by F5 c renu la t ions ,  the hinge l in e  o r ien ta t ion  of F5 fo lds 

is dependent on the o r ie n ta t io n  of the planar elements being deformed (see 

Fig.55a). In nearly  i s o c l in a l  fo lds  (eg. the F3 Ranochan synform and the 

F3 Chreag Bhan an t i fo rm . Map 4) the v a r ia t io n  o f Fg hinge l in e  o r ien ta t ion  

would be r e l a t i v e l y  small and th i s  small v a r ia t io n  could cause the small 

spread of o r ie n ta t io n  v i s ib l e  in Figure 54a.

In considering the p o s s i b i l i t y  tha t  the Fg open crenula t ion fo lds  are 

older than the F 3 c renula t ion fo lds  i t  is  noted tha t  the hinge l ines of 

the Fg minor fo lds  l i e  approximately normal to those of F3 and w i th in  the 

F3 axial plane. I f  the F3 i s o c l in a l  and nearly  i s o c l i n a l  fo lds  had re- fo lded 

the Fg open c renu la t ions  then the Fg open crenula t ions on both limbs of 

the F3 major fo lds  would have s im i la r  o r ie n ta t io n s ,  but the vergence of 

the Fg minor fo lds  would change across the F3 ax ia l  plane (see Fig.55b) .  

All the Fg crenu la t ion  fo lds  mapped in the area have the same sense of 

vergence: a sense which does not change across the traces of the F3 major 

folds, therefore the Fg fo lds  cannot be e a r l i e r  than the F3 fo lds and re 

folded by them.

When considered re g io n a l l y  ( I .G.S 1:63,360 Sheet 61.Scotland and Chapter 

7) the Fg minor fo lds  seem to be re la ted  to a large open fo ld  seen south 

of Loch E i l t  ( F i g . 53).

The poles to F3 minor f o ld  ax ia l  planes show a very wel l developed g i rd le  

reflecting a gent le  regional warp of F3 ax ia l  planes (and e a r l i e r  st ructures)  

produced by the Dg deformation (F ig .56a).

5.6d) D3 deformation.

This, the dominant phase o f  deformation, has produced major fo ld s ,  

which when mapped across the area show progressive changes in geometry
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F i g u r e  54.
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Stereonets from the area west of the Beinn an Tuim fa u l t
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F i g u r e  55 .
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Diagrammatic sketches to show the poss ib le  re la t ionsh ips  

between and Fg minor fo lds  (see te x t  f o r  d iscuss ion) .
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F i g u r e  56.
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r e l a t e d  to the in te n s i t y  of deformation.

In p o l i t i c  layers the associated minor fo lds  are t i g h t  crenulat ions 

of a p re -ex is t ing  planar mica fa b r i c .  In the east the crenula t ions are 

t ight, fu r th e r  west they become extremely t i g h t .  In psammitic layers the 

minor fo lds are t i g h t  with in te r l im b  angles as low as 30° (Fig.57a).

In some exposures the planar mica fa b r ic  deformed by the F3 c renulat ions 

is seen to be ax ia l  planar to t i g h t  to isoclinal fo lds  (Fig.57b) which were 

mapped as F2 fo lds  with an $2  f a b r ic  (but see discussion of ea r ly  deform

ation, Chapter5.4d2).

The traces o f the F3 major fo lds are indicated on Map 5. The A l l t  an 

Tuim synform is a r e l a t i v e l y  shal lowly  plunging F3 f o ld .  This is fol lowed 

westwards by a complex fo ld  termed the Tom na h A i re  ant i fo rm. The fo ld  

can be def ined by the change of o r ie n ta t io n  o f  bedding around the hinge 

zone (see Map 4) .  Changes in minor fo ld  vergence show tha t  there are a 

number of fo lds  of intermediate scale re la ted to the major ant i fo rm, some 

of which are indicated on Map 5 . The Tom na h A i re  ant i form is much more 

steeply plunging than the adjacent A l l t  an Tuim synform, a s i tu a t io n  which 

could be due to higher amounts of s t ra in  causing progressive ro ta t io n  of 

F3 hinge l ines  away from the Y, and towards the X d i re c t io n  of the imposed 

D3 strain el 1 ipso id .

The Tom na h A i re  ant i fo rm is succeeded westwards by the Sgurr a Mhuidhe 

synform, a near ly  i s o c l in a l  f o l d ,  the hinge l in e  of which plunges steeply 

towards the NE, th i s  fo ld  is succeeded westwards by the i s o c l in a l  Creag 

Bhan anti form and in turn by the i s o c l in a l  Coi l le  Chreag synform.

The Coi l le  Chreag synform is separated from the Ranochan synform to 

the west by the Sgurr Beag s l id e  (Map 4) ,  a zone o f  d u c t i le  shearing across 

which there has been large scale displacement (B a i rd ,1982 ( included as 

Appendix 6 ) and Ke l ley & Powel l ,1985). The s t ru c tu ra l  development of the 

area between the Ranochan synform and the Sgurr a Mhuidhe synform is d i s 

cussed in more d e ta i l  in Chapter 7.

Figures 56a & b show the o r ie n ta t io n  of F3 minor fo ld  ax ia l  planes and

hinge l ines re sp e c t ive ly .  The p lo t  o f poles to ax ia l  planes shows that  

they are a l l  approximately v e r t i c a l  and s t r i k e  from NNE-SSW to ENE-WSW. 

The spread of s t r i k e  d i re c t io n s  is due to the very open regional F5 fo ld in g  

and can be seen c le a r l y  on Map 4 and Figure 53. Moving westwards the s t r i k e  

oT F3 fo ld  ax ia l  planes and bedding planes ro ta te  gradual ly  from NNE-SSW 

through NE-SW towards ENE-WSW.

Figure 56b shows the o r ien ta t ions  of F3 minor fo ld  hinge l in e s .  The

spread of data can only be p a r t l y  explained by l a t e r  D5 deformation. The

removal of the e f fe c ts  of D5 deformation would r e s u l t  in the spread of



181

F i g u r e  57.  P h o t o g r a p h s  o f  F^ m i n o r  f o l d s

Tight F^ fo ld  in psammitic layers

(a)

( Exp.819 NM 89508239 ).

Pre-Fg minor fo lds  re - fo lded by F^ fo lds

(b) trend of F3  fold 
axial planes

Pre-Fg fold 
/  axial plane

( Exp.846 NM 89058348 ).
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Fg hinge l ines being contained w i th in  a v e r t i c a l  plane s t r i k i n g  approx. 

NE-SW (see Fig .56c) .  The F 3 hinge l ines which have low plunges, w ith in  

the ve r t ica l  F3 axial  planes w i l l  have been displaced more by the removal 

of D5 deformation which has involved ro ta t io n  about a near ve r t i c a l  axis 

(rotation of near v e r t i c a l  p re -ex is t ing  l inear  elements such as F3 hinge 

lines about a near v e r t i c a l  axis produces l i t t l e  change in o r ien ta t ion  

of the l inear  element). A f te r  the removal of the e f fec ts  of F5 f o ld in g ,  

there is s t i l l  a large plunge va r ia t io n  w i th in  the ve r t i ca l  F 3 axial  plane 

with a concentrat ion of hinge l ines plunging towards the NE at 50-70°. 

The var ia t ion  in the amount of plunge of F 3 hinge l ines may be a funct ion 

of the amount o f  D3 s t r a i n ,  a l t e r n a t i v e l y  i t  may be re lated to the imposi t

ion of s t r a in .

In general i t  is seen tha t  in the east the F3 major fo lds are r e la t i v e l y  

open and F3 minor fo lds  plunge sha l lowly  to the NE. Moving westwards the 

F2 major fo lds  t igh ten  to  i s o c l in a l  and the F3 minor fo ld  hinges plunge 

more steeply to the NE. The is o c l in a l  major fo lds  are succeeded westwards 

by a D 3 d u c t i l e  high s t ra in  zone, the Sgurr Beag s l ide  (see Chapter 7) 

and i t  is argued tha t  as the D3 s t ra in  increases progressively westwards 

into the s l id e  zone the F 3 fo ld  hinges ro ta te  progress ively w i th in  the 

XY plane of the D3 s t ra in  e l l i p s o id  towards i t s  X axis.

Regional analysis (Powell et a l , 1981: B a i rd ,1982) shows that the D3 

Sgurr Beag s l id e  is h igh ly  folded by the F^ Loch E i l t  ant i form to the west 

of the area under considerat ion and by the Glenshian synform yet fu r th e r  

west. Both of these fo lds  have v e r t i c a l  ax ia l  planes and hinge l ines which 

plunge shal lowly to the SW.

I t  is necessary to consider the p o s s i b i l i t y  th a t  the va r ia t ion  of plunge 

of F3 fo ld  hinges is due to the imposit ion of varying amounts of s t ra in .

In such an analysis one might assume tha t  s t r a in  is at i t s  lowest level

in the core of the F̂  Loch E i l t  ant i form and increases eastwards in to  the 

area under considera t ion. In t h i s  p a r t i c u la r  geometric s i tu a t ion  one would 

expect the F3 major fo lds to be t i g h t e r  in areas of high s t r a in ,  ie .  

away from the core of the F̂  Loch E i l t  an t i fo rm and towards the east of 

the area under cons idera t ion . However, th i s  is the exact opposite of what 

has been observed. Thçre seems to be no sensible  way to co r re la te  the obser

ved s t ra in  va r ia t io n s  in D3 s t ruc tu res with a p laus ib le  s t ra in  p r o f i l e  

across the eastern limb of the F̂  Loch E i l t  ant i fo rm ( the mechanism of

deformation during is considered more f u l l y  in Chapter 8.1b4).
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5 . 6e) deformation.

Two major fo lds have been described above, the Loch E i l t  ant i form 

and the Glenshian synform, both of which have v e r t i c a l  NE-SW trending axial  

planes and shal lowly  SW plunging hinge l ines .  Since th is  geometry is s im i la r  

to that of the F3 major fo lds  previously described, the only unequivocal 

way of es tab l ish ing  the r e la t i v e  F3 or F^ age of an ind iv idua l  major fo ld  

is by i t s  re la t io n s h ip  to the D3 Sgurr Beag s l id e .  The Sgurr Beag s l ide  

being t i g h t l y  folded by F̂  major fo ld s .

Since i t  is impossible to re la te  ind iv idua l  minor crenulat ion fo lds  

with ve r t ica l  NE-SW trending axia l  planes to the D3 Sgurr Beag s l ide  ,

they could be of e i th e r  F3 of  F^ age. Map 4 shows the vergence and amount

of plunge of t i g h t  c renu la t ion  fo lds  mapped as F3 minor fo lds .  Over the

vast ma jo r i ty  of the area they plunge to the NE and re la te  simply to the 

F3 major fo lds  already described. F3 minor fo ld  plunge varies from r e la t i v e 

ly shallow (20-40°) to the NE, steepening up towards ve r t i c a l  and occasion

ally through v e r t i c a l  to plunge s teeply  towards the SW. Where the plunge 

of minor fo lds  passes through v e r t i c a l  on the limb of a major fo ld  then 

all the minor fo lds  s t i l l  possess the same sense of vergence ( "s" or " z " ) ,  

when viewed down-plunge.

There is one area on Druim na Brein Choi l i e  (NM 8882) to the SE of the 

axial plane of the F3 Sgurr a Mhuidhe synform (Map 4) where a number of 

minor crenula t ion fo lds  have very low plunges towards the SW and "s" verge

nce, whereas the m a jo r i t y  of minor fo lds  on the same limb of the major 

fold have "z" vergence and plunge s teep ly  to the NE. The "s" vergence of

the SW plunging fo lds  precludes the p o s s i b i l i t y  tha t  they have been rotated 

from NE plunging, through v e r t i c a l  to plunge to the SW. I t  is possible 

to in te rpre t  the SW plunging minor fo lds  as F̂  minor fo lds  re la ted to the 

F/, Loch E i l t  ant i fo rm to the west. However, i f  t h i s  were the case, one 

would expect "z" vergence o f  the minor fo ld s .  A l t e rn a t i v e l y ,  i f  D3 deform

ation i n i t i a l l y  produced F3 minor fo lds  with sub-hor izontal  hinge l in e s ,  

mostly plunging shal lowly  to the NE, but with some plunging to the SW, 

then progressive D3 deformation (where the Y axis of the D3 s t ra in  e l l i p s o id  

is horizontal  t rending NE-SW and the X axis is v e r t i c a l )  would cause prog

ressive ro ta t io n  of the minor fo ld  hinge l in e s ,  w i th in  the XY plane of 

the e l l i p s o id ,  towards the X d i r e c t io n .  In such circumstances F3 minor 

Folds to the east of an F3 synform (eg. the Sgurr a Mhuidhe synform) would 

have "z" vergence when they plunge to the NE and "s" vergence when they 

plunge to the SW, the more nearly hor izonta l  hinge l ines ind ica t ing  e i the r  

areas of low D3 s t r a i n ,  or hinge l ines which are co-1inear to the Y axis
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of the D3 s t ra in  e l l i p s o i d ,  and which have not ro ta ted. There i s ,  however, 

no geographical re la t io n sh ip  between the amount of plunge of the minor 

fold hinges ( i e .  s t r a in )  and t h e i r  posit ions in re la t io n  to the F3 Sgurr 

a Mhuidhe synform.

I f  th is  explanat ion of varying F3 minor fo ld  plunge and vergence is 

accepted then i t  enables one crudely to estimate the present o r ien ta t ion  

of the X and Y axes w i th in  the XY plane of the D3 s t ra in  e l l i p s o id .  I f  

the SW plunging fo lds  are considered to be of a d i f f e r e n t  age to the dom

inant NE plunging F3 minor fo ld  then i t  is impossible to estimate the 

orientation o f the X and Y axes w i th in  the XY plane of the D3 s t ra in  e l l i p 

soid.
I t  is very important to note tha t  the analys is above of D3 s t ra in  is 

made using the present o r ie n ta t io n  of the D3 s t ra in  e l l i p s o id  and does 

not take in to  account the p o s s i b i l i t y  tha t  t h i s  e l l i p s o id  has been rotated 

into i ts  present o r ie n ta t io n  during subsequent deformation.

The s ign i f icance  of deformation in re -o r ie n ta t in g  the D3 s t ra in  e l l i p 

soid, and i t s  o r ie n ta t io n  p r io r  to deformation, is discussed la te r

(Chapter 7.5 & 9 .1 ) .

5 .6f)  Early deformation (D^ and 0 3 ).

I t  is only by comparison of f o ld  geometries and fa b r ics  developed in 

the Glenfinnan D iv is ion  metasediments on both sides of the Beinn an Tuim 

fault that the dominant fo lds  west of the f a u l t  have been designated F3 

folds. Nowhere to the west of the Beinn an Tuim f a u l t  have F3 fo lds  been 

seen to deform two sets of e a r l i e r  i s o c l in a l  minor fo ld s ,  consequently 

i t  is not possible  to s ta te  unequivocal ly the s t ru c tu ra l  age of the pre- 

O3 deformation events.

F3 folds deform metasediments which contain modif ied bedding and a s t r 

ongly developed near ly  co-p lanar mica f a b r i c .  In many places the planar 

mica fab r ic  is ax ia l  planar to t i g h t  to  i s o c l in a l  minor fo ld s .  Figures 

58a,b and c p lo t  the o r ie n ta t io n  o f  such ea r ly  fo ld  axial  planes, ear ly  

minor fo ld  hinges and bedding planes respec t ive ly .

I t  is f requen t ly  d i f f i c u l t  to determine the vergence of the ea r ly  minor 

Folds as they are often very long limbed symmetrical i soc l ines .  Away from 

the cores of major F3 fo lds  the ea r ly  fo ld  hinges are f requen t ly  co -1 inear 

to the F3 minor fo ld  hinges, but they are not co-1 inear in the v i c i n i t y  

oF F3 fo ld  cores, eg, on the summit of Beinn an Tuim and near the summit 

oF Sgurr a Mhuidhe. The vergence of the minor ea r ly  fo lds  does not define 

the closure of any major ea r ly  iso c l in e  in the area: nor is the sense of
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F i g u r e  58 .

Stereographic p ro jec t ions .

GLENFINNAN DIVISION WEST OF THE BEINN AN TUIM FAULT

470 Points

130 Pointi

A). Poles to axial planes of minor F2 
folds and F2 c leavage.

B). Hinge lines of minor F2 folds.

C). Poles to bedding p lanes.

Pre D3 deformation features 
could be either D-| or Dg age. 
see Chapter 5.6f.
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vergence constant so that the rocks would be on one limb of a major ear ly 

i s o c l i n e  or fo ld  nappe. However any in te rp re ta t io n  of ear ly  fo ld  vergence 

is made a l l  the more complex when the p o s s i b i l i t y  is considered that the 

ear ly  minor fo lds  may be of two generat ions.

5.7) B r i t t l e  deformation.

This section discusses the Beinn an Tuim f a u l t ,  the other minor fa u l t s  

and the prominent eas te r ly  dipp ing j o i n t  set possib ly  associated with east

erly dipping c a ta c la s t i c  th rus ts .

5.7a) The Beinn an Tuim f a u l t .

This f a u l t  (Maps 3 & 4) has been used to def ine s t ruc tu ra l  sub-areas 

in the region. The f a u l t  is a very obvious major geological and topograph

ical feature; i t  produces a f a u l t  va l le y  up to 100 metres deep with slopes 

of over 45°. The deep f a u l t  va l le y  r ises  to  a height of 550 metres on the 

SW side of Beinn an Tuim where i t  splays in to  a set of less well formed 

valleys. Further NE the f a u l t  is no longer a topographic feature.

There is no exposure in the f l o o r  of the f a u l t  va l ley ,  but at the top 

of the va l ley  (NM 928827) f a u l t  breccias are exposed and are intruded by 

later basalt dykes. In view o f  topographic r e l i e f  and the s t ra ig h t  trace 

of the f a u l t ,  the f a u l t  plane must be near ly  v e r t i c a l .

Across the f a u l t  there are marked changes of l i t h o lo g y  and s t ruc tu re ,  

the most obvious being the r e s t r i c t i o n  o f  the Ardgour g ra n i t i c  gneiss to 

the SE. The F2 s t ruc tu res  of the Beinn an Tuim synform and Meall nan Damh 

fold cannot be traced NW across the f a u l t  (see Maps 3 & 5),  and since the 

folds are a synform/ant i fo rm pa i r  w ith v e r t i c a l  axial  plane traces and 

locally only moderate plunge, t h e i r  ax ia l  plane traces should continue 

west of the f a u l t  plane assuming tha t  the fo lds  had a r e la t i v e l y  c y l in d r ic a l  

geometry and f a u l t  displacement was v e r t i c a l .  I f  the f a u l t  displacement 

was lateral  then the displaced ax ia l  plane trace should be traceable.

To the NW there is no sign of the displacement of the Loch Arkaig gran

i t i c  gneiss ( I .G.S Geol.Map 1:50,000 Sheet 62W, Scotland) where the f a u l t  

>̂3y reasonably be expected to cut across i t ,  suggesting e i the r  that the 

Tault dies out in t h i s  d i r e c t io n  w i th in  a distance of 5-10 Km. or tha t 

the displacement d i r e c t io n  o f  the f a u l t  at Loch Arkaig is co-1 inear with 

the in tersect ion of the g r a n i t i c  gneiss and the f a u l t  plane so tha t  f a u l t
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movement has produced no apparent displacement on the map.

The trace of the f a u l t  plane is p e r fe c t l y  s t ra ig h t  and shows no in d ic 

ation of having been folded during the formation of the Glen Dubh Lighe 

antiform and is presumably post-D^ in age. The general NE-SW Caledonian 

trend may ind ica te  that the f a u l t  is possibly of 1ate-Caledonian age.

No other major f a u l t s  have been i d e n t i f i e d  in the area.

5.7b) Jo in ts  and th rus ts .

The exposures on the h i l l s i d e s  of the area, espec ia l ly  west of Glenfinnan 

vil lage are bounded by an extremely well developed set of j o i n t  planes 

which dip eastwards at 30-40°. These planes have no obvious geometrical 

relat ionship to any of the major fo ld  phases of the area; they appear to 

be later  than a l l  of  the d u c t i l e  deformation. However, some of the j o in t s  

are occupied by sheets of post-D^/pre-D^ m ic ro d io r i te  (see Chapter 8.1) 

which are f requen t ly  h igh ly  schistose and metamorphosed. The age of the 

microdiori te deformation, with i t s  bearing on the age o f  the j o i n t i n g  is 

discussed in Chapter 8 .

In the Loch Ei l  D iv is ion  par t  of  the course o f  the Abhain Bheagaig (Fig. 

38) fol lows the outcrop o f  a small th rus t  plane which dips to the east

at 32°. The thickness of the th ru s t  zone varies from 1 metre to 10 cm. along 

its length. Within the zone blocks of country rock psammite up to 1 metre 

long and 40 cm. th ic k  are contained w i th in  a green rock f l o u r  matr ix .  

Smaller blocks are p a r t l y  streaked out in to  a crude s c h is to s i t y .

The rock f l o u r  is h igh ly  c h l o r i t i c  and veined by c a lc i t e  which is a l t e r 

ing and rep lac ing the brecciated m a te r ia l .  The th ru s t  plane cuts across

large la te  transgress ive pegmati tes. A s im i la r  small th rus t  plane has been 

mapped in the stream bed of the r i v e r  Fionn Lighe. These th rus ts  have a 

similar o r ie n ta t io n  to  the major j o i n t  set mentioned above and could be 

of the same age, however the low grade (g reenschis t )  metamorphic mineral 

assemblage of the rock f l o u r  in the th ru s t  zone suggests a r e l a t i v e l y  la te  

(Caledonian ?) age.
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C H A P T E R  6.

Metamorphism.

6.1) In t roduc t ion.

6.2) Mineral assemblages and metamorphic grade.

6.2a) P e l i t i c  rocks.

6.2b) C a lc - s i1ic a te s .

6.2c) The Ardgour g r a n i t i c  gneiss.

6 .2d) Amphiboli t e s .

6.3) The re la t io n sh ip  of metamorphism to deformation 

6.3a) Micas.

6.3b) AI2 SIO5 polymorphs.

6.3c) Garnet.

6.3d) Amphiboli t e s .

6.3e) C a lc - s i1icates.

6 .3f)  The Ardgour g r a n i t i c  gneiss.

6.4) Summary o f conclusions.

6 . 1 ) In t roduc t ion .

The rocks of the area are predominantly a sequence of mixed psammites 

and p e l i tes which have undergone a complex sequence of metamorphism and 

deformation. The petrography of the various rock types and t h e i r  h is to ry  

of deformation have already been discussed (chapters 4 & 5) .  I t  is  the 

object of th is  chapter to examine the metamorphic h is to ry  of the area in 

terms of i t s  grade, i t s  re la t io n s h ip  to the phases of deformation and i t s  
timing.

Although p e l i t i c  and s e m i -p e l i t i c  sch is ts  and gneisses are f a i r l y  common 

throughout the area they genera l ly  do not contain mineral assemblages which 

can be used to es tab l ish  a de ta i led  pattern o f  metamorphic zones across 

the area. In p a r t i c u la r  the polymorphs of AlgSiOg, Kyanite and s i l l im a n i t e .
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a l t h o u g h  found occas iona l ly ,  are general ly  absent from the p e l i tes of the 

area. However t h e i r  sporadic occurrence and the much more widespread occurr

ence of migmati t ic  p e l i te s  ind ica te  that medium to high grade metamorphism 

has occurred throughout the area.

The general absence of Al2 SiÜ5 has been ascribed to a whole rock chemical 

compositional contro l  (Winchester,1974b).

As is commonly the case elsewhere, s i l i ceous  and fe ldspa th ic  sandstones 

tend not to show complex mineralogical changes in re la t io n  to var ia t ions  

in temperature. Kennedy (1949), acknowledging these d i f f i c u l t i e s  in estab

lishing the metamorphic zonat ion of the western Highlands, proposed a zonal 

succession based on the mineral assemblages found w i th in  very subordinate 

but widespread c a l c - s i 1i c a te s . His map of metamorphic zones in western 

Inverness-shire and northwestern A rg y l l s h i re  is reproduced below (F ig .59). 

Any in te rpre ta t ion  of th is  and other maps of metamorphic zones in the area 

must be made with a knowledge of the h is to ry  of deformation of the area. 

Consideration must be given to the p o s s i b i l i t y  o f  fo ld in g  and re - fo ld in g  

of isograds by subsequent phases of deformation and the p o s s ib i l i t y  of 

polyphase metamorphism re la ted to the polyphase sequence of deformation.

6.2) Mineral assemblages and metamorphic grade.

6.2a) P e l i t i c  rocks.

Pel i t i c  and semi-pel i t i c  rocks are common in the Glenfinnan and Morar 

Divisions, but only a few th in  semi-pel i tes  have been recovered from the 

Loch Eil D iv is ion .

The usual mineral  assemblage found is b io t i te -m uscov i te -p lag ioc l  ase- 

quartz-garnet with accessory amounts of i ron ore, apat i te  and z i rcon. S i l l 

imanite, s t a u r o l i t e  and c h lo r i t e  have also been found in some sect ions. 

No obvious K-fe ldspar is present ( fo r  modal analyses of p e l i tes  and semi- 

pelites see F ig s .31 & 26 re sp e c t ive ly ) .

The widespread presence of garnet places the p e l i tes  in the "garnet 

zone" (Barrow,1912). Winkler (1979) co r re la tes  the f i r s t  appearance of 

almandine r ich  garnet with the higher temperature par t  of  low grade meta- 

morphism and he uses react ions which produce s ta u r o l i t e  as react ion-isograds 

to define the onset o f  medium grade metamorphism. However, these s ta u ro l i t e  

i^Gactions are of l im i ted  use as the formation o f  s ta u r o l i t e  appears to
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be governed by the bulk composition of the rocks and unfortunate ly  the

chemical composition of most p o l i t i c  sediments does not allow fo r  i t s  form

ation in medium grade metamorphism (Hoschek,1969).

S i l l im an i te ,  in the form of f i b r o l i t e ,  occurs in very small quant i t ies  

in a number of sect ions (see F i g . 31). Winkler (1979) notes a number of

reactions which produce s i l l i m a n i t e  and b i o t i t e  at the expense of ch lo r i te+  

fnuscovitei q u a r tz ts ta u ro l  i t e  w i th in  the range of medium grade metamorphism. 

However a l l  the f i b r o l i t e  observed in th in  sect ion appears to have grown 

within large muscovite c rys ta ls  and is apparently not re lated to any of

the other reactants mentioned by Winkler.

The general absence of A l 2 SiOg polymorphs in high grade Moine pe l i tes  

has been discussed by Winchester (1974b). Whole rock analyses of these 

pelites when compared to others ind ica te  tha t  A l 2 Si05  polymorphs do not

occur in p e l i te s  which are r e l a t i v e l y  r i c h  in CaO and d e f i c ie n t  in AI2 O3.

The common occurrence of quar tz - fe ldspar  segregations w i th in  the pe l i tes  

of the area lead n a tu ra l l y  to considerat ions of the pe l i tes  as migmatites 

which have undergone p a r t i a l  anatexis.  Winkler (1979,p .320) discusses the 

anatexis of rocks conta in ing PIagioclase + Quartz + B io t i t e  + Muscovite 

which at P=5Kb. and approximately 680° begin to  melt .  Muscovite disappears 

and the melt contains K-fe ldspar togather with Quartz and A l b i t i c  Plagio- 

clase. The react ion  involved is :

Mj s c . + Qtz. + Plag.(+ Biotite)-»K-feld. + Plag. + Qtz.(in the melt)

+ An richer Plag. + S i l l .  + H 0 (+ Biotite).

At higher temperatures the b i o t i t e  reacts with s i l l im a n i t e  to produce 

more K-feldspar plus e i th e r  almandine or c o r d ie r i t e .

Thus t h e o r e t i c a l l y ,  p e l i te s  conta in ing no K-fe ldspar produce an anatect ic 

melt of g ra n i t i c  composition and should contain K-Feldspar.

In pe l i tes  conta in ing Plagioclase + Quartz + B i o t i t e ,  but lacking musc

ovite, only a small amount o f  b i o t i t e  is  removed at the onset of anatexis. 

K-feldspar is produced and f requen t ly  hornblende and sphene are also prod

uced during anatexis .

In summary, anatexis of both of the assemblages discussed above should 

produce a melt  conta in ing K-fe ldspar together with  Plagioclase and Quartz.

None of the p e l i te s  of the study area contain K-fe ldspar,  e i th e r  in 

the quar tz- fe ldspar segregations or t h e i r  mica r ich  melanosomes. I t  is 

assumed that these segregations are not,  the re fo re ,  the product of p a r t ia l  

anatexis, as considered above. Thus they would appear to be the re su l t

sol id s ta te  metamorphic d i f fu s io n  and segregat ion, or some process of 

nietasomati sm.
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In conclusion, on the basis of p e l i t e  parageneses, the sporadic occurence 

of f i b r o l i t e  and s ta u r o l i t e  ind icates that the metamorphism reached at 

least medium grade. The widespread development of garnet as an index mineral 

and the general absence of s t a u r o l i t e  and A I2 SiO^ polymorphs precludes

the accurate establishment of "Barrow zones" of metamorphism w i th in  the 

area.
Barr (1983) using techniques of s t a t i s t i c a l  analysis of geochemical 

data and normative ca lcu la t ion  reached s im i la r  conclusions, namely that 

Moine migmatites have formed by sub-sol idus segregation rather than p a r t ia l  

melting. He noted tha t  rocks of greywacke-1ike or arkosic composition are 

more read i ly  migmatised than rocks of p o l i t i c ,  quartzose s e m i-p e l i t i c ,  

and quartzose psammitic composition.

6.2b) C a l c - s i 1i c a te s .

The petrography and modal analyses of a l l  of  the c a l c - s i 1icates col lected 

in the area are given in Chapter 4 , Figure 20. The dominant assemblage is 

Quartz + Plagioclase + Amphibole + "Epidote".

"Epidote" is used here to ind ica te  a l l  mineral compositions in the so l id

solution series between the end members epidote and c l in o z o is i t e .  Zo is i te

was not found in any of the sect ions. Occasional ly small quan t i t ies  of 

pyroxene are found together with amphibole. Other minerals which occur 

in small q u an t i t ie s  are b i o t i t e ,  muscovite, c h lo r i t e ,  c a lc i t e ,  i ron ore 

sphene, apat i te  and z i rcon .  Plagioclase fe ldspar  occurs in a l l  sections

and varies in composition from An.42% to An.97%.

Kennedy (1949) noted progressive changes in the mineralogy of c a l c - s i 1-

icates co l lec ted between the west coast and the Great Glen f a u l t .  Various

parageneses were recognised and were used to def ine four  metamorphic zones, 

increasing in grade eastwards ( F ig .59, redrawn from Kennedy,1949).

Kennedy's four  zones are:

1) Zo is i te  - ( c a l c i t e )  - b i o t i t e  zone. (West)

2) Zo is i te  zone.

3) Anor th i te  - Hornblende zone.

4) Anor th i te  - Pyroxene zone. (East)

He noted tha t  an eastward increase in grade is accompanied by changes 

in plagioclase composition which he claimed was not gradual but changed 

abruptly from a lb i t e  to bytownite (Kennedy,1949,p .48).

The ca lc -s i  1 icates co l lec ted  from the western side of the area occupy 

Kennedy's Anor th i te  - Hornblende zone and Anor th i te  - Pyroxene zone, consid
ered by him to co r re la te  with the Kyanite and S i l l im a n i te  zones respect ive ly ,
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of "normal" p e l i t i c  sch is ts .

Regional studies a f te r  the work o f  Kennedy (1949) reduced the A lb i t e -  

Bytownite gap in p lagioc lase composition to a much narrower Andesine-Bytown- 

ite gap (see Tanner,1975) and Tanner suggested tha t  more extensive c o l l e c t 

ing might prove that a gap in plagioclase composition does not e x is t .

Powell et  a l . (1981) using c a l c - s i 1icates co l lec ted  w i th in  the area stud

ied by Kennedy have shown, on the basis of op t ica l  and microprobe analysis ,  

that a compositional gap does not occur ( F ig .60, taken from Powell et  a l ;  

text f i g . 3).  The pre l im inary  work of Powell et  a l . (1981) s t rong ly  suggests 

that the anor th i te  content of p lag ioc lase, apparent ly almost i r respec t ive  

of c a lc - s i l i c a te  whole rock chemistry,  provides an ind ica t ion  of metamorphic 

grade (see Chapter 6.3e) .  A very s im p l i s t i c  view is  tha t  plagioclase has 

recrystal l ised during so l id  s ta te  metamorphism with a composition which 

is in equ i l ib r ium  with the metamorphic grade and the other minerals (pyro

xene, hornblende, b i o t i t e  e t c . )  are formed from what "remains" a f te r  p lag io 

clase has establ ished equ i l ib r ium  composit ion.

Attempts to study mineral  assemblages and the chemical react ions resp

onsible fo r  the va r ie ty  of assemblages (eg. Winchester,1972: Tanner,1976) 

indicate the complexity of the thermodynamic systems involved. In d i f fe re n t  

areas of the Moine rocks of NW Scotland there are repor ted ly  d i f f e re n t  

prograde and retrograde metamorphic sequences of mineral assemblages and 

chemical react ions (compare Winchester,1972: Tanner,1976:Tanner & M i l l e r ,  

1980 and Powell et  a l , 1981). Accepting these repor ted ly  d i f f e r e n t  sequences 

of events, i t  may be that they have proceeded under d i f f e r e n t  condit ions 

of P, T, Ph^ o » the r e s u l t ,  f o r  example, tha t  the r e la t i v e  s t a b i l 

i t ies of epidote group minerals may have varied.
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F i g u r e  60 .
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CaO /  AlgO

Graph of Anor th i te  content of p lag ioc lase versus 

whole rock CaO/Al^O^ r a t i o  in c a l c - s i 1 i c a te s .

( see tex t  fo r  discussion ).
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6.2c) The Ardgour g r a n i t i c  gneiss.

The petrography of the Ardgour g r a n i t i c  gneiss and some ind ica t ion  of 

its modal mineral  composition has been given in Chapter 4. The dominant 

mineral paragenesis is Quartz + Plagioclase + K-fe ldspar + B io t i t e  with 

much lesser amounts of garnet,  muscovite, c h lo r i t e  and epidote plus access

ory iron ore, zi rcon and apa t i te  (F ig .61 shows typ ica l  textures of the 

Ardgour g ra n i t i c  gneiss).

I t  is worthy o f  note tha t  s i l l i m a n i t e  has not been observed in the gneiss, 

cordierite is also absent and garnet is present only in very small quant

ities (up to 2%, see F i g . 36). Muscovite is present in small q u a n t i t ie s ,  

either along the cleavage of b i o t i t e  or as i r r e g u la r  patches w i th in  the 

felsic minerals.  I t  is  considered, on te x tu ra l  grounds, to be la te r  than 

the Qtz.+ Plag.+ K - fe ld .+  B io t .  migmati te assemblage ( F ig .62).

The gneiss contains Qtz.+ Plag.+ k - f e l d .  segregations varying in size 

from small augen a few mm. long up to "ea r ly "  concordant pegmati tes, usual ly  

with thin selvages of b i o t i t e .  There are no s t r i k i n g  mineralog ical  d i f f e r 

ences between the leucosomes and palaeosomes, only d i f fe rences in the ra t io s  

of major mineral  components.

I f  the i n te rp re ta t io n  of muscovite as a product of secondary re t rog ress

ion unrelated to the main migmati te forming event is co r rec t ,  then the 

absence of pr imary muscovite in t h i s  assemblage would ind ica te  tha t  the 

migmatite has undergone high grade metamorphism (W ink le r ,1979. p ,83-88).

The paragenesis Qtz.+ Plag.+ K - f e l d . + B i o t i t e  has been the subject 

of a number of experimental  studies (see Wink le r ,1979. Chapter 18). The 

results of these studies are discussed below in  re la t io n  to  the Ardgour 

granitic gneiss and the adjacent Glenfinnan D iv is ion  "m igmat i t ic "  p e l i t e s .  

In the presence of water vapour at temperatures o f approximately 650-670°c. 

the paragenesis begins to melt .  I n i t i a l l y  the melt  contains approximately 

equal proport ions of Quartz, K- fe ldspar  and Plagioclase. Melt is generated 

rapidly w i th in  1 0 - 2 0 °c . temperature range u n t i l  the least abundant o f  the 

solid phases Q tz . -  K - f e l d . -  Plag. is  t o t a l l y  melted. A fu r th e r  r i s e  in 

temperature is then required to cont inue melt ing the remaining two so l id  

phases. With a f u r th e r  r i s e  in temperature the less abundant o f  the two 

remaining so l id  phases may melt  completely leaving only one of the quartzo- 

Teldspathic phases as a s o l i d ,  together with b i o t i t e .  Large temperature 

rises in the order of another 100°c. may be necessary to melt  the remaining 

solid phases.

Only a very small pa r t  of  the b i o t i t e  d isso lves incongruent ly in to  the 

^Glt, increasing the amount o f  K- fe ldspar in the melt  as temperature r ises
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Figure 61. Photomicrographs of textures which are typ ica l  of 

the Ardgour g ra n i t i c  gneiss.

(a)

( Exp.277/1235 ) .crossed polars 0

(b)

( Exp.278/1235 ). plane polars. 0 mm. 0.5
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Figure 62. Photomicrograph to show muscovite tex tu ra l

re la t ionsh ips  w i th in  the Ardgour g ra n i t i c  gneiss

chlorite

late" muscovite

( Exp.14/92 ). crossed polars. 0 mm. 1
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by 50-60°c. from the minimum temperature of melt .

Thus in these cases with s u f f i c i e n t  H2O ava i lab le ,  anatexis of the para- 

genesis Qtz.+ Plag.+ K - fe ld .+  B io t i t e  produces g r a n i t i c ,  g ra n o d io r i t i c  

or t ro n d h je m i t ic  leucosomes w i th in  a few tens of degrees centigrade of 

i n i t i a l  melt ing ,  leaving a melanosome (unmelted residue) of b i o t i t e  plus 

r e s i d u a l  fe ldspar and /  or quartz.

With i n s u f f i c i e n t  water ava i lab le  to saturate the system completely, 

melting occurs ra p id ly  w i th in  a l im i ted  temperature range u n t i l  there is 

no longer enough water to saturate the melt .  Continued melt ing then requires 

much higher temperatures. The re s u l t  of  th is  is the production of l im i ted  

amounts of leucosome and melanosome together with areas of palaeosome which 

have lacked s u f f i c i e n t  H2 O to undergo anatexis.

I f  the composition o f the plagioclase in the paragenesis is more anorth-

i t i c  then s l i g h t l y  higher temperatures ( 10 - 2 0 ° c . )  are required to i n i t i a t e  

melting.

The experimental  resu l ts  out l ined above assume an i n i t i a l  assemblage 

of Qtz.+ Plag.+ K - fe ld .+  B i o t i t e  with subsequent anatexis producing gran

i t i c  (sensuo la to )  leucosomes.

I f  the Ardgour g r a n i t i c  gneiss had formed from the adjacent Glenfinnan 

Division p e l i tes or sem i-pe l i tes then a comparison of the two assemblages 

shows that the g r a n i t i c  gneiss contains K-fe ldspar and genera l ly  lacks 

primary muscovite. Consequently i t  is necessary to consider possible reac t 

ions involv ing Quartz, P lagioclase, B i o t i t e ,  Muscovite and K-fe ldspar  which 

may be responsib le f o r  the product ion of K- fe ldspar in the g ra n i t i c  gneiss, 

possibly at the expense of muscovite. Experimental work on th i s  system 

has concentrated on the equ i l ib r ium .

(1) Musc.+ Qtz .^=^  K - fe ld .+  S i l l im a n i te  + H2O (Althaus e t a l . 1970) 

or when p lag ioclase is included the react ion i s .

(2) MUSC.+ Qtz.+ P lag. -4»K-fe ld .+  Plag.+ Qtz. ( in  the anatect ic  melt)

+ An. . . Plag. + S i l l im a n i te  + H..0 
(W ink le r ,1966) r i c h e r  2

These prograde metamorphic react ions which could explain the conversion 

of p e l i te to " g r a n i t i c  gneiss",  would be responsible f o r  the production 

of new K-fe ldspar and the loss of muscovite, however s i l l i m a n i t e ,  which 

would also be produced by the reac t ions ,  does not occur in the g ra n i t i c  

gneiss. I f  b i o t i t e  is present during react ion (2) then at higher temperature

Biot.+ Si 1 1 .+ Q tz .— > K - fe ld .+  Cord ie r i te  + H2 O

(or at Higher Pressure)
K - fe ld .+  Almandine + H2 O (von Platen & H o l l e r , 1967)
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This higher temperature react ion could remove any s i l l im a n i t e  produced 

by reactions ( 1 ) or (2 ) but would produce e i th e r  c o r d ie r i t e  and/or garnet. 

Cordierite has not been observed in the Ardgour g r a n i t i c  gneiss and garnet 

occurs only in very small q u an t i t ie s ,  not enough to be re la ted to the large 

quantities of K- fe ldspar which are present in a l l  sect ions.

I t  is concluded that whi le b i o t i t e  as well as muscovite can cons t i tu te  

a source fo r  K- fe ldspar ,  the other products of such react ions, s i l l im a n i t e ,  

cordieri te and/or garnet are not present in s u f f i c i e n t l y  large quan t i t ies  

for such postulated react ions to have been the source of a l l  the k- fe ldspar 

in the Ardgour g r a n i t i c  gneiss. Thus, arguing from the theo re t ica l  grounds 

outlined above, i t  would appear that the Ardgour g ra n i t i c  gneiss is not 

the product of high grade metamorphism of local p o l i t i c  rocks.

The p o s s i b i l i t y  tha t  the Ardgour g r a n i t i c  gneiss was generated from 

the adjacent p e l i tes has been examined geochemical ly by Gould (1966). Figure 

53 (modified a f te r  Gould,1966, Table 27) shows an averaged composition of 

the g ra n i t i c  gneiss together with various analyses of "Ardgour p e l i tes" 

and "Ardgour psammit e s " .

I t  is obvious tha t  the Ardgour g r a n i t i c  gneiss is h igh ly  potassic in 

comparison to local p e l i tes ,  psammites and combinations of p e l i te and psam- 

mite. I t  has been argued above from a considerat ion of possible metamorphic 

reactions tha t  the g r a n i t i c  gneiss is not a product of p a r t i a l  anatexis 

of adjacent p e l i tes. However the g r a n i t i c  gneiss could be a p a r t ia l  melt 

of sediments o r r i g i n a l l y  r i ch  in K2 0 in marked contras t  to the adjacent 

pelites. I f  the l in e  of g ra n i t i c  gneiss bodies, repor ted ly  s im i la r  to the 

Ardgour g ra n i t i c  gneiss, is traced northwards i t  is seen to transgress 

eastwards from the mixed p e l i tes and psammites o f  the Glenfinnan Div is ion 

into the psammi tes of the Loch Ei l  D iv is ion (see F ig . 6 and I.G.S. 1:50,000 

Sheet 62W,Scotland) which seemingly precludes the p o s s ib i l i t y  that  these 

granitic gneiss bodies are the d i r e c t  anatect ic  products of a potassic 

sediment unless there was a narrow discont inuous zone of potassic sediments 

sub-paral lel , but crossing, the Glenfinnan - Loch Ei l  D iv is ion boundary.

Such sedimentological va r ia t io n  is extremely hard to  envisage.

I t  is possible tha t  the precursors to the g r a n i t i c  gneiss may have become 

potassic as a r e s u l t  o f  some form of metasomatism or " g r a n i t i s a t i o n " , so 

that the l in e  of g r a n i t i c  gneissbodies marks an elongate zone of metasomat- JX 

ism of Moine sediments. ^
There remains the f i n a l  p o s s ib i l i t y  of the g r a n i t i c  gneiss being the 

partial anatect ic  melt  of  a g r a n i t i c  i n t ru s io n ,  int ruded p r io r  to the comp

lex sequence of deformation and metamorphism which has obscured any f i e l d  

evidence of an in t ru s iv e  o r ig in  such as sharp igneous contacts or a meta-
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F i g u r e  63 .

Geochemical and Modal analyses from the Ardgour g ra n i t i c  gneiss 

( tabulated from Gould,1966 ).

( A) ( B) ( C)
Ardgour
pelitic
rock

Ardgour
psammitic

rock

Ardgour
granitic
gneiss

59.73 81 .90 68.12
Ti4 + 0.68 0 .22 0.41
A13 + 18.66 9.16 14.67
Fe3 + 0.67 0.28 0 .70
Fe2 + 3.86 0.70 2.26
Mn^* 0.09 0.02 0.06
Mg2* 2.82 0.47 0.82
Ca2* 2.61 0.94 1.50
Na" 6.92 4 .02 5.78
K" 3.80 2.24 5.55
p5^ 0.17 0.04 0.13

Eskola Molecular norms, recalculated to 
m etam orphic m in e ra ls .

high -  grade

Quartz 23.33 61.43 31.64
K-feldspar 4.65 10.04 27.94
Plagioclase 45.42 22.42 29.05
Muscovite 2.18 1.66' '
Biotite 23 69 3.42 9.02
Hornblende ----- ----- 1.00
Magnetite 0.32 0.32 0.73
Ilm enite 0.02 0.24 0.27
A patite 0.43 0.10 0.33

A \ Average of 15 new  analyses of Ardgour pelitic 
^  rock ( from Gould 1966. Table 27 )

Average of 10 new analyses of Moine psommites, 
B). one from the Druim no Saille pelitic group and 9 from 

the Beinn an Tuim striped group (G o u ld , table 27 ).

Q j Average of all analyses of Ardgour granitic 
gneiss ( Gould . 1966 . table 14 )
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m o r p h ic aureole. The regional discordance of the g r a n i t i c  gneiss bodies 

t r a c e d  northwards is eas i ly  explained in terms of an o r ig i n a l ,  s l i g h t l y  

discordant to s t ra t ig ra ph y ,  su i te  of in t rus ions .

I f  the precursor to the Ardgour g ra n i t i c  gneiss was a grani te  then the

lack of a metamorphic aureole would suggest e i t h e r  tha t  i t  has not been 

o b s e r v e d ,  or tha t  i t  has been destroyed by la te r  metamorphism and deform

ation, or that the host rocks were hot at the time of in t rus ion  and an aur

eole was not formed.

Comparisons of the metamorphic mineralogy and chemistry of the g ra n i t i c  

gneiss and the Glenfinnan D iv is ion p e l i te s  in the l i g h t  of experimental 

observations ind ica te  tha t  the p e l i te has not undergone p a r t ia l  anatexis 

during the product ion of i t s  quartz-p lag ioc lase segregations (=migmatit ic 

l i t s ) .  Anatexis would have produced K-fe ldspar in a g r a n i t i c  melt along 

with s i l l im a n i t e ,  a react ion in d ica t ive  of high grade metamorphism.

The g r a n i t i c  gneiss has, however, undergone p a r t i a l  anatexis under cond

itions with s u f f i c i e n t  H2 0 present to produce g r a n i t i c  and re la ted melts

from a Qtz.+ Plag.+ K - fe ld .+  B io t i t e  assemblage. This anatexis occured 

under condit ions of high grade metamorphism.

The Ardgour g r a n i t i c  gneiss contains two mappable masses of recognisable 

metasediment which appear to be gradational in to  the typ ica l  g r a n i t i c  gneiss 

(see Chapter 5). There are a number of reasons which could explain why 

these masses have not undergone p a r t ia l  anatexis.  Assuming tha t  the g ra n i t i c  

gneiss was o r i g i n a l l y  a gran i te  then the sedimentary masses must have been 

xenol i thic.  The parallelism between the xenolithic modified bedding and the modif ied 

bedding in the adjacent metasediments would suggest tha t  the grani te  i n t 

rusion was passive and not very fa r  t ra ve l le d  from i t s  source. I f  the gran

i t i c  gneiss precursors were potassic sediments then i t  is possible that 

the metasedimentary masses w i th in  the g r a n i t i c  gneiss were e i th e r  less

potassic or contained plag ioclase of a higher An. content,  ra is in g  i t s  

anatectic melt ing temperature by some tens o f  degrees cent igrade, or were 

in an area of low PH2 O with i n s u f f i c i e n t  water to produce anatect ic  melts, 

ie. they are palaeosomes w i th in  a mixed leucosome/melanosome g r a n i t i c  gneiss.

There are no ind ica to rs  tha t  the Ardgour g r a n i t i c  gneiss and host meta

sediments have undergone d i f f e r e n t  tectono-metamorphic h i s t o r ie s ,  therefore 

the process which produced l i t - p a r - l i t  segregations in the Glenfinnan Div

ision by so l id  s ta te  processes at temperatures lower than those required 

for pa r t ia l  anatexis must also be presumed to have been operat ive in the 

9>"anitic gneiss before a continued r i s e  in temperature produced anatect ic 

"^Glts w ith in  the g r a n i t i c  gneiss. This would apply whether the precursor 

to the g r a n i t i c  gneiss was a potassic sediment or an in t ru s iv e  g ran i te .
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The pe tro log ica l  and experimental work out l ined above suggests that 

the Ardgour g ra n i t i c  gneiss has not formed by p a r t ia l  anatexis of the pe l 

i t i c  metasediments of the Glenfinnan D iv is ion .  The g ra n i t i c  gneiss may 

have or ig inated as an elongate zone of potassic sediments which was s l i g h t l y  

oblique to the overa l l  sedimentary fac ies boundary between the Glenfinnan 

and Loch Ei l  D iv is ions ,  but th is  seems sedimento logical ly  improbable. A l t 

ernatively the potassium enrichment may be due to some form of metasomatism.

In the l i g h t  of the discussion above the author considers an in t rus ive  

origin fo r  the Ardgour g r a n i t i c  gneiss to be most l i k e l y .

I t  is of course rea l ised that fu r th e r  experimental work may reveal other 

reactions which can explain the presence or absence of K- fe ldspar,  muscovite, 

Al2Si0 5  e tc .  in the metasediments and g ra n i t i c  gneiss.

6 .2d) Amphiboli t e s .

This sect ion concerns the mineral  parageneses and metamorphic grade 

of the amphibol ites in the area, the geochemistry and s t ru c tu ra l  se t t ing  

of the basic and metabasic rocks in the area is discussed in Chapter 8 .

The most common amphibol i te paragenesis is Amphibole + Plagioclase + 

Quartz ± B io t i t e  ± Garnet + accessory minerals .  The amphibole, which occurs 

in al l  sect ions and comprises from 40-80% of the rock, is hornblende with 

a pale coloured p leochroic scheme, 

cx = Straw yel 1 ow.

#= Mid-dark green.

)$= Dark green.

Plagioclase is found in a l l  sec t ions, comprising 20-40% of each sect ion. 

The anor thi te content ranges from An.28% to An.69%. Frequently the p lag io 

clase is at least p a r t l y  sa u ssu r i t i se d . Quartz is  found in v i r t u a l l y  a l l  

sections, comprising about 5-20% of most sect ions. B io t i t e  is present in 

approximately h a l f  of  the sect ions,  as is  garnet, but there is no r e l a t i o n 

ship between the presence or absence of e i th e r  minera l .  Other minerals found 

in re la t i v e l y  small q u a n t i t ie s  include c h lo r i t e ,  c a l c i t e ,  c l i n o z o is i t e  

and epidote. Accessory amounts of sphene and iron ore are present in nearly 

3ll sections.

Comparisons of amphibol ites from the Glenfinnan and Loch E i l  Div is ions 

show that the anor th i te  content o f  plag ioclase is more varied w i th in  the 

Glenfinnan Div is ion (An.28% to An.69%) whereas the anor th i te  content in 

the Loch Ei l  D iv is ion (An.44% to An.47%) is re s t r i c te d  to the centra l  p o r t 

ion of the range exhib i ted w i th in  the Glenfinnan D iv is ion (Map 6 ) .  Garnet
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and b io t i t e  are less common and ep ido te /c l  in o zo is i te  is more common in 

the amphibolites of the Loch Ei l  D iv is ion .

All the amphibol i tes have at least a moderate l inea r  shape and c r y s ta l l o -  

graph ic  fa b r i c  def ined by o r ien ta ted ,  elongate hornblende c r y s ta ls .  There 

is often some suggest ion tha t  the l inea r  fa b r ic  is s l i g h t l y  sch is tose , ie .  

p lana r .  This L-S fa b r i c  is coeval with the penetra t ive planar fa b r ic  in 

the surrounding metasediments, which may be of or $2 age.

The paragenesis Hornblende + Plagioclase + Quartz ± B i o t i t e  ± Garnet 

derived from the metamorphism of mafic rocks (see geochemistry. Chapter

8.3) is i n d ic a t i v e  of medium to high grade metamorphism (Wink le r ,1979). 

Plagioclase composit ion o f Andesine/Labraborite ind icates r e l a t i v e l y  high 

grades of metamorphism w i th in  t h i s  range (Wenk & K e l l e r , 1969). However, 

within the mapping area, the anor th i te  content of plagioclase in amphibol- 

ites is not s u f f i c i e n t l y  sens i t ive  to va r ia t ions  of metamorphic grade to 

enable i t  to be used as a r e l i a b le  ind ica to r  of metamorphic grade (Map 6 ).

The tex tu ra l  and s t ru c tu ra l  re la t ionsh ips  o f  the minerals c h lo r i t e ,  

epidote, c l i n o z o i s i t e  and c a l c i t e  to the main paragenesis described above 

indicate the occurrence of e i t h e r  a subsequent lower grade metamorphism 

or a phase o f re t rogress ion  separated from the main metamorphism by at 

least one phase o f  deformation (see Chapter 6.3d) .

6.3) The re la t io n s h ip  of metamorphism to deformation.

6.3a) Micas.

Both b i o t i t e  and muscovite are abundant in the p e l i t i c  and s e m i - p e l i t i c  

rocks of the area. In the more psammitic rocks both minerals are found 

in smaller q u a n t i t i e s .  Within the Ardgour g r a n i t i c  gneiss b i o t i t e  is abund

ant but muscovite is e i t h e r  absent or present in only small q u an t i t ie s  

(see modal analyses F ig s . 12, 15, 17, 26, 31 and 36).

In a l l  cases b i o t i t e  la ths  def ine a very strong planar f a b r i c .  In rocks 

which show a composit ional banding the f a b r i c  is genera l ly  p a ra l le l  to 

the banding ( f o l i a t i o n ) .  In the hinges of minor t i g h t  to i s o c l i n a l  F 2 i n t r a -  

tol ial  fo lds  the f a b r i c  is ax ia l  planar and penetra t ive ( F i g . 64). Where 

two phases of e a r ly  minor i s o c l i n a l  fo lds  can be seen (F-| and F2 ) the b i o t 

ite fabr ic  appears to  be ax ia l  planar to  both F̂  and F2 fo lds  (F ig .47b) .

In the core o f  the F2 Beinn an Tuim synform(Maps 2 & 3) the b i o t i t e  

tabric is ax ia l  planar to the t i g h t  minor F2 fo lds  in the core of the major
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Figure 64. Photomicrographs of the planar b i o t i t e  

fa b r ic  in psammitic rocks.

(a)

0 1( Exp.38/229 ). plane polars. mm.

(b)

{ Exp.45(a)/230 ). crossed polars. 0 mm. 1
t— . I
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fold but in the more open limbs of the major fo ld ,  the minor F2 fo lds  fo ld  

a bedding p a ra l le l  f o l i a t i o n  but do not develop t h e i r  own penetra t ive  axial  

planar b i o t i t e  fa b r i c .

Throughout the area the s t rong ly  developed planar b i o t i t e  fa b r i c  is 

highly crenulated by minor local F3 fo ld s .  The crenula t ions are often very 

tight but genera l ly  the b i o t i t e  c rys ta ls  are completely unstrained (Fig.65a). 

Only very occas iona l ly  do some b i o t i t e  c rys ta ls  show s l ig h t  s t ra in in g  of 

the la t t i c e .  Minor fo lds  of F  ̂ generation were not observed (or recognised 

as such). F5 minor fo lds  crenula te  the planar b i o t i t e  fa b r i c  and again no 

strain can be seen in b i o t i t e  c r y s ta ls .  In a few sect ions b i o t i t e  has been 

extensively replaced by aggregates of c h lo r i t e .

Muscovite c r y s ta ls  most f re q u en t ly  have the same mode of occurrence as 

biot ite and they re in fo rce  the b i o t i t e  planar fa b r i c  and are folded by

F3 crenulat ion fo ld s .  Like b i o t i t e ,  the muscovite laths genera l ly  do not

show s t ra in ing  re la ted  to the F3 or F^ crenulat ions (F ig .65b) .

Where b i o t i t e  and muscovite are intergrown and form an intense planar 

mica fa b r ic ,  the two minerals are in tex tu ra l  equ i l ib r ium  with each other.  

There are no te x tu ra l  signs of any replacement of one mineral by the other,

although sometimes i t  could be suggested tha t  muscovite seems to be growing

along the cleavage of b i o t i t e  laths (F ig .6 5 a ,c e n t re - r ig h t ) .  Where Fq cren

ulations are intense, occas iona l ly  a few muscovite c rys ta ls  seem to have

recrystal l ised p a ra l le l  to the axia l  planes of the F3 minor fo lds  (Fig.65b 

centre - r igh t) .

In much smal ler q u an t i t ie s  muscovite adopts two other modes of occurrence; 

First ly,  large porphyroblasts (up to 5 mm. long) are seen which have no

preferred c rys ta l  1ographic or shape o r ie n ta t io n  and cross cut the dominant 

muscovite-biot ite planar f a b r i c  ( F i g . 6 6 a). Secondly, muscovite c rys ta ls  

up to 5 mm. long occur as porphyroblasts which have no preferred c r y s t a l l o -  

graphic o r ie n ta t io n ,  they have a mantle of muscovite sub-grains and are

wrapped by the m u s c o v i te -b io t i te planar f a b r i c .  These porphyroblasts tend 

to show the most in te rna l  l a t t i c e  d i s t o r t i o n  ( F ig . 6 6 b) and may be the spor

adic remnants of a su i te  o f  ea r ly  porphyroblasts which, subsequently, have 

been stra ined, and f o r  the most par t  t o t a l l y  re c ry s ta l i s e d .

In the g r a n i t i c  gneiss the small quan t i t ies  of muscovite which occur 

in some sect ions occur as co-p lanar intergrowths with the planar b i o t i t e

I^abric and also as a la te  replacement of (?K-) fe ldspar .

Throughout the region major fo lds  have been mapped and t h e i r  s t ru c tu ra l  

3ge re la t iv e  to other s t ruc tu res  establ ished (see Chapters 5 & 7).  Along 

the axial plane trace of the F2 Beinn an Tuim synform the minor s truc tu res 

nange from t i g h t  to  i s o c l i n a l  (F2 ) fo lds  with an extremely intense axial
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Figure 65. Photomicrographs showing the crenulat ion 

of the planar (S^) f a b r i c .

(a)

( Exp.47/231 ). plane polars. 0 mm. 1

(b)

( E x p . 2 1 7 / 1 0 8 9  ) .  plane polars. 0 mm. 1
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F i g u r e  66 .  P h o t o m i c r o g r a p h s  t o  show m u s c o v i t e  t e x t u r e s

Large non-orientated muscovite porphyroblasts.

/ /

( Exp.27/164 ). plane polars. 0 1mm.

{ see tex t  fo r  discussion ). 

Deformed, ear ly  muscovite porphyroblasts.

( E x p . 2 0 1 / 1 0 5 0  ) .  plane polars.
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planar gneissose fa b r ic  ($ 2 ) which almost t o t a l l y  transposes the e a r l i e r  

gneissose fa b r ic  (S-] ) in the p e l i t e s ,  to more open minor (F2 ) folds which 

fold a p re -ex is t ing  planar mica fa b r ic  (S^) but do not contain a penetrat ive

fabric axial  planar to the F2 minor fo lds .

Thus lo c a l l y  there is evidence of two planar penetrat ive mica fabr ics

w h ich  are pre-crenu1ation in age. There are very rare exposures which cont

ain two phases of minor i s o c l in a l  fo ld s ,  both of which appear to contain 

truly penetra t ive axial  planar fa b r i c s ,  and are deformed by crenulat ion 

folds.
The s i tu a t io n  where the planar penetra t ive mica fa b r ic  may be the product 

of ei ther and/or D2 deformation is seen to be even more equivocal when

it  is rea l ised that minor crenu la t ion  fo lds  may be a product of not one

but two phases of major fo ld in g  { the e a r l i e r  phase related to the product

ion of the Sgurr Beag s l id e  and the l a te r  one responsible fo r  the fo ld ing  

of i t :  see Chapters 5 & 7).

Although not unequivocal,  the fo l low ing  tab le  is an attempt to summarise 

the h is to ry  of mica growth and r e c r y s ta l l i s a t i o n  re la ted to deformation.

D-| Growth of "ea r ly "  muscovite porphyrobl asts, possibly a f te r  the

production of a planar mica fa b r i c .

D2 Enhancement and syn- tec ton ic  development of the dominant planar

fa b r i c  with the deformation of "ea r ly "  muscovite porphyroblasts.*  

0 3 -̂  Strong crenu la t ion  of the planar f a b r i c ;  fol lowed by se lec t ive

► r e c r y s t a l l i s a t i o n  to  produce unstrained micas (remnant mantled 

D^J "e a r ly "  muscovite porphyroblasts re ta in  th e i r  in terna l s t ra in )

Dg Open c renu la t ion  and r e c r y s t a l l i s a t i o n .

Post-D^ Post tec ton ic  s t a t i c  growth of randomly or ientated muscovite 

porphyroblasts .

* Note: I t  is  possible tha t  the "ea r ly "  muscovite porphyroblasts have

been deformed by f l a t t e n in g  during D 3 (or deformation. The porphyro-

blasts could then be la te -  or post-  D2 porphyrob lasts .

6.3b) A l 2 SiÜ5 polymorphs.

S i l l im an i te  is found spo rad ica l ly  in small quan t i t ies  in some of the 

PGlites in the area. Kyanite has not been observed in any rocks in the 

area but i t  occurs very spo rad ica l ly  in adjacent areas (Powell et  a l , 1981. 

text F i g . l ) .  Andalus i te has not been recorded in the area or adjacent to
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to i t  but i t  occurs in the inner aureole of the Stront ian g ran i te  20 Km. 

to the south (Ty le r  & Ashworth,1982).

S i l l im a n i te  was observed in one p e l i t i c  rock co l lected from the Morar 

Division j u s t  west of the Sgurr Beag s l id e .  In the Glenfinnan D iv is ion 

s i l l iman i te  was found only in p e l i t i c  and se m i-p e l i t i c  l i t h o lo g ie s ,  f ig u re  

34 shows i t s  sporadic d i s t r i b u t i o n .  S i l l im a n i te  was not observed in the 

rocks ot the Loch E i l  D iv is ion .

The presence of s i l l i m a n i t e  as opposed to e i th e r  of the other two ATgSiO^

polymorphs suggests metamorphism to high grade. Confining pressure is d i f f 

icul t to estimate (W ink le r ,1979.p ,92). S i l l im a n i te  occurs as aggregates

of very f i n e  small needles of f i b r o l i t e  with an average length o f 0 . 1- 0 . 2

mm. The f i b r o l i t e  needles do not def ine a l in e a t io n ,  they anastomose w i th in  

crystals of muscovite with which they are almost always in va r ia b ly  assoc

iated. In one sect ion f i b r o l i t e  needles are found associated with (? plag) 

feldspar (Sect ion 246/1104). The muscovite c rys ta ls  are usual ly  r e l a t i v e l y  

large, 2-3 mm., f re q u en t ly  deformed, mantled by sub-grains of muscovite 

(ie. "ea r ly "  muscovite po rphyrob las ts ) . The "waves" of f i b r o l i t e  needles 

show no re la t io n s h ip  to  e i t h e r  the c rys ta l lography of the muscovite c rys ta ls  

or to planar or c renu la t ion  fa b r ics  of the p e l i t i c  rocks in which they 

were found. There are no signs of deformation of ind iv idua l  needles which 

consti tute the "waves" o f  f i b r o l i t e  (Fig.67a & b). I t  seems reasonable 

to assume th a t  the f i b r o l i t e  tex tu re  has been produced by f i b r o l i t e  ovegrow- 

ing muscovite, ra the r  than muscovite nucleat ing on f i b r o l i t e .

F ib r o l i t e  is  found overgrowing r e l a t i v e l y  large micas which are s t ra ined ,  

deformed in to  sub-grains and often wrapped by the dominant m usco v i te -b io t i te 

fo l ia t ion .  The f l a t t e n i n g  o f  these augen c rys ta ls  seems to have occurred 

either during the production of S2 or during D3 deformation which also 

produced the strong c renu la t ion  o f  the planar f a b r i c .  F i b r o l i t e  was not 

observed growing in any muscovite in the dominant planar f a b r i c ,  nor was 

i t  seen to  grow in  the large muscovite porphyroblasts which are undeformed 

and grow across the strong mica crenula t ion  f a b r i c ,  ie .  f i b r o l i t e  is found 

only in the "e a r ly "  muscovite porphyroblasts . This could be in te rpre ted  

as ind ica t ing  f i b r o l i t e  growth at an ea r ly  stage of metamorphism in "ea r ly "  

muscovite porphyroblasts before any of the muscovite had been deformed 

and r e c r y s ta l l i s e d .  Deformation o f the "ear ly "  porphyroblasts with sub

grain production and presumably some to ta l  r e c r y s ta l l i s a t i o n  may have dest

royed more widespread f i b r o l i t e  growth. However, i t  is also possib le to 

^rgue tha t  f i b r o l i t e  grew a f te r  the growth and r e c r y s ta l l i s a t i o n  o f a l l  

the muscovite c r y s ta l s ,  but tha t  i t  only grew on the "ea r ly "  porphyrobl asts 

because they had re ta ined s t ra ined l a t t i c e s  and were thus ideal s i tes  fo r
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Figure 67. Photomicrographs to show f i b r o l i t e  "needles" 

in "ear ly "  muscovite porphyroblasts.

(a)

f ib ro lite  needles

( E x p .246/1104 ). plane polars.

(b)

fibrolite
needles

/ I I

> /

( E x p . 1 9 9 /1 0 4 5  ) .  crossed polars. mm.
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f ib ro l i te  nuc léat ion. The former p o s s ib i l i t y  is the one favoured by the 

author.

The sporadic d i s t r i b u t i o n  of f i b r o l i t e  throughout the Morar and Glen

finnan Div is ion rocks of the area suggests that s i l l im a n i t e  grade (high 

grade) metamorphism was widespread.

Winchester (1974b) ascribes the lack of s i l l im a n i t e  in high grade p e l i t i c  

rocks to unfavourable whole rock chemistry,  however the absence of f i b r o l i t e  

could be due to the absence of a su i tab le  host mineral ( "e a r ly "  muscovite 

porphyroblasts) which in turn could r e f l e c t  va r ia t ions  in the in te n s i ty  

of early (TD^,) deformation, the l a t t e r  being responsible fo r  the destruct ion 

of the "ear ly "  porphyroblasts.

Dalziel & Brown (1965) describe s i l l im a n i t e  occurrences in the Moine 

rocks of Ardgour and Moidart which are "c lose ly  associated with b io t i t e  

(p.306)", they also note that " f ib rous  f e l t s  of s i l l im a n i t e  overgrow b io t i t e  

laths, f requen t ly  so s t rong ly  that the b i o t i t e  almost disappears".

6.3c) Garnet.

Garnet c rys ta ls  occur in small quan t i t ies  in most of the p e l i t i c  and 

many of the s e m i -p e l i t i c  rocks of the area. They are mostly small (1-2 

mm.) and f a i r l y  equid imensional. Well formed c rys ta l  faces are not found. 

Occasionally la rger  i r r e g u la r  shaped c rys ta ls  (up to 6 mm.) occur. A l l  

the garnets contain small round inc lusions of quartz which are usual ly 

most dense in the middle of the c ry s ta ls .  Nei ther inc lus ion t r a i l s  nor 

any link between the inc lus ion and matr ix fa b r i c  were observed. Well devel

oped in terna l  zonal patterns of inc lus ions are absent. Figures 27 & 33 

show some of the v a r ie t y  of garnet shapes and tex tu res .

By themselves these features do not shed much l i g h t  on the re la t ionsh ips  

between the s t ru c tu ra l  and metamorphic h is to r ie s  of the area, but when 

considered in conjunct ion with work fu r th e r  west (eg.MacQueen & Powel l ,1977; 

Powell & MacQueen,1976; Anderson & 01ympio,1977 and Olympio & Anderson,1978) 

they may be more in format ive . In the west, from the SI eat of Skye eastwards 

through the rocks of the Morar D iv is ion to the Sgurr Beag s l id e ,  garnets 

which are f requen t ly  subhedral to euhedral, overgrow bedding and an ear ly  

(Si) low grade metamorphic f a b r i c .  They have grown synchronously with the 

local second phase o f deformation (D2 ) and have, w h i l s t  growing, keyed 

2̂ microfolds (MacQueen & Powel l ,1977). Moving east through the Morar Div

ision the garnets have a p re - tec ton ic  core with a syn- tec ton ic  margin imply

ing e i ther  or both garnet growth and F2 f o ld in g  was s l i g h t l y  diachronous
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across the  Morar  D i v i s i o n .  Pow e l l  & MacQueen (1976)  have shown 

that the garnet c rys ta ls  in the west of the area (on the Sleat of Skye) 

have acted as passive r i g i d  porphyroblasts which were bodi ly  rotated during 

local F3 f o ld in g .  Here the garnet inc lus ion t r a i l s  are continuous out in to  

the modif ied bedding fa b r i c  (Sq/S^) in the matr ix .  The fa b r ic  is disrupted 
by the S3 c renu la t ion .

I f  one attempts to ex trapola te  fu r th e r  east,  across the Sgurr Beag s l ide  

into the Glenfinnan D iv is ion  then one might expect to f ind  garnets which 

are completely or almost completely p re- tec ton ic  in re la t io n  to F2 . As 

post-D2 deformation appears to be more intense in the Glenfinnan Div is ion 

than fu r th e r  west, one might expect the pre- to syn-F2 garnets to occur 

as r ig id  porphyroblasts w i th in  a s t rong ly  developed S3 s ch is to s i t y .  Such 

intense D3 deformation would be expected to d is rup t  and p a r t l y  transpose 

earlier f o l i a t i o n s  so tha t  the in te rna l  inc lus ion fabr ics  would not be 

traceable in to  the surrounding matr ix .

To an extent the observed features f i t  the ex t rapo la t ion :  there is no 

connection between the inc lus ion fa b r i c  and the surrounding matr ix fa b r ic  

and the garnets have acted as r i g i d  bodies during the deformation which 

produced the S3 c renu la t ion  s c h is to s i t y .  However the garnets do not contain 

good inc lus ion t r a i l s ; n e i t h e r  t o t a l l y  p re - tec ton ic  s t ra ig h t  t r a i l s  nor 

partly syn- tec ton ic  curved inc lus ion t r a i l s  are seen. The garnet shapes 

are not euhedral and there is no obvious in te rna l  zoning. The garnets appear 

to have re c r y s ta l l i s e d  a f te r  t h e i r  postulated pre- to syn-F2 growth. This 

could imply tha t  on a regional scale there is an overal l  increase eastwards 

in metamorphic grade of a post-F2 metamorphic event.

Garnets in the few p e l i t i c  samples co l lec ted  from the Morar D iv is ion 

at the eastern end of Loch E i l t  are tex tu ra l  l y  s im i la r  to the garnets in 

the nearby rocks of the Glenfinnan D iv is ion and d iss im i la r  to those des

cribed by MacQueen & Powell (1977) from the Morar Div is ion fu r th e r  west. 

This would imply tha t  the change in garnet "morphology" is not due to the 

juxtaposit ion o f the two assemblages of rocks character ised by d i f f e r e n t  

types of garnet across the Sgurr Beag s l id e  but is more l i k e l y  to be the 

result of  m od i f ica t ion  o f o r i g i n a l l y  s im i la r  garnets by d i f f e r i n g  grades 

of post-F2 metamorphism.

Anderson & Olympio (1977) repor t ing  chemical ly homogeneous garnets in 

the Locha i lo r t -G lenf innan area, un l ike  the chemical ly zoned ones fu r th e r  

west, dismissed the p o s s i b i l i t y  tha t  the homogeneous garnets had grown 

^fter the zoned ones and they offered two possible explanations of t h e i r  

observations. E i the r  the eastern garnets grew at higher metamorphic grade 

(during D2 ) enabl ing in te rna l  homogenisation to  occur during growth, or
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the garnets homogenised during a la te r  metamorphic event.

6.3d) Amphibo l i tes .

The amphibol ites of the area can be divided in to  a group of coarse garnet- 

iferous amphiboli tes (where sometimes the garnet is p a r t l y  or t o t a l l y  r e t r o 

gressed) and a group of f i n e  grained hornblende sch ists which are non- 

garnetiferous (see Chapter 8 and Smith,1979,p .694). The garnet i ferous amphi

bol i tes, which c h ie f l y  occur as iso la ted boudin pods, are l ineated and 

contain a s c h is t o s i t y  co-p lanar with the penetra t ive planar fa b r ic  in the 

surrounding metasediments. Within the Ardgour g ra n i t i c  gneiss (exp.235, 

NM 91778020 ) a th in  t i g h t l y  folded sheet was observed. The dominant gneiss

ose fabr ic  (S2 ) o f  the Ardgour g ra n i t i c  gneiss is co-planar with the fo ld  

axial plane (F2 ) o f  the amphibol i te ,  w h i l s t  the amphiboli te contains an 

Internal f a b r i c  (S-|) which is  folded around the t i g h t  (F2 ) fo ld  suggesting 

that the garne t i fe rous  amphibol ites were intruded (or deposited ?) p r io r  

to D-j.

The hornblende sch is ts  are found as iso la ted boudin pods or th in  sheets 

which, in the Ardgour g r a n i t i c  gneiss, are discordant to the dominant $ 2

gneissose f a b r i c .  I t  has proved impossible to es tab l ish  the time of i n t 

rusion (or ? depos i t ion)  o f  the hornblende schists  r e la t i v e  to the e a r l i e s t

(D-i) phase of deformation in the area.

Whilst Johnstone e t  a l . (1969) could f in d  no evidence f o r  in t rus ion  and

suggested a sedimentary o r i g i n ,  Winchester (1976) on geochemical grounds

favoured a t h o l e i i t i c  in t ru s iv e  o r ig in  fo r  the amphibol i t e s . I f ,  as was

favoured in Chapter 6 .2c,  the precursor to the Ardgour g r a n i t i c  gneiss 

was a g r a n i t i c  i n t r u s iv e  body then both the garnet i ferous amphibol ites

and hornblende sch is ts  must have been igneous in t ru s io n s .

Hornblende sch is ts  occur in the Loch E i l  and Glenfinnan D iv is ion  rocks, 

that is they occur across the Loch Quoich l in e  and t h e i r  tex tu ra l  develop

ment and m od i f ica t ion  can be re la ted  to the la te r  stages of the deformation 

history of the area. In the Loch E i l  D iv is ion the hornblende sch is ts  f r e q 

uently contain some r e l a t i v e l y  large porphyroblasts of hornblende in a 

finer hornblende matr ix  ( F i g . 6 8 a & b).  The porphyroblasts contain many 

small quartz inc lus ions  p a ra l le l  to the amphibole cleavage. Usual ly the 

porphyroblasts are mantled by sub-grains and show evidence of in te rna l

straining and sub-gra in product ion.

Samples co l lec ted  west of the Loch Quioch l in e  are near ly  a l l  uni formly
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Figure 6 8 . Photomicrographs of Loch Ei l  D iv is ion porphyroblast ic 
hornblende sch is t ,  (see tex t  fo r  d iscussion) .

Plane polar ised l i g h t .

large re lict hornblende 
porphyroblast

( Exp.88/281 ). plane polars. mm.

Cross polar ised l i g h t ,  (same view as above).

( E x p . 8 8 /2 81  ) .  crossed polars.
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fine grained, conta in ing very few, i f  any, hornblende porphyroblasts. The 

F2 Beinn an Tuim synform, the axial  plane of which crosses the Loch Quoich 

line, shows a considerable va r ia t ion  in in te n s i ty  of D2 deformation along 

its trace. There is no re la t ionsh ip  between the D2 deformation s ta te  and 

the presence and/or deformation of hornblende porphyroblasts, suggesting 

that the Hornblende porphyroblasts may have grown as syn- or post - 0 2  c r y s t 

als. Within the Loch Ei l  D iv is ion near the F3 Druim Beag synform the por

phyroblasts are very heavi ly  deformed and re c ry s ta l l i s e d ,  suggesting pre- 

D3 growth and D 3 deformation of the porphyroblasts. The porphyroblasts 

may also deform and rec rys ta l  l i s e  as a re su l t  of  D  ̂ deformation, and s i m i l a r 

ly during D5 .

Consequently the presence of r e l i c t  large hornblende porphyroblasts 

may be in d ica t i ve  of areas of r e la t i v e l y  low D 3 (and la te r )  deformation. 

This postulate is strengthened by considerat ion of the regional var ia t ions  

during D3 and D^. In the Loch E i l  D iv is ion D3 s t ra in  is at i t s  lowest levels 

and increases progress ive ly  westwards towards the Sgurr Beag s l id e .  The 

level of D̂  s t r a in  in the Loch E i l  Division is also r e la t i v e l y  low, i t  

too increases westwards where i t  is responsible fo r  the re -o r ie n ta t io n  

and fo ld ing  of the sub-recumbent F 3 major fo lds and D3 Sgurr Beag s l ide  

to produce the D̂  "steep b e l t "  of  the Glenfinnan Div is ion (see Chapters 

7.5 & 9 .1 ) .

6.3e) C a lc - s i1i c a te s .

Kennedy's map o f  c a l c - s i l i c a t e  zones (F ig .59) shows a series of N-S 

trending metamorphic zones corresponding to a progressive eas ter ly  increase 

in metamorphic grade. In general zone boundaries conform to the regional 

strike of the rocks but the zones are not symmetr ical ly disposed about 

major fo ld s .  Kennedy (1949) envisaged that the zones owe th e i r  development 

to the heat t ransmit ted outwards from a thermal focus — a heat source 

which he also saw as being responsible fo r  the production of the regional 

migmatites. Since the metamorphic zones are not re la ted to major fo ld s ,  

one has to assume tha t  the regional metamorphism occurred a f te r  a l l  the ^  
major phases of fo ld in g .  A problem arises when one re ca l l s  tha t  Kennedy 

believed tha t  th i s  metamorphism produced the regional migmati tes. These 

migmatites are,however, deformed by the D3 deformation associated with 

the formation of the Sgurr Beag s l ide  (see Chapter 7) which i t s e l f  has 

been folded on a regional scale.
Subsequent work has shown tha t  the mineral parageneses in c a l c - s i 1 icates
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vary with c a l c - s i l i c a t e  whole rock chemistry as well as with metamorphic 

grade (Winchester, 1974a: Charnley,1976) so that mineral parageneses alone 

cannot be used to def ine metamorphic grade at any one l o c a l i t y .

Kennedy (1949) noted tha t  eastwards across his metamorphic zones there 

was an increase in the An. content of plagioclase in the ca lc -s i  1 i ca te s , 

the t ra n s i t io n  is abrupt with a large gap between a lb i te  and bytownite. 

Subsequently, de ta i led  work by Tanner (1976) reduced th is  gap to An.55-70% 

and more recent work (Powell et  a l . 1981.tex t  f ig .3 (see  Appendix 5)) has 

shown that the An. content of plagioclase is independent of whole rock 

chemistry (as expressed by the r a t i o  CaO/Al2 Ü3 ) but apparently re lated 

to metamorphic grade.

Powell et  a l . (1981) noted that the va r ia t io n  in plagioclase composition 

across the area is not random; there is a general,  and in places gradual, 

increase in An. content o f  the p lag ioc lase from W to E ie .  with overal l  

increase in metamorphic grade (F ig .69, taken from Powell et  a l . 1981), Lowest 

values of An. content come from the ca lc -s i  1 icates at western l o c a l i t i e s  

which have h igh ly  var iab le  whole rock chemistry, as expressed by the r a t io  

CaO/Al2 Og. Conversely highest values of An. content come from the eastern 

local i t ies where nearby p e l i t i c  rocks contain s ta u ro l i t e  and/or kyanite, 

and/or f i b r o l i t e .  Again the c a l c - s i 1icates show h igh ly  var iab le  whole rock 

chemistry.

As a consequence of the apparent re la t io n sh ip  between An. content of 

plagioclase in c a l c - s i l i c a t s  and metamorphic grade i t  has been possible 

to draw a p r o f i l e  across much of the SW Northern Highlands showing v a r ia t 

ions of An. content in c a l c - s i 1icates (F ig .69) and to in te rp re t  i t  as show

ing var ia t ions of metamorphic grade. From th is  diagram i t  can be seen tha t ,  

as Kennedy (1949) observed, metamorphic grade increases, f o r  the most par t ,  

gradually eastwards. However the diagram also shows that th is  gradual inc 

rease is interrupted in places which, from s t ru c tu ra l  considerat ions, have 

been held to be the outcrop of the Sgurr Beag s l id e  repeated by fo ld ing  

along the l in e  of sect ion.

To the east of the Sgurr Beag s l id e  the " isograd" pattern shows a d i s t 

inct trough (see F ig . 69) which corresponds to the pos it ion  of the F3 Sgurr 

a Mhuidhe synform, suggesting that the " isograds" are folded by F3 fo ld s .  

On this evidence alone the " isograd" pattern  is pre-Fg ; conf irmat ion is 

provided by the d is rup t ion  of the metamorphic pattern across the Sgurr 

Beag s l ide which i t s e l f  is a D3 s t ruc tu re  (see Chapter 7).  I t  can fu r th e r  

be argued tha t  w i th in  the s l id e  zone, where s t ra in  exceeds a c r i t i c a l  value 

(Powell et  a l . 1981 tex t  f i g s .  2 & 1 0 ) there is a downgrading of the pre

existing metamorphic grade during D3 .
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Composite profile of the variation in An content of plogioclase in calc -  silicate 

rocks and other mehomorphic features , ocross the a r e a .  S t , K y , S i  = occurrence 

of staurolite , kyanite and sillimanite in pelitic rocks. Reg mig = extent of 
regional migmatites. Unzoned ; norm ; reverse = predominant types of zoning in 

plogioclase in calc -  silicate rocks . cz = clinozoisite predominant ; zo = zoisite 

predominant in calc -  silicate rocks.  G = rocks of Glenfinnan division; M = rocks 

of Morar division. SBS = Sgurr Beag Sl ide;  AS = Arieniskill Sl ide;  LS = 

Lochailort S l id e .

{ Taken from Powell et a l ,  1981 )
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Comparisons o f  f i g u re s  69 and 70 (taken from B a i rd ,1982. t e x t  f i g . 3) 

leads to the suggest ion th a t  on the E-W l i n e  o f  sect ion  at  the eastern 

end of Figure 69, the " isograd"  surfaces are broad ly co inc iden t  w i th  the 

composite b e d d in g /s c h is t o s i t y  f a b r i c ,  both o f  which are fo lded by the F3 

Sgurr a Mhuidhe synform.

At the eastern end of Loch E i l t  an i l l - f a t e d  attempt was made to estab

lish the three dimensional geometry of the " isograd" surface, unfor tunate ly  

calc-si1icate  samples g iv ing a s u f f i c i e n t  N-S spread of data points could 

not be found.

While i t  appears that the " isograd" and composite bedd ing/sch is tos i ty  

surfaces produce co inc ident traces on the v e r t i c a l  E-W sect ion, the two 

surfaces need not be co-planar.  The composite bedd ing/sch is tos i ty  surface 

is folded to produce the F3 Sgurr a Mhuidhe synform with i t s  NE-SW trending 

vertical ax ial  plane and steep NE plunge. D3 deformation of the " isograd" 

surface would produce a synformal f o l d ,  the plunge of which would have 

to be somewhere w i th in  a v e r t i c a l  NE-SW trending plane, but only co-1inear 

with the plunge of the F3 Sgurr a Mhuidhe synform i f  the two surfaces were 

co-planar p r io r  to D3 .

The p o s s i b i l i t y  tha t the folded " isograd"  surface plunges in a NE or 

SW direct ion may have s ign i f i cance  in exp la in ing the "band" of An, contents 

seen in the E-W l in e  of sect ion in Figure 69. Not only does the maximum 

An. content of p lag ioclase in c a l c - s i 1icates vary progressively  along the 

line of sec t ion ,  but the minimum An. content also seems to r e f l e c t  th is  

progressive v a r ia t io n ,  producing a band of An. contents at any given d i s t 

ance along the l in e  of sect ion. The "band" may be due p a r t l y  to the method 

of construct ion o f  the diagram. C a lc - s i1icates were co l lected from a th in  

strip of land approximately 20 Km. long (E-W) and up to 5 Km. wide (N-S).

The posit ion of the l o c a l i t i e s  were trans fe r red  onto a composite E-W section 

by measuring t h e i r  distance east or west of major NE-SW trending st ructures 

such as the Sgurr Beag s l id e .  This technique is equivalent to combining 

a series of sect ions which are progress ive ly  fu r th e r  north (or south) of 

a reference sect ion l in e .  With the p o s s i b i l i t y  that the folded isograd 

surfaces plunge to the NE then the more n o r th e r ly  sections would expose 

lower metamorphic grade rocks at higher s t ru c tu ra l  levels  (see F ig .71).

I f  th is  geometrical  construct ion is so le ly  resonsib le fo r  the "band" 

of An. contents seen in Figure 69 then i t  is poss ib le, using very s im p l i s t i c  

arguments, to obtain some idea of the plunge of the folded isograd surfaces.

The d i f fe rence  between the maximum and minimum values of An. content 

at any distance along Figure 69 is approximately 25% An. I f  i t  were possible 

To ca l ib ra te  the va r ia t io n  o f  anor th i te  content o f  plagioclase in ca lc -
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Detai led map of the Moine rocks at eastern Loch E i l t .
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F i g u r e  71,

Axial plane of the F-
Sgurr a Mhuidhe 

synform

some of the possible 
orientations of the 
i^ograd surface

composite bedding/schistosity  
surface

Coincident bed d in g /sch is tos ity  and isograd 
in tersectio n s  on verticol E-W  section

plunging folded isogrod surface

See text for

Composite E - W  section  

Stacked seria l sections @ —(5)

©
!
©

discussion.

Diagrammatic sketches to show possible re la t io n sh ip s  between 

the metamorphic isograds and the Fj  Sgurr a Mhuidhe synform.
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si l icates versus temperature and depth of bur ia l  during metamorphism, then 

i t  might be poss ib le  to equate, fo r  example, an increase of 25% An. content 

with an increase in depth of bu r ia l  of  4-5 Km. This hypothet ical  4-5 Km. 

increase in depth of bu r ia l  would be the re su l t  of  the fac t  that the isograd 

surfaces d ip . I f  the N-S width of the area is taken as 5 Km., then the 

width, measured in the "plunge" d i re c t io n  (NE-SW) is approximately 7 Km. 

(5 X 7 2  Km.). Therefore, t h e o r e t i c a l l y ,  the hinge l ine  of the folded isograd 

surface drops 4-5 Km. v e r t i c a l l y  over a horizonta l  distance of approximately 

7 Km., ind ica t ing  a plunge in the order of 30°.

I f  one assumes tha t  the isograd surface is approximately co-planar with 

the composite bedd ing /sch is tos i ty  fa b r ic  as well as being co -1 inear on 

the E-W l ine  of sect ion then one can go fu r th e r  and postulate that i f  the 

isograd surfaces formed as r e l a t i v e l y  f l a t  ly ing surfaces or as a gent le 

dome around a focus of metamorphism, then the pre-D^ geometry of the comp

osite bedd ing /sch is tos i ty  fa b r i c  is s im i l a r l y  f l a t  ly ing or gent ly domed 

prior to Dg. Consequently any major pre-D^ t i g h t  to i soc l in a l  fo lds  would 

have been sub-recumbent.

Ca lc -s i1icates occur so in f requen t ly  east of the axial  plane trace of 

the Sgurr a Mhuidhe synform, tha t  changes in mineralogy, texture and An. 

content of p lag ioc lase  c rys ta ls  are d i f f i c u l t  to re la te  with any ce r ta in ty  

to the s t ru c tu ra l  and metamorphic h is to ry  of the area. The plagioclase 

crystals are usua l ly  h igh ly  or t o t a l l y  saussur i t ised .  Where the plagioclase 

feldspars are not t o t a l l y  saussur i t ised the An. contents are lower than 

those fu r th e r  west, dropping from An. 70-90% in the v i c i n i t y  of the Sgurr 

Beag s l ide  at Ranochan to a range of An.30-70% (Map 6 ). I f  the An. content 

is a re f l e c t i o n  o f  the metamorphic grade during a pre-Dg metamorphic event 

then i t  would ind ica te  tha t  the grade has dropped f a i r l y  considerably moving 

eastwards from the s l i d e .  However some of the ca lc -s i  1 icates co l lected 

from east o f  Glenfinnan v i l l a g e  contain very wel l developed pyroxene c r y s t 

als, in d ica t ive  o f  high grade metamorphism regardless of whole rock chem

istry (Winchester,1974: Charnley,1976). I t  is thus possible that the eastern 

area ( ie ,  the eastern Glenfinnan D iv is ion and Loch Ei l  D iv is ion)  has under

gone an ea r ly  high grade metamorphic event producing h igh ly  a n o r th i t i c  

feldspars togather w ith  wel l developed pyroxenes, fol lowed by intense r e t r o 

gression or l a t e r  lower grade metamorphism, the l a t t e r  being responsible 

for the intense s a u s s u r i t i s a t io n  and r e c r y s ta l l i s a t i o n  of less a n o r th i t i c  

plagioclase. Possible support f o r  th is  speculat ion is given by Johnstone

a l . ( l969)  who drew a l in e  represent ing an eas te r ly  l i m i t  o f  bytownite 

in calc-si  1 icates (shown on Map 6 ) which seems to be unrelated to any of 

fhe s t ruc tu ra l  trends in the area and may represent a western l i m i t  of
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intense re t rogress ion .

Calc-s i1icate  mineral  textures v i s ib le  in th in  section are very d i f f i c u l t  

to in te rpre t  because of the complex re la t ionsh ip  between the metamorphic 

and s truc tu ra l  h is t o r ie s  of the area and the geochemical va r ia t io n  which 

occurs between samples. Powell et  a l . (1981,p .663) have defined the main 

mineral assemblages occuring in the area under considerat ion and westwards 

to the coast. A de ta i led  study of the metamorphic petrology of the ca lc -  

si licates requires study of samples from beyond the area so that the v a r i a t 

ions of metamorphic grade and whole rock chemistry can be taken in to  consid

eration. Such a study is beyond the scope of th is  work but a number of

comments can be made which are re levant both to work on th i s  area and in

the region as a whole.

Zoisi te has not been found in the area, a l l  of  the epidote group minerals 

present are members of the c l in o z o is i te -e p id o te  so l id  so lu t ion  series

and are always anhedra l, growing at the expense of plagioclase and sometimes 

amphibole (? re t rog ress ive  metamorphism). Well to the west of the Locha i lo r t  

slide (see Powell e t  a l . 1981) co -e x is t in g  z o is i te  and c l in o z o is i t e  are found , 

occuring as small euhedral laths and needles, apparent ly the product o f  

prograde metamorphism. Immediately west of the Locha i lo r t  s l id e  c l i n o z o is i t e  

becomes dominant, o f ten  anhedral and developing from plagioclase and/or 

zoisite. Thus i t  seems tha t  progressive prograde metamorphism converts

the r e la t i v e ly  low grade assemblage conta in ing euhedral z o i s i t e - c l i n o z o i s i t e  

into a higher grade assemblage conta in ing a n o r th i t i c  plag ioclase + z o is i t e .  

Retrogression of these assemblages produces anhedral c l i n o z o is i t e  with 

anomalous b lue-ye l low  b i re f r ingence  colours at the expense of prograde 

zoisite-cl i n o z o is i t e  on the one hand and a n o r th i t i c  plagioclase on the 
other.

In the area o f  the Sgurr Beag s l id e  at Ranochan some of the most anorth

itic plagioclase c ry s ta ls  contain small exsolut ion blobs of lower An. p lag

ioclase ( F i g . 72). There is  however, no geographical l in k  between the ca lc -  

silicates near the Sgurr Beag s l id e  which contain "exsolved" a n o r t h i t i c  

plagioclase and the more widely d is t r ib u te d  c a l c - s i 1 icates in which the 

plagioclase is  h ig h ly  saussur i t ised .  The r e s t r i c t i o n  of "exso lu t ion"  tex tu re  

to calc-si 1 icates w ith  h igh ly  a n o r th i t i c  plagioclase co l lec ted  near to 

the Sgurr Beag s l id e  suggests two th ings ,  f i r s t l y  that the "exso lu t ion"  

f'eaction is ac t iva ted  by high Dg s t r a i n ,  or high Dg s t ra in  rate and secondly 

that "exsolu t ion"  is  a re -e q u i l ib r iu m  reac t ion ,  re trogress ing h igh ly  anorth

itic plagioclase to less a n o r t h i t i c  plag ioclase during Dg . Plagioclase 

which, p r io r  to  Dg, was less a n o r t h i t i c  may have remained stable  or t o t a l l y  

focrystal 1 ised w i thout  the production o f  exsolu t ion tex tu re  during Dg .
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Figure 72. Photomicrograph to show plagioclase "exsolut ion- 

symplect i te"  texture in c a l c - s i 1 icate .

e x s o lu tio n -sym p le c tite ^^  
texture In plagioclase

( Exp.167(b)/883 ). crossed polars. 0 mm. 1
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In several sect ions there are two generations of amphibole. Large horn

blende c rys ta ls  predominate but they are sometimes replaced by small ac ic- 

ular hornblendic amphiboles; again th is  is presumed to be a re su l t  of  r e t r o 
gressive metamorphism ( c . f .  Winchester,1972).

6 .3 f )  The Ardgour g r a n i t i c  gneiss.

The Ardgour g r a n i t i c  gneiss contains early  pegmatites of g ra n i t i c  comp

osition which grade downwards in size into  migmati t ic  segregations. Both 

the pegmatites and the m igmat i t ic  segregations have selvages of b i o t i t e  

crystals which are co-p lanar to t h e i r  margins. The pegmatites are frequent ly  

very t i g h t l y  folded so tha t  they l i e  very close to the dominant gneissose 

schistosi ty (Sg) seen in the gneiss. Close observation of the b io t i t e  s e l 

vages in the hinges of F g fo lds  reveals that they are frequent ly  very t i g h t 

ly crenulated so tha t  the ax ia l  planes of the crenulat ions are co-planar 

with the dominant Sg f o l i a t i o n ,  an ind ica t ion  tha t  the formation of the 

pegmatites and t h e i r  associated b i o t i t e  selvages occurred p r io r  to Dg deform

ation. The F2 fo lds  which fo ld  the pegmatites also fo ld  a gneissic ) 

fo l ia t ion ,bu t  more usua l ly  the ea r ly  (S i )  fa b r i c  is almost t o t a l l y  t rans

posed. Theoret ica l  considerat ions of the mineral assemblages ind icate that 

the apparent o r i g i n  o f the m igmat i t ic  segregations and "ear ly"  pegmatites 

was by p a r t i a l  anatex is ,  however the age of p a r t ia l  anatexis in re la t io n  

to Di deformation is  d i f f i c u l t  to ascerta in .

A pre-Di age o f  p a r t i a l  anatexis is possible, assuming that Di deform

ation rotated and deformed the segregations to produce the Si gneissose 

fabric. Under these circumstances one might expect to observe deformation 

and perhaps c renu la t ion  o f  the b i o t i t e  selvage to produce the Si f a b r i c ,

but given the i n t e n s i t y  of re-working of the gneiss during Dg, th is  may 

not be observed.

A syn-Di ^9^ o f  anatexis is  poss ib le, under these circumstances segreg

ation formation and growth of b i o t i t e  c rys ta ls  would have been co-planar

with the $1 f a b r i c .

A post-Di age is possib le  only i f  the segregations migrated in to  pre

existing Si planes. However in a s t a t i c  post-Di environment i t  is d i f f i c u l t

to envisage the growth o f b i o t i t e  c rys ta ls  in the selvages being co-planar

to the p re -e x is t in g  $i gneissose fa b r i c  unless the b io t i t e  c rys ta ls  nucleat

ed e p i ta x ia l l y  on some s t ru c tu ra l  element w i th in  the p re -ex is t ing  Si fa b r i c .

I t  is important to  consider whether during Dg deformation the Sg gneiss

ose fabr ic  was produced by p a r t i a l  anatexis or by a very intense re-working
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or transposit ion of the e a r l i e r  S-| gneissose f a b r i c .  I t  has already been 

noted that Dg deformation has deformed the ear ly  pegmatites so tha t  they 

now occur in two modes, f i r s t l y  as elongate, iso la ted boudin pods which 

are nearly co-planar with the dominant Sg gneissose fa b r i c  and secondly 

as isolated t i g h t  to i s o c l in a l  " fo ld  hooks" which are i n t r a f o l i a l  to the 

Sg fab r ic .  In the hinges of the " fo ld  hooks" the b io t i t e  selvage fa b r i c  

is t i g h t l y  crenulated by Dg. Occasional ly around the " fo ld  hooks" remnants 

of the Si fa b r i c  are seen which are co-planar with the ear ly  pegmatites 

and folded by Dg . Away from the v i c i n i t y  of the pegmatites the fa b r ic  

in the gneiss is very qu ick ly  transposed by the dominant Sg fa b r i c .

The evidence ou t l ined  above is consistent with a su i te  of pre-Dg peg

matites, co-planar with the Ŝ  gneissose fa b r i c ,  which have been deformed 

during Dg . Some of the pegmatites have been folded to produce isolated 

F2 fold hooks, whi le others have been rotated towards the plane of the 

Sg gneissose fa b r i c .

There is no f i e l d  evidence, such as examples of folded pre-Dg pegmatites 

cross cut by l a te r  pegmatites which are ax ial  planar to the dominant Sg 

fo l ia t ion , which would conc lus ive ly  prove the occurrence of p a r t i a l  anatexis 

during Dg . Although the widespread intense t ranspos i t ion  of the S-j fa b r ic  

to produce the Sg fa b r i c  suggests high grade metamorphic condit ions during 

Dg.

The two high grade metamorphic events out l ined above were fol lowed by 

the in t rus ion o f sporadic small d i l a t i o n a l  a p l i t e  veins which presumably 

indicate a period of b r i t t l e  f ra c tu re  perhaps suggesting t h e i r  in t rus ion  

into r e la t i v e l y  cooler host rocks.

The sporadic a p l i t e  veins were fol lowed by a su ite  of large c ross -cu t t ing  

coarse grained pegmatites (= " la te  pegmati tes") which are sometimes folded 

by Fg fo lds and sometimes appear to post-date F g fo ld s .  The phase o f  peg

matite in t rus ion  may have commenced before Dg and out lasted i t .  However 

the i r regu la r  and random o r ie n ta t io n  o f the pegmatites would suggest tha t  

they were not intruded dur ing a period of compressional deformation and 

folding. In view of the d i f f i c u l t i e s  in p o s i t i v e l y  d is t ingu ish ing  between 

Fg and F^ fo ld s ,  the in t ru s iv e  age of the pegmatites in re la t io n  to  Dg 

and deformation is  even more equivocal.

Where the la te  pegmatites are fo lded,  large books of mica c rys ta ls  have 

a pseudo-crenulated appearance because in d iv id u a l ,  prev ious ly  randomly 

orientated books of mica have been rotated towards the XY plane o f  the 

3̂ (or D̂  ) s t ra in  e l l i p s o i d .  Presumably such d u c t i le  deformation must have 

occured under condi t ions of medium or high grade metamorphism during Dg 
(or D^).
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6.4) Summary of conclusions.

The mineralogy of the p e l i t i c  rocks of the area is unfavourable fo r  

the del ineat ion of the c lass ica l  "Barrow zones"of metamorphic grade. S i l l i m 

anite, kyanite and s ta u r o l i t e  occur very sporad ica l ly ,  possibly re f le c t in g  

unfavourable whole rock chemistry since th e i r  occasional occurrence together 

with the widespread occurrence of migmati t ic  segregations of quartz and 

feldspar ind icate  the occurrence of medium to high grade metamorphism. The 

absence of K- fe ldspar from the migmati t ic  segregations suggests that t h e i r  

formation was not as a re s u l t  of  p a r t i a l  anatexis.

The Ardgour g r a n i t i c  gneiss; a K- fe ldspar + Plagioclase + Quartz + B io t 

ite gneiss contains m igmat i t ic  segregations of K-feldspar + Plagioclase 

+ Quartz which are the products of p a r t i a l  anatexis.  The precursor to the 

Ardgour g r a n i t i c  gneiss could not have been the adjacent Moine sediments 

since p a r t ia l  anatexis of them would have produced large quant i t ies  of 

s i l l imanite and/or garnet or c o r d ie r i t e .  The precursor must have been highly 

potassic, probably a g ran i te .  The "ear ly "  pegmatites and migmati t ic  segreg

ations in the Ardgour g r a n i t i c  gneiss are a product of p a r t ia l  anatexis 

prior to Dg , and most probably synchronous with D̂  deformation. Intense 

Dg re-working has produced a second, dominant gneissose f o l i a t i o n .  There 

is no unequivocal evidence tha t  th i s  re-working during Dg was accompanied 

by any p a r t ia l  anatexis.

The anor th i te  content of plagioclase in c a l c - s i 1icates is used to es t 

ablish va r ia t ions  of metamorphic grade across the area. The pattern of 

metamorphism is seen to be folded by major Fg fo lds  and disrupted by the 

Dg Sgurr Beag s l id e .  The c a l c - s i 1icate " isograd" surfaces, which are prob

ably co-planar with the composite bedd ing /sch is tos i ty  surfaces, were prob

ably f l a t  ly ing  p r io r  to Dg deformation, consequently any major pre-Fg 

folds must have been sub-recumbent. There is evidence that at the highest 

levels of Dg s t ra in  w i th in  the Sgurr Beag s l id e  zone there was p a r t ia l  

re-equi l ibrat ion and downgrading o f anor th i te  in c a l c - s i 1 icate  plagioclase 

crystals. A widespread drop in anor th i te  content in c a l c - s i 1icate  p lag io 

clase c rys ta ls  in the east o f  the area, in rocks which f requent ly  re ta in  

high grade pyroxene c rys ta ls  may evidence an eastern zone of la te  r e t r o 

gression or a zone of l a t e r  lower grade metamorphism during which a n o r th i t i c  

plagioclase was able to e q u i l ib ra te  to more a l b i t i c  compositions.

Garnet c rys ta ls  in p e l i t i c  rocks behaved as r i g i d  bodies during Dg def

ormation. The lack of Dg inc lus ion  patterns s im i la r  to those found in gar

nets fu r the r  west may ind ica te  tha t  during garnet growth inc lus ion fabr ics  

were not formed or a l t e r n a t i v e l y  Dg inc lus ion fa b r ic s  have been destroyed
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as a re su l t  of  la te -  or post-Dg rec rys ta l  1i s a t i o n .

B io t i te  and muscovite laths form a planar penetrat ive mica fa b r ic  which 

is folded by Fg and la te r  phases of fo ld in g .  In rare exposures where two 

phases of i s o c l in a l  fo ld in g  p r io r  to Fg fo ld ing  can be seen, both fo ld  

phases contain an ax ia l  planar penetra t ive mica fa b r i c .

Minor fo lds  of Fg and Fg age crenulate the planar mica fa b r i c ,  but ind

ividual mica c rys ta ls  are unstrained ind ica t ing  that recrys ta l  1 i sa t ion  

has occured a f te r  Fg fo ld in g  and probably also a f te r  Fg fo ld in g .  Minor 

folds re la ted to the major F̂  fo lds  were not observed.

Muscovite c rys ta ls  have two other less frequent modes of occurrence. 

Early porphyroblasts showing no preferred c rys ta l  1ographic o r ien ta t ion  

are marginal ly  deformed and wrapped by the planar penetrat ive mica fa b r i c .  

Late porphyroblasts w ithout a preferred o r ie n ta t io n  or shape o r ien ta t ion  

cross cut the penetra t ive  planar mica fa b r i c .

S i l l im a n i te ,  in the form of f i b r o l i t e  needles, is found as i r r e g u la r l y  

curved t r a i l s  growing through the ea r ly  muscovite porphyroblasts, but not 

in any other muscovite c r y s ta l s ,  leading to the conclusion that f i b r o l i t e  

growth occured a f te r  the growth of ear ly  muscovite porphyroblasts but before 

the development of the planar penetra t ive  mica f a b r i c .
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7.1) In t roduct ion  and regional s ign i f icance .

A considerat ion of the regional 1i th o -s t ra t ig ra p h y  and s t ruc tu re  i n d ic 

ates that the area at the eastern end of Loch E i l t  has to contain the ju n c t 

ion between the rocks of the Morar and Glenfinnan Divisions (Powel l ,1964, 

1974: Johnstone et al .1969: Tanner et a l . 1970). Farther north th is  junc t ion ,  

termed the Sgurr Beag s l id e  at Kinloch Hourn by Tanner (1971) is a major 

break w ith in  the Moine succession. This chapter describes the s t ruc tu ra l  

age and development of the s l id e  w i th in  the local s t ruc tu ra l  sequence and 

exam ines the metamorphic changes which occur across and in re la t io n  to 

the s l ide .  In the l a te r  parts of th i s  chapter the regional impl icat ions 

of the local s t ru c tu re  and i t s  re la t io n sh ip  to the o r ig in  of the Glenfinnan 

Division "steep b e l t "  are considered. Much of the deta i led s t ruc tu re  of 

the area has already been described by Baird (1982, included as Appendix 6).

The existence of a major tec ton ic  break w i th in  the Moine Succession 

at Kinloch Hourn 30 Km. north of Loch E i l t  was f i r s t  noted by Tanner (1971) 

and termed the Sgurr Beag s l id e .  The s l ide  separates rocks grouped as the 

Morar and Glenfinnan D iv is ions (Johnstone et a l . 1969) which were thought 

to be in continuous s t ra t ig ra p h ic a l  succession (Brown et a l . 1970: Powell, 

1964). Local ly  and only to the north of Kinloch Hourn, small tecton ic  s l ices  

of Lewi si  an basement rocks occur along and near the junct ion of the Morar 

and Glenfinnan D iv is ion s .  The presence of these s l ices  at high s t ra t ig ra p h 

ical levels w i th in  the Morar Succession, not only provides the evidence

of the tec ton ic  o r ig in  of the s l id e  but also shows i t  to be a major feature 

(Tanner et a l . 1970: Rathbone et a l . 1983).

In the Locha i lo r t -Loch E i l t  area ( F ig .73, taken from Baird ,1982,tex t  

f ig .2) the L o c h a i lo r t  p e l i t e  (Powell ,1964) has been correla ted with the 

Glenfinnan D iv is ion  and the rocks east of the Locha i lo r t  p e l i t e  with the

Morar D iv is ion (P o w e l l ,1964,1974). Rathbone & Harr is (1979) indicated that 

there are large s t r a in  va r ia t io n s  across the junc t ion  at Locha i lo r t  and

considered i t  to be a souther ly  extension of the Sgurr Beag s l id e .  The

Morar-Glenfinnan D iv is ion  junc t ion  is found on both sided of a major fo ld ,  

the Glenshian synform ( F i g . 73) and therefore i t  is in fer red that th is  fo ld  

post-dates the formation o f  the s l i d e .  Extrapolat ion of th is  s l id e  to the 

Sgurr Beag s l id e  at Kinloch Hourn requires tha t  i t  has been folded by the 

Loch E i l t  an t i fo rm (P ow e l l ,1974), i t s  trace being repeated in the eastern 

Loch E i l t  area ( F i g . 73) and cont inu ing northeastwards to Kinloch Hourn 

(Powell et  a l . 1981. and I . G.S. 1:63,360 & 1:50,000 Geol.Maps 61 & 62W, 

Scotland).
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7 . 2 )  L o c a l  s t r u c t u r e .

A sequence of events can be erected lo c a l l y  in keeping with the general 

tectonic sequence establ ished in Chapter 5. Certain parts of the sequence 

of tecton ic  events however, are only weakly developed or can be surmised 

only from regional co r re la t ions  and ex t rapo la t ions .  Other parts of the 

sequence are best developed in th is  l o c a l i t y  and are used to enlarge the 

record of the regional deformation sequence. Recognit ion of the Sgurr Beag 

slide allows an ins igh t  in to  the s t ru c tu ra l  h is to ry  of the area in terms 

of the r e la t i v e  chronology of fo ld  phases developed l o c a l l y  and permits 

correlat ions and ex t rapo la t ions  to adjacent areas.

7.2a) fo ld s .

These open c renu la t ion  fo lds  have near v e r t i c a l  axial  planes and hinges 

which plunge steep ly  to the SE (see F ig .54). They have not been id e n t i f i e d  

much fu r th e r  east than the eastern end of Loch E i l t .  The minor fo lds  appear 

to be re la ted to  major fo lds  which have axial  planes trending approximately 

NNW-SSE (see F i g . 53). Fg fo ld in g  is  responsible fo r  the gent le change of 

trend of the ax ia l  planes of the major F g fo lds which occur between Glen

finnan v i l l a g e  and Loch E i l t  (see Chapter 5 .6c) .  The major Fg fo lds are 

the folds described by Powell (1974) as F̂  .

7.2b) F  ̂ fo ld s .

Minor fo lds  o f  th i s  generation were not recognised in the area, but 

on a regional scale the Dg Sgurr Beag s l id e  is folded by t i g h t  to i s o c l in a l  

folds, the F̂  Glenshian synform and the F̂  Loch E i l t  ant i form (Powell et  a l .  

1981, t e x t - f i g  5 and B a i rd ,1982, t e x t - f i g s . 2  & 4 ) ,  both o f which plunge 

shallowly to the SW. A su i te  o f post-Dg/pre-D^ m ic rod io r i te  sheet in t rus ions 

has undergone widespread D̂  deformation, the mechanism of deformation of 

these sheets is discussed in Chapter 8.1b4.

7.2c) Fg fo ld s .

Fg fo ld s ,  both on major and minor scales, are the dominant fo lds  in 

the area, and eastwards throughout the Glenfinnan D iv is ion .  Minor Fg fo ld  

hinges genera l ly  plunge steep ly  towards the NE w i th in  near v e r t i c a l  axial  

planes (see F i g . 56). Major Fg fo lds  become progress ively  t i g h te r  and th e i r  

hinge l ines become steeper westwards from Glenfinnan v i l l a g e  to the area
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under considera t ion. These and other features described la te r  in th is  chapt

er are taken as ind ica to rs  of increasing in te n s i t y  of Dg deformation moving 

westwards. At the eastern end of Loch E i l t  the extremely intense Dg deform

ation has produced a syn- to late-Dg tec ton ic  s l id e  zone which truncates 

both l i t h o lo g i c a l  un i ts  and a major Fg synform (the Ranochan synform). 

The s t ru c tu ra l  development of the s l id e  zone and i t s  re la t io n sh ip  to the 

metamorphism of the area are discussed la te r  in the chapter.

7.2d) Pre-Fg fo ld s .

From Glenfinnan v i l l a g e  westwards to the area under considerat ion major 

folds of pre-Fg age have not been found. Fg fo lds  deform a s t rong ly  devel

oped f o l i a t i o n  which is near ly  always modif ied bedding with a bed-paral le l  

schis tos i ty ,  but occas iona l ly  the s c h is to s i t y  is seen to  be axia l  planar 

to minor, long l imbed, f requen t ly  symmetrical i soc l ines .  The p e l i t i c  rocks 

of the area conta in quar tzo - fe ldspa th ic  migmati t ic  segregations which en

hance the dominant ax ia l  planar s c h is to s i t y  and are folded and deformed 

by Dg s t ru c tu re s .  Within the s l id e  zone where Dg deformation reaches i t s  

highest leve ls ,  the segregat ions are very h igh ly  deformed and crenulated 

into near p a ra l le l i sm  with the Fg axial  planes (F ig .74). Although super

f i c i a l l y  the m igmat i t ic  segregat ions appear to be axial  planar to Fg fo lds  

no examples of the development of new Fg migmati t ic  segregations were obser

ved. A l l  the m igmat i t ic  segregat ions w i th in  the s l id e  zone appear to be 

highly transposed e a r l i e r  segregations.

The sense o f  vergence ex ib i ted  by minor pre-Fg fo lds on both sides of 

the s l ide  zone does not r e la te  geometr ica l ly  to the presence of major pre- 

Fg folds in the area, nor does the vergence ind icate  that a l l  o f  the area 

is on a s ing le  l imb o f a major pre-Fg nappe (Map 4) .  Any in te rp re ta t io n  

of the vergence pattern o f pre-Fg minor fo lds  is made more equivocal when 

i t  is rea l ised  tha t  ind iv idu a l  pre-Fg isoc l ines  could be e i th e r  F̂  or F g 
folds.

7.3) Dg s t ru c tu ra l  development.

Figure 70 shows tha t  the s l id e  zone truncates l i t h o lo g i c a l  un i ts .  The 

slide zone does not show any ca ta c la s t ic  or m y lon i t i c  deformation textures 

O'" widespread hydrothermal,  re t rogress ive  fea tures,  e i th e r  in the f i e l d  

O'" in th in  sec t ion ,  such as might re la te  to a high level th ru s t .  The s l id e  

zone p e l i tes contain in tense ly  crenulated pre-Dg migmati t ic  segregations
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Figure 74. Photograph of migmati t ic  p e l i t e  from the east 

of the Sgurr Beag s l ide  at Ranochan.

highly deformed 
migmatitic segregations

( Exp.1259 NM 84128347 )



243



244

which are so t i g h t l y  crenulated as to appear s u p e r f i c i a l l y  to be axial  

planar to the sporadic F3 minor fo lds  (see F i g . 74).

Mapping towards the s l id e  zone, e i the r  eastwards or westwards, reveals 

that D3 s t ruc tu res  become increas ing ly  in tensely  developed as the s l ide  

zone is approached. Therefore the Sgurr Beag s l id e  zone does not separate 

two major rock un i ts  with d i f f e r e n t  s t ruc tu ra l  h is to r ie s ;  i t  is not a base

ment/cover contact (c f .P iaseck i  & van Breemen,1979.p.143). Since the t ru n 

cation of l i t h o lo g i c a l  un its  produced when the axial  plane of a major F3 

fold is cut out against the s l id e  zone, the Sgurr Beag s l ide  cannot be 

an unconformity. Thus i t  fo l lows that the s l id e ,  apparent because of i t s  

mapped geometrical  re la t ionsh ips  and the in te n s i f i c a t io n  of D3 s t ra in  t o 

wards i t ,  was a r e s u l t  of  d u c t i l e  deformation which was fol lowed by post- 

sliding r e c r y s t a l l i s a t i o n  which overpr inted and destroyed ca tac las t ic  and/or 

mylonitic tex tu res ,  or which proceeded under condi t ions of dynamic re c ry s t 

a l l isat ion which prevented grain size reduct ion (Tanner,1971). Quanti t ive 

estimates of s t ra in  associated with the s l ide  zone are impossible to obtain 

because no su i ta b le  s t ra in  markers are present ( c f .  Rathbone & H a r r i s ,1979).

7.3a) East of the s l id e .

In the area from Loch E i l t  to  Glenfinnan v i l l a g e  i t  has been noted 

earlier in the chapter that the predominant fo lds  in the area are F3 in 

age. Large scale t i g h t  to i s o c l in a l  fo lds  with NE-SW trending nearly v e r t 

ical axial  planes and steep NE plunges are present,  togather with abundant 

associated minor fo lds  (see Map 4) .  These D3 s tructures deform t i g h t  to 

isoclinal minor F̂  or F3 fo ld s .

A progressive change in s t ru c tu ra l  geometry, espec ia l ly  in the st ructures 

of D3 age, can be traced westwards in to  the s l id e  zone. The Sgurr a Mhuidhe 

synform ( F ig .70) is a r e l a t i v e l y  open F3 synform which plunges steeply 

to the NE. The complimentary F3 Creag Bhan ant i form to the west is t i g h te r ,  

and fa r the r  west the Coi l le Chreag synform is i s o c l i n a l .  The westward t i g h t 

ening of the F3 i n te r l im b  angles is indicated on the stereographic p ro je c t 

ions included in f ig u re  70. From Glenfinnan v i l l a g e  westwards, the plunge 

of major F3 fo ld s ,  derived from considerat ion o f the plunge of the assoc

iated minor F3 f o ld s ,  p rogress ive ly  steepens w i th in  the near v e r t i c a l  fo ld  

axial planes. F3 minor fo lds  also t igh ten  westwards towards the s l id e  and 

the number of minor F3 fo lds  decreases ra p id ly  in th is  d i re c t io n  so that 

the rocks become markedly planar.  Moving west from the Sgurr a Mhuidhe 

synform ( F i g . 70) boudinage of psammitic beds becomes progressive ly  more 

common. Boudin pods conta in ing i s o c l in a l  F̂  or F3 fo lds  can be found near
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the s l ide  and occasional ly  F3 minor fo lds are boudinaged and thinned. These 

features are taken to ind icate  that boudinage occured during or a f te r  D3

d e f o r m a t i o n .

The t igh ten ing  up of F3 fo ld  in te r l im b  angles, the increase in the amount 

of boudinage and the reduct ion in the number of minor F3 fo lds  approaching 

the s l ide  can a l l  be a t t r ib u te d  to an increase of D3 s t ra in ,  with ro ta t ion  

of planar elements in to  the extension f i e l d  of the s t ra in  e l l i p s o id  (FI inn, 

1962). The change of plunge of major F3 fo ld  hinges may be a t t r ib u te d  to 

rotation w i th in  the XY plane of the s t ra in  e l l i p s o id  towards the X d i rec t ion  

(Transport d i re c t io n  is considered in Chapter 7.3c) .  Minor F3 fo ld  hinges 

(stereographic p ro je c t io n , F ig .70) are co-axia l  with the in te rsec t ion  of 

bedding and the migmati t ic  fa b r ic  and l i e  near the mean F3 fo ld  axial  plane. 

There are however, no progressive changes in o r ie n ta t io n  of F3 hinge d i r e c t 

ions w ith in  th i s  mean plane as the s l ide  is approached (see Map 4).

7.3b) West of the s l id e .

A major F3 synform, the Ranochan synform, l ie s  immediately to the west 

of the s l id e  zone in the north of the area ( F i g . 70). The western limb of 

this major fo ld  contains numerous open to t i g h t  F3 folds which plunge mod

erately to the NE ( F i g . 70) and fo ld  the migmati t ic  fa b r ic  re la ted to occas

ional t i g h t  pre-F3 minor fo ld s .  Moving eastwards across the axial  plane 

trace of the Ranochan synform, the F3 minor fo lds  have the opposite sense 

of vergence (Map 4) and have t i g h te r  in te r l im b  angles. S l i g h t l y  fa r th e r  

east the F3 fo lds  become even more t i g h t  and much less frequent over a 

distance of 10-15 metres. There i s ,  however, no progressive re -o r ie n ta t io n  

of minor F3 fo ld  hinge d i rec t ions  or ax ial  plane trends as the s l ide  is 

approached ( F i g . 70). Within the p e l i t i c  u n i t  adjacent to the s l id e  (F ig .70 

and Map 4),  m igmat i t ic  segregations are t i g h t l y  folded and are associated 

with t i g h t  mica crenulat ions and strong boudinage of pre-F3 i soc l ines .  

These features are held to ind ica te  tha t  D3 s t ra in  increases progress ively 

eastwards toward the s l id e .  As the vergence of minor F3 fo lds  is s p a t i a l l y  

related to the Ranochan synform and D3 s t ra in  increases towards the s l ide  

i t  appears most probable tha t  both the Ranochan synform and the s l id e  formed 

during th i s  phase of deformation. The evidence presented above, given tha t  

there is a progressive increase in s t ra in  towards the s l id e  zone seems 

incompatible with the Ranochan synform being cut out by a l a t e r ,  unrelated 

tectonic break. Such d u c t i le  re-work ing, unrelated to and la te r  than D3 

deformation would be expected, progress ive ly ,  to  re -o r ie n ta te  minor F3 

Tolds. Nevertheless, the ax ia l  plane trace of the Ranochan synform is  c le a r 
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l y  oblique to the trend of the l i t h o lo g i c a l  un its  mapped (F ig .70) and can 

be traced southwards to the p e l i t i c  un i t  adjacent to the s l ide  but not 

t h r o u g h  i t .  The Sgurr Beag s l id e  is therefore regarded as a Dg s t ruc tu re .

7.3c) Current o r ie n ta t io n  of the Dg s t ra in  e l l i p s o id .

The Sgurr Beag s l ide  at the eastern end of Loch E i l t  is a ve r t i ca l  Dg 

structure. Considerat ion of the ro ta t io n  of Eg fo ld  hinge l ines with in  

the ve r t ica l  NE-SW trending XY plane of the Dg s t ra in  e l l i p s o id  leads to 

the conclusion tha t  the X axis plunges more steeply to the NE than any 

of the Fg fo ld  hinge l in e s ,  whi le the Y axis plunges less steeply to the 

NE than any of the Fg fo ld  hinge l in e s .  I f  the minor fo lds (see Chapter 

5.6e) which plunge to the SW then, fo l low ing  the geometrical argument devel

oped in Chapter 5.6e, the o r ien ta t ions  of the X and Y axes of the Dg s t ra in  

el l ipsoid are more t i g h t l y  constrained w i th in  the ve r t i ca l  NE-SW trending 

XY plane. The X axis must be approximately v e r t i c a l  and the Y axis approx

imately h o r izon ta l .  Thus the extension d i rec t ion  of the Dg s t ra in  e l l i p s o id  

(in i t s  present o r ie n ta t io n )  is v e r t i c a l .

I t  is possible to consider the geometry of the Sgurr Beag s l ide  in terms 

of a th rus t  b e l t .  The Ranochan synform can be considered to be a ramp, 

whose "branch l in e "  in te rsec t ion  with the s l id e  is co -1 inear with the Eg 

fold hinge l in e s .  However as the ramp could be f r o n t a l ,  l a t e r a l . o r  oblique 

(see B u t l e r , 1982.t e x t - f i g . 3) the transpor t  d i re c t io n  of the material  in 

the hanging wal l above the ramp ( i e .  Glenfinnan Division rocks) cannot 

be constrained.

I f  the Sgurr Beag s l id e  had f requen t ly  cut up section to produce a large 

number of f r o n t a l ,  la te ra l  and obl ique ramps then i t  might be possible, 

by considering the spread of o r ien ta t ions  of the ramp surfaces, to define 

more accurately the t ranspor t d i r e c t io n .  Unfor tunately  the Sgurr Beag s l ide  

is ty p i f ie d  by being bed-para l le l  over v i r t u a l l y  a l l  of  i t s  known outcrop 

(Tanner,1971 : B a i rd ,1982). The deduced Dg extension d i rec t ion  is coincident 

with one of the possible transpor t  d i rec t ions  and i t  seems h igh ly  l i k e l y  

that th is  sub -ver t ica l  d i re c t io n  w i th in  the NE-SW trending s l id e  zone de f 

ines the d i re c t io n  of t ranspor t  of the Glenfinnan Div is ion rocks over those 

of the Morar D iv is ion .
The o r ie n ta t io n  of the extension and t ranspor t  d i re c t io n  at t h e i r  time 

of development is considered in Chapter 7.5.
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7.4) Metamorphic features.

7.4a) P e l i t i c  rocks.

P e l i t i c  rocks from both sides of the Sgurr Beag s l ide  contain quartzo- 

feldspathic m igmat i t ic  segregations and s i l l im a n i t e  overgrowths of the 

early muscovite porphyrob las ts . Thus i t  could be assumed that metamorphism 

reached the same grade on both sides of the s l ide  zone, though not necess

arily at the same time. Evidence has, however, already been advanced show

ing that the tectono-metamorphic h is to r ie s  of the rock assemblages to both 

east and west o f the s l id e  w i th in  the area are e sse n t ia l ly  the same.

7.4b) Psammitic rocks.

A pre l im inary  study of the fa b r ic  development in psammites co l lected 

across the s l id e  zone has produced some information which is re la ted to 

the metamorphic h is to ry  o f the area, although i t s  i n te rp re ta t io n ,  espec ia l ly  

its re la t ionsh ip  to the formation of the s l id e  zone is equivocal.  Samples 

260/1163 to 273/1176 inc lus ive  were co l lec ted  at approximately 100 metre 

intervals in a WNW-ESE traverse across the s l ide  zone. The samples co l lected 

farthest away from the s l id e  zone (approx. 600-700 metres) are the ones 

which appear to  have suffered the lowest levels of Dg s t ra in .  Their textures 

are thus presumed to be c losest to those of a p re -ex is t ing  fa b r ic  with 

relat ively l i t t l e  Dg m od i f ica t ion .  In the psammites of thé Morar D iv is ion ,  

as the s l id e  zone is approached, quartz c rys ta ls  progressively contain 

more deformation bands and the p re -ex is t ing  weak C-axis fa b r ic  e i th e r  be

comes more s t rong ly  developed or a new one develops as the s l ide  is  app

roached (F ig .75a) .  Plagioclase and K-fe ldspar c rys ta ls  in Morar D iv is ion 

psammites f a r th e s t  away from the s l id e  zone do not contain myrmekit ic t e x t 

ures. Approaching the s l id e  zone small d isc re te  co-planar zones of f i n e  

grained c rys ta ls  occur which show myrmekitic tex tures (Fig.75b).  Near the 

slide zone the planar zones become more common and randomly d is t r ib u te d  

throughout the rock.

Psammites co l lec ted  from the east o f the s l id e  zone do not show changes 

of fabr ic which can be re la ted  to distance from the s l id e .  Myrmekit ic t e x t 

ures in fe ldspars are developed in a few sections and quartz deformation 

textures such as deformation bands and undulose e x t inc t ion  are sporad ica l ly  

3od weakly developed. These textures in the Glenfinnan Div is ion psammites 

s im i la r  to those seen in psammites of the Morar D iv is ion d is tan t  from 

The s l ide ,  poss ib ly  implying that  the rocks of the Glenfinnan Div is ion
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Figure 75. Photomicrographs to show deformation textures in 

(Morar D iv is ion)  psammitic rocks near to the 

Sgurr Beag s l ide .

quartz \  
deformation 
 ̂ bonds

(a)

1( Exp.268(c)/1171 ) .crossed polars. 0 mm.

(b)

myrmekitic intergrowths

( Exp.271 (b)/1174 ) .crossed polars. 10 mm.
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are at a genera l ly  lower state of D3 s t ra in  than those of the Morar Div is ion. 

I t  is possible to argue that the va r ia t ions  of s t ra in  may be a re s u l t  of

fo ld ing of the s l id e  zone, heterogeneous layer  p a ra l le l  s l i p  producing

the s t ra in  v a r ia t io n s .  I f  deformation was at least p a r t l y  by a mechanism 

of f lexu ra l  s l i p  and was responsible fo r  the fa b r i c  va r ia t io n  near the 

slide zone at eastern Loch E i l t ,  then one would expect tha t  such fab r ics  

would not be produced in the large area of the major fo ld .  However "s l ide  

zone" fab r ics  have been observed where the Sgurr Beag s l ide  is folded around 

the hinge of the Loch E i l t  ant i form fa r th e r  north in NE Morar (Dr.A.L. 

Harris, pers.comm.) so that i t  appears that the fab r ics  of the s l ide  zone 

are probably D3 fab r ics  ra ther  than fabr ics  produced during the formation 

of the F  ̂ Loch E i l t  ant i form.

The postu late  that the s l id e  zone fab r ics  and s t ra in  va r ia t ions  are

D3 deformation features,  with higher D3 s t ra in  in the Morar Div is ion is

in agreement with  the basic assumptions used by Powell et  a l .  (1981) when 

producing a model to explain the production of the observed metamorphic 

pattern in a section from the west coast eastwards almost to Glenfinnan 

vi llage. One of the major assumptions of th is  model is that D3 s t ra in  inc 

reases asymmetr ica l ly , r i s in g  gradual ly in the Morar D iv is ion below the

slide, reaching a peak w i th in  the s l id e  zone and dec l in ing very ra p id ly  

in the rocks of the Glenfinnan D iv is ion .  Rathbone & ' Harr is (1979) noted

similar high s t ra in s  across the Sgurr Beag s l id e  at Glen Sh ie l ,  45 Km.

further to the nor th.

7.4c) C a lc - s i1icate  rocks.

C a lc -s i1icate  mineral textures in the region o f  the Sgurr Beag s l ide  

at eastern Loch E i l t  are described from samples co l lec ted and analysed 

by the author (see Appendix 2).  This data together with data taken from 

Charnley (1976) has been used to examine the changes of metamorphic grade 

across the s l id e  zone and, in conjunct ion with other regional data, has

been used by Powell et  a l .  (1981) to es tab l ish  some idea of metamorphic 

grade patterns in the region.

The mineralogy of the c a lc - s i l i c a te s  has been described in Chapter 4. 

The most common assemblage of minerals found is Quartz + Plagioclase 

Garnet ± B io t i t e  t  Pyroxene ± C l in o zo is i te  plus various accessory minerals 

(see modal analyses. F ig .20 samples 167/883 to 259/1145). Figure 76 shows 

The locat ion o f  the samples in re la t io n  to the s l id e  zone togather with 

The An. content o f the p lag ioc lase and whole rock Ca0 /A l2 03  r a t i o .  Included 

if! the f ig u re  is s im i la r  information taken from samples l i s t e d  by Charnley
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(1976).

Pétrographie study reveals that a l l  c a lc - s i l i c a te s  sectioned contain 

abundant quartz plus plagioclase and nearly always some amphibole. P lagio

clase c rys ta ls  across the area in question show a range of tex tures which 

appear to be re la ted  to geographical pos i t ion .  The more eas te r ly  sample 

(167/883) contains p lagioclase which has s trong ly  developed exsolut ion 

or symplect i te tex tu re  such tha t  r e la t i v e l y  high An. plagioclase c rys ta ls  

contain vermicular  growths of lower An. plagioclase content.  V i r t u a l l y  

every p lagioc lase c rys ta l  shows th is  texture (see F ig .72), which has been 

interpreted by Spear (1977) as re su l t in g  from re trogress ion. Moving west- 

eards th is  tex tu re  becomes much less common in sections 170/948, 174/956, 

175/961 and 187/1031 , and in sections west of these the texture  is very 

rare or absent.

C l inozo is i te  is  a common phase in many rocks, i t  usual ly grows at the 

expense of p lag ioc lase .  In many sect ions i t  could be rela ted to ,  and formed 

during the product ion of "exso lu t ion-symplec t i te"  texture in p lagioclase: 

but in sect ion 167/883 i t  appears to overgrow th is  texture suggesting that 

c l inozo is i te  growth is the l a t e r ,  but often p re fe re n t ia l l y  on the more 

anorthi t ic por t ions of the "exso lu t ion-symplec t i te"  textured p lag ioc lase. 

Saussurit isat ion of p lag ioc lase is common and occasional ly very intense. 

I t is s p a t i a l l y  re la ted  to p ia g io c la s e /c l in o z o is i te  aggregates and seems 

to be a fea tu re  of a la te  stage retrogress ion which, when very intense, 

has been accompanied by the growth of some r e la t i v e l y  large muscovite c r y s t 

als w ith in  the saussur i te .

C l inozo is i te /ep ido te  is also found growing at the expense of both amphi

bole and garnet.  Very i r o n - r i c h  epidotes are seen overgrowing mats of c h lo r 

ite which themselves replace amphiboles (Fig,77a) .

Pyroxene is found in the very small quan t i t ies  in some sect ions and 

seems to be growing from large pale coloured hornblende. Pyroxene growth 

may be the cu lminat ion o f a prograde metamorphic event. Ac icu la r  small 

pale hornblende c ry s ta ls  seem to have grown at a la t e r  period, also possib ly  

as a re s u l t  o f  re t rogress ion  (F ig .77b).

With such a small data base of pétrographie observations, conclusions 

about the d i re c t io n  o f  metamorphic react ions and whether they represent 

prograde or re trograde events is always equivocal.

The presence or absence of the mineral phases pyroxene, amphibole and 

biot i te seems p a r t l y  to be re la ted  to whole rock geochemistry as expressed 

by the chemical r a t i o  o f CaO/Al2 Û3 . Rocks with a r e l a t i v e l y  high Ca0 /A l203 

ratio contain pyroxene (plus amphibole and b i o t i t e )  whereas those with 

progressively lower ra t io s  contain amphibole and b i o t i t e  and then only
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F i g u r e  77. P h o t o m i c r o g r a p h s  o f  c a l c - s i l i c a t e s  t o  show:

E p ido te /ch lo r i te  tex tu ra l  re la t ionsh ips .

(a)

ch lo rite

iron rich epidote

( Exp.213/1087 ). crossed polars.

Ac icu la r  pale hornblende c rys ta ls

(b)

acicular hornblende

r  Exp. 174(b)/955 ). crossed polars. 0 mm. 1
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biot i te  (see F i g . 78). In areas of much lower grade metamorphism (to  the 

west) the changes of mineral phases b io t i t e - ^  amphibole (+ b io t i t e ) - ^ P y ro x -  

ene (+ amphibole + b io t i t e )  occur at higher levels of Ca0 / A l 2 0 3  r a t i o ,  

so that the mineralogy of any pa r t icu la r  sample is dependent on both meta-
iiiorphic grade and whole rock chemistry.

An ind icat ion of the var ia t ion  of metamorphic grade is given by the 

An. content of plagioclase in the rock (Powell et a l . 1981). An. content

has been measured o p t i c a l l y  using the Michel Levy method and where s u f f i c 

ient readings have been obtainable from a section these resu l ts  are in

close agreement with electron probe data ( C a lc -s i1 icate sample 204/1065; 

Optical ly An.89%: probe analyses across one c rys ta l .  An. 88.7%, An. 91.3%, 

An. 92.2%, 93.4%, 91.5%, 90.6% and 95.7% (see also Powell et a l . 1981 and

61azner,1980). Where saussur i t isa t ion  is intense and a lb i te  twins are d i f f 

icul t  to see, estimates of the An. content are less acurate and always

lower than the actual composition. Figure 79 shows the An. content of plag

ioclase in c a lc - s i l i c a te s  plotted against distance from the trace of the 

Sgurr Beag s l ide  (a s im i la r  diagram including th is  information is given

by Powell et a l . 1981. t e x t - f i g . 2 ) .  Local ly the var ia t ions of maximum An. 

content coincide with major s tructures. The s l ide  zone is c le a r ly  seen,

as is the r e la t i v e l y  open Sgurr a Mhuidhe synform to the east. The posit ion

of the Creag Bhan ant iform approximately coincides with a r ise  in the max

imum An. content but the adjacent Coil le Chreag synform is not apparent 

on the diagram. I f  i t  accepted that the An. var ia t ion  re f le c ts  metamorphic 

grade (see Powell et a l .  1981) then i t  is obvious that the s l ide  zone and

the major F3 folds are deforming and displacing an e a r l i e r  metamorphic

complex.

Theoret ical  thermal model ling has been used by Powell et a l . (1981) to 

suggest that the overal l  regional metamorphic pattern is explained best 

as an ear ly  metamorphic pattern which is deformed and modif ied by a syn- 

shearing metamorphic event. Only in the highest s t ra in  zones w i th in  the 

slide zone has the e a r l i e r  metamorphic assemblage been re-worked and reset 

by the syn-shearing metamorphism. The theoret ica l  modell ing suggests that 

the syn-shearing metamorphic e f fec ts  may be more c lea r ly  seen in areas 

of lower metamorphic grade (which occur to the west of the region) where 

both the An. content and the mineral assemblages, especia l ly  the z o is i t e -  

c l inoz is i te  re la t ionsh ips ,  appear to be related to syn-shearing metamorphism 

However w ith in  the area of Figure 76 the pattern is most simply explained 

as an early  metamorphic pattern folded by F3 fo lds and truncated by s l id in g .

On a regional scale, the incomming of anhedral c l in o z o is i t e  coincides 

with the onset of intense D3 deformation and the production of the Sgurr
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Beag s l id e .  Thus i t  can be argued that anhedral c l in o z o is i te  growth is 

related to syn-shearing metamorphism during D3 . However i t  is s t i l l  not 

clear whether the ear ly  metamorphic assemblage in the c a lc - s i l i c a te s  is 

related to metamorphism associated with or 0 3  deformation. The widespread 

development of exso lu t ion -symp lec t i te  textures in the extreme east which 

preceeds the growth of c l i n o z o is i t e  (during D3 ) may indicate that 03 meta- 

morphism is re-working or ? retrogressing the e a r l i e r  D<| metamorphic event.

7.4d) Status of the "ear ly "  metamorphic events.

The grade of an ear ly  (D-j ) metamorphism in the region is not known in 

any deta i l  although MacQueen & Powell (1977) repor t  a low grade f in e  S-] 

schistosity along the western seaboard. Within the Ardgour g ra n i t i c  gneiss 

migmatisation occurred during deformation and subsequently the gneiss 

has been re-worked and possibly re-migmatised during 0 3 . This may suggest 

that the grade of the e a r l i e s t  metamorphism rose progressively from west 

to east. The D3 deformation and metamorphism (extremely intense to the 

east, in the Ardgour g ra n i t i c  gneiss) may be responsible fo r  the production 

of the exso lu t ion-symplect i te  textures in the plagioclase of c a lc - s i l i c a te s .  

The in te ns i ty  of th is  tex tu re  in the east could be explained e i ther  by 

the D2 metamorphism which was high enough to re-work the early  plagioclase 

crystals only in the east or by the p o s s ib i l i t y  that fu r the r  west the e a r l 

iest metamorphic assemblage was at a grade too low to produce high ly  anorth

i t ic plagioclase c rys ta ls  which would re -e q u i l ib ra te  or retrogress by a 

process of exso lu t ion-symplect i te  product ion. This l a t t e r  suggestion is 

unlikely since some of the highest An. values have been recorded ju s t  west 

of the Sgurr Beag s l id e  (see Fig.76d) and these rocks do not show widespread 

symplectite development. However both suggestions imply that the ear ly ,  

pre-Dg s l id in g  metamorphism is an event associated with deformation 

and in th is  is the case then somewhere presumably near the western seaboard, 

O'! metamorphic grade must r i s e  ra p id ly  to exceed 0 3  metamorphic grade and 

this re la t ionsh ip  is reta ined eastwards to Glenfinnan and the Ardgour gran

i t ic gneiss. A th i r d  a l te rn a t ive  is tha t  only in the extreme east (where 

exsolution-symplecti te tex tu re  occurs) has metamorphism exceeded the 

grade of D 3 metamorphism, so tha t  in the east D3 is a re trogress ive event 

on a higher grade D-j assemblage, whereas fu r th e r  west D3 is progressive 

ând has ob l i te ra ted  D-; metamorphic patterns.
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7.5) The re la t io n sh ip  of the Sgurr Beag s l ide  to the "steep b e l t " .

Presently the Sgurr Beag s l ide  at eastern Loch E i l t  is a near ve r t ica l  

structure trending NE-SW. The major F3 fo lds also have axial  planes which 

are nearly v e r t i c a l  and trend NE-SW with hinge l ines near the s l ide  zone

plunging steeply  to the NE. Eastwards from the s l ide  zone the in te r l imb

angles of the major F3 fo lds  increase and the plunge of the hinge l ine

decreases. The major F^ fo ld s ,  the Loch E i l t  ant iform to the west of the

slide zone and the Glenshian synform fu r the r  west (F ig .73) are t i g h t  to 

nearly iso c l in a l  fo lds with near axial  planes trending NE-SW and with s h a l l 
owly SW plunging hinge l ines .

I f  a s im p l i s t i c  attempt is made to remove some of the effects  of F̂  

folding by envisaging ro ta t io n  and unfolding of the fo ld  limbs of the F̂  

folds about an axis of ro ta t io n  coincident with the plunge of the F/̂  hinge 

lines and by ignoring the e f fec ts  of bulk shortening by pure shear (see 

Chapter 8.1b4) which may have re -or ien ta ted  pre-D^ planar and l inear  s t r u c t 

ures, then the Sgurr Beag s l id e  in post-0 3 , pre-D^ times would have been 

a re la t ive ly  f l a t  ly ing  s t ruc tu re  dipping shallowly to the east ( th is  is 

accounting f o r  the vergence of the F^ fo lds (see Fig.81a)) .  The complete 

stack of major F3 fo lds  in the Glenfinnan Div is ion would have rested on 

top of, and to the east o f ,  th is  s l id e  zone. Lowest in the stack and nearest 

the s l ide  zone is the Coil le Chreag synform which is succeeded upwards 

and eastwards by the F3 Creag Bhan ant i  form followed by the F3 Sgurr a Mhui

dhe synform and the sequence of major fo lds between th is  and Glenfinnan 

village. A sense of F3 vergence cannot be ascertained as the lengths of 

the fo ld  l imbs are not known and there are no ind icat ions of high and low 

strain l imbs. Moving westwards and down through th is  stack of major F3 

folds in the Glenfinnan D iv is ion  towards the s l ide  zone one can observe 

that the fo lds  progress ively  become t ig h te r  and have shorter wavelengths, 

boudinage increases dramat ica l ly  and the number of minor F3 folds decreases, 

all features which have been re la ted to the progressive increase in the 

amount of D3 s t ra in  towards the s l ide  zone (see the early  part o f  th is  

Chapter), In such a post-D3 /pre-D^ reconstruct ion a progressive change 

in the o r ie n ta t io n  of major F3 fo ld  hinge l ines can be seen. In the extreme 

east ( in the Loch Ei l  D iv is ion )  the hinge l ines would have been horizontal  

and trending NE-SW, mowing westwards the Sgurr Beag s l ide  the trend of 

The hinge l ines would have ro tated clockwise with in  the easter ly  dipping 

fold axial  planes and would have gradual ly plunged more to the E-NE so 

That ju s t  above the s l id e  zone the F3 hinge l ines would have plunged down 

To the E w i th in  the E to SE dipping plane of the s l ide  zone. I t  has been
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argued in Chapter 5 that the D3 s t ra in  e l l i p s o id  (a f te r  deformation) 

has the X axis,  or the extension d i re c t io n ,  v e r t i c a l .  When the e f fe c t  of

fo ld ing is removed, the X d i rec t ion  of the D3 s t ra in  e l l i p s o id  trends 

approximately w i th in  the plane of the s l ide  zone and is approximately

CO-1 inear to i t s  dip d i re c t io n .  Thus i t  appears that D3 extension was app

roximately northwester ly  directed up the (pre-D^) dip of the s l id e  zone. 

D3 extension and transpor t of the Glenfinnan Division rocks towards the 

NW (as opposed to down the dip of the s l ide  zone towards the SE) accounts 

for the jux ta po s i t io n  of the high grade migmati t ic Locha i lo r t  p e l i te (= 

Glenfinnan D iv is ion)  on top of the underlying, non-migmatit ic rocks of 

the Morar D iv is ion  at Locha i lo r t .

In post-D3 /pre-D^ times the s tructures in the Glenfinnan Div is ion were 

essent ial ly f l a t  ly ing  major F3 fo lds rela ted to syn-metamorphic s l id in g  

in a NW d i re c t io n .  In the Loch Ei l  D iv is ion, where D̂  "steep b e l t "  e f fec ts  

are minimal, the Loch Ei l  D iv is ion psammites contain a. major F3 synform, 

the Druim Beag synform, which has a near horizontal  hinge l in e  and shallow 

SE dipping axial  plane, faces up to the NW. However, Strachan (1985) working 

in a larger area, noted tha t  the F3 Druim Beag synform and other F3 fo lds 

are generally upr igh t  and f a i r l y  open (Strachan,1985. Table 2).

The E-W va r ia t io n  of F3 fo ld  geometry is best explained in terms of 

simple shear producing i n i t i a l l y  upr ight folds which t igh ten ,  ampl i fy and 

rotate to become recumbent with increasing shear s t ra in  (F ig .80) (Sanderson, 

1979: Ramsay et a l . 1983). In the west of the area, as a re su l t  of intense 

NW directed D3 shear s t ra in  the D3 Sgurr Beag s l ide  developed below the 

F3 recumbent sheath fo lds  in the Glenfinnan Div is ion.

The "steep b e l t "  is the re s u l t  of intense D̂  deformation which has prod

uced the ve r t i c a l  d ispos i t ion  of the e a r l i e r  f l a t - l y i n g  F3 fo lds .  D/̂  deform

ation is also responsible f o r  the deformation of the post-D3 su i te  of micro- 

dior i te sheet in t rus ions  (Chapter 8 .2 ) .  The "steep be l t "  is approximately 

coincident with the area between the Sgurr Beag s l ide  in the west and the 

Loch Quoich l in e  in the east and i t  is worth considering why the "steep 

belt" is re s t r i c te d  in width with such a strong geometrical contrast between 

the i n t e r io r  and e x te r io r  of the b e l t .  I t  is possible that the "steep b e l t "  

could be some form of major simple shear zone such as sketched diagrammatic

al ly in Figure 81b. In such a major F/̂  simple shear zone there need not 

be major F̂  fo lds  w i th in  the margins of the shear; and indeed, fo lds  which 

are unequivocal ly F̂  fo lds  between the l im i t s  of the steep b e l t  have not 

been observed. However, as sketched in Figure 81b the margins of the simple 

shear zone (which would be the axial  planes of major F̂  fo lds )  are s t rong ly  

oblique to the axial  planes of F3 fo ld s .  To f i t  the geometry observed across
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Diagrammatic sketch to show the development of 

s t ructu res as a re su l t  of simple shear deformation.
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Sketches to show possible modes of formation of 

the "steep b e l t " . (  see tex t  fo r  discussion ).
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the steep b e l t ,  the margins of the simple shear zone would have to be v i r t 

ually co-planar with the axial  planes of the Fg folds w ith in  the shear 

zone (F ig .81c) ,  a s i tu a t ion  which would require very high levels of shear 

strain (eg. g > 5 ) .  The "D^ simple shear zone" ( ie .  the "steep b e l t " )  margins 

are v e r t i c a l  and the shear zone width is some 10-15 Km. so that ve r t i ca l  

movements across the simple shear would have to be in the order of 50++ 

Km. Such movement with inherent changes of metamorphic grade on e i ther  

side of the shear zone, are inconceivable. Thus i t  seems that the "steep 

belt" cannot be made to f i t  any simple model of a large scale simple shear 

zone.

A l te rn a t iv e ly ,  the production of the "steep be l t "  can be considered 

to be the product of ho r izo n ta l ly  directed pure shear— a large scale exam

ple of crenulat ion fo ld in g ,  small scale examples of which have been modelled 

by Cobbold et a l . (1971. te x t - f i g . 1 7 )  and Cosgrove (1976,Plate 2a ,b ,c . )  

(see F ig .82). Both of these models requi re  that the i n i t i a l  layer ing is 

s l ig h t l y  oblique (20°) to the d i rec t ion  of maximum compression. The end 

results of the experiments (with horizonta l  compression) are packages of 

t igh t to nearly iso c l in a l  fo lds with near ve r t i ca l  axial  planes with in  

generally shal lowly dipping rocks. When scaled up to be analogous with 

the "steep b e l t " ,  the buckles correspond to major F̂  folds and the banding 

or layer ing, to a composite f o l i a t i o n  with almost i n t r a f o l i a l  F g folds 

This analogy has a horizonta l  NW-SE directed compression during Ü which 

compresses a composite f o l i a t i o n  with almost i n t r a f o l i a l  F3 fo lds which 

dip gent ly  (20°) to the SE. There is no evidence that major F3 fo lds are 

involved in major re - fo ld s  with in  the Glenfinnan Division eastwards from 

the outcrop of the Sgurr Beag s l ide  at the eastern end of Loch E i l t ,  there

fore i f  the analogue (see F ig .82) is reasonable then th is  area must be 

on the steep eastern limb of a major upright fo ld  (the F̂  Loch E i l t  anti form) 

the steep nature of which begins to decrease in the Glenfinnan v i l l a g e -  

Loch Quoich l in e  area. In th is  analogue i t  is assumed tha t  the fo lds  which 

form could vary in amplitude along th e i r  hinge l ines and could form enech- 

elon, so tha t  the "steep b e l t "  may be a h igh ly  var iable  s t ruc tu re  along 

i ts length. Chapter 9 considers the D3 s l id in g  and nappe formation and

pure shear compression in i t s  reg iona l,  c rusta l  context.
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Figure 82.

G)

b ) c )

Traced from  C osgrove (1 9 7 6 . P late  2 a, b,c

Sketches to show the development of upright crenulat ion fo lds 

as a re s u l t  of horizonta l  compression of a s l i g h t l y  inc l ined 

m u l t i - l a y e r .  ( see tex t  fo r  discussion ).
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C H A P T E R  8.

Basic and metabasic rocks.

8 . 1 ) M ic rod io r i te  petrology and geochemistry.

8.2) M ic rod io r i te  s t ruc tu re .

8 . 2 a) In t roduct ion.

8 . 2 b) M ic rod io r i te  sheet geometry.

8.2c) M ic rod io r i te  in terna l  geometry.

8 .2d) Mechanism of deformation.

8.2e) Age of in t rus ion  and deformation of the m ic rod io r i tes

8.3) Amphiboli tes.

8.4) Camptonites and Doler i tes .

This chapter is not intended to be a comprehensive study of the basic 

and metabasic rocks of the area; ra ther  i t  is an attempt to describe the 

dist inguish ing c r i t e r i a  (pétrographie, geochemical and s t ru c tu ra l )  of the 

d i f ferent su i tes of basic and metabasic rocks and to supply geochemical 

data which may be of use to others. (A l l  basic and metabasic geochemical 

analyses together with sample gr id  references are included in Appendices 
2& 4).

8 . 1 ) M ic ro d io r i te  petrology and geochemistry.

M ic rod io r i te  sheet in t rus ions  are common along the road section ( A830.) 

from Loch E i l t  eastwards through most of the Glenfinnan D iv is ion .  Fewer 

microdior ites have been found fu r th e r  east and in the h i l l s id e s  to the 
north.

The m ic ro d io r i te  su i te  contains a range of pétrographie types a l l  of 

which have been subjected to various amounts of metamorphism and deformation/. 

Figure 83 l i s t s  major and some trace elements of 30 analysed samples. Samp-
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Microdiorites
33
%229

57
%234

71
237 241

83
7.255

857259 ’ V.318
937335

997418
P
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

0 . 2 1 5  
5 6 . 8 2 5  
1 5 . 9 7 5  

5 . 9 5 0  
0 . 1 3 5  
7 . 3 6 5  
1 . 0 0 5  
6 . 6 5 5  
1 . 6 1 0  
4 .  39 0

0 . 2 5 0
5 8 . 6 1 5
1 7 . 6 9 0

4 . 0 9 5
0 . 1 2 5
7 . 0 2 5
1 . 0 4 0
4 . 7 8 5
2 . 7 5 5
4 . 2 7 0

0 . 0 0 5
7 2 . 9 8 5
1 5 . 9 8 5  

0 . 2 9 5  
0 . 0 7 0  
1 . 3 5 0  
0.200
1 . 6 3 0
3 . 6 3 0  
5 . 0 5 5

0 . 1 9 5  
6 3 . 3 5 5  
1 6 . 7 4 0  

3 . 1 7 5  
0 . 0 9 0  
5 . 2 7 5  
0 . 8 4 0  
4 . 5 8 5  
1 . 7 0 5  
4 . 6 7 0

0 . 3 1 5
5 4 . 8 5 0
1 5 . 4 5 0

6 . 8 9 0
0 . 1 4 5
7 . 8 0 5
1.200
8 . 2 6 0
1 . 3 7 0
3 . 4 4 0

0 . 4 8 5
5 0 . 8 9 5
1 6 . 2 4 0

7 . 8 9 0
0 . 1 5 5
9 . 0 4 0
1 . 7 7 0
7 . 9 6 0
1 . 7 9 5
3 . 3 8 0

0 . 2 8 5
5 6 . 2 2 0
1 5 . 7 7 0

6 . 0 6 0
0 . 1 8 0
8 . 4 4 0
1 . 3 3 0
6 . 8 2 5
1 . 3 4 0
3 . 3 5 0

0 . 3 7 5
5 6 . 4 2 5
1 5 . 4 5 0

6 . 7 1 0
0.120
7 . 6 1 0
1 . 2 7 0
6 . 5 6 5
1 . 8 5 0
3 . 9 2 5

O. 355  
5 1 . 3 5 0  
1 1 . 2 3 0  

8 . 4 5 5  
0 . 1 3 5  
9 . 4 2 5  
1 . 6 2 0  
8 .  31 0  
1 . 2 1 5  
3 . 2 2 0

T o t a l 1 0 0 . 0 6 0 1 0 0 . 6 5 5 1 0 1 . 2 0 5 1 0 0 . 6 3 5 9 9 . 7 3 5 9 9 . 6 1 0 9 9 . 8 5 0 1 0 0 . 3 1 0 9 9 . 3 0 5
Z r
Y
Rb
Nb
S r
Th

168
23
42
14

592
6

1 9 0
26

107
12

73 3
12

141
25

100
14

5 5 9
6

177
23
53
12

8 2 6
11

1 8 0
23
27

5
8 7 4

6

2 30  
32 
74  
11 

781  
2

2 2 8
123

59
14

6 6 1
5

2 6 3
110

44
15

793
5

155
2 8
28

9
6 8 9

O

112ŷ503
113%503

1U
/ 503

115%506
117

512
118%511

125
% .

112
%651

151%721
P
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

0 . 2 6 0
5 8 . 6 2 0
1 6 . 9 0 0

3 . 4 5 0
0 . 1 4 0
7 . 4 8 0
1 . 2 5 0
5 . 6 9 0
2 . 3 3 0
4 . 1 3 0

0 . 2 7 5
6 2 . 7 7 0
1 7 . 4 9 5

2 . 1 7 0
0.100
5 . 7 2 0
0 . 8 8 0
4 . 0 7 5
1 . 9 6 0
5 . 3 9 5

0 . 1 9 5
5 9 . 3 1 0
1 5 . 5 7 5

5 . 9 1 5
0.120
5 . 9 0 5
0 . 9 8 5
5 . 3 7 0
1 . 8 3 0
4 . 0 6 5

0 . 2 0 5
5 2 . 7 3 0
1 3 . 8 7 5

8 . 4 8 0
0 . 1 5 5
9 . 2 0 0
1 . 5 2 0
8 . 3 2 0
1 . 3 6 5
2 . 9 0 5

0 . 2 2 0  
5 5 . 2  30  
1 5 . 6 7 5  

6 . 2 7 5  
0 . 1 4 5  
8 . 1 8 0  
1 . 3 1 5  
3 . 5 9 5  
1 . 9 5 0  
3 . 9 6 0

0 . 2 2 0  
5 0 . 2 5 0  
1 2 . 0 7 5  
1 2 . 2  30  

0 . 2 5 0  
1 0 . 5 6 0  

1 . 2 2 5  
7 . 8 8 5  
1 . 7 2 5  
1 . 8 9 5

0 . 1 6 0
6 0 . 5 3 5
1 5 . 7 0 5

5 . 8 3 0
0.110
5 . 3 8 0
0 . 8 9 0
4 . 8 8 0
1 . 1 3 0
4 . 0 3 5

0 . 2 5 0
5 7 . 5 9 0
1 6 . 1 2 5

5 . 0 3 0
0 . 1 1 5
6 . 3 4 5
1 . 0 5 5
5 . 5 7 5
1 . 7 8 5
4 . 5 9 5

0 . 3 7 5  
5 0 . 9 1 0  
1 6 . 2 4 5  

6 . 1 2 5  
0 . 1 3 5  
8 . 8 3 5  
1 . 2  30  
8 . 4 5 5  
1 . 3 7 5  
4 . 3 8 0

T o t a l 1 0 0 . 2 7 0 1 0 0 . 8 5 0 9 9 . 2 6 0 9 8 . 6 6 0 9 6 . 5 4 5 9 8 . 3 1 0 9 8 . 6 6 5 9 8 . 5 7 0 9 8 . 0 5 5
Z r
Y
Rb
Nb
S r
Th

200
34
6 5
14

672
5

2 5 5
24
51
17

8 3 5
7

15 4
21
53
13

5 6 0
2

162
32
37

5
46 5

2

20 5
30
95
15

344
6

13 5
28
8 0
11

28 2
4

135
19
5 0
12

511
5

211
25
49
11

748
4

1 7 6
27
31
12

9 3 4
4

i s y
^721

i s y
'^723

156 /
/  721

158 /
/ 72s

180 y
^985

182 /
/  986

202y  
/1063

218 y  
/ 1 0 8 9

2 i y
/  1092

p 0 . 4 0 0 0 . 2 6 5 0 . 2 1 5 0 . 2 4 0 . 3 6 0 0 . 2 6 0 0 . 2 9 5 0 . 5 5 0 0 . 1 9 0
S i 5 3 . 6 8 0 5 9 . 6 5 0 5 3 . 5 2 0 5 7 . 9 1 5 5 2 . 4 3 0 5 1 . 6 3 0 5 1 . 6 8 5 4 8 . 4 8 0 4 9 . 2 8 5
A1 1 8 . 4 4 0 1 8 . 5 1 5 1 4 . 5 7 0 1 7 , 0 8 5 1 5 . 4 7 5 1 5 . 0 8 0 1 3 . 2 7 0 1 1 . 7 2 5 1 1 . 7 7 5
Mg 4 . 6 1 0 2 . 3 9 5 8 . 7 5 5 4 . 2 6 5 7 . 7 9 0 8 . 5 7 5 1 1 . 4 2 0 1 1 . 9 6 0 1 1 . 7 4 5
Mn 0 . 1 4 0 0 . 0 7 0 0 . 1 4 5 0 . 1 0 5 0 . 1 5 0 0 . 1 6 0 0 . 1 2 0 0 . 2 0 0 0 . 1 9 0
Fe 8 . 5 0 5 5 . 2 1 5 8 . 4 1 5 6 . 4 6 5 8 . 4 5 5 9 . 1 4 5 8 . 0 1 0 1 0 . 0 6 0 1 1 . 1 3 0
T i 1 . 5 8 0 0 . 7 5 0 1 . 1 8 5 0 . 8 4 0 1 . 2 9 5 1 . 2 2 0 1 . 1 5 0 1 . 1 6 5 1 . 1 9 5
Ca 4 . 5 8 5 4 . 7 6 5 7 . 3 8 0 4 . 5 9 5 8 . 1 4 0 9 . 0 8 0 6 . 4 1 0 1 1 . 2 7 5 9 .  3 6 0
K 1 . 2 5 5 1 . 4 6 5 1 . 1 4 0 3 . 2 0 0 1 . 4 2 0 1 . 3 6 0 2 . 3 0 0 1 . 7 0 0 1 . 5 9 0
Na 4 . 6 2 5 5 . 5 1 5 3 . 1 0 0 3 . 8 2 5 3 . 3 2 5 2 . 3 2 0 3 . 3 7 0 0 . 9 8 5 2 . 8 6 5
T o t a l 9 7 . 8 1 5 9 8 . 5 9 5 9 8 . 6 2 5 9 8 . 5 3 5 9 8 . 8 3 5 9 8 . 8 1 5 9 8 . 0 3 0 9 8 . 1 0 0 9 9 . 3 9 0
Z r 2 2 4 19 5 14 9 177 1 8 0 13 6 146 13 7 1 5 3
Y 41 17 21 25 27 24 22 28 18
Rb 55 53 39 1 5 0 36 42 50 73 34
Nb 18 22 9 1 0 18 14 7 1 0 6
S r 8 2 9 1 0 1 7 527 736 8 7 9 4 9 0 54 5 8 3 8 30 8
Th 2 4 2 2 6 5 3 7 1

Major elements: See note on the fo l low ing  page.
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Microdiorites
226y  

^1092 1092
228(11/

4 ) 9 2
228(21 /

4 ) 9 2
229(11/

4 ) 9 2
229(21 /

4 ) 9 2
2 2 9 0 1 /

4 ) 9 2
2 2 9 W /

4 ) 9 2
p 0 . 4 2 5 0 . 3 5 0 0 . 4 8 5 0 . 4 3 5 0 . 3 9 0 0 . 3 6 5 0 . 4 2 5 0 . 4 8 5
S i 5 1 . 9 5 5 4 9 . 3 5 0 5 1 . 5 3 5 5 0 . 5 6 5 4 8 . 9 5 0 4 9 . 5 7 0 4 9 . 2 2 5 5 0 . 6 6 5
A1 1 5 . 0 5 5 1 4 . 7 4 5 1 4 . 9 3 0 1 3 . 8 7 0 1 1 . 9 8 0 1 2 . 0 9 0 1 3 . 8 1 0 1 4 . 1 1 0
Mg 6 . 9 7 0 8 . 7 0 5 8 . 2 9 0 9 . 8 8 0 1 2 . 5 6 5 1 2 . 2 1 5 9 . 1 9 0 9 . 4 4 5
Mn 0 . 1 3 5 0 . 1 8 0 0 . 1 6 5 0 . 1 6 0 0 . 1 7 0 0 . 1 7 0 0 . 1 5 0 0 . 1 5 0
Fe 7 . 7 9 0 1 0 . 0 3 5 8 . 8 3 5 9 . 1 4 0 9 . 3 3 0 9 . 2 9 0 8 . 7 0 0 8 . 4 8 5
T i 1 . 4  30 1 . 2 7 0 1 . 2 5 0 1 . 2 3 5 1 . 0 9 5 1 . 1 5 5 1 . 3 3 5 1 . 1 8 0
Ca 0 . 5 3 0 8 . 8 5 0 9 . 5 5 5 0 . 2 6 5 1 0 . 4 0 5 1 0 . 2 3 5 9 . 9 4 0 9 . 3 8 0
K 1 . 6 8 0 1 . 8 9 0 1 . 4 0 0 1.200 1 . 3 7 5 1 . 4 9 5 1 . 3 1 0 1 . 3 6 0
Na 4 . 0 8 5 3 . 5 1 0 3 . 0 6 0 2 . 2 5 5 1 . 6 0 5 1 . 7 6 5 3 . 4 2 0 2 . 8 4 5
T o t a l 9 8 . 8 4 5 9 8 . 5 7 5 9 9 . 5 1 5 9 9 . 0 0 0 9 7 . 8 6 5 9 8 . 3 6 0 9 7 . 5 1 0 9 8 . 1 1 0
Z r 1 56 1 44 1 6 9 1 5 3 131 11 8 152 1 6 8
Y 34 2 4 2 8 2 3 24 24 26 22
Rb 36 6 0 43 32 36 48 4 0 43
Nb 19 8 14 5 10 7 11 14
S r 9 7 5 91 5 1 0 8 9 1 0 7 0 702 7 1 9 1 1 2 8 1 1 3 3
Th 8 5 12 10 7 13 10 11

Major element analyses ( ie .  P to Na ) are l i s te d  as Wt.% oxides 

( P^O^, SiOg, AlgOg, MgO, MnO, Fe^O^, TiO^, CaO, K^O, Nâ O ).
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les 228/1092 and 229/1092 demonstrate the geochemical va r ia t ion  across 

the complete width of a 21 cm. wide sheet with intensely schistose margins 
and a much less schistose i n t e r i o r .

The m ic rod io r i te  su i te  consists of a t ra n s i t io n  from f in e  grained basic 

(basalt ic) rocks to andesi t ic  and more acidic in t rus ives .  Figure 84 shows

the var ia t ion  of A I 2 O3 , CaO, MgO and Fe2 0g p lo tted against SiO^,. The rocks

appear to be part  of a high-alumina, ca lc -a lka l ine  su i te .  The usual mineral 

assemblage is Feldspar (mainly plagioclase) + Amphibole + B io t i t e  ± Quartz.

Textu ra l ly  the rocks are usual ly  f ine  grained and granoblast ic ,  preserv

ing few i f  any igneous features.  Some large plagioclase c rys ta ls  (1-2 mm.) 

may be r e l i c t  igneous phenocrysts which are p a r t l y  engulfed and corroded 

by the f in e  f e l s i c  groundmass (Fig.85a).  In most sections the plagioclase 

is andesine with a more a l b i t i c  r im. Amphibole and b io t i t e  laths usual ly 

define a s c h is to s i t y  which is often strong ly  developed; the laths can occur 

singly or as elongate, spindle shaped c lusters  up to 1 -2  mm. long, b io t i t e  

is often seen replac ing amphibole. The amphibole is hornblende, occiwring 

as laths with a very pale l i g h t  green, brown-green pleochroic scheme. Freq

uently the amphiboles contain an inner core which is dusty, brownish with

rods of dark brown material  (? i ron ore. see Fig.85b).  The core has a more 

stubby shape and the rods of (?) i ron ore are often normal to the length 

of the enclosing elongate hornblende. The core and mantle are o p t i c a l l y  

continuous. The textu re  appears to be the product of conversion of (stubby) 

pyroxenes to hornblende, with the "rods" represent ing exsolut ion products 

or re l i c s  of a di a l l  age type of tex tu re .  I t  the precursor was pyroxene 

then i t  has been converted to hornblende by p re fe ren t ia l  growth on the 

prism faces ( 010  ) o f  the pyroxenes.

Smith (1979) notes that towards the west coast igneous textured micro

diorites occur. He defines an area of amphiboli te facies m ic rod io r i tes ,  

the western margin o f which crudely coincides with the western edge of 

the "steep b e l t " .  Noteworthy is the lack of displacement of th is  margin

by the D3 Sgurr Beag s l id e .  The eastern l i m i t  of amphiboli te facies micro

diori tes extends to the Great Glen f a u l t .
Metamorphism and deformation of m ic rod io r i tes  may produce geochemical 

changes and a pre l im inary  examination of th is  problem was attempted by 

analysing samples 228/1092 and 229/1092 (see F ig .83). These traverse the 

complete width of a 21 cm. wide m ic rod io r i te  which has h igh ly  schistose 

margins 2 - 3  cm. th ick  in contrast to the moderately schistose i n t e r i o r .  

Slight changes in chemistry can be detected which vary symmetr ical ly from 

the middle to the edges of the sheet. The analyses of 228(1 ) to 229(4)

are l i s te d  in Figure 83 so as to record the geochemistry across the sheet
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F i g u r e  85 .  P h o t o m i c r o g r a p h s  o f  m i c r o d i o r i t e  t e x t u r e s

R el ic t  igneous plagioclase phenocrysts.
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from one margin to the other.  Each analysis corresponds to a s t r i p  of rock 

approximately 3 cm. wide. Moving towards the edge of the sheet there is 

a s l ig h t  increase in SiO^,, P2 O5 , AlgOg and Na2 Û and a s l i g h t  decrease in 

MgO, 5620^ and CaO, The var ia t ions in geochemistry coincide with the v a r ia t 

ions of i n t e n s i t y  of sch is to s i t y .  The margins of the m ic rod io r i te  are much 

more in tense ly  schistose and r ich  in b i o t i t e .  The var ia t ion  may be due 

to chemical re-adjustments during metamorphism and heterogeneous deformation 

but such va r ia t ions  could be a product of whatever process of igneous d i f f 

erent ia t ion or p a r t ia l  melt ing that produced the geochemical va t ia t io n  

within the su i te  as a whole; the margins of th is  in t rus ion are s l i g h t l y  
more ac id ic  than i t s  core.

8.2) M ic ro d io r i te  s t ruc tu re .

8.2a) In t roduc t ion .

I t  is obvious in the f i e l d  that most, i f  not a l l ,  of the m ic rod io r i te  

sheet in t rus ions  have been deformed and metamorphosed, however Johnson 

& Dalziel  (1966) claimed that th is  deformation and metamorphism was not 

accompanied by penetra t ive deformation in the country rocks and thus post

dated the regional fo ld in g .  They fu r th e r  argued that the metamorphism of 

the m ic rod io r i tes  could be due to such factors  as s t ra in  energy due to 

deformation, heat of in t ru s io n ,  thermal state of the host rocks, load press

ure and water vapour pressure; however these explanations usual ly require 

some form of special  pleading and do not seem to f i t  many of the observat

ions c i ted  below.
Talbot (1983) using data col lected from the road section from Locha i lo r t  

to Loch E i l  and from Loch Sunart out l ined the deformation h is to ry  of both 

the m ic rod io r i tes  and the adjacent Moine country rocks. Many of his f i e l d  

observations agree with those given below but some, together with his reg ion

al co r re la t ions  and ex t rapo la t ions ,  are at odds with the f i e l d  evidence 

outl ined herein.

8.2b) M ic rod io r i te  sheet geometry.

M ic rod io r i tes  occur as pa ra l le l  sided sheet in t rus ions from 5 cm. to 

2 metres th ick  which dip var iab ly  to the ESE or WNW (F ig .8 6 ). Co-planar 

mult iple in t rus ions  are qu ite  common but there are very few examples of 

sheets c u t t in g  each other and no evidence that the steeper sheets cons is t 

ently cut the shal lower ones or vice versa ( c f .  T a lb o t ,1983.p142). There
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are no obvious geochemical dif ferences between steeply or shal lowly dipping 

sheets nor any geochemical var ia t ion  which can be re lated to geographical 

posit ion. Geochemical analysis strongly suggests a sing le  consanguinous 

or igin fo r  a l l  of the m icrod io r i tes  which have been analysed (F ig .83).

The A 830 road section provides a well exposed E-W traverse across a l l  

of the Glenfinnan Division and part  of the adjacent Morar and Loch Ei l 

Divisions. Along the road section regional changes of m ic rod io r i te  sheet 

or ientat ion have been observed (Map 7) and p lo tted stereograph ica l ly  (Fig. 

86a). From the western end of the traverse at Loch E i l t  to Glenfinnan v i l l 

age, the sheets have a range of dips up to 75° e i the r  eastwards or westwards. 

Relatively f l a t  ly ing  sheets are quite common, many of these are gent ly 

folded, having v e r t i c a l  NNE-SSW trending axial  planes and sub-horizontal  

hinge l ines .  Eastwards from Glenfinnan v i l l a g e  the dip of the sheets tend 

to be lower and predominantly eastwards (dip d i rec t ion  is approx. 110° ) .  

Many of these sheets seem to be co-planar with a well developed set of 

easterly dipping j o i n t  planes. There is , however, no conjugate wester ly 

dipping set of j o i n t s  in to  which some of the other sheets could have been 

intruded. Figure 8 6 b,taken from Smith (1979) shows the o r ien ta t ion  of micro

d io r i te  sheets north of the Great Glen f a u l t .

Map 7 shows that the maximum amount of dip decreases progressively east

wards across the sect ion. I t  must be emphasised that there is no r e la t i o n 

ship ( a n t i t h e t i c  or otherwise) between the sheet o r ien ta t ion  and the p o s i t 

ion of F3 major fo lds (compare Maps 3,4 & 7) and no geometrical evidence 

to support the idea of "counter fo lds"  (T a lbo t ,1983.p . 143). There are both 

easterly and wester ly dipping sheets on both limbs of a l l  the major Fg 

folds west of Glenfinnan v i l la g e  (see Map 7).

8.2c) M ic rod io r i te  in terna l  geometry.

Most o f the sheets exposed along the A 830 road are schistose, the sch

is tos i ty  being oblique and usual ly steeper than the sheet margins. The 

schistosi ty  d isplays var iable  in te n s i ty  across many of the sheets, usual ly  

i t  is more in tense ly  developed near the margins and weaker or not developed 

in the centre . However there are some sheets containing schistose layers 

gradational in to  non-schistose layers a l l  of which are co-planar to the 

sheet margins.
The steeply dipping sheets contain a sc h is to s i t y  which is always steeper 

than the sheet margins. In th in  sheets the s c h is to s i t y  is general ly  planar 

and dips approximately 5-10° more steeply than the sheet margins. Near
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the margins of the th icker  sheets the sch is tos i ty  is f requent ly  sigmoidal,  

being nearly co-planar w ith, but steeper than the margins. In the centre

of the sheets the sch is to s i t y  is more highly  oblique (see Fig.87a & c) ,

indeed, where the sheets have very steep dips the internal sch is to s i t y  

can be so steep as to pass through ve r t ica l  to dip in the opposite d i rec t ion  
(see Map 7, western s ide) .

Although th is  is eas i ly  the most common type of sigmoidal geometry in 

the steeply dipping sheets, another geometry also occurs. There are sheets 

where the s c h is to s i t y ,  which is steeper than the sheet margins, is s trong ly  

oblique at both margins with the o b l iq u i ty  decreasing as the in te n s i t y  

of the s c h is to s i t y  decreases towards the centre of the sheet (Fig.87b; 

e x p .1092, samples 228(1) to 229(4)). Unl ike the much more common geometry 

where the oblique sc h is to s i t y  is asymptotic to the sheet margins. This  

geometry has not yet been recorded by Talbot (1983). No examples have been 

observed where the extremely steep or ve r t ica l  sheets have an in terna l  

sch is tos i ty  which is co-planar with the sheet margins.

In the less steeply dipping and sub-horizontal  sheets the in terna l  s c h is t -  

osity is usual ly  about 10-20° steeper than the sheet margins (see Map 7). 

Only very ra re ly  do the less steeply dipping sheets contain a weak sub

vert ica l  in te rna l  s c h is to s i t y .  Shallowly dipping sheets are qu ite  often 

non-schistose.

Some of the less steeply dipping m ic rod io r i tes are folded, having v e r t 

ical NNE-SSW trending axia l  planes and sub-horizontal  hinge l ines .  In the 

hinge zones of these fo lds  the in te rnal sch is tos i ty  is axial  planar and 

sub-ver t ica l .  On the limbs of the fo lds  the sch is to s i t y  is steeper than 

the sheet margins and usual ly  sigmoidal ly asymptotic to them (F ig .87 f  & g).

The s c h is to s i t y  is symmetrical about the fo ld  axial  plane.

There are no examples where the fo lds  of the microd ior i  tes fo ld  the

oblique, often sigmoidal sch is to s i t y .  Two examples have been noted where 

the steep in te rna l  s c h is to s i t y  is very sporadica l ly  kinked by small i r r e g 

ular crenula t ion fo lds  with sub-horizontal  axial  planes (Exp.1285, NM 853818 

and Exp.1274, NM 819824).
Recent road widening at the head of Loch Ei l  has revealed an unusual^ 

exceedingly th in  (?) m ic rod io r i te  (Exp.1039, NM 971792), c i ted by Talbot 

( 1981 ,p .140 , tex t - f ig .3c )  which may be recumbently folded, however there

are no signs o f  s im i la r  recumbent fo lds in the enclosing Loch Ei l  D iv is ion

psammites. The in t ru s io n ,  which is r ich  in muscovite, may not be a micro

d io r i te  (pers.comm. Dr.D.Powel l).
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8 .2d) Mechanism of deformation.

Johnson & Dalziel  (1966) claimed that deformation and metamorphism of

the m ic ro d io r i tes was not accompanied by deformation in the country rocks. 

However close examination of the microdior i tes exposed along the A 830 

road section reveals that at some exposures the country rock can be seen 

to have undergone deformation related to the int rus ion and deformation 

of the adjacent m ic rod io r i te s .  Figures 87d & e show deformation of the 

country rock which could be the resu l t  of s i n i s t r a l  simple shear across 

the sheet. D irec t  measurement o f the amount of any simple shear d isp lace

ment which may have occurred was not possible because of the general absence 

of re l i a b le  markers in the country rocks. Figure 87g shows that the country 

rock f o l i a t i o n  has been deformed during the fo ld ing  of the m ic rod io r i te  

sheet. The m ic ro d io r i te  fo lds  are probably not the product of a phase of

buckle fo ld in g .  I f  the l i t h o lo g ic a l  banding had been ve r t ica l  p r io r  to

buckle fo ld in g  of the m ic rod io r i tes ,  then, d is tan t  from the in t rus ions  

one would not expect the l i t h o lo g ic a l  banding to have re -o r ien ta ted  since 

i t  would have been normal to the d i rec t ion  of maximum compression. However 

near to the a c t i v e ly  buckling in t rus ions ,  as a re su l t  of the heterogeneous 

stress f i e l d ,  one would expect to observe ro ta t ion  of l i t h o lo g ic a l  banding. 

The vast m a jo r i ty  of the in t rus ions do not show local re -o r ien ta t ions  of 

the country rock l i t h o lo g i c a l  banding.

I f  the l i t h o lo g i c a l  banding had not been ve r t i ca l  p r io r  to the act ive 

buckle fo ld in g ,  then a f te r  "ac t ive "  buckling of the in t rus ions one would

not expect to see m i r ro r  image l i t h o lo g ic a l  banding/sheet margin geometries 

at easter ly  and wester ly  dipping sheets.

These arguments tend to suggest that  the m ic rod io r i te  deformation was 

not simply the r e s u l t  of  a phase of "ac t ive"  buckle fo ld ing .

I t  is tempting,but probably erroneous, to equate the convergent fan 

of f o l i a t i o n  in the country rock in the core of the m ic rod io r i te  fo lds  

and the d ivergent fan of s c h is to s i t y  w ith in  the m ic rod io r i te  with e i th e r  

a Class Ib/Class 3 dip- isogon pattern (Ramsay,1967.p .365) or with a pattern 

of divergent/convergent s t ra in  t r a je c to r ie s  (Ramsay,1967.p .405).

However, observat ion of the geometry of the sch is to s i t y  w i th in  the folded 

microdiori tes (F ig .87 f  & g) leads to one very important conclusion. For 

whilst i t  is  possib le to argue that the sch is to s i t y  pattern on both limbs

of the fo lds  i l l u s t r a t e d  and in a l l  of the dipping planar sheets could

be the product o f  simple shear, the observation that  in the hinge of the

microdiori te fo lds  there ex is ts  an axial  planar in terna l  s c h is to s i t y  in

an area where simple shear is not so le ly  responsible f o r  the generation
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of the s c h is to s i t y  w ith in  m icrod ior i tes (c f .  Smith,1979.p .690) and that 

at least some of the fa b r ic  has been generated as a resu l t  of approximately 
horizontal  E-W bulk shortening ( ie .  pure shear).

For the vast m a jo r i ty  of sheets the geometry of the in terna l s c h is t 

osity in r e la t io n  to the sheet wal ls is explainable in terms of hetero

geneous simple shear. Shear s t ra in ,  concentrated at the sheet margins, 

produces a more intense sch is to s i t y  which l ies  more nearly co-planar to 

the margins (eg. Fig.87a & c) .  However such a mechanism w i l l  not produce 

the geometry seen at Exp.1092 (Fig.87b). Here the more h ighly  schistose 

margins of the m ic rod io r i te  are more strongly oblique to the sheet wal ls 

than the less schistose i n t e r i o r  of the sheet.

The symmetry of the in terna l  sch is tos i ty  seen in Figures 87f & 87g in d ic 

ates that the geometry of the non-planar ( folded) sheets is at least p a r t l y  

as a r e s u l t  o f  fo ld in g .  I t  has already been argued that the deformation 

was not t o t a l l y  by a mechanism of active buckle fo ld in g .  Therefore, the 

folds must have a component of hor izon ta l ,  approximately E-W bulk shortening 

(ie. pure shear) which has passively rotated the limbs of the fo lds  in to  

their  present o r ie n ta t io n .  To i n i t i a t e  and accentuate such fo lds the sheets 

cannot have been p e r fe c t l y  planar p r io r  to the pure shear bulk shortening. 

The non-planar nature may be the re su l t  of i n i t i a l  in t rus ive  perturbat ions 

or the r e s u l t  of  s l i g h t  buckl ing at the beginning of the bulk shortening, 

however because of the general lack of marginal re -o r ien ta t ion  of the l i t h o 

logical banding i t  is assumed that any i n i t i a l  buckling which may have 

occurred must have been of very low amplitude.

The symmetrical d ispos i t ion  of the in te rnal s ch is to s i t y  in the folded 

microdior i tes (F ig .87 f  & g) suggests that the bulk s t ra in  tha t  deformed 

the m ic ro d io r i te  su i te  was i r r o ta t io n a l  with hor izon ta l ,  approximately 

E-W bulk shortening ( Z axis of the s t ra in  e l l i p s o id ) .

The ca lcu la ted l in e  of in te rsect ion  of the in ternal fanning cleavage 

planes around the fo ld  hinges is sub-horizonta l ,  t rending NNE-SSW and is 

coincident with the hinge l ine  of the m ic rod io r i te  fo lds .  This coincidence, 

i t  is argued below, suggests that the i n i t i a l  undulatory nature of the 

microdior i te  sheet is a product of buckle fo ld ing  rather than an o r ig in a l  

igneous phenomena. Buckle fo ld ing  of any planar element w i l l  produce a 

fold whose hinge l ie s  w i th in  the XY plane of the s t ra in  e l l i p s o id .  Only 

i f  the plane o r i g i n a l l y  lay  in the YZ plane of the s t ra in  e l l i p s o id  w i l l  

the hinge l in e  of the fo ld  l i e  pa ra l le l  to Y. I t  is in te res t ing  to consider 

the o r ie n ta t io n  of a fanning cleavage in re la t io n  to the folded surface 

in which i t  is  contained. I f  the hinge l in e  of the fo ld  l ie s  w i th in  the 

XY plane of the s t ra in  e l l i p s o id  but not co - l inear  with the Y ax is ,  one
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assumes that the cleavage fan is more l i k e l y  to be geometr ical ly re lated 

to the fo ld  and i t s  local stress f i e l d  rather  than the reg iona l ly  appl ied 

stress f i e l d  (see F ig , 8 8 ). However folds with a cleavage which is not per

fect ly  symmetrical to the fo ld  are known (see F ig .44 and Evans,1963).

This l in e  of argument leads to the conclusion that the cleavage fan 

around m ic ro d io r i te  fo ld  hinges cannot be used to define the unique o r ie n t 

ation of the regional s t ra in  e l l i p s o id  but can be used to define the Z 

axis of the s t ra in  e l l i p s o id  (and <S\ in the case of i r ro ta t io n a l  s t r a i n ) .

Deformation of an o r i g i n a l l y  undulatory sheet in t rus ion by pure shear 

bulk shortening may lead to the passive ampli f i ca t ion of a per turbat ion 

of the sheet but the hinge l in e  of the " fo ld "  need not have any geometrical 

rela t ionship to the XY plane of the s t ra in  e l l i p s o id .  Where the " fo ld "  

hinge l ine  l ie s  r e l a t i v e l y  close to the o r ien ta t ion  of the XY plane of 

the regional s t ra in  e l l i p s o i d ,  the layer competency contrasts may r e f ra c t  

stress, but in the m a jo r i ty  of cases, where the hinge l ine  of the " fo ld "  

lies well away from the XY plane of the s t ra in  e l l i p s o id  one would not 

expect cleavage o r ie n ta t io n  to be re lated to the or ien ta t ion  of the " fo ld " .  

Furthermore, i f  the " fo ld s "  are the ampli f ica t ion  of o r ig ina l  igneous p e r t 

urbations then one might expect a series of such folds to have random 

or ien ta t ions .

Thus general considerat ions of the mechanism of deformation of the micro

dior i tes and the enclosing country rocks suggest deformation as a re s u l t  

of h o r izo n ta l ly  d irected pure shear compression which may, poss ib ly ,  have 

been preceeded by very low amplitude buckle fo ld ing  of the more f l a t  ly ing 

microdior i te sheets. Likewise i t  seems tha t ,  on a regional scale, deform

ation was not the r e s u l t  o f  simple shear although simple shear across ind

ividual m ic ro d io r i te  sheets may have occured during ro ta t ion  of the sheets 

as a re s u l t  of  hor izonta l  E-W pure shear compression.

I t  has proved impossible to define more precise ly  an exact mechanism 

of deformation of the m ic rod io r i te  sheets since a number of parameters 

remain unknown. This problem is considered below.

I t  has been observed tha t  the most steeply dipping sheets occur in the 

west of the area and maximum sheet dip progressively decreases eastwards. 

This may be an ind ica t ion  tha t  more ho r izo n ta l ly  directed pure shear comp

ression with associated passive ro ta t ion  of planes towards v e r t i c a l  has 

occured in the west o f  the area, a l t e rn a t i v e ly  i t  may be a re f l e c t i o n  of 

the i n i t i a l  o r ie n ta t io n  of the sheets. I t  is argued elsewhere (Chapter 

7.5) that the regional  "steep b e l t "  was produced by intense deformation 

in the form of h o r iz o n ta l l y  E-W directed compression which was more intense 

in the west of the area than in the east. Since the predominant deformation
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of the m ic rod io r i tes  also occured during (see Chapter 8.2e) i t  appears 

that the regional variation in microdiorite sheet dip reflects the intensity of their deform

ation and passive ro ta t io n ,  rather  than th e i r  i n i t i a l  o r ien ta t ions .

I t  is not known how strongly the present geometry of s ch is to s i t y  in 

both folded and planar, dipping sheets re f le c ts  i t s  o r ig ina l  form and how 

much of i t s  present geometry is as a re su l t  of subsequent deformation, 

l ikewise i t  is not known whether the sch is to s i t y  formed rap id ly  during 

a r e la t i v e l y  small increment of deformation and subsequently behaved as 

a passive marker or whether the sch is tos i ty  formed incremental ly along 

with increments of deformation and ro ta t ion  of the sheets, much in the 

same way as schistose shear zones are believed to form (Ramsay & Graham, 
1970).

Talbot (1983) presents a mechanism of deformation of the m ic rod io r i te

sheets in which he believes that the in te rnal sch is to s i t y  i n i t i a l l y  forms

in an o r ie n ta t io n  normal to the Z axis of the i r r o ta t io n a l  s t ra in  e l l i p s o id

(Fig.89a). I t  is only with subsequent ro ta t ion  of the sheets as a re su l t

of continued hor izonta l  compression that the sch is to s i t y  is deformed into

i ts sigmoidal shape (Fig.89b).  He argues tha t ,  fo r  example, in a sheet

which is ro ta t in g  ant ic lockwise, opposing points on the wal ls are displaced 
\

a n t i t h e t i c a l l y  (clockwise) and as a re su l t  the in te rna l s ch is to s i t y  is 

distorted in to  S-shaped sigmoids. He argues that the poles to the sheet 

walls w i l l  ro ta te  and move along a s t ruc tu ra l  movement path towards Z and 

poles to d i f f e r e n t  planar elements of the sigmoidal sch is to s i t y  w ith in  

the sheets w i l l  l i e  along what he ca l ls  the "apparent s t ruc tu ra l  movement 

path (ASMOP)".

The in te rna l  s c h is to s i t y  pole fu r th e s t  from the sheet margins w i l l  l i e  

closest to Z or ZY. Thus on th is  argument a l l  poles to the in te rnal s c h is t 

osity and sheet wal ls should l i e  with in  the same quadrant of the s t ra in  

e l l ipso id  and never cross a p r inc ipa l  plane.

There are a series of observations which contrad ic t  the theories of 

Talbot (1983). Sheets with a r e la t i v e l y  shallow d ip ,  which have not rotated 

much should possess an in terna l  sch is tos i t y  which is s t i l l  sub-ver t ica l  

and is s t rong ly  sigmoidal.  However most of the shal lowly  dipping sheets 

contain an in te rna l  s ch is to s i t y  dipping 10- 2 0 ° more steeply than the sheet 

walls. Well developed sigmoidal geometry is also common. According to Talbot 

(1983), near v e r t i c a l  sheets, o r i g i n a l l y  ly ing  w i th in  or near to the XY 

plane should have an in terna l  sch is to s i t y  which is co-planar to the sheet 

margins. This geometry has not been observed.
According to the theory of Talbot (1983) and taking the spec i f ic  example 

of a v e r t i c a l  XY plane, the in terna l  sch is to s i t y  in steeply dipping sheets
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F i g u r e  89.

Sketches to show in terpretations proposed  

by Talbot (1 9 83  ) .  (S e e  text for discussion).

z ---- >
i— ----

(A)
• IN IT IA L DEFORMATION 

( planar schistosity )

vertical schistosity, 
normal to Z axis.

Clockwise (antithetic) rotation 
of opposing points on walls

anticlockwise rotation of 
sheet towards vertical.

i i i t f

According to Talbot (1983) the 
central portion of the sigmoidal 
schistosity does not rotate  
anticlockwise beyond v e rtic a l.

(B)
CONTINUED PROGRESSIVE DEFORMATION 

( deformation of the planar schistosity )



should not pass through ve r t i ca l  to dip in the opposite d i rec t ion  to the 

sheet margins (F ig .89b).  Such a geometry would have to be the re s u l t  of 

rotation of the p r inc ipa l  axes of the s t ra in  e l l i p s o id .  However, adjacent 

very steeply dipping sheets (both easter ly  and wester ly) often contain 

an oblique sigmoidal in te rna l  sch is tos i ty  which dips steeply in the opposite 

direct ion (see Map 7 and Fig.87c),  implying on the one hand a clockwise 

rotation of the p r inc ipa l  axes of the s t ra in  e l l i p s o id  and on the other 

hand an ant ic lockwise ro ta t io n ;  c lea r ly  ind icat ing that the model proposed 
by Talbot (1983) does not hold true.

In the hinge areas of the m icrod io r i te  fo lds where limb ro ta t ion  and 

simple shear due to in te r la ye r  s l i p  can be discounted, the pattern of i n t 

ernal s c h is to s i t y  (F igs.87f & g) indicates that the cleavage did not form 

perfect ly co-p lanar to the fo ld  axial  planes (Class 2 fo ld ,  Ramsay,1967). 

The fan of in te rna l  s c h is to s i t y  indicates a heterogeneous s t ra in  pattern 

and i t  is possib le that the sigmoidal pattern of internal sch is to s i t y  t y p 

ical of m ic ro d io r i te  fo ld  limbs and v i r t u a l l y  a l l  of the planar dipping 

sheets was produced during the formation of the sch is to s i ty  ( ie .  cleavage 

re fract ion)  and is not the re su l t  of modif icat ion of an o r ig i n a l l y  planar 

sch is tos i ty .

I f  a f te r  fo rmation, the limbs had then passively rotated towards v e r t i c a l

as a re s u l t  of  continued horizonta l  compression then one would expect the

angular re la t io n sh ip s  between the sigmoidal internal sch is to s i t y  and the 

sheet wal ls  to be re ta ined. As the dip o f the sheet increased one would 

expect the in te rna l  sigmoidal sch is to s i t y  which formed i n i t i a l l y  in a sub

vert ical o r ie n ta t io n ,  to be rotated through ve r t i ca l  to dip steeply in 

the opposite d i re c t io n .  This is commonly seen (see Map 7, western s ide) .  

In the near v e r t i c a l  sheets one would expect the h o r izon ta l ly  directed 

compression to produce layer thinning of the sheets, especia l ly  as the 

sheets have acted as the incompetent un its during deformation. The th inn ing 

or f l a t t e n in g  of the sheets should re su l t  in a descease in the angular 

discordance between the in te rna l  sch is tos i t y  and the sheet margins. Evidence 

of such f l a t t e n in g  and a decrease in "angular discordance" has not however 

been observed (Map 7 shows the angular re la t ionsh ips ) .

I t  must be noted that none of the mechanisms discussed above can explain

the geometrical  re la t io n sh ip  between the interna l  sch is to s i t y  and the sheet 

walls shown in Figure 87b.
From the discussion above i t  is obvious that the mechanism of deformation 

proposed by Talbot (1982 & 1983) does not f i t  a large number of f i e l d  obser

vations, and w h i l s t  i t  is  d i f f i c u l t  to propose a deta i led mechanism of 

deformation which f i t s  a l l  the observations i t  would appear that a mechanism
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involving hor izonta l  E-W directed pure shear compression of var iab ly  dipping 

incompetent m ic rod io r i te  sheets in which local heterogeneous s t ra in  in 

and adjacent to the m ic rod io r i te  sheets produced a sigmoidal in ternal s c h is t 

osity subsequently modif ied during (?) passive ro ta t ion  associated with 
the E-W directed pure shear compression.
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8.2e) Age of in t rus ion  and deformation of the m ic rod io r i te s .

No absolute iso top ic  age determinations have been reported fo r  any micro

dior i te  sheets. Smith (1979,p .688) notes that " th e i r  age in re la t io n  to 

major g ra n i t i c  in t rus ions  is unequivocal, they f re e ly  cut the Cluanie gran

ite [417 Ma. U-Pb z i rcon, Rdgeon & Afta l  ion , 1978] but are cut by veins 

extending from the Stront ian complex [435+10 Ma. U-Pb z ircon. Pigeon & 

Aftal i o n ,1978 and 421 + 10 Ma. and 407 + 18 Ma. K-Ar b i o t i t e .  M i l l e r  & Brown, 

1965] as wel l as occurring as inclusions with in  the granite . No members 

of the m ic ro d io r i te  su i te  in te rsec t  the Ross of Mull granite  [414 + 3 Ma. 

Rb-Sr whole rock, Ha l l iday et a l . 1979] but several examples of m ic rod io r i tes  

cutting the adjacent Moine schists and hornfelsed along with them are known". 

Microdiori tes f requen t ly  cut " la te "  pegmatites (450+10 Ma. Rb-Sr muscovite 
and U-Pb z i rcon ,  van Breemen et a l . 1974).

There is no s t ru c tu ra l  evidence to suggest that there are several gen

erations of m ic ro d io r i te  in t rus ions which have d i f fe re n t  s t ruc tu ra l  h i s t 

ories. A l l  the l ines  of evidence point towards int rus ion a f te r  D3 deform

ation and fol lowed by deformation during . I f  the microd ior i tes had been 

intruded p r io r  to D3 , then one would expect to see a change of sheet and 

internal s c h is to s i t y  o r ie n ta t io n  across the axes of the major F3 fo lds 

and changes of metamorphic grade and in te ns i ty  of deformation in micro

dior ites across the D3 Sgurr Beag s l id e ,  none of which was seen. Smith 

(1979 t e x t - f i g . 3 )  shows tha t  the d is t r ib u t io n  pattern of m ic rod ior i tes  

is not displaced by movement on the D3 Sgurr Beag s l ide .

Brewer et a l .  (1979) reported Rb-Sr ages of 467+ 20 Ma. to 413 ±17 Ma. 

from pel i tes in the Locha i lo r t  to Glenfinnan area and related these ages 

to cooling of the Moine rocks, a f te r  Caledonian metamorphism, by a process 

of sequential u p l i f t  along d iscre te  zones (s l ides? )  beginning in the west. 

The D3 Sgurr Beag s l id e  is one, i f  not the major, of these d iscre te  s l ide  

zones. The Glen Dessary syenite, intruded at 456±5 Ma. (van Breemen et 

al. 1979) was intruded p r io r  to D3 deformation (Roberts et a l . 1984 and 

Baird,1985). Thus i n d i r e c t  iso top ic  age determinations and s t ruc tu ra l  c o r r 

elations place the post-Dg age of in t rus ion and subsequent deformation 

of the m ic rod io r i tes  as la te  Caledonian. There is no isotopic  or s t ruc tu ra l  

support fo r  a 750 Ma. ("Morarian") age fo r  any of the m ic rod io r i tes  ( c f .  

Talbot,1983).
The o r ie n ta t io n  of the D3 s t ra in  e l l i p s o id  changes progressively across 

the area. In the west, the Z axis of the regional s t ra in  e l l i p s o id  is co

incident with the Z axis of the m ic rod io r i te  s t ra in  ell ipsoid, but whi le 

the Z axis of the m ic ro d io r i te  s t ra in  e l l i p s o id  remains constant across
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the area, the o r ien ta t ion  of the D3 s t ra in  e l l i p s o id  changes progressively 

(F ig .90 and Schematic Section 1), again ind icat ing  that the deformation 

of the m ic rod io r i tes  occurred a f te r  D3 regional deformation.

The Z axis of the s t ra in  e l l i p s o id  and the m ic rod io r i te  deformation 

strain e l l i p s o id  are coincident throughout the area (F ig .90). I t  has been 

argued (Chapter 7.5) that deformation has produced the Glenfinnan Div

ision "steep b e l t "  and that th is  deformation was much less intense fu r th e r  

eastwards in the Loch Ei l Division " f l a t  b e l t " .  The increase in D/̂  s t ra in  

westwards coincides with the occunence of more steeply dipping m ic rod io r i tes .

I f  most of the m ic rod io r i tes  had been intruded i n t o  a post-D3 /pre-D^ 

jo in t  set which dipped shal lowly to the ESE in pre-D^ times, then ESE-WNW 

directed compression which was more intense with in  the Glenfinnan Div

ision "steep b e l t "  would have been responsible fo r  the ro ta t ion  and increase 

of dip of the sheets with more ro ta t ion  in the "steep b e l t " .  Sheets not 

intruded in to  the j o i n t s  and dipping westwards would have s im i l a r l y  steep

ened in dip during D̂  deformation, especia l ly  with in  the "steep b e l t " .  

Flat sheets would have responded to h o r izon ta l ly  directed compression by 

folding and developing near ve r t ica l  fo ld  axial  planes. In th is  regard 

deformation has produced the major F/̂  Loch E i l t  ant i form and the F̂  

Glenshian synform (see Chapter 7). Around these major fo lds ,  depending 

on the mechanism of fo ld in g ,  one would expect to see var ia t ions of micro

d io r i te  sheet and j o i n t  set o r ien ta t ions .  In the area under considerat ion, 

ie. on the eastern limb of the F̂  Loch E i l t  ant i form, ho r izon ta l ly  directed 

compression has produced a f a i r l y  wide range of sheet o r ien ta t ions .  I t  is 

presumed tha t  on the western limb of the t i g h t  to i soc l ina l  F̂  Loch E i l t  

antiform s im i la r  amounts of ho r izo n ta l ly  directed compression has produced 

an equal ly large range of sheet o r ien ta t ions .  West of the axial  plane of 

the F  ̂ Loch E i l t  ant i form m ic rod io r i te  sheets dip to the east at 50-60° 

(Grid r e f .  NM 787832) and have t y p i c a l l y  sigmoidal in ternal  sch is to s i t y  

(Dr.0 .Powell pers.comm.). Whi lst  the range of sheet geometries in th is  

fold l imb is  not known, i t  is noted that the geometry described is cons is t 

ent with pre-D^ in t rus ion  and subsequent D̂  deformation involv ing hor izon ta l ,  

WNW-ESE d irec ted  pure shear compression.

On a regional scale, the areas to the west of the axial  plane of the 

F4 Glenshian synform and to the east of the Loch E i l t  ant iform share the 

same long limb geometry. I t  is only in the area between these two major 

F̂  fo ld  ax ia l  planes that the F̂  short  limb geometry occurs and i t  is only 

with information co l lec ted in th is  area that a more deta i led invest iga t ion  

of the mechanism of F̂  fo ld in g  can be made. I t  is assumed that i f  the j o i n t  

set observed in the area is of post-D3 /pre-D^ age that th i s  w i l l  show a
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F i g u r e  90.

See text for d iscuss ion .

Loch Eilt
Antiform

Glenshian

Synform

Isoclinal F 3  fo lds, 
turned upright during 

deform ation

GLENFINNAN DIVISION

•• STEEP BELT "

Orientation of D^
1'

(m icrodiorite)
z — — z z — >  < — z

strain ellipsoid

Orientation of X / '
D3  strain .  j .  -,
ellipsoid

tx' z /

Sub -  recumbent 
F3  folds

( eg. Druim Beag 
Synform )

LJ
O

__l
< -

depth unknown. 

LOCH EIL DIVISION

“ FLAT BELT "

Sketches to show the formation of the "steep be l t "  and the 

o r ien ta t ions  of the and s t ra in  e l l i p so id s  across the area.
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change of o r ien ta t ion  on e i ther  side of the major fo ld  axial  planes. 

The occurence of a post-D^/pre-D^ j o i n t  set intruded by a set of pre- 

igneous sheets, some of which s t i l l  preserve good igneous textures imp

lies a postDg /pre-D^ period during which the country rocks cooled, were 

up l i f ted ,  and behaved in a b r i t t l e  manner before the onset of deformation 

and metamorphism of the m ic rod io r i te  sheets under more d u c t i le  and meta

morphic condi t ions.

Thus the s t ru c tu ra l  development of the D3 Sgurr Beag s l ide  and i t s  def

ormation in to  i t s  present upright (D̂  ) a t t i tude  cannot be considered to 

be part of a continuous process of progressive deformation.

I t  can also be noted that the easter ly  dipping post-Ü3 /pre-D^ j o i n t  

set has a s im i la r  o r ien ta t ion  to the plane of the Moine th rus t ,  a fa c t  

which may or may not have chronological s ign i f icance.
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8.3) Amphiboli tes  .

There are two groups of amphibol i tes in the area (see Chapter 5). Both 

garnet iferous amphiboli tes and hornblende schists  are found in the Glen

finnan Div is ion but only hornblende schists have been found in the Loch 

Eil D iv is ion .  Both groups contain a strong L/S fab r ic  which is co-planar 

with the dominant ear ly  f o l i a t i o n  {Ŝ  or S2 ?). Both groups occur w ith in  

the Ardgour g ra n i t i c  gneiss but i t  has not been possible to ascertain th e i r  

re la t ive  ages or even whether they were intruded pre-D-, and pre-migmatis- 

ation, or post-D-| /pre-D2 and subsequently deformed and metamorphosed during 

the re-working of the migmati t ic  gneiss. Neither group was found in the 

Morar D iv is ion  — a feature held to be d i s t in c t i v e  of the Morar Division 
in the SW Northern Highlands (Powel1,1974).

The garnet i fe rous amphiboli tes occur as small isolated boudins which 

cannot be proved to be in t ru s ive .  A sedimentary o r ig in  has been suggested 

(Johnstone et a l . 1969) however Winchester (1976), on geochemical grounds, 

favoured an igneous o r ig in  as a phase of t h o l e i i t i c  magmatism. Further 

north in the Fannich area of Ross-shire, Winchester has recorded th in  sheets 

of amphibol i t e  in rocks corre la ted with both the Morar and Glenfinnan Div

isions of the SW Northern Highlands.

Winchester uses p lo ts  of Fe203  ( t o t a l ) ;  MgO; T i 0 2 ; and p.p.m. Y against 

Si02 to d is t in g u ish  between m ic rod io r i tes  (which he termed meta-appinites) 

and amphibol i tes. Figure 91 is p lo t ted using data from rocks co l lected 

in the thesis mapping area (F igs .83 & 92) and incorporates Winchester's 

boundary l ines between amphiboli tes and m ic rod io r i tes .

Examination of Figure 91 shows that the local data is in broad agreement 

with that o f Winchester (1976) however Y (p.p.m.) plot ted against % Si0 2 - 

Winchester has used a p lo t  o f the r a t i o  of Nb/Y against the ra t i o  of 

Zr/P2 0g to d is t in g u ish  between amphibolites from metasediments correla ted 

with the Morar and Glenfinnan Divisions in western Ross-shire. A l l  of  the 

thesis area amphibol ites p lo t  w ith in  Winchesters' "Glenfinnan t h o l e i i t i c  

area" (F ig .93).
In Figures 91 & 93 the Glenfinnan area amphibol i tes  have been sub-divided 

into garnet i ferous amphibol i tes. hornblende schists and porphyroblast ic 

hornblende sch is ts .  I t  is c lear  from these graphs and geochemical tables 

that the d i f f e r e n t  types of "amphibol i te" cannot be dis t inguished geochem

ical ly  although the garnet i ferous amphiboli te textures and s l i g h t l y  d i f f e r 

ent metamorphic mineralogy may be a re f le c t io n  of o r ig ina l  igneous d i f f e r 

ences such as grain size and phyr ic /aphyr ic  nature or they may be a re su l t
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Geochemical analyses of Amphiboli te samples.
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G arnetiferous Amphibolites

p
si
A l
Mg
Mn
Fe
Ti
Ca
K
Na

%
0 . 4 4 5

4 6 . 4 8 0
1 3 . 6 0 0

6 . 4 6 0
0 . 2 5 5

1 5 . 4 7 0
3 . 4 9 5
8 . 5 5 0
3 . 0 9 0
0 . 8 8 5

230

O. 3 2 0  
4 8 . 3 3 5  
1 3 . 6 6 0  

5 . 9 0 0  
0 . 2 9 5  

1 7 , 3 6 0  
2 . 8 8 0  
8 . 4 8 5  
2 .  3 8 0  
0 . 6 9 0

677 235

O.  37 0  
4 7 . 9 2 0  
1 4 . 0 8 0  

6 . 8 4 0  
0 . 2  30  

1 5 . 0 1 0  
3 . 2 8 0  
9 . 9 7 0  
2 . 1 9 0  
1.110

143

% .
0 . 2 3 5

4 8 . 0 3 5
1 3 . 8 8 0

7 . 1 3 5
0 . 2 4 0

1 6 . 4 2 0
2 . 1 6 5
9 . 7 0 5
0 . 6 0 0
1 . 7 2 0

1477669

0 . 2 2 0  
4 6 . 4 6 0  
1 3 . 8 4 0  

6 . 7 0 5  
0 . 2 6 0  

1 6 . 1 8 5  
2 . 1 0 5  

1 0 . 6 7 0  
0 . 8 6 0  
1 .  390

1527721

0 . 2 1 5
4 9 . 8 6 5
1 3 . 7 7 0

6 . 9 6 0
0 . 2 3 0

1 4 . 6 3 5
1 . 9 6 5
9 . 2 4 5
1 . 4 4 5
0 . 7 9 0

1597
740

0 . 4 0 5  
5 1 . 2 4 0  
1 4 . 2 5 5  

5 . 9 2 0  
0 . 2 1 5  

1 3 . 3 6 0  
1 . 6 8 5  

1 0 . 0 6 0  
0 . 9 9 5  
1 . 2 4 0

165

817

O. 33 0  
4 6 . 1 3 0  
13 6 4 0  

6 . 5 4 5  
0 , 2 6 0  

1 6 .  340  
2 . 7 8 5  

1 0 . 8 4 0  
0 . 6 9 5  
1 . 4 2 5

T o t a  1 9 8 . 7 4 5 1 0 0 . 4 0 0 1 0 0 . 9 9 0 1 0 0 . 1 4 0 9 8 . 7 0 0 9 9 . 1 5 0 9 9 . 4 2 5 9 8 . 9 8 0
Z r
Y
Bb
Nb
Sr
Th

231
65

1 5 7
9

34
O

177
67

10 4
5

32
1

17 8
55
91

5
39
O

12 3
56
19

3
116

3

134  
56  
10

5
135  

1

106
54
49
1

87
1

99
43
47

4
221

4

17 9
64

8
3

90
5

G t. Amph. Hb. Sch.

643
169%900

178
%971

184
7 1006

209
1082

757243
172

952
221

1089

P
Si
Al
Mg
Mn
Fe
Ti
Ca
K
Na

0 . 1 9 5  
4 5 . 7 4 0  
1 3 . 3 7 0  

6 . 9 7 5  
0 . 2 7 5  

1 6 . 5 8 0  
3 . 2 8 5  

1 0 . 9 5 0  
0 . 8 9 5  
1 . 4 3 5

0.200
4 6 . 9 0 5
1 4 . 1 2 0

7 . 0 7 0
0 . 2 6 5  

1 5 . 5 0 0
2 . 0 8 0  
9 . 7 4 0
1 .  34 0  
1 . 4 8 0

0 . 4 3 5
4 5 . 6 1 5
1 4 . 8 9 0

6 . 5 9 0
0 . 2 5 0

1 5 . 4 9 5
3 . 4 4 5

1 1 . 0 3 5
0 . 6 4 5
0 . 8 2 0

0 . 2 7 0
4 3 . 0 1 5
1 4 . 3 0 5

7 . 4 8 0
0 . 2 4 0

1 4 . 8 3 5
1 . 9 6 5
9 . 8 4 0
1 . 2 1 5
0 . 8 1 5

0 . 2 5 0  
4 7 . 5 3 0  
1 3 . 7 7 5  

6 . 6 2 0  
0 . 3 3 5  

1 5 . 3 4 5  
2 . 1 0 5  

l O . 37 0  
1 . 2  30  
1 . 6 7 5

0 . 2 2 0
5 5 . 1 7 0
1 5 . 1 6 0

6 . 3 1 0
0 . 1 7 0
9 . 8 8 0
1 . 5 4 0
8 . 6 5 0
1 . 1 7 0
2 . 8 9 0

0 . 2 6 0
4 7 . 2 7 0
1 3 . 6 6 0

6 . 9 0 5
0 . 2 4 5

1 5 . 5 1 5
2 . 3 1 0

1 0 . 0 5 5
1 . 2 2 0
1 . 1 3 5

0 . 2 7 5  
4 4 . 3 7 0  
1 3 . 8 9 5  

7 . 3 5 0  
0 . 2 7 0  

1 6 . 8 5 5  
2 . 5 1 5  
9 . 4 2 0  
2 . 1 3 5  
1 . 2 8 0

T o t a l 9 9 . 7 0 0 9 8 . 6 9 5 9 9 . 2 1 5 9 8 . 9 9 0 9 9 . 2  30 1 0 1 . 1 6 0 9 8 . 5 7 0 9 6 . 3 5 5
Z r
Y
Rb
Nb
S r
Th

125
51
17

3
72
0

120
50
43

8
141

1

2 6 6
69
12
1

1 1 4
3

125
52
33

3
137

0

1 26
53
27

3
152

1

1 8 0
48
38

4
165

5

136
58
27
O

88
3

141
64

121
3

196
3

Hornblende Schists

' % , ^ 1 3 6
5 4 /

/  232
56 .  

^ 2 3 2 /  240
108 y

/ 47O
i 2 y

^ 54 9

p 0 . 1 7 5 0 . 3 3 5 0 . 1 8 0 0 . 2 3 5 0 . 2 0 0 0 . 1 8 0 0 . 1 4 0 0 . 1 1 5
S i 4 9 . 9 5 5 4 . 2 9 0 4 8 . 8 6 0 4 8 . 3 1 0 5 0 . 2 6 0 4 8 . 9 1 5 4 9 . 2 2 0 4 9 . 8 1 0
Al 1 4 . 5 4 0 1 4 . 6 6 5 1 6 . 1 2 5 1 4 . 8 9 0 1 5 . 2 5 0 1 4 . 8 2 5 1 4 . 7 6 0 1 5 . 3 6 0
Mg 7 . 8 5 0 7 . 4 4 5 8 . 4 6 0 6 . 9 0 0 6 . 9 8 0 7 . 8 7 0 7 . 8 9 5 9 . 4 6 5
Mn 0 . 1 9 5 0 . 2 3 5 0 . 1 9 0 0 . 1 9 5 0 . 2 0 0 0 . 2 1 5 0 . 2 3 0 0 . 2 0 0
Fe 1 1 . 2 8 0 1 4 . 2 4 0 1 1 . 4 7 5 1 2 . 4 2 0 1 2 . 9 9 0 1 2 . 4 2 0 1 1 . 7 6 0 1 0 . 3 0 5
T i 1 . 5 4 0 2 . 8 3 5 1 . 7 4 5 1 . 8 3 0 1 . 8 2 0 1 . 8 5 0 1 . 6 4 0 1 . 1 5 5
Ca 9 . 9 1 0 1 0 . 4 4 0 1 0 . 3 1 0 8 . 2 5 0 6 . 4 9 0 9 . 7 1 0 1 1 . 9 2 0 9 . 6 1 0
K 1 . 3 5 0 0 . 9 8 5 1 . 1 1 0 2 . 7 2 5 3 . 7 3 0 2 . 5 5 5 0 . 9 1 5 0 . 9 9 0
Na 2 . 4 4 0 1 . 1 7 5 0 . 9 0 5 2 . 4 0 5 2 . 2 0 0 2 . 4 2 5 1 . 9 9 5 2 . 6 6 0
T o t a l 9 9 . 2 5 0 1 0 0 . 6 5 0 9 9 . 3 7 5 9 8 . 1 6 5 1 0 0 . 1 0 0 1 0 0 . 9 7 0 J 1 0 0 . 4 6 5 9 9 . 6 7 0
Z r 98 2 0 5 96 96 1 0 1 75 98 57
Y 31 59  . 35 44 41 33 22 25
Rb 48 15 36 1 6 9 2 6 0 115 15 47
Nb 1 5 3 9 11 3 3 1
S r 11 6 122 65 8 0 75 318 321 315
Th 1 1 0 4 1 3 0 4

Major elements: See note on the fo l low ing  page.
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■<*-----  Porohvro Dlostic Hornblende Sc hists >

' % .
88 /  

^^281
8 9 /

' 2 9 3 " / , 3 3 " % .
128 y

' 5 4 9
1 3 2 /

' 5 8 1
p 0 . 5 8 0 0 . 3 4 0 0 . 1 3 0 0 . 2 0 0 0 . 1 1 0 0 . 1 3 0 0 . 1 3 0 0 . 2 2 0
S i 4 2 . 2 8 0 4 6 . 7 4 5 4 8 . 5 7 5 4 9 . 2 0 0 4 8 . 4 6 5 4 7 . 0 5 0 4 8 . 0 8 0 4 8 . 7 2 0
A l 1 4 . 3 7 5 1 4 . 1 5 5 1 6 . 7 9 0 1 4 . 8 0 0 1 4 . 3 8 5 1 6 . 7 0 0 1 6 . 7 8 5 1 4 . 9 1 0
Mg 6 . 8 5 0 7 . 2  30 9 . 1 6 5 4 . 4 8 5 7 . 8 1 5 8 . 5 8 5 9 . 2 0 0 8 . 0 8 0
Mn 0 .  325 0 . 2 4 0 0 . 1 7 5 0 . 2 0 5 0 . 2 4 0 0 . 2 1 0 0 . 1 7 0 0 . 2 2 0
Fe 1 6 . 3 4 0 1 3 . 7 2 0 9 . 8 9 0 1 1 . 8 1 5 1 2 . 7 4 5 1 0 . 4 5 5 9 . 8 9 5 1 2 . 3 9 0
T i 4 . 4 1 5 2 . 7 1 0 1 . 0 8 5 1 . 6 8 5 2 . 0 1 0 1 . 2 2 5 1 . 0 6 5 1 . 9 9 5
Ca 1 0 . 0 4 0 1 0 . 5 1 0 1 1 . 4 8 0 1 2 . 0 2 5 1 0 . 6 9 5 1 2 . 1 4 5 1 0 . 8 9 5 1 0 . 4 8 5
K 2 . 6 5 5 1 . 8 5 5 0 . 7 9 0 0 . 6 4 5 1 . 1 5 0 0 . 9 8 0 0 . 7 0 0 1 . 1 9 0
Na 1 . 2  30 1 . 5 6 5 2 . 1 5 5 1 . 7 6 0 1 . 7 4 5 2 . 2 5 0 2 . 1 5 5 1 . 7 9 5
T o t a l 9 9 . 1 0 0 9 9 . 0 7 0 1 0 0 . 2 2 5 1 0 0 . 8 2 5 9 9 . 3 6 5 9 9 . 7 3 5 9 9 . 0 7 0 1 0 0 . 7 1 0
Z r 378 2 1 6 57 94 104 69 57 119
Y 88 6 0 26 114 44 26 24 41
Rb 9 0 85 30 17 33 35 31 85
Nb 11 6 1 1 1 2 1 3
S r 10 8 2 1 7 155 12 9 181 141 2 5 5 303
Th 0 0 1 3 1 1 0 3

Major element analyses ( ie .  P to Na ) are l is ted  as Wt. % oxides. 

( PgO^, SiOg, AlgO], MgO, MnO, Fe^O], TiO^, CaO, K^O, Nâ O ).
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© Non garnetiferous amphibolite 

® Porphyroblastic amphibolite

Graph of Nb/Y versus Zr/PgO^ fo r  amphibolites col lected 

from the Glenfinnan area.
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of the d i f f e r e n t  suites having undergone d i f fe re n t  metamorphic h is to r ies  
although th is  cannot be ascertained in the Glenfinnan area.

8.4) Camptonites and Do!er i tes.

Throughout the area there are a number of ve r t ica l  basic dykes which 

trend mostly E-W with some trending from NW-SE through to NE-SW. A l l  of 

these dykes have c h i l l e d  margins and are undeformed. A small boss 250 metres 

in diameter (Exp.258/1139 NM 82958375 ) appears to be the feeder to an 

E-W trending dyke some 500 metres fu r the r  east (Exp 257/1136 NM 83528390 ).

In th in  sect ion i t  is obvious that these dykes form two very d i s t i n c t  

suites. There is a su ite  of do le r i tes  and coarse basalts with large p lag io-  

clase, t i t a n  augite and o l i v in e  (sometimes serpent inised) phenocrysts. 

These rocks are par t  of a su i te  of Hebridean T e r t ia ry  A lka l i  Basalts (Morr

ison et a l . 1980). The other su i te  is f i n e r  grained, usual ly a l te red ,  and 

typ i f ied  by the la te  stage growth of f in e  needle shaped, cinnamon coloured 

alkal i  amphiboles (B a rke v ik i te /K a e rsu t i te ) . These camptonite dykes are 

part of a Carboniferous-Permian su ite  (Gal lagher,1963: Speight & M i tch e l l ,  

1979 and Baxter & M i t c h e l l , 1984). The two suites can be read i ly  d i s t i n g 

uished geochemical ly ( F ig .94).

The camptonites have extremely low % Si02 and very high values of the 

trace elements Zr, Rb, Nb and Sr. Morrison et a l .  (1980) have used th is  

abundance of incompatible elements to suggest tha t  the camptonites have 

been produced by a very small percentage f ra c t io n a l  melt of the underlying 

mantle. They claim tha t  the removal of incompatible elements from the mantle 

source in Carboniferous-Permian times depleted the mantle so tha t  subsequent 

partial  melt ing in T e r t ia ry  times produced a melt which was depleted in 

incompatible elements. I t  is questionable i f  the mantle remains stable 

over such an in te rva l  and i t  is  also quest ionable i f  the removal of such 

a small percentage of (camptonit ic)  material  would not icab ly  change the 

bulk chemistry o f the mantle so as to a f fe c t  subsequent much la te r  p a r t i a l  

melting. However i t  must be noted that  whatever mechanisms of formation 

are discussed, the trace and major element geochemistry re a d i l y  d i s t i n g 

uishes between the two su ites of dykes.
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P e rm o -Carboniferous Camptonites
100 /  

U 2 9
101 /

/ 1 2 9
106 y

^167
109y

' U l l

126 y  
^ 54 9

2 7 4 y  

/  1182
2 ? y

1228
276 /  

M 2 28
U 5  y  

^656

p 0 . 6 0 5 0 . 7 8 5 0 . 7 4 5 0 . 7 1 0 1 . 2 6 0 0 . 9 2 0 0 . 5 8 5 0 . 6 0 0 O . 9 5 0
S i 3 9 . 9 2 0 4 1 . 9 9 5 4 2 . 0 6 5 3 8 . 2 9 0 3 8 . 5 3 5 4 3 . 2 5 5 4 3 . 8 7 0 43 . 2 7 0 31 . 4 3 5
A1 1 1 . 6 5 5 1 3 . 8 1 5 1 2 . 3 5 0 1 2 . 0 2 0 1 1 . 8 5 5 1 2 . 8 7 5 1 4 . 0 8 0 14 . 2 2 0 13 - 6 3 5
Mg 7 . 6 7 0 6 . 4 2 0 9 . 5 9 0 7 . 8 4 0 1 1 . 2 4 0 9 . 7 3 0 7 . 8 2 0 8 .no 6 . 1 6 0
Mn 0 . 1 7 0 0 . 1 5 0 0 . 1 7 0 0 . 1 7 0 0 . 2 0 0 0 . 1 8 5 0 . 1 7 0 0 . 2 2 0 O . 1 6 0
Fe 1 3 . 2 5 5 1 3 . 7 3 0 1 1 . 2 0 0 1 2 . 1 6 0 1 1 . 4 9 5 1 2 . 0 6 0 1 0 . 7 8 0 10 . 8 8 0 18 . 6 5 5
T i 2 . 9 4 0 3 . 1 3 5 2 . 6 4 5 2 . 8 8 0 2 . 6 5 5 2 . 9 4 5 2 . 5 5 0 2 . 4 9 5 2 . 1 0 5
Ca 1 1 . 5 9 0 1 0 . 5 3 0 1 1 . 4 7 5 1 3 . 6 6 0 1 4 . 7 3 0 1 2 . 4 7 5 1 0 . 6 2 0 11 . 0 3 0 11 . 385
K 1 . 9 8 5 2 . 6 8 0 3 . 2 8 5 2 . 3 4 0 1 . 8 7 0 0 . 7 4 5 2 . 0 1 5 1 . 8 9 0 2 . 4 0 5
Na 1 . 6 3 5 1 . 9 8 5 0 . 9 6 5 1 . 5 0 5 0 . 4 7 0 3 . 5 2 0 2 . 9 6 0 3 . 1 5 5 0 . 0 3 5
T o t a l 9 1 . 4 3 0 9 5 . 2 2 0 9 4 . 4 9 0 9 1 . 5 7 0 9 4 . 3 0 0 9 8 . 7 1 0 9 5 . 4 5 5 95 . 8 8 5 86 . 345
Z r 2 50 322 338 291 306 2 8 8 2 7 5 29 3 14 1
Y 22 28 30 27 30 33 31 33 32
Rb 52 67 93 61 45 2 0 66 64 65
Nb 74 1 0 0 125 6 0 118 84 107 117 34
S r 1 2 5 4 99 8 1 0 93 784 1 9 8 4 6 4 1 1 1 2 0 1 1 05 1 2 0
Th 6 5 11 3 8 6 6 9 0

n  m 1 r  i ♦ Q c1 w t  i i u i  y ---------------- >

9 8 .
Aoo

107y
^469

2 4 y
^1094

2 5 y
^1136

2 5 8 /  
M l  39

P 0 . 2 4 0 0 . 1 8 0 0 . 1 3 0 0 . 3 3 0 0 . 4 2 0 0 . 2 4 5 0 . 1 5 5 0 . 7 6 0
S i 5 4 . 6 9 5 5 4 . 4 1 0 5 7 . 6 1 5 4 6 . 4 3 0 4 8 . 5 2 0 4 6 . 8 5 0 5 5 . 6 5 0 5 9 . 4 1 0
A I 1 2 . 3 5 0 1 5 . 8 3 5 1 5 . 0 3 0 1 3 . 7 6 0 1 5 . 3 0 0 1 4 . 0 4 5 1 4 . 9 6 5 1 4 . 8 9 0
Mg 9 . 3 2 5 5 . 9 6 5 6 . 9 3 0 7 . 1 2 0 7 . 5 3 5 9 . 3 3 0 5 . 1 2 0 5 . 7 4 5
Mn 0 . 1 6 5 0 . 1 4 0 0 . 1 5 0 0 . 2 4 0 0 . 1 4 5 0 . 2 1 0 0 . 1 4 0 0 . 0 9 0
Fe 1 2 . 1 3 5 1 0 . 1 1 5 9 . 7 9 5 1 0 . 2 7 0 1 0 . 3 1 5 1 2 . 1 5 0 1 0 . 1 6 0 5 . 5 9 5
T i 1 . 8 4 0 1 . 2 5 5 1 . 1 1 5 1 . 5 7 0 2 . 0 9 5 1 . 7 6 0 1 . 2 9 5 0 . 9 9 5
Ca 8 . 0 6 5 1 0 . 1 3 5 7 . 3 5 0 1 3 . 6 2 0 1 0 . 5 9 5 1 0 . 7 0 5 8 . 5 2 0 3 . 9 7 5
K 0 . 7 4 0 0 .  31 0 1 . 0 8 0 0 . 3 9 0 1 . 0 3 5 0 . 4 4 0 0 . 6 2 5 3 . 3 8 5
Na 2 . 7 3 5 2 . 6 9 5 3 . 0 2 5 2 . 2 9 0 3 . 0 8 5 2 .  385 3 . 1 9 0 4 . 1 0 0
T o t a l 1 0 2 . 6 8 5 1 0 1 . 0 2 0 1 0 0 . 2 1 0 9 6 . 0 3 0 9 9 . 0 4 5 9 8 . 1 2 0 9 9 . 8 3 0 9 8 . 9 4 0
Z r 102 62 72 94 1 3 3 87 79 2 6 9
Y 24 2 0 22 21 27 2 0 2 0 19
Rb 21 1 32 4 18 4 11 59
Nb 1 0 7 8 19 26 11 4 21
S r 351 307 622 4 6 3 5 3 4 39 1 318 13 92
Th 0 0 1 0 3 1 0 12

us
Highly oH#r*d I ? I Camptonite

Granitic" theet

Major element analyses ( i e .  P to Na ) are l i s t e d  as Wt.% oxides  

( PgOg, SiO^, Al^O],  MgO, MnO, Fe^Oj,  TiO^,  CaO, K^O, Na^O ) .  '
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C H A P T E R  9.

Local s t ruc tu re  and i t s  regional and crustal  context

9.1) Synopsis of local s t ruc tu re .

9.2) Regional and crusta l  considerations.

9.1) Synopsis o f local s t ruc tu re .

This chapter presents a synthesis of the s t ruc tu ra l  development of the 

local sub-areas described in de ta i l  in Chapter 5, the s truc tu ra l  development 

of the Sgurr Beag s l id e  (Chapter 7) and the s tructure  of the m ic rod io r i te  

suite (Chapter 8 ) . Subsequently, models of the crusta l  s t ruc ture  of the 

NW Scott ish Highlands are discussed in context with the local s t ruc tu re .

Before discussing the observed s t ruc ture  i t  is worth noting tha t  sed

imentary s t ruc tu res  are general ly not found in the area, and where they 

were observed deformation is s t i l l  r e la t i v e l y  intense. The deformation 

has produced and then deformed h igh ly  planar fabr ics  and i t  is qu ite  poss

ible that ea r ly  phases of deformation have not been observed or have been 

mis-corre lated.

The e a r l i e s t  observed st ructures are the fab r ic  and the possible 

F-i minor fo lds  in and adjacent to the Ardgour g ra n i t i c  gneiss. This fa b r ic  

is a planar mica f a b r i c ,  which in the Ardgour g ra n i t i c  gneiss contains 

co-planar pegmatites with b i o t i t e  selvages. The planar migmati t ic  fa b r i c  

dominant in the Druim na S a i l l e  pel i t e  is also of th is  age. A l l  ind ica t ions

are that t h i s  f a b r i c  has been produced during a phase of high grade meta

morphism and deformation. However, no major F-| folds have been mapped w i th in  

the area. Minor F̂  fo lds  have been described elsewhere (Powel1,1974.t a b le . 2), 

but only in the extreme west of the Moine nappe have major F̂  fo lds  been

described. These are held to be responsible fo r  the in te r leav ing  of the
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Moine schis ts  with the Lewisian basement (Ramsay,1958).

The planar penetrat ive mica fa b r ic  ubiquitous in the metasediments of 

the Glenfinnan Div is ion could be an fa b r ic .  I t  cannot be related to

any major fo ld  in the area west of the Beinn an Tuim fa u l t .  I t  could, how
ever, equal ly  well be an S2 fa b r ic .

The D2 phase of deformation has produced a pa ir  of major fo lds in the 

Ardgour g ra n i t i c  gneiss and in the metasediments on Beinn an Tuim (Map 

3). These major fo lds  are isoc l ina l  over most of th e i r  outcrop and show 

very complex minor fo ld  patterns which cannot be explained by var ia t ions 

in the in te n s i t y  of subsequent deformation. The F2 Beinn an Tuim synform 

passes from a r e la t i v e l y  open upward facing fo ld  in the Loch Ei l Division 

psammites in the east,  t ighten ing and becoming more steeply plunging along 

i ts  axial  plane towards the west. The hinge l ine  of the fo ld ,  s t i l l  opening 

towards the east,  lo c a l l y  passes through ve r t ica l  so that at i t s  western

end i t  has become an ant i formal s truc tu re .

The F2 Meall nan Damh fo ld  on a regional scale, fu r th e r  south, is an 

anti form, the hinge of which plunges to the south. Traced northwards along 

i ts  ax ial  plane trace into  the region under considerat ion, the hinge of 

the fo ld  has increased i t s  plunge to become recl ined and fu r th e r  north, 

near the Beinn an Tuim f a u l t  lo c a l l y  the hinge l ine  has gone beyond ve r t ica l  

so that the fo ld  is lo c a l l y  a synform.

The D2 deformation in the Ardgour g ra n i t i c  gneiss and associated metased

iments is t y p i f i e d  by the extremely strong development of a penetrat ive 

$2 f a b r ic  which has transposed most of the bedding and early  (Ŝ  ) fa b r i c ,  

often making the i d e n t i f i c a t i o n  of F2 fo lds d i f f i c u l t .

Contrast ing with the major t i g h t  to i soc l ina l  F2 fo lds with th e i r  strong

ly developed ax ia l  planar fabr ics  in the Ardgour g ra n i t i c  gneiss and ad j 

acent metasediments, no major F2 folds with s trong ly  developed axial  planar 

penetrat ive fa b r ic s  have been mapped in the Loch Ei l D iv is ion. The Beinn 

an Tuim synform in the Loch Ei l  Division is f a i r l y  open and does not contain 

a strong ax ia l  planar penetrat ive fa b r ic :  the planar mica fa b r ic  i s ,  at 

least l o c a l l y ,  o f  age and folded by F2 fo lds .  West of the Beinn an Tuim 

fau l t  the Glenfinnan Div is ion metasediments contain a s trongly  developed 

pre-D2 ax ia l  planar penetrat ive mica fab r ic  which in more p e l i t i c  l i t h o lo g -  

ies is often migmati t ic  and which could be of S2 age. I f  i t  is an fa b r ic  

then west of the Beinn an Tuim f a u l t  there is no evidence fo r  any re-working 

of the S-| fa b r i c  by the D2 deformation, a phase of deformation which is 

very intense east o f the Beinn an Tuim f a u l t .  I f  i t  is an S2 f a b r i c ,  i t  

presumably has re-worked the S>i fa b r ic  so that i t  is no longer separable 

or d is t ingu ishab le .
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The Dg phase of deformation has produced most of the major fo lds which 

occur in the area. These have axial  planes which are ve r t ica l  and trend 

general ly NE-SW. The fo ld  hinges plunge at var iable angles towards the 

NE. Related minor fo lds are typ i f ie d  by associated t i g h t  crenulat ions of 

the p re -ex is t ing  planar mica fabr ics in p e l i t i c  and sem i-pe l i t ic  layers.

The amount of D3 deformation decreases eastwards through the Glenfinnan 

Division and in to  the Loch Ei l  D iv is ion. The Sgurr Beag s l ide  is a Dg duct

i le  s l id e  zone which was produced during very intense D3 deformation. East

wards from the s l id e  the major F3 folds change from isoc l ina l  to t i g h t  

folds, minor fo lds  become more common, the amount of boudinage decreases 

and the plunge of minor F3 fo ld  hinges also decreases. In the extreme east, 

within the Loch Ei l  D iv is ion the Druim Beag synform is a t i g h t  to i s o c l in a l ,  

sub-recumbent F3 major fo ld  (Schematic Section 1 ).

The trace of the Sgurr Beag s l ide  re-appears at the western end of Loch 

E i l t  and again fu r th e r  west at Lochai lo r t  as a re su l t  of  the s l ide  being 

folded by a set o f major t i g h t  to isoc l ina l  F^ folds (Powel1 et a l , 1981 

t e x t - f i g . 1 ;  B a i rd ,1982.t e x t - f i g . 2 and Schematic Section 1). Some of  the 

minor c renu la t ion  fo lds  in the west of the area could re la te  to th is  D̂  

phase of deformation, although i t  seems more l i k e l y  that the same minor 

folds are F3 in age (Chapter 5.6e).

I t  is in te re s t in g  to consider the progressive development of fo lds  during 

D3 . In the east of the area the hinge l ines are sub-horizonta l .  Moving 

westwards t h e i r  plunge increases u n t i l  i t  is sub-ver t ica l  in the west of 

the Glenfinnan D iv is ion .  I f  th is  is a re su l t  of progressive deformation 

with ro ta t io n  of hinge l ines towards the X axis of the D3 s t ra in  e l l i p s o id  

as deformatiom proceeds then at present the extension d i rec t ion  (X) of 

the D3 s t r a in  e l l i p s o id  is v e r t i c a l .  Rotation and ve r t ica l  extension on 

such a large scale ( fo r  example the Sgurr a Mhuidhe synform can be traced 

for at least 12 Km. to Glen Dessary in the NE (Roberts et al.1984. t e x t -  

f i g . 1 )) poses major problems in terms of tectonics and crustal  thickness.

D̂  deformation has produced the F̂  Loch E i l t  ant iform which fo lds  the 

D3 Sgurr Beag s l id e  and associated F3 fo lds (see Chapter 7). The F^ Loch 

E i l t  ant i form has a v e r t i c a l  NE-SW trending axial  plane with a sub-horizon

tal hinge l i n e .  Some ind ica t ion  of the pre-D^ geometry of the area can 

be obtained by extending the section ho r izo n ta l ly  in a NW-SE d i rec t ion  

( ie.  normal to the XY plane of the D̂  s t ra in  e l l i p s o id )  assuming tha t  there 

has been l i t t l e ,  i f  any, ro ta t ion  of the F̂  hinge l ines during D̂  deform

ation. I t  could be argued that some or a l l  of the ro ta t ion  of F3 hinge 

lines occured during D/̂  deformation. I f  th is  was the case then ro ta t ion  

of F3 hinge l ines  during D̂  deformation would have been towards v e r t i c a l .
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However, the hinge l ines  of  fo lds  formed dur ing deformation have remained 
sub-hor izonta l  and not ro ta ted .

With fo lds  removed, the Sgurr Beag s l ide  and the axial  planes of

associated F3 fo lds  dip gent ly to the east. Further east, beyond the eastern 

l im its  of F̂  fo ld ing  the F3 Bruim Beag synform in the Loch Ei l Division 

s t i l l  re ta ins  i t s  sub-recumbent easter ly  dipping form, however Strachan 

(1985) notes tha t ,  in general, w ith in  the Loch Ei l D iv is ion, F3 fo lds are 
f a i r l y  upr ight and open.

The D3 extension d i re c t io n ,  defined as the d irec t ion  to which F3 fo ld

hinges ro ta te  with progressive deformation, w ith in  the XY plane of the

D3 s t ra in  e l l i p s o i d ,  p r io r  to D̂  deformation lay with in  the shal lowly d ip 

ping F3 fo ld  axial  planes and trended shal lowly upwards to the W or NW
(Fig.95).

Such a stack of sub-recumbent fo ld s ,  ly ing on top of a duc t i le  shear

zone, with approximately up-dip extension and transport may be the product 

of sub-horizonta l  NW-SE directed simple shear, mater ial being transported 

up the Sgurr Beag s l id e  towards the NW over the underlying Morar Division 

rocks. R e la t ive ly  low levels of D3 simple shear well above and to the east 

of the s l id e  zone ( ie .  w i th in  the Loch Ei l  D iv is ion)  would have produced 

more upr ight F3 Folds (see F ig .80). I f  a D3 pure shear mechanism is invoked 

then 0^̂ must have been r e l a t i v e l y  steep — plunging to the NW.

D̂  deformation rotated the sub-recumbent F3 major fo lds into  th e i r  pres

ent upr ight and rec l ined o r ien ta t ions ,  thus producing the "steep be l t "  

which is  roughly coinc ident with the Glenfinnan Div is ion. D̂  deformation 

also produced major F/̂  upr ight fo lds of the D3 Sgurr Beag s l ide .  I t  could

be argued tha t  the steepening of the axial  planes of the F3 major folds

was the re s u l t  of  passive ro ta t io n  of the material  on the limbs of the 

major F̂  f o ld s ,  however, w i th in  the post-03 /pre-D^ m ic rod io r i te  sheet i n t r u s 

ions deformational patterns produced during D̂  (Chapter 8 ) reveal that 

D/, deformation was the re s u l t  of ho r izo n ta l ly  WNW-ESE directed pure shear 

compression.
In the west of the region there is a well developed su ite  of open F5 

minor c renula t ion fo ld s ,  the hinges of which plunge uniformly to the SE

which seem to be re la ted  to a major open fo ld  which folds the trace of

the D3 Sgurr Beag s l id e  and the trace of the F̂  Loch E i l t  anti form which 

folds the s l id e  (B a i rd ,1982.te x t  f i g . 4. see Appendix 6 ). No fo lds of Fg 

age were observed in the v i c i n i t y  of the Ardgour g ra n i t i c  gneiss but in the 

Loch Ei l  D iv is ion a set of large open warps and buckles have been observed, 

the hinges of which plunge to the east and which could also be of F g age.
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Figure  95.
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The Loch Quoich l ine  marks the eastern l im i t  of fo ld ing  (F ig .95). 

East of the l ine  F3 fo lds re ta in  th e i r  pre-D^ " f l a t  be l t "  geometry. Since 

the s t ruc tu ra l  h is to ry  of the rocks on e i ther  side of the l ine  is i d e n t i c a l ,  

the Loch Quoich l in e  cannot be a s l ide  zone separating rocks with a basement/ 

cover re la t ionsh ip  (c f .  Piasecki & van Breemen,1979.p.142). Likewise i t  

cannot be an unconformity with Loch Ei l  Division sediments res t ing on prev

iously deformed and metamorphosed basement Glenfinnan Division rocks ( c f .  
Lambert et a l . 1979. and T a lb o t ,1983).

Several major points can be made from the discussion of the local s t r u c t 
ure out l ined above.

1 ) The Morar, Glenfinnan and Loch Ei l Division rocks have undergone

the same sequence of deformation events.

2) The in te n s i t y  of deformation during any one phase is var iab le  across 
the area.

3) Major F3 fo ld s ,  p r io r  to D^ deformation, were probably sub-recumbent 

with shal lowly  eastward dipping axial  planes.

4) The Loch Quoich l in e  is the eastern l i m i t  of F/̂  major fo ld ing .

5) The "steep b e l t "  is the re su l t  of  D̂  deformation which steepened

up the axia l  planes of the e a r l i e r  sub-recumbent F3 major fo lds .

6 ) The Ardgour g r a n i t i c  gneiss and adjacent metasediments have been

deformed by the only major F3 folds in the area, and w h i ls t  they 

have been subjected to the most intense D2 deformation they s t i l l  

re ta in  an fa b r ic  and evidence fo r  D̂  deformation and migmatisation.

9.2) Regional and crusta l  considerat ions.

A local s t ru c tu ra l  sequence has been establ ished which re lates the geom

etry, r e la t i v e  s t ru c tu ra l  age and absolute geochronological age, obtained 

both d i r e c t l y  and i n d i r e c t l y ,  of  the tecton ic  features exposed at the sur

face. However these observations shed l i t t l e  l i g h t  on the deeper crusta l  

structure of the area and by extrapola t ion the crusta l  s t ruc tu re  of the 

Caledonides NW of the Great Glen f a u l t .  To estab l ish an idea of the crusta l  

structure in th is  area requires answers to a number of fundamental questions, 

some of which are noted below:-
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1 ) The Moine th rus t  carr ies  rocks of the Moine nappe WNW over the Hebrid

ean fore land craton. At what depth in the crust is the Moine th rus t  
in th is  area?

2) How fa r  eastwards underneath the Moine th rust  does the undeformed
Lewi Sian fore land basement extend?

3) Does the Caledonian deformation seen with in  the Moine nappe extend 
downwards in to  the rocks below the Moine thrust?

4) How has the lower crust w ith in  the Caledonian orogen responded to
deformation?

5) What was the o r ig in a l  o r ien ta t ion  of the Sgurr Beag s l ide  and how 
much transpor t  has occurred along i t?

6 ) What was the source of the Lewisian rocks which are found along the

Sgurr Beag s l id e  and w ith in  the rest of the Moine succession?

The answers to many of these questions cannot be obtained using so le ly  

the techniques of s t ru c tu ra l  and 1 i thos t ra t ig raph ica l  mapping which have 

been used extens ive ly  since the late  1950's. Even s truc tu ra l  co r re la t ions  

between the areas have proved equivocal since, according to published des

c r ip t ions ,  many of the areas have suffered d i f f e r i n g  numbers of deform

ational events. Iso top ic  studies which would have f a c i l i t a t e d  co r re la t ions  

were genera l ly  not ava i lab le .

More recent ly  our understanding of the deep continental  s t ruc tu re  of 

the NW Scott ish Highlands has been advanced by the use of the geophysical 

techniques of aeromagnetic and g rav i ty  anomaly surveying, e le c t r i c a l  cond

u c t i v i t y ,  seismic re f ra c t io n  and most important ly seismic re f l e c t i o n .  Un

fo r tunate ly  these techniques have not been used extensively in the southern 

Moine area (Mai 1 a ig -Glenf innan-Fort Wil l iam). Consequently any attempt 

to estab l ish the deep s t ruc tu re  of th is  area re l ie s  on two p r inc ipa l  ass

umptions. F i r s t l y ,  tha t  one can corre la te  geophysical information to geol

ogical s t ruc tu re  or 1 i thos t ra t ig raphy  and secondly, that the geological 

crustal  s t ruc tu re  postulated fo r  the NW Scott ish Caledonides can be ex t ra 

polated to the southern Moine area.
The L i thospheric  Seismic P ro f i le  in B r i ta in  (L .I .S .P .B; Bamford et a l .  

1977) provides a P-wave v e lo c i t y  p r o f i l e  from <  6.2 Km/sec to 6.4 Km/sec 

occurs at a depth of approximately 10 Km. A sizeable increase in v e lo c i t y  

from 6.4-6.7 Km/sec up to 8.0 Km/sec occurs across a surface dipping very 

shallowly to the SE at a depth of 26-29 Km. which has been in terpreted 

as the Moho.
The d is c o n t in u i t y  at 10 Km. is u n l ike ly  to represent the junc t ion  between 

the Moine cover and Lewisian basement since th is  junct ion is so h igh ly
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sl iced and infolded as to br ing up Lewisian i n l i e r s  to the surface at many 

places to the east of the Moine th rus t .  In a th in  skinned in te rp re ta t ion  

of the Moine th rus t  zone. Coward (1980) places the Moine th rus t  at th is  

level,  whereas in a th ick  skinned in te rpre ta t ion  of the Moine th rus t  zone, 

Soper & Barber (1982) incorporat ing evidence from a survey of e le c t r i c a l  

conduct iv i ty  (Hutton et a l . 1980) postulate that the Moine th rust  is sigmoid

al, dipping steeply (40-50°) eastwards, f l a t te n in g  out along the Moho. 

S im i la r ly  they i n te rp re t  the Naver and Meadie sl ides above the Moine th rus t  

as a steep, sigmoidal th rusts branching from the Moho f l o o r  th ru s t .  They 

in te rpre t  the 10 Km. P-wave ve loc i ty  d iscon t inu i ty  as a Caledonian amphib- 
o l i t e -g ra n u l i t e  metamorphic t ra n s i t i o n .

A marine seismic l in e ,  the Moine and Outer Is les Seismic Traverse (MOIST) 

shot o f f  the north coast of Scotland (Fig.96a) shows a number of important 

seismic r e f l e c to r s .  An in te rp re ta t ion  of the data (Fig.96b. taken from 

Smythe et a l . 1982 and Brewer & Smythe,1984) shows that the most prominent 

re f le c to r  is sub-hor izon ta l ,  occurring at a depth of about 25 Km, which 

is in terpre ted as the Moho. In the east of the section a set of prominent 

easter ly dipping re f le c to rs  terminate or f l a t t e n  at a depth of 17-20 Km 

whereas fu r th e r  west s im i l a r l y  or ientated re f le c to rs  descend to ,  and in 

places cu t ,  the Moho (F ig.96b).  Whilst  th is  p r o f i l e  provides basic, fund

amental geophysical in fo rmation, i t s  geological in te rp re ta t ion  is equivocal.  

Brewer & Smythe (1984), noting the d i f f i c u l t y  in extrapolat ing onland geol

ogical s t ruc tu res northwards to the MOIST p r o f i l e ,  suggest that the Moine 

thrust is e i th e r  the westernmost of the set of easte r ly  dipping re f le c to rs  

in the east o f the sect ion which f l a t t e n  or terminate at a depth of 17- 

20 Km, or a l t e rn a t i v e l y  i t  is a r e f le c to r  ly ing fu r th e r  east which s t r u c t 

u ra l ly  ove r l ies  the eas ter ly  dipping re f le c to rs .  Brewer & Smythe (1984) 

favour th i s  second a l te rna t ive  and suggest that the easter ly  dipping r e f 

lectors below the Moine th rus t  may correspond to off -shore sedimentary 

rocks imbricated against the Lewisian basement edge.

Coward (1980,1983) and But ler & Coward (1984) in proposing a th in  skinned 

model fo r  the Moine th ru s t ,  suggest that the th ick  skinned model (eg. Soper 

& Barber ,1982) cannot explain pa l inspast ic  re-const ruct ions which imply 

that the fore land Cambro-Ordovician sedimentary cover sequence must have 

extended at least 54 Km. east of i t s  present pos it ion and would have been 

underlain by Lewisian basement at i t s  time of deposit ion. But le r & Coward 

(1984) concluded that th i s  Lewisian basement, str ipped of i t s  sedimentary 

cover must remain under the f l a t  ly ing Moine th ru s t ,  and that the easte r ly  

dipping seismic re f le c to rs  in the lower crust are shear zones w i th in  the 

Lewisian basement produced as a sequence of fore land propagating duc t i le



Figure  96.

Map of Northern Scotland to show the l ines of major geophysical 

t raverses. ( modif ied a f te r  Brewer & Smythe,1984 ).
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thrusts during ( la te )  Caledonian deformation. The g rav i ty  and magnetic 

anomalies typ ica l  of the undeformed Lewisian foreland extend 20-30 Km. 

eastwards underneath the Moine th rust  (Watson & Dunning,1979) and may define 

the eastern edge of the foreland basement. Eastwards, of t h i s ,  according 

to But le r  & Coward (1984), the Lewisian basement has been involved in Caled

onian deformation. The existence of the Outer Is les and Flannan thrusts  

within the foreland (Smythe et a l . 1982) indicates that the boundary of 
the Caledonian orogen is not eas i ly  defined.

Having establ ished a number of models fo r  the crusta l  s truc tu re  of the

NW Scott ish Caledonides one has to ask whether these models can be e x t rapo l 

ated to the area of the SW Moines. Cross sections through the SW Moines 

show complex fo ld  geometries (Powel l ,1974. and Schematic Section 1) in 

which the Sgurr Beag s l id e  is intensely  refolded (Powell et a l . 1981: Baird, 

1982) and contrast markedly with sections through the northern Moines, 

where Soper & Barber (1982) considered the Naver and Meadie sl ides as r e l 

at ive ly  simple sigmoidal d u c t i le  th rus t  zones branching from a f l o o r  th ru s t .

The Sgurr Beag s l id e  in the SW Moines is a r e la t i v e l y  f l a t  ly ing Caled

onian d u c t i le  shear zone (Powell et a l . 1981: B a i rd ,1982: Coward,1983) along 

which displacement of 25 Km. has been postulated (Lambert et a l . 1979). 

More recent ly  in the centra l  Moines an estimate of 50 Km. displacement 

has been made (Kel ley & Powel l ,1985). In a s l ide  zone with overal l  sigmoidal 

geometry d i f f e r e n t  leve ls  of erosion w i l l  expose d i f f e r e n t l y  or ientated 

portions of the s l id e  so tha t  the Sgurr Beag s l ide  could be a r e la t i v e l y  

high leve l ,  f l a t  ly ing  por t ion  of a sigmoidal s l ide  zone. However th is  

geometry seems u n l i k e ly  as the deformation associated with the r e la t i v e l y  

f l a t  ly ing Sgurr Beag s l id e  occurs at r e la t i v e l y  high metamorphic grade 

(Powell et a l . 1981). Therefore one must assume a real d i f fe rence in geometry 

between the Sgurr Beag s l id e  and the s l ides w ith in  the northern Moines. 

This, of course, assumes tha t  the Naver and Meadie sl ides are represented 

by two of the eas te r ly  dipping re f le c to rs  dipping steeply and sigmoidal ly  

eastwards. However in a th in  skinned in te rp re ta t io n ,  these problems do 

not ar ise- since the steep eas ter ly  dipping re f le c to rs  l i e  below the Moine 

thrust. The s l ides  w i th in  the Moine nappe, i f  they are major s t ruc tu res ,  

must be r e l a t i v e l y  f l a t  l y in g .  Thus i t  would seem that corre la t ions  between

the s t ruc tu re  of the northern and SW Moines are more eas i ly  made i f  one

assumes a th in  skinned model.
The Sgurr Beag s l id e  in the SW Moines attained i t s  present o r ien ta t ion  

as a re s u l t  o f  D̂  h o r iz o n ta l l y  directed heterogeneous pure shear. Consider

ation of s t ra in  i n c o m p a t ib i l i t y  leads one to suggest that the shortening 

has probably taken place over a f l a t  or gent ly dipping decollement plane.
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Since the Sgurr Beag s l ide  is deformed and folded by Caledonian Deform

ation, the decollement plane is most probably the underlying Moine th rus t .  

Attempts to balance sections in the Loch Quoich-Loch Garry area (A.M.Roberts 

& D.Barr pers.comm.) have not been able to quant i fy  the depth to decollement 

with s u f f i c i e n t  accuracy to d is t ingu ish  between th ick  and th in  skinned 
tectonic models.

Recently i t  has been shown that the fab r ics  of the Sgurr Beag s l ide  

are e a r l i e r  than those of the Moine th rust  mylonites (Kel ley & Powel l ,1985).

I t  could be argued that the D̂  deformation and fo ld ing  of the Sgurr 

Beag s l id e  occurred as the Moine nappe was carr ied ,  piggy-back fashion,  

along the Moine th rus t  over an underlying ramp. In th rus t  terminology (see 

Bu t le r ,1982) the fo lds  would be hanging wall a n t ic l ines .  However i f  

the F^ fo lds  in the SW Moines were generated in th is  manner then one would 

expect that the rocks of the Moine nappe, including the Naver and Meadie sl ides 

in the northern Moines would be s im i la r l y  deformed which is not the case.

Dif ferences between the s tructures of the northern and SW Moines are 

further emphasised by an examination of the MOIST p r o f i l e  (Fig.96b) which 

shows a series of wester ly dipping re f le c to rs  in the upper crust.  Smythe e t.  

a l . (1982) and Brewer & Smythe (1984) in te rp re t  these re f le c to rs  as ha l f  

grabens f i l l e d  with la te  Palaeozoic and younger sediments. Each h a l f  graben 

being bounded on the west by an easte r ly  dipping th rus t  which has been 

re-act ivated as a normal f a u l t .  In the SW Moines there is no evidence of 

either sediment f i l l e d  h a l f  grabens or large scale re -ac t iva t ion  of sl ides 

such as the Sgurr Beag s l id e  as major normal extensional f a u l t s .

From the discussion above i t  is clear  that in attempts to construct 

a deta i led model f o r  the c rusta l  s truc tu re  of the SW Moines one needs geo

physical evidence, espec ia l ly  seismic re f le c t io n  p ro f i le s  and seismic r e f 

raction surveys of the area and an improved technique fo r  co r re la t ing  bet

ween the geophysical and geological evidence.
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C H A P T E R  10.

Summary of conclusions.

The conclusions are best summed up in the form of a h is to ry  of deposit ion, 
deformation and metamorphism.

The rocks of the Morar and Glenfinnan Divisions were deposited as a 

series of mixed fe ldspa th ic  sandstones and mudstones. The Glenfinnan Div

ision passes upwards, probably without a s t ra t ig raph ica l  break, and c e r ta in 

ly without a tec ton ic  break, in to  the monotonous fe ldspath ic  sandstones 

of the Loch Ei l  D iv is ion .  A g ra n i t i c  body, which subsequently has been 

transformed in to  the Ardgour g ra n i t i c  gneiss, was intruded along and near 

to the junc t ion  of the Glenfinnan and Loch Ei l  Div is ions.

The f i r s t  phase of deformation (D-j ) and metamorphism (M-, ) produced a 

part ia l  anatect ic melt of the g ran i te ,  convert ing i t  in to  a g ra n i t i c  gneiss. 

Pegmatites, which may be pre-D^ or syn-D^, are co-planar to the S-j gneissose 

f o l ia t io n  and contain well developed b io t i t e  selvages. Major F-j fo lds have 
not been mapped.

The Ardgour g ra n i t i c  gneiss is intensely  deformed by major F2 fo lds .  

The gneiss has been extensive ly  re-worked during M2 and i t  is possible 

that some new migmati t ic  mater ial  was generated co-planar to the S2 gneiss

ose f o l i a t i o n .  The adjacent Loch Ei l  Div is ion metasediments contain an 

early s c h is to s i t y  (S-|) which is folded by F2 fo lds .  Where D2 deformation 

is intense and the rocks more p e l i t i c ,  F2 fo lds  contain an axial  planar 

migmati tic fa b r i c  (S2 ). Elsewhere in the Glenfinnan Division the metased

iments contain an "ear ly "  penetrat ive sch is to s i t y  which is often migmati t ic  

in tex tu re ,  but probably the product o f so l id  state mass trans fe r  rather 

than p a r t ia l  anatexis.  This "ear ly "  s ch is to s i t y  may be S-|, $ 2  or a composite 

5-1/5 2 i at ion.
Major F-] and F2 fo lds  have not been found away from the Ardgour g ra n i t i c  

gneiss, over most of the area bedding is  v i r t u a l l y  co-planar with the "ear ly "  

sch is tos i ty .  To the west of the mapped area M-| is lower grade than M2 , 

but M -| r ises eastwards to produce p a r t ia l  anatexis at Glenfinnan. Possibly 

only east of Sgurr a Mhuidhe is M-j grade higher than M2 . Isograd surfaces 

from Sgurr a Mhuidhe westwards were established using c a l c - s i 1icats  rocks 

and are thought to be M 2 surfaces, apparently co-planar to the composite 

bedding/schistosi ty.Both M 2 isograd surfaces and the composite bedding/
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sch is tos i ty  were probably f l a t  ly ing p r io r  to subsequent deformation.

D3 deformation has produced a series of major t i g h t  to i s o c l in a l  F3 

folds which were f l a t  lying and had axial  planes with shallow dips to the 

ESE. Local ly  D3 deformation in te ns i f ie d  and developed into a tecton ic  s l id e ,  

the Sgurr Beag s l id e ,  which dipped shallowly to the ESE. As [^de fo rm a t ion  

in tens i f ied  westwards towards the Sgurr Beag s l ide  major F3 fo lds  t ightened 

and th e i r  hinge l ines rotated from nearly horizontal  NE-SW trending, towards 

an E-W or WNW-ESE trend. The fo ld  hinges rotated towards the extension 

and t ranspor t d i re c t io n  of the Sgurr Beag s l id e ,  towards the W or WNW. 

Subsequently deformation has re-or ienta ted both the hinge l ines and 
axial planes of the F 3 fo lds .

The Sgurr Beag s l ide  separates rocks of the Morar and Glenfinnan Div

isions which have the same p re -s l id ing  deformation and metamorphic h is to ry ,  

thus i t  does not obscure or d e l im i t  an orogenic f ro n t  separating rock groups 

with basement and cover re la t ionsh ips .  F3 folds have folded the e a r l i e r  

(Ml or M2 ) isograd pattern and have only re-worked the metamorphic assemb

lage w i th in  the high s t ra in  areas of the s l ide  zone. Large in t rus ive  peg

matites are common, many are folded by F3 folds but some may be post-F3 

in age.

U p l i f t ,  cool ing and j o i n t i n g  occurred a f te r  D3 . The j o i n t  su i te  dipped 

shallowly eastwards and was intruded by a series of m ic rod io r i te  sheets. 

Fewer numbers of these sheets had an i n i t i a l  dip westwards.

D̂  deformation is intense in the east of the Morar Division and through

out the Glenfinnan D iv is ion .  I t  is much less intense to the east o f th is  

zone, ca l led  the "h igh ly  inc l ined"  or "steep b e l t " .  D/̂  deformation has

produced a few major, nearly i soc l in a l  F̂  folds with ve r t ica l  NE-SW trending 

axial planes and nearly horizontal  fo ld  hinge l ines .  In the "steep b e l t " ,  

this phase of upr ight fo ld in g  has re-or ienta ted a l l  the e a r l i e r  planar 

and l inea r  elements so tha t  the major F3 folds now have ve r t i c a l  axial  

planes trending NE-SW. Where major F3 fo ld  hinges were nearly hor izonta l  

NE-SW trend ing, they have remained so. However in areas of more intense 

D3 deformation where F3 fo ld  hinges plunged down to the E or ESE they have 

been rotated during F̂  fo ld ing  so tha t  they now plunge steeply towards

the NE, w i th in  F3 v e r t i c a l  axial  planes.
Beyond the eastern l i m i t  o f  the "steep b e l t " ,  which roughly coincides 

with the l i t h o lo g i c a l  change from the Glenfinnan to Loch Ei l  Divisions 

and has been termed the Loch Quoich l in e ,  D̂  deformation is weak and major 

F3 folds have retained th e i r  nearly f l a t  ly ing axial  plane d isp o s i t ion .
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deformation has been responsible fo r  the deformation of the micro

d io r i te  su i te .  Within the "steep be l t "  intense ho r izon ta l ly  NW-SE d i r e c t 

ed compression has rotated m ic ro d io r i tes away from the maximum compression 

d irect ion towards a v e r t i c a l  NE-SW trend. East of the "steep b e l t "  the 

fiiicrod io r  i tes re ta in  r e la t i v e l y  shallow dips. The microdior i  tes were incomp

etent r e la t i v e  to the country rocks during deformation, so that even in 

areas of low leve ls  of deformation the microd ior i tes are quite intensely  
deformed.

D5 deformation has produced a series of open major Eg fo lds with NW- 

SE trending ax ia l  planes. Minor open crenulat ions in the extreme west of 

the area are associated with these major Fg fo lds .  In the Loch Ei l Div is ion 

a series of open large scale warps have hinge l ines which plunge shal lowly 

eastwards and have been corre la ted as Fg fo lds .

The deformation phases D3 , D̂  , and Dg have occutred under condit ions 

of metamorphism s u f f i c i e n t l y  high to recrys ta l  1 ise mica c rys ta ls  a f te r  

their  deformation.

The Moine succession of the area has been intruded by two suites of 

undeformed camptonites and do le r i tes  of Carboniferous/Permian and T e r t ia ry  

ages respec t ive ly .
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Appendix 2 .

A l l  the l i s te d  major element geochemical analyses are recorded as 
weight percent oxides, ( i e .  P to Na ).

( PgOg, SiOg, AlgOg, MgO, MnO, FegO^, TiOg, CaO, K^O, Nâ O ).

For a summary of ana ly t ica l  technique see:

Norr ish,K & Hut ton,J.T. (1969).

An accurate X-ray spectrographic method fo r  the analysis of 

a wide range of geochemical samples.

Geochim.Cosmochim.Acta., 33, 431-453.
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Calc -  silicate rocks.

p
S I
A1
Mg
Mn
Fe
T i
Ca
K
Na

2̂29
0 . 0 5 5

8 1 . 6 3 0
9 . 0 7 5
0 . 6 5 5
0 . 1 4 0
1 . 8 1 5
0 . 4 7 0
3 . 2 4 0
0 . 9 6 0
1 . 1 8 5

36ŷ
229

0.110
8 6 . 2 9 0

7 . 3 2 0
0 . 2 8 0
0.020
1 . 0 6 5
0 . 2 8 5
2 . 7 3 0
0 . 4 7 0
1 . 3 7 5

2̂29
0.100

7 8 . 5 6 0
8 . 4 8 5
0 . 8 1 0
0 . 1 9 5
4 . 5 5 5
0 . 4 1 5
6 . 2 4 0
0 . 4 0 0
0 . 6 1 0

40y/229
0 . 0 9 5

8 4 . 5 8 0
5 . 6 2 5
0 . 5 0 0
0 . 1 5 5
2 . 8 8 5
0 . 2 0 5
4 , 8 7 0
0 . 1 6 5
0 . 2 8 5

0 . 0 6 0  
8 8 . 3 3 0  

5 . 8 3 0  
0 . 2 8 0  
0 . 1 3 0  
1 . 3 2 0  
0 . 2 5 0  
3 . 4 1 0  
O.  30 0  
0 . 4 8 0

^250
0 . 0 5 0

8 1 . 5 9 0
9 . 6 8 0
0 . 7 0 0
0 . 0 9 0
1 . 4 1 5
0 . 2 2 5
4 . 2 9 5
1.210
1 . 0 6 0

90 /  
3̂01

0 . 0 3 0
9 5 , 4 2 5

2 . 6 3 5
0 . 1 7 0
0.020
0 . 4 6 0
0.110
0 . 7 4 0
0 . 4 8 0
0 . 4 9 5

103
440

0 . 0 4 0
8 9 . 3 9 5

5 . 5 6 0
0 . 2 2 5
0 . 0 4 5
0 . 7 7 5
0 . 1 3 0
2 . 3 5 5
0 . 4 6 5
0 . 7 7 5

104
451

0 . 0 3 0  
6 4 . 0 9 5  
1 5 . 5 1 5  

1 . 6 6 5  
0 . 2  30  
4 . 3 4 5  
1 . 2 7 0  

11.210 
0 . 5 9 0  
1.220

T o t a l 9 9 . 2  30 9 9 . 9 5 5 1 0 0 . 3 4 0 9 9 . 3 5 5 1 0 0 . 3 7 0 1 0 0 . 3 2 5 1 0 0 . 0 7 5 9 9 . 7 5 5 1 0 0 . 4 4 5
An%

c% i
A l t .
0 . 3 5 7

6 9
0 . 3 7 3

57
0 . 7 3 5

A l t .
0 . 8 6 6

72?
0 . 5 8 5

A l t .
0 . 4 4 4

A l t .
0 . 2 8 1

42+
0 . 4 2 4

70
0 . 7 2 3

1 1 4 ,
/  505

1 1 9 /
/  517

i 2 y
^ 5 3 7

1 3 W
^ 5 7 3

1 3 4 ,
/ S 8 2

167 /  
^ 8 3

170 /  
-^948

174 ,
^ 9 5 5

i 7 y
/  961

p 0 . 0 9 0 0 . 1 4 0 0 . 0 5 0 0 . 0 5 0 0 . 1 2 0 0 . 0 7 0 0 . 1 8 0 0 . 1 2 0 0 . 0 9 0
S i 7 8 . 6 4 0 7 4 . 2 4 0 8 2 . 0 8 0 7 9 . 6 5 0 7 6 . 6 8 0 7 5 . 0 2 5 6 9 . 9 2 0 7 2 . 0 3 0 7 4 . 2 1 0
A l 1 0 . 9 6 5 1 2 . 4 9 0 9 . 6 2 0 1 1 . 7 7 0 1 0 . 9 7 0 1 1 . 7 5 5 1 5 . 7 7 0 1 3 . 7 6 0 1 3 . 2 1 0
Mg 0 . 5 3 5 0 . 8 6 0 0 . 3 8 0 0 . 3 3 0 0 . 3 4 5 1 . 1 4 0 0 . 9 8 0 1 . 4 1 0 1 . 2 6 5
Kn 0 . 0 0 0 0 . 1 9 0 0 . 0 8 0 0 . 1 3 0 0 . 1 2 5 0 . 2 9 5 0 . 2 9 0 0 . 3 7 0 0 . 3 1 5
r e 2 . 2 3 5 3 . 2 9 0 1 . 4 1 0 1 . 2 9 0 2 . 2 0 5 3 . 3 4 0 3 . 9 2 0 2 . 7 2 0 3 . 5 9 0
T i 0 .  345 0 . 6 0 0 0 . 3 0 0 0 . 2 2 0 0 . 6 7 5 0 . 4 3 0 0 . 6 8 0 0 . 5 5 0 0 . 5 7 5
Ca 3 . 2 3 5 6 . 5 2 0 2 . 9 7 0 3 . 3 5 0 7 . 1 1 0 6 . 6 5 0 9 . 9 3 0 4 . 9 0 0 5 . 6 6 0
K . 0 . 8 5 0 0 . 8 1 0 0 . 6 1 0 0 . 3 0 0 0 . 2 4 0 0 . 1 8 0 0 . 1 8 0 1 . 5 8 0 0 . 9 2 0
Na 3 . 3 2 5 1 . 2 8 0 2 . 3 4 0 3 . 2 7 0 1 . 5 2 5 1 . 0 2 0 0 . 3 9 0 1 . 6 0 0 1 . 2 9 0
T o t a l 1 0 0 . 2 9 0 1 0 0 . 4 2 0 9 9 . 8 4 0 1 0 0 . 4 5 0 9 9 . 9 8 5 9 9 . 8 9 5 1 0 1 . 9 4 0 9 9 . 0 2 0 1 0 1 . 1 2 5
An% A l t . A l t . 4 7 4 7 A l t . 83 76 72 89

0 . 2 9 5 0 . 5 2 2 0 . 3 0 9 0 . 2 8 5 0 . 6 4 8 0 . 5 6 6 0 . 6 3 0 0 . 3 5 6 0 . 4 2 8

Major elements are l i s t e d  as Wt.% oxides.
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Calc -  s ilicate r ocks .

p
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

187X̂1031
0 . 1 3 0  

0 1 . 6 1 0  
8 . 9 6 0  
0 . 5 6 0  
O.  3 1 0  
2 . 4 7 0  
O.  3 4 0  
4 . 2 6 0  
0 . 7 5 0  
0 . 4 4 0

200%1050
0 . 0 9 5  

7 8 . 9 4 0  
1 1 . 4 7 5  

0 . 4 2 0  
O.  3 6 0  
1 . 9 5 5  
0 . 3 7 5  
5 . 8 9 0  
0 . 4 8 0  
0 . 3 1 0

204y
'^1065

0 . 0 3 5  
7 8 . 2 5 5  
1 1 . 3 2 5  

0 . 5 8 0  
0 . 2  30  
1 . 9 3 0  
0 . 5 1 0  
5 . 9 7 0  
0 . 0 7 5  
0 . 2 5 0

207X̂1068
0 . 0 7 0

7 4 . 5 7 5
1 3 . 7 2 5

0 . 6 6 5
0 . 3 0 5
2 . 4 9 0
0 . 4 7 0
7 . 0 6 5
0 . 4 3 5
0 . 7 8 0

208
XM071

0 . 1 1 5
7 3 . 3 4 0
1 2 . 0 7 5

0 . 8 9 0
0 . 6 1 0
4 . 4 6 0
0 . 4 4 5
6 . 3 1 0
0 . 5 3 0
0 . 6 1 0

212
%1087
0 . 0 7 0

7 8 . 6 7 0
9 . 9 4 0
0 . 4 1 0
0 . 1 7 0
1 . 9 1 0
0 . 5 7 0
3 . 1 6 0
0 . 8 8 0
1 . 9 5 0

213
1087

0 . 1 4 0
7 3 . 6 0 5
1 3 . 9 3 5

0 . 5 4 0
0 . 2 4 0
2 . 7 3 0
0 . 8 5 5
5 . 8 6 5
1 . 2 9 5
1 . 1 3 5

215
1088

0 . 0 6 0
7 8 . 5 0 0
12.000

0 . 3 7 0
0 . 2 4 0
1 . 9 4 0
0 . 5 6 0
3 . 3 8 0
0 . 7 9 0
2 . 5 2 0

T o t a  1 9 9 . 8 2 0 1 0 0 . 2 9 5 9 9 . 1 5 5 1 0 0 . 5 8 0 9 9 . 3 9 0 9 7 . 7 3 0 1 0 0 . 3 4 0 1 0 0 . 3 7 0
An%
CaAi.

77
0 . 4 7 5

74
0 . 5 1 3

89
0 . 5 2 7

87
0 . 5 1 4

76
0 . 5 2 3

48+
0 . 3 1 8

88
0 . 4 2 1

48
0 . 2 8 2

M091
2 5 y  

/  1110
253 /

/  1115
2 s y

^1119
2 5 5 /

/  1123
2 5 6 /

/1126
2 5 9 /

X U 5 Average

p 0 . 1 5 0 0 . 0 6 0 0 . 0 8 0 0 . 1 6 0 0 . 0 6 0 0 . 0 5 0 0 . 1 6 0 0 . 1 0 0
S i 7 8 . 9 0 5 7 5 . 7 3 0 8 4 . 8 1 0 7 1 . 1 2 0 8 1 . 2 1 0 8 0 . 4 4 5 7 3 . 2 9 0 7 6 . 5 2 0
A l 1 0 . 3 8 0 1 2 . 6 7 5 9 . 1 8 5 1 3 . 9 3 0 1 0 . 0 1 5 1 0 . 2 6 5 14  385 1 2 . 0 4 0
Mg 0 . 4 2 5 0 . 4 7 5 0 . 3 1 5 0 . 9 9 0 0 . 4 6 5 0 . 6 9 5 0 . 7 0 0 0 . 7 0 0
Mn 0 . 1 0 0 0 . 3 1 0 0 . 1 5 5 0 . 4 3 0 0 . 4 6 0 0 . 6 9 5 0 . 2 0 0 0 . 3 2 0
Fe 2 . 0 6 0 1 . 7 3 5 1 . 2 9 5 3 . 4 2 0 1 . 8 3 5 2 . 7 4 0 2 . 7 9 5 2 . 6 0 0
T i 0 . 4 1 5 0 . 4 8 0 0 . 2 8 0 0 . 6 1 0 0 . 4 1 0 0 . 4 3 0 0 . 6 4 0 0 . 5 1 0
Ca 2 . 1 1 0 4 . 4 7 0 3 . 6 8 0 7 . 1 6 0 4 . 6 5 0 5 . 0 2 0 7 . 2 3 5 5 . 4 4 0
K 0 . 6 6 0 0 . 8 8 0 0 . 6 7 0 0 . 7 9 0 0 . 2 7 5 0 . 1 9 5 0 . 6 4 5 0 . 6 4 0
Na 3 . 1 0 5 1 . 6 0 0 0 . 4 2 0 0 . 7 1 0 0 . 5 5 0 0 . 4 1 0 0 . 8 2 5 1 . 0 0 0
T o t a l 9 8 . 3 0 5 9 8 . 3 9 5 1 0 0 . 8 9 0 9 9 . 3 3 0 9 9 . 9 2 5 1 0 0 . 9 3 5 1 0 0 . 8 6 0 9 9 . 9 1 0
An% 35 88 88 85 75 84 92

C ' A i
0 . 2 0 3 0 . 3 5 3 0 . 4 0 1 0 . 5 1 4 0 . 4 6 4 0 . 4 8 9 0 . 5 0 3

Major elements are l i s t e d  as Wt.% oxides.
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Garnetiferous Amphibolites

p
s i
A l
Mq
Mn
Fe
T i
Ca
K
Na
T o t a l
Z r
Y
Rb .  
Nb 
S r  
Th

%
0 . 4 4 5

4 6 . 4 8 0
1 3 . 6 0 0

6 . 4 6 0
0 . 2 5 5

1 5 . 4 7 0
3 . 4 9 5
8 . 5 5 0
3 . 0 9 0
0 . 8 8 5

9 8 . 7 4 5
23 1

65
15 7

9
34
O

‘V ,230

O. 3 2 0  
4 8 . 3 3 5  
1 3 . 6 6 0  

5 . 9 0 0  
0 . 2 9 5  

1 7 . 3 6 0  
2 . 8 8 0  
8 . 4 0 5  
2 . 3 8 0  
0 . 6 9 0

1 0 0 . 4 0 0
1 7 7

67
10 4

5
32
1

677
235

0 . 3 7 0
4 7 . 9 2 0
1 4 . 0 8 0

6 . 8 4 0
0 . 2 3 0

1 5 . 0 1 0
3 . 2 8 0
9 . 9 7 0
2 . 1 9 0
1.110

1 0 0 . 9 9 0
17 8

55
91

5
39
O

U 3

0 . 2 3 5
4 8 . 0 3 5
1 3 . 8 8 0

7 . 1 3 5
0 . 2 4 0

1 6 . 4 2 0
2 . 1 6 5
9 . 7 0 5
0 . 6 0 0
1 . 7 2 0

1 0 0 . 1 4 0
12 3 

56  
19  

3 
116  

3

1677669

0.220
4 6 . 4 6 0
1 3 . 8 4 0

6 . 7 0 5
0 . 2 6 0

1 6 . 1 8 5
2 . 1 0 5

1 0 . 6 7 0
0 . 0 6 0
1 . 3 9 0

9 8 . 7 0 0
134  

56  
10

5
135  

1

1527,721

0 . 2 1 5
4 9 . 8 6 5
1 3 . 7 7 0

6 . 9 6 0
0 . 2 3 0

1 4 . 6 3 5
1 . 9 6 5
9 . 2 4 5
1 . 4 4 5
0 . 7 9 0

9 9 . 1 5 0
10 6

54
49
1

87
1

1597
760

0 , 4 0 5  
5 1 . 2 4 0  
1 4 . 2 5 5  

5 . 9 2 0  
0 . 2 1 5  

1 3 . 3 6 0  
1 . 6 8 5  

1 0 . 0 6 0  
0 . 9 9 5  
1 . 2 4 0

9 9 . 4 2 5
99
43
47

4
221

4

165

617

0 . 3 3 0  
4 6 . 1 3 0  
13 6 4 0  

6 . 5 4 5  
0 . 2 6 0  

1 6 . 3 4 0  
2 . 7 8 5  

1 0 . 8 4 0  
0 . 6 9 5  
1 . 4 2 5

9 8 . 9 8 0
17 9

64
8
3

9 0
5

Gt. Amph. Hb. Sch.

863
169

%900
178

%971
186y  

/  11006
209

1082
75%26 3

172
952

221
1089

P
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

0 . 1 9 5
4 5 . 7 4 0
1 3 . 3 7 0

6 . 9 7 5
0 . 2 7 5

1 6 . 5 8 0
3 . 2 8 5

1 0 . 9 5 0
0 . 8 9 5
1 . 4 3 5

0.200
4 6 . 9 0 5
1 4 . 1 2 0

7 . 0 7 0
0 . 2 6 5

1 5 . 5 0 0
2 . 0 8 0
9 . 7 4 0
1 . 3 4 0
1 . 4 8 0

0 . 4 3 5
4 5 . 6 1 5
1 4 . 8 9 0

6 . 5 9 0
0 . 2 5 0

1 5 . 4 9 5
3 . 4 4 5

1 1 . 0 3 5
0 . 6 4 5
0 . 8 2 0

0 . 2 7 0
4 3 . 0 1 5
1 4 . 3 0 5

7 . 4 8 0
0 . 2 4 0

1 4 . 8 3 5
1 . 9 6 5
9 . 8 4 0
1 . 2 1 5
0 . 8 1 5

0 . 2 5 0  
4 7 . 5 3 0  
1 3 . 7 7 5  

6 . 6 2 0  
0 . 3 3 5  

1 5 . 3 4 5  
2 . 1 0 5  

1 0 . 3 7 0  
1 . 2  30  
1 . 6 7 5

0.220 
5 5 . 1 7 0  
1 5 . 1 6 0  

6 .  31 0  
0 . 1 7 0  
9 . 8 8 0  
1 . 5 4 0  
8 . 6 5 0  
1 . 1 7 0  
2 . 8 9 0

0 . 2 6 0
4 7 . 2 7 0
1 3 . 6 6 0

6 . 9 0 5
0 . 2 4 5

1 5 . 5 1 5
2 . 3 1 0

1 0 . 0 5 5
1.220
1 . 1 3 5

0 . 2 7 5  
4 4 . 3 7 0  
1 3 . 8 9 5  

7 . 3 5 0  
0 . 2 7 0  

1 6 . 8 5 5  
2 . 5 1 5  
9 . 4 2 0  
2 . 1 3 5  
1 . 2 8 0

T o t a l 9 9 . 7 0 0 9 8 . 6 9 5 9 9 . 2 1 5 9 8 . 9 9 0 9 9 . 2 3 0 1 0 1 . 1 6 0 9 8 . 5 7 0 9 6 . 3 5 5
Z r
Y
Rb
Nb
S r
Th

125
51
17

3
72
O

120
5 0
43
8

14 1
1

2 6 6
69
12
1

11 4
3

12 5
52
33

3
13 7

0

126
53
27

3
152

1

1 8 0
48
38

4
165

5

13 6
58
27
O

88
3

1 4 1
64

121
3

19 6
3

Hornblende Schists
2 2 y

^ 1 3 8
7 3 /

/  240
108 y

/ 47O
i 2 y

^ 5 4 9

p 0 . 1 7 5 0 . 3 3 5 0 . 1 8 0 0 . 2 3 5 0 . 2 0 0 0 . 1 8 0 0 . 1 4 0 0 . 1 1 5
S i 4 9 . 9 5 5 4 . 2 9 0 4 8 . 8 6 0 4 8 . 3 1 0 5 0 . 2 6 0 4 8 . 9 1 5 4 9 . 2 2 0 4 9 . 8 1 0
A l 1 4 . 5 4 0 1 4 . 6 6 5 1 6 . 1 2 5 1 4 . 8 9 0 1 5 . 2 5 0 1 4 . 8 2 5 1 4 . 7 6 0 1 5 . 3 6 0
Mg 7 . 8 5 0 7 . 4 4 5 8 . 4 6 0 6 . 9 0 0 6 . 9 8 0 7 . 8 7 0 7 . 8 9 5 9 . 4 6 5
Mn 0 . 1 9 5 0 . 2 3 5 0 . 1 9 0 0 . 1 9 5 0 . 2 0 0 0 . 2 1 5 0 . 2  30 0 . 2 0 0
Fe 1 1 . 2 8 0 1 4 . 2 4 0 1 1 . 4 7 5 1 2 . 4 2 0 1 2 . 9 9 0 1 2 . 4 2 0 1 1 . 7 6 0 1 0 . 3 0 5
T i 1 . 5 4 0 2 . 8 3 5 1 . 7 4 5 1 . 8 3 0 1 . 8 2 0 1 . 8 5 0 1 . 6 4 0 1 . 1 5 5
Ca 9 . 9 1 0 1 0 . 4 4 0 1 0 . 3 1 0 8 . 2 5 0 6 . 4 9 0 9 . 7 1 0 1 1 . 9 2 0 9 . 6 1 0
K 1 . 3 5 0 0 . 9 8 5 1 . 1 1 0 2 . 7 2 5 3 . 7 3 0 2 . 5 5 5 0 . 9 1 5 0 . 9 9 0
Na 2 . 4 4 0 1 . 1 7 5 0 . 9 0 5 2 . 4 0 5 2 . 2 0 0 2 . 4 2 5 1 . 9 9 5 2 . 6 6 0
T o t a l 9 9 . 2 5 0 1 0 0 . 6 5 0 9 9 . 3 7 5 9 8 . 1 6 5 1 0 0 . 1 0 0 1 0 0 . 9 7 0 1 0 0 . 4 6 5 9 9 . 6 7 0
Z r 98 2 0 5 96 96 10 1 75 98 57
Y 31 59 35 44 41 33 22 25
Rb 4 8 15 36 1 6 9 2 6 0 115 15 47
Nb 1 5 3 9 11 3 3 1
S r 1 1 6 122 65 8 0 75 318 321 315
Th 1 1 0 4 1 3 0 4

M a j o r  e l e m e n t s  a r e  l i s t e d  as Wt.% o x i d e s .
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-----  Porphyro blostic Hornblende Schists. - ---------- >
88 /  

^281
8 y

' 2 9 3 % 3 3
9 4 /

'  346
128 /  

549
1 3 /

/ 58 I
p 0 . 5 0 0 0 . 3 4 0 0 . 1 3 0 0 . 2 0 0 0 . 1 1 0 0 . 1 3 0 0 . 1 3 0 0 . 2 2 0
S i 4 2 . 2 8 0 4 6 . 7 4 5 4 8 . 5 7 5 4 9 . 2 0 0 4 8 . 4 6 5 4 7 . 0 5 0 4 8 . 0 8 0 4 8 . 7 2 0
A l 1 4 . 3 7 5 1 4 . 1 5 5 1 6 . 7 9 0 1 4 . 8 0 0 1 4 . 3 8 5 1 6 , 7 0 0 1 6 . 7 8 5 1 4 . 9 1 0
Mg 6 . 8 5 0 7 . 2  30 9 . 1 6 5 4 . 4 8 5 7 . 8 1 5 8 . 5 8 5 9 . 2 0 0 8 . 0 8 0
Mn 0 .  325 0 . 2 4 0 0 . 1 7 5 0 . 2 0 5 0 . 2 4 0 0 . 2 1 0 0 . 1 7 0 0 . 2 2 0
Fe 1 6 . 3 4 0 1 3 . 7 2 0 9 . 8 9 0 1 1 . 8 1 5 1 2 . 7 4 5 1 0 . 4 5 5 9 . 8 9 5 1 2 . 3 9 0
T i 4 . 4 1 5 2 . 7 1 0 1 . 0 8 5 1 . 6 8 5 2 . 0 1 0 1 . 2 2 5 1 . 0 6 5 1 . 9 9 5
Ca 1 0 - 0 4 0 1 0 . 5 1 0 1 1 . 4 8 0 1 2 . 0 2 5 1 0 . 6 9 5 1 2 . 1 4 5 1 0 . 8 9 5 1 0 . 4 8 5
K 2 . 6 5 5 1 . 8 5 5 0 . 7 9 0 0 . 6 4 5 1 . 1 5 0 0 . 9 8 0 0 . 7 0 0 1 . 1 9 0
Na 1 . 2  30 1 . 5 6 5 2 . 1 5 5 1 . 7 6 0 1 . 7 4 5 2 . 2 5 0 2 . 1 5 5 1 . 7 9 5
T o t a l 9 9 . 1 0 0 9 9 . 0 7 0 1 0 0 . 2 2 5 1 0 0 . 8 2 5 9 9 . 3 6 5 9 9 . 7 3 5 9 9 . 0 7 0 1 0 0 . 7 1 0
Z r 378 2 1 6 57 94 104 69 57 119
Y 88 6 0 26 114 44 26 24 41
Rb 9 0 85 30 17 33 35 31 85
Nb 11 6 1 1 1 2 1 3
S r 108 21 7 15 5 1 2 9 181 141 2 5 5 303
Th 0 0 1 3 1 1 0 3

Major elements are lis te d  as Wt.% oxides.
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p
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

M icrod iorites

T o t a l

229

0 . 2 1 5
5 6 . 0 2 5
1 5 . 9 7 5

5 . 9 5 0
0 . 1 3 5
7 . 3 6 5
1 . 0 0 5
6 . 6 5 5
1 . 6 1 0
4 . 3 9 0

1 0 0 . 0 6 0

57
%234

0 . 2 5 0
5 8 . 6 1 5
1 7 . 6 9 0

4 . 0 9 5
0 . 1 2 5
7 . 0 2 5
1 . 0 4 0
4 . 7 8 5
2 . 7 5 5
4 . 2 7 0

1 0 0 . 6 5 5

71
237

0 . 0 0 5
7 2 . 9 8 5
1 5 . 9 8 5  

0 . 2 9 5  
0 . 0 7 0  
1 . 3 5 0  
0.200
1 . 6 3 0
3 . 6 3 0  
5 . 0 5 5

1 0 1 . 2 0 5

74
%241

0 . 1 9 5
6 3 . 3 5 5
1 6 . 7 4 0

3 . 1 7 5
0 . 0 9 0
5 . 2 7 5
0 . 8 4 0
4 . 5 8 5
1 . 7 0 5
4 . 6 7 0

1 0 0 . 6 3 5

83
' /255

0 . 3 1 5
5 4 . 8 5 0
1 5 . 4 5 0

6 . 8 9 0
0 . 1 4 5
7 . 8 0 5
1.200
8 . 2 6 0
1 . 3 7 0
3 . 4 4 0

9 9 . 7 3 5

85
%259

0 . 4 8 5
5 0 . 8 9 5
1 6 . 2 4 0

7 . 8 9 0
0 . 1 5 5
9 . 0 4 0
1 . 7 7 0
7 . 9 6 0
1 . 7 9 5
3 . 3 8 0

9 9 . 6 1 0

318

0 . 2 8 5  
5 6 . 2 2 0  
1 5 . 7 7 0  

6 . 0 6 0  
0 . 1 8 0  
8 . 4 4 0  
1 . 3 3 0  
6 . 8 2  5 
1 . 3 4 0  
3 . 3 5 0

9 9 . 8 5 0

93
335

0 . 3 7 5  
5 6 . 4 2 3  
1 5 . 4 5 0  

6 . 7 1 0  
0.120 
7 . 6 1 0  
1 . 2  70  
6 . 5 6 5  
1 . 8 5 0  
3 . 9 2  5

l O O . 31 0

99
' /418

O. 355  
5 1 . 3 5 0  
1 1 . 2 3 0  

8 . 4 5 5  
0 . 1 3 5  
9 . 4 2 5  
1 . 6 2 0  
8 . 3 1 0  
1 . 2 1 5  
3 . 2 2 0

9 9 . 3 0 5
Z r
Y
Rb
Nb
S r
Th

1 6 8
23
42
14

592
6

1 9 0
26

1 07
12

7 3 3
12

141
25

lO O
14

5 5 9
6

1 77
2 3
53
12

8 2 6
11

1 8 0
23
27

5
874

6

2 30  
32 
74  
11 

781  
2

2 2 8
123

59
14

661
5

2 6 3
l i O

44
15

793
5

1 5 5
28
28

9
6 8 9

O

112
%503

113%503
114

503
115%506

117
512

118%514
125%546

142
654

151
%721

P
S i
A l
Mg
Mn
Fe
T i
Ca
K
Na

0 . 2 6 0  
5 8 . 6 2 0  
1 6 . 9 0 0  

3 . 4 5 0  
0 . 1 4 0  
7 . 4 8 0  
1 . 2 5 0  
5 . 6 9 0  
2 .  3 3 0  
4 . 1 3 0

0 . 2 7 5
6 2 . 7 7 0
1 7 . 4 9 5

2 . 1 7 0
0.100
5 . 7 2 0
0 . 8 8 0
4 . 0 7 5
1 . 9 6 0
5 . 3 9 5

0 . 1 9 5
5 9 . 3 1 0
1 5 . 5 7 5

5 . 9 1 5
0.120
5 . 9 0 5
0 . 9 8 5
5 . 3 7 0
1 . 8 3 0
4 . 0 6 5

0 . 2 0 5
5 2 . 7 3 0
1 3 . 8 7 5

8 . 4 8 0
0 . 1 5 5
9 . 2 0 0
1 . 5 2 0
8 . 3 2 0
1 . 3 6 5
2 . 9 0 5

0.220
5 5 . 2 3 0
1 5 . 6 7 5

6 . 2 7 5
0 . 1 4 5
8 . 1 8 0
1 . 3 1 5
3 . 5 9 5
1 . 9 5 0
3 . 9 6 0

0.220
5 0 . 2 5 0
1 2 . 0 7 5
1 2 . 2 3 0

0 . 2 5 0
1 0 . 5 6 0

1 . 2 2 5
7 . 8 8 5
1 . 7 2 5
1 . 8 9 5

0 . 1 6 0  
6 0 . 5 3 5  
1 5 . 7 0 5  

5 . 8 3 0  
0.110 
5 .  38 0  
0 . 8 9 0  
4 . 8 8 0  
1 . 1 3 0  
4 . 0 3 5

0 . 2 5 0
5 7 . 5 9 0
1 6 . 1 2 5

5 . 0 3 0
0 . 1 1 5
6 . 3 4 5
1 . 0 5 5
5 . 5 7 5
1 . 7 8 5
4 . 5 9 5

0 . 3 7 5  
5 0 . 9 1 0  
1 6 . 2 4 5  

6 . 1 2 5  
0 . 1 3 5  
8 . 8 3 5  
1 . 2  30  
8 . 4 5 5  
1 . 3 7 5  
4 . 3 8 0

T o t a l 1 0 0 . 2 7 0 1 0 0 . 8 5 0 9 9 . 2 6 0 9 8 . 6 6 0 9 6 . 5 4 5 9 8 . 3 1 0 9 8 . 6 6 5 9 8 . 5 7 0 9 8 . 0 5 5
Z r
Y
Rb
Nb
S r
Th

200
34
6 5
14

67 2
5

2 5 5
24
51
17

8 3 5
7

15 4
21
53
13

5 6 0
2

162
32
37

5
4 6 5

2

205
30
95
15

344
6

135
28
8 0
11

282
4

135
19
50
12

511
5

211
25
49
11

748
4

1 7 6
27
31
12

9 3 4
4

" % .
15/

' 7 2 3
156 /

'  724
158 /  

' 7 2 8
180 /  

' 9 8 5
182 y  

/  986
202y  

'1063
218 y

'  1089
2 1 /

'1 0 9 2

p 0 . 4 0 0 0 . 2 6 5 0 . 2 1 5 0 . 2 4 0 . 3 6 0 0 . 2 6 0 0 . 2 9 5 0 . 5 5 0 0 . 1 9 0
S i 5 3 . 6 8 0 5 9 . 6 5 0 5 3 . 5 2 0 5 7 . 9 1 5 5 2 . 4 3 0 5 1 . 6 3 0 5 1 . 6 8 5 4 8 . 4 8 0 4 9 . 2 8 5
A l 1 8 . 4 4 0 1 8 . 5 1 5 1 4 . 5 7 0 1 7 . 0 8 5 1 5 . 4 7 5 1 5 . 0 0 0 1 3 . 2 7 0 1 1 . 7 2 5 1 1 . 7 7 5
Mg 4 . 6 1 0 2 . 3 9 5 8 . 7 5 5 4 . 2 6 5 7 . 7 9 0 8 . 5 7 5 1 1 . 4 2 0 1 1 . 9 6 0 1 1 . 7 4 5
Mn 0 . 1 4 0 0 . 0 7 0 0 . 1 4 5 0 . 1 0 5 0 . 1 5 0 0 . 1 6 0 0 . 1 2 0 0 . 2 0 0 0 . 1 9 0
Fe 0 . 5 0 5 5 . 2 1 5 8 . 4 1 5 6 . 4 6 5 8 . 4 5 5 9 . 1 4 5 8 . 0 1 0 1 0 . 0 6 0 1 1 . 1 3 0
T i 1 . 5 8 0 0 . 7 5 0 1 . 1 8 5 0 . 8 4 0 1 . 2 9 5 1 . 2 2 0 1 . 1 5 0 1 . 1 6 5 1 . 1 9 5
Ca 4 . 5 8 5 4 . 7 6 5 7 . 3 8 0 4 . 5 9 5 8 . 1 4 0 9 . 0 8 0 6 . 4 1 0 1 1 . 2 7 5 9 . 3 6 0
K 1 . 2 5 5 1 . 4 6 5 1 . 1 4 0 3 . 2 0 0 1 . 4 2 0 1 . 3 6 0 2 . 3 0 0 1 . 7 0 0 1 . 5 9 0
Na 4 . 6 2 5 5 . 5 1 5 3 . 1 0 0 3 . 8 2 5 3 . 3 2 5 2 . 3 2 0 3 . 3 7 0 0 . 9 8 5 2 . 8 6 5
T o t a l 9 7 . 8 1 5 9 8 . 5 9 5 9 8 . 6 2 5 9 8 . 5 3 5 9 8 . 8 3 5 9 8 . 8 1 5 9 8 . 0 3 0 9 8 . 1 0 0 9 9 . 3 9 0
Z r 2 2 4 19 5 1 4 9 1 77 1 8 0 13 6 146 13 7 15 3
Y 41 17 21 25 27 24 22 20 18
Rb 55 53 39 1 5 0 36 42 50 73 34
Nb 18 22 9 lO 18 14 7 10 6
S r 8 2 9 1 0 1 7 52 7 736 87 9 4 9 0 545 8 3 8 308
Th 2 4 2 2 6 5 3 7 1

M a j o r  e l e m e n t s  a r e  l i s t e d  as Wt.% o x i d e s .
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Microdiorites
226y  

' l 0 9 2
2 2 /

'X )92
228111/

4 o92

228(2 l y  

'1092
2 2 9 ( i |y

' m i

229(21y
'1092

2 2 9 0 )y

^1092
2 2 9 1 /

' m 2
p 0 . 4 2 5 0 . 3 5 0 0 . 4 8 5 0 . 4 3 5 0 . 3 9 0 0 . 3 6 5 0 . 4 2 5 0 . 4 8 5
S i 5 1 . 9 5 5 4 9 . 3 5 0 5 1 . 5 3 5 5 0 . 5 6 5 4 8 . 9 5 0 4 9 . 5 7 0 4 9 . 2 2 5 5 0 . 6 6 5
A l 1 5 . 8 5 5 1 4 . 7 4 5 1 4 . 9 3 0 1 3 . 8 7 0 1 1 , 9 8 0 1 2 . 0 9 0 1 3 . 8 1 0 1 4 . 1 1 0
Mg 6 . 9 7 0 8 . 7 0 5 8 . 2 9 0 9 . 8 8 0 1 2 . 5 6 5 1 2 . 2 1 5 9 . 1 9 0 9 . 4 4 5
Mn 0 . 1 3 5 0 . 1 8 0 0 . 1 6 5 0 . 1 6 0 0 . 1 7 0 0 . 1 7 0 0 . 1 5 0 0 . 1 5 0
Fe 7 . 7 9 0 1 0 . 0 3 5 8 . 8 3 5 9 . 1 4 0 9 .  33 0 9 . 2 9 0 8 . 7 0 0 8 . 4 8 5
T i 1 . 4  30 1 . 2 7 0 1 . 2 5 0 1 . 2 3 5 1 . 0 9 5 1 . 1 5 5 1 . 3 3 5 1 . 1 8 0
Ca 8 . 5 3 0 8 . 8 5 0 9 . 5 5 5 0 . 2 6 5 1 0 . 4 0 5 1 0 . 2 3 5 9 . 9 4 0 9 . 3 8 0
K 1 . 6 8 0 1 . 8 9 0 1 . 4 0 0 1 . 2 0 0 1 . 3 7 5 1 . 4 9 5 1 . 3 1 0 1 . 3 6 0
Na 4 . 0 8 5 3 . 5 1 0 3 . 0 6 0 2 . 2 5 5 1 . 6 0 5 1 . 7 6 5 3 . 4 2 0 2 . 8 4 5
T o t a l 9 8 . 8 4 5 9 8 . 5 7 5 9 9 . 5 1 5 9 9 . 0 0 0 9 7 . 8 6 5 9 8 . 3 6 0 9 7 . 5 1 0 9 8 . 1 1 0
Z r 156 144 1 6 9 15 3 131 118 152 168
Y 34 24 28 23 24 24 26 22
Rb 36 6 0 43 32 36 48 4 0 43
Nb 19 8 14 5 10 7 11 14
S r 9 7 5 9 1 5 1 0 8 9 1 0 7 0 702 71 9 1 1 2 8 1 1 3 3
Tb 8 5 12 1 0 7 13 10 11

Major elements are lis te d  as Wt.% oxides.
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Permo -  Carboniferous Camptonites
100 /  

U 2 9
101 /

/ 4 2 9
106 /  

'4 6 7
109 ,  

' 4 7 2
126 /  

''^549
2 7 4 /

'  1182
2 7 5 /

'  1228
276y  

M 2 2 8
1 4 5 /

' 6 5 6

p 0 . 6 0 5 0 . 7 8 5 0 . 7 4 5 0 . 7 1 0 1 . 2 6 0 0 . 9 2 0 0 .  585 0 . 6 0 0 0 . 9 5 0
S i 3 9 . 9 2 0 4 1 . 9 9 5 4 2 . 0 6 5 3 8 . 2 9 0 3 8 . 5 3 5 4 3 . 2 5 5 4 3 . 8 7 0 43 . 2 7 0 31 . 4 3 5
A l 1 1 . 6 5 5 1 3 . 8 1 5 1 2 . 3 5 0 1 2 . 0 2 0 1 1 . 8 5 5 1 2 . 8 7 5 1 4 . 0 8 0 14 . 2 2 0 13 . 6 3 5
Mg 7 . 6 7 0 6 . 4 2 0 9 . 5 9 0 7 . 8 4 0 1 1 . 2 4 0 9 . 7 3 0 7 . 8 2 0 8 . 1 1 0 6 . 1 6 0
Mn 0 . 1 7 0 0 . 1 5 0 0 . 1 7 0 0 . 1 7 0 0 . 2 0 0 0 . 1 8 5 0 . 1 7 0 0 . 2 2 0 0 . 1 6 0
Fe 1 3 . 2 5 5 1 3 . 7 3 0 1 1 . 2 0 0 1 2 . 1 6 0 1 1 - 4 9 5 1 2 . 0 6 0 1 0 . 7 8 0 10 . 8 8 0 18 . 6 5 5
T i 2 . 9 4 0 3 . 1 3 5 2 . 6 4 5 2 . 8 8 0 2 . 6 5 5 2 . 9 4 5 2 . 5 5 0 2 . 4 9 5 2 . 1 0 5
Ca 1 1 . 5 9 0 1 0 . 5 3 0 1 1 . 4 7 5 1 3 . 6 6 0 1 4 . 7 3 0 1 2 . 4 7 5 1 0 . 6 2 0 11 . 0 3 0 11 . 3 8 5
K 1 . 9 8 5 2 . 6 8 0 3 . 2 8 5 2 . 3 4 0 1 . 8 7 0 0 . 7 4 5 2 . 0 1 5 1 . 8 9 0 2 . 4 0 5
Na 1 . 6 3 5 1 . 9 8 5 0 . 9 6 5 1 . 5 0 5 0 . 4 7 0 3 . 5 2 0 2 . 9 6 0 3 . 1 5 5 0 . 0 3 5
T o t a  1 9 1 . 4 3 0 9 5 . 2 2 0 9 4 . 4 9 0 9 1 . 5 7 0 9 4 . 3 0 0 9 8 . 7 1 0 9 5 . 4 5 5 95 . 8 8 5 86 . 3 4 5
Z r 2 50 322 338 2 9 1 306 2 8 8 275 29 3 141
Y 22 2 8 30 27 30 33 31 33 32
Rb 52 67 93 61 45 2 0 66 64 65
Nb 74 loo 12 5 6 0 118 84 107 117 34
S r 1 2 5 4 9 9 8 1 0 9 3 78 4 1 9 84 641 1 1 2 0 11 0 5 1 2 0
Th 6 5 11 3 8 6 6 9 0

Tertiary n  n  1 o  r  i 4 A c -------------- >
7 9 /

'2 4 6
9 8 /

'4 0 0
107y  

' 4 6 9
242y

' l0 9 4
2 5 /

'1136
2 5 8 /

' l1 3 9
P 0 . 2 4 0 0 . 1 8 0 0 . 1 3 0 0 . 3 3 0 0 . 4 2 0 0 . 2 4 5 0 . 1 5 5 0 . 7 6 0
S i 5 4 . 6 9 5 5 4 . 4 1 0 5 7 . 6 1 5 4 6 . 4 3 0 4 8 . 5 2 0 4 6 . 8 5 0 5 5 . 6 5 0 5 9 . 4 1 0
A l 1 2 . 3 5 0 1 5 . 8 3 5 1 5 . 0 3 0 1 3 . 7 6 0 1 5 . 3 0 0 1 4 . 0 4 5 1 4 . 9 6 5 1 4 . 8 9 0
Mg 9 .  32 5 5 . 9 6 5 6 . 9 3 0 7 . 1 2 0 7 . 5 3 5 9 .  330 5 . 1 2 0 5 . 7 4 5
Mn 0 . 1 6 5 0 . 1 4 0 0 . 1 5 0 0 . 2 4 0 0 . 1 4 5 0 . 2 1 0 0 . 1 4 0 0 . 0 9 0
Fe 1 2 . 1 3 5 1 0 . 1 1 5 9 . 7 9 5 1 0 . 2 7 0 1 0 . 3 1 5 1 2 . 1 5 0 1 0 . 1 6 0 5 . 5 9 5
T i 1 . 8 4 0 1 . 2 5 5 1 . 1 1 5 1 . 5 7 0 2 . 0 9 5 1 . 7 6 0 1 . 2 9 5 0 . 9 9 5
Ca 8 . 0 6 5 1 0 . 1 3 5 7 . 3 5 0 1 3 . 6 2 0 1 0 . 5 9 5 1 0 . 7 0 5 8 . 5 2 0 3 . 9 7 5
K 0 . 7 4 0 O . 31 0 1 . 0 8 0 0 . 3 9 0 1 . 0 3 5 0 . 4 4 0 0 . 6 2 5 3 . 3 8 5
Na 2 . 7 3 5 2 . 6 9 5 3 . 0 2 5 2 . 2 9 0 3 . 0 8 5 2 . 3 8 5 3 . 1 9 0 4 . 1 0 0
T o t a  1 1 0 2 . 6 8 5 1 0 1 . 0 2 0 1 0 0 . 2 1 0 9 6 . 0 3 0 9 9 . 0 4 5 9 8 . 1 2 0 9 9 . 8  30 9 8 . 9 4 0
Z r 102 62 72 94 133 87 79 2 6 9
Y 24 2 0 22 21 27 2 0 2 0 19
Rb 21 1 32 4 18 4 11 59
Nb 1 0 7 8 19 26 11 4 21
S r 351 307 62 2 4 6 3 534 391 318 1392
Th 0 O 1 0 3 1 0 12

us
Highly ollervd (? l  Camptonite

Granitic" #h**t

Major elements are l is te d  as Wt.% oxides
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Modal analyses of Loch Eil Division Psam m ites.

QUARTZ
FELDSPAR
MUSCOVITE
B icrr iTE
GARNET
EPIDOTE
C HLORITE
CALC IT E
ACCESSORIES

ŷ109
4 5 .  3 
4 5 . 4  

0 . 4
8 . 7
0.0
0.1
0.0
0.0
0.1

'leo
6 1 . 8
3 0 . 2
0.0
3 . 6
0.0
3 . 3
0.6
0.0
0 . 5

y■̂29
7 9 . 5

9 . 2
3 . 3  
7 . 5  
0.0 
0.0 
0 . 6  
0.1 
0.0

3 /
2̂29

5 6 . 8  
1 0 . 5  
1 7 . 4
1 4 . 9  
0.0 
0.0 
0.0 
0.0 
0 . 4

39,
229

8 0 . 2
10.8

5 . 9
2 . 5
0.0
0.1
0 . 2
0 . 3
0.0

86/
/276

6 4 . 0
3 .1  

2 5 . 7
3 . 5
2 . 0
0.0
1 . 2  
0.0 
0 . 5

87,
279

7 7 . 1
4 . 4

1 8 . 4
0.1
0.0
0.0
0.0
0.0
0.0

ŷ301 
8 7 . 2  

6 . 4  
2 . 1  
0 .  3 
0.0 
3 . 1  
0 . 4  
0.0 
0 . 5

95,
335

7 9 . 2
8 . 8
0.1
1 . 6
0.0
9 . 2
0.0
0.0
1.1

t o y
'436

i i y
'482 '5 0 3

1 2 0 /
'520

130/
'572

1 9 y
'1032

191y
4o32

QUARTZ 3 7 . 1 2 5 . 2 5 9 . 2 5 0 . 4 4 1 . 4 7 1 . 5 5 3 . 1 6 5 . Ü 8 1 . 7
FELDSPAR 3 4 . 5 3 0 . 9 3 2 . 1 3 1 . 0 4 6 . 1 1 9 . 0 2 0 .  3 2 5 . 1 2 . 3
MUSCOVITE 4 . 7 2 1 . 0 0 . 7 0 . 3 1 . 0 3 . 5 7 . 4 5 . 2 1 4 . 6
B IO T IT E 2 3 . 5 1 9 . 0 5 . 9 2 . 6 9 . 4 5 . 8 1 3 . 1 3 . 2 1 . 2
GARNET 0 . 0 0 . 0 0 . 0 0 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 2 0 . 8 1 2 . 2 0 . 7 0 . 0 0 . 2 0 . 1 0 . 0
CH LORITE 0 . 0 0 . 0 1 . 2 0 . 8 0 . 2 0 . 0 5 . 5 0 . 1 0 . 0
C A L C IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 2 3 . 7 0 . 1 1 . 9 1 . 2 0 . 2 0 . 4 0 . 5 0 . 2

1 9 /
'1032 %

1 9 y
'1036

1 9 y
'1037

196/
4038

1 /
'1039 Averoge

QUARTZ 5 0 . 0 7 2 . 7 2 0 . 6 6 5 . 8 6 6 . 6 7 9 . 0 6 1 . 3 0
FELDSPAR 1 8 . 4 5 . 6 7 7 . 2 1 4 . 1 1 8 . 8 1 6 . 2 2 2 . 0 1
MUSCOVITE 2 2 . 8 1 4 . 6 0 . 8 1 9 . 2 3 . 4 4 . 1 8 . 2 0
B IO T IT E 7 . 2 6 . 6 0 .  3 0 . 5 9 . 2 0 .  3 6 . 2 7
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1 7
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 2 5
C HLORITE 0 . 3 0 . 2 0 . 7 0 . 3 0 . 3 0 . 0 0 . 5 3
C A L C IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2
ACCESSORIES 1 . 3 0 . 3 0 . 4 0 . 1 1 . 7 0 . 4 0 . 6 1

500 Points per section
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Modal analyses of Glenfinnan Division Psammites.

% % %
1 4 /

'672 '763
1 7 /

'963
1 8 /

'W31
2 0 /

4)65
2 y

'0 8 7
QUARTZ 4 4 . 6 7 6 . 8 4 8 . 6 5 4 . 0 4 0 . 0 7 3 . 0 6 5 . 8 5 4 . 6 7 1 . 0 6 3 . 8
FELDSPAR 3 0 . 6 1 9 . 2 3 6 . 6 2 3 . 2 2 8 . 2 2 4 . 2 2 9 . 0 2 9 . 8 1 8 . 0 3 0 . 8
MUSCOVITE 0 . 0 0 . 0 0 . 0 1 8 . 2 2 1 . 6 1 . 0 1 . 0 9 . 0 5 . 8 1 . 0
B IO T IT E 1 6 . 8 4 . 0 1 4 . 4 4 . 2 9 . 6 1 . 8 4 . 0 6 . 4 2 . 6 4 . 4
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 0 0 . 0 0 , 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
CH LORITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 , 2 0 . 0 0 . 4 0 . 0
C A L C IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 0 0 . 0 0 . 4 0 . 4 0 . 6 0 . 0 0 . 0 0 . 2 0 . 2 0 . 0

2 3 /
'0 9 3

2 3 /
/%)93

2 6 /
'M63

2 6 /
4 i64

2 6 /
4 i65

2 6 /
'T166

2 6 /
^ 6 7

2 6 /

MSB

2 6 /

4 i69
QUARTZ 6 4 . 8 2 2 . 2 5 8 . 1 6 8 . 5 6 8 . 5 7 5 . 6 5 0 . 7 7 0 . 9 6 7 . 5
FELDSPAR 2 3 . 4 5 7 . 4 3 2 . 7 2 6 . 4 2 6 . 8 1 4 . 5 4 1 . 5 2 2 . 9 2 4 . 7
MUSCOVITE 2 . 8 0 . 0 0 . 0 1 . 2 1 . 5 6 . 6 0 . 4 2 . 2 2 . 4
B IO T IT E 8 . 8 2 0 . 2 8 . 4 3 . 3 2 . 8 3 . 1 7 . 0 4 . 0 3 . 0
GARNET 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 3 0 . 0 0 . 8
EPIDOTE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
CHLORITE 0 . 0 0 . 0 0 . 1 0 . 1 0 . 1 0 . 2 0 . 0 0 . 0 1 . 2
C A L C IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 2 0 . 2 0 . 8 0 . 5 0 . 3 0 . 0 0 . 1 0 . 0 0 . 4

500 Points per section
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Modal analyses of Morar Division Psammites.

2 4 y
4o97

2 ^
1170

2 6 / .
4l71

2 6 /
4 t72

2 7 /

4 l73 % % %
QUARTZ 5 4 . 2 6 1 . 8 7 6 . 8 6 1 . 2 6 1 . 9 6 8 . 3 6 0 . 3 5 8 . 4 6 8 . 2
FELDSPAR 3 2 . 0 2 9 . 4 2 0 . 8 2 7 . 6 3 3 . 8 2 7 . 7 3 5 . 6 3 4 . 9 2 2 . 3
MUSCOVITE 2 . 4 1 . 6 0 . 9 0 . 4 2 . 4 0 . 1 1 . 0 0 . 0 3 . 5
B IO T IT E 1 0 . 6 6 . 6 0 . 7 1 0 . 1 1 . 9 3 . 6 3 . 1 5 . 2 5 . 5
GARNET 0 . 0 0 . 0 0 . 1 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1
E PIDO TE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C H LO RITE 0 . 0 0 . 2 0 ; 4 0 . 1 0 . 0 0 . 3 0 . 0 1 . 5 0 . 3
C A L C IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 0 0 . 4 0 . 3 0 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1

500 Points per section
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Modal analyses of Cclc-silicate rocks.

QUARTZ
PLAGIOCLASE
AMPHIBOLE
B IO T IT E
MUSCOVITE
GARNET
PYROXENE
C A L C IT E
EPID O TE
C L IN O Z O IS IT E
C H t X » I T E
ACCESSORIES

34
y

229

7 9 . 1
1 0 . 4
0.0
0.0
0.0
0.1
0.0
0.0
0.0
9 . 9
0.0
0 . 5

36

7 5 . 3
1 0 . 4  

4 . 0
0.0
0.0
0.0
0.0
0.0
0.0
1 . 5
0.0
0.0

5 5 . 6
2 2 . 8

8 . 4  
0.0 
0.0
7 . 2  
1 . 9  
0 . 4  
0.0
2 . 5  
0.0
1 . 2

40

7 7 . 5  
5 . 5  
1 . 2  
0.0 
0.0 
0 . 3  
1 . 3  
0 . 7  
0.0 

1 3 . 2  
0.0 
0 .  3

103

7 9 . 0
1 5 . 2
0.0
0 . 4
0.0
0.0
0.0
0.0
5 . 2
0.0
0.0
0.0

10/
U51

3 7 . 3
1 8 . 7  
1 0 . 9
0,0
0.0
4 . 1  
0 .0  
0.0 
0.0

2 6 . 8  
0.0
2 . 2

105 , 

"4SI

4 2 . 7
1 8 . 8  
1 3 . 1
0.0
0.0
1 . 9  
0.0 
0.0 
0.0

2 1 . 6
0.0
1 . 9

%
4 4 . 3
3 2 . 3  

5 . 0  
0.0 
0.0 
3 . 4  
0.0 
0.0 
0.0

1 1 . 7
1 . 7
1 . 6

131 134
7'582 7'2 5 0

1 6 /
'8 8 3

1 7 0 /  
% 8

1 7 0 /
■448

QUARTZ
PLAGIOCLASE
AMPHIBOLE
B IO T IT E
MUSCOVITE
GARNET
PYROXENE
C A L C IT E
EPIDO TE
C L IN O Z O IS IT E
C HLOR ITE
ACCESSORIES

5 1 . 8
3 6 . 9  

2 . 5  
0 . 0  
0 . 0  
3 . 8  
0 . 0

. 0 . 3  
0 . 0  
3 . 4  
0.0 
0 . 6

5 6 . 4
1 2 . 2
0.0
0.0
0.0
0.0
0.0
0 . 2

3 0 . 6
0 . 0
0 . 2
0 . 6

8 3 . 8
8 . 3  
1 . 7  
0.1 
0 . 0  
0 . 3  
0.1 
0.1 
0 . 0
5 . 4  
0 . 0  
0 . 2

6 8 . 2
2 4 . 2

0 . 4
0 . 9
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
5 . 4
0 . 0
0 . 9

4 8 . 9
2 6 . 5
1 0 . 2

0 . 0
0.0
3 . 7
0.0
0.0
0.0
9 . 3
0 . 4
1.0

5 2 . 8
3 3 . 0

7 . 3
0 . 2
0.0
1 . 8
0.0
0.0
0.0
1 . 9
0.0
3 . 0

4 7 . 8
2 9 . 7

5 . 6
0.1
0.0

1 2 . 5
0.0
0.0
0.0
3 . 4
0.0
0 . 9

7 0 . 9
1 5 . 7

5 . 1  
0.0 
0.0 
6 . 5  
0.0 
0.0
1 . 2  
0.0 
0.0 
0.6

%
1 8 /  

MO 31
2 0 /

4 )50
2 0 /

' ^ 5
2 0 /

'1068
2 C /

'«71
2 i y

'1087
2 i y

'1087
QUARTZ 4 3 . 5 6 6 . 0 6 3 . 3 6 0 , 5 5 0 . 4 5 3 . 4 5 8 . 2 5 9 . 3
PLAGIOCLASE 3 7 . 9 2 3 . 1 2 6 . 5 2 8 . 0 3 6 . 0 2 0 . 0 3 2 . 9 2 9 . 1
AMPHIBOLE 9 . 5 3 . 6 2 . 7 5 . 6 1 . 9 3 . 7 0 . 1 0 . 1
B IO T IT E 1 . 1 0 . 1 0 . 0 2 . 5 0 . 0 0 . 0 0 . 0 1 . 7
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 7
GARNET 4 . 5 3 . 7 4 . 7 1 . 2 5 . 7 1 6 . 4 2 . 1 3 . 1
PYROXENE 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 1 . 6 0 . 0 0 . 0
C A L C IT E 0 . 1 0 . 8 0 . 0 0 . 0 2 . 0 0 . 0 0 . 0 0 . 4
EPIDO TE 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 9
C L IN O Z O IS IT E 0 . 0 1 . 7 0 . 5 0 . 4 1 . 3 0 . 5 1 . 3 0 . 0
C HLOR ITE 1 . 3 0 . 3 0 . 3 0 . 5 1 . 5 1 . 7 3 . 5 3 . 1
ACCESSORIES 1 . 6 0 . 7 1 . 6 1 . 3 1 . 2 2 . 7 1 . 9 1 . 6

2 i y

'1088

2 ^

'1091

2 ^

'm o

2 ^

'm g

2 ^

'l123

2 ^

1126

2 ^

'l1L5
QUARTZ 5 4 . 3 5 2 . 3 5 1 . 3 7 0 . 2 4 7 . 9 7 4 . 2 6 9  5 5 6 . 2
PLAGIOCLASE 3 6 . 7 3 7 . 9 4 1 . 1 2 4 . 8 3 6 . 7 2 0 .  3 2 1 . 2 3 3 . 1
AMPHIBOLE 0 . 7 0 . 1 2 . 8 0 .  3 6 . 7 0 . 3 0 . 4 3 . 5
B IO T IT E 1 . 3 4 . 4 0 . 7 0 . 3 0 , 0 0 . 0 0 . 0 0 . 0
MUSCOVITE 1 . 4 1 . 7 0 . 5 0 . 3 0 . 3 0 . 3 0 . 2 0 . 6
GARNET 2 . 8 0 . 8 0 . 8 0 . 7 6 . 6 2 . 0 4 . 0 2 . 6
PYROXENE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C A LC IT E 0 . 0 0 . 4 0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0
EPIDOTE 0 . 0 0 . 0 0 . 0 2 . 5 0 . 0 0 . 0 2 . 1 0 . 0
C L IN O Z O IS IT E 0 . 1 0 . 0 0 . 5 0 . 0 0 . 4 1 . 3 0 . 0 2 . 0
C HLOR ITE 1 . 9 1 . 5 0 . 7 0 . 3 0 . 9 1 . 1 2 . 0 1 . 1
ACCESSORIES 0 . 8 0 . 9 1 . 6 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6

1000 Points per section.
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Modal an a lyses  of striped and 
semi -  pelitic r ocks .

-Glenfinnan Division

's e e '6 6 3

QUARTZ 3 1 . 2 2 2 . 2 2 9 . 8 3 2 . 6 2 4 . 5 1 6 . 2 4 9 . 2
FELDSPAR 2 8 . 4 4 5 . 8 3 3 . 2 3 7 . 2 4 3 . 2 4 7 . 0 1 4 . 8
B IO T IT E 2 0 . 8 2 3 . 4 2 5 . 0 1 0 . 2 1 . 4 2 5 . 6 9 . 6
MUSCOVITE 1 4 . 0 0 . 2 1 1 . 2 1 0 . 6 9 . 4 1 0 . 2 2 6 . 0
GARNET 3 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
IRON ORES 1 . 2 0 . 4 0 . 4 0 . 4 0 . 2 0 . 2 0 . 4
C H LO R ITE 0 . 0 0 . 0 0 . 2 8 . 8 2 0 . 8 0 . 0 0 . 0
ACCESSORIES 0 . 6 0 . 0 0 . 2 0 . 2 0 . 0 0 . 8 0 . 0

Glenfinnan Loch Eil

' 7 9 9
2 0 y .

M086
I i y ,

'681
1 2 y ,

'525
1 2 9 , ,

'5 5 0

QUARTZ 5 5 . 8 4 1 . 8 2 9 . 6 2 9 . 4 2 3 . 0 4 3 . 6
FELDSPAR 2 7 . 8 1 8 . 8 4 6 . 0 3 6 . 2 1 2 . 4 1 4 . 2
B IO T IT E 6 . 6 1 8 . 4 1 7 . 8 3 2 . 0 3 5 . 4 2 1 . 2
MUSCOVITE 9 . 6 1 7 . 6 5 . 6 1 . 2 2 8 . 4 1 3 . 8
GARNET 0 . 2 0 . 2 0 . 0 0 . 0 0 . 2 2 . 4
IRON ORES 0 . 0 0 . 0 0 . 0 0 . 4 0 . 4 4 . 8
CH LORITE 0 . 0 0 . 0 0 . 8 0 . 0 0 . 0 0 . 0
ACCESSORIES
S IL L IM A N IT E

0 . 2 0 . 6
2 . 6

0 . 2 0 . 8 0 . 2 0 . 0

500 Points per section

Semi -  pelitic rock. 
Striped lithology.
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Modal an alyses  of Glenfinnan Division Pelites.

% % % s %30
QUARTZ
FELDSPAR
B IO T IT E
MUSCOVITE
GARNET
CH LORITE
ACCESSORIES
IRON GRES
S IL L IM A N IT E

1 5 . 6
2 6 . 4
3 0 . 0
2 3 . 2

3 . 6
0 . 6
0.6
0.0
0.0

2 3 . 0
3 1 . 4
1 9 . 8
1 6 . 6

5 . 4
1 . 2
0 . 6
1 . 2
0.0

2 0 . 8
5 2 . 4
2 3 . 6

1 . 4  
0.0 
0 . 2
1 . 4  
0 . 2  
0.0

2 3 . 4
3 9 . 8
2 7 . 6

7 . 6
0 . 6
0.0
0 . 6
0 . 4
0.0

2 0 . 8
4 6 . 2
2 4 . 0

5 . 8
1 . 8  
0.0 
0 . 2  
0 . 2  
0 . 2

1 8 . 6
4 7 . 6
1 7 . 8
10.0

6 . 8
0 . 2
0.0
1.0
0.0

4 0 . 8
3 5 . 6
1 4 . 4

8 . 8
0.0
0 . 2
0 . 2
0.0
0.0

2 0 . 6
3 4 . 8
2 3 . 2
1 8 . 0

3 . 0
0 . 2
0.0
0 . 2
0.0

2 1 . 6
1 8 . 2
2 3 . 6
3 4 . 8

0 . 4
0.0
0 . 2
1 . 2
0.0

1 3 /
' M 3

8 2 ^
651

6 2 /
'251

Tbtoi

% -
i y

'609
i y
'721

160 /
'776

1 6 y

QUARTZ 2 9 . 0 5 . 8 1 7 . 4 1 1 . 6 4 4 . 8 2 4 . 8 3 1 .2 7 . 8 3 0 . 2
FELDSPAR 0 . 2 2 8 . 0 4 0 . 0 3 8 . 0 2 6 . 0 3 7 . 4 1 1 . 8 2 3 . 6 1 8 . 6
B IO T IT E 2 2 . 8 5 1 . 6 1 7 . 4 3 4 . 5 0 . 4 3 2 . 4 1 8 . 0 8 . 2 1 2 . 6
MUSCOVITE 1 7 . 0 0 . 2 0 . 6 0 . 0 . 4 1 . 6 3 7 . 6 3 1 .2 3 2 . 4
GARNET 0 . 6 2 . 6 1 . 6 2 . 2 1 5 . 8 3 . 0 0 . 2 8 . 4 3 . 8
C H LO RITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 4 0 . 0 0 . 0 1 5 . 8 0 . 0
ACCESSORIES 0 . 2 0 . 2 0 . 6 0 1 4 0 . 4 0 . 4 0 . 4 0 . 0 0 . 4
IRON ORES 0 . 2 0 . 8 0 . 4 0 . 6 0 . 8 0 . 4 0 . 8 1 . 6 0 . 8
AMPHIBOLE 0 . 0 1 0 . 4 1 2 . 6 1 1 . 5 1 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0
C L IN O Z O IS IT E 0 . 0 0 . 4 1 . 4 0 . 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
STAUROLITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 4 0 . 0
S IL L IM A N IT E 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 1 . 2

%
1 6 /

' M l
1 7 y

'968
1 7 / 1 7 /

'% 1
1 7 /

-/gzi
1 8 /

4 8 6
1 8 /
4 o12

1 8 /
4)31

QUARTZ 3 1 . 2 3 0 . 0 2 8 . 4 4 5 . 4 3 6 . 8 1 1 . 8 2 0 . 6 1 9 . 0 3 1 . 0
FELDSPAR 2 7 . 2 1 6 . 2 1 4 . 6 2 0 . 4 2 7 . 4 6 3 . 0 1 7 . 8 2 7 . 2 2 8 . 6
B IO T IT E 1 5 . 2 2 2 . 6 1 5 . 0 1 1 . 2 1 0 . 6 2 1 . 2 3 3 . 8 3 0 .2 1 8 . 8
MUSCOVITE 1 8 . 4 3 0 . 8 3 5 . 6 1 9 . 0 2 4 . 2 1 . 6 2 5 . 4 2 1 . 6 1 5 . 6
GARNET 5 . 4 0 . 0 5 . 4 2 . 4 0 . 0 0 . 2 1 . 8 1 . 2 1 . 4
C HLOR ITE 0 . 0 0 . 0 0 . 0 0 . 2 0 . 2 2 . 0 0 . 0 0 . 0 0 . 6
ACCESSORIES 1 . 2 0 . 2 0 . 2 0 . 0 0 . 2 0 . 2 0 . 4 0 . 6 0 . 2
IRON ORES 1 . 4 0 . 2 0 . 8 0 . 4 0 . 6 0 . 0 0 . 0 0 . 2 1 . 8

500 Points per section
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Modal analyses of Glenfinnan Division P elites .

QUARTZ
FELDSPAR
B IO T IT E
MUSCOVITE
GARNET
C HLO R ITE
ACCESSORIES
IRON ORES
S IL L IM A N IT E

199,
1065

3 1 . 4
1 8 . 2
1 5 . 6
3 1 . 6  

0 . 6  
0 . 2  
0 . 4  
1 . 2  
0.8

201
XM050

3 7 . 6  
1 2 . 0
1 9 . 6
2 9 . 6  
0.0 
0.0 
0 . 2  
1.0 
0.0

203,
1066

3 8 . 8
1 8 . 4  
15 2
2 5 . 4  
0.0 
0.0 
0.0 
0.8 
0 . 4

206 
4)65

2 6 . 0
3 3 . 0
2 8 . 2
1 1 . 4

0 . 2
0 . 6
0 . 2
0 . 2
0 . 2

2y 
'1006

2 1 . 0
3 6 .2
20 .0
1 4 . 6

5 . 0
0 .8
0 . 2
1 . 6
0 . 6

217,
1089

2 6 . 6
1 7 . 0
1 3 . 2
3 9 . 4
0.0
0.0
0 . 2
3 . 6
0.0

22/
4 )9 0

3 2 .2
3 9 .2  
2 2 . 8

4 . 2
0 . 4
0.8
0 . 2
0 . 2
0.0

22/
4)90

2 3 . 4
4 1 . 0  
1 7 . 6
1 5 . 0  

1.6  
0 . 6  
0 . 2  
0 . 5  
0.0

2 3 /
4 )9 2

1 8 . 6
2 6 . 8
3 1 . 4
2 1 . 6

0 . 8
0 . 4
0.2
0.0
0 . 2

236,
1093

2 8 . 2
1 9 . 0
1 4 . 6
3 1 . 4

2 . 6
0 . 6
0.0
2 . 2
1 . 4

2 3 /
4)93

2 /
'XB3

2 6 /
4)96

2 y
'l106

2 6 /
4 o6

2 /
'l106

2 6 /
/t106

2 6 /
'4 )6

2 5 /
4 i06

QUARTZ 9 . 0 2 0 . 4 4 2 . 0 2 9 . 6 2 5 . 2 2 3 . 4 1 5 . 6 2 2 . 8 2 2 . 6
FELDSPAR 4 5 . 8 4 0 . 2 3 7 . 2 2 7 . 4 4 4 . 4 3 9 . 6 3 6 . 4 4 7 . 4 4 0 . 0
B IO T IT E 3 9 . 0 2 5 . 4 6 . 6 2 2 . 6 2 4 . 6 3 1 . 4 3 3 . 8 2 1 . 2 2 4 . 0
MUSCOVITE 5 . 8 1 0 . 2 1 1 . 8 1 1 . 6 5 . 2 5 . 4 1 1 . 2 8 . 0 1 2 . 0
GARNET 0 . 0 2 . 0 0 . 2 5 . 4 0 . 2 0 . 2 1 . 4 0 . 0 0 . 8
C H LO R IT E 0 . 0 1 . 0 1 . 8 0 . 2 0 . 2 0 . 0 0 . 0 0 . 4 0 . 4
IRON ORES 0 . 2 0 . 6 0 . 0 1 . 8 0 . 0 0 . 0 1 . 0 0 . 0 0 . 2
ACCESSORIES 0 . 2 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 6 0 . 2 0 . 0
S TAUROLITE 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
S IL L IM A N IT E 0 . 0 0 . 2 0 . 2 1 . 2 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0

500 Points per section
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Modal analyses of Ardgour granitic gneiss .

%60 % 53,
232

55,
232

5 /
' 2 3 5 % 5

QUARTZ  
PLAGIOCLASE  
K-FELDSPAR  
MYRMERITE  
GARNET 
B IO T IT E  
MUSCOVITE  
C H LOR ITE  
• E P ID O T E ’ 
ACCESSORIES

2 0 . 2
2 5 . 0
3 0 . 2

6 . 4  
0.0
9 . 4  
0.0 
0.0 
0.0 
0.0

3 0 . 6
2 9 . 8
2 1 . 6  

2 . 0  
0.0

1 5 . 4
0 . 4
0 . 2
0.0
0.0

3 6 . 4  
4 6 . 6
1 2 . 4
0.0
0.0
0 . 4
2 . 4
1 . 4  
0 . 2  
0 . 2

4 0 . 0
3 6 . 4
1 6 . 2

2 . 0
0.0
2 . 6
1 . 4
1 . 4  
0.0 
0.0

3 8 . 6  
1 5 . 8  
1 9 . 2

4 . 4
0.0

1 3 . 6  
8 . 0  
0.0 
0.0 
0 . 4

3 6 . 6
3 9 . 4
1 0 .6  

0 . 4  
0 . 6

11.0
0.0
0 . 2
0 . 4
0.8

1 4 .
4 1 .

5.
O.
O.

37 .
O,
0 ,
1. 
O

4 0 . 0
4 2 . 6  

1 . 4
0.0
1.8

1 3 . 6  
0.0 
0.0 
0 . 4  
0.2

1 5 . 6
3 1 .2
5 3 . 2  
0,0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0

'1235
278 /

M235
2 8 /

4235
2 s y

4235
Peg

QUARTZ 3 5 . 4 2 8 . 0 3 0 . 6 2 4 . 6 2 9 . 6 2 6 . 6 3 2 . 8 2 3 . 8
PLAGIOCLASE 4 6 . 0 5 3 . 8 4 8 . 6 2 7 . 8 4 1 . 0 2 8 . 0 2 3 . 6 3 8 . 0
K-FELDSPAR 1 . 6 1 . 0 0 . 8 2 8 . 0 2 . 6 6 . 6 1 6 . 0 3 0 . 2
MYRMERITE 0 . 0 0 . 0 0 . 0 3 . 8 2 . 6 0 . 6 1 . 4 5 . 2
GARNET 1 . 4 2 . 0 2 . 0 0 . 0 1 . 6 0 . 0 0 . 2 0 . 0
B IO T IT E 1 4 . 0 1 5 . 2 1 7 . 4 1 4 . 8 2 4 . 6 2 9 . 2 2 6 . 0 2 . 0
MUSCOVITE 0 . 0 0 . 0 0 . 0 0 . 8 0 . 0 8 . 8 0 . 0 0 . 8
C HLO R ITE 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
•E P ID O T E ' 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0
ACCESSORIES 0 . 6 0 . 0 0 . 6 0 . 2 0 . 0 0 . 2 0 . 0 0 . 0

500 Points per section
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A p p e n d i x  4 .

ABBREVIATIONS :

GF. G le n f in n a n  D i v i s i o n .
L E . Loch E i l  D i v i s i o n .
M orar M o rar  D i v i s i o n .

Ps. Psam m it ic  r o c k .
P e l . P e l i t i c  r o c k .
S t r i p e d . S t r i p e d  and s e m i - p e l i t i c  ro c k .
C a l c - s i l . C a l c - s i l i c a t e  r o c k .
A . g . g A rd g o u r  g r a n i t i c  g n e is s .
Gt.A m ph. G a r n e t i f e r o u s  a m p h i b o l i t e .
H b .S c h . H o rn b le n d e  s c h i s t .
P e r p h .H b .S c h . P o r p h y r o b l a s t i c  h o rn b -e n d e  s c h i s t .
M ic r o . M i c r o d i o r i t e .  (C a le d o n ia n ) '
C a m p t o n i t e . C a m p to n i te .  ( P e r m o -C a r b . )
D o l e r i t e . D o l e r i t e .  ( T e r t i a r y )

NOTE ON SAMPLE AND LOCALITY NUMBERING.

( Exp.234/1169 ) . number is  the sample number. 

2*^̂  number is  the lo c a l i ty  number used on 

f ie ld  s lip s  and note books.

( Exp.159 NM 93568323 ) . 1S t

,nd
number is  the lo c a l i ty  number 

number is  the Grid Reference.
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SompJe
Number

1
3
5
7
9
1
3
5
7
9

I I
2 3
2 5
17
9
1
3
5
7
9
1
3
5
7

19
51
53
55
57
59
61
6 3
6 5
6 7
6 9
71
73
75
77
79
01
83
85
87
8 9
91
93
95
97
99

Exp
Numb*

6 0
6 0

9 0
93  

1 0 7  
112  
1 3 8  
14 3  
15 5  
16 4  
1 8 0  
2 1 4  
2 2 9  
2 2 9  
2 2 9  
2 2 9  
2 30  
2 30  
2 30  
2 3 1  
2 31 
2 3 1  
2 32 
2 32 
2 34 
2 3 5  
2 3 5  
2 3 5  
2 3 5  
2 3 5  
2 35 
2 3 7  
2 4 0  
24  3 
2 4 4  
2 4 6  
2 5 0  
2 5 5  
2 5 9  
2 7 9  
2 9 3  
31 8  
335  
3 55  
375  
4 1 8

Grid Reference

N o t  known  
N o t  Known 
N o t  known  
NM 9 2 9 8 8 1 6 7  
NM 9 2 9 8 8 1 6 7  
N o t  known  
NM 9 3 2 6 8 2 3 3  
NM 9 4 0 2 8 2 2 2  
NM 9 4 2 8 8 2  36  
NM 9 4 4 7 8 2 7 2  
NM 9 2 5 3 8 1 6 3  
NM 9 3 0 7 8 1 0 6  
NM 9 2 1 8 8 1 8 5  
NM 9 2 2 7 8 1 9 3  
NM 9 4 8 0 8 2  32 
NM 9 4 5 3 8 0 4 9  
NM 9 0 8 9 8 0 4 7  
NM 9 0 8 9 8 0 4  7 
NM 9 0 8 9 8 0 4  7 
NM 9 0 8 9 8 0 4  7 
NM 9 1 0 6 8 0 4 7  
NM 9 1 0 6 8 0 4 7  
NM 9 1 0 6 8 0 4 7  
NM 9 1 2 7 8 0 3 3  
NM 9 1 2 7 8 0 3 3  
NM 9 1 2 7 8 0 3 3  
NM 9 1 4 4 8 0 3 0  
NM 9 1 4 4 8 0 3 0  
NM 9 1 4 4 8 0 2 8  
NM 9 1 7 7 8 0 2 0  
NM 9 1 7 7 8 0 2 0  
NM 9 1 7 7 8 0 2 0  
NM 9 1 7 7 0 0 2 0  
NM 9 1 7 7 8 0 2 0  
NM 9 1 7 7 8 0 2 0  
NM 9 1 9 4 7 9 9 8  
NM 9 2 2 0 7 9 9 4  
NM 9 2 9 1 7 9 7 7  
NM 9 3 0 4 7 9 8 8  
NM 9 3 0 3 7 9 7 8  
NM 9 5 0 3 7 9 2 1  
NM 9 6 2 7 8 0 4 0  
NM 9 6 2 8 8 0 2 1  
NM 9 6 1 8 7 9 9 3  
NM 9 6 4 3 7 9 6 1  
NM 9 6 6 3 8 1 5 2  
NM 9 7 2 1 8 2 3 1  
NM 9 8 0 0 8 1 4 8  
NM 9 7 6 7 8 0 8 7  
NM 9 7 8 2 7 9 7 6

Lilhotogy

A . g . g .
A . g . g .

G F . S t r i p e d
A . g . g .
G F . P e l .
G F . S t r i p e d .  
G F . S t r i p e d .  
H b .S c h . 
G F . P e l .  
A . g . g .
L E . P s .
G F . Ps .
M ic r o .
L E . P a . 
C a l c - s i l .
L E . P s .
G t .A m p h . 
G F . P e l .
G F . P a .
G F . P e l .
C a l c - s i l .
G F . Ps .
A . g . g .
A . g . g .
M ic r o .
A . g . g .
G t . Amph. 
G t.A m ph.
G t .A m p h .
G t . Amph.
G t . Amph.
M ic r o .
H b .S c h .
H b .S c h .
A . g . g .
D o l e r i t e .
C a l c - s i l .
M ic r o .
M ic r o .
L E . P s .
P o rp h .H b .S c h  
M ic r o .
M ic r o .
L E . Pa.
L E .P s .
M ic r o .

Somple
Number

Exp
Number Grid Reference Lithology

2 N o t  known
4 6 NM 9 1 7 7 8 0 2 0 G t .A m p h .
6 6 0 NM 9 2 9 8 8 1 6 7 A . g . g .
8 6 0 NM 9 2 9 8 8 1 6 7 G F . S t r i p e d

10 64 NM 9 3 0 6 8 1 4 8 G F . P e l .
12 70 NM 9 2 7 3 8 1 2 4 G F . P e l .
14 92 NM 9 4 0 9 8 2 2 8 A . g . g .
16 106 NM 9 4 2 6 8 2 2 9 G F . P e l .
18 109 NM 9 4 3 9 8 2 0 5 L E . P s .
2 0 118 NM 9 3 8 7 8 1 2 4 H b .S c h .
22 13 8 NM 9 2 5 3 8 1 6 3 H b .S c h .
24 143 NM 9 3 0 7 8 1 0 6 G F . P e l .
26 164 NM 9 2 2 7 8 1 9 3 G F . P s .
28 174 NM 9 4 5 4 8 2 0 3 P o r p h . H b . S c h .
30 20 9 NM 9 5 1 2 8 2  34 G F . P e l .
32 2 1 7 NM 9 4 6 2 8 0 2 5 G F . S t r i p e d .
34 2 2 9 NM 9 0 8 9 8 0 4 7 C a l c - s i l .
36 2 9 9 NM 9 0 8 9 8 0 4 7 C a l c - s i l .
38 2 2 9 NM 9 0 8 9 8 0 4 7 L E . P s .
4 0 2 2 9 NM 9 0 8 9 8 0 4 7 C a l c - s i l .
42 2 30 NM 9 1 0 6 8 0 4 7 G F . P e l .
44 2 30 NM 9 1 0 6 8 0 4 7 G F . P s .
46 2 3 1 NM 9 1 2 7 8 0 3 3 G F . P s .
48 2 31 NM 9 1 2 7 8 0 3 3 C a l c - s i l .
50 23 1 NM 9 1 2 7 8 0 3 3 H b .S c h .
52 2 3 1 NM 9 1 2 7 8 0 3 3 G F .P s .
54 2 32 NM 9 1 4 4 8 0 3 0 H b .S c h .
56 2 32 NM 9 1 4 4 8 0 3 0 H b .S c h .
58 2 35 NM 9 1 7 7 8 0 2 0 A . g . g .
6 0 2 3 5 NM 9 1 7 7 8 0 2 0 G t .A m p h .
62 2 35 NM 9 1 7 7 8 0 2 0 A . g . g .
64 2 3 5 NM 9 1 7 7 8 0 2 0 G t .A m p h .
66 2 36 NM 9 1 7 7 8 0 2 0 G t .A m p h .
68 2 35 NM 9 1 7 7 8 0 2 0 A . g . g .
7 0 2 3 5 NM 9 1 7 7 8 0 2 0 G t .A m p h .
72 2 4 0 NM 9 2 2 0 7 9 7 4 A . g . g .
74 24 1 NM 9 2 4 0 7 9 4 4 M i c r o .
76 2 4 4 NM 9 3 0 4 7 9 8 8 A . g . g .
78 24 5 NM 9 3 6 3 7 9 8 9 D o l e r i t e .
8 0 2 4 8 NM 9 4 3 2 7 9 5 4 G F . P s .
82 2 5 1 NM 9 5 2 8 7 9 1 7 G F . P e l .
84 2 5 9 NM 9 6 2 8 8 0 2 1 G r a n i t i c  s h e e t .
8 6 2 7 6 NM 9 6 0 7 7 9 6 7 L E . P s .
8 8 2 8 1 NM 9 6 4 5 7 9 8 8 P o r p h . H b . S c h .
9 0 301 NM 9 6 5 0 8 0 5  3 L E . P s .
92 333 NM 9 6 9 1 8 2 1 2 P o r p h . H b . S c h .
94 346 NM 9 7 7 7 8 2 1 6 P o r p h . H b . S c h .
96 357 NM 9 8 1 8 8 1 9 8 ' G r a n i t i c ' s h e e t .
98 4 0 0 NM 9 8 2 5 8 0 3 8 D o l e r i t e .

loo 4 2 9 NM 9 8 1 0 7 9 3 6 C a m p t o n i t e .
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Som ple

NLfnber

LOI
10 3
105
107
10 9  
111
113
114  
116
110 
120  
122 
124  
126  
120 
1 3 0  
132  
134  
13 6  
13 8  
1 4 0  
142  
144  
146  
14 8  
1 5 0  
152  
154  
15 6  
15 8  
1 6 0  
162  
16 4  
166  
16 8  
1 7 0  
172  
174  
176  
17 8  
1 8 0  
182  
184  
18 6  
18 8  
1 9 0  
192  
194  
19 6  
1 9 8

Exp
Number

4 2 9  
4 4 0  
4 5 1  
4 6 9  
472  
48 2  
5 0 3  
5 0 3  
5 1 0  
51 4  
5 2 0  
5 3 7  
54 3 
5 4 9  
5 4 9  
572
581
582  
5 8 8  
64  3 
6 4 8  
6 5 4  
6 5 6  
6 6 4
67 2
6 7 3
721
722  
724  
72 8  
77 6  
794  
8 0 2  
84  3 
8 8 3  
9 4 8  
95 2  
95 6  
9 6 1  
9 7 1
9 8 5
9 8 6  

1 0 0 6  
1012
1 0 3 1
1 0 32  
1 0 3 4  
1 0 3 6
1 0 3 8
1 0 3 9

Grid Reference

NM 9 0 1 0 7 9 3 6  
NM 9 8 6 7 0 0 0 8  
NM 9 8 9 2  7 9 1 3  
NM 9 9 3 2 8 0 1 7  
NM 9 9 0 8 8 0 3 0  
NM 9 8 6 4 8 1 5 2  
NM 9 9 9 4 8 0 9 0  
NM 9 9 9 4 8 0 9 8  
NN 0 0 0 1 7 9 9 5  
NN 0 0 3 3 7 9 4 0  
NN 0 0 5 2 8 1 1 0  
NN 0 0 5 2 8 1 7 6  
NN 0 0 8 2 8 2 9 1  
NN 0 1 8 3 8 1 6 1  
NN 0 1 8 3 8 1 6 1  
NN 0 1 9 5 8 0 9 8  
NM 9 6 1 1 8 0 9 1  
NM 9 6 0 6 8 0 8 3  
NM 9 4 9 3 8 2 8 8  
NM 9 3 1 7 8 3 3 3  
NM 9 2 8 3 8 2 5 8  
NM 9 2 7 2 8 2 8 8  
NM 9 2 7 9 8 2 7 8  
NM 9 2 8 2 8 3 1 1  
NM 9 2 8 2 8 3 3 7  
NM 9 2 8 1 8 3 4 5  
NM 9 1 5 3 8 3 2 8  
NM 9 1 6 1 8 3 0 9  
NM 9 0 2 1 8 0 8 5  
NM 9 0 4 0 8 0 8 8  
NM 9 0 7 8 8 3 6 8  
NM 8 9 5 3 8 4 3 7  
NM 8 8 7 2 8 4 2 4  
NM 8 9 6 1 8 3 4 8  
NM 8 8 4 7 8 3 5 8  
NM 8 6 3 7 8 3 6 3  
NM 8 6 0 9 8 4 1 2  
NM 8 7 1 4 8 1 7 3  
NM 8 6 8 1 0 1 9 7  
NM 8 5 9 0 8 2  37  
NM 8 6 3 1 8 1 5 5  
NM 8 6 6 5 8 1 5 2  
NM 8 5 3 3 8 2 8 9  
NM 8 6 1 5 8 2 6 3  
NM 8 4 5 8 8 1 6 6  
NN 0 2 2 3 7 9 9 2  
NN 0 0 0 3 7 9 9 3  
NM 9 9 4 2 7 9 4 1  
NM 9 8 0 3 7 9 7 8  
NM 9 7 1 2 7 9 2 7

Lifhology

C a m p t o n i te .  
C a l c - s i l .  
C a l c - s i l .  
D o l e r i t e . 
C a m p t o n i t e .
L E . P s .
M ic r o .
M ic r o .
F a u l t  b r e c c ia  
M ic r o .
L E . P s .
L E . P s .
P o rp h .H b .S c h .  
C a m p t o n i t e . 
F o r p h .H b .S c h . 
L E . P s .
P o rp h .H b .S c h .  
C a I c - s i l .
G F . S t r i p e d .
G F . S t r i p e d .  
F a u l t  b r e c c ia  
M ic r o .
F a u l t  b r e c c ia  
L E . S t r i p e d .
G F . P s . 
P e g m a t i t e . 
G t.A m ph.  
M ic r o .
M ic r o .
M i c r o .
G F . P e l .
G F . P e l .
G F . P e l .
G t . Amph.
G F . P e l .
C a l c - s i l .
H b .S c h .
C a l c - s i l .
G F . P e l .
G t .A m ph.
M i c r o .
M ic r o .
G t.A m p h.
G F . P e l .
G F .P s .
L E . P s .
L E . P s .
L E . P s .
L E .P s .  
P e g m a t i t e .

Somple
timber

Exp.
Nunber Grid Reference

—
Lifhology

102 43 6 NM 9 0 2 4 7 9 9 0 L E .P s .
104 45 1 NM 9 0 9 2 7 9 1 3 C a l c - s i l .
106 46 7 NM 9 0 7 3 7 9 5 2 C a m p t o n i t e .
100 4 7 0 NM 9 9 7 2 0 0 1 4 H b .S c h .
1 1 0 48 1 NM 9 0 6 3 0 1 3 2 L E . S t r i p e d .
112 503 NM 9 9 9 4 0 0 9 0 M i c r o .
114 505 NM 9 9 9 3 0 0 0 7 L E . P s . ( A r n i p o l ) .
115 506 NM 9 9 9 2 0 0 7 7 M i c r o .
1 17 512 NN 0 0 1 0 7 9 7 2 M i c r o .
1 1 9 517 NN 0 1 0 0 0 0 1 6 C a l c - s i l .
121 525 NN 0 0 1 0 0 2 0 7 L E . S t r i p e d .
123 539 NN 0 0 5 4 0 2 1 7 L E .P s
125 546 NN 0 1 6 0 0 2 0 0 M i c r o .
127 549 NN 0 1 0 3 0 1 6 1 C a m p t o n i t e .
12 9 55 0 NN 0 1 0 4 0 1 5 8 L E . S t r i p e d
131 573 NN 0 2 1 3 0 0 6 4 C a l c - s i l ,
133 582 NM 9 6 0 6 0 0 0  3 T h r u s t  c a t a c l a s i t e .
135 583 NM 9 5 9 7 0 0 5 3 G F . P e l .
137 60 9 NM 9 4 7 2 0 2 9 5 G F . P e l .
13 9 64 5 NM 9 2 9 3 0 3 5 6 G F .P s .
141 6 4 9 NM 9 2 8 3 0 2 6 6 M i c r o .
14 3 6 5 4 NM 9 2 7 2 8 2 0 0 G t .A m p h .
14 5 6 5 6 NM 9 2 7 9 8 2 7 0 A l t . ? C a m p t o n i t e .
147 6 6 9 NM 9 4 2 0 8 3 1 3 G t .A m p h .
14 9 672 NM 9 2 0 2 0 3 3 7 G F . P s .
151 721 NM 9 1 5 3 0 3 2 0 M i c r o .
15 3 721 NM 9 1 5 3 0 3 2 0 G F . P e l .
155 72 3 NM 9 1 6 4 0 2 0 6 M i c r o .
157 727 NM 902 30 1 4 6 G F . P e l .
15 9 7 4 0 NM 9 0 1 3 0 2 2 7 G t .A m p h .
161 78 3 NM 9 0 3 2 0 4 2 0 G F . P s .
16 3 79 9 NM 0 9 0 1 0 4 5 3 L E . S t r i p e d .
165 81 7 NM 8 9 0 0 0 2  37 G t .A m p h .
167 0 0 3 NM 0 0 4 7 0 3 5 0 C a l c - s i l .
16 9 9 0 0 NM 0 6 5 3 0 3 5 7 G t .A m p h .
171 9 4 0 NM 8 6 3 7 0 3 6 3 G F . P e l .
17 3 954 NM 0 6 0 7 0 4 4 4 G F . P e l .
175 961 NM 0 6 0 1 0 1 9 7 C a l c - s i l .
177 96 3 NM 0 6 7 0 0 2 4 7 G F .P s .
17 9 971 NM 0 5 9 0 0 2  37 G F . P e l .
101 906 NM 0 6 6 3 0 1 5 2 G F . P e l .
18 3 98 9 NM 0 5 0 0 0 1 4 7 G F . P s .
185 1 0 11 NM 0 6 3 0 0 2  54 G F . P s .
187 1 0 31 NM 0 4 5 0 0 1 6 6 C a l c - s i l .
189 1031 NM 0 4 5 0 0 1 6 6 G F . P e l .
191 1 0 3 3 NN 0 2 1 2 7 0 9 4 L E . P s .
19 3 1035 NN 0 0 3 1 7 9 0 2 L E . P s .
19 5 1 0 37 NM 9 0 0 0 7 9 4 7 L E . P s .
19 7 10 3 9 NM 9 7 1 2 7 9 2 7 L E . P s .
19 9 1 0 45 NM 0 4 6 2 0 2 1 3 G F . P e l .
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Sample
Number

Exp
N u m b e r

200  
202 
2 0 4  
2 06  
2 0 8  
2 10  
212  
2 1 4  
2 1 6  
2 1 8  
220  
2 2 2  
22 4  
2 2 6  
2 2 8  
2 30  
2 32 
2 34 
2 36 
2 38 
2 4 0  
24 2  
2 4 4  
2 4 6  
2 4 8  
2 5 0  
2 52  
2 5 4  
2 5 6  
2 5 8  
2 6 0  
262  
26 4  
2 6 6  
2 6 8  
2 7 0  
272  
2 7 4  
2 7 6  
2 7 8  
2 8 0  
28 2  
2 8 4  
2 8 6

1 0 5 0
1 0 6 3
1 0 6 5
1 0 6 5
1 0 7 1
1 0 8 6
1 0 8 7
1 0 8 7
1 0 8 8  
1 0 8 9  
1 0 8 9
1 0 8 9
1 0 9 0  
10 92  
10 92  
10 92
10 92
1 0 9 3  
1 0 9 3
1 0 9 3
1 0 9 4  
10 9 4  
1 0 9 7  
1 1 0 4  
1 1 0 4  
1 1 0 4  
1110 
1 1 1 9  
1 1 2 3  
1 1 3 9  
1 1 6 3  
1 1 6 5  
1 1 6 7  
1 1 6 9  
1 1 7 1  
1 1 7 3  
1 1 7 5  
1 1 8 2  
1 2 2 8  
1 2 3 5  
1 2 3 5
1 2 5 4
1 2 5 5  
1 2 6 1

Grid Reference

NM 8 4 0 7 8 2 3 3  
NM 8 3 8 8 8 1 8 2  
NM 8 4 1 3 8 2 8 8  
NM 8 4 1 3 8 2 8 8  
NM 8 4 4 2 8 3 3 7  
NM 8 3 5 8 8 1 9 8  
NM 8 3 4 4 8 1 9 7  
NM 8 3 4 4 8 1 9 7  
NM 8 3 3 5 8 1 9 9  
NM 8 3 2 3 8 2 0 3  
NM 8 3 2 3 8 2 0 3  
NM 8 3 2 3 8 2 0 3  
NM 8 1 3 7 8 2 0 6  
NM 8 3 0 6 8 2 0 7  
NM 8 3 0 2 8 2 0 8  
NM 8 3 0 2 8 2 0 8  
NM 8 3 0 2 8 2 0 8  
NM 9 2 9 8 8 2 0 9  
NM 8 2 9 7 8 2 0 9  
NM 8 2 9 4 8 2 1 0  
NM 8 2 6 7 8 2 0 6  
NM 8 2 6 7 8 2 0 6  
NM 8 1 9 7 8 2  35 
NM 8 4 3 8 8 3 7 9  
NM 8 3 4 8 8 3 7 9  
NM 8 3 4 8 8 3 7 9  
NM 8 2 8 3 8 2 4 8  
NM 8 3 8 1 8 3 2 4  
NM 8 4 0 6 8 3 6 1  
NM 8 2 9 5 8 3 7 5  
NM 8 4 6  3 8 3 0 9  
NM 8 4 3 5 8 3 1 7  
NM 8 4 0 6 8 3 2 7  
NM 8 4 1 2 8 3 4 7  
NM 8 3 8 7 8 3 4 9  
NM 8 3 7 3 8 3 5 7  
NM 8 3 5 2 8 3 6 4  
NM 9 0 8 5 8 1 2 0  
NM 8 5 6 4 8 1 3 5  
NM 9 1 7 7 8 0 2 0  
NM 9 1 7 7 8 0 2 0  
NM 8 3 4 4 8 1 9 7  
NM 8 2 8 3 8 2 4 8  
NM 8 2 1 3 8 2 0 4

Lithology

C a I c - s i l . 
M ic r o ,  
C a l c - s i l . 
G F . P e l .  
C a l c - s i l .
LE . S t r i p e d . 
C a l c - s i l .
GF. P s . 
P e g m a t i t e .  
M i c r o .  
H B .S ch .
GF. P s .
G F . P e l .
M i c r o .
M ic r o .
M ic r o .
G F . P e l .
G F . P e l .
G F . P s .
GF. P s .
M orar  P s .
D o l e r i t e .
M orar  P s .
G F . P e l .
G F . P e l .
G F . P e l .
C a l c - s i l .
C a l c - s i l .
C a l c - s i l .
D o l e r i t e .
G F . P s .
GF. P s .
GF. P s .
G F . P s .
Mora r  P s .
Mora r  P s .
M orar P s .
C a m p t o n i t e ,
C a m p to n i te .
A . g . g .
A . g . g .
C a l c - s i l .
C a l c - s i l .
M i c r o .

Sample Exp Grid1 Reference Lithology

201 1 0 5 0 NM 8 4 0 7 8 2  33 G F . P e l .
20 3 1 0 6 4 NM 8 3 7 1 8 2 2 7 G F . P e l .
20 5 10 65 NM 8 4 1 3 8 2 8 8 G F . P a .
20 7 1 0 6 8 NM 8 4 2 8 8 3 4 5 C a l c - s i l .
20 9 1082 NM 8 4 6 0 8 3 7 5 G t .A m p h .
211 1 0 8 6 NM 8 3 5 8 8 1 9 8 G F . P e l .
21 3 1 0 8 7 NM 8 3 4 4 8 1 9 7 C a l c - s i l .
21 5 1 0 8 8 NM 8 3 3 5 8 1 9 9 C a l c - s i l .
21 7 1 0 8 9 NM 832 3 8 2 0 3 G F . P e l .
2 1 9 1 0 8 9 NM 832 38 2 0 3 M i c r o .
221 1 0 8 9 NM 8 3 2 3 8 2 0 3 H b .S c h .
2 2 3 1 0 9 0 NM 8 1 3 7 8 2 0 6 G F . P e l .
22 5 1091 NM 8 3 1 0 8 2 0 8 C a l c - s i l .
22 7 10 92 NM 8 3 0 6 8 2 0 7 M i c r o .
2 2 9 1092 NM 8 3 0 2 8 2 0 8 M i c r o .
2 31 1092 NM 8 3 0 2 8 2 0 8 P e g m a t i t e .
2 3 3 1 0 9 3 NM 8 2 9 0 8 2 0 9 G F . P s .
23 5 1 0 9 3 NM 8 2 9 8 0 2 0 9 G F . P e l .
23 7 1 0 9 3 NM 0 2 9 4 8 2 1 0 G F . P e l .
2 39 1 0 9 4 NM 8 2 6 7 8 2 0 6 M o r a r  P e l .
24 1 1 0 94 NM 8 2 6 7 0 2 0 6 M o r a r  P s .
2 4 3 1 0 9 6 NM 8 2 1 3 0 2 0 4 M o r a r  P e l .
24 5 1 1 0 4 NM 8 4 3 0 0 3 7 9 G F . P e l .
2 4 7 1 1 04 NM 0 4 3 0 0 3 7 9 G F . P e l .
2 4 9 1 1 0 4 NM 8 3 4 8 8 3 7 9 G F . P e l .
2 51 1 1 0 4 NM 8 3 4 8 8 3 7 9 G F . P s .
2 5 3 1 1 1 5 NM 8 3 7 0 8 2 7 0 C a l c - s i l .
2 5 5 1 1 2 3 NM 0 4 0 6 8  361 C a I c - s i l .
2 5 7 1 1 3 6 NM 0 3 5 2 8 3 9 0 D o l e r i t e .
2 5 9 1 1 45 NM 0 2 9 3 8 3 9 0 Ca I c - s i l .
2 6 1 1 1 6 4 NM 0 4 4 7 8 3 0 4 G F . P s .
2 6 3 1 1 6 6 NM 0 4 1 5 0 3 2 0 G F . P s .
2 6 5 1 1 6 8 NM 0 4 0 3 0 3 4 5 G F . P s .
2 6 7 1 1 7 0 NM 8 3 9 3 8 3 4 0 M o r a r  P s .
2 6 9 1172 NM 0 3 0 0 8 3 5 2 M o r a r  Ps.
271 1 1 7 4 NM 8 3 6 0 8 3 6 0 M o r a r  P s .
2 7 3 1 1 7 6 NM 8 3 4 1 8 3 6 7 M o r a r  P s .
27 5 1 2 2 8 NM 8 5 6 4 0 1 3 5 C a m p t o n i t e .
2 7 7 1 2 3 5 NM 9 1 7 7 0 0 2 0 A . g . g .
2 7 9 1 2 35 NM 9 1 7 7 8 0 2 0 P e g m a t i t e .
2 8 1 1 2 3 5 NM 9 1 7 7 8 0 2 0 A . g . g .
28 3 1 2 5 4 NM 0 3 4 4 0 1 9 7 C a l c - s i l .
2 8 5 1 2 5 6 NM 8 3 1 9 8 2 6 5 C a I c - s i l .
28 7 1 2 6 3 NM 9 0 8 2 8 0 5 0 M i c r o .
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The metamorphic environment of the Sgurr Beag Slide; 
a major crustal displacement zone in Proterozoic, 

Moine rocks of Scotland

D . P ow ell, A . W . Baird, N . R. Charnley & P. J. Jordan

S U M M A R Y : New evidence from the SW Northern Highlands of Scotland establishes the 
southerly extension of the Sgun Beag Slide. Interpretation of changes in the mineralogy of 
calc-silicate rocks, particularly the use of the anorthitc content of plagioclase feldspar as an 
index of metamorphic grade, together with consideration of the texture and mineralogy of 
pelitic rocks, suggests that the slide juxtaposes crustal segments of different metamorphic grade 
and history. Movement on the slide post-dates a major phase of regional metamorphism and 
two phases of regional deformation of Precambrian age, was synchronous with a regional 
fold-forming event and regional meiamorphism at or before c. 467 Ma (Caledonian), and was 
followed by regional folding.

Models of the thermal effects of displacement across syn-metamorphic shear zones are 
investigated with particular reference to the roles of thermal relaxation and levels of shear 
strain. A model based on the development of a ductile, syn-metamorphic. asymmetric shear 
zone best explains the metamorphic patterns associated with the Sgurr Beag Slide. An original 
low to moderate easterly dip is implied, with north-westerly upthrusting of the eastern crustal 
block.

The Sgurr Beag Slide was first recognized in the 
Kinloch Hourn area of western Scotland (Fig. 1, inset). 
It is a major tectonic break since it has been traced for 
some 100 km through Moine rocks of the north
western part of the orthotectonic zone of the 
Caledonidc orogenic belt (Tanner 1970: Tanner ei a l.  
19701. and is associated with the emplacement of 
slivers of Archaean to early Proterozoic Lewisian 
basement at high stratigraphie levels within the 
younger Proterozoic Moine cover (Tanner ei a t .  1970; 
Rathbone & Harris 19791.

Separation of some of the Moine rocks into the 
Morar and Glenfinnan divisions by the Sgurr Beag 
Slide has been advocated because of the inferred large 
displacement upon the slide (Johnstone 1975). Despite 
the lack of quantitative data concerning both the age 
and displacement of the slide, speculations have been 
made on the ages of the M orar and Glenfinnan divi
sions on the basis of correlations with the less well 
known Grampian Highland ‘M oine’ and a few 
radiometric age determinations. The Glenfinnan divi
sion is claimed to be the oldest metamorphic, and by 
inference sedimentary, complex of the Moine (Piasecki 
& van Breemcn 1979; van Breemen el a l .  1978) 
which because of a Rb/Sr whole-rock isochron 
age of 1028 ±4.3 Ma for a granitic gneiss body within 
it (Brook ei a l .  1976) is claimed to be Gren- 
villian. In contrast, the Morar division is thought to 
represent a post-Grenvillian complex (Piasecki & 
van Breemcn 1979) despite isotopic evidence to the 
contrary (Brewer et a l .  1979). Such speculations re
quire the Sgurr Beag Slide to constitute or hide an 
orogenic front.

The amount of displacement across the Sgurr Beag

Slide is difficult to establish because of its essentially 
conformable and syn-metamorphic nature and the lack 
of well defined markers. Consideration of supposed 
Precambrian metamorphic zones and their apparent 
offsetting are claimed to indicate some 25 km of thrust 
displacement (Lambert ei a l . 1979). However, these 
authors gave no detailed, definitive analysis of the 
effects of the slide on metamorphic assemblages which 
provides the basis for their conclusions, nor did they 
analyse the associated structures.

The relative and absolute age of movement on the 
slide is a subject of debate. Relative to local sequences 
of deformation it is held to be pre-Fz or syn-F^ at 
Kinloch Hourn (Tanner 1970), syn-F, in relation to 
the Morar/Glenfinnan deformation sequence (Powell 
1974), or possibly coeval with the formation of the 
primary mylonites of the Moine Thrust and thus 
Caledonian in age (Powell 1974; van Breemen er al.  
1974; Brewer ei a l . 1979; Mendum 1979). Such sug
gestions, however, have depended largely on long- 
range correlations of the deformation sequences be
tween local areas of complex histories lacking readily 
identifiable time markers.

Recognition of the Sgurr Beag Slide

Major practical problems in recognizing the presence 
of the Sgurr Beag Slide are; the lack of well defined 
stratigraphical markers in most of the Moine which 
might permit correlations across the slide; the general 
lack of discontinuities along its known course (Tanner 
ei a l .  1970); and the absence of easily identifiable 
characteristic fabrics (a consequence of its syn

od 16-7649/81/1 10(1-0661 $02.00 (g) 1981 The Geological Society
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metamorphic and ductile nature). Furthermore, there 
are difliculties involved in establishing metamorphic 
grade within and adjacent to the slide in rocks which, 
because of the chemical nature of their pelitic mem
bers, rarely develop alumino-silicate minerals (W in
chester 1974).

Slivers of Lewisian basement provide convincing 
evidence for the presence of the slide at Kinloch 
Hourn and elsewhere. Where such Lewisian rocks are 
absent, extrapolation of the slide has relied heavily 
upon identification of Moine rocks as belonging to 
either the Morar or Glenfinnan divisions, on the as
sumption that it should everywhere separate these 
units (Fig. 1, inset; Johnstone 1975) and on the inter
pretation of ‘platy zones' as slide zone indices 
(Rathbone & Harris 1979: Mendum 1979).

As a direct consequence of these problems, the 
southerly extension of the Sgurr Beag Slide has not 
previously been established firmly, though various 
courses have been advocated (Tanner et a l .  1970; 
Powell 1974; Rathbone &  Harris 1979). The new 
observations presented here provide evidence for the 
course of the slide and for metamorphic grade con
trasts across it. Interpretation of the nature of these 
changes suggest syn-metamorphic shear displacements 
of an earlier metamorphic complex across outcrops of 
the slide repeated by major folds.

Metamorphic considerations

In the Morar/Glenfinnan area there is an increase in 
metamorphic grade from W -E  over a horizontal dis
tance of c. 18 km (Kennedy 1949; Powell 1974; 
Charnley 1976). This is indicated by: the incoming of 
staurolite, kyanite and sillimanite (mostly fibrolite) in 
pelitic rocks (Fig. 1); the incoming of migmatitic rocks 
(Fig. 1); changes in the mineralogy of calc-silicate 
rocks (Kennedy 1949; Charnley 1976); and prograde 
metamorphic changes in the mineralogy of intrusive 
microdiorites (Smith 1979).

Calc-silicate rocks usually occur in Moine rocks as 
thin, conformable ribs or lenses and represent either 
original sediments or early concretions. The use of the 
mineralogical changes in these calc-silicate lenses as 
indicators of metamorphic grade has been attempted 
by several authors (Kennedy 1949; Soper &  Brown 
1971; Winchester 1972, 1974; Charnley 1976; Tanner 
1976; Tanner & M iller 1980). This work demonstrates 
that the incoming and outgoing progressively, of bio- 
tite, amphibole and pyroxene is related not only to 
increasing metamorphic grade but also to whole-rock 
chemistry (using as a simple index the ratio 
CaO/AljO.^). An investigation of the metamorphic, 
mineralogical and chemical changes in calc-silicate 
rocks from the Morar/Glenfinnan area is in progress. 
It is not the purpose of this paper to present our 
results in detail but the early deductions it allows

are given in outline because they have consider
able bearing on the course, nature and relative age of 
the Sgurr Beag Slide.

A total of 210 calc-silicate samples have been ex
amined and of these 107 have been analysed for their 
major element composition. The anorthite content of 
the plagioclase in 163 of the samples has been deter
mined optically.

The following main mineral assemblages are recog
nized:
la. Biotite +  zoisite ±clinozoisite ±calcite 4- garnet 

+ plagioclase + quartz, 
b. Biotite + clinozoisite ±  calcite + garnet +  plagioclase 

-(-quartz.
2a. Amphibole ±  biotite ± zoisite -t- garnet +  plagioclase 

-r quartz.
b. Amphibole ±  biotite -t- clinozoisite -t- garnet 

4-plagioclase-t-quartz.
3a. Amphibole ±  pyroxene ±  zoisite 4- garnet 

4- plagioclase 4- quartz, 
b. Amphibole ±  pyroxene 4- clinozoisite 4- garnet 

4- plagioclase 4- quartz.
4a. Biotite 4- epidote ±  calcite = garnet 

4- plagioclase 4- quartz, 
b. Amphibole 4- epidote ±  calcite ±  garnet 

plagioclase 4- quartz.
Chlorite in some cases replaces amphibole, and/or 
biotite and/or garnet.

Assemblages la -2a -3a  are, on textural evidence 
and their spatial distribution, prograde, but also de
pendent on the whole rock C aO /A L O j ratio, a rela
tionship which supports the conclusions of earlier 
workers. In assemblages lb , 2b and 3b, clinozoisite 
occurs in place of zoisite. Assemblages 4a and 4b form 
a distinct sub-group which coexists with assemblages 
1. 2 and 3 but appears not to have responded so 
readily to changes in metamorphic conditions. It is not 
therefore considered further. Those calc-silicate rocks 
(not containing epidote) analysed have CaO/ALO^  
ratios ranging from 0.3 to 1.003.

Calc-silicate rocks with C aO /A U O , ratios of 0.353 
and above contain amphibole and/or pyroxene in envi
ronments where pelitic rocks contain stauroliie, kyan
ite and sillimanite (Fig. 1). Where alumino-silicates are 
absent on a regional scale, biotite plus zoisite charac
terize calc-silicate rocks with C aO /A L O , ratios of less 
than 1.003. Thus within the constraints of these ratios, 
biotite plus zoisite assemblages indicate garnet grade 
conditions, whereas amphibole and/or pyroxene reflect 
kyanite grade and above.

In samples from the lower grade, western half of the 
area, sub- to euhedral generally acicular zoisite and 
clinozoisite are characteristic and clinozoisite does not 
occur without zoisite. The zoisite has predominantly 
anomalous grey or grey-brown birefringence colours, 
while those of clinozoisite are grey-brown-deep blue- 
bright blue. To the E of the western edge of the 
clinozoisite zone (Figs 1 & 2) clinozoisite becomes
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predominant with zoisite occurring in only a few sam
ples. Here the interference colours of clinozoisite are 
exclusively grey-bright blue-yellow, the crystals are 
irregular in shape and, on textural evidence, may 
result from breakdown of plagioclase and/or zoisite.

Plagioclase feldspar is a dominant mineral phase in 
the calc-silicates examined, usually constituting c. 30%  
of the rock. Optical estimates of the anorthite content 
of plagioclase, using the Michel-Levy method, indicate 
a variation in different rock samples ranging from 
Anzo to An,?. Microprobe analyses have been made 
on 12 of the samples in order to check the plagioclase 
compositions obtained by optical means. These indi
cate that the Michel-Levy results give a minimum 
estimate of An content tending to be only slightly 
lower (within A n J  than chemical analyses. The gen
eral patterns of plagioclase behaviour outlined later 
are not affected by these differences.

The variation in plagioclase composition across the 
area is not random; there is clearly a general, and in 
places gradual, increase in An content of plagioclase 
from W  to E, i.e. with the overall increase in 
metamorphic grade (Fig. 2). Furthermore, Fig. 3 pro

vides strong evidence that An content is independent 
of the whole-rock CaO/ALO s ratio; samples with 
similar C aO /A ljO z ratios show An contents as low as 
20 and as high as 94 O.C.; highest values of An content 
occur in calc-silicates with CaO/ALO s ratios of 0 .35- 
0.76, which were collected from areas where adjacent 
or nearby pelitic rocks contain staurolite and/or kyan
ite, and/or ftbrolite; lowest values for An occur where 
C aO /A L O j ratios range from 0.39 to 0.83 and come 
from western localities of low grade pelitic rocks.

The conclusion that plagioclase composition is es
sentially independent of C a O /A L O , ratio is further 
borne out on the local scale. To the NW  of Ranochan 
(Fig. 1), 9 calc-silicate samples collected within an area 
of approximately 1 km^ show a range in the An con
tent of plagioclase between samples of 68 -100  and a 
range in C aO /A lzO j ratios of 0 .40-0.72; An values 
above 80 occur in rocks with C a O /A L O , ratios be
tween 0.40 and 0.60 while, for An values below 80, 
the same ratios range from 0.51 to 0.72.

The same conclusion can be drawn from the results 
of a parallel study in the Knoydart area c. 12 km to 
the N of the Morar/Glenfinnan area (P. Jordan). Here
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F i g . 3. Plot of anorthite content of plagioclase in 
calc-silicate rocks against whole-rock CaO/AUOj 
ratio (wt%i.

64 microprobe analyses of plagioclase compositions in 
11 calc-silicate rocks collected from a 5 km traverse 
show a progressive upgrade increase in the An content 
from 11 to 89 and a variation in C a O /A IjO , ratios of 
0.27-0 .58 . An values of 70 -90 occur in rocks with 
C aO /A lzO i between ratios 0.31 and 0.50, and An 
values of 10-30 where this ratio is 0.27-0 .53 . Within

these groupings there is likewise no direct relationship.
The results of our analyses of calc-silicate rocks 

indicate no direct or simple correlation between An 
content and the amounts of other major oxides pre
sent, with the notable exception of Na^O. There are 
clear indications that increasing An content coincides 
with decreasing Na^O in the whole-rock, but both 
parameters are a function of metamorphic grade (Fig. 
4); N a ;0  is evidently lost from the whole-rock (see 
also Tanner & Miller 1980). Despite the lack of 
precision inherent in the determination of An content 
of plagioclase by the Michel-Levy method (see, how
ever, Glazner 1980) it appears from Figs 1 &  2 and 
the above discussion that the anorthite content of 
plagioclase in calc-silicate rocks is monitoring changes 
in metamorphic grade both on the regional and more 
local scale. The local progressive changes in An con
tent with distance (Fig. 2), particularly where sampling 
is intense, suggest that plagioclase composition (i.e. 
m a x i m u m  An content) provides a sensitive index of 
metamorphic grade. In this respect it is noteworthy 
that while the range of An content exhibited at given 
distances in Fig. 2 may be due to measuring errors 
and/or some, as yet unidentified, chemical control, the 
changes in maximum An content with distance are 
followed, in general terms sympathetically, by changes 
in the minimum recorded An content; both values 
show a general W  to E increase.

The variation in the maximum An content of 
plagioclase in calc-silicates and their mineralogy across 
the area (Figs 1 & 2), indicate a progressive increase in 
grade from W  to E which is clearly interrupted in two 
places (near Lochailort and Arieniskill) where the An 
content of plagioclase suddenly changes. Around 
Lochailort a jump from A n ^  to An^^ takes place 
across the boundary between rocks which are referred

West East

LS AS SBS
-6 0

■4.0

KmO 5 10 15

F i g . 4. Composite profile of variation in NajO (wt%) in calc-silicate rocks across the study area. SBS = Sgurr Beag 
Slide; AS = Arieniskill Slide: = Lochailort Slide.
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to the Glenfinnan division (the Lochailort Pelitc of 
Powell 1964) and those considered as belonging to the 
Morar division (the Ardnish Psammite of Powell 
1964). The jump here also coincides with the incoming 
eastwards of migmatitic rocks, and more approxi
mately, with the incoming of amphibole as a common 
constituent of calc-silicate rocks, the incoming of 
alumino-silicate minerals in some pelitic rocks, and a 
change in the predominant nature of zoning in 
plagioclase in calc-silicate rocks (Figs 1 &  2).

It might be argued that these jumps in composition 
reflect the gap in An values for plagioclase between 55 
and 70 recorded in calc-silicate rocks by Kennedy 
(1949) and Tanner (1976). However, some 25% of 
our optically determined results lie within this range of 
composition, as do 18% of the microprobe analyses, 
suggesting that no such gap exists in rocks from the 
area. The intensity of sampling would appear to be 
more representative and spatially more intensive than 
that of the earlier work. In view of all these changes 
we conclude that a rapid increase in metamorphic 
grade takes place across the psammite/pelite junction.

Immediately to the W  of this junction a 2 km wide 
zone, characterized by a progressively w e s tw a rd  in
crease in An content and the occurrence of anhedral

clinozoisite (blue-yellow) rather than zoisite, interrupts 
the gradual eastward rise in grade in prograde assemb
lages lying further to the W  (Fig. 2). In pelitic rocks 
along the junction and within this ‘clinozoisite zone’ 
(Fig. 1), garnet, biotite and muscovite are, however, 
stable.

Further to the E, near Arieniskill (Figs 1 & 2), a 
similar, though less marked, change in An content and 
thus metamorphic grade, is centred on the junction 
between predominantly psammitic and pelitic forma
tions (the Arieniskill Psammitic and Lochailort Pelitic 
groups of Powell 1964). Likewise, near Ranochan, a 
change in An content coincides with a psammite-pelite 
junction (Figs 1 &  2).

Each of these three junctions have been, or are, 
from stratigraphical and/or structural considerations, 
thought to mark, or to be near, tectonic slide zones 
(Tanner et al.  1970; Powell 1974; and Baird, pers. 
comm.). Following, in part, and modifying the in
terpretation of the regional structure given by Powell 
(1974), and on the evidence given in this earlier work, 
together with our conclusion regarding the metamor
phic pattern, it is here suggested that each of the 
junctions traces the southerly course of the Sgurr Beag 
Slide repeated across the area by major folds (Figs 1 & 5).

GLENFINNAN D IV IS IO N

MOINEm o r a r  D IV IS IO N

LE W IS IA N  GNEISSES

Fk'i. 5 Se mi-schema tic cross-section of the area. Insci: location of line of section A-B. LS -  Lochailort Slide: 
AS = Arieniskill Slide; SBS = Sgurr Beag Slide.
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Metamoq)hic history of area in 
relation to formation of 

Sgurr Beag Slide

In common with relationships described from 
elsewhere (Tanner 1970; Rath bone &  Harris 1979), 
no cataclastic or classical mylonitic features are found 
associated with the Sgurr Beag Slide in the 
Morar/Glenfinnan area. However, metamorphic 
changes associated with the slide are: a drop in the An 
content of plagioclase; the incoming of clinozoisite in 
place of zoisite in many calc-silicate rocks; the juxta
position of migmatitic against non-migmatitic rocks; 
and the incoming of staurolite, kyanite and sillimanite. 
All of these changes do not, however, occur at each of 
the three levels of exposure of the slide. In particular, 
a large jump in An content only occurs at the 
Lochailort and Arieniskill slides; clinozoisite (blue- 
yellow) occurs in many, but not all. calc-silicate rocks 
to the E of the Lochailort Slide; alumino-silicates and 
staurolite occur on both sides of the Arieniskill Slide; 
and migmatitic features characterize all rocks to the E 
of the Lochailort Slide. Characteristic structural fea
tures of the slide are rapid increases in strain at 
Lochailort (Rathbone & Harris 1979), extreme atten
uation of stratigraphical formations to the N of 
Arieniskill (Powell 1974), and changes in the profile 
geometry of folds, together with truncation of litholog- 
ical units at Ranochan (Baird, pers. comm.).

From the evidence presented it is clear that the 
Sgurr Beag Slide is not  a post-metamorphic feature. 
Because at Lochailort it emplaces high grade migmati
tic rocks against non-migmatitic rocks of lower grade, 
without severe retrogression of pelitic and calc-silicate 
rocks, it either translated already metamorphosed 
rocks during a subsequent syn-metamorphic ‘sliding’ 
event, or it translated rocks at high temperatures, 
bringing them against cooler rocks lying to the W. In 
view of the progressive drop in An content, and thus 
metamorphic grade, through the ‘clinozoisite zone’ 
immediately W  of lx>chailort, together with the in
coming of clinozoisite and loss of zoisite, which are 
both interpreted as retrograde features, and the sud
den jump’ in metamorphic grade at the 
psammitc/pclile junction which is witnessed by not 
only An content of plagioclase, but also pelitic 
mineralogy, it appears that movement on the slide 
displaced already metamorphosed rocks. The abrupt
ness of the metamorphic changes across the slide 
seemingly precludes the thermal overprinting to be 
expected if hot rocks were emplaced against cooler, 
during a single prograde metamorphic event.

A model for the metamorphic 
environment of the Sgurr Beag Slide

The patterns of metamorphic changes across slide 
zones of the Morar/Glenfinnan area are similar to

those reported for a ductile shear zone in the Pre- 
cambrian rocks of Greenland (Grocott 1979). An im
portant difference, however, is the asymmetric nature 
of the Morar/Glenfinnan examples. Strain studies of 
rocks adjacent to and within the Lochailort Slide zone 
(here the ‘clinozoisite zone’), using changes of grain 
size, rotation of quartz veins, and changes in the 
geometrical relationships of cross-bedding, led Rath
bone & Harris (1979) to suggest an asymmetric dis
tribution of shear strain across the zone. Shear strains, 
assumed to have developed during ‘sliding’, progres
sively increase from W to E within a zone c. 4ÜÜ- 
500 m wide. If these observations are correct it would 
appear that the Lochailort Slide zone (and by correla
tion the Arieniskill and Sgurr Beag slide zones) are 
asymmetric ductile shear zones.

A  model of the possible patterns of metamorphic 
grade developed during, and directly following, syn- 
metamorphic shearing within an asymmetric shear 
zone is given in Fig. 6. The model assumes a strain 
rate sufficient to allow metamorphic reactions to pro
ceed; adjustment of the thermal instabilities resulting 
from displacement of isotherms (thermal relaxation of 
Oxburgh &  Turcotte 1974 and Grocott 1979);and essen
tially parallel isotherms both before displacement and 
after ‘thermal relaxation’. Such a model predicts fields 
of possible retrograde and prograde metamorphism, 
the boundaries of which are asymmetric to the shear 
zone boundaries (cf. Grocott 1979) as a consequence 
of the parallel nature of the relaxed isotherms and the 
similar geometry of the displaced isotherms (Fig. 6b). 
The patterns of relative metamorphic grade at differ
ent levels of erosion through such a model are shown 
in Figs 6 & 7. In ductile shear zones it can be argued 
that metamorphic reactions will not proceed in the 
absence of deformation (Beach 1976; Grocott 1979); 
thus retrogressive or progressive reactions may be 
limited to the shear zone alone (Fig. 8a). In the case 
of asymmetric shear zones, however, it is unlikely that 
such reactions will take place below a critical value of 
shear strain and thus it follows that the final 
metamorphic pattern would be similar to those shown 
in Fig. 8b.

The analysis of changes in thermal conditions result
ing from overthrust faulting given by Oxburgh &  
Turcotte (1974) is compatible with the modelling dis
cussed here in as much as they predict substantial, 
comparatively rapid readjustment (thermal relaxation) 
of geotherms displaced at thrust planes. Relaxation 
following rapid displacement gives temperatures at the 
thrust plane of 0.75-0.5 of the initial temperature of 
the base of the thrust slab after 4 Ma depending upon 
the depth of the thrust plane (Oxburgh &  Turcotte, 
fig. 3). Further, they predicted a return to pre
thrusting temperatures in the rocks overlying the 
thrust plane following an initial drop in temperature, 
but this recovery takes over 60 Ma. In rocks lying 
below the thrust a continual increase in temperature
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level A
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FiCi. 6. Pattern of isotherms after displacement and thermal relaxation across a model asymmetric shear zone. a. 
Positions of displaced and ‘relaxed' isotherms. Numerical values for isotherms indicate relative temperature values. 
b, Fields of potential prograde and retrograde metamorphism. A, 8 , C = levels of erosion referred to in Fig. 7.

follows immediately upon displacement. Oxburgh &  
Turcotie’s analysis, however, assumes pre-thrusting 
temperatures of O^C at the top of the rock pile under
lying the thrust; displacement across a single thrust 
plane; and does not consider, in detail, the possible 
effects of erosion and strain.

The geological constraints in the case of the Sgurr 
Beag Slide at Lochailort (Fig. 1) would appear to 
require displacement across a c. 2 km wide ductile 
shear zone and pre-thrusting temperatures im
mediately above the shear zone at which kyanite and 
staurolite are stable, i.e. c. 600°C. Below the shear
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LU

SHEAR ZONE

O I S T A N C E

f-ic;, 7. Graphs showing changes in relative 
metamorphic grade across a model shear zone at 
ditfcrenl erosion levels. A .  B. C = erosion levels in 
Fig. 6. Solid wiirve = grade on displacement. 
Dashed curve = grade after relaxation.

zone, temperatures are required at which garnet and 
biotite, but not kyanite or staurolite, are stable index 
minerals, i.e. c. 500“C or somewhat less. Assuming an 
initial dip of the shear zone of 45®, a geothermal 
gradient of 30®C/km, and a displacement of the order 
of 7 km. it is possible to infer from Oxburgh &  Tur- 
cottc’s analysis a rapid drop in temperature to c. 
5U)°C at the top of the shear zone following displace
ment and then a slow rise in temperature returning to 
600“C. A t the bottom of the shear zone temperatures 
would rapidly rise to c. 59()®C and slowly continue to 
rise thereafter to an equilibrium geothermal tempera
ture of c. 69D®C. While these actual temperatures may 
not be accurate, given the problems involved in estab
lishing temperatures from metamorphic mineral as
semblages. it is important to note that for thrusts

developed at depths greater than III km the values of 
the temperature differences  upon relaxation are not 
greatly affected by depth, geothermal gradient and 
thus starting temperatures. However, a change in the 
amount of displacement proportionally increases or 
decreases these temperature differences as doe^, for a 
given displacement, a change in dip of the shear zone.

It thus appears possible, within a short period of 
time following displacement (about 4 Ma), to generate 
temperature fluctuations which might drive both pro- 
and retrograde reactions in different parts of a ductile 
shear zone. Following Oxburgh &  Turcotte we note 
that the value of the temperature differences upon 
relaxation would be increased if the erosion rate con
sequent upon displacement and therefore uplift were 
sufficiently high to affect thermal relaxation. In addi
tion, the increase in temperature at the top of the 
shear zone following the initial rapid cooling might not 
occur under such conditions and, given rapid erosion, 
it follows that any phase changes resulting from the 
temperature drop might be preserved.

Characteristic of the metamorphic profiles derived 
from the model (Fig. 6) is a jump in ‘grade’ at either 
the shear zone boundaries or one boundary and the 
plane of critical shear strain (Fig. 8). Such rapid changes 
in ‘grade’ are clearly observed across the slide zones in 
the Morar/Glenfinnan area (Fig. 2), but the geometry 
of these profiles is not, in more detail, similar to those 
of the model. Moreover, changes in the model with 
regard to the relative attitudes of the isotherms and 
the shear zone boundaries, the geometry of the 
isotherms (i.e. similar rather than parallel), and the 
value chosen for the critical shear strain, do not pro
duce major changes in the geometry of the ‘grade' 
profiles and thus do not provide more precise 
analogues for the Morar/Glenfinnan examples.

In the Morar/Glenfinnan area there is geological 
and isotopic evidence for two major phases of regional 
metamorphism (Powell 1974; van Breemen et al.  
1974; Brewer et a l .  1979). The earliest of these (here 
denoted M l) ,  on isotopic evidence, is likely to have 
been Precambrian, whilst the younger (here M 2), was 
Caledonian. Textural and mineralogical evidence re
lated to structural observations (Powell &  MacQueen 
1976; MacQueen &  Powell 1977; Anderson &  Olim- 
pio 1977; Brook et a l. 1977) indicates garnet grade 
M l overprinted by chlorite-garnet grade M 2 in the 
area to the W of Lochailort, whereas to the E, M I and 
M2 both appear to have been high grade.

In order to accommodate the effects of a pre
shearing metamorphism, the model outlined above may 
be modified (Fig. 9). The relative attitudes of the M l  
and M 2 isotherms chosen are those which most closely 
fit the observed M 1 -M 2  grade relationships in the 
area. Combining the effects of an earlier metamorphism 
with the factors outlined in the previous model, the 
resultant ‘grade’ profiles at different erosion surfaces 
are those given in Fig. 10. These differ significantly
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F i g . 8 .  Graphs showing possible resultant ntciamorphic grade profiles across a model shear zone. a. Changes in 
grade at different erosion levels assuming metamorphic reactions occur within entire shear zone. b. Changes in grade 
assuming metamorphic reactions proceed only above a critical shear strain. r = retrograde metamorphism; p = 
progradc metamorphism. A. B. C = erosion levels of Fig. 6.

from those of the ‘single metamorphism’ model be
cause. outside the zone where the shear strain is equal 
to, or greater than critical, the resultant ‘grade’ would 
be that attained during M l ,  not M2.

The metamorphic profiles at erosion surfaces A  and 
E (Fig. 10) are remarkably similar to those observed at 
the Lochailort, Arieniskill, and Sgurr Beag slides (Fig. 
2), especially if the compositional change in plagio
clase in calc-silicate rocks is proportional to shear 
strain as well as temperature.

Regional implications
A fundamental problem in understanding the orogenic 
history of the Moine rocks of the Northern Highlands 
of Scotland has been the lack of substantive geological 
evidence for major crustal reworking of an older 
metamorphic complex by Caledonian events. Such 
evidence might provide a geological framework for the 
groupings of isotopic dates, at c. 1004, 780-730, and 
470-400 Ma. Polyphasal deformation sequences are 
recorded for many areas, but these vary from 4 phases

around Cam Chuinneag (Wilson &  Shepherd 19791 
and Morar/Moidart (Brown ei  a l .  1970; Powell 1974). 
to 6 phases in Glenelg (Barber &  May 1976) and 
Strathconnon/Glen Atfric (Tobisch et a l .  1970). Corre
lation of these sequences has proved difficult because 
of the problems involved in recognizing common, reg
ionally developed, distinctive geological events which 
might provide time markers. Polyphase metamorphism 
has also been recognized (Tobisch et a l .  1970; Powell 
1974; Winchester 1974; Fettes 1979), and while an 
earlier, Precambrian, metamorphism followed by 
Caledonian re-heating are supported by isotopic evi
dence, a detailed understanding of their interplay and 
relationships to deformation sequences has not 
emerged.

Taken with earlier work, the present study provides 
evidence for intensive crustal reworking associated, 
with the development of the Sgurr Beag Slide. It 
strongly suggests that, on a regional scale, an early 
metamorphic complex which had suffered at least two 
phases of pervasive deformation, was subsequently 
reworked by 3 phases of ductile deformation, the 
earliest of which was syn-metamorphic and involved
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R e la ted  M 2 is o lh e tn i(M 2 l 

M 2 is o ih e im  
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M  1 i& o ih e i m

M 2 * M 2 ' <  M l  

M 2 ï M 2 ' >  M l  

M 2 < M 2 ' < M 1 

M 2 ' < M 2 < M 1 

M 2 ' > M 2 > M 1

Fui. 9. Mclamorphic paiicrns arisinp from displacement of pre- and syn-shearing isotherms across an asymmetric 
shear zone. <i. Pattern of pre-shearing (M l) and syn-shearing (M2) isotherms after displacement and thermal 
relaxation. Numerical values for isotherms indicate relative temperature values. The M l isotherms are those relating 
to the establishment of a pre-shearing metamorphic regime. 6. Metamorphic fields resulting from model in a. M l 
and M2 as above. M2' = relaxed M2 isotherms. A to G = erosion levels referred to in Fig. 10.

regional crustal displacements across shear zones. 
Consideration of the amplitude of the major folds 
which duplicate the outcrop of the Sgurr Beag Slide in 
the Morar/Glenfinnan area (Fig. 5), together with the 
progressive reduction in metamorphic contrast across 
the slide in the more easterly outcrop (Figs 1 &  2), 
suggests that the slide was generated with a moderate 
to shallow, easterly dip.

The grouping of the orogenic events outlined above 
clearly provides a geological framework for the 
isotopic evidence if it is accepted that Rb-Sr whole- 
rock isochron ages of 1004 ± 2 8  M a for pelitic 
melasediments from the W  of the study area (of 
medium metamorphic grade during M l ,  and low grade

during M 2), and 467 ± 2 0  Ma for similar metasedi
ments in reworked areas (of high grade during both 
M l and M 2), provide minimum ages for the two 
major phases of metamorphism (Brook et a l .  1976, 
1977; Brewer et a l .  1979).

Conclusions

The pattern of changes in the anorthite content of 
plagioclase feldspar in calc-silicate rocks across an 
18 km section of the Northern Highlands, together 
with parallel changes in the mineralogy and texture of 
pelitic rocks, strongly suggest that the anorthite con-
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I-io. 1(1. Graphs showing possible resultant metamorphic grade profiles across model shear zone. .A to G = erosion 
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lent of plagioclase in such rocks provides a sensitive 
index of relative metamorphic grade.

Abrupt changes in plagioclase compositions, and 
thus metamorphic grade, coincide with the presence of 
slide zones. In the light of structural data and the 
interpreted nature of the changes in metamorphic 
grade, such slide zones arc most readily explained as 
asymmetric syn-metamorphic shear zones.

A model of the metamorphic patterns resulting from 
temperature fluctuations produced as a result of 
crustal displacement along these syn-metamorphic 
shear zones is compatible with the analysis given by

Oxburgh &  Turcotte (1974). However, the model also 
suggests that the level of shear strains may influence 
metamorphic reactions.
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The Sgurr Beag Slide within Moine rocks 
at Loch Eilt, Inverness-shire

A . W . Baird

S U M M A R Y  I lie  S g iiir Beag Slide is shown to |>c a syn- to late-tectonie movement /o ne  ol 
I o ra l I , age w ninn a leg iona lly  developed live phase deform ation sequence. It iruneaies Ivnh  
lnlmli>gu ,il nulls and a n iajo i T , syn lorn i, and is associated vvilh the in lensiliealion of an I , 
t ie n n la lio n  la lt iu . the widespread developm ent of U tudinage and the tightening ol in terlim li 
angles o f m ajor anil m inor I - ,  folds. The M o ine  rocks o f the (ilen finn an  and M orar Divisions on 
eitlie i side .•! the slide share the same pre-slid ing history o f deform ation and m etam orphism: 
ihev Ivoili io n ia m  m m oi T_, lolds w ith  strongly develo|ved axial planar mica foliations enhanced 
III |K-litic liihologies hy m ign ia tilie  segregations, together w ith less ahm idant m inor 1-, folds. The 
slide IS refo lded hy isoclinal m ajo r folds and hy m ajor open T \ folds.

The existence of a m.ijm teetoiue break within the 
Moine Sueeession at Kinloeh I lout n (Tig. 1) 30 km NI£ 
of l oeh l:ih was first noted by l  anner (1970). The 
break, termed the Sgurr Oeae Sliile at Kinhxrh Hourn, 
separates roeks groujied as the Morar and Glenfinnan 
Divisions (Johnstone ef ttl. 1969; Tanner et a l . 1970) 
which were ihoiiglit to be in eontimious sbatigrapliieal 
sueeession (Mrown ei a l. 1970; Powell 1974). Locally, 
and only to the N ol Kinloeh Hourn, small tectonic 
slices of Ix'wisian basement rocks occur along and 
near the junction of the Morar and Glenfinnan divi
sions The piesenee of these slices, at high stratig
raphical levels withtn the Morar succession, not only 
provides evidence of the tectonic origin of the slide 
hut also shows it to be a major feature ( Tanner ef a l. 
1970; Kathlvme & Harris 19S0).

The slide is characterized by lieing virtually bed 
parallel over most of its known outcrop. It shows no 
mylonitic or cataclastic features (Tanner 1970), al
though grain size reduction has been recorded at some 
localities (Rathfione &  Harris 19X0). It has been infer
red to be a syn-metamorphic, ductile shear zone 
(Kathlxine & Harris 19X0; Powell el a l. 19X1). As a 
consequence of these features it is often extremely 
difhcull to establish its position and structural setting 
especially where basement Lewisian material is not 
found within the slide zone.

In the LvH-'hailort-DK-h Lilt area (Fig. 2) the 
Lochailort Pelitc (Powell 1964) has been correlated 
with the Glenfinnan Division (Brown ef a l .  1970; Pow
ell 1974) atid the rocks F  of the Dxrhailort Pelite with 
the Morar Division (Powell 1964, 1974). Powell 
(1964) noted no disconfortnity between the Dxzhailort 
Pelite and the adjacent rocks and considered the junc
tion to be entirely sedimentary; however, Rathbone &  
Harris (19X0) indicated that there are large strain 
variations across the junction at Lochailort and con
sidered it to be a southerly extension of the Sgurr Beag 
Slide,

The Morar/Glenfitinan junction is found on both 
sides of a major fold, the Glenshian synform (Powell

196(v; Powell ct a l. 19X1) and therefore it is inferred 
that this fold post-dates the formation of the slide. 
Extrapolation of (his slide to the Sgurr Beag Slide al 
KinkK'h Hourn requires that it has also been folded by 
the Loch Eilt antiform (Powell 1974), its trace being 
repeated in the eastern Loch Eilt area (Figs 1 &  2) and 
continuing northeastwards to Kinloeh Hourn (Powell 
ef a l. 1981; and IGS I" and 1 :.5()t)(Hl Geological Maps 
61 and 62 W , Scotland).

It is the aim of this paper to describe the nature of 
the Sgurr Beag Slide where it outcrops to the N of 
eastern Loch Eilt; to establish it as not only a zone of 
high strain but also a tectonic break across which 
translation and truncation have occurred; to discuss its 
local structural setting; and to discuss its implications in 
the interpretation of local and regional fold -phase 
correlations together with the deformation history of 
the Morar and Glenfinnan divisions.

Lithological considerations

E of the slide

The rocks of the Glenfinnan Division E of the slide 
are a series of banded and striped psammiies and 
semi-pelites with few pelitic horizons (Fig. 3). All the 
units strike N E -S W  and are nearly vertical. Lithologi
cal layering, probably tectonically modified bedding, is 
planar; no other sedimentary structures have been 
observed. This may be a reflection of the original 
conditions of deposition or, more likely, sedimentary 
structures may have been obliterated by high strain 
throughout the area. The pelitic rocks contain a well- 
developed, planar, migmatitic fabric consisting of 
small, oblate, quartzo-feldspathic segregations, locally 
co-planar with the axial planes of F. folds. As the F: 
folds are isoclinal, the migmatitic fabric is mostly 
concordant with bedding. Psammitic and striped 
lithological units also carry an axial planar fabric, 
cotnprising orientated micas and oblate quartz grains.

(K)16-7649/82/()9(XM)647$()2.tH) ©  1982 The Geological Society
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witicli is axial planar to kxial minor Fn folds. The 
aspect ratio of quartz grains is never more than two to 
one.

W  of the slide

W of the slide (Hip. 3) a series of near-vertical, 
psammitic and stri|>ed psammitic, semi-pelitic and 
pelitic lithologies strike from N E-SW  to N -S  and pass 
westwards into a pelitic litholopy (the Ranochan Pelitc 
of Powell 1964). These rrxiks have planar modified 
heddinp but no other unequivocal seditnentary struc
tures have been observed. Oblate, planar migmatitic 
fabrics, which are axial planar to local minor Fi folds 
and folded by F , folds, are present in the pelitic 
portions of the striped lithological units.

The rocks to the E and W  of the slide are 
mineralogically similar. Psammites are light gre\- 
cream coloured and usually contain more than 5(1% 
quartz with smaller quantities of feldspar, both 
plagioclase and K-feldspar, together with mica, usually 
both biotite and muscovite. Biotite is often evenly 
disseminated throughout the rock, whereas muscovite 
is more commonly found with biotite in thin micace
ous partings between the quartzo-feldspathic layers. 
Accessory minerals include garnet, chlorite, calcite, 
iron ore, apatite, sphene and zircon. Striped and semi- 
peltic rocks in both divisions contain the same mineral 
assemblages as the psammitic rocks with a higher per
centage of micas and feldspars and lesser amounts of 
quartz. The pelitic liihologies are medium to dark grey 
containing approximately equal proportions of quartz.
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feldspar (plagioclase and K-lcldspar) and mica (hiotiie 
and muscovite) with much less garnet and accessory 
amounts of chlorite, sillimanite, staurolite. iron ore. 
apatite, sphene and zircon. In no lithologies are there 
changes of grain size related to distance from the slide.

Sillimanite is formed s|>oradically in jxrlites on Ixith 
sides of the slide, indicating high grade mciamorph- 
ism; however, aluniino silieaies aie t«H> uncommon to 
enable mapping of isograds. Calc-silicate rocks occur 
on lx)th sides of the slide and the variable mineral 
parageneses in these have lx*en used to establish 
metamorphic grade and patterns in the area (Powell el 
a l. I9S I). No pure quartzites occur, such as those held 
to be one ol the leatures which distinguishes Morar 
and Glenlinnan Division rocks (Johnstone e i a l. 1969). 
but amphilx)lites. which in the south-western Moine 
are believed to characterize the Glenlinnan Division 
(Powell 1974). are restricted to the rocks E of the 
slide.

There are thus no marked mineralogical or litholog
ical contrasts between the rocks on either side of the 
slide; however, the psammitic and striped lithologies 
W  of the slide are folded by a major fold which is cut 
out by the slide (Fig. 3). which, therefore, on geomet
rical grounds alone must be a discontinuity. The de

tailed structural changes across the slide are discussed 
below.

Structural considerations

Neither cataclastic and mylonitic deformation tex
tures nor widespread hydrothermal, retrogressive fea
tures, such as might relate to a high level thrust, are 
apparent in either the field or in thin section (see also 
Tanner 1970; Rathbone &  Harris 19S0). Thus, it 
follows that the slide, apparent because of its mapped 
geometrical relationships, was a result of ductile defor
mation which was either followed by post-sliding re
crystallization, which overprinted and destroyed cata
clastic and/or mylonitic textures, or which proceeded 
under conditions of dynamic recrystallization which 
prevented severe grain size reduction. Quantitative 
estimates of strain associated with the slide zone are 
impossible to obtain because no suitable strain mar
kers are present.

E of the slide

In the area from Loch Eilt to Glenfinnan village 
(Fig. 4) the predominant folds are Fi in age. Large
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scale, tight to nearly isoclinal folds with N E -S W  trend
ing. nearly vertical axial planes and very steep NE  
plunges are present, together with abundant associated 
minor folds which ha\e axial planar, tight mica crenu- 
lation fabric. These structures deform tight to isoclinal 
minor folds which have variable, steep to moderate, 
plunges towards the NE. 1 he F, folds have either an 
associated axial planar penetrative mica fabric or an 
axial planar migmatitic fabric. Rarely, minor F| iso
clines with an axial planar fabric are seen refolded by 
lolds ol the T\ phase.

A progressive change in the structural geometry, 
especially in the structures of F  ̂ age, can he traced 
westwards into the slide zone. The Sgurr à Mhuidhe 
synform (Fig. 3) is a relatively open F  ̂ synform which 
plunges steeply to the NE. The complementary Fj 
Creag Bhan antiform to the W is tighter, and farther 
W the Fi Coille ('hreag synform is isoclinal. The 
westward tightening of F, interlimb angles is indicated 
on the stereographic projections included in Fig. 3. F, 
minor folds also tighten westwards towards the slide 
and the numlier of minor F, folds decreases rapidly in 
this direction so that the rocks become markedly 
planar.

Moving W  from the Sgurr à Mhuidhe synform (Fig. 
3). Ixmdinage of psammitic beds l>ecomes progres
sively more common. Boudin (>ods containing isoclinal 
Fj folds can be found near the slide and occasionally 
Fi minor folds are boudinaged and thinned. These 
features are taken to indicate that btrudinage occurred 
during or after the F, deformation.

The tightening of F\ fold interlimb angles, the in

crease in the amount of boudinage, and the reduction 
in the number of minor Fj folds approaching the slide 
can all be attributed to an increase of strain, with 
rotation of planar elements into the extension field of 
the strain ellipsoid (Flinn 1962). Minor F  ̂ fold hinges 
(stereographic projection. Fig. 3) are co-axial with the 
intersection of bedding and the migmatitic fabric and 
lie near the mean F  ̂ fold axial plane. There are. 
however, no progressive changes in orientation of F; 
hinge directions within this mean plane as the slide is 
approached, nor arc there in the orientation of minor 
Fi fold hinges and axial planes.

W  of the slide

There is a major F3  synform. the Ranochan synform. 
immediately to the W  of the slide zone in the N of the 
area (Fig. 3). The western limb of this contains numer
ous open to tight minor F% folds which plunge moder
ately to the NE (Fig. 3) and fold the migmatitic fabric 
related to occasional tight F; minor folds. .Moving 
eastwards across the axial plane trace of the Ranochan 
synform the Fj minor folds have the opposite sense of 
vergence and have tighter interlimb angles. Slightly 
farther E the Fi folds become even more light and 
much less frequent (over a distance of lt)-15  m). 
There is no progressive re-orientation of minor F, fold 
hinge directions or axial plane trends as the slide is 
approached. Within the pelitic unit adjacent to the 
slide, migmatitic segregations are tightly folded 
and are associated with very tight mica crenulations 
and strong boudinage of F̂  isoclines. These features
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indicate that I 3 strain increased progressively eastwards 
to the slide. The vergence of minor F 3 folds is spatially 
related to the Ranochan synform; it is therefore con
cluded that both the Raiuxrhan synform and the slide 
formeil during this phase of deformation. The cvi- 
vlence presented above seems inctunpatible with the 
Ranochan synform being cut out by a later, unrelated 
tectonic break, since sliding unrelated to and after F, 
deformation would be expected progressively to re
orientate minor I-, folds. Nevertheless, the axial plane 
trace of the Ranoihan synform is clearly oblique to 
the trend of the lithological divisions mapped (Fig. 3) 
and can Iv  traced southwards to the pelite unit adja
cent to the sliiie but not through it and into the rocks 
of the ('ilenlinnan Division; thus the F% Ranochan 
synform is cut out and replaced southwards by the 
slide (see Fig 3).

Southwcstwards along the N side of Ijoch Rilt (Fig. 
3) there is no evidence for the structural cut out of the 
Ranochan synform. Ilte rocks of the Morar Division 
contain minor F» folds with asymmetry indicating the 
presence of a major F 3 synform to the C. Likewise, 
immediately R of the slide the asymmetry of minor f- 3  

lolds indieales a major F, synform lying to the H (the 
Coil le Chreag synform). Thus, an E -W  traverse along 
the northern side of Ijoch Eilt across the slide zone 
does not. from minor F, fold vergence, give indication 
of the structural cut out of the Ranochan synform by 
the slide, a situation which may well occur elsewhere 
along the slide. Since it can he assumed (where plunge 
direction is constant, see Fig. 3) that synforms neces
sarily have complementary antiforms, then it also fol
lows that at least one antiform between the Ranochan 
synform and the Coille ( hreag synform has been cut 
out or replaced by the slide.

Revision of the regional deformation 
sequence

As a result of this stiuly and that of Powell et a i  

I 19H I ) the regional sequence of fold phases previously 
recognized (Brown e i a l. 1970; Powell 1974) requires 
revision: 'I'he Glenshian synform. mapped by Powell 
(1974) as a regional F 3 fold with associated tight to 
isoclinal crenulation folds, clearly folds the Sgurr Beag 
Slide (Figs 2 and 4; see also Powell e l a l. 1981). The 
Sgurr Beag Slide, however, cross cuts the F 3 Ranochan 
synform (this paper) and thus the Glenshian synform 
must he regarded as a later regional Fj fold. It is 
noteworthy that the F 3 and F< folds are regionally 
co-axial and co-planar and both have associated minor 
tight crenulation folds. Thus, they are impossible to 
distinguish in the field except where their relationship 
to the sliding event can be established, or refolded 
folds can be seen. For this reason the major folds 
immediately W  of Glenfinnan (Fig. 4) could be of 
either F 3 or F' 4  age. They are therefore categorized as 
F 3 - 4  folds.

Later than all these structures is a phase of small 
scale open folds, F<, with axial plane traces trending 
NNW -SSE and hinges plunging moderately to the 
SSE. 'These folds appear to be minor folds associated 
with the large open folds due S of Loch Eilt (Fig. 4) 
mapped by Brown et a l. (1970) as F, and by Powell 
(1974) as F4 .

Regional implications

I he slide at the eastern end of Loch Eilt is, on the 
basis of lithological mapping (IGS I" and I : 50 000 
Geological maps 61 and 62 W. Scotland) a southerly 
extension of the Sgurr Beag Slide at Kinloeh Hourn. 
As at Kinloeh Hourn it separates rock units which can 
be regarded on lithological grounds as belonging to 
the Morar and Glenfinnan Divisions (Tanner e i a l. 
1970) but at Loch Eilt. unlike Kinloeh Hourn. it is 
demonstrably a discordant structure. Further W , at 
Arieniskill and Lochailort (Fig. 2). it has been 
suggested that the slide is repeated by major Fj folds 
(Powell e i a l. 1981 ). I hus, the Sgurr Beag Slide can be 
traced for at least 75 km along its outcrop within the 
southwestern Moinc area.

Several important points arise from this and other 
work (f^owell et a l. 1981). (a) The deformation ( I j  
associated with the formation of the slide deforms 
already migmatitic rocks, (b) There is no production 
of new migmatite associated with the F, deformation 
phase, but adjacent to the slide extreme crenulation of 
the pre-existing migmatitic fabric and rotation of this 
fabric towards the F 3 axial planes can be seen, (cl The 
slide displaces a pre-existing metamorphic pattern 
(Powell et a l. 19 8 1 ). (d) The regional sequence of fold 
phases previously recognized (Brown et a l. 1970; Pow
ell 1974) has to be revised, (el The pre-sliding defor
mation and metamorphic history is the same on Ixtth 
sides of the slide and therefore the slide cannot be 
readily interpreted as a Ixtundary between basement 
and cover sequences. Thus, the correlations of the 
Grampian Division of the Central Highland Granulites 
lying to the SE of the Great Glen Fault with the 
Morar Division, and of the Central Highland Division 
(considered to be older basement rocks lying beneath 
the Grampian Division) with the Glenfinnan Division 
(Piasecki 1980) are ill-founded unless the slide has 
juxtaposed once spatially distant rocks which had 
suffered tectono-metamorphic events differing only in 
their age.

Conclusions

The Sgurr Beag Slide in the SW Moine area, as 
elsewhere, is a major structural feature. It is a syn- ti3 

late-tectonic zone of movement associated with a zone 
of high strain and locally truncating lithostratigraphic 
units and regional F 3 folds. The absence of associated
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strain markers aiul fabrics, togctlicr witli the recrystai- 
I i/at ion associated with later phases of deformation 
makes it very dillieult to establish, in detail, a meehan- 
ism loi formation of the slide. The slide separates 
rocks which contain the same pre-sliding structural 
history, thus ii does nol delimit or obscure an orogenic 
front separating r«»ek g .o n p s  with basement and cover 
relationships. Movement post-dated the local mig-

mati/ation event but was synchronous with and fol
lowed by metamorphic activity.

A< KNOwi i;i)(.M i:r^ is  I ihaiik Drs D. Lowell and J. S. M\ers 
for their eneoiiragenienl and erilieal eoinmenls on earlier 
versions ol this paper. I also acknowledge receipt of a re
search sindenlship from die Depariineni of Tdiicaiion. N 
Ireland.
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Structural dating of a Precambrian pegmatite in Moine rocks of 
northern Scotland and its bearing on the status 

of the Morarian Orogeny’

D . Powell, M . Brook & A . W . Baird

SUM M ARY : A cross-culling pcgmainc cinplaccd iniu low giadc. non-migmainic. Proicro/oic.
Moinc mcijscdinicnls on the western sea-hoard ol lincrncss-shirc. Scotland, goes Rb-Sr 
niuscoMlc ages ol 746-776 Ma which are inlcrprclcd a\ minimum eslimaics for ihc age ol 
formation ol the pegmatite. Intrusion lollowcd at Ic.ist one phase of folding and schistosii\ 
production in the countrs rocks and an earlv phase ol s\n kincmatic garnet growth, correlated 
with the regional D - tectono-metamorphic e\eni. The pegmaiiie was folded and suffered 
considerable gram size reduction under metamorphic conditions during the regional D , 
déformation cpivrdc

The dilational character and low grade context of the pegmatite show that it was not a 
product of melting in place during meiamorphism ol the adjacent Moine Schists Its lack of 
initial. s\n-kincmatic crxsialhzation textures and fabrics, together with the absence of evidence 
th.it might relate its emplacement to an\ regional phase of compressive ductile deformation, 
would he compatible with a considerable lime lapse between its intrusion and the earlier 
deformation and meiamorphism ol the host nicks We have, however, no direct evidence lor 
the extent ol this interval

The relationship of the pegmatite to the earlier deformation and meiamorphism of the host 
rocks provides clear evidence for suhsi.niti.il Precambrian orogenic .ictiviiy but the age of this 
activity, whether 'MorariaiT and. or. ’CircnvilliaiT. remains a matter of interpretation

The Moine rocks of Scotland comprise a major 
assemblage of Proterozoic mctasediments which he 
within the Orthotcctonic zone of the British Caledo
nides. Their orogenic history has recently been 
interpreted as involving Grenvilltan'— c. HKKIMa. 
‘Morarian’— t. 7811 Ma and Caledonian— c. 47(1 to 
420 .Via. episodes. Within the Moine outcrop of the 
Northern Highlands (Fig I )  evidence for Precambrian 
orogenic activity is derived solely from isotopic 
analyses, with that for ‘Grenvilltan* events being based 
on the interpretation ol Rb-Sr whole rixrk isochrons 
for the Ardgour granitic gneiss and Moine metasedi- 
ments. as dating regional metamorphism at c. 1004 Ma 
(Brewer ct a l. 1979). Evidence for a ‘Knoydartian’ 
(Bowes 1968) or Morarian’ (Lambert 1969) orogeny is 
derived from interpretation of Rb-Sr and U-Pb 
analyses of muscovite and monazite separates from 
pegmatites lying within high grade, migmatitic Moine 
rocks, and Rb-Sr whole-rock regression lines for 
Moine semi-pclttes. Ages of 615 to 780 Ma are held to 
date regional metamorphism during which the pegma
tites were secreted (van Breemen ct a l. 1978: Piasecki 
& van Breemen 1979: Lambert ct a l. 1979; Piasecki ct 
a l. 1981).

In the Northern Highlands geological evidence, 
other than isotopic. for such a complex history is 
equivocal and largely circumstantial. Whilst the evi
dent. polyphasal nature of both the deformation and 
regional metamorphism of the Moine rocks (Ramsay 
196.1; Tobisch ct a l . 1970; Brown ct a l. 1970; Tanner

1970; Powell 1974: Lambert ct a l. 1979; Powell ct a l. 
1981) could I.la te  to two or more cycles of orogenic 
activity, a polyphase history does not. in itself, 
constitute a  p r io n  evidence for this without recogni
tion of internal unconformities, or of widespread 
igneous activity which clearly separates groups of 
events related to orogeny. In this respect it is 
noteworthy that no unconformities have yet been 
recognized within the Moine rocks of the Northern 
Highlands; indeed, it would appear that all the major 
lithological divisions of at least the southwestern 
Moine share the same deformational and metamorphic 
history (Baird 1982; Roberts & Harris in press: I. L. 
M illar, pers. comm ). Further, the only igneous rocks 
so far recognized that might suggest separation of 
major orogenic cycles are the Glen Dessary Syenite, 
the Cam (Thuinneag Granite and the Strath Halladale 
Granite (Fig. 1). Acceptance of an age for intrusion of 
the Glen Dessary Syenite at 456 ±  5 Ma (van Breemen 
ct a l. 1979) implies that the deformation and amphibo- 
lite facies metamorphism that followed the intrusive 
event are of Caledonian age. but it provides only a 
minimum age for the pre-intrusion deformation and 
regional metamorphism. The Cam Chuinneag Granite 
intruded already deformed low-grade Moine metasedi- 
ments and was subsequently deformed under 
amphibolite facies metamorphic conditions (Long & 
Lambert 196.3; Shepherd 197.3). The U-Pb zircon and 
Rb-Sr w hole-rtK'k ages of 555 ±  Id Ma and 55d ± 10 
Ma held to dale intrusion, therefore, again indicate

(KIH>-7649 8.3 (MKI-tl8l.3Sli: (Ml 198,3 | |u- (icological Sociclv
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•  M o r a r i a n ' P eg m a ti te  Localit ies  

A Ardn ish  

K K noydart  

L Loch Elit 

S Sgurr Breac

S U C C E S S IO N  

Lochailort  Pelite G L E N F IN N A N  
D I V I S I O N

Upper P sam m ite  
M o ra r  Pelite
L o w er  Psam m ite  & Basal Pelite 
Gneiss

M O R A R
D I V I S I O N

l e w i s i a n

Flü. I. Locution and geological setting of Morarian pegmatites in the southwestern Moine aica. CO on inset map. 
Cam Gorm; CC, Cam Chuinneag; GD, Glen Dessary; SIL Strath Halladale.
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posi-gramtc Caledonian oiogcnic aclivity and provide 
a minimum age lor early deformaiion and meiamorph
ism (Long & Lamben 196.3. Pidgeon & Johnson 1974). 
In both ol these situations the earlier tectono- 
metamorphic activity could be early Caledonian' or 
Precambrian.

Acceptance of an Rh-Sr whole-rock isochron age of 
649 ± 3(1 Ma for intrusion of the late phase of the 
Strath Halladale granite complex, which intrudes 
metasediments correlated with the Moine. appears, 
however, to demonstrate substantial Precambrian 
polyphase deformation and regional metamorphism 
(B C. Linicrn & M  Brook, pers. comm ).

Taken overall, the isotopic evidence for Precam
brian thermal activity is substantial, but its precise age. 
complexity and nature remain a matter of interpreta
tion and thus require further investigation.

‘Morarian’ pegmatites

In the Moine rocks of the Northern Highlands, 
pegmatites giving Rb-Sr muscovite ages ol c. 750 Ma 
appear to be locally rare but are recorded from widely 
separated localities, v i : .  Knoydart. Sgurr Breac. Loch 
Eilt. Cam Gorm and. with the present example. 
Ardnish (Fig. 1). With the exception of the Ardnish 
body, the ‘Morarian* pegmatites occur in high-grade, 
migmatitic country rocks and are described as concor
dant to lithological banding and migmatitic foliation 
(G illciti e i a l. 1961. Long & Lambert 196.3). The Cam  
Gorm and Loch Eilt examples arc folded and the 
latter boudinaged (Long & Lambert i '03; van Bree
men et a l. 1974). Because of their mineralogy 
(quartz + muscovite + plagiixzlase l  garnet ±  K -fe ld
spar ±  biotite ±  apatite ±  beryl ±  tourmaline), their 
concordance with migmatitic foliation, their deformed 
nature and the absence of associated larger bodies of 
possible parent igneous material, they have been 
interpreted as products of regional metamorphism 
(G iletti et a l. 1961 ; Long & Lambert 1963; van 
Breemen e /u /. 1974).

In view of the assumed high blocking temperatures 
for radiogenic Sr migration in muscovite (5üO°C). the 
Rb-Sr ages, supported by similar U-Pb ages for 
monazite and zircon in the Sgurr Breac and Loch Eilt 
examples, are held to date crystallization, and thus 
metamorphism, at 780 ±  50 Ma (van Breemen et a l.
1978). On this basis a ‘Morarian* orogeny, affecting 
the Moine rocks of the Northern Highlands, has been 
accepted by many workers (most recently by Lambert 
et a l. 1979 and Piasecki ct a l. 1981).

It is against this background that we present new 
evidence for the geological relationships of a previous
ly unrecorded, well exposed. 'Morarian* pegmatite 
from the Moine rocks of western Inverness-shire. 
Unlike the previously described examples, the 
Ardnish pegmatite clearly cross-cuts bedding, an early

schistosity and minor isoclinal folds in the country 
rocks; is clearly dilational in character; and is 
emplaced into low grade, non-migmatitic melasedi
ments.

The nature and field 
relationships of the 
Ardnish pegmatite

The Ardnish pegmatite is a discontinuous sheet. 
0.25 cm -1 .25 m thick, exposed m a shore section on' 
the south-eastern limb of the M orar antiform (Nat. 
Grid Ref. N M  6947 8139). It is tightly folded, as are 
the surrounding interbanded psammitic. semi-peliiic 
and pelitic metasediments and. in detail, it clearly 
transgresses the lithological banding (modified bed
ding) of the country rocks (Fig. 2). The sense of 
transgression is most clearly seen in low strain areas 
which coincide with fold hinge zones (Fig. 2) where, in 
outcrop, the pegmatite sheet lies clockwise to the 
lithological banding. On the fold limbs this rela
tionship is generally impossible to detect, because the 
pegmatite sheet and lithological layering have been 
brought into approximate parallelism and both are 
severely modified by the later deformation. Locally, 
however, the same clockwise sense is observed (Fig. 
2 ).

These relationships, together with the positioning 
and sense of vergence of folds in the country rocks 
adjacent to the pegmatite throughout most of its 
outcrop, accord with a simple model of folding of a 
sheet emplaced obliquely, but at a small angle, to the 
layering (Fig. 3).

Internally, the pegmatite is strongly deformed, 
exhibiting an L =  S fabric with the long axes of 
porphyroclasts defining a lineation lying essentially 
coaxial with the hinges of tight-to-isoclinal folds of the 
pegmatite and its host rocks (Figs 2 &  4). The planar 
element of the fabric is oblique to the pegmatite 
margins and axial planar to the tight-to-isoclinal folds 
(Fig. 2 ).

The pegmatite comprises the assemblage quartz 
+ muscovite ■+■ microcline +  plagioclase +  garnet, all 
of which occur both as large porphyroclasts (occa
sionally up to 1 to 5 cm in length), and as very much 
smaller crystals which form a fine-grained schistose 
matrix with grain size varying from about 1 . 0  to
0.02 mm (Fig. 5). Garnet occurs in two distinct size 
populations— as large porphyroclasts up to 3 mm in 
diameter, containing large inclusions of quartz and 
occasional plagioclase around which the matrix schis
tosity wraps (Fig. 5B), and as small 0.8 to 0.05 mm 
inclusion-free crystals, which were derived by frag
mentation of porphyroclasts and have since partly 
recrystallized (Fig. 5C). Microcline and plagioclase 
similarly occur as large porphyroclasts with incomplete
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Pegmatite

Bt. Jdmg 
observed
Bedding
inferred

Dip of bedding

Dip of schistosily in pegmatite  

Dip of pegmatite  contact

Plunge of D«. linear structures
Plunge of D4 linear structures

Plunge of fold hinge
Plunge of fold hinge 1 }
Plunge of I,neat,on pegmatite J

Fill 2. Geological map of tfie Ardnisfi pegmatite locality Ornament within the pegmatite indicates the general 
attitude of the grain size reduction fabric (see text). D , to D< refer to deformation phases referred to in the text.

haloes' or tails' of small, relatively strain-free 
sub-grains (Fig. 5A . C &  D ) and as components of the 
general fine-grained matrix. Porphyroclasts of quartz 
exhibit varying degrees of strain, as witnessed by 
undulose extinction and polygonization. They show a 
range of grain sizes from large porphyroclasts up to 
4 mm in length, down to small, largely strain-free, 
crystals of the matrix (Fig. 5A ). Quartz also forms 
stringers and ribbons of crystal aggregates parallel to 
the schistosity. Muscovite is present as porphyroclasts 
(up to 5 cm long), and as smaller crystals of the matrix 
(Fig. 5A . Ü &  D ).

A ll of the textural features demonstrate that an 
originally coarse-grained mineral assemblage has suf- 
ered severe grain-size reduction in response to the 
deformation that produced the folds of the pegmatite 
and host rocks. However, during deformation the 
temperatures, pressures and strain rates were such as

to allow dynamic recrysiallization of all constituent 
mineral phases. The textures are very similar to those 
described from mylonites but here there is no evidence 
for a strain regime dominated by simple shear.

The field and microscope studies have revealed no 
evidence for folding of. or production of. deformation 
fabrics within the pegmatite earlier than those so far 
described. The deformation phase that produced the 
predominant folds at Ardnish was the first to affect the 
pegmatite.

The isotopic age of the 
pegmatite

Four samples of muscovite books measuring up to 
4  cm in diameter were collected from the pegmatite 
over a distance of approximately 50 m.
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it i|i
1/1 Ï
Fki 3. Mtnlcl illuMrjiing the progressive lolding 
of the Ardnish pegmatite Dashed lines represent 
the layering in the country rocks, black, pegmatite. 
Compare ssiih Fig 2.

Analytical procedure

I he books were crushed to pass through a .3(1 mesh sieve. 
Kb and hr were delermmed on O I g aliquois by standard 
isotope dilution techniques using '‘̂ Rb- and '^Sr-enrithed 
spikes. Each sample was digested in HT and Kb and
Sr were separated Irom other elements in ion-e\change col
umns and loaded as phosphate on tantalum lilaments. Iso 
topic measurements were made using a 3(1 cm radius 9(1' 
magnetic field sector mass spectrometer operated at K K\ 
acceleration voltage.

Analytical errors arc estimated to be ±2'/f of "’ Rb-’̂ r  
and ± 0  (WCf t»f "’ Sr/^Sr at the 950# conlidence level. The 
initial *'’Sr/'“’Sr was taken to be (1.72(1 when calculating the 
age ol the muscovites. but in view of the high ('>.S(l) "^Sr*"Sr 
values the choice ol this initial ratio is not critical to the age 
obtained.

Pole to bed<jing 
Fold hinge - bedding  

-p eg m atite  
Lineation -p e g m a tite

Pole togreat circle

Ftti. 4. Orientation ol structural element' .i' mIic 
Ardnish pegmatite loe.ility Note the slight mislit 
between hinges ol folds alteeting the pegmatite and 
those ol bedding. This reflects the erox'-cuttmg 
nature ol the pegmatite Lower hemisphere equal 
angle projection.

Potassium analyses were made in triplicate on separate 
aliquots ol the muscovites. .Alter dissolution in HF and 
H CIO j acids, the samples were taken up in water. .Aliquots 
of these solutions were mixed with a lithium internal standard 
and the potassium was determined on an Instrument.ition 
Laboratory 243 digital flame photometer

Argon measurements were made in duplicate by standard 
isotope dilution techniques involving fusion ol the sample bv 
induction heating in a bakeable vacuum system and mixing 
the liberated radiogenic "“'Ar with a known amount of ''A r 
spike or tracer. Isotopic ratio measurement' were made in an 
A E l MS It) mass spectrometer run in the static mode and 
fitted with a digital output system Errors are at the 9.3'', 
conlidence level and take into account uncertainties in the 
potassium analyses, the argon spike calibration, mass spec- 
trometric ratio determinations, and the error enhancement 
involved in correcting for atmospheric argon

The Rh Sr analyses on the lour muscox iie samples 
give ages ranging from 77b Ma to 746 Ma (Table 1). 
Within error, samples 1. 2 and 4 are indistinguishable 
in age from one another, but applying the critic.il \alue  
test (Dalrymple &. Lanphere 1969). sample .3 is signili- 
cantly younger. This is also true of the K Ar ages 
where sample 3 again yields a significantly younger 
age (Table 1 ).

The younger ages from sample 3 indicate that there 
has been partial loss of ratfiogenic strontium and 
partial, if not complete, radiogenic argon loss from the
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F ig . 5 . M icrographs o f A rdn ish  pcgm atiic . A . Porphyroclasts o f m icrocline and quartz indicate pre -deform ation  
grain size and show sub-grain form ation . M a trix  has suffered severe grain-size reduction. B. Porphyroclast o f garnet 
w ith in  eyc-structure in fine-grained m atrix . C . Fragm ents of orig inal garnet crystals that have undergone  
recrysta llization . Plagioclase shows sub-grain form ation D . Plagioclase porphyroclast showing sub-grain form ation . 
M uscovite occurs as small p>orphyroclasts and as sm aller new' flakes. Nottrs: in  each case the hne-grained  
groundmass comprises essentially qu artz , plagioclase. m icriK lm e and muscovite g. garnet; m . m uscovite; me. 
m icrocline; p . plagioclase; q . quartz.

muscovite during a later heating event, which would 
affect the migration of radiogenic argon to a greater 
degree than radiogenic strontium. Such heating could 
result from the Caledonian metamorphism recorded in 
the general area of the pegmatite locality (Brewer e i 
a l. 1979).

Since all the muscovite crystals were collected 
within a distance of approximately 50 m, it is possible 
that the other samples also suffered this disturbance 
but to a lesser degree. Argon has certainly been 
significantly outgassed but it is more difficult to assess 
to what degree radiogenic strontium has migrated.

Structural and metamorphic 
features of the host 

metasediments
The pegmatite lies within the biotite-zoisite zone of 
meiamorphism as defined by the mineral assemblages 
of calc-silicate rocks (Kennedy 1949; Winchester 1974; 
Tanner 1976; Tanner &  M iller 1980; Powell e i a l.
1981). which is equivalent to the Harrovian garnet 
zone as witnessed by the pelite paragenesis. Thus, the 
rocks are within the lower amphibolite facies of 
regional metamorphism.
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1 A M I  I 1 R h -S r  a n d  K - A r  analyses o f  m usco v ite  f r o m  the A rd n is h
p e g m a tite

N o. Rh ppm  Sr ppm ^Rbf^Sr ^Srf^’Sr Age ( Mu)

ISKX)
192U
189Ü
IHKK

%K

7 206 
7.167  
6.H72 
7.022

4453
4541
4665
4648

50.103 
50.333 
50 411 
51.566

^^iAlm^'Ar nUgRg*^'Ar

776 ± 15
765 ± 15 
746 ± 15
766 ± 15

Age ( M a )

8 .49
8 .67
8 .79
8.51

25.4
13.2
7.4

25.0

186.12
193.28
157.19
184.94

491 ± 13 
498 ± 12 
410 ± 10 
488 ± 10

Constants used in the calculations: =  1 42 x |0  " a  ""'K/3
=  4 962 x 1 0  '"a **“ Kc =  0.581 x  U) '" a " ';  samples 1. to 4 are of
separate muscovite books.
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The dominant structures of the host rocks are a 
set of asymmetric, tight to-isochnal. reclined folds 
with axial-planar quartz veins and coaxial lineations 
defined by crenulation and schistosity-bedding in
tersection. An associated axial planar fabnc varies 
from a penetrative schistosity, defined by aligned 
micas in psammitic lithologies, to a crenulation 
schistosity in p>elitic; a co-planar grain-size reduction 
fabric occurs in high strain zones. Garnet porphyrob- 
lasts in pelite (Fig. 6 ) arc strongly wrapped by the 
axial planar fabric and contain inclusions of quartz and 
opaques. The inclusions form sigmoidal, symmetric, 
inclusion fabrics of rotational type (Powell & Treagus 
1970). There is no continuity of the inclusion fabrics 
with the external schistosity and the grain size of 
included quartz is markedly greater than that of quartz 
in the matrix (Fig. 6 ). These observations, together 
with the occurrence of rotational garnet porphyrob- 
lasts with opposite senses of rotation lying only 1 cm 
apart along the same schistosity plane (S; in Fig. 6 ). 
indicate that the schists underwent garnet grade, 
syn-kinematic metamorphism b e fo re  production of the 
predominant fold structures and their attendant planar 
fabrics. It is reasonable to assume that the schistosity. 
which is crenulated by the predominant set of folds, 
was coeval with, or formed earlier than, this early 
phase of garnet growth. Also, because this early 
schistosity, as well as minor isoclinal folds, are 
cross-cut by the pegmatite it is reasonable to deduce at 
least one phase of pre-pegmatite deformation and 
metamorphism.

The predominant folds of the country rocks thus 
deform not only the bedding, an early schistosity, and 
a suite of cross-cutting quartz veins which cut the 
pegmatite, but also minor, tight-to-isoclinal folds of 
bedding which have axial-planar quartz veins. They 
are themselves deformed by open minor folds with 
coaxial crenulation lineations (Figs 2 & 4).

The evidence given above suggests the following 
history of events:
a. deformation producing the earliest recognizable 

minor folds with attendant axial planar schistosity 
and quartz veins;

b. pegmatite intrusion;
c. formation of quartz veins;
d. deformation producing the predominant folds and 

axial planar fabrics; and
e. deformation producing sporadic open folds and 

crenulation lineations.
In this history the relationship between the early 

regional metamorphism and the earliest tectonic event 
is equivocal, but it is clear that the predominant set of 
folds (d. above) was produced under ductile condi
tions when microcline. plagioclase. muscovite and 
garnet were stable. The textural and structural 
features within b o th  the pegmatite and the country 
rocks show that garnet was present before this 
deformation and. with lack of evidence to the 
contrary, it appears that its growth in the country 
rocks was coeval with the pre-pegmatite deformation 
phase. In view of the lack of a tectonic fabric in the 
pegmatite which pre-dates that produced during the 
development of the predominant folds, garnet growth 
in the pegmatite cannot be directly related to that in 
the country rocks. Indeed, the latter must be earlier. 
We have, however, no direct evidence to indicate the 
magnitude of the time lapse, either between these two 
periods of growth, or between the early phase of 
deformation and metamorphsim, and pegmatite em
placement.

Regional considerations

The deformation and metamorphic history of the 
Moine rocks of the area surrounding the pegmatite 
locality has recently been revised to include five main
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pli.iscsttl clcloi iii.iliiiiKiiul nicl;iinotphism ( Powell
('/ i ll. IVKI. B.iiril IV82; c j Powell IV74). 1 wo mam 
groups ol events aie separated by a phase ol major 
euistal displ.ieement across ductile shear /ones— that 
which produced the Spurr Heap Slide ( Tanner 197(1: 
Kaihhone & Harris 1979). I lie earliest delormation 
(D l )  produced major isoclinal lolds and rare minor 
folds (Ramsay I 9 ()tl. Powell 1974) hut these have their 
main expression alonp the southwestern seaboard in 
Glcnelp. Knovdart and Morar. The second deforma
tion ( 1) 2 ) was synchronous with regional metamorph
ism and pave rise to major and minor folds, the latter 
being particularlv common (Brown e i a '. ]97tl; Powell 
& MacOueen 1976; MacQueen &  Powell 1977). 
Structures associated with the third deformation (D 2) 
include steeply-plunging, reclined, major and minor 
folds which were probably coeval with formation of 
major slide' zones, including the Spurr Heap Slide, 
and regional metamorphism (Powell e i a l. 19X1: Baird
1982) D4 comprises regionally developed major and 
minor folds with generally shallowly inclined hinges 
which told the Spurr Beag Slide (Powell e i a l. 1981). 
D5 produced open-to-tight minor folds which are 
commonlv conjugate in form and which have a 
regional southeasterly plunge. Locally this full sequ
ence of events is not always readily apparent— fold 
geometrv and (he type of associated minor structures 
are n o t everywhere diagnostic of a particular deforma
tion phase. The full sequence only becomes apparent 
with regional knowledge and by reference to the 
formation of the Spurr Beag Slide and similar major 
structures, and to metamorphic fabrics

The pegmatite locality is situated in ground which 
hitherto has not been investigated since the original 
survey by the Institute of Geological Sciences in the 
late I9.^(K. It IS currently the subject of detailed 
mapping and whilst a thorough understanding of the 
correlation of the local structures with the regional 
scheme requires substantiation, tentative conclusions 
can be made.

In the Skye-.Morar area garnet growth in the Moine 
Schists was svn-D2 in age (Powell & MacOueen 1976; 
MacQueen &  Powell 1977). Rotational inclusion 
fabrics are typical and widespread, and thus the 
growth of garnet in the country rocks of the pegmatite 
locality at Ardnish is correlated with the D2 events. In 
recently mapped areas 3 km from the locality . D3 folds 
are reclined. SL- to ESE-plunging and are refolded by 
sub-horizontally plunging N E - to SW-oriented D4 
folds. They deform a pre-existent strong mica schistos- 
ity. Thus, by analogy, the predominant folds at the 
pegmatite locality appear to correlate with the region
al D3 deformation (Fig. 4). In this respect it is 
noteworthy that D3 is considered to be coeval with 
formation of the Spurr Beag Slide (Baird IV82) which, 
in places, is associated with dynamic recrystallization 
fabrics similar to those produced in the Ardnish 
pegmatite.

Textural evidence given above shows that garnet 
was an original component ol the pegmatite, so it 
remains possible (hat pegmatite formation could have 
occurred immediately after D2. If. however, we are 
correct in our assumption that formation of the early 
minor folds, early schistosity. and garnet growth in the 
host rocks, were all related in time, then it follows that 
the cross-cutting relationships and dilational character 
of the pegmatite, its lack of mica-rich marginal 
selvedges, its low grade metamorphic context and the 
rarity of similar pegmatites both locally and regionally 
could imply a not inconsiderable time gap and 
derivation from a source beyond the present level of 
exposure.

Derivation of the pegmatite in Ardnish from a 
deeper crustal region that was undergoing metamorph
ism whilst the Ardnish country rocks wt;re already 
cooling from the same metamorphic episode cannot be 
ruled out. The rocks of the pegmatite locality could 
represent a higher level in the metamorphic pile than 
the source region. However, deeper levels in the same 
metamorphic complex are probably represented in 
Knoydart 18 km to the NE (Fig I) ,  where a 
•Morarian’ pegmatite (G ileiti ei a l. 1961) is emplaced 
in high-grade, migmatitic Moine meiasediments. The 
oldest Rb-Sr ages reported for muscovite books within 
this pegmatite (766 x  16 Ma recalculated from Giletti 
o p . cit. ) are indistinguishable from those for the 
Ardnish pegmatite and thus it could be argued that 
rocks in the two localities cooled through the blocking 
temperatures for Sr migration (c. 5(Jd‘C ). at the same 
time. This would not be expected if the rocks in 
Knoydart represent a deeper crustal level where the 
pegmatite was of local derivation during metamorph
ism— its muscovite cooling age might be expected to 
record later rather than coeval uplift. Unfortunately, 
the lack of precision in Rb-Sr mineral dating does not 
allow separation of such possibly closely spaced 
events. The similarities in mineralogy , original gram 
size and textures of the pegmatites, together with their 
lack of any indications of strain-controlled original 
mineral growth fabrics (Giletti o p . c it .: James 1976), 
tends, however, to support the view that both 
pegmatites post-date, or represent a late static phase 
of. an early episode of regional metamorphism. It is 
pertinent to add that garnet is found in pegmatites of 
purely igneous origin (Deer ct a l. 1966; Leake 1968).

Conclusions

The Ardnish pegmatite is mineralogically similar and 
yields a compatible Rb-Sr muscovite age. to both the 
knoydart pegmatite and the Loch Eilt pegmatite lying 
12 km to the E (van Breemen et a l. 1974). All three 
pegmatites Fig. I)  lie structurally beneath the Sgurr 
Beag Slide within metasediments that have been 
correlated with the Morar Division (Johnstone ct a l. 
1969). The pegmatites form part of a suite previously
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regariled as metamorphic in origin and related to the 
development of high grade migmatitic rocks within the 
Moine during late fToterozoic orogenesis. The Loch 
Lilt example is described as pre-F7 in structural age 
(van Breemen er a l. 1974) but it appears from our 
interpretation of the Ardnish locality that the folds of 
the pegmatite at Loch Eilt do not equate with the 
regional D2. they are most likely to be D4 in age. If 
this interpretation is shown to be correct, the problem 
of having different tectono-metamorphic histories 
affecting Morar Division rocks which lie at the same 
structural level would be resolved.

Consideration of the spatial distribution of isotopic 
ages reported for 'Morarian* pegmatites throughout 
the Northern Highlands (G iletti e i a l. 1961; Long &  
Lambert 1963; van Breemen et a l. 1974. 1978) reveals 
a progressive decrease in maximum apparent ages 
from W  to E, that is with increasing levels of 
Caledonian deformation and metamorphism (Brewer 
e l a l. 1979). The Ardnish pegmatite is the most 
westerly yet discovered and is emplaced in rocks of 
low metamorphic grade; it gives the oldest Rb-Sr age 
so far reported for muscovite. Providing that the timing 
of emplacement was not diachronous, the oldest age 
of 776 ± 15 Ma for the Ardnish pegmatite should be 
regarded as a minimum age for emplacement of the 
pegmatite suite as a whole. Our interpretation of the 
youngest Rb-Sr and K -A r muscovite ages from 
Ardnish suggests that the apparently svstematic region
al changes in age may be due to partial, but increasing, 
disturbance during Caledonian metamorphic activity. 
U-Pb studies on Morarian* pegmatites (van Breemen

ei a l. 1978) indicate an upper intersect on concordia al 
about 815 M a. which may be a better indication of the 
age of emplacement of the Morarian pegmatite suite.

Despite the problems involved in interpretation of 
the isotopic data and the origin of the '.Morarian* 
pegmatites, the present study gives direct geological 
evidence for the development of a tectono- 
metamorphic complex earlier than c. 78U M a whether 
or not our correlations of deformation phases are 
correct. The time interval between formation of the 
early structures (D 2 ) with accompanying lower 
amphibolite facies mineral assemblages and intrusion 
of the Ardnish pegmatite is difficult to assess directly. 
However, isotopic evidence for a 1004 ±  28 Ma re
gional, syn-D2 metamorphism of nearby Mome 
metasediments (Bfook et a l . 1976. 1977; Brewer et a l.
1979) could suggest a timeiapse of some 250 million 
years. A metamorphic origin for the '.Morarian* 
pegmatites has yet to be proved, as has their 
association with a major phase of compressive ductile 
deformation that might relate to orogenic activity.

There is thus no unequivocal evidence for a 
'Morarian Orogeny* in Moine rocks of the southwest
ern Moine area and by implication elsewhere in the 
Northern Highlands.
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Discussion of the structural setting and tectonic significance 
of the Glen Dessary Syenite, Inverness-shire

Journal, V o l. 141, Part 6, 1984, pp. 1033-42

Mi< A  W. H a i k i ) writes: Roberts. Smith & Harris 
(19X4) have produced a significant piece of structural 
mapping in Glen Dessary but I cannot agree with their 
interpretation of its regional significance. I propose an 
alternative which does not involve the unlikely 
situation of regional sea le vertical extension, and is 
more in keeping with the structural history obtained 
from studies nearby (e.g. Baird 1982; Powell e l a l. 
19X1).

Roberts i*/ a l. describe a series of D% major folds 
with Mib-veitical axial plane traces. The D , Glen 
Dessary Synform has an intensely curvilinear hinge 
line with a sub-vertical extension (X ) direction within 
Its fold axial plane. A ll the D i major folds east of the 
Glen Dessary Synform have sub-horizontal fold hinge 
lines. They attribute the change of hinge line orienta
tion and development of curvilinear folds to a rapid 
increase in the amount of D% strain westwards, and 
they link this strain variation to the generation of the 
steep belt’ , with the Loch Quoich line representing 
the eastern limit of intense D^ strain and upright 
reworking.

The post-D , Glen Dessary Syenite was intruded at 
45b ±  5 Ma. (van Breemen c i a l. 1979). LIsewhere in 
the Western Moine schists. D i is regarded as a 
Precambrian (Cirenville) tectonic event (Brook e i a l. 
197b; Brook et a l. 1977; Brewer e l a l. 1979; Powell et 
a l. 19X3). Therefore Roberts et a l. argue that the 
production of the steep belt during D i deformation 
must represent the first Lower Palaeozoic structural 
reworking of the Moine rocks.

However, further southwest, at Loch E ilt. the Sgurr 
Beag Slide is a regional D , structure which has been 
folded by major tight to isoclinal D 4 folds with 
sub-vertical axial planar traces and sub-horizontal 
hinge lines (Baird 1982; Powell e i a l . 1981). W ork now 
shows that prior to D 4 deformation the Sgurr Beag 
Slide was a flat structure over which the rocks of the 
Glenlinnan and Loch Eil Divisions were transported 
to the northwest.

Moving downwards towards the Sgurr Beag Slide, 
the Glenlinnan and Loch Eil Division rocks show a 
progressive increase in D^ strain: D.̂  fold interlimb 
angles decrease and D 3  hinge lines rotate within their 
fold axial planes towards the extension (X )  direction 
(Baird 1982).

Beyond the eastern limit of steep belt, upright

reworking the Loch Eil Division rocks still preserve 
sub-recumbent major D 3 structures (Druim Beag 
Synform).

1 interpret the Glcn Dessary Synform as having 
formed as a flat-lying. D 3 curvilinear fold with its 
extension (X ) direction sub-horizontal towards the 
northwest, which has been reorientated by D j de
formation to produce the steep belt. Consequently, 
one or more of the major folds with sub-horizontal 
hinge lines east of the Glen Dessary Synform must 
belong to the D 4  phase of deformation.

It is relevant to note that the suite of microdiorites 
in the Loch Eil-Loch Eilt area was intruded after the 
formation of the Sgurr Beag Slide (D 3 ). The amount 
of deformation within the sheets is related to the 
intensity of D 4 sieep-belt deformation.

In areas such as Loch Eilt and Glen Dessary. where 
two phases of intense Caledonian deformation (D 3 and 
D 4 ) have produced tight to isoclinal folds, markers 
within (he local deformation sequence, such as the 
Sgurr Beag Slide and the microdiorite suite, may 
provide the best means of establishing the complete 
local structural chronology.

D rs  a .  M . R o b e r t s , D. I. S.vinn. A . L. H a r r i s  and 
R. E. H o l d s w o r t m  reply: The main difference 
between our interpretation of the structural setting 
and tectonic significance of the Glen Dessary complex 
and that of Baird involves the age of the structures 
that comprise the regional steep belt. Baird believes 
that two sets of major upright folds can be recognized 
within the steep belt, and regards the earlier oi these 
as being coeval with the Sgurr Beag Slide (ductile 
thrust) and initially recumbent (D 3  sensu  Baird). He 
believes that these ‘D 3 ’ structures were reorientated 
into their present steep attitude by a later set of folds 
(D 4 sensu  Baird). However, our regional mapping and 
detailed fabric studies of a large area between Loch 
Shiel and Loch Affric, including the Glen Dessary 
area, show that all the major upright folds within the 
steep belt formed with their present orientation, and 
can be referred to a single episode of progressive 
deformation (D 3  jenxn Roberts et a l. 1984). This set of 
folds overprints the Sgurr Beag ductile thrust in Morar 
and Ardnamurchan, and also overprints two sets of 
previously recumbent structures, probably pre- 
Caledonian in age (see Roberts & Harris 1983.
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|). 891). winch retain their original attitude in the ‘Hat 
belt’ to the east ol the Loch Quoich Line (Roberts & 
il.in is  I9S3; lloldsw'oith &  Roberts 1984).

The lield-hased evidence outlined below is relevant 
to this discussion.

1 . II the upright lolds within the steep belt can be 
referred to two separate episodes of folding (D 3 and 
1 ) 4  scnsii Baird), interference between these two sets 
of folds should be common. Baird (1982. lig. 4) was 
unable to demonstrate that any ol his D 3 fold axial 
daces were relolded about D 4 fold axial traces and. 
similarly, we have recognized no interference patterns 
of this type Interference within the steep belt is 
exclusively between steep belt folds (our DO and the 
earliei D; and D> structures which we recognize 
uninodilied in the Hal belt to the east, and can trace 
westwards into the steep belt where they become 
overprinted by our D i.

2. Baird (1982. p. 652) has pointed out that his 
minor D , and D 4 folds show similar styles and 
geometry and concluded, perhaps significantly, that 
They aie impossible to distinguish in the field’. 
However, by contrast, the existence of two sets of 
major folds (say the D« and D 4 of Baird) within the 
steep bell would make mapped fold vergence patterns 
very irregular and unpredictable on all scales; systema
tic map patterns of fold vergence would not be 
expected. T he reality is that throughout the regional 
steep belt, and in the flat bell to the east, careful 
mapping, and an awareness of the curvilinear nature 
of the fold hinges, produces a systematic pattern of 
minor and major fold vergence related to a single set 
of N W -S Ii trending, regionally persistent, upright 
folds In particular, we should mention that detailed 
mapping of fold vergence to the east of the Glen 
Dessary Synform shows patterns consistent with a 
single set ol upright D» folds, and that there is no 
evidence to support Baird’s suggestion that one of the 
major structures of that area is late (viz. D4).

3. No evidence has yet been presented by Baird to 
support the correlation of his ’D 3 ’ Druim Beag 
Synform with his major D , folds farther West. This 
synform has been described by Baird as a major, 
sub-recumbent structure, and as such it begs a 
correlation with the (possibly Precambrian) D i struc
tures described from the Glen Garry-Loch Quoich 
and Glen Dessary areas (Holdsworth & Roberts 1984; 
Roberts & Harris 1983; Roberts e l a l. 1984). These 
structures have a N -S  extension direction, and hence 
cannot have been produced during WNW-directed 
Caledonian ductile thrusting.

An alternative explanation has been put forward by 
R. A . Sliachan (1985 and see following discussion). 
Strachan has mapped the Druim Beag Synform not as 
a recumbent structure, but as an upright structure, of 
only local importance, unrelated both to the formation 
of the regional sieep-bell and the Sgurr Beag ductile 
thrust.

If either of these explanations is correct then Baird's 
suggestion that the Sgurr Beag ductile thrust and the 
Druim Beag Synform formed coevally is incorrect.

4. Baird’s model involves passive rotation of an 
initially sub-recumbent Glen Dessary Synform into its 
present upright attidude during later folding. Such 
passive rotation would not only reorientate Baird's D 3 

folds, for which evidence of interference patterns is 
notably absent, but also the earlier sub-recumbent D, 
and D i folds. Passive rotation of D , and D . folds on 
the limbs of sleep belt folds has indeed been recorded 
by Roberts e i a l. (1984). However, if the hinge zone of 
the Glen Dessary synform is traced northwards from 
the Glen Dessary area, where it is markedly curvi
linear. into the Loch Quoich area, where it has been 
called the Gleouraich Synform (Roberts & Harris
1983). the large passive rotations of D , and D j 
structures required by Baird's model are demonstrably 
absent. Instead, in the synform hinge zone at Loch 
Quoich early structures are still commonly sub- 
recumbent or gently inclined, and are similar to those 
in the hinge zone of the nearby Spidean .Mialach 
Antiform, and further east, to those in the flat-belt 
east of the Loch Quoich Line (Roberts & Harris 1983; 
Holdsworth & Roberts 1984). It is therefore apparent 
that the hinge zone of the Gleouraich-Glen Dessary 
Synform was generated as an upright structure.

In the light of the above points we suggest an 
alternative model for the structural evolution of the 
regional steep belt. In agreement with Baird, we envis
age the Sgurr Beag ductile thrust to be the earliest 
Phanerozoic structure in the region. However, outside 
the c. 1 km-wide slide zone we do not recognize an\ 
structures, and certainly not major folds, associated 
with the ductile thrust. It is more likely that, following 
the emplacement of the Sgurr Beag Nappe (Glentin- 
nan and Loch Eil divisions) onto the Morar Division 
by the Sgurr Beag ductile thrust, the only structures 
and fabrics within the nappe itself were the still flat- 
lying. probably pre-Caledonian. D , and D^ structures 
referred to above.

It is possible to speculate further on the regional 
deformation pattern which led to the development of 
the steep belt structures in both the hanging wall and 
footwall of the Sgurr Beag thrust. It is probable that 
movement on the Sgurr Beag ductile thrust was 
followed by displacements on the underlying thrusts—  
the Knoydart ductile thrust and the Moine Thrust 
successively— in a foreland propagating sequence 
(Barr 1983). Ductile thrusting was succeeded, and may 
have been partly overlapped, by a major phase of 
regional shortening which produced the upright folds 
(our D 3 ) forming the regional steep belt. These folds 
fold the earlier Sgurr Beag and Knoydart ductile 
thrusts. It is possible that sticking on the Moine Thrust 
itself was responsible for the formation of these 
upright folds (Rathbone e i a l. 1983). We envisage that 
these folds propagated eastwards as far as the Loch
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Quoich Line (Roberts & Harris 1983), the rocks to the 
east ol which were scarcely allected.

Baird is concerned about the development of 
regional, vertical extension. However, significant 
shortening, as seen in the steep belt, above a 
sub-horizontal detachment, such as the Moine Thrust, 
would be expected to produce just such vertical 
extension (cf. Coward & Siddans 1979). We therefore 
do not share Baird's concern about the sub-vertical 
extension described by Roberts c i a l. (1984). Such 
sub-vertical extension would bring up hotter, deeper 
level rocks in those areas where sub-horizontal 
shortening was greatest, i.e. the steep belt. This may 
exjilain the presence of the sillimanite 'overprint' in 
the steep belt and, given that this ‘exhumation’ 
occurred subsequent to ductile thrusting, may explain 
the younger cooling ages of these rocks relative to 
those further west (see Powell 1983).

Dk R. a .  Si KACHAN provides the further comments: 
Roberts & Harris (1983). Holdsworth & Roberts 
(1984), Roberts e l a l . (1984) and Strachan (1985) 
demonstrate that the Glenlinnan and Loch Eil divi
sions have undergone a common Precambrian structu
ral history involving two phases of recumbent folding. 
These workers suggest that subsequent Caledonian 
reworking may be viewed in terms of (a) displacement 
along the Sgurr Beag Slide and (h) upright folding. 
Qne particularly important set of upright folds may be 
recognized throughout W Inverness-shire between 
Glenfmnan and .Loch Cluanie, and this corresponds to 
the major N N E -S S W  trending folds such as the Glen 
Dessary synform described by Roberts & Harris 
( 1983) and Roberts et a l. (1984). None of these authors 
recognize any set of folds which might be directly 
associated with movement along the Sgurr Beag Slide. 
Baird, in contrast, postulates that the Glen Dessary 
synform and, by inference, many others of the folds 
described by Roberts &  Harris (1983) and Roberts e i 
a l. (1984), formed as recumbent structures coeval with 
thrust-type movement along the Sgurr Beag Slide. 
Subsequent upright folding is inferred to have rotated 
these postulated recumbent folds into their present 
highly inclined attitudes. Baird specifically indicates 
that evidence for these recumbent folds is present in 
the Loch Eil division, and cities the Druim Beag 
synform as an example.

At issue is the regional extent and nature of those 
folds described as D /  by Baird (1982; this discussion) 
and Strachan (1985). Recent work in the Loch Eil 
area demonstrates that the Glenhnnan and Loch Eil 
divisions have undergone five major phases of folding 
(D |-D s ) (Strachan 1985). This area is therefore 
more structurally complex than either the Glen 
Dessary or Loch Quoich areas where it is evident 
that the two divisions have only been affected by four 
phases of folding (Roberts & Harris 1983; Roberts et

a l. 1984). The apparent discrepancy between these 
two structural schemes in terms of the numbers of fold 
phases present is best resolved by the suggestion that 
tlie *D i’ structures of the Loch Eil area are regionally 
impersistent and die A iu t nortfmards (Strachan 
1985. table 3). The fourth phase folds reeaignized at 
Loch Ell would then appear to correlate directly with 
the upright third phase folds described by Roberts & 
Harris (1983) and Roberts ei a i  (1984) from Loch 
Quoich and Glen Dessary. 1 have examined all these 
areas in some detail and conclude that there is little 
likelihood that the DV folds recognized at Loch Eil 
can be extrapolated as tar north as Baird argues.

In the Loch Eil area, the D^' folds, including the 
Druim Beag synform. have upright to sub-vertical 
axial planes and are light-open in style. The D i folds 
have a regionally arcuate trend about N -S  to N N E -  
SSW trending D j folds. The level of D j strain within 
the Loch Eil division is generally low: D j folds are 
gentle-open in style, and D , and D j fold axes typically 
intersect at high angles. A rapid westward increase in 
the level of D j strains is marked by the progressive 
tightening of D j folds which define the steep belt in 
this area. East of the Loch Quoich Line, where Da 
strains are low. it can be seen that D^ folds are likely 
to have had an original N W -S E  or W N W -E S E  trend 
(Strachan 1985) which is markedly oblique to both 
the Sgurr Beag Slide and the steep belt. The field 
evidence indicates that all these D^ folds, including the 
Druim Beag synform. were generated with upright to 
sub-vertical axial planes. Baird's suggestion that the 
D 3 folds within the Loch Eil division were originally 
recumbent implies that their axial planes have been 
subsequently rotated into an upright attitude during 
D j folding. This necessitates that levels of D 4 strain 
within the area east of the Loch Quoich Line are 
comparable with those to the west within the steep 
belt, which is clearly not the case.

In conclusion. Baird's model is not supported by the 
field evidence. Regional considerations indicate that 
the D j folds are restricted to the area south of Glen 
Dessary. Furthermore, these structures did not evolve 
as recumbent folds associated with movement along 
the Sgurr Beag Slide, but rather as a series of upright 
structures oblique to the main Caledonian trend within 
the Western Highlands. It is likely that these folds 
either represent an early phase of NN E-SSW  directed 
Caledonian compression, or that they relate to the 
Prccambrian event. In view of these criticisms of 
Baird’s comments, the work of Roberts &  Harris 
(1983) and Roberts et a l. (1984; this discussion) 
represents a more plausible model for the Caledonian 
structural evolution of the Sgurr Beag Nappe. A ll the 
indications are that the major folds described by these 
workers from the Glen Dessary and Loch Quoich 
areas were generated as upright folds, possibly above a 
major decoupling zone which lies at some depth below 
the present erosion surface in the Western Highlands.
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Du D B a k u  comments: Baird draws attention to two 
leatnies ol the (iien  Dessary Synform whicli he 
considers to he incompatible with a steep belt’ age 
( I ) ,  ol Roberts <-/ a l. I9K4): (a) its intense curvilinear- 
ity anil the inferred liigh ductile strain and (b) the 
unlikelihood of regionai-scale vertical extension. Both 
these features are compatible with and indeed predict
able from a model in which the Loch Ouoicfi Line 
represents an eastern limit of intense D j strain, 
developed above a liasal décollement as inferred by 
Robeits I'l a l (this diseussion). Differential W N W -  
I ST slioitening (ei|uivaleiit on a legional scale to pure 
slu-ai ) gives use to conipalibilitv pioblems. which 
iei|uire the existence ol a component of simple shear 
in the /ones separating domains of contrasting pure 
shear I he magnitude of this vertical simple shear 
component is controlled by tlie depth to décollement 
and by the hoii/onlal gradient m the pure shear 
Component W oik cm leiilly m piogiess (with A M 
Robeits) applies this model to (tie generation of tfie 
steep belt and the Loch Quoich Line At the type 
locality ol the Loch Quoich lane. D , reworking 
declines rapidly eastwards, large, sub-vertical simple 
shear strains are generated, and \ \  folds are curvi
linear (cf Roberts & Harris 198.3. lig. .3). Last of Glen 
Dessary (Roberts e i a l. 198-4. lig. .3) there is a gradual 
transition between the steep belt and the flat belt, the 
simple shear component is small, and Fj axes are 
sub-horizontal. T he Glen Dessary Synform is one of a 
series of augen of low D , shortening which crop out 
within the steep lx*lt. The associated steep gradient in 
the pure sheai component generates large simple 
shear strains and curvilinear FT folds. 1 he magnitude 
of this simple shear component dies out downwards to 
zero at the basal décollement, so its sub-vertical 
•V-direction does not create space problems at depth.

Curvilinearity of steep belt* folds about a sub
vert ical -direction is not restricted to the Glen 
Dessary area, and at several lixahties the Sgurr Beag 
Slide itself passes around later sheath folds, so 
demonstrating theii post-D, age in Baird's chronology. 
At Kmlochourn |N G  951 l)b.3| an antiformal sheath fold 
of a wavelength of <. .SlKIm is associated with 
extension hnealions plunging at c. 80' towards the 
south (Barr 198.3). The Sgurr Beag Slide crops out on 
the western limb of the complementary synform [NG  
945 069|. and the core of the sheath fold is occupied by 
non-migmatitic semipelites identical to the Morar 
Division rocks which lie west of the Sgurr Beag Slide. 
The envelope of the sheath fold consists of highly 
deformed, migmatitic psammites which form the basal 
memlnrr of the local Glenlinnan Division succession. 
Systematic variations in minor fold vergence confirm 
that the sheath fold belongs to the set of upright 
structures which defines the steep belt. The rocks in 
the core of the sheath fold are interpreted as 
representing a M orar Division inlicr. and so the sheath 
fold post-dates the Sgurr Beag Slide. A  comparable.

but synformal. structure almost certainly occurs at the 
head of Glen Dessary (B .G .S. sheet (i2\V. Loch 
Quoich); (NM  909.3|. where an isolated elliptical 
outcrop of Glenlinnan Division lithologies lies west of 
the Sgurr Beag Slide. Further north, at Sguman 
Coinntich |NG  97 29). a 4x1 km outlier of Glenlinnan 
Division pelites occupies the core of an essentially 
isoclinal sheath fold within the Morar Division (Barr 
1983; subsequent work by R. L. Holdsworth).

1 he occurrence of both sheath-like, steeplv plunging 
and cylindrical, gently plunging folds, all of which 
post-date the Sgurr Beag Slide, indicates that d * - > 
form.itioii within tlx  steep belt was extrenicK heter
ogeneous. and so the contrast in structural stsles at 
(ilen Dessary is not unusual. Baird's interpretation 
requires that one of the gently plunging folds east of 
the (ilen Dessary Synform represents its com
plementary antiform, since tfie stratigraphie sequence 
as a wfiole is iiglit way up fie llius assigns the s ii.n n  

heterogeneity to an earlier tectonic event tor which 
there is no evidence in the Glen Dessarv area, and 
introduces an unnecessary complication into a model 
based on the demonstrable heterogeneity of upright 
Caledonian reworking.

D r  Ü . T . T o u i s c h  writes: The interpretation by 
Roberts e i a l. ( 1984) of the Glen Dessary synform as a 
sheath fold having formed by one continuous deforma
tion is a reasonable one. They suggest, however, that 
the elongate eyed structures I described from the Glen 
Cannich area 50 km to the northeast are likely' to be 
“ major upright "sheath folds" rather than represent
ing a basin-and-dome interference pattern as inter
preted by me (1966).

When analysing the field data and interpreting the 
genesis of the Cannich structures. 1 considered the 
possibility that these structures formed by one con
tinuous deformation in which there had been more 
upward' movement at certain points along the fold 

axes relative to other points and that this differential 
movement produced curved fold axes resulting in the 
observed elongate eyes. A mechanism to produce such 
structures had already been proposed by Ramsay 
(1962). which might be considered to be the lorerun- 
ner of the sheath fold' concept developed later 
(Cobbold & Quinquis 198(1). 1 had to reject this 
interpretation for the Cannich structures because the 
bulk of the evidence was more readily interpreted as a 
fold interference pattern.

This evidence includes the facts that ( I )  as outlined 
earlier (Tobisch. 1966). the eyed structures which 
make up the major Cannich folds are elongate entirely 
in the direction of F ;̂ within the hinges of at least 
three of these F; major folds, one finds isoclinal minor 
folds as well as lineations consisting of both striping 
and quartzofeldspathic rodding which pre-date the F; 
folds. Qn a mesoscopic scale, there are a number of 
localities where one finds isoclinal Fj minor folds
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rctoklmg earlier (I ,) isoclinal minor (olds, which in 
some cases show qiiarlzoleldspalhic rodding lying 
parallel to the l-| axes. It is clear, therefore, that the 
F'i folds which form the elongate eyes postdate an 
earlier period of deformation and metamorphism of 
some considerable intensity, in addition, these eyed 
structures occur over a large area, and show a 
regularity of pattern when the effect of the later 
deformations (esp. I'O are removed (see Tobisch 19Wi. 
figs 9 and 12). T here are also clear hints that just to 
the west of the area being considered (see Tobisch 
1967. fig 2) (fie basiii-aiid dome pattern may continue 
over an even larger area than originally outlined 
(Tobisch 1966). To me. the alxrve observations 
support the interference jrattern interpretation much 
more convincingly than attempting to explain the 
major fold pattern and other structural/inetamorphic 
features by one conti.uious process (e.g. sheath fold 
genesis).

Whereas 1 do not completely rule out the possibility 
that the Cannich eyed structures may have formed by 
one continuous deformation, the evidence is more 
fully accounted foi by interpreting the structural 
pattern as forming by fold interference of two 
successive deformations, however closely or widely 
sejxirated in time.

Dus A. M . Rom KIN. D . I. S m iih . A . L. I lAUuis and 
R. C. H o i I5SWOKIII reply; Tobisch disputes our 
suggestion that the structures mapped by him in the 
Cilen Cannich area are probably sheath fold’ struc
tures. produced during a single period of upright 
folding. He does so on the grounds that structures 
earlier than his D /C annich generation (7 our DO are 
recognizable within the hinge zones of his now 
curvilinear Cannicli generation folds. From our own 
recent observations m Glen Cannich we agree that the 
Cannich folds are certainly not the earliest structures 
present; however, we fail to see how this necessitates

that the major, upright, curvilinear folds should be the 
product of fold interference.

In the Loch Quoich-Glen Dessary area (Roberts & 
Harris 1983; Roberts ei a l. 1984) the upright sheath 
folds’ are also not primary structures. They were 
generated during our D j deformation and post-date 
two earlier sets of originally recumbent structures, at 
least one of which is also characterized by markedly 
curvilinear folds (Holdsworth & Roberts 1984). We 
have recognized numerous interference structures 
between these early folds and the upright D ; folds. On 
a large scale, however, only type 3 hook' interference 
patterns are produced (e.g. Roberts & Harris 1983. 
figs 2 and 4). This interference, as outlined by Roberts 
I’l a l. (1984) was not responsible for the highly 
curvilinear nature of major D-. folds such as the Glen 
Dessary Synform (Roberts ei a l. 1984) and the Spidean 
Mialach Antiform (Roberts & Harris 1983).

To produce folds with the geometries described by 
Tobisch (1966). by the process of fold interference, a 
regionally developed set of N W -S L  trending, upright 
folds of pre-Cannich age must exist. Tobisch (1966) 
and T obisch e i a l. (197(1) could not detect such a set of 
folds, and had to “ hypothesize" that they might exist. 
The only pre-Cannich structures recognized by 
Tobisch Cl a l. (1970) were minor structures, described 
by Tobisch above, of very limited areal extent 
(tobisch e l a l. 1970. fig. 3). which are too insignificant 
to induce marked curvilearity in major, later folds.

We acknowledge that, in the Glen Cannich area, 
local interference between Cannich and pre-Cannich 
generation structures certainly exists, but still prefer 
the interpretation that the major, upright, curvilinear 
folds were produced during a single period of folding. 
In accordance with D Barr (in discussion of Baird 
above) we believe the curvilinearity may be the result 
of regional-scale, heterogeneous shortening, with 
accompanying simple shear, above a gently inclined 
detachment horizon.
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LOOSE MATERIAL ( MAPS AND SCHEMATIC SECTION ).

Map 1) Distribution of lithologies in the area.

Map 2) Structural Map of the Loch Eil Division.

Map 3) Major structures east of the Beinn an Tuim fa u lt.

Map 4) Major structures west of the Beinn an Tuim fa u lt.

Map 5) Major fold axial plane traces in the area.

Map 6) Location of ca lc-s ilicate  and amphibolite samples 
( and their plagioclase An. content ).

Map 7) Microdiorite sheet geometry along the A.830 road.

Map 8) Local topography and sample lo ca lities . 
(Grid references listed in Appendix 4).

Schematic Cross Section,Skye to Fort William.


