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A closed form expression for the propagator is derived, in terms of modified Bessel functions, for the
Fokker-Planck equation for a physically important generalization of the Ornstein-Uhlenbeck process where the
diffusion constant D�p� is a function of the momentum. The closed form is found for the general case
D�p���p�−� where ��0 and leads to the standard Gaussian form for �=0. The propagator for the specific case
D�p���p�−1 is used to derive analytic expressions for probability distributions and correlation coefficients. An
exact expression is found for the constant of proportionality for the anomalous diffusion of the mean-square
displacement of a particle at short times.
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I. INTRODUCTION

The Ornstein-Uhlenbeck process �1� plays a central role
in the theory of diffusion where a particle of mass m and
momentum p is subject to a drag force −�p, where � is a
constant, and a random rapidly varying force f�t�. This pro-
cess has been generalized �see �2,3�� to include random
forces f�x , t� which depend on both the position of the par-
ticle x and the time t. The equation of motion for such a
generalized Ornstein-Uhlenbeck process can be written as

ṗ = − �p + f�x,t� . �1�

We assume the force f�x , t� has the following statistics:

�f�x,t�� = 0, �f�x,t�f�x�,t��� = C�x − x�,t − t�� , �2�

where the angular brackets indicate an average over an en-
semble of particles and C denotes a space-time correlation
function with spatial and temporal correlations lengths � and
�, respectively. In the limit where � approaches zero and for
weak damping � the equation of motion can be approximated
by a Langevin equation. Considering the ensemble average
of the first and second moments of dp one can show, in the
usual way, that this stochastic system leads to a Fokker-
Planck equation or a generalized diffusion equation for the
probability density of the momentum p at time t, P�p , t�, in
which the momentum diffusion constant D�p� depends ex-
plicitly on the momentum �3�, i.e.,

D�p� =
1

2
	

−�

�

C�pt/m,t�dt . �3�

The general form of the Fokker-Planck equation for P is then

�P

�t
=

�

�p

�p + D�p�

�

�p
�P . �4�

Sturrock �4� was the first to derive a Fokker-Planck equa-
tion with a diffusion constant that depends on the momentum
p as in Eq. �4�. He analyzed the motion of a charged particle

in a uniform magnetic field subject to randomly varying
weak electric fields and no damping, i.e., �=0, in above. He
showed that it was possible to describe this stochastic accel-
eration process completely in terms of a correlation function
of the general form given in Eq. �2�. Golubovic et al. �5,6�
considered the motion of a particle, also with �=0, subject to
a random force as in Eq. �1�, but which can be written as the
gradient of a potential, the random potential having statistics
represented by Eq. �2�, where C is taken to be of Gaussian
form. They evaluated D�p� and showed that D�p���p�−3 for
p� p0 where p0=m� /�. Arvedson and co-workers �2,3� con-
sidered the case where for most of the time the momentum p
is large compared to p0. They analyzed the Fokker-Planck
equation for a generic random force in Eq. �1� with damping
and showed by expanding Eq. �3� for large momentum that
the Fokker-Planck equation has a diffusion constant
D�p���p�−1. When the force can be written as the gradient of
a potential one recovers D�p���p�−3. Fokker-Planck equa-
tions with momentum dependent diffusion constants have
also been applied to study stochastic acceleration of particles
in plasmas.

Recently �2,3,7� the solution of the Fokker-Planck equa-
tion �4� was considered for nonzero � and for both the spe-
cific case of D�p�=D0�p�−1, where D0 is a constant, and the
general case D�p���p�−� for ��0. Note that setting �=0
gives the standard Ornstein-Uhlenbeck process. For clarity
we will initially consider the specific case D�p�=D0�p�−1.
The corresponding Fokker-Planck equation �4� can be writ-
ten in scaled variables t�=�t and z= �� /D0�1/3p, as

�P

�t�
=

�

�z

z +

1

�z�
�

�z
�P � F̂P . �5�

The general solution of the Fokker-Planck equation �5�
can be written in terms of the propagator for the equation
K�y ,z , t��, which is the probability density for the scaled
momentum to reach z after a time t� starting from y at time
t�=0, i.e., K�y ,z ,0�=��z−y�. Arvedson et al. �2� calculated
this propagator by spectral decomposition �8�, i.e., by first

transforming the Fokker-Planck operator F̂ to a Hermitian
form using the stationary solution to the equation
P0�z�	exp�−�z�3 /3�,
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Ĥ = P0
−1/2F̂P0

1/2 =
d

dz

1

�z�
d

dz
+

1

2
−

�z�3

4
. �6�

The propagator can then be expressed as a sum involving

the eigenfunctions and eigenvalues of Ĥ, and probability dis-
tributions, moments, and correlation coefficients can also be
expressed in terms of sums of matrix elements. Arvedson
et al. �2� used an unusual set of creation and annihilation

operators to show that the eigenvalues of Ĥ formed a set of
staggered ladder spectra. Without explicitly constructing the
eigenfunctions they showed that they could calculate corre-
lations coefficients by evaluating matrix elements in a rather
involved way using the creation and annihilation operators.
In a recent paper �7� we presented an alternate solution to the

eigenvalue equation for Ĥ and in so doing we obtained ex-
plicit expressions for the eigenfunctions in terms of associ-
ated Laguerre polynomials. The matrix elements involved in
the sums for calculating the correlation coefficients could
thus be evaluated in a more straightforward way using the
recurrence relations and other properties of the associated
Laguerre polynomials. We now show here how we can use
these eigenvalues and eigenfunctions to obtain a closed-form
expression for the propagator K of the Fokker-Planck equa-
tion �5� which gives a closed-form solution to the problem.
Knowing the propagator greatly facilitates the calculation of
physical quantities such as correlation coefficients. We show
how probability distributions and correlation coefficients can
be calculated directly by integration without the need for
infinite sums over matrix elements. We also obtain an exact
expression for the constant of proportionality describing the
short-time anomalous diffusion dynamics for the mean-
squared position of the particle. In addition we give a closed-
form expression for the propagator for the general case
where D�p���p�−� for ��0 and show that this reduces to
the well-known Gaussian form for �=0 �1,8�.

The layout of the paper is as follows: In Sec. II we sum-
marize the known results for the solution of the eigenvalue
problem. In Sec. III we show how the eigenvalues and eigen-
functions can be used to obtain a closed-form expression for
the propagator. In Sec. IV we show how the correlation func-
tions are calculated and in Sec. V the propagator for the
general case is given. In Sec. VI we give a summary of our
results.

II. EIGENVALUES AND EIGENFUNCTIONS

The eigenvalue problem for the operator Ĥ is

d

dz

1

�z�
d


dz
+ 
1

2
−

�z�3

4
�
 = �
 �7�

with 
→0 as �z�→�. The operator Ĥ commutes with the
parity operator and so the eigenfunctions can be divided into
even or odd with respect to z→−z.

As found in �2,7� the even eigenvalues are

�n
+ = − 3n, n = 0,1,2. . . �8�

and the odd eigenvalues are given by

�n
− = − 3n − 2, n = 0,1,2 . . . . �9�

The even and odd eigenvalues separately are evenly spaced
like those of a harmonic oscillator but they are shifted rela-
tive to one another giving the staggered ladder spectra found
in �2�.

The eigenfunctions were derived in �7� and the normal-
ized even eigenfunctions were found to be


n
+ = 31/3
1

2

��n + 1�
��n + 1/3�

Ln
−2/3
 �z�3

3
�exp
−

�z�3

6
� , �10�

where Ln
−2/3 are associated Laguerre polynomials and

n=0,1 ,2 . . . .
Similarly the normalized odd eigenfunctions are


n
− = 3−1/3
1

2

��n + 1�
��n + 5/3�

z�z�Ln
2/3
 �z�3

3
�exp
−

�z�3

6
�

�11�

with n=0,1 ,2 . . . .

III. PROPAGATOR

The general solution of the Fokker-Planck equation �5�
can be written in terms of the propagator K. The propagator
K�y ,z , t�� with the initial condition K�y ,z ,0�=��z−y� can be
expanded in terms of the eigenvalues and eigenfunctions of

the operator Ĥ above as

K�y,z,t�� = �
n


P0
−1/2�y�
n


�y�P0
1/2�z�
n


�z�e�n

t�, �12�

where 
=± for the even and odd eigenfunctions �3,8�. Since
P0

1/2�y�=
0
+�y�, we can write K explicitly in terms of the even

and odd eigenfunctions given in Sec. II as

K�y,z,t�� =

0

+�z�

0

+�y�

�
�
n=0

�


n
+�y�
n

+�z�e�n
+t� + �

n=0

�


n
−�y�
n

−�z�e�n
−t�� .

�13�

Substituting the eigenvalues from Eqs. �8� and �9� and the
eigenfunction expressions from Eqs. �10� and �11� we get
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K�y,z,t�� = e−�z�3/3�32/3

2 �
n=0

�
��n + 1�

��n + 1/3�
Ln

−2/3��y�3/3�Ln
−2/3��z�3/3�e−3nt� +

e−2t�yz�yz�
2.32/3 �

n=0

�
��n + 1�

��n + 5/3�
Ln

2/3��y�3/3�Ln
2/3��z�3/3�e−3nt�� .

�14�

Since we have explicit expressions for the eigenfunctions in
terms of associated Laguerre polynomials the infinite sum-
mations can be evaluated exactly from the following expres-
sion given in �9�:

�
n=0

�
��n + 1�

��n + � + 1�
Ln

��y�Ln
��z�� n

=
�yz��−�/2

1 − �
exp�− �
 y + z

1 − �
��I�
2
yz�

1 − �
� for ��� � 1,

�15�

where I� is a modified Bessel function �10�. Taking �=e−3t�

with t��0 we get

K�y,z,t�� = a exp�− b�y�3 − 
b +
1

3
��z�3�

���yz�I−2/3�c�yz�2/3� + yzI2/3�c�yz�2/3�� , �16�

where

a = e−t�/2�1 − e−3t��, b = e−3t�/3�1 − e−3t�� ,

c = 2e−3t�/2/3�1 − e−3t�� . �17�

All quantities of interest for generalized Ornstein-
Uhlenbeck processes can be evaluated from this closed-form
expression for the propagator. For example, the probability
distribution at any time t� is given in terms of the distribution
at t�=0 by

P�z,t�� = 	
−�

�

dyK�y,z,t��P�y,0� . �18�

In particular if the particle is initially at rest, i.e., with initial
momentum distribution P�y ,0�=��y�, we get from Eq. �18�
that P�z , t��=K�0,z , t��. So taking the limit as y→0 in Eq.
�16� and using the fact that I��z�� 1

���+1�
� 1

2z�� as z→0, we

get immediately

P�z,t�� = K�0,z,t�� =
3

2��1/3�
exp�− �z�3/3�1 − e−3t���

�3�1 − e−3t���1/3

�19�

or expressing this in the original nonscaled variables p and t,

P�p,t� =
1

2��4/3�
�1/3

�3D0�1 − e−3�t��1/3 exp�−
��p�3

3D0�1 − e−3�t�� .

�20�

This expression was proposed as an ansatz in �3� but we see
here that it emerges naturally from the closed-form expres-
sion for K.

IV. CORRELATION FUNCTIONS AND DIFFUSION AT
SHORT TIMES

We now use K in Eq. �16� to show how correlation coef-
ficients can be determined directly without the need to evalu-
ate infinite sums over matrix elements. We also give an ana-
lytic expression for the constant of proportionality describing
the short-time anomalous diffusion dynamics for the mean-
squared position of the particle.

The equilibrium or stationary correlation coefficients for
an observable O�z� can be written as �3,8�

�O�zt��O�z0��eq. = 	
−�

�

dz	
−�

�

dyO�z�O�y�K�y,z,t��P0�y� .

�21�

The equilibrium momentum correlation coefficient is then

�zt�z0�eq. = 	
−�

�

dz	
−�

�

dyzyK�y,z,t��P0�y� . �22�

Substituting Eq. �16� into the above, the integral over the
term involving I−2/3 vanishes since the integrand is odd in y
so we get

�zt�z0�eq. =
a32/3

2��1/3�	−�

�

dzz2e−�b+1/3��z�3

�	
−�

�

dyy2e−�b+1/3��y�3I2/3�c�z�3/2�y�3/2� . �23�

Substituting u=y3 we obtain

�zt�z0�eq.

=
a3−1/3

��1/3�	−�

�

dzz2e−�b+1/3��z�3	
0

�

due−�b+1/3�uI2/3�c�z�3/2
u� .

�24�

The integral over u can then be calculated analytically �9�,
giving
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�zt�z0� =
3−4/34

��5/3�
a

c
b + 1/3

�	
0

�

dzz1/2 exp�− �b + 1/3 − c2/8�b + 1/3��z3�

�M−1/2,1/3
 c2z3

4�b + 1/3�� , �25�

where M is a Whittaker function.
If we put v=z3 we get

�zt�z0� =
3−7/34

��5/3�
a

c
b + 1/3

�	
0

�

dvv−1/2 exp�− �b + 1/3 − c2/8�b + 1/3��v�

�M−1/2,1/3
 c2v
4�b + 1/3�� . �26�

This integral can also be done analytically �9� using the fact
that

	
0

�

dxe−sxx�M�,��x�

=
��� + � + 3/2�
�1/2 + s��+�+3/2

�2F1�� + � + 3/2,− � + � + 1/2,2� + 1,2/�2s + 1�� ,

�27�

where 2F1 is a hypergeometric function �10�. Substituting for
a ,b, and c from Eq. �17� into the result we finally get

�zt�z0�eq. =
3−1/3��4/3�

��5/3�
e−2t�

2F1
1

3
,
1

3
,
5

3
,e−3t�� �28�

or, in the original unscaled variables,

�ptp0�eq. =
3−1/3��4/3�

��5/3�

D0

�
�2/3

e−2�t
2F1
1

3
,
1

3
,
5

3
,e−3�t�

�29�

which is here obtained directly without the need to evaluate
a set of matrix elements and then perform an infinite sum
�3,7�.

The time dependence for the mean-square displacement
for a particle initially at rest at the origin is given in terms of
the momentum correlation function �3,8� by

�x2�t�� =
1

m2	
0

t

dt1	
0

t

dt2�pt2
pt1

�

=
1

�2
D0

�
�2/3	

0

t�
dt1�	

0

t�
dt2��zt2�

zt1�
� , �30�

where

�zt2�
zt1�

� = 	
−�

�

dz1	
−�

�

dz2z1z2P�z2,t2�;z1,t1��

= 	
−�

�

dz1	
−�

�

dz2z1z2K�z1,z2,t2� − t1��K�0,z1,t1�� .

�31�

Substituting the expressions for the K�z1 ,z2 , t2�− t1�� from Eq.
�16� with t2�� t1��0 and K�0,z1 , t1�� from Eq. �19� we get the
same type of integrals as used in the evaluation of �zt�z0�eq.

above. These can be performed analytically and the final
result is

�zt2�
zt1�

� =
3−1/3��4/3�

��5/3�
e−2�t2�−t1���1 − e−3t1��

�1 − e−3t2��1/3

�2F1�1

3
,
1

3
,
5

3
,e−3�t2�−t1��
1 − e−3t1�

1 − e−3t2�
�� . �32�

For short times the expression in Eq. �32� can be expanded in
powers of t1� and t2� about the origin �using a symmetric ex-
pression for t1�� t2�� and thus the double integral in t1� and t2�
in Eq. �30� can be performed analytically. Writing the result
in terms of the unscaled variables we get

�x2�t�� = 3−2/347

40

��4/3�
��5/3�

�D0�2/3

m2 t8/3 + O�t11/3� . �33�

The actual value of the constant 3−2/3 47
40

��4/3�

��5/3� is 0.5588. This

proportionality constant was evaluated numerically in �2� by
approximating various integrals and infinite summations giv-
ing a value of 0.57. Using the propagator one can obtain the
exact value simply without approximations.

V. PROPAGATOR FOR THE GENERAL CASE

The above approach can be generalized in a straightfor-
ward way to the case when the momentum diffusion constant
in Eq. �4�, D�p�, has a more general form D�p���p�−� where
��0. After transforming the Fokker-Planck equation to its
Hermitian form, the eigenvalue problem in the general case
becomes

d

dz

1

�z��
d


dz
+ 
1

2
−

�z�2+�

4
�
 = �
 . �34�

As found in �3,7� the even eigenvalues are given by

�n
+ = − �2 + ��n, n = 0,1,2. . . �35�

and the odd eigenvalues by

�n
− = − �2 + ��n − � − 1, n = 0,1,2 . . . . �36�

The eigenfunctions were derived in �7� and can be written in
terms of associated Laguerre polynomials giving the normal-
ized even eigenfunctions as
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n
+�z� = �� + 2���+1�/�2�+4�
1

2

��n + 1�

�
n +
1

� + 2
�

�Ln
−��+1�/��+2�
 �z��+2

� + 2
�exp
−

�z��+2

2�� + 2�
� �37�

for n=0,1 ,2 . . . .
Similarly the normalized odd eigenfunctions are


n
−�z� = �� + 2�−��+1�/�2�+4�

�
1

2

��n + 1�

�
n + 2 −
1

� + 2
� z�z��

�Ln
��+1�/��+2�
 �z��+2

� + 2
�exp
−

�z��+2

2�� + 2�
� �38�

with n=0,1 ,2 . . . .
Using Eqs. �13� and �15� a closed-form expression for the

propagator can be written as

K�y,z,t�� = a� exp
− b��y��+2 − 
b +
1

� + 2
��z��+2�

� ��yz���+1�/2I−��+1�/��+2��c��yz���+2�/2�

+ yz�yz���−1�/2I��+1�/��+2��c��yz���+2�/2�� , �39�

where

a� = e−��+1�t�/2/2�1 − e−��+2�t�� ,

b� = e−��+2�t�/�� + 2��1 − e−��+2�t�� ,

c� = 2e−��+2�t�/2/�� + 2��1 − e−��+2�t�� . �40�

Similar results to those derived in Sec. III can be obtained
for the general case using the propagator in Eq. �39�, in par-
ticular for the case �=3 considered by Golubovic et al. �5,6�.

Note also that if we take �=0 in Eqs. �39� and �40� the
modified Bessel functions become I−1/2 and I1/2 which can be
written in terms of a hyperbolic cosine and sine, respectively
�10�, and the propagator K reduces to

K�y,z,t�� =
1

�2��1 − e−2t���1/2
exp�−

�z − ye−t��2

2�1 − e−2t��
� ,

�41�

i.e., we recover the classic Gaussian form for the standard
Ornstein-Uhlenbeck process �1,8�.

VI. SUMMARY

We have derived a closed-form expression for the propa-
gator for generalized Ornstein-Uhlenbeck processes, where
the diffusion constant is an explicit function of the momen-
tum. The propagator for the general case D�p���p�−� where
��0 is given and reduces to the usual Gaussian form for
�=0. Knowing a closed form for the propagator facilitates
calculations of physical interest by allowing one to write
down integral expressions for probability distributions and
correlation coefficients. For the specific case D�p���p�−1 we
have shown how correlation coefficients can be calculated
analytically using the closed form for K. We have also shown
how to evaluate the exact form of the proportionality con-
stant for anomalous diffusion in the mean-square displace-
ment at short times.
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