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CHAPTER ONE Introduction and General Theory

Section 1.1 Abstract

Vibrational spectroscopy is increasingly being 

used as a tool for research into the condensed nhase, on 

a molecular scale. R.G. Cordon has interpreted the 

intensity moments of infra-red bands, taken about the 

band centre, in terms of the rotational kinetic energy of 

the molecules and intermolecular potential energies between 

the molecules. Gordon has also suggested that interpretation 

of a frequency spectrum can be aided by transforming^ the 

spectrum into a time domain function, which is related to molecular 

motion on a picosecond time scale. The aim of this work is to

investigate the practical asnects of Gordon's moment theory and to 

utilise the theory to extract information about molecular inter

actions in the condensed phase, with the help of the time domain 

function. Specific interactions between benzene and various 

solvents will be analysed.



Section 1 . 2  Measurement of Spectra and the Observables
used •

All spectra were measured in the infra-red region 

using a Perkin Elmer model 3?5 Spectrograph equipped with an 

air drier and carbon dioxide absorber. Spectra were recorded 

in the transmittance mode. Accurate spectra of a single band 

were obtained using scale expansions of up to 1 cm  ̂per cm.

A knowledge of infra-red spectroscopy is assumed and 

the nomenclature used here is set out below. S.I. units have 

been used where it is convenient to do so but "spectroscopist" 

units, consistent with the wavenumber measured in reciprocal 

centimetres (e.g.s. units), are used when dealing with spectra. 

Thus, S.I. units have been used in dispersion theory but e.g.s. 

units in band moment theory.

A typical condensed phase spectrum is shown in

Eig. 1.1a. In this ficaire, l(iJ ) is the intensity of

radiation transmitted through a sample. This gives rise to a

srecirum which will be called the transmitted intensity ç^rve.
' Is < he intensity of...,
radiation transmitted through a reference and gives rise to a 

base line for the transmitted intensity curve. In the case 

of a nure liouid sample, the reference was a non—absorbing 

liquid and in the case of a sample in solution, the reference 

was the nure solvent. For solutions two cells were used, one 

of which was a variable path length cell. Any absorption due 

to the solvent (provided the solvent did not absorb all the 

radiation! was cancelled out by adjusting the variable path length
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Fig, 1,1 a The diagram sho-.vs how the transmittance curve half
height bandwidth is defined.

cell
window

cell
window
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Fig,1,1b The diagram shows how interference of radiation 
arises in a thin cell, t is of the order of 10“^cm or less,
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cell. A reference line was also drawn which was the zero 

transmittance line and was not always exactly on zero due 

to positioning of the praph paper. The path length,t , 

in centimetres, was measured by the interference method 

(see Section 1.3). The absorption co-efficient k ( V  ), 

which is dimensionless, was then determined from

In  ( I  ( 4 3 )  /  I  ( 4 ; )  )
k ( V  ) -  2_____ ___________

4 TT V  t

where V  is the frequency in wavenumbers and

Vcm-l
A  cm (wavelength) 

"V Hz (frequency)

c cm sec"l (velocity of li^ht in vacuo)

(Usinp S.I. units, A  and t would be measured in metres, sec 

is used as an abbreviation for second rather than "s" in case 

of confusion with constants "s".). A #ood spectrum should 

have a minimum transmittance of about 20^,because errors are 
oronortionately lar/?er when taking the ratio Iq (v)/I (v), 

if the •transmittance is small. The absorption co—efficient 

of an intense liouid phase band is (needing a path length

of about 0,0001 cm), for a medium strength band it is ^  0.1 

and for a weak band it is ^ 0,01.
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Alternatively, the molar absorption co-efficient 

of a species a, (v), is defined as :-

In d o  (V )  / I ( v  ) )

■ C„t
where is the concentration of the absorbing species 

measured in mol dm . Absorbance is assumed to be constant 

with path length and concentration for the conditions used. 

The shape of the absorption band will be referred to as the 

band contour or band profile.

For the transmittance snectrum of Fig. 1.1a the 

curve width at half height will be called the transmittance 

curve half height width. For the absorbance orofile, the 

width at k { “1) q ) / 2  will be called the half height bandwidth 

and given the symbol A  (cm  ̂).

The integrated intensity of an absorbance profile, 

T, is defined as
1 r In d o  (v)/i (-D) ) _F= ---  J ------------------  d

Q ^ band 'Va

and is called the band intensity.
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Section 1.3 Measurement of the Path Lenf^th of a Liouid
Cell and also the Refractive Index.

The path length of an infra-red lifiuid cell was 

measured by placing the empty cell in the sample beam of the 

spectrometer and recording a spectrum. This consisted of a 

sine wave oscillation which was caused by interference of 

radiation in the sample space between the cell windows.

An exDanded section through a cell is shown in Pig. 1.1b.

The condition for interference to occur is 

2d a nA , where n is a positive integer. Now, from the 

diagram, d cos 8 = t. but for near-normal incidence we may 

assume 0 * 0  and d » t. So for a constructive interference 

fringe %-

2 t * n = n , 

and the next constructive interference frin.?e will be at

? t - (n + l) A 2  * (n + l) / 1^2

Thus, - ^ 2  - 1 / 2 t
and t * 1 /(2 )

It is more accurate to measure the distance between 

N fringes, separated by a distance All , in which case

t * N / (2 A V  ) cm (l.l)
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This method of measuring path lengths is very 

accurate with an error of about 0.5^ in the path length.
In the course of this work it was found that interference 

fringes could be obtained, superimposed on a spectrum, when 

using a liquid of refractive index appreciably lower than 

that of the cell window, i.e. O.3 different. This 

occurred with path lengths of the order of O.OOl cm and wa s 

visible in the wings of a band, away from absorption. For 

radiation entering a liquid medium of mean refractive index 

, the wavelength of the radiation, A , is reduced to 

A/n. This means that equation (l.l) is modified to

t . N / (2 A v  n ) (1.2)
for the oath length of a cell filled with the liquid. As 

will be discussed in a later chapter, the refractive index of 

a liquid (or solution) varies with absorotion and frequency, so 

this equation may only be used away from absorption. This is 

obviously a good quick method for measuring the mean refractive 

index. The path length is first measured using the empty cell 

and then the fringes are measured when the cell is filled with 

the appropriate liquid. Cell windows of different refractive 

indices are available and so the ones which give the best 

fringes should be used. It was found that Young and Jones (11) 

have used this method of determining refractive indices.
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Section 1.4 Symmetric Top Molecules and Rotation -
Vibration Snectra.

Symmetric top molecules are molecules which have 

two equal moments of inertia about two of the three axes of 

rotation. The third axis is the main axis of rotation and 

is called the "z" axis and the other two axes are the "x” and 

"y" axes. The symmetric top molecules fall into two 

categories

a) The prolate symmetric top,in which the moment of 

inertia about the z axis, Ig, is less than moment 

of inertia about the x and y axes. An example is 

methyl iodide which is shown in Fig. 1.2a.

b ) The oblate symmetric top,in which 1% = ly Ig.

An example is benzene which is shown in Pig. 1.2b.

The rotational constant about the i axis, B(i), is

defined by

B ( i )  = h / 8 TT^ I ^ c  cm~l (l.3)

and it is usual to label the rotational constant for the z axis 

A and the rotational constant for the x and y axes B.

. It is quite straight forward to calculate the rotational 

constants from molecular geometry. Methyl iodide will be used 

as an example so, referring to Pig. 1.2a, the distance along the 

z axis from the carbon atom to the x y plane containing the 

three hydrogen atoms is
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centre
of.

mass_
1.906 2-

Fi^.l .2a The geometry of a molecule of methyl iodide is 
Shown. The data is taken from reference (87). The bond 
angles are ZICH = 106\o' and ZhCh = 112°71’ .

H
Fig,1.2b The geometry of a molecule of benzene is 
shovm. The data is taken from reference (10) .
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1.09? cos 73° ?0' = 0.3132 A

The centre of mass of the molecule may be calculated 

from the first order moments, uhere x is the distance of the

centre of mass from the centre of the iodine atom.

127 X - 12 (2.139 - X ) + 3 (2.139 + 0.313 - x)
X - 0.233 A

The moment of inertia about the z axis is determined
2simply by the hydrogens. Using li = m  j , where m  is

the mass of atom j and r is its distance from the i axis

in centimetres

I2 = 3 X 1.046^ X 10"^^ / (6.0225 X lO^))
• 5.45 * 10 g cm^

Use of equation (I.3) gives us A = 5-136 cm
- ly - (127 X 0 .233^ + 12 X 1.906^ + 3 X 2 .219^)

X 10"^^ /  (6.02253 X 10^3)

- 108.36 I 10 g cm^.

B - 0.2583 cra~̂

The same calculations carried out on the benzene 

molecule yielded B ■ 0,1894 cm  ̂ and A = 0.0947 cm  ̂= B/2.

♦ The total energy of vibration and rotation, T, of 

a symmetric top molecule in a particular degenerate or non- 

degenerate vibrational state is given by (5 )
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T = G (v) + (j, K)

where G (v) is the vibrational term value, given to a first

approximation by

G (v) = (v + ^) (k/^ )* /( 2 TT c) cra“^

where v is the vibrational quantum number (v = 0, 1, 2, 3 •••),

k is the effective force constant for the vibrational and jUi is

the effective mass for the vibration.

(j, K) is the rotational term value which has

two forms denending on whether the vibration is degenerate or 
non-dfegenerate. For symmetric top molecules, a .. .
non-degenerate vibration (an A mode vibration) has a transition 

diode directed along the z axis and the resulting band is 

called a oarallel band, whereas a doubly degenerate vibration 

(an E mode vibration) has a transition dipole directed along the 

X axis or the y axis and the resulting band is called a 

perpendicular band. J is the quantum number determining the 

total angular momentum of the system and K is the quantum number 

determining the component of this angular momentum about the 

unique axis of the molecule. J takes integer values of 

0, 1, 2 ... and K takes integer values of 0, - 1, - 2 ... 1 J.
Consider firstly a oarallel band. The rotational 

term value is given by

F (J, K) . B„ J (j + l) + (a „ - II,)
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The selection rules for a parallel transition of 

a symmetric top molecule are

K . 0 A J  = - 1  A K  = 0

K / 0 A J  = 0, - 1  A K  = 0

For a particular K level (except when K = O) we 

may have A J  = -1, 0 and +1 and these lead to P, Q and R
branches respectively. For a transition from a lower state 

(v'\ J") to an upper state (v*, J*), the frequencies are given 

by

J” -1, K;
J", K

_ sub
P branch „ = V  + B ' J" (j" -l)V ,

-B^„ J" (J" + l)

^sub
V  + (B , - B ") J" (j" + l) - 2 BJ J"O V V ^

_J'\ K __6ub
Q branch "V = 'V + (B # - B n )  J" (j" + l)

J", K o V

__J" + 1, K _sub
R branch V  . V  + B„' (j" + l) (J” + 2) -

B^f J" (j" + l)
_sub

+ (By, - By,,) J" (j" + l) 

+ ? By, (J" + l)
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The complete parallel band is obtained from 

superposition of a number of such sub-bands corresponding 

to various values of K. Due to differences in the 

rotational constants of different vibrational levels, the 

origins of the sub-bands do not coincide but vary according 

to the relation

= ^  + [ K '  -  V )  - (By' - )]
- sub

W  L  ' V  V  ' V  vo o

where ^  is the fundamental vibrational frequency. Rotational 

constants change by about 1% when going from one vibrational 

energy level to the next, so this term leads to a slight 

broadening of the individual lines of the P, Q and R branches. 

The term (B t — B  u ) J” (j" + l) leads to convergence of the
V  V

rotational lines in the R branch towards high frequency and a 

divergence of rotational lines in the P branch towards low 

frequency. This effect can be seen in Pig. 1.3 which is a 

computer simulated parallel band of methyl iodide. It may 

also be noticed in this figure that the R branch minimum is 

slightly lower than the P branch minimum. This is also due 

to B M B ».
V  “  V

4
The rotational term value for a perpendicular band

of a symmetric top molecule is given by

Py (j, K) = By J (j + l) + (Av - By) + 2Ay
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Here,  ̂ is a constant for a given vibration, called the 

Coriolis constant. The term 7 2 A-y-? K is considered as a first 

order perturbation to the rigid rotor harmonic oscillator model 

in the case of degenerate vibrational states. ? may have a 

value between +1 and -1 for a given degenerate vibration.

The origin of the Coriolis constant lies in interaction between 

the two degenerate vibrations of a perpendicular band. Coriolis 

force is always present when a body is travelling in a linear 

direction (vibrating here) and rotating at the same time.

The magnitude of the force is proportional to the mass of the body, 

its velocity relative to the rotating co-ordinate system, and the 

angular velocity of the rotating co-ordinate system. The 

Coriolis force is perpendicular to both the linear motion and 

the axis of rotation.

Consider a molecule XYg which is rotating as shown 

below. What effect does Coriolis force have on the three 

different vibrations of this molecule ? The directional 

dependence of the force is such that a right handed screw, 

travelling in the direction of the Coriolis force, would carry 

the displacement (vibrational) vector into the positive 

direction'‘of the rotational axis, traversing over the narrower 

angle. In the diagram, the vibrational vector is the solid 

arrow and the resulting Coriolis force is the broken arrow.
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Direction of Rotation

k
-Y

k
-Y

-Y
;

Y-
I▼
k
Ÿ

Vibration

For the case of the band, the Coriolis force

produces oscillatory rotation with the phase of the vibration*

For the band,' the Coriolis force excites the band, and
. 3

vice versa. The two modes are thus coupled*

Now consider the "v)̂  band of methyl iodide (degenerate 

vibration) which is the in-plane bending and rooking mode as 
shown below

(a)

H

V
H H

(b)
Consider species (a) to be coupled with species (b) 

ejid to be rotating about the z axis. The Coriolis force produces 

a splitting of the degenerate vibrational levels into two levels
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whose separation increases with increasing rotation (k ) about the 

z axis, although the splitting is zero for K » 0. The 

splitting is explained by the following.

Consider one of the hydrogen atoms vibrating as per 

species (a). The vibration of species (b) is 90° to this.

If the vibration of (b) happens to be 90° out of phase with (a) 

and the amplitude of the vibrations is the same, a coupling of 

the vibrations can result in a circular motion of a hydrogen 

atom as shown below (i).

y

Direction
of

rotation Coriolis
force

(b)
(i) (11)

Now the Coriolis force acting on species (a) 

produces an elliptical motion (see diagram (ii)) which is in 

opposition to the direction of the circle and thus opposes 

coupling, resulting in an increase in frequency. Now 

consider species (b) vibrating and then coupling with (a), 

resulting in the circular motion shown below. The Coriolis 

force acting on species (b) produces an elliptical motion 

which enhances coupling, resulting in a decrease in frequency.
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y
Direction

of
rotation

Coriolia
force

(b) . (b)

(iii) (iv)

The degenerate species are thus seen to move apart
’ 1from each other.

The selection rules for a perpendicular transition 

of a symmetric top molecule are

A K  1 1. A J  - 0, 1 1 

A third quantum number, i, concerned with 

vibrational an^palar momentum is introduced for degenerate 

vibrations which takes the values i~

^i " ^i’ - 2* v^ - 4 ... 1 or 0
where i refers to a particular vibration. When v^ is an 

even number the lowest value takes is 0 and when v^ is an 

odd number the lowest value takes is 1. This work is only 

concerned with transitions from the v^ » 0 energy level to v^ ■ 1 

and Î * 1 in the higher energy level and has a degeneracy of 2. 

The two components are denoted by and -1 (5̂ ) so the 

vibrational angular moment may be the same or opposite in sign 

to the rotational angular momentum.
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These selection rules allow more transitions than 

in the parallel case, so the structure of a perpendicular 

band is more complex. CorresDonding to every K and A  K 

value there is a sub—band consisting of a P, Q, R series 

(arising from the transitions A J  « 0, 1 l) which is the 
same as for the parallel case. The frequencies for these 

sub—band centres are given by i— -,

- sub
'V o

- V q + [ A^i (l - 2 1 ) - B^tj - 

?’[ A^. (1 - Ç )  -B^.] K"

+ [ (Ay, - B^, ) - (â i. - By») j K"2

The third term on the right hand side of this equation has a 

+ sign for the R branch ( A K  » + l) and a — sign for the P 

branch ( A K  « -l), to take into account the selection rule 

for +1 and -Î levels. The separation of the sub-bands is thus 

2 (Ay, (l - ? ) - By I ). This means that a perpendicular band

may not only have a range of shapes depending on the difference

between the two rotational constants, but also depending on S

For methyl iodide Av* - 5*069 cm  ̂and Bv* ■ 0.2404 cm ^ (26),
so the sub-bands are widely spaced. Fig. 1.4 shows the

band of methyl iodide at 882 cra”’̂  which has a Coriolis constant
of 0.21 (33). The shape of this band contrasts greatly with

-1the e^^ band of hexafluorobenzene at 315 cm which has
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Fig. 1.4 The 3^̂  band of methyl iodide 
Pressure is 1.97 x 10^ Pa.
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rotational constants Av* ■ 0.01734 cm  ̂and = O.O3468 cm  ̂

(36) with a Coriolis constant of - 0.6 (36) and is shown in
Pig. 1.5.
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-1Fig. 1.5 The 315 cm band of hexafluorobenzene, 
measured in a 10 cm gas cell,at a pressure of 
1.05x10^ Pa.
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Section 1.5 Computer Simulation of the Rotation -
Vibration Spectra of Symmetric Top 
Molecules*

To simulate a parallel or perpendicular band of a 

symmetric top molecule the absorbance at a particular frequency, 

ol ( v ), is needed. An expression for this has been derived 

by Honl and London (2?) and Reiche and Rademakgr (28).

hc/kT) f . '  lAl % •

where g ^ ^ is the statistical weight of the lower state^

(j, k ) is the rotational terra value of the lower state,

I ̂  I > is the transition integral for the

vibration, A _ - is a term whose value depends on the J , K
rotational quantum numbers J and K and also on the selection

rules for the transition, C is a normalisation factor which

is a constant for a given species of vibration of a particular

molecule, S (V, is a line shape function satisfying

the normalisation condition S (V, 'V, )c/i)-l.Jo
For symmetric top molecules the A j ^ g ^ ^

values are as shown below i-
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Parallel transitions %-

J, |K I J + 1,1 K| (2 -  & y n) (j + K  + l) (j - K  + l )

J + 1

J, K -w J, K (2 - 6 g) (2 J + 1)

J (j l)

(2 - q ) (j + K) (j - K)

J

Perpendicular transitions

J, I k|-«-J + 1. |k I ±1 (j ± K + 1) (J 1 K + 2)
J + 1

K ±  1 (2 J + 1) (j + K) (j ± K + l)
J (j + l)

J, K - 1, K ±1 (J ■ K) (J T K - l)

In the above J and K refer to the lower state and 
S K, 0 the Kronecker delta function which is equal to 1

when K - 0 and is equal to 0 when K / 0.
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For the purposes of simulating the band shape the 
equation may be simplified to

(V )/ - A gj K exp (-F^ (J,K) hc/kT)

Two programmes were written, one for a parallel 

band (which was called PLSPEC) and one for a perpendicular 

band (PLESPC). The programmes were written using Fortran IV 

language and using the above equations for the line positions 

and intensities. The outputs from the computer were plotted 

out using a graph plotting facility. The listings of the 

programmes are to be found in Appendix II.

Programme PLESPC was used to simulate the band of 

methyl iodide using a Coriolis constant of 0.21. The result 

is to be seen in Fig. 1.6 and is very similar to the experimental 

band contour of Fig. 1.4* To see the effect that Coriolis 

coupling may have on this spectrum the programme was re-run 

using a Coriolis constant of 1.0, The result is shown in Pig. 1.7

and the P, Q, R branches are seen to have bunched up together,

whereas before the P and R branches merged into a continuous

background with only the Q branches standing out.



Fig.1.6 A computer simulation of the 
band of gaseous methyl iodide using  ̂=0.21
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Fig. 1.7 A computer simulation of the band of 
gaseous methyl iodide using %=bO
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Section 1.6 Collision Broadening

The natural line width of rotational fine structure 

in a gas phase spectrum is expected to be of the order of 10*”̂  

cm  ̂ (35)» but the observed lines are several orders of
magnitude wider ( ̂  lO"^ cm“*̂ ). Fig. 1.8 shows the band 

of methyl iodide vapour measured in a gas celllat a pressure 

of 5*02 X 10^ Pa. Retaining the methyl iodide, an atmosphere 

of pure nitrogen was added to the cell and the spectrum re-run.

It was observed that the fine rotational lines of the P branch 

became smeared out and almost unresolvable, as can be seen 

from Fig. 1.9. This phenomenon is well known and is termed 

pressure broadening. The broadening is the result of the 

increased rate of collision that molecules in a vapour undergo 

when the pressure is increased, and their mean free path decreased. 

The line shape produced by this broadening is a Lorentzian function

which has the equation x^ /(l + x^ A V ^ ) j  , where and

x^ are constants and A V  is the frequency relative to the 

centre of the rotational line. Little is really known about 

the mechanism of this broadening. The impact approximation 

leads to a Lorentzian line shape (34) but a Lorentaian funotion 

never decays to zero, whereas spectral lines (when not overlapped) 

do.



Fig.1.8
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Fig.1.9
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The Doppler effect is another phenomenon leading to 

broadening. In this case, broadening is caused by the 

observed molecules translational velocity towards or away 

from the probing radiation. This affects the frequency, * 

of the radiation in the way shown below, where 'Vg is the 

Doppler frequency of the radiation and u is the velocity of 

of molecule.

■^0 -  '^p
- u

The ran/re of velocities in gases and liquids leads
— —3 —1to an expected Doppler broadening of A  10 cm

whereas the half height width of a gas phase line is usually 

about 10  ̂ cm and of a liquid phase band is usually about 

10 cm Doppler broadening is thus negligible.
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Section 1.7 The Fourier Transform

Electromagnetic radiation is sinusoidal in nature 

and is expressed by, for example, (amplitude) » A sin 

(2 TT Vt). An absorption spectrum is a measure of the 

intensity of a given waveform, which is proportional to the 

amplitude squared, and is plotted against frequency. The 

Fourier transform may be used to convert this frequency 

spectrum into a time spectrum.

The conditions for a Fourier transform of a 

function of angular frequency CJ « 2 TT V   ̂ f(w) ̂ to exist are

a) that the integral of f(w) from - 00 to + cmo exists, 

and,

b) any discontinuities in f {o j ) are finite.

The Fourier transform has the reciprocal property 

that when a function is transformed and then re-transformed, 

we finish up with the original function.

Fig. 1.10a shows a finite wave train and the 

corresponding newer spectrum in the frequency domain. If 

the wave tfain'is extended, the frequency spectrum becomes 

narrower, as is to be seen in Pig. 1.10b. In this way one 

can see that the bandwidth is related to the history of the 

wave in the time domain. A real electromagnetic wave has 

a finite length and is damped, or truncated, in a specific fashion.
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The nature of this damping is related to the shape of the 

frequency spectrum. There are three ma thematic a.1 

distributions commonly encountered in spectroscopy, these 

are the Lorentzian function, the Gaussian function and the 

exponential decay function. The Fourier transform of

a) a Lorentzian function, is an exponential decay 

function, of,

b) a Gaussian function, is a Gaussian function, and o f

c) an exponential decay function, is a Lorentzian

function.

The derivation of these Fourier transforms is shown in 

Appendix _!• If the damping of a wave train is a Gaussian 

function, then the power spectrum is a Gaussian function, as 

shown in Fig. l.lOc.

_____ Ma±hemar4icaily~ the Fourier transform is defined -

F(t) = J f((̂ ) exp (- icJ t) dcj

and the inverse transform is given by
+ oO

f(oJ) - 1/2tt I F(t) exp (i w  t) dt

F(t) is said to be the Fourier transform of f(ov) and

f(oj) is said to be the inverse transform of F(t). In the 
/equation i « (-1/ • The argument of the exponential must 

be a dimensionless quantity, which is seen to be true for the



42

product of frequency and time. The exponential of the 
integral may be written as

exp (- i 6J t) = cos (w t) - i sin ( t)

and consequently the Fourier transform for an even function
may be re-written as

F(t) = 2 J f(co) cos (cJt) doJ 
0

In this work, the Fourier transform of a frequency

spectrum will be termed the time decay curve.

The concept of convolution also involves the 

Fourier transform'. Physically a convolution is the smearing 

out of a physical quantity by a mathematical funotion. An 

example is a photograph which has been taken out of focus*

All the information is on the photograph but it is smeared out 

by the lens function. In fact, scientists use computers to 

deconvolute(the opposite process) television pictures from the 

moon. The convolution will be encountered in Chapter Two,

For further information on Fourier transforms a good reference 

book is (l).
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Section 1.8 Computer Programming

The computer programmes used in this work were 

all written by myself in Fortran and punched onto cards. 

Listings of various programmes are to be found in alphabetical 

order in Appendix II. The programme names are printed in 

capital letters in the text. The programmes were run on 

the CPC 6600 computer of the University of London,using a 

terminus at Royal Holloway College#
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Section 1.9 Purification of Compounds

The main compounds used in this work were liquids 

which were obtained as spectroscopic grade purity. These 

were distilled and stored over molecular sieve, and then 

re-distilled in a vacuum line immediately before use.

Methyl iodide was also stored over copper, whioh^absorbs any 

iodine liberated in dissociation caused by light.
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CHAPTER TWO Correction of Spectra for Instrumental
and Physical Distortions

Section 2.1 General Instrument Conditions when
Running a Spectrum

Before running a spectrum on the model 325, 

electronic balance of the pen recorder was checked by closing 

off both the sample and reference beams to observe the drift 

of the pen when set at 50^ transmittance. The balance was 

adjusted so that there was a slight drift of the pen towards 

high transmittance.

The linearity of the pen recorder was then checked 

by setting the transmittance to, for example, 100^ without 

anything in the two beams. A high speed rotating sector was 

then placed in the sample beam and the sample beam chopped 

according to the calibration of the rotating sector. The 

accuracy of the pen recorder was always within the noise 

level of i 0.25^ transmittance.

When running a spectrum the concentration and path 

length used were such that the minimum transmittance was 

about 20% so that,when taking the ratio (l^(*v)/l(V)) the accuracy 

was acceptable. For example, for Io(*V) = 90% transmittance and 

an inaccuracy in l(^)of+0.1% transmittance at 20% transmittance, 

the percentage inaccuracy in (Iq ( V  )) is (4.500 - 4.478)/4.500

X 100 . 0.497 whereas for an inaccuracy in I (v) of 0,1% transmittance 
at S% transmittance the percentage inaccuracy in (I<q('P)/I(v)) is 

((18.000 - 17.647)/l8.000) I 100 . 1.961. -
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Section ? , 2 Distortion of the Transmittance Curve
due to the Finite Width of the Slit

In order to record a sensible spectrum with a 

spectrometer the variable slits,through which the radiation 

passes to the detector,need to be of a finite width or there 

will be insufficient energy available to give a stable signal.

This produces an error in the recorded spectrum due to 

radiation of different frequencies being allowed through 

these ’’wide” slits at the same time. Any given frequency 

becomes smeared out, or convoluted.

The model 325 was equipped with a fore monochromator 

in the form of a KBr prism and a main monochromator consisting 

of two echelette gratings. A resolution of 0.2 cm"^ can be 

obtained from this system in the region 2000 cm  ̂ to 5^0 om*^.

The mechanioal slit widths generally employed give a spectral 

slit width of about 1.0 cm The spectral slit width is

obtained directly from the instrument display panels as the 

product of the reciprocal linear dispersion and the mechanical 

slit width. For example, at 670 cm ^ the reciprocal linear 

dispersiop is 17 cm per om and the mechanical slit width is 

0.052 cm, thus the spectral slit width is 0,88 cm Also of

note is that the wavelength at 67O cm*"̂  is O.OO149 cm which 
means that the mechanioal slit width is 35 times the wavelength 

of the radiation and so diffraction at the slits is not a problem. 

From the above it is seen that the overall resolution is slit 

width limited and so a means of correcting for the finite slit 

widths was sought.
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Section 2.3 Correction of the Slit Distortion using
Fourier Transformation

Rautian (2) has done a comprehensive study of the 
distortion of infra-red transmitted intensity curves due to 

the so called apparatus function. The apparatus function 

is a composite function of all the physical and electronic 

distortions due to the non-ideality of the spectrometer.

The apparatus function convolutes the recorded signal in 

the instrument. This convolution is expressed mathematically 

as %-

f(w) . a (w _ w') # (cu') dw' (2.1)

where f (w ) is the apparent intensity,/((u)’) the true intensity  ̂

and a (oJ - w') is the apparatus function which defines the 

fraction of energy of frequency w' which is transmitted through 

the system to the recorder when the instrument is set to record 

at a frequency w  .

For the model 325 the predominant distortion is due to 

the slit and for this work "slit function" can be substituted 

for "apparatus function". Equation (2.l) can be solved by 

first taking the Fourier transform of the entire equation^1-
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oo

F(t) a(w - w') ) exp (-iwt) d u j 'd o J
— *0 — .0

substituting oj-oj-x and separating the new 

variables and x then
p(t) = j ̂  (ù j ' ) exp (-iw't) duj'l a(x) exp (-ixt)Mx 

♦ F(t)= i (t) A (t) (2.2)

The Fourier transform of the true intensity is thus 

obtained from the Fourier transforms of the apparent intensity 

and the slit function. The true intensity is hence obtained 

from the inverse Fourier transform of @(t).

The model 325 has two slits of identical width with 

mirror symmetry about the dispersive grating and so, during 

scanning, any infinitely narrow band of radiation will be 

convoluted into a rectangular band by the first slit, of length s, 

where s is the spectral slit width. Then this rectangular band 

is convoluted by the second slit into a triangle of base length  ̂

2 8. The equation of the triangle is %-
a(oj -  oj') = l/s(l- ) for |w a
a(cu -c*f) a 0 for|w - a

(2.3)

The (i /s) in equation(2.3) is to normalise the equation so that 
Ja(w -a/) du/a 1

and the-total intensity is not affected by the convolution.

The Fourier transform of the triangular slit function 

is derived in Appendix %  to be %-

A(t) sin (st/2) sine (st/2)
st
2
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The above theory was first tested using computer simulation. 
A Fortran W  programme was written to simulate a Gaussian function 
whicli has the form

g(v)=r exp(-x^(v- 

where x̂  is the peak height and x^= ln(2)/(0.5 ^ Fourier
transform routine first needed to be tested and this was done by 
performing a Fourier transform and then an inverse Fourier transform

on the Gaussian function to see if this yielded the original curve.
”he integration was carried out using the trapezium rule, i.e.

Jf(x) dx- (1/2 f(l) ♦ f(2) »  f(n-l) + 1/2 f(n))Ax
1

So, if we write w in place of (w - ŵ ) for simplicity,we have
A w  f^  f(Wj) exp(-iWjt'^

-j"*
1/2 f(Wi) exp(-iL(,t) + 1/2. f(ùUn) 

exp(-icj t)n
Because a Gaussian fuction is symmetric.^exp .(-iW t) was

Ao>

replaced by cos (w t) in the programme. Also,for an accurate 
transform, because V-l/t a rule must be followed (l) that the 

number of points used for the transform (N) is greater than the 

maximum time to be observed in the transform multiplied by the frequency 

width ( )  across the spectrum. Also N>l/ ( A t  A V ) .

Oscillations were superimposed on the Fourier transform 

decay when the limits of the integration were not taken far enough 

out into the wings. This was because the Fourier transform saw the 

truncated Gaussian function as the sum of a curve and a rectangle, 

and the Fourier transform of a rectangle is a sinc(at) function (where 

a is a constant).
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The effect on the Fourier transform of a band contour from 

raising or lowering the baseline was calculated. A Lorentzian function 
of half height bandwidth equal to 20cm  ̂ was simulated and the Fourier 
transform calculated out to 100 cm  ̂ from the band centre. As 

mentioned in Chapter One, (.he Fourier transform of a Lorentzian function 

is an exponential function, which is a straight line when plotted on a 

logarithmic scale. The logarithm of the time decay curve is plotted 

a*ainst time in Fir.2.1a and is the higher of the two lines. Small 

oscillations are seen to be superimposed along the line due to 

truncation of the limits of the integration (the Lorentzian contour 

still has an appreciable intensity 100cm  ̂ away from the band centre), 

'T’he Lorentzian function was then turried into a transmittance curve 

plotted between 2 0 and 90*4 transmittance. The baseline was then 

raised from 90 %  to 91 %  transmittance and the Fourier transform of 

the band contour obtained using this baseline was then calculated.

^his second time decay curve is the lower line in Fig. 2 la and it is < 

seen that the previous small oscillations are very much increased in 

amplitude The baseline was next lowered to 89.12% so that the 

the intensity was zero 100 cm”  ̂ from the band centre. The Fourier 

transform of the hand contour obtained using this baseline was 

calculatfcdjand plotted on a logarithmic scale. Fig.2.1b shows this 
time decay curve,along with the original tine decay curve for 

comparison,and it is seen to be a much smoother line with a marked 

curvature at very short time. An accurate baseline is thus necessary 

in this work, '"he overall gradient of the time decay curve is seen to 

have increased when the baseline was raised. This is due to the 

bandwidth being effectively increased.
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The Fourier transform of a Gaussian spectrum is a Gaussian 

decay (see Appendix l )  and so the accuracy of the first 

transform was checked. It was found that the time decay 

became increasingly inaccurate at long time. This inaccuracy 

increased on transforming back to the frequency domain.

See Fig. 2.1c. It was decided that this was due to 

calculating exp(-iW;t) each time and small inaccuracies were 

produced in this for high frequencies and long time which 

were added up in the integration. To overcome this exp 

(-iAcut) was calculated once for each time, then raised to the 

power n .

P (t) - J f(w) exp (- iwt) dw
-roO

- f(w) exp (- iwt) dw + f(w) exp (- iwt)dw+ 2 f (O)
Jo.J f (cj) exp (- iwt)e/w = (̂  f (l) exp (4AWt) + f(2)

 ̂(-i2Awt) + 1/2 f(n) exp (-1 nAwt) ) A  oj
exp

{^exp( - i Awt) (i f(l) + exp (-iAwt) (...{f(n-2) + exp (-iAwt)
[f(n-l) + (exp (- iAwt) f(n)]}  )} A W

It was found that the above procedure was really accurate 

and after a double Fourier transformation the final function agreed 

with the original to five decimal places and went to zero at the same 

frequency as the original function. An accurate convolution was 

now required. The convolution equation was easy to use but the 

conditions for an accurate convolution were not known because 

integration by summation with finite intervals is not as accurate 

as algebraic integration. The accuracy depends on the number of 

points inside the slit function equation, a(w - w  ̂ ).
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Programme CORSLT was written to simulate a typical 

liquid phase infra-red transmitted intensity curve. Liquid 

band profiles are generally Lorentzian near the band centre 

and so a Lorentzian function was calculated and then converted 

into a transmitted intensity curve between 20% and 90%. This 

intensity curve I (v) was convoluted to l' (v) using equation 
(2.3). The convolution was performed four times using 

different frequency intervals (Av) to see how (i)) was affected. 
The results are set out in Table 2.1. As can be seen, the • 

intensity for(2s/Av)-»-1 » 33 is only 0.092% different from 
the (2s/Av) + 1 » 17 case at the band centre and so is inside 
experimental error. Hence I used (2s/Av) +1 — 33 as a criterion 
for an accurate convolution by a triangle.

The Fourier transform routine and the convolution 

routine were combined in programme PTSLIT and the convoluted 

intensity was deconvoluted by dividing the Fourier transform of ' 

the convoluted intensity by the Fourier transform of the slit 

function. The result was transformed back to the frequency 

domain and compared with the original intensity. The programme 

was run for a spectral slit width of 5 om”  ̂and a half height 

band width of 10 cm“  ̂ (transmitted intensity curve half height 

width>10 cm~l). The result was a really good fit within 

experimental accuracy. See Fig. 2.2a,where the Fourier transform 

of i T v )  is compared with sincZ (st/2), and Fig. 2.2b,in which 
Ic^(v) is the corrected intensity and a table compares this 

with l(v).
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(2s/Av)^1 {%} - DIFFERENCES I 2 - NIFFSREÎ'ICES

9 31.016 42.686
1.355 0.517

12 32.623 43.303
0.374 0.137

17 32.997 43.340
0.092 0.034

33 33.089 43.374

Table 2.1 A comparison of the accuracy of the numerical 
convolution of a typical infrared transmitted intensity 
curve of a liquid,by a triangle,using an increasing 
number of points for the integration.The number of points 
inside the triangle for integration was (2s/^i/+1 . The 
half height bandwidth of the Lorentzian function used was 
10 cm"^ and the slit width,s,used was 10 cm . was
the intensity at the band centre and I ' ' was the intensity 
5 cm" away from the band centre. The differences refer to
the of adjacent rows.

1

: i . '
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Fig.2.2b
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The limits of this method were investigated for 

larger spectral slit widths compared with transmitted 

intensity curve half height width. For wider slits 

sine? (st/2) has a shorter period of oscillation with 
minima of zero. Hence, the period can become short enough 

to interfere with the deconvolution,because dividing by zero 

or a really small number is useless. Even though the Fourier 

transform has only small errors,these may nevertheless be 

several orders of magnitude bigger than sinc^ (st/2) near 
a minimum.

For the case where s ■ sino^ (st/2) became zero
%

within the integration range and so the frequency transform 

had to be truncated before transforming baok to the frequency 

domain. The truncation caused some very small oscillations 

along the length of the transmitted intensity curve but the 

result was a fairly good fit with a 939̂  recovery of lost 

intensity at the band centre. See Fig. 2.3.

The deconvolution method was really put to the test 

for the case of a slit width which was twice the half height 

bandwidth. The deconvoluted frequency transform had to be 

truncated quite badly before transforming back to the frequency 

domain due to sinc^(st/2) going to zero and the intensity 

recovery was 66^ at the band centre. See Fig. 2.4 and Icor/i) )<
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It was noticed that the time decay was approximately an 

exponential (the Fourier transform of a Lorentzian function 

ie an exponential but it is the profile that is Lorentzian 

and not the transmitted intensity curve) so, because the 

major part of the time decay was known accurately, the 

unstable part at longer time and low intensity was 

approximated to an exponential extrapolation of the last 

accurate part of the decay. This new decay curve was 

transformed back to the frequency domain. The result was 

remarkably accurate, there being a 99^ recovery of intensity 

at the band centre. See Fig. 2.4 and

The technique was now tried out on experimental 

bands where the spectral slit widths were at least one 

quarter or less of the transmitted intensity curve half 

width, 80 that an accurate deconvolution was expected.
The fundamental of benzene at 674 om"l in cyclohexane

was measured. This fundamental is the sole species of benzene

and is the out-of-plane wagging mode of the hydrogens (l).

The half height bandwidth was 4*3 cm"^ and the spectral slit 

width was 0.88 cm*"^. The effect the slit correction had on 

this band is to be observed in Fig 2.5.

There were drawbacks to this method though. One 

needed infrared bands with wings that closely approached zero 

and it is not uncommon to find bands too badly overlapped for 

a double Fourier tran s form to be performed without getting 

large oscillations produced. Rautian (2) outlined the 

following method of solving the convolution equation which 

was now developed for the case of a triangular slit function.
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80-1

Fig. 2, 5 The hand of benzene liquid 
The solid line is the experimental band 
and the' broken line is the band after- 
correction for the slit distortion.
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Section 2 . A Correction of the Slit Distortion using 
the Derivatives of the Transmitted 
Intensity Curve.

The true intensity curve is related to its Fourier

transform by ^

Jgr (w) _
-  O0

From equation (2.2)

I (t ) exp (iwt ) dt

J0'(w) - l_|F(t) A  ̂ (t) exp (iwt) dt
1 r _ 1
2tt P(t) (a"-̂  (t) - l) exp (iwt)dt

^(cj) - f (w) +

P(t) exp (iwt)dt

P(t) (A"^(t) - 1 ) exp (iwt) dt

This equation expresses the correction to the 

intensity at any frequency as a function involving the Fourier 

transforms of the observed-spectra and of the slit function.

If [A“1 (t) -ll can be expressed as a power series ^  h hKcn 

jer (cj) - f(w) + —  J F (t) t^ exp (iwt) dt
but d^f(w) - i" p(t) t^ exp (iwt) dt

and hence 0  (cj) » f (w) + 4  ^n d^f (cj) (o

The derivatives <j''fWcan be measured directly from 

the intensity curve and so all that was needed to be found was 

a series expansion for the Fourier transform of the slit function. 

Now for small x 
sin X x3 x5

51 tT
[sin )/(^)f. (1 -(||)^

A (t)

(st)4 _ .... V
1920

-  ••••
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Also for small by binomial expansion

(l - x) ^ - 1 + X + x^ + x^ + ....

+ ....

. 1 + ( = l É  + (âljl + (sill12 240 6048

Substituting in equation (2.4)

'  ( » )  .  f M  -  l l  # ' - 6  I M )

Equation (2.5) seemed a very simple equation which must have
been discovered before by previous workers and so a good

search through the non-chemical literature was made. This

yielded that in I87I Strutt (6) first considered correcting
a curve for convolution through a single slit and derived

the equation 2

X  (w) - f ( w )  - _s2 d^ f (w)
24 d W ^

A little later in 1897 Runfre (7) considered the error in an

observation due to a triangular convolution and derived the

following equation

jef (w) - f (w) - s2 M  <j4f (w) _ , ,
12 d w  2 90 dej4

.... (-l)"/2 2 ((n/2)’.] ^ d"f (W)
( n + 2)1 d W "

This equation differs from equation (2.5 ) in all but 
the leading terra. Hardy and Young (4 ) made the first rigorous 
analysis of slit width errors in 1949 giving a general method of 

correcting for different slit functions.* Their method was a
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Fourier transform approach and following through their 

equations for a triangular slit function yielded equation (2.5). 

We now want to calculate the second derivative 

d^f (w) = f"(W)
_ dcJ

to this is

and a very good geometric approximation

f" (w) - f ( w +  h)-2f (w) + f (W - h )
h2

where h is a small increment.

This equation is readily derived if the transmitted 

intensity curve across a small frequency interval is considered 

to be a quadratic with the equation
f (w) = acj2 + bcJ + 0

The first and second derivatives of this quadratic 

are given by

f ' (co) - 2a (o + b 

and f (^) - 2a

Pig.2.6 This diagram shows how the points are numbered
when calculating a derivative.ĉo — Jh 

"W-lh

>4" k
CJ

'CJ
• Zh
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(i) From Fig. 2.6

f(w + h) — f(w -fh ) » 4 awh + 2bh

f(cj + h) — f(w) « 2 awh + bh + ah^

f(cj + h) - 2 f(W) + f(w - h) » 2 ah^

^  f "  (w) . f(w + b) - 2 f(w) + f (w _h) (2.6)
hZ

Equation (2.6) was applied to the measured intensities of 

the band of methyl iodide at 527.2 cm  ̂ in carbon tetrachloride 

solution. This band has a half height bandwidth of 8.8 cmT^ 

and the points were not measured with the greatest accuracy.

The second derivative was plotted out and was a wildly

oscillating curve. See Fig 2.7. The oscillations were due 

to amplification of noise on the measured (by eye) data.

Different methods for measuring the second derivative were 

thus sought, which involved more points to average out the noise

(ii) Referring again to Fig. 2.6 <

f(oJ+ 2h) - f (w-2h) - 8awh + 4bh

f ( w +  2h) - fOw) « 4awh + 2bh + 4ah^

‘ f"(Wi) - f ( W +  2h) - 2 fOw) + f(w -2h) ^2.7)
4h^

Equation (2.7) was found to be no better than equation (2.6) 

and an average of the two was taken
f'(cj) - f(w +2h) + 4f(w+ h) - lOf(w) + 4f(<^ -h) + f(w-2h)

(2.8)
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band of methyl iodide dissolved in carbon 
tetrachloride is plotted against frequency.
Thin line - second derivative using equation (2.6). 
Thick line - second derivative using equation (2.8).

5 2 7,2 530 534
FREQUENCY (cnv ' )

538 542
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Equation (2.8) was still noisy. See F i g 2.7. It was 

decided one reason for the noise lay in pivlng weightings 

of 2,4 or 10 to any individual point thus amplifying any 
noise associated with that point.

( iii) Prom Fig 2,6
f(w + 2h) - f(w + h) m 2 . awh + 3 . ah^ + bh 
f(w - h) - f(w -2h) - 2. awh - 3. ah^ + bh
f" (OJ ) - f(w +2h) - f(w + h) - f(w-h) + f(w-2h) (2.9)

Also
f(w + 3h) - f(w + h) - 4. awh + 8 ah^ + 2bh
f(w - h).- f(cj-3h) - 4. awh - 8 ah^ + 2bh
f" (w ) - f(w + 3h) - f(w+ h) - f(w -h) + f(w - 3h) (2.10)

8h^
Equation (2.9) and (2.10) were both tried and they 

gave much smoother curves although (2.10) w^s the better of 

the two. See Fig 2.8. Higher derivatives can be calculated 

substituting f"(w) for f(cJ ) but these higher derivatives have 

far too much noise to be of any use.

Equation (2.10) was now tested to see what sampling

interval was necessary for a spectrum of a given transmitted

intensity curve half width to obtain an accurate second

derivative in the absence of noise. Programme SECDIV was

written which simulated a Lorentzian function and plotted it

out on a transmittance scale between 20^ and 90%» The

algebraic second derivative was calculated to be
I" (v ) - l80 ^1 exp(-Y) - 720 ^Î^D^exp(-V)

+ 160 ^1^ exp(-Y)
7
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Fig.2.8 The second derivative of the Vg '
band of methyl iodide dissolved in carbon 
tetrachloride is plotted against frequency.
Broken line - second derivative usinp equation (2.9). ' 
Solid line - second derivative using equation (2.10).
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where D - In (90/20) and k refers to the Lorentzian profile 
^ max - k min

Y » exp [
L U X 3 V \

2 ■ I 4-

Prom Fig* 2.9 it can be seen that for reasonable accuracy 

about 40 points are needed across the half height width of 
the band.

The slit correction equation (2.5) was now tested 
using the 2nd, 4th, 6th and 8th order derivatives. Programme 

SECDIV was modified to programme CORSLT and the transmitted 

intensity curve was accurately convoluted. The derivatives 

were then calculated using equation (2.IO) and finally equation 
(2.5 ) used for the deconvolution. The 8th derivative was seen 

to fluctuate wildly and was disregarded. The equation was 

tested for different (s/ A  ) ratios of 1,1/2 andl/4.
See Table 2.2.

The experimental conditions usually encountered when 

measuring liquid phase spectra are (s/ A  ) ■ l/4 and from the

table it is seen that for this oase only the second derivative

term is important. This is pleasing, knowing that higher 

derivatives are useless when measuring spectra by eyei

Tbe case for (5/ A"V,y^ ) - I/4 was re-run and a random 
noise of ± 0.1# transmittance was added to see how this

affected the second derivative and henoe the correction*
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Fig.2.9 A comparison of the algebraic second derivative 
v/ith that using eqation (2.10) for a Lorenztian function 
plotted on a transmittance scale between 2 0 %  and 90 %  ,
Solid line - algebraic second derivative.
Broken line - second derivative using equation (2.10).
"̂ he half height bandwidth of the Lorentzian was 10 cm*
and the sampling interval was 0.25 cm
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s( cm”"' ) (% transmittance)

correction due to 
the n'th derivative 
(% transmittance)

correction as %  1 
of total change 
due to

n-I 2 4 6 n - 2 n - 2,4,6
2.0 13.3 7.8 2.4 0.2 59 84
1.0 4.4 3.7 0.5 0.1 84 99
0.5 1.2 1.2 0.0 0.0 100 100

Table 2.2 Showing the relative importance of the n/th derivatives 
in equation (2.5) as a function of slit width for a half height 
bandwidth of 2 cm and a true minimum transmittance of 18. 5,% 
and a true maximum transmittance of 90 %  . The tabulated 
intensities are of the band centre.

l(-9) l'(^)
' dv»^ Icor(V)

0.00 18.544 19.755 55.159 18.519

0.32 21.386 22.480 45.733 21.542
0.64 29.197 29.821 22.710 29.236

0.96 39.395 39.492 1.704 39.260

1.28 49.312 49.127 -l6. 651 49 .367

1.60 57.632 57.381 -13.845 57.548
1.92 64.158 63.935 -17.643 64.291

2.24 69.153 68.979 -9.384 69.028
2.56 72.964 72.835 -9.170 73.022

2.88 75.893 75.798 -6.657 75 .864

I

Table 2.3 The curve from Table 2.2 was convoluted 
using a slit width of 0.5 crc’’\  A random noise with 
maxima and minima of 0.1 %  transmittance was super
imposed on the curve and the second derivative then 
calculated. Only the second derivative was used for 
the correction.
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Ab can be seen from Table 2.3, the second derivative was not 

too bad and the correction was good. The result was satisfactory 

and so the above method of slit correction was considered 

perfectly adequate for the liquid spectra being examined.

The computing time for this latter method is also about twenty , 

times as fast on the computer as the earlier Fourier transform 

method, taking about two seconds.

When data processing becomes available for the output 

of the model 325 and a computer time averaged spectrum is 

obtainable, then this latter method of correcting for slit 

distortion will be of more importance as it will be extendable 

to gas phase spectra because the 4th and 6th derivatives could then 

be smoothed enough to be used for the I archer ratio of (s/ A )•
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Section 2*5 Correction of the Distortion of Infra-red
Absorption Bands of Liquids due to 
Refractive Index effects.

The infra-red absorption bands of liquids are • 

distorted due to the refractive index of the absqrbing medium 

changing in the region of an absorption band. This change in 

the refractive index is called dispersion. T&ere are two ways 

in which the refractive index can distort a band but these will 

not be discussed yet. Some classical theory concerning 

absorption- and dispersion of radiation should first be mentioned. 

An excellent text for reference is Infra-red Physics by Houghton 

and Smith (8). The theory is written with respect to S.I. units. 

The two distortions will be discussed in Sections 2.9 and 2.10.
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Section P.6 The Dispersion Relations

A convenient starting point is one of Maxwell’s 

equations for electromagnetic waves. The electric field 

strength, E, of the radiation in a given medium is given by

V ^ E  -*n - u (T ^  > 0 (2.11)

' t Î6 time.
In equation (2.II) e - ^r «o » where € r is the 

relative permittivity (or dielectric constant) of the medium 

and co is the permittivity of free space, p * p ̂  p  ̂  where p 

is permeability and <r is the conductivity of the medium. The 

solution of equation (2.11 ) at a point distant 1 from a fixed 

origin, measured along the direction of propagation has 

transverse components

E ■ E Q exp i (wt - 2'tT‘Dl) (2.12)

where 2tTv> - 6l)/̂ , and u is the phase velocity of the 

radiation. Differentiation of equation (2.12) and then 
substitution in equation (2.II) yields

4 i r ^ V ^  . ÛÜ ̂  p (e - i d/CJ ) • (2.13)
2 __ 2 2Also 4tr V  - OJ fix» c^defines the complex 

dielectric constant. Now the refractive index in a non

absorbing medium is expressed as the ratio of the velocity of 

the radiation in vacuo to the phase velocity of the radiation.

For the case where absorption is taking place a complex 

refractive index, n, is defined as n = n —  i k, where n is tkt

,.Æ
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reaJrefractive index, i - ( -1 and k is the absorption index

n - ik - . 2 rr o V/cJ (2.I4)
Also,the square of the complex refractive index is equal

to the complex dielectric constant.

Squaring equation (2.I4 ) and substituting for 
2 —  2 24 TT V  /cJ from equation (2.13) we get

r ?  -  kf_2 ink - 4tt^o^V^/cJ^

• ja (e - i o/<y )

Separating the real and imaginary parts we get
2 , 2  2 2“ - u u 6n - k . o f i e . o

Also

It is a known fact that 0^ m ( u € ) and so
J O o

(2.15a)

2nk - c^ jUL < r / c j -  o/( 6 ̂  CJ ) (2.15b)
At infra-red frequencies is generally unity and ^ 

80 n and k can be found for a medium if the dielectric constant

€ ̂  and conductivity or are known.

It will now be shown that k arises from attenuation of

the intensity of the beam, while n controls the phase of the

radiation passing through the medium. From equations (2.12) and 

(2.14) we have
E “ E q exp i (cjt - ncJl/c)

- exp (-kcjl/c) exp iw(t - nl/c)

The amplitude of the wave is, therefore, attenuated 

proportionally to the absorption index k, while the imaginary ‘

component describes a sinusoidal wave with phase velocity°/n*
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Experimentally we measure intensity, which is 

proportional to the square of the amplitude of the electric 

field strength of the radiation, hence in a path length, 1, 

the ratio of the incident radiation intensity to the 

emergent intensity I will be

I - exp (-2 CJ k l/c)

• exp (- al ) where a is the-absorption 

coefficient and has units of reciprocal length, whereas k  

is diraensionless.
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^"7 The Lorentz Model of Absorption and Dispersion

In the last section the relationships between 

optical and electrical constants were derived but no indication 

of their actual values or frequency dependence is present. For 

this,a model expressing the absorption and dispersion mechanism 

on an atomic scale must be postulated. The dorentz model (9) 

is a simple model in which the basic assumptions are (i) that the 

material contains charged-particles bound to equilibrium positions 

by Hooke's Law forces, (ii) that these forces are isotropic, and,

(iii) experience damping forces proportional to velocity. The 

equation of motion for such a particle of mass, m, and charge, e, 

subject to an oscillating electric field of the form B • B ^ exp

(icJt) directed along the x axis is thus
2 2 m d X + mg + m cJ q % " eE
dt̂  dt

in which g is the damping constant. The solution of this 

equation is
(e/m) EX - ' , - ■ '■■■ —

- CJ^ + i w g
The polarisation, P, or electric dipole moment per 

unit volume is equal to Nex, where N is the number of charged 

particles per unit volume

Thus, P - (Ne^/m) E (2.16)
- U  * i w g
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we get

Now P - ( to - l) e E and soo

<0 - (n - Ik)̂  - 1 + P/(fo E)
By substituting P in the above for equation (2,16)

(n - ik)2 - 1 + (Ne^/ m e  )

t o ^  - CÔ  + iwg

Separating the real and imaginary parts
n? - k ? 1 + (Ne^/ me )

( -w2)
(2.17a)

2nk • (Ne /m

( — w  ) + CJ
(2.17b)

In equation (g.l7a), If we assume the charge density,
2N, is small compared with a large frequency,CJ , and that k is

2muoh smaller than n , then by binomial expansion and retaining 

only the first term

n . 1 + (NeV "^G.) ( - W ^ )
2\2 2CJ

and the shape of this function is generally as shown below

CO
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In practice this is, in fact, the case. For equation (2.17b), 

assuming n does not vary in magnitude much compared with k, 

then 2nk =û= 2k, and along with large frequency the line 

shape is seen to be a Lorentzian function. This again agrees 

the the experimental.
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Section 2.8 The Kramers—Kronig Transform

The above has shown that absorption and dispersion 

are related and, in fact, the refractive index may be obtained 

from k using the Kramers-Kronig transform, which is

n (V) . i; ^ I  I  dV' (2.18)
V

where n is a mean refractive index measured in the wings of the 

band. The stronger the absorption band is, the larger the 

refractive index change is.

The Kramers-Kronig transform was tested for an 

experimental spectrum and the calculated refractive indices 

compared with some literature values recorded by Crawford (41).

This also tested the correctness of the computer routine written, 

which was later utilised in other programmes. The result is ho bt 

seen in Fig. 2.10, The refractive indices closely agree.
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 ̂ip;. 2.10 A comparison of the experimentally 
measured refractive idices of the band of 
methyl iodide with values calculated u.sinp; 
the Kramers-Kronig transform.

Solid line - calculated.
Broken line - experimental. oo
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Section 2>9 The Reflection Loss Correction

When radiation passes from a medium of low 

refractive index into a medium of high refractive index, 

some of the radiation is reflected back at the interface.

The amount reflected back depends on the magnitude of the 

difference between the refractive indices of the two media. 

Because of dispersion, when measuring an infra-red band, 

the quantity of radiation reflected back from the liquid/ 

cell window boundaries varies across the band. An error 

is thus produced in the spectrum. The system is not as 

simple as it sounds above because radiation is being 

absorbed by the liquid. The problem has been expressed 

mathematically as is to be found in Principle of Optics, 

by B o m  and Wolf(ll). The overall transmission coefficient 

for the radiation amplitude across a three layer system has 

been expressed by Crawford and co-workers (g#)*

Consider a plane monochromatic wave passing from 

one medium to another. At the boundary of the two media, i 

and j, the reflection coefficient for the radiation amplitude, 

r j, for radiation passing from i into j is

A  Ar^i . nj
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The transmission coefficient is given by

'ij - ' "j)
A quantity B is now defined for the absorbing

medium

B . 2tT V  {; 1 

where V  is the vacuum wavenumber of the radiation. The 

overall transmission coefficient, t, for a three layer 

system is given by

t tg^ exp (i B)/ [l + r^2 ^23 (2.19)
where media 1 and 3 are the cell windows in the case of an 

infra-red cell and medium 2 is the absorbing liquid. A 

spectrometer records the intensity of radiation,which is the 

square of the amplitude of the radiation, or in the case of 

complex numbers, is the square of the modulus of the
c

amplitude of the radiation.

i . b . -  I'l'

Equation (2.19) gives us the overall transmission

coefficient and hence the observed intensity, 1^^^, but we

want to know the intensity arising purely from absorbance, I

As can be seen, equation (2.19) cannot be re-arranged to give

us I A method was thus worked out to get around thiscor.
problem.

cor
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The distortion of the spectrum, because of reflection
loss, is small compared with the magnitude of the true absorbance

spectrum. Thus is an approximation to so it was decided

to distort using equation (2,19) to give a calculated intensity,

^calc * distortion - Iq^Ic  ̂ w&s similar in magnitude to
the true distortion (l - I , ) because of I and I , being ofcor obs' cor obs
similar magnitude. A second approximation to was thus

considered to be + (^obs ” ^calc^* This quantity was called
^app * intensity was distorted using equation (2.19) to
give a new I . and, in turn, a new I was formed, which was a calc ' * app *
better approximation than the previous one. A computer programme

THKILK was written to perform the above. The refractive indices

were calculated using the Kramers-Kronig transform. The above

process was cycled five times and it was found that became

self consistent and was thus equal to . That is, the final

I , when distorted using equation (2.19), gave an exact fit to app

^ o b s  *

It was seen that the correction to the band shape was 

not symmetrical and a slight shift to higher frequency was apparent. 

Pig.2,11 shows this correction applied to the a^^ band of liquid 

benzene.
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Fig,2,11 The reflection correction applied to the 
^2u of liquid benzene. The experimental intensity
and refractive index curves are shown (solid lines) 
along with the corrected intensity curve (broken line).
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It was found that the reflection loss correction 

was negligible when the path length being used (to give a 

sensible spectrum with a minimum at about 20% transmittance) 
was greater than 0.001 cm. The majority of infra-red bands 

are weak enough to need a larger path length than 0.001 cm 
and so this correction is usually not needed.
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Section 2.10 The Theory of the Local Field Correction

When radiation enters a liquid medium the electric 

field strength, E, changes in a way that is related to 

properties of the medium including the refractive index (l3)*

A spectrometer does not record the true spectrum related to 

the electric field, E, but rather the spectrum related to 

the effective field, ("V), within the medium. The true

spectrum may be different frcra the recorded spectrum. This 

problem has been fully investigated by Bakhshiev, Girin and 

Libov (14, 15, 16 and 17). The general theory related to 

this problem is set out below.

Einstein has derived the probability per second 

per unit radiation density of a transition being induced 

between two levels m" and m' by radiation of frequency Vm"m* .

B.(v) = 2. rr ̂ / 3 h £0 • I D * ( ^ )  I ^

D„(V) . j  (f m"' fm' ) d f

B^(V) is the Einstein absorption coefficient and

the subscript, o, refers to the gas phase. The integration
/ ^is over he range of the wave function,^, and ̂  is the dipole 

vector for the molecule. The experimentally measured absorption 

coefficient, a^ (V), where - 4irv*k (-J )/c, is related

to the Einstein absorption coefficient as will be seen below.
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The amount of energy absorbed per unit time, d )/dt,

within a unit spectral interval and a volume dV = qdl, depends

on the number of absorbing particles per unit volume, N^, and

the spectral density of the average transition

probability " ("yy 
o

d (-0) 
dt T W )

= B ^ ( g o  E^^(V)/2) hv>N^ q dl (2.20) 

where ( is the volume spectral density of the

energy of the light wave in vacuo.

According to the Lambert law of absorption the amount 

of energy absorbed per unit time is proportional to the thickness 

of the sample, the absorption coefficient and the radiant flux  ̂

(the time rate of transfer of the radiant energy). 

dW (-P)
--------  = a (t1) F ( -p) dldt o o

a„(-v>)c ( e „  e / C tJ) /) q d l  (2.21)s o O O d

where F ( V )  is the spectral density of the radiation flux, o
From equations (2.20) and (2.21) we obtain the relation

- B ( V )  . °
° N h V  (2.22)o

A different situation exists in the case of a liquid

medium. Equation (2.20) becomes

^ . B (-i)) (e,(V) (t) )/g) h V N  qdl (2.23)
dt
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where ( "V ) is the effective local field of the light

wave acting on the molecule under study. Equation (2.21)

becomes

dW (-V) 
fit

= a (-i) ) cn (^ ) (e ^ E^^^ (qJ )/2) qdl (2.24)

E^^ (l) ) is the macroscopic average field of the 

light wave in the medium. Prom equations (2.23) and (2.24) 

we obtain the relation

B ( V )  . ° . n ( V )
h o? N ®^eff )

which may be written,on comparison with equation (2.22) as

B ( V )  . ^ ° 8 (iJ) (2.25)
h -V N

We thus want to find the form of the function Q (~i) ) •  ^

Prom dielectric theory (l8) the effective field vector, E^^^ 

at a Doint in a macroscopic spherical region of volume, V, is 

related to the macroscopic average field by the general expression

\ff = fi ( n ) - 2̂ (ft ) (226)
Here, f^ ( n ) and f^ (n) are certain functions of the complex 

refractive index and M  is the electric moment vector of the 

designated region. The first term on the right hand side of 

equation (2.26) is called the cavity field and takes no account 

of interactions between molecules. The second term is called
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the reactive field,and the reactive field acting on a given 

molecule is related to its dipole moment by a function which 

takes into account all forms of interaction between the 

molecule under investigation and its nearest neighbours.

According to the Lorentz model for an oscillator 

(9) the effective field is related to the average field by
 ̂ ) E .. (V )®eff 3 av

model does not allow for a reactiveThe Lorentz

field and uses only the cavity field. Prom above

B'av (^ )

and thus 0^ ( V  ) -

F 2

9n

(n - k  + 2) + 4 n  k (2.27)

The subscript refers to the Lorentz model. We already know 

how n changes across an absorption band and so 0^ ( ) must 

change as well.

Another model to use is the Onsager-Bottcher model 

which takes into account a reactive field (l9) and this model 

relates the effective field to the average field by

®eff 

where f

.) (
1 -  f  «I.

) E (V) (2.28)

2 (n^ -  1)

r) (2n^ + 1)
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r in the Oneager radius of the molecule and d is the complex 

polarisibility. The Polarisation of a dielectric consisting 

of isotropically polar molecules is also related to the 

electric field strength (l8) by

■ (2.29)

Removing ci from equation (2.28) Using equation 

(2.29) we get, on re—arrangement

2 n^ + 1

3 an^ + (n^ - l)^

where a = 2 t t N r^. We thus have

8 g ( ^ ) n ( V  ) a'
2 n‘

3 a n + (n - l)'
(2.30)

The subscript refers to the Bottcher model.
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Section 2.11 Application of the Local Field Correction

Programme BAKSHV was written to perform the local 

field correction. The refractive index was calculated using 

the Kramers-Kronig transform. The correction was applied to 

the band of methyl iodide. This band is of medium strength 

(k - 0,054). The Lorentz model was first used and the 

resulting band shape was the same as the original, with the same 

band centre. There was an overall decrease in intensity of 

26% though. The Onsager-Bottcher model was then used which 

required a knowledge of the radius of the molecule. The radius 

was calculated assuming the liquid consisted of closely packed 

spheres. In this case there is 26% of void space and the 
radius of the molecule is obtained from

4 - r r r ^ N ^  /3 - 0.74 /J' (2.31)
where N ^ is Avogadro’s number, is the molecular weight 

of the substance and j is the density of the substance. The 

equation was tested for carbon tetrachloride and a radius of 

3.05 X obtained, which compared with a literature value (l?)

of 3«0 Î. The methyl iodide molecule may be considered almost

spherical because of the larger iodine atom. The radius

of the molecule calculated by equation (2*31 ) was 2.6 Î. The

number of absorbing particles per unit volume was calculated

from

N - N ^ / ( M ^ / 5  )

where M is the molar volume.
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With this model, programme BAKSHV yielded the

result that the band shape and position were unchanged

but the overall intensity reduced by 33%.

The nrograrame was re—run for a much more intense

band, namely the a^^ band of benzene at 674 cm”^. This

band has k = 1.1. The Lorentz model yielded a narrower max
band at higher freouency which was far more symmetric than

before the correction. The half heivht bandwidth was
-1 -1reduced from 11.1 cm to 9*5 cm . The band centre shifted

from 674.8 cm  ̂ to 677.4 cm  ̂ . The integrated ^
intensity of the band, T  , fell from 34.0 - 4.0 dm mol cm

to 27.0 -A. 0 dm^ mol  ̂ cm . This comnares favourably with the

integrated intensity for the band measured in dilute
+ 3 - 1 - 1solution in cyclohexane of 21.5 - 2.1 dm mol cm .The band

measured in dilute solution in cyclohexane is free from the 

need for correction.

The a^^ band was then corrected using the Onsager- 

Bottcher model and the result was a band which was more asymmetric 

than before the correction. The band centre was shifted to 

678.8 cm  ̂ and the half height bandwidth reduced to 7«4 cm 
The reason for the asymmetry probably lies in the need for a 

molecular radius. The value used was calculated using equation 

(2.31) and is obviously inaccurate because benzene is a flat 
molecule. The results are shown in Fig. 2.12 and Fig. 2.13.

In Fig. 2.12 the original and corrected transmitted intensity 

curves are compared and their eveness about their respective 

band centres is indicated using the bandwidths at half height.

Fig. 2,13 shows the whole band after correction using the 
Lorentz model, to p-et the overall picture.
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Fig.2.12 The band of liquid benzene 
and the correction for the local field. 
Solid line - experimental (after the 
reflection loss correction).
Long dashed jline - correction using the 
Lorentz model.
Short dashed line - correction using the 
Onsager-Bottcher model.
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Fig.2.13 The same experimental and 
Lorentz model corrected 
Fig.2.12 ,hut showing the whole band.
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Section ?.12 Hot Bands

Infra-red absorption bands at frequencies of less 

than 1000 cm  ̂ tend to have hot bands to the low frequency 

side of the band centre. These hot bands may be subtracted 

out of the measured band after consideration of how they arise 

in the spectrum.

The eigenvalues of the energy, E, connected with a 

particular vibration are given for an anharmonic oscillator by 

6 = E/hc » (v + - (v + ig cm

where v is the vibrational quantum number (v = 0, 1, 2 •••), 

is the (hypothetical) equilibrium oscillation frequency and 

is the anharmonicity constant. x^ is a small, positive

constant.

For a transition from the ground state (v = O) to the 

V = 1 state, the band centre, is given by

• (l - 2 Xg) cm ̂  (2.32)

For a transition from the v = 1 state to the v = 2 

state (a hot band) the band centre, is given by

V g  . V  - 4 Xg

. - 2 X cm  ̂ (2.33)1 6

The hot band is thus seen to be at a lower frequency than
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The number of molecules occupying the v = 1 state, 

N^, is determined by the Boltzmann expression

= N exp (-he [(l + - (l + x^] /kT)
-

where k is the Boltzmann constant, T is the temperature, N is

the total number of molecules, g^ is the degeneracy of the

energy state and Z is the partition function given by

Z « g. exp (-E /kT)
i  ̂ ^

The number of molecules occupying the v » 2

state is ^Iven by

«2 . N *2 erp (-he [ (2 + i) Vg - (2 + 4)^ V g  Xg ] A T )
z

The ratio of the populations of the two energy states is thus 

obtained.

g^ exp (-he [(l +i) "Vg - (l + i)^ V g  ] /^T)
^2 g^ exp (-he [ (2 + i) - (2 + x^ ] /kT)

If, as an approximation, we let x^ = 0, then equation (2.34)

reduces to 

N

'2
~  - (g^ / gg) exp (+hc Vg /kT) (2.35)

To get a rough idea of the dependence of the 

intensity of hot bands on frequency consider equation (2.35) 

and a vibration at 5^^ cm . The v = 1 and v ■ 2 states are 

non—degenerate and assume the temperature is 313 K ( the 

temperature in the sample compartment of the P.E. 325)*
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N 1
-—  - exp (500 hc/kT)

2 - 10.7
At lOOO cm  ̂we find

Ni
= exp (1000 hc/kT)
- 99.6

Thus we see that around 500 cm  ̂we may expect a hot 

band of about 10^ of the intensity of the fundamental, whereas 
at 1000 cm  ̂ the hot band is only about 1^ of the intensity of 
the fundamental.

The V 3 band of methyl iodide at 523.6 cm  ̂was measured

in the liquid phase. This is the lowest frequency fundamental

of metliyl iodide. A definite underlying band was present at

around 518 cm ^. The exact centre of this hot band was not

resolved and so the gas phase was turned to. The gas phase

infrwtd spectrum resolves the hot band and shows it to be 6.5 cm ^

to the low frequency side of the main band. The separation will

remain the same on going into the liquid phase and so the hot band
-1in the liquid phase was centred on 517.1 cm .

The numerical values of" and were obtained using 

equations (2.32) and (2.33). The ratio of the populations of 

the V = 1 and v = 2 energy states was obtained using equation 
(2.34)." This yielded N,/N^^ = 10,7. A good approximation to 

the shape of the hot band was the measured band shape. The hot 

band was accordingly removed and the result is shown in Fig. 2.14* 

The result was a good smooth and symmetric band.



2.14 The band of methyl iodide liquid 
sho'vinç the hot band to the low frequency side 
of the main band. After removal of this hot 
band the corrected band is far more symmetric.
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There is also another, less usual, type of hot 

band that occurs. This latter type arises from a 

transition from the excited state of a low lying vibration, 

which has a relatively high equilibrium population.

The second transition involves a vibration say, and

the population of a hot band in Vj, arising from the 

excited state of will be proportional to the population

of the excited state of As a result of̂  coupling

between the and Vj vibrations, the hot band may be 

displaced from the band centre. The transition 

probability for the vibration applies equally to an un

excited molecule as to an already excited ( molecule. 

This phenomenon occurs in the vibration of carbon 

disulphide which will be encountered in the next section.
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Section 2.13 Isotopic Shifts

The effect that an isotope has on a spectrum is 

observed in the following simple analogy. If one considers 

a spring which has a small weight oscillating on the end of 

it, if this weight is then replaced by a heavy weight, this 

heavy weight will oscillate at a slower rate. This analogy 

holds for vibrations in molecules and the force constant, f, 

for a given vibration remains constant, when substituting one 

isotope for another, which is analgous to using the same spring. 

The vibration, arising from an isotope, a, is given by

U a  - 1/2Tf ^
where is the reduced mass of the system, which is the same 

as for a classic spring.

The need to correct for isotopes depends, of course, 

on the relative abundance of them for a particular atom. During 

the course of this work the different atoms encountered in various 

solutes were hydrogen, carbon, sulphur, iodine and fluorine.

These atoms have the following natural isotopic abundances (20).
Atom Isotope % abundance

Hyd rogen 99.99
0.01

Carbon 98.89
1 cl3 1.11

Fluorine 100.00
Sulphur 95.00

0.76
g34 4.22

Iodine jl27 100.00

Table 2.4
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An isotopic abundance of about Vjo will not appreciably

affect a spectrum and the effect certainly could not be detected

in a liquid phase spectrum. From Table 2.4 it can be seen that

sulphur is the only atom encountered with an isotope of appreciable

abundance. The molecule looked at was carbon disulphide. It

will be instructive to carry out the correction for this

particular molecule.

Carbon disulphide is a linear triatomic molecule and 
“1the band at 1522 cm was measured in carbon tetrachloride 

solution. The low frequency side of this band had a large 

shoulder arising from a hot band and isotopes. The isotope 

will be neglected in the correction and so we have and
..jM- -The probabilities for different isotopic molecules are shown below.

CS^^ will have an abundance of (O.95OO x O.95OO) = 0-9025

CS^^ will have an abundance of (O.95OO x 0.0422)x 2 = 0.0802

CS^^ will have an abundance of (0.0422 x 0.0422) = O.OOI8
The relative abundances of these three molecules is thus 

500 : 45 : 1. The CS^^ isotope may be disregarded, and so we 

have 11.1 : 1 for the former two isotopes. The isotopic band may 

be removed in the same way as a hot band. We now need to know the 

position of the isotopic band. We first have to calculate the 

force constant for the vibration. This is done using the following 

2 x 2 determinant (2l), where the symbols employed are shown in 

the diagram

S — C S + mg + - M
m.. m« m.,
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- 4 r r ^ - k P ( 2m̂  +2m^m^ + 2mgm^)/ 2lvf

2 ,2fg - 4TT -u? m̂(iTi2 + 2in̂ m2 '*' '̂ 2™3 '*'

'T’he determinant was first solved for f = f̂  — f^ , using V  =  1522 x 
103 x 1 0  Hz, =  32/ = 12/ and M = 76/ . The

result was f =  43.715 x 10^ dynes, cm or f =  6.905 x 10^ dynes. cm”\  
A typical force constant for this type of vibration should be of the 

order of magnitude of 10^ dynes.cm”\  and so the latter result was 

used. The determinant was then solved again to obtain the frequency 

of the vibration using f =  f̂  =  f^ = 6.905 dynes.cm \

= 32/ , m^ =* 34/ and M = 7b/ . The result was
=  1518.2 X 3 X 10^0 Hz or %) = 595.0 x 3 x 10^^ Hz . The former 

is obviously the true answer here.
Another point to be considered is the symmetry of the 

carbon disulphide with respect to exchange of sulphur nuclei (or 

inversion about the centre of symmetry, which is the carbon atom).

We must consider the total wavefunction of the molecule, ,which is

the product of the wavefunctions shown below.

f  =  f r

=  0
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where ^'e is the electronic wavefunction, f v  I s  the vibrational

wavefunction and ^r is the rotational wavefunction. Dealing only 
32 32with the system S CS we must first consider what happens to the

individual wavefunctions on inversion about the centre of symmetry.

For the molecule in its ground state electronic configuration the

electronic wavefunction is totally symmetric on inversion. The

vibrational wavefunction depends on the magnitude of the internuclear

distance and hence is symmetric to inversion. Rotational energy

levels are quantised and the energy levels are associated with the

rotational quantum number, J, where J = 0, 1, 2, 3, 4 ••• The

rotational wavefunction can change sign on inversion in which case

it is said to be antisymmetric. Even values of the rotational

quantum number, J, are associated with the symmetric wavefunctions,

and odd values of J with the antisymmetric wavefunctions. The

total wavefunction may thus change sign on inversion and this is

dependent solely on the rotational wavefunction. The nuclear

spin of the end atoms must now be considered. If the end atoms

have a zero or integral nuclear spin quantum number the total
32wavefunction must not change sign on inversion. S has a nuclear 

spin quantum number of 0, and so for the total wavefunction to not 

change pign on inversion, odd value of J rotational energy levels 

must be absent. The alternate rotational energy levels are seen 

to be absent in the gas phase spectrum of CS (22 ).
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If one of the sulphurs is now changed for the isotope the

symmetry of the molecule is lost and the above rules do not 

apply- This means that all rotational energy levels are now 

present and there is, effectively, a doubling of intensity 

compared with before. (Further reading to expand on this very 

condensed version on the subject of symmetry and wavefunctions 

may be found in reference (5 ))- Tho above all loads up to the point 

thert- although the iootopio ratio ef to is llvir t 1,

tho intensity ratie- in tho-opootpum will bo 5*55^: 1?

The shoulder of the 1522 cm  ̂band is not all due to the 

isotope. There is also a hot band at 6.4 cm  ̂ to lower frequency 

of the main band, arising from the excited molecules of the ' ^ 2  fund

amental at 395 cm”^ (22).^^The intensity of this relative to 
the main part of the 3 band was calculated to be 2 9"̂  using

equation (2.34)-
The hot band and isotopic band were subtracted out of the 

experimental band and the resulting band was more symmetric and the 

hot band was , fully removed. See Fig. 315- The hot band was 

fully removed using a relative intensity of 29^-

The

overall band shape was very symmetric after subtracting away 

the hot band and isotopic band.

The programme used to remove the iso topic band and the 

hot band was HOTBND.
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CHAPTER THREE Infra-red Band Moment Theory

Section 3.1 Introduction

The infra-red spectral band shapes of liquids 

generally bear no resemblance to their corresponding vapour 

phase band shapes* Infra-red vapour ohase band shapes are 

generally similar to those already encountered for symmetric 

top molecules and usually have more than one peak. A typical 

condensed phase infra-red band has only one peak with no sign 

of P, Q or R branches. Condensed phase band shapes are 

not yet fully interpreted - The band shapes contain 

information about intermolecular interactions in the condensed 

phase and Gordon (?5) bas recently developed the theory of 

band moments to interpret these band shapes in terms of 

rotational kinetic energy and intermolecular potential energy 

functions.

The question of whether molecules may be expected to 

rotate in the condensed phase must first be looked into.

McLennan and McLeod (23) were the first to measure the Raman 

spectrum'of hydrogen which showed a central peak along with 

two lines which corresponded to the Aj = 2 rotational transitions
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One peak arose from the lowest rotational level of ortho 

hydrogen and the other from the lowest rotational level 

of para hydrogen. The positions of both of these peaks 

were virtually unaltered from the gas phase spectrum.

Much work has since been done on this molecule, with the 

conclusion that rotation does take place in the condensed 

phase. The moment of inertia of hydrogen is very small 

compared with other molecules and so the separation of 

adjacent rotation-vibration energy levels is large. Hence, 

although the rotational fine structure is broadened out due 

to the increased rate of collision by going into the condensed 

phase, the fine structure^is not smeared out. With larger 

molecules, if rotation does take place in the condensed 

phase, collision broadening would smear the structure out so 

that it could not be resolved anyway. The general contour of 

a P and an R branch in the infra-red spectrum of liquid 

hydrogen chloride has been observed by West (24), and it was 
later shown that, when increasing the pressure on hydrogen 

chloride gas, the P and R branches fine structure first smeared 

out to a contour and then a forbidden ”Q” branch started to rise 

near the gaseous band centre. On ^oing into the liquid state 

there was no abrupt change in the spectrum. Using argon and 

nitrogen as diluents, different size "Q" branches were observed, 

suggesting that the effect of the added gas was not merely due 

to its rate of collision with the hydrogen chloride but also 

caused by more specific interactions. Hydrogen chloride
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dissolved in liquid nitrogen gave a spectrum with an intense 

”Q" branch whereas, in argon, the P and R branches were 

dominant. Larger molecules than hydrogen chloride have not 

generally given rise to similar spectra but this, again, may 

be explained by the size of the moment of inertia of larger 

molecules such that the P and R branches would be completely 

smeared out. In the condensed phase, vibrational energy 

levels are slightly diminished and so there is usually an 

overall shift of the band to lower frequency. The problem 

of whether, and how much larger molecules rotate in the 

condensed phase cannot be solved merely by looking at the 

shape of the condensed pĥ jse* spectrum.
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Section 3.2 Band Moment Theory and the Odd Order Moments

There is a lot of information contained in condensed 

phase spectra concerning intermolecular forces and intermolecular 

motion. According to Gordon (25), some of this information may 

he obtained through analysis of the moments of the band intensity 

about the band centre. The j'th order (j = 1, 2, 3 ....) band

moment, M(j) is de

M(J)
ined as

( 9  - Vo)^ k (9) d 9
^ _______________________ (3.1)

The denominator^s, an integrated area of the band which 

will be called V and is present to normalise out the intensity of 
the band so that the moments depend purely on the band contour. 

Gordon has calculated expressions for the first, second, third 

and fourth moments. He did this by considering the' commutators 

|h,^J, where H is the total rotation - vibration Hamiltonian, 

and calculating the average of an operator in the initial state 

using commutator algebra. Gordon made a few simple approximations 

for the system. It was assumed that the binding within the 

molecule in the condensed phase was strong compared with 

intermolecular interactions. This means that the internal 

degrees of freedom (electronic and nuclear) move rapidly 

compared to overall molecular rotations and centre of mass



112

translational motions. Hence the total state vector for the 

whole system may be written approximately as a product of an 

external state and an internal state. The external state 

depends on the centre of mass co-ordinates and on the 

direction of the principal axis of inertia of all the molecules. 

The internal state depends on the internal degrees of freedom 

of all the molecules, and parametrically on the external state. 

The second approximation was to take the internal state as k 

simple product of those for each of the molecules. This 

approximation holds for dilute solutions where spectroscopically 

active molecules are separated. Thirdly, it was assumed that 

the external state had n o ^ p fluence on the magnitude of the 

internal transition moment or its direction relative to the 

principal molecular axis of inertia. Fourthly, it was 

assumed that the vibrational ground state was the only one 

populated thermally, so no allowance was made for hot bands.

The odd order momenta are essentially a measure of 

the asymmetry in a band. The odd order moment of an even 

function is zero because the moment of the high frequency side 

is cancelled out by the low frequency side. The first moment 

is useful because it may be used to locate the true band centre 

of an asymmetric band, which may not be the position of maximum 

absorption. Provided the wings of a band are not badly 

overlapped, the value obtained for the first moment for an
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asymmetric band is a small number, of the order of one 

wavenumber, which is the frequency displacement of the 

absorption band maximum from the true internal molecular 

transition . The first moment may thus be used to calculate 

the true band centre which is then utilised in the calculation 

of higher order moments.

The third order moment is a measure of the true 

asymmetry of a band with respect to its true band centre.

The third moment of an asymmetric band need not be zero if 

the true band centre is used because of differences in the 

contours on either side of the band.



114

Lection 3.3 The Second Moment - Gordon's Formulation

The second moment of a band is one measure of its 

width. There are two types of terra in the second moment 

expression *-

a) The fluctuation of the difference between 

intermolecular potential energies in the 

excited state and the /rround state, 

averaged in the initial external state.

b) The rotational kinetic energy terms.

The intermolecular potential energies may be 

considered to be the same for the ground state and the first 

excited state in the infra-red region if there is no frequency 

shift between the vapour and condensed phases.

The average molecular rotational kinetic energy is 

fixed in the gaseous and condensed phases by the equipartition 

theorem which states that, on warming a gas, the gas tedces up 

energy (ergs) in all its degrees of freedom of kT/2 per molecule 

for each translational or rotational co-ordinate and kT per 

molecule for each vibration. The equation for energy of rotation 

has the form E . I_ CO 2 /2 + I CO^„/2 + I_ CJ^ /2 where I is
X  y  J  z  i  X

the moment of inertia about the i axis. Since each term in the 

energy expression is proportional to the square of a velocity 

component, each term on the average should have its equal share 

of energy. Thus the total average rotational energy of a non-
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linear molecule is 3 kT/2 (2 kT/2 for a linear molecule) and 

this energy is retained (but redistributed) in going from the 

gas phase to the condensed phase.

Gordon's equation for the second moment of the

contour of a condensed phase infra-red band is set out below.

The units are cm
(B_ (:) )'

M (?) . 2/i |(m^„ + J -j ' ■ +(m^_ ) ' P
(B_ (y) )'

X z

-2 _2 (B (z) ) ^ n
+ (m _ + m _) _ Z--------  + (Tr B ) - 2 (m.B .m ) (Tp B )

9^ ( z )  J P P PI y

+(m. B . B . m  w  i/x p p ^ AB( x ) ^ AB(y) ^ A B ( z )
B (x)  ̂ o B„(y) Bo(z) (3.2)

(Tr B - m. B . m ) + 1/(41 )p p
(AB(i) f  + I AB(y) V
JB_^ (x)| 1 b „ (y) I

+ / A  B(z)
n uo

AB(i)AB(y) ^ AB( x )A B  (z)  ̂AB(y) AB(z)
B^ (x) B^(y) B^ (x) B^(z) B^(y) B^(%)

< m.S.S.m (V -  V r >  P o
^ m.S.S.m ^

< m.S.S.m(V - V )> H __________ P Q
<  m.S.S.m> ̂

/(hc)2
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In the above, p is the excited vibrational state

and 0 is the vibrational ground state, x = (bc/kT)om, rn

is a unit vector along the direction of the transition

dipole having components about the i, y and % axes of inertia

of B is a diagonal matrix formed from the

rotational constants B(x), B(y), B(z) along the three axes

of inertia, A B  is the difference between the. rotational

constants in the excited state and ground state, Tr is the

abbreviation for taking the trace of a matrix, which is the

sum of the terms along the leading diagonal. Vp and are

the intermolecular potential energies for p'th excited state

and the ground state. S is the shielding tensor which relates

the average field of the radiation in the medium to the local

field. The final term of equation (3*2) is called the shift

fluctuation term. The present state of the knowledge of

intermolecular forces precludes giving this term an accurate

value, but Gordon states that this terra should be much smaller

than the dynamic terms in the equation. This term will thus

be neglected. The equation is now seen to be independent of

intermolecular forces and contains purely dynamic terms. To

get a feel for the magnitude of these terras consider methyl iodide at

a temperature of 300 °K undergoing a vibrational transition from
the V = 0 state to the v » 1 state, with a vibrational transition

dipole directed along the z axis. This means that » 1 and

in = m - 0.* y
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The rotational constants (?6) are :

B.

are : =

0.2502 —1cm

5.119 —1cm

0.2484 —1cm

5.069 —1ora

0.0018 —1cm

0.050 —1cm

Taking the different terms of equation (3.2) in order we have t -

) 2 /x  [ (
-2 B.

-2■ 205.54 cm

b) (Tr B^)^ - 2(m . B^ . m ) (Tr B^) + ( ( y\ .  B . B . m)

Now the trace of 1
0 0

Tr (0 0

(0 0 A
" 2 »1 +

and so we have 
.2(2B_ + A_)^ - 2 (0 0 1) (B. 0 0) ( 0 ) (2B., + A, )1 1  ( 1  ) (  ̂ 1 1

<0 Oj ( 0 ,

(0 0 A^) ( 1 )
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+ ( 0 0 1) (B 0 0 ) (B 0 0 ) ( 0 )
( " ) ( ^ ) ( )
(0 B, 0 ) (0 B- 0 ) ( 0 )
( 1 ) ( 1 ) ( )
(0 0 Ai) (0 0 A,) ( 1 )

- (4Bf 4A^ B, ) - 2(2A^ ®1 + 4 ' ) +

4 B.

0.25 cm-2

M + 6 1  . M  1
Be A„ J

I A AU o A0

. m  )

2.50 cm-2

d) 1/(41^)
B^

a b
B^

AA\ 2

A  B A B A A A B A A A B
B B " A B " A B0 0 0 0 0 0 J

'/(«")[» (t®)' • i (i^)' • '

10.78 cm~2
Collecting these four terms together we have

(a) - 205.54 + 0.25 + 2.50 + 10.78 cm-2

219*07 cm-2
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The first term is seen to be the dominant one, and 

from the form of the other terms it is seen that this will 

generally be the case. The first term is thus an approximation

to the second moment. This term also involves the term

(kT/hc) which is kinetic energy expressed in wavenumbers and 

so the second moment is related to the rotational energy through 

the rotational constants

e.g. (2) ~  4  [ g

Rotational kinetic energy (kT) _ (2)

The rotational kinetic energy is (kT/ho) and not 

(3 kt/2 he). This is because, for a symmetric top molecule,

although the molecule may be rotating about all three axes of

inertia, the rotational about the z axis is not observed because^ 

the molecular dipole is not rotating in that case. An observation 

that the experimentally measured condensed phase second moment is 

equal to that predicted by equation (3*2) is a confirmation that 

molecules rotate in the condensed phase. This does not mean 

that there is free rotation though. The molecules would be 

colliding.all the time,which would hinder rotation, but the total 

rotational kinetic energy would be conserved to give us the 

classical second moment. Gordon's formulation of the second 

moment takes no account of the Coriolis interaction for an E band.
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To check Gordon's formulation against that from a gas phase 

approach, the second moment of a parallel band of a symmetric top 

molecule was recalculated from the gas phase equations and compared 

with equation (3.2). If the results agreed, the gas phase approach 

was to be used for a perpendicular transition of a symmetric top 

molecule, taking the Coriolis constant into account.
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Section 3.4 The Second Moment - A Gas Phase Approach
for Symmetric Top Molecules

Equations for the transition probabilities and 

transition frequencies of rotation - vibration spectra of 

symmetric top molecules are known, and so calculation of the 

theoretic spectrum is easy. The second moment is then 

calculated using

M (2) - J  k (v) ( V - V. f  dV
band

r
The,transition probabilities for parallel and

perpendicular transitions of symmetric top molecules have been

derived by Honl and London (27) and by Reiche and Rademaker (28).

These are the terms in Aj ^ k ("Py (J,K) i )*

Here P_ „ is the rotational term value of the ground state, J ^J , K
is the quantum number determining the total angular momentum

of the system, K is the quantum number determining the component

of this angular momentum ahouf the unique axis of the molecule,

X - (hc/kT), A_ y is a terra whose value depends on the rotational J , K
quantum numbers J and K, and gj ^ is the statistical weight of 

the lower state which cfepends on the selection rules,

Allowed transition for Value of Aj ^
a parallel band_______

R branch J,K -^J + 1, K (2 Q) (^ + K + l) (j — K +l)/(j + l)

Q branch J,K -» J, K (2 ^ ) (2 J + l) K^/(j(j +l))

P branch J,K -+ J - 1, K (2 „ ) (J^ - K^)/J (3-3)
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Notice that the sum of g, _ for a given J,K overJ , K
the P,Q and R branches is (2J + l)^the well known degeneracy 

for each rotational energy level. ^ is the Kronecker deltaK »0
function which is equal to 1 when K - 0 and is equal to 0 when

K / 0. For simplicity we will assume that & ^ = 0 throughout,K
as it does not produce any significant change in the spectrum.

The A._ „ term may thus be removed as it is then normalised outJ , K ''
by the integrated intensity anyway. Also the summation will 

be from J ■ 0 to J - irrespective of whether there is a J » 0

ground state for the different P, Q and R branches. This again

will not significantly affect the result.

The rotation vibration energy of a symmetric top

molecule in a vibrational energy level of quantum number v is

given by

' ■ ' - - ■ ■ ■ ' ' - ' ^ omF (J,K) . B J(J + l) + (a - B„)

and so we can now calculate the second moment using equation (3.3)

and the above for a transition from the ground state to the v ■ 1
_2 and areCU> J
—2state. The units of the second moment are cm and are omitted

from the algebra. is used to represent ^  ^
J » 0 K - - J

and exp (j,K) is used to represent exp (-F (J,K) i ). Also the
OO

sum over all the transition probabilities ^  2
J - 0 K = ^  ^J,K

exp (-F̂ (T,K)x ) will be called Q^.
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M(2) . 1  (b , (j + l) (j + 2) - B J (j + 1) + Z)2
r J.K 1 °

(J^ - + 2J + 1)/(J + l) eip (j, K) +

(B^ j (j + l) - B^ j (j + 1) + Z)^ (2J + 1)K^/

(j (j + l) ) exp (j, K) + (Bj j (j - 1) -

J (j + l) + z f  (J^ - K^)/J exp (j, K)

Where the summation is over all terms on theJ I  K
right hand side of the equation and Z ■ ((a  ̂ - B^) -

(a - B ) K^). Writing AB in place of (B, - B ) and o o 1 0
multiplying throughout by J (j + l) we get

Q r J (j + l) M l2)

^  R a b  j  ( j  + l )  + B 2 ( j  + l )  + z f  
J, '■

( j  ( j  + l)^ -  JK̂ ) + (AB J ( j  + l )  + Z)^

(2J + 1) + (A B J ( j  + l )  -  2 B̂  J + z f

(J  ̂ -  K̂ ) ( j  + l ) ]  exp( j ,K ]

Squaring the frequency terms and collecting 

together terms common to the P, Q and R branches gives
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q J (J + l) M (2)r —^

J, K
(AB)^ (j + 1 )̂  (j + 1)2

- J k2 + (2J + 1) r2 + (j2 _ K^) (J t l)j
+ z2  ̂J (j + 1)2 _ J %2 + (2J + 1)

+ (j2 - r2) (J + 1) j
+ 4B^2 ^(j + 1)2 (J (j + 1)2 _ J k2)

- j2 (j2 - k2) (j + 1) J
+ 4 A B  B^ j (j + 1) ^ (j + 1) (j (j + 1)2

- JK2 ) - J (J^ - k2) (j + 1) j
+ 2AB Z J (j + 1) (j + 1)2 - Jr2 +

(2 J + 1)k2 + (j2 - k2) (j + l)j 
+ 4 B^ z[(j + 1) (j (j + 1)2 - Jr2 ) -

J (j2 - k2) (j + 1)] j ex-p(7,K)
Multiplying out the different terms in J and K leads 

to many terms cancelling each other out. Collecting the 

remaining terms together we have

V  K (2)
^  (AB)2 j2 (j + 1)2 (2J + 1) + z2 (2 J + 1) 

J, K*- 
+ 4 Bj2 (2 J + 1) (j (j + 1) + 1 - r2)
+ 4 A B  B^ J (j + 1 ) (2J + 1) + 2 A B  Z J

(J + 1) (2 J + 1) + 4 Bi Z (2 J + 1)] exp(îoK)
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Expanding and re-arranging the equation we get

M (2) . £  (2J + 1)
J, K

(AB)2 (j + l)^ + ( A  (a - B) f  l â  

+ 4 B^^ (j (j + 1) + 1 - K^)

+ 4 A B  B^ J (j + l) + 2 A B  A  (A - B)

J ( J + l) 1

+ 4 B^ A  (a - B)

exp (-P^

(J, K) i)

(3.4)

The problem now is to convert from a summation to an 

integration or a series expansion. The term is called the 

rotational partition function for a symmetric top molecule and 

collecting the g^ _ terms together we haveJ 9 A.

Q. ^  ^  (2 J + 1).
J » 0 K ■ -J

exp (- (J, K) i) (3.5)

Kaeeel (30) has computed and also expressed It as

a series expansion. He also differentiated this series

expansion of Q with respect to different parameters and r
obtained sums of the form we need above. He defined sums,

S (f), to be
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oo T
S (f) . ^  f (2 J + 1) exp (- F (J, K) x)

J = 0 K - -J
and % -5(1)“ or V? „ p  /,) (p + i)" V 2  

[l + (1/12) p (p + D "  <̂r
+ (7/480) p2 (p + 1) -2 cr 2  ...... j (3.6)

where p -  l) and c r  «  B^. Using this nomenclature

equation (3*5 ) becomes
S (l) . £  (2 J + l) exp (- J (j + l)<r - B a ' K ^ )

J , K

and differentiation of this equation with prespect to p gives

3 S ( 1) ■ £  - (2 J + l) cr exp (-J (j + 1)0" -

p <r K^) (3.7)
' .C

The right hand side of equation (3*7) is equal to 

-  cr'S (K^) so we will now differentiate equation (3*6) with 

respect to p

^ ^ . A .  (7J-1/2 £7- 3/2 exp (<r/4)
3 p 3 p

[(p + l) "1/2 + (1/12) p (p + l) ■ ....]
1/2 ^  3/2 exp (cr/4 ) [-1/2 (p + l)")/?

(1/12) (-3/2) p (p + l)“ /̂2(j- + (1/12)
(p + l)"^/2^ + ....]

TT

+
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- - 1/2 Tt1/2 (y- 3/2 eip ( <r/4) (p + l)"^/?

[i + (1/12) 3 p (p + l)"i<r-a'/6]
. -1/2 tt1/2 (j ' 3/2 (cr/4) (p + l)"^/2

[l + (1/12) (p + 1)“1 (p - 2)<r + ....]
On comparison with equation (3.7) we now get 
3 (1(2) . 1/2 -0-1/2 q- 5/2 g^p ( 0-/4) (p + l)"3/2 

[l + (1/12) (p + 1)"1 (p- 2)cr +.... J

In a similar way all of the summations we need may be 

obtained by differentiation of S(l). All the sums we need are 

set out below in modem nomenclature.

s ( i ) . X Ti + 2ol _ I2J L  + 2l_ L 12 12 A (B
2 B 3 B ^-2_ + o \+ ....

480 o Ag Ag ) ■]

i(k2) -
2A

1 + ^
12

! o! i  r
4 A.

( 3 . 8 )

s(j (j + 1) ) - — 1 .
L 2Ag

B I B Io + o
A 8 A_ 8 A 2 o

S(j 2 (j- + 1)2 ) .

A 4 A_^

An
2 B X o

21 B  o
4 A 3 ]
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S(K^) 3 .  ! 2 l -  ^
4 4 A.

S(J (J + i )k ) 2 . _ V  . I2ll
Aq 2 4 Aq (3.8)

where X - ( A B 2 i3o o
) exp ~(BqX / a )

Equation (3*4) may now be solved for the various 

summations. Retaining inly the terms of lowest order in the 

rotational constants, after substitution in (3*8) and dividing 

by T  , we get

M(2) - ( a b ) 2  + rriâ- * )
o o o o

+ ( A  (A - B) )2 ( ) + B 2A ^

(

4
Io o

3

( - f r   ̂ i 6 r

1

) + A B  A ( a -B)

2A ^ X o
+ A ( a-b ) 2 B



1 2 9

Writing A A - A B in place of A  (a - B), and re-arranging 

we get

,(J) ■ B /  ( ^  . I  . |j !b  ) . )

+ B ^ A A  2  ̂ om ^
A( ) (3.9)O

We thus have an expression for the second moment of 

a gas phase parallel band for a symmetric top molecule.

Gordon's equation for a parallel band ofd symmetric top molecule 

has already been derived in stages and can be written

m (2) . B^2 ( _ 4 _  + 4) + ( - g V  )
o X o

+. A  A ( ^  ) -2 (3.10)
o cm

There is only one very small difference between 

equations (3»9) and (3*10) and that is equation (3*10) contains 

the term 4 B^^ instead of (8/3 + 2 B^y^Aj)



1 3 0

This result is seen as a proof that Gordon's formulation 
is correct.

There is, however, one thing that Gordon's 

formulation lacks, and that is allowance for coupling of 

rotations and vibrations in a degenerate transition, in 

the form of the Coriolis constant, 5 • For a degenerate band 

(E band in the case of symmetric top molecules, which have 

doubly degenerate bands) the equation for the rotational 

energy levels is modified to

(J, K) - By J (J + 1) + (Ay - 2Ay § K

S may have any one value ranging from -1 to +1 

and gives rise to a whole range of band shapes 

(31), and one can expect the second moment to change a lot as 
well. It was decided to calculate the equation for the 

second moment of a perpendicular band for a symmetric top 

molecule (all the E bands are perpendicular bands).

The derived equation can then be compared with Gordon's 

equation to see how the Coriolis coupling generally affects 

his formulation.
The allowed transitions and statistical weights 

for a perpendicular transition are set out below#
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Allowed transition for a 
perpendicular band______

Value of gJ, K

J, 1 K I

J, I K I

J + 1, I k| ±1 
J. |K| ± 1

J, I K I J - 1. |k |+1

case we

Q, M(2) r

(j i K -f 1) (j ± K + 2)/(j + 1)

(2J + 1) (j T K) (j t K + 1)/
(J (J + 1) )

(j T K) (j 7 K - 1)/J

Using the same tabulation as for the parallel transition

have

£  ||aBJ(J + 1) + 2 (j + 1) + Z + (A j  ̂ -  B j )̂ (2K + 1)

- 2 S A^ (K + 1) (J + K + 1) (j + K + 2)/(j + 1)

+ j^ABJ (j + 1) + 2 B^ (j + 1) + Z + (Aj - Bj) (2K - l)

+ 2 S A^ (K - l) ^2 (j - K + 1) (j - K + 2)/(j + l)

+ [a BJ (j + 1) + Z + (A^ - B^) (2K + l) - 2 § A^ (K + l)]2

(2J + l) (j - K) (j + K + 1)/(J (j + 1) )

+ [a BJ (j + 1) + Z + (Aj - B^) (2K - 1) + 2 S A^ (K - l) j2

(2J + 1) (J + K) (J - K + 1)/(J (J + 1) )

+ [a BJ (J + l) - 2 B^ J + Z + (A^ - B^) (2 K + l) -

2 5 Aĵ  (K + l) J2 (j - K) (j - K - l)/j

+ |a BJ (j + l) - 2 B^ J + Z + (A^ - B}) (2 K - l) +

2 S Aj (K - 1) ]2 (J + K) (J + K - 1)/J crp(j,K)
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After multiplying out the above and simplifying

we get

Q M(2) .^4 (2 J + 1) |B.2 (2 J (J + 1) - 2 p2 + 1)

+ 4 (k2)

+ + 2 B̂  + 2 (B̂  + A(A -  B) (1(2)

+ ( A ( a - B) )2 (k^) + ( A b )2 (j 2 (j + 1)2)

+ 2 (Bi + %i) A B ( J ( J + 1 )  ) j exp(J.K)

where ■ A^ (l - S ) and X ^ « A ^ ( l - 2 S ) .  These sums can

again be solved as before using series expansions. This was

carried out with the following results 

M (2) - B 2 (—i -  + T * ^2_ )  + + 2
1 B^i 3 3 A o

+ ( A (A -  B) )2 (^  ̂ ^  J  ) +

(f-5- + )■ V  B^ 4 A. 2o
+ ^  (b, + I . )  ( —  * ) + a(a - b)1 1 Bo Ao

1

(Bj + Iĵ ) /(A^ i )

•  • > /  I V  ■  W  ’

Expanding all these terms we get
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2 B 2 2 Â 2 B 2
M (2) -  L  +  L  + î 2 + 2 à a + _1_

B X A X 3 1 1 3O o
+ 2 Â,A B  2 b A B  I, A  A B. A  A 

 ̂ +   + +
*0=

(3.11)

. _2 t> 2 „  ° 2  2
, J _  (_A^ )2 , -i_ ( _ ^ )  ^ ! l _ &  - Il Bi
2*2 \  2̂ *o ®o 3 A^ 3 A^2

We now have an equation for the second moment of a 

perpendicular band for a symmetric top molecule, and want to 

compare this with the equation using Gordon's formulation.

To solve equation (3.2) we have fn̂  ■ 0, • 1 or 0

and rn̂  • 0 or 1 respectively. Taking each term in turn,

as before, we have

) 2/x [{rty2 + m^2 ) _1_ + ( m 2  ^-^2)
Bo

. (f . ÿ) ]
Ao

2 2 
2 V  ^ f _ V
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b) (2 - 2 (m^ rn̂ ) (B^ 0

(0  B,
( ’(o 0

0 ) (m ) (2B + A, ) 
) ( ' ) ^ ^" I  1 ^ 1

a £  ( %  )

+ H  Ir ^  ) (Bi
(0
(0 0 a

° ) ^3. 
0 ) (0J k

0 . « 

1> ('0 A, ) (fn

" 4 B̂  + A_ + 4 B_ A. — 4 B_ — 2 Ai B, + B

A^ + 2 A^ B^ + B^
1 "1 " "1

) ^  ( A B  + A B   ̂ A A  )
Bo B„ A„

(B,  0 0 i M(0 B 0 ) (m )
(  ̂ ) ( ) (0 0 Aj) (m^ )

- l/x ( ^  )
®o *0

(2B^ + A^) - îr -z)

(a ^ + B^ )

d) [(f)' • • (4 3 ) 7  ̂
• (

AA  Ù B \ 1

A B \ 2  ^ / A  AAB

B ®o

X L

I A B \ 2  ^ 3 l A l f  + 4 / A  A A b \̂
\ \ l  A o l  i ^ o  \ i



Collecting all these terms together we have

135

2 B 2 2 A 2 2 2
M(2) -  —  +  L_ + A., + 2 A^ B, + B

B X o
A X o

1 "1

2 A, A  B 2 B, A  B A, A  A B, A  A

B Xo B Xo
2 / AB\;+ ̂  \ TT) A  A\2 A  A A B  

^  Bo

(3.12)

Equations (3*11 ) and (3*12) may now be compared and

are seen to be almost identical for the case when ^ ■ 0 ( ̂  » 0

in equation (3.12) by virtue of its absence). There are a few

minor differences which are set out below#

Terms in equation (3.1l) Terms in equation (3.12)

B
A  A

3A.
B.

- 3 A  A A B 1 / A  A A B \T

2x > "o
A  B \g ^ 1
B,

AB'

3A,
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Methyl iodide will again be used aa a numerical example* 

Putting S - 0,0 and using equation (3,ll).we get
M (2) - 102.77 + 2091.72 25.69 + 2.52

0.02 + 15.20 0.74 + 10.32
+ 0.50 4.49 + 3.11 - 0.22
+ 0.01 + 0.11 + 0.00 — 0.02

M (2) 2257.5 cm -2
-

-2

The terras in disagreement with equation (3*12) add

up to -0.1 cm ^ and so are negligible in this case. The two
/ \ -2 different terms in equation (3.12) add up to only 3 cm .

The discrepancies in the equation are possibly due to the

degree of accuracy to which the series expansion to get

equation (3.11) was taken.

We now want to see the effect of the Coriolis constant

on the second moment, so using methyl iodide and S = —1 in

equation (3.11 ) we get, keeping the terms in the same order

for comparison with the above %-

M (2) - 102.77 + 8366.88 + 231.25 + 7.55

> • 0.02 + 45.59 + 0.74 + 30.95

+ 0.50 + 4.49 + 3.11 - 0.22
+ 0.01 + 0.11 + 0.00 - 0.08 -2

M (2) . 8793.67 ora"2
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And for S = +1 we have 

M ( 2 ) - 102.77 + 0.0 - 25.69

0.02 -  15.20 + 0.74
0.50 + 4.49 + 3.11
0.01 + 0.11 + 0.00

M (2) 57.82 era-2

- 2.52
- 10.32
-  0.22 
+ 0.02 cm-2

So, for methyl iodide,a hypothetical perpendicular band could 

have a second moment ranging from 57.82 up to 8793-67 cm"^.
The Coriolis coupling constant has a huge effect on the second 

moment, and so a measure of the second moment can, conversly, 

yield the Coriolis coupling constant to a high degree of accuracy. 

This can apply to a gaseous band of unknown J , or to condensed 

phase bands. For condensed phase bands it is not known ,

whether Coriolis coupling is affected by the frequent collisions 

and the inability of the molecule to rotate freely. Picking 

out the major terms in equation (3-11 ) we have

 ̂ ^ ^ 2 Î A B  Î A BM (2) 2 B

B X o B X o

From expanding this equation and re-arrangement we get 

the following quadratic , which can be solved for S •
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) - 3 ( <  . 4A,2 . A  B  ̂2A, A B)
V  B x̂ Â x (3.13)

+ (Ai^ + + 2*1'& 8 + *1 A  8 _ m (2)). 0.0
8o^ A^x B^x A^x

Equation (3.13) can be solved using the formula 

(root) - - b ^ ( b ^ - 4 a  c)̂ ^̂

2a

Only one of the roots obtained from this equation should make 

sense. A small computer routine was written to solve equation 

(3.13) for 8 . The correctness of the routine was checked by 

solving for the Coriolis constant in a computer simulated 

spectrum of the band of methyl iodide, given a Coriolis

constant of zero. The result obtained was O.OO4 which implies c

that any results from the equation are accurate to two decimal 

places. Experimental second moments will be considered in 

later chapters.
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Section 3-5 The Fourth Moment

The fourth moment has been developed by Gordon (32) and 

is much more complicated than the second moment. To simplify 

matters, Gordon used classical rotational constants, i.e. the 

upper and lower vibrational states have identical rotational 

constants, * B , His result is set out below

M (4) - 4/i^ ^2 (Tr 5)2 - 3 Tr B.B + 7 m . B . B . 5

- 6 (5 • B . m) (Tr B) + (Tr b "^) (Tr B) (Tr B . B)

- (Tr B"^) (Tr B . B . B) - (Tr b "^) (Tr B) (m . B . B . m)

+ (Tr B"l) (m . B . B . B . m) + 4 < (O V ) . B . B .

(0V)> - 4 <  (5 . B . 0V)2>]cm"^ ^3.14)

0 is an operator whose components 0^, 0^ and 0^ along the axes of 

inertia x, y and z represent derivatives with respect to angles 

of rotation around x, y and z. V is the angle dependent part 

of the interraolecular potential energy. The average, represented

by the brackets < > , is over the classical Boltzmann distribution

for the rotational and translational co-ordinates. For a freely 

rotating molecule, i.e. in the gas phase, there is no intermolecular
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potential energy and thus OV = 0.0 . The potential energy 

terras contribute if the interraolecular forces depend on 

the angles describing the orientation of the active molecule. 

(OV)^ is the squarejof the torque acting on the molecule 

hindering rotation. Numerically, the square of the torque 

is defined by

(OV)^ - ( ^ V/ ̂  0 + cosec ^0 ( à V/

where 0 and ^  are the usual angles defined when using polar 

co-ordinates (0 is the angle subtended about the z axis and 

^  is the angle subtended about the x axis). The terms 

involving (OV) in the fourth moment expression are clearly 

positive, so the hindering of rotation leads to a larger than 

classical (freely rotating) fourth moment.

Equation (3.14) was checked by computing the fourth 

moment from a simulated gas phase band contour of methyl 

iodide using B ■ 0.2502cm A - 5*119 cm  ̂ and T ■ 300°K.

In this case (OV - 0.). A parallel transition was used and 

the fourth moment was calculated to be 88733 cm

Solving equation (3*14) for the above transition we

get

M(4) -  4/x^ (8b ^ + 2A^ + 8AB - 6b ^ - 3A^

+ 7A^ — 12AB — 6a + lOB + 4B /A

+ 4AB + 5A^ + 2AB + 2A^/B - 4B^

- 2a V b - 2b V a - A^ - 5A^ - 2AB

-  2a V b + 2a V b + A^)
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Which simplifies to

M (4 ) . 4/x^ (8b2 + 2bVa) (3.15)

K (4 ) - 87750 cm"'*.

The two values for the fourth moment closely agree, 

the former probably being larger because of small errors in 

the integration using the trapezium rule.

The importance of the fourth moment lies in 

determining the mean squared torque acting on the molecule 

< (0V)^> • This can usually be done experimentally through

comparison of the second and fourth moments, providing the

Rotational constants are known.

e.g. For a linear molecule and a parallel transition 

with rotational constants 

B(x ) - B, B(y) - B, B(z ) - 0 we have 

N(2) - 4-B (kj/ho)

N (4) •  4 (kT /h o )2  (8 b 2) + 48^ <  (OV)^ >

H(4) - 2 m {2)^ + 4b 2 < ( 0 V ) ^ >

<  (OV) >  - / m (4) - 2 M(2)2
4fi2

Here the mean torque is about the x and y axes. Experimental 

fourth moments and molecular torques will be considered in a 

later chapter.
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CHAPTER FOUR Experimental Vapour and Condensed Phase
Second Moments and Condensed Phase Band 
Shapes

Section 4>1 The Determination of the Coriolis Constant
of an "e" Band of a Symmetric Top Molecule 
from the Vapour Phase Second Moment

In the previous chapter it was shown that the Coriolis 

constant of a doubly degenerate band of a symmetric top molecule 

could be calcula ted from the second moment of the band and the 

rotational constants. This equation should be particularly 

useful for bands of molecules with large moments of the inertia 

about the three axes, for which the rotational fine structure is 

merged into a single contour. The Coriolis constant may be 

determined by a trial and error method of computer simulation of 

the experimental band. Alternatively, it can be determined 

from the second moment using equation (3.13) which is easy to 

use. A smooth contour was needed to calculate the moments 

from, because a band like the band of methyl iodide would

be very difficult to measure owing to the numerous strong Q 

branches. A handicap with using "large" molecules to give 

smooth eontours was that there were generally more fundamentals 

resulting in overlapping of bands. Overlapping bands were no 

use because the ( V  - V ^ )  term in the second moment

expression means that terms out in the wings of a band make a 

significant contribution to the second moment. Another
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drawback was that degenerate bands of symmetric top molecules 

tend to be broader than the non-degenerate bands, making 

overlapping of bands more likely.

A fairly good molecule to use was heiafluorobenzene 

(HFB). This has two reasonably well separated e^^ bands.

The first is the band at 312*5 cm  ̂ and the second the

band at 1533 cm ^. The band is shown in Pig. 4*1« It

was measured at a pressure of I.O5 x 10^ Pa, which is the vapour 

pressure of HFB at 300°K, in a 10 on gas cell with polythene 

windows. The wings of the band are not very good but, because 

the wings of bands are approximately Gaussian in nature and 

decay rapidly, an estimate of the error in the recorded second 

moment after drawing corrected wings on the spectrum is 20^.
The second moment was calculated to be 4O ± 8 cm The

calculation was performed on the computer using the trapezium 

rule on equation (3*l)« Use of equation (3*13) then resulted 

in an estimated Coriolis constant of —0,9 I  0,3. This 

compares with a Coriolis constant determined by Wheatley (3&) 

of — 0.6.
The "\)̂ g band was then looked at. A Coriolis 

constant for this band was not recorded by Wheatley. The

spectrum of this band was measured in a 10 cm gas cell with KBr
2

windows and at a pressure of about 5 i 10 Fa. The second 

moment of the band was calculated to be 60 2 I^ cm and the 

Coriolis constant obtained was - 1*5 - 0*3* Tbe maximum value
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-1Fi/?,4.1 The 5 cm band of hexafluorobenzene, 
measured in a 10 cm gas cell,at a pressure of 
1.05x10^ Pa.
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that I S 1 should be is 1.0,and so it was suspected that 

another broadening mechanism was perturbing the band, 

possibly Fermi resonance. Fermi resonance arises from 

two closely lying energy levels of the same species inter

acting. The wavefunctions describing the two states mix 

and the energy levels may repel one another. The 

degenerate vibrations of the e^^ band of HFB 'at 1020 cm~^

( are split into a doublet by Fermi resonance (36)
and so this is probably the reason for the high second 

moment of the band. The band was simulated on the

computer using programme PLESPC and a Coriolis constant of 

1.5, then compared with the experimental band. The two 

bands are compared in Fig. 4.2 and it is seen that the 

simulated band is much sharper than the experimental. This 

agrees well with a possible splitting of the two degenerate 

energy levels of the vibration.

It was found that equation (3.13) did not appear to 

be of much practical importance because of the problems of 

overlapping bands, although it may be used to give an 

approximate Coriolis constant which may then be refined by 

computer simulation of the band.
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Fi^.2u.2 The 1553 cm"^ band of hexafluorobenzene. 
The broad band is the experimentally measured one, 
measured in a 10 cm aas cell,at a pressure of about 
5 X lO^Pa. The sharp band,with the rotational fine
structure,is a simulated band of the same second 
moment as the experimental one.
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Section 4»? Experimental Second Moments and Band
Shapes in the Condensed Phase

When g o in fr into the condensed phase, the intense 

part of an infra-red band becomes much narrower and the 

half height bandwidth is generally reduced five-fold. If 

the second moment of a band is to stay constant in going 

from the vapour phase to the liquid phase, the wings of the 

condensed phase band must extend much further than the vapour 

phase band to compensate for the reduced width near the band 

centre. This is, in fact, the case and an example is shown 

in Eig. 4*3 which compares the overall band contours of the 

band of methyl iodide in the vapour and condensed phases.

Thus, measurement of second moments is more difficult in the 

condensed phase because the overall bandwidths are greater in 

the condensed phase and bands will thus overlap each other to 

a rreater extent than in the vapour phase.

A large number of symmetric top molecules were 

observed as liquids, and in solution, to find the most isolated 

infra-red bands from which to measure accurate second moments. 

Molecules looked at included methyl iodide, iodoform, benzene, 

HFB, chloroform, acetonitrile and trifluoromethyl bromide.
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Fig.4. 3 The *v) ̂  hand of methyl iodide, at 
1251 cm ^ in the vapour phase and 1240 cm ' 
in the liquid phase, ""he liquid phase band 
has been superimposed on the gas phase band 
to compare their shapes.
Vapour - path length is 10 cm,pressure is 
5-0 X lO^Pa.
Liquid - path length is 0.001 om.
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The least overlapped bands were the band of methyl iodide 

at 527 cm  ̂and the band of benzene at 674 om Both

of these bands are non-degenerate and produced good spectra 

with winrs that approached zero absorption. The band of 

methyl iodide was measured in solution in carbon tetrachloride 

and the band of benzene as solution in cycloheiane.

Both the bands were corrected for slit distortion. The 

band of methyl iodide had a hot band at 6.4 cm  ̂ to lower 

frequency relative to the fundamental which was removed (see 

Chapter Two). Second moments were calculated and the second 

moment of the band of methyl iodide was found to be about 

300 cm ^ compared with a theoretical value of 210 cm ^
(calculated using equation (3-9)) and the second moment of the 

band of benzene was found to be about 110 cmT^ compared 

with a theoretical value of I63 cm ^ (calculated using 
rotational constants of reference (3&) )• It was then 

realised that there were large errors in the second moments 

arising from the wings of the bands, in the region where the 

baseline and the spectrum were about 0 .5% transmittance apart.
The wings of the bands were thus re-measured using wider path length 

cells. “ It was seen that the high frequency side of the band 

of methyl iodide was overlapped by the band with a minimum 

absorption around 660 cm The signal on the low frequency

side was very noisy due to the lower energy available because 

of the K Br optics and there was also another overlapping weak 

absorption. The spectrum is shown in Fig. 4*4* The
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Pig.4,4 The band of rne.thyl iodide 
dissolved in carbon tetrachloride. The 
concentration is 3.^4 mol dm"^ (25 
solution,by volume), the spectrum is shown 
at path lengths of 0.0219 cm and 0.213 cm.
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band of benzene was found to be overlapped on the high 

frequency side but the low frequency side was clear 

excepting a small kink in the near wing. The spectrum 

is shown in Fig. 4*5 and Fig. 4*6.

Unless the win/rs of a band go to zero, the 

second moment of the band is infinite because of the 

terra ( ' and so it was decided to plot the build

up of the second moment as a function of distance away from 

the band centre. The band of methyl iodide was observed 

to be very symmetric near the band centre, after removal of 

the hot band, and so it was decided to assume that the ideal 

band would have been symmetric about the band centre. The 

high frequency side wing was better than the low frequency 

side one and so it was used for the second moment calculation.

The second moment of one side of a symmetric band, normalised 

using the integrated intensity of that side,is equal to the 

second moment of the entire band,normalised using the total 

integrated intensity. The trapezium rule was used to calculate 

the second moment out to a particular frequency and the programme 

used was called FXTRAP. The result is shown in Fig. 4*7a and 

it is to be seen that the seoond moment is beginning to tail 

off at 400 cm ^ but is much larger than the theoretical value.



152

Pig. 4.5 The 674 cm  ̂ band of benzene dissolved 
in cyclohexane. The concentration is 0.192 mol dm' 
(1.5%, solution,by volume). The spectrum is shovm 
at path lengths of 0.0041 cm and O.OiSb cm. The far 
wings of the band were run at a slightly higher 
concentration of 0.943 n̂ol drn"̂  (7 %  solution by 
volume) and using a path length of 0.0968 cm, ^hese 
are to be seen in Fig.4.6 .
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71^.4.6 The far wings of the 674- cm  ̂ band of benzene 
dissolved in cyclohexane (see Pig.4-.5 for details^.
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The figures are plots of the build up of the second norent,with 
frequency, for (Fig.**-. 7a) the high frequency side of the -V ̂  band 
of methyl iodide,dissolved in carbon tetrachloride and (Fig.4.7b) 
the low frequency side of the 674 cm band of benzene,dissolved 
in cyclohexane.
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This is probably due to the overlapping band. Separation 

of the and ~\)^ bands is thus desirable, but to do this we
need to know the shape of an isolated absorption band. This 

will be dealt with later.

The band of benzene was also seen to be

symmetric near the band centre and so the second moment of the

low frequency side of the band was considered to be representative

of the band as a whole. The small absorption in the wing near

608 cm  ̂ was removed by drawing across its wings. The second

moment is seen, from Pig. 4*Tb, to be levelling off to a value

of 170 cm The estimated experimental error in this is only

1 20 cm ^ because three different path lengths were used in

measuring the band. The agreement with a theoretical value of 
-2163 cm is very encouraging.

Another molecule with a good, well separated band to 

measure is the linear molecule carbon disulphide (dissolved in ■ 

carbon tetrachloride). The strong band at 1522 cm  ̂ is < 

well separated from other bands although this band is complicated 

by a hot band and an isotopic band on the low frequency side. 

Removal of these was detailed in Chapter Two and the 1/)̂ band 

was seen to be symmetric near the band centre afterwards.

The low frequency side of the band was still a bit uneven due 

to other possible isotopes and hotbands, but the high frequency 

side wing was completely clear and was used for the second 

moment calculation. The band is shown in Pig. 4«0 and 

the second moment growth curve in Pig 4*9*
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The v> b^nd cf carbon disuipnide dissolved in barbon tetrachloriA^^ 
Fig.if..Oa - concentration is 0.0664 mol dm" (0.4 %  solution,by volume), 
path length is 0.0042 cm. Fig.4.8b - concentration is 1.654 mol dm” ' 
(10% solution,by volume),path length is 0.002 cm. Fig.à..8c - conc
entration is 1.654 mol dm  ̂(10 %  solution,by volume),path lencth is 
0.023 cm.
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Fie.4.9
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The band of carbon disulphide dissolved in carbon 
tetrachloride. The fifiire shows the build up of the second 
moment,with frequency,on the high frequency side of the band. 
The higher second moment is obtained from the experimental 
band contour,before correcting for the hot band and isotopes, 
whereas the lower one is obtained from the corrected band 
contour.
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The theoretical seoond moment was calculated to be 92 cm 

The experimental second moment was l80 cmT^ before removal 
of the hot band and isotope and 140 cm ^ afterwards, with 
an estimated experimental error of 1 20 cm This was a

rather disappointing result because this wing of the band was 

so clear.

Out of the two bands with a good clear wing only 

the benzene band yielded a good second moment. Measurement 

of second moments was thus seen to be difficult. Several 

papers have been published in the journals on experimentally 

determined second moments and these revealed the following 

facts. Shlmozawa amd Wilson (37) had measured the second 

moment of the out-of-plane C — H vibration of 1, 2, 4, 5 
tetrachlorobenzene at 8?8 cm  ̂ in solution in carbon disulphide.

£
This is a good isolated, symmetric band and yielded a second 

moment of 13*7 cm ^ compared with a theoretical value of 18.2 cm 
This band had not been re-measured with a thicker cell to obtain 

the wings of the band more accurately, though. It was decided 

to re-examine this band . This showed that the wings contained 

three weak absorptions and also that the carbon disulphide solvent 

had an absorption in the low frequency wing at 856 cm”  ̂which 

was intense enough to produce an error in the wing, even when 

using a variable path length cell in the reference beam.
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Ideal allowance for the weak absorptions would probably 

have yielded the theoretical second moment, but the 

errors involved in removing these absorptions were 

considered too large to be able to quote a second moment 

with an error of less than one hundred per cent.

Bonn and co-workers (38) have measured the 
absorption band of molten sodium nitrate at a series of 

temperatures and each experimental second moment was about 

half the theoretical value. The authors did point out 

that this was, in their opinion, due to inaccuracies in 

the measurement of the wings of the band, which were not 

re-measured using a thicker sample.

Cabana and co—workers (39) have measured the 

and absorption bands of liquid methane with the aim 

of obtaining the mean squared torque acting on the molecule, 

from comparison of the second and fourth moments. Second 

moments were calculated from a single path length 

spectrum and if the second moment did not agree with the 

theoretical, the uncertainty in the basejline was assumed 

to be the cause for this error. The base line was thus 

raised,^or lowered, to give a band which yielded the theoretical 

second moment. The fourth moment was then measured from this 

band and the mean squared torque obtained from the equation 1- 

[m(4) - 2.5 . M(2) ] 3 1^/2 = < >
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This equation only applies to spherical top molecules 

where I is the moment of inertia. Figures quoted in 

the communication showed that raising the base line by 

0.15% transmittance raised the second moment by 8.5^, 
raised the fourth moment by 20.4# and raised < by 25*7^*
The mean squared torque is thus very sensitive to movement 

of the base line. It is not clear whether making the 

experimental second moment fit the theoretical value in 

order to obtain a mean squared torque from the fourth 

moment is justified, but the errors involved appear to be 

huge.

Rothschild (4O) has followed Cabana and co-workers 
in fitting a theoretical second moment to a band in order to 

get the fourth moment. Favelukes and co-workers (41) have 
stated that the errors in calculating second moments for the 

^ and bands of methyl iodide are too large for them

to be of any worth.

Measurement of second moments is thus very

difficult and it is necessary to try and deduce the nature 

ofshape of infra-red band contours in the condensed phase 

to enabla overlapping bands to be accurately separated.

It is also possible that other relaxation mechanisms are 

broadening particular bands. This will be dealt with in 

Chapter Seven.
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Section 4.3 Statistical Analysis of the Condensed
Phase Contours of Infra-red Bands - I

It has been realised for many years that a symmetric, 

condensed phase infra-red absorption band is essentially a 

Lorentzian function. Ramsey (35) assumed that the

Lorentzian function fitted a true band contour in order to 

correct for slit distortion. Poor resolution and 

instrumentation had prevented much work being done on band 

shapes until the last twenty years. Abramowitz and Bauman 

made a comprehensive survey of a series of spherical top 

molecules (42) using a high resolution instrument with a 

spectral slit width of one wavenumber. Their conclusions 

were that the observed symmetric bands of liquids and solutions 

fitted a Lorentzian function well and that any asymmetric 

bands were also asymmetric in the vapour phase, due to 

intramolecular perturbations. Consequently they concluded 

that non-directional molecular interactions in a solution 

(using a spherical top as solvent) lead to symmetric bands.

The origin of the Lorentzian function goes back 

to the Lorentz model for absorption (43)« Lorentz assumed

that the atom, or molecule, absorbed, or emitted, at a 

discrete frequency during the time between collisions.



162

Radiation stopped abruptly when collisions occurred and 

the energy became wholly kinetic. The time intervals 

between collisions were considered to be large compared 

with the duration of a collision. The effect of the 

collision was such that all the pre-existing orientations 

were obliterated and the molecules became randomly 

oriented with respect to the radiation. The way in 

which the Lorentz model leads to a Lorentzian function is 

summarised well in a review article by Seshadri and 

Jones ( 4 4 ) .  Later Van Vleck and Weisskopf ( 4 5 )  suggested 

that, after collision, the molecules would tend to retain a 

selection of low energy orientation with respect to the 

field. This does not effect theLorentzian function in the 

infra-red region though, as it involves the term V / 

which is 1 throughout an infra-red band.

A programme was written to fit the best Lorentzian 

function to an infra-red band (LORGAP). The corrected 

band of methyl iodide dissolved in carbon tetrachloride was 

used and the following results observed. The Lorentziap 

function was a good fit near the band centre but the 

experimental contour did not fall off as fast as the 

Lorentzian after about 10 cm ^ from the band centre.

See Pig. 4"lOa. The 1)^^ band of benzene dissolved in 
cyclohexane was looked at and this band fitted well to a
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Pig.A,10& The corrected -j ̂  band of methyl
iodide dissolved in carbon tetrachloride.
The high frequency side of the band contour
is fitted to a Lorentzian function of the

— 1same half height bandwidth of 8.4 cm . The 
solid line is the experimental band contour 
and broken line is the Lorentzian function.
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Fig.4.10b The corrected 674 cm band of 
benzene dissolved in cyclohexane. The lo\T 
frequency side of the band contour is fitted 
to a Lorentzian function of the same half 
height bandwidth of A,3’ cm \  The solid line 
is the experimental band contour and the 
broken line is the Lorentzian function.
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Lorentzian function near the band centre, but did not fall 

off as fast as the Lorentzian in the near wing. It then 

fell off faster than a Lorentzian in the far wing. See 

F i f r . 4.10b.

It thus appeared that a Lorentzian function fitted 

an absorption band near the band centre, but not out in 

the wings. A Lorentzian function was simulated on the 

computer and the build-up of the second moment plotted 

against frequency. A straight line was produced of 

constant nositive gradient, showing that the second moment 

of the Lorentzian function is infinite. This applies to 

all Lorentzian functions. A Lorentzian with an infinite second 

moment is not consistent with Gordon’s theory. The second 

moment is related to the rotational kinetic energy through 

the rotational constants and this implies that the rotational 

kinetic energy could be infinite. It has already been shown 

that finite second moments can be obtained under ideal 

conditions and so a perturbation of the Lorentzian function 

was sought. Pitha and Jones (46, 47) have suggested the 

use of a Lorentzian plus Gaussian sum function to fit bands, 

but this again has an infinite second moment. In Appendix Î 

it is shown that a Gaussian function of the form exp (- S ^) 

has a second moment of l/2s. LORGAP was, nevertheless, 

programmed for this sum function and the corrected
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band of methyl iodide diBsolvedjin carbon tetrachloride was 

fitted to the best sum function, using all ranges of relative 

intensities and bandwidths for the two functions. Only the 

first 28 cm  ̂ of the high frequency side of the band were 

used and a least - squares criterion used for fitting the 

best simulated curve to the experimental. The best fit is 

shown in Pig. 4.11a and was not considered Satisfactory. 
Similar poor results were obtained for the band of carbon 

disulphide and the band of benzene. The band of

liquid methyl iodide was also considered, whose gas phase 

spectrum is well behaved. The band was measured as the 

pure liquid because no suitable non-absorbing solvent could 

be found. The band is overlapped on the high frequency 

side by the band, but is symmetric near the band centre. 

The band is also only slightly overlapped in the low 

frenuency wing and so the low frequency side of the band 

was used for the fitting. The band is seen, in Pig. 4.11b, 

to be much more intense in the near wing than the Lorentzian 

function that fitted near the band centre. This looked 

like a good case for fitting to the sum of a Lorentzian plus 

Gaussian function but the best fit was not at all good, as 

is to be seen in Pig. 4«llb.
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height width is 4.6 cm

Fig. 4.11a The corrected band of methyl
iodide dissolved in carbon tetrachloride. The
high frequency side of the band contour is
fitted to the best Lorentzian plus Gaussian

— 1sum function over the range cf 28 cm , The
broken line is the experimental band contour
and the solid line is the simulated function.
Lorentzian function - height is 0.36 and half

-1height width is 15.3 cm
Gaussian function - height is 0,64 and half

-1

FREQUENCY RELATIVE TO BAND CENTRE ( c m ’ }

?ig.4.11b The corrected band of methyl
iodide(spectrum obtained using a path length
of 0.0041 cm). The low frequency side of the
band contour is fitted to the best Lorentzian
plus Gaussian sum function over the range of 

— 1120 cm" . The broken line is the experimental 
band contour and the narrow solid line is the 
simulated sum function.
Lorentzian function - height is 0.74 and half 
height width is 43 cm .
Gaussian function - height is 0.26 and half 
height width is 160 cn” .̂
The thick solid line is a Lorentzian function 

which fits the experimental band 
near the centre.

FREQUENCY RELATIVE TO BAND CENTRE (cm" )
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There may still be a Gaussian character in the 

absorption band contours of non-degenerate vibrations 

(and degenerate vibrations with a P, Q, R type structure) 

in the form of the smoothed contours of P and R branches, 

which may manifest themselves as a double Gaussian 

function. The P and R branches have zero intensity near 

the band centre and so a Lorentzian function was calculated 

for the high frequency side of the band of methyl iodide, 

which fitted the band exactly at half-height. This 

Lorentzian function was extended to 40 cm  ̂ from the band 

centre and the difference between the intensity of this 

function and the experimental contour was calculated. This 

difference was then plotted out to see if there was an 

underlying R branch. The result is shown in Pig. 4*12 along 

with the gas phase R branch contour. The excess intensity 

does not appear to be due to an R branch. The same procedure 

was carried out for the high frequency side of the band of 

carbon disulphide dissolved in carbon tetrachloride, and the 

low frenuency side of the band of benzene dissolved in

cyclohexane. These are also to be seen in Pig. 4*12 and are 

no better, thus disproving the idea for these cases.
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frequency side of the V ,  band of carbon disulphide,and the bottomR _  -j

for the low frequency side of the 6?4 cm band of benzene, ""he
broken lines are the smoothed P or R branch contours of the vapours
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A Lorentzian times Gaussian product function 

(46, 47) was then considered for the above four bands.

It is known that the near wings of the bands are more 

intense than the Lorentzian function that fits near the 

band centre, and so this product function cannot yield 

the experimental band shape, because the product will 

fall off faster than the original function in all cases.

A further means of perturbing a Lorentzian 

function is by convolution. When this is done using 

a Gaussian function it is called a Voight function (48) 
and this has been suggested for band fitting in reference 

(44), The Voight function was investigated using computer 

simulation and it was found that the Lorentzian behaviour 

around the band centre was destroyed by the convolution.

An example of a Voight function is to be seen in Fig. 4*13a. 

Other convolutions were tested such as the convolution of a 

Gaussian function with a back-to-back exponential function 

(exp - (a |n3l) ). No close fits to the experimental bands 

were obtained, but an interesting property of the convolution 

was found. This was that the second moment of a convoluted 

system is equal to the sum of the second moments of the 

original and convoluting functions, which means that the con

volution of a Lorentzian and another function produces a 

function with an infinite second moment. Further evidence 

against the convolution is to be found in Chapter Five.
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An interesting way of depicting band contours 

was employed. This involved re-arranging the equation 

of the function that was meant to fit a contour, to give 

the equation of a straight line. In this way, deviation 

from a straight line showed how the contour behaved in 

relation to the function.

The equation of a Lorentzian function may be

written as

( V  ) . / (1 + X3 { V  - P  )

=> Xj / kĵ ( V  ) - 1 + I3 ( V  - V  (4.1)

normalises ( V  ) and so a plot of (-^ )

against ( V  - is a straight line of slope x^ and intercept j

1.0 • The convolutions of Fig. 4*13a were plotted out using the 

above "Lorentzian axes" in Fig. 4»13b. The broken line 

appears to be a straight line, but the Lorentzian in this case 

was convoluted by a Gaussian function of one third of the half 

height bandwidth, so that the Lorentzian function was not 

particularly altered.

The equation of a Gaussian function may be written as ;-

k^ ( V  ) - x^ exp (- 8.J ( -V - )

- In^kg ( V  ) / = s^ ( (4,2)
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Fig.4.13% Three examples of convolutions of 
a Lorentzian function by a Gaussian function.
Narrow solid line - L. of = 2
G. of A v .|̂ 2 - 4 cm
Thick solid line - L. of /o 4 cm  ̂ and
G. of A = 2 cm
Broken line - L. cf AV.|y2 = 4.5 cm ^and 
G. of AV^y2 = 1-3 cm~ ‘.

K 0.4

cm ' and

L, t= Lorentzian function. 
G. = Gaussian function.
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g

0

8

6

4

2

0
125750 25 10050 150

(FREQUENCY RELATIVE TO BAND CENTRE)^ (cm"^'>
Fig.4.15b The three curves of fig.4.13a are plotted to show 
any Lorentzian function character as a straight line.
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Hence a plot of - In ( V  )/x^ against 

( V  ” is a straight line of slope s^.

The eouation of an exponential function may be 

written as %-

k ( V  ) - x^ exp (- 8. I Î) - i) I )o X X ' O I

-  I n ^ k g  (  V  )  /  X  J  =  ®2 i ^  “  ^ o  I ( 4. 3)
Hence a plot of - Inj k̂  ̂ ( V  ) / x^ against 

V  - V q I is s straight line of slope Sg.

Equations (4.I), (4.2) and (4.3) were all used on 
experimental band contours. Equation (4.I) was first used 
on the low frequency side of the band of benzene dissolved

in cyclohexane. This produced a linear plot out to about two 

serai half height bandwidths as can be seen in Pig. 4.14a.

The plot was extended out to ten serai half height bandwidths 

in Fig. 4.14b which shows that the intensity of the band later 

falls off slower than the original Lorentzian function.

Finally, in Fig. 4-15a, the plot is extended out to twenty 

semi half height bandwidths where the band contour is seen to 

be falling off much faster than a Lorentzian function. We 

thus only have pure Lorentzian character close to the band 

centre. Equation (4.2) was then tried out on the wings of 
this band and Pig. 4.15b shows that the wing is falling off 

slower than a Gaussian function. Equation (4.3) was finally 
used on the wing and this showed that the far wing was an 

exponential function, as can be seen in Fig. 4.16a.
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The plots show the Lorentzian function character cf the low 
frequency side of the 674 cm  ̂ band of benzene,dissolved in 
cyclohexane.The half height bandwidth is 4.3 cm .
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The same benzene band as above, plotted to show any Gaussian 
function character,as a straight line.
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'̂ he same benzene band as in the previous figures is plotted to shorn 
any exponential function character as a straight line. Fig.A.l^a 
shows the overall shape and Fig. 4.16b is an enlargement of the winr 
showing how closely it follows an exponential.
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An enlarged diagram is shown in Pig. 4.16b, where it is seen 

that the graph is very linear.

The wing on the high frequency side of the band

of carbon disulphide dissolved in carbon tetrachloride was

next plotted out on "exponential axes" and it can be seen

from Pig. 4.17a that this wing too, is exponential. This

exponential behaviour leads to the possibility of separating

overlapping infra-red absorption bands. This was tried out

on the ^ and bands of liquid methyl iodide. The wing

of the 1/)̂  band was plotted out on "exponential axes" and is

to be seen in Fig. 4.17b. Prom about 32 cm ^ from the band 
-1centre to 52 cm the wing appears to be exponential, and 

then falls off slower than an exponential due to the 

overlapping band. It was decided to extrapolate this
<c

wing as the exponential and then observe the wing of the 

band after subtracting away the wing. Pig. 4*18 shows 

the experimental spectrum of the ' ) ) ^ and bands, along with 

enlarged wings. A small combination band in the wing at 

720 cm  ̂ was removed by drawing across its wings. Pig. 4*19a 

shows the wing of the l ) ^  band before subtracting away the 

exponential wing, and afterwards. The corrected l )  ^ wing 

is seen to be a good fit to an exponential. This was very 

encouraging. The second moment of the band was re-calculated 

using the exnonential wing extrapolated out to 200 cm  ̂

from the band centre and found to be about 700 cm
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Fig.A.19a shows the low frequency side of the band of methyl 
iodide liquid,plotted to show any exponential character as a 
straight line. The solid line is the experimental and the broken 
line is the shape obtained after subtracting av/a]/ the exponential 
wing of the band.
Fig.4.19b shows the build up of the second moment of the band 
obtained from the corrected curve of fig.4.19a.
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The experimental error in this (assuming the wing is 

exponential) is probably 1 200 cm The second moment

is thus much higher than the theoretical value of 

210 cm although this measurement was for the pure liquid.

This problem will be discussed in a later chapter.

The second moment of the low frequency side 

of the band of liquid methyl iodide was calculated 

using the exponential wing and came to 1800 cm ^ with an 

estimated experimental error of 1 200 cm A plot of the

build-up of the second moment is shown in Fig. 4*19b. The 

theoretical second moment was calculated using equation 

(3*ll) and a Coriolis constant of 0.21 and came to 1440 cm 

It is not clear whether the discrepancy between the theoretical 

second moment and the experimental second moment is due to a 

possible change in the Coriolis constant in the condensed 

phase, or due to some other broadening phenomenon.

Observations on some other overlapped infra-red

absorption bands revealed that bands needed to be well separated

before one could observe an exponential wing. In the above

cases, exponential behaviour began at about 40 cm  ̂ from the
—1band centre for the benzene band, 30 cm for the carbon 

disulphide band and 30 cm  ̂ for the band of methyl iodide.

To obtain a decent plot of this exponential behaviour one would 

need to go out to about 60 cm  ̂ for these bands, without any 

overlapping bands interfering. Even this requirement is difficult 

to meet in most cases and this requirement may be expected to be
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for ft greater distance out from the band centre for wider 

bands, e.g. 200 cm  ̂ for the band of methyl iodide.

The state of the statistical band shape analysis 

so far was not very satisfactory. It was seen in the 

literature (41) that the Fourier transformation of an 
infra-red band contour may yield further information about 

the band shapes. This will be discussed in.the proceeding 

chapter.
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CHAPTER FIVE Fourier Transformation on Infra-Red 
Band Contours

Section 5.1 Derivation of the Relationship between 
the Transition Dipole Moment Correlation 
Function and the Frequency Spectrum

Fourier transformation has been applied to nuclear 

magnetic resonance (N.M.R.) spectra for several years to 

observe the time decay of the spectra. It was shown by 

Kubo (49) that the N.M.R. frequency spectrum is the Fourier 
transform of the. correlation function of the orientation 

angles of a vector connecting a pair of interacting spins, 

one of which is the relaxing spin. Kubo also implied that 

analagously, in the infra-red, the absorption spectrum is the 

Fourier transform of the correlation function of the orientation  ̂

angles of the transition dipole moment vector.

A correlation function, C ( %  + t ), is defined 

by the equation :-

c ( r  + t )  - < F ( r )  G ( T  + t ) >

The brackets represent an ensemble average and F (l^),

G (T  +- t) are two vectors describing some state of the system 

at times T  and T  + t respectively. In most spectroscopic 

applications interest is in situations where F and G refer
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to the same vector property, in which case C ( T  + t ) is 

called the autocorrelation function.

Gordon developed the infra-red theory (30) to 
investigate what an infra-red spectral band shape can tell 

us about molecular motion, and in particular molecular 

rotation. Interpretation of spectroscopic information is 

usually based on assignment of lines in a spedtrum to 

transitions, inducedjby the measuring radiation* between 

the various quantum states of the system. We may call this 

conventional spectroscopic view the Schrodinger picture, 

since attention is focused on the energy levels of the system, 

rather than on its time development. There are several 

drawbacks to this method of interpretation. There may be 

so many transitions that interpretation is difficult, or the 

lines may blend together to form a continuous band. This is 

usually the case in dense gases, liquids, solutions and many 

solids. The assignment of individual lines is impossible. 

The intensity distribution, determined by all the many - 

molecule wavefunctions of the system, is essentially 

impossible to calculate. Also, there is no classical 

analogy of a single quantum state so that, even for systems 

which are described reasonably well by classical mechanics, 

the Schrodinger picture does not allow any classical 

correspondence to be exploited.
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However, the Heisenburg picture of quantum 

mechanics provides a powerful interpretive tool for spectra 

of complicated systems. By focusing attention on the time 

development of the system, rather than on its quantum states, 

the above difficulties may be avoided. Interpretation of 

unresolved lines is possible and the interpretation is 

easily visualised in terms of molecular motion in the system. 

Also, a classical correspondence exists which may be exploited 

for systems which approach classical behaviour. The 

Heisenburg picture of spectroscopy leads naturally to the 

consideration of a spectrum as the Fourier transform of an 

appropriate time autocorrelation function. As already 

mentioned in Chapter One, a Fourier transform may be 

inverted, and so we can get from the experimental frequency 

spectrum to the time autocorrelation function. The 

transition dipole moment vector must be a simple molecular 

property, uninfluenced by the others in the system, so 

ideally we should use dilute solutions. Thus, if the short 

time and long time behaviour of the system is different, the 

two are isolated in the autocorrelation function but, in the 

frequency spectrum, the intensity at a particular frequency 

includes contributions from the entire time development of 

the autocorrelation function.
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In infra-red spectroscopy equilibrium is very 

rapidly attained and since measurements are made over 

times much longer than the relaxation times it follows that 

the autocorrelation function of the transition dipole 

C ( T  , t ) does not vary with T  and can be replaced by 

C (O, t ) or just C (t ). The way in which the 

autocorrelation function is related to the frequency 

spectrum has been set out by Gordon (5O) and also by 
Steele (51).

The absorption coefficient, k ( v  ), can be 

related to the Einstein transition probability for a 

transition from a state "i" to a state "j". Expressed 

in Dirac notation we have i-

k (V ) - ( ^  ^
3 oh i  j

Hi < i  e

(5.1)

where € is a unit vector along the direction of the electric 

field of the incident radiation of frequency V, ^  is the 

total electric dipole moment operator for the molecules in 

the system, is the number of molecules in the initial 

state "i" within the ensemble, and is the frequency for

transition from state ”i" to state "j". The summation is
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taken over all states such that the transitions j i have 

transition frequencies within the bandwidth under consideration. 

The Kronecker delta &( - V  ) is present to formally

express that the transition probability is zero unless

Gj - Gl he ■ he V  .

Equation (5*1 ) may be converted to the Heinsenberg 

form by introducing the Fourier expansion of the Kronecker 

delta %-

+00
S ( V  ) - l/2tr exp (i 2 TT o V  t) dt

in which case we now have

i >
+

—  o O

exp

2 TT i c "V t

2 TT i t

dt

(Ej - ) -

(5.2)

Now, in the Heinsenberg formulation, the eigen

values are taken as time independent with the operators ^(t )  

varying as

&  ( t) = exp (2 TT i H t/h)*èexp (- 2 t t  i H t/h)
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Also,

exp (- 2 TT i H t/h) | i > » exp (- 2 tt i t/h) | i

and < j I exp (2 TT 1 H t/h) « < j  | exp (2 tt i t/h)

Replacing the dipole operator of equation (5*2) 

using the above we have %-

jW (t) - exp (2 TT i H t/h) (O) exp 

(- 2 TT i H t/h) 

and using the completeness relation 

we get
II (5.3)

( ^  ) = ( 3 oh ) exp (- 2 TT i c V  t)

£  <  i 1 6 • ^  (0) 6 • ^ ( t )  I i >  dt

The sum over all "i" is simply the equilibrium average

€ • (0) e • (t) >

For an isotropic sample, the same result is 

obtained if we average over all the three polarisation 

directions of the radiation and we obtain %-
+ 00

—  of>

exp (- 2 TT i o -V t )

<  \ ^ ( 0 )  • f^(t) > dt
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It is usual to express the transition dipole 

correlation function in terms of a unit vector, "u", along 

the direction of the transition dipole moment. The term 

correlation function, rather than autocorrelation function, 

is employed here because cross terras between different 

molecules are inherent in the ensemble average unless we 

have dilute solutions. Normalising to unit ^rea we get »-

+ oO
exp (- i 2 T C  ^ t)

u (o) . u (t) ^  dt

If we are interested in the relaxation of a 

particular vibrational transition dipole moment we must have 

a reference frequency to work from, which will be the band 

centre in this work. The final expression is thus %-

+ oO

k ('V ) / r " l/2-rr exp ( - i 2 T T c ( v  - Vj)

t) u (o) . u (t) >  dt 

and the inverse Fourier relationship is defined as

u ( o ) . u ( t ) ^ «  J k ( v )  exp (i 2 TT c C ' V  - V  ) t ) d V
band________________________________ ______

T
(5.4)
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The above equations express the Heisenberg 

description of the infra-red band shape. The distribution 

of absorption frequencies about the vibrational frequency 

is the Fourier transform of the average motion of the 

transition dipole moment. In general, a correlation 

function will contain cross terras between transition dipole 

moments of different molecules and, because jpf these, one 

cannot simply interpret the dipole correlation function.

When the observed molecules are dissolved in a solvent, so 

that they are well separated from each other, these cross 

terms disappear and we are left with the autocorrelation 

function. The autocorrelation function at time ■ t 

describes the average projection of a molecule's vibrational 

transition dipole moment on that at time » 0. This assumes 

that the vibrational motion of the molecule is separable 

from the rotational motion, as in the B o m  — Oppenheimer 

anproximation, and | yW | is constant during the time scale 

being investigated (see Chaphars Seven for more observations 

on vibrational relaxation).

From vector algebra we know that for two vectors

A and B":-

A . B ■ I A I X I B I cos 0 

where | A | » (a^^ + magnitude

of the vector and 9 is the angle between the two vectors.
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If we are dealing with unit vectors we have simply A . B • 

cos 0. So, to determine the autocorrelation function, we 

determine the dot product of a unit vector along the 

direction of a transition dipole moment at time » t, 

compared with a reference time = 0. We do this for each 

molecule of the ensemble and take the average result.

This then tells us the average cosine of the, rotational 

angle, 0, the molecules of the ensemble have traversed in 

a time t.

For molecules in the gas phase collisions occur 

which damp this cosine wave exponentially with time 

(in Chapter One it was mentioned that collision broadening 

leads to a Lorentzian line shape, which Fourier transforms 

to an exponential in the time domain). Gordon (50) showed 
how the autocorrelation function for carbon monoxide changed 

in going from the gas phase to the solution phase. The 

general trend is shown in Fig. 5.1. The negative values of 

the autocorrelation function are from the molecule having rotated 

over 90^ and thus having a negative cosine. The figure shows 

that the rotational autocorrelation function decays more slowly 

for a solution. This can be visualised as a hindering of 

rotation from neighbouring molecules. Steele(52) has shown 
that, at short times, a Gaussian type decay of the autocorrelation 

function may be expected. A typical autocorrelation function • 

of a solution is shown in Fig. 5*2a. (This was calculated
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Fig.5.1
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The figure shows a range of transition dipole autocorrelation 
functions for the infrared band of carbon monoxide in different 
envirornents. The top curve is carbon monoxide dissolved in 
chloroform (liquid),then the next one is carbon monoxide in
carbon tetrachloride (liquid),then carbon monoxide in n-heptane 
(liquid),then carbon monoxide in argon (gas,5.1 x 10^ Pa),and 
finally carbon monoxide in argon (gas,2.7 x 10^ Pa).
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Fig.5.2a
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'"he figures show the autocorrelation function of the '0 ^  

band of carbon disulphide dissolved in carbon tetrachloride,
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using e x t r a p ). The initial curve is approximated to a 

Gaussian decay, but this later turns into an exponential.

It is usual to plot the logarithm of the autocorrelation 

function against time so that the exponential part is seen 

as a straight line, as shown in Fig. 5*2b. The initial 

Gaussian type decay of the autocorrelation function is 

considered to be due to the molecules in the system enjoying 

essentially free rotation. For about 0,2 psec the bulk of 

the molecules do not undergo hard collisions but after this 

period of time the collisions begin to dominate the 

reorientations and the decay curve goes over to an exponential 

decay (l picosecond - 10 sec).
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Section 5.2 The Short and Long Time Behaviour of
the Autocorrelation Function

The main reason for Fourier analysis of a band shape 

is so that the short and long time motions of the molecular 

system may be considered separately. The behaviour of the 

autocorrelation function at short times can be approximated 

by a power series expansion. Returning to equation (5*4)

band k (V ) exp (i 2 TT c ( V -  V )  t) d V
r

The series expansion of an exponential is

(x) - é  x^ / n 1exp
n*o

and so we have %-

c ( t )  - £  ( l 2 T r o t ) 7 n l  J  ( V -  V ) " k ( V ) d V

T
n»o band

This may be re-written as

c (t) - (i 2 rr c  t)" / n *. . M (n)
n-o

where M(n) is the n'th moment of the normalised frequency 

spectrum. So at short times we have, for a symmetric 

band

(gTT c)^ „ (2 TT c)'̂
C (t) . 1 -  J, , M(2) + “ 7 1  M(4) -    (5-5)
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From our knowledge of second and fourth moments 

it is seen that at very short times the autocorrelation 

function depends primarily on the second moment. As an 

example, use the second and fourth moments for an ideal 

parallel band of methyl iodide in the vapour phase, i.e.

M (?) - 219 cm"2 and M (4) - 87750 cm"^. ( See Chapter Three ).

Let the short time be O.O5 psec, in which cape we get 

C (t) - 1 - 0.009326 + 0.000029
«

The term in M (4) is negligible compared with the 
term in M (2). The fourth moment in the condensed phase is 

not expected to be much larger and so, at very short times, 

the autocorrelation function should not change ih going from 

the gas phase to the solution phase.

At really short times the M (4 ) terra may be neglected 

and so, at zero time the gradient is given by

d C (t) /dt . - (27T o)^ M (2) t - 0.

and the second derivative is

d^ C (t) /dt^ - - (2it o)^ M (2 ) (5 .6 )

This latter equation may be useful in later work for determining

second moments although, of course, any moments in the above 

equations are identical to the moments of the frequency 

spectrum. Equation (5*8) was found to be correct when tested 

on an experimental autocorrelation function.
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At 0.2 psec equation (5*5) becomes

c (t) = 1 - 0.037304 + 0.007372
and the term in M (4 ) is much more important and, at a

later time, dominates M (2) term.

This series expansion of equation (5*5) may be

used to prove that the second moment of a convoluted

system is equal to the sum of the second moAents of the original

functions. This can be done ray multiplying the autocorrelation

functions (series expansions) of the original functions together

and takinr the second derivative at zero time.

The long time behaviour of the autocorrelation function

is exponential in character and Favro (53) has reported a general

theory of rotational diffusion for the transition dipole

autocorrelation function. A random re-orientation process, ^

by random small angle jumps, was shown to lead to the

exponential decay observed and the gradient of the natural

logarithmic plot of the exponential was shown to be related

to the rotational diffusion constants D , D , D . For ax’ y ’ z
symmetric top molecule, the constant of the exponential decay 

of the C (t) curve of a parallel band, ^ (a), is related to the 

rotational diffusion constant concerned with rotation about the 

X axis (and the y axis), i.e.

- p  (a) / 2 PB0C . Dy (5.7)
and for a perpendicular band we have
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= [3 (e) - ( ^  (a) /?) psec  ̂ (5.8 )

Hence we can compare rates of rotational diffusion 

about the different axes.
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Section 5.3 Autocorrelation Functions -
Experimental Results

Autocorrelation functions of a range of infra-red 

absorption bands were calculated and plotted out on a 

logarithmic scale against time. All the autocorrelation 

functions exhibited the same general shape of a Gaussian- 

like function at short times and then an exponential decay 

after about O.4 psec. The autocorrelation function of the 

band of liquid methyl iodide is shown in Fig. 5 -3a along 

with the autocorrelation function for carbon tetrachloride 

solution. The two autocorrelation functions are almost 

identical, indicating that there is probably little 

association in the liquid. The autocorrelation function of 

the 1?̂  band of liquid methyl iodide is shown in Fig. 5»3b, 
which is probably also similar to the solution phase one.

The autocorrelation function of the band of benzene 

dissolved in cyclohexane is shown in Fig. 5*4, along with 

the autocorrelation function of the vapour.

As regards interpretation of these autocorrelation 

functions, it will be informative to compare those for the

and bands of liquid methyl iodide. The autocorrelation 

function at time - t is a measure of the cosine of the angle (9) 
which the transition dipole moment has moved through in that 

time. If we look at the autocorrelation functions of the

and bands of liquid methyl iodide we can see that, for
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Fig,5.3a The autocorrélation function of the V g  band
of methyl iodide liquid (solid line) and solution in carbon
tetrachloride (broken line).
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TIME (picoseconds )

Fig.5.3b The autocorrelation function of the band 
of liquid methyl iodide.
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The diagram shows the autocorrelation function of the 
band of benzene, '̂ he top line is that for benzene 

dissolved in cyclohexane and the bottom line that for 
benzene vauour.
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approximately 0.25 psec, the molecule enjoys essentially free 

rotation. The autocorrelation value at this time is 0.73

for the band and 0.41 for the band. The arc cosines

of these values are 43° and 65°. Now, a parallel band has 

a transition dipole moment directed along the "z" axis of 

the molecule and so rotations about the ”x" and "y" axes are 

observed. Using the diagram below, the 43° relative to the 

•'z" axis may be resolved onto the "y" axis (or equally the 

"x" axis) and we get the result that the molecule has 

rotated 29° about both the "i" and "y" axes.

X
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A perpendicular band has a transition dipole 

moment directed along the "x" or "y'* axis. Let it be the 

"y" axis here. Rotations observed are thus about the "x" 

and "z" axes. We know that rotation about the *'x" axis is 

29°, and so rotation about the "z" axis was calculated to be 

50°. Thus it is seen that, on average, a molecule in liquid 

methyl iodide rotates freely 29° about the “x" and "y" axes 

and 50° about the ”z” axis before a disruptive collision alters 
the motion. This result should not be taken too literally, 

but it nevertheless agrees well with the geometry of the 

molecule and its moments of inertia.

The rotational^iffusion constants were then

calculated for these two bands. The gradients of the straight

line parts of the logarithmic plots of the autocorrelation

functions were measured and the diffusion constants obtained
the

using equations (5»7) and (5.8). It was found that^diffusion 

constant about the ”x” and "y" axes was O.65 psec  ̂and about 

the "z" axis was 2.61 psec The rotational diffusion about

the main axis is thus about four times greater that about the 

perpendicular axes. This again agrees well with the geometry . 

of the molecule. No errors have been attached to these 

diffusion constants because they are being used in a comparative 

manner, but an error of 20^ is likely. The shape of the 

autocorrelation functions at short time is meant to be 

Gaussian and so the four autocorrelation functions of Pig. 5*2, 

5.3 and 5*4 were plotted out on "Gaussian Axes" to see if they
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yielded a straight line. The results are shown in

Pig. 5«5* None of these autocorrelation functions is

a good fit to a Gaussian. Some authors in the literature

have shown autocorrelation functions which were good fits

to the Fourier transforms of the Gaussian functions which

yielded the theoretical second moment. Rothschild (54)

had obtained a good fit for the band of methyl iodide.

However, Rothschild had lowered the base line of the

experimental frequency spectrum to give the correct second

moment. It has already been shown that the autocorrelation

function at short time is related to the second moment, so a

reasonable fit may be expected on these grounds. Also, by

lowering the base line^ one can expect a Gaussian nature to

be forced into the wings of a quasi Lorentzian band. To
illustrate this point a Lorentzian function of
half height bandwidth equal to 20 cm was calculated out to

100 cm  ̂ from the band centre. The second moment of this

band and the Fourier transform were calculated. The short

time decay was plotted out for comparison with the Fourier

transform of a Gaussian function of the same second moment.

This is to be seen in Fir. 5*6a. The Lorentzian was turned

into a transmittance curve between 90^ and 20%. The basejline

was then lowered to 89*12% so that the last point in the wings

was zero. The second moment and Fourier transform of the

contour obtained from this system were calculated and the short
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time decay is compared with the Fourier transform of a Gaussian 

function of the same new second moment in Fi#. 5 -6b. This 

diagram shows that a closer fit to a Gaussian function was 

obtained. Bearing in mind that this calculation was performed 

on a pure Lorentzian function and that the short time decay of 

an experimental autocorrelation function does resemble a 

Gaussian, the point is quite well illustrated that a Gaussian 

nature is forced into the wings of a band by moving the base 

line down. A good fit to a Gaussian function does not justify 

the lowering of the base line.
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Section 5.4 Statistical Analysis of the Condensed
Phase Contours of Infra-Red Bands - II

Fourier transformation has provided a powerful tool

in gleaning more information about molecular motion in the

condensed phase. Pictorial Fourier transforms may now be

used to help solve the problem of infra-redjband shapes.

These Fourier transforms were calculated using EXTRAP

Fig. 5*7 shows the Fourier transforms of various Lorentzian

and Gaussian functions, and their sums and products. The

only function Ifke the experimental is the Lorentzian plus

Gaussian sum function. An extremely broad Gaussian function

added to a narrow Lorentzïan function would have a Fourier

transform similar to the experimental, but we already know

that the second moment of a Lorentzian function is infinite.

The product of a Lorentzian and an exponential decay is shown

in Pig. 5*6 and is not like the experimental. Fig. ^.8 also

shows the general picture obtained from various convolutions

of Lorentzian, Gaussian and exponential functions, none of

which fit the experimental picture. This is to be expected,

since a convolution in the frequency domain is a %
multiplication in the time domain, and so the only convolution 

that will show an exponential character at long time will be of a 

Lorentzian function with another Lorentzian function.
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A simple function cannot be fitted to infra-red 

bands. From the autocorrelation functions obtained, this 

is not really surprising since two different decay curves 

constitute the time decay. Fourier transformation of the 

autocorrelation function approximately transforms the long 

time decay into frequency spectrum near the band centre and 

the short time decay into the wings of the frequency 

spectrum ; but the whole spectrum contains contributions 

from both. The best approximation to an infra-red band 

shape can thus be expected to be a Lorentzian plus Gaussian 

sum function of the form below.

k ( ^ )  = Xj ( ^ H + '  Xg kg (-V)

where, near the band centre, = 1 and X^ = 0

but in the wings X^ - 0 and X^ » 1.

X^ may decay from 1 to 0 in an exponential- manner 

which would give the exnonential shape observed in the wings 

of experimental band contours. The exponential character 

remaining after the Gaussian function has decayed to zero 

(the Gaussian function might well be a double Gaussian as 

mentioned earlier). The question of fitting mathematical 

curves to band contours is thus a very complex one. Shortage 

of time prevented any further work exploring the above ideas. 

The above ideas may work, but the original objective of 

fitting a curve to a band contour was so that different bands
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could be separated from each other, in order to calculate 

band moments. The mathematical equation to fit a band 

accurately will probably be so complicated that the band 

will have to be well separated in the first place to obtain 

all the parameters.
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CHAPTER SIX Broadening of Infra-Red Band Shapes
and Weak Molecular Complexes 
in Benzene Systems

Section 6.1 Initial Survey

Although the band shape problem has not been 

solved, the work so far may be utilised in analysis of 

the band shapes of the same molecule dissolved in 

different solvents. Several spectra were run of dilute 

binary solutions containing solvents such as methyl iodide, 

acetonitrile, carbon disulphide, carbon tetrachloride, 

cyclohexane and benzene. The general result was that band 

shapes did not alter to any noticeable extent in different 

polar and non-polar solvents. There was one outstanding 

exception to this observation though. Certain vibrations 

of benzene were greatly broadened out when benzene was 

dissolved in a polar solvent. This broadening was accompanied 

by a shift to higher frequency compared with the band centres 

in non-polar solvents. The results obtained from methyl iodide 

as solvent are set out below and are compared with those for 

cyclohexane as solvent.
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c6 «12 CH3 I

Band (cm  ̂) 9  (cm-1)0 (cm"b

^ 1 1 674.6 4 .3 680.1 7.4

^5 + -̂ 17 1952.9 9.6 1960.2 16.0

^10 * ^17 1808.3 9 .7 1816.0 15.7

A o  '^11 1517 8 1526 16

The combination band was on the edge of

the strong band (at I482 cm ^ ) so the data for this band
is approximate.

It was found>that the above broadened bands all 

concerned vibrations out of the plane of the benzene ring.

There are, in fact, seven observable bands of this nature in 

the infra-red. These vibrations are shown in reference (3 ) 

and are listed below, along with frequencies of the band centres 

for the pure liquid and the symmetry species for the vibration.

( 1 ) band at 675 cm  ̂ ( a

( 2 ) VjQ band at 85O

( 3) 1^27 band at 969

( 4 ) p) band at 9915

(e^g)

cm ^ (e_ )2u

cm ^ (b_ )2g

( 5) “̂ 20 ^11 combination band at 1525 cm  ̂ (e^^^
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( 6) combination band at l8l9 cm  ̂ (e^^)

( 7) '\)r. + "V. 7 band at i960 cm  ̂ (e )5 1 1 iu

The ^ 2 0 ’ ^ 1 7 ’ "^5 bands were all much
weaker (inactive for unperturbed benzene molecules) than 

the other out-of-plane bands and could not be observed 

accurately in any solvents. Thus, all the observable 

out-of-plane bands have broadened out.

The ^ 22* ^ + '1̂ 27 ”̂ iO ^17 bands
were all measured accurately in a series of polar and 

non polar solvents. There appeared to be a general trend 

of the more polar the solvent, the higher the frequency of 

the band centre was and the broader the band was. Before 

proceeding further a survey was made of the literature to 

see if these observations were original. The experimental 

results will be returned to later.

These observations were not original. La Lau (76) 
reported that the mode for the hydrogens of several aromatic 

compounds (hydrogens wagging out of the plane of the aromatic 

ring,^ ^11 band in benzene) dissolved in acetone and 
acetonitrile experienced shifts to higher, rather than lower, 

frequency compared with the gas phase. He explained the



shifts as being due to an electrostatic interaction between 

the positively charged hydrogens and the negatively charged 

oxygen or nitrogen of the polar solvent as outlined in the 

diagram below.
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b e n z e n e
''H

The C-H bond is vibrating at 90*̂ 
to the planar benzene ring .

'o':

'CH.

‘CH

Calculations based on this idea lead to predicted 

frequency shifts which were very close to the experimentally 

observed ones. This model is considered unsatisfactory 

though, because it would lead to similar frequency shifts 

for the in-plane vibrations in this crude form.

Cole and Michell (72) reported that the hydrogen Y 

mode of♦aromatic compounds, with a single alkyl substituent 

group on the ring, gave anomalously broad bands when the 

alkyl group was a long "straight chain" such as n-butyl.
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However, the band was not broad when the substituent was

a t-butyl group. The reason for this broadening could

not be explained. Cole and Michell (73) later measured
the hydrogen Y mode of several aromatic compounds
dissolved in different solvents and found that the bands were

sometimes broadened out and shifted to higher frequency.

Only this one mode was observed though. The authors

tried to correlate the frequency shifts with the refractive

index of the solvent, with no success.

P* Dorval and co-workers (79) had also observed
the frequency shifts for the out-of-plane modes of benzene,

thiophene, furan and N-metHyl-pyrrole in polar solvents.

Frequency shifts were related to charges on the polar

solvent using the ideas of La Lau. The frequency shifts 
for two of the aromatics in different solvents were plotted

against each other and appeared to follow a linear relationship.

The rest of the work found in the literature 

concerning interactions between benzene and solvents 

concerned proton magnetic resonance (P.M.R.) which will be 

discussed in the next section.
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Section 6.2 Proton Magnetic Resonance Evidence
for Interaction between Benzene and 
Various Solvents

P.M.R. speotra of benzene solutions of various 

solvents have been studied by many workers and the 

observations made are set out below.

W. Schneider (55) recorded P.M.R. shifts of 

the proton in chloroform to higher magnetic field, when 

the solvent was changed from "inert" cyclohexane to benzene. 

The reason given for this was that a large anisotropy in 

the magnetic susceptibility of the benzene was caused by 

the applied magnetic fiel^ H^. The diagram below shows 

how, when is applied normal to the plane of the benzene 

ring, a circular current is induced which, in turn, 

generates a secondary magnetic field opposed in direction 

to that of the applied field.

I-\ /
/

 ------ 's \  I /

^  TiT
ii>iH  < r  "'iT  H

\
\

I 'I"
/ /

/

/ \

The broken lines represent the secondary magnetic field
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Consequently, the resonance for a proton of the 

benzene ring will be shifted to lower magnetic field.

However, a proton above or below the ring will have its 

resonance shifted to higher magnetic field. Schneider 

observed that the magnitude of the shifts of proton resonances 

of polar solutes in benzene tended to be proportional to the 

permanent electric dipole of the solute molecule. He 

believed that rotational averaging of the solute molecule 

took place, with no particular preferred orientation and 

consequently decided that the molar volume of the solute 

was of importance, because this determined the mean distance 

of approach to the benzeng^.molecule. Pig. 6.1 shows a plot 

of P.M.R. shifts against electric dipole moments divided by 

molar volume. The plot is seen to be roughly linear 

(although chloroform is an exception) implying that dipole 

induced interactions mainly account for the shifts. Later 

authors suggested that a specific interaction involving a 

preferred mutual orientation with respect to the benzene 

occurred. These complexes would be weak and have very 

short mean lifetimes compared with the P.M.R. timescale. 

Different authors have put forward ideas as to the nature of 

the solute-solvent interactions.
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Pig.6,1 This graph is taken from data in reference (55) and is 
a plot of P.M.R. shifts of the above solutes dissolved in benzene, 
measured relative to their P.M.R. shifts in neopentane. The shifts 
are for the CH^ group, excepting chloroform,and were measured in 
a field of 60 MHz .
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Ledaal (5&) inferred that benzene interacts with 

a polar solvent in such a way that the electric dipole 

axis of the solute molecule is located along the six-fold 

symmetry axis of the benzene molecule, with the positive 

end of the dipole closest to the benzene TT electron system.

Conversely Brown and Stark (57) considered that 

the shifts result from time averaging of the. orientations 

of the solvent molecules with the benzene planes parallel 

to the solute molecular dipole moment.

Ronayne and Williams (58) have suggested that the 
benzene molecules solvate electron def icient sites of 

local dipoles in a solute molecule.

Armstrong, Le Fevre and co-workers (59) have 

recently considered a range of solutes andjhave plotted 

P.M.R. shifts against the square of the electric dipole 

moment of the solute molecules, and obtained a rough 

straight line correspondence for a series of molecules 

such as CH^l, CH^Br, CH^NO^ and CH^CN. A plot for 

these molecules is to be seen in Pig. 6.2. These 

co-workers go on to say that the series of molecules 

H C "preferentially orientate with their dipole axes 

along the six-fold axis of the benzene molecule, with their 

proton nearest to the tt electron layer. These associations 

being energetically favourable, but not exclusive. The 

CH^X series of molecules are not thought to have a preferred 

orientation.
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Pi/T.6,2a shows the chemical shifts for the protons 
in the series of molecules CH^X, where X=Br, I, NO^ 
and CN. These chemical shifts, AT, are for benzene as 
solvent and are measured relative to 1,4 dioxane.
The present author has replotted this data against 
the dipole moment and the result is shown below in  ̂
Fig.6,2b. This plot is seen to be a better approx
imation to a straight line.
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Homer and Cook (60) have suggested that, rather 

than interactions being through the molecular dipole moment, 

that there are interactions through local dipoles of the 

solute molecules. These local dipoles being due to 

highly polar atoms such as chlorine and oxygen.

The literature is thus undecided on the nature of 

these interactions.

It is hoped that the infra-red observations may, 

along with P.M.R. work, produce a more definite picture*
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Section 6 , 3  Correlation of Experimental Bandwidthe
and Frequency Shifts with Macroscopic 
Physical Properties of the Solvent

Table 6,1 shows the complete range of solvents 

used in measuring the band of benzene. Carbon

disulphide, carbon tetrachloride and 1,4 dioxane have been 

added to my own list of solvents because these solvents are 

referred to in the P.M.R. work. Some of these bands were 

measured using three different path lengths to obtain 

accurate wings, but not all the solvents were transparent 

enough for this." The and

combination bands were measured using only one path length 

because both of these bands are overlapped quite badly.

These two bands are listed in Table 6.2. The ^11

band was not measured because of the large errors involved. 

Tables 6.1 and 6.2 list the half height bandwidths and 

frenuency of the different band centres.

A series of graphs was plotted for these three 

bands in an analagous fashion to that in the P.M.R. work..

1. The half height bandwidths were plotted against

the dipole moment of the solute molecule to 

observe any dependence. These graphs are to 

be seen in Fig. 6.3a, 6,3c and 6.3e.
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0.260 C7h.(> 4 .3 0.00 0.00 2.754

2 CSg (6 342 675.2 5.3 0.00 O.uO 2.113

3 0.335 676.2 5.4 0.00 O.OU 2.822

u c^ivp) 11.202 677.6 5 .5 0.00 0.00 2.670

0.416 678.2 7.4 1.23 1.31 3.349

6 0.325 678.6 7.2 2.57 2.30 3.988

7 (C.Hç^gO 0.358 679.1 8.9 4.33 4.49 5.460

8 cH^r 0.375 6H0.1 7.4 4.93 3.07 4.152

9 ci'cij 0.384 681.3 10.0 3. b6 2.95 4.498

10 CHgClg 0.440 682.6 8 .0 5.33 3.41 4 .667

0.336 684.9 10.0 1.57 1.33 2.435

12 (Ol^ïgCO 0.408 685.1 9 .8 10.37 7.60 6.405

13 0 . 381 686.8 9.2 11.30 5.90 4.812

1V C,HyJO 0 ‘.20 687.8 12 0 12.83 9 .88 ---

19 CH-Nf.j 0.350 688.4 9.2 10.47 5.62 4 .974

Table 6.1 lists all the solvents used in investigating the 
band of benzene. The reference numbers of the solvents 

are used in later graphs. The dipole moments, molar volumes 
and molar polarisations are for the pure solvents.
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( cni ( cm“ ^)

0.C3 1808.3 y .7 1S52.9 9 .6

? CSg 0 .63 1808.6 10.7 1902.7 10.5

5 0 .65 1813.0 11.6 1952.2 11.0

/. C^Hg(l) 11.20 1815.1 17.0 I960 0 15.5

S CgK^CHj --- --- --- —— —

6 C jUc i j 0 .76 --- — 19%L9 13.7

7 0.63 1814.6 18.4 --- ---

Ü CHjI 0.63 1816.0 15.7 1960.2 16.0

y CHCij 0.57 1818.7 18.7 1962.1 16.1

10 CHgClg 0.63 1821.3 17.5 1964.7 16.2

11 C^HgO, 0.63 1822.8 %4.5 --- ---

12 (CH^jgCO 0.63 --- --- i y 6b .6 24.7

13 CĤ CN o.y i 1827.2 x-2.4 1571.8 24.1

14 Ĉ HyNC) --- --- --- --- —

15 " CH^NOg 0.67 1828.8 21.7 1972.5 22.8

Tablo 6.2 lists the band centres and half height bandwidths 
of the an
different solvents.
of the and i)̂ + combination bands of benzene in
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It was decided to introduce some kind of 

molecular shape factor into the above graphs.

This was done by multiplying the dipole 

moments of the solvents by their molar volume 

(which may be thought of as being proportional 

to the effective volume of a molecule).

These granhs are to be seen in Fig. 6.3b, 6.3d 

and 6.3f,

A rough linear dependence is observed in all 

the above six graohs, but the dependence is 

better for those which include the molar volume. 

Consider the latter three graphs. With the aid 

of a rule it will be seen that the group of 

molecules CH^I, CH^CN and CH^NO^ lie on a good 

approximation to a straight line going through 

zero dipole momentxmolar volume. Additionally, 

one can see that solvents with bonds containing 

polarisable atoms, such as 0, Cl, N, S, F along 

a single axis which is the same as the molecular 

dipole axis, also tend to lie near this straight 

line, e.g. acetone, diethyl ether and (to a certain 

extent) dimethyl formamide.
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Assuming that the inclusion of the molar volume 

is valid and that the improved results are not 

fortuitous, it would appear that the first order 

effect causing the broadening is due to the 

molecular dipole moment of the solvent. There 

is clearly a second order effect which is 

probably due to "local dipoles" in the solvent 

molecule. For example, carbon tetrachloride has 

a zero molecular dipole moment but all the C - Cl 

bonds are highly polar and may have a short range 

interaction with the benzene. As an illustration 

of this idea consider 1,4 dioxane. Hypothetically 

this molecule looks like two dimethyl ether molecules 

associated together. Dimethyl ether has a molecular 

dipole moment of433 C m , so let a hypothetical dipole 

moment for 1,4 dioxane be of this magnitude. In 

this case the points on the graphs for 1,4 dioxane 

lie much closer to the proposed straight lines.

For liquid benzene and aromatic solvents it is 

imagined that the TT electron layers are somehow 

interacting but this case will be neglected for the 

time being. Of the molecules with dipole moments, 

1,4 dioxane and chloroform are the major exceptions 

in the graphs. 1,4 dioxane has been accounted for • 

on a hypothetical basis, but this does not apply to 

chloroform. This molecule is a special case and 

will be dealt with separately in a later section.
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(3) The combination bands of benzene that were broadened

out, were broadened out to a greater extent than 

the band. Fig. 6.4a is a plot of the half

height bandwidths of the band, in a particular

solvent, against those of the combination

band. Fig. 6.4b is a similar plot for the '̂ ■̂|.l 

band against the + "9̂ .̂  combination band.

These two graphs are seen to be of a roughly linear 

nature. The gradients of these graphs were 

calculated, using the method of least squares, 

along with the standard deviation. The results 

were that Pig. 6.4a yielded a gradient of 

0.398 1 0.037 and Fig. 6.4b yielded a gradient of 
0.301 1 0.035* The reciprocals of these gradients 

are 2.51 and 3*33 respectively. It is thought

that these gradients show that the magnitude of 

the broadening of the bands is linearly dependent 

upon the freouency. For example, for the 

1) band and cyclohexane as solvent,674/0.398 «

1693 cm ^.and including the error limits we get 

1700 ± 170 cm The experimental frequency for

this band is I8O8 cm ^ and thus lies within this 

estimate. For the band we get an

estimated frequency of 2240 1 300 cm The

exnerimental freouency for this band is 1953 cm ^
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and is within range of this estimate. The errors 

involved in this calculation are rather high, but 

a freouency dependence of the broadening is 

indicated•

(4 ) The oolarisability of the solvent molecules was

also considered as a cause for the broadening of 

the benzene bands. The polarisability, oC , 

of a molecule of "radius", a, is given by

€ -  1 0

where 6 is the dielectric constant of the solvent 

medium (74). Dielectric constants were obtained 

from reference (75) a.rd the molar, polarisation 

calculated by putting a? equal to - the molar 

volume. These are listed in Table 6.1. Graphs

were drawn for the three benzene bands and are to be 

seen in Pig. 6.5 and 6.6a. It is seen that there is 

a rough correlation between the half height bandwidth 
and the molar polarisation, however, no conclusions

I
were drawn from these graphs.

(5) Fig. 6.6b is a plot of the half height bandwidth
of the 1)̂  ̂ band in various solvents against the 

freouency of the band centre. There is seen to be 

only a rough correlation between the two so, again, 

no conclusions were drawn.
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(6) . The frequency of the band centre of the band

in a particular solvent was plotted against the 

band centre for the combination band

(Fig. 6.7a) and against the frequency for the 

"V^ combination band, (Fig. 6.7b).

Both of the plots are seen to be fairly good 

straight lines. The gradients of these two 

graphs were both approximately 1.4 and so no 

connection between the magnitude of the frequency 

shifts and the frequencies of the different bands 

is apnarent.

The point that these two graphs stress is that the 

same interaction is effecting the different bands in 

the same way.
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Section 6.4 Measurement of the Second and Fourth
Moments of the "V _ Band of Benzene 
in Different Solvents

According to Gordon’s theory on second moments, 

the second moment of the hand of benzene should not

change appreciably in different solvents, despite the huge 

changes in the band-width. This is because the second 

moment is related to the rotational kinetic energy, and 

is independent of intermolecular interactions, although it 

is affected by a fluctuation in the frequency shift.

Conversely the fourth moment of the band is largely 

determined by the mean squared torque acting on the benzene 

molecule, hindering rotation.

An attempt was made at measuring second and fourth 

moments of the band of benzene in selected solvents,

which did not absorb in the region of this band. In the 

cases in which the solvent did not absorb at all (and in 

the case of liouid benzene) it was observed that the wings 

of these bands were exponential in.character. These wings 

were extrapolated as exponentials out to 300 cm  ̂ from the 

band centre and the second and fourth moments both determined 

using EXTRAP. The plots of the build-up of the second and fourth 

moments showed that, when the second moments had levelled off 

to a finite value, the fourth moments were still increasing, 

although these too levelled off later. Table 6.3 shows the
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results obtained. It is seen that the fourth moments vary 

over a much larger range than the second moments. The error 

in the fourth moments is estimated to be double the error in 

the second moments. The whole question of errors is 

rather vague because it has been assumed that the wing of a 

band is an exponential out to zero absorption. The low 

frequency aide of the band of liquid benzene accurately

follows an exponential decay from 63O cm  ̂ to 5^0 but 

measurements beyond 56O cm  ̂are very much limited in 

accuracy. The wing is exponential as far as the measurements 

can be taken.

The equation for the fourth moment of a parallel 

band of a symmetric top molecule was determined, from 

equation (3.14) to be

«(4) - 4/x^ (8B^ + ?bVa) + 4B^ (OV)^

For the benzene molecule we have

{ o v f  . [m(4) - 4/x^ (8 X 0.1894^ + 2 X O.I894V

0.0947) 1 / (4 X 0.1894^)

The square roOte of the mean squared torque is

listed in Table 6.3 for the four cases which were considered 
accurate enough to measure. The build-up of the second and 

fourth moments against frequency are compared for liquid 

benzene in Fig. '6.6.
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SCLVENT AND
REFERENCE
NUMBER

INTEGRATED
INTERCITY
(dm^mol

— 1 \ cm )

- 1

SECOND
MOMEN^ 

-2.cm

POUR'̂ H
women
( X 10 
-4

6

cm

ROOT MEAN 
SQUARED 
TORQUE (x10^ 
N m

^ GBg

6 CCI,4

'• G^Hg(l)

5 CvH.CH,b 5 3
6 CjHClj

7 (CgHclgC

H CH^r

y cHci5
10 CHgClg

11

12 (CH^izCO

13 CH^CN

14 C^HyNO 

'215 CHÿjO,

21.5 : 2.1

21.2 t  2.1 

27.0 - 4.0

20.6 t 2.1

20.2 -  2.0

20.2 - 2.0 

19.6 - 2.0

18.0 - 1.8 

18.2 t 1.8

160 + 20

235 ± 20

300 jr 50

340 ± 50

1.0 t 0.2

1.5+ 0.3

3 . 3 + 1 .0

3 . 6 ± 1.0

3.04 ± 0.32

3.77 ± 0.42

5.69 ± 0.93

5.93 ± 0.77

Table 6.3 lists some constants for the *V̂  ̂  band of benzene 
in different solvents.
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The only fourth moment recorded for benzene in 

the literature was for this same band, and was measured by 

Gordon (32), whose value was only one third of that recorded 

here. Gordon’s measurements were only made out to 600 cm  ̂

though and his result is consistent, at 600 cm with that 

recorded here.

The avera/70 torque actin# on a benzene molecule
-1hindering rotation was calculated in cm and then converted 

into energy units uer mole usin# the relation E = h a n d  

then multiplying by Avopadro’s number. The averape torque 

due to acetonitrile is seen to be twice the size of that due 

to cyclohexane. For comnarison, Gordon calculated the 

averape torque hindering rotation in liquid carbon monoxide 

to be 19.^00 Nm mol which is about one third of that found 

for benzene here.

Gordon's statement that the second moment of an 

infra-red band is essentially independent of intermolecular 

interactions, but the fourth moment is not, has been seen to 

hold true in the above case for the band of benzene.
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Section 6.5 Broadening and the Band

The ouestion of the shape of the broadened band

contours will now be dealt with. A plot on "Lorentzian

axes" of the central part of the band of benzene

dissolved in methyl iodide is to be seen in Pip. 6.9.
The contour is seen nob bo be a Lorentzian function near

the band centre. Prom Table 6.3 it is seen that the
integrated intensities of the benzene band in different

solvents are fairly constant, despite the huge changes in

the bandwidth. ' Also the far wings of the bands are of an

exponential nature and the second moments of the broadened

bands are not a vreat deal larger than those for the narrow

bands. All these facts point to the broadened band contour

being a convolution of the unperturbed narrow band contour, 
by an exponential decay function.

The reasoning behind this is that : •

a) convolution re-distributes intensity without 

changing the total intensity

b) the second moment of a convoluted band is equal 

to the sum of the second moments of the original 

band and the convoluted band. The second moment 

of an exponential function is finite and has 

been calculated in Appendix 1 .

c) the wings of the broadened bands remain exponential 

in character
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Assuming we do have an exponential convolution 

then the Fourier transform of the broadened band contour 

will be the nroduct of those for the unperturbed narrow 

band and the convoluting function. The autocorrelation 

functions of the band of benzene, dissolved in

solvents which did not absorb in this region, were 

calculated using a frequency interval of O .4 cm . The 

result was interesting because the logarithmic plots of 

the autocorrelation functions did not yield a straight 

line at long time for any solvent other than cyclohexane.

No cases of autocorrelation functions of this nature are 

known to have been recorded in the literature. Fig. 6.10 

shows the autocorrelation functions for cyclohexane, 

methyl iodide, acetonitrile and chloroform as solvents.

Fig. 6,11 shows those for acetone, carbon tetrachloride and the 

nure liouid. The autocorrelation function for chloroform as 

solvent apnears to be different from the others, as it 

crosses them. This case will be dealt with in a later 

section.

To investigate the proposed exponential 

convolution,- the ratio of the autocorrelation function 

for methyl iodide as solvent to that for cyclohexane as 

solvent, was taken. An exponential convolution in the 

frequency domain is a multiplication by a Lorentzian in the 

time domain. Thus, the inverse of the above ratio was
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The plots are for the band of benzene

in various solvents.
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2,plotted a/7-ainst (time) ^to see if a straight line was 
obtained. Pip. 6.13a shov,'s that a pood straight line 

was obtained with the only deviation being at short 

time. This is the part of the autocorrelation function 

most sensitive to the accuracy of the measurements in the 

winps of the absorption band, and so an error may be 

expected. Similar plots were made for the other solvents 

of Pip. 6.10 and 6.11, and these are to be seen in Pip. 6.12 

and Pip. 6.13b* The plot for chloroform is not linear but the 

others are after an initial curvature.

In Annendix %  it is shown how an exponential function 

of the form exn ( - s j v -  | ) Pourier transforms into a 

Lorentzian function of the form (2/s^) / (l + ( 4 tT^ C^/

S^) t^). The gradients of the straight line plots of

Pip. 6.12 and 6.13 were all measured and the constants of the 
exponentials calculated from them. The exponential functions 

were then used to convolute the band of benzene dissolved

in cyclohexane (COMCON) and the results compared with the 

experimental bands. The results were in very pood agreement 

in some cases and in others the agreement was enhanced by 

changing the constant of the exponential by a small amount. 

Table 6.4 lists the gradients of the graphs, the exponential 

constants calculated from these, and the exponential constants 

giving the best fit to the experimental bands.
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Trichloroethylene and diethyl ether are present in the 

list because they only absorb in the far win# of the 

benzene band. Table 6.4 also lists pa#e numbers of 
diagrams of the band contours to be found in a folder at 

the back of this book. The broadened experimental 

band contours are drawn on ordinary paper and the best 

fit exponential convolutions are drawn on tracing paper 

so that they may be superimnosed on the experimental band 

contours for comparison. The band contour of benzene 

dissolved in cyclohexane is also drawn on some tracing 

paper for comparison. It is considered that the results 

prove that an exponential convolution of the unbroadened 

band yields the experimental broadened band.

f '
Ki
0f..

zcr
E ■ N

1 iid Ui 0- 0

^ ^  

Ü ; 10 Uj c fer. Cl. <1: 0 XC ) w

E- r r
2 k: g, E' E V c/:
s  s  S

S a,
g  g 
'• ÈWe
a K

i 1Y. 12

CHjI 1.21 - 0.54 -0.54 2, 2a

C^HCl^ -- — - 0.54 3, 3a

(^2^5)2^ -- -- -0.39 4, 4a

2.77 - 0. 36 — 0. 36 5, 5a

CH,CN 2.74 - 0.36 -0.34 6, 6a

(CHj^pCO 3.07 - 0.34 - 0.32 7, 7a

Table 6.4
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Section 6.6 Broadening and the Combination Bands

The and combination bands

of benzene could not have their Fourier transforms calculated 

accurately to determine the constant for an exponential to 

broaden them with,because of overlapping bands. Thetwobands
had to be dealt with on a trial and error basis. Another 

drawback was that these bands could not be accurately measured 

in cyclohexane. This did not prevent the work from going 

ahead because the convolution has the property of association , 

and the convolution of an exponential function by another 

exponential yields an exponential. Thus, the accurate 

spectra for benzene dissolved in carbon tetrachloride were 

used as a starting place for the broadening.

The high frequency side of the 

combination band of benzene has a weak band in the near 

wing and also the high and low frequency sides of the "V ̂

+ combination band of benzene each have a weak band

in the near wing. These can be seen clearly in the contours 

of these bands for carbon tetrachloride solutions ( in folder 

at back of book). These weak bands were not strong enough 

to contribute in intensity at the band centres of these bands 

but they did not have large frequency shifts in different 

solvents like the two combination bands. This meant that 

a good fit could not be achieved in the region of these 

weak bands. The solvents used are tabulated in Table 6.5



alonfir with the constants of the exponentials used for the 

convolution and the pa/TO numbers of the diagrams in the 

folder. The exponential convolutions again fit the 

experimental broadened bands well.
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n (r.
s g 1

0Ov

& ME- E-; I I r0 U'

re, fr: ̂K0
Ï 5

"^10 "^17 CCI,4

CHCl^

- 0.26

-0.20

8

9, 9a

10, 10a

CCI, 115 17 4

CpHCl^ -0.45 12, 12a

- 0.32 13, 13a

CHCl^ -0.29 14-, 1 W

CH^CN - 0.13 15, 15a

Table 6.5
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Section 6.7 Three Component Solutions

Cyclohexane was added to the solution of benzene 

and methyl iodide and the band was re-measured. This

was done for a series of dilutions by cyclohexane. There 

was a decrease in the bandwidth and the frequency lowered 

towards that for cyclohexane solution. Table 6.6 shows 

the results for a series of concentrations and also shows 

how the percentage change in the shift and percentage change

in the bandwidth vary with percentage of cyclohexane present.
6)It is to be seen thaty^changes roughly linearly with the 

concentration of cyclohexane, but the broadening remains 

comparatively larger. The fact that the broadening 

decreases implies that the interaction is of an ^

electrostatic nature, rather than a separate complex but, 

because the bandwidth does not decrease as fast as the frequency 

shift there is the possibility that the methyl iodide may have 

a preferred orientation relative to benzene, in such a position 

that it is remote from the hydrogens of the benzene ring.

This would appear consistent with the raet̂ iyl iodide sitting 

above the tt electron layer of the benzene as shown in Pig. 6.14a.
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680.10 7 . 4 0.000 0.0 0.0 0.0

6 7 7 .8 5 7 . 0 4 . 5 5 0 4 0 . 9 1 2 . 9 4 9 . 5

6 7 6 .0 5 6 . 2 7 . 3 2 9 7 3 .7 3 8 . 7 7 9 .7

6 7 5 . 4 0 5 . 4 8 . 1 3 9 8 5 . 5 6 4 .5 8 8 . 5

6 7 5 .0 0 • 4.7 8 . 6 3 3 92.7 8 7 . 1 9 3 . 9

6 7 4 .7 5 4-4 8.980 9 7 .3 96.8 97.6

674.60 4 . 3 9 .1 9 6 100.0 100.0 100.0

Table 6.6 shows how the band centre and half height
bandwidth of the  ̂ band of benzene vary when going11
from methyl iodide as solvent to cyclohexane as solvent 
via three component solutions.
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'"H— H —  — — «-r-TT electron layer

H
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Fîp'.6.14n denicts a molecule of methyl iodide 
Pitting on the t t  electron layer of benzene with its 
dinolar axis perpendicular to the plane of the rin#.

H H

Pif,6.14b shows the probable rehybridisation 
of the TT electron layer of benzene durin# the 
warpin# mode vibration of the hydropens.
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Section 6.8 Conclusions

The intermolecular interaction producing the 

broadening must involve the tT electron layer of the 

benzene, because the in-plane vibrations are not affected.

Before proceeding further it will be informative to 

calculate the time scales for rotation, vibration and 

translation of a molecule. Usinp benzene as an example 

we have
Prom Chapter Pive we know that a molecule of benzene

would take about 2 osec per revolution if it were freely rotatinp.

b) Energy of vibration is given by the equation 

E » (v + -̂ ) h*V

So, for the out-of-plane wap of the hydropens of 

benzene in the band we pet

l/i> - 3.3 X see

c) The root mean square velocity of a molecule, C, 

is piven by the equation 

C = (3 kT/m)^

where'm is the mass of the molecule. For benzene,
o -1this is eoual to 3.1 A psec . The diameter of the

obenzene rinp is about 5 A and so this velocity is 

quite slow on a molecular scale for the time scale 

of picoseconds we are dealing with.
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Thus, on a tiraeocale of 0 to 2 psec, many 

vibrations take place. Rotations are much slower at 

the order of 2 psec per rotation and translations are 

considered as slow enough for a solvent molecule to 

interact with the benzene.

It has proved difficult to explain the 

exponential convolution obtained. There is nothing

in the _literature of this natureL._JBure—vibratipnal
) '

and relaxation is said to lead to a Lorentzian line 

shape (70 ). The following ideas are being put forward

which may or may not be realistic.

It is considered that vibrational energy is

being transferred to the solvent molecules. This comes

about through the formation of&weak "pseudo complex" from an 

electrostatic attraction between the positive end of the
I

dipolar solvent and the tt electron layer of the benzene ring.
The points in the P.M.R. graph of Pig.6.1 for CH^I, CH^NO^,

CH^CN and CHCl^ may be seen to parallel those points in the infra-red

graphs of Fig.6.3. The timescale for P.M.R. is about 10"^sec compared 
—12with 10“ sec for infra-red. It follows that the P.M.R. results

indicate that these "pseudo complexes" may exist for 10“^sec or more.

Assume that a solvent molecule is trapped for a time of this magnitude

but which is also proportional to its dipole moment. During this time 
many vibrations take place and there is the possibility

of transfer of vibrational energy. Now, it has been

suggested (8l) that the tt electron layer of benzene flows

from one side of the plane of the benzene ring to the other,
\ »r  %   .-------;---; f ...--------- .. —   , , , , , i , n,,- , _



259

in nhase with the X wagging motion of the hydrogens. See

Fig. 6.14b. This flow of electrons is due to
2 3rehybridisation at the carbon atom from SP to SP 

which is brought about by C-H bond approaching a

tetrahedral orientation with respect to the

neighbouring C-C bonds of the benzene ring at the

limits of C-H wag. The solvent molecule may be

thought of as riding the tt electron layer as it

vibrates and energy is transferred to the solvent

molecule which is taken up as translational kinetic

energy. Molecular speeds follow a Gaussian

distribution (71 ) and kinetic energy is equal to

(& X mass of molecule x speed^) which means that the

distribution of translational energy is of an

exponential form. It is thought that the quantity

of energy transferred to the solvent molecule is

determined by the translational kinetic energy the solvent 
( •

molecule had before being trapped. The quantity of 

energy transferred thus follows an exponential decay 

function and this leads naturally to an exponential 

convolution of the original unbroadened band.

' Earlier in this chapter it was seen that the 

amount that the three measured out-of-plane bands 

broadened out appeared to increase linearly with 

frequency. The above model for the coraplexing is 

consistent with this. If the solvent molecule is 

"complexed" for a certain time, then during this.time'
i
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the numbers of vibrations which take place for the three 

vibrations will be in the ratio of i960 ; I816 ; 680 
(for methyl iodide). If transfer of energy takes place 

with each vibration then more energy is likely to be 

transferred in the higher frequency vibrations, leading 

to greater broadening. It should be noted that increased 

broadening with frequency is not consistent with the 

nossibility of this broadening being due to an uncertainty 

broadening, resulting from breaking and forming of a complex 

at a similar rate to the rate of vibration.

Now consider the shift in frequency of the band.

The electrostatic interaction between their electron layer 

and the solvent molecule would hinder the flow of the t t  electron 

layer during the wagging of the hydrogens. This hindering 

would be proportional to the dipole moment of the solvent 

molecule and manifest itself as a shift to higher frequency.

This idea is seen to be far removed from La Lau*s model.

These ideas do not explain the small amount of 

broadening produced when CS^ and CCl^ are used as solvents. 

Nevertheless, as one of the solvent molecules translates 

slowly"past a benzene molecule there is still time for 

transfer of some energy. Also, repulsion between the 

sulphur or chlorine and the rr electron layer would still 

lead to a hindering of the flow of electrons during the 

vibration, and still give a shift to higher frequency.
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It is thought that 1,4 dioxane arranges itself 

in a boat conformation (see Pig. 6.15a) above the benzene 

ring and is held there through electrostatic interaction 

as a stronger "complex" than the previous cases. The 

dioxanestays "complexed" for a longer time and the 

broadening is thus larger.

The same ideas can be applied to liquid benzene, 

where different molecules may associate above each other 

for a short time whilst vibrating in phase with each other.

For the b&nd of benzene, the rotations

observed are about the x and y axes. The rotation about 

these axes may be expected to be hindered by the weak 

interactions above and below the ring. This would lead 

to an increased fourth moment which would yield a larger 

mean souared torque compared with the case for cyclohexane.

The fourth moment results are seen to be consistent with this.

Lack of time prevented any variable temperature work 

being carried out and it is suggested that this is carried 

out to obtain a further understanding of these systems. '
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00

H

Pi#.6.15a shows the possible orientation 
of 1,4 dioxane above the benzene rin#. There 
would be a strong electrostatic interaction 
between the two oxy/7en atoms of the dioxane 
and the "end" hydrogens of the benzene, and also 
between the four hydrogens beneath the dioxane 
and the tt electron layer.

Cl
Cl

H

Cl

3A

H ---H
M -- H

H

Fig.6.15b shows the suggested preferred 
orientation for chloroform above a benzene 
ring (62).
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Section 6.9 Evidence for the Formation of Weak
Complexes between 
a) Benzene/Chloroform, and, 
b ) Benzene/llexafluorobenzene-

a) Winstein & Lucas (6l) postulated in 1939 that
an aromatic nucleus was an electron donor and, therefore, 

a Lewis base. They measured the heat of mixing for 

benzene and chloroform and determined that association 

between benzene and chloroform molecules occurred in the 

ratio of 1 : 1.
It was found that Whiffen (77) had observed 

broadening in the C-Cl stretching vibration of chloroform 

in various polar and non-polar solvents which included 

benzene. The observed broadening in different solvents 

was similar to that obtained in this work for benzene, but 

the frequency shift for the band was to lower frequency.

Thus it may be expected that chloroform and benzene will 

have a strong interaction with each other, although the 

work showed no snecific evidence for a complex.

Huntress (62) has used P.M.R. evidence of a
larre anomolouo shift of the chloroform proton in benzene

solution to suggest that the proton of chloroform lies above

the nlane of the benzene ring, and very nearly over the

centre of the ring. The distance of the chloroform
oproton from the plane of the benzene ring is 3A, calculated 

from this chemical shift, indicating that the most probable
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structure .for the complex is one in which the chloroform 

symmetry axis is perpendicular to the plane of the benzene 

ring as shown in Pig. 6.15b.

The evidence is thus for a weak complex which 

exists for a finite time in a definite configuration, but 

which is not visible using P.M.R. and thus has a shorter 

lifetime than the P.M.R. timescale. Rothschild (63) 
has looked at chloroform and benzene in a 1 : 1 mixture 

using infra-red and has compared the autocorrelation 

functions of bands of chloroform with those obtained from 

a chloroform and- carbon disulphide solution. Because the 

short time behaviors of the two sets of autocorrelation 

functions did hot change, Rothschild concluded that a 

concrete comnlex did not exist, or the ability for the 

chloroform to rotate about its x and y axes would be 

suppressed.

There is thus no evidence for true complex 

formation between chloroform and benzene. There is a 

paper as recent as 1973 (80) which disputes whether there 

is a complex at all.
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b) There is much evidence in the literature in

favour of the formation of a 1 : 1 comnlex between benzene 

and hexafluorobenzene (H.P.B.). Patrick and Prosser (64) 
have shown that H.F.B. forms 1 : 1 molecular complexes 

with several aromatic compounds in the solid state.

They suggested that the complexes were of a charge transfer 

tyne with the aromatic hydrocarbon acting as the donor and 

H.F.B. as the accepter. Additional evidence for a complex 

has been obtained from measurements of heats of mixing (65), 
vapour pressure in the gas (66) and liquid (6?) states, and 

refractive indices (68). Gaw and Swinton (67) suggested 
that there was a purely electrostatic interaction, the most 

probable being a dipole - quadrupole interaction, the C-F 

bond dipoles of H.F.B. interacting with the tt electron 

ouadrupole of the aromatic hydrocarbon. Such an

interaction would produce a maximum attractive force when

the planes of the two molecules are parallel.

Barrett (69) has observed the 215 cm ̂  band of

H.F.B. in benzene and observed it to be broadened compared 

with when H.F.B. is dissolved in inert solvents. He 

explained this broadening as being due to the complex 

rapidly breaking and forming and that vibrational energy 

was transferred in every dissociative act. Assuming that 

there was no vibrational relaxation in the system with an 

inert solvent, this vibrational relaxation manifested
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itself in the autocorrelation function as multiplication

by an exponential, exp (-^y )» where is associated

with the vibrational relaxation. It has been suggested

(70) that the vibrational relaxation is exponential and

the total autocorrelation function, C ^ (t), is the

product of the vibrational relaxation, (t) and the

reorientational relaxation C (t), so that we have atn
long time

C y (t) = exp (- p ̂  (t) ) exp (-p y (t) ) 

where ^  ̂  (t) refers to the orientational relaxation of 

H.F.B. in an inert solvent. Barrett obtained the 

vibrational relaxation using the above equation and showed 

that p  ^  (t) was roughly linearly dependent on the 

concentration of benzene relative to H.F.B. indicating 

the presence of a complex.
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Section 6.10 Infra-red Proof of the Existence of
the Benzene/Chloroform Complex and 
Benzene/Hexafluorobenzene Complex

The band of benzene dissolved in chloroform

has already been shown to be different in its properties 

from solutions in other polar solvents. There appeared 

to be an asymmetry in the high frequency side of the 

band of benzene dissolved in chloroform. This could not 

be proved for certain because chloroform has a medium 

strength band at 66? cm  ̂which allowed only 1% transmittance 

in a 0.0028 cm path length cell. It was suspected that 

this asymmetry could be due to the complex. To explore 

this possibility cyclohexane was used in making up a new 

solution with volumes of benzene, chloroform and cyclohexane 

in the ratio of 1 : 5 * 45 respectively. The 66? cm ^ band 

of the chloroform was thus extremely weak in a 0*0028 cm cell 
now. The cyclohexane had the effect of narrowing the 

band and shifting it to lower frequency. In doing so the 

suspected asymmetry was resolved and it is definitely a new 

band arising from benzene. The spectrum is to be seen in Pig. 

6.l6. The main band is centered on 6?5 cm ^ and the new band 

on 678 cm Further dilution by cyclohexane lead to the

disappearance of this new band.



F

ao;_î
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This process was repeated for solutions in

H.F.B, The band of benzene was first measured in

H.F.B. The band was seen to be very broad, with a half

heifht bandwidth of 8,5 cm  ̂ and with a band centre at 

682.3 cm ^. The band looked asymmetric, but the 

asymmetry was so close to the band centre that it was 

difficult to say. The band was then remeasured in a 

three component solution of benzene, H.F.B. and 

cyclohexane in the ratio of 1 : 10 : 5O by volume. The 

result is to be seen in Fi#. 6.17. The second band is 

resolved much more clearly than for the chloroform/benzene 

case. The new band is again centered around 678 cm  ̂

although it was centered around 682 cm  ̂ before adding 

cyclohexane. The new band again disappeared on further 

dilution by cyclohexane.

Tamres and Yarwood (82) have stated that tt - donor 
complexes can be expected tc lead to a change in frequency 

on complexation and the observation of a new band due to 

the charge transfer complex. Person (83) adds that strong 

electrostatic interactions may lead to a similar frequency 

shift to that for the complex,resulting in weak charge 

transfer bands being masked by the electrostatic band.
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Thesejfactfl are in keeping with the observations made 

on the band of benzene in chloroform and H.F.B,

systems. It is thus thought that this work shows 

concrete evidence for the above mentioned complexes.

The lifetimes of these comnlexes must be of the order 

of 10 seconds and lon/zer. The P.M.R, timescale is 

of the order of 10 ^ seconds and does not show concrete 

evidence of a complex, so the lifetime of the complex 

may be expected to be between these two limits,

Lack of time has again precluded further 

investigation of these systems. Vibrational force constant 

analysis on benzene should lead to a predicted frequency 

for the perturbed "0^^ band during charge transfer. It 

is also expected that the relative intensities of the 

"comnlexed” band to the original band, in three

comnonent solutions with cyclohexane, may lead to an 

equilibrium constant for the complexing.
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CHAPTER SEVEN Additional Work

Section 7.1 Vibrational Relaxation

During the course of this work several papers 

have been published concerning vibrational relaxation, 

which consider that it contributes a lot towards 

infra-red and Raman band contours, although Gordon 

considered it to be negligible. Morawitz and Eisenthal 

(70) pronosed that infra-red bandshapes resulted not only 
from re-orientational relaxation but also from vibrational 

relaxation. This vibrational relaxation was said to 

result from hard collisions which involved energy transfer 

and .de-excitation, whereas re-orientational relaxation 

results from soft collisions with no de-excitation.

These two relaxation mechanisms are assumed to be 

independent of one another.

Clark and Miller (78) have proposed a method of 

separating the vibrational relaxation from the 

re-orientational relaxation for a Raman band. The 

depolarisation ratio, ^ , of a Raman band is given, for 

linearly polarised incident radiation, by the expression j-

Ç, . 3 (v)/(455‘' ^ (V) . 4  (3'̂  ( V )  ) ' ■

where ôH ( i> ) and p'( ) are the mean . isotropic and

anisotropic invariants of the derived molecular polorisability tensor 

with respect to the molecular vibration (5I).
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The depolarisation ratio is also equal to the ratio of 

intensity of radiation scattered with its electric 

vector perpendicular to that of the incident plane 

polarised radiation (l (V )  ), to the intensity of

that scattered with its electric vector parallel to the 

incident radiation (l ^  (V )  ). is said

to be the depolarised component and I yy (v)  the polarised 

component of the Raman scattering. We thus have 

Ç . I ̂  (V) / I // (^j)

We also have

I_L (V) . C3 ( V )  ( - V )  4

I// ( V )  - C  ( 4 5 2 ^ ( 0 ) )  + 4 )

where C is a constant, is the frequency of the laser

line and V  refers to the Raman spectrum. From the above 

we get

f  ( ^ )  . )/(3 C ( ) '̂ ) (7.1)

c d ^  ( V )  . I^(T) ) - 4 )/3

45C - t ) j**
■ (7.2)

The constant C will be neglected because we are dealing 

with band shapes. The isotropic and anisotropic band shapes 

may thus be determined. Bartoli and Litovitz (84) have 
shown that the isotropic band shape is determined by the
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vibrational relaxation and that the anisotropic band shape 

is determined by the product of the vibrational relaxation 

and the re-orientational relaxation. The anisotropic 

band shape is thus a convolution of the vibrational band 

shape and the re-orientational band shape. Therefore, the 

vibrational band shape is the same as the isotropic band 

shape. The re-orientational band shape may be obtained 

by deconvoluting the anisotropic band shape using the 

vibrational band shape. However, our concern is with the 

vibrational band shape. Various workers (84, 85 and 86) have 
shown that the vibrational band width of condensed phase 

bands is much larger than was previously thought, using 

Raman spectroscopy. An example is the band of liquid 

methyl iodide which has a vibrational bandwidth of 4*4 om*”̂  

(86). The vibrational band shape should be the same in the 

infra-red (84) when a band is both Raman and infra-red aotive. 
The infra-red band shape is thus a convolution of the 

vibrational band shape and the infra-red re-orientational 

band shape. (in the Raman, rotation-vibration transitions 

are such that the rotational quantum number changes by 

0 or 1'2). The papers looked at all assumed that the 

vibrational relaxation decay curve was a pure exponential.

This is in agreement with experimental spectra which are 

normally Lorentzian in contour. However, if the vibration 

relaxation mechanism is through hard collisions, what 

happens at very short times of less than 0.2 psec ?
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Presumably the relaxation curve follows a different path 

in the same way as for re-orientational relaxation. No 

mention has been made of this.

The vibrational band shape of the band of

liquid methyl iodide (86) was assumed to be a Lorentzian

function and was used to separate the vibrational

relaxation from the re-orientational relaxation for the

infra-red band measured in this work. The success of

the separation was viewed in terms of the second moment

of the freouency spectrum. Examination of the Fourier

transform of a Lorentzian function and the properties of

convolution shows that the convolution of a Lorentzian

function by another Lorentzian function yields another

Lorentzian function which has a half height bandwidth equal

to the sum of the original functions. The band of

liquid methyl iodide had a half height bandwidth of 6.4
1 0.2 cm ^ (after correcting for the hot band). The half

height bandwidth of the vibrational component of the band was

4.4 1 0.2 cm ^. The half height bandwidth of the

re-orientational component of the band should, therefore,

be 2.0 1 0.4 cm”^. The second moment of the experimental

band was calculated to be 552 cm ^ at 119.6 cm  ̂ from the

band centre. The second moment of the vibrational component
~2was calculated to be I65 cm over this frequency range 

(calculated using equation in Appendix l).
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From Chapter Five we know that the second moment of the 

convolution of two functions is equal to the sum of the 

second moments of the original functions. Thus, the 

second moment of the re-orientational component of the 

band was calculated to be 387 cm ^ at 119 cm  ̂ from the

band centre. This value is still much larger than the

theoretical second moment of 220 cm

A computer programme was used to perform the 

above deconvolution using division of the Fourier

transform of the experimental band by that of the

vibrational component (DECON 2). The result was the 

same as the above calculations and also the exponential 

character of the wings was seen to be destroyed as can 

be seen in Fig. 7.1. It is not known for certain that 

a Lorentzian function fits the vibrational component 

at large frequencies relative to the band centre.

It is possible that the vibrational component is an 

exponential function at large frequency. More accurate 

Raman data should throw some light of this problem.

The second moment of a Lorentzian function
, -1with a half height bandwidth of 6.4 cm was calculated 

to be 238 cm ^ at 119*6 cm  ̂ from the band centre.
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Although this is not a particularly rood example to show, 
it can be seen that an increased curvature is apparent on 
the plot after deconvolution. This will always be the case 
unless an exponential function is used for the deconvolution, 
or a function which has exponential behavior in the wings.



278

This yielded a second moment of 314 cm ^ for the 

re-orientational component of the bands of liquid 

methyl iodide. Thus, the high second moment of the 

experimental band cannot be accounted for by deconvolution 

using a simple Lorentzian. The author believes that the 

exponential wings of the experimental band may be 

connected with the vibrational relaxation. Alternatively, 

the exponential wings must result from some other broadening 

factor which has not been accounted for. A similar 

exponential behaviour has been observed in the wings of 

bands from Raman and Rayleigh scattering (84) and the 
authors of (84) are working on this problem.
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Section 7.2 Use of Carbon Tetrachloride as a Solvent

When measuring the band of methyl iodide dissolved 

in carbon tetrachloride, it was noticed that an absorption was 

present at around 460 cm  ̂which was not visible in liquid carbon 

tetrachloride. This absorption was weak and masked by two over

lapping bands at 448 om  ̂ and 476 cm This weak band was

considered of interest because the fully symmetric stretching
-1mode of carbon tetrachloride is at 460 cm in the Raman and is

not infra-red active (5 ). The spectra of liquid carbon tetrachloride
and solutions of it in cyclohexane, benzene, methyl iodide, and

-1 -1aoetonitrile were all measured between 500 cm and 420 cm •

The results are compared in Fig.7.2 and Fig.7.3- The band system 

is broader for pure carbon tetrachloride, so there may be some 

absorption at 460 cm ^ which cannot be seen in the pure liquid, 

but is resolved when a solvent narrows the band system. It is to  ̂

be seen that aoetonitrile has had the greatest effect and cyclo

hexane the least over this frequency range. Aoetonitrile is 

notably the most polar of these solvents. Therefore it would 

appear that there is a weak interaction between carbon tetrachloride 

and these solvents. This interaction may last long enough for 

the vibration at 46O cm  ̂ nof- lo be fully symmetric and so enable 

it to be observed in the infra-red. This system may be of interest 

for someone to follow up. Only a superficial observation was made 

in the course of this work.
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OTETÎBIX T

A mathowitical Appendix outlining the integration of 

a) Fourier transform integrals and b) second moment integrals 
s>r sc''ected. functions encountered in this work.

— 11. "'’he equation ^f a triangle of base ■> un̂ jth 2s rad sec” .

For simplicity a) will be measured relative to the apex 
of the triangle.

:• ) The Fourier transform, A(t)

Aft) = ft-I { 1 -|w|/s ) exp( - icot. ) dw
V

= S-1 ;Xp( - iOJt ) dco - -9

-V

-9

exp( - iwt ) dcj

+ 8 J Co exp( - icot ) dco 

exp( - icot )
= s-1

- it 

exii( - i w t  )

exp ( - i CO t )

-9- S
-ft

w  exp ( - i CO t )

- it

_9

0

coex^.( - icot )

- it

j —ft

- e:p( - iftt ) exp( ist ) s exp( - ist )
' + 1 1 ' 9 ' " ■ ’ +iftt iftt ist

( erp( iftt ) - 1 ) s C':p( ist ) e::p( ist ) - 1

r ist ift“t ( ist )

= ( ist ) ~ jexi,( 1st ) t oxp( - 1st ) ■ - j
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exp( ist/2 ) - oxp( - iftt/2 )

Aft) =
nt /? )

ir.t
2

2, /in exponential decay function expressed in wavenu.nbc' ŝ ?’:.l''t.l̂ro 

to the centre of the function, f ) - cxp( -
a) The Fourier.transform, ?(t) :-

+ ••
F(t) = |-v| ) ._exp( - iPTTc'Vt ) d̂̂ J______

9 oxp( - 5 -V ) expf - i2TTc^t ) d-V

+ "0
= 2 Fe

= 2 Fc

exp - l̂f s + 12 TT ct ) i) ̂  dv

- e>p:_ [( s 4- i2TTct )-v]
S H- 12 TT ct

= 2 P g ( l/( 3 + 1211 ct}

= 2 3 4 12ir ct ) X l/( s - iPTTct }j

1 + ( ':TT’ot/s- ) t-

F(t) is therefore a Lorentzian fi.inction.

b) The second moment, i'(2), of the above exponential 

function is defined bv
■

■ "'111
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^ exp( - al'vl ) d V
U(2) =

exu ( - 01V I ) d V

^  ̂  ÜVLp ( ~ ÎJ J d V

+  00
c)^( - o V  ) d V  

Firstly consider the numerator : -

"V ^ e x p (  -  s  V  ) d V  =  ( 1 ) %  } o X i > (  -  s  V  ) T

and

( 2-v/s ) cxp( - sv } dv 

( 2v/s ; exp( - sv) dv = ( 2 /ŝ  / oXi)( - s )j
t oo

+ 00
( 2/s ) cxp( - ù V  J d v

4-00
and ( 2/s^ ) exp( - av) dV = [” ( ) cxp( - 3v}j

r  0 0  

0
+ 00

V  ̂ bxp( - 3V ) dV = Ü + 0 -t- 2/s'̂

I.o*» consider the denominator : - 
+ 00

exp( - sV) dV =[** G]q)( - sv )/s j 

= 1/3
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-n. üausaiûii I'uuotion expressed in v/avenumbors relative to tVie 

centre of the function, f (V ) = oxpv - sV^ ) 

a) The Fourier transform F(t) : -
+ 00

i'(t) = ü>.p( - sV") 6ip( - i2TTcVt ; d V

4- 00
 2

oXp( - sV^ ) C0s( 2TT C"V t ) dv

2 2 VThis integral is of the form exp( - o x  ) oos( bx ) dx
\

1 2 f
the solution of which is (tT ̂ /2c ) exp( - b ) .

l(t) = (Tr/s )2 exp( -Tl^c^t^/s )

ill; is therefore a Gaussian function also.

by Tlie Second moment of the above Gaussian function is

defined by : -

p
;i(2) =

— 2 — exp( - sV ) dv

4oO
exp( - dV

- oO
fil-stly consider the numerator : -

h.. numerator is of the form 2nX oxp( - eoc ) dx , which

has the solution of ("TT / a  )" 1 . v  . 5 ....(2n - 1 ) /( 2n+1

) . Therefore we have the solution ( t t /  S ) ^ / (  4 s  )
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2 2
*.ow consider the denc.aaJiatoi* : -

-”;:c dcnohiinutux' is of the form oxp\ j  , wViich has
1

the solution of TT-/ka . Therefore we have the solution 

TT /( 2s^ ) .
;,l(2) = ( 2s )  ̂ cu

4. A Lorentzian function expressed in wavenumbers relative to
  p

the centre of the function, f(3/) = x'̂ /( 1 + ) .
a) The Fourier transform, F(t) .

F(t) =
o O

-2( % y (  1 + x^V )) exp( - i2TTcVt) d^
-

= 2 x^/( 1 + cos( 2-TTCVt) d V

dx[cos( mx )
This integral is of the form j 2 2J a + X
solution (t t/( 2a )) exp( - |m|a ) .

P(t) = 4 t t x^x ^*^ exp( -|2rrct|x^^ )

F(t) is therefore, an exponential function.

which has the

b) The second moment of the above Lorentzian function is 

defined by

_2

M(2) =
V"( x / (  1 + X j V h  dV

^ -----------------------------------x ^ / (  1  +  x ^ V ^ )  d v
The denominator is of the form

-4 . -1

l/( a + bx ) dx which

has the solution ( ab ) ^tan ( x( ab )^/a ),for ab > 0
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The numerator is of the form x^/( a + bx^) dx which

has the solution (x/b) - (a/b) I l/( a + bx^) dx .

( X V/X ) - (1/x ) [( X A  2)ltan-'

^ ( X3A / )  tan-^ [ ( x / x / 1  X ,  ]

If V  is taken out to , then M(2) can be seen to be also.

APPENDIX 11

Appendix lYis an alphabetical list of the 

programmes used in this work. A brief statement of 

the function of the programme is made at the beginning 

of each.
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BAXSHV corrects an expérimental liquid phase band contour 
for the local field effect.

PRCnRAN BAKSHVdNPUT,OUTPUT)
DIMENSION 0 ( 6 0 0 ) » D P ( 6 0 0 , G ( 6 0 0 ) , X N  ( 6 00 )
r e a l  1 0 ( 6 0 0 ) , I ( 6 0 0 ) » K A ( 6 0 0 ) , N U { 6 0 0 ) * L I N E ( 1 0 1 ) , N E k I (600)
DIMENSION FACTOR ( 10) , N L ( 10 )
c o m p l e x  c n ? , c t h e »c n p s q
DATA BLANK,STAR»7ER0»PLUS»D0T/1H , 1 H * » 1 H 0 » 1 H + , 1 H . /  

C«* *« * FOR WIDE PATH LENGHTS PATH IS KEPT CONSTANT AND 'FACTOR*  
r e a d  1 0 6 , NN | X S  USED
N 0 = 1 *-------------------
r e a d  i o ? , r a d »bn
00 10 KK=1»NN
r e a d  1 0 1 , N
REAn 1 0 7 , f a c t o r (KK)

' REAn 1 0 0 , CGNC»WO,XNE»SLIT,Pa t h , F I RST , D NU  
r e a d  ? 0 0 , ( I 0 ( J ) , J = N O , N )  
r e a d  P O O , ( I ( J ) , J=NQ,N)
PRINT 301
PRINT 7 0 0 , W O , P A T H , S L I T ,X N E , F I R S T  
N U( n O) = F I RST  
CO Î J=NO,N 
K=J+1 I

1 N U ( K ) = N U ( J ) - 0 N U  :
CO 7 J=NO,N ■
B = I 0 ( J ) / K J )
E=Al 0G(R)

7 D ( J ) = E / ( N u  ( J ) « F a c t o r  ( K K ) )
NL (KK)=N

10 n q =m * i
P I = 1 . 1 4  1S9 £ A S = 1 . / ( 4 . « P I « P aTH)
P I S O = P I « « ?  £ WS0=W0**2  
SXNE=XNE**P  
DO SB J = 1 , N  

SB K A ( j ) = C ( J ) « A S
CO P J = 1 , N  
DO 1 JB=1 ,N  
X = N U ( J ) * * 2 - N U ( J R ) * * 2  
I F ( X ) 7 1 , 2 0 , 7 1  

71 G ( J R ) = K A ( J B ) « NU( J B ) / X  
Gd TO .3 

?0 G ( J R ) = C . 0
1 CONTINUE 

C * o * « * I N l F G R A T l O N  BY TRAPEZIUM RULE
SUMF=0.0 £ N2=N-1  
DO 6 JC=? , N2  

6 SUMF=SUMF+G(JC)
SUMG= ( G ( 1 ) + ? . * S U M F + G ( N ) ) * D N U / ? .
X N ( j ) = X N E - 2 . / P I * S U M G

2 CONTINUE
C * * * * * F I N n  REDUCING FACTOR TO F I T  DATA TO GRAPH 

E 1 = 0 • 0 
CO PS J = 1 , N  

PS I F ( X N ( J ) . G T . E l )  E1=XN( J )
F 1 = F 1 + 0 . 1
E2=P.O '
00 P6 J = 1 , N
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E ? = E 2 - 0 . 1  
E3=E1-E?
E 4 = 10 0 . / E 3  

C*oo* *PLCT g r a p h  of  RF AND I . V . NU  
PPINTIOO  
PHUiT 601 
N A = )
DO 10 I J = 1 , 1 0 1  

^0 l i n e ( I J )=BLANK
L ? = I F I X ( < XNE- E?) * E4 )
CO 11 J = 1 , N  
LINE (LP)=DOT  
M = I F I X ( I ( J ) + 0 . 5 )
L = l r l X ( ( X N ( J ) - E ? ) « E 4 )
LINF(M)rrSTAR  
L I N E ( L ) = P LU S  
I F ( N A . N E . l )  GO TO 33 

' I F ( N U ( J ) - W O - 0 . 5 )  3 ? , 3 P , 3 3  '
1? DO I S  I J = 1 , 100 
*’ B L I N E ( Î J ) = Z E R 0

p r i n t  6 0 0 , N U ( J ) , L I N E , X N ( J ) , k A ( J ) , l ( J )
DO 16 I J = 1 , 1 0 1  

16 L I N T ( I J ) = H L A N K  
NA=P
GO TO .31

T1 PRINT 600 , N’U ( J )  , L I N E , X N ( J ) - , K A - t x r r r t i ; ) ' '
L I NE( L ) =BLANK  
LI NF(M)=BLANK

11 c o n t i n u e
LI NF( LP) =BLANK

C*«*«*CALCULATE THE CORRECTED E l Ns T E I N  ABSORPTION COEFFICIENT  
C « « * « * F I E L O . E F F E C T - - - D U E  TC RAKHSh IEV | L O C A L
C««** *RAC IS RADIUS ASSUMING CLOSE PACKING OF SPHERES

TS The  n u m b e r  of  m o l e c u l e s  CF THE L I QU I D PER 'UNIT VOLUME 
p r i n t  SSO,RAD 
PRIfJT 504  
A = 2 . * P I * B N « R A D * * 3  
DO 41 J = 1 , N
CN?=CMPLX(XN(J)  , K A ( J ) )
CN?S0=CN?**2

-  C T M E = ( 2 . * C N 2 S 0 + 1 . ) / ( 3 . « A * C N 2 S Q + ( C N 2 S Q - 1 . ) * * 2 )
THE=CAeS(CTHE) — '
T M E T A = X N ( J ) * A * * 2 * T H E * * 2  
D 2 ( j ) = D ( J ) «THETA 

PI CONTINUE 
C#«*«*GRAPH.TO c o m p a r e  NEW AND OLD I NT E NS I T I ES  

p r i n t  300  
p r i n t  50?  
p r i n t  972  
E7=o.O  
CO 6 S . J = 1 , N
I F ( n ( J ) . G T . E 7 )  E 7 = c ( J )

AS I F  ( 0 ? ( J ) . G T . E 7 )  E7 = D ? ( J )
E 7 = i 0 0 . / E 7  
DO A6 J = 1 , N  
Th E T A = D ? ( J ) / D ( J )
L = ( n ( J ) * E 7 ) + 1 . 5  
M.= (02  ( J)  «E7)  + 1 . S  
L I N F ( L ) = S T A R  
L I NT  (M)=PLUS
p r i n t  9 5 1 , N U ( J ) , L I N E , THETA 
LI NF( L ) =BLANK  

A6 LINE(M)=BLANK
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print 1 0 0
N Q =  ]
CO ]\ k k = i , n n  
LIM=NL (KK)
PRINT 104
DO ]? J =NO,L I M
E = c ? ( J ) « NU( J ) « F a c t o r  ( k k )
n e w t ( J ) = I 0 ( J ) * E X P ( - E )
l =n f w i ( j >
M=l(J)
I F ( L . E G . M )  go TO 13 
L I N f ( L ) = S T a R 
LINE(M)=PLUS 
GO to. 14 

11 LlNE(L)=ZERO
14 p r i n t  1 0 3 , N U ( J ) , L I N E , I ( J ) , N E W I ( J )LINF (L)=BLANK 
\? LINF(M)=HLANK 
11 N0=NL(KK)+1

DO A4 J = 1 , N  
P4 D ( J ) = D ? ( J )

C* ««« « R£ C aLCULATE wo f or  NEW RAND
AA=O*0 '
DO Q6 J = 1 , N
I F ( 0 ( J ) . L T . A A )  GO TO 96  
A A = 0 ( J)
JNG=J

96 continue 
w0 = n u (JN0)  
p r i n t  9 7 1 , wo 
STCP'

ICO f o r m a t ( 7 F 1 0 . 0 )
I C l  FORMAT(110)
ICP f o r m a t ( E 1 0 . 0 , E 1 0 . 0 )
1 C*’ f o r m a t  ( 1 X , F 7 . 2 , 1 H . , 1 0 1 A 1  , ? X , F 6 . 2 , 4 X , F 6 . 2 )
104 F O R M A T ( l l l X , '  I  N E W I * / 1 1 3 X , ‘ -  -------- *)
106 FORMAT(110)
1C7 FORMAT(FIO.O)
?C0 FORMÂT( 1 6 F S . 0 )
ICO FORMAT(IHl)__________________________________________________________
-«Cl F O R M A T ! / / / / )  I s^ECTK
SC? F O R M A T ( l O X , ' E I N S T E I N  COEFFICIENT SPECTRUM COMPARED WITH OLD 

7 U M * / T 0 X ,   ----------------------------------------------------------------- ------------------------------ 7 -------------
7)  l -r. r- . -7/ .

SC? F O R M A T ( 3 0X , ' E I N S T E I N  COEFFICIENT SPECTRUM BAND SHAPE COMPARED
I WJTH

7 OLD SPECTRUM * / l O X , ' ----------------------------------------- ------------------------------ -----------------

SC4 F O R M A T ( / / / ? 7 X , ' D  D? THETA
7 / )  I NU

AOO f o r m a t ( IH , F 6 . 1 , ? X , l h . , l O l A l , F 6 . 4 , 2 X , F 6 . 4 , 2 X , F 5 . 2 )
6C1 FORMAT(1 I P X , ' X N  KA I ' / i l 2 X , ' - -  —  -  ' )
7 0 C f o r m a t (1 O X , • W 0 = * , F 6 . 1 / 1 0 X , ' P A T H = ' , F 9 . 7 / 1 0 X , * S L I T = ' , F 6 . 4 / 1 0 X , '  

7 , F 4 . ? / 1 0 X , ' F I R S T = ' , F 6 . 1 )  I X N E - '
qcQ FORMAT(1H1,20X, 'ONSAGER-HOTTCHER RADIUS OF MOLECULE = * , E 1 4 . 6 ,  

7//) ' 1̂ CM* A
9C) FORMATdH , F 6 . 1 , 2 X , 1 H . , 1 0 1 A 1 , F 6 . 4 )
97 0 f o r m a t ( ? 0 X , E l 6 . B , 5 X , E l 6 . f l , 5 X , F 6 . 4 , 5 X , F f i . 2 )
971 F O R M A T ( / / / / 4 0 X , ' N E W  WO = ' , F 7 . 1 , '  C M - 1 ' )
972 f o r m a t ( 1 1 3 X , ' T H e T A ' / 1 1 3 X , * ---------- ' )

END I
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COMCON oonvolutes an experimental band contour and plots the 
result out using a CALCOMP graph plotting routine.

PROGRAM COMCON( INPUT,OUTPUT)
DIMFNSION 0 ( 1 8 7 ) , A ( 1 8 7 ) , CHART( 10 1 )
d i m e n s i o n  t e x t ( R ) , D 2 X D T ? ( 20 0 ) ,COR1 0 ( 2 0 0 ) , C O R I ( 2 0 0 )
r e a l  KCON( 1 8 9 ) , N U ( 1 8 9 ) , I ( 1 8 7 ) , 1 0 ( 1 8 7 )
d a t a  C l , C 2 , C 3 , C 4 , C 5 / 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 /
d a t a  s t a r , b l a n k , p l u s , Z E R 0 / 1 H « , 1 H  , 1 H + , 1 H 0 /
N0=1
REAn 1 0 0 , N , f i r s t , DELNU,WO,CONC,PATH, s l i t  
r e a d  2 0 0 , ( I 0 ( J ) , J = N Q , N )
REAn 2 0 0 » ( I ( J ) , J = N O , N )
r e a d  3 0 0 , t e x t
PRINT 400  
PRINT 3 0 1 , TEXT
p r i n t  1 0 1 , N , F I RST , DELNU, WO, CONC, PATH, SL I T  
CO 13 J=NO,N 
N U ( J ) = F I R S T  

]1 FIRST=FIRST+DELNU '
CO 1 J=NO,N
C O R l O ( J ) = C l + C 2 * l O ( J ) + C 3 * ( I O ( J ) * * 2 ) + C 4 * ( I 0 ( J ) * * 3 ) + C 5 * ( I 0 ( J ) * * 4 )

3 C O P j ( J ) = C 1 + C 2 * I ( J ) + C 3 * ( I ( J ) * * 2 ) + C 4 * ( I ( J ) * * 3 ) + C 5 * ( I ( J ) * * 4 )
print 400 
PRINT 6oi 
DO u J=NO,N

4 D ? X n T ? ( J ) = 0 . 0  
M — N — 6 j
CO S J= n Q,M

5 D2XnT2( J  + 3)  = ( C 0 R I ( J  + 6 ) - C 0 R I ( J  + 4 ) - C 0 R I ( J ♦ 2 ) ♦COR I ( J ) ) / ( 8 . * D E L N U  
Z S 1 = S L I T * * 2 / 1 2 .  ' I * * : 2 )
DO 7 J = NÛ,N : ------
X I C = I O ( J )
XI  = T ( J) !
C Z S i = 2 S l « D 2 X D T ? ( J )
I ( J ) = C 0 R I ( J ) - C Z S l  
! 0 ( J ) = C 0 R I 0 ( J )

.,^7 p r i n t  600 , N U ( J )  , X I 0 , X I , C 0 R I 0 ( J )  ,CORl  (J )  , D 2 x D T 2 ( J )  , C 2 S 1 , I  ( J )
DO 1 J = 1 , N  ----------- -------- ----
B=In(J)/I(J)
E=AL0G(B)

1 C ( J ) = E / ( N U ( J ) * C 0 N C « P A T H )  ■; i. ..
DO 16"J=1,N
DO 17 JK’c=l,N ^  .
XNL=NU( J K ) - N U ( J)

17 A ( J K ) = D ( Ù K ) « E X P ( - A B S ( X N U ) « 0 . 1 3 )  '
F = 0 . 0  e M=N-1
DO 18 JMp2,M ' L - T

1A F=F+A(JM)
16 KCON (J) = (A (l)42.*F4A(N))*A8s (DELNU)/?.' ...L_ % '

* = 0 . 0  ......DO 14 j=i,N . . .  _ ... i :
14 I F (KCON(J).GT.X) X=KCON(J)

DO IS J = 1 , N
15 K C C N( J )= K CO N( J )/ X  

*«o«*PLOT GRAPH
PRINT 400  
DO 22 I J = 1 , 1 0 1



p? CHAPT( IJ)=BLANK ' PQO
CO P i  J = 1,N 
L = K C O N ( J ) * 1 0 0 . + 1 . 0  
CHAp T(L) =STAR
p r i n t  s o o , n u ( j ) , Ch a r t , k c o n ( j )

PI CHAPT(L)=BLANK
N U ( 1 8 B ) = 1 9 0 0 . 0  £ NU( 1 8 9 ) = 1 0 . 0  
K CC N( 1 8 f t ) = 0 . 0  £ KCON( 1 8 9 ) = 1 . 0 / 7 . 0
CALL s t a r t ______________________________________________________________
CALL PLOT ( 1 . 0 , 1 . 0 , - 3 )  U l S D )
CALL AX I S ( 0 . 0 , 0 . 0 , 1 0 H a b s o r b a n c e , - 1 0 , 7 . 0 , 0 . 0 , KCON( 1 8 8 ) ,KCON 
CALL A X I S ( 0 . 0 , 0 . 0 , 7 H N U  C M - 1 , 7 , 9 . 3 5 , 9 0 . 0 , NU( 1 8 8 ) , N U ( 1 8 9 ) )
CALL L I N E ( k C ON , N U , 1 8 7 , 1 , 0 , 1 )
CALL ENPLOT( 9 . 0 )
STCP _  ___ _____________

ICO e o p m a t ( i i o , 6 f i o . g ) ■ If C
101 f o r m a t ( 2 0 X , ' N = ' , 1 5 / 2 0 X , ' F I R S T = * , F 8 . ? , »  C H - 1 * / 2 0 X , » D E L N U = ‘ , 

7 H - 1 » / ? 0 X , »W0=• , r a . ? , • C M - 1 * / 2 0 X , ' C 0 N C = » , E 1 6 . 8 , • HOLES/L I TRE '
7PATh =» , F 1 0 . 6 / 2 0 X ,  * S L I T = ' , F 8 . 2 ,  » C M - 1* )  .   | / 2  0 X d

200 FORMAT( 16F5 . 0 )
700 f o r m a t (BAIO)
3C1 F O R M A T ( / / 2 0 X , 8 A 1 0 )
4CC FORMAT( I Hl )
500 FORmaTCIH , F 8 . 2,IX,1CIA1,2X,E1P.5) k F 1 0 . f
AGO format (10X,F8.2,5X,Fe.2,5X,F8.?,5X,F8.2,5X,F8.2,5X,Fl0.5,3X 

75X,F8.2)
AGI format (15X, ‘NU*,11X,*I0»,HX,*T*,10X,'CORIO*,8X,»C0RT »,9X,• 

7,5X,*?ND order COR* ,4X,'NEWI » ) | 0 2 X D T 2 '
END ' )-----— -----

CORSLT simulates a typical condensed phase infra-red transmitted 
intensity curve. This curve is then convoluted using a triangular 
slit function, and then deconvoluted using the second derivative 
method.

PROGRAM CORSLT( INPUT,OUTPUT)  “ I ' _
DIMENSION C 2 X O T 2 ( 1 0 0 0 ) , O M X D T M ( 1 0 0 0 ) , Y ( 1 0 0 0 )  . " •
Rf a L k ( l C Ô O ) , N U ( 1 0 0 0 ) , L I N E ( 1 0 1 ) , I CON( 1 0 0 0 ) , I N E W ( 1 0 0 0 ) , IRAN 
Rf a L ILOR ( 1000)  , IRNEW ( lOOO) ' -  —  ' 1 ( 1  0 0 0 )
DATA STAR, BL A N K , PL U S, ZE R 0 / 1H * , 1H  , I H + ^ l H O /  * '  '-------------------
DO 3 0 ‘K K = ] , 3  -  -,
READ 1 0 4 , N , X I , X 3 , D E L N U , S , W O  
VHALFaSQRT ( 4 . / X 3 )
PRINT i l 0 5 , N , X l , X 3 , D E L N U , S , W 0 , V H A L F
N 4 = ( 2 . * S ) / D E L N U + 1  £ N5=S/DELNU — ------
N6=N5 + 1      "--  ■

N n ( 1 ) - 0 . 0  ' .

M ) ( J ) = N U ( J - D  ♦DELNU '  "   , ^ ''
DO ? j = l , N  * ■   ' ..................
K ( J ) = X 1 / ( 1 . 0  + X 3 * ( N U ( J ) - W 0 ) * * 2 )  ............ ..
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C * * * « * MAKL K I M O  A LINEAR PLOT* BETWEEN 90 AND ' 2 0
N7 = N / 2  + l   "-------- --- -------------
Z1=K(N3)  r  2 2 = K ( 1 )    . — -------
C = A L 0 G ( 4 . S ) / ( Z 1 - Z 2 )
DO 4 J = 1 , N  ---- r- — --------------------------- ------ ------
c u m m y= a l c g ( 9 o . o ) - c « k c j )----------------------------------------------

4 I l OR (J )  =ExP (DUMMY)    — --------
C* * * * *CONVCLLTE ILCR“*"  '  ̂ '

Do 11 J=N6 , N7  ........  " — —---------- •-----

00 12: I J = I  ,N4 ' - . - /
Xa PS = ABS (NU ( J ? ) - N U ( J )  ) — ------------------- --------------
Xl  = l L O R ( J ?)  - - r — -
Y ( I J)  ?X I «  ( 1 • -  (XABS/S)  ) ----------- -------------

F = O.C   " ~
00 13- I J = i  , N 4 ------- -— - "  ' — -------- -
F = F + Y ( I J )13

11 I r O N ( J ) = ( ? . « F - Y ( l ) - Y ( N 4 ) ) « D E L N u / 2 .  " ~IP = N
On 22 I J =  ) »N5   ■ ----------
i r o N ( i j )  = î L 0 R ( i j )  ■ “  *
I CON(JP)  = I L O R ( I P )  ------------------  -------  -------

22 ID=IP^1 - ........ -    '-
C * « * * * U S E  A ' r andom  g e n e r a t o r  TO PRODUCE NOISE 

CO 18 J=1 ,N  -------  ----------------------
Y=RANF(0#0)  --- ——-rrriri- "
Y 2 = ( Y - 0 . 5 ) / 1 G . ~     =---

1ft ÏPAN ( J)  = Ir.ON ( J)  ♦Y2 — ---------------------------
C * * * * * P L O T  s p e c t r u m  ILOR V ICON

Pp t NT 2 00 ^̂  r- ------------  ' - —-----

BETWEEN - 0 . 0 5  AND 
+ 0 , 0 5 '  PERCENT

21

;

24
25

23

PRINT 500  
00 21 *IJ= 1,101
l i n E ( i j ) = r l a n k  ■' ™
CO 22 J = 1 , N , 8  T" “ ■
L = I L 0 R ( J )  — —
M=ICCN(J)
IF* (L. ' e 07M) G Ô ^ Ô  24 
LTNE(L)=STAR  
L TNE( M) =P l US =
GO TO 25 . . .
L I N E ( L ) = Z E R 0
PRINT 5 0 1 , N U ( J ) , L I N E , I L O R ( J ) , I C O N ( J )
L INE (L)  =BLANK-----------  .  — -
L TKjE (M) =Bl ANK —  ------- ------------------------- ------ -

- '5y: '
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2*«*d*PE0FQpy SLIT CORRECTION 
DO IS J = 1,N ------

15 D?XDT?(J)=Q.0“ 'y_fvj —  ̂  - - —
DO 16 J=1,M

16 D?XDT2(J*i)=(IC0N(J+6)-lC0N(J+4)-IC0N(J+2)+lC0N(J))/(8.*DEL2<U=S»»?/i?. • ......  - - • — -
Do 17 J=1,N ■ — rr-r=~—     :----------- '   i---------L

C7Sl = ZSl«n?XDT2(J)
17 lNFWfJ)=IrON(J)-CZSl

^LOT s e c o n d  DERIVATIVE
p r i n t  2 00---------------------------='- " T : -----------
PRINT 101 ' '
X = 0 . 0  £ Y = 0 . 0 " * ^1   ------ - r — ----------
DO 9 J = 1 , N
I F ( 0 2 X D T 2 ( J ) . L T . Y )  1 ~  Y=D2XDT2( J)  
I F ( D 2 X D T 2 ( J ) . G T . X )  X=D2XDT2( J)

X = 1 0 0 . / Z  ~
DO 10 J = I , N , e   -------- — ---------
L = ( ( D 2 X D T 2 ( J ) - Y T * X ) + 1 . 5  
LTNE(L)=STAR - ■
p r i n t  1 0 2 , N U ( J ) , L I N E \ D 2 X D T 2 ( J T  

M  LTNE(L) =Bl  ANK ■
CONTOURS'

PRINT 200 " 3 Z 7 7 7 3 Z Z W Ï Z Z ! :
p r i n t  300
00 20 'J = l  , N , e  -"T—  1 ^ —
L = I L 0 R ( J )  * “
M = I N E W ( J ) "  '— - i p  -
I F ( L . E G . M )  GO TO 3 
L t mE (L ) . = s t a r  “ T i T 7  “ 
LINE (M).=Pl US
GO TO 5 '

! 3 LTNE(L%=ZERO
S PRINT 1 0 3 , N U ( J ) , L I N E , I L O R ( J ) , l N E W ( j r  

) L I NE(L)=BLANK
' 20 LlNE(M)=ejLAJiK r - p  _ _

3 0 COMÏ INUE
STOP

100 F O P M A T ( 5 X , F 7 . 2 , 1 H . , 1 0 1 A 1 , 2 X , F 6 . 3 )
101 F ormat  ( l U X ,  * 0 2 X 0 1 2 * / 1 1 4 X ,  • -------------   ) p
10? F O R M A T ( 5 X , F 7 . 2 , 1 0 1 A 1 , 1 X , F 8 . 3 )
103 F O R M % T ( 5 X , F 7 . 2 , 1 H . , 1 0 1 A 1 , 1 X , F 6 . 3 , 1 X , F 6 . 3 )
104 F O R M A T ( I 1 0 , 5 F 1 0 . 0 )
105 F O R M A T ( 4 0 X , * N = * , I 5 / 4 0 X , * X l = « , F 6 . 2 / 4 0 X , • X 3 = • , F 6 . 2 / 4 0 X , ' D E L N U  

Z / 4 0 X ,  • $ = '  , F 6 . 2 / 4 0 X , ' W O = *  , F 8 . 2 / 4 0 X , * V H A L F =  # , F 6 . 2 )  | = \  F6 . 4"
200 f o r m a t  (IHl) •- -  ̂ ■ p --̂---------
300 F0PMAT( 116X ,  * ILOR I N E W / 1 1 6 X , » ----------'------------- ' )
501 F O P M A T ( 5 X , F 7 . 2 , 1 H . , 1 0 1 A 1 , 1 X , F 6 . 3 , 1 X , F 6 . 3 )
500 FORMAT % 1 16 X , ' IL OR  I C 0 N ' / 1 1 6 X , '  —  *)  ....... ..



295
DEC0N2 is used to deconvolute an experimental band contour by 
the Fourier transform method. The second moment is alsojcalculated.

■ V  p r o g r a m  O E C O N ? (i n p u t ,OUTPUT)
/ O I M f NSTON 0(500) ,PATH (10) , N L (10) , C T (500) 

d i m e n s i o n  t e x t (8),CONC(10)
DIMFNSION CTLOR(SOO),S(500)
REAL KLOR (500) , N U 2 (500) , M 2 (500) 
p e a l  K (500) ,K2 (500) ,NU (500) ,L I N F (101) 
r e a l  1 0 ( 5 0 0 ) - I (500),12(500)
C 0 M P L E X-̂ 5P̂ rSTTTt;-p-,-F M 
INTEGER R
DATA S T A R , P L A N K , P L U S , Z E R 0 / 1 H * , 1 H  ,1H+,1H0/
READ 106,NM -
READ 107,NT,XT 

C *****NN IS NUMRFP OF SETS OF DATA TO RE FED IN 
PRINT 600 
PRINT 110,NT,XT 
PRINT 112,NN 
N0=1 ^
KX = ?
DO 30 KK = 1,NN L . 7  ■ - :
READ 100,N , F I R S T , D E L N U , W O , C O N C ( K K ) , P A T H ( K K ) , S L I T  
READ 2 0 0 , ( IO (J ) ,J=NQ,N) '
READ 200, (I ( J) ,J = NO,N)
READ 3 0 0 , TEXT '
PRINT 3 0 1 , TEXT 

. PRINT 101,N , F I R S T , D E L NU , WO ,C O NC ( KK ), P AT H (K K)  ,SLIT 
NL (KK) =N .......  , .
00 13 J=NO,N : .
N U ( J) = PI R ST........... ....... _

13 F IDST=FIRST + DFLNU _  .  ̂_ I
DO 1 J=NQ,N __
R = IO(J)/I(J) :
E = ALOG(R)        .1 D ( J ) = E / ( N U ( J ) « C O N C ( K K ) « P A T H ( K K ) ) ~ S 7 - 7 " T /
IF(KX.NF.l) GO TO 33   . .
k y = 2 £ M=N-i - I - r .  '
Î0 ̂) 3 ̂5 3 , , 2 - — * * — IT—— ~—— ——, — — — — -
1 ( K Y ) = I ( J ) : ■ '
D( k y )=D(J) . i '77777.7 

30 CONTINUE, _ .
6 0 K(J)=D(J)   - _____ - _ _

N=300 £ FIPST = 582.0 .£ ■Y4=0.Ô2764 £:;Y5=0.00484228
DO 8 4 J — NQ,N  ̂- , — — —  — —IT"'—* - ̂ ----  —  —
NU ( vj ) —FIRST - i fr.' .

IO(J)=0*0 £ I (J)=0,0 - . .;z - --- ,
K ( J) =Y5«FXP (-Y4«ARS (NU ( J)-WO) )

«4 FIPST = FIRST + DELNU - .
PRINT 600 - - I::..:/
PRINT 400, (K ( J) , J=1 ,N) - -

C * * * * * C A L CU LA T F  GAMMA OF E X P ER I ME N TA L  BAND -Li.



M=N-1 £ F = 0 . 0  "
00 46 TZ=?.M

46 F = F+ K ( T7 )
G A m m a = (K(1)+2.«F + K ( N ) ) « A 8 S (D E L N U )/ 2 . 

C ** ** * CA L CU LA T E  SECOND MOMENT 
DO 4 7 J=1,N

47 S (J )= K (J )« (M U (J )-W O )««2 
r=o.O £ M=M-1
DO 4ft J = —

4ft F = F + S ( J )
S U M = ( S ( 1)+2.*F+S(N))«A 8 S( DE L MU ) /2 .
Xm p = s UM/GAMMA
P R I N T  7 0 2 , X M ?

C ** ** * PFPFORM FOURIFP TRANSFORM 
T I m f = 0 . 0  £ XN=N
X T = 1 . 0 / ( 3 . 0 * 1 0 . * * 1 0 * X N * A R S ( D E L N U ) * 2 . 0 )  

X T = X T / 3 .
F A C T 0 P = 2 . * 3 . 14159*3.0*10.**10 
K(])=K(l)/2. £ K(N)=K(N)/2.
DO ]2 R=1,N
CONST=FACTOR*TIME 7  '
S P = ( 0 . 0 . 0 . 0 )
X D = A B S (D E LN U) « CO NS T  
F P = C M P L X ( C O S ( X D ) . - S I N ( X D ) )
no. 23 _  . -V----- --------
IT=N-J+1 

23 SP=K( 1 T) + SP *E PC T ( R ) = R E A L ( S P * A R S ( D E L N U ) )
12 TIMF=TTME+XT  

C * * * * * CALC ULATE THE LORENTZIAN 
DO ftl J = 1 , N  

ftl K L O R ( J ) = 1 . 0 / ( 1 . 0 + 0 . 2 0 7 * ( N U ( J ) - W 0 ) * * 2 )  
C * * * * * CALC ULATE SECOND MOMENT OF LORENTZIAN 

M=N-1 £ F = 0 . 0  
DO 90 I Z = 2 , M

90 F=F+KLOR(IZ)
G A M 2 = ( K L O R (1)+ 2 . * F + K L 0 R( N) ) *A BS ( DE L NU )/ 2 .
DO 91 J=1.N

91 S ( J ) = K L 0 R ( J ) * ( N U ( J ) - W 0 ) * * 2  
F=0.0 £ M=N-1
DO 92 J=2 .M

92 F=F+S(J)
S U M r ( S (1)+ 2.*F+S(N)) *A R S( DE L NU ) >2 .  
Y M? =S UM/GAM2  
PRINT 7 0 3 . YM? V

r * * ** * PF P FO RM  F.T.
TTMF=0.0 £ XN=N
K L0 P( 1 )= K L0 R( 1 )/ 2.  £ K L0 R( N)=KL0R(N)/2.
00 ft2 R=1 ,N ,
C0m5 T = F A C T 0 R * T I mE
SP=(0.0.0.0)
XD=ARS(DELNU)«CONST
FP = CMPLX(COS(XD) ,-SIN(XO) ).̂;
no ft3 J = 1 . M  _
IT=N-J4l '

83 S P = K L O R( I I) +S P *E P  . ..„7. .
C T L 0 R ( R ) = R E A L ( S P * A 8 S ( D E L N U F F - 7 / 7  .
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A2 TIMF = TÎMF^XT
ZZ = CTL0 P( 1 )  ___ ___......................_______

7  DO 85 P = 1 ,N / 7 : '  7 7 t i 7 7 ï 7 % 7 ï 7
85 C T L O P ( P ) = C T L O R( P ) / Z Z  _________ _

C * * * * * O E V T D E  F . T .  OE SPECTRUM BY F . T .  OF LORENTZIAN
DO 80 P = 2 . N  _______

80 C T ( R ) = C T ( R ) / C T L O R { R )  /  . /  L
.C« * *« * PL OT  F . T .  _ .

00  21 I J = 1 , 1 0 1  /
21 l i n f ( I j ) = b l a n k  .     :

C C = 1 0 . * * 1 2  „ "
Z T = X T * i n . * * 1 2
T I m f = o . o . . 7  v 7 7
PRINT 60 0 - _    ... .............
PRINT 700

............  PRINT 701 - . . .
. • L y =c t ( 1) , -, ; ■ j
  Y = 1 0 0 . / Y  ^  .. . . ..

7.  ; DO 41 R=1,NL...: LJ 7 : 7 , : -  . 7 . 7 . 7 .
_ L = ( C T ( R ) * Y ) + 1 . 5 _ _ . _____    .

: L I N F ( L ) = S T A R  7../  " .777' :%.- '"/
PRINT 5 0 1 , T I mE , L I N E , C T ( R ) ,CTLOR(R)  
t i m e = t t m e ^7T - - 7  :  - /

41 L I NE( L ) =RLANK . ,_____ ___
C** » * * NOW DO INVERSE FOURIER TRANSFORM 

C T { 1 ) = C T ( 1 ) / ? .  £ C T ( N ) = C T ( N ) / 2 .  
X T 2 = X T * 3 . * 1 0 . * * 1 0 * 4 .  _ .
00 55 J=1 ,N _ , , .

  C 0 N S T 2 = F A C T 0 P * ( N U ( J ) - W 0 ) / ^ 7 ;  - :  .
SM= ( 0 . 0 , 0 . 0 )  . _ — _ _ .
XD = XT*C0NST2 ^

-  FM = CMPL.X(C0S(XD) , S Î N ( X D )  ) , .
00 56 R=1 , N 7 - 7 : 7 . .
I I = N - P + I  , .. _  ^____ ..............

56 S M= CT( I I )+ SM« EM . 7  7 7 :  7 7
55 K 2 ( J ) = P EA L ( S M* XT 2 )  - ___________

C** * * *COMPAPE THE c o n t o u r s : BEFORE AND AFTER F . T .
K ( 1 ) = K ( 1 ) * 2 .
KLOR( 1 ) =KLOR( 1 ) * 2 ,  . 7
PRINT 600
PRINT 102 -  =:

-  ̂ DO 6 i  J=1 , N  ... T --------------------
L= (K ( J ) * Y 2 )  *\ . 5
L2= (KLOR ( J ) «  1 0 0 .  ) +1 .5;^:^^^-.  -
M= (K2 ( J)  * Y )  ♦ 1 . 5
L I NE (L ) — ST AR -.. r -1 =-r .7 ■

■ : L I N F  ( L2)  =ZFRO . 7 7 / / 7 7 7 7
i   LI^IF (M) = P L U S /.

: PRINT 1 0 3 , N U ( J ) , L I N E , K ( J ) , K 2 ( J )  :
- - L I NE (L)  =RLANK ------
:  7.  .  l i n e  (L2 )  = r l a n k  ..  ̂ .
. 61 , L INE(M) =BLANK , . _ :

C * * * * * CA L C U L A T F  GAMMA :
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M = N-  1 
F = 0 . 0
00 7 I Z  = ?,M . . -7 :7_  -

7 F = F + K 2 ( 17 )
G A M M A = ( K ? (1)+ 2 . * F + K 2 ( N ) )« A B S (DELNU)/2. ' \

C * * * * * CALC ULATE THE SECOND MOMENT
DO ft J = 1 , N  - . ' , _

ft S ( J ) = K 2 ( J ) * ( N U ( J ) - W 0 ) * * 2
N U ?  ( 1 ) = N U  ( 1 ) -%; ■ " •]:
N ? = l  ,e M 3 = N / 2  ■ ‘ ’ 1'
DO 4 2  T 7 = 1 , N 3  " : C /  T
F = 0 . n  e. N2=N? + 2 1
w = N 2 - i  ' 7 . : -  ; :7 ui
DO 4 3  J = 2 , M  ■ %

4  3 F  =  F + S ( J )  ■ 2  ' - L
M 2 ( I Z ) = ( S ( ] ) + 2 . * F + S ( N 2 ) ) * A B S ( D E L N U ) / 2 .
M 2 ( I 7 ) = M 2 (T Z) / GA MM A  :

42 N'l? ( IZ) =NU (N2)
C * * * * * P L O T  G R A P H  V '  . : i\

P P  T N T  600 _ _  '
P P T N T  S C O  .-r/ . 7  7  7 : '  ;!
X = 0 . 0  ‘ _ „  _________
no 44 1 7 = 1 , N3 !

44 I F ( m2 ( I Z )  , G T . X )  X = M 2 ( I Z )
X = X + 0 . 2 * X
X = 100./X , ' *
no 45 I7 = 1,N3 :
L = ( M 2 ( T Z ) * X ) + 1 . 5
L I N E( L )= S TA P  _y' 77^: ■'
PRINT 5 02 , N U 2 ( I 7 ) ,LINE,M2(IZ)_. _________

45 LINE (L) =Rl.ANK :%7: "^2
STnP . _ (--------- ;----

100 FORMAT ( 1 1 0 , 6 F 1 0 . 0 )  - - 7  J f 5 ' . 2 ,  C
101 FORMAT( 2 0 X , • M = ‘ , I 5 / 2 0 X , ' F I R S T = * , F 8 . 2 , * C M - 1 ' / 2 0 X , ' D E L N U = ' ,

7 M - 1 ' / 2 0 X , ' W 0 = ' , F 8 . 2 , ' C M - 1•/ 2 0 X ,'C O N C = ',E 16.ft,• MOLES/LITRE' 
7PAT H= ' ,F10.6/20X,'SLIT=',Eft.2,• C M - 1 •) | / Z o X ,'

102 FORMAT (116X,' K K2 ‘/ 1 1 6 X , * ------------------- •)
103 F O P M A T ( 1 X , F 7 . 2 , 1 H . , 1 0 1 A 1 , 2 X , E 1 1 . 5 , 1 X , E 1 1 . 5 )
106 FORMAT ( I  10)  i  \  _
107 F O R M A T ( I 1 0 , E 1 0 . 0 )
110 F O R M A T ( / / / 4 0 X , ' N T = * , I 5 / 4 0 X , ‘ X T = • , E 1 1 . 5 )  I
112 F O R M A T ( / / / 4 0 X , ' N N = ' , 13)
200 FORMAT ( 1 6 F 5 • 0 ) -7- 7; —
300 FORMAT ( f tAlO) . . . . . .  . ... ...2 ...... 2 . .
301 FORMAT ( / / 2 0 X , 8 A 1 0 )  -- i
400 FORMAT (10E12.5)    ̂ . ..  .. ... . _
500 F O R M A T ( / / 4 0 X , ‘ GRAPH OF CONTRIBUTION TO SECOND MOMFN

e i v c y ' /
V FREOU

501 f o r m a t (IX,F 7 . 4 , 1 H , , 1 0 1 A 1 , 1 X , E 1 1 . 5 , 1 X , E 1 1 . 5 )
5 02  F O R M A T ( 5 X , F f t . 2 , l H . , 1 0 1 A 1 , E 1 6 . 8)
600 f o r m a t ( I H l )
700 FORMA T ( / /4 0 X , ' C OR REL AT I ON FUNCTION .V . T I M E • / 4 0 X , • -

701 F O R M A T ( l l l X , • CORRFLAT I O N • / 1 X , * P I COSEC' , 1 0 4 X , ' F U N C T I O N ' / I x ,
Z ' , 10  4 X ) ■

7 02  F O RMA T ( / / 4 0 X , ' EX P ER I M EN T A L  SECOND M 0 M E N T = ' , E 1 2 . 5 , '  C m - 2 ' )
703  FOR M A T ( / / 4 0 X , ' S E C O N D  MOMENT OF LORENTZIAN=' , E 1 2 . 5 , '  C M - 2 ' )  

E N D  .
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EXTRAP calculates the integrated intensity, second moment and 
autocorrelation function of an experimental band contour.

PROGRAM EXTRAP( INPUT,OUTPUT)
DIMENSION T E X T ( 8 ) , S ( 5 0 0 ) , 0 ( 5 0 0 )
DIMENSION CT( 50  0 ) , G ( 5  0 0 ) , T I mE( 5  00)
REAL N U ( 5 0 0 ) , N U p ( 5 0 0 ) , M ? (500> * L I N E ( 1 01 )  
r e a l  LNCT(SOO) —
r e a l  1 0 ( 5 0 0 ) , 1 ( 5 0 0 )
COMPLEX SP,EP
i n t e g e r  R
d a t a  S T AR, BLANK, PLUS, ZER0 / 1H* , 1H , 1 H + , 1 H Q /  - 
REAO 1 0 6 , NN 
REAn 1 0 7 , NT,XT  

C* « * « * N N IS THE n u mb e r  OF SETS OF DATA TO BE FED IN 
p r i n t  400  
p r i n t  1 1 0 , NT,XT
p r i n t  112,n n
N0=1 I
DO 10 KK=1,NN
REAn i o o , n , FIRST,DELNU,WO♦CONC,PATH,Sl i t
READ 2 0 0 , ( I 0 ( J ) , J = N Q , N )
r e a d  2 0 0 , ( I ( J ) , J = N O , N )
r e a d  3 0 0 , t e x t
PRINT 3 0 1 , TEXT
p r i n t  1 0 1 , N , F I RST, DELNU, WO, CONC, PATH, SL I T  
DO 1.3 J=N0,N  
N U ( J ) = F I R S T  

13 FIRST=FIRST+0ELNU  
DO ) J=NQ,N
B = I 0 ( J ) / I ( J )  '
E=AL0G(R)

1 D ( J ) = E / ( N U ( J ) « C O N C * P A T H )
' NQ=N+1 

30 CONTINUE 
p r i n t  400  
p r i n t  103  
00 34 J = 1 , N  

->4 PRINT 1 0 2 , N U ( J )  , I 0 ( J )  , I  ( J )  , D ( J )
C** *« *MAKE SURE N I S  ODD 

I N = ( N + l ) / 2  
N = ( I N * 2 ) - 1  

C* * * « * CAL r UL A T E  GAMMA 
C * « * * * IN T E G R A T I ON  BY TRAPEZIUM RULE 

K=N/?
N2= 1
DO 7 1 2 = 1 , K 
F = 0 . 0  
N2=N2+2 
M=N?-1 
DO 14 J=2,M  

14 F= F+ D( J )
G ( I 7 ) = ( D ( 1 ) + 2 . * F + D ( N ? ) ) « A B S ( D E L N U ) / 2 .

7 N U ? ( I Z ) = N U ( N ? )
GAMMA=G(K)
PRINT 9 0 1 , gamma 

C * « * « * P L C T  CONTRIBUTION TO GAMMA V FREQUENCY 
DO 10 I J = 1 , 1 0 I



500'
10 L I N F ( I J ) = B L A N K  

p r i n t  400  
p r i n t  600  
X = 0 , 0
DO 1(S IZ = 1,K

16 I F  (r, ( 12 )  . G T . X )  X=G ( I Z )
X = 10U. /X"
DO 17 1 2 = 1 , K
L = ( n ( I 2 ) * X ) + 1 . 5
L I N F ( L ) = S T A R
PRINT 6 0 l t N U 2 ( l 2 ) , L I N E , G ( I 2 )

17 L I NF( L ) =HLANK  
C* «* * *CALcULATE THE SECOND MOMENT

DO 4 J = 1 , N
4 S ( j ) = D ( j ) * ( N U ( J ) - W 0 ) * * 2  

C * * * * * I N T E G R A T I O N  BY SIMPSONS RULE
N2=l
DO q 1 2 = 1 , Kr= o.o  
T = 0 . 0  
N2=N2+2  
M=N2-1
DO S J = ? , M , 2

5 F = F+ S ( J )
DO 6 J = 1 , N 2 , 2

6 . T= T+ S( J )
M ? ( I 2 ) = ( S ( l ) + 4 . * F + 2 . * T - S ( N 2 ) ) * A B S ( D E L N U ) / 3 .  

q M2 ( I 2 ) = M?. ( I Z ) / GAMMA .
C#«*«*PLOT gr a p h  

PRINT 400  
p r i n t  SCO 
X = 0 . 0
DO 11 1 2 = 1 , K 

11 I F ( M ? ( I 2 ) . G T . X )  X = M 2 ( I Z )
X = X + 0 . 2 * X  
X = 1 0 0 . / X  
DO 1? 1 2 = 1 , K 
L = ( M ? ( I Z ) * X ) ♦ l . S  
L I NE ( L ) = S T A R
PRINT SCl*NU2(JLZl_dJLN£4idP( lZ)  -  

' 12 L INE(L)=BLANK
C** *«*CALCULATE CORRELATION FUNCTION .

T I M E ( 1 ) = 0 . 0  
DO 7S R=2,NT  

75 T I M E ( R ) = T I M E ( R - 1 ) ♦ X T
FACT 0R=2 . * 3 . 1 4 1 5 9 * 2 . 9 9 7 7 6 * 1 0 , * * 1 0  
D ( I ) = D ( l ) / 2 .  e D ( N ) = D ( N ) / 2 .  ‘
DO 22 R=1 ,NT  ̂ L
c o n s t = f a c t o r * t i m e (R)
S P = ( 0 . 0 , 0 * 0 )
XD=aRS(DELNU)« c o n s t  I
E P = C M P L X ( C 0 S ( X D ) f - S I N ( X O ) )  i
00 J = l t N  *
1 I = N - J * 1 
S P = 0 ( I I ) * S P * E P
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DUM m Y=ARS(OELNU)
SUM=REAL(SP*OUMMY)

2? CT (P)=Sü M/GAMMA 
PRINT 90?

C#****PLOT c o r r e l a t i o n  FUNCTION 
! A=1.0

XTIm e =0.0 '
YT=XT*10.**1? 
p r i n t  400 
p r i n t  700 
PRINT 701 
Y=CT(1)
Y=100./Y
NT2=NT/5
DO 25 R=1,NT2
L=(CT(R)*Y)+0.5
IF(L-LT.I) g o  TO 26
LINF.(L)=STAR
p r i n t  7 03,X TI ME , l i n e ,CT(R)
XTIME=XTIME+YT

25 LINE(L)=BLANK
26 c o n t i n u e

C*«4«*PL0T OF LOG OF CORRELATION FUNCTION 
: 00 27 R=i,NT :

z=cT(R) ;
IF (?.LT.0.00001 ) GO TO 50

27 LNCT(R)=ALOG(Z)
50 CONTINUE
, Y = 0 •0

DO 2A R=1,NT2 '
2A IF(LNCT(R).LT.Y) Y=LNCT(R)

• Y=loO./Y 
' PRINT 400 :
, print eoo 

print 701 
XTIME=0.0 
DO 29 R=1,NT2 
L=(LNCT(R)«Y)+1.5 
L=10?-L 
LINE(L)=STAR
PRINT 7 0 2 , XTIME,LINE,LNCT(R)
XTIME=XTIME+YT 

29 l i n e  (L)=BLANK
ZT=YT*5.0 £ Y=0.0 
DO 60 R=1,NT,5 

'6 0 IF(LNCT(R).LT.Y) Y= l NCT(R)
Y=100./Y 
PRINT 400
print p o o
p r i n t  701
x t i m e = o . o
DO 61 R = 1,NT,5 Î;
L= (LNCT (R)«Y)+1.5 
L = lo?-L LINE(L)=STAR
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p r i n t  7 0 2 , X T I M E , L I N E , L N C T (R)
XTIME=XTIME+ZT  

61 LINE(L)=BLANK  
STOP <

ICO f o r m a t  ( 1 1 0 , 6 F 1 0 . 0 )  I F 5 U 7 '  C
I C I  f o r m a t ( ? 0 X , ' N = • , I 5 / 2 0 X , ' F I R S T = * , F 8 . 2 , • C M - 1 • / 2 0 X , ‘ DELNU=‘ ,

7 M - 1 ' / P O X , ‘ W0=‘ , F 8 . 2 , ' C M - 1 ‘ / 2 0 X , ' C U N C = ' , 5 1 6 . 8 , '  MOLES/LITRE  
ZPATh= ‘ , F 1 0 . 6 / 2 0 X , ‘ S L I T= *  , F 8 . 2 ,  • C M - l ' )  V Z O X , *

102 f o r m a t ( ? 0 X , F 8 . 2 , 5 X , F 6 . ? , S X , F 6 . 2 , 5 X , E 1 6 . 8 )  -------------- —
101 f o r m a t ( 2 4 X , ' N U ‘ , 1 0 X , • 1 0 • , 9 X , • I •,1 6 X , ‘D* )
1C6 FORMAT(110 )
U 7  f o r m a t  ( 1 1 0 , E l O . O)
110 f o r m a t ( / / / 4 0 X , * N T = • , I 5 / 4 0 X , ' X T = • , E 1 1 . 5 )
112 F O R M A T ( / / / 4 0 X , * N N = ' , I I )
200 f o r m a t ( 1 6 F S . 0 )
ICO FORMAT(8A10)
101 F O R M A T ( / / 2 0 X , 8 A 1 0 ) _____________________________________________ ________
400 FORMAT ( I H l )  I r̂4CVV
SCO f o r m a t ( / / 4 0 X , ' G R A P H  OF CONTRIBUTION TO SECOND MOMENT V FREQU

7 4 0 X , ' , ------------------------------------------------------------------------------------------------------------- •)
SOI FORmaT { 5 X , F 8 . 2 , 1 H . , 1 0 1 A 1 , E 1 6 . 8 )
6C0 f o r m a t ( / / 4 0 X , ‘ GRAPH OF CONTRIBUTION TO GAMMA V FREQUENCY' /40Xz :- - - - - - - - - - - - - - - - - - - - - - - - - - - .') 1 - - - -
6C1 f o r m a t ( S X , F 8 . 2 , 1 H . , 1 0 1 A 1 , & 1 6 ^ 8 1
700 f o r m a t ( / / 4 0 X , ' C O R R E L A T I O N  FUNCTION V T I M E ' / 4 0 X , * ------------—

7 01 f o r m a t ( lllX, 'CORRELATION' /I X , ' P I C O S E C , 1 0 4 X , • FUNCTION‘ /  1X , ' —  
7 * , 1 0 4 X , )

70 2 FORmaT ( 2 X , F 5 . 2 , 1 X , 1 H . , 1 0 1 A 1 , 2 X , E 1 1 . 5 )
7C1 f o r m a t  ( 2 X , F 5 . 2 , I X , I H . , ) 0 1 A 1 , 2 X , E 1 1 . 5 )  | ________ "
800 f o r m a t ( / / 4 0 X , ' L O G  OF CORRELATION FUNCTION V T I M E ' / 4 0 X , ' -----
9 01 f o r m a t ( / / / 4 0 X , ' G A M M A = ' , F 1 0 . 5 / / / )
902 f o r m a t (///)

ENG .

FTSLIT performs a double Fourier transform on a simulated 
Lorentzian curve to see if the original function is accurately 
reproduced, and so tell how accurate the Fourier transform 
routine is. The print out here uses the traditional method 
of evaluating the integrals.
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PRCgRAM F T S L I T d N P U T , OU T P UT )  '.................
d i m e n s i o n  c t ( ? o o o > ^  _
p e a l  K(?:j OQ) ,NU(?OOU) , ILOR (POOH),KCOR ( 2 0 00 )  ,NEwI  ( 2 0 00 )  , 
i n t e g e r  R I L T N E ( I O I )
d a t a  s t a r , b l a n k , P L U S , Z E R 0 / 1 H * , 1 H  , 1 H + , 1 H 0 /  ------------  —

' R E A D - 1 ^ 0tW ,wO,FIR ST ,C E LNU,XI,X3
p r i n t  301,N,WO, F IR S !, DE L NU ,x l ,X 3  “■"CO 1 J=1,N 
NU(J)=FIRST
K ( J ) = X 1 / ( 1 . 0 + X 3 * ( N U ( J ) - W O ) * * 2 )

1 F IR ST=FlRSr+CELNU  
C*****MAKE K INTO A LINEAR PLOT BETWEEN PQ AND 20 

Z 1 = K ( 1 ) L Z2 = K (N)
C = A L 0 G ( a . 5 ) / ( Z l - Z 2 )  _ ;
DO 4 j=i , r>i

■ CUMmy = A L O G ( 9 0 . 0 ) - C * K ( J )  ■ ■ ■" - ■
4 ILCP(J)=EXP(DUMMY)

C*****DO FOURIER TRANSFORM ON LINEAR CURVE 
TIMr=0.0 £ XN=N
X T = 1 . 0 /( 1. 0 * 1 0 . **10*XN«DELNU*2.0) '
F A C T 0 R = 2 . * 1 . 14159*3.0*]0.**10 DO ]? R=1,N . ' "
c o n s t = f a c t c r * t i m e
CO 1.3 J = 1 ,N
X = ( N U (J) -WO)«CONST
X2=C0S(X)
X I = y Q . O - I L O R ( J )

11 KCCR(J)=XI*X2  
C *4 *a * lWTFGRATI0N BY TRAPEZIUM RULE

1  F = 0.0 ; _  V
M=N-1

■ DO 14 J=2 , M ■ /
14 F=F+KCOR(J)

C T ( P ) = ( K C 0 R ( l ) + 2 . * F + K C 0 R ( N ) ) * D E L N U / 2 .
1? TIMF=TIME+XT 

C*«***NOh 00 INVERSE FOURIER TRANSFORM : v d
TIME=0.0 

_ _ D 0  s 5 _ j = i , N  _
CÔNST2 = FACTÜR* ( N U (J)-wO)
CO S6 R = 1,N _
z x = t i m e * c o n s t ?
ZX2=C0S(ZX)  ■ -  -
K C C P ( R ) = C T ( R ) * Z x 2

■ C6 TIMF = TIME + XT
C ** ** * INTEGRATION BY TRAPEZIUM RULE 

F = m .O ■ -M=N-i '        :
  DO 57 R=2,M

57 F=F+KCOR(R) -
-  - X I 2 = ( K C 0 R ( 1 ) + 2 . * F + K C 0 R ( N ) ) * 2 . * 3 . * 1 0 . * * ^ 0 * X T
■c«a***ALTFRNATE X12 ARE -VE SO USE A^BSO 
r -  55 "  NEwi (J)  = 9 0 . 0 - A B S  ( X I 2 )  "  "
C*****COMPARE THE CONTOURS BEFORE ANC“ AFTER F . T .
- - PRJ..J pQo : — " ■
  PRINT TO? - -  '
: DO 21 I j = i , i 0 i  --------: —

2 1 L IN F(IJ)=BLANK ' '   “ - -  ..
DO 20 J=l,200
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L = I L O R ( J )
' -- M = NFWI ( J)_________________________________

LI KK( L ) = ST AR '  ̂ “ ”1 — -

" GO T() 5 ^
- - 7  L I NF  (L) =ZERO " "

' 5  PRINT 1 0 3 , M J ( J ) , L I N E , I L O R ( J ) , N E W I ( J )  __
: ' LII\E(L)=BLANK : : ' :

20 L INF (M)=bLANK

Too f o r m a t ( I T 0 , 5 F 1 0 . 0 )
1C2 F0RMAT( 116X,  ' ILOR N ' E W r * / l l 6 X ,  • -  —    ' )
101 f o r m a t  ( 5 X , F 7 . 2  , I h . ' ,  101 Ai , T X , F 6 . 3 ,  1 X , F 6 . 3 )  [T T 7 7 T T 7
PCO FORMAT ( I H l )  - -  :v -  | C M - 1 /
101 f o r m a t ( 4 0 X , ' N = ‘ , I 5 / 4 0 X , • W0=' , F 8 . 2 , ' C M - 1 ' / 4 0 X , • F I R S T = ' , F 8 . 2 .
-  - 7 4 0 X , ' D E L N U = ' , F 5 . 3 , ‘ C M - l ' / 4 0 X , ' X l = ‘ ' F 6 . 4 / 4 0 X , ' X 3 = ‘ , F 6 . 4 )

-' ' ENC " ■

KOTBND is used to remove hot bands and low abundance isotopic 
bends from an experimental condensed phase band.

" —  pr og ra m  HDTBNDdNPUT,OUTPUT)"- -"  " - 
-r-TT- DIMENSION TEXT (8 )  , D 2 X O T 2 ( 5 0 0 )  , 0 ( 5 0 0 )  ,DHOT ( 5 0 0 )

REAL N U ( 5 0 0 ) ------------  "  ---------------------
— - — r e a l  I  ( 5 0 0 )  , I N E W ( 5 0 0 )  , 1 0 ( 5 0 0 )  , L I N E T 1 0 l )  -  
-  - - DATA S T AR, BL AN K, PL U S, ZER0 / 1H * , 1H  , 1 H + , 1 H 0 /
- — -— READ 1 0 3 , N 2 , C ON C 2 , P AT H 2 , N 3 , CO NC 3 , PA T H 3 - -  -
~ N0 = 1   -̂-- — -
—  ̂ READ I CO , N , F I RS T , DE L N U , wo , CO N G , PA T H , SL I T -
~ ~ ^ ^ R E A D  2 0 0 ,  ( I O ( J )  , J=NQ, N) ----------- ----------^
vr r r e a d  2 0 0 , ( I  ( J ) , J = NQ , N )   — rr~ --   - ---------
“ ~ ~ P R I N T  101 , N , F I R S T , D E L N U , W 0 , C 0 N C , P A T H , S L I T  " T
 — DO 13 J=KO,N ■   —     — _
~ N U ( J ) = F I R S T  ---------------------  — J :v

— 13 F I PST = FIRST+DELNU — ~~~4-i~ > •;
 —---------- DO 14 J=NO , N ----------------------------------------------^
— 14 DPXDT 2 ( J ) =0 • 0 ---- —-  --  —  ------- ' y

—  — DO 15 *J=NO,M - • -  —— — — -------- —  —
1 5 ”  D2XDT? (J + 3)  = ( T ( J  + 6 ) - I  CJ>4 ) - K  J + 2 )-+ I ( J ) )“/ (  8 .  * DELNU* * 2  )

“  — Z S 1 = S L I T * « 2 / 1 - E :  : _
“   "-DO 17 J=NO,N   "  ̂ ■ - ;
—  - CZ S1  = Z S 1* D2X DT 2 ( J )  l: : — -  ^     -  '
” * 1 7 ~ K J ) = I ( J ) - C Z S 1 ----------------------------------------------^ ------------------

^ B = I 0 ( J ) / I ( J ) -  --------
E = A L 0 G ( R ) —  — ' ■-------------  -

"" '"1  D ( J ) = E /  (NU ( J ) * C O N C * P A T H T ^  ------ --------- -----

■ ?"~DHOT ( J ) =0 . 0 —   -  - - 7 ,

■ DO 3 J = T , M— — --------;
—  3 --DHOT (J) =0.00277*0 ( J * 2 1 -

"  DO 4 J=1 ,N2 — — ------- — ----— — =----------   -
— D ( J) =0 ( J) -DHOT ( J)-^- . , 7 -

E = D ( J ) *NU ( J) *C0NC2*PATH2
"*■ 4 I N E W ( J ) = I 0 ( J ) 7 B .
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»**«*PL0T GRAPH 
PRINT 4 00

6 L I NE (I J ) =RL ANK __ -
L = I (J)
i f (L.e g .m ) g o ”T O ~ 8 ~
LINE (L ) =STAR r” L IM E ( M ) = P L U S    ----  —
GO TO 9 - -  ̂  - ” 78 LINE(L)=ZER0     " "

9 PRINT 102,NU(J),LINE,I(J),INEW(-J)^^ t̂ e: = = f F - " - ^  LINE(L)=ELANK - “ - ■ -
L I NE ( M ) =BL ANK - - 7 7 - - 7 : 7; '7 c o n t i n u e  - ”  “  ̂■ —  ;

100 FORMAT(I10,6F10.0) .. ^■ - |f 5 , 2 i ' c101 f o r m a t ( ? 0 X , * N = * , I 5 / 2 0 X , ' F I R S T = * , F 8 t 2 , •- C M - 1 */ 2 0 X ,•n P L N U = •. 
ZM-1 */?0X, *W0=« ,F8.2, * CM-1 •/?OX,' »CONC=* ,E16.8, * MOLrS/LlTRE 
ZPATH=* ,F10.6/20X, *SLIT=* ,F8.2, • CM-l • ) I / 2 0  X

-10? FORMAT (2X , F 8 . 2 , 2 X ,  1 0 1 A 1 , 2 X , F 5 i 2 , 2 X - ^ P 5 . 2 )  
103 - F O R M A T ( I 1 0 , ? F 1 0 . 0 , 1 1 0 , 2 F l 0 . 0 ) r .  .
200 f o r m a t  (16F5.0) ----  - - -
400  FORMAT ( 1 H 1 )  * — zr-Lz-rr—;————:—- ■■■■ _. T% . -rr:̂

LORG-AP is used to compare the profiles of'experimental condensed’ 
phase bands with simulated functions, A Lorentzian function is 
simulated in this print out.



PROGRAM'LORGAP( i n p u t ,OUTPUT,TAPE1=INPUT,TAPE3*0UTPUT)  
DATA STAR, BLANK, PLUS, ZER0/ 1H* , 1H  
DIMENSION 0 ( 5 0 0 )  .
REAL 1 0 ( 5 0 0 ) , I ( 5 0 0 ) , N U ( 5 0 0 ) , K ( 5 0 0 ) , L I N E ( 1 0 0 ) , K A (500 )  
READ(1 , 1 0 6 )  INP 
READ ( 1 , 1 0 5 )  X I , X 3  
WRITE ( 3 , 1 0 3 )  X I , X 3  

_NQ=1
DO 30 KK= 1 , INP
READ ( 1 , 1 0 1 )  N,FIRST,WO,DELNU,VHALE,PATH,CONC  
READ ( 1 , 1 0 0 )  ( I O ( J ) , J = N Q , N )
READ(1 , 1 0 0 )  ( I I J ) , J»NQ,N)
WRITE( 3 , 2 0 0 )
WRITE( 3 , 1 0 2 )  N,FIRST,WO,DELNU,VHALF,PATH,CONC
DO 1 J=NQ,N
N U ( J ) = F I R S T
F1RST=FIRST+DELNU
B = I O ( J ) / I ( J )
E=ALOG(B)
D ( J ) » E / N U ( J )

1 K A ( J ) = D ( J ) / ( 4 . * 3 . 1 4 1 5 9 * P A T H * C 0 N C )
N0=N+1 ;

30 CONTINUE '
DO 21 J = l , N  

21 K ( J ) = X 1 / ( 1 . + X 3 * ( N U ( J ) - W 0 ) * * 2 )
WRITE( 3 , 2 0 0 )
WRITE( 3 , 7 0 0 )
DO 12 J = 1 , N

12 WRITE( 3 , 8 0 0 )  NU( J ) , 1 0 ( J ) , I ( J ) , K A ( J ) , K ( J)  •
X=0.0 <
DO 3 J = 1 , N
I F ( K A ( J ) . G T . X )  X«KA(J)  '

3 CONTINUE ■'
DO 11 J = 1 , N

11 IF ( K ( J ) . G T . X )  X * K ( J )  .
X = 1 0 0 . / X  
WRITE( 3 , 2 0 0 )
DO 4 J = 1 , N  
D I F » K A ( J ) - K ( J )
DO 5 1 J = I , 1 0 0  ‘ ;

5 L I N E ( I J ) = B L A N K  
L = ( K A ( J ) * X ) + 0 . 5  
M = ( K ( J ) * X ) + 0 . 5  ,
I F ( L . E Q . M )  60  to  50
L I NE ( L ) = S TA R  ' , T  ̂ ^  -
LINE(M)=%LUS ‘  ̂ •
GO TO 51 : .

50 L I N E ( L ) * Z E R 0
51 WRITE( 3 , 4 0 0 )  NU( J ) , L I N E , D I F
4 CONTINUE:

STOP •
100 FORMAT(16F5 .0)
101 FORMAT( 1 1 0 , 6 F 1 0 . 0 )  I / 4 0 X , 6
102 F ORMA T ( / / 4 0 X , 6 HN « , I 7 / 4 0 X , 6 H F I R S T * , F 7 . 1 / 4 0 X , bHwO = , F 7 . 1

2 H D £ L N U = , F 7 . 1 / 4 0 X , 6 H V H A L F » , F 7 . 1 / 4 0 X , 6 H P A T H  » , F 7 . 5 / 4 0 X , 5 H C O N C =
Z)

103 F O R M A T ( / / 4 0 X , 3 H X 1 * , E 1 2 . 5 / 4 0 X , 3 H X 3 * , E 1 2 . 5 )
105 FORMAT(2F10 .0)
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106 FORMAT( 15 )
200 FORMAT( I Hl )
400 F O R M A T ( 2 X , F 7 . 2 , l X f l H . » 1 0 0 A l , 2 X » E 1 2 . 5 )  _____________
500 FORMAT ( 3 0 X , 3 H  A = , F 1 0 . 5 , 4 X , 9 H B * * 2  * , F 1 0 . 5 / )  U 2 H ------  ̂ %
70 0 F 0 R M A T ( 2 8 X , 2 H N U , 9 X , 2 H I 0 , 8 X , l H I , 1 2 X , 2 H K A , 1 4 X , l H K / 2 ü X , 2 H — ,9X

Z X , 1 H - , 1 2 X , 2 H — , 1 4 X , 1 H - )
800 F 0 R M A T ( 2 5 X , F 7 . 1 , 5 X , F 5 . 1 , 5 X , F 5 . 1 , 5 X , E 1 1 . 5 , 5 X , E 1 1 . 5 )

END

PLEAjTD is used to plot out en experimental condensed phase 
band contour using the CALCOIIP graph plotting routine, /J.1 
plots are normalised to the same height and are also the 
same height as those obtained from COMCON, for the purposes 
of comparison.

I
PROGRAM PLRANDdNPUT,OUTPUT)  
d i m e n s i o n  T E X T ( R ) , D 2 X D T 2 ( 5 0 0 ) , C O R I O ( 5 0 0 ) , C O R I ( 50 0 )
DIMENSION 0 ( 2 3 1 ) , CHART( 10 1 )  
r e a l  NU(201> , I ( p o d  , 1 0 ( 2 0 1 )
DATA C 1 , C 2 , C 1 , C 4 , C 5 / 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 /  
d a t a  STAR, BLANK, PLUS, ZER0 / 1H« , 1H , 1 H + , 1 H 0 /
NQ= I
r e a d  1 0 0 , N , F I RST , DELNU, WO, CONC, PATH, SL I T  
r e a d  2 0 0 , ( I O ( J ) , J = N Q , N )
READ 2 0 0 $ ( I ( J ) , J=NQ,N)  
r e a d  1 0 0 , TEXT 
print 400 
PRINT PQ1,TEXT
PRINT 131 , N , F I RS T , D EL N U , WO , CO N C , PA T H , SL I T
CO 11 J=NQ,N
N U ( J ) = F I R S T

11 FIRST=FIRST+CELNU '
CO 1 J=NO,N ,
C O R l O ( J ) = C l + C 2 * l O ( J ) + C 3 * ( I 0 ( J ) « * 2 ) + C 4 * ( I 0 ( J ) « * 3 ) + C 5 * ( I 0 ( J ) * * 4 )  

7 COR I ( J ) = C 1 + C 2 * I ( J ) + C 1 * ( I ( J ) * * 2 ) + C 4 * ( I ( J ) « * 3 ) + C 5 * ( I ( J ) * * 4 )
PRÎ 'JT 400 ____  -\ —  -    _
PRINT 601 
CO 4 J=NO,N 

4 D 2 X D T 2 ( J ) = 0 . 0
M=N'-6
DO S J=NO,M *K-2)
D ? / n T ? ( J + T ) = ( C C R I ( J + 6 ) - C 0 R I ( J * 4 ) - C 0 R I ( J * 2 ) ♦ C C R I ( J ) ) / ( 8 . » D E L N U  
Z S l = S L I T » * ? / l ? .
DO 7 J=NQ,N 
X I C = I O ( J )
XI  = T (J)
C Z S l = Z S l * D 2 X C T 2 ( J )
I  ( J ) = C C R I ( J ) - C Z S l  
I O ( J ) = C O R I O ( J )

7 PRINT 6 00,N U ( J ) , X I O , X I , C OR IO ( J) , CO Rl ( J) , D? XD T ?( J) , CZ S 1, I( J )
DO 1 J = 1 ,N 
n = i o ( j ) / i ( J )
E=AL0G(R)
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1 ~ C ( J) =E/ (NÜ (J)"*CONC*PATH)
X = C.Ono 14 J = 1 , N

14 IF(0(J).GT.X) X=D(J)
CO IS J=1»N

15 C(J)=D(J)/X 
C***a*PLOT g r a p h

p r i n t  400
DO ?? I J = I , 1 0 1C H A P T ( I J ) = B L A N K
CO 7>l J = 1,N
L=C(J)*100.+1.0
CHAPT(L)=STAR
PRINT S 0 0 , N U ( J ) , CHART,D(J )
c h a r t (L)=BLANK _̂_
NU(?02)=1760.0 f NU(?03)=10,0 
C(?o?)=0.0 £ D(P03)=1.0/7.0 -

s t a r t
PLOT( 1 . 0 , 1 . 0 , - 3 )
A X I S ( 0 . 0 , 0 . 0 , 1 OH a b s o r b a n c e , - 1 0 , 7 . 0 , 0 . 0 , C ( 2 0 2 ) , 0 ( 2 0 3 ) )  
A X I S ( 0 . 0 , 0 . 0 , 7 H N U  C M - l , 7 , 1 0 . 0 5 , 9 0 . 0 , N U ( 2 0 ? ) , N U ( 2 0 3 ) ) 
L I n E ( C , M l , 2 0 1 , 1 , 0 , 1 )
EKPL OT ( 9 . 0 )

ICC
ICl

?C0
300
301 
400 
SCO 
600
601

CALL 
CALL 
CALL 
CALL 
CALL 
CALL
STOP   —

FORm a T ( I 1 0 , 6 F 1 0 . 0 )  I
f o r m a t ( 2 0 X , ' N = ' , I 5 / ? 0 X , ' F I R S T = ' , F 8 . 2 , » C M - l ' / 2 0 X , ‘ DELNU=‘ , 

7 M - 1 ' / P C X , »W0= ' , f 8 . ? , ' C M - 1 * / 2 0 X , ' C O N C = ' , E 1 6 . 8 , ‘ MOLES/LITRE
7.PATH=‘ , F 1 0 . 6 / 2 0 X ,  * S L I T = ' , F 8 . 2 ,  • C M - l * )  V / l O  X "

FORMAT(16FS.0) ---------------------------------------------------------------------------- -̂--------------------
f o r m a t  ( 8A10)  . , _ ,
f o r m a t  (//TTOXTOTTOT —
FORMAT( I H l )  f-----------------
FORMAT(IH , F 7 . 2 , 1 X , 1 0 1 A 1 , ? X , E 1 2 . S )  I ) F (0.5"?
f o r m a t ( 1 0 X , F 8 . ? , 5 X , F e . ? , S X , F 8 . ? , 5 X , F 8 . 2 , 5 X , F 8 . 2 , 5 X , F 1 0 . S , 3 X  

7 5 X , r a . 2 )
f o r m a t ( 1S X , ' M l * , 1 1 X , • 1 0 • , 1 1 X , ' I ' , 1 0 X , * C 0 R I 0 * , 8 X , ' C O R I • , 9 X ,

Z , 5 X , '2ND 
END

ORDER C C R ' , 4 x , ' N E W I ' ) ' O I X  0 T 2 '

PLESPC simulates a degenerate gas phase band of a symmetric 
top molecule and plots it out using the CALCOiO^ graph 
plotting routine.



309

BRANCHES FOR K=0

?
C-----

PROGRAM PLESPC(INPUT,OUTPUT) I
d i m e n s i o n  a (ISCO) , A 2 ( ISO?) ,XNU ( 1502) , C H A R T (100)
R E A L  I N T P , I N T R , T N T 0 , N U R , N U P , N U G , J , K 2  
R E A L  N L ' P P K » N U P M k , N U R F K , N I ) R M k , N L Q P K , N U O N ! K  
D A T A  S T A R j B L A N K / I H * - ,  I N  /  ”
X = C .479006E-? —

_X=H*C/(K*T)
r e a d  t o o , w c , e t a , b o , h i . AO, a i . o e l m u , U max  
r e a d  AuOtWSPEC 
p r i n t  100
p r i n t  101 ,WO, e T a , B O , B I , A 0 , A I , D E L N U , J M a X,W5PEC 
B D I E = P I - B 0  £ r SUM=RI+r O £ AB=AC-BO £ A l D B I = A l - B I  £ APCa h =(  

7A0-M0)
CO 1 1=1,1500 ----------
A (I)=0.0 

-CALCULATE P,Q,R 
CO ? 1=1,UMAX !
J = I  ,

-P BPANCH I
M)P=WO-RSUM*( J + i . ) + B C I F * ( J + 1 . ) * * 2 + A l D R I - 2 . * A I * E T A
p=MiP-wspec ~  \ —  --------
N P = ( P / C E L N U ) +0.5 '
0 U M H Y = B 0 * (J +1 . )* (J + 2. ) *X  
?=EXP(-UUMMY)
INTP=Z*J
A ( N O ) = A ( N P ) + INTP 

-R BRANCH
NUR = wO + ? . * P I + ( l . * B I - B O ) * ( J - I . ) + B C l F * ( J - l . ) * * 2  + A I C B i - 2 . * A I * E T A
R R = m UR-WSPEC
NR=(R R /D E LN U) + 0. S
CUMMY=PO*J* ( J - 1 . ) «X
z ? = F x ? ( - d u m m y )
INTR=Z?*(J + 1.)
A (NP)=A(NR)+INTR 

-CALCULATE 0 BRANCH 
N U C = W 0 + H D I F * J * ( J + 1 . ) + A I D P I - ? . * A I * E T A  ;

_ C = N m O - W S P E C  -  r . .
' N O = ( O / D E L N U ) + 0 . S  " ...........
C U M M Y = BO * j* (J + i. )* X 
ZlrFXP(-DUMMY)
I N T n = Z T * ( ? . * J + l . )
A ( N O ) = A ( N O ) ♦ i n t o
c o n t i n u e  " >

- -CALCULATE THE R E S j OF THE SPECyRUM WHERE K.NE.O 
CO 1 K= Jt,UMAX
k ?= k **2 '
AK = K
CO 4 I = K, UMAX .
J = I
F L U S K = A I D B I + A I D B I * 2 . « A K + A R D A B * A K * * 2 - 2 . * A I * E T A * ( A K + 1 . )
AMINK = A I D B I - A I C B I * ? . « A K  + ABDAB*AK«*2 + 2 . * A I * E T A * ( A K - 1 . )

- - P  BRANCH FOR DELTA( %) = < !
N UP =W U -H S UM *( j + ? . ) + B C I F * ( J + 2 . ) * * 2  NUPPK=NUP+PLUSK 
P = MiPPK-WSPEC



' / \-L ‘ / y
; NR=(P/CELNu)+0.S

Z4= uu * (J + 2.)*(J+3.)+(A0-H0)*K2 
A 7PK=/4*X

Vl=rXP(-ZPK)
rPPK= ( J-AK + ? . )*(J - A K + 1.)/(J + 2.)ÎNTP=Vi*GPPK 
A ( N R ) = A ( N P ) ♦ INTP

C P BRANCH FOR 0ELT A (K_)_=-J___ _____ _____
' —  \N'UF = wO-HSUM*J + PnlF*J*op 

MJPmK = N'UP + AMINK
p =m i p m k - w s p e c
NP=(P/CELNU)+O.S
2 5 = m ) * J * ( J * l . ) ♦ (AO-hC)*K? - ,

 ̂ ZMK=fS*X
♦ V?=rxP(-ZMK)
i ' n P vK = ( j + a K ) * ( j + a k - 1 . ) / J

J N T P  = V ? * G P M K  ,i ■ •
A ( N P ) = A ( N P ) ♦ In TP

r---- R BRANCH FOR DELTA (K) =4 I ' V.,
NUP=w O +? . *B I+ ( T. *B l -B O )* J+ d Ol F *J ** 2  i 
NUKPK=NUR+PLUSK i

.! R RzMHPPK-WSPEC ! . . .
J "  NP.= (PR/OELNU)+0.5 ' 'd'

r-RPK= ( J + AK+ 1 . ) * ( J + ;^+2. ) / ( J + 1 . )
1 TNTP=V2*GRPK '
: A (NR).= A (NR)+In TR , •
\ C---- R BRANCH FOR 0E l TA(K)=-1

MJRmK = NuR+AMINK ' 1
RR = sjl)RMK-WSPEC •'
N R = ( P P / D E L N U ) +0.5 •
r:RFK= ( J-AK + 1 . ) *  ( J-AK + 2 .  ) /  ( j  + 1 . )
INTP=V?*GRMK .
A (NR) =A (NR)+1NTP ' • ' ::

r---- C PwANCH FOR DELTA(K)=,l • / ' ^
;N U C = w Q , H D I F * (J + 1 .)« (J+2.)
MJC:r'K=MjO + PLL'SK 
C = M)OPK-WSPEC 
N0= (O/CELNU)+0.5
G O F h = (?.*J + 3 . ) « (J-K + 1 .)*(J + K+2.)/(J + l.)/(J + 2.) 
Z 6= P0 * (J + l. )* (J+2.)+(AO-HO)*K?
ZMK=Z6*X
V4=rxP(-ZMK)
INTo=V4*GQPK 
A ( N O ) = A ( N O ) + i n t o

; c-----G BRANCH FOR DELTA(K)=-l
NUC=W0+HDIF*J*(J+1.)
N U G x K=NUO+AMINK • :
C = M  lOMK-WSPEC 

.N 0 = r O / C E L N U ) +0.5 G0MK=(?.*J+1.)*(J+K)*(J-K+1.)/J/(J+1.)
' A (NO) =A (fJQ) ♦INTO 'N

V* 4 CONTINUE ■ ■
7 CONTINUE C«waa*FlNn MAX A(I)

F = 0.0
D O  3 0  X  « 1, 1 5 0 0
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IF( a (I) .GT.E) E = A(I)
C C N S T = E / A L O G (90.0/2Ü.0)
IP=]5C0
CO 71 1=1,1500 h
.CUm m Y = A (I?)/CONST '
A ? ( r )= 9 0 . 0 * E X P ( - D U M M Y )

7] I?=TP-l 
C**4**PLCT GRAPH

p r i n t  100
DU 6 N = 1,100

6 CHART(N)=HLANK 
CO 7 1=1,1=00,5 
L=A?(I)+0.5 
CHART(L)=STAR 
PRINT 200 , CHART

7 CHART(L)=HLANK 
I?=!50C £ WVN = 'a 5PEC 
00 3? 1=1,1500 
XNL(I?)=WV\
I?=I?-1

7? rtVN = ;v'VN + DELNU
X N L ( 1501)=1160.0 £ XMJ(1 5 02 ) =- 25 . 4  
A ? (1501)=0.0 £ A? (150?)=1?.7
CALL s t a r t ________________________________________________ ___
CALL P L O T (1.0,1.0,-3) | ))
CALL AXIS (0.0,0.0,7HNU Cf^»-1 ,-7 , ?2 . 6? , Q . 0 , XNU ( 15 0 1 ) • XNL ( 15 0? CALL A X I S ( C . 0 , 0 . 0 , 1 3 H T R A N S M T T T A N C E , 13,7.87,50.0,42(150 1),A2 
CALL LINE(XNU,A?, 1500 , 1 ,0, 1) I (1 5 0  2  U
CALL ENPLOT(?8.0) '------- —
STCR

ICO f o r m a t (IHI)
?C0 f o r m a t (IH , IOQA 1 )
7C0 FORMAT (7F10.0,110) | '  ̂ F 7 . 5 /
7 Cl f o r m a t (2 0 X , 'W 0 = ', F B . 2 , 4 X , ' E T A = » , F 8 . 5 / 2 0 X , ' 0 0 = ',F7.5,4X,'BI = 

7 ? O X , ' A C = ' , F 7 . 5 , 4 X , * A I = * , F 7 . 5 / ? 0 X , ' D E L N U = ‘, F 4 . 2 / 2 0 X , •J R A X = ' , 
Z'WSPEC=« ,F7.?) I l S ' / ^ O X  ,

4C3 F O R M A T ( F l o . 0) : -̂---------
END

I i

PLSPEC simulates a non degenerate gas phase band of a 
symmetric top molecule and plots it out using the CALCGIT 
graph plotting routine.

MS,.'. . •
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• p r o g r a m  PLSPEC(INPUT,OUTPUT)
D I M E N S I O N  A ( 1 5 0 0 )  , A 2 ( 1 5 0 2 )  , X N U ( 1  = 0 2 )  i
R E A L  I N T P , I N T P , I N T 0 , N U P , N U R . N U 0 , J , K 2  
D I M E N S I O N  C H A R T ( 1 0 0 )  i
D A T A  S T A R , P L A N K / 1 H * , 1 H  / ; ■;
jMAx=isc ;
X=G.475606E-? ■
r e a d  100 , WC, BO, BI , AO,WSPEC, nELMJ

C — -- X = H*C/ (K*T)
,, BDIF = 8 I - lU) £ aSUM = Bl+RO ' |
• ■ . AH = A0~P0 '

DO 1 1 = 1 , 1 5 0 0
1 A( I )= 0.0  ;

C---- CALCULATE P AND R BRANCHES FOR K=0
DO ? 1=1,JMAX 
J=I . %C" — — — — P PPANCH • -,.-
NUP = W0-RSUM*J + BDIF*J«*? ;
P = MIP-WSPEC h
l\P= (P/DFLNL)+0.5 : . U;
IF(MP.LT. 1) GO TO 20 ' |CUMMY=(H0*J*(J+1.)*X). V--2  ̂ r
Z=EXP(-DUMMY) 5  ; w
i n t p = j * z
A(NP)=A(NP)♦INTP yi

20 CON r INI.E ■;
C— — — — R P P A N C H

NUR = v%0 + ?.*BI+ (3.*Bl-eO) * {J-1. ) + BCIF* ( J-1 . ) **2 
RR=MUR-WSPEC , i
N R = ( R R / D E L N U ) +0.5 t
I F ( M R . G T . 1500) GO TO ?
D U M N Y = P 0 * J * ( J - 1 . ) * X  

—  Z2= f XP(-DUMMY) ,
I NT R = J* Z2  
A( NR)=A( NR)+TNTR

2 CONTINUE
C - -CALCULATE REST OF SPECTRUM WHERE K.NE.O '

DO 7 K=l,JMAX 
K2=K**2 
CO 4 I=K,JMAX 
J = I

C---- P BRANCH
N U P = W O - B S U M * (J + 1 . )+BDIF*(J+l.)«*Z 
P = Ni!P-WSPEC 
N P = ( P / C E L N U ) +0.5 
IF(NP.LT.I) g o  TO 21 
Z 3 = ( H O * ( J + I . ) * (J +2 . )+ ( AO -H O )* K 2) *X  

- V3=FXP(-Z7)
G =2.*(J*«2-K2+2.*J+1.)/(J+1.)
INT p =G*V3 
A (NP)=A(NP)+INTP 

?I CONTINUE
C---- R BRANCH

N U R = J 0 + 2 . * H I + ( 3 . * B I ~6 0 )* J+ B DI F «J «* 2 
RR=NUR-WSPEC

!l-



NR= (RR/DELNIJ)+0.5 
IF (MP.GT. 1500 ) GO TO ??
Z4= (FjO*J* ( J + 1 . ) + (AO-BO)*K?)*XV 4= f x P(-Z4) ^  -
IM1P=G*V4 , —  _ _
A (NP)=A(NR)+I n TR

7? c o n t i n u e
C----------0 BRANCH

N'UC = W0 +J *  ( J + 1 . ) * B 0 I F  
C = MJQ-W5PEC 
N 0 = ( Q/ ÛELNU) + 0 . 5  
G? = ? . * ( ? . * J + 1 . ) * K ? / ( J *  ( J + 1 . ) )
IMT0=G2*V4 
A (NO)=A(HO)+ INTq

u continue 
7 continuer*a*a#FINM MAX A(I)

[=0.0CO ^0 1=1,1500 M ,
7 0 I F ( A ( I ) . GT . F ) E-= A ( I )_y--------------- \  ;---- ---

CONST = E / A L O G (QQ.O/PÛ.O) - - .
I?=]500
CO 71 1=1,1500 
C H m m y = A (I?)/CONST 
A? ( T )=90.0*E X P ( - d u m m y ) 

d  12= TP-1 U - -0«aaa«PLGT GRAPH 
PPIMT 100 
CO A N=:l,100 

6 C HA RT(N)=BLANK 
CO 7 1=1,1500,5 
L=A7(I)+0.5 
CHART(L)=STAR 
PRIMT P OO, c h a r t  

. 7 c h a r t  (L ) =BLAN'K
IP=150J £ a VN=W5PEC 
CO 7? 1=1,1500
XNL(TP)=WVN .rv
I?=TP-1 7? WVN=WVN+DELNU
X H U ( 1501)=1320.0 £ X NU(1502)=-6.35  ̂ .
A 2 ( 1501)=0.0 £ A 2 (1502)=12.7 
CALL START
CALL P L O T d . 0,1.0,-3) ___
CALL AXIS (O.C ,0.0 ,7HNU C^’- 1 , - 7 , 23 . 52 , 0 . 0 , XNU (1501) , XNL (1502)) 
CALL AX IS(C.0 , Ù . 0 , 1 3 H T R A N S M I T T A N C E , 13,7.8 7,9 0.0,42(1501) ,A2 
CALL LIDF(XNU,A2, 1500 , 1 ,0, 1) | ^ I C 0 5 ) U
CALL ENPLOT(28.0) 1STCo

IOC f o r m a t  ( m l )
200 FORMAT(IH ,lOOAl)
300 f o r m a t (6F10.0)

END

SECDIV was used to test different methods of calculating the 
second derivatives of experimental transmitted intensity curves.
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Program  bfCOTv ( i n p u t , o u t p u t ) i

 OTmENStQu u x m (500 )  , 0 2 X 0 1 2  ( 50 0 )  ,DLXÔTl1 5 0 0 )  , u MXDTM(SQO)
- R F A d  K f 5 w n ) , N U  ( 5 0 0 ) , LINE ( 1 0 1 ) :  . - —  -  T:- - j

DATA s t a r . CLANG, PLUS, ZERO/ l h * i l H  , i H + , I HQ/  :
■ X 1 = 1 . 0 £ X-  ̂= 0 VÜ4 -------- - —rr---- }

DFLihj = r . 2 s  £ N=400   ■ : " I
~ r “. Nil ( X ) =n -  -7-7-- ~ i

Ü0 1 J = 2M 'j    “ ' ' ' ' •
I ' Nil ( J) =\,U ( J -1  ) +OELNU : '

wo=5o.n
- QQ r . J=1 • N"“ ~ ~  -2 . _ „

■ ■ ? K ( J ) = X 1/ ( |  .Q + X3*  ( N U ( J ) ”-WO) * * ? )  ' ”
DO 3 J=1»N ■ .--r:-—- r-:-

..............OxnT ( jM=v.  r
07XUT;? ( J ) =7 . 0 " -
DLXOTL ( J)  = ' - 0 

-  1 DmXOTM r J)  = v .  G ~~T77::~7Ç7'77ÿ;^7T:~~" O-' -”  •
Z 1 =H . ay r*‘ X '̂ **2 " ............. ........

: - 7 p - P  * Y 1 a y ~ -;7~---
N P = N -  6

• jji • J U — I fr'C -  1 : r ...
_ Z i = l . + y 3 * ( N U ( j ) - w O ) * * 2  ________________

0 2 x û T 2 ( j ) = z r * ( N U ( j ) - , w û ) * * 2 / z 3 ? * 3 - z 2 / 2 3 ? ^
D L X U T L ' J + 7 ' = ( K ( J + h ) - G ( J + 4 ) - K ( J + 2 ) + K ( J ) ) / ( 8 . * U E L N U * * 2 )

S D?;XUTM ( J+ I ) = (K ( J + 2) - ? . * K  ( J + 1) IK ( J) ) / D E L N L * * 2  
C * * * * * x * K E  K lOT"' A Lir-jJ^H PL(3T_BETwEEN 90 AND 20 _

' N7 = f j / P +1 ' ”  ' ' - __
Z i = K ( n )  r Z 2 = K ( i )  * '  " ”
C = ALCG ( 4 , 5 )  /  ( Z 1 - 2 2 )  "y
Do 4. J = 1»M
0 H M M Y = /V L D G ( 9 0 . 0 ) -  C *  K ( U 0 0 ^  -

4 'K ( J)  =F'/P (OmMMy )
G*aao i»R|_(iT CQNTqUk -- '-v- 777- 777 7̂:7 :̂ __ " ~

PPTin  _P0 J
Dm T 7 1=1 # 1 U 1 -■ - _ ; -

7 L INL( TJ ) =PLANG
DO a j = i y N " ?
L = ( K (  n ) + 1 . 5 _____ ______ __________________________

L l N L ( L ) = - d M p
■ - POINT T 0 û ; N U ( U ) J ,L jL N E 7 K l j ) : O ^ ^ ^ E ^ g 7 % 2 n - '

H L m E  ( L i =ct ^NK __   V   . _____
PRINT PQ V . 7- : .75:7: 7:7 L '
Pr i n t  1 Cl    ~

1 = 0.0 _      _ _ ____
DO 9 j - l  , \ I  ~ ~

. I F  (D?XnT2 ( J ) . . L T .Y ) j jË d = D 2 X D j2 U ) M m ^ g Z l I C  :  :  :
i F ( D L X ^ T L f J ) . L T . Y )  - Y=DLXDTL4d)

7 : . 7 I F (PPxnTK ( J ) ; L T .  Y I jV T  Y = pMXDTM ( J :
I F ( Ü 2 X - T 2 ( J ) . G T . X )  X=D2XUT2(J)

■ I F  ( PLxnTL ( J ) .GT .X ) ” OX = DLXDTL ( J ) -  ; ■ —
'9 IF (OR/nTc ( J) .T7Î . x T  x=dhxdtm ( J)

■ ■ '   x= 100. / z ~ ~ ~ * “" - ..........
7 - ' ”  Do 1 0 “'J= IVFT, 2 7: - ■ 7 - 7 7 r ; 7 . ^ “““

L= ( ( DPx DT P ( J ) -  Y T* X ) + i  _ - 7 "
7'^:" " (DLxDT| M-d-)--Y) * X ) +  -
    I = (  ( DM <D I M ( J ) - Y ) *X ) + 1 : S ' " .............

; ■ " L-7HE (M ) =pLus —
- XrT I'jF ( I  > = 4 l FsO ~ •" —  ’ " —

p..

-_-L
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PRINT 1 C2, .ü ( J) ,LIiNlE,L)2XüT2(J) füLXOTL (J) ,DMXüTK(J)L I HE (L ) =Rl ANK .
L!ME(M)=r, .,jK. -  ,

10 L THE ( T ) =:"( " N K  - --r------   - •"
■ STOP ' - ' '

100 F o r m  A T / 5 a , L 7. lTlh.,101Ar,2X , F o . 3 ) ' f
101 Fr.Pl'lAT (11 PA, ‘UPXUI J DLXUFL  U M A D T M ' / l T p l c d - - . -------
l O P  F n ^ M A T (1^ * F 7 . 1 , 2 X , 1 H * , 1 0 1 A 1 , l X , F b # 3 , l X , F 6 * 3 T 1 X , F 6 * 3 )  
200 FORMAT(1 ^1 ^

THFIIAI corrects an experimental transmitted intensity curve
for reflection loss at the sample/cell window interfaces. ■ |J

i program THFILM(INPUT,OUTPUT) ' -Z
i DIMENSION C O R I (500),C (500),G (500),AN(SOO)
j PEAl I C( 50 0 ), I (F QO ) ,K A( 5 00),NU(500),LINE(101),NEWI(50G) -

c o m p l e x  C Nl ,C N ?, C Tl ,C T 2, CT T , C P l , C R 2 , C B , C B 2 , C E X i . C E X 2 , C C E N , C 0  
DATA B LA N K , S T A R , Z E R O , P L U S , D o T/IH ,1H*,1H0,1H+,1H./ | l V , C I  i:
C N 1 = (1.526,0.0) n

f *****1.596 IS THE REFRACTIVE INDEX CF K RR
REAP iul,N L;
r e a d  100,C O N C , w o ,XNE, s l i t ,P a t h ,FIRST,DNU ;
READ P O O , (IÜ(J),J=1,N) ;
r e a d  2 0 0 , (I (J) ,J=1,N) /
PEAO 200, ( C Q R K J )  ,J=1,N) ; • i:
PRINT 300 ' ' ‘ - " ?
PRINT 700,WO,oa t h, s li t, X NE ,F I RS T  | 7
PI = P . 14159 £ AS = 1./(4.«PI*PATH) ' ' ' 7
PISQ=PI**2 £ WSQ=W0*«2 I ■ -j
SXNF=XNE**2 - -  rZ
NU(,)=FIRST , : U

- CO 1 J=1,N • 7- - - : 7 '
K = J ♦ 1 - , . -7

1 NU ( K ) =NU t J ) -DNU ' _v- .7̂-:.-. .1 . - ' i'
DO 8R I Y= 1 ,4 . . 7 y. - -7 '-̂77: ^ | ' ' 7 ‘ 77■ ■ DO 7 J = 1,N "..MUM '7 —17 . 7̂ i - \î
3 = lO ( J )/COR I ( J ) r-. - - 7 . / 7\H:' - : ■ 77.'

7 D ( J ) =E/NU ( J ) ^ 7:̂7 7 _ 7 7  7-7̂ :/̂ 77'.-7:77 7 ' , ' ; M;
^5 KA ( J) =C ( J) *AS .. V: 7. v. - x. m'v - r.; ':̂'T :r ' : i ! - / ’:L

\ CO 1 JH = 1,N . -■■7:. -•7--\ I;-v'-7=i-. -rrriiL:-'- -- 1 '
X=MI ( J) **2-NU ( JP) **2 ; ; rZ
IF (X) 71,20,71 ' . . bi

71 G(jj)=KA(JB)«NU(JB)yX 7 : 7 ^  _ , (H:

7 c o n t i n u e  ' ; M-r'- i!:.
G*****IN T FG RA T I0 N  PY TRAPEZIUM RULE . Jvj

SUMF = C»0 £ N 2=N — 1 : r.’—' . i-jb
CO G JC = 2,N2 - H

, f. StmF = SUMF*G (JC) - ' 7  ;7'_ J
: S UM G= (P(l)+2.*SUMF + G(N))*DNU/2. . - -  ̂ j-i

XN (, I ) = XNE-2 ./PI *SUMG . : 7 :1̂ -" .. i '1-;|
2 continue ■ .   _̂1L__. - F ' i _:Z:A
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r « q * , * F i \ n  RFnuciNG F a c to r  to f i t  d a t a  to gr a ph  
F 1 = 0.0 00 PS J=1,N 

?S IF (XN(J) . G T . E D  E1 = XN(J)  - -
E1=F1+0.1
F 2 = ? . 0  - - -
00 26 J=i,N • .

26 IF (xN(J).LT.E?) ' E2=XN(J)
. E?=E2-0.1 
E1=FI-E2 
E4=]00./E3

C*«a«aPLCT GRAPH OF RF AND I .V.N’U _________
P R I m TTOO !
p r i n t  601
NA=i * ■ .

• DO 10 IJ=I,101  '
10 LINE(IJ)=RLANK 

L 2 = T F I X ( (XNE-EP)*E4)
DO 11 J=1,N 
LÎNF (L2)=DCT . 
v = l F l X ( C O R I ( J ) +0.5)
L = I F I X ( ( X N ( J ) - E 2 ) « E 4 )
L INC- (M) =STAR 
LINF(L)=PLUS  
IF( n a . NE . i) GO TO 31 
IF CJti(J)-W0-C.5) 32,32,11

12 CO IS IJ=1,100 
-)S LINF(IJ)=2£RG

PRINT 6GÜ,N'U(J) ,LINE,XN(J) ,k A('J) ,CURI (J)
CO 16 IJ=l,i01 <

T6 E INF ( I J ) =BLANK 
NA=2
GG TO 3 1 ■

11 PRIAIT 600 ,NU(J) ,LINE,XN(J) , K A ( j )  ,CÜRI (J)
LINF (L)=8LANK 
LINE (M)=RLANK

11 CONTINLF 
00 4 J = I , N
C N 2 = C M P L X ( X N ( J ) , K A ( J ) ) .
CR=2.«PT*fJU ( J) * CN 2 « P a TH 
CRl= (CN 1-CN2) / ( C M + C N 2 )

. CR?=(CN2-CN1)/(CN2 + C M )
CT1=2.*CN1/(CN1+CN2)
C T 2 r 2 . o r . N 2 / (CNP + CNl )  ,
C I = r M P L X ( 0 . 0 , 1 . 0 )  ■• : 'L
CüPrCHor.I 
CEXi=CEXP(CR2)
C E X ? = C E X P ( 2 . * C H 2 )
C DE m = 1. +C R 1 * C R 2 o CEX2 
CDIV=CT1*CT2*CEX1 
CTT=CDIV/CDEN 
TRAM=CAHS(CTT)
TRS0 = TRAN«*2 . . ■
N’FWT (J)=TRSO«IO (J) J.4

4 CONTINUE . T
r*«*o«PLCT A GRAPH TO COMPARE NEW ANC CLÜ I

PRI^'T .100 . . ‘ I
p r i n t  SOI -
PO 5 iJrlflOl 

G y  NF ( IJ ) =BL'ANK

. i

ft
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f  I  ' , 7  . -r

G O  4 J = 1 , N  
n i F r I  ( J ) - N E W I  (J)
L = N r w l  ( J ) +0.5
M = I ( J ) + 0 .  S
IF (L .EO.M) GO TO 10
L l N r ( L ) = 5 T A R
L I N r ( M ) = P L U S

F-Ü TO 11 ■ _       ~"V :
L I h r ( L ) = Z E K O  - - -

11 PRpiT ‘̂ 00,KU(J) ,LINE,I(J) ,NFWI(J) ,0IF ---
LINl (L)=HLANK 
L I N C (M)rbLANK

9 CONTINUE
GO 27 J=1,N '    " . : . . .
CIF?=CCRI(J)-NEWI(J)

-7 C O P M J ) = I  (J)  ♦ 0 I F 2  
PP CONTINUE

0*«*«*PLCT GRAPH TO COMPARE CORRECTED AND APRARANT INTENSITIES 
PRT'T iQO • >
PRi'iT SOP " : . I-
DO 49 I J = 1 , 1 0 1  

4 9 L INF ( I J )  =b LANK  ̂ r. ...T ..
DO 90 J = 1 ,N ; •
C IF = I ( J )-CCRI {J )     i-
L = C n R I (J)+C.S •
P = I (J ) +0.5
IF (L.EO.M) GO TO 91
L INC (L) rSTAR I- •
L1N c (M)=PLUS -r .
GO TO 9? . * '

; 1 LINf(L)=ZERO
CP PRINT S O O » N U ( J ) , L I N £ , I (J), C 0 R I ( J ) »OlF •- 

L INF (L)rhLANK 
91 L INF (M)=HLANK - - -

STC^r.O f o r m a t  (7F 10.0) I
1 ji f o r m a t (i i q )
?J0 FORMAT(16FS.0) 
ic: FORMAT(IHl)
Sc:  F0Rv,aT(1H , F 6 . 1 , ? X , l H . , l n l A l , F S . ? , 4 X , F S . 2 , 4 X , F 6 . 2 )  | / 4 0 X ,
F.M F OR**, at (4ÜX* ‘ REFLECTION CORRECTION ‘ , S2X , ‘ P  , 6X , • NE WI • , 5 X,  ‘ D I F '  

X ‘ — — — —— — — — — f SPX,  ' — * , 6 X ,  tSXf  ‘ ) I /4"0X  ^
Su2 FOR;. AT ( 4 0 X ,  ‘ REFLECTION CORRECTION ‘ , 5 2 X ,  ' I | , 6 X ,  ‘ CORI ' , S X , ‘ D I F '

7 * —  —  ----‘fS?X,*-* ,6X$‘ ‘,SX,
a : c F OR / A T ( I H  , F 6 . 1 , 2 X , 1 H . , 1 0 1 A 1 , F 6 . 4 , 2 X , F 6 . 4 , 2 X , F 5 . 2 )
6 'M FORMA T ( 1 12 X , ‘ XN KA COR I ‘ / 1 1 2 X ,•-7 —  --------- ‘ )
7 f \l  FOR.maT ( lOX,  ' W0= • * F6 . 1 /1 OX, »PATr=* , F 9 . 7 / 1 0 X ,  ‘ S L l T r  ‘ , F 6 . 4 / 1 0 X ,  

7 , F 4 . 2 / 1 0 X , ‘ F I R S T = ‘ , F 6 . 1 )  l ' X N E « '
; END : - * : -
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An expression is derived for the distortion of spectral band contours resulting from use of finite slit widths. The leading term is in agreement with a correction proposed by Rayleigh in 1871 and derived from curvature arguments. It is shown that this correction, which is proportional to the second derivative,of the observed spectrum, d^dr^, allows the true band contour to be recovered to a, good approximation provided that the slit width is not greater than the half band width. Loss of resolution due to finite slit widths may also be recovered. Higher power correction terms are also given, but due to the sensitivity of the higher power gradients, d”//dî , to noise, n even and greater than two, the terms appeanto be of little practical importance,at the present time.

The transmittance of a sample as measured by a spectrometer will.dififer to a 
greater or lesser extent from the true transmittance for a variety of reasons. Correc
tion of the observed data requires a knowledge of the appearance of truly mono
chromatic radiation after passage through the system. This defines the so-called 
“ apparatus function Thus if  the true and the apparent intensities of frequencies 
V and v' are given by <j>{y) and /(v ') respectively, then

/(/) = j a(v'-v)<^(v) dv. (1)

In the above û(v' —v) defines the fraction of the energy of frequency v which is trans
mitted through the system to the recorder when the instrument is set to record at a 
frequency v'. Provided that the spectrum/(v') and the apparatus function are known 
then the true spectrum can be obtained by Fourier transform methods.^ In practice 
this method is very time consuming and impractical for routine measurements. I f  
an analytic form of a(v) can be given then it is possible to derive relations in which 
0(v) is expressed as a function of/(v '), of the spectral slit width s, and of the derivatives 
off{V )  with respect to frequency.^ This approach has been applied to a number of 
situations, such as the recording of spectra on photographic emulsions^" and the 
investigation of spectral lines using the Fabry Perot étalon.^*’

Strutt was the first to consider how to make an approximate correction for the 
spectral distortion due to finite slits.  ̂ His.analysis was based on a simple Taylor 
series expansion of the observable as a function of the instrument setting and led to 
the conclusion that a first order correction to the true observable, ÿ , is given by

6 dv'—/(v ) =  — — T 2 (^)

where yJ2h is the spectral pass, or slit width. The analysis was subsequently ex
tended by Runge who derived some higher order correction terms.

Despite the eminence of the authors, the theory,does not appear to have had any 
impact, at least on infra-red spectroscopy. The reason is probably an historical one.
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In early infra-red spectrometers resolution was so low that the slit widths were generally 
much greater even than the true widths of the spectral bands. In these circumstances 
convergence of the Taylor series is very slow. Furthermore, due to the various sources 
of spectral noise, derivatives higher than those of second order in frequency are very 
difficult to obtain with reasonable precision. In recent years there has been a resurg
ence of interest in the problem of intensity corrections due to finite slits. The major 
reasons are as follows.

(i) With modern grating spectrometers the resolution is usually signal limited, 
and consequently the finite spectral slit width is the major source of signal distortion. 
Corrections for the non-linearity of the detection system are easily made. The spectral 
slit widths are generally an order of magnitude larger than the wavelengths of the 
radiation,* so eliminating diffraction at the slits as a significant contributing factor 
to the distortion.

(ii) Spectral intensity measurements are potentially of great value to the analyst.^* ® 
While the potential has been realized in part there has been a sad history of failure to 
reproduce intensities and absorption coefficients between different laboratories which 
has impeded the transferability of data. It is accepted that this is largely due to slit 
width limitations.

(iii) Band shapes are known to be a valuable source of information on molecular 
dynamics.^

Ramsey, amongst other things, determined the extent to which the absorption 
maxima and integrated absorption intensities of Cauchy (Lorentzian) type bands 
were altered by triangular slit functions. It seems to the authors that much less 
interest has been shown in these aspects than they deserve, though his experimental 
procedures in measuring bands in the condensed phases are widely adopted. We 
shall refer to his results in the context of our own results later.

In the recent literature, effort has been focussed on the method of Burger and 
van Cittert as a means of making approximate and readily computable corrections to 
observed absorption b a n d s . ‘ ‘ This iterative “ pseudo-deconvolution” method 
is well documented and needs no further discussion. Its weakness lies in an instability 
of the solution in the iterative procedure.Nevertheless it has been shown that the 
first cycle yields a deconvoluted curve which is a very good approximation to the true 
curve. Other methods based on Fourier relations have been devised but they suffer 
from the fact that errors in the measured transmittances in the wings may lead to 
large errors in the corrections, and besides they are cumbersome to apply.* 
These techniques permit, at least in principle, the true bands contours to be evaluated 
even when the bands are of indeterminate contour and, as implied by that statement, 
are overlapping. The tabulations of Ramsey do not lend themselves to these 
problems.

In this communication our aim is to show the following.
(a) Rayleigh’s method is extremely simple to apply and yet gives quite good 

corrections to observed spectra, provided that band widths are not less than the slit 
widths. Thus significant improvements may be achieved in the accuracy of absorption 
coefficients and integrated intensities even where bands do not conform to Lorentzian 
band contours. This will be of particular value in two situations namely (i) for 
analytical data on instruments of medium to low resolving power, (ii) in situations 
where Fourier transformation of data is difficult due to the absorption being non-zero 
at the limits of the recorded spectrum.

* With the Perkin Elmer 325 the mechanical slit width is 350{xm at a wavelength of 12pm for a resolution of 1 cm“L
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{b) Where low noise spectra with precise values of apparent absorption co

efficients are attainable (as for example, in digital recording system combined with 
repetitive scanning) an extension of the Taylor series expansion (2) permits an 
excellent recovery of the true spectrum even when the band width is close to the slit 
width ;

(c) A  significant increase in resolution is attainable in principle by the Rayleigh 
correction for a spectrometer system in which resolution is lirnited by the finite slit 
widths.

E X A M IN A T IO N  OF R A Y L E IG H ’ S E Q U A T IO N  IN  IT S  E X T E N D E D  F O R M

It  is shown in an Appendix that the relation between the true spectrum, 0(v), and 
the observed spectrum, /(v ), is given by

provided that the series is rapidly convergent. The coefficients differ from those given 
by Runge  ̂ (see Appendix), s is the spectral slit width in frequency units.

I f  eqn (3) is to be of any practical use it is necessary that the contributions of the 
derivatives higher than the second should be small. To test this, Lorentzian curves
of various half band widths were convoluted with a triangular slit function.

a(v) =  î [ i - ) v | /s ]  for |v| ^  s
s

=  0 for |v| >  s

The resulting band was then deconvoluted using (3) including terms up to the 6th 
derivative, and the percentage recovery noted. A  typical set of results are shown in 
table 1. The correction to the maximum absorption coefficient is broken into the 
contributions of the various derivatives. The most noteworthy point is that the 
relative importance of the second derivative increases sharply with an increasing 
ratio of half bandwidth to slit width. Even for a half band width equal to the slit 
width the second order derivative term leads to nearly 60 % recovery.

T a b le  1.— Sh o w in g  t h e  r e l a t iv e  im p o r t a n c e  o f  t h e  nth d e r iv a t iv e s ' in  e q n  (3 ) as a

FUNCTION OF SLIT W IDTH FOR A HALF WIDTH OF 2 Cm“ * AND A TRUE MINIMUM TRANSMITTANCE 
OF 18.5 %  AND TRUE MAXIMUM TRANSMITTANCE OF 90  %

s lit w id th / 
c m - i

to ta l % change 
in m inim um  

transmittances

% correction in m in. trans 
due to  nth derivative, 

n -  2 4 6

correction as % o f 
to ta l change due to  
n =» 2 n  =  2,4,6

2 .0 13.3 7.8 2 .4 0.18 59 84
1 .0 4.4 3.7 0.5 0 .1 84 99
0.5 1 .2 1 .2  0 .0 0 .0 1 0 0 1 0 0

The percentage changes in minimum transmittance as recorded in table 1 are in 
excellent agreement with values derived from tables I  and I I  of ref. 8. Thus for a slit 
width of 1 cm~* and a true half band width of 2 cm-* we deduce from table I I  of 
Ramsey that Av\/Av\ =  1.17. Av| is the apparent half band width and Av  ̂is the true 
half band width. From Table 1 this gives the ratio of the true to the apparent absorp
tion coefficients as 1.16. This is equal to In (90.0/18.5)/ln (90.0/(18.5 +  4.4)) within 
the accuracy of numbers retained.
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I t  is fortunate that the second derivative in (3) gives such a high proportion o f the 
correction for 5/Av^ <  0.5. Computer simulation of a noise level of ±0.05 % 
produces changes in the dy(v)/dv^ of several times their actual magnitude. Clearly 
it is only in situations where repetitive scanning with digital recording is feasible’and 
worthwhile that these higher derivatives are going to be of any practical use. On 
the basis of this further studies employed* only the second derivatives.

It  is of interest to examine how successful eqn (1) is when the contours are non? 
Lorentzian and when there is band overlapping. Indeed when bands overlap the 
Lorentzian character is automatically lost. Two overlapping bands of varying half 
band widths and varying intensities were convoluted with a triangular slit function. 
The success of (1) in correcting absorption coefficients throughout the band and in 
allowing corrections of integrated intensities in such cases was examined.

For s /A v \>  1.0 the contribution o f the higher derivatives in' (3) becomes 
much more significant. Despite that, for sfAv^ =  0.67, the integrated intensity 
error is only 8.9 % dropping to 5.8 % after correction. These figures are comforting 
and indicate that with modern spectrometers capable of better than 1 cm-^ resolution 
severe errors will only occur when the band or line widths are significantly less than 
1 cm -±  Such indications are in good accord with the experimental results shown in 
fig. 3 o f ref. (5). This figure shows the effect o f s/Av\ on the integrated intensity and 
the Gmax o f the vc=o band o f butyl n-butyrate. A t the same time it was possible to 
explore the possibility of resolving bands which had become merged as a result of 
finite slit widths.

Table 2 contains a sample of the results showing the effects o f the second derivative 
correction on the errors in the intensities and in the maximum absorption coefficients 
for pairs of bands o f varying separation. The following points are worth noting.

T a b l e  2.—T h e  e ffe c ts  o f  s l it  w id t h s  o f  0.75 cm*‘ o n  t h e  m e a s u r e d  in t e n s it ie s  (T) a n d

ON THE MAXIMUM ABSORPTION COEFFICIENTS (G niax.) OF PAIRS OF BANDS. THE HALF WIDTHS OF 
THE BANDS ARE TAKEN AS THE SAME AND EQUAL TO Av.^. T h E  SEPARATION OF THE BANDS IS 
V2 - V 1 . T h e  p e r c e n ta g e  e r r o r s  in  F  a n d  Smax. AFTER APPLICATION OF THE SECOND DERIVA

TIVE CORRECTION IS SHOWN IN  THE “  AFTER ”  COLUMNS.

% e rro r in  r %  e rro r in  tmmx.
(p2- r i ) / c m - ‘ A v ^ /c m '‘ In ( l o l l l)m»K. In before a fte r before after

1.5 2.0 1.0 1.0 1.01 0.16 2.7 0.3
2.0 2.0 1.0 1.0 0.93 0.18 5.7 1.1
2.0 2.0 1.0 0.1 1.01 0.19 7.9 1.0
2.0 3.0 1.0 1.0 0.65 0.17 1.2 0.06
2.0 1.0 1.0 1.0 2.92 0.90 27.6 9.2
2.0 0.5 1.0 1.0 8.92 5.80 55.0 40.2

(^) The errors in the integrated intensities are much less than those in the absorp
tion maxima. This fact is already well known.

(b) The errors in the integrated intensities are little affected by the separation or 
the relative intensities of the two bands. This is in marked contrast to the behaviour 
of the absorption coefficients. As the band separation decreases so do the second 
derivatives near to the band maxima, and consequently the maximum extinction 
coefficients becoming more accurate. This clearly shows the- danger in applying 
Ramsey’s* correction without checking first that the band contour is close to a 
Lorentzian.

(c) Even when s/Av^ -► 1.0 the error in the integrated intensity is only 3-4 %. 
W ith the second derivative correction this can be reduced to 1 %.



I .  RV H I L L 4 a n d :  D /  S T E B L B 1237

D IS C U S S IO N

The computer experiments described in this communication clearly demonstrate 
the usefulness of the Rayleigh formula (eqn (2)). In the case of bands well separated 
from neighbouring bands it is probably best to. correct the observed maximum extinc
tion coefficients using the tabulations of Ramsey. Where overall band contours are 
of interest' the presentr treatment Is'adVocated^ in that it is simple to apply and'yet^for 
r/Av| <  1 gives good corrections. The nature of the correction leads to an interesting 
possibility. It is a simple electronic problem- to generate^the second derivative of a 
signal. By suitable attenuation and feedback the signal to the recorder can. be 
“corrected ” for slit width distortion. Unfortunately one can never gain something 
for nothing. The noise in the second derivative signal will increase the overall noise 
level. It fbllows^ that it may be necessary to reduce the signal amplification,' in'order 
10 keep the noise within acceptable limits, and' perhaps to increase the slit widths. 
It then becomes a question of whether the gain in resolution is greater than the loss.

0.80

0.75

:a>

0,70

3.0 2.0 1.5
wavenumber separation from main peak Avjcm~^

F i g . 1.— The resolution enhancement resulting from the second derivative correction. The graph is for two Lorentzian bands of half band widths 2 cm~S frequency separation 3 cm-\ relative intensities 1 : 5 and for a slit width of 0.75 cm"'. Only that part of'the graph in the region of the weaker component is shown, -f, (joined by solid line), true spectrum ; O, “ observed ” spectrum, that is convoluted with triangular slit function ; x , after second derivative correction has been applied.
It seems certain that the full potential o f the technique is going .to be realized with 

data collection systems and repetitive scanning^techniques. Our own experience has 
been limited.to single scan runs and no problems in applying the;second derivative 
correction have yet been experienced.

Since eqn (2) is so successful in drastically reducing the errors due to slit width 
distortion, it follows that where ̂ resolution of bands has been lost due to finite slit 
widths the correction should permit a recovery o f the band resolution. This is well 
exemplified by the calculations for 2 bands with intensities in the ratio 5 : 1 and
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s : Av4 : V2 -  Vi o f 0.75 : 2 : 3. That part o f the overall band contour which is relevant 
to the demonstration o f band resolution is shown in fig. 1. The resolution of the two 
bands on applying the correction is clearly demonstrated.

A P P E N D IX  I  ' -
• For convenience we shall express eqn (I)  in radial frequency o) =  2nv. Thus

r  + 00

. . f(o)) =  (j)((o')a(cD —  a)') d(o'. ,-00
By the convolution theorem

F(0 = O(tM(0
where F(/), (j){t) and A{t) are the fourier transforms of/(co), (pico) and a{o)) respectively. Thus

1
(D(/)e‘""d/=  —  

1
2n 

1

-  00 
f*+00

- 1

=  ̂ J  F(/)[^"(0-I]e““'dJ

=  j  f(()[.4- ‘(0-1] e‘“' dt.

This exact equation expresses the correction to the intensity at any frequency as a function 
involving the fourier transforms of the observed spectrum and of the apparatus function.

I f  can be expressed as a power series in t, such as
00
Z  Kt"

n = 0
then

^{(O) =  f ( c ) +  I  b,—  I f(Ore"°'d(.

but
d’ fCmt i" r

e‘“  dt,

? * - s |

daf
hence ■ H

^{<0 ) = /(o>)+ X (Al)
Thus if we can identify the coefficients the true spectrum can be deduced from the 

observed spectrum by taking differentials.
 ̂ For systems in which the electrical and optical abberations are small the apparatus 

function can be approximated by a slit function. In the case of a spectrometer which has 
mirror symmetry about the dispersive element and equal entrance and exit slits the appro
priate slit function is a triangular function

a{a)) =  for |co| ^  s (A2)

— 0 for |m| >  s,
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Hote that a{(o) is normalized so thatj a{oS) =  1, and also that a? and s must be expressed in
the same units for the function to be meaningful. We see then that s is expressed in radial 
frequency as the product of linear dispersion at the exit slit multiplied by the physical slit 
ndth.

The fourier transform of (A2) is

(A3)
sin

Expanding (A3) as a power series in st we obtain

(sO"
12 240 + .

ind hence

dV((a) s“ dV(0J) / d V W
240 d£o“ 6048 dm' + 604 800 dm' (A4)

The coefficients as derived above differ from those (orN ^  4 given by Runge. The latter 
gives the coefficients of the /zth derivatives as (—1)”/  ̂2[(n/2)!]^/(n-|-2)! An alternative 
aethod of computing the corrections has been given by Hardy and Young. We have 
\«rified (A4) by this method and also by numerical calculations.
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Vibrational Band Contours
Part 1.— The Hexafluorobenzene-Benzene System
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Interactions between benzene and hexafluorobenzene lead to a frequency shift and a broadening of the band arising from the out-of-plane CF bending vibration {azu species). It is deduced that the intermolecular interactions are short lived, stochastic, are not simple polar interactions and that the resulting forces are directed perpendicular to the ring plane. This is based on symmetry considerations and on the concentration dependence and magnitudes of the frequency shifts and of the Fourier transforms of the absorption band contours. Assuming that vibrational relaxation occurs through dissociation of the complex with 100% efficiency, leads to lower limits for the rate constants for complex formation and dissociation. There are still a number of outstanding problems of interpretation.

Any absorption band is characterised by three parameters, its frequency, its 
intensity and its band contour. For vibrational absorption bands in the liquid or 
solution state, the latter parameter was neglected as a source of molecular information 
until ten years ago. A  probable cause of this neglect was the use of the Schrodinger 
picture of stationary energy states. Viewed from this angle, the transition frequency 
and intensity of a band are both well defined molecular parameters, but the band 
contour is determined by entirely separate considerations, such as Doppler broadening 
and collisional interactions. Translation of the problem into the Heisenberg formula
tion shows that the Fourier transform of intensity with respect to the frequency shift 
from the band centre leads to the autocorrelation function of the transition moment.^'^ 
I f  the transition moment at a time t is written as m{t)u{t) where m{t) is the magnitude 
and u{t) is a unit vector defining the direction of the moment, then

<^m{t)u{t). m(0)w(0)> |  F(v) exp[i27r(v —Vo)f] dv

m(0)2 J F(v) dv

=  ^ i(0 - . ^  ( 0/r
Vo is the frequency of the band centre ; F(v) is ln(/o//)v^here (/q / / ) v  is the fractional 
transmission at a frequency v ; the integrations are over the entire band and m{t)u{t) =

I f  tn{t) is independent of time and if the motions of different molecules are un
correlated, then the Fourier transform of the absorption intensity simplifies to the

t present address : Dearborn Chemicals Limited, Water Treatment Division, Foundry Lane, Ditton, Widnes, Lancs.
532



R .  M.  B A R R E T T ,  E.  B .  G I L L  A N D  D .  S T E E L E  533'
autocorrelation function of the unit vector defining the direction of the transition 
moment :

f r(v) exp[i27i(v—Vo)t] dv
<«i(0) . «.(0> =   ------------:------------------------ =  G ir (0 .

j  r(v) dv

Until recently it has been assumed that Gi(t) is governed solely by the reorientation 
of the transition dipole with time. However, it is now clear (see below) that vibra
tional relaxation, vibrational frequency shifts and vibrational rotation interaction all 
frequently contribute to a significant degree. We shall show in a future publication 
that vibration rotation interaction produces predictable changes in the expansion of 
correlation functions in terms of time.^ For our present purposes this may be neg
lected. In a low viscosity fluid, it appears that separation of the total autocorrelation 
function into rotational and vibrational parts leads to the identification of two quite 
different situations, i f  vibrational relaxation (or, more generally isotropic relaxation) 
and vibrational frequency shifts are independent of rotational relaxation, the Gi(t) 
can be expressed as the simple product of the rotational and vibrational contributions.'*' 
Thus :

G i O )  =  GyityGlJ^{t).

The stochastic behaviour of the intermolecular interactions in this case leads to the 
result that at times, which are long compared with the average time between collisions, 
both Gy(t) and G,R(r) show an exponential decay with time. This is shown to be the 
situation for the û2 u band of hexafluorobenzene in the solvent system benzene +  
cyclohexane.

I f  on the other hand there is significant coupling between translation and vibra
tions, a non exponential decay of G{t) results. An example of this behaviour is 
probably shown by the out-of-plane C H  bending modes of benzene in polar solvents.^ 
The increase in rate of decay of Gi{t) for these vibrations over the corresponding 
values in cyclohexane is a Lorentzian function in /. Also, broadening is proportional 
to the dipole moment of the solute.

When hexafluorobenzene (H FB ) and benzene are mixed in equimolar quantities, 
the system has a melting point 20°C higher than that of either component.® It  was 
inferred that HFB and benzene complex, and a considerable number of experimental 
studies have now been made on the system. The observed effects of the interactions 
have been disappointingly weak. The dipole moment for the postulated complex was 
shown to be less than 0.1 debye.^ No charge transfer bands have been identified and 
as recently as 1970 it could reasonably be stated that “ spectroscopic evidence for 
complexing has been conspicuous by its absence Thermodynamic properties 
of the mixtures clearly show interactions do exist in the liquid state, but the interaction 
forces seem to be quite weak [see ref. (8) and earlier references therein]. It has been 
suggested that the interaction is purely electrostatic and is probably of a dipole- 
quadrupole type.^ Powell, Swinton and Young applied the statistical theory of 
Rowlinson and Sutton to measurements of gas-liquid critical temperatures and de
duced that there is an angle dependent force, but were of the opinion that the inter
action is short lived and could probably be explained without invoking specific 
covalent bonding forces.

In the following it is shown that subtle changes in the spectrum of HFB resulting 
from interactions with benzene give new insight into the molecular dynamics and 
forces obtaining in the system.
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E X P E R IM E N T A L
Hexafluorobenzene was a spectroscopically pure sample from Bristol Organics Ltd. 

Acetonitrile and cyclohexane were of spectroscopic quality from B.D.A. Spectra in the 
region of the ü2 u mode of hexafluorobenzene were recorded both on an R IIC  FS 720 inter
ferometer and on a Perkin Elmer 325 double beam spectrometer at resolutions of about 
2.0cm~F The transmission linearity of the PE 325 was verified as being within 0.5 % by 
the use of calibrated choppers. Good agreement was obtained from the different runs on 
frequencies and band widths. The interferometric studies suggested that the a2 u band 
increased in intensity by about 30 % in going from cyclohexane solution to benzene solution. 
However, the PE 325 measurements showed that no increase occurred on addition of ben
zene to cyclohexane up to at least a 1 : 1 mixture. A small increase of 10 % occurred in 
going to HFB in pure benzene. All these measurements were made at an HFB concentration 
of about 0.08 mol dm~  ̂and in a caesium iodide or polythene cell with a 2 mm path length. 
The discrepancies in intensities arose because of difficulties in locating the background on the 
interferometer trace. It would appear that the extended but shallow wings of the band in 
cyclohexane were not noted in the spectral noise. The error decreased in the much broader 
band in benzene. The interferometer results were previously reported to lead to an equi
librium constant for the HFB-benzene association of l.Odm^moL^ and a broadening 
proportional to the complex concentration.“  These results were in error and serve to show 
the difficulties which can occur when seeking to derive equilibrium constants from bands which 
change in contour.

Data were processed on a CDC 6600 using programs developed in our laboratories. All 
data were corrected for slit width distortion using the formula :

where /(v) and T(v) are the true and apparent transmitted intensities and s is the spectral slit 
w i d t h . T h i s  method has an advantage over full spectral deconvolution in that it can be 
applied even when the absorption does not decrease to zero at the spectral limits and also in 
that it is simple and rapid to apply. Corrections due to refractive index and field distortions 
were so low as to be negligible.

R E S U LTS  A N D  D IS C U S S IO N

The most significant observation is that no band is affected in any way by 
change of solvent whereas the umbrella mode suffers both an increase in wave
number of 5 cm~  ̂ in going from cyclohexane or CS2 to benzene solution and a drastic 
change in band contour (see fig. 1). This suggests that benzene and HFB are inter
acting on collision in such a way as to perturb those orbitals which are symmetric with 
respect to the axis. Such an interaction would arise from n-n  complexing. The 
lack of any significant intensity change in the ^2» mode does not exclude the possi
bility of long lived complexing of the n-n  type but suggests that it is not very probable. 
The bands are reasonably symmetric in all solutions. Since the band centre moves by 
about one half band width this excludes the possibility that such broadening arises 
from overlapping of bands due to molecules in different long lived states of aggrega
tion. By long lived in this context, we mean existing for longer than the reciprocal 
of the radial frequency separation between the bands in the two pure solvents ( ~  1 x 
10“ ^̂  s).

On this basis we can expect the changes in the Fourier transforms of the bands in 
the solutions to give information on the relaxation mechanisms for the vibration in its 
various environments. The lack of any second isotope of fluorine simplifies the 
procedure. We have made no effort to account for the shift of band centre resulting 
from the natural content on the grounds that the effect will be small and that it
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Fig. 1.— The Û2u absorption band of hexafluorobenzene (A) in cyclohexane solution and (B) in benzene solution (2 cm path length and 0.08 mol dm~̂ ).
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Fig. 2.— The ln[G(/)] against time plot for the oiw vibration of hexafluorobenzene in [benzene solution(B) and in cyclohexane solution (A). ...
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will not vary between the different solutions. The complex transformation (1) 
yielded ln[G(/)] against t graphs such as those shown in fig. 2 and 3. The initial 
curvature of the plot for the cyclohexane solution is similar to that expected for a 
simple free rotor :

G{t) =  1—2(A:r//f)5/^ +insignificant terms in {kTjhcY, n ^  2. (2)
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F ig . 3.— A n  expansion o f that part o f fig. 2 referring to the short time behaviour ( < 0 . 5  x 10 '^ s).
- T  is the free rotor curve.

Up to 0.5 ps the In G{t) cufve lies about 20 % below the theoretical free rotor curve. 
The initial discrepancy at least is due possibly to experimental difficulties in measuring 
the intensities in the wings. Two alternative broadening mechanisms seem plausible. 
I f  the Ü2 U vibration of the CgFg molecules is sensitive to the surrounding solvation 
sheath and if  the environment changes within a time scale of the order of the reciprocal 
of the radial frequency difference between the transition frequencies in the two environ
ments (Te % 1 /Ao>), then exchange broadening will occur. In the event of very fast 
exchange (Te 4  1 / Am) then coalescence to a single sharp band will occur, whereas if the
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exchange time can be reduced so that >  1 /Am separate bands from the different 
solvated species will appear. The alternative explanation for the broadening is that 
it arises from an induced vibrational relaxation of the Oz,, vibration. The origin of 
the relaxation may be due again to the solvation exchange, but the principle difference 
from the kinetic effect is that an increase in the exchange rate can never lead to a 
narrowing of the band. Our present data does not allow us to distinguish between 
these two processes. We favour the vibrational relaxation mechanism and will 
continue the discussion in this light. This discussion is not significantly affected by 
which of the two processes is responsible.

For the benzene solution the entire curve lies below the G(t) curve for cyclohexane 
solution. No adequate explanation for the short time behaviour can be advanced. 
Extrapolation backwards of the longer time behaviour suggests a relaxation, in addi
tion to that arising from free rotation, peculiar to the short times. Since our overall 
interpretation indicates that association is a short lived affair, the short time behaviour 
ought to represent free movement of HFB in the cavity fields. Indeed the changes in 
eiu band intensities from gas to pure liquid are adequately explained by simple 
dielectric field theory.

A t times longer than 0.5 ps, there is a good linear relationship between ln[G(0] and 
t for all solutions. Two important deductions can be made. First, it indicates that 
experimental errors in the measured intensities within at least 30 cm~  ̂ of the band 
centre are very small as far as the correlation functions are concerned. It  would be 
more than fortuitous if errors converted a non-linear relationship into a linear one. 
Secondly we see that all the relaxation processes involved at these times are random. 
Coupling between translations and vibrations would lead to a Lorentzian contribution 
to G(/).®’ It is possible that the observed reduction in p at high benzene concen
trations is due to exchange narrowing. This would be in accord with the continuing 
increase in Av. However, we failed to see a change in band widths on varying the 
temperature by 50°C. We would have expected the exchange rate to vary signi
ficantly over this temperature if  only as a result of variation in the molecular velocities. 
I f  we further assume that the rotational correlation function is given by p for the 
cyclohexane solution and is unaltered by addition of benzene then we can write :

G(/) =  constant-fG(0) exp-(i?v +  /̂ r)̂

where Py, and p̂  are the reciprocal relaxation times for vibration and rotation res
pectively. Extraction of p  ̂ for the various solutions and plotting this against the 
concentration of benzene yields the curves in fig. 4. All (j5y + f t )  values were derived 
by a least squares fitting of some 50 points in the linear portions of the In G{t) against t 
graphs. It  appears that f t  4-f t  increases linearly with benzene concentration almost 
up to its asymptotic value. I f  f t  was proportional to the extent of complexing and f t  
was constant, the variation of f t  4-f t  would have been such as shown for curve (B). 
It is probably unrealistic to expect such behaviour on account of solvent cage effects 
alone. The asymptotic behaviour of p is reached at about 35 % benzene. A t this 
concentration the HFB molecules are probably embedded in a cage of benzene 
molecules. It follows that well before this point relaxation and pairing is going to be 
enhanced above and beyond the expectations for a simple bimolecular reaction. 
Some support for the above interpretation comes from the observed vibrational 
frequency shifts of the 0 2 u mode, which accompany the addition of benzene. These 
shifts are considerable, being up to 5 cm"^ in 210 cm~L There is an excellent linear 
relationship between the shift and p up to the maximum value of the relaxation 
constant. Thereafter, while P changes only very slightly, the frequency shift continues 
to increase at its previous rate.
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F ig . 4.— A  plot of the reciprocal relaxation time (̂  = + Pt) against concentration of benzene.The concentration of hexafluorobenzene is%^4nol dm”  ̂in cyclohexane + benzene mixtures [curve (A)]. Curve B is as expected for a property arising from a HFB + benzene complex with an equilibrium constant of 0.625 dm^ mol~^ and assumes j3(0) =  0.545 and ^(max) = 1.445 s"*.

The out-of-plane vibrations of aromatic systems increase in frequency on 
addition of polar solvents, and the bands are broadened. LaLau proposed that 
these elfects were due to polar interactions of the type

Q h  - Q o
H  C

-  Qh/ ^  \Qoy^
C O

where O represents a terminal atom of any polar bond. I f  r is the distance between the 
polar group terminal atom and the hydrogen nucleus then the increment to the force 
constant for movement of the hydrogen towards the C— O axis is QnQo/^'^^of^• 
Substitution of accepted values for these parameters gives excellent agreement between 
calculated and observed shifts for systems such as acetone +  benzene and acetonitrile-}- 
benzene. There are difficulties with the model which are discussed below. However, 
the predicted magnitude of the shift for the benzene +  HFB case is far too small to 
account for the observations. Taking the C H  and C F bond dipoles as 0.3 D and 
0.6 D (1  X 10“ ®̂ and 2 X 10~^° C m) and taking the average distance of approach, 
r, as about 2.3 Â  then the extra dipolar restoring force is 0.0010 mdyn (0.10 N  
m~^) which is to be compared with the actual force constant for movement of the 
fluorine out of the plane of 0.2 mdynÂ~^ (20 N  m~^). This would explain only a 
0.5 cm~^ shift. In fact there are other difficulties with the model. I f  we accept a 
model in which the interacting bonds are collinear, it is difficult to see why only the 
out-of-plane C H  vibrations are affected. It  might be expected that the in-plane 
modes are affected equally. No shifts or band broadening are observed for the in-
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plane modes. A  more favourable configuration than that suggested above might be 
one in which the two dipoles were opposed in the manner

plane of ring— C— H
! I

C— F.

In this configuration only the y modes would be affected, but now the modification to 
the restoring forces through electrostatic interactions must be much reduced since 
during the y distortion one pair of interacting poles will approach while the other 
recedes, it appears then that, at least for the case being investigated, electrostatic 
interactions are an inadequate explanation of the observed phenomena. We postu
late that the observed frequency shifts arise from n-n  interactions which modify 
the restoring forces. This seems reasonable, but the relation between the frequency 
shift and the reciprocal relaxation time shown in fig. 5 must be rationalised. It  
should be noted that the observed sharp change in gradient in the P against Av curve 
occurs at a very high benzene concentration (35 %). This indicates that at an attain
able concentration all excited molecules have achieved their maximum relaxation 
rate, but that the HFB molecules have not yet been surrounded by the maximum 
density of benzene molecules. A  continued increase in the number of benzene 
molecules in the HFB environment leads to further increases in the restoring force.

M

1.2

1.0

0.8

OA

1 2  3 4 5

Av/cm“‘

F ig . 5.— A  plot o f reciprocal relaxation time against frequency shift for the HFB +  benzene +  cyclo
hexane system.

Indeed the continued increase in Av up to 100 % benzene solvent is in accord with the 
thermodynamic evidence that the association energy between HFB and benzene is 
very small. Some studies of the temperature dependence have been made. Experi
mental difficulties have resulted in the results being of low accuracy, but any temper
ature effects on bands widths over a 50°C temperature range are clearly very small. 
Small frequency shifts of 0.03 cm~  ̂ were observable. I f  the kinetic exchange, 
rather than the vibrational relaxation, mechanism is responsible for the band width
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effects we would have expected to have seen some sign of further band narrowing in 
the benzene+ C6p6 solution on increasing the temperature. This is based on the 
assumption that the observed fall off in Av  ̂ as compared with the frequency shift, is 
due in this interpretation, to exchange narrowing.

While it is easy to visualise the manner in which interactions (charge transfer for 
example) can lead to an increase in the y restoring force, the mechanism of vibrational 
relaxation is less obvious. In  the time intervals involved, vibrational energy transfer 
seems most unlikely. It  may be significant however that the vibrational quantum is 
very close to k T  ('^210cm~^). Differences between the effective bond dipoles as 
derived from intensity measurements of in-plane and out-of-plane fundamentals of 
benzene and H FB  have been interpreted as showing that there is an electronic 
rehybridisation moment resulting from movement of the H  or F atoms out of the plane 
of the ring. It  follows that any tt-ti interactions will be modified to some extent 
by y type motions. I t  could well be then that in a dissociation process the vibrational 
quantum has a significant probability of being degraded into thermal energy. This 
process will be rendered much more likely by the similarity in magnitude of k T  and /tv. 
The implications of such a process will now be explored. I f  every dissociation of a 
molecular pair involving a vibrationally excited HFB molecule led to vibrational 
relaxation, then from the data in fig. 4 we can deduce that the equilibrium constant 
for complex formation is about 0.8 mol dm-®. Taking the reciprocal lifetime of the 
complex as the asymptotic value of we deduce the dissociation rate constant to be 
0.70 X 10̂ ® s - \  The bimolecular association constant is then 0.5 x 10^  ̂dm® mol~^ 
s - \  This value is about 100 times larger than predicted for a dissociation controlled 
reaction with an efficiency factor of unity.®° In fact cage effects may well explain 
this enliancement. In  view of the extremely short lifetime a very high rate of inter
action events may occur within a solvent cage.

S PE C TR O SC O PIC  PROBLEMS

I t  has been assumed here that the band of hexafluorobenzene near 210 cm"* arises 
from the û2 u vibration. The first assignment of the vibrational fundamentals of 
H FB  placed the û2 u mode at 315 cm~  ̂ and the lowest eiu mode near 210 c m - \  On 
the basis of a more complete study these assignments were reversed,®® and this was 
given some support by the band contours as measured in the vapour phase.*® How
ever, Fujiyama and Crawford reverted to the original Delbouille assignment on the 
basis of molecular rotation studies in liquid HFB.*^*’ The basis of this was that P̂  can 
be related to the rotational diffusion coefficients about specific axes. Whereas the ü2 u 
vibration is affected only by rotation about axes perpendicular to the Cg axis, all 
transition moments are rotated through space by molecular rotation about the 
axis and the axes perpendicular to this. The P constants derived by Fujiyama and 
Crawford (actually Py-\~Pr for pure liquid) were 0.83, 0.84 and 0.44 ps-* for the 1534, 
1010 and 315 cm-^ bands respectively. Since the low frequency value was so much 
smaller it was proposed that it arises from a different species to the two high frequency 
bands. These deductions are valid only in the absence of important vibration rotation 
interactions. A ll modes must exhibit first order Coriolis coupling between the 
degenerate components. While molecular rotation undergoes frequent interruptions 
in the condensed state, the coupling must still exist during rotation. The necessary 
theory has not yet been developed to account for the dependence of the long time 
behaviour of G(t) on the Coriolis coupling constants. We note however that the 
Py +  Pr value for the 210-cm-^ band in cyclohexane is 0.55 ps-*, which is only slightly 
higher than that for the 315 cm-* band. A  comprehensive study of the out-of-plane



R.  M.  B A R R E T T ,  E.  B.  G I L L  A N D  D .  S T E E L E  541

and in-plane vibrations and force fields of all substituted benzenes has yielded con
firmation of the assignments used in the present work.®®'

Baur, Horsma, Knobler and Perez have shown how atomic polarisabilities can 
be deduced from polarisation and refraction data for systems containing two weakly 
interacting compounds. Applying their method to benzene and HFB they found 
a non linear dependence of the atomic polarisation on the fractional composition of 
the benzene +  hexafluorobenzene mixtures. The deviation from linearity is up to 
20 %. Now atomic polarisation is related ®̂  to infra-red band intensities through

The above result implies that intensities of either the benzene bands or the HFB  
bands should change in a non linear fashion on mixing. We have measured the 
intensities of two lowest bands of HFB in benzene and cyclohexane and found 
no significant changes. Because of band overlapping between the 1500 cm-* bands 
of benzene and of HFB, we were unable to carry out such studies for these bands. 
At the present time we can only say that the intensity changes implied by the atomic 
polarisation data are surprising and that we have not observed them in the vibrational 
absorption bands studied.

C O N C L U S I O N S

The observed broadening and frequency shifts of the U2 u vibrational band of 
hexafluorobenzene on addition of benzene shows that the presence of significant inter
actions directed perpendicular to the ring plane. Purely polar interactions are 
insufficient to explain the observations. It would appear that interactions between 
benzene and HFB directly perturb those orbitals which determine the restoring force 
on a substituent moved out of the plane of the ring. This leads to a mechanism by 
which the frequency can be perturbed and also by which the vibrational energy may 
degrade to thermal energy.

Problems in interpretation of details of the available data still exist. For example, 
the initial curvature of the G(t) curve of the Oju band of HFB in benzene is much 
greater than expected for a free rotor, and identification of the relaxation process with
the “ dissociation ” of a collision complex leads to a rather high value for the bi
molecular association constant.
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Vibrational Band Contours
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Expressions are derived for the second intensity moments of vibrational bands of symmetric top molecules in the limit of rotational broadening. An expression for the moments for parallel bands agrees, apart from one minor term, with that given by Gordon. First order Coriolis effects are included for perpendicular bands, for which the second moment is given by
M(2) =  B'̂ [2kTIBhc + 1/3 + BI3A] + A'̂  [2(1 - 0® kTfhc^B^jSA^ +(1 -  2ip] + 2B'A' (1 - 20.
The potential and the problems in the use of the formulae are discussed.

A great deal of information about molecular motion is contained within the band 
contour of a vibrational absorption or scattering band. The interpretation o f the 
intensity at any specific frequency is a very complex function of the history of motion 
of the ensemble of molecules and is not amenable to interpretation.* There are two 
principal techniques used to deduce information from the contours about the average 
molecular motions and about the forces to which the molecules are subjected. The 
first involves the Fourier transformation of the band intensity with respect to the 
frequency shift from the band centre.® Thus for an absorption band in a liquid 
(molecular motions not strongly correlated), this transform is equal to the auto
correlation function of the transition dipole, p.

< n (0 ). !*(:)> =  constant X
band;

In  the derivation of this equation ® from Gordon’s equation (H i) it is assumed either 
that hot bands cause no significant band shape distortion, or that their effects have 
been eliminated by appropriate mathematical techniques. This eliminates the need 
for the terms, [ 1 — exp(—hv/kT)], in the denominator of Gordon’s equation. Provided 
that rotational motions dominate the changes in <p(0) -  ji(r)> then the scalar of the 
transition dipole vector can be extracted and by normalising the band area to unity 
the autocorrelation function reduces to (cos 6t} where dt is the angle between the 
dipole (molecular orientation) at a time t and at the arbitrarily chosen time 0.

I t  was shown by Gordon ® that the normalised autocorrelation function of the 
molecular orientation can be expressed as a power series in time and that the co
efficients at short times are analytic functions of the inertial constants and of the 
intermolecular torques. In  a number of studies of symmetric top molecules ® the 
experimental orientation correlation function has been compared with that of a free 
rotor with the appropriate inertial constants. Agreement up to a certain time has

555
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been taken as evidence that the molecules rotate on an average over that period of 
time before intermolecular collisions reorient the transition dipoles.

A  second and in principle rather more powerful method arises from the identifica
tion of the time coefficients in the autocorrelation function expansion as the intensity 
moments of the band about the band centre. Thus if G(t) is the autocorrelation 
function normalised so that G(0) =  1.0, then

G(0 = t
n =  0 ^  •

where

M ( n ) =  l (v -v o ) " *"— ^'dv.-j(,-
I f  we can measure these moments, then, provided still that molecular reorientation 

dominates the decay of the autocorrelation function and that we can express moments 
as functions of the inertial constants and forces, it is possible to derive a great deal 
about the molecular dynamics. None of the conditions mentioned in the preceding 
sentence are trivial and this is one of a series of papers in which we are examining these 
questions. Here our concern is with the effects of first order Coriolis forces on the 
band contours and the second moments of symmetric top molecules. It  is well 
known that the Coriolis forces produce dramatic changes in the band contours of 
perpendicular transitions [see for example ref. (4)]. It follows that the effects on the 
moments must be considerable.

Gordon computed expressions for the moments * by considering the com
mutators [ ( / f , p)j where is the Hamiltonian and p is the dipole operator. In our 
investigation we use the somewhat simpler, but rather less powerful method, of using 
the known expressions for the transition frequencies and transition probabilities of 
symmetric top molecules. This has the sole disadvantage of not allowing the effects 
of intermolecular forces on the moments to be deduced. These, however, have already 
been computed by Gordon.*

The second moments have been recomputed for parallel transitions and agree well 
with the expression given by Gordon.

T H E O R Y
The transition probabilities for parallel and perpendicular transitions of symmetric 

top molecules have been derived by Honl and London ® and by Reiche and Rade- 
maker.^ They are proportional to Aj^k exp( — where Fj^k is the rotational 
term number of the ground state and Aj f̂c is a term dependent on the rotational 
quantum numbers J and AT and takes the values shown below for the indicated 
transitions :

parallel transitions value of A j k̂

(2 -0k ,o )(J -^ K +  l)(J-K+1 ) /(7 + 1)
J,K-^J,K  (2 -^ ^ .o )(2 /+  \)K^!J(J+1)

perpendicular transitions

J , | a : | - y + 1 , |Æ |+ i (j±K+\)Q±K+2)ig+\) 
y, \K\ -3 y, \K\ ±  1 (2y+  i)(j+K)g+K+  i) /y (y + 1 )
y , | ü : i - ^ y - i , | A : | ± i  (y + Æ )(y + Æ -i) /y . tn
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Substitution of (1) and of known term values into (2),
f (v-vofr(v)dv

-  ( r w d .  ■ ®

where F(v) is the intensity at a frequency v,[=  ln(7o//)v/v], leads to the following for 
the parallel case

M (2 )[ e x p ( - 2 v ,K M * î ’)] =

E  [{[a '(y+  \ ) ( j + i ) - B J { j +  \ ) + z Y { j ^ - K ^ + 2 J + \ ) i i J - \ - 1)] +
J.K

[(B‘ - B ) J { J + \ ) + 2 ] \ 2 J +  \ ) K ^ ! J g + \ )  +
[ B ' j g -  1) - B J ( J + \ ) + z] \ P - K ^ ) I J ]  e ^ - F j , g , c l k T )

=  M (2)S (\)  =  4{5 '[y (7+ l)] +  5 (l)-5 (2 i:^ )}£ '^  +
S [ p g + 1 )"'](AB)^ +  -  B ) f  +
4 S [ /( /+  \ ) \ \B B ’ +  2 S [ jg +  \)K^]^B^(A - B )  +  AS(K^)B'à(A -  B). (3)

Primed constants refer to upper vibrational states and unprimed refer to the ground 
state. Afx) defines the difference between the parameter x  in the upper and lower 
vibrational states thus :

à ( A - B )  =  { A ' - B ' ) - ( A - B )  
z =  A(A — B)K^ and S (f )  is as defined by Kassel.’  Thus :

S{/) =  Ê  Z  (2 J  +  l ) f e x p ( - F j , ^ h c l k T ) .
j  = 0 K=-J

Kassel computed expressions for the S ( f )  required above by suitable differentiation 
of the rotational partition function expression 5(1). 5(1) itself was computed by
Viney ® and corrected by Kassel."* Translating into modern symbolism and repro
ducing only the dominant terms for each leads to

s [j V + i ) ' ]  =

S(K“) =
4 A V

4B 3B’  B’ x 5B^x . 2lB*x
8 H— — H— rs—  2Bx •

A A^ A 4A^ 4A-
■ Bx SB^x
^ + T " i r + ■]

(4)

where X  =  exp(5x/4) and x =  ItcjkT. Retaining only the terms of
lowest order in the rotational constants for each 5 ( / )  and substitution in (3) gives
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Expression (5) agrees well with that derived from eqn (40) of ref. (1). The only 
difference is in 1 minor term. Thus we deduce from Gordon’s equation that 
{8/3 +  25/3y4}5'® should be 45'®. Extension of (5) to include terms of higher order 
may be readily accomplished if necessary using the next order terms of the S(f).

The same procedure applied to a doubly degenerate band yields :
4M (2)5(1) =  5 '® {25 [/(/+ 1 )]-25 (A :® ) +  5(1)} +  I®45(X®) +

I®5(1) + 2Â5'5(I) + (B' + I)A(.4 - 5)25(X®) +
[A(y4 -  5)]®5(X'̂ ) + (A5)®5[/®(/+ l)®] + (5' + ̂ )A525[y(7+ I)]

(6)
A = /t(l —0 and A =  ^(1 —2Q where ( is the first order Coriolis constant. 

Use of (4) and retaining up to second order terms for 5'®and X'® leads to :

M O ) -  +  !  +  +  +  +

A(A-B)(B' +  Â )L  +  â.̂  I ^ ^ I
A x  (Xx 3v4®j 

D IS C U S S IO N
Eqn (3) and (6) allow the determination, to any required degree of accuracy, of 

the theoretical second moments of a symmetric top in the absence of collisional or 
vibrational relaxation broadening. To a very good approximation the M{2) of 
perpendicular bands can be obtained from Gordon’s equations * by substitution of 
A'(l — Ç) for A'. I t  follows that the higher even moments may be adequately obtained 
by the same approximation. This establishes the necessary equations from which 
intermolecular torques may be deduced from M(2)  and M (4).

We contend that there are still severe problems to be solved before any reliance 
can be placed on such values. The intensity distribution in the wings of the bands is 
critical in determining the ratio M (4)/M (2). We have examined a wide range of 
perpendicular transitions of symmetric top systems (e.g. C^Fe, CgHg, CH3I, C FjB r) 
in the hope of establishing some general features in the contours of the wings. In all 
cases examined the wings show very considerable interference from overlapping 
bands and we do not feel that we are yet in a position to make any clear observations 
on this matter.

The degenerate band of CH3I in the liquid phase at 883 cm~* is overlapped on 
the high frequency side, but appears clear on the low frequency side of the band. 
Assuming that the band is symmetrical the second moment was measured in the 
pure liquid phase to be 1800+100 cm-®. The Coriolis constant (Q for this degenerate 
mode is 0.206 which leads to a calculated second moment of 1450 cm~®, which is to be 
compared with the (  =  0 value of 2250 cm-®. As the rotational kinetic energy is not 
reduced by liquefaction this result suggests the existence of other broadening mecha
nisms. This conclusion is supported by Raman studies of band widths for CH3I 
arising from isotropic relaxation processes. Bartoli and Litovitz  ̂ found half band 
widths for the â' component of 2.6 cm-* for both the A^ bands at 1251 and 527 cm-*. 
Goldberg and Pershan *° obtained values of 2.4 to 2.2 cm-* for all three Ai  funda
mentals in the pure liquid state. For a 1 % solution in CS2 these widths decreased by 
0.4 to 0.8 cm-*. Obviously these isotropic processes are going to increase the band
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moments. Unfortunately, as d! is zero for a non-totally symmetric band, it is not 
feasible to measure the widths and to make an appropriate correction by the Raman 
tensor method. It  may be possible to estimate the correction by use of the methods 
of Rakov. * * These are based on the assumption that the intrinsic (non-orientational) 
band width is not dependent on temperature. There are obvious dangers in this 
assumption and cases where the assumption appears to be invalid are reviewed by 
Bartoli and Litovitz.

It has been suggested that the wings of the bands in liquids follow the smoothed 
contours of the gaseous system.*® I f  this could be established then it would permit 
the difficulties arising from band overlapping to be resolved in many situations. 
At present the usual procedure is to assume that rotational relaxation process and 
the background can be floated so that the observed M{2) is equal to the theoretical 
value. In  some instances it may be that this procedure is valid. However, we 
have been investigating a number of cases in which band broadening accompanies 
concentration variations of the absorber in specific solvents. In several cases 
(mainly dipolar molecules with aromatic systems) we have established the existence 
of translation rotational coupling *® and in one case (hexafluorobenzene-benzene) 
vibrational relaxation *̂  ̂is indicated. For chlorine and bromine dissolved in benzene, 
Raman studies have established that the halogen band is in fact two sets of overlapping 
isotope bonds, one due to the uncomplexed halogen and the other set arising from 
benzene-halogen interaction species. In view of these observations we suggest that 
considerable caution be exercised in floating the background.

In the case of a degenerate band the Coriolis constant may not be known, and 
therefore the theoretical M{2) could be unknown. A  measurement of M{2) itself 
then, even if overlapping bands can be eliminated, may not allow the establishment 
of the dominance of rotational relaxation. A  possible method of overcoming this 
problem is to compare the first and second order orientational correlation functions, 
<U(0) • U (/)> and (f2 [U (0 ) • U(0]>, as derived from the corresponding infra-red and 
Raman band contours respectively. P 2 M  represents the second Legendre polynomial 
of X .  It  was proposed by Berne, Pechukas and Harp *® that (?2[tJ(0) • U(r)]> could 
be derived from <U(0) • U(r)> by maximising the information entropy of the distribu
tion. In practice this means that if <U(0) • U(t)> =  — l/^ (/)  +  coth/5(r) then 
<^2[U(0) • U(/)]> =  1 -[3//?(/)]<U(0) • U(/)>. Pit) is a Lagrangian multiplier. This 
appeared to be well satisfied by computer simulated spectra *  ̂ and a band of CHal*"* 
to which the theory was applied. Isotropic relaxation processes should affect the 
first and second order correlation functions to identical extents and therefore in
validate the above relation.*®

One interesting possibility is suggested by the strong dependence of M{2) on the 
Coriolis constant, (. I f  M{2) can be measured it should be possible to establish C 
from liquid phase studies. Once again it is essential to ensure that other relaxation 
processes are insignificant.
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