Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector

-A. Amaudruz, P., Batygov, M., Beltran, B., Boudjemline, K., G. Boulay B. Cai T. Caldwell, M., Chen, M., Chouinard, R., T. Cleveland, B., Contreras, D., Dering, K., Duncan, F., Ford, R., Gagnon F. Giuliani, R., Gold V. V. Golovko, M., Gorel, P., Graham, K., R. Grant, D., Hakobyan, R., L. Hallin, A., Harvey, P., Hearns, C., J. Jillings, C., Kuźniak, M., Lawson, I., Li, O., Lidgard, J., Liimatainen, P., H. Lippincott, W., Mathew, R., B. McDonald, A., McElroy, T., McFarlane, K., McKinsey, D., Muir, A., Nantais, C., Nicolics, K., Nikkel, J., Noble, T., O'Dwyer, E., S. Olsen, K., Ouellet, C., Pasuthip, P., Pollmann, T., Rau, W., Retiere, F., Ronquest, M., Skensved, P., Sonley, T., Vázquez-Jáuregui, E., Veloce, L. and Ward, M.

(2014)

-A. Amaudruz, P., Batygov, M., Beltran, B., Boudjemline, K., G. Boulay B. Cai T. Caldwell, M., Chen, M., Chouinard, R., T. Cleveland, B., Contreras, D., Dering, K., Duncan, F., Ford, R., Gagnon F. Giuliani, R., Gold V. V. Golovko, M., Gorel, P., Graham, K., R. Grant, D., Hakobyan, R., L. Hallin, A., Harvey, P., Hearns, C., J. Jillings, C., Kuźniak, M., Lawson, I., Li, O., Lidgard, J., Liimatainen, P., H. Lippincott, W., Mathew, R., B. McDonald, A., McElroy, T., McFarlane, K., McKinsey, D., Muir, A., Nantais, C., Nicolics, K., Nikkel, J., Noble, T., O'Dwyer, E., S. Olsen, K., Ouellet, C., Pasuthip, P., Pollmann, T., Rau, W., Retiere, F., Ronquest, M., Skensved, P., Sonley, T., Vázquez-Jáuregui, E., Veloce, L. and Ward, M. (2014) Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector. Astroparticle Physics

Our Full Text Deposits

Full text access: Open

Full text file - 854.33 KB

Abstract

The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The $^{222}$Rn decay rate in the liquid argon was measured to be between 16 and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the final DEAP-1 detector generation is well described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination arising from the prototype design, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.

Information about this Version

This is a Accepted version
This version's date is: 10/2014
This item is not peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/bbcb6c16-f07f-06eb-4727-424addaba825/7/

Deposited by Research Information System (atira) on 18-Nov-2014 in Royal Holloway Research Online.Last modified on 18-Nov-2014


Details