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Abstract

An economy exhibits structural heterogeneity when the forecasts of different
agents have different effects on the determination of aggregate variables. We study
the important case of economies in which agents’ behavior depends on forecasts
of aggregate variables and show how different forms of heterogeneity in structure,
forecasts, and adaptive learning rules affect the conditions for convergence of adap-
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1 Introduction

There has been a large amount of research into the implications of adaptive learning
behavior in expectations formation for economic dynamics. Paralleling general macroe-
conomics, most of the research that uses adaptive learning has been carried out in models
with representative agents, i.e. in economies with structural homogeneity. In studies of
adaptive learning the assumption of a representative agent is usually interpreted to mean
that expectations and learning rules are also identical. These kinds of assumptions are
made mostly for analytical convenience rather than for their realism. In this paper we
reconsider stability of rational expectations equilibrium (REE) under adaptive learning
when the economy exhibits a particular type of structural heterogeneity, in which the
basic characteristics differ across consumers (and firms) and they thus respond to ex-
pectations of economy-wide aggregate variables in different ways. (This terminology is
introduced in Chapter 2 of (Evans and Honkapohja 2001).)
In this kind of setting it is natural to assume that expectations of different agents

can also differ. We will make the further distinction that heterogeneity in learning can
be transient (e.g. as a result of different initial beliefs) or persistent (when different
agents use different learning algorithms).1 Our goal is to consider the stability of REE
when both structural and expectational heterogeneity is present. We will first show
that transient heterogeneity in learning does not affect the conclusions drawn from the
representative agent model, i.e. stability is entirely determined by the aggregate charac-
teristics of the economy (in a sense defined below). The conclusion is markedly different
when heterogeneity in learning is persistent. Details of agents’ characteristics and learn-
ing rules influence the conditions for stability under learning, as was conjectured by
(Grandmont 1998), Remark 2.3. We illustrate different possibilities that can arise using
two economic examples, a market model with speculative demand and a New Keynesian
model of monetary policy.
The basic framework will be a forward-looking multivariate linear model with two

classes of agents. While the assumption of linearity is directly postulated for some models
in the literature, it can be observed that most applied studies are in any case based on
linearization.2 The restriction to two classes of agents in the main analysis is done only
for simplicity of exposition, and we will also state the stability conditions for economies
with any finite number of different classes of agents.
Our analysis is focused on models where different agents need to forecast a common

vector of aggregate variables, which often arises in the literature. In other words, we
assume that information is symmetric between the agents. This is done for simplicity
and brevity, though we conjecture that the approach can be generalized to models with
informational asymmetries once the concept of equilibrium is suitably modified. We al-

1In independent work (Giannitsarou 2003b) considers similar forms of heterogeneity in learning under
structural homogeneity of the economy.

2(Evans and Honkapohja 1995) and (Honkapohja and Mitra 2003a) show how learning stability in
the linearized model implies stability in the original nonlinear model with sufficiently small shocks that
are iid or a finite Markov chain, respectively.
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low for some heterogeneity in the agents’ learning algorithms, though we limit attention
to econometric learning with infinite memory and examine the implications of agents us-
ing two well-known classes of econometric algorithms, versions of recursive least squares
(RLS) or stochastic gradient (SG) updating rules. This is obviously restrictive, but it
is a natural starting point since research has very often employed these schemes. The
implications of many other forms of learning rules could be examined; these include
bounded memory rules, algorithms for computational intelligence, just to mention a
couple of other possibilities.3 Our analysis does not cover these other possibilities, but
the framework is still useful as a starting point as testified by the applications.
In the earlier literature, the bulk of work using econometric learning has assumed

homogeneity in both expectations and structure, though there exist several studies
that permit heterogenous expectations in a homogenous structure, see e.g. (Bray and
Savin 1986), (Evans and Honkapohja 1997), (Evans, Honkapohja, and Marimon 2001)
and (Giannitsarou 2003b). In a non-stochastic setting (Grandmont 1998), Remark 2.3
suggests the use of average expectations in models with heterogenous expectations and
structure. Heterogenous expectations are also present in some of the other approaches to
adaptive learning. Structural heterogeneity is permitted for a class of models in (Marcet
and Sargent 1989a). Expectations are heterogenous in the Marcet and Sargent setup,
but this arises solely from informational differences as different agents are assumed to
use versions of recursive least squares (RLS) estimation.4

2 The Framework

2.1 The General Model

We consider a class of linear models where there are two types of agents (1 and 2) with
different forecasts and with structural heterogeneity. ζi ≥ 0 denotes the mass of type
i agents. The model may be multi- or univariate. We will develop the algebra and
basic results using the multivariate setting, but the matrices and vectors are sometimes
interpreted as scalars. The multivariate model is needed in some applications, but
stronger results can be obtained for the univariate model.
The formal model is given by

yt = α+A1Ê
1
t yt+1 +A2Ê

2
t yt+1 +Bwt, (1)

wt = Fwt−1 + vt. (2)

3Non-econometric approaches include the use of computational intelligence (see e.g. (Arifovic 1998)),
models of discrete predictor choice (see e.g. (Brock and Hommes 1997) and (Brock and de Fontnouvelle
2000)) and eductive learning (see (Guesnerie 2002)). (Barucci 1999) and (Negroni 2003) consider
heterogeneity in adaptive expectations.

4Marcet and Sargent employ a restrictive version of the stochastic approximation methodology by
using the so-called projection facility, which has been criticized in (Grandmont and Laroque 1991),
(Grandmont 1998) and (Moreno and Walker 1994). Ways to avoid a projection facility are discussed in
(Evans and Honkapohja 1998a) and Chapter 6 of (Evans and Honkapohja 2001).
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To shorten notation the mass ζi of agents of type i are incorporated into the correspond-
ing matrices Ai, but we will introduce them explicitly for some interpretations, in which
case Ai = ζiÂi, where Âi describes how agents of type i respond to their forecasts. Our
main interest is in the structurally heterogenous economy for which Â1 6= Â2. When
Âi = A and ζ1 + ζ2 = 1 we have the case of a structurally homogenous economy, which
has been studied by (Giannitsarou 2003b).
In the model yt is n × 1 vector of endogenous variables and wt is k dimensional

vector of exogenous variables that is assumed to follow a stationary VAR, so that vt is
white noise. For simplicity, it is assumed that F is known to the agents (if not, it could
be estimated) and that Mw = limt→∞Ewtw0t is a positive definite matrix. As for the
matrices, Ai, i = 1, 2, are n× n while B is n× k. The univariate case is n = k = 1.
We let Êityt+1, i = 1, 2, denote the (in general non-rational) expectations by agent

i of the endogenous variables in the economy. Expectations without ”ˆ” refer to ratio-
nal expectations (RE). In our analysis we will keep track of individual expectations as
they will be stacked into vectors. The stacking is useful since the general framework is
both multivariate and stochastic, and agents can have different types of algorithms for
parameter updating. For some results it is worth while to define and use the concept of
average expectations as a benchmark, as suggested in (Grandmont 1998), Remark 2.3.
(1) can clearly be written as

yt = α+AMÊAVt yt+1 +Bwt, (3)

where

ÊAVt yt+1 = (A
M)−1(A1Ê1t yt+1 +A2Ê

2
t yt+1)

can be called average expectations and

AM = A1 +A2

aggregate characteristics or the average economy.
A key feature of model (1) is that both agents’ characteristics and forecasts differ.

If either agents or forecasts are identical, so that Ai = ζiA or Ê1t yt+1 = Ê2t yt+1, the
model can be aggregated. In the former case the evolution of yt depends only on av-
erage expectations ζ1Ê

1
t yt+1 + ζ2Ê

2
t yt+1. In the latter case only the mean or aggregate

characteristics AM matter.
We will focus attention on the learnability of the fundamental or minimal state

variable (MSV) solution to the class of models (1)-(2).5 The MSV REE takes the form

yt = a+ bwt, (4)

5As is well known, under certain conditions, known as indeterminacy of REE, there also exist other
well behaved REE and these could also be studied for learnability. See e.g. (Evans and Honkapohja
2001), Part III for a discussion of the homogenous expectations case. The techniques developed in our
paper can be extended to the study of learnability of the other types of REE under structural and/or
expectational heterogeneity.
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where the n vector a and n× k matrix b are to be computed in terms of the structural
parameters of the model. The MSV solution can be obtained by solving the following
system of linear equations

a = α+AMa

b = AMbF +B.

This system has a unique solution under certain conditions:

Proposition 1 There exists a unique, symmetric equilibrium (ā, b̄) of the model (1)-(2)
if the matrices In −AM and Ink − F 0 ⊗AM are invertible.

The proofs of all Propositions are given in Appendix A. Here and in the rest of the
paper Im denotes the m−dimensional identity matrix.
It should be noted that the framework is restrictive in that the model (1)-(2) is purely

forward-looking. This is done for brevity. The same general approach can be used for
models with lags (some of our results do not, however, generalize). Another extension
is to have S > 2 classes of agents and the model becomes

yt = α+
SX
s=1

AsÊ
s
t yt+1 +

SX
s=1

CsÊ
s
t yt +Bwt, (5)

with wt following (2). (5) also incorporates expectations of current endogenous variables
that will appear in one of the applications. For most part we will assume S = 2 and
Cs = 0 for all s, but we will summarize the convergence conditions for (5) in Section
5.3.

2.2 Economic Examples

We outline two economic models that fit our general setup.

Example 1 (Speculative Demand with Externality) The supply function for a single
good is assumed to be linear and upward sloping, that is

st = l + kpt + εt.

Here k, l are positive parameters and εt is a shock that follows the AR(1) process

εt = rεt−1 + ε̃t,

where ε̃t is white noise with variance σ
2
ε and |r| < 1.

There are S classes of demanders with different linear demand functions that depend
on expected change in the market price due to a speculative motive. The possibility of
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externality is also assumed, so that the demand of person i depends on the aggregate
demand in the market. Formally,

dit = αi − βipt + κi(Ê
i
tpt+1 − pt) + ηi(

SX
s=1

dst), i = 1, . . . , S. (6)

where αi,βi ,κi are positive parameters and Ê
i
t(pt+1)−pt denotes (possibly non-rational)

expectation of the perceived change in market price of demander i. From (6)

SX
i=1

dit = (1− η)−1
"
α− (β + κ)pt +

SX
j=1

κjÊ
j
t pt+1

#
,

η =
SX
i=1

ηi,α =
SX
i=1

αi, β =
SX
i=1

βi,κ =
SX
i=1

κi.

From market clearing st =
PS

i=1 d
i
t we obtain the reduced form

pt = ψ[(1− η)−1α− l] + ψ(1− η)−1
SX
j=1

κjÊ
j
t pt+1 − ψεt, (7)

ψ = [(k + (1− η)−1(β + κ)]−1.

We make the regularity assumptions ρψ(1− η)−1κi 6= 1 and ψ(1− η)−1κi 6= 1 for all i.
Model (7) is of the form (5) with Cs = 0 for all s.

Example 2. (Model of Monetary Policy) Recent studies of monetary policy are often
based on a model with representative consumer, monopolistic competition in product
market and stickiness in price setting. We consider the bivariate linearized model sug-
gested e.g. in (Clarida, Gali, and Gertler 1999):

xt = −φ(it − ÊPt πt+1) + ÊPt xt+1 + gt, (8)

πt = λxt + βÊPt πt+1 + ut, (9)

where xt is the “output gap” i.e. the difference between actual and potential output,
πt is the inflation rate and it is the nominal interest rate. Ê

P
t πt+1 and Ê

P
t xt+1 denote

private sector expectations of inflation and output gap next period. All the parameters
in (8) and (9) are positive. 0 < β < 1 is the discount rate of the representative firm.
ut and gt denote observable shocks that follow first order autoregressive processes:µ

ut
gt

¶
=

µ
ρ 0
0 µ

¶µ
ut−1
gt−1

¶
+

µ
ût
ĝt

¶
, (10)

where 0 < |µ| < 1, 0 < |ρ| < 1 and ĝt ∼ iid(0,σ2g), ût ∼ iid(0,σ2u). gt represents shocks
to government purchases as well as shocks to potential GDP. ut represents any cost push
shocks to marginal costs other than those entering through xt.
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The model is complete once an interest rate rule for the central bank is specified. In
the literature both optimal reaction functions and instrument, i.e. non-optimal, rules
have been considered. (Evans and Honkapohja 2003a) review the recent results on
determinacy and stability of REE under learning for both types of rules. An interesting
hybrid case is the approximate targeting rule proposed by (McCallum and Nelson 2000),
where the policy-maker adjusts the current interest rate in response to the discrepancy
from the commitment optimality condition anticipated for the next period.
Let α denote the relative weight of output in a commonly used quadratic objective

function of the central bank. Formally, the McCallum-Nelson rule is

it = Ê
CB
t πt+1 + θ[ÊCBt πt+1 + (α/λ)(Ê

CB
t xt+1 − ÊCBt xt)]. (11)

This rule is forward-looking, i.e. it depends on forecasts of inflation and outputs. If
private expectations can be observed only with large errors, then the central bank might
try to substitute its own forecasts in place of private expectations, which is indicated by
notation ÊCBt (.). Rule (11) yields stability of REE under learning only for sufficiently
small values of the adjustment parameter θ when the central bank can use private ex-
pectations; see (Evans and Honkapohja 2003c). Below we will consider the implications
of using internal central bank forecasts in the rule (11).

3 Econometric Learning

We now formulate econometric learning by agents in real time when agents use a standard
econometric procedure for estimating and updating the parameters of the PLM. In the
literature it is often assumed that agents use a version of recursive least squares (RLS).
Another possible procedure is to assume that some agents use stochastic gradient (SG)
estimation. We now introduce the structure of learning using an abstract formulation.
After this we indicate how RLS and SG algorithms fit this formulation.

3.1 The Mapping from Perceptions to Outcomes

A mapping from the perceptions of the economic agents to the resulting temporary
equilibrium of the economy has turned out to be a key relationship in the study of
convergence of adaptive learning dynamics. The form of this mapping in the structurally
heterogenous economy with heterogenous expectations is developed as follows.
The two types of agents are assume to have their own forecast functions, which

take the same parametric form. During the learning dynamics the agents have different
beliefs about the parameters they are estimating, and these beliefs are adjusted over
time. For given values of the parameters of the forecast function of each agent i, called
the perceived law of motion (PLM) of agent i, one computes the actual law of motion
(ALM) implied by the structure of the economy.
Define the vector of state variables zt = (1, wt)

0 and the matrix of parameters ϕ0i,t =
(ai,t, bi,t) with ai,t being an n dimensional vector and bi,t being an n × k matrix. The
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time subscript t indicates the parameter estimates of agent i at time t. Formally, we
assume that the two agents have PLMs

yt = ai,t + bi,twt = ϕ0i,tzt, i = 1, 2 (12)

with corresponding forecast functions Êityt+1 = ai,t + bi,tFwt, i = 1, 2. Note that the
PLMs have the same form as the MSV solution (4), but in general ai,t, bi,t are not at
their RE values. Inserting the forecasts into the model (1), one obtains the ALM

yt = [α+A1a1,t +A2a2,t, (A1b1,t +A2b2,t)F +B]

·
1
wt

¸
= T (ϕ01,t,ϕ

0
2,t)zt. (13)

We can usefully interpret the T−mapping using average expectations and the average
(or aggregate) economy. Defining the average PLM

aMt + b
M
t wt = (A

M)−1
2X
i=1

Ai(ai,t + bi,t)wt,

we have

ai,t → α+AMaMt , bi,t → AMbMt F +B, i = 1, 2,

which is the mapping from the PLM into the ALM in the average economy formulated
in (3). In other words, each parameter in the different PLMs is mapped into its ALM
value corresponding to the average PLM in the average economy.

3.2 The General Learning Algorithm

The second step is to describe how agents update the parameters ai,t and bi,t of the
PLMs. We will use a general formulation of the learning algorithms, of which RLS and
SG learning are special cases. The learning algorithm may involve further parameters
in addition to ai,t and bi,t of the PLM, so we define θi,t = (vec(ϕ

0
i,t),Φ

0
i,t), where Φi,t is a

column vector of the possible additional parameters. Agent i updates θi,t according to

θi,t = θi,t−1 + γi,tNi(θi,t−1, Xt), i = 1, 2, (14)

where Xt is a vector of relevant state variables in parameter updating.
Different initial beliefs can be accommodated by different initial conditions for the

dynamics. Heterogeneity in learning rules can be introduced through differences in the
updating functions Ni(.) and below we will specify Ni(.) either as RLS or SG type
algorithm. Another type of heterogeneity arises when the agents have different degrees
of responsiveness to the updating function as indicated by the gain sequences γi,t > 0.
We allow for γ1,t 6= γ2,t for the gain parameters of the learning rules and make the
following assumption:
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Assumption A: The gain sequences satisfy γi,t = γ̂i,tϑi,tξi,t, where γ̂i,t are determin-
istic and positive. ϑi,t is random and is assumed to be positive, bounded and iid over
time. ξi,t is an iid over time Bernoulli random variable equal to 0 with probability
ρi ∈ [0, 1) and equal to 1 with probability 1− ρi. ξi,t is independent of ϑi,t. In addition,
limt→∞E(γ̂i,tϑi,tξi,t/γt) = δi > 0, where the deterministic, decreasing and positive se-
quence γt satisfies:
(i) γ̂i,t ≤ Kiγt for some constant Ki > 0,
(ii)

P
γt =∞ and

P
γpt <∞ for some p ≥ 2, and

(iii) lim sup(1/γt+1 − 1/γt) <∞.
This condition allows for significant amounts of heterogeneity in the adaption speeds
of the different agents, including both inertia and random variation across agents as
specified by ξi,t and ϑi,t, respectively. γ̂i,t specifies how the mean of γi,t moves over time.
Heterogeneity in the formation of expectations is observed in experimental data,

see for instance (Marimon and Sunder 1993) and (Evans, Honkapohja, and Marimon
2001). A similar formulation of heterogeneity was suggested in (Evans, Honkapohja,
and Marimon 2001). Assumption A can allow various weighting schemes for data in
later periods relative to early ones, see e.g. (Ljung and Söderström 1983) and (Marcet
and Sargent 1989b) for further discussion. We remark that the conditions (i)—(iii) on γt
are commonly assumed in the literature.6

The formulation of parameter updating (14) by each agent is formally similar to
general adaptive algorithms that have been employed in the literature; see e.g. (Evans
and Honkapohja 2001). As we will see below, RLS and SG learning can be cast as special
cases of (14). An important feature of (14) is that it incorporates infinite memory, i.e.
more and more data is being used in parameter updating over time. Bounded memory
learning rules cannot be cast in this formulation; see (Grandmont 1998), (Honkapohja
and Mitra 2003b) and references cited therein for learning with bounded memory.
The analysis of learning proceeds by defining a stacked algorithm, which is a standard

recursive stochastic algorithm, and uses standard techniques for such systems; see e.g.
Chapters 6 and 7 of (Evans and Honkapohja 2001) for an exposition. Let θ0t = (θ

0
1,t, θ

0
2,t)

and write

θt = θt−1 + γtH(θt−1,Xt) + γ2tρt(θt−1,Xt), (15)

where

H(.) =

µ
N1(.)
N2(.)

¶
, ρt(.) =

Ã γ̂1,t−γt
γ2t

N1(.)
γ̂2,t−γt

γ2t
N2(.)

!
.

In our setting X 0
t = (1, w0t, w

0
t−1,ϑ1,tξ1,t,ϑ2,tξ2,t). The state variable Xt dynamics are

linear and can be written as

Xt = AXt−1 +BWt,

6We note that one can assume Ki ≤ 1 without loss of generality. If γt satisfies Assumption A for
Ki > 1, then one can construct another sequence γ̃t satisfying assumption A with Ki ≤ 1,∀i.
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where

A =


0 0 0 0 0
0 F 0 0 0
0 0 F 0 0
0 0 0 0 0
0 0 0 0 0

 , B =

1 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 1 0
0 0 0 0 1

 ,Wt =


1
vt
vt−1

ϑ1,tξ1,t
ϑ2,tξ2,t

 .
It is well known that conditions for convergence of θt to an equilibrium θ̄ are determined
by defining an associated ordinary differential equation (ODE)

dθ

dτ
= h(θ), where h(θ) = lim

t→∞
EH(θ,Xt). (16)

Learning converges to θ̄ if θ̄ is a locally stable fixed point of the associated ODE. See
(Evans and Honkapohja 2001) for formal details, including the appropriate notions of
stochastic convergence. Next we introduce the RLS or SG algorithms. The explicit
conditions for convergence in the different cases will be given in Sections 4 and 5.

3.3 The RLS Algorithm

If agent i uses a (generalized) RLS learning algorithm the explicit form of (14) can be
derived as follows. RLS algorithm has the form

ϕi,t = ϕi,t−1 + γi,tR
−1
i,t zt−1(yt−1 − ϕ0i,t−1zt−1)

0, (17)

Ri,t = Ri,t−1 + γi,t(zt−1z
0
t−1 −Ri,t−1), (18)

for i = 1, 2.7 In the system (17)-(18) Ri,t is the matrix of second moments of the state
vector, which are needed to write down the estimation of the PLM parameters ϕi,t, when
a version of least squares is employed. Since contemporaneous Ri,t appears in the right-
hand side of (17), it is necessary to making a timing change Si,t−1 = Ri,t, after which
the RLS algorithm is clearly a particular case of (14) with θ0i,t = (vec(ϕ

0
i,t), vec(Si,t)

0).
In the Appendix it is shown that the associated ODE (16) of the RLS algorithm

(17)-(18) is

dϕi/dτ = δiS
−1
i Mz(T (ϕ

0
1,ϕ

0
2)
0 − ϕi), (19)

dSi/dτ = δi(Mz − Si), i = 1, 2 (20)

where

limt→∞Ezt−1z0t−1 =Mz =

µ
1 0
0 Mw

¶
. (21)

From (20) it is evident that we have Si →Mz and so asymptotically (19) becomes

dϕi
dτ

= δi(T (ϕ
0
1,ϕ

0
2)
0 − ϕi), i = 1, 2. (22)

Stability conditions for (22) provide the conditions for convergence of RLS learning.

7In this formulation the parameter estimates are assumed to depend on data up to t−1, but current
observation on exogenous variables are allowed to be used in the forecasts. (This is typically done in
the learning literature.)

10



3.4 The SG Algorithm

An alternative statistical learning algorithm, known as stochastic gradient (SG) algo-
rithm, has occasionally been employed in the literature in place of RLS. (SG algorithm
is also called the least mean squares algorithm in the technical literature.) The SG
algorithm is computationally much simpler than the RLS algorithm; however, the latter
is more efficient from an econometric viewpoint since it uses information on the second
moments of the variables. For parameter estimation of fixed exogenous stochastic pro-
cesses, both the RLS and SG algorithms yield consistent estimates of parameters but the
RLS, in addition, possesses some optimality properties. For instance, if the underlying
shock process is iid normal, then the RLS estimator is minimum variance unbiased.8

Formally, agents of type i update the PLM parameters using a (generalized) stochas-
tic gradient (SG) algorithm

ϕi,t = ϕi,t−1 + γi,tzt−1(yt−1 − ϕ0i,t−1zt−1)
0, (23)

where the gain parameters γi,t satisfy Assumption A and Condition 1 above. The SG
algorithm is a particular case of (14) with θ0i,t = vec(ϕ

0
i,t), i.e. there are no additional

parameters Φi,t in the SG case.
It is shown in the Appendix that the associated ODE of (23) takes the form

dϕi/dτ = δiMz(T (ϕ
0
1,ϕ

0
2)
0 − ϕi) (24)

or

ϕ̇0i = δi[α+A1a1 +A2a2 − ai, {(A1b1 +A2b2)F +B − bi}Mw] (25)

for i = 1, 2 and whereMz is defined in (21). Stability conditions for (24) or (25) provide
the convergence conditions for SG learning.

4 Learning Under Transient Heterogeneity

In this section both types of agents are assumed to use the same general type of learning
rule, either the RLS or SG rule, for updating of PLM parameters. Learning can start
with different initial beliefs about the parameters but heterogeneity in the learning rules
is only transient in the sense that, asymptotically, the gain sequences converge at the
same rate:

Condition 1: (Asymptotically identical adaption speeds) δ1 = δ2.

The main result for this section can be stated as:

8See Section 3.5 of (Evans and Honkapohja 2001) and (Evans, Honkapohja, and Williams 2003) for
discussion and references on the SG algorithm.
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Result I: Neither structural heterogeneity nor transient RLS (or SG) learning hetero-
geneity affects the conditions for learning stability obtained from the model with structural
differences aggregated to AM and a single RLS (or SG) learning rule.

We remark that, with transient (or permanent) heterogeneity, the economy may be
stable even if individual behavior in some part of the economy is conducive to insta-
bility and the aggregate economy may be unstable under learning even if individual
characteristics satisfy the stability conditions.9

4.1 The RLS Case

To facilitate statement of results we introduce some terminology for the different cases
of the heterogenous learning that we study. We say that transiently heterogenous RLS
learning occurs when initial conditions of the different types of agents are different and
all agents use RLS learning rules (17)-(18) that satisfy Condition 1. In this case we have
the following result:

Proposition 2 Assume that Assumption A and Condition 1 hold in the structurally
heterogenous economy (1)-(2). Transiently heterogenous RLS learning converges (almost
surely) to the MSV REE from any initial conditions if and only if the matrices AM − In
and F 0⊗AM − Ink have eigenvalues with negative real parts, i.e. there is convergence in
the average economy.10

The important implication of this result is that when learning is only transiently het-
erogenous in the sense defined above, stability of equilibrium depends only on the ag-
gregate characteristics of the economy, i.e. matrix AM .
We note that the initial conditions θi,0, i = 1, 2 can take any value, except that for

the moment matrices initial conditions should naturally be non-negative semidefinite
matrices with positive diagonal elements.11 Naturally, the cases of heterogenous initial
beliefs with identical learning algorithms and of transiently heterogenous RLS learning
in structurally homogenous economy are covered by Proposition 2. We give the proof of
Proposition 2 in the Appendix.
Under transient heterogeneity stability of (22) is determined by the so-called E-

stability conditions for the MSV REE. We also note that under some (mild) regularity
conditions, the RLS algorithm will converge to an E-unstable symmetric (MSV) solution
with probability zero; see (Evans and Honkapohja 2001) for a discussion of E-stability
and instability.

9In fact, the latter possibility can arise even in a structurally homogenous economy, as shown by
(Giannitsarou 2003b).
10Throughout the paper we ignore the non-generic cases where one or more relevant eigenvalues has

a zero real part.
11While this theorem and many subsequent results are formally concerned with global convergence, it

should be borne in mind that in specific applications the model may be a linearization around a steady
state, and the study of learning is necessarily local in such settings.
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The relationship between stability or instability in the associated ODE and the con-
vergence or non-convergence of the algorithm also applies to other settings below and we
will in part conduct our discussion using the ODEs. Below we will only state stability and
convergence results, but it should be kept in mind that corresponding instability/non-
convergence results also exist.

4.2 The SG Case

Transiently heterogenous SG learning arises when all agents use SG algorithms but have
different initial beliefs and possibly transiently different gains (i.e. the gains satisfy
Condition 1). We have the result:

Proposition 3 Assume that Assumption A holds and consider the economy (1)-(2). If
the REE is a locally asymptotically stable fixed point of the average economy AM under
homogenous SG learning, then transiently heterogenous SG learning converges globally
(almost surely) to the MSV REE.

We remark that Proposition 3 resolves the open issue raised by (Giannitsarou 2003b)
in her Proposition 1(ii) and discussion after it, whether convergence of SG learning
with different initial perceptions (in a structurally homogenous economy) is implied by
stability of identical SG learning.
In general, convergence of SG learning is not dictated by E-stability conditions.12 We

emphasize that this phenomenon is not due to heterogeneity in expectations or economic
structure. It is instead associated with SG learning itself, see (Evans, Honkapohja, and
Williams 2003). In special cases E-stability suffices for convergence of SG learning. One
important case is:13

Corollary 4 Assume that Assumption A and Condition 1 hold. If the exogenous vari-
able is scalar (k = 1), then transiently heterogenous SG learning converges if the REE
is E-stable.

In the general case the measurements and specification of the exogenous variables in-
fluences the conditions for convergence of SG learning, as discussed in (Evans, Honkapo-
hja, and Williams 2003). In contrast, RLS learning is not subject to this “scaling prob-
lem”. Considering model (2), we introduce the Cholesky decomposition Mw = PP 0,
which exists for any positive definite matrix. P is triangular and nonsingular. Next, we
transform exogenous variables to

w̃t = P
−1wt.

12This possibility was first noted by (Barucci and Landi 1997). (Giannitsarou 2003a) provides an
economic example.
13Another case is the static model, in which expectations of only current endogenous variables appear;

see (Evans and Honkapohja 1998b). The Muth model is a classic example of the static model.

13



The PLMs become yt = ai+b̃iw̃t, where b̃i = biP and w̃t = F̃ w̃t−1+ẽt, where F̃ = P−1FP
and ẽt = P

−1et. Noting that limEw̃tw̃0t = Mw̃ = Ik, the associated ODE (24) becomes
just the E-stability equation (apart from the unimportant scalar δ) and thus E-stability
is sufficient for convergence of SG learning:

Remark 5 Assume that Assumption A and Condition 1 hold. If exogenous variables
wt are rescaled to w̃t = P−1wt, where Mw = PP 0, then transiently heterogenous SG
learning converges to the REE if and only if the REE is E-stable.

5 Persistent Heterogeneity in Learning

We now consider settings in which the agents are using different algorithms in their
updating schemes. One type of heterogeneity in learning arises when the different agents
are using different types of algorithms and we will specifically assume that agents use
either RLS or SG updating rules. Another milder type of heterogeneity arises when the
different agents are using the same type of algorithm but with asymptotically different
adaption speeds (i.e. Condition 1 does not hold).
The main conclusion of this section can summarized as:

Result II: Convergence of persistently heterogenous learning is no longer determined
by aggregate characteristics alone. The stability conditions are in general affected by
individual adaption speeds and the individual characteristics of the economy.

We no longer have the previous conclusion (Result I) that only the aggregate character-
istics matter for convergence of heterogenous learning. When heterogeneity in learning
is persistent, the stability conditions are affected by δ1 and δ2 and the structure of the
economy, that is the matrices A1, A2, F and Mw.

5.1 Mixed RLS/SG Learning

Persistently heterogenous learning automatically arises when the different agents use
different types of learning algorithms. The broad aim is to consider settings where one
class of agents is using a learning algorithm that is either more or less sophisticated
than the algorithm used by the other class of agents. Specifically, we assume that there
are two possible types of learning algorithms, the RLS and the stochastic gradient (SG)
algorithms that the agents might use.
We say that mixed RLS/SG learning takes place when initial conditions of the dif-

ferent types of agents are different, type 1 agents use RLS and type 2 agents use SG
learning rules. For agent 1 the algorithm is given by (17)-(18), while for agent 2 it is
given by (23). The gains γit are assumed to satisfy Assumption A. However, Condition
1 is not imposed, so that mean gains of the agents can differ asymptotically.
Stability is determined by the ODE

dϕ1/dτ = δ1(T (ϕ
0
1,ϕ

0
2)
0 − ϕ1),

dϕ2/dτ = δ2Mz(T (ϕ
0
1,ϕ

0
2)
0 − ϕ2),
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since (22) applies to agent 1 and (24) to agent 2. The system for ȧ1 and ȧ2 isµ
ȧ1
ȧ2

¶
= D1Ω

µ
a1
a2

¶
, where (26)

D1 ≡
µ

δ1In 0
0 δ2In

¶
,Ω =

µ
A1 − In A2
A1 A2 − In

¶
(27)

and where the inessential constant term has been dropped. The vectorized system for
ḃ1 and ḃ2 becomes (ignoring constant terms)µ

vecḃ1
vecḃ2

¶
= DwΩF

µ
vecb1
vecb2

¶
, where Dw =

µ
δ1Ink 0
0 δ2(Mw ⊗ In)

¶
(28)

ΩF =

µ
F 0 ⊗A1 − Ink F 0 ⊗A2
F 0 ⊗A1 F 0 ⊗A2 − Ink

¶
. (29)

We can then prove the following result:

Proposition 6 In the economy (1)-(2) mixed RLS/SG learning converges globally (al-
most surely) to the MSV solution if the matrices D1Ω and DwΩF have eigenvalues with
negative real parts.

The Proposition shows that in general stability under learning depends in a sub-
tle way on the interaction of structural heterogeneity of the economy and persistent
heterogeneity in learning. Further conditions on structural heterogeneity that achieve
convergence of learning are available, but they are restrictive.
We introduce the notions of D− and S−stability. A matrix K is said to be D-stable

if the matrix DK has all eigenvalues with negative real parts for any positive diagonal
matrix D. A matrix K is said to be S−stable if SK is stable for any positive definite
matrix S. See e.g. (Arrow and McManus 1958) and (Horn and Johnson 1991) for these
definitions. Since Mw is a positive definite matrix, we have:

Corollary 7 Consider the economy (1)-(2) with mixed RLS/SG learning. If Ω isD−stable
and ΩF is S−stable, then the learning dynamics converges globally to the MSV REE, for
all δi, i = 1, 2.

We remark that if F is diagonal D−stability of ΩF is clearly sufficient.
An important case not covered by Corollary 7 is that the economy may be stable

under learning even if the characteristics of one class of agents contribute to instability
(which violatesD− stability). On the other hand, if the weight of the agents contributing
to instability is sufficiently large, then instability of the economy can arise for some values
of δi. We will later see an economic example of this phenomenon.
A natural question concerns learning stability in a structurally homogenous economy

when there is persistent heterogeneity in learning. The answer is affirmative for scalar
economies, as discussed in the next section (see Corollary 9). We conjecture that the
result also holds for the multivariate economy, but we have not been successful in proving
it or finding a counter example.
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5.1.1 The Scalar Case

For the scalar model n = k = 1 further results are obtainable. One result is:

Corollary 8 Consider the scalar model n = k = 1 and assume that (i) the aggregate
economy is E-stable, i.e. AM < 1 and FAM < 1, and (ii) that the economies with only
type i = 1, 2 agents are also E-stable, i.e. Ai < 1 and FAi < 1 for i = 1, 2. Then mixed
RLS/SG learning converges globally to the MSV REE, for all δi, i = 1, 2.

Note that Corollary 8 requires more than E-stability of the aggregate economy since the
characteristics of each agent type must fulfill the E-stability requirements. Corollary
8 does not hold if there are more than two types of agents or for multivariate models
(counter examples are available on request).
Though Corollary 8 does not generalize to economies with more than two types of

agents, a further result can be obtained for scalar economies in which all parameters Ai
have the same sign.

Corollary 9 Consider the S agent scalar (i.e. n = k = 1) economy (5) and assume
that (i) the parameters Ai have the same sign, (ii)

PS
s=1As < 1,

PS
s=1 FAs < 1 and (iii)

Cs = 0,∀s.14 If the different agents use either RLS or SG learning rules, the economy
converges to the MSV REE.

A key difference between Corollaries 8 and 9 is that the former does not impose
the restrictions on signs of individual responses. The sign restriction (i) means that all
agents in the economy respond to forecasts qualitatively in the same manner. (ii) is
automatically satisfied if As < 0 for all s, but in the case As > 0 (ii) is a restriction on
the aggregate response (note that (ii) is formally one of the E-stability conditions for
the average economy). Example 1 is an economic model that illustrates the role of these
features.15

We also remark that Corollary 9 covers the case of a structurally homogenous scalar
economy, since then Ai = ζiA. This explains several examples of (Giannitsarou 2003b),
where E-stability is sufficient for heterogenous learning.

5.2 Persistently Heterogenous RLS Learning

Here we briefly consider another case of persistent heterogeneity in learning, which arises
when all agents use the same type of learning algorithm but the gain sequences differ
even asymptotically in the sense that δ1 6= δ2. For concreteness it is assumed that
all agents are using RLS type algorithms. We say that persistently heterogenous RLS
learning occurs when initial conditions of the different types of agents are different, the
agents use RLS learning rules and δ1 6= δ2.

14Assumption (iii) is made for simplicity.
15The role of a similar sign condition also emerges in the analysis of heterogenous adaptive expecta-

tions by (Negroni 2003).
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In this case the dynamics continues to be given by the system (17)-(18). Stability is
governed by the ODE (22) for i = 1, 2. The explicit form of (22) (without the constant
terms) for a1 and a2 continues to be (26), and for b1 and b2 we getµ

vecḃ1
vecḃ2

¶
= D2ΩF

µ
vecb1
vecb2

¶
, D2 ≡

µ
δ1Ink 0
0 δ2Ink

¶
, (30)

where ΩF is defined as in (29). The next remark provides the analogues of Proposition
6 as well as of Corollaries 7, 8 and 9:

Remark 10 (i) If the matrices D1Ω and D2ΩF have eigenvalues with negative real
parts then persistently heterogenous RLS learning converges globally (almost surely) to
the MSV REE.
(ii) A sufficient condition for convergence for all values of δi, i = 1, 2 is that the matrices
Ω and ΩF are D-stable.
(iii) Assume that the conditions stated in Corollary 8 hold. Then persistently heteroge-
nous RLS learning converges globally to the MSV equilibrium, for all δi, i = 1, 2.
(iv) Assume that the conditions stated in Corollary 9 hold. Then persistently heteroge-
nous RLS learning converges globally to the MSV equilibrium, for all δi, i = 1, ..., S.

We note that if δ1 = δ2 then the stability conditions obtained from (22) would be
identical to the E-stability conditions, which proves Proposition 2.

5.3 Extensions to S > 2 Classes of Agents

Here we note some extensions of the results to economies with more than two classes of
agents and to global convergence of learning. Consider the model (5) with S classes of
agents and contemporaneous expectations. The PLMs of the agents are as before; see
(12). The T−map is easily constructed to be

ai → (AM + CM)aM , bi → AMbMF + CMbM , (31)

where CM =
PS

s=1Cs. Considering the case of RLS/SG learning, the associated ODE
is

ȧi = δi

Ã
α+

SX
j=1

(Aj + Cj)aj − ai
!
, i = 1, ..., S

for the ai components and

ḃi = δi

"
SX
j=1

(AjbjF + Cjbj)− bi
#
Mw
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for the bi components of SG learners. Convergence requires that the matrices

D1Ω̄ ≡

 δ1In · · · 0
...

. . .
...

0 · · · δSIn


 A1 + C1 − In · · · AS + CS

...
. . .

...
A1 + C1 · · · AS + CS − In

 ,
QΩ̄F ≡

 Q1 · · · 0
...

. . .
...

0 · · · QS


 F 0 ⊗A1 + Ik ⊗ C1 − Ink · · · F 0 ⊗AS + Ik ⊗ CS

...
. . .

...
F 0 ⊗A1 + Ik ⊗ C1 · · · F 0 ⊗AS + Ik ⊗ CS − Ink


have eigenvalues with negative real parts, where Qs = δsInk or δs(Mw ⊗ In) if agent
s is using RLS or SG, respectively. Natural extensions of Proposition 6 as well as of
Corollary 7, and Corollary 9 and part (i), (ii) and (iv) of Remark 10 hold.

6 Economic Examples Continued

6.1 The Model of Speculative Demand

We now consider stability of the REE under learning in the model of speculative demand
and externalities; see Example 1. Stability can be checked by considering the matrices
Ω̄ and Ω̄F defined in Section 5.3. For this model As = rψ(1− η)−1κs and Cs = 0 for all
s, and the matrices are

Ω̄F =

 rψ(1− η)−1κ1 − 1 · · · rψ(1− η)−1κS
...

. . .
...

rψ(1− η)−1κ1 · · · rψ(1− η)−1κS − 1


and Ω̄ = Ω̄F with r = 1.
If there is no externality or if the positive externality is not very large, then η < 1

and it is easily verified that sgn(As) = sgn(r) for all s,
X

As < 1 and
X

rAs < 1, so

that conditions of Corollary 9 are satisfied. The MSV REE is stable under persistently
heterogenous learning. However, if the externality satisfies η > 1 the sign of ψ could

be negative or positive. If ψ < 0 and r > 0 it is possible that
X

As > 1. (A similar

situation can also arise when ψ > 0 and r < 0.)
X

As > 1 violates one of the E-stability

conditions and so cases of instability under learning can arise.16

We collect the observations:

Proposition 11 (A) If the aggregate externality η is non-positive or only weakly positive
(i.e. η < 1), the MSV solution to the model of speculative demand is stable under
transiently or persistently heterogenous learning.
(B) If the externality is sufficiently strongly positive, the MSV REE can become unstable
under learning.

16Alternatively, these results can be established from Corollary 7 by considering, respectively, suffi-
cient and necessary conditions for D−stability of matrices Ω̄ and Ω̄F .
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From the economic viewpoint, the key properties for result (A) are that, with weak
externality, the behavior of all individuals satisfy the sign restriction (i) and the aggre-
gate economy satisfies condition (ii) in Corollary 9. The case in part (B) verifies the
intuition of (Grandmont 1998), Remark 2.3 that a small amount of instability in individ-
ual behavior (possibly in just one type of individual) can make the aggregate economy
unstable.

6.2 Monetary Policy

Example 2 introduced a currently widely-used New Keynesian model of monetary policy
and the forecast-based interest rate rule suggested by (McCallum and Nelson 2000). This
model with internal central bank forecasting leads to a reduced form that is of type (5),
where S = 2 and the two agents are the private sector and the central bank. There is
necessarily structural heterogeneity.17

Introducing the notation z0t = (xt,πt) and w
0
t = (gt, ut), the reduced form is

zt = AP Ê
P
t zt+1 +ACBÊ

CB
t zt+1 + CCBÊ

CB
t zt +Bwt, where (32)

AP =

µ
1 φ
λ β + λφ

¶
, ACB =

µ −αφθλ−1 −φ(1 + θ)
−αφθ −φλ(1 + θ)

¶
CCB =

µ
αφθλ−1 0
αφθ 0

¶
, B =

µ
1 0
λ 1

¶
.

The first key observation about model (32) is that private agents’ learning contributes
to instability. This is evident from computing det(AP − I) < 0, which implies that any
policy of interest rates responding only to wt would lead to instability under learning;
see (Evans and Honkapohja 2003b). Thus, monetary policy has an important role to
play in this model: it must be designed to offset the tendency toward instability from
private agents’ learning.
If there is only transient heterogeneity in learning it is sufficient for policy to ensure

that we have stability in the aggregate economy AM = AP + ACB, C
M = CCB, as

indicated by the T−map (31). The forward-looking version of the (McCallum and Nelson
2000) approximate targeting rule can achieve stability of the economy under learning
when the central bank can observe private expectations and θ is set appropriately. (Evans
and Honkapohja 2003c) have shown that, depending on the model parameters β,λ and
φ as well as the policy weight α, there is a bound θU such that we have stability under
learning when θ < θU .
We now examine the sensitivity of this result to persistent heterogeneity in learning

when the central bank does not observe private expectations and instead uses its own
internal forecasts in the McCallum-Nelson rule (11). The results will depend on the
parameter values and we select a particular calibration for β,λ and φ suggested by
(Clarida, Gali, and Gertler 2000):

17The companion paper (Honkapohja and Mitra 2003c) studies the performance of other forecast-
based interest rate rules when the central bank uses internal forecasts.
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Calibration CGG: β = 0.99, ϕ = 1 and λ = 0.3.

We also set α = 0.1, µ = 0.35 and ρ = 0.35.
A new phenomenon for the McCallum Nelson rule emerges when learning by the

private sector and the central bank is persistently heterogenous. There can also exist
a lower bound θL such that θ < θL implies instability with heterogenous learning. We
compute the lower and upper bounds θL and θU in the case where the private sector and
the central bank both use RLS algorithms but with different asymptotic gain parameters
δP and δCB (the normalization δP = 1 is used without loss of generality). We consider
this case for brevity as the case of RLS/SG learning would be qualitatively similar.
Table 1 reports the critical values θL and θU for which θL ≤ θ ≤ θU is required to
achieve stability under learning.

Table 1: Critical values θU and θL

δCB 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

θU 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.4 11.1

θL 10.8 5.9 3.4 2 1.2 0.6 0.3 0 0 0 0

Two important conclusions emerge from Table 1. First, with low values of δCB a too
low value of θ will lead to instability. In fact, if δCB is very low, then instability always
obtains. This would happen when δCB = 0.1 (as we would then have θ

L > θU). Second,
the upper threshold value θU is relatively insensitive to variations in δCB, though it is seen
that higher values of δCB do imply a slightly lower value for θ

U . Further computations
(not given explicitly) show that even very high values of δCB imply positive values for
θU . These results verify the suggestion of the intuition of (Grandmont 1998), Remark
2.3 that heterogeneity in structure and in learning can lead to very different outcomes
relative to the cases where the properties of the aggregate economy determine stability
of the REE under learning.

7 Concluding Remarks

Most macroeconomic models are based on the assumption of structural homogeneity, i.e.
of the representative agent, and in the literature on learning this assumption is usually
extended to include the learning rules of the agents. In this paper we have considered
the significance of this assumption for stability of learning dynamics by studying the
implications of structural heterogeneity, which is captured by the differential effect of
the expectations of the different agents on the economy. Some central cases of structural
and expectational heterogeneity were analyzed.
We first showed that introducing heterogeneity in beliefs or only transiently in learn-

ing rules has no significant consequences, as the convergence conditions are the same
as in the corresponding model with homogenous expectations. This result was then
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reconsidered by analyzing the implications of heterogeneity in learning rules (and not
only forecasts).
In general, the stability conditions for learning are affected by this kind of hetero-

geneity, but this is not always the case. Some standard models, which have been found
to converge to REE under homogenous expectations and learning, continue to do so in
the presence of heterogenous expectations and learning rules. We illustrated this point
using a market model with speculative demand and there are other models such as the
Muth market and Cagan models that share this feature. The assumption of homogenous
expectations and learning rules is not always as restrictive as it may seem at first sight.
On the other hand, there are models for which heterogenous learning affects the

conditions for convergence. An important case is the basic forward-looking model of
monetary policy commonly used in the New Keynesian literature. We have considered
this model for two cases. In this paper we analyzed the properties of a forecast-based
interest rate rule proposed by McCallum and Nelson when internal central bank forecasts
are used. The companion paper (Honkapohja and Mitra 2003c) examines to what extent
heterogeneity can affect the desirability of different Taylor-type and optimal interest rate
rules advocated in the literature.
The analysis and the results in this paper are based on the assumption of symmet-

ric information, so that agents observe and make forecasts on the same set of “macro”
variables in the economy. This setting is natural in many models, but extensions to our
analysis are needed for many specific settings. For example, we have not considered the
learnability of non-MSV REE. Perhaps more importantly, we stress that adaptive learn-
ing in economies with asymmetric information or when different agents are concerned
with different local variables should be considered further as the existing literature is far
from comprehensive.

A Appendix: Proofs

Proof of Proposition 1: For the first equation the solution is evidently unique if and
only if I −AM is invertible. The second equation for b must be vectorized and we get

vecb = (F 0 ⊗AM)vecb+ vecB.

The determinant of this matrix is easily seen to be non-zero if and only if the matrix
I − F 0 ⊗AM is invertible. Q.E.D.

Derivation of the Associated ODEs in Sections 3.3 and 3.4: For notational
concreteness, we derive the associated ODE of the RLS algorithm for agent 1. (17)-
(18), with the timing change, define N1(.). Here yt−1 = T (ϕ01,t−1,ϕ

0
2,t−1)zt−1. The ϕ1

components of the function H(θt−1, Xt) are

Hϕ1(zt−1,ϕ1,t−1,ϕ2,t−1, S1,t−1) = S
−1
1,t−1zt−1z

0
t−1(T (ϕ

0
1,t−1,ϕ

0
2,t−1)

0 − ϕ1,t−1). (33)
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Regarding the second order in γt term in (15), we have

ρϕ1,t(θt−1,Xt) =
γ̂1,t − γt

γ2t
S−11,t−1zt−1(T (ϕ

0
1,t−1,ϕ

0
2,t−1)zt−1 − ϕ01,t−1zt−1)

0,

and the validity of the method requires that this be bounded in t. This is easily estab-
lished as by Assumption A (with Ki ≤ 1 without loss of generality) we have γ̂1,t/γt ≤ 1
⇒ γ̂1,t/γt ≤ 1 +Kγt for any K > 0 ⇒ γ̂1,t−γt

γ2t
≤ 1.

From (18) the S1 components of the function H(θt−1,Xt) are given by

HS1(zt, S1,t−1) ≡ ztz0t − S1,t−1 (34)

while the second order in γt term

ρS1,t(θt−1,Xt) = (
γ1,t+1 − γt

γ2t
)(ztz

0
t − S1,t−1)

is bounded in t again by Assumption A. Now

lim
t→∞

EHϕ1(zt−1,ϕ1,ϕ2, S1) = δ1S
−1
1 Mz(T (ϕ

0
1,ϕ

0
2)
0 − ϕ1).

where Mz is defined in (21). Similarly

lim
t→∞

EHS1(zt−1, S1) = δ1(Mz − S1).

For notational concreteness, we derive the associated ODE of the SG algorithm for
agent 2. We get from (23) the ϕ2 components of the function H(θt−1,Xt), which for
future use we denote by Hϕ2(t, zt−1,ϕ1,t−1,ϕ2,t−1). (Note that there is no component S2,t
under SG learning.) Thus

lim
t→∞

EHϕ2(zt−1,ϕ1,ϕ2) = δ2Mz(T (ϕ
0
1,ϕ

0
2)
0 − ϕ2).

Proof of Proposition 2: With δ1 = δ2 = δ the differential equations (22) have the
following explicit form: µ

ȧ1
ȧ2

¶
= δΩ

µ
a1
a2

¶
+

µ
α
α

¶
, (35)µ

vecḃ1
vecḃ2

¶
= δΩF

µ
vecb1
vecb2

¶
+

µ
vecB
vecB

¶
, (36)

where Ω is defined in (27) and ΩF in (29). The constant δ does not affect stability and
so these equations are locally stable at the equilibrium if and only if the eigenvalues of
the matrices on the right hand sides of (27) and (29) have negative real parts.
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The determinant for computing the eigenvalues of (27), |Ω−mI2n| ,may be simplified
as follows:

|Ω−mI2n| =
¯̄̄̄
A1 − In(1 +m) A2

A1 A2 − In(1 +m)
¯̄̄̄

=

¯̄̄̄ −In(1 +m) In(1 +m)
A1 A2 − In(1 +m)

¯̄̄̄
=

¯̄̄̄ −In(1 +m) 0
A1 A1 +A2 − In(1 +m)

¯̄̄̄
= (−(1 +m))n ¯̄AM − In(1 +m)¯̄ .

The computation shows that Ω has n eigenvalues equal to −1 and the remaining eigen-
values are those of AM − In. Hence, Ω has eigenvalues with negative real parts if and
only if AM − In has the same property.
Analogous computations show that ΩF has nk eigenvalues equal to −1 and the rest

are the eigenvalues of F 0 ⊗AM − Ink.

Proof of Proposition 3: Writing (25) explicitly when δi = δ, we haveµ
ȧ1
ȧ2

¶
= δ

µ
A1 − In A2
A1 A2 − In

¶µ
a1
a2

¶
for the ai subsystem. Apart from δ > 0 that does not affect stability, this is the same
as (35). Vectorizing and dropping the constant B, the bi subsystem isµ

vecḃ1
vecḃ2

¶
= δM

µ
F 0 ⊗A1 − Ink F 0 ⊗A2
F 0 ⊗A1 F 0 ⊗A2 − Ink

¶µ
vecb1
vecb2

¶
,

where

M =

µ
Mw ⊗ In 0

0 Mw ⊗ In
¶

and δ > 0 does not affect stability. The the characteristic equation of coefficient matrix
can be written as

0 =

¯̄̄̄
MwF ⊗A1 −Mw ⊗ In −mInk MwF ⊗A2

MwF ⊗A1 MwF ⊗A2 −Mw ⊗ In −mInk

¯̄̄̄
=

¯̄̄̄ −(Mw ⊗ In)−mInk 0
MwF ⊗A1 MwF ⊗AM −Mw ⊗ In −mInk

¯̄̄̄
.

The eigenvalues of the coefficient matrix thus solve

|−(Mw ⊗ In)−mInk| = 0¯̄
MwF ⊗AM −Mw ⊗ In −mInk

¯̄
= 0
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The eigenvalues of −(Mw⊗ In) are negative asMw is positive definite. For the latter we
can write ¯̄

(Mw ⊗ In)(F ⊗AM − In)−mInk
¯̄
= 0,

which is just the convergence condition for SG learning in the average economy. Q.E.D.

Proof of Corollary 4: The result follows for considering the bi component in (25).
Since bi is now n× 1 and F and Mw are scalars we can write this component asµ

ḃ1
ḃ2

¶
= δMw

·
F

µ
A1 A2
A1 A2

¶µ
b1
b2

¶
−
µ
b1
b2

¶¸
.

Here δMw > 0 is a scalar that does not affect stability while computation of the eigenval-
ues for the system inside the square brackets is a special case of the same computation
for (29). Q.E.D.

Proof of Proposition 6 and (i) of Remark 10: Since the ODE for S1 is globally
stable with S1 → Mz from any starting point, stability is determined entirely by the
smaller dimensional system

dϕ1/dτ = δ1(T (ϕ
0
1,ϕ

0
2)
0 − ϕ1),

dϕ2/dτ = δ2Mz(T (ϕ
0
1,ϕ

0
2)
0 − ϕ2).

The explicit form of this ODE is given in the main text in equations (26) and (28). To
prove that convergence is in fact global and takes place almost surely, we first note that
the associated ODE is linear and globally stable. Second, it is easy to verify that the
conditions of Theorem 6.10 in (Evans and Honkapohja 2001) or Theorem 2 in (Evans
and Honkapohja 1998a) are satisfied, so that almost sure global convergence obtains.
To prove (i) of Remark 10, one proceeds as in the proof of Proposition 6, but for

both agents the details are as for agent 1 in the earlier proof. Q.E.D.

Proofs of Corollary 8 and Part (iii) of Remark 10: We only consider the former
for brevity (setting Mw = 1 proves the latter). Computing the trace and determinant of
the matrix of D2ΩF in (28) in the scalar case yields

tr(D1A) = δ1(FA1 − 1) + δ2Mw(FA2 − 1) < 0
det(D1A) = δ1δ2Mw(1− F (A1 +A2)) > 0

under the made hypotheses. For D1Ω in the scalar case we have the same formulas but
where F = 1. Q.E.D.

Proof of Corollary 9 and Part (iv) of Remark 10: Consider the subsystem for
ai and thus the matrix Ω in the S agent case. Let

I − Ω =


1−A1 −A2 · · · −AS
−A1 1−A2 · · · −AS
...

...
. . .

...
−A1 −A2 · · · 1−AS

 , (37)
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where the different Ai have the same sign. We assume that 1−
PS

i=1Ai > 0.
18

To compute det(I −Ω) add all other columns to the first column and then subtract
the first row from all other rows. This yields the determinant

det(I − Ω) =

¯̄̄̄
¯̄̄̄
¯
1−PS

i=1Aj −A2 · · · −AS
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

¯̄̄̄
¯̄̄̄
¯ = 1−

SX
i=1

Aj > 0

Consider first any principal minor of I −Ω and denote it by M̂ . All rows of M̂ have
an element of the form 1−Aj then M̂ has the same general form as I −Ω, except that

M̂ has some arbitrary collection of columns J = {j1, ..., jK}. In this case

det(M̂) = ±
Ã
1−

X
i∈J
Ai

!
, (38)

since a permutation of rows may be needed to get it in the form where the elements of
type 1−Aj are on the main diagonal.
Next, choose any minor of I −Ω and denote it by M . Note that each row of M has

at most one element of the form 1−Aj and all other elements are of the form −Aj.
We want to compute the value of det(M). First, we note that if M has two or more

rows without an element of the the form 1−Aj then it has two identical rows and then
det(M) = 0. Second, we note that if all rows of M have an element of the form 1−Aj
then we are in the same case as with the principal minors, which was discussed above.
The remaining case is that M has exactly one row without an element of the form

1− Ai. Note that for different rows these elements are in different columns. Note also
that each column has at most one element of the form 1− Aj and there is exactly one
column with element of the form 1 − Aj. We permute the rows and columns so that
the row without the element of form 1−Aj becomes the first row and so that the other
rows have the elements 1− aj in a symmetric order:

det(M) = ±

¯̄̄̄
¯̄̄̄
¯
−Aj1 −Aj2 · · · −AjK
−Aj1 1−Aj2 · · · −AjK
· · · · · · . . .

...
−Aj1 −Aj2 · · · 1−AjK

¯̄̄̄
¯̄̄̄
¯ . (39)

Then subtract the first row from all other rows, which yields

det(M) = ±

¯̄̄̄
¯̄̄̄
¯
−Aj1 −Ajs · · · −AjK
0 1 · · · 0

· · · · · · . . .
...

0 0 · · · 1

¯̄̄̄
¯̄̄̄
¯ .

18We write the matrices in this way since we will prove ”positive stability”, as is often done in the
mathematics literature; see e.g. Chapter 2 of (Horn and Johnson 1991).
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which we expand along the first column and obtain det(M) = ±Aj.
In the final step we need to consider a minor M(α, β), where α = {j1, ..., jK} are

the selected rows and β = {i1, ..., iK} are the selected columns, and the corresponding
minor M(β,α). We make the following observations:

1. If M(α,β) has two rows with element of the form 1 − As then M(β,α) also has
two columns without this type of element and both minors are zero.

2. If all rows of M(α, β) have an element of type 1−As then all columns of M(β,α)
have an element of that type. Moreover, when we do the permutations on rows that
make M(α,β) into form (37), the same permutations on the columns of M(β,α)
and taking the transpose will also lead to the form (37) but in general with different
elements −aj. Hence

det(M(α, β)) = ±(1−
X
i∈β
Ai) and

det(M(β,α)) = ±(1−
X
i∈α
Ai),

where the plus or minus signs apply at the same time. It follows that

det(M(α, β)) det(M(β,α)) ≥ 0. (40)

3. If M(α, β) has exactly one row without element of type 1−Ai, the minor M(β,α)
has one column with that type of element. We do the required row permutations
to get M(α, β) into form (39) and the same number of column permutations and
a transposition on M(β,α) will lead to form (39) and so

det(M(α,β)) = ±Aj and
det(M(β,α)) = ±As,

where the plus or minus signs apply at the same time. Again it follows that
inequality (40) holds.

In all cases we see that the product of the symmetric minors of I−Ω is non-negative.
We can then apply the criterion in (Carlson 1974) or criterion (10) in (Johnson 1974)
and conclude that I − Ω is positively D−stable, i.e. Ω− I is D−stable.
The proof is complete once the following observations are made. First, because of

D−stability a natural generalization of Corollary 7 can be exploited as in the scalar case.
Second, the same argument can be used for subsystem for bi with ΩF where |F | < 1 is
a scalar. Q.E.D.
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