
SOME PEOPEBTIES OF HATISEORPF MEASURE THEORY

ANNE BECKET (nee TENNYSON)



ProQuest Number: 10098100

All rights reserved

INFO RM ATIO N TO ALL U SER S  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10098100

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ©  ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



SUMM/lRY

CHAPTER I
The definition of all the measure functions used in 

the thesis.
GHAPTBR II

The condition for a measure function to he a Hausdorff 
diametral dimension function in p-dimensional real Euclidean 
space is first established. Then the fact that an anslytical 
set of infinite Hausdorff diametral measure is then proved 
and the necessary and sufficient conditions for a subset of a 
set with Hausdorff diametral dimension function h(x) to have 
dimension function g(x) are established. 
ch a p t e r  III

Conditions on the dimension function of the cartesian 
product of two one-dimensional sets whose dimension functions 
are known, are established.
CHAPTER IV

The proof of the existence of a plane set S with Hausdorff
2rxdiametral dimension function x oc= lpfe_2_ , such that if S

log 3
is translated through any distance in the plane then the 
intersection of S with itself -translated has zero Hausdorff

prydiametral measure with dimension function x
CHc-PTkn. V

The two area measures are considered in two dimensional 
real Euclidean space only. The necessary and sufficient 
condition for a measure function to be a non-metric-area



dimension function is established and the metric area measure 
of sets which are the cartesian products of intervals with 
linear sets is found. These a re used to deduce that non- 
metric-area measure is in fact non-metric. The condition for 

to be a metric area measure is also established.
CHAPTER VI

This deals with sets on the frontier of the unit circle. 
First the connection between the area measures and the 
generalized affine length is established. Then the triangle 
of minimum area covering a given total arc length is found 
and finally the necessary and sufficient condition for a 
#aasure function to be a Hausdorff diametral dimension function 
for such sets is found.



CHAPTER I

SECTION 1,1.

NOTATION
The following is the general scheme of notation used 

throughout the thesis:
The letter 8 represents a set and the small letter s 

represents a point belonging to S.
Other letters used to represent sets are P, G, E, D 

and H.
J.is used to represent a cube and represents a 

class of cubes J.
V is used to represent an open set and V  represents 

a sequence of sets V.

The following letters are used to denote coverings of 
a given set:
1( denotes a covering of convex sets U.
3 denotes a covering of p-dimensional intervals I.
(R, denotes a covering of rectangles R.
(p denotes a covering of parallelograms P.
T denotes a covering of tangent triangles T (this is

limited to sets on the frontier of a circle : a tangent 
triangle is one consisting of two tangents and the line 
joining $heir points of contact).

The diameter of a set U is denoted by d(U) and the area 
of the greatest triangle that can be taken with vertices 
in U is denoted by A(U). Then
^ 5 denotes the class of all coverings bC consisting of 
convex sets U with d(u)< Ô for all Ue U .
6 g denotes the class of all coverings 1C consisting of 
convex sets U with A(U)< ô for all Ue 1C.

All other notations are given in the following sections 
or explained in the theorem in which they occur.
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SECTIQN I, 2.

DEFINITION - MEASURE FUNCTION
A function h(x) is said to Ue a measure function if 

it has the following properties:
(a) h(x) > 0 for all x> 0.
(h) h(x)->• 0+ as x->0+.
(c) h(x) increases as x increases.

SECTION I, 5 .

DEFINITION - HAUSDORFF DIAMETRAL MEASURE of a set S with 
measure function h(x).

Let Ô he any positive number. Let A ^ be the class of 
all coverings 1C of the set S, 1C consisting of convex sets 
U with d(U)< Ô for all Ue 1C. Then the Hausdorff diametral 
measure of S with measure function h(x) is defined as

lim inf 2 h(d(U)).
Ô -K) UeA. Ug U  o

This will be denoted by m(S,h). The function inf 2 h(d(U))
ICE A. UelC

will be denoted by m^(S,h).

SECTION I. U.
DEFINITION - DIMENSION FUNCTIONS

A function h(x) is said to be a dimension function 
if there exists a set S having finite non-zero Hausdorff 
diametral measure with measure function h(x).

A set S is said to have dimension function h(x) if
0 < m(S,h) < eo
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SECTION I, 5

DEFINITION - METRIC AREA MEASURE of a set S with measure 
function h(x).

Let Ô he any positite number and let A ̂  he the class 
of all coverings 1C of the set S, 1C consisting of convex 
sets U with d(u) < ô for all Ue 1C. Then the metric area 
measure of the s et S with measure function h(x) is defined as

lim inf 2 h(A(U))
Ô -K) Ue Ue 1C

This will he denoted hy A(S,h). The function inf 2 h( A(U) )
lCeA_ Ue 1CÔ

will he denoted hy A^(S,h).
A measure function h(x) is said to he a M.A. dimension 

function if there exists a set S such that
0 < A(8,h)< oo

SECTION I, 6 .
DEFINITION - NON-METRIC AREA MEASURE of a set S with measure 
function h(x).

Let Ô he any positive number and let 8^ be the class 
of all coverings 1C of the set S, 1C consisting of convex 
sets U with A(U)< ô for all Ue 1C. Then the non-mètric area 
measure of the set S with measure function h(x) is defined as

lim inf 2 h(A(U))
6-»0 UeÊ^ Ue 1C

This will be denoted by B(S,h). The function inf 2 h(A(U))
ICE 6^ Ue 1C

will be denoted by B^(S,h).
A measure function h(x) is said to be a N.M.A. dimension 

function if there exists a set S such that
0 < B(8,h) < eo



-u-
SECTIQN I, 7 .
DEFINITION - AFFINE LENGTH and the GENERALIZED AFFINE LENGTH 
of a set S on the frontier of the unit circle.

Let Ô he any positive number and OL^ be the class of all 
coverings r of the set S, r consisting of tangent triangles T 
with d(T)< Ô for all Te r. Then the affine length of the 
set S is defined as

lim inf 2 A
0->0 re Te r

The generalized affine length of the set S with measure 
function h(x) is defined as

lim inf 2 h(A(T))
0->0 re 0^ Ter

This is denoted by F(S,h).

SECTION I, 8 .

DEFINITION - UPPER and LO'AER DENSITIES of a set S with 
respect to Hausdorff diametral measure with measure function 
h(x).

Let C(a,r) be an open sphere centre the point a and 
radius r. Then the upper h-density at the point a e S is 
defined as

lim sup m(8.C(a,r),h)
(T->0 (r>OV h(2r j

The lower h-density at the point ae S is defined as
lim inf m(S.C(a,r),h)

(r>§) h(2r)
The upper h-density is denoted by D(a,h) and the lower 

h-density at the point a is denoted by D(a,h)
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CHAPTER II

SECTION II, 1 .
THEOREM
In p-dimensional real Euclidean space the necessary and 
sufficient condition for a measure function h(x) to he a 
dimension function is that

lim inf h(x) ̂  q
X-.0

Necessity
Assume that lim inf h(x) = 0 and let S he any

X-.0 ^p
hounded set in the p-dimensional space. Then S can he 
completely contained in a p-dimensional cube of p-dimensional 
volume V. Let he the class of all coverings tC of the
set S, 1C being a class of convex sets U with d(u) ̂  x.

Then since a cube of volume v can be covered by at most 
1 /p P

(Y . ) cubes of diameter x it f ollows that
1/p

inf 2 h(d(U)) < inf(^ Vp+1)^h(x)
ICE Ue 1C ^

i . e .  a s  x - 0 .

and hence m(S,h)= 0. Since this is true for any bounded
set S it is true for any set S.

Sufficiency
(i) Let lim inf h(x) = a 0 < a< oo

x - O  ^ p

Let J be a p-dimensional cube of volume v. Then by the 
same argument as above

m(J,h)< (Vp)^va.
Given e > 0 there exists ô such that

> a-e for all x< ôx-̂



- 6 -

Let 1  ̂be a covering of the cube J consisting of convex sets U 
with d(U) < Ô.
Then 2 h(d(U)) > (a-e) 2 [d(U)]P

Ue LC Ue LC
^ v(a- G )

This holds for all such coverings 1^ and hence
m^(j,h) ^ v(a- e)

1 .e in(j,h) > v(a- e )
This is true for all e > 0 and thus

in(j,h) ^ va.

'.jj

(ii) Let lim inf h(x)
x->0 (O

This implies that there exist arbitrarily small positive 
numbers x such that

h[xl ^ 5 Hr̂-P bill
Xp

< 2 inf 
0 <t ̂  X -P (2)

Since if (2) does not hold there exists a sequence of positive
numbers tp, tj 0 as n->oo and such that

h( t_n.) h( tn^i )
fP tP

which contradicts (1).
A special sequence of numbers x^ is nov/ constructed in 

the following way: Let 1A^ 1 be any positive sequence of 
numbers such that ^ 2 for all n and 2 1/Ap is convergent.

iiny positive number satisfying (2), is chosen to be Xq , 
and Xn is then chosen so that

(a) (2) holds for all x= x̂  , n=1,2,...
(b ) h(xn ) = Cp h( Xn ) > Ap, .
(c) 2CnXn < ^n-i 

These three conditions can be satisfied simultaneously since 
h ( x ) 0 as x-^ 0+, and (2) holds for arbitrarily small x. 
Clearly x^ 0 as n-» @o.
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Denote the integral part of Cn hy Kp and define y^ hy 

the relation
Xn-j. = KnXn + (Kn - 1 )yn ,

for every n.
A set S is now constructed as follows: Sq is the set 

of points of a p-dimensional cube side Xg/Vp and diameter Xg • 
On each side of Sg construct - 1 ) open intervals of length 
y±/V^p alternating with closed intervals length x±/Vp.
From these intervals a network of kJ cubes sides x^/Vp,
(KjL - 1 cubes sides y^/Vp and cuboids of sides x^/Vp and 
y±/'^P is constructed. All but the cubes sides Xj^/Vp 
are deleted from Sg and the remaining set is denoted by • 
The construction is then repeated in each of the cubes of 
SjL , replacing Xg by x^, x^ by Xg, by Kg and y^ by y g 
obtaining K^Kg cubes of side length Xg/Vp. This set is 
denoted by Sg . The process is repeated to form the set Sg 
and so on.
The set S is now defined asoo

S = n Snn= o
(a) T o show that m(S,h) < ®o

Given any number p> 0 there exists m such that x^< p,
since x^-> 0 as n~>®o . For any n > m Sp is a covering of 8
consisting of cubes with diameter Xp < p.
Hence m (S,h) = inf 2 h(d(u))

p l u  Ue ic '

< K^kI......... k P h(xn)

< ........ K k i  h(xn_J
< h(xo)

from condition (b) noting that Kp < Cp .
Thus m^(S,h) < h(xg) for all p > 0 and

m(S,h) < h(xg-) < ®o.
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(b) To show that in(S,h) > 0 .

K ? K f h ( x n )  > (0^ -  1 )^ (Cg -  1 ) - ..........(Cn -  1 h ( x j

=  ( C i - 1 )5 ( C 2 - 1 )ï’...... ( G n  - i P  h ( x n _ .  )

= n ^ V l h ^ h ( x o )
y=jL CV

n
= [ ii (1 - i/c„)]P h(xo)

V=1 ^

1 /Since Cp> Ap and 2 ' Ap was a convergent series the infinite
oo

product ny=1 is also convergent. Thus for any set
S,'n 2 h(xn) > /Si(x̂ )

Si'n
where /3 is a constant.

It will now he established that Sp is a sufficiently 
good covering of S, i.e. given any p> 0

inf 2 h(xp) < y[inf 2 h(d(U))]
Sp U g UgIL

using the same notation as before, y being a constant.
Let bL be a class of open convex sets U covering S.

Every U g 1C can be contained in a cube of side d(U) which can
be orientated so that it lies parallel to Sg. This cube in 
turn can be covered by at most ([Vp]+ 1 cubes each of
diameter d(U), where [Vp] denotes the integral part of Vp.
The latter will be denoted by L and the class of all cubes L 
corresponding to the sets U belonging to LC will be denoted 
b y  ^  .

Then 2 h(d(L)) < ( [ Vp]+ 1 )® S h(d(U))
Le /  UeLC

Any L that does not contain a point o^ 8 is omitted 
from the sum and the remaining cubes shrunlc so that at least 
one pair of faces contain points of S. Denote the cubes thus 
obtained by I and the class of all these cubes by tl .
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Then 2 h(d(L)) ^ 2 h(d(l))
Lg cL I g *1

Denote the cubes which form the set Sp by Sp and consider 
any one cube I, There exists an m such that s^-i D I whilst 
I is not contained in any one cube s^. Let I have points in 
common with r > 1 cubes s^. Then -i ̂  d(l) and by (2)

h(d(D) > h(Xm_. ) (3)

Lemma
(a) If I c Sm_i and meets t^ (t > 2) or more cubes ŝ  then d(l) 
> (t-1)ym•
(;3) If Ic Sm_i and meets r cubes s^ when 1 < r < 2^ then 
d(l)> y„.
Proof.

If I meets t^ cpbes ŝ  any line contained in I parallel
to one of the sides of Sg which meets one cube s^ meets t
such cubes; for if it meets only (t-l), [(t-l)xm+ ty^ ] > side
length of I, and no other line parallel to a side can meet
t cubes Sm. But this implies that I does not meet t^ cubes
8m which contradicts the initial assumption. A hyperplane
perpendicular to such a line and meeting one cube s^ meets
t^^  ̂̂  such cubes and is cut in a (p-1 ) dimensional cube by I.
Assume (a) is true in (p-1) dimensions. Then

Vu-1 d(l) ^ (t-1) Vu-1 Vm
Vp Vp

in the hyperplane and hence
d(l) > (t-1)ym.

The result is obvious in 1-dimension since 
d(l) » (t-2)%m + (t-1)ym 

and by induction the result is true in p-dimensions.
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If I meets 2 cubes ŝ  then d (I) ̂  because the minnunuin 

distance between 2 cubes ŝ  is ym/Vp in a direction parallel 
to the sides of Sg, and the side length of I, d(l)/'Vp satisfies

a m  ^
Vp */p

This gives the second part of the lemma.

To show tiiat if I meets r cubes ŝ  where t^, t ̂  2
then

A n  > (t-1;
Xm-I 2K„,_1 

In constructing S the relation
Xm-i= KmXm + (^m- 1)ym (4 )

was used. By the inequality (c) on page 6 and the fact that 
Kfn is the integral part of (4) becomes 

2KmXm < + (K„ - 1 )ym
and < Ym

Substituting for in (1+) we get
(2Km - 1)ym > Xm_i

and combining this with the inequality of the lemma gives 
a(i) - (t-1 ) t > 2 (5)
Xm—1 2K„|—1

Let the cube I meet r cubes s^ •
(i) t^ ̂  r<(t+l)^ , t^2.
Then rh(xm ) < (t+l)®h(x„,)

< (^)Bh(:y-i)

(from the equation (b) on page 6 and the fact that < 0^ )

(from the inequality (3))
< 2[(si«L=nit±ii]5 h(d(D)

Km (t-1)
(from the inequality (5))

< 2.6^ h(d(l)) (7)
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( ii) 1 < r < 2^
It has been established that

Xm-i < (2Km" 1 )Ym
and from {(3) in the lemma d(l) ̂
Thus in this case. d(l) . 1 /^\

5C i  > 2EI::T

and rh(Xm) < _r_ h(xm_i )
Kfflï’

(as in (i))

< 2 ^  E  h(d(D)

< 2r /2Km- 1 E  h(d(l))
 ̂ Km ^

(from the inequality (6))
< 2 . U ^  h ( d ( l ) )  < 2 . 6 ^  h ( d ( l ) )  (7)

If r = 1 d(l)< Xfj, since the cubes I were chosen so that 
at least one pair of faces contained points of S. In this 
case I is contained in one cube s^j^and the procedure is 
repeated using x̂  instead of x ^ a n d  considering the cubes 
Sfn+i contained in s^.

To each cube I there corresponds a number m such that 
one of the cubes s^-i => I and I has points in common with r > 1 
cubes Sff,, and if I is replaced by these r cubes the inequality 
(7) holds. Let n= max (m corresponding to led ). By (b) on 
page 6 and the fact that Kp < Cp and inequality (7)

r(KP...KLi)h (xn) < 2.6Ph(d(D)
Thus if each cube I e d is replaced by the cubes Sp with which
it has points in common with all the cubes Sp e Sp will be used
at least once and hence

2 h(xn) < 2 . 6 ^  2 h(d(l))
Sn
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Por any covering 1L of the set S consisting of sets U 

the corresponding class j satisfies the relation

m  ..........................
s h(d(u)),» 1, A  ^ h(d(D)
bic  ̂[Vp]+i  ̂ led

for some value of n,
> y h (% o  )

where y is a constant.
Since this holds for all coverings U e

m^(S,h) ^ yh(xo) for all p> 0
and hence m(S,h) > 0 *

It has now been established that if h(x) is any measure 
function satisfying

lim inf h(x) p,
X -.0

there exists a set S having finite non-zero Hausdorff diametral 
measure w ith this measure function, i.e. h(x) is a dimension 
fune ti on.

SECTiqiN II.2 .
THEORBM I
In p-dimensional real Euclidean space a closed set of infinite 
Hausdorff diametral measure has a subset of finite non-zero 
Hausdorff diametral measure.
Proof Let S be the given set. Take i-^ctangular cartesian 
axes and over the whole space construct a network of closed 
cubes Jp each of side length 2”'̂ and lying parallel to the 
axes, no two cubes having c ommon interior points. Denote by 
^p any class of such cubes which covers S and consists of cubes 

v^n, and let Ap be the class of all such covdrings ^ p .
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Define Lp(S,h) = inf 2 h(d(Jy))
[jnEAp

and L(S,h) = lim Lp(S,h)
n->oo

(1 ) If p > (Vp)pn
then m^(S,h) < Lp(S,h)
and hence m(S,h) < L(S,h)
(2) Given any p> 0 let LChe an arbitrary covering of 
convex sets U of the set S with d(U) < p. Consider any UeLC 
Then there exists an n such that

_l-_  ̂ ÏLU)
2 ^ - 1  ^ Vp  ^ 2^

As in Section 11,1 any convex set U can be replaced by at most
(LVp]+l)^ cubes I of diameter d(U) and if ^ is the class of 
all cubes I which cover S

2 h(d(l)) < ([Vp]+1)® 2 h(d(U)) (a)
le^ UeLC

the cubes I being parallel to the axes. Consider the interbals 
cut by a cub 
of the axes.
cut by a cube I and the cubes on a line parallel to one

Since _J  d(l) j_
2 n - i  > ^ 2 "

the interval cut hy I v/hich is of length d(l)/Vp has points
in common with at most three of the intervals cut by the cubes
Jp, and hence I has points in common with at most 3^ cubes Jp.
Since h(x) is a measure function it is monotonically increasing
and

3® h(d(l)) > 3^ h(Vp/2") (h)
Let m be the integer such that 1 . p  ̂ 12fn-i > Vp ̂  2"i

(b) holds for all cubes le ^ and hence there exists a covering 
^ m of 8 such that if d is replaced by this ̂  ̂  then
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3® 2 Ji(d(l)) > 2 h(Vp/2")
led Jnsgm

> Lm(S,h)
This holds for all coverings S and thus combining this 

result with (a) gives
[3([Vp]+l)]^ nip(S,h) > ]^(S,h)

(3) LHlMIvlA I
If Sp is the intersection of S v/ith a cube Jp and 

i'n+iCSnjh) > h(Vp/2*^)^ 
there exists a subset Sp of Sp such that 

Ln+i(8A,h) = h(Vp/2")

Proof
Divide the cube Jp into a network of closed cubes 

o±j (j = 1 . . . )  which are parallel to the axes and such that 
if sg j denotes the part of Sp contained in e^j then

^ n + i ( s g j , h )  < h ( V p / 2 ^ )

for all j.
7-1Since U sg j D Sp 
j=1

2 Lp^^(sgj,h) ^ L'p^j_(Sp,h)

> h ( V p / 2 '̂ )

and there exists an integer m̂  ̂ such that 
m^ —1
2 Ln+i(s5j,h) < h(Vp/2")

and ®l-l Ln+i (sgj,h) ^ h(Vp/2n)
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Consider this cube and as before cover it with a
network of Xg cubes e^ j . Then there exists an integer nig
1 ^ nig < Xg such that
niĵ -1 nig-1

2 ^(sîj,h) + 2 Ln+i(sgj,h) < h(Vp/2")
3=1 3=1

and
niĵ-l nig

2 Ln+i(sîj,h) + 2 Ln+i(sgj,h) h(Vp/2")
3=1 3=1

Repeat this process using eg^^ and so on to obtain a
decreasing sequence of cubes. Let E denote the set
nijL-l nig-1
U e^j + U egj + ..........  U etj +........

j=1 3=1 3=1 ^
+ ^  Gim ,:i=1 ^

then Lp+j_(Sp^E,h) = h(Vp/2'^)
E is a closed set since the limit point of any sequence 

of points belonging to E will either belong to one of the sets 
m^-1
U etj since all these sets are adjoining or will be the

3=1 oo
point a eim. 

i=1

Thus Sn a'E is the required subset Sn .

(4 ) If Ln+i(Sn,h) < h(Vp/2")

Kn+i (8n ji'-) = 4n(8n»H)

On the other hand if
Ln^i(Sn,h) > h(Vp/2n)

then from the lemma there exists a subset Sn of Sn such that
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Ln+i(S',h) = h(Vp/2U
and also

Lp(8;,,h) = h(Vp/2n)

PROOF OF THE THEOREM I
Itis sufficient to prove that S has a subset of finite 

Hausdorff diametral measure greater than a given number b.
Since m(S,h) = oo it follows from paragraph (1) that 

L(S,h) = oo, and given b> 0 there exists an integer m such 
that

Lm(S,h) > (3Kv^p]+1 i)®b.
Write S=S^. Define a subset of 8"̂ in the following

way. In every cube in which 4n4-i (^m fh) ^ h(Vp/2"̂ )
= SS, and in those cubes in which 1 +̂̂  ̂(S^ ̂ h) > h(Vp/2'^) 
is the subset such that (S^ ,h) = h(Vp/2'^ ).

By paragraph (4 )
L^+i(S"^+Sh) = LjS^+Sh)

=  4 n ( 8 % h )

A subset 8*̂ +2 of is defined in the same way as 8“̂+^
was defined from 8 %̂ and so on. A decreasing sequence 8  ̂is
thus obtained taking n = m + 1, m+2, ... such that for any n> m

Ln(S",h) = Ln_i(S%h) =------

= Im,(S%h) = Lml8%h)
Write lim 8"̂ = R. R is a closed subset of 8. Given any 

?7 > 0 there exists an n@ such that for any n> n^ any point
of 8*̂ is within rj of R. Let 1C(R) be any finite open
covering of R such that for any Ue bC(R) d(U) < p.
As bC(R) D R, "4C(r) contains all the points that are within
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a certain 77 > 0 from R and consequently all S'^for n greater 
than a certain n© . Thus ll^R) is also a covering of 8"̂ .
Hence

2 h(d(U)) > mp(sn,h)
Ue IC(R) ^

> (3 i [Vp]+1 i )P Lĝ (S'̂ ,h)

where q is the integer such that 1 n _ 1
2 i = f  > ^ 2 i  5 - '

from paragraph (2)

from which it follows that

m(R,h) > (3(j.VpJ+1))P 1^(2"’»^) >
On the other, hand

mp(R,h) ^ iiip(8'̂ ,h) ^ Lp(8’̂,h)
< Lm(8%h)

Hence m(R,h) < L,y,(8^,h) and the theorem is proved. 

Corollary
If [Pp J is any decreasing sequence of hounded closed sets

00
and if P = n Pp then for any integer q 

n=1
^ (3(LVpJ+pl

(5) Remark Denote the p-dimensional cube with sides on each 
axis given by the interval (0,1 ) by C. Let P be a set 
contained in C and m a po^it^ye integer.

Then Lm(P,h) = 2 L„, (P̂ J„,k .h)
k=0

W h e r e  is a cube c u t t i n g  i n t e r v a l s  (r^ 2"”'̂ , (r̂ , +1 ) 2-"^ )

o n  the i ^ ^  axis a n d  k =  ri.
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For any nube v/ith diameter X we have either

(i) L„,(P,j„,h) = nil)
if I^+i(F.Jm,h) > h(t)

ar (it) = Itn_{_i f4.)
Denoting by the sum of the cubes for which (i) holds 

Lm(P,h) = Sh(L) + Lm+i(P.(C- Qi),h)

Similarly denoting by Qg the sum of cubes Jm+i c C - Q 
for which

i'm+2
we get

Lm(P,h) = 2 h( £) + im+2 - Q± - Qg ) »h)
Q1+Q2

Generally after the sets ,Qg»•••>^n-i ^ave been definedn-1
we denote by Qp the sum of cubes Jm+n+i c C- S Qg

q=1
on which

i*m+n + n + i  > ti) > h (  j i )

and we get
L^(P,h) = 2 h(i) + Lm+n(P.(G- 2 Q^.h) (3)

• • • Qn
Vifrite Q = + Qg + D = C - Q .

(6) l e m m a  2
4n(F,h) = 2 h(i) + L(P,D,h)

Q
Proof If  ̂p is a covering of P^D consisting of cubes 
i ^ m+n, then g n + Qn+i + %n+2 + ••• is a covering of 
1’a ( * 3 - Q i - Q 2 " .... “ Q n ) *

Thus 2 h( jL) + 2 h( X)
Q n + i  + % + 2  +  • • • •

^ î m+n (̂ ’aCC - Qi - . . . . - Qp ) ,h)
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Hence

im+n h)  ̂ Lm+p (C - - Qg - . . . . - Qp ) ,h) - 2h(L)
Qp +1 + • • • •

On the other hand
i'm +n Aî b.) ^ im+n A ( C — Q,± — Qg — • • • — Qp ) ,h) ( 5 )

By (3 ) thw sum 2 hil)
Q i + *42 +  • • • +  *4p +  • • •

since Lm(P,h) < 2^“ h(Vp/2"')

Hence Cp = 2 h(X) 0 as n-»®©
Qi+n + Qs+n + • • • •

and hy (4) and (5)
Lm+n(P.D,h) = L^+n (i\ (C - Qi - Qs  --- -Qn)»h)-6en (6)

where 0 < 6 < 1 L
By (3) and (6)

Lfn(P,h) = 2 h(lL) + i^+n
Q i +  • • • Qn

and letting n->- ®o
L_(P,h) = 2 h(2 ) + L(P,D,h)

Q

(7) l e m m a 3
If |Gnl is any increasing sequence of sets and G-=J Gp 

is hounded then for any integer m
im ( O' ) h ) = lim Lf|̂ (Gp,h)

n->oo
Proof Let and he the sets Q and D of lemma 2 corresponding 
to the set Gp . Then we have

qn + Dn = 0, qn C , D" D
and writing lim = Q and lim = D 

n—>oo n—>oo
we have lim Sh(£) = 2 h(£) G - Q = D n-i«o Qn Q
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and further

Lm(Gn»h) = 2 h(g) + 1(6^.DR,h)
Q"

^ Q̂ n h ( n  + L ( G n . D , h )

Hence
lim Lm(G„,h) > 2 h( £) + L(G,D,h)
n->oo Q

On the other hand
lim L,„(Gn,h) « Lm(G,h) < L„(G,Q,h) + L„(G,D,h) (8)
n - ^

^ 2 h(2) + L(G^D,h)
Q

^ lim Lfp(Op,h).
n-i®o

Hence lim Lm(G-p,h) = Lm(G,h)
n-̂ oo

(8) THEOREM 11
Any analytic set which is not the sum of a countable 

sequence of sets of finite Hausdorff diametral. measure with 
dimension h(x) contains a closed subset of infinite measure.

Pro of
Let P be an analytic set which we may suppose bounded, 

which is not a countable sum of sets of finite Hausdorff 
diametral measure, with dimension h(x). Por this set P choose 
a determining system i of closed p-dimensional cubes
so that

^i-i Lnln4.i  U  (n=1 ,2,3, • • • )

and (a) P — 2_ u11^ i 1 2 m • m 0

the summation being extended over all infinite sequences of 
positive integerd î  ̂ig .... ip

Let m^ be an integer for which 
L „ ^ ( p , h )  > 1
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Let Np denote the sum (a) extended over all sequences ....

for which 1 ^ î  < r. Then jNp J is an increasing sequence 
of sets and P = 2Np.

Choose an integer r^ so large that
(i) Lm(Np^,h)> 1 this is possible by lemma 3 and
(ii) Np is not a countable sum of sets of finite measure.1

Thus L(Np̂  ,h) = ao and we C£in choose nig so that nig >
and LffloCNr »ii)>2 .2 1

Let Np p denote the sum (a) extended over all sequences 1
i^ig .... for which 1 < î  < r̂_ and 1 < ig ̂  r Then iNp^p j is an
increasing sequence of sets and Np = 2 Np p1 1
Choose an integer r^ so large that
(i) Lm^CWr^rg.h) > 1 and (ii) L„^(N^^,h) > 2 
this is possible by lemma 3 and
(iii) Np ̂ p is not a countable sum of sets of finite measure.

Continuing in this way we obtain a sequence of integers
m̂ _ ̂  mg ̂ .. and r , rg .. . , such that for each n
( h ) Lfi, (Np . p ,h) > V (v = 1 . •,n)1/ X • . . p
and Nr r is not a countable sum of sets of finite measure. ' 1 . . .' n

Write H p =  2 L1 <  i ^ <  r ^  ^ i 2 - - - n

and H = wHp.
Each set Hp is the sum of a finite number of closed cubes

and is thus closed, also Np p p c Hp.‘ 2 • • • n
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By (b)
(c) Lm^(Hn,h) > v tor all v and n.

Now the sets Hp form a aecreasing sequence of hounded 
closed sets and so hy (c) and the corollary to theorem I

)(%'%) > V for all y,

and therefore m(H,h) = oo. Now it has been shown that He F. 
Since H is closed the theorem is proved.
Corollary
Any analytic set which is not the sum of a countable sequence 
of sets of finite Hausdorff measure with measure function h(x) 
contains a subset of finite non-zero Hausdorff diametral 
measure with dimension h(x).

SECTION II.3
To deduce that in p-dimensional space if

lim inf h(x) = oo 
x-O

there exists a set of finite non-zero Hausdorff diametral 
measure with dimension function h(x)

Le$ J be the unit closed cube in p-dimensional space. 
Given a> 0 there exists ô such that

> a for all x< ô

Let be a covering of the cube J consisting of convex sets
U with d(U) < Ô. Then

2 h(d(U)) > a 2 (d(U))®
Uell UeK.

> a
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Hence m^(j,h)> a (Vp)^
Since this holds for all a> 0 m(j,h) = oo.

Thus the cube J fulfils the conditions for the given set 
in theof^em I section 11,2, and hence there exists a subset 
S of J having finite non-zero Hausdorff diametral measure 
with dimension function h(x).

SECTION 11,4 
THEOREM
Let S be a closed set with dimension function h(x). Then
(a) If lim inf g(x) > 0 there exists a subset P of S

x->0 h(x)
having dimension function g(x) •
(b) If P is any subset of 8 with dimension function g(x) thèn
g(x) satisfies lim sup g(x) > 0 .

x-O h(x)

Proof of (a)
(1) If lim inf g(x) = œ then given any a> 0 there

x-O h(xj
exists Ô such that

> a for all x< ô

Por any covering 16 of the set S, 1C consisting of convex
sets U such that d(U) < ô for all UelL

2 g(x) > 2 a h(x)
UgU. UgIC

where d(u) = x. If is the class of all such coverings IC
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inf 2 g(x) » a inf 2 h(x) 
tl£ 6 ̂  UetL lu Ag UetL

Since this holds for all x< ô
m(S,g) > a m(S,h)

But m(S,h) is finite and non-zero and the inequality holds 
for all a> 0, thus m(S,g) = 00.

S is closed and thus the conditions of theorem I in 
Section 11,2, are satisfied and there exists a subset F of 
S such that 0 < #(p,g) < ®o.
(2) Let lim inf g(x) = /3 0 < /3 < »o

x->0 h(xj
Given e > 0  there exists ô such that

> (/3- e) all x< Ôglx
h

Por any covering LC of the set S consisting of convex sets U
with d(U) < Ô writing x= d(U),

(/3- e) 2 h(x) < 2 g(x)
UelL UeLL

Let be the class of all such coverings EL. Then
(/3- e) inf 2 h(x) < inf 2 g(x)

Ik A  ̂ UelL Ik  UgIL

and since this holds for all x< ô und all e> 0
P m(S,h) < m(S,g)

Since m(S,h) > 0, m(S,g) > 0.
If m(S,g) = 00 then as in the first case there exists 

a subset P of S such that 0<m(P,g) < ©o 
If m(S,g) is finite then S itself may be taken as the 
required subset.
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Proof of (b)
Since P is a subset of S

m(S,g) » m(P,g) > 0.
Hence given ô > 0 tliere exists such that for any covering 
of the set S consisting of convex sets U with d(U) < ô for all 
Ue VL, writing d(U) = x,

2 g(x) >
UelL

This holds for all Vt such that d(u) < Ô all Ue 11.
Since m(S,h) is finite and non-zero there exists 

such that
2 h(x) < 9g 

U ell
for infinitely many coverings VI of S with d(U) < ô for all UeEL 
Thus for at least one covering 11

2 g(x) g

2 h(x) " 02
UelC

The set of values 9i/9g which depend on ô, is bounded below
by some fixed positive number.

If lim sup g(x) = 0 then there exists a constant 9̂  
x-O h(x)

such that for all x< Ô
and hence for all coverings EL defined above

s g(x)
" E  "h(Ey  ̂ 3̂
Uelt

The number 9̂  depends on ô and 83 0 as ô -» 0.
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But this is a contradiction of (1 ) and hence

lim sup ^(xi Q 
x->0 h(x;

This completes the proof of the theorem.

In the statement of the theorem it is not possible to 
replace "lim sup" in the inequality (b) by "lim inf" as 
the following example will establii±i. Thus the theorem 
gives the best possible result.
EXAMPLE
To construct a set S having finite non-zero Hausdorff diametral 
measure with dimension function h(x) and such that there exists 
a measure function g(x) satisfying
(1) lim inf g(x) _ ^

x->0 h u T  "
(2) lim suÿ g(x) ^

x-̂ 0 h(x) ^
(3) 0< m(8,g) < m

Consider the function h(x) given by
h(x) = —  ---  #ien ^ X > -7-̂-- rg (n=1 ,2, ...)

This function is monotonically increasing and h(x)->0 as x-> 0 
Also lim inf h(x) = lim 2n^ _ ^

x-̂ O X n-^

The function h(x) decreases strictly in the interval 
X

i ___  1
2 > x  > “-7 Tg- and the set of values of h(x) at the( n+i ;2^ 2An+i; X
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points x =   decreases strictly as x increases. Thus every2h 2
point of this set satisfies

h(x) __ min h(t) 2 inf h(t)
X “ 0<t<x t ^ 0<t<x t

Hence the method of constructing a set in one dimension
established in Section 11,1 on page 6 can be used if the
decreasing sequence of points in this construction which
were denoted by [xpj are limited to be of the form x̂  = — —̂2j2
The set S obtained by this construction satisfies

0 < m(S,h) < oo
Denote by l(S,h) the measure of S obtained by considering

only the coverings of intervals with end points given by 
-1X| = — —  . Then it was proved in Section 11,1, that 2j2

«1 1(8,h) < m(S,h) $ 1(8,h)
Where is a constant.

Consider the function given by g(.x) = x^
Then g(x) = h(x) whenever x = — -

and since g(x) is strictly incr^sing as x increases the set
X

S will also satisfy
oCg ï(S,g) ^ m(S,g) ^ l(S,g) 

where Og is a constant.
But 1(8,h) = 1(8,g) and hence since 0 < m(S,h) < oo 

m(8,g) is finite and non^zero.
Condition (3) is thus satisfied by this set S and the two 
functions h(x) and g(x). Conditions (l ) and (2) are also
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satisfied as follows.
1 6Given any e > 0 there exists m such that < g

and
20.2/2 g

< gCn+1)2/2 + 2

for infinitely many n > some n^.

âf} < * f < '
for infinitely many n > max(no,m)

h{x]  ̂ ^ for all X > 0 and hence

lim inf & W  _ q
x->0 h(x) - ̂

On the other hand g:(x) ^ ^
h U T  "

and gj X

and thus lim sup 
x->0

h(x =  1

" = 1

whenever x ^ 1 . 

whenever x = 1/2^^
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CHAPTER III 

SECTION III.1.

THEOREM 1
Given a closed bounded set S in p-dimensional real Euclidean 
space a sufficient condition for m(S,h)> 0  is that there 
exists an additive set function #(R) defined over half-open 
figures (a half-open figure is a set expressible as a finite 
sum of half-open, i.e. open on the right, p-dimensional 
intervals) R such that 
(i ) for any figure R ÿ(R) > 0
(2) if R D S #(R) > b > 0 where b is some fixed constant,
(3) there is a finite non-zero constant K such that

ÿ(R) < E.h(d(R))
Then in fact m(S,h) ^ b/K.

Proof
By the Heine-Borel theorem we can take any covering of S 

by open sets to be finite. Let 11 be a class of open conve 
sets U covdring S. Each set Ue El can be enclosed in a 
half-open figure R of diameter d(R) so near d(U) that

h(d(R)) < (1 + e) h(d(U)) 
where e is a given small positive number.

Thus we have for each figure R 
h(d(R)) > 1 ÿ(R)
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and so 3 h(d(U)) » 1 2 é(s.)
UeU K(l+e)

> . ,1 ^(UR)^ K(l+e)
■because 2 ÿ(R) > ÿ(UR) since the figures R may be
overlapping, and ÿ(R) is additive.

Moreover UR contains S and so
ÿ(UE) S= b

therefore 2 h(d(U)) b
Uett K(l+e)

Since this holds for all coverings 11 and for all e> 0
m(S,h) ^ h/K.

THEOREM 2

If S is a set in p-dimensional real Euclidean space which is 
measurable with regard to Hausdorff diametral measure with 
measure function h(x), then D(x,h) ^ 1 at all points xe S 
except possibly for a set of measure zero.

LBM m
Given a measurable set P for which m(P,h) < ®o and any positive
number e, there exists a number ô depending on P and € such
that for any sequence V  of open sets V with d ( v )  < ô all V e Y

m (P ^ y ,h )  ^ 2 h ( d ( V ) )  + e
VeY

Proof of the lemma
By Ahe definition of Hausdorff diametral measure there 

exists a number ô depending on P and e such that for any 
covering XL of open sets U of the set P, which is such that
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d(u) < ô all U e  b L  t h e n

(1 ) 2 h(d(U)) > m(P, h )  - f
U e f L

w h e r e  e is a n y  p r e s c r i b e d  p o s i t i v e  number.

L e t  Y  b e  any seque n c e  of o p e n  sets V w i t h  d(V) < ô all V e V  

T h e n  since a n y  Y  is a n  o p e n  set P ^ ' Y  is m e a s u r a b l e  a n d

(2) m(P,h) = m ( P ^ y , h )  + m ( F _  P ÿ 7 , h )  

a n d  f r o m  (1) a n d  (2) we conclude that

(3) u L h ( d ( U ) )  > m ( P , V , h )  + m ( P _ F , ^ , h )  - |

N o w  g i v e n  any Y  we c a n  f i n d  a set 11^ of o p e n  s e t s

w i t h  d(Ui) < Ô all E X \  s u c h  that XL  ̂ c o v e r s  the set P - P ^ Y  

a n d  also

(h ) 2 h ( d ( U j )  < m ( F - P T V . h )  + §
Uiel4

L e t  XL b e  the c l a s s  of sets Y  + . T h e n

(5 )  2 b (d (U ) )  3 2 h ( a ( V ) )  + 2 h ( d ( U i ) )
UeLl VeY

a n d  I X  is a c o v e r i n g  of P  w i t h  d(u) < ô all U e  XL. Thus

this c l a s s  X X  s a t i s f i e s  the i n e q u a l i t y  (3)-

P r o m  (k) and (5)

2 h ( d (V ) )  + m ( P - F ~ , h )  + f
VeY

> 2 h ( d ( V ) )  + 2 h ( d ( U i ) )
VeY We'Ui

> 2 h (d (U ) )
Uell

a n d  f r o m  (3) > m ( P ^ V , h )  + m C F - F ^ V j h )  - ^

H e n c e  2 h ( d ( V ) )  > m ( P . \ r , h )  - e
V e Y

w h i c h  p r o v e s  the lemma.
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Proof of the theorem

Given any number u> 0 the set of points x such that
D(x,h) > u is measurable. Let P ’ be the set where
D(x,h) > 1 and suppose that m(P*,h) > 0. Then there exists
a positive number b such that m(P",h) > 0 where P" is the set
at which D(x,h) > 1 + b.

Write e = min(i.m(P",h), b m(P",h))
72

In the case of a set in p > 2 dimensions the factor 1/72 is 
replaced by l/2(3(^Vp]+l))^

Let p be a positive number such that the inequality of 
the lemma is satisfied for the given set S, the number e and 
p = Ô.
Write

P" = Pi + Pg + ........+ Pj 4- ......
where Pj is a set of points xe P" about which it is possible 
to draw an open circle C(x, r) of centre x and radius r where

4 < 2r <
j j+1

and such that

Pj is measurable and C(x,r) is called a density circle of class
j .

About any point cf P^ we draw a circle of radius r and 
class 1 and a concentric circle of radius 3r. Then about any 
point of PjL outside these two circles we d escribe two 
concentric circles in a similar way. V/e continue the process 
at each stage taking a point outside the circles already drawn
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and so that a density circle of the lowest possible class can 
be drawn together with a circle three times its radius. We 
thus obtain a finite or enumerably infinite (m(S,h) being 
finite only a finite number of non-overlapping density circles 
can be drawn) set C of non-overlapping density circles and a 
set of concentric circles such that C* covers all the points 
of P".

Each circle radius 3r can be completely covered bÿ at most
36 circles radius r. Thus if the class C* is replaced by a class
C" which consists of circles radius r and which covers P", C"
satisfies the inequality

2 h(2r) ^ j__ 2 h(2r)
G 3b C"

In p-dimensional space the factor 1 is replaced by 1_____
^  (3|n/p ]+Î))^

The radius of any circle of C" is r< p and so
2 h(2r) ^ m(P",h) - e ^ im(P",h)
0"

and hence 2 h(2r) ^ J__ ni(P",h)
c 72

Now the circles of 0 do not overlap and so
m(p"^G,h) > (1+b) 2 h(2r)

C
^ 2 h(2r) + b m(P",h)
c 35

(7) > 2 h(2r) + e
G

But taking C as the set Y  of the lemma (which is possible since 
2r < p) we have
(8) m(P"^G,h) < 2 h(2r) + e

C
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(7) and (8) being contradictory we conclude that m(P",h) = 0 
This proves the theorega.

< '

SECTION III.2 .

THEOREM
In two dimensional real Euclidean space take rectangular
cartesian axes OX and OY. If D is a mdasurable set on the OX
axis with dimension function h(x) i.e. 0<m(D,h) < oo
and E is any measurable linear set on the OY axis where
0 < m(E,x) < eo, then

a m(D,h) .m(E,x) ^ m(D E,xh) /̂5 m(D,h) .m(E,x)
where Dy.E is the cartesian product of D and E, and a and (3
are c onst amt s. r

Proof of the left hand inequality
Let be an enumerable class of intervals I;̂ on the OY

axis covering E and d(l|̂  ) < ô where ô is a small positive
number and such that

2 d(li, ) < m(E,x) + e 
lie 3

e being a small positive number.
Por any particular interval Ij consider the set D^Ij Let

n be a large integer and cover D by intervals I-J where
d(ljj) < d(lj) and such that if ^ ' is the class of all 

_

intervals I-J
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2 h(d(lj)) < m(D,h) + e 

Ij€ 6'
The product of these intervals with Ij consists of a set of 
rectangles. Each of these rectangles can he covered by not

ïTïiD.
more A&an k Ç

where à(lj)
âlïTT J

+ 1 squares of diagonal d(lj)

d(lj)is the integral part of Thus the

set D%Ij has been covered by squares of diagonal â  such that

? aih(ai) < 2 4 a(ij)
âTïTT

thus 2 8qh(ai) < 4 r 2 d(Ij) h(d(lj)) + 2 d(l-J) h(d(lj))

< 4 d(lj) fU(D,h) + alh + il
n

Carrying out the same process for all the intervals Ijc ^
we obtain a covering of squares such that

2 h(a^ ) < 4 + iî |m(D,h) + e ] fm(E,x) + e ]
n

Since ô, e and i/n are arbitrarily small we have
m(DxE,xh) < 4 #(D,h) m(E,x)

Proof of the right hand inequality
We first establish that it is sufficient to take D and E 

and therefore D̂ Ê to be closed sets • To do this we need the 
following lemma.
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LEMMA
If P is a measurable set with dimension function h(x), given 
any e > 0 there exists a cloded set P* such that 

m(P-P',h) + m(P'_P,h) < 3c

Proof
Given e > 0 let be an enumerable class of open convex 

sets Ujll covering P with d(Û {̂  ) < p where p is a number > 0 
depending on e, such that

2 h(a(Uit)) < m(F,h) + c

Choose UjL so that
m(P„( U < f

n^ + 1  ^

This can be done by using the lemma proved in theorem 2 in 
Section 111,1, and choosing %  so that (i=n^+1....)
have d(Uj,^)< ô where ô is a number such that the inequality 
of the lemma holds with e / 2 .

Let P^ be the closure of ; uj and write Ê  ̂ = P^^P.
Now suppose that Ê_ is covered by a class XL2 of open convex 
sets such that

(uX, 2 h(d(U2-, )) < m(P,h) + e

and also such that d(UgL) < ^ all e Tig . Now choose
no so that

(X)
m(P.( U Ugi.),h)<fgrig+i

<
Let P ’ be the c losure of Ug^ and E^ = P'^P. Continue

L =1

the process using a covering 17 3 of Eg and so on.
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Let F* = n F L  Then F ’ exists and is closed. Moreover 1
ince it is contained in each of the finite sequemces

-1

and

Also

so

(i=1...nj) in which the convex sets üj^have d(Uji^) < 

we have
m(F*,h) ^ m(P,h) + e

m(P-P',h) < f  + ^  + ̂  + ........  < e

m(P^F',h) > m(P,h) - e

m(P'-P,h) < m(P,h) + e - m(F,h) + e
< 2e

This completes the proof of the lemma.

We now establish that it is sufficient to prove the theorem 
when D and E are closed. For suppose that they are not closed. 
Then there exists a closed set D* satisfying the inequality 
of the lemma with the set D. /Uid

m U""'(D\E,xh) = m( [D+ D' -
= m(D^E,xh) + m(D*
^ m(D%E,xh) + 3c/3m(E,xli)

where e can be taken as small as we please. Hence it is 
sufficient to prove the result for D* and E, and we san
therefore take D to be closed. By a similar argument we
can take E to be closed also.

From theorem 2, Section 111,1, we have D(x,h)^1 for all
points xe D except possibly for a set of measure zero. Let e 
be small and take as ghe set of points belonging to D for
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which
m(D,I,h) ^ ^
"hTddjy

whenever d(l) < 77, I being an open interval centred on the
point X. By decreasing 77 the value m(D^, h) can be made as
near that of m(D,h) as we please.

Let 77i be the number such that
(1) m(D ,h) < m(D,h) [1 + e]
Using a similar argument for E we obtain a number 773 such that
(2) m(E ,x) < m(B,x) [1 + e]

Vs
Let Ôq be the smaller of 77̂ and 772. Then given any half open 
rectangle R let and ly be the projections of R on the X and Y 
axes respectively. Define

and for any half open figure ^  consisting of rectangles R we 
define

= 2 ÿ(R)RE6L
If d(^) < Ô0 we shall show that

ÿ(6L) < 2(1 + c)2 [h(d(6L))] d(Sü
Consider a rectangle R with projections Ix and I y on the two 

axes. From (1) we have
m(B^^Ix^h) ^ 1 + e:

b(d(lx))
and from (2)

m(B^,Iy,x) ^  ̂ + g
4ly)

Thus f(R) < [1 + e]2 d(ly) h(d(l%))
< [1 + e ]2 d(R) h(d(R))
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All Re (8_ can be completely covered by a square J side 
d((R,) with diameter V2 d(Æ). J in turn can be contained in 

rectangles R^ with diameters d(&) and since these two 
rectangles contain p /

ÿ(GU < 2 ÿ(R') ^ 2 (l + e)2 d(R') h(d(E'))

^ 2 (1 + e)2 d(#J h(d(GO)
The conditions of theorem 1 Section 111,1, are thus

satisfied and hence
m(D;,E,xh) ^ m(D^,h) m (E^,x)

2 "
and thus m(DxE,xh) > m(P.h) m (E,x)

2
since m(D^,h) can be made as near to m(D,h) and m(E^,x) as 
near to m(E,x) as we please.

This completes the proof of the theorem.

SECTION 111,3.

THEOREM 1 .
If D is a set of dimension h(x) on the X axis and E is a set
of dimension g(x) on the Y axis then the dimension function
f(x) of the cartesian product D^E of D and E satisfies
(1) lim sup f(x) > 0

x-O xh(x)

(2) lim sup f(x) > 0
x-»0 X g(x)

Proof
This follows from thw theorems in Sections 11,4, and 111,2,
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since the set D^E is a subset of the cartesian product of 
the set D with a linear set on the Y axis and also a subset 
of the cartesian product of the set E with a linear set on 
the X axis•
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ch a p t e r IV

SECTION IV. 1 .

THEOREM ' k

If E is a closed set on the x axis having dimension 
function x^ and such that the lower x^-density at every point 
a belonging to E is greater than some positive constant then 
the dimension function of the cartesian product of E and a 
similar set E* on the y axis is x

Proof

ti

It is a known result that m(E%E*,x^^) > 0.
Let Ô be any small positive number. Then we are given 

that there exists e such that

d(l)“
for all d(l)< Ô and where I is an interval centred on a point 
ae E. Take any point a^ e E and cover it by an interval Î  

length 2r < Ô which is centred on the point . Take any other 
point ag € S which does not belong to and enclose this point 
in an open interval Ig length 2r centred on ag . Now take ta Y  
point ag e E which does not belong to I^ or Ig and an open 
interval Ig length 2r surrounding this point. Continuing in 
this way a finite sequence of open sets I is obtained which 
covers E and which is such that no point of E belongs to more 
than two intervals I. Denote this sequence by  ̂ . Each 
interval I has diameter 2r and satisfies
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m(E,I,x“) > (n+ e) d(l)“

Thus 2m(E,I,x®) > (//+ e) 2 d(l)“
le ̂  lej

Since no point of E can belong to more than two intervals I
2 m ( E , x % )  > 2  m C E . I f X * )

and hence 2 m (E,x*̂ ) > (^+c) S d(l)^
l€^

Cover the set E ’ on the y axis by a similar sequence â ’ 
of open sets I ’. Then 3 x that is the class of squares
I X I* covers the set E x E' and

2 d ( l ^ l ' ) Y  2 d(l)“')I»I'e 6 * d' ^ [lei J
< 2®r 2 _ m i E ^ ^

[ 14+ e)

from the above inequality.
Hence we have established that

nig(ExE',x^“) < «
and since the above result holds for all ô > 0 and the number fi 
is non-zero we have

m(E^E',x^“) < .o 
This completes the proof of the theoram.

SECTION IV,2 .
THEOREM

In two-dimai sional real Euclidean space there exists a set 
S having finite non-zero Hausdorff diametral measure with 
dimension function x2^ where /i = log 2/log 3 such that if
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S(a,b) is the translation of S through a distance a parallel 
to the X axis and h parallel to the y axis then S^S(a,h) is 
a set having zero Hausdorff diametral measure with measure 
function x^^ for all values of a and h such that either a or 
h is non-zero.

Proof
Take rectangular cartesian axes in four-dimensional real • 

Euclidean space. Let D he a plane set in the x,y plane and 
E a plane set in the z,t plane; then the plane x= aQ, y = 
intersects the set D^E in a set whose projection in the x,y 
plane is D^E(a,h).

Take four different axes O'X*, Y',Z*,T*. On the O'X* 
axis construct the Cantor ternary set in the interval O ^ x ’^i.. 
On the O'Y' axis construct the Cantor ternary set in the 
interval 0 ̂  y * <1 and let F' denote the cartesian product hf 
these two sets. Denote by I'nL (i=1 ....22n) the closed squares 
belonging to P* at the n^^ stage. Construct a similar set in 
the O'Z'T* plane.

Map these two sets onto the OXY, ÜZT planes tsy the 
relations x = x* + dx*^ y = y* + dÿ^s % = + dz'% t = t' + dt*^
where d = 10 ^ (say). Call the resulting sets F^ and Pg 
respectively and the rectangles corresponding to 
respectively.

Consider the set on the OX axis. Denote it by Q. Then



Q = Qn where Q̂i ià the union of j^intervals lengths !(_
ll = x'i, - x'i_i + d(xl,®- x'!_i)

and xj - x*L-i =_!. 0 < xj < 1 •3"
Hence jL ^ ^ (1 + 2dj&^ for all i.

Thus if C is the Cantor ternary set in the interval [0,1 ] 
m(C,x^) < in(Q,x^) < (l + 2d/ m(C,x^) 

i.e. 0 < m(Q,x4) < *o
Prom the theorem in Section IV,1, on page 41 the 

dimension function of both P^ and Pg is x^^.
It is sufficient to poove that Pi^Pg is intersected by 

the plane x= z-a y = t-b in a set of zero Hausdorff diametral 
measure with measure function x^^ for all values of a and b 
such that either a or b is non-zero.

Let Di....Dgn be the parts df covered by the rectangles
I^nu and  Egn parts of Pg for I^nj • Then it is required
to prove that x= z-a, y = t-b intercepts the set D^xEj in a set 
of zero measure whenever i/ j. If the plane intercepts the 
set Ê  then by increasing n we can ensure that it ceases 
to do so since only the plane x= z, y= t meets the set 
for all n. Let x= z-a, y= t-b intercept the set D^^Ej ini G. 
Then G lies in the cuboid I^nu;< which has the point
(xq ,y« , Zq , to ) as the point nearest the origin. Por any m> 0 
consider the cuboids xl*'4n,q e I^nu These

are interacted by the plane x= z-a, y = t-b in a set of closed
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convex sets covering G. Then we have to prove that
lim 2 d(Ji, = 0 
m-->eo ^

It is sufficient to prove that
.2 d(Ji)2^ < K d(Jo)2^L —1

where Jq is the rectangle in which x= z-a, y= t-h intercepts 
the four-dimensional cuboid I^nox K is a constant
less than one which is independent of (x q ,yg,Zg,tg). Por 
the argument can then be repeated in each of the cuboids 
I^n+m,p x^^n+m,q to get the desired result.

To prove this we need the following lemma.

LEMMA
-6Let d = 10 and let 0 < Ag ^ A ^ Aj_ <Bq < B < B^ ^ 1 

Ag < Ai and Bq < B^ where Ag, Bg -and B^ are given
constants and A and B are any numbers satisfying the above 
inequality. Let c be a number such that 0 ^ c < d(Bg - A^ ). 
Take A^, A*, A^ Bg, B', B^ and c ’ satisfying similar 
inequalities.

Consider the four dimensional cuboid which has the three
dimensional planes

X = 0 y = 0
X = 1 + 2dA + dc y = 1 + 2dA* + dc*
z = 0 t = 0
z = 1 + 2dB + dc z = 1 + 2dB* + dc *

as its faces. This is approximately the unit four dimensional
cube: denote it by ^ g . Divide this cuboid into 8l cuboids by



1 dc
9

y = i d  
3

+ 2dA') + 1 dc* 
9

4 dc 
9

y = 2(1 
3

+ 2dA') + 4 dc* 
9

1 dc 
9

t = 1(1
3

+ 2dB') + 1 dc*
9

4 dc 
9

t = 2(1 
3

+ 2dB*) + 4 dc*
9
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the three dimensional planes

X = i(i + 2dA)
3

X = 2(1 + 2dA)
3

z = 1(1 + 2dB)
3

z = 2(1 + 2dB)
3

Consider the sixteen cuboids which have one vertex in 
common with ^ g let the plane x = z+a^ y = t+b^
intersect them in sets Ji the original cuboid being intersected 
in a set Jg. Then there exists K< 1 such that 

2 d(J-, < K d(Jo)^^

the summation being extended over all the smaller cuboids 
intersected by the plane and the inequality holding uniformly 
for A, A*, B, B L  c and c* satisfying the inequalities given 
above and and b^ satisfying

and2(1 + 2dB) + 4 dc 
3 9

1 + 2dA' + dc* ^ bi > -(1 + 2dB' + dc') 
or similar inequalities with a^ and bj_reversed.

Proof
Define at, A  (i=0,1,2,3) by

«0 = 0, «1 = 1(1 + 2dA) + J_ dc «2 = 2(1 + 2dA) + 4
3 9 3 9

ag = 1 + 2dA + dc.
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00 = 0  ̂ 01 = + 2dB) + j_ dc jGg = 2(1 + 2dB) + 4 dc
3 9 ^ 9

#3 = 1 + 2dB + dc,
and a{ , 0{ (i=0,1,2,3) similarly.

Denote the cuhoid defined "by 
a-i, < X < GL+i aj ^ y < aj+i 4k < z <4k+i and ^

4 £ < t <4:̂ +1 hy ^(l,j,k,;L) where i, j, k, i,, independently 
take the values 0,1, and 2.

Consider the plane P x= z+ , y = t + h^ . This meets 
^(L,J,k,^) if" and only if the inequalities

Oil - ai < z < ai+i - 4k ^ z < 4k4-i
and

^ "t < exj 4.ji — "b̂  4ĵ  ^ t < 4^+1
are not inconsistent i.e. if and only if

Oil+1 "* â   ̂4k GiL ■” -â  ̂4k+1
and

aj+i - '̂ 1 > 0i_ aj - 4/+1
i.e. if and only if

Oil - 4k+i < â   ̂Qt+i - 4k
and

cxj - 4&+1 ^ ^ &J+1 *“ 4x
Of the 81 cuhoids ^(L,j,k,j^) 16 have vertices in common

with a vertex of ^ ̂ . They are the cuboids ̂ (L,j,k,^) for
which each arguinaiit i, j,k, A  is either 0 or 2 . We wish to
establish which of these are intersected by the plane P for 
the various values of a^ and bj_.

By direct calculation, since 0 ^ A < B < 1 and c < d(B@r A,}

oiz 03 < oî - 02 < ~4i and ag - 4s < #2 ~ 4i < oci and it
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p
wo
CO00H0>

follows that P meets the following cuhoids ^ 
with i, j, k, a all 0 or 2.

C%3

ai

«2-48

-4s

(0220) (0220)
(2220) (2220) (2220) (0200) (0200) (0200)

(2200) (2200)

(0220)
(0020)

(02201
(0020)
(2220)
(2020)

(2220)
(2020)

(2220) (0200) 
(2020) (0000)

(0200)
(0000)

(0200)
(0000)
(2200)
(2000)

(2200)'
(2000)

(0020)
/

(0020)
(2020) (2020) (2020) (0000) (0000) (0000)

(2000) (2000)

(0020)
(0222)

(Ô222)
(0020)
(2222)
(2020)

(2222)
(2020)

(2222) (0202) 
(2020) (0000)

(0202)
(0000)

(0202)
(0000)
(2202)
(2000)

(2202)
(2000)

(0222) (0222)
(2222) (2222) (2222) (0202) (0202) (0202)

(2202) (2202)

(0222)
(0022)

(0222)
(0022)
(2222)
(2022)

(2222)
(2022)

(2222) (0202) 
(2022) (0002)

(0202)
(0002)

(0202)
(0002)
(2202)
(2002)

(2202)
(2002)'

(0022) [Toll] I (2022) (2022) (0002) (0002) (0002)
(2002)

1
(2002) 
.. _ ,_i

-4s «2 -4s «1-42 -4i
values of a.

«3-42 «2-4i a. a.

Transform the coordinates hy
X = x" + z" y = y" + t"
z = z" - x" - aĵ t = t" - y" - hi

Then the plane P becomes the plane x" = 0, y" = 0. The sets 
^(u,j,k,A) all have sides parallel to the z" and t" axes and 
are thus rectangles.



Consider the lines’̂cut hy the cubes j k ü)
(i,j,k,^=0 or 2) parallel to the z" axis.
For the cuhoid  ̂̂  these are given hy

z" = + 4s -4s 3 ai < Gs - 4sz'' = 0 
z !' =  0
z = a.

z = «3
z = OC3

^(0220)' ^(0020)' ^K0222) ^ad ^(o022)
z'' = 0 
z" =  0

z“ = ai + 4a
«1

“4s ^ ai < a± - 4s
0£j_ “ /?3 4 ^

z" = ai + /3g z" = ai -ySg < a^ ^ - fis

<S(2220)’ ^ (2020) ’ â(2222) % (2022)

z' = &1 + fia «a - < ai < as - fig
«3,—  03 ^  a ^  ^  OL2 ~ 02

«2  —  02 ^  a ^  ^  CX3 —  02

^(02 00) ’ ^ ( 0000) ’ %(0202) ^(0002)

—  Oug

= (%2 r;z" = (%3
= ^±+02 Z" = «3

= 0 
=  0

z = a.

= a± + 4i -4i < < %i - 4i
= (Xi «1 - 4i < â  < 0

z = a.

For V2200)’ %(2000)' ^(2202) ^(2002)
-  «2

—  «2

z = a.

z" = + /3i «2-01 < a± < «3 - fix
z — CX3 0C3 4i ^ â  ^ cxg

13 Okg ^ a^ ^ CX3z" =a.
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In each case the rectangle increases in size when
the first two equations hold, remains constant when the 
second pair holds and decreases when the third pair holds.

The lines parallel to the t" axis are similar.
V'/e note that 4 (1/3)^^ = 1 . Let f(ai,hi) denote 

d(Jo) 2 d(d(L,j,k,L))^^^bere the summation is taken over 
all the cuhoids intersected hy the plane P for these values 
of a^and ĥ. Then if P intersects 4 cuhoids ^(t>jJk , g) and 
&(J(L,j,k,&))< a(Jo) where < 1/3 f(ai,hi) ^ < 1.
Also if P intersects 2 cuhoids ^(L^j^k,jL) and if 
&(J(L,j,k,4j)<: d(^o) where < 1/V3 for hoth the
cuhoids intersected then f(ai,hi) < Eg < 1 . If P intersects 
only one cuhoid ^(L,j,k,i) and d( J(t , j ,k,ĵ  ) ̂  &(Jo) where
03 < 1 then f(ai,hi) ^ Kg < 1. Clearly one of these Jbhree 
cases holds for the values of a^and h,satisfying

«1 ^ a^ ^ ccq — 02 or “”4i ̂  a^ ^ cxg — 4s
or a'l > hi ^ a'3-4'2 or -4'i^ ^ a'2-4f'3

Consider the range -4i ^ ai ^ Ug - 4g
and -4'3<4bi ^ «'2-4'3
The cuhoids ^(2022) ^ (0002) inet. The maximum value
of f(ai,hi) occurs when hi = a'l - 4's and Ui lies somewhere in 
the interval [(ag - 4g),(ai - 4i)]• Thus

f(ai,hi) ^ [ «1 ̂ + ( «3 ~ 0̂2 ) ̂ ] ̂ (3 [ «1 ̂ ~ «1^]^ 4"
[«3  ̂+

< Kg < 1
hy the above argument. A similar result holds for
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-4i < a± < «8 - 4g and 4-ag > Id^

and for -4i < h^ < «g - 4s and either
-4a < ai < Œg - 4s or  ̂a^ < ag .

Now consider the range
—4± ^ ^ ag — 4s and — 4± ^ ^ ag — 4s •

The four cuboids met are '^(2222)’ ^(2020)' V 0202) J (0000)
The maximum value of f(ai,hi) occurs at some point in the 
intervals Ug - 4a ^ &i < a± - 4i and a^ - 4g <: ^ a^ - 4^
since J@ is constant throughout these intervals, and all four 
rectangles increase when a^ and hi are less than the values 
belonging to these intervals and all four rectangles decrease 
when ai and hi are greater than these intervals, ai and hi 
increasing.

Consider the intervals Qg " 4s ^ ^ («s ” 0o)/^
and ag — 4g ^ hi ^ (ag — 4s)/^
Then in this double interval
f(ai,bi) « [(ttg - ag)® + (ttg - aé )®]^ + [(ag - ag)® + (a^ - /3s + /Sj.)®]^

2
+ [ (cx3-/3g+/3;̂ )® + (ag-ag)®](^ + [(ag-^g+^^)®-(ag-^3+^^)®]^

2 2 2
[ag®+ ag®]^

= [ 1 (1 + 2dA + ̂ dc)® + 1(1 + 2dA' + ̂dc')®]^ +
3 3 3 3

[ 1(1+ 2dA + ̂ dc)® + 1(1 + d(3A'-B') + Idc')®}" +
3 3 3 3

[ 1(1 + d(3A-B) + Idc)® + 1(1 + 2dA’+ ̂ dc')®]^ +
3 3 3 3
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[ 1 + d(3A-B) + idc)2 + 1(1 + d(3A'-B') + idc')2]^
3 3 3 3

[(1 + 2dA + dc)2 + (1 + 2dA* + dc*)2]^
= K < 1 since c ^ d(Bo - A^) < d(B-A)

and hence ̂ dc is very much less than d(B-A) and also ^dc*
3 3

is very much less than d(B*-A*). A similar result holds for
the double intervals ag - 4g < a^ ^ - 4i

2
and «2-42 < hi < ag- 4g or ag - 4g < hi ^ a^ - 4i

-  - -

and the double interval
«2 — 02 ^ ^ «3 — 03 S^d «g — 0Q ^ bi < «1 — 4l

2 2

how consider the range -0q ^ ai ̂  «g - 4s
— 4g  ̂ Oi ̂ «2 — 4s

For -4g ̂ ai ^ «1 - 4g and -4g ^ hi < - 4g
f(ai,bi) = 1, As either ai or hi increases beyond these 
intervals f(ai,bi) decreases. We take either > -4^ or 
hi > -42•
Then or

= K < 1 .

A similar result holds for the double intervals 
-4g ^ ai < «2-43 and «g > bi ^

and ag  ̂ ai ^ «i and «g ^ bi ^ a^ or -4g < bi < «2-43
This completes the proof of the lemma.
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Proof of the theorem
Consider the cuhoid which has the point

(xo,yo,%o,to) as its vertex nearest the origin. Assume that 
X o < Zo and J q < t©. Then if x',y',z',t' ate the coordinates 
used in the construction of and Pg 
X - Xn = (x" - x'o) (i + 2dx'o) + d(x' - x\)2
y - yo = (y' - y'o) (l + 2dy'o) + d(y'-y'o)2
z - Zq = (z' - z'o) (1 + 2dz'o) + d(z'-z'o)2
t - to = (t' - t'g) (1 + 2dt'o) + d(t'- t'o) 2

Changing the origins to the points (xq,yg,Zq,t^) and 
(x'o,y'o,z'o,t'o) respectively and the scale hy 3'"’̂ we get 
X = x'(l + 2dx\) + 3~ndx'2
y = y'(l + 2dy\) + 3~ndy'2
z = z'(l 4- 2dz'o) + 3~"dz'2
t = t'(l + 2dt'@) + 3-"dt'2
Replacing x \  hy a, y'o hy A', z \  hy B and t'© hy B' the 
conditions of the lemma are satisfied if n is large enough. 
Moreover for any cuhoid lyingoinside the conditions
are satisfied for values of A, A', B and B' lying in the ranges 
x'o ^ A < x'o + 3^" < z'o ^ B < z'o + 3-"̂  and
y'o < A'< y'o + 3”’̂ < t'o ^ B'< t'g + 3"", provided
n is chosen so that

x'o + 3"’̂ < z'o and y'@ + 3”'̂ < t'@.
Let the plane x= z-a, y = t-h he transformed into the 

plane x= z+ai, y = t+h^ in the new coordinates. If either
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i ^ ^ -2(1 + 2dB + 2dc)
3 3

or i > hi ^ -2(1 + 2dB' + 2dc')
3 3

B, B' , c and c' heing those determined ahove we can replace
( 1 ) ( 2) Athe cuhoid nj which corresponds to the cuhoid of

(±) (z)the lemma hy the cuhoids Î   ̂ x-̂ which are intersectedn+i,p^ n+i,q
hy the given plane since these are the cuhoids i)
(i,j,k, 2 = 0 or 2) of the lemma. In this case

S < K d(Jo)2^ where K < 1.

If < - 2(1 + 2dB + 2dc) and < - 2(1 + 2dB' + 2dc')
3 3 3 3

then we apply the whole argument to the cuhe ^ (0022) ' choosing
the suitable values of A, B, A ', B', c and c' . If aiand hi
still do neither satisfy the given relations we continue
subdividing. Similar arguments hold for the hther extreme
values of ai and hi. The process of subdivision must come
to an end after a finite number of steps unless x= z+a^,
y = t+hi passes only through one of $he corner points. It then
forms an isolated point of intersection aid can he ignored.

Thus a set of rectangles covering the set G can he
replaced hy a larger number whose sum of diagonals raised to
the power 2^ is less than K times the sum of the diagonals
of the original set raised to the power 2^, and hence

m(D,x:̂ (̂ ) = 0 since K < 1
i.e. = 0
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We assumed that the vertex of the cuhoid which
contains G, that is the point (xo,yo,Zo,t@) satisfies Xq < Zg 
and yo < tg . This implies that a and h (the valuds before 
the origin of coordinates was changed) are positive. But 
S^S(a,h) = S(-a,“h)^S and hence the theorem has been proved 
for either a and h hoth positive cor a and h hoth negative.
If a is positive and h negative then a differentuproof is 
required. If in the lemma B' is taken to he smaller than 
a ' i.e. the A's and the B's are interchanged then the lemma 
will dtill hold although the limits on the value of ĥ i will 
he changed. The following proof of the theorem can he then 
applied taking yg > tg. This can he done since in proving 
the lemma the value of a^ taken to find the maximum valus 
of f(ai,hi) was independent of the value of h^ taken. Thus 
the theorem can he proved for a positive and h negative or a 
negative and h positive.

This completes the proof of Ibhe theorem.
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CHAPTER V
THEOREM V.1

In real Euclidean space of two dimensions the necessary 
and sufficient condition for a measure function h(x) to he a 
N-M. A.-dimen si on function is that

lim inf h(x) > 0
x-O X

Proof
Necessity Let S he any finite set in the plane and h(x) a
measure function such that lim inf h(x) = 0. Then S can

x->0 X
he completely contained in a convex set of area a . Let 8  ̂
he the class of all coverings LL of the set 3 such that LL
is a class of convex sets U with A(U)< ô .

Then inf S h(A(U))< inf a h(ô)
Lie UeLL ô

i.e. B^(S,h) < a inf h(ô)
Ô

and hence B(S,h) = 0

Sufficiency (1 ) Assume that lim inf h(x) = /3 0 < 4 < #o
x-O X

Let J he the unit square In the real Euclidean plane.
Then hy the same argument as the ahove

B(J,h) < 13 
Given e> 0 there exists ô such that

h(x) > (4- e) all x< ô
X

Let 63 ̂  he the class of all coverings LI of the set J such
that LI is a class of convex sets U with A (U)< 0
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Then 2 h(A(U))  > (0 - e) 2 A(U)
UeLi U € l l

This holds for all 11 € and hence6
Bg(J,h)  > ifi-e)

i.e. B (J ,h )  > ifi- e)
This is true for all e> 0 and hence

B (J ,h )  = fi

(2) lim inf h(x )  = <»
X->0 X

As in theorem in section 11,1, on page 5 this implies that there
exists arbitrarily small positive numbers x such that

h (x )  < 2 inf h i t )  , . \
X 0<t^x t

Let be any positive sequence of increasing numbers
1such that 2 % is convergent. Define a seouence of numbers 

in the following way.
(a) Let Xq be any number satisfying (i)
(b) Xn satisfies (i) for all n.
(c^ h(xn—i) — L(xn) Cp ^ Ap
( d ) 2. Cp . Xp < Xp

All three conditions can be satisfied simultaneously and 
Xp->0 as n-*oo .

Construct a set S in the following way. In the 2-dimensional 
coordinate plane take a rectangle Sq #iich is the cartesian 
product of a closed interval length Xg on the x axis and a 
closed interval length 2 on the y axis, the interval on the 
JT axis being denoted by J.
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Let Kp denote the integral part of Cp and define Zp by 
(^n )zp = Xn—i for all n.

On the base of Sg talce closed intervals length so
thàt between any two such intervals lies an interval length 
Zĵ . Take the cartesian product of these intervals length 
x^ with the interval J and denote this set by . On the base 
of each rectangle of take Kg closed intervals length Xg 
two such intervals being separated by an open interval length 
Zg. Take the cartesian product of these K^Kg closed intervals 
with J and denote this set by Sg. Continuing in this way we 
obtain a sequence of sets 81....8p... such that each Sp is 
closed and Sp d 8p+i.

00
Let S = n Sp. Then 8 is also closed.1

(a) To prove that B(S,h) < «0
Since Xp-> 0 as n~»«o given any number ô > 0 there exists a

number n^ such that Xp is less than ô . Any set Sp is a0
covering of 8 and if Sp denotes a rectangle of Sp A(sp)='Xp 
Thus for any n > n^ Sp is a covering of S with A(sp)< ô for 
all Sp e Sp.
Then ... .Kp h(b(sp)) ^iq....Kp_j_ h(A(sp«^))

< h(xg ) by (c), and the
fact that Kp ^ Cp.

Thus B^(8,h) < h(xo) for all ô > 0
and nence B(S,h) ^ h(xg )
(4) To prove that B(S,h) > 0

Let XL be any covering of open convex sets U, XL covering
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the set S. Then any set Ue'U. can he completely contained 
in a triangle area 4 A (U) or 4 triangles area A(U). Any ,
such tri.aigle in turn can he completely contained in a j
parallelogram P with one pair of s ides lying parallel to ( 
the y axis. Let (? he the class of all such parallelograms 
P corresponding to the sets Ue 11.
Then ,

/  3 h (A (U ))  > 3 h (A (P ) )
Uetl Pe(?

LEMMA
Given any finite covering Q  of the set S, Q  consisting 

of open parallelograms with one pair of sides parallel to 
the y axis, there exists a covering of rectangles R which 
have sides parallel to the axes; their hases lying on the 
X axis and heights 2. "phen- is such that

4 2 h(A(P)) > 2 h(â(R'))
Re(k

Proof of the lemma
Since S is a closed set and the limit of a decreasing 

sequence of sets ^S^], given any r]> 0 there exists an integer 
n such that every point of Sp n^ng is within a distance 77 
of S. Any finite covering hy open convex sets of the set 8 
will also cover all points within a certain 77 of S and in 
particular the covering of parallelograms (? covers all sets 
Sp for n > some ng.

Take n^ rig and consider the set Sp ̂ P Pe<P . This set 
consists of parallelograms of finite area. Denote the total
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area of these parallelograms i.e. the total area of Sp
contained in P hy Ap(P). Ap(P) is a number and not a set
and

S  A n ( P )  > 2 K n K n _ i . . . K ,  x„PeG>
. = An(P)

Consider any Pe ip . Let the length of the sides of P 
parallel to the y axis he 4 and the perpendicular distance 
between them he a. Then A(P) = ia4 . If P is replaced hy 
a rectangle W with sides parallel to the axes of length a 
and 4, the side length a lying parallel to the x axis, and 
W is placed so that the sides parallel to the y axis have 
the same x coordinate as the corresponding sides cbf P then

A(W) = 2 c%4 = A(P) 
and An(P) = An(W)

Nov/ consider the variation in A^CW) as the position of W 
is changed it's size and shape remaining constant, and the 
sides remaining parallel to the axes.
(a) Moving the rectangle W in a direction parallel to the 
y axis. This leaves the value of Ap (V/) unaltered as long as
W is contained in Sg throughout.
(h) Moving W in a direction parallel to the x axis.

Let t he the integer such that x^-i > base of W > x̂
If W is not originally contained completely iha rætangle 
SL_i E then moving it until it is just contained in such
a rectangle can only increase the value of Ap (W). If W is
completely contained in a rectangle ŝ  and is moved so that
in its new position its right hand side coincides with the



-61 -

right hand side of a rectangle ŝ, g St whilst still heing 
contained in 8t_i then Ap(W) either remains constant or 
increases hy at most a factor 2xt •

Thus if W and W* are two similar rectangles parallel to 
the axes, W placed anywhere in Sg and W* placed so that it 
is completely contained in a rectangle St_i and its right 
hand side coinciding with the right hand side of one of the 
rectangles st and its hase lying on the x axis then 

An(W') > An(W)
This position of W* vdll then he referred to as the hest 

position for a rectangle. For t he purpose of this definition 
we have stated that the right hand sides must he coincident.
It is clearly immaterial whether we choose the right hand 
sides or the left hand sides to he coincident as long as the 
rectangle is contained in 8t_i.

Consider a rectangle W placed in the hest position. Let 
W have sides length a and (3, a heing placed on the x axis and 
4 the height. Let 4 ^ 1. Divide W into two sets and Wg 
hy a perpendicular line bisecting the base. Then only one 
of the sets and Wg is necessarily in the hest position 
say .

Thua An(Wi) > An(Wa)
If Wg is placed ahove Wj, to form a rectangle W* sides a and 24

2
thwn An(W') = A^(W^) + An(Wi)
since moving a rectangle parallel to the y axis leaves 
Ap(Wi) unaltered.
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> An(Wi) +An(Wj 
= An(W)

If 24< 1 also then a rectangle W'' is obtained sides a and k0
k

such that Ap(W") ^ Ap (W') ^ Ap (W)
Proceeding in this way a rectangle Q can be obtained 

such that
(1 ) Q is in the best position
(2) The height of Q is greater than i
( 3 ) A n ( Q )  >  A n ( W )
(il) A(Q) = A(W)

Thus it has been established that given any parallelogram 
P there exists s rectangle Q such that if Q is placed in 
the best position for itself,
(1 ) Q has sides parallel to the axes
(2) height of Q> 1
(3) A(Q) = A(P)
(J+) A n ( Q )  »  A n ( P )

Corresponding to every Pc (P take one such rectangle Q 
and denote the class of all the rectangles Q by & . Then
a. is finite. Enumerate the rectangles of Q so that if
â  is the base length cf

&L < 8.J if i > j.
The class is now placed on the set Sp so that every

Q g is in the best position and they are all disjoint.
In order that the set Sp will be covered we have to place 3
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additional sets Q around the first one and these extra sets 
may overlap. Thus a class 4 2. is actually made to cover Sp 

Let qi he the integer such that

-1 > si >
Denote each rectangle of S^ hy SfJ and enumerate them from the 
right.

Place in the right hand bottom corner of • This

is clearly the best position. Place a similar rectangle 
above this one and two more alongside these so that ih^all 
they cover a rectangle height ^2 and base 2â .̂ We consider 
next the different cases that can occur.
Case (1 )

Suppose that â  < x^ _^/2 and = .... = qj+i

Let alonq meet rectangles s . Then the 4 rectangles 
will completely cover these first r^ rectangles s but 

will not cover the rectangle s^ . Place Qg so that its 
right hand bottom corner coincides vdth the right hand bottom 
corner of s^4+1 As with 0̂  place 3 more fectangles similar 
to Qg one above and two alongside the first Qg to the right 
so that a rectangle height 2 and base 2agis covered. Then 
if the first rectangle Qg met rg rectangles s (q^was assumed 
to be equal to q^) the 4 rectangles Qg will completely cover
these rg rectangles. Thus all the rectangles s^ ŝ  ....
^q have been covered. Place Qq so that its right hand

bottom corner coincides with the right hand bottom comer of
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the rectangle j^gpeat the process with Qo and

50 on. An integer t is then obtained such that when the
first rectangle Qt is placed in position as described above
it is completely contained:in ŝ  . and eitherI
(i) when the three additional sets are placed in their 
prescribed positions alongside and above the first one the 
covering of all the rectangles s contained in ŝ  . is0.1 di-1
completed or
(ii) the threeo.extra rectangles do not complete the 
covering of all the rectangles s^ g si but the set Qt̂ .!

#hen placed in its prescribed position that is with its
right hand bottom corner coinciding with the right hand
bottom corner of the rectangle not0.1
completely contained in s^ .

In the case (i) the set Qt+i is placed in the right hand
bottom corner of s^ and the process repeated over this 
rectangle.

In the case (ii) let w be the distance between the left 
hand bottom comer of s^ and the left hand bottom corner
of the first rectangle Then since the three additional
sets did not complete the covering of s^ w > a^ ̂  ̂ t+i ' 
Also since when placed in position was not contained in

&t+i > w - . Thus if Qt+i is placed so that
its left hand bottom corner coincides with the left hand
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bottom corner of it will not overlap the first rectangle
Qt and when the extra rectangles Qt and Qt+i are placed in 
position the covering of all ŝ  ̂ e s^ is completed. The 
rectangle Qt+a is then placed in the right hand bottom 
corner of s^^_^ and the process repeated over this rectangle.

Case (2)
Suppose that a^ < _^/2 but for some j < t (t as defined

in the previous case) qj < qj-j. In this case when Qj is
placed so that itd right hand bottom corner coincides with
the right hand bottom comer of the rectangle +9.1
it will be completely contained in this rectangle and the 
process can be repeated using this smaller rectangle s9j -1
instead of s^ ..qi-1

Case (3)
Suppose that ^ x^ _^/2. Vi/hen the 4 rectangles are

placed in position they completely cover the rectangle s^
and Qs can then be placed so that its right hand bottom
corner coincides with the r i^t hand bottom corner of ŝ  ,9.1"" '
and the process is then repeated over this rectangle.

In each case the first rectangle Q was placed so that 
it was in the best position and also so that it did not 
overlap any other first rectangle.

The method described above can be used as long as %  > n. 
But if for some i, qi < n a sli^tly different approach is
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needed. Let j be the first integer such that qj < .n. Then
by the above method Qj is placed in the right hand bottom
corner of a rectangle Sp . If aj  ̂Xg/2 the 4 rectangles 
Qj when placed in their prescribed positions will completely 
cover the rectangle Sg and there is no difficulty. If
aj < Xn/2 since â  is a decreasing sequence of numbers
there exists an integer k such that

Xn/2 < aj + aj+i + ....  + 3k < Xp.
These (k- j+ 1) rectangles are then placed in the right hand 
bottom corner of the rectangle s„, each one with a similar 
rectangle above it. Then these two sets of rectangles cover 
a rectangle contained in ŝ  of height 2 and base aj + ... + â
^ Xn/2. If two more sets of rectangles Qj...(̂  are now 
placed alongside the^e the covering of Sp is completed.
In this case it ia trivial t&at if is the parallelogram 
corresponding to Qi then for the first %  used

An (Ql ) ^ Ap (P[, ) i ^ j .
Continue in this way until the covering of Sp is completed 

or all the sets QeQ, have been used, without completing the 
covdring of Sp. The second a Iternative is impossible sin#e 
considering oply the first rectangle used each time all 
the are disjoint and hence if. the covering has not been 
completed

2 Ap ( Ql ) < Ap ( Sg )

B u t
«.lat 1/

^ Ap ( Sg )
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which gives a contradiction.

To complete the proof of the lemma each set of 4 
rectangles are replaced by 4 rdctangles Ri A(Rl)= A(Qt)
where R has heigit 2 and base on the x axis. The first 
rectangle R is placed so that its right hand side (or left 
hand side in the special case of a rectangle placed as 
described in case 1 (ii)) coincides with the right hand side 
(or left hand side) of the first rectangle and the three 
rdmaining rectangles R;, are placed adjacent to this one.
Then if is the class of all such rectangles R, dh covers 
4 &  and

2 h(A(R)) 3 2 h(A(Q))
RG61

Since A(Q^) = A(Pi) for all i
2 h(A(QL)) < 4 2 h(A(Pi))

QlG^^ Pl Ĉ?
hence 2 h(A(R)) ^ 4 2  h(A(P))

RGÜl PG#
which completes the proof of the lemma.

Denote by R(S,h) the measure obtained by limiting the
class of coverings XL of S to coverings dl of rectangles
R as defined in the lemma.

Then it has been proved that
2 h(A(U)) > a h(A(R))

Uetb 16 Re A
This holds for all ft e (B. and henceo

B(S,h) > _1_ R(S,h)
16
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Consider any rectangle R with base length a. Then 
A(r ) = a. Also for any Spe Sp A(sp) = Xp. The problem 
now reduces to the one dimensional case of the proof of
the sufficiency in the theorem of Section 11,1, on page 5.
For if S ’ is the projection of 8 on the x-axis and S the 
class of intervals projected by ^  on the x-axis

d(l) = A(R) IG Ü and R g (R
2 h(d(l))= 2 h(A(R))
IĜ ) Rg <R

and hence
m(S’,h) = R(S,h)

It was established in the proof referred to above that 
m(S’,h) > 0 

Thus R(S,h) > 0
and so B(S,h) > 0
This completes the proof of the theorem.

SECTION V, 2.

THEOREM
The metric area measure of a plane set formed by taking

the cartesian product of any set on the x-axis and an
interval on the y-axis is zero or infinite for any measure
function h(x) such that

lim h(lyy:) = a where X is any 
x->0 h(x)

positive inte^r and X / a.
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Proof

Denote the plane set hy S and let he the class of 
all coverings 11 of the set S, 11 consisting of convex sets 
U with d(U)< Ô. Tak- cartesian coordinates so that S is 
the cartesian product of a set D on the x-axis and an interval 
J on the y-axis. Multiply the y coordinate of every point 
of S hy X. Denote the set obtained thus by 8^. Then 
may be divided into X sets similar to S by drawing (X-1 ) 
lines parallel to the x-axis at a mutual distance d(j) apart. 

Since the measure is metric
XA(8,h) = A(8^,h) (l)

Multiply the y coordinate of every point u g  Ue 11 by X 
Then the resulting class 11^ of convex sets covers the
set 8^ and A(U^) = X A(u) for all UG 11 
Hence

A._(8_,h) ^ inf 2 h(XA(u))
^ UGH

Now consider any covering Xl! of 8^. Divide the y
coordinate of every pojnt belonging to a member of this
class by X and the resulting class is then a covering of S.
Hence

A. _(8.,,h) ^ inf 2h(XA(U))
^ IlG UGIL

i.e. A (S ,h) = inf 2 h(xA(U))
^ 1G U G H

If h(lx) -> a as X -» 0 
h(x)

then A(S^,h) = aA(S,h) (2)
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But if X / a (1) and (2‘) are contradictory unless A(S,h) 
is zero or infinite.

This ptoves the theorem.
Remark This theorem applies to h(x) = 0<r < 1 .

COROLLARY
Non-metric area measure is in fact non-metric.

If non-metric area measure was metric the above proof could
he used to establish that B(S,h) is zero or infinite for any
set S consisting of the cartesian product of a set on the
X axis and a closed interval J on the y axis whenever h(Xx)-> a

X
as X 0 X / a. But this is a contradiction of the 
theorem established in Section V,1, and hence this measure 
is non-metric .

SECTION V.3.
THEOREM

If 0 < a <1 there exists a set S having finite non-zero 
metric area measure v/ith dimension function x^, in 2-dimen- 
sional real Euclidean space, a rational.
Proof

Construct the set 8 as follows. Let [Kp 1 be a rapidly 
increasing sequence of positive integers. Now choose a
sequence of numbers Xp such that Xg = 1 and

Kp Xp = Xp - jL ( O
Then Xp 0 as n -> ©o. Let
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Zp = --1  “ L̂ pXp] (2)
WrFTT

Let Sg denote the unit square in two dimensional real 
Euclidean space with sides parallel to rectangular cartesian 
axes. Along each side of Sg take closed intervals of 
length Xi interspaced hy (K^-1 ) open intervals of length 
and from these intervals -construct a network of closed 
squares side x^, (K^-l open squares side and rectangles 
sides Xi and ẑ  . Delete all hut the closed squares 
from Sg and denote the set so obtained by S^ and any square 
belonging to S^ by s^. Along each side of each ŝ  € 8^ 
construct Kg closed intervals length Xg interspaced by 
(Kg-1 ) open intervals length Zg and as before construct the 
network to obtain the set Sg consisting of K^ K^ closed 
squares Sg side Xg. Contmnuing in this way a decreasing

eo
sequence of sets Sp is obtained. Let S = n Sp. Then

1
S is the required set.

(i) To prove that A(S,x^) < »s
Since Xp 0 as n -> *o given any ô> 0 there exists n such 

that Xp < Ô . Thus for such an integer n Sp is a covering 
of S which consists of squares Sp with d(sp) < ô and also
A(Sn) = x„g 

2
Then (K^--- K^)® x„® “ = (Ki  Kn_i)® x an _ i

=  _1  < #0
2«
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Hen ce A^(S,x*^) < oo . Since this holds for all ô > 0
A(S,x^) < eo.

(ii) To prove that A(S,x^) > 0.
From the proof of the theorem in Section V,1, it is 

sufficient to prove this result considering only coverings 
of parallelograms with one pair of sides parallel to jshe 
axes. Since the sides can he chosen to he parallel to 
either of the axes the parallelogram can he chosen so 
that its acute interior angle is greater than ir/k» For 
if U is any set belonging to a covering ih of S and in the 
diagram helow the triangle XYZ contains U and is si^ch that 
the area of XYZ = UA(U), the parallelogram P is then 
taken so that A(P) = A(XYZ). Let XZ he the shortest 
side. Then P must have Y ad a vertex and either YZ or 
YX as one side.

o'

7 o
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Let YO and YO* be the lines parallel to the axes.
Then the interior acute angle of P is either XYO or ZYO*.

XYO + ZYO' - XYZ = 7t/2
and hence either XYO or ZYO* is greater than tt/U

Let P he such a parallelogram and let the acute interior
angle he /3. Let the length of the pair of s ides parallel 
to the axis he a and the perpendicular distance between 
these sides he h. Then A(P) = -̂ ah.

Let m he the integer such that x^ < h < Xm-^.
The set consists of squares ŝ  w^^ich are
arranged in (K^....Km) columns parallel to the sides of P 
length a. Let P meet r of these columns.
Then h > (r-l)zm + (r-2)xm
and (Ja'b)” > (4a)“ [(r-1)zm + (r-2)x„]“

From (1) and (2) J

therefore . z(iab) > (iaxm) r (r~l) + (r-2)-|“
 ̂ Km-1 ^

Let he the class of parallelograms P which covers S.
Then if for every Pe(? (iah)°̂ ’ > r (tax^ each parallelogram

2
P can he replaced by r parallelograms which have one pair of 
parallel sides coinciding with thé sides of a column of 
squares ŝ  and if such parallelograms are denoted by Q and 
the class of all Q needed to cover S by S, then

2 (A(P))“ > ii 2 (A(Q))®1
Pe (P Qe a
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Hence it is sufficient to consider only coverings of 
parallelograms Q if we can establish that

+ (r-2)l > r
% - 1  J 2

or ( r - l ) K j / “ - K ^ -  (r-2) > )

i-e. - r(Kj/“ -l) + + K„ - 2

= f(r) < 0.

Consider the function f(r) for r > 2. Differentiating

dr P~T7a

and thus there is only one real positive value of r for
which df = 0. 

dr
When r = 0 f(r) = + K„, - 2 > 0 ,

When r = 2 f(r) = + 2K„ - 1 < 0

since Km is large.
W&snr = Em f(r) = “ H'- + S'l -

+ 2Km - 2 < 0
since Km is large.
As r -> +«o ,f(r)->+*o.

Since f(r) has only one turning point f(r) < 0 tiiroughout 
the range 2 ̂  r < Km . Since the integer m was chosen so that 
Xm-i > t) the parallelogram P will meet at most Km columns 
of squares Sm and so we have established the desired result.
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A parallelogram Q with sides coinciding with the sides 
of a column of squares s^ can he replaced hy Km+i parallelo
grams Q with sides coinciding with those of columns of squares
Sni .jL without affecting the sum 2 (A(q ))°̂

Q€ Q-
Now consider any parallelogram P with sides parallel 

to the axes length a perpendicular distance between them 
b and the acute interior angle (3> jr/k» Let q be integer 
such that x^_^ > a > x̂ .̂ Prom the above we can take b < x^.
For if b > Xq̂  we can replace P by parallelograms Q with b = x̂ .̂
Let P meet t rows of squares s^, the rows being perpendicular 
to the sides of P length a.

Then a + b cot j3 > (t-2)x^ + (t-l)z^

and since b cot /3 < x̂ .̂
a > (t-3)Xg^ + (t-1 )z^

By the same argument as the above
(iab)” » t (ix b)“

2
Combining these results if n is an integer such that 

a ^ Xn and b ^ x^ and P meets fx squares ŝ  then

Thus 4 2 (A(P))* ^ 2 (6(sn))G
Pe 9

and since this holds for all coverings of parallelograms 
P it is sufficient to prove the result for coverings Sp, 
only. But we have already established that

 ̂ (^(sn))^ = (i)*̂  > 0 for all nSnCSn
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and hence A(S,x^) > 0.

This completes the proof of the theorem.
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CHAPTKR VI

SECTION VI.1.

THEOREM
Let LI La the class of all convex sets U covering a given 

total arc length ô on the circumference of a unit circle.
Then the least value of A(U), Ue LL is the area of the 
greatest triangle that can he drawn in a segment of the circle 
covering an arc length ô.

LEMMA
Let 8 he a closed set of linear measure X < Utt/3 on

the frontier of the unit circle. Then there exists three
points belonging to S such that the least length of arc
hetweun any two of them is X/2.

X

IY
z
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Consider the class of all triangles having vertices in S, 
Let XYZ he one such triangle having the greatest value of 
least side length and let YZ he this shortest side. Draw 
YY* parallel to XZ and ZZ* parallel to XY cutting the circle 
again in Y* and Z* respectively. Y* lies at Y or on the side 
of XY opposite to Z and Z ’ lies at Z or on the side of XZ 
opposite to Y. For if, for example Y ’ lies on the same side 
of XY as Z then XY = Y*Z < YZ which contradicts the hypothesis 

If XY = YZ = ZX each vertex is at an arc length 2 w/3 
from the other two and since \ < 4 w/3 the lemma follows.

Otherwise there is no loss in generality in assuming that 
XY > YZ, which implies that Y* and Y do not coincide. Take L 
on the arc XY^, M on the arc YZ and N on the arc Z ’X such

arc YM = arc XL - 2 ô
arc Z ’N = arc XL - Ô .

where ô is small and.positive. Then
arc LN = arc XZ' + ô '
arc LM = arc XY - 2 ô
arc MN = arc YZ* + ô '

Choose Ô so small that arc XY - 2 ô> arc XY*. Then since!
arc XY* = arc XZ* = arc YZ it follows hy the extremal property
of the triangle XYZ thÈt at least one of the points L, M and 
N does not belong to S. If L is allowed to vary in such a 
way that Le XY* Me YZ and Ne XZ* then of the three^ points 
at most two belong to S, and hence the measure of S in the 
arcs YZ, Z*X and XY* is at most 2(3arc YZ + 6ô)/3* This is
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true for all ô > 0 and hence the measure of S in the arcs 
YZ, Z'X and XY* is at most twice the arc YZ. But since no 
point of S can lie in the arcs YY* and ZZ* hy the extremal 
property of the triangle XYZ the measure of S in the arcs 
YZ, Z*X and XY* must he X and thus the arc YZ ^ X/2. This 
completes the proof of the lemma.

Pro of of the th eorem
Let Uq he one set belonging to the given class. Then 

Uq cuts the frontier of the circle in a set of linear measure 
X say. By the lemma if X < U rr/3 9 there exists three points 
X, Y and Z belonging to Uq and such that the least length 
of arc between any two of them is X/2. Let arc YZ = a, arc ZX 
= (3* Then

area of triangle XYZ = i(sina + sinjS- sin(a+/3))
= f(a,/5)

f(a,/3) takes minimum value when a and j3 take their minimum 
values i.e. when a= /3 = X/2. In this case the points Z and Z* 
of the lemma coincide, arc XZY = X and the triangle XYZ is 
the greatest triangle that can be drawn in a segment of the 
circle covering an arc of length X.

\Yhen X > U tt/ 3 then by the lemma applied to a subset of 
linear measure U 7t/ 3 there exists three points each at an 
arc length 2 7t/ 3 from the other two and this is the greatest 
triangle that can be drawn in a segment of the circle covering 
an arc length X > 4 w/3# This completes the proof of the t 
theorem.
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RBMARK
Consider a covering LL of convex sets U of a set S on 

the frontier of the unit circle. Let U* he the segment of 
the circle covering the same total length of arc as U and let 
VL* he the class of all such sets U* . Then hy the theorem

A(U) ^ A(U') 
and for any measure function h(x)

h(A(U)) ^ h(A(U'))
This is true for all Ue LLand the corresponding U* e u! and 
hence

2 h(A(U)) 2% 2 h(A(U')).
U€ll U ’e U ’

This inequality holds for any covering LI. Given any ô > 0 
it is possible to find coverings &f the form H! such thati
both A(U') < Ô and d(U') < ô for all U* e LI* . Hence in 
calculating the metric area measure or the non-metric area 
measure of a set S on the frontier of the unit circle it is 
sufficient to consider only coverings LI* which consist of 
sets U* which are segments of the circle. Clearly for any
such set S the metric area measure is equal to the non-metric
area measure.

If X is the arc length covered by a set U*
A(U*) = i(2 sin X/2 - sinX )

= sin(X/2)(l - cos X/2)
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SECTION VI, 2 .
Relation between the metric or non-metric area measure of a 
set on the frontier of the unit circle and its generalized 
affine length.

The definition of the generalized affine length of a 
set S on the frontier of the unit circle with measure function 
h(x) was given in chapter I, Section I, 7  pn page 4 
To calculate it v/e consider only coverings r of tangent 
triangles T that is triangles formed by two tangents to the 
circle and the line joining their points of contact. Then 
if such a triangle T covers an arc length X

A(T) = sin (x/2 ) (secX/2 - cosX/2)
Consider a covering Lb* of the given set 8, Ll* consisting

of sets U* which are limited to be segments of the circle as 
explained in the preceding section. Then any arc length 
covered by a set U* can certainly be covered by two sets T 
where A(U*) = A(T). Hence there exists a covering r of 
tangent triangles T such that

2 h(A(T)) ^ 2 indT 2 h(A(U*))
Tg T  11* € u * E Zl*

where is the class of all coverings LL of the set S where
YL is such that d(u) < ô for all U € LI, and U is any convex
set.
Therefore inf 2 h( A(T) ) < 2 inf 2 h(A(U*))

7^ TCT 1Î6 U*g LL*

This holds for all ô > 0 and thus
F(8,h) < 2 A(8,h)
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Now consider any covering r of triangles T. Then any 
arc length covered hy a set T can certainly he covered hy 
a set U* where A(T) = A(U'), and hy a similar argument

P(S,h) ^ A(S,h)
Thus the generalized affine length and metric area measure 

satisfy the inequality
A ( 8 , h )  < F ( 8 , h )  ^ 2 A ( 8 ,h )

Also the generalized affine length and non-metric area 
measure of a set 8 satisfy

B ( 8 , h )  < F ( 8 , h )  < 2 B ( 8 ,h )

SECTION VI.3 .
THEOREM

The triangle of minimum area vdiich covers arcs of the 
unit circle of given total length is one such thL.t two of its 
sides are tangents which touch the circle at their midpoints.

L'EMM
In the class of all triangles which cover arcs of the unit 

circle of given total length, there exists one which has the 
minimum area.
Proof

The class of ±hiangles is hounded since every such triangle 
must contain at least the segment of the circle determined 
hy a third of the given arc length. Prom this class it is 
possible to select an infinite sequence of triangles decreasing 
in area. By the Blaschke selection theorem such a sequence
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contains an infinite subsequence which converges and the 
limit or such a subsequence will be the required minimum 
triangle•
Pro of of the the orem

Let XYZ be the triangle of minimum area given by the 
lemma, and let the total arc length covered by XYZ be 2X.
Then since XYZ is a triangle of minimum area each side of 
XYZ must either touch or cut the circle.
Case I

XYZ has three vertices outside the circle and only one 
side YZ cutting the circle.

Let XY and XZ touch the circle at L and M respectively.
A small rotation (p of the point L around the circle leaves 
the area of XYZ unchanged.to the first order in (j> only if L 
is the midpoint of XY. Such a rotation does not alter the 
arc length covered and since XYZ is the t riangle of minimum 
area L must be the midpoint of XY. Also by a similar argument 
M must be the midpoint of XZ.
Case II

XYZ has two sides XY and XZ cutting the circle and all 
three vertices outside the circle.

Let XY cut the circle in L and M and let N be the midpoint 
of LM. Then a small rotation of XY through an angle ÿ about 
N leaves the total arc length covered by XYZ unaltered.
Since XYZ is the triangle of minimum area such a rotation 
must also leave the area of XYZ unchanged to tfee first order
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in ^ i.e. N must also be the midpoint of XY. The sage result 
holds for XZ and also the point of contact of YZ is the midpoint 
of YZ.

Let XZ cut the circle in L* and M* . Let a = angle between
the tangent to the circle at L and the line XY, /3 i= angle
between the tangent to the circle at L* and XZ, a = length
of XY and b = length of XZ. Move XY a distance 77 parallel
to itself so as to increase the arc length covered and XZ
a distance jj. parallel to itself so as to decrease the arc
length covered.

Then increase in area = a?7 - b/i
and ghe increase in arc length covered = 2 77 - 2 fj,

sin a sin/3
to the first order in 77 and //. Since the triangle XYZ is 
the triangle of minimum area both these must be zero 
simultaneously
i.e. a sin a = b sin/3
But if a > b sin a > sinyS (since we have already established 
that X, Y and Z must be equidistant from the centre of the 
circle) and hence a = b and a = /3. Thus if XYZ is given 
by this case it must be an isosceles triangle symmetrically 
placed about the centre.

However it is easy to see that such a triangle is in fact 
the triangle of maximum and not minimum area. For consider 
a large displacement of the tri&n.gle in a direction parallel 
to YZ and such that the side XY still cuts the circle and 
the side XZ cuts the diameter perpendicular to YZ in a point
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above the centre.

Z'y z.

Draw the line which is the reflection of XZ in the
diameter perpendicular to YZ and let X* Z* cut the circle in 
L” and M ”. Denoting the original positions of X,Y,Z... by 
X q ,Yo ,Zo ... the increase in arc length covered is 2(L Lq -Lq L”)
> 0 since XY, X^Y^ and X*Z’ are parallel equidistant lines, 
all on the same side 6f the parallel diameter and XY is fur thest 
from and X*Z* nearest to thia diameter.

Thus XYZ, the triangle of minimum area is not given by 
this case.
Case III

XYZ has all three vertices outside the circle and all
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three sides cutting the circle.

By the same argument as in Case II it can he shown that 
XYZ would have to he an equilateral triangle placed symmetric
ally about the circle and a Iso that such a ttiangle is that of 
maximum and not minimum area. Thus XYZ the triangle of 
minimum area cannot be given by this case.
Case IV

XYZ is a triangle having one vertex outside the circle 
and two vertices inside the circle.

Let L and M be the endpoints of the arc covered. Then 
since XYZ is the triangle of minimum area Y and Z, the two 
vertices inside the circle must coincide with L and M 
respectively and XY and XZ must be the tangents at L and M. 
But such a triangle has one vertex outside and tv/o on the
circle and may be considered a s an extreme case of case I.
Thus the triangle of minimum area will not be of this form 
e i the r .
Case V

XYZ is a triangle with one vertex inside the circle and 
the opposite side not cutting the circle.

Let X be the vertex inside the circle. As we proved in 
case II if XY and XZ cut the circle in L and Mrespectively 
L and M must be the midpoints of XY and XZ. Denote this 
triangle by Q and the extreme triangle obtained in case I
by W, where W  also covers the arc IM,
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Let Td Le the height of the line joining the points of 
contact of the tangents forming W above the centre. Then

A(W) = ^ (1_ b2)3/2 
b

A(q ) = U(1 - (2b- l/b)2)^(l - (2b- -IA))
and A(Q) - A(W) = U(l-b)°/^(l+b)^ [( 1 + 2 b ) ® ( 2 b - 1 )® - b(i+b)]

b=
and A(Q) - A(W) = 0 when b = 1,-1 or

(2b + 1 )3(2b - 1 ) - b^(l + b )2 = 0
i.e. 15b* + ii+b® - b® - 1+b - 1 = f(b) = 0
By Descartes rule of signs this has at most one positive root.
When b = 1 f(b) = 23

b = 1 f(b) = 9+ 6«/2
72

b = 0 f(b) = -1,
and thus the root occurs in the interval 0 < h < 1

V2
But the least value of h giving a triangle of the form 

described in case V is b = 1/sf2 since for this value of b 
the vertex X lies on the circumference of the circle. Thus 
for all possible triangles Q and A(Q) > A(W) and thus 
the minimum triangle cannot be one of the form Q i.e. one 
belonging to case V.
Case VI

XYZ is a triangle hscving one vertex X inside the circle 
aid the opposite side cutting the circle .

Let XY, XZ cut the circle in L and M respectively and let
YZ cut the circle in L* and M* . Then as established in 
Case II L is the midpoint of XY and M the midpoint of XZ
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and also YL* = M'Z. Thus XYZ is an isosceles triangle.
Denote this triangle hy Q* and as in the previous case
let W denote the triangle of minimum area obtained in Case I
which covers the same arc length as Q*. If N is the midpoint
of XY and 0 the centre of the circle let NOD' = a.

Then A(Q*) = k sin( A+a) (cosÀ- cos( ?\.+a) )
d A(Q* ) = 4 (cos(2a+ A) - cos (2a + 2A) ) 
doc

and d A(Q/ ) = 0 when = w - ̂
da 2 t"

giving the maximum value of the area. The minimum value of 
A(0/) occurs either when a = 0 in which case the triangle 
Q* becomes one of the kind dealt with in Case V or when the 
vertex X, which is the one inside the circle lies on the 
circumference. This may be considered as an extreme case 
of Case III. But neither case V nor case III gives the 
triangle of minimum area and hence this case does not either.

If XYZ is such that one side cuts the circle its position
is given by one of these six cases. It has been established
that when A< tt the only case giving a triangle of minimum
area is case I. This is the triangle described in the
statement of the theorem.

If A= TT no side of XYZ can cut the circle and the triangle
of minimum area is equilateral with each side touching the
circle at its midpoint. But this is the extreme case of the
triangle described in the statement of the îfcteorem and thus 
ere have completed the proof of the theorem.
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SECTION VI,4 .

THkOkBM
The necessary and sifficlent condition for the existence

of a set S on the frontier of the unit circle having finite
non-zero metric or non-metric area measure with measure
function h(x) is that

lim inf h(x) > 0 
x-̂ 0

The result is proved for the generalized affine length 
F(S,h) and since in Section VI,2, the relations

A(8,h) < F(8,h) < 2A(8,h) 
and B(S,h) ^ F(S,h) < 2B(S,h)
were established the result holds for the two area measures 
also.
Proof

The area of a tangent triangle covering an arc length 2A is
sin^ A ^  for small A
cos A

Consider any set 8 on the frontier of the unit circle and a 
covering r of triangles T as defined in Section VI,2.
Then P(S,h) = lim Inf 2 h(A(T))

Ô-0 ri ^ Tg t
= lim inf 2 h sin^ A

Ô-0 re ^ Ter cos A

^ m(S*,g)
where g(x) = h /sin^x\ and m(S’,g) is the Hausdorff diametral

\ cos X /
measure of a set 8* which is the set S considered as a set
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on an interval length 27T on the real Euclidean line with
measure function g(x).

Consider a covering 5 of intervals I of the set S'.
Then this is the same as a covering 3 * of arcs I' of the
set S on the frontier of the unit circle.
Then m(S*,g) = lim inf 2 g(d(l))

0->0 5 g^ le j 2

^ F(S,h)
Hence m(S*,g) = P(S,h)

But it was proved in Section II,i, on page 5 that the 
necessary and sufficient condition for a measure function 
g(x) to be the dimension function of a set on the real line 
is that

lim inf g(x) > 0 
x-»0 X

and this gives lim inf h sin^x
x-4-0 cos X

X
> 0

But for small values of x, sin^x %  x® and hence the
cos X

condition becomes
lim inf h U ( T ) l  > 0 A (r)->o a ( t ) W 3

and this is the required condition.
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