SOME PROPERTIES OF HAUSDORFF MEASURE THEORY

ANNE BECKET (nee TENNYSON)

5489

ProQuest Number: 10098100

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098100
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

SUMMARY

CHAPITER I

The definition of all the measure functions used in the thesis.

CHAPTER II

The condition for a measure function to be a Hausdorff diametral dimension function in p-dimensional real Euclidean space is first established. Then the fact that an analytical set of infinite Hausdorff diametral measure is then proved and the necessary and sufficient conditions for a subset of a set with Hausdorff diametral dimension function $h(x)$ to have dimension function $g(x)$ are established.

CHAPTER III

Conditions on the dimension function of the cartesian product of two one-dimensional sets whose dimension functions are known, are established.

CHAPTER IV

The proof of the existence of a plane set S with Hausdorff diametral dimension function $x^{2 \alpha} \quad \alpha=\frac{\log 2}{\log 3}$, such that if s is translated through any distance in the plane then the intersection of S with itself translated has zero Hausdorff diametral measure with dimension function $x^{2 \alpha}$.

CHAPTER V

The two area measures are considerea in two dimensional real Euclidean space only. The necessary and sufficient condition for a measure function to be a non-metric-area
dimension function is established and the metric area measure of sets which are the cartesian products of intervals with linear sets is found. These a re used to deduce that non-metric-area measure is in fact non-metric. The condition for x^{α} to be a metric area measure is also established.

CHAPTER VI

This deals with sets on the frontier of the unit circle. First the connection between the area measures and the generalized affine length is established. Then the triangle of minimum area covering a given total arc length is found and finally the necessary and sufficient condition for a measure function to be a Hausdorff diametral dimension function for such sets is found.

CHAPTER I

SECTION I, 1.

NOTATION

The following is the general scheme of notation used. throughout the thesis:

The letter S represents a set and the small letter s represents a point belonging to S.

Other letters used to represent sets are F, G, E, D and H .
J.is used to represent a cube and f represents a class of cubes J.
V is used to represent an open set and V represents a sequence of sets V.

The following letters are used to denote coverings of a given set:
2C denotes a covering of convex sets U.
I denotes a covering of p-dimensional intervals I.
Q denotes a covering of rectangles R.
P denotes a covering of parallelograms P.
τ denotes a covering of tangent triangles T (this is limited to sets on the frontier of a circle: a tangent triangle is one consisting of two tangents and the line joining their points of contact).

The diameter of a set U is denoted by $d(U)$ and the area of the greatest triangle that can be taken with vertices in U is denoted by $\Delta(U)$. Then A δ denotes the class of all coverings $2 C$ consisting of convex sets U with $~ d(U)<\delta$ for all $U \in \mathcal{L}$.
Bs denotes the class of all coverings χC consisting of convex sets U with $\Delta(U)<\delta$ for all $U \in L C$.

All other notations are given in the following sections or explained in the theorem in which they occur.

SECTION I, 2 .

DEFINITION - MEASURE FUNCTION

A function $h(x)$ is said to be a measure function if it has the following properties:
(a) $h(x)>0$ for all $x>0$.
(b) $h(x) \rightarrow 0+$ as $x \rightarrow 0+$.
(c) $h(x)$ increases as x increases.

SECTION I, 3.

DEFINITION - HAUSDORFF DIAMETRAL MEASURE of a set S with measure function $h(x)$.

Let δ be any positive number. Let A_{δ} be the $c l a s s$ of all coverings \mathcal{U} of the set S, \mathcal{C} consisting of convex sets U with $\alpha(U)<\delta$ for all $U \in U$. Then the Hausdorff diametral measure of S with measure function $h(x)$ is defined as

$$
\lim _{\delta \rightarrow 0} \inf _{U \in A_{\delta}} \sum_{U \in U} h(\alpha(U))
$$

This will be denoted by $m(S, h)$. The function inf $\Sigma h(d(U))$ will be denoted by $m_{\delta}(S, h)$.

SECTION I, 4.

DEFINITION - DIMENSION FUNCTIONS

A function $h(x)$ is said to be a dimension function if there exists a set S having finite non-zero Hausdorff diametral measure with measure function $h(x)$.
A set S is said to have dimension function $h(x)$ if

$$
0<m(S, h)<\infty
$$

$-3-$

SECTION I, 5 .

DEFINITION - METRIC AREA MEASURE of a set S with measure function $h(x)$.

Let δ be any positite number and let A_{δ} be the class of all coverings $l($ of the set $S, ~ Z L$ consisting of convex sets U with $\alpha(U)<\delta$ for all $U \in U$. Then the metric area measure of the set S with measure function $h(x)$ is defined as

$$
\lim _{\delta \rightarrow 0} \inf _{U \in A_{\delta}} \sum_{U \in U} h(\Delta(U))
$$

This will be denoted by $A(S, h)$. The function $\inf _{\mathcal{L} \in A_{\delta}} \sum_{U \in L L} h(\Delta(U))$ will be denoted by $A_{\delta}(S, h)$.

A measure function $h(x)$ is said to be a M.A. dimension finnction if there exists a set S such that

$$
0<A(S, h)<\infty
$$

SECTION I, 6 .

DEFINITION - NON-METRIC AREA MEASURE of a set S with measure function $h(x)$.

Let δ be any positive number and let \mathbb{B}_{δ} be the class of all coverings U of the set S, \mathcal{C} consisting of convex sets U with $\Delta(U)<\delta$ for all $U \in L C$. Then the non-metric area measure of the set S with measure function $h(x)$ is defined as

$$
\lim _{\delta \rightarrow 0} \inf _{U \in \mathbb{B}_{\delta}} \sum_{U \in Z C} h(\Delta(U))
$$

This will be denoted by $B(S, h)$. The function $\inf _{\mathcal{L} \in \mathbb{B}_{S}} \sum_{U \in L L} h(\Delta(U))$ will be denoted by $B_{\delta}(s, h)$.

A measure function $h(x)$ is said to be a N.M.A. dimension function if there exists a set S such that

$$
0<B(S, h)<\infty
$$

SECTION I, 7.

DEFINITION - AFFINE LENGTH and the GENERALIZED AFFINE LENGTH of a set S on the frontier of the unit circle.

Let δ be any positive number and a_{δ} be the class of all coverings τ of the set S, τ consisting of tangent triangles T with $\alpha(T)<\delta$ for all $T \in \tau$. Then the affine length of the set S is defined as

$$
\lim _{\delta \rightarrow 0} \quad \inf _{\tau \in a_{\delta}} \quad \sum \Delta(T)^{1 / 3}
$$

The generalized affine length of the set S with measure function $h(x)$ is defined as

$$
\lim _{\delta \rightarrow 0} \quad \inf _{\tau \in a_{\delta}} \sum_{T \in \tau} h(\Delta(T))
$$

This is denoted by $F(S, h)$.

SECTION I, 8 .

DEFINITION - UPPER and LOWER DENSITIES of a set S with respect to Hausdorff diametral measure with measure function $h(x)$.

Let $C(a, r)$ be an open sphere centre the point a and radius r. Then the upper h-density at the point a $\in S$ is defined as

$$
\lim _{\mathcal{C}_{0} \rightarrow 0} \sup _{\substack{r>0 \\ r<\delta}} \frac{m\left(S_{\wedge} C(a, r), h\right)}{h(2 r)}
$$

The lower h-density at the point $a \in S$ is defined as

$$
\lim _{\substack{r \rightarrow 0 \\ \delta \rightarrow 0}} \sum_{\substack{n>0 \\ r<\delta}} \frac{m(S, C(a, r), h)}{h(2 r)}
$$

The upper h-density is denoted by $\bar{D}(a, h)$ and the lower h-density at the point a is denoted by $\underline{D}(a, h)$

-5-

CHAPTER II

SECTION II, 1.

THEOREM

In p-dimensional real Euclidean space the necessary and sufficient condition for a measure function $h(x)$ to be a dimension function is that

$$
\lim _{x \rightarrow 0} \inf \frac{h(x)}{x^{p}}>0
$$

Necessity

Assume that $\lim _{x \rightarrow 0}$ inf $\frac{h(x)}{x^{p}}=0$ and let S be any bounded set in the p-dimensional space. Then S can be completely contained in a p-dimensional cube of p-dimensional volume v. Let A_{x} be the class of all coverings $\mathcal{L C}$ of the set S, \mathcal{U} being a class of convex sets U with $d(U) \leqslant x$.

Then since a cube of volume v can be covered by at most
$\left(\frac{v^{1 / p} \sqrt{p}+1}{x}\right)^{p}$ cubes of diameter x it f ollows that

$$
\inf _{U \in A_{x}} \sum_{U \in U C} h(d(U)) \leqslant \inf \left(\frac{v}{x}^{1 / p} \sqrt{p+1}\right)^{p_{h}}(x)
$$

ie.

$$
m_{x}(s, h) \leqslant \inf \left[\left(^{1 / p} \sqrt{p+x}\right)^{p} \frac{h(x)}{x P}\right] \rightarrow 0 \text { as } x \rightarrow 0 .
$$

and hence $m(S, h)=0$. Since this is true for any bounded set S it is true for any set S.

Sufficiency

$$
\text { (i) Let } \lim _{x \rightarrow 0} \text { inf } \frac{h(x)}{x^{p}}=\alpha \quad 0<\alpha<\infty
$$

Let J be a p-dimensional cube of $v o l u m e ~ v$. Then by the same argument as above

$$
m(J, h) \leqslant(\sqrt{p})^{\mathrm{p}} v \alpha
$$

Given $\in>0$ there exists δ such that

$$
\frac{h(x)}{x^{p}}>\alpha-\epsilon \quad \text { for all } x<\delta
$$

$$
-6-
$$

Let U be a covering of the cube J consisting of convex sets U with $\mathrm{a}(\mathrm{U})<\delta$.
Then

$$
\begin{aligned}
\sum_{U \in l C} h(\alpha(U)) & >(\alpha-\epsilon) \sum_{U \in L C}[\alpha(U)]^{p} \\
& \geqslant v(\alpha-\epsilon)
\end{aligned}
$$

This holds for all such coverings 26 , and hence

$$
\begin{array}{ll}
& m_{\delta}(J, h) \geqslant v(\alpha-\epsilon) \\
\text { i.e. } & m(J, h) \geqslant v(\alpha-\epsilon)
\end{array}
$$

This is true for all $\epsilon>0$ and thus

$$
\begin{gather*}
m(J, h) \geqslant v \alpha . \\
\text { (ii) Let } \lim _{x \rightarrow 0} \inf \frac{h(x)}{x^{p}}=\infty \tag{1}
\end{gather*}
$$

This implies that there exist arbitrarily small positive numbers x such that

$$
\begin{equation*}
\frac{h(x)}{x^{p}} \leqslant \inf _{0<t \leqslant x} \frac{h(t)}{t^{p}} \tag{2}
\end{equation*}
$$

Since if (2) does not hold there exists a sequence of positive numbers $t_{n}, t_{n} \rightarrow 0$ as $n \rightarrow \infty$ and such that

$$
\frac{h\left(t_{n}\right)}{t_{n}^{p}}>\frac{h\left(t_{n+1}\right)}{t_{n+1}^{p}}
$$

which contradictṣ (1).
A special sequence of numbers x_{n} is now constructed in the following way: Let $\left\{A_{n}\right\}$ be any positive sequence of numbers such that $A_{n} \geqslant 2$ for all n and $\Sigma 1 / A_{n}$ is convergent. Any positive number satisfying (2), is chosen to be x_{0}, and x_{n} is then chosen so that
(a) (2) holds for all $x=x_{n}, \quad n=1,2, \ldots$
(b) $h\left(x_{n-1}\right)=C_{n}^{p} h\left(x_{n}\right) \quad C_{n}>A_{n}$.
(c) $2 C_{n} x_{n}<x_{n-1}$

These three conditions can be satisfied simultaneously since $h(x) \rightarrow 0$ as $x \rightarrow 0_{+}$, and (2) holds for arbitrarily small x. Clearly $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Denote the integral part of C_{n} by K_{n} and define y_{n} by the relation

$$
x_{n-1}=K_{n} x_{n}+\left(K_{n}-1\right) y_{n},
$$

for every n.
A set S is now constructed as follows: S_{0} is the set of points of a p-dimensional cube side x_{0} / \sqrt{p} and diameter x_{0}. On each side of So construct ($\mathrm{K}_{1}-1$) open intervals of length y_{1} / \sqrt{p} alternating with K_{1} closed intervals length x_{1} / \sqrt{p}. From these intervals a network of K_{1}^{p} cubes sides x_{1} / \sqrt{p}, $\left(K_{1}-1\right)^{p}$ cubes sides y_{1} / \sqrt{p} and cuboids of sides x_{1} / \sqrt{p} and $\mathrm{y}_{1} / \sqrt{p}$ is constructed. All but the $\mathrm{K}_{1}^{\mathrm{p}}$ cubes sides $\mathrm{x}_{1} / \sqrt{p}$ are deleted from S_{0} and the remaining set is denoted by S_{1}. The construction is then repeated in each of the cubes of S_{1}, replacing x_{0} by x_{1}, x_{1} by x_{2}, K_{1} by K_{2} and y_{1} by y_{2} obtaining $\mathrm{K}_{1}^{\mathrm{p}} \mathrm{K}_{2}^{p}$ cubes of side length $\mathrm{x}_{2} / \sqrt{\mathrm{p}}$. This set is denoted by S_{2}. The process is repeated to form the set S_{3} and so on.
The set S is now defined as

$$
S=\Omega_{n=0}^{\infty} S_{n}
$$

(A) To show that $m(S, h)<\infty$

Given any number $\rho>0$ there exists m such that $x_{m}<\rho$, since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. For any $n \geqslant m S_{n}$ is a covering of s consisting of cubes with diameter $\mathrm{x}_{n}<\rho$.
Hence

$$
\begin{aligned}
m_{\rho}(\mathrm{S}, \mathrm{~h}) & =\inf _{\inf _{\rho}} \sum_{U \in \ell C} \mathrm{~h}(\mathrm{a}(\mathrm{U})) \\
& \leqslant K_{1}^{p} K_{2}^{p} \ldots \ldots \ldots \ldots K_{n}^{p} h\left(x_{n}\right) \\
& \leqslant K_{1}^{p} K_{2}^{p} \ldots \ldots \ldots K_{n-1}^{p} h\left(x_{n-1}\right) \\
& \leqslant h\left(x_{0}\right)
\end{aligned}
$$

from condition (b) noting that $K_{n} \leqslant C_{n}$.
$\begin{aligned} \text { Thus } m_{\rho}(s, h) & \leqslant h\left(x_{0}\right) \text { for all } \rho>0 \text { and } \\ m(s, h) & \leqslant h\left(x_{0}\right)<\infty .\end{aligned}$
-8-
(B) To show that $m(S, h)>0$.

$$
\begin{aligned}
K_{1}^{p} K_{2}^{p} \ldots \ldots K_{n}^{p} h\left(x_{n}\right) & >\left(c_{1}-1\right)^{p}\left(c_{2}-1\right)^{p} \ldots . .\left(c_{n}-1\right)^{p} h\left(x_{n}\right) \\
& =\left(c_{1}-1\right)^{p}\left(c_{2}-1\right)^{p} \ldots \ldots\left(c_{n}-1\right)^{p} h\left(x_{n-1}\right) \\
& =\prod_{\nu=1}^{n} \frac{\left(c_{v}-1\right)^{p}}{c_{v} p} h\left(x_{0}\right) \\
& =\left[\prod_{\nu=1}^{n}\left(1-1 / c_{v}\right)\right]^{p} h\left(x_{0}\right)
\end{aligned}
$$

Since $C_{n}>A_{n}$ and $\Sigma^{1 /} A_{n}$ was a convergent series the infinite product ${ }_{\Pi}^{\infty}$
S_{n}

$$
\sum_{S_{n}} h\left(x_{n}\right) \geqslant \beta h\left(x_{0}\right)
$$

where β is a constant.
It will now be established that S_{n} is a sufficiently good covering of S, i.e. given any $\rho>0$

$$
\text { inf } \left.\sum_{S_{n}} h\left(x_{n}\right) \leqslant \sum_{l\left(\in A_{S}\right.} \sum_{U \in \mathcal{U}} h(d(U))\right]
$$

using the same notation as before, y being a constant.
Let $2($ be a class of open convex sets U covering S. Every $U \in L C$ can be contained in a cube of side $d(U)$ which can be orientated so that it lies parallel to S_{0}. This cube in turn can be covered by at most $([\sqrt{p}]+1)^{p}$ cubes each of diameter $d(U)$, where $[\sqrt{p}]$ denotes the integral part of \sqrt{p}. The latter will be denoted by L and the class of all cubes L corresponding to the sets U belonging to $L C$ will be denoted by \mathcal{L}.

Then $\sum_{L \in \mathcal{L}} h(d(L)) \leqslant([\sqrt{p}]+1)^{p} \sum_{U \in \mathcal{L} C} h(d(U))$
Any L that does not contain a point of S is omitted from the sum and the remaining cubes shrunk so that at least one pair of faces contain points of S. Denote the cubes thus obtained by I and the class of all these $c u b e s$ by f.

Then

$$
\sum_{L \in \mathcal{L}} h(d(L)) \geqslant \sum_{I \in \mathcal{G}} h(d(I))
$$

Denote the cubes which form the set S_{n} by S_{n} and consider any one cube I. There exists an m such that $s_{m-1} \supset I$ whilst I is not contained in any one cube s_{m}. Let I have points in common with $r>1$ cubes s_{m}. Then $x_{m-1} \geqslant d(I)$ and by (2)

$$
\begin{equation*}
h(d(I)) \geqslant \frac{1}{2}\left(\frac{d(I))^{p}}{\left(x_{m-1}\right)^{p}} h\left(x_{m-1}\right)\right. \tag{3}
\end{equation*}
$$

Lemma

(α) If $I \subset s_{m-1}$ and meets $t^{p}(t \geqslant 2)$ or more cubes s_{m} then $d(I)$ $\geqslant(t-1) y_{m}$.
(β) If IC s_{m-1} and meets r cubes s_{m} when $1<r<2^{p}$ then $\alpha(I) \geqslant y_{m}$.

Proof.

If I meets t^{p} cqubes s_{m} any line contained in I parallel to one of the sides of S_{0} which meets one cube s_{m} meets t such cubes; for if it meets only $(t-1),\left[(t-1) x_{m}+t y_{m}\right]>$ side length of I, and no other line parallel to a side can meet t cubes s_{m}. But this implies that I does not meet t^{p} cubes s_{m} which contradicts the initial assumption. A hyperplane perpendicular to such a line and meeting one cube s_{m} meets $t^{(p-1)}$ such cubes and is cut in a $(p-1)$ dimensional cube by I. Assume (α) is true in $(p-1)$ dimensions. Then

$$
\frac{\sqrt{p-1}}{\sqrt{p}} d(I) \geqslant(t-1) \frac{\sqrt{p-1}}{\sqrt{p}} y_{m}
$$

in the hyperplane and hence

$$
d(I) \geqslant(t-1) y_{m} .
$$

The result is obvious in 1 -dimension since

$$
a(I) \geqslant(t-2) x_{m}+(t-1) y_{m}
$$

and by induction the result is true in p-dimensions.

$$
-10-
$$

If I meets 2 cubes s_{m} then $\alpha(I) \geqslant y_{m}$ because the minimum distance between 2 cubes s_{m} is y_{m} / \sqrt{p} i⿴ a direction parallel to the sides of S_{0}, and the side length of $I, ~ d(I) / \sqrt{p}$ satisfies

$$
\frac{d(I)}{\sqrt{p}} \geqslant \frac{y_{m}}{\sqrt{p}}
$$

This gives the second part of the lemma.

To show that if I meets r cubes s_{m} where $r \geqslant t^{p}, t \geqslant 2$ then

$$
\frac{a(I)}{X_{m-1}}>\frac{(t-1)}{2 K_{m}-1}
$$

In constructing s the relation

$$
\begin{equation*}
\mathrm{x}_{\mathrm{m}-1}=\mathrm{K}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}+\left(\mathrm{K}_{\mathrm{m}}-1\right) \mathrm{y}_{\mathrm{m}} \tag{4}
\end{equation*}
$$

was used. By the inequality (c) on page 6 and the fact that K_{m} is the integral part of C_{m} (4) becomes

$$
2 K_{m} x_{m}<K_{m} x_{m}+\left(K_{m}-1\right) y_{m}
$$

and

$$
\mathrm{x}_{\mathrm{m}}<\mathrm{y}_{\mathrm{m}}
$$

Substituting for x_{m} in (4) we get

$$
\left(2 K_{m}-1\right) y_{m}>x_{m-1}
$$

and combining this with the inequality of the lemma gives

$$
\begin{equation*}
\frac{a(I)}{x_{m-1}}>\frac{(t-1)}{2 K_{m}-1} \quad t \geqslant 2 \tag{5}
\end{equation*}
$$

Let the cube I meet r cubes s_{m}.
(i) $t^{\mathrm{p}} \leqslant r<(t+1)^{\mathrm{p}}, t \geqslant 2$.

Then $\quad r h\left(x_{m}\right)<(t+1)^{p_{h}}\left(x_{m}\right)$
$\leqslant\left(\frac{t+1}{\mathrm{~K}_{\mathrm{m}}}\right)^{\mathrm{p}} \mathrm{h}\left(\mathrm{x}_{\mathrm{m}-1}\right)$
(from the equation (b) on page 6 and the fact that $K_{m}<C_{m}$)

$$
\leqslant 2\left(\frac{t+1}{K_{m}}\right)^{p}\left(\frac{x_{m}-1}{d}(I)\right)^{p} h(d(I))
$$

(from the inequality (3))

$$
<2\left[\frac{\left(2 K_{m}-1\right)(t+1)}{K_{m}(t-1)}\right]^{p} h(d(I))
$$

(from the inequality (5))

$$
\begin{equation*}
<2.6^{\mathrm{p}} \mathrm{~h}(\mathrm{~d}(I)) \tag{7}
\end{equation*}
$$

(ii) $1<r<2^{p}$

It has been established that

$$
x_{m-1}<\left(2 K_{m}-1\right) y_{m}
$$

and from (β) in the lemma $d(I) \geqslant y_{m}$
Thus in this case $\frac{d(I)}{x_{m-1}}>\frac{1}{2 \mathrm{~K}_{m}-1}$
and

$$
\begin{aligned}
\operatorname{rh}\left(x_{m}\right) & \leqslant \frac{r}{K_{m} p} h\left(x_{m-1}\right) \\
& \leqslant 2 \frac{r}{K_{m} p}\left(\frac{x_{m-1}}{\alpha(I)}\right)^{p} h(\alpha(I))
\end{aligned}
$$

(as in (i))

$$
<2 r\left(\frac{2 K_{m}-1}{K_{m}}\right)^{p} h(d(I))
$$

(from the inequality (6))

$$
\begin{equation*}
<2.4^{\mathrm{p}} \mathrm{~h}(\mathrm{~d}(I))<2.6^{\mathrm{p}} \mathrm{~h}(\mathrm{a}(I)) \tag{7}
\end{equation*}
$$

If $r=1 \quad \mathrm{~d}(I)<x_{m}$ since the cubes I were chosen so that at least one pair of faces contained points of S. In this case I is contained in one cube \mathbb{S}_{m} and the procedure is repeated using x_{m} instead of x_{m-1} and considering the cubes $\mathrm{s}_{\mathrm{m}+1}$ contained in s_{m}.

To each cube I there corresponds a number m such that one of the cubes $s_{m-1} \supset I$ and I has points in common with $r>1$ cubes s_{m}, and if I is replaced by these r cubes the inequality (7) holds. Let $n=\max$ (m corresponding to $I \in I$). By (b) on page 6 and the fact that $K_{n}<C_{n}$ and inequality (7)

$$
r\left(K_{n}^{p} \ldots K_{m-1}^{p}\right) h\left(x_{n}\right)<2.6^{p} h(d(I))
$$

Thus if each cube $I \in I$ is replaced by the cubes s_{n} with which it has points in common with all the cubes $S_{n} \in S_{n}$ will be used at least once and hence

$$
\sum_{S_{n}} h\left(x_{n}\right) \leqslant 2 \cdot 6^{p} \sum_{I \in g} h(d(I))
$$

$$
-12-
$$

For any covering $L C$ of the set S consisting of sets U the corresponding class of satisfies the relation

$$
\begin{aligned}
\sum_{U \in L C} h(\alpha(U)) & \geqslant\left(\frac{1}{[\sqrt{p}]+1}\right)^{p} \sum_{I \in G}^{\sum} h(d(I)) \\
& \geqslant \frac{1}{2}\left(\frac{1}{G([\sqrt{p}]+1)}\right)^{p} S_{n} h\left(x_{n}\right)
\end{aligned}
$$

for some value of n,

$$
\geqslant y \mathrm{~h}\left(x_{0}\right)
$$

where y is a constant.
Since this holds for all coverings $U_{\in} A_{\rho}$

$$
m_{\rho}(s, h) \geqslant y h\left(x_{0}\right) \quad \text { for all } \rho>0
$$

and hence $\mathrm{m}(\mathrm{S}, \mathrm{h})>0$.
It has now been established that if $h(x)$ is any measure function satisfying

$$
\lim _{x \rightarrow 0} \quad \inf \quad \frac{h(x)}{x^{p}}>0
$$

there exists a set S having finite non-zero Heusdorff diametral measure with this measure function, i.e. $h(x)$ is a dimension function.

SECTIUN II, 2.

THEOREM I

In p-dimensional real Euclidean space a closed set of infinite Hausdorff diametral measure has a subset of finite non-zero Hausdorff diametral measure.

Proof Let S be the given set. Take rectangular cartesian axes and over the whole space construct a network of closed cubes J_{n} each of side length 2^{-n} and lying parallel to the axes, no two cubes having common interior points. Denote by In any class of such cubes which covers S and consists of cubes $J_{\nu} \nu \geqslant n$, and let Λ_{n} be the class of all such covarings $f n$.

$$
-13-
$$

Define

$$
\begin{aligned}
L_{n}(s, h) & =\inf _{\eta_{n} \in \Lambda_{n}} J_{\nu} \in g_{n} h\left(\alpha\left(J_{v}\right)\right) \\
L(s, h) & =\lim _{n \rightarrow \infty} L_{n}(S, h)
\end{aligned}
$$

(1) If $\rho \geqslant \frac{(\sqrt{p})}{2^{n}}$
then

$$
m_{\rho}(s, h) \leqslant L_{n}(s, h)
$$

and hence $m(S, h) \leqslant L(S, h)$
(2) Given any $\rho>0$ let L be an arbitrary covering of convex sets U of the set S with $a(U)<\rho$. Consider any $U \in Z C$ Then there exists an n such that

$$
\frac{1}{2^{n-1}}>\frac{\bar{q}(U)}{\sqrt{p}} \geqslant \frac{1}{2^{n}}
$$

As in Section II, 1 any convex set U can be replaced by at most $([\sqrt{p}]+1)^{p}$ cubes I of diameter $\alpha(U)$ and if I is the c lass of all cubes I which cover S

$$
\begin{equation*}
\sum_{I \in G} h(d(I)) \leqslant([\sqrt{p}]+1)^{p} \sum_{U \in U C} h(d(U)) \tag{a}
\end{equation*}
$$

the cubes I being parallel to the axes. Consider the intervals cut by a cube I and the cubes J_{ν} on a line parallel to one of the axes.

$$
\text { Since } \frac{1}{2^{n-1}}>\frac{d(I)}{\sqrt{p}} \geqslant \frac{1}{2^{n}}
$$

the interval cut by I which is of length $\alpha(I) / \sqrt{p}$ has points in common with at most three of the intervals cut by the cubes J_{n}, and hence I has points in common with at most 3^{p} cubes J_{n}. Since $h(x)$ is a measure function it is monotonically increasing and

$$
\begin{equation*}
3^{p} h(d(I)) \geqslant 3^{p} h\left(\sqrt{p} / 2^{n}\right) \tag{b}
\end{equation*}
$$

Let m be the integer such that $\frac{1}{2^{m-1}}>\frac{\rho}{\sqrt{p}} \geqslant \frac{1}{2^{m}}$
(b) holds for all cubes I \in I and hence there exists a covering ∂_{m} of s such that if g is replaced by this g_{m} then

$$
-14-
$$

$$
\begin{aligned}
3^{p} \sum_{I \in I} h(d(I)) & \geqslant \sum_{J_{n} \in g_{m}} h\left(\sqrt{p} / 2^{n}\right) \\
& \geqslant I_{m}(S, h)
\end{aligned}
$$

This holds for all coverings 9 and thus combining this result with (a) gives

$$
[3([\sqrt{p}]+1)]^{p} m_{\rho}(S, h) \geqslant I_{m}(S, h)
$$

(3) IEMMA I

If S_{n} is the intersection of S with a cube J_{n} and

$$
I_{n+1}\left(S_{n}, h\right)>h\left(\sqrt{p} / 2^{n}\right)
$$

there exists a subset S_{n}^{\prime} of S_{n} such that

$$
L_{n+1}\left(S_{n}^{\prime}, h\right)=h\left(\sqrt{p} / 2^{n}\right)
$$

Proof

Divide the cube J_{n} into a network of λ_{1} closed cubes $e_{1 j}\left(j=1 \ldots \lambda_{1}\right)$ which are parallel to the axes and such that if $s_{1 j}^{n}$ denotes the part of S_{n} contained in $e_{1 j}$ then

$$
I_{n+1}\left(s_{1 j}^{n}, h\right)<h\left(\sqrt{p} / 2^{n}\right)
$$

for all j.

$$
\text { Since } \begin{aligned}
\bigcup_{j=1}^{\lambda_{1}} s_{1 j}^{n} \supset S_{n} & \\
\sum_{j=1}^{\lambda_{1}} L_{n+1}\left(s_{1}^{n}, h\right) & \geqslant I_{n+1}\left(S_{n}, h\right) \\
& >h\left(\sqrt{p} / 2^{n}\right)
\end{aligned}
$$

and there exists an integer m_{1} such that

$$
\sum_{j=1}^{m_{1}-1} L_{n+1}\left(s_{1}^{n} j, h\right)<h\left(\sqrt{p} / 2^{n}\right)
$$

and

$$
m_{1}^{\sum_{=1}} L_{n_{+1}}\left(s_{1}^{n} j, h\right) \geqslant h\left(\sqrt{p} / 2^{n}\right)
$$

Consider this cube $e_{1 m_{1}}$ and as before cover it with a network of λ_{2} cubes $e_{2 j}$. Then there exists an integer m_{2} $1 \leqslant m_{2} \leqslant \lambda_{2}$ such that
$\sum_{j=1}^{m_{1}-1} I_{n_{+1}}\left(s_{1}^{n}, h\right)+\sum_{j=1}^{m_{2}-1} L_{n+1}\left(s_{2}^{n}, h\right)<h\left(\sqrt{p} / 2^{n}\right)$
and
$\sum_{j=1}^{m_{1}-1} I_{n+1}\left(s_{1}^{n}, h\right)+\sum_{j=1}^{m_{2}} I_{n+1}\left(s_{2}^{n}, h\right) \geqslant h\left(\sqrt{p} / 2^{n}\right)$
Repeat this process using $e_{2 \mathrm{~m}_{2}}$ and so on to obtain a decreasing sequence of cubes. Let E denote the set \(\begin{aligned} \bigcup_{j=1}^{m_{1}-1} e_{1 j}+\sum_{j=1}^{m_{2}-1} e_{2 j}+··· ··· ··· . \sum_{j=1}^{m_{t}-1} e_{t j} \& +··· ··· ···

\& +\)| Ω |
| :---: |
| $i=1$ |$e_{i m_{b}}\end{aligned}$

then

$$
L_{n+1}\left(S_{n \wedge E} E h\right)=h\left(\sqrt{p} / 2^{n}\right)
$$

E is a closed set since the limit point of any sequence of points belonging to E will either belong to one of the sets $\mathrm{m}_{\mathrm{t}}-1$ $j=1$ point $\underset{i=1}{\Omega} e_{i m_{i}}$

Thus $S_{n} \wedge E$ is the required subset S_{n}^{\prime}.
(4) If $\mathrm{I}_{n+1}\left(S_{n}, h\right) \leqslant h\left(\sqrt{p} / 2^{n}\right)$

$$
I_{n+1}\left(S_{n}, h\right)=I_{n}\left(S_{n}, h\right)
$$

On the other hand if

$$
I_{n+1}\left(S_{n}, h\right)>h\left(\sqrt{p} / 2^{n}\right)
$$

then from the lemma there exists a subset S_{n}^{\prime} of S_{n} such that

$$
I_{n+1}\left(S_{n}^{\prime}, h\right)=h\left(\sqrt{p} / 2^{n}\right)
$$

and also

$$
I_{n}\left(S_{n}^{\prime}, h\right)=h\left(\sqrt{p} / 2^{n}\right)
$$

PROOF OF THE THEOREM I

Itis sufficient to prove that S has a subset of finite Hausdorff diametral measure greater than a given number b .

Since $m(S, h)=\infty$ it follows from paragraph (1) that $L(S, h)=\infty$, and given $b>0$ there exists an integer m such that

$$
I_{m}(S, h)>(3\{[\sqrt{p}]+1\})^{p} b
$$

Write $S=S^{m}$. Define a subset S^{m+1} of S^{m} in the following way. In every cube J_{m} in which $I_{m+1}\left(S_{m}, h\right) \leqslant h\left(\sqrt{p} / 2^{m}\right)$ $S_{m}^{m+1}=S_{m}^{m}$, and in those cubes J_{m} in which $I_{m+1}\left(S_{m}, h\right)>h\left(\sqrt{p} / 2^{m}\right)$ S_{m}^{m+1} is the subset S_{m}^{\prime} such that $I_{m+1}\left(S_{m}^{\prime}, h\right)=h\left(\sqrt{p} / 2^{m}\right)$.

By paragraph (4)

$$
\begin{aligned}
I_{m+1}\left(S^{m+1}, h\right) & =I_{m}\left(S^{m+1}, h\right) \\
& =I_{m}\left(S^{m}, h\right)
\end{aligned}
$$

A subset S^{m+2} of S^{m+1} is defined in the same way as S^{m+1} was defined from S^{m}, and so on. A decreasing sequence S^{n} is thus obtained taking $n=m+1, m+2, \ldots$ such that for any $n>m$

$$
\begin{aligned}
I_{n}\left(S^{n}, h\right) & =I_{n-1}\left(S^{n}, h\right) \\
& =\cdots \cdots \\
& =I_{m}\left(S^{n}, h\right)=I_{m}\left(S^{m}, h\right)
\end{aligned}
$$

Write $\lim S^{n}=R . R$ is a closed subset of S. Given any $\eta>0$ there exists an n_{0} such that for any $n>n_{0}$ any point of S^{n} is within η of R. Let $l(R)$ be any finite open covering of R such that for any $U \in\{C(R) \quad d(U)<\rho$. As $\mathcal{L}(R) \supset R, \mathcal{L}(R)$ contains all the points that are within

$$
-17-
$$

a certain $\eta>0$ from R and consequently all S^{n} for n greater than a certain n_{0}. Thus $2\left((R)\right.$ is also a covering of S^{n}.

Hence

$$
\begin{aligned}
\sum_{U \in(R)} h(d(U)) & \geqslant m_{\rho}\left(S^{n}, h\right) \\
& \geqslant \frac{1}{(3\{[\sqrt{p}]+1\}) p} L_{q}\left(S^{n}, h\right)
\end{aligned}
$$

where
q is the integer such that

$$
\begin{equation*}
\frac{1}{2 q-1}>\frac{\rho}{\sqrt{p}} \geqslant \frac{1}{2 q} \tag{q-1}
\end{equation*}
$$ from paragraph (2)

$$
=\frac{1}{(3[\sqrt{p}]+1))^{p}} \quad L_{m}\left(S^{m}, h\right)
$$

from which it follows that

$$
m(R, h) \geqslant \frac{1}{(3(\sqrt{p}]+1)) p} \quad I_{m}\left(S^{m}, h\right)>b
$$

On the other hand

$$
\begin{aligned}
m_{\rho}(R, h) & \leqslant m_{\rho}\left(S^{n}, h\right) \leqslant I_{n}\left(S^{n}, h\right) \\
& \leqslant I_{m}\left(S^{m}, h\right)
\end{aligned}
$$

Hence $m(R, h) \leqslant L_{m}\left(S^{m}, h\right)$ and the theorem is proved.

Corollary

If $\left\{F_{n}\right\}$ is any decreasing sequence of bounded closed sets and if $F=\prod_{n=1}^{\infty} \quad F_{n}$ then for any integer q

$$
m_{2}-(q-1)(F, h) \geqslant \frac{1}{\{3([\sqrt{p}]+1)\}} \lim _{n \rightarrow \infty} L_{q}\left(F_{n}, h\right)
$$

(5) Remark Denote the p-dimensional cube with sides on each axis given by the interval $(0,1)$ by C. Let F be a set contained in C and m a $\frac{p}{2} p\left(\frac{1}{m}\right.$ tijye integer.
Then

$$
L_{m}(F, h)=\sum_{k=0} \quad L_{m}\left(F_{\Lambda} J_{m k}, h\right)
$$

where $J_{m k}$ is a cube cutting intervals ($\left.r_{i} 2^{-m},\left(r_{i}+1\right) 2^{-m}\right)$ on the $i^{\text {th }}$ axis and $k=r i$.
-18-

For any aube J_{m} with diameter l we have either
(i) $I_{m}\left(F_{\wedge} J_{m}, h\right)=h(\ell)$
if

$$
I_{m+1}\left(F_{\wedge} J_{m}, h\right)>h(\ell)
$$

or

$$
\text { (ii) } \quad I_{m}\left(F_{\wedge} J_{m}, h\right)=I_{m+1}\left(F_{\wedge} J_{m}, h\right)
$$

Denoting by Q_{1} the sum of the cubes for which (i) holds

$$
L_{m}(F, h)=\sum_{Q_{1}} h(l)+L_{m+1}\left(F_{n}\left(C-Q_{1}\right), h\right)
$$

Similarly denoting by Q_{2} the sum of cubes $J_{m+1} \subset C-Q_{1}$ for which

$$
I_{m+2}\left(F_{\wedge} J_{m+1}, h\right)>h(\ell)
$$

we get

$$
L_{m}(F, h)=\sum_{Q_{1}+Q_{2}} h(l)+I_{m+2}\left(F_{1}\left(C-Q_{1}-Q_{2}\right), h\right)
$$

Generally after the sets $Q_{1}, Q_{2}, \ldots, Q_{n-1} \underset{n-1}{\text { have been define a }}$ we denote by Q_{n} the sum of cubes $J_{m+n+1} \subset C-\sum_{q=1} Q_{q}$ on which

$$
I_{m+n}\left(F_{\wedge} J_{m+n+1}, h\right)>h(\ell)
$$

and we get

$$
L_{m}(F, h)=\sum_{Q_{1}+Q_{2}+\ldots Q_{n}} h(\ell)+L_{m+n}\left(F_{1}\left(C-\sum_{1}^{n} Q_{q}\right), h\right)(3)
$$

$$
\text { Write } Q=Q_{1}+Q_{2}+\ldots, \quad D=C-Q
$$

(6) LEMMA 2

$$
I_{m}(F, h)=\sum_{Q} h(l)+I\left(F_{\wedge} D, h\right)
$$

Proof If J_{n} is a covering of $F_{A} D$ consisting of cubes J_{i} $i \geqslant m+n$, then $g_{n}+Q_{n+1}+Q_{n+2}+\ldots$ is a covering of $F_{A}\left(C-Q_{1}-Q_{2}-\ldots \ldots-Q_{n}\right)$.

Thus

$$
\begin{aligned}
\sum_{n} h(l) & +\frac{\sum}{Q_{n+1}+Q_{n+2}+\ldots .} h(l) \\
& \geqslant I_{n+n}\left(F_{n}\left(C-Q_{1}-\ldots \cdot-Q_{n}\right), h\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{m+n}\left(F_{1} D, h\right) \geqslant I_{m+n}\left(F_{n}\left(C-Q_{1}-Q_{2}-\ldots-Q_{n}\right), h\right)-\sum_{Q_{n+1}+\ldots .} h(l) \tag{4}
\end{equation*}
$$

On the other hand

By (3) the sum $Q_{1}+Q_{2}+\ldots+Q_{n}+\ldots h(\ell)$ is finite
since

$$
L_{m}(F, h) \leqslant 2^{p m} h\left(\sqrt{p} / 2^{m}\right)
$$

Hence

$$
\epsilon_{n}=\frac{\sum}{Q_{1}+n+Q_{2+n}+\ldots \ldots}
$$

and by (4) and (5)

$$
\begin{equation*}
L_{m+n}\left(F_{\wedge} D, h\right)=L_{m+n}\left(F_{\wedge}\left(C-Q_{1}-Q_{2}-\ldots-Q_{n}\right), h\right)-\theta \epsilon_{n} \tag{6}
\end{equation*}
$$

where $0 \leqslant \theta \leqslant 1$:
By (3) and (6)

$$
L_{m}(F, h)=Q_{1}+\ldots Q_{n} h(\ell)+I_{m+n}\left(F_{\Lambda} D, h\right)+\theta \epsilon_{n}
$$

and letting $n \rightarrow \infty$

$$
I_{m}(F, h)=\sum_{Q} h(l)+L\left(F_{\Lambda} D, h\right)
$$

(7) LEMMA 3

If $\left\{G_{n}\right\}$ is any increasing sequence of sets and $G=U G_{n}$
is bounded then for any integer m

$$
I_{m}(G, h)=\lim _{h \rightarrow \infty} I_{m}\left(G_{n}, h\right)
$$

Proof Let Q^{n} and D^{n} be the sets Q and D of lemma 2 corresponding to the set G_{n}. Then we have

$$
Q^{n}+D^{n}=C, \quad Q^{n} \subset Q^{n+1}, \quad D^{n} \supset D^{n+1}
$$

and writing $\lim _{n \rightarrow \infty} Q^{n}=Q$ and $\lim _{n \rightarrow \infty} D^{n}=D$
we have

$$
\lim _{n \rightarrow \infty} \sum_{Q^{n}} h(\ell)=\sum_{Q} h(\ell) \quad C-Q=D
$$

$$
-20-
$$

and further

$$
\begin{aligned}
L_{m}\left(G_{n}, h\right) & =\sum_{Q^{n}} h(\ell)+L\left(G_{n} D_{n}^{n}, h\right) \\
& \geqslant \sum_{Q^{n}} h(\ell)+L\left(G_{n} \wedge, h\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{m}\left(G_{n}, h\right) \geqslant \sum_{Q} h(\ell)+L\left(G_{\wedge} D, h\right) \tag{7}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\lim _{n \rightarrow \infty} L_{m}\left(G_{n}, h\right) & \leqslant I_{m}(G, h) \leqslant I_{m}\left(G_{\wedge} Q, h\right)+I_{m}\left(G_{\wedge} D, h\right) \\
& \leqslant \sum_{Q} h(\ell)+L_{\wedge}\left(G_{\wedge} D, h\right) \\
& \leqslant \lim _{n \rightarrow \infty} I_{m}\left(G_{n}, h\right) .
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} I_{m}\left(G_{n}, h\right)=I_{m}(G, h)$
(8) THEOREM II

Any analytic set which is not the sum of a countable sequence of sets of finite Hausdorff diametral, measure with dimension $h(x)$ contains a closed subset of infinite measure.

Proof

Let F be an analytic set which we may suppose bounded, which is not a countable sum of sets of finite Hausdorff diametral measure with dimension $h(x)$. For this set F choose a determining system $\left\{I_{i_{1}} \ldots i_{n}\right\}$ of closed p-dimensional cubes so that

$$
I_{i_{1}} \ldots \ldots .^{i_{n}} i_{n+1} \subset I_{i_{1}} \ldots \ldots ._{n} \quad(n=1,2,3, \ldots)
$$

and (a) $F=\sum_{i_{1} i_{2} \ldots} I_{i_{1} \wedge} I_{i_{1} i_{2}} \wedge \ldots \ldots \wedge I_{i_{1} i_{2}} \ldots{ }^{i_{n}} \wedge \ldots \ldots$. the summation being extended over all infinite sequences of positive integers $i_{1} i_{2} \ldots i_{n} \ldots$

Let m_{1} be an integer for which

$$
L_{m_{1}}(F, h)>1
$$

Let \mathbb{N}_{r} denote the sum (a) extended over all sequences $i_{1} i_{2} \ldots \ldots$ for which $1 \leqslant i_{1} \leqslant r$. Then $\left\{N_{r}\right\}$ is an increasing sequence of sets and $F=\Sigma N_{r}$.

Choose an integer r_{1} so large that
(i) $I_{m}\left(N_{r_{1}}, h\right)>1$ this is possible by lemma 3 and
(ii) $N_{r_{1}}$ is not a countable sum of sets of finite measure.

Thus $L\left(\mathbb{N}_{r_{1}}, h\right)=\infty$ and we can choose m_{2} so that $m_{2} \geqslant m_{1}$
and

$$
I_{m_{2}}\left(\mathbb{N}_{r_{1}}, h\right)>2
$$

Let $N_{r_{1}} r$ denote the sum (a) extended over all sequences $i_{1} i_{2} \ldots$ for which $1 \leqslant i_{1} \leqslant r_{1}$ and $1 \leqslant i_{2} \leqslant r$ Then $\left\{N_{r_{1}} r\right\}$ is an increasing sequence of sets and $N_{r_{1}}=\sum N_{r_{1}} r$
Choose an integer r_{2} so large that
(i) $L_{m_{1}}\left(N_{r_{1}} r_{2}, h\right)>1$ and (ii) $L_{m_{2}}\left(\mathbb{N}_{r_{1}} r_{2}, h\right)>2$
this is possible by lemma 3 and
(iii) $N r_{1} r_{2}$ is not a countable sum of sets of finite measure.

Continuing in this way we obtain a sequence of integers $m_{1} \leqslant m_{2} \leqslant \ldots$ and $r_{1}, r_{2} \ldots$ such that for each n (b) $I_{m}\left(N_{r_{1}}: \ldots r_{n}, h\right)>v \quad(v=1 \ldots n)$ and $N_{r_{1}} \ldots r_{n}$ is not a countable sum of sets of finite measure.

$$
\text { Write } H_{n}={ }_{1 \leqslant i_{\nu} \leqslant r_{\nu}}^{\sum} I_{i_{1}{ }^{\wedge} I_{i_{1}} i_{2} \wedge \ldots I_{i_{1}} i_{2} \ldots i_{n}}
$$

and $H=\pi H_{n}$.
Each set H_{n} is the sum of a finite number of closed cubes and is thus closed, also $N_{r_{1}} r_{2} \ldots r_{n} \subset H_{n}$.

By (b)
(c)

$$
L_{m} v\left(H_{n}, h\right)>v \text { for all } v \text { and } n
$$

Now the sets H_{n} form a decreasing sequence of bounded closed sets and so by (c) and the corollary to theorem I

$$
m_{2}-\left(m_{\nu^{+1}}\right)(H, h) \geqslant \frac{1}{\left(3\left(\left[\sqrt{2}^{p}\right]+1\right)\right) p} \quad v \text { for all } v
$$

and therefore $m(H, h)=\infty$. Now it has been shown that $H \subset F$.
Since H is closed the theorem is proved.

Corollary

Any analytic set which is not the sum of a countable sequence of sets of finite Hausdorff measure with measure function $h(x)$ contains a subset of finite non-zero Hausdorff diametral measure with dimension $h(x)$.

SECTION II, 3

To deduce that in p-dimensional space if

$$
\lim _{x \rightarrow 0} \inf \frac{h(x)}{x^{p}}=\infty
$$

there exists a set of finite non-zero Hausdorff diametral measure with dimension function $h(x)$

Let J be the unit closed cube in p-dimensional space. Given $\alpha>0$ there exists δ such that

$$
\frac{h(x)}{x^{p}}>\alpha \quad \text { for all } x<\delta
$$

Let $2($ be a covering of the cube J consisting of convex sets U with $\alpha(U)<\delta$. Then

$$
\begin{aligned}
\sum_{U \in U} h(\alpha(U)) & >\alpha \sum_{U \in U}^{\sum}(\alpha(U))^{p} \\
& >\alpha(\sqrt{p})^{p}
\end{aligned}
$$

Hence

$$
m_{\delta}(J, h)>\alpha(\sqrt{p})^{p}
$$

Since this holds for all $\alpha>0 \mathrm{~m}(J, h)=\infty$.
Thus the cube J fulfils the conditions for the given set in the orem I section II,2, and hence there exists a subset S of J having finite non-zero Hausdorff dimmetral measure with dimension function $h(x)$.

SECTION II, 4

THEOREM

Let S be a closed set with dimension function $h(x)$. Then (a) If $\lim _{x \rightarrow 0}$ inf $\frac{g(x)}{h(x)}>0$ there exists a subset F of S having dimension function $g(x)$.
(b) If F is any subset of S with dimension function $g(x)$ then $g(x)$ satisfies $\lim _{x \rightarrow 0} \sup \frac{g(x)}{h(x)}>0$.

Proof of (a)
(1) If $\lim _{x \rightarrow 0}$ inf $\frac{g(x)}{h(x)}=\infty$ then given any $\alpha>0$ there exists δ such that

$$
\frac{g(x)}{h(x)}>\alpha \quad \text { for all } x<\delta
$$

For any covering $~ U C$ of the set $s, ~ U C$ consisting of comvex sets U such that $\alpha(U)<\delta$ for all $U \in L C$

$$
\sum_{U \in \mathcal{L}} g(x)>\sum_{U \in \mathcal{}}^{\Sigma} \alpha h(x)
$$

where $\alpha(U)=x$. If A_{δ} is the class of all such coverings $l C$

$$
\inf _{U \in A} \sum_{\delta} \quad g(x) \geqslant \alpha \inf _{U \in A_{\delta}} \sum_{U \in U L} h(x)
$$

Since this holds for all $x<\delta$

$$
m(S, g) \geqslant \alpha m(S, h)
$$

But $m(S, h)$ is finite and non-zero and the inequality holds for all $\alpha>0$, thus $m(S, g)=\infty$.
S is closed and thus the conditions of theorem I in Section II,2, are satisfied and there exists a subset F of S such that $0<m(F, g)<\infty$.
(2) Let $\lim _{x \rightarrow 0} \inf \frac{g(x)}{h(x)}=\beta$
$0<\beta<\infty$

Given $\epsilon>0$ there exists δ such that

$$
\frac{g(x)}{h(x)}>(\beta-\epsilon) \quad \text { all } x<\delta
$$

For any covering 22 of the set S consisting of convex sets U with $\alpha(U)<\delta$ writing $x=\alpha(U)$,

$$
(\beta-\epsilon) \sum_{U \in L C} h(x)<\sum_{U \in L L} g(x)
$$

Let A_{δ} be the class of all such coverings 22 . Then

$$
(\beta-\epsilon) \inf _{U \in A} \sum_{U \in \mathcal{L}} h(x) \leqslant \inf _{U_{\in} \in A_{S}} \sum_{U \in L L} g(x)
$$

and since this holds for all $x<\delta$ and all $\epsilon>0$

$$
\beta \mathrm{m}(\mathrm{~S}, \mathrm{~h}) \leqslant \mathrm{m}(\mathrm{~S}, \mathrm{~g})
$$

Since $\mathrm{m}(\mathrm{S}, \mathrm{h})>0, \quad \mathrm{~m}(\mathrm{~S}, \mathrm{~g})>0$.
If $m(S, g)=\infty$ then as in the first case there exists a subset F of S such that $0<m(F, g)<\infty$ If $m(S, g)$ is finite then S itself may be taken as the required subset.

Proof of (b)
Since F is a subset of S

$$
m(S, g) \geqslant m(F, g)>0
$$

Hence given $\delta>0$ there exists ∂_{1} such that for any covering of the set S consisting of convex sets U with $d(U)<\delta$ for all $U \in 22$, writing $\alpha(U)=x$,

$$
\sum_{U \in U} g(x)>\partial_{1}
$$

This holds for all 22 such that $d(U)<\delta$ all $U \in 22$.
Since $m(S, h)$ is finite and non-zero there exists ∂_{2}
such that

$$
\sum_{U \in U} h(x) \leqslant \partial_{2}
$$

for infinitely many coverings 22 of S with $\mathrm{d}(\mathrm{U})<\delta$ for all $\mathrm{U} \in \mathrm{V}$ Thus for at least one covering 22

$$
\begin{equation*}
\frac{\sum_{U \in น C} g(x)}{\sum_{U \in Z C} h(x)} \geqslant \frac{\partial_{1}}{\partial_{2}} \tag{1}
\end{equation*}
$$

The set of values $\partial_{1} / \partial_{2}$ which depend on δ, is bounded below by some fixed positive number.

If $\lim _{x \rightarrow 0} \sup \frac{g(x)}{h(x)}=0$ then there exists a constant ∂_{3}
such that $\frac{g(x)}{h(x)}<\partial_{3}$ for all $x<\delta$
and hence for all coverings 22 defined above

$$
\frac{\sum_{U \in l 2}^{\sum} g(x)}{\sum} h(x)<\partial_{3}
$$

The number ∂_{3} depends on δ and $\partial_{3} \rightarrow 0$ as $\delta \rightarrow 0$.

But this is a contradiction of (1) and hence

$$
\lim _{x \rightarrow 0} \sup \frac{g(x)}{h(x)}>0
$$

This completes the proof of the theorem.

In the statement of the theorem it is not possible to replace "him sup" in the inequality (b) by "him inf" as the following example will establish. Thus the theorem gives the best possible result.

EXAMPLE

To construct a set S having finite non-zero Hausdorff diametral measure with dimension function $h(x)$ and such that there exists a measure function $g(x)$ satisfying
(1) $\lim _{x \rightarrow 0} \inf \frac{g(x)}{h(x)}=0$
(2) $\lim _{x \rightarrow 0} \sup \frac{g(x)}{h(x)}>0$
(3) $0<m(S, g)<\infty$

Consider the function $h(x)$ given by

$$
h(x)=\frac{1}{2^{n^{2} / 2}} \text { when } \frac{1}{2^{n^{2}}} \geqslant x>\frac{1}{2(n+1)^{2}} \quad(n=1,2, \ldots)
$$

This function is monotonically increasing and $h(x) \rightarrow 0$ as $x \rightarrow 0$
Also $\lim _{x \rightarrow 0} \inf \frac{h(x)}{x}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{2 n^{2} / 2}=\infty$
The function $\frac{h(x)}{x}$ decreases strictly in the interval
$\frac{1}{2^{n^{2}}} \geqslant x>\frac{1}{2(n+1)^{2}}$ and the set of values of $\frac{h(x)}{x}$ at the

$$
-27-
$$

points $x=\frac{1}{2^{n^{2}}}$ decreases stric奴y as x increases. Thus every point of this set satisfies

$$
\frac{h(x)}{x}=\min _{0<t \leqslant x} \frac{h(t)}{t} \leqslant 2 \inf _{0<t \leqslant x} \frac{h(t)}{t}
$$

Hence the method of constructing a set in one dimension established in Section II, 1 on page 6 can be used if the decreasing sequence of points in this construction which were denoted by $\left\{x_{n}\right\}$ are limited to be of the form $x_{i}=\frac{1}{2^{j 2}}$ The set S obtained by this construction satisfies

$$
0<m(S, h)<\infty
$$

Denote by $I(S, h)$ the measure of S obtained by considering only the coverings of intervals with end points given by $x_{i}=\frac{1}{2^{j^{2}}}$. Then it was proved in Section II, 1, that

$$
\alpha_{1} I(S, h) \leqslant m(S, h) \leqslant I(S, h)
$$

where α_{1} is a constant.
Consider the function given by $g(x)=x^{\frac{1}{2}}$
Then $g(x)=h(x)$ whenever $x=\frac{1}{2^{j^{2}}} \quad$ decreonz
and since $\frac{g(x)}{x}$ is strictly increasing as x increases the set S will also satisfy

$$
\alpha_{2} I(S, g) \leqslant m(S, g) \leqslant I(S, g)
$$

where α_{2} is a constant.
But $I(S, h)=I(S, g)$ and hence since $0<m(S, h)<\infty$ $m(s, g)$ is finite and non-zero. Condition (3) is thus satisfied by this set S and the two functions $h(x)$ and $g(x)$. Conditions (1) and (2) are also
satisfied as follows.
Given any $\epsilon>0$ there exists m such that $\frac{1}{2^{\left(m+\frac{1}{2}\right)}}<\frac{\epsilon}{2}$
and $\frac{g(x)}{h(x)}<\frac{2^{n^{2} / 2}}{2^{(n+1)^{2} / 2}}+\frac{\epsilon}{2}$
for infinitely many $n>$ some n_{0}.
Thus $\quad \frac{g(x)}{h(x)}<\frac{1}{2^{\left(n+\frac{1}{2}\right)}}+\frac{\epsilon}{2}<\epsilon$
for infinitely many $n>\max \left(n_{0}, m\right)$
Also $\frac{g(x)}{h(x)}>0$ for all $x>0$ and hence

$$
\lim _{x \rightarrow 0} \inf \quad \frac{g(x)}{h(x)}=0
$$

On the other hand $\frac{g(x)}{h(x)} \leqslant 1 \quad$ whenever $x \leqslant 1$.
and

$$
\frac{g(x)}{h(x)}=1 \quad \text { whenever } x=1 / 2^{j^{2}}
$$

and thus $\lim _{x \rightarrow 0} \sup ^{g(x)} \frac{h(x)}{h(x)}=1$.

CHAPTER III

SECTION III, 1.

THEOREM 1

Given a closed bounded set S in p-dimensional real Euclidean space a sufficient condition for $m(S, h)>0$ is that there exists an additive set function $\phi(R)$ defined over half-open figures (a half-open figure is a set expressible as a finite sum of half-open, i.e. open on the right, p-dimensional intervals) R such that
(1) for any figure $R \phi(R) \geqslant 0$
(2) if $R \supset S \phi(R) \geqslant b>0$ where b is some fixed constant,
(3) there is a finite non-zero constant K such that

$$
\phi(R) \leqslant K \cdot h(d(R))
$$

Then in fact $m(S, h) \geqslant b / K$.

Proof

By the Heine-Borel theorem we can take any covering of S by open sets to be finite. Let U be a class of open convex ? sets U covaring S. Each set $U \in U$ can be enclosed in a half-open figure R of diameter $d(R)$ so near $d(U)$ that

$$
h(\alpha(R))<(1+\epsilon) h(d(U))
$$

where ϵ is a given small powitive number. Thus we have for each figure R

$$
h(d(R)) \geqslant \frac{1}{K} \phi(R)
$$

and so

$$
\begin{aligned}
\sum_{U \in \cup} h(d(U)) & \geqslant \frac{1}{K(1+\epsilon)} \sum \phi(R) \\
& \geqslant \frac{1}{K(1+\epsilon)} \phi(U R)
\end{aligned}
$$

because $\sum \phi(R) \geqslant \phi(U R)$ since the figures R may be overlapping, and $\phi(R)$ is additive.

Moreover $U R$ contains S and so

$$
\phi(\cup R) \geqslant b
$$

therefore

$$
\sum_{U \in L L} h(a(U)) \geqslant \frac{b}{K(1+\epsilon)}
$$

Since this holds for all coverings 22 and for all $\epsilon>0$

$$
\mathrm{m}(\mathrm{~S}, \mathrm{~h}) \geqslant \mathrm{b} / \mathrm{K}
$$

THEOREM 2

If S is a set in p-dimensional real Euclidean space which is measurable with regard to Hausdorff diametral measure with measure function $h(x)$, then $\bar{D}(x, h) \leqslant 1$ at all points $x \in S$ except possibly for a set of measure zero.

LEMMMA

Given a measurable set F for which $m(F, h)<\infty$ and any positive number ϵ, there exists a number δ depending on F and ϵ such that for any sequence V of open sets V with $a(V)<\delta$ all $V \in V$

$$
m\left(F_{\wedge} Y, h\right) \leqslant \sum_{V \in \gamma} h(\alpha(V))+\epsilon
$$

Proof of the lemma

By the definition of Hausdorff diametral measure there exists a number δ depending on F and ϵ such that for any covering 22 of open sets U of the set F, which is such that
$a(U)<\delta$ all $U \in V 2$ then
(1) $\sum_{U \in U L} h(d(U))>m(F, h)-\frac{\epsilon}{2}$
where ϵ is any prescribed positive number.
Let V be any sequence of open sets V with $d(V)<\delta$ all $V \in V$ Then since any γ is an open set $F_{\wedge} \gamma$ is measurable and
(2) $m(F, h)=m\left(F_{\wedge} \vee, h\right)+m\left(F-\overline{F_{\wedge}, \gamma}, h\right)$
and from (1) and (2) we conclude that
(3) $\sum_{U \in L L} h(\alpha(U))>m\left(F_{A} V, h\right)+m\left(F-\overline{F_{\wedge} V}, h\right)-\frac{\epsilon}{2}$

Now given any V we can find a set $2 L_{1}$ of open sets U_{1} with $d\left(U_{1}\right)<\delta$ all $U_{1} \in L_{1}$ such that L_{1} covers the set $F-\overline{F_{A} \gamma}$ and also
(4) $\sum_{U_{1} \in U_{1}} h\left(d\left(U_{1}\right)\right) \leqslant m\left(F-\overline{F_{\wedge}}, h\right)+\frac{\epsilon}{2}$

Let 22 be the class of sets $V+22_{1}$. Then
(5) $\quad \sum_{U \in L Z} h(d(U)) \leqslant \sum_{V \in V} h(d(V))+\sum_{U_{1} \in U_{1}} h\left(d\left(U_{1}\right)\right)$
and 22 is a covering of F with $d(U)<\delta$ all $U \in L 2$. Thus this class 22 satisfies the inequality (3).

From (4) and (5)

$$
\begin{aligned}
\sum_{V \in V} h(d(V)) & +m\left(F-\overline{\left.F_{\Lambda} \bar{V}, h\right)+\frac{\epsilon}{2}}\right. \\
& \geqslant \sum_{V \in V} h(d(V))+\sum_{U_{1} \in V_{1}} h\left(d\left(U_{1}\right)\right) \\
& \geqslant \sum_{U \in\{2} h(d(U))
\end{aligned}
$$

and from (3)

$$
\geqslant m\left(F_{\wedge} V, h\right)+m\left(F-\overline{F_{\wedge} \gamma}, h\right)-\frac{\epsilon}{2}
$$

Hence

$$
\sum_{V \in V} h(d(V)) \geqslant m\left(F_{\wedge} V, h\right)-\epsilon
$$

which proves the lemma.

Proof of the theorem

Given any number $u>0$ the set of points x such that $\bar{D}(x, h)>u$ is measurable. Let F^{\prime} be the set where $\bar{D}(x, h)>1$ and suppose that $m\left(F^{\prime}, h\right)>0$. Then there exists a positive number b such that $m\left(F^{\prime \prime}, h\right)>0$ where $F^{\prime \prime}$ is the set at which $\bar{D}(x, h)>1+b$.

$$
\text { Write } \epsilon=\min \left(\frac{1}{2} \cdot m\left(F^{\prime \prime}, h\right), \quad \frac{b}{72} m\left(F^{\prime \prime}, h\right)\right)
$$

In the case of a set in $p>2$ dimensions the factor $1 / 72$ is replaced by $1 / 2(3([\sqrt{p}]+1))^{p}$

Let ρ be a positive number such that the inequality of the lemma is satisfied for the given set S, the number ϵ and $\rho=\delta$.

Write

$$
F^{\prime \prime}=F_{1}+F_{2}+\ldots \ldots \ldots+F_{j}+\ldots \ldots \ldots
$$

where F_{j} is a set of points $x \in F^{\prime \prime}$ about which it is possible to draw an open circle $C(x, r)$ of centre x and radius r where

$$
\frac{\rho}{j} \leqslant 2 r<\frac{\rho}{j+1}
$$

and such that

$$
\frac{m(S, C(x, r), h)}{h(2 r)}>1+b
$$

F_{j} is measurable and $C(x, r)$ is called a density circle of class j.

About any point of F_{1} we draw a circle of radius r and class 1 and a concentric circle of radius $3 r$. Then about any point of F_{1} outside these two circles we describe two concentric circles in a similar way. We continue the process at each stage taking a point outside the circles already drawn
and so that a density circle of the lowest possible class can be drawn together with a circle three times its radius. We thus obtain a finite or enumerably infinite ($\mathrm{m}(\mathrm{s}, \mathrm{h}$) being finite only a finite number of non-overlapping density circles can be drawn) set C of non-overlapping density circles and a set C^{\prime} of concentric circles such that C^{\prime} covers all the points of $\mathrm{F}^{\prime \prime}$.

Each circle radius $3 r$ can be completely covered by at most 36 circles radius r. Thus if the class C^{\prime} is replaced by a class $C^{\prime \prime}$ which consists of circles radius r and which covers $F^{\prime \prime}, C^{\prime \prime}$ satisfies the inequality

$$
\sum_{C}^{\sum} h(2 r) \geqslant \frac{1}{36} \quad \sum_{C^{\prime \prime}} h(2 r)
$$

In p-dimensional space the factor $\frac{1}{36}$ is replaced by $\frac{1}{(3[\sqrt{p}]+1))^{p}}$
The radius of any circle of $C^{\prime \prime}$ is $r<\rho$ and so

$$
\sum_{C^{\prime \prime}} h(2 r) \geqslant m\left(F^{\prime \prime}, h\right)-\epsilon \geqslant \frac{1}{2} m\left(F^{\prime \prime}, h\right)
$$

and hence

$$
{\underset{C}{C}} h(2 r) \geqslant \frac{1}{72} m\left(F^{\prime \prime}, h\right)
$$

Now the circles of C do not overlap and so

$$
\begin{aligned}
m\left(F^{\prime \prime}{ }_{\wedge}, h\right) & >(1+b) \sum_{C}^{\sum} h(2 r) \\
& \geqslant \sum_{C} h(2 r)+\frac{b}{36} m\left(F^{\prime \prime}, h\right) \\
& >\sum_{C} h(2 r)+\epsilon
\end{aligned}
$$

But taking C as the set γ of the lemma (which is possible since $2 r<\rho$) we have
(8)

$$
m\left(F^{\prime \prime}{ }_{\wedge} C, h\right) \leqslant \sum_{C} h(2 r)+\epsilon
$$

(7) and (8) being contradictory we conclude that $m\left(F^{\prime \prime}, h\right)=0$. This proves the theorem.

SECTION III,2.

THEOREM

In two dimensional real Euclidean space take rectangular cartesian axes $O X$ and $O Y$. If D is a measurable set on the $O X$ axis with dimension function $h(x)$ i.e. $0<m(D, h)<\infty$ and E is any measurable linear set on the $O Y$ axis where $0<m(E, x)<\infty$, then

$$
\alpha m(D, h) \cdot m(E, X) \geqslant m(D \times E, X h) \geqslant \beta m(D, h) \cdot m(E, X)
$$

where $D_{\times E}$ is the cartesian product of D and E, and α and β are constants.

Proof of the left hand inequality
Let g be an enumerable class of intervals I_{i} on the $O Y$ axis covering E and $d\left(I_{i}\right)<\delta$ where δ is a small positive number and such that

$$
\sum_{I_{i} \in g} d\left(I_{i}\right)<m(E, x)+\epsilon
$$

ϵ being a small positive number.
For any particular interval I_{j} consider the set $D_{\lambda} I_{j}$ Let n be a large integer and cover D by intervals I_{i}^{\prime} where $d\left(I_{i}^{\prime}\right)<\frac{d\left(I_{j}\right)}{n}$ and such that if g^{\prime} is the class of all intervals I_{i}^{\prime}

$$
\sum_{I_{i}^{\prime} \in g^{\prime}}^{\sum} h\left(d\left(I_{i}^{\prime}\right)\right)<m(D, h)+\epsilon
$$

The product of the se intervals with I_{j} consists of a set of rectangles. Each of these rectangles can be covered by not more than $4\left\{\left[\frac{d\left(I_{j}\right)}{d\left(I_{i}^{\prime}\right)}\right]+1\right\}$ squares of diagonal $d\left(I_{i}^{\prime}\right)$
where $\left[\frac{d\left(I_{j}\right)}{d\left(I_{i}^{\prime}\right)}\right]$ is the integral part of $\frac{d\left(I_{j}\right)}{d\left(I_{i}^{\prime}\right)}$. Thus the
set $D_{X} I_{j}$ has been covered by squares of diagonal a_{i} such that

$$
\sum_{i} \quad a_{i} h\left(a_{i}\right) \leqslant \sum_{i} 4\left\{\left[\frac{\alpha\left(I_{j}\right)}{\alpha\left(I_{i}^{\prime}\right)}\right]+1\right\} \quad \alpha\left(I_{i}^{\prime}\right) h\left(d\left(I_{i}^{\prime}\right)\right)
$$

thus

$$
\begin{aligned}
\sum_{i} a_{i} h\left(a_{i}\right) & \leqslant 4\left\{\sum_{i} d\left(I_{j}\right) h\left(\alpha\left(I_{i}^{\prime}\right)\right)+\sum_{i} d\left(I_{i}^{\prime}\right) h\left(d\left(I_{i}^{\prime}\right)\right)\right\} \\
& \leqslant 4 a\left(I_{j}\right)\left\{\{m(D, h)+\epsilon\}\left\{1+\frac{1}{n}\right\}\right\}
\end{aligned}
$$

Carrying out the same process for all the intervals $I_{j} \in \mathcal{G}$ we obtain a covering of squares such that

$$
\sum_{i} a_{i} h\left(a_{i}\right) \leqslant 4\left\{1+\frac{1}{n}\right\}\{m(D, h)+\epsilon\}\{m(E, x)+\epsilon\}
$$

Since δ, ϵ and $1 / n$ are arbitrarily small we have

$$
m\left(D_{x} E, x h\right) \leqslant 4 m(D, h) m(E, x)
$$

Proof of the right hand inequality

We first establish that it is sufficient to take D and E and therefore $D_{X} E$ to be closed sets. To do this we need the following lemma.

IEMMA
If F is a measurable set with dimension function $h(x)$, given any $\epsilon>0$ there exists a cloded set F^{\prime} such that

$$
m\left(F-F^{\prime}, h\right)+m\left(F^{\prime}-F, h\right)<3 \epsilon
$$

Proof

Given $\epsilon>0$ let L_{1} be an enumerable class of open conve sets $U_{1 i}$ covering F with $\alpha\left(U_{1 i}\right)<\rho$ where ρ is a number >0 depending on ϵ, such that

$$
\sum_{U_{1 i} \in U_{1}} h\left(\alpha\left(U_{1 i}\right)\right)<m(F, h)+\epsilon
$$

Choose n_{1} so that

$$
m\left(F_{1}\left(\bigcup_{n_{1}+1}^{\infty} U_{1 i}\right), h\right)<\frac{\epsilon}{2}
$$

This can be done by using the lemma proved in theorem 2 in Section III,1, and choosing n_{1} so that $U_{1 i}\left(i=n_{1}+1 \ldots\right)$ have $d\left(U_{1 i}\right)<\delta$ where δ is a number such that the inequality of the lemma holds with $\epsilon / 2$.

Let F_{1}^{\prime} be the closure of $\quad \sum_{i=1}^{U_{1}} U_{1 i}$ and write $\mathbb{E}_{1}=F_{1}^{\prime}{ }_{\wedge} F$. Now suppose that E_{1} is covered by a class χ_{2} of open convex sets $U_{2 i}$ such that

$$
U_{2 i} \sum_{E l_{2}} h\left(d\left(U_{2 i}\right)\right)<m(F, h)+\epsilon
$$

and also such that $d\left(U_{2 i}\right)<\frac{\rho}{2}$ all $U_{2 i} \in U_{2}$. Now choose n_{2} so that

$$
m\left(F_{A}\left(\bigcup_{n_{2}+1}^{\infty} U_{2 i}\right), h\right)<\frac{\epsilon}{2^{2}}
$$

Let F^{\prime} be the c losure of $\bigcup_{i=1}^{U_{2}^{2}} U_{2 i}$ and $E_{2}=F_{2}{ }^{\wedge}{ }^{\wedge} F$. Continue the process using a covering l_{3} of E_{2} and so on.

$$
=37-
$$

Let $F^{\prime}=\prod_{1}^{\infty} F^{\prime} j$. Then F^{\prime} exists and is closed. Moreover since it is contained in each of the f indite sequences $\left\{U_{j u}\right\}$ $\left(i=1 \ldots n_{j}\right)$ in which the convex sets $U_{j i}$ have $a\left(U_{j i}\right)<\frac{\rho}{2^{j-1}}$ we have

$$
m\left(F^{\prime}, h\right) \leqslant m(F, h)+\epsilon
$$

and

$$
m\left(F-F^{t}, h\right) \leqslant \frac{\epsilon}{2}+\frac{\epsilon}{2^{2}}+\frac{\epsilon}{2^{3}}+\cdots \ldots \ldots \leqslant \epsilon
$$

Al so

$$
m\left(F_{\wedge} F^{\prime}, h\right) \geqslant m(F, h)-\epsilon
$$

so

$$
\begin{aligned}
m\left(F^{\prime}-F, h\right) & \leqslant m(F, h)+\epsilon-m(F, h)+\epsilon \\
& \leqslant 2 \epsilon
\end{aligned}
$$

This completes the proof of the lemma.

We now establish that it is sufficient to prove the theorem When D and E are closed. For suppose that they are not closed. Then there exists a closed set D^{\prime} satisfying the inequality of the lemma with the set D. And

$$
\begin{aligned}
m\left(D_{x}^{\prime} E, x h\right) & =m\left(\left\{D+\overline{D^{\top}-B_{x} E, x h}\right)\right. \\
& =m\left(D_{x} E, x h\right)+m\left(\overline{D^{\top}-D_{x E}, \times h}\right) \\
& \geqslant m\left(D_{x} E, \times h\right)+3 \in \beta m(E, \times h)
\end{aligned}
$$

where ϵ can be taken as small as we please. Hence it is sufficient to prove the result for D^{\prime} and E, and we man therefore take D to be closed. By a similar argument we can take \mathbb{E} to be closed also.

From theorem 2, Section III, 1, we have $\bar{D}(x, h) \leqslant 1$ for all points $x \in D$ except possibly foe a set of measure zero. Let ϵ be small and take D_{η} as the set of points belonging to D for
which

$$
\frac{m\left(D_{\Lambda} I, h\right)}{h(\bar{d}(\bar{I}))} \leqslant 1+\epsilon
$$

whenever $\alpha(I)<\eta$, I being an open interval centred on the point x. By decreasing η the value $m\left(D_{\eta}, h\right)$ can be made as near that of $m(D, h)$ as we please.

Let η_{1} be the number such that

$$
\begin{equation*}
m\left(D_{\eta_{1}}, h\right) \leqslant m(D, h)[1+\epsilon] \tag{1}
\end{equation*}
$$

Using a similar argument for E we obtain a number η_{z} such that

$$
\begin{equation*}
m\left(E \eta_{\eta_{2}}, x\right) \leqslant m(E, x)[1+\epsilon] \tag{2}
\end{equation*}
$$

Let δ_{0} be the smaller of η_{1} and η_{2}. Then given any half open rectangle R let I_{x} and I_{y} be the projections of R on the X and Y axes respectively. Define

$$
\phi(R)=\left[m\left(D_{\eta^{\wedge}} I_{x}, h\right)\right]\left[m\left(E_{\eta^{\wedge}} I_{y}, x\right)\right]
$$

and for any half open figure R consisting of rectangles R we define

$$
\phi(Q)=\sum_{R \in Q} \phi(R)
$$

If $\alpha(Q) \leqslant \delta_{0}$ we shall show that

$$
\phi(Q) \leqslant 2(1+\epsilon)^{2}[h(d(Q))] a(Q)
$$

Consider a rectangle R with projections I_{x} and I_{y} on the two axes. From (1) we have

$$
\frac{m\left(D_{\eta} \wedge I_{x}, h\right)}{h\left(d\left(I_{x}\right)\right)} \leqslant 1+\epsilon
$$

and from (2)

$$
\frac{m\left(E_{\eta^{\wedge}} I_{y}, x\right)}{d\left(I_{y}\right)} \leqslant 1+\epsilon
$$

Thus

$$
\begin{aligned}
\phi(R) & \leqslant\left[\begin{array}{ll}
1+\epsilon]^{2} & d\left(I_{y}\right) h\left(d\left(I_{x}\right)\right) \\
& \leqslant[1+\epsilon]^{2} \\
d(R) h(d(R))
\end{array}\right.
\end{aligned}
$$

All $R \in \mathbb{R}$ can be completely covered by a square J side $\alpha(R)$ with diameter $\sqrt{2} \alpha(R)$. J in turn can be contained in two rectangles R^{\prime} with diameters $d(R)$ and since these two rectangles contain R

$$
\phi(Q) \leqslant 2 \phi\left(R^{\prime}\right) \leqslant 2(1+\epsilon)^{2} \alpha\left(R^{\prime}\right) h\left(\alpha\left(R^{\prime}\right)\right)
$$

i.e.

$$
\phi(R) \leqslant 2(1+\epsilon)^{2} \alpha(R) h(\alpha(R))
$$

The conditions of theorem 1 Section III, 1 , are thus satisfied and hence

$$
m\left(D_{x} \mathbb{E}, x h\right) \geqslant \frac{m\left(D_{\eta}, h\right) m\left(E_{\eta}, x\right)}{2}
$$

and thus

$$
m(D \times \mathbb{E}, x h) \geqslant \frac{m(D, h) m(E, x)}{2}
$$

since $m\left(D_{\eta}, h\right)$ can be made as near to $m(D, h)$ and $m\left(\mathbb{E}_{\eta}, x\right)$ as near to $m(E, x)$ as we please.

This completes the proof of the theorem.

SECTION III, 3.

THEOREM 1.

If D is a set of dimension $h(x)$ on the X axis and E is a set of dimension $g(x)$ on the Y axis then the dimension function $f(x)$ of the cartesian product $D_{x} E$ of D and E satisfies

$$
\begin{equation*}
\lim _{x \rightarrow 0} \sup \frac{f(x)}{\operatorname{xh}(x)}>0 \tag{1}
\end{equation*}
$$

(2)

$$
\lim _{x \rightarrow 0} \sup \frac{f(x)}{x \lg (x)}>0
$$

Proof
This follows from the theorems in Sections II,4, and III,2,

-40-

since the set $D_{\times E}$ is a subset of the cartesian product of the set D with a linear set on the Y axis and also a subset of the cartesian product of the set E with a linear set on the X axis.

$$
-41-
$$

CHAPTER IV

SECTION IV, 1.

THEOREM
If E is a closed set on the x axis having dimension function X^{α} and such that the lower X^{α}-density at every point a belonging to \mathbb{E} is greater than some positive constant μ then the dimension function of the cartesian product of E and a similar set E^{\prime} on the y axis is $\mathrm{x}^{2 \alpha}$.

Proof
It is a known result that $m\left(E_{\times E^{\prime}}, \mathrm{x}^{2 \alpha}\right)>0$.
Let δ be any small positive number. Then we are given that there exists ϵ such that

$$
\frac{m\left(E_{\wedge} I, x^{\alpha}\right)}{d(I)^{\alpha}}>\mu+\epsilon
$$

for all $d(I)<\delta$ and where I is an interval centred on a point $a \in E$. Take any point $a_{1} \in \mathbb{E}$ and cover it by an interval I_{1} length $2 r<\delta$ which is centred on the point a_{1}. Take any other point $a_{2} \in \mathbb{E}$ which does not belong to I_{1} and enclose this point in an open interval I_{2} length $2 r$ centred on a_{2}. Now take a is point $a_{3} \in E$ which does not belong to I_{1} or I_{2} and an open interval I_{3} length $2 r$ surrounding this point. Continuing in this way a finite sequence of open sets I is obtained which covers E and which is such that no point of E belongs to more than two intervals I. Denote this sequence by 9. Each interval I has diameter $2 r$ and satisfies

$$
m\left(E_{\wedge} I, X^{\alpha}\right)>(\mu+\epsilon) d(I)^{\alpha}
$$

Thus $\sum_{I \in \mathcal{G}} m\left(E_{\wedge} I, x^{\alpha}\right)>(\mu+\epsilon) \sum_{I \in G} d(I)^{\alpha}$
Since no point of E can belong to more than two intervals I

$$
2 m\left(E, x^{\alpha}\right)>\sum_{I \in \mathcal{G}} m\left(E_{\wedge} I, x^{\alpha}\right)
$$

and hence $2 m\left(E, x^{\alpha}\right)>(\mu+\epsilon) \sum_{I \in G} d(I)^{\alpha}$
Cover the set E^{\prime} on the y axis by a similar sequence $~^{\prime \prime}$ of open sets I^{\prime}. Then $I_{x} I^{\prime}$ that is the class of squares $I_{\times} I^{\prime}$ covers the set $E_{x} E^{\prime}$ and

$$
\begin{aligned}
I_{x} I^{\prime} \in \sum_{x} G^{\prime} d\left(I_{x} I^{\prime}\right)^{2} h^{\alpha} & =2^{\alpha}\left\{\sum_{I \in G} d(I)^{\alpha}\right\}^{2} \\
& <2^{\alpha}\left\{\frac{2 m\left(E, x^{\alpha}\right)}{(\mu+\epsilon)}\right\}^{2}
\end{aligned}
$$

from the above inequality.
Hence we have established that

$$
m_{\delta}\left(E_{x} E^{t}, x^{2 \alpha}\right)<\infty
$$

and since the above result holds for $a l l \delta>0$ and the number μ is non-zero we have

$$
m\left(\mathbb{E}_{x} \mathbb{E}^{\prime}, x^{2 \alpha}\right)<\infty
$$

This completes the proof of the theorem.

SECTION IV, 2.

THEOREM

In two-dimensional real Euclidean space the re exists a set S having finite non-zero Hausdorff diametral measure with dimension function $x^{2} \mu$ where $\mu=\log 2 / \log 3$ such that if

$-43-$

$S(a, b)$ is the translation of S through a distance a parallel to the x axis and b parallel to the y axis then $S_{\wedge} S(a, b)$ is a set having zero Hausdorff diametral measure with measure function $x^{2 \mu}$ for all values of a and b such that either a or b is non-zero.

Proof

Take rectangular cartesian axes in four-dimensional real Euclidean space. Let D be a plane set in the x, y plane and E a plane set in the z, t plane; then the plane $x=z-2, y=t-20$ intersects the set $D_{x} E$ in a set whose projection in the x, y plane is $D_{\wedge} E(a, b)$.

Take four different axes $O^{\prime} \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}, \mathrm{T}^{\prime}$. On the $\mathrm{O}^{\prime} \mathrm{X}^{\prime}$ axis construct the Cantor ternary set in the interval $0 \leqslant x^{\prime} \leqslant 1$. On the $O^{\prime} Y^{\prime}$ axis construct the Cantor ternary set in the interval $0 \leqslant \mathrm{y}^{\dagger} \leqslant 1$ and let F^{\dagger} denote the cartesian product of these two sets. Denote by $I^{\prime}{ }_{n i}\left(i=1 \ldots 2^{2 n}\right)$ the $c l o s e d$ squares belonging to F^{\prime} at the $\mathrm{n}^{\text {th }}$ stage. Construct a similar set in the $0^{\prime} Z^{\prime}$ T' plane.

Map these two sets onto the OXY, OZT planes the relations $x=x^{\prime}+d x^{\prime 2} \quad y=y^{\prime}+d y^{\prime 2} \quad z=z^{\prime}+d z^{\prime 2} \quad t=t^{\prime}+d t^{\prime 2}$ where $d=10^{-6}$ (say). Call the resulting sets F_{1} and F_{2} respectively and the rectangles corresponding to $I_{n i}^{\prime} I_{n t}\left(\frac{1}{n} I_{n}^{(2)}\right.$ respectively.

Consider the set on the OX axis. Denote it by Q. Then
$-44-$
$Q={ }_{n=0}^{\infty} Q_{n}$ where Q_{n} is the union of n intervals lengths l_{i}

$$
l_{i}=x_{i}-x_{i-1}^{\prime}+d\left(x_{i}^{2}-x_{i}^{\prime} \tilde{i}-1\right)
$$

and

Hence

$$
x_{i}^{\prime}-x_{i-1}^{\prime}=\frac{1}{3^{n}}
$$

$0<x_{i}^{\prime} \leqslant 1$.

$$
\frac{1}{3^{n}} \leqslant l_{i} \leqslant \frac{(1+2 a)^{(t t)}}{3^{n}}
$$

for all i.

Thus if C is the Cantor ternary set in the interval [0,1]

$$
\begin{aligned}
m\left(c, x^{\mu}\right) & \leqslant m\left(Q, x^{\mu}\right) \leqslant(1+2 d)^{\mu} m\left(C, x^{\mu}\right) \\
0 & <m\left(Q, x^{\mu}\right)<\infty
\end{aligned}
$$

From the theorem in Section IV,1, on page 41 the
dimension function of both F_{1} and F_{2} is $x^{2 \mu}$.
It is sufficient to prove that $F_{1 \times} F_{2}$ is intersected by the plane $x=z-a \quad y=t-b$ in a set of zero Hausdorff diametral measure with measure function $x^{2 \mu}$ for all values of a and b such that either a or b is non-zero.

Let $D_{1} \ldots D_{2 n}$ be the parts of F_{1} covered by the rectangles $I_{n i}^{(1)}$ and $E_{1} \ldots \ldots E_{2 n}$ parts of F_{2} for $I^{(2)} \begin{aligned} & \binom{n}{n} \text {. Then it is required }\end{aligned}$ to prove that $x=z-a, y=t-b$ intercepts the set $D_{i \times} E_{j}$ in a set of zero measure whenever $i \neq j$. If the plane intercepts the set $D_{i x} E_{i}$ then by increasing n we can ensure that it ceases to do so since only the plane $x=z, y=t$ meets the set $D_{i x} E_{i}$ for all n. Let $x=z-a, y=t-b$ intercept the set $D_{i} \times E_{j}$ in G. Then G lies in the $c u b o i d ~ I{\underset{n}{n}}_{(1)}^{n} \times I_{(2)}^{(2)}$ which has the point $\left(x_{0}, y_{0}, z_{0}, t_{0}\right)$ as the point nearest the origin. For any $m>0$ consider the cuboids $I_{m}^{(1)} \frac{1}{m}, p \times I_{m+n, q}^{(2)}, I_{n i}^{(1)} \times I_{n}^{(2)} \begin{aligned} & (2)\end{aligned}$. These are intersected by the plane $x=z-a, y=t-b$ in a set of closed
convex sets $J_{1} \ldots . J_{k}$ covering G. Then we have to prove that $\lim _{m \rightarrow \infty} \sum_{1}^{k} \alpha\left(J_{i}\right)^{2 \mu}=0$

It is sufficient to prove that

$$
\sum_{i=1}^{K} \alpha\left(J_{i}\right)^{2 \mu} \leqslant K \alpha\left(J_{0}\right)^{2 \mu}
$$

where J_{0} is the rectangle in which $x=z-a, y=t-b$ intercepts the four-dimensional cuboid $I{ }_{n i}^{(1)} \times I_{n}^{(2)}$ and K is a constant less than one which is independent of $\left(x_{0}, y_{0}, z_{0}, t_{0}\right)$. For the argument can then be repeated in each of the cuboids $I^{(1)}{ }_{n+m}, p \times I_{n+m}^{(2)}, q$ to get the desired resułt.

To prove this we need the following lemma.

LEMMA

Let $d=10^{-6}$ and let $0 \leqslant A_{0} \leqslant A \leqslant A_{1}<B_{0} \leqslant B \leqslant B_{1} \leqslant 1$ $A_{0}<A_{1}$ and $B_{0}<B_{1}$ where A_{0}, A_{1}, B_{0} and B_{1} are given constants and A and B are any numbers satisfying the above inequality. Let c be a number such that $0 \leqslant c \leqslant d\left(B_{0}-A_{1}\right)$. Take $A_{0}^{\prime}, A^{\prime}, A_{1}^{\prime} \quad B_{0}^{\prime}, B^{\prime}, B_{1}^{\prime}$ and c^{\prime} satisfying similar inequalities.

Consider the four dimensional cuboid which has the three dimensional planes

$$
\begin{array}{ll}
x=0 & y=0 \\
x=1+2 d A+d c & y=1+2 d A^{\prime}+d c^{\prime} \\
z=0 & t=0 \\
z=1+2 d B+d c & z=1+2 d B^{\prime}+d c^{\prime}
\end{array}
$$

as its faces. This is approximately the unit four dimensional cube: denote it by g_{0}. Divide this cuboid into 81 cuboids by
-46-
the three dimensional planes

$$
\begin{array}{ll}
x=\frac{1}{3}(1+2 d A)+\frac{1}{9} d c & y=\frac{1}{3}\left(1+2 d A^{\prime}\right)+\frac{1}{9} d c^{\prime} \\
x=\frac{2}{3}(1+2 d A)+\frac{4}{9} d c & y=\frac{2}{3}\left(1+2 d A^{\prime}\right)+\frac{4}{9} d c^{\prime} \\
z=\frac{1}{3}(1+2 d B)+\frac{1}{9} d c & t=\frac{1}{3}\left(1+2 d B^{\prime}\right)+\frac{1}{9} d c^{\prime} \\
z=\frac{2}{3}(1+2 d B)+\frac{4}{9} d c & t=\frac{2}{3}\left(1+2 d B^{\prime}\right)+\frac{4}{9} d c^{\prime}
\end{array}
$$

Consider the sixteen cuboids which have one vertex in common with f_{0} and let the plane $x=z+a_{1} \quad y=t+b_{1}$ intersect them in sets J_{i} the original cuboid being intersected in a set J_{0}. Then there exists $K<1$ such that

$$
\Sigma d\left(J_{i}\right)^{2 \mu} \leqslant \operatorname{K} d\left(J_{0}\right)^{2 \mu}
$$

the summation being extended over all the smaller cuboids intersected by the plane and the inequality holding uniformly for $A, A^{\prime}, B, B^{\prime}, C$ and c^{\prime} satisfying the inequalities given above and a_{1} and b_{1} satisfying

$$
\begin{aligned}
& \frac{1}{2} \geqslant a_{1} \geqslant-\left[\frac{2}{3}(1+2 d B)+\frac{4}{9} d c\right] \quad \text { and } \\
& 1+2 d A^{\prime}+d c^{\prime} \geqslant b_{1} \geqslant-\left(1+2 d B^{\prime}+d c^{\prime}\right)
\end{aligned}
$$

or similar inequalities with a_{1} and b_{1} reversed.

Proof

Define $\alpha_{i}, \beta_{i}(i=0,1,2,3)$ by

$$
\begin{aligned}
& \alpha_{0}=0, \quad \alpha_{1}=\frac{1}{3}(1+2 d A)+\frac{1}{9} d c \quad \alpha_{2}=\frac{2}{3}(1+2 d A)+\frac{4}{9} d c \\
& \alpha_{3}=1+2 d A+d c,
\end{aligned}
$$

$\beta_{0}=0, \quad \beta_{1}=\frac{1}{3}(1+2 d B)+\frac{1}{9} d c \quad \beta_{2}=\frac{2}{3}(1+2 d B)+\frac{4}{9} d c$
$\beta_{3}=1+2 \mathrm{~dB}+\mathrm{dc}$,
and $\alpha_{i}^{\prime}, \beta_{i}^{\prime}(i=0,1,2,3)$ similarly.
Denote the cuboid defined by
$\alpha_{i} \leqslant x \leqslant \alpha_{i+1} \quad \alpha_{j}^{\prime} \leqslant y \leqslant \alpha_{j+1}^{\prime} \quad \beta_{k} \leqslant z \leqslant \beta_{k+1}$ and $\beta_{l}^{\prime} \leqslant t \leqslant \beta_{l+1}^{\prime}$ by $g(i, j, k, l)$ where i, j, k, l, independently take the values 0,1 , and 2 .

Consider the plane $P x=z+a_{1}, \quad y=t+b_{1}$. This meets
$g(i, j, k, l)$ if and only if the inequalities

$$
\alpha_{i}-a_{1} \leqslant z \leqslant \alpha_{i+1}-a_{1} \quad \beta_{k} \leqslant z \leqslant \beta_{k+1}
$$

and

$$
\alpha_{j}^{\prime}-b_{1} \leqslant t \leqslant \alpha_{j+1}^{\prime}-b_{1} \quad \beta_{l}^{\prime} \leqslant t \leqslant \beta_{l+1}^{\prime}
$$

are not inconsistent ie. if and only if

$$
\alpha_{i+1}-a_{1} \geqslant \beta_{k} \quad \alpha_{i}-a_{1} \leqslant \beta_{k+1}
$$

and

$$
\alpha_{j+1}^{\prime}-b_{1} \geqslant \beta_{l}^{\prime} \quad \alpha_{j}^{\prime}-b_{1} \leqslant \beta_{l+1}^{\prime}
$$

ie. If and only if

$$
\alpha_{i}-\beta_{k+1} \leqslant a_{1} \leqslant \alpha_{i+1}-\beta_{k}
$$

and

$$
\alpha_{j}^{\prime}-\beta_{l+1}^{\prime} \leqslant b_{1} \leqslant \alpha_{j+1}^{\prime}-\beta_{l}^{\prime}
$$

Of the 81 cuboids $f(i, j, k, \ell) 16$ have vertices in common with a vertex of g_{0}. They are the cuboids $f(i, j, k, l)$ for which each argument i, j, k, l is either 0 or 2 . We wish to establish which of the se are intersected by the plane P for the various values of a_{1} and b_{1}.

By direct calculation, since $0 \leqslant A<B \leqslant 1$ and $c \leqslant \alpha\left(B-A_{1}\right)$ $\alpha_{2}-\beta_{3}<\alpha_{1}-\beta_{2}<-\beta_{1}$ and $\alpha_{3}-\beta_{2}<\alpha_{2}-\beta_{1}<\alpha_{1}$ and it
 $\begin{aligned} 2 d(A-B) & <2 d c \quad c \quad(B-C B \\ A & <B-a \quad c\end{aligned}$
follows that P meets the following cuboids $f(i, j, k, l)$ with i, j, k, l all or 2.

Transform the coordinates by

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{x}^{\prime \prime}+\mathrm{z}^{\prime \prime} & \mathrm{y}=\mathrm{y}^{\prime \prime}+\mathrm{t}^{\prime \prime} \\
\mathrm{z}=\mathrm{z}^{\prime \prime}-\mathrm{x}^{\prime \prime}-\mathrm{a}_{1} & \mathrm{t}=\mathrm{t}^{\prime \prime}-\mathrm{y}^{\prime \prime}-\mathrm{b}_{1}
\end{array}
$$

Then the plane P becomes the plane $x^{\prime \prime}=0, y^{\prime \prime}=0$. The sets $J(i, j, k, l)$ all have sides parallel to the $z^{\prime \prime}$ and $t^{\prime \prime}$ axes and are thus rectangles.
mes cut by the cubes $f(i, j, k, l)$ (i,j,k,l=0 or 2) parallel to the $z^{\prime \prime}$ axis.

For the cuboid g_{0} these are given by

$$
\begin{array}{llr}
z^{\prime \prime}=0 & z^{\prime \prime}=a_{1}+\beta_{3} & -\beta_{3} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{3} \\
z^{\prime \prime}=0 & z^{\prime \prime}=\alpha_{3} & \alpha_{3}-\beta_{3} \leqslant a_{1} \leqslant 0 \\
z^{\prime \prime}=a_{1} & z^{\prime \prime}=\alpha_{3} & 0 \leqslant a_{1} \leqslant \alpha_{3}
\end{array}
$$

$$
\left.\begin{array}{lll}
\text { For } f(0220), & g(0020), & f(0222)
\end{array}\right) \text { and } f(0022)
$$

For $f_{(2220)}, g_{(2020)}, g_{(2222)}$ and $g_{(2022)}$

$$
\begin{array}{lll}
z^{\prime \prime}=\alpha_{2} & z^{\prime \prime}=a_{1}+\beta_{3} & \alpha_{2}-\beta_{3} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{3} \\
z^{\prime \prime}=\alpha_{2} & z^{\prime \prime}=\alpha_{3} & \alpha_{3}-\beta_{3} \leqslant a_{1} \leqslant \alpha_{2}-\beta_{2} \\
z^{\prime \prime}=a_{1}+\beta_{2} z^{\prime \prime}=\alpha_{3} & \alpha_{2}-\beta_{2} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{2}
\end{array}
$$

For $f(0200), f(0000), y(0202)$ and $f(0002)$

$$
\begin{array}{llr}
z^{\prime \prime}=0 & z^{\prime \prime}=a_{1}+\beta_{1} & -\beta_{1} \leqslant a_{1} \leqslant \alpha_{1}-\beta_{1} \\
z^{\prime \prime}=0 & z^{\prime \prime}=\alpha_{1} & \alpha_{1}-\beta_{1} \leqslant a_{1} \leqslant 0 \\
z^{\prime \prime}=a_{1} & z^{\prime \prime}=\alpha_{1} & 0 \leqslant a_{1} \leqslant \alpha_{1}
\end{array}
$$

For $f(2200), f(2000), \quad f(2202)$ and $f(2002)$

$$
\begin{array}{lll}
z^{\prime \prime}=\alpha_{2} & z^{\prime \prime}=a_{1}+\beta_{1} & \alpha_{2}-\beta_{1} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{1} \\
z^{\prime \prime}=\alpha_{2} & z^{\prime \prime}=\alpha_{3} & \alpha_{3}-\beta_{1} \leqslant a_{1} \leqslant \alpha_{2} \\
z^{\prime \prime}=a_{1} & z^{\prime \prime}=\alpha_{3} & \alpha_{2} \leqslant a_{1} \leqslant \alpha_{3}
\end{array}
$$

In each case the rectangle $J(i, j, k, l)$ increases in size when the first two equations hold, remains constant when the second pair holds and decreases when the third pair holds.

The lines parallel to the $t^{\prime \prime}$ axis are similar. We note that $4(1 / 3)^{2 \mu}=1$. Let $f\left(a_{1}, b_{1}\right)$ denote $\alpha\left(J_{0}\right)^{-2 \mu} \Sigma d(J(i, j, k, \ell))^{2} \mu_{\text {where }}$ the summation is taken over all the cuboids intersected by the plane P for these values of a_{1} and $b_{ \pm}$Then if P intersects 4 cuboids $f(i, j *, l)$ and $a(J(i, j, k, l)) \leqslant \psi_{1} d\left(J_{0}\right)$ where $\partial_{1}<1 / 3 \quad f\left(a_{1}, b_{1}\right) \leqslant K_{1}<1$. Also if P intersects 2 cuboids $f(i, j, k, l)$ and if $\alpha(J(i, j, k, l)) \leqslant \partial_{2} d\left(J_{0}\right)$ where $\partial_{2}<1 / \sqrt{3}$ for both the cuboids intersected then $f\left(a_{1}, b_{1}\right) \leqslant K_{2}<1$. If P intersects only one cuboid $f(i, j, k, l)$ and $d\left(J(i, j, k, l) \leqslant \partial_{3} d\left(J_{0}\right)\right.$ where $\partial_{3}<1$ then $f\left(a_{1}, b_{1}\right) \leqslant K_{3}<1$. Clearly one of the se three cases holds for the values of a_{1} and b_{1} satisfying
or

$$
\begin{aligned}
\alpha_{1} \geqslant a_{1} \geqslant \alpha_{3}-\beta_{2} & \text { or }-\beta_{1} \geqslant a_{1} \geqslant \alpha_{2}-\beta_{3} \\
\alpha_{1}^{\prime} \geqslant b_{1} \geqslant \alpha_{3}^{\prime}-\beta_{2}^{\prime} & \text { or }-\beta_{1}^{\prime} \geqslant b_{1} \geqslant \alpha_{2}^{\prime}-\beta_{3}^{\prime}
\end{aligned}
$$

Consider the range $-\beta_{1} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{2}$
and

$$
-\beta_{3}^{\prime} \leqslant b_{1} \leqslant \alpha_{2}^{\prime}-\beta_{3}^{\prime}
$$

The cuboids $f(2022)$ and $f(0002)$ are met. The maximum value of $f\left(a_{1}, b_{1}\right)$ occurs when $b_{1}=\alpha_{1}^{\prime}-\beta_{3}^{\prime}$ and a_{1} lies somewhere in the interval $\left[\left(\alpha_{3}-\beta_{3}\right),\left(\alpha_{1}-\beta_{1}\right)\right]$. Thus

$$
f\left(a_{1}, b_{1}\right) \leqslant \frac{\left[\alpha_{1}^{\prime 2}+\left(\alpha_{3}-\alpha_{2}\right)^{2}\right]^{\mu} \Theta\left[\alpha_{1}^{\prime 2}-\alpha_{1}^{2}\right]^{\mu}}{\left[\alpha_{3}^{2}+\alpha_{1}^{\prime 2}\right]^{\mu}}+
$$

$$
\leqslant K_{2}<1
$$

by the above argument. A similar result holds for
$-\beta_{1} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{2}$ and $+\alpha_{3}^{\prime} \geqslant b_{1} \geqslant \alpha_{1}^{\prime}$
and for $-\dot{\beta}_{1}^{\prime} \leqslant b_{1} \leqslant \alpha_{3}^{\prime}-\beta_{2}^{\prime}$ and either

$$
-\beta_{3} \leqslant a_{1} \leqslant \alpha_{2}-\beta_{3} \quad \text { or } \quad \alpha_{1} \leqslant a_{1} \leqslant \alpha_{3}
$$

Now consider the range

$$
-\beta_{1} \leqslant a_{1} \leqslant \alpha_{3}-\beta_{2} \text { and }-\beta_{1}^{\prime} \leqslant b_{1} \leqslant \alpha_{3}^{\prime}-\beta_{2}^{\prime}
$$

The four cuboids met are $f(2222), f(2020), f(0202)$ and $f(0000)$. The maximum value of $f\left(a_{1}, b_{1}\right)$ occurs at some point in the intervals $\alpha_{2}-\beta_{2} \leqslant a_{1} \leqslant \alpha_{1}-\beta_{1}$ and $\alpha_{2}^{\prime}-\beta_{2}^{\prime} \leqslant b_{1} \leqslant \alpha_{1}^{\prime}-\beta_{1}^{\prime}$ since J_{0} is constant throughout these intervals, and all four rectangles increase when a_{1} and b_{1} are less than the values belonging to these intervals and all four rectangles decrease when a_{1} and b_{1} are greater than these intervals, a_{1} and b_{1} increasing.

$$
\text { Consider the intervals } \alpha_{2}-\beta_{2} \leqslant a_{1} \leqslant\left(\alpha_{3}-\beta_{3}\right) / 2
$$

and

$$
\alpha_{2}^{\prime}-\beta_{2}^{\prime} \leqslant b_{1} \leqslant\left(\alpha_{3}-\beta_{3}\right) / 2
$$

Then in this double interval

$$
\begin{aligned}
f\left(a_{1}, b_{1}\right) \leqslant & {\left.\left[\left(\alpha_{3}-\alpha_{2}\right)^{2}+\left(\alpha_{3}^{\prime}-\alpha_{2}^{\prime}\right)^{2}\right]^{\mu}+\left[\left(\alpha_{3}-\alpha_{2}\right)^{2}+\frac{\left(\alpha_{3}^{\prime}-\beta_{3}^{\prime}\right.}{2}+\beta_{1}\right)^{2}\right]^{\mu} } \\
+ & {\left[\frac{\left[\left(\alpha_{3}-\beta_{3}+\beta_{1}\right)^{2}+\left(\alpha_{3}^{\prime}-\alpha_{2}^{\prime}\right)^{2}\right]^{\mu}+\frac{\left[\left(\alpha_{3}-\beta_{3}+\beta_{1}\right)^{2}-\frac{\left.\left(\alpha_{3}^{\prime}-\beta_{3}^{\prime}+\beta_{1}^{\prime}\right)^{2}\right]^{\mu}}{2}\right.}{\left[\alpha_{3}^{2}+\alpha_{3}^{\prime 2}\right]^{\mu}}}{=}\right.} \\
=\left[\frac { 1 } { 3 } \left(1+2 d A+\frac{\left.5 d c)^{2}+\frac{1}{3}\left(1+2 d A^{\prime}+\frac{5}{3} d c^{\prime}\right)^{2}\right]^{\mu}+}{}\right.\right. & {\left[\frac{1}{3}\left(1+2 d A+\frac{5}{3} d c\right)^{2}+\frac{1}{3}\left(1+d\left(3 A^{\prime}-B^{\prime}\right)+\frac{1}{3} d c^{\prime}\right)^{2}\right]^{\mu}+} \\
& {\left[\frac{1}{3}\left(1+d(3 A-B)+\frac{1}{3} d c\right)^{2}+\frac{1}{3}\left(1+2 d A^{\prime}+\frac{5}{3} d c^{\prime}\right)^{2}\right]^{\mu}+}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left.\left[\frac{1}{3}+d(3 A-B)+\frac{1}{3} d c\right)^{2}+\frac{1}{3}\left(1+d\left(3 A^{\prime}-B^{\prime}\right)+\frac{1}{3} d c^{\prime}\right)^{2}\right]^{\mu}}{\left[(1+2 d A+d c)^{2}+\left(1+2 d A^{\prime}+d c^{\prime}\right)^{2}\right]^{\mu}} \\
= & K<1 \text { since } c \leqslant d\left(B_{0}-A_{1}\right) \leqslant d(B-A)
\end{aligned}
$$

and hence $\frac{5}{3} \mathrm{dc}$ is very much less than $\mathrm{d}(\mathrm{B}-\mathrm{A})$ and also $\frac{5}{3} \mathrm{dc}^{\prime}$
is very much less than $d\left(B^{\prime}-A^{\prime}\right)$. A similar result holds for
the double intervals

$$
\frac{\alpha_{3}-\beta_{3}}{2} \leqslant a_{1} \leqslant \alpha_{1}-\beta_{1}
$$

and $\alpha_{2}^{\prime}-\beta_{2}^{\prime} \leqslant b_{1} \leqslant \frac{\alpha_{3}^{\prime}-\beta_{3}^{\prime}}{2}$ or $\frac{\alpha_{3}^{\prime}-\beta_{3}^{\prime}}{2} \leqslant b_{1} \leqslant \alpha_{1}^{\prime}-\beta_{1}^{\prime}$
and the double interval
$\alpha_{2}-\beta_{2} \leqslant a_{1} \leqslant \frac{\alpha_{3}-\beta_{3}}{2}$ and $\frac{\alpha_{3}^{\prime}-\beta_{3}^{\prime}}{2} \leqslant \mathrm{~b}_{1} \leqslant \alpha_{1}^{\prime}-\beta_{1}^{\prime}$
Now consider the range $-\beta_{3} \leqslant a_{1} \leqslant \alpha_{2}-\beta_{3}$

$$
-\beta_{3}^{\prime} \leqslant b_{1} \leqslant \alpha_{2}^{\prime}-\beta_{3}^{\prime}
$$

For $-\beta_{3} \leqslant a_{1} \leqslant \alpha_{1}-\beta_{3}$ and $-\beta_{3}^{\prime} \leqslant b_{1} \leqslant \alpha_{1}^{\prime}-\beta_{3}^{\prime}$
$f\left(a_{1}, b_{1}\right)=1$. As either a_{1} or b_{1} increases beyond these intervals $f\left(a_{1}, b_{1}\right)$ decreases. We take either $a_{1} \geqslant-\beta_{2}$ or $\mathrm{b}_{1} \geqslant-\beta_{2}^{\prime}$.

Then $f\left(a_{1}, b_{1}\right) \leqslant\left[\alpha_{1}^{2}+\alpha_{1}^{\prime 2}\right]^{\mu}$ or $\left[\alpha_{1}{ }^{2}-\alpha_{1}^{\prime 2}\right]^{\mu}$

$$
\begin{aligned}
& \overline{\left[\alpha_{1}^{2}+\left(\beta_{3}^{\prime}-\beta_{2}^{\prime}\right)^{2}\right]^{\mu}} \overline{\left[\alpha_{1}^{\prime 2}+\left(\beta_{3}-\beta_{2}\right)^{2}\right]^{\mu}} \\
& =K<1 \text {. }
\end{aligned}
$$

A similar result holds for the double intervals

$$
-\beta_{3} \leqslant a_{1} \leqslant \alpha_{2}-\beta_{3} \text { and } \alpha_{3}^{\prime} \geqslant b_{1} \geqslant \alpha_{1}^{\prime}
$$

and $\alpha_{3} \geqslant a_{1} \geqslant \alpha_{1}$ and $\alpha_{3}^{\prime} \geqslant b_{1} \geqslant \alpha_{1}^{\prime}$ or $-\beta_{3}^{\prime} \leqslant b_{1} \leqslant \alpha_{2}^{\prime}-\beta_{3}^{\prime}$ This completes the proof of the lemma.

Proof of the theorem

Consider the cuboid $\left.\left.I^{(1}\right)_{n}\right)_{X I}^{(2)}{ }_{n j}^{(2)}$ which has the point （ $x_{0}, y_{0}, z_{0}, t_{0}$ ）as its vertex nearest the origin．Assume that $x_{0}<z_{0}$ and $y_{0}<t_{0}$ ．Then if $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ ate the coordinates used in the construction of F_{1} and F_{2}
$x-x_{0}=\left(x^{\prime}-x_{0}^{\prime}\right)\left(1+2 d x_{0}\right)+d\left(x^{\prime}-x_{0}\right)^{2}$
$y-y_{0}=\left(y^{\prime}-y_{0}^{\prime}\right)\left(1+2 d y_{0}^{\prime}\right)+d\left(y^{\prime}-y_{0}^{\prime}\right)^{2}$
$z-z_{0}=\left(z^{\prime}-z_{0}^{\prime}\right)\left(1+2 d z_{0}^{\prime}\right)+d\left(z^{\prime}-z_{0}^{\prime}\right)^{2}$
$t-t_{0}=\left(t^{\prime}-t_{0}{ }_{0}\right)\left(1+2 d t^{\prime}{ }_{0}\right)+d\left(t^{\prime}-t^{\prime}{ }_{0}\right)^{2}$
Ch nging the origins to the points（ $\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{t}_{0}$ ）and （ $x^{\prime}{ }_{0}, y^{\prime}{ }_{0}, z_{0}^{\prime}, t_{0}^{\prime}$ ）respectively and the scale by 3^{-n} we get $x=x^{\prime}\left(1+2 d x_{0}^{\prime}\right)+3^{-n} d x^{\prime 2}$
$y=y^{\prime}\left(1+2 d y^{\prime}{ }_{0}\right)+3^{-n} d y^{\prime 2}$
$z=z^{\prime}\left(1+2 d z^{\prime}{ }_{0}\right)+3^{-n} d z^{\prime 2}$
$t=t^{\prime}\left(1+2 d t^{\prime}{ }_{0}\right)+3-n d t^{\prime 2}$
Replacing x^{\prime} 。 by A, y^{\prime} 。 by A^{\prime}, z^{\prime} 。by B and t^{\prime} 。by B^{\prime} the conditions of the lemma are satisfied if n is large enough． Moreover for any cuboid lying inside $\left.I^{(1)}{ }_{n}\right)_{X} I_{n}\binom{2}{n}$ the conditions are satisfied for values of A, A^{\prime}, B and B^{\prime} lying in the ranges $x_{0}^{\prime} \leqslant A \leqslant x_{0}^{\prime}+3^{-n}<z_{0}^{\prime} \leqslant B \leqslant z_{0}^{\prime}+3^{-n}$ and $y^{\prime}{ }_{0} \leqslant A^{\prime} \leqslant y^{\prime}{ }_{0}+3^{-n}<t^{\prime}{ }_{0} \leqslant B^{\prime} \leqslant t^{\prime}{ }_{0}+3^{-n}$ ，provided n is chosen so that

$$
x_{0}^{\prime}+3^{-n}<z_{0}^{\prime} \text { and } y^{\prime} 0+3^{-n}<t_{0}^{\prime}
$$

Let the plane $x=z-a, y=t-b$ be transformed into the plane $x=z+a_{1}, y=t+b_{1}$ in the new coordinates．If either
or

$$
\begin{aligned}
& \frac{1}{2} \geqslant a_{1} \geqslant-\frac{2}{3}\left(1+2 d B+\frac{2}{3} d c\right) \\
& \frac{1}{2} \geqslant b_{1} \geqslant-\frac{2}{3}\left(1+2 d B^{\prime}+\frac{2}{3} d c^{\prime}\right)
\end{aligned}
$$

B, B^{\prime}, C and c^{\prime} being those determined above we can replace the cuboid $I_{n i}^{(1)} x^{1} I_{n j}^{(2)}$ which corresponds to the cuboid g_{0} of the lemma by the cuboids $I_{n+1, p}^{(1)} X^{I^{(2)}} \quad$ which are intersected by the given plane since these are the cuboids $g(i, j, k, l)$ ($i, j, k, l=0$ or 2) of the lemma. In this case

$$
\begin{gathered}
\sum \mathrm{d}\left(J_{i}\right)^{2 \mu}<K d\left(J_{0}\right)^{2 \mu} \text { where } K<1 \\
\text { If } a_{1}<-\frac{2}{3}\left(1+2 d B+\frac{2}{3} d c\right) \text { and } b_{1}<-\frac{2}{3}\left(1+2 d B^{\prime}+\frac{2 d c^{\prime}}{3}\right)
\end{gathered}
$$

then we apply the whole argument to the cube $g(0022)$, choosing the suitable values of $A, B, A^{\prime}, B^{\prime}, c$ and c^{\prime}. If a_{1} and b_{1} still do neither satisfy the given relations we continue subdividing. Similar argumants hold for the other extreme values of a_{1} and z_{1}. The process of subdivision must come to an end after a finite number of steps unless $x=z+a_{1}$, $\mathrm{y}=\mathrm{t}+\mathrm{b}_{1}$ passes only through one of the corner points. It then forms an isolated point of intersection ard can be ignored.

Thus a set of rectangles covering the set G can be replaced by a larger number whose sum of diagonals raised to the power 2^{μ} is less than K times the sum of the diagonals of the original set raised to the power 2^{μ}, and hence

$$
m\left(D, x^{2 \mu}\right)=0 \quad \text { since } K<1
$$

i.e. $\quad m\left(F_{1} x^{F_{2}}, x^{2 \mu}\right)=0$

We assumed that the vertex of the cuboid $\left.I^{(1}\right)_{n i x} I_{n j}^{(2)}$ which contains G, that is the point $\left(x_{0}, y_{0}, z_{0}, t_{\odot}\right)$ satisfies $x_{0}<z_{0}$ and $y_{0}<t_{0}$. This implies that a and b (the values before the origin of coordinates was changed) are positive. But $S_{\wedge} S(a, b)=S(-a,-b)_{\wedge} S$ and hence the theorem has been proved for either a and b both positive or a and b both negative. If a is positive and b negative then a different proof is required. If in the lemma B^{\prime} is taken to be smaller than A^{\prime} i.e. the A^{\prime} s and the B^{\prime} s are interchanged then the lemma will still hold although the limits on the value of b_{1} will be changed. The following proof of the theorem can be then applied taking $y_{0}>t_{0}$. This can be done since in proving the lemma the value of a_{1} taken to find the maximum value of $f\left(a_{1}, b_{1}\right)$ was independent of the value of b_{1} taken. Thus the the orem can be proved for a positive and b negative or a negative and b positive.

This completes the proof of the theorem.

CHAPTER V

THEOREM $\mathrm{V}, 1$

In real Euclidean space of two dimensions the necessary and sufficient condition for a measure function $h(x)$ to be a N.M.A.-dimension function is that

$$
\lim _{x \rightarrow 0} \inf \frac{h(x)}{x}>0
$$

Proof
Necessity Let S be any finite set in the plane and $h(x)$ a measure function such that $\lim _{x \rightarrow 0}$ inf $\frac{h(x)}{x}=0$. Then s can be completely contained in a convex set of area α. Let \mathbb{B}_{δ} be the class of all coverings 22 of the set S such that 22 is a class of convex sets U with $\Delta(U)<\delta$.

Then $\inf _{u \in B_{\delta}} \sum_{U \in 22} h(\Delta(U)) \leqslant \inf \frac{\alpha}{\delta} h(\delta)$
ie.

$$
B_{\delta}(s, h) \leqslant \alpha \inf \frac{h(\delta)}{\delta}
$$

and hence

$$
B(s, h)=0
$$

Sufficiency (1) Assume that $\lim _{x \rightarrow 0} \inf \frac{h(x)}{x}=\beta \quad 0<\beta<\infty$ Let J be the unit square in the real Euclidean plane. Then by the same argument as the above

$$
B(J, h) \leqslant \beta
$$

Given $\epsilon>0$ there exists δ such that

$$
\frac{h(x)}{x}>(\beta-\epsilon)
$$

all $x<\delta$

Let B_{δ} be the class of all coverings 22 of the set J such that 22 is a class of convex sets U with $\Delta(U)<\delta$

Then

$$
\sum_{U \in 22} h(\Delta(U))>(\beta-\epsilon) \sum_{U \in Z 2} \Delta(U)
$$

This holds for all $22 \in \mathbb{B}_{\delta}$ and hence

$$
\mathrm{B}_{\delta}(J, \mathrm{~h}) \geqslant(\beta-\epsilon)
$$

i.e.

$$
B(J, h) \geqslant(\beta-\epsilon)
$$

This is true for all $\epsilon>0$ and hence

$$
\begin{array}{r}
B(J, h)=\beta \\
\text { (2) } \lim _{x \rightarrow 0} \text { inf } \frac{h(x)}{x}=\infty
\end{array}
$$

As in theorem in section II,1, on page 5 this implies that there exists arbitrarily small positive numbers x such that

$$
\begin{equation*}
\frac{h(x)}{x} \leqslant 2 \inf _{0<t \leqslant x} \frac{h(t)}{t} \tag{i}
\end{equation*}
$$

Let $\left\{A_{n}\right\}$ be any positive sequence of increasing numbers such that $\& \frac{1}{A_{n}}$ is convergent. Define a sequence of numbers in the following way.
(a) Let x_{0} be any number satisfying (i)
(b) x_{n} satisfies (i) for all n.
(c) $h\left(x_{n-1}\right)=C_{n} h\left(x_{n}\right) \quad C_{n} \geqslant A_{n}$
(d) $2 \cdot C_{n} \cdot x_{n}<x_{n-1}$

All three conditions can be satisfied simultaneously and $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Construct a set S in the following way. In the 2-dimensiona: coordinate plane take a rectangle S_{0} which is the cartesian product of a closed interval length x_{0} on the x axis and a closed interval length 2 on the y axis, the interval on the π axis being denoted by J.

Let K_{n} denote the integral part of C_{n} and define z_{n} by

$$
K_{n} x_{n}+\left(K_{n}-1\right) z_{n}=x_{n-1} \quad \text { for all } n
$$

On the base of S_{0} take K_{1} closed intervals length X_{1} so th由t between any two such intervals lies an interval length z_{1}. Take the cartesian product of these K_{1} intervals length x_{1} with the interval J and denote this set by S_{1}. On the base of each rectangle of S_{1} take K_{2} closed intervals length X_{2} two such intervals being separated by an open interval length z_{2}. Take the cartesian product of these $\mathrm{K}_{1} \mathrm{~K}_{2}$ closed intervals with J and denote this set by S_{2}. Continuing in this way we obtain a sequence of sets $S_{1} \ldots S_{n} \ldots$ such that each S_{n} is c closed and $S_{n} \supset S_{n+1}$.

Let $S=\prod_{1} S_{n}$. Then S is also closed.
(α) To prove that $B(S, h)<\infty$
Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ given any number $\delta>0$ there exists a number n_{0} such that $x_{n_{\theta}}$ is less than δ. Any set S_{n} is a covering of S and if S_{n} denotes a rectangle of $S_{n} \Delta\left(S_{n}\right)=x_{n}$ Thus for any $n>n_{0} \quad S_{n}$ is a covering of S with $\Delta\left(s_{n}\right)<\delta$ for all $s_{n} \in S_{n}$.

Then

$$
\begin{aligned}
K_{1} \ldots K_{n} h\left(\Delta\left(s_{n}\right)\right) & \leqslant K_{1} \ldots K_{n-1} h\left(\Delta\left(s_{n-1}\right)\right) \\
& \leqslant h\left(x_{0}\right) \quad \text { by (c), and the }
\end{aligned}
$$

fact that $K_{n} \leqslant C_{n}$.
Thus
and hence

$$
\begin{aligned}
B_{\delta}(S, h) & \leqslant h\left(x_{0}\right) \quad \text { for all } \delta>0 \\
B(S, h) & \leqslant h\left(x_{0}\right)
\end{aligned}
$$

(β) To prove that $\mathrm{B}(\mathrm{S}, \mathrm{h})>0$
Let $u 2$ be any covering of open convex sets U, U covering
the set S. Then any set $U \in U$ can be completely contained in a triangle area $4 \Delta(U)$ or 4 triangles area $\Delta(U)$. Any such triangle in turn can be completely contained in a parallelogram P with one pair of sides lying parallel to the y axis. Let P be the class of ill such parallelograms P corresponding to the sets $U \in \nu 2$.

Then

$$
8 \text { \& } \sum_{U \in 22} h(\Delta(U)) \geqslant \sum_{P \in P} h(\Delta(P))
$$

LEMMA

Given any finite covering P of the set S, P consisting of open parallelograms with one pair of sides parallel to the y axis, there exists a covering R of rectangles R which have sides parallel to the axes, the ir bases lying on the x axis and heights 2. Then R is such that

$$
4 \sum_{P \in P} h(\Delta(P)) \geqslant \sum_{R \in R} h(\Delta(R))
$$

Proof of the lemma

Since S is a closed set and the limit of a decreasing sequence of sets $\left\{S_{n}\right\}$, given any $\eta>0$ there exists an integer n such that every point of $S_{n} n \geqslant n_{0}$ is within a distance η of S. Any finite covering by open convex sets of the set S will also cover all points within a certain η of S and in particular the covering of parallelograms P covers all sets S_{n} for $n \geqslant$ some n_{0}.

Take $n \geqslant n_{0}$ and consider the set $S_{n \wedge} P \quad P \in P$. This set consists of parallelograms of finite area. Denote the total
-60-
area of these parallelograms i.e. the total area of S_{n} contained in P by $\Lambda_{n}(P) . \quad \Lambda_{n}(P)$ is a number and not a set and

$$
\begin{aligned}
\sum_{P \in P} \quad \Lambda_{n}(P) & \geqslant 2 K_{n} K_{n-1} \cdots K_{1} x_{n} \\
& =\Lambda_{n}(P)
\end{aligned}
$$

Consider any $P \in P$. Let the length of the sides of P parallel to the y axis be β and the perpendicular distance between them be α. Then $\Delta(P)=\frac{1}{2} \alpha \beta$. If P is replaced by a rectangle W with sides parallel to the axes of length α and β, the side length α lying parallel to the x axis, and W is placed so that the sides parallel to the y axis have the same x coordinate as the corresponding sides of P then

$$
\Delta(W)=\frac{1}{2} \alpha \beta=\Delta(P)
$$

and

$$
\Lambda_{n}(P)=\Lambda_{n}(W)
$$

Now consider the variation in $\Lambda_{n}(W)$ as the position of W is changed its size and shape remaining constant, and the sidee remaining parallel to the axes.
(a) Moving the rectangle W in a direction parallel to the y axis. This leaves the value of $\Lambda_{n}(W)$ unaltered as long as W is contained in S_{o} throughout.
(b) Moving W in a direction parallel to the x axis.

Let t be the integer such that $x_{t-1}>$ base of $W \geqslant x_{t}$ If W is not originally contained completely ind retangle $S_{t-1} \in S_{t-1}$ then moving it until it is just contained in such a rectangle can only increase the value of $\Lambda_{n}(W)$. If W is completely contained in a rectangle s_{t-1} and is moved so that in its new position its right hand side coincides with the
right hand side of a rectangle $S_{t} \in S_{t}$ whilst still being contained in S_{t-1} then $\Lambda_{n}(W)$ either remains constant or increases by at most a factor $2 x_{t}$.

Thus if W and W^{t} are two similar rectangles parallel to the axes, W placed anywhere in S_{o} and W^{\prime} placed so that it is completely contained in a rectangle $s_{t_{-1}}$ and its right hand side coinciding with the right hand side of one of the rectangles s_{t} and its base lying on the x axis then

$$
\Lambda_{n}\left(W^{\prime}\right) \geqslant \Lambda_{n}(W)
$$

This position of W^{\prime} will then be referred to as the best position for a rectangle. For the purpose of this definition we have stated that the right hand sides must be coincident. It is clearly immaterial whether we choose the right hend sides or the left hand sides to be coincident as long as the rectangle is contained in S_{t-1}.

Consider a rectangle W placed in the best position. Let W have sides length α and β, α being placed on the x axis and β the height. Let $\beta \leqslant 1$. Divide W into two sets W_{1} and W_{2} by a perpendicular line bisecting the base. Then only one of the sets W_{1} and W_{2} is necessarily in the best position say W_{1}.

Thus

$$
\Lambda_{n}\left(W_{1}\right) \geqslant \Lambda_{n}\left(W_{2}\right)
$$

If W_{2} is placed above W_{1} to form a rectangle W^{\prime} sides $\frac{\alpha}{2}$ and 2β
then

$$
\Lambda_{n}\left(W^{t}\right)=\Lambda_{n}\left(W_{1}\right)+\Lambda_{n}\left(W_{1}\right)
$$

since moving a rectangle W_{1} parallel to the y axis leaves $\Lambda_{n}\left(W_{1}\right)$ unaltered,

$$
\begin{aligned}
-62- & \\
& \geqslant \Lambda_{n}\left(W_{1}\right)+\Lambda_{n}\left(W_{2}\right) \\
& =\Lambda_{n}(W)
\end{aligned}
$$

If $2 \beta \leqslant 1$ al so then a rectangle $W^{\prime \prime}$ is obtained sides $\frac{\alpha}{4}$ and 4β such that

$$
\Lambda_{n}\left(W^{\prime \prime}\right) \geqslant \Lambda_{n}\left(W^{\prime}\right) \geqslant \Lambda_{n}(W)
$$

Proceeding in this way a rectangle Q can be obtained such that
(1) Q is in the best position
(2) The height of Q is greater than 1
(3) $\Lambda_{n}(Q) \geqslant \Lambda_{n}(W)$
(4) $\Delta(Q)=\Delta(W)$

Thus it has been established that given any parallelogram P there exists a rectangle Q such that if Q is placed in the best position for itself,
(1) Q has sides parallel to the axes
(2) height of $Q>1$
(3) $\Delta(Q)=\Delta(P)$
(4) $\quad \Lambda_{n}(Q) \geqslant \Lambda_{n}(P)$

Corresponding to every $P \in P$ take one such rectangle Q and denote the class of all the rectangles Q by 2 . Then 2 is finite. Enumerate the rectangles of 2 so that if a_{i} is the base length of Q_{i}

$$
a_{i} \leqslant a_{j} \text { if } i>j .
$$

The class 2 is now placed on the set S_{n} so that every $Q \in Q$ is in the best position and they are all disjoint. In order that the set S_{n} will be covered we have to place 3
additional sets Q around the first one and these extra sets may overlap. Thus a class 42 is actually made to cover S_{n}

Let q_{i} be the integer such that

$$
x_{q_{i}-1}>a_{i} \geqslant x_{q_{i}}
$$

Denote each rectangle of S_{m} by s_{j}^{j} and enumerate them from the right.

Place Q_{1} in the right hand bottom corner of $s_{q_{1}-1}^{1}$. This is clearly the best position. Place a similar rectangle above this one and two more alongside the se so that in all they cover a rectangle height $\geqslant 2$ and base $2 a_{1}$. We consider next the different cases that can occur.

Case (1)
Suppose that $a_{1}<x_{q_{1}-1} / 2$ and $q_{1}=q_{2}=\cdots=q_{j+1}$ Let Q_{1} alone meet r_{1} rectangles $s_{q_{1}}$. Then the 4 rectangles Q Q_{1} will completely cover these first r_{1} rectangles $s_{q_{1}}$ but will not cover the rectangle $s_{q_{1}-1}$. Place Q_{2} so that its right hand bottom corner coincides with the right hand bottom corner of $s_{q_{1}}^{r_{1}+1}$ As with Q_{1} place 3 more fectangles similar to Q_{2} one above and two alongsi/de the first Q_{2} to the right so that a rectangle height 2 and base $2 a_{2}$ is covered. Then if the first rectangle Q_{2} met r_{2} rectangles $s_{q_{1}}$ ($q_{2} w a s$ assumed to be equal to q_{1}) the 4 rectangles Q_{2} will completely cover these r_{2} rectangles. Thus all the rectangles $s_{q_{1}}^{1} \quad s_{q_{1}}^{2} \ldots \ldots$ $s_{q_{1}}^{\left(r_{1}+r_{2}\right)}$ have been covered. Place Q_{3} so that its right hand bottom corner coincides with the right hand bottom corner of
the rectangle $s_{q_{1}}^{\left(r_{1}+r_{2}+1\right)}$. Repeat the process with Q_{3} and so on. An integer t is then obtainea such that when the first rectangle Q_{t} is placed in position as described above it is completely containedin $s_{q_{1}-1}^{1}$ and either
(i) when the three additional sets Q_{t} are placed in their prescribed positions alongside and above the first one the covering of all the rectangles $s_{q_{1}}$ contained in $s_{q_{1}-1}^{1}$ is completed or
(ii) the threedextra rectangles Q_{t} do not complete the covering of all the rectangles $s_{q_{1}} \in s_{q_{1}-1}^{1}$ but the set Q_{t+1} When placed in its prescribed position that is with its right hand bottom corner coinciding with the right hand bottom corner of the rectangle $s_{q_{1}}^{\left(r_{1}+r_{2}+\ldots r_{t}+1\right)}$, is not completely contained in $\mathrm{s}_{\mathrm{q}_{1}-1}$.

In the case (i) the set Q_{t+1} is placed in the right hand bottom corner of $s_{q_{1}-1}^{2}$ and the process repeated over this rectangle.

In the case (ii) let w be the distance between the left hand bottom comer of $s_{q_{1}-1}$ and the left hand bottom corner of the first rectangle Q_{t}. Then since the three additional sets Q_{t} did not complete the covering of $s_{q_{1}-1} w>a_{t} \geqslant a_{t+1}$. Also since Q_{t+1} when placed in position was not contained in $s_{q_{1}-1}^{1} \quad a_{t+1}>w-x_{q_{1}}-z_{q_{1}}$. Thus if Q_{t+1} is placed so that its left hand bottom corner coincides with the left hand
bottom corner of $s_{q_{1}-1}$ it will not overlap the first rectangle Q_{t} and when the extra rectangles Q_{t} and Q_{t+1} are placed in position the covering of all $s_{q_{1}} \in s_{q_{1}-1}^{1}$ is completed. The rectangle Q_{t+2} is then placed in the right hand bottom corner of $s_{q_{1}-1}^{2}$ and the process repeated over this rectangle.

Case (2)

Suppose that $a_{1}<x_{q_{1}-1} / 2$ but for some $j<t$ (t as defined in the previous case) $q_{j}<q_{j-1}$. In this case when Q_{j} is placed so that itd right hand bottom corner coincides with the right hand bottom corner of the rectangle $s_{q_{1}}^{\left(r_{1}+r_{2}+\ldots r_{j-1}+1\right)}$ it will be completely contained in this rectangle and the process can be repeated using this smaller rectangle $s_{q_{j-1}}$ instead of $s_{q_{1}-1}^{1}$.

Case (3)

Suppose that $a_{1} \geqslant x_{q_{1}-1} / 2$. When the 4 rectangles Q_{1} are placed in position they completely cover the rectangle $s_{q_{1}}^{1}-1$ and Q_{2} can then be placed so that its right hand bottom corner coincides with the r ight hand bottom cormer of $s_{q_{1}-1}^{2}$ and the process is then repeated over this rectangle.

In each case the firsit rectangle Q was placed so that it was in the best position and also so that it did not overlad any other first rectangle.

The method described above can be used as long as $q_{i}>n$. But if for some $i, q_{i} \leqslant n$ a slightly different approach is
needed. Let j be the first integer such that $q_{j} \leqslant n$. Then by the above method Q_{j} is placed in the right hand bottom corner of a rectangle s_{n}. If $a_{j} \geqslant x_{n} / 2$ the 4 rectangles Qu when placed in their prescribed positions will completely cover the rectangle s_{n} and there is no difficulty. If $a_{j}<x_{n} / 2$ since a_{i} is a decreasing sequence of numbers there exists an integer k such that

$$
x_{n} / 2 \leqslant a_{j}+a_{j+1}+\cdots+a_{k}<x_{n} .
$$

These $(k-j+1)$ rectangles are then placed in the right hand bottom corner of the rectangle s_{m}, each one with a similar rectangle above it. Then these two sets of rectangles cover a rectangle contained in s_{n} of height 2 and base $a_{j}+\ldots+a_{k}$ $\geqslant x_{n} / 2$. If two more sets of rectangles $Q_{j} \ldots Q_{k}$ are now placed alongside these the covering of s_{n} is completed. In this case it is trivial that if P_{i} is the parallelogram corresponding to Q_{i} then for the first Q_{i} used

$$
\Lambda_{n}\left(Q_{i}\right) \geqslant \Lambda_{n}\left(P_{i}\right) \quad i \geqslant j .
$$

Continue in this way until the covering of S_{n} is completed or all the sets $Q \in 2$ have been used, without completing the covering of S_{n}. The second alternative is impossible since considering only the first rectangle Q_{i} used each time all the Q_{i} are disjoint and hence if the covering has not been completed

$$
\sum_{Q_{i} \in Q} \Lambda_{n}\left(Q_{i}\right)<\Lambda_{n}\left(S_{0}\right)
$$

But

$$
\begin{aligned}
& Q_{i} \in Q \\
& \Lambda_{n}\left(Q_{i}\right) \geqslant \sum_{i \in P} \Lambda_{n}\left(P_{i}\right) \\
& \geqslant \Lambda_{n}\left(S_{0}\right)
\end{aligned}
$$

-67-
which gives a contradiction.
\} To complete the proof of the lemma each set of 4 rectangles Q_{i} are replaced by 4 rectangles $R_{i} \Delta\left(R_{i}\right)=\Delta\left(Q_{i}\right)$ where R has height 2 and base on the x axis. The first rectangle R is placed so that its right hand side (or left hand side in the special case of a rectangle Q_{i} placed as described in case 1 (ii)) coincides with the right hand side (or left hand side) of the first rectangle Q_{i} and the three remaining rectangles R_{i} are placed adjacent to this one. Then if Q is the class of all such rectangles R, R covers 42 and

$$
\sum_{R \in \mathbb{R}} h(\Delta(R)) \leqslant \sum_{Q \in \pm Q} h(\Delta(Q))
$$

Since $\Delta\left(Q_{i}\right)=\Delta\left(P_{i}\right)$ for all i

$$
\sum_{Q_{i} \in^{42}} h\left(\Delta\left(Q_{i}\right)\right) \leqslant 4 \sum_{P_{i} \in P} h\left(\Delta\left(P_{i}\right)\right)
$$

hence

$$
\sum_{R \in Q} h(\Delta(R)) \leqslant 4 \sum_{P \in P} h(\Delta(P))
$$

which completes the proof of the lemma.

Denote by $R(S, h)$ the measure obtained by limiting the class B_{δ} of coverings $2 l$ of S to coverings R of rectangles R as defined in the lemma.

Then it has been proved that

$$
\sum_{U \in \ddots 2} h(\Delta(U)) \geqslant \frac{1}{16} \sum_{R \in R} h(\Delta(R))
$$

This holds for all $2 l \in \mathbb{B}_{\delta}$ and hence

$$
B(S, h) \geqslant \frac{1}{16} R(S, h)
$$

Consider any rectangle R with base length a. Then $\Delta(R)=a$. Also for any $s_{n} \in S_{n} \quad \Delta\left(s_{n}\right)=x_{n}$. The problem now reduces to the one dimensional ease of the proof of the sufficiency in the theorem of Section II,1, on page 5. For if S^{\prime} is the projection of S on the x-axis and 9 the class of intervals projected by R on the x-axis

$$
\begin{aligned}
a(I) & =\Delta(R) & I \in g \quad \text { and } R \in R \\
\sum_{I \in g} h(a(I)) & =\sum_{R \in R} h(\Delta(R)) &
\end{aligned}
$$

and hence

$$
m\left(S^{\prime}, h\right)=R(S, h)
$$

It was established in the proof referred to above that

Thus $m\left(\mathrm{~S}^{\prime}, \mathrm{h}\right)>0$
and so $B(S, h)>0$
This completes the proof of the theorem.

SECTION $\mathrm{V}, 2$.

THEOREM

The metric area measure of a plane set formed by taking the cartesian product of any set on the x-axis and an interval on the y-axis is zero or infinite for any measure function $h(x)$ such that

$$
\lim _{x \rightarrow 0} \frac{h(\lambda x)}{h(x)}=\alpha \quad \text { where } \lambda \text { is any }
$$

positive integer and $\lambda \neq \alpha$.

Proof
Denote the plane set by S and let A_{δ} be the c lass of all coverings 22 of the set $S, 22$ consisting of convex sets U with $\mathrm{d}(\mathrm{U})<\delta$. Take cartesian coordinates so that S is the cartesian product of a set D on the x-axis and on interval J on the y-axis. Multiply the y coordinate of every point of S by λ. Denote the set obtained thus by S_{λ}. Then S_{λ} may be divided into λ sets similar to S by drawing $(\lambda-1)$ lines parallel to the x-axis at a mutual distance $d(J)$ apart.

Since the measure is metric

$$
\begin{equation*}
\lambda A(S, h)=A(S, h) \tag{1}
\end{equation*}
$$

Multiply the y coordinate of every point $u \in U \in L 2$ by λ Then the resulting class 2$\}_{\lambda}$ of convex sets U_{λ} covers the set S_{λ} and $\Delta\left(U_{\lambda}\right)=\lambda \Delta(U)$ for all $U \in L 2$ Hence

$$
A_{\lambda \delta}\left(S_{\lambda}, h\right) \geqslant \inf _{l \mathcal{L} \in A_{\delta}} \sum_{U \in U L} h(\lambda \Delta(U))
$$

Now consider any covering $2 l^{t}$ of S_{λ}. Divide the y coordinate of every point belonging to a member of this class by λ and the resulting class is then a covering of S. Hence

$$
\begin{align*}
& A_{\lambda \delta}\left(S_{\lambda}, h\right) \leqslant \inf _{2 Z \in A_{\delta}} \sum_{U \in U Z} h(\lambda \Delta(U)) \\
& \text { ide. } \\
& A_{\lambda \delta}\left(S_{\lambda}, h\right)=\inf _{U \in A_{\delta}} \sum_{U \in L L} h(\lambda \Delta(U)) \\
& \text { If } \frac{h(\lambda \bar{x})}{h(x)} \rightarrow \alpha \quad \text { as } x \rightarrow 0 \\
& \text { then } \\
& A\left(S_{\lambda}, h\right)=\alpha A(S, h) \tag{2}
\end{align*}
$$

But if $\lambda \neq \alpha$ (1) and (2) are contradictory unless $A(S, h)$ is zero or infinite.

This ptoves the theorem.
Remark This theorem applies to $h(x)=x \quad 0<r<1$.

COROLIARY

Non-metric area measure is in fact non-metric. If non-metric area measure was metric the above proof could be used to establish that $B(S, h)$ is zero or infinite for any set S consisting of the cartesian product of a set on the x axis and a closed interval J on the y axis whenever $\frac{h(\lambda x)}{x} \rightarrow \alpha$ as $\mathrm{x} \rightarrow 0 \quad \lambda \neq \alpha$. But this is a contradiction of the theorem established in Section $V, 1$, and hence this measure is non-metric.

SECTION V,3,

THEOREM
If $0<\alpha<1$ there exists a set S having finite non-zero metric area measure with dimension function x^{α}, in $2-$ dimensional real Euclidean space, α rational.

Proof
Construct the set S as follows. Let $\left\{K_{n}\right\}$ be a rapidly increasing sequence of positive integers. Now choose a sequence of numbers x_{n} such that $x_{0}=1$ and

$$
\begin{equation*}
K_{n} x_{n}^{\alpha}=x_{n-1}^{\alpha} \tag{1}
\end{equation*}
$$

Then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let

$$
z_{n}=\frac{1}{\left(K_{n}-1\right)}\left[x_{n-1}-K_{n} x_{n}\right]
$$

Let S_{o} denote the unit square in two dimensional real Euclidean space with sides parallel to rectangular cartesian axes. Along each side of S_{0} take K_{1} closed intervals of length X_{1} interspace by ($K_{1}-1$) open intervals of length z_{1} and from these intervals construct a network of $K_{1}{ }^{2}$ closed squares side $x_{1},\left(K_{1}-1\right)^{2}$ open squares side z_{1} and rectangles sides X_{1} and z_{1}. Delete all but the K_{1}^{2} closed squares from S_{0} and denote the set so obtained by S_{1} and any square belonging to S_{1} by S_{1}. Along each side of each $S_{1} \in S_{1}$ construct K_{2} closed intervals length X_{2} interspace by $\left(K_{2}-1\right)$ open intervals length z_{2} and as before construct the network to obtain the set S_{2} consisting of $K_{1}^{2} K_{2}^{2}$ closed squares s_{2} side x_{2}. Continuing in this way a decreasing sequence of sets S_{n} is obtained. Let $S=\prod_{1}^{\infty} S_{n}$. Then S is the required set.
(i) To prove that $A\left(s, x^{\alpha}\right)<\infty$

Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ given any $\delta>0$ there exists n such that $\sqrt{2} \mathrm{X}_{\mathrm{n}}<\delta$. Thus for such an integer $\mathrm{n} \mathrm{S}_{\mathrm{n}}$ is a covering of S which consists of squares s_{n} with $d\left(s_{n}\right)<\delta$ and also $\Delta\left(s_{n}\right)=\frac{x_{n}^{2}}{2}$

Then

$$
\begin{aligned}
\left(K_{1} \ldots K_{n}\right)^{2}{\frac{x_{n}^{2}}{2}}^{\alpha} & =\left(K_{1} \ldots K_{n-1}\right)^{2} \frac{x_{n}^{2}-1}{2} \alpha \\
& =\frac{1}{2^{\alpha}}<\infty
\end{aligned}
$$

Hence $A_{\delta}\left(S, x^{\alpha}\right)<\infty$. Since this holds for all $\delta>0$ $A\left(S, x^{\alpha}\right)<\infty$.
(ii) To prove that $A\left(S, x^{\alpha}\right)>0$.

From the proof of the theorem in Section $\mathrm{V}, 1$, it is sufficient to prove this result considering only coverings of parallelograms with one pair of sides parallel to the axes. Since the sides can be chosen to be parallel to either of the axes the parallelogram can be chosen so that its acute interior angle is greater than $\pi / 4$. For if U is any set belonging to a covering 22 of S and in the diagram below the triangle XYZ contains U and is such that the area of XYZ $=4 \Delta(U)$, the parallelogram P is then taken so that $\Delta(P)=\Delta(X Y Z)$. Let $X Z$ be the shortest side. Then P must have Y as a vertez and either YZ or YX as one side.

Let $Y O$ and $Y O^{\prime}$ be the lines parallel to the axes. Then the interior acute angle of P is either XYO or $\hat{\hat{Z Y O}}{ }^{\prime}$.

$$
\widehat{X Y O}+\hat{Z Y O}{ }^{\prime}-\hat{X Y Z}=\pi / 2
$$

and hence either XYO or $\hat{Z Y O}$ ' is greater than $\pi / 4$
Let P be such a parallelogram and let the acute interior angle be β. Let the length of the pair of s ides parallel to the axis be a and the perpendicular distance between these sides be b . Then $\Delta(P)=\frac{1}{2} \mathrm{ab}$.

Let m be the integer such that $x_{m} \leqslant b<x_{m- \pm}$. The set S_{m} consists of $\left(K_{1} \ldots K_{m}\right)^{2}$ squares s_{m} which are arranged in ($\mathrm{K}_{1} \ldots \mathrm{~K}_{\mathrm{m}}$) columns parallel to the sides of P length a. Let P meet r of these columns.

Then
$b>(r-1) z_{m}+(r-2) x_{m}$
and $\quad\left(\frac{1}{2} a b\right)^{\alpha}>\left(\frac{1}{2} a\right)^{\alpha}\left[(r-1) z_{m}+(r-2) x_{m}\right]^{\alpha}$
From (1) and (2) $\quad z_{m}=\frac{x_{m}}{K_{m}-1}\left[K_{m}^{1 / \alpha}-K_{m}\right]$
therefore

$$
\left(\frac{1}{2} a b\right)^{\alpha}>\left(\frac{1}{2} a x_{m}\right)^{\alpha}\left[\frac{(r-1)}{K_{m}-1}\left\{K_{m}^{1 / \alpha}-K_{m}\right\}+(r-2)\right]^{\alpha}
$$

Let P be the class of parallelograms P which covers S. Then if for every $P \in P\left(\frac{1}{2} a b\right)^{\alpha}>\frac{r}{2}\left(\frac{1}{2} a x_{m}\right)^{\alpha}$ each parallelogram P can be replaced by r parallelograms which have one pair of parallel sides coinciding with the sides of a column of squares s_{m} and if such parallelograms are denoted by Q and the class of all Q needed to cover S by 2 then

$$
\sum_{P \in P}(\Delta(P))^{\alpha}>\frac{1}{2}\left\{\sum_{Q \in Q}(\Delta(Q))^{\alpha}\right\}
$$

Hence it is sufficient to consider only coverings of parallelograms Q if we can establish that

$$
\left\{\frac{(r-1)}{K_{m}-1}\left[K_{m}^{1 / \alpha}-K_{m}\right]+(r-2)\right\}>\frac{r}{2}
$$

or

$$
(r-1) K_{m}^{1 / \alpha}-K_{m}-(r-2)>\left(\frac{r}{2}\right)^{1 / \alpha}\left(K_{m}-1\right)
$$

i.e.

$$
\begin{gathered}
\left(\frac{r}{2}\right)^{1 / \alpha}\left(K_{m}-1\right)-r\left(K_{m}^{1 / \alpha}-1\right)+K_{m}^{1 / \alpha}+K_{m}-2 \\
=f(r)<0
\end{gathered}
$$

Consider the function $f(r)$ for $r \geqslant 2$. Differentiating

$$
\frac{d f}{d r}=\frac{\left(K_{m}-1\right)}{\alpha 2^{1 / \alpha}} \quad r^{1 / \alpha-1}-\left(K_{m}^{1 / \alpha}-1\right)
$$

and thus there is only one real positive value of r for which $\frac{d f}{d r}=0$.
When $r=0 \quad f(r)=K_{m}^{1 / \alpha}+K_{m}-2>0$.
When $r=2 \quad f(r)=-K_{m}^{1 / \alpha}+2 K_{m}-1<0$
since K_{m} is large.
When, $r=K_{m} \quad f(r)=-\left\{1-\left(\frac{1}{2}\right)^{1 / \alpha}\right\} K_{m} 1 / \alpha+1+\left\{1-\left(\frac{1}{2}\right)^{1 / \alpha}\right\} K_{m}{ }^{1 / \alpha}$

$$
+2 \mathrm{~K}_{\mathrm{m}}-2<0
$$

since K_{m} is large.
As $r \rightarrow+\infty$. $f(r) \rightarrow+\infty$.
Since $f(r)$ has only one turning point $f(r)<0$ throughout the range $2 \leqslant r \leqslant K_{m}$. Since the integer m was chosen so that $x_{m-1}>b$ the parallelogram P will meet at most K_{m} columns of squares s_{m} and so we have established the desired result.

-75-

A parallelogram Q with sides coinciding with the sides of a column of squares s_{m} can be replaced by $\mathrm{K}_{\mathrm{m}+1}$ parallelograms Q with sides coinciding with those of columns of squares s_{m+1} without affecting the sum $\sum_{Q \in Q}(\Delta(Q))^{\alpha}$

Now consider any parallelogram P with sides parallel to the axes length a perpendicular distance between them b and the acute interior angle $\beta>\pi / 4$. Let q be an integer such that $x_{q-1}>a \geqslant x_{q}$. From the above we can take $b \leqslant x_{q}$. For if $b>x_{q}$ wecan replace P by parallelograms Q with $b=x_{q}$. Let P meet t rows of squares s_{q}, the rows being perpendicular to the sides of P length a.

Then

$$
a+b \cot \beta>(t-2) x_{q}+(t-1) z_{q}
$$

and since $b \cot \beta \leqslant x_{q}$,

$$
a>(t-3) x_{q}+(t-1) z_{q}
$$

By the same argument as the above

$$
\left(\frac{1}{2} a b\right)^{\alpha} \geqslant \frac{t}{2}\left(\frac{1}{2} x_{q} b\right)^{\alpha}
$$

Combining these results if n is an integer such that $a \geqslant x_{n}$ and $b \geqslant x_{n}$ and P meets μ squares s_{n} then

Thus

$$
\begin{gathered}
\left(\frac{1}{2} a b\right)^{\alpha} \geqslant \frac{\mu}{4}\left(\frac{1}{2} x_{n}^{2}\right)^{\alpha} \\
4 \sum_{P \in P}(\Delta(P))^{\alpha} \geqslant \sum_{s_{n} \in S_{n}}\left(\Delta\left(s_{n}\right)\right)^{\alpha}
\end{gathered}
$$

and since this holds for all coverings of parallelograms P it is sufficient to prove the result for coverings S_{n} only. But we have already established that

$$
\sum_{s_{n} \in S_{n}}\left(\Delta\left(s_{n}\right)\right)^{\alpha}=\left(\frac{1}{2}\right)^{\alpha}>0 \quad \text { for all } n
$$

$$
-76-
$$

and hence $A\left(s, x^{\alpha}\right)>0$.

This completes the proof of the theorem.

CHAPTER VI

SECTION VI,1.

THEOREM

Let $L 2$ be the class of all convex sets U covering a given total arc length δ on the circumference of a unit circle. Then the least value of $\Delta(U), U \in L L$ is the area of the greatest triangle that can be drawn in a segment of the circle covering an arc length δ.

LEMMA

Let S be a closed set of linear measure $\lambda \leqslant 4 \pi / 3$ on the frontier of the unit circle. Then there exists three points belonging to S such that the least length of arc between any two of them is $\lambda / 2$.

Consider the class of all triangles having vertices in S. Let $X Y Z$ be one such triangle having the greatest value of least side length and let $Y Z$ be this shortest side. Draw YY' parallel to $X Z$ and $Z Z^{\prime}$ parallel to $X Y$ cutting the circle again in Y^{\prime} and Z^{\prime} respectively. Y^{\prime} lies at Y or on the side of $X Y$ opposite to Z and Z^{\prime} lies at Z or on the side of $X Z$ opposite to Y. For if, for example Y^{\prime} lies on the same side of $X Y$ as Z then $X Y=Y^{\dagger} Z<Y Z$ which contradicts the hypothesis

If $X Y=Y Z=Z X$ each vertex is at an arc length $2 \pi / 3$ from the other two and since $\lambda \leqslant 4 \pi / 3$ the lemma follows.

Otherwise there is no loss in generality in assuming that $X Y>Y Z$, which implies that Y^{\prime} and Y do not coincide. Take I on the arc $X Y^{\prime}, M$ on the arc $Y Z$ and N on the arc $Z^{\prime} X$ such

$$
\begin{aligned}
& \operatorname{arc} Y M=\operatorname{arc} X I-2 \delta \\
& \operatorname{arc} Z^{\prime} N=\operatorname{arc} X L-\delta
\end{aligned}
$$

where δ is small and positive. Then

$$
\begin{aligned}
& \operatorname{arc} \mathrm{LN}=\operatorname{arc} X Z^{\prime}+\delta \\
& \text { arc } \mathrm{LM}=\operatorname{arc} X Y-2 \delta \\
& \text { arc } M N=\operatorname{arc} Y Z^{\prime}+\delta
\end{aligned}
$$

Choose δ so small that are $X Y-2 \delta>$ arc $X Y Y^{\prime}$. Then since $\operatorname{arc} X Y^{\prime}=\operatorname{arc} X Z^{\prime}=\operatorname{arc} Y Z$ it follows by the extremal property of the triangle XYZ that at least one of the points L, M and N does not belong to S. If L is allowed to vary in such a way that $L \in X Y^{\prime} M \in Y Z$ and $\mathbb{I} \in X Z^{\prime}$ then of the threeppoints at most two helong to S, and hence the measure of S in the arcs $Y Z, Z^{\prime} X$ and $X Y^{\prime}$ is at most $2(3 \operatorname{arc} Y Z+6 \delta) / 3$. This is
true for all $\delta>0$ and hence the measure of S in the arcs $Y Z, Z^{\prime} X$ and $X Y '$ is at most twice the arc $Y Z$. But since no point of S can lie in the arcs $Y Y^{\prime}$ and $Z Z^{\prime}$ by the extremal property of the triangle XYZ the measure of S in the ares $Y Z, Z^{\prime} X$ and $X Y^{\prime}$ must be λ and thus the are $Y Z \geqslant \lambda / 2$. This completes the proof of the lemma.

Proof of the theorem

Let U_{0} be one set belonging to the given class. Then Uo cuts the frontier of the circle in a set of linear measure λ say. By the lemma if $\lambda \leqslant 4 \pi / 3$, there exists three points X, Y and Z belonging to U_{θ} and such that the least length of arc between any two of them is $\lambda / 2$. Let arc $Y Z=\alpha$, arc $Z X$ $=\beta$. Then

$$
\begin{aligned}
\text { area of triangle XYZ } & =\frac{1}{2}(\sin \alpha+\sin \beta-\sin (\alpha+\beta)) \\
& =f(\alpha, \beta)
\end{aligned}
$$

$f(\alpha, \beta)$ takes minimum value when α and β take their minimum values i.e. when $\alpha=\beta=\lambda / 2$. In this case the points Z and Z^{\dagger} of the lemma coincide, arc XZY $=\lambda$ and the triangle $X Y Z$ is the greatest triangle that can be drawn in a segment of the circle covering an arc of length λ.

When $\lambda>4 \pi / 3$ then by the lemma applied to a subset of linear measure $4 \pi / 3$ there exists three points each at an arc length $2 \pi / 3$ from the other two and this is the greatest triangle that can be drawn in a segment of the circle covering an arc length $\lambda>4 \pi / 3$. This completes the proof of the t theorem.

REMARK

Consider a covering $L 2$ of convex sets U of a set S on the frontier of the unit circle. Let U^{\prime} be the segment of the circle covering the same total length of arc as U and let L^{\prime} be the class of all such sets U^{\prime}. Then by the theorem

$$
\Delta(U) \geqslant \Delta\left(U^{\prime}\right)
$$

and for any measure function $h(x)$

$$
h(\Delta(U)) \geqslant h\left(\Delta\left(U^{\prime}\right)\right)
$$

This is true for all $U \in L 2$ and the corresponding $U^{\prime} \in L L^{\prime}$ and hence

$$
\sum_{U \in \mathcal{U}} h(\Delta(U)) \geqslant \sum_{U^{\prime} \in U L^{\prime}} h\left(\Delta\left(U^{\prime}\right)\right)
$$

This inequality holds for any covering Ll. Given any $\delta>0$ it is possible to find coverings $\boldsymbol{\text { of }}$ the form $2 \mathcal{L}^{\prime}$ such that both $\Delta\left(U^{\prime}\right)<\delta$ and $a\left(U^{t}\right)<\delta$ for all $U^{\dagger} \in L L^{t}$. Hence in calculating the metric area measure or the non-metric area measure of a set S on the frontier of the unit circle it is sufficient to consider only coverings 22^{\prime} which consist of sets U^{\prime} which are segments of the circle. Clearly for any such set S the metric area measure is equal to the non-metric area measure.

$$
\begin{aligned}
& \text { If } \lambda \text { is the arc length covered by a set } U^{\prime} \\
& \qquad \begin{aligned}
\Delta\left(U^{\prime}\right) & =\frac{1}{2}(2 \sin \lambda / 2-\sin \lambda) \\
& =\sin (\lambda / 2)(1-\cos \lambda / 2)
\end{aligned}
\end{aligned}
$$

SECTION VI, 2.

Relation between the metric or non-metric area measure of a set on the frontier of the unit circle and its generalized affine lentth.

The definition of the generalized affine length of a set S on the frontier of the unit circle with measure function $h(x)$ was given in chapter I, Section $I, 7$ on page 4 To calculate it we consider only coverings τ of tangent triangles T that is triangles formed by two tangents to the circle and the line joining their points of contact. Then if such a triangle T covers an are length λ

$$
\Delta(T)=\sin (\lambda / 2)(\sec \lambda / 2-\cos \lambda / 2)
$$

Consider a covering 22^{\prime} of the given set $S, 22^{\prime}$ consisting of sets U^{\prime} which are limited to be segments of the circle as explained in the preceding section. Then any arc length covered by a set U^{\prime} can certainly be covered by two sets T where $\Delta\left(U^{\prime}\right)=\Delta(T)$. Hence there exists a covering τ of tangent triangles T such that

$$
\sum_{T \in \sigma}^{\Sigma} h(\Delta(T)) \leqslant 2 \inf _{22^{\prime} \in A_{0}} \quad U^{\prime} \in U U^{\prime}
$$

where A_{δ} is the class of all coverings 22 of the set S where 22 is such that $\alpha(U)<\delta$ for all $U \in 22$, and U is any convex set.

Therefore $\quad \inf _{\tau \in A_{S}} \sum_{T \in \tau} h(\Delta(T)) \leqslant 2 \inf _{U^{t} \in A_{S}} U^{t} \in U^{t} \quad h\left(\Delta\left(U^{\prime}\right)\right)$
This holds for all $\delta>0$ and thus

$$
F(S, h) \leqslant 2 A(S, h)
$$

Now consider any covering τ of triangles T. Then any arc length covered by a set T can certainly be covered by a set U^{\prime} where $\Delta(T)=\Delta\left(U^{\prime}\right)$, and by a similar argument

$$
F(S, h) \geqslant A(S, h)
$$

Thus the generalized affine length and metric area measure satisfy the inequality

$$
A(S, h) \leqslant F(S, h) \leqslant 2 A(S, h)
$$

Also the generalized affine length and non-metric area measure of a set S satisfy

$$
B(S, h) \leqslant F(S, h) \leqslant 2 B(S, h)
$$

SECTION VI, 3.

THEOREM

The triangle of minimum area which covers arcs of the unit circle of given total length is one such that two of its sides are tangents which touch the rircle at their midpoints.

LEMMA

In the class of all triangles which cover arcs of the unit circle of given total length, there exists one which has the minimum area.

Proof

The class of tiriangles is bounded since every such triangle must contain at least the segment of the circle determined by a third of the given arc length. From this class it is possible to select an infimite sequence of triangles decreasing in area. By the Blaschke selection theorem such a sequence
contains an infinite subsequence which converges and the limit of such a subsequence will be the required minimum triangle.

Proof of the the orem

Let XYZ be the triangle of minimum area given by the lemma, and let the total arc length covered by XYZ be 2λ. Then since $X Y Z$ is a triangle of minimum area each side of XYZ must ei ther touch or cut the circle.

Case I

XYZ has three vertices outside the circle and only one side $Y Z$ cutting the circle.

Let $X Y$ and $X Z$ touch the circle at I and M respectively. A small rotation ϕ of the point I around the circle leaves the area of XYZ unchanged to the first order in ϕ only if L is the midpoint of XY. Such a rotation does not alter the arc length covered and since $X Y Z$ is the triangle of minimum area I must be the midpoint of $X Y$. Also by a similar argument M must be the midpoint of $X Z$.

Case II
XYZ has two sides XY and XZ cutting the circle and all three vertices outside the circle.

Let $X Y$ cut the circle in L and M and let N be the midpoint of LM. Then a small rotation of XY through an angle ψ about IV leaves the total arc length covered by XYZ unaltered. Since XYZ is the triangle of minimum area such a rotation must also leave the area of XYZ unchanged to the first order
in ψ i.e. N must also be the midpoint of $X Y$. The same result holds for $X Z$ and also the point of contact of $Y Z$ is the midpoint of $Y Z$.

Let $X Z$ cut the circle in L^{\prime} and \mathbb{M}^{\prime}. Let $\alpha=$ angle between the tangent to the circle at I and the line $X Y, \beta=a n g l e$ between the tangent to the circle at L^{\prime} and $X Z, a=l e n g t h$ of $X Y$ and $b=$ length of $X Z$. Move $X Y$ a distance η parallel to itself so as to increase the arc length covered and XZ a distance μ parallel to itself so as to decrease the arc length covered.

Then increase in area $=\mathrm{a} \eta-\mathrm{b} \mu$
and the increase in arc length covered $=\frac{2 \eta}{\sin \alpha}-\frac{2 \mu}{\sin \beta}$ to the first order in η and μ. Since the triangle XYZ is the triangle of minimum area both these must be zero simultaneously
i.e.

$$
a \sin \alpha=b \sin \beta
$$

But if $\mathrm{a}>\mathrm{b} \sin \alpha>\sin \beta$ (since we have already established that X, Y and Z must be equidistant from the centre of the circle) and hence $\mathrm{a}=\mathrm{b}$ and $\alpha=\beta$. Thus if XYZ is given by this case it must be an isosceles triangle symmetrically placed about the centre.

However it is easy to see that such a triangle is in fact the triangle of maximum and not minimum area. For consider a large displacement of the triangle in a direction parallel to $Y Z$ and such that the side XY still cuts the circle and the side XZ cuts the diameter perpendicular to YZ in a point

Draw the line $X^{\prime} Z^{\prime}$ which is the reflection of $X Z$ in the diameter perpendicular to $Y Z$ and let $X^{\prime} Z^{\prime}$ cut the circle in $L^{\prime \prime}$ and $M^{\prime \prime}$. Denoting the original positions of $X, Y, Z \ldots$ by $X_{0}, Y_{0}, Z_{0} \ldots$ the increase in arc length covered is $2\left(L L_{0}^{\prime}-I_{0} L^{\prime \prime}\right)$ >0 since $X Y, X_{0} Y_{0}$ and $X^{\prime} Z^{\prime}$ are parallel equidistant lines, all on the same side of the parallel diameter and XY is furthest from and $X^{\prime} Z^{\prime}$ nearest to this diameter.

Thus XYZ, the triangle of minimum area is not given by this case.

Case III

XYZ has all three vertices outside the circle and all
three sides cutting the circle.

By thesame argument as in Case II it can be shown that XYZ would have to be an equilateral triangle placed symmetrically about the circle and also that such a twiangle is that of maximum and not minimum area. Thus XYZ the tiriangle of minimum area cannot be given by this case. Case IV

XYZ is a triangle having one vertex outside the circle and two vertices inside the circle.

Let L and M be the endpoints of the arc covered. Then since XYZ is the triangle of minimum area Y and Z, the two vertices inside the circle must coincide with L and M respectively and $X Y$ and $X Z$ must be the tangents at L and M. But such a triangle has one vertex outside and two on the circle and may be consideredas an extreme case of case I. Thus the triangle of minimum area will not be of this form either.

Case V
$X Y Z$ is a triangle with one vertex inside the circle and the opposite side not cutting the cirele.

Let X be the vertex inside the circle. As we proved in case II if $X Y$ and $X Z$ cut the circle in L and $M r e s p e c t i v e l y$ L and M must be the midpoints of $X Y$ and $X Z$. Denote this triangle by Q and the extreme triangle obtained in case I by W, where W al so covers the arc LM.

Let b be the height of the line joining the points of contact of the tangents forming W above the centre. Then

$$
\begin{aligned}
& \Delta(W)=\frac{4}{b}\left(1-b^{2}\right)^{3 / 2} \\
& \Delta(Q)=4\left(1-(2 b-1 / b)^{2}\right)^{\frac{1}{2}}(1-(2 b-1 / b))
\end{aligned}
$$

and $\Delta(Q)-\Delta(W)=\frac{4(1-b)^{3 / 2}(1+b)^{\frac{1}{2}}}{b^{2}}\left[(1+2 b)^{3 / 2}(2 b-1)^{\frac{1}{2}}-b(1+b)\right]$
and $\Delta(Q)-\Delta(W)=0$ when $b=1,-1$ or

$$
(2 b+1)^{3}(2 b-1)-b^{2}(1+b)^{2}=0
$$

i.e.

$$
15 b^{4}+14 b^{3}-b^{2}-4 b-1=f(b)=0
$$

By Descartes rule of signs this has at most one positive root.
When $\mathrm{b}=1$
$f(b)=23$

$$
\begin{array}{ll}
b=\frac{1}{\sqrt{2}} & f(b)=\frac{9+6 \sqrt{2}}{4} \\
b=0 & f(b)=-1
\end{array}
$$

and thus the root occurs in the interval $0<b<\frac{1}{\sqrt{2}}$
But the least value of b giving a triangle of the form described in case V is $b=1 / \sqrt{2}$ since for this value of b the vertex X lies on the circumference of the circle. Thus for all possible triangles Q and $W \quad \Delta(Q)>\Delta(W)$ and thus the minimum triangle cannot be one of the form Q i.e. one belonging to case V.

Case VI
XYZ is a triangle having one vertex X inside the circle ard the opposite side cutting the circle.

Let $X Y$, $X Z$ cut the circle in I and M respectively and let YZ cut the circle in L^{\prime} and M^{\prime}. Then as established in Case II L is the midpoint of $X Y$ and M the midpoint of $X Z$
and also $\mathrm{YL}^{\prime}=\mathrm{M}^{\prime} \mathrm{Z}$. Thus XYZ is an isosceles triangle. Denote this triangle by Q^{\prime} and as in the previous case let W denote the triangle of minimum area obtained in Case I which covers the same arc length as Q^{\prime}. If \mathbb{N} is the midpoint of $X Y$ and O the centre of the circle let NOL' $=\alpha$.

Then $\quad \Delta\left(Q^{\prime}\right)=4 \sin (\lambda+\alpha)(\cos \lambda-\cos (\lambda+\alpha))$

$$
\underline{d} \Delta\left(Q^{\prime}\right)=4(\cos (2 \alpha+\lambda)-\cos (2 \alpha+2 \lambda))
$$

d α
and

$$
\frac{d \Delta\left(Q^{+}\right)}{d \alpha}=0 \quad \text { when }=\frac{\pi}{2}-\frac{3 \lambda}{4}
$$

giving the maximum value of the area. The minimum value of $\Delta\left(Q^{\prime}\right)$ occurs either when $\alpha=0$ in which case the triangle Q' becomes one of the kind dealt with in Case V or when the vertex \mathbb{X}, which is the one inside the circle lies on the circumference. This may be considered as an extreme case of Case III. But neither case V nor case III gives the triangle of minimum area and hence this case does not either.

If XYZ is such that one side cuts the circle its position is given by one of the se six cases. It has been established that when $\lambda<\pi$ the only case giving a triangle of minimum area is case I. This is the triangle described in the statement of the theorem.

If $\lambda=\pi$ no side of XYZ can cut the circle and the triangle of minimum area is equilateral with each side touching the circle at its midpoint. But this is the extreme case of the triangle described in the statement of the theorem and thus we have completed the proof of the theorem.

SECTION VI,4.

THEOREM

The necessary and sifficient condition for the existence of a set S on the frontier of the unit circle having finite non-zero metric or non-metric area measure with measure function $h(x)$ is that

$$
\lim _{x \rightarrow 0} \quad \inf \quad \frac{h(x)}{x^{1 / 3}}>0
$$

The result is proved for the generalized affine length $F(S, h)$ and since in section VI,2, the relations
and

$$
\begin{aligned}
& A(S, h) \leqslant F(S, h) \leqslant 2 A(S, h) \\
& B(S, h) \leqslant F(S, h) \leqslant 2 B(S, h)
\end{aligned}
$$

were established the result holds for the two area measures also.

Proof
The area of a tangent triangle covering an arc length 2λ is $\frac{\sin ^{3} \lambda}{\cos \lambda} \approx \lambda^{3} \quad$ for $\operatorname{small} \lambda$

Consider any set S on the frontier of the unit circle and a covering τ of triangles T as defined in Section VI, 2.

Then

$$
\begin{aligned}
F(S, h) & =\lim _{\delta \rightarrow 0} \inf _{\tau \in} \sum_{T \in \tau} h(\Delta(T)) \\
& =\lim _{\delta \rightarrow 0} \inf _{\tau \in} \sum_{T \in \tau} h \frac{\sin ^{3} \lambda}{\cos \lambda} \\
& \geqslant m\left(S^{1}, g\right)
\end{aligned}
$$

where $g(x)=h\left(\frac{\sin ^{3} x}{\cos x}\right)$ and $m\left(S^{\prime}, g\right)$ is the Hausdorff diametral
measure of a set S^{\prime} which is the set S considered as a set
on an interval length 2π on the real Euclidean line with measure function $g(x)$.

Consider a covering g of intervals I of the set S^{\prime}. Then this is the same as a covering 9^{\prime} of arcs I^{\prime} of the set S on the frontier of the unit circle.
Then

Hence

$$
\begin{aligned}
m\left(S^{\prime}, g\right) & =\lim _{\delta \rightarrow 0} \inf _{g \in A} \quad \sum_{I \in G} \frac{g(d(I))}{2} \\
& \geqslant F(S, h)
\end{aligned}
$$

$$
m\left(S^{\prime}, g\right)=F(S, h)
$$

But it was proved in Section II, 1 , on page 5 that the necessary and sufficient condition for a measure function $g(x)$ to be the dimension function of a set on the real line is that

$$
\lim _{x \rightarrow 0} \inf \frac{g(x)}{x}>0
$$

and this gives $\lim _{x \rightarrow 0}$ inf $\frac{h \frac{\sin ^{3} x}{\cos x}}{x}>0$
But for small values of $x, \frac{\sin ^{3} x}{\cos x} \approx x^{3}$ and hence the condition becomes

$$
\lim _{\Delta(T) \rightarrow 0} \quad \inf \frac{h(\Delta(T))}{\Delta(T)^{1 / 3}}>0
$$

and this is the required condition.

BIBLIOGRAPHY

F. Hausdorff, Dimension und ausseres mass, Math.Ann. 79, (1918) pp.157-179.
A. Dvoretsky, A Note on Hausdorff dimension functions, Proc. Camb. Phil. Soc. 44 , (1948), pp.13-16.
A.S. Besieovitch, On existence of subsets of finite measure of sets of inf inite measure, Indagationes Math. 14 (1952) pp.339-344.
R.O. Davies, Subsets of finite measure in analytic sets, Indagationes Math. 14 (1952), pp.488-489.
P.A.P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc. 42 (1946),15-23.
P.A.P. Moran, The translations of linear sets of fractional dimensions, Pooc. Camb. Phil. Soc. 50, (1954), pp.634-636.
W. Blaschke, Vonlesungen tuber differential-geometrie II, p. 33.

