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Abstract.

We deal with questions and problems in first order 
countable model theory.

Chapter 1 examines countable first order Gaifman 
operations, which are theories whose models are determined, 
up to isomorphism, by their relativised reducts. We first 

prove some reduction and preservation results. Then we 
prove that the class of relativised reducts ef a Gaifman 
operation is generalised elementary. Finally, we examine 
the degree of 1-cardinality of such theories.

Chapter 2 is basically concerned with trying to 
get lots of pairwise elementarily equivalent countable 
models, or to begin with, at least four models, to which 
my friend Salim Salem would say, "It's hard enough to get 
one." We first show that a minimal prime model is "fairly" 
algebraic. Then, under various conditions on the algebrai- 
city of the countable models of a theory, we prove results 
concerning the number of its countable models. _
The main result is that a countable complete theory which 
has a model with an infinite definable subset all of whose 
elements are algebraic of degree at most two, has at least 
four countable models, up to isomorphism.

Chapters 1 and 2 are formally independent and 
self-contained. However there are certain common themes.
The notion of a minimal model is important in both chapters. 
More generally, both chapters are concerned with a question 
at the centre of model theory - the number of models of a 
theory. In Chapter 1, it is the number models over a



predicate, in particular the case where the number is one. 
In Chapter 2 it is the number of countable models.
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Chapter 0.

Notation and preliminaries.

I shall be concerned in this thesis with first order model

theory.

A general reference for the basic definitions and results 

is Chang and Keisler . 1 assume familiarity with the basic

notions of model, language, theory, consistency, satisfaction and 

semantic and syntactic implication. For the fundamental properties 

of first order logic, in particular compactness, the consistency 

theorem (every consistent set of sentences has a model), and the 

Lowenheira-Skolem theorem, see C33 •

I shall denote models by A, B, M, M',... , and theories by

T, T',,.. . If X is a set, then |X| will denote the cardinality of

X. If A is a model, then \A( will denote the universe of A. So 

1[ All denotes the cardinality of the universe of A.

If A is a model for a language L, then the language of A,

L(A), is just L. If T is a theory, we say that T is countable if the

number of non-logical symbols appearing in T is countable. We 

identify a theory with its deductive closure.

Variables are denoted by x , y , z , x, , . Constants

are denoted by a , b , c , a^, ... We often use the same symbol to

denote a constant and the element which it names in a model.

If A is a model, and X is a subset of | A j , then

‘ (A,a^^y is the model got from A by adding names for the

elements of X.

"x ,”y ,. . and a,b,... denote finite sequences of variables 

and constants respectively* If É = (a» , a^) and A is a model.



then we often write 't^k to mean that a^ 6 /A I for i = 1,... n.

Formulae are denoted by ^  . When we write a formula as

0(x, , ,  we mean that the free variables of are among

X, , x^. If ^ , then Al='^('^) means that ^(x) is

satisfied in A by a. If 0{x) is a formula, and~a is a sequence of
constants, then we also denote by 0Ç&.) the result of replacing

each x^ in by aj.

We often write \/x to mean Vxi .. Vx„ •

Similarly with "23c .

If © i s  an n-ary formula (i.e. ©■ is &(x, , ..x„)), then 

V3?e © ’(....) means ^  x( ©  (x)— >...) , and

’3 3 ? € © ‘(«*.) means 3 x (  © ( x ) A  ...)

*3^x( ©(x)) ’means' there are exactly k distinct n-tuples 

X such that ©(x) .

3 ^ ^  ©*(x)) 'means' there are at most k distict n-tuples 3C
such that ©(x) •

If 0(x) is a 1-ary formula of a language L, and A is a model for

L , then 0  = ^ a £ A  ; A{=0(a)^

Let L be a language, P be a unary predicate of L, and

L q ̂  L - fp] • If P^ is closed under the functions of A which are in
ALç, , then we get an L^ -structure whose universe is P , and whose 

relations and functions are just the restrictions of the relevant 

ones of A. We call this model A^ . And in this situation we say 

that A^[ Lo is defined.
P PLet A, , A2 be models, and A^ = A, L = A^ L .

We then say that A, is isomorphic to A^ over A^, in symbols

A, A* , if there is an isomzrohism of A, onto Ao
A^ which is the identity on A* .



A ~  B and A ̂  B as usual mean that A is elementarily 

equivalent to B, and that A is an elementary substructure of B, 

respectively. We write f; A B to mean that f is an element­

ary embedding of A into B. f; A —  B means that f is an isomorph­

ism of A onto B.

I assume familiarity with the notions of ultrafilter, 

ultraproduct and ultrapower. For details, and for the important 

Los' Theorem, see C5J •

If A is a model for the language L, then Th(A) is the set 

of sentences of L which are true in A.

T is a complete theory means that for any sentence O' in

the language of T, T h  0^ or

If ^  is a formula, then T ^  means that T h  ̂ x  0  

where 3? is a sequence which contains the free variables of 0  •

If K is a class of models for L, then Th(K) is the set of sentences 

of L which are true in every model A in K. The class K is said to be 

elementary, if there is a sentence CT such that 

A 6 K if and only if A ^  O' .

K is said to be generalised elementary if there is a set of sentences 

^  such that A 6 K if and only if A 

Let T be a theory and n a natural number. Then an n-type of T is a 

set of formulae, each of whose free variables is, among say x, , x̂ *,

which is consistent with T. A type of T is just an n-type of T for 

some n.
z

A complete n-type of T is an n-type^of T such that for each 

n-formula 0  % (0 € ^  or -1 0 6 ^ .
In Chapter 2, whenever we talk about types we shall mean 

complete types, unless we say otherwise.



If ^  is an n-type and "a is an n-tuple of a model A, then we say that 
*a realises ^  , if for all

The type of a tuple "a in a model A is the set of formulae 0 
such that A M  .

We say that is a principal n- type of T, if ^  is an n-type of T

and there is an n-formula ^(x, ,..x%) consistent with T such that 

T f- 0  -— > for all y^Cx, x^) 6 21

Let A be a model and b € A. When we say thatrealises a principal 

type in A, we shall mean that the type of in A is a principal type 
of Th(A).

A model A is said to omit a type, if no tuple in A realises
the type•

Let T be a complete theory. An n-formula 0(x, ,...x^)

is said to be complete for T, if for every -yXx, ,...X/»)

T h  0  — ^ or T 0  — > —1 .

A model A is atomic, if every finite sequence of elements of A 

satisfies a complete formula of Th(A) (or equivalently, realises a 

principal type of Th(A)).

A is a prime model of T, if for all B T there is

f: A B ♦ A is said to be prime, if A is a prime model of Th(A).

A complete theory T is atomic, if for every n-formula 0  there is 

a complete n-formula of T such that T ^ 0  , for all n.-

We state the following classical results.

(A) (Grzegorizyk et alQo]) The Omitting Types Theorem

Let T be a countable theory, and ^2^ • collection

of non-principal types of T. Then T has a model which omits 

for all n.



(b) (Vaught^53 ) Let A be a model for a countable language.

Then A is prime if and only if A is countable and atomic.

(C) (Vaught [̂ 53) Let T be a complete countable theory.

Then T is atomic if and only if T has a countable atomic model.

Let X) be a cardinal. A theory T is K  -categorical, if

all models of T of cardinality X are isomorphic to one another.

A model A is %  -saturated, if for all X Ç  jAl such that 

]X|< X  , (A,a^^y realises all types of Th( (A,a!^^ ) .

A is said to be saturated if A is llA\\ -saturated.

Let A,B be models, I be a set, and a^, b^,be elements of A,B 

respectively, for all i£I.

Then (A,a^)^2 ^  (B,b; means that

Th((A,a^X^^) = Th((B,bu)^^2 ) * where we represent and bj by the

same constant for each i. »

So if and are finite sequences of the same length,

(A,"a) =  (B,ï) if and only if a realises the same type in A as 

b realises in B.
Similarly, we write (A,a;)^^~ (B,b^)^^ to mean that

there is an isomorphism f: A ^ B  such that f(a^) = b^ for all i.

A is homogeneous, if whenever 11 ! <C IIa II, and

~  then
A is universal, if B S  A , and If BII ^  fl A (f implies that

there is f: B A .
A is full, means that A realises all types of ’Th(A) •

The following fact is easy to establish.

(D) If A is a countable model which is homogeneous and full, then 

A is saturated.



We also have the following :

(E) (Vaught&3) Let T be a countable complete theory with only 

countably many complete types. Then T has a prime model and a 

countable saturated model.

(F) (Eyll-Nardzewski ) Let T be a complete countable theory. 
Then T is -categorical iff T has finitely many complete n-types 

for all n<CJ iff all complete types of T are principal.

A simple extension of a theory T, is a theory T^ such that 

T C  T' , and such that the language of T^ is got from the language 

of T by adding at most finitely many new constants.

Although we do not really work with stability notions, 

stability is referred to now and again. So we give the definitions. 

Let be a cardinal. Then we say that a theory T is 7<-stable 

if whenever A h T , X G  lA I , and jx I ^  K  , then 

Th((A,a^^^) has at most X  complete 1-types.

T is stable if it is X-stable for some infinite cardinal X  •

T is superstable if it is X-stable for all sufficiently large "X . 

The notion of stability has been a useful and important tool in 

the study of the number of uncountable models of a countable theory. 

For example, the following have been proved :

If T is unstable, then T has 2 models of cardinality K  , for all 

uncountable . (Shelah )

T is categorical in all uncountable powers if and only if T is 

%-stable and T does not satisfy the hypothesis of Vaught’s two- 

cardinal theorem. (Baldwin and Lachlan "J )

However I do not think that stability is such a sharp tool when it 

comes to analysing the difference between theories with finitely



10

many, and theories with infinitely many, countable models.

We work in general only with countable languages and countable 

theories. In Chapter 1 we sometimes get an uncountable language,by 

adding names for elements of an uncountable model. However, in 

Chapter 2 everything is countable. Also for Chapter 2 we make the 

general assumption that all the complete theories we talk about, have 

only infinite models. And of course, whenever we talk about the 

number of models of a theory, we mean up to isomorphism.
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Chapter 1 

Gaifnan operations

1.0 Introduction

Gaifman [31 originally defined his ‘single valued 
operations’, as a means of placing in a model-theoretic „ 
setting, or of elucidating the model-theoretic content of, 
certain standard algebraic constructions and operations.
The kind of operations which we have in mind are exemplified 
by the following - forming the field of fractions of an 
integral domain; forming the ultrapower from a model, a set 
and an ultrafilter on that set; given a field, forming the 
n-dimensional vector space over that field. Then Gaifman’s 
idea is the following. Let us suppose that the operation 
under consideration takes certain models for a language 
to models for a language 1̂ . (l̂  and Lg may possibly be 
many-sorted). Then there is a theory T such that a value 
of the operation for A is the model B, if and only if there
is a set of relations and functions r , such that
(a , B, rj M T. Also, if (A, 3̂  , Pj, ) /= T, i = 1 ,2 , then
(a , Bi,Pi) is isomorphic to (A, Bg, Pg) over A, in
symbols • (A, B^, p^) = ^(A, Bg, Pg)

The set of relations and functions p, will serve to 
connect A and B, or possibly define B from A. \7e may 
stipulate that T be a first order theory, or a theory in
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Lùjf} oj or whatever, he may also add extra conditions con­
cerning the degree of rigidity of (A, E, r) over A, for 
(A, B, r) f= T.

Although the above many-sorted definition is more 
natural in the algebraic context, we can express everything 
in a one sorted logic., as in Gaifman [^ ]. This will be 
the definition which we shall actually work with. V/e shall 
only be concerned with the situation where all languages 
are countable, and the theory T is first order.

Definition 1.

' Let Lq and L be countable languages, and P a 
unary predicate in L and not in Lq , such that Lq c L.
Let T be a first order theory in L such that whenever Aj=T, 
then A^|l^ is defined. Vve then say that (T, P, L̂  ) is 
a countable first order Gaifman operation if and only if 
Â  1=: T, i = 1,2 and Ap| = AglL^ = Ag implies that 
is isomorphic to Ag over Aq .

As we will only consider the countable first order 
situation, and as P and Lq will usually be'clear from 
the context, w-e shall just use the phrase "T is a Gaifman 
operation".

Tail en apart from the algebraic motivation, the study of 
Gaifman operations essentially boils down to the study of 
categority ovei- a predicate. Also Gaifman [3] notes that
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the property of T of "being a Gaifman operation is a genera­
lisation of that implicit definability which is characte­
rised hy Beth's theorem. In the situation of Beth's theorem 
we have languages Lq and L with Lq c L, and a theory T in 
L such that any model A for Lq has at most one expansion 
to a model of T. Beth's theorem then says that T explicitly 
defines each new relation of L in terms of formulae in Lq .
In the case of Gaifman operations however, new elements as 
well as new relations and functions are added to the model. 
So the immediate question is whether there is an analogous 
explicit definability result in this Gaifman situation.
The obvious interpretation of explicit definability (which 
is the same as Hodgs^s word constructions [11], and Ershov's 
method of elementary definability [5*]) is that for A a 
model of T, every element of A can be interpreted as an 
n-tuple of elements from a-|Lq, and the holding of a pre­
dicate of L for a sequence of elements of r depends uni­
formly on the holding of some formula for the corresponding 
sequence of n-tuples in If such an explicit defin­
ability result held for Gaifman operations, then it would 
validate Gaifman's definition of his single valued ope­
rations as a standard characterisation of algebraic cons­
tructions. However, Hodges [Jl] has given an example of a 
Gaifman operation T, for which no such explicit definability 
holds. Strengthenings and variations of the above, do hold 
however, for Gaifman operations which in addition satisfy 
certain conditions on the degree of rigidity of A over
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A-ILq . 3ut for plain Gaifman operations, the question of
what w- can say in the way of explicit definability is still
open.

,7e can quite easily prove results which for a Gaifman 
operation T, uniformly reduce certain properties of models 
A of T to properties of a ^ILq . V/e do this in 1.1. Some 
of these results are known or have been stated in the lite­
rature. V/e show also that if T is a Gaifman operation, then

if 4  M T, 1 = 1,2, f : All and lUp loll ^
then there is S : A^j^ Ag which extends f.

Gaifman [9 ] states that Shelah has proved this without
the cardinality restriction on A^ILq . V/e use this latter

0

result of Shelah as well as our earlier results to answer 
affirmatively a conjecture of Gaifman LS]> that the domain 
of a Gaifman operation is v/e also rely heavily on
Shelah*s results to give an interesting characterisation of 
Gaifman operations.

In 1.2 we connect the 1-cardinality of Gaifman opera­
tions with a certain characterisation of minimality by 
Deissler [4-]« Finally we give a counterexample to a con­
jecture of Wilfred Hodges characterising Gaifman operations 
as being 1-cardinal and satisfying some further reduction 
property.

The study of categoricity over a predicate, is part of
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a wider study of general model theory over a predicate.
This looks to be quite difficult. Shelah [2Z] has genera­
lised stability concepts to this area. Our results however, 
tend to be centered around consequences of the definitions, 
for countable models.

1 .1 Preservation, reduction and related results

Usually, the following preservation theorem (Theorem 2) 
is deduced from the uniform reduction theorem (Theorem 3) 
which in turn follows from Pefeman*s many-sorted inter­
polation theorem [é" ]. Here, however v/e prove the preser­
vation result independently, using Shelah*s ultrapower 
theorem.

Theorem 2 Let T be a Gaifman operation. Let , Mg be
models of T, ag € be n-tuples, and

(*'*11 Lt) > ) = ^̂2 j , Sg )

Then , â  ) = (Mg , Sg )

Proof
Let Mjl > Mg, a,, , ag be as in the assumptions of the 

theorem. By Shelah [20], there is a set I and an ultra­
filter U on I such that
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Consider now (L̂  , a^)^/u for i = 1,2.

It is easily seen that ((M^, = (M? Lo, a-J^/u
for i = 1,2.

So ((Ml, e J ^ U ) ' | L o  = ((%2, a2)Yu)^lLo (* )

By Los' theorem, = k//U, i = 1,2.
So IvlVupT for i = 1,2.
Thus as T is a Gaifman operation it follows from (*) that 

(Ml, ai ) yU - (Mg 9 âg ) y U

So in particular, (Mi, ai )̂ 'U- = (Mg, ag)^/u

Again, oy Los it follows that

(Ml, ai) = (Mg, Sg), proving the theorem.

In particular, for n = 0, we have that. Ml t= T, i = 1,2
ID, p,and Ml ILq = Mg|Lq , implies that Mi = Mg.

■ye can now prove the uniform reduction theorem.

Theorem 3. Let T be a Gaifman operation, n < cu.
Then for every formula ^(xi, ... ) of L,

there is a formula \^(xi, ... x^ ) of Lq , such that, for 
every m /=T and a = (ai, ... â  )cP̂ ', M '̂(a) if and only 

if iI|Lo i= f(a).

Proof.
We first define "P-L^ formulae". A P-I^ formula ÿ 

is an L-formula, which is in prenex normal form, whose 
matrix contains symbols only from Lq , and whose quantifiers 
are all relativised to P.



17

Then, given a r-Lg n-formula ^(x) there is an n- 
formula ÿ '(x ) in Lq , such that :

for any L-structure M and a = (a,, ... )€?"'% 1
 ̂M (^w(a) if and only if Lq (a).

And conversely, given any n-formula y* (x) in Lq there 
is a P-It) formula ^(x) such that (*) holds..
Now let 0(xi, ... Xp) he an L-forraula. Let c^, ... Cq he
new constants. We write Pc for / \  Pĉ  .c —I. • • /]

Put r = r(5t) =. [ ÿ"(x) : Ÿ is P-L^ formula such that
T, Pc k (pÇc)— ^ f(c) 1

We will show that T, Pc, T (c) h  0(c).

So let (M, a))=T u [Pcj u r(c)
(Here the elements â  are interpretations of the constants 

Cl )
Let r ’(x) = I ÿr(x) : 0" a P-Lq formula, and M}=0r(a) j 
Then we assert that T u r'(c) u [ Pc, 0(c) ] is consistent.
or if not, then 

T, Pc h 0 ( c ) n  0^(c), for some 0/(x) in T*. But then
—7 0*(x) is in r, whereby w(a). This is a contradiction.
Sc let (N, a*)/=T u r*(c) u [ Pc, p(c) j 
As (N, a*) f= r'(a), we can see that

(irlLo. a) = (1̂ 1 A  » a’)

By Theorem 2, (K, a) = (N, a*)

Thus. 1.1 j= 0(a).
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(h , &) VAS an arbitrary model of T u  IPc'j u r(c), we 

have established that T, Pc, r(c; [-0(c).
3y compactness there is ÿ(c) in r(c) 

such that T, Pc h p"(c)—> 0(c)
T, Pc h 0'(c )<— > 0(c) 

so T hV x( PX'—> (0v(x)<r~> 0(x) ) ).
Let '0"* (x) be the Lq formula which corresponds to the P-Lq 
formula 0"(x). Then for any M |= T and aeP̂ ’̂

M M 0(a) iff M t= (0(a) iff Ĥ | Lq 0̂' (a )

Lemma 4 Let T be a Gaifman operation, M be an in­
finite model of T and S an n-tuple of M. Then #
realises in (M, a)^^pM a principal n-type of Th(M, a)̂ p̂l.I,

Proof
We first prove the lemma for the case in which

is countable. So suppose that M is countable. Let r(x)
be the type which ^ realises in (M, a)^^^M. Suppose that
r(x) were a nonprincipal type cf Th(M, a)^^pM. Notice
that must be count ably infinite, for otherwise ŵ e could

Picharacterise M |Lq up to isomorphism by a set of sen-
tense s in L(M, and then by the Lowenheim-Skolem
theorem, we could find models N of T of any cardinality 

such that ir |Lo = M^|Lq . Thus |p̂ "| =
So / \  (y) = I y / a : aeP"'̂  j u [Pyj is a consistent
type of Th(M, a)^^pM. Moreover /\(y) is omitted in
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(M, So y\(y) must be nonprincipal. So by the
omittin^ types theorem there is a model of Th(M,
which omits the types r(x) and /\(y). Let this model be
(L) ir I Lg = LN I Lq . However, (M,
realises r(x) whereas (N, a)^ omits P(x), so the two
models cannot be isomorphic. This contradicts T being a
Gaifman operation. So r(x) must be principal.

Now let M i= T be of arbitrary infinite cardinality.
Let ScM. Let N^M, SsN and i|Njl =7^4* Tben from above 

realises a principal complete type of Th-(N,
Let this type of S be generated by the formula 0(x; a)
where and ^(x; y) is an L(T) formula. We assert
that 0(x; a) also generates the type of K in (M, a)^^pL. 
For if not, there is a formula ’0(x; c), c"€P̂  ̂ and

Ml= (Lx)(0(x,* a) /I p(x; c)) A (nx)(0(x; a) ^  c)

A:#;
As N M ,  and asN there is c* such that

Nt(L2)(0(x; 3) c')) /\(hx)(p(2; a) y\ ffZ; 2')

But tnis contradicts the fact that p(x; a) generates the 
type of 2 in (N,
So the lemma is proved.

Lemma k now enables us to prove that elementary em­
beddings of "ground models" can be extended, provided that 
the embedded model is countable.■
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Theorem 5 Let T he a Gaifman operation.
Let M, N he models of T, ijM|| ^ 7^^ and

,? ! / p I _f : ir I Lq :̂  ir 1 Lq . Then there is g : which extends f.

Proof

Add to the language L of T, new names for the
elements of to get a countable language L*.
Similarly, expand to Lq .
Let T* = T u 1 P-lJ. sentences 0̂ (a) such that M|='0(a)i 
Then by Theorem 3, T is a complete theory in L*.
So T* = Th(M, a)^^pM.
Let us assume, with no loss of generality, that f is an 
elementary inclusion.
So (K, a)ggpMj=Th(l.l,
We may also assume that M is infinite. By lemma 4, 
every n-tuple of (M, a)^^pM realises a principal type of 
T *. i.e. (M, is atomic. Thus, as it is also
countable, (M, a)^^pM is a prime model of T*. So there 
is an elementary embedding g of (M, a)^^pid into 
(N, a)ĝ p̂h. So g : M N extends f, proving the theorem.

Gaifman [ ] quotes Shelah as having extended our
result above to the case where M is of any cardinality. 
So —
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Theorem 6 (Shelah) Let T he a Gaifman operation.

Then for any M, N which are models 
of T and f : M^|Lq 17̂  1 there is g : M N which 
extends f.

Gaifman [8 J gives a slightly weaker version of the 
following theorem, without proof.

Theorem 7 Let T he a Gaifman operation, and n < w .
Then for any 0(x q , ... ;y) in L, there

is m < CÜ and fiz^, ... Zm_iLy) in Lq , such that for 
every M |=T, there is f : |M|n — ^ (p̂ -)m such that for
any S = (ho, ... hn_i) in M and for all 2 e
M M 04b;a) if and only if M^| Lq f=-ù(f (S) ;a).

Proof
Let 0(xn , ... Xq_i ;y) he a formula in L. Let M j=T

and h = (ho, ... ho_i )eM. Then, hy lemma 4, there is a
formula 6(x;a) which generates the type of h in
(M,a)ĝ p̂îü.

Therefore (v'yeP) (0(h;y )<r> (Vx) (e(x;a)->0 (x;y) ) )
Putting 0'̂ (z;y) for (Vx) (e(x;z)-^0(x;y) )

we have (V^eP) (0(h;y ) ^  0̂ (a;y) )

so for each heM there is 0^(ï;ÿ) such that

M /- (hzeP) (VyeP) (0(h;y )<r̂  0^(z;y ) )

So €F)(x'7^p)(^(i;y)^'h (zi ;y))
O.LL Y';
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By compactness there is r < cu such that 

T ^ V  €P)(VyeP)(da;y)<-> Vi d i  ;y) )
i=1 ,. ,r

Lcfine 0r Çz-̂ , • • • , Zp , z, ẑ  , • • • , Zp , y )

to te /  y  (z = 2|_ — ^  ÿ-L (3 : ;y) 
i=1 ,. .r

Put 0" Çz ,y) to he 0 (  ẑ  , • • •, Zp , z, ẑ  , ••• , Zp , y ) )

Then v/e easily have 

T f-(V X ) ( L-2e P ) (V A  ? ) ( ?i ( X ; y )<^ ̂  ̂' {Z ; y ) )

The uniform reduction theorem now gives us an Lq formula 
ip'Çzi'y) for the formula ÿ * (z ; y ). Vve can easily see that,
given M M T and SeM, there if ceP^ such that for all
aeP̂  ̂ M 0(^; a ) if and only if M^|Lq f=‘0(c;a).

Let T he a Gaifman operation, and let us define the 
class of models K to he [ A  : there is M j=T, M^|Lq = a ]* 
Looking for a moment at the situation described hy Beth*s 
theorem, where we only add nev/ relations and functions to 
the model, Beth's theorem implies that the class of models 
which can he expanded to models of the theory in question 
is a generalised elementary class. This follov/s hy just 
replacing each new symbol hy its defining formula in the 
smaller language.
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Gaifman L 8 ] asks whether an analogous result holds 
for Gaifman operations. Namely, is K a generalised ele­
mentary class. Below, we answer this question affirmatively. 
What we do is to first prove that

= [ AeK ; ||A|| = ] is generalised elementary, in the
sense that it is the class of countable models of some theory.
Then we use Shelah*s Theorem 6 to extend this to models of
higher cardinality.

Theorem 8 Let T be a Gaifman operation. Then the 
class K as defined above is generalised elementary.

Proof
We show that K is the class of models of Th(K).

To prove this, it is enough to show that K is closed
under elementary equivalence. For let A MTh(K). If no
member of K is elementarily equivalent to A, then for
each Beil there is sentence Og such that B|=Og and
A |=-7 0g. So K{=\/og . Let . Og be the P-Lg sentence

BeK
corresponding to Og. Then T h\/

Bel:

So by compactness there are Bj_, ... BpCK, r < w
I

but then K ) - \ /  Oĝ  , so eTh(K)
i=1..r i=1..r

But this contradicts the fact that A /=-) , i = 1 ,.. r

such that T h \ /  o* 
i=1..r
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and üjsTh(K)* So there is BeK such that A = B. 
v7e will prove that K is closed under elementary equi­
valence. First., some terminology.
Let A he a structure for Lq . Let Lg^ he the language 
ly together with names for the elements of A. V/e define 
Th^(A) 1d he the set of those P-L^ sentences which
correspond to Lq sentences for which A ÿ-* (a).
So for any L-structure M,

if snd only if (l#| Lq

Now suppose that A = B, and BeK.
Then it is quite easy to see that T u Th^(a') is
consistent.
So to prove that K is closed under elementary equivalence, 
it siuffices to show that
whenever T u Th (a) is consistent, AeK ('*)P

<Ve prove (* ) hy induction on the infinite cardinality

of A. So let A he countable and T u  Th (S) con-P
sistent. By Theorem 3> T u Th (a ) is complete.F
lie show that T u Thp(S) has a model which omits the type 

2(x) = u |x / a : aeA.j. If not, then hy the omitting
types theorem, 2(x) is a principal type of T u Th (5).F
Namely, there is a formula ^(x;a) of L(T u Th (a ))F
(where v/e exhibit all the names of elements of A), such 
that T u Thp(S) h ^(x,a)— >2(x).

Now let (B,a)gg^FT u Th (3). So (lX€P)-^(x;a).
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(̂= î/r('b;*a) for example, where heP^,

Let he the Lq formula which corresponds to
î/r(x;̂ ) hy the uniform reduction theorem.
Then (B^|LQ,a)^^^^^*(h,a).
But (BP|lc,a)sc^

(B̂ j Lc ,a)^^^ J=: î/r* (a,a) for some aeA.

again T/̂ (a,a).

But this contradicts the fact that

(B,a)açAl^ '^(x;a)-^ x / a for each aeA

So T u Th^(A) has a model M which omits 2(x). 

Then M{=T, and M^ILq = A wherehy AeK.

Now suppose that we have proved (*) for A of
cardinality < X Now let A ' he an Lq -structure,
11 Al! = X  and T u Th^(l) he consistent.
There are X and models A for a < X such that
ilÂii < X for all a < X, a < / 3 < X  implies A^ A^,
A < A for all a. < X and A = A .

a<X ^

/A \It is easy to show that T u Th^^CA^) is consistent for 
all a < X. So hy the induction hypothesis, for each 
cc < X, there is B^|= T with A^ = 3^^|l^.

eJiminforj
By Theorem 6, for each a < X, we can easily/^emhed 

B in B , over the elementary inclusion Â , <A. . .ex a+l CX "N CX rl
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s® we can assume that ^a+1 * all « < X.
By the condition of T being a Gaifman operation, 
we can ale© assume that for 6 a limit ordinal,

eWôB* “ ®ô *
Let B • Then Bj= T , as ^  B for all a.
Also Zf|l* “ A •

So A € K •
Thus the induction step is completed, and so the theorem 

is proved.

1 »2 Gaifman operations end 1-cardinality.

Viewed abstractly, the way in which the model 
K is implicitly defined from the model if 11̂» by the 
Gaifman operation T, can be regarded from two aspects.
One the one hand, the language is expanded to the 
language L, and on the other hand new elements are added, 
and the original model is assigned the unary predicate P. 
The uniform reduction theorem essentially solves the 
problems relating to the first aspect ( the expansion of 
the language). So, as expected, the main difficulty arises 
in trying to work out the relationship between the model 
M and its P part.

One aspect of this is the question ©f cardinality.

Definition 9. Let T be a theory, and P a unary predicate 
in the language of T. Then we say that

(T,P) is 1-cardinal if and only if whenever
M is an infinite model of T, then ||m [| s |p |̂ .
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When P is clear from the context, we shall just say 
that "T is 1-cardinal", to mean the obvious thing.

Wilfrid Hodges has conjectured that T is a 
Gaifman operation if and only if T satisfies the conclusion 
of the uniform reduction theorem and T is 1-cardinal*
In Example 21 below, we disprove this conjecture.

A very strong tool in the study of 1-cardinality 
is the following result of Vaught[! 6 ].

Theorem 10. (T,P) is 1-cardinal if and only if
it is not the case that there are models M and B of T 
6ueh that M N , M N and

Proposition 11. Let T be a Gaifman operation.
Then T is 1-cardinal.

Proof.
If T were not 1-cardinal, then there would be 

M |="T , such that |1m H > |P^| > . ( From things
we have mentioned before,the case where |P^| < YvL 
cannot arise.)

Then, by the Lowenheim-Skolem theorem, there is
N ^ l l  , with p“ Ç  |k | , and ||Rl| = |p“ | .

But then. P^ = , wherety if|lo = if|l« •
However, there, can be no isomorphism between M and N , 
as IlNtI < I1m |1 . But this contradicts T being a Gaifman 

operation.
So the proposition is proved.
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We say that a model (not necessarily in a countable 
language) is minimal, if it has no proper elementary 
substructure. We say that M is minimal over M^| Lg, if 
there is no N such that

K , N ^ M , and ifjlt, = M^jlo .
Then «hTioualy U le minimal ever K 1 i f  and enly

if the model is minimal.

Proposition 12. Let T be a Gaifman operation, and let 
M be a model of T.

Then K is minimal over •
Proof.

Note first that this follows immediately from 
Theorem 10 and Proposition 11. However, we can use the 
strong property of T being a Gaifman operation to do the 
work of Theorem 10 directly.

For suppose that we had 
n 4  M / K, and lf|l« = .

We may suppose that ||K|| ■ * |P^| = X , say.
As T is a Gaifman operation, N is isomorphic to M over

P iM . We can thus build a strictly increasing.
continuous, elementary chain of models 

( Mg : « < X* i , such that 
= M^|l* f.r all « < X+ , and 

llM̂ ll m X far all « < X+.
The fact that T is a Gaifman operation allows us to 
carry on the construction at the limit stage.

Let IS' a Uj ; « < X+j .
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Then T , = M^ILq , and 1|m MI = .
But |P^ I = X , and &o this contradicts the 1-cardinali­
ty of T. So M must be minimal over K^ILq •

We can now put together the above proposition and 
Theorem 6 , to help us characterise Gaifman operations.

Theorem 13. T is a Gaifman operation if and only if 
whenever T , i = 1,2 , and f: 4  *
then there is g: Kg which extends f .
Proof.

The direction from left to right is just Theorem 6. 
For the converse, let us suppose that the condition on 

extending elementary embeddings holds. Firstly, this 
implies that T is 1-cardinal. For, if not, then 

there would be H,N models of T, such that 
llMll > llNlI , a M  lf|Lo  = lf|l< , .

But then we would be unable to elementarily embed K in N .
So now let K and N be models of T such that

if|Lo = lf|Lo .
Then there is f: N such that f is the identity on
M^jl^ • But then by 1-cardinality and Theorem 10, 

f must be onto, whereby f is an isomorphism of U and K. 
Thus T is a Gaifman operation.

Actually the proof of the above proposition tells 
us something more. Let T be any theory with a unary
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predicate P. Then

Proposition 1h. Suppose that for every M ̂  T , 
(Mya^^pwis a prime model. Then for every M t= T , 
(M,a^^pr^is the unique prime model of Th(

In the next few definitions and results, T will be 
just a (countable) theory, whose language contains (among 
other things) a unary predicate P.

If M is a model for the language of T, we will 
denote by Ê the expanded model (M,a^^prt.(So the language 
of Ê may be uncountable.) So then Theorem 10 just says 
that T is 1-cardinal if and only if Ê is minimal for all 
M J=T. Proposition 12 and Theorem 13 imply that, if ft is 
prime for every model M of T, then Ê is minimal for every 
model M of T.

This differs from the situation for "fixed" models, 
where we may have models which are prime, but not minimal. 
Example 21 below will be, among other things, an example 
of a theory T such that for all models M of T, fi is 
minimal, but for which there are models M, with fi not 
prime.

We will first, however, look further into the 
relationship between the 1-cardinality of a theory T, and 
the minimality of its expanded models.

Deissler[4] has defined a notion of rank for
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elements of a model, which enables him to characterise 
countable minimal models.

His definition is as follows :

Definition 15. Let K be a model (in a language of any 
cardinality).

The rank in M of an element a c M over a 
subset X of K, rk(a,X,M) , is defined by induction : 
rk(a,X,M) = 0 if there is a formula ÿ(x,y) in L(M), and
c € X, such that

M ^(a,c) A  3*'X#(x,c) .
For 2̂ an ordinal larger than 0

rk(a,X,M) as 2̂ if not rk(a,X,M) = rj for rj < t, , and
if there is ÿ(x,ÿ) and ̂ eX such that

M K  3x^(x,c), 
and such that for all bcM with K |k ÿ(b,c) 

rk(a,XuIb},M) < ^ .
We say that rk(a,X,M) = •© if there is no ordinal %

with rk(a,X,M) = 2̂. (By convention Ç < «o for all
ordinals ^. )

We define rk(a,M) to be rk(a,0,M) , 
and rk(M) to be sup{ rk(a,M)+1 : acM j .

Lemma 16. a) Let M be a model (in a language of any 
cardinality). Then rk(M) < #o implies that M is minimal, 
b) If M is a countable model in a countable language, 
then rk(M) < if and only if M is minimal .
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Proof. Quite straightforward, as for example in Plum[7]»

Let A be a model with a unary predicate P.
Then we say that A is a 2-cardinal model if

iwi > |p*| >'Ho-

We say that a set of sentences 2, almost axiomatises a 
class of structures K, if for any model A,
A 2 if and only if there is 1 = A such that B e K .

Keisler[l2] has given a set of sentences which 
almost axiomatises the class of 2-cardinal models :

Theorem 17. (Keisler) Let L be a countable language
which contains a unary predicate P. Then the following 
set of sentences 2 almost axiomatises the class of 
2-cardinal models for L.

A

2 = I 3VoVxoWo€P3yoSo VxnW„ ePByp *n [A '« 'o  Yl / \

A
l=o

n < w, m < w, 2n+1-ary formulae of L j

It follows that if T is a theory in L, and 
(T,P) is 1-cardinal, then T u 2 is inconsistent.

Thus there are Oj.,... Op in 2 such that
T k  y - i O r  •C: I

But if o is in 2, then o is a sentence of the form 
VvoBXoWoePVyoao aZqWnePVynZn

[ (/\^J (3Co,..Xn,ao>*.2n )̂   ̂ (yo»*»yn>^o>»*^n)) ^
V-/ ,Vo * yi j , for some n,m < w .
i: 0
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Let M be a model for the language of T , and suppose that 
M j= —10 .

If we look closely at , we can see that this implies 
that for every a c M rk(a,Ê) < n.

So rk(Ê) < n+1 .
Now for every model M of T, there is i-< r such that

M !==• -I Oi, .
Thus there is some n^ < w such that

rk(fi) < %  for all M N  T • So we have proved :

Proposition 18. Let T be a (countable) theory which has 
a unary predicate P.
Then (T,P) is 1-cardinal if and only if there is n < w
such that rk(fi) < n , for all M N T  .

Let us now return to the context of Gaifman
operations. Namely T is a theory in a countable language
L, P is a unary predicate in L , and c L - jPj .

Definition 19. a) T has the uniform reduction property
if for any ÿ(x) in L there is ÿr(%) in , such that

for all M N  T and for all a € P^,
M /= f(a) if and only if if |lo h  f ( & )  .
b) T is 1-cardinal of rank n if n is the least natural
number such that rk(fi) < n for all M |= T •

As mentioned before, Wilfrid Hodges conjectured that 
T is a Gaifman operation if and only if T is 1-cardinal and
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has the uniform reduction proprty* The direction left to 
right is given by Proposition 11 and Theorem 3* The 
opposite direction does not hold* However, it does hold 
if we stipulate that T is 1-cardinal of rank 1 .

Proposition 20. Suppose T is 1-cardinal of rank 1, and 
has the uniform reduction property.

Then T is a Gaifman operation.
Proof.

Let be models of T, such that

= Ko.
As T has the uniform reduction property, it follows that

As the model (M^,a) has rank 1 , then for every element 
b of Ml there is a formula ÿr(z) of L((Mi,a)^^^) ,such 

that Ml N  ÿ̂ (b) A  3^xÿr(x) .
Similarly for .

So let b € Mg , and ÿr(%) define b as above.
Then Mg ■f=‘ 3^xÿ(z) . Suppose that Mg (= ÿr(c) .

Then we put f(b) = c .
It is easily seen that the map f : Mi— > Mg , thus 
defined is an isomorphism, and that f(a) = a for all 
a in Mq • Thus T is a Gaifman operation.

However in the general case, we have a 
counter-example.

Our example is actually based on an idea of 
Shelah[21 ] . Shelah gives an example of a countable
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non-prime minimal model, which has 2^^ models which are 
elementarily equivalent to it and minimal.

In what follows ^2 will denote the set of 
functions from w to 2. ^^2 will denote the set of 
functions from n to 2, for n < w .

Example 21. A theory T in a countable language L, with 
a unary predicate P and a sublanguage Lq c L - jpj , 
such that T is 1-cardinal, T has the uniform reduction 
property, but T is not a Gaifman operation.

We will define a model M, and T will be Th(îî). 
L, the language of M, will have as its non-logical 
symbols  ̂ a unary predicate letter P, a unary predicate 
letter for each v c ^^2, and a binary operation letter 
+ . L is then a countable language.

Let us fix 77o € ^2 •
Then we will put P^ = ( o c ^2 : (3k<o/)( Vn>k)o(n)=0 } 
And (-1P)^ = 1 7? € ^2 : (3k<cü)( Vn>k)7?(n)=77o(n) j 

So intuitively, the elements of the P part of 
M are the sequences of 0*s and 1*s of length w which are 
eventually 0. And the rest of M consists of sequences 
which are eventually the same as tjq»

If Vi,V2 are in ^2 u ^^2 , then we will write
Vi <i Vg to mean that Vj, is an initial segment of Vg.

Then for all o € M, we stipulate that
M N  QyO if and only if v <$ o , for all v e ^^2.
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And for ,7]̂ , 773 in M 
^ h' V± ^ Vs - Vq If and only if

%(n) + 772 (n) = 773 (n) (mod 2 ) , for all n < w .
In this example the sublanguage will just consist of 
the language L without the predicate P# This is all right 
as in the model LÎ, is closed under the operation + • So
the same will be true in any model of T = Tli(M) .

Also, note that for any 77 e ("n P)^
(“»P)̂  ̂=  1 o +  77 : oeP^ J 

Thus m N VxVy3z€?( % + z = y ) .
So Th*VxVy3z€P( X + z = y )

So any model IT of T is generated by one element ever 
P̂ .̂ So T Is 1-cardinal. Actually v/e can see that T is 
1-cardinal of rank 2.

To prove the rest, we need a set of axioms for T. 
So we propose the following :
1 ) (3x)(PzAQ^z) 1 for each v e *>2 .

(3x)(-kPx AQ^x)
2) ( \/x)(Q^^x-->Q^^x) whenever •< Vg .
3) (Vx)(Q^x-4 (Q̂ tf>xVOĵ ,̂.jX)) for all v € ^^2.

5 ) (Vzyz)( % + y = z A P x A p y - — ^Pz)
6) (Vxyz)( X + y » z APx A-i py— ^-iPz)
7) (Vxyz)( x + y = 2 A*nPx A-iPy— >Pz)
8) ( Vxy)( X + y = y + X )
9) ( V z y z ) (  X + (y + z )  = (x + y) + z )

10) ( V xyz)( X + y = z—^x = y + z )
11 ) (Vxyz)( X + y » z A Q^^x AO^^y—  ̂Q̂ ẑ)
where and V q are in ^^2,
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length(vg) e mln( length(vi),length(v2 ) ) 9 

and Vs(i) = Vi(i) + Vg(i) (mod 2) for all
i < length(vs).

Let Z be the set of sentences I) to 10).
It is obvious that 2 c T .

It is routine to show that 2 has elimination of 
quantifiers, i.e. that for any formula (̂x), there is a 
quantifier free formula ÿr(x) , such that 

T H
The main point to note in doing the quantifier elimination 
is that a formula of the sort

(3x)( Q^^x A  (z+y) ) is equivalent under 2 
to the quantifier free formula y , where 

length(va ) « min(length(vi ),1 ength(vg )) and 
Vg(i) = Vi(i) + v&(l) (mod 2) for all i < lengthtFs). 

It follws that 2 must be complete, whereby 2 does 
axiomatise T. So T also has elimination of quantifiers.

We now show that T has the uniform reduction 
property.

So let f^(^) be a formula of L such that 
T u l(3x€P)^(^j is consistent, 

ly elimination of quantifiers there is a. quantifier free 
formula of L, }/r(x) , such that

T h  9 ( x ) ^ ( x )  ).

We can^easily get a quantifier free formula ÿ'(x) 
of L - l?i , such that 

Th VxeP( ( i )  ) .

NBut then, for any model N of T, and a € P ,
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N 1=. ̂ (è) iff NI=^'C r ) Iff E^|Lo 1= (â’) .
( as ÿr l8 quantifier free and Lq * L - |Pj )

So T has the uniform reduction prouerty.
It just remains to show that T is not a Gaifman 

operation.
Remember that to define the model M, we began with 

a fixed T7o € ^2. Let us now choose %  e ^2 such that 
for all k<o> there is i>k such that

/ %(i) •

Now define a model E' from 77̂ , exactly as we defined M 
from 770 • It is easily checked that M' satisfies the axioms 
2, whereby M'is a model of T. It is also clear that

(M' )^ » , as the P part of M was defined
independently of 770*

However each element of (-n P)^ is different at 
arbitrarily large points from each element of (— 1P) , 
and thus • - M / M'. In fact there are 2^^ pairwise 
non-iaomorphic models N with N^ = and N T.
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Chapter 2
Minimal models and the number of countable models

2.0 Introduction

The original motivation behind this chapter 
is the attempt to determine the possible number of 
countable models up to isomorphism of a complete countable 
theory v/hich has a minimal model. The conjecture is 
that such a theory has infinitely many countable, models. 
Such a result would strengthen the Baldwin-Lachlan 
theorem, which says that an -categorical non - 
categorical theory has countable models. ,Vhat we 
end up proving, however, are some comparatively weak 
results on the number of countable models of a theory 
v/ith a certain kind of "very algebraic" prime model.
,Va show that such a theory has at least four countable 
models.Now it is Known that n(T)(= number of countable 
models of a countable theory T) can never be equal to 
two. So if n(T)>1 then n(T) >3.Thus to shov/ that a 
theory has at least four countable models is the 
weakest possible nontrivial result.

Essentially the only known example of a theory T 

with n(T)=3, is the "Ehrenfeucht example". And the 
examples of T with n(T) finite are modifications of this



40

example. V/e show that any theory T for which n(T)=3 is quite 
a bit like the Ehrenfeucht example.

It has been thought that one could obtain a nice 
characterisation of those theories T for which n(T) is 
finite,analogous to the Ryll-Nardjewski characterisation 
ofWc-categorical theories, I think that such a neat 
characterisation is unlikely to be found, partly because 
theories with more than one, but only finitely many 
countable models are such- an anomaly. Any characterisation 
will probably be of a rather complicated structural 
nature. However, if we look at -categorical theories, 
we can, rather crudely, divide them into —
a) those theories which are ^^-categorical because of 
lack of structure (e.g. theory of equality,theory of 
infinite abelian groups of order p), and
b) those theories which are -categorical due to the 
presence of structure (e.g. theory of dense linear 
orderings, theory of atomless Boolean algebras).
In case a) there is nothing to distinguish countable 
models of the theory. Whereas in case b) there is enough 
going on in the models to enable us to construct 
isomorphisms.The feeling is then that theories T with n(T) 
greater than one, but finite, arise from modifications of 
Ao-categorical theories of type b), as for example 
Ehrenfeucht’s example comes from adding a sequence of 
constants to a dense linear ordering.
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I present a general framework for obtaining or 
constructing non-isomorphic countable models. This 
essentially centres around the presence in our theory of 
certain exchange properties, which allow us to get models 
of arbitrary finite "dimension". As stated above, under 
certain strong assumptions on the degree of algebraicity 
of the prime model, we have as yet only been able to obtain 
at least four models. However I also prove a quite general 
exchange result, which under quite strong conditions on 
the algebraicity of the theory (namely that every model 
prime over a finite set is actually algebraic over that 
set),enables us to get infinitely many countable models. 
This latter result, whereby one obtains infinitely many 
models has been proved directly by Lascar[14-]» but I feel 
that the above-mentioned exchange result is fairly 
interesting for it's own sake.

AS for minimal models, we view minimality(of a model) 
as a generalisation of algebraicity. In the esse of a 
model which is algebraic, one can see directly what is 
responsible for it's minmality, so we would like to 
connect the two notions. I actually show that a minimal 
prims model has a large part which is algebraic over a 
finite set. This also connects our original conjecture to 
the later results on the number of countable models, 
although there are obviously many gaps to be filled in 
order to prove the conjecture.
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I will first state a few preliminary definitions and 
observations. In this chapter all models and theories that 
v/e talk about, will be in a countable language, Models will 
be infinite unless otherwise stated.

Definition 22. Y/e say that a model A is minimal if there is 
no B such that and B- N A.

It follows that a minimal model is countable. 
Definition 23. (i) Let a be a model and aeA. V/e say that 
a is algebraic in A, if there is a fomula 6(x) of L(A), 
and n<oj such that A|r3''x6(x) A  6(a) .
(ii) A is algebraic if for all aeA, a is algebraic in A,
(iii) Let T be a complete theory. Then T is algebraic 
if T has an algebraic model.

It is easy to see that if a model is algebraic then 
it is prime and minimal.

Let T be a theory. Then as mentioned before we denote 
by n(T) the number of countable models of T up to 
isomorphism. It would be v/orthwhile to state and prove the 
following classical result of Vaught[25].

Theorem 2k* Let T be a complete theory. Then n(T) ^ 2.

Proof. Let us assume that n(T) > 1 , and n(T) < .Ae will
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show that n(T)  ̂ 3. First of all then, T can only have 
types, for otherwise we would get too many models. Thus T 
has a prime model and a countable saturated model. ^Iso as 
T is not X^-categorical, there must be a non-principal n- 
type p(%) for some n < w, whereby the prime and saturated 
models cannot be isomorphic. Let T' = T u PCS’), where "à is 
a sequence of n new constants. Then T' has again only X/ 
types, and thus has a prime model (n,^). A is a countable 
model of T. as A realises p(l?), A is. not prime. Now T'must 
have some non-principal n-type q(Ü,ïT) (because T, and thus 
T' has infinitely many n.-types).(A,omits this type, and 
thus A cannot be saturated. Thus we have at least three 
countable models of T.

#■
Observation 25. Let T be a complete theory with no prime 
model. Then n(T) = 2̂ "̂ .
Proof.

T must be non-atomic , and thus there is some n- 
formula 6(x) which is not implied by any complete n-formula 
of T over T. By a standard tree method we can get. ^  n- 
types of T, and so T must have at least 2^^ countable 
models , to realise all these types. But n(T) ^ 2'̂ ^̂ , so

the result, follows.

Observation 26. Let Ï be a complete theory with a prime 
model. Suppose that A )= T , and A is minimal. Then A is 
prime.
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Proof.
Let B be the prime model of T. Then B ^ A  , and so 

3 = A by minimality of A.

Note from this that if T has a prime modt-:l,then T has 
at most one minimal model up to isomorphism.

Also, in so far as v/e are interested in the number of 
countable models of a theory with a minimal model,we can 
by Observations 25 and 26,assume that the minimal model 
of the theory is prime. Thus in the section following, 
we restrict our attention to crime minimal models.
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2 o 1 Pr ime I.: inimal M odel s.

Proposition 27» Let T Le a complete atomic theory, and A 
he a countable model of T. Then A is minimal if and only if 
A is atomic and has no atomic proper elementary extension. 
Proof.

Let A be minimal. Then as T has a prime model,A is 
prime and thus atomic. Suppose that v/e had B ^ A  , 3 A, 
and 3 atomic. We may take B to be countable, for if not 
talce a countable elementary substructure. But then A ^ B , 
so we could find , C / A, contradicting the minimality
of A.

Conversely, suppose A were atomic and not minimal. 
There would be B 4  à , B / A. But then obviously 3 v/ould 
also be atomic, and thus B A , so we could find C, with 
A 4  C , A C, and C atomic.

The above proposition says that if A is a prime 
model, then A is minimal if and only if, whenever A 4  S, 
and A B, there is n < w and an n— tuple b from 
IBI — I A| " which realises a non-principal n-t3p>e in B.

Compare this v/ith the situation for algebraic models.

Observation 28. Let A be a prime model. Then A is algebraic 
if and only if vhenever A ^  B and A / B , every element of 
B - A realises a non-principal type.
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Proof.

Note that if A is algebraic, then for every complete 
1-formula 6(x) of Th(A), there is n < cj such that 
A M xG(x). So if A 4  all the realisations of 6 must be 
in A. So if beB-A then b cannot realise a principal type.

Conversely, suppose A were not algebraic. Then there 
is a complete formula 6(x) (i.e. complete for Th(A) ) 
which is satisfied by infinitely many elements of A. 
Consider the following set of sentences in the language 
got by adding names for elements of A and a new constant c 
2 = Th(A,a2^^ u e(c) u [ c/a : aeA ].
By compactness 2 has a model ( B,a, c ^ ^  . Then A 4  

ce E-A, and c realises the principal type of Th(A) 
determined by 6(x)«

Proposition 29o Let T be a complete atomic theory. Then T 
has a minimal model if and only if all atomic models of T 
are countable.
Proof.

Suppose that A is a minimal model of T. Then A is 
prime, and if there were an uncountable atomic model of T, 
we would have A 4  A / B, contradicting Proposition 27.

Conversely, suppose that T had no minimal model. Let 
A be the prime model of T. Then by Proposition 27 A would 
have an atomic proper elementary extension A^. If A^ is 
uncountable, there is nothing more to prove. If A^ is 
countable, then A A^, and we can therefore build a
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strictly increasing continuous elementary chain 
i Al :i<W,j of countable atomic models of T, (We can 
continue at the limit stage, because for ô a limit ordinal, 
0<7̂ ,, A^ = UÎA;, : i<0 ] is a countable atomic model of T, 
and is thus isomorphic to A.*)
Put A' =_ UÂ  . Then Â' is an uncountable model of T. Also, 
any finite tuple from A/ is in ^  for some i<?̂ ,, and- so 
realises a principal type in A;̂ and so also in A' .
Thus A* is atomic.

Proposition 30> Let T be a complete theory. Then
a) if T has a minimal model, then T is not TV^-categorical.
b) if T i s %  -categorical and not TV*,-categorical, then 
T has a minimal model.
Proof.

a) Suppose T wereX^o-categorical. Then T would be 
atomic, and moreover by Ryll-Nardjewski, all types of T 
would be principal. Thus all models of T would be atomic.
So by the previous proposition, T could not have a minimal 
model.

b) Let T beX» -categorical and not?^ -categorical.
By X^-categoricity, T is atomic. By non-?y^categoricity,
T has a non-principal type p. This type p will be realised 
in some, and thus in all, models of T of cardinality X/, . 
Thus it is easy to see that T has no uncountable atomic 
model. So by the previous proposition/? has a minimal 

model.
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Proposition 31.Let T be & complete theory, and p a not 
necessarily complete type, such that all models of T which 
omit p are isomorphic. Then if a model À of T omits p, A 
is prime and minimal.
Proof.

Let A be a model of T which omits p. If A is not 
prime, then a realises some non-principal type q. But 
then, by the Omitting Types Theorem, T has a model B which 
omits both p and q. But then B cannot be isomorphic to A. 
Contradiction. So A must be prime. T could not have an 
uncountable atomic model, for such a model would omit p, 
but would be non-isomorphic to A. Thus by Proposition 29 
A is minimal.

0'

V/e now come towards the main result of this sect­
ion. We first need a few more definitions.

Definition 32. (i) Let A be a model, be say that i'W is a 
principal expansion of a , if A^= (A,^), v/here a is a finite 
tuple from A which realises a principal type.
(ii) Let T be a complete theory. We say that T' is a
principal extension of T, if T' = Th((A,§')), where (A,^) 
is a principal expansion of some model A of T.

Note that if A is a prime model, then every expans­
ion of A got by adding finitely many names, is a principal 
exuansion.
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Definition 33»Let be a aolel, and ZC c |a ] .
Then cl(h.^) = [ acA : there is a formula f (x;y) of L(.-. ),
helZ , and k<w such that A 3̂  xçf'(z;h) and A h^(a;h) J.
If aecl(X,i^j, v/e say that a is algebraic over X in A.
If X = ihj , we say that a is algebraic over b in A, and if 
X = 0, we just say that a is algebraic in A.

iTote that to say that A is algebraic, is just to say 
that cl(0,ii) = Ao
:'/e can nov/ relate minimality to algebraicity.

Theorem 3h. Let A be a prime minimal model. Then A has a 
principal expansion A', such that in I-(a') there is a 
formula ^(x),such that is infinite and 0̂ - ccl(0,A* )» 
Proof,

By Proposition 27, A has no atomic proper elementary 
extension. Let L be L(a ). Let us add names for all the 
elements of A and a new' constant c, so .as to expand L to 
L". Consider the following theory in L" :
T" = Th((A,a) ) u I c/a : asAj. Then the L-reduct of any

<X£rf\
model of T" is a proper elementary extension of A.
Thus no model of T" can be atomic, when viewed as a model 
of Th(A).Por each n<cu, put

2n(3h*'"3n) = . .̂ n ) • f ^ complete n-formula
of Th(A) !,
Then it is easy to see that the L-reduct of a model of T̂' 
is atomic if and only if the model omits 2  ̂ . .%n ) for
all n<w. So by the Omitting Types Theorem, there is n<w 
such that (3t) is principal over T",
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So, there are a finite tuple aeA, and an L-formula 
9 (y,y,z) such that ;
(i) T"u Î0 (y,c,"̂ ) j is consistent, and

(ii) T" h 0(y,c,a)^-np('X) , for each -iÿ("X)€2n (y).
By (i), I yeA : A}= yt) { is an infinite set.
By (ii), for each “ip‘(z)€2r>, there is by compactness 
b^,...bp in A such that
Th((A,a) ) U. y\c/bL )- 0(1,c,"g)— .
So Th((A,a) ) h 0("^,c,a) A ÿr(1)— ^\/c=b^,t‘=L-A
So by syntax or semantics, there is k<r such that 
Th((A,a)) h (3̂ ,y,‘Ë) A  T/r(t)) .
Now. we take (A,a) to be the principal expansion A' of A 
that v/e wanted to find.
Then the formula 3ït0(X,y,'â) is a formula of L(A^ and is 
satisfied by infinitely many elements of A^.
It remains to show that every element of A' satisfying 
3%(%,y,a) is algebraic in A',
So let Â  3x0 (^,b,"â) o But every n-tuple of A'
satisfies a principal n-type of Th(A), so there is some
complete n-formula of Th(A) such that

A / 3S(0(x,b,a) A 0"(3) ) -
But from above, there is k<w such that

A h 3^^yBl(0(t,y,a) A  0"(̂ )) r whereby b€cl(0,A/).
This proves the theorem.
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Proposition 35» Let A be a homogeneous model with a 
principal expansion (A,^) which is minimal. Then A is 
minimale 
Proof.

Let A be as in the hypothesis. Suppose that B ^  A. 
As Ë realises a principal type, there is beB such that 
(B.,b) = (A,"â) . Thus (A,b) = (A,a), and so by homogeneity 
of A, (A,b) (A,h). Thus (A,S) is minimal^ But

—f J "̂7(B,b)^ (A,b), and so B = A. So A is minimal^

Corollary 36. Let A be a model with a principal expansion 
(A,Ŝ ) which is minimal and prime, then A is minimal and 
prime.
Proof.

Firstly it is clear that, as (A,S') is prime and 
realises a principal type in A, then A must also be prime, 
Thus A is also homogeneous. The result now follows from 
Proposition 35.

Corollary 37. Let A have a principal expansion (A,^) 
which is algebraic. Then A is minimal and prime.
Proof.

Note that (A,#) is minimal and prime. Now use Coroll­

ary 36.

We are interested in the extent to which the 
implication in Corollary 37 can be reversed. Theorem 34 
gives a partial result in this direction, by shov/ing that
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a prime minimal model has a principal expansion with a lar­
ge definable algebraic bit. In a special case we can ge.t 

a stronger result.
First of all, we make some more definitions.

Definition 38. Let A be a model, and 0(x) a formula in L(A) 
Then we say that 0(x) is minimal in (A,a^^ if
(i) I xeA : At=0(x) \ is infinite, and
(ii) for each formula 0(x;y) of L(A) and ̂ sA, either
\ xeA ; A./0(x)A0-(x;*t) J is finite, or
[ xeA : A Ç-(x)A n  (/̂ (x;'g) ] is finite.

Then as in the literature, a complete theory T is said
to be strongly minimal if for every model A of T, the
formula *x=x' is minimal in (A,a) ..ecéA

Proposition 39. Let A be a model such that *x=x* is minimal 
in (A,a2^^. Then A is minimal and prime if and only if A 
has a principal expansion which is algebraic.
Proof.

One direction is given by Corollary 37.
otKc,KFor the/vdirection, let A be minimal and prime. Theorem 34 

then gives us a tuple ^ in A, and a formula 0(x) of 
L((A,K)), such that 0 ) is infinite and is a subset of 
cl(^,A). As *x=x* is minimal in , it must be the
case that 0 -̂̂ ''̂  ̂ is finite.
But then A = 0 (-̂ >'̂ ) u-»0(-^>^) c cl(h,A).

Thus (A,*â) is algebraic.
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Corollary ko. Let T be a strongly minimal theory.
Then T has a minimal model if and only if T has a principal 
expansion T' with an algebraic model.

It is interesting to note that the above Corollary 
can also be deduced from the Karsh-Baldwin-Lachlan 
framework in the following way :

Assuming T to be strongly minimal, let. A be a minimal 
model of T. A will be prime. If the(Baldwin-Lachlan) 
dimension of the universe in A is infinite, then every 
countable model of T will have infinite dimension,v/hereby 
T will be'^^-categorical. But this contradicts the fact 
that T has a minimal model. So A must have finite dimension 
But this just means that there is a finite tuple aeA, 
with (A,h) algebraic.

It is easy to find examples which show that the 
conclusion of Proposition 39 does not in general hold.
We can just put together a lot of minimal models. For 
example, let our model consist of cu disjoint copies of 
(%,<), each copy distinguished by a unary predicate.
Then the model is minimal, but it cannot be algebraic 
over any finite set.
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2.2 The number of countable models.

There are very few examples known of theories with 
more than one, but only finitely many countable models. 
Such a theory would thus seem to be a pathological case. 
Moreover all the examples are more or less modifications 
of the original Ehrenfeucht example, which gives a theory 
T with n(T) =3* We now give this theory.

Bxamnle
Let A = (A,<,ai)L<u be a countable model, where 

< is a dense linear ordering wdthout endpoints,
A k < aj iff i< j , for all i,j < w , and the are
unbounded above in A. We put T = Th(A). Then T has just 
three countable models.

A is the prime model.
The ’middle model' is such that 

I x€Ai : Ai t= < X for all i ! is non-empty and has a
first element c. Ai is actually prime over c.

The third model Ag is saturated, and
i xoAg ; Ag aj. < X for all i ] is non-empty, but has
no first element.

We take the opportunity to observe that in the model 
Ai, if d > c, then d realises a principal type over c, but
c does not realise a principal type over d. This is, in a
sense,-what is responsible for the fact that n(T) = 3.
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One can modify the above example to get a. larger finite 
nuiTibsr of countable models, by adding for any n say, a set 
of n unary predicates i<n, which partition the model A, 
and each of which is dense in A. Then we get n 'middle 
models', like , but distinguished from each other by 
which of the P;̂ holds for c = lim â  . Altogether therefore 
we have n+2 countable models,

Lachlan has modified tfie in a slightly
different way to obtain a theory T with n(T) = 6. V/hat he 
does is to add to the dense linear ordering two sequences 
of constants, one going up, and the other going down, and 
all the members of the first sequence less than all the 
members of the second.The countable models of the theory 
are then determined by whether the interval between the two 
sets of constants is empty, open, half-open,etc.
Peretyat'kin[i7] has given an example of a theory T with 
n(T) = 3j by adding a sequence of constants to a certain 
kind of dense tree. v/oodrow[Z4 has shown that if T is a 
countable complete theory in the same language as the 
Ehrenfeucht example, and with elimination of quantifiers, 
then n(T) = 3  implies that T is very much like the Ehren­
feucht example. I show below that any theory T such that 
n(T) = 3> is 'similar to' the Ehrenfeucht example.

Some other studies have been made of theories with
many

more than one but finitely^countable models. Rosenstein[\E] 
showed that any such theory has a countable model which 
is not saturated, but realises all types of the theory. 
Benda[2.] has shown.that, if, not only T but also every
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complete extension of T by finitely many constants,has only 

finitely many countable models, and T is not/\^-categorical 
then T has a countable universal model which is not satur­
ated. This method of placing conditions on all simple 
extensions of a theory, is rather artificial, but enables 
one to prove results by iterating certain constructions. 
vVe examine later on, what happens v/hen every complete simp­
le extension of a theory is algebraic.

There have been only a few non-trivial results 
telling us when a theory has infinitely many countable 
models, Baldwin and Lachlan[l] proved that if T isT^-cate- 
gorical and not -categorical, then n(T) = ̂  . La chi an [13] 
strengthened this by proving that if T is superstable and 
not -categorical, then n(T) > Both proofs rely very 
heavily on the stability of the theories in question, and 
the proof of the former result relies a lot on the existen­
ce of a strongly minimal formula in a principal extension, 
ye would like to prove results without an;̂  ̂ stability 
assumptions. Lascar[I4-] proves essentially that if every 
complete simple extension of a theory T is algebraic, then 
n(T) This follows from some lemmas that he proves on
Cantor-Bendixon ranks of types of the theory. I will rework 
some of the Lascar material in a more model-theoretic way, 
proving an interesting exchange result while doing so.

However if we place algebraicity conditions only on 
the prime model of the theory, then it looks to be much 
more difficult to prove that there are many countable 

models. I get some comparatively weak results below.
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And from, the proofs of these results, it seems that any 
attempt to push the results further will involve one in 
many combinatorial, problems*

However, I first present a general schema for obtai­
ning non-isomorphic countable models*

2.2 I A general framework for getting models.

Let us first note that if all the countable models 
of a complete theory are homogeneous, then the theory must 
have infinitely many countable models* This follows at once 
- from Rosenstein's result mentioned above, for if a countable 
t̂ilL model is homogeneous, then it must be saturated*
Hov/ever, this criterion is not all that helpful, for there 
’ are an abundance of theories with infinitely many countable 
models, not all of which are homogeneous. Look, for example 
at the theory T = Th((Z,<)). We get lots of countable 
models of T by adding extra copies of Z. However, the model 
Z + Z is not homogeneous. For any element in the first 
copy realises the same type as any element in the second 
copy, but there can be no automorphism of the model taking 
the one element to the other* A more helpful observation 
which is concerned rather with relative homogeneity, is 
the follov/ing—

Lemma . Let T be a complete theory which is not - 
cateo-orical. Suppose that if A kT, S' is a finite sequence
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from A, and (a ,^) is prime, then for all S in A of the same 
length as (A,^) = (A,S) implies that (A,Ë) » (A,S).
Then n(T) > •

Proof,
First we may assume that T has < ^n-types, for all 

n < w. For otherwise we will have to have more than counta- 
hly many countable models, to fit in all these types,' It 
also follows that any complete simple extension of T has 
only types. Thus, every complete simple extension of T 
has a prime model.

Now, as T is not ̂ ^-categorical, T has infinitely 
many n-types for some n < w. W,n,l,o,g, assume n to be 1,
So let P i ) be a non-principal 1-type of T, Let Ci be a 
new constant. Then again Ti = T u Pi(ci) has infinitely 
many 1 -types, so we can find Pg(ci,x) a non-principal 1- 
type of Ti, Proceeding inductively, we can thus find 
n-.types Pn (xi,., .x^ ) of T, for 1 < n < w , end correspond­
ing theories T^ ■ T u Pn(Ci» *.Cp) » such that ,for all n 

£ Pn+i ) 9 and Pn̂ -i (^i ,# # ,x) is
a non-principal 1 -type of T^,

Now, for each n let A^ be a prime model of Tq , and 
let An be the L(T)-rcduct of A^, Each An is then a countab­
le model of T, and we assert that m / n implies that 
Am is not isomorphic to An•

Suppose, by way of contradiction, that for some n 
An “ An̂ f, • As A^^^ is a model of Tn̂ .̂  , then there are

Buch that (-An ) W  Tn^^ #
But there*^bi,. ,bn in An such that (An ,bi ,. ,bn ) is a prime 
model of Tn, By construction of the T̂, ,
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(An ,bi,..bn ) 5 ,c^ , .  . c ^ ) ,whereby
(An ,..bn) “ (Aq .Cn) ,by the conditions of the 
leamn. So (An *Ci,,.Cq) is prime. But this contradicts the 
fact that Cn̂  ̂ realises a non-principal type over (c^,..Cn) 
in An •

Thus it is easy to see that { Ag, : 1<m<(u ) is a set 
of pairwise non-isomorphic countable models of T.

Along similar lines we have :

Lemma 42. Let T be a complete theory which has a model A 
such that : 1 ) A is not prime
2) there is a finite tuple ^ in A such that (A,â̂ ) is prime^
3) for any in A such that (A,t) = (A,ï) , it is the case 
that { Apt ) « (A,b).

Then n(T) > 4.
Proof.

We may assume that T has a prime model and a countab­
le saturated model. These cannot be isomorphic, as the 
conditions of the lemma imply that T has a non-principal 
type. Let p(ï)'. be the type of t  in A. Then p(lt) is non- 
principal. Let q.(3t,y) be a type of T which is non-principal 
over p(*3t) and extends p(lt) (i.e. p(3t)c(i(jt,y) and g(b,ÿ) is 

a non-principal type of T u p(b) ). Let (B,T»,S) be a prime 
model of T U q(^,e). Then, as in the proof of Lemma 41,
A and B are mon-isomorphic countable models of T. Also, 
as in the proof of Theorem 24, neither A nor B can be 
prime or saturated. Thus T has at least four countable 
models.



60

Deflnltioa 45, Let A be a model, and t  and b finite tuples 
from A. We say that S is principal over t  in A, if TÎ 
realises a principal type in (A,It).

The following lemma is widely known.(e.g. Benda[2])

Lemma 44. Let (A,It) be prime. Suppose that î e A  and t  is 
principal over Ï in A. Then (A,?) is prime.
Proof.

Let "dcA. We show that t  realises a principal type 
in (A,*?). Firstly, there is a formula 0(‘St,‘i,ÿ) which 
generates the type of (ï,c) in (A,l^). Let ÿ'(b,'Ë) generate 
the type of a in (A,t). Then it is quite easy to see that 
the formula ( 3 t ) { f { l ê , t ) / \  0 (‘2 ,b,ÿ)) generates the type of 
^ in (A,Î). So t  realises a principal type in (A,b). As 
was an arbitrary finite tuple from A, it follows that 
(A,1?) is prime.

Observation 45. It follows that if (A,w) is prime,
(a ,a) = (A,Ï), and a is principal over b, then
(a ,a) « (A,'^) (as both these models will be prime models
of the same complete theory).

Note also that if (A,a) is prime, then any S in A 
is already principal over a in A. So we can see already 
that the problem of getting non-isomorphic countable models 
has been reduced to the problem of proving exchange results 
of the following sort : if a and V are finite tuples from a 
model A, and (A,a) = (A,ï), then t  principal over b implies 
that ï is principal over a.
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2.2 II Getting Infinitely many models.

We will first define the 'Cantor-Bendixson* rank on 
the types of a theory. So let us fix a complete theory T. 
Let Sn(T) denote the set of (complete) n-types of T.

Definition 46. (i) We define for each ordinal a ,  a subset
S“ (T) of 2n(T) -by ;
1 ) S^(T) = Sn(T) .
2)For 6 a limit ordimal, S?(T) . nS?(T) .
3) (T) = i p s peS^(T) amd for all ^«p fhere ia qeSnC?) 
such that o/p and 0 €q ]
(ii) If peSn(T), then we define
Rank^p * the least a such that peS^(T), if there is such 

an a. Otherwise Rank^p
(ill) We also define with no confusion ranks and degrees of 
formulae, with respect to T. So let 0 be an n-formula 
consistent with T. Then
Rankn0 = sup| a î there is p£Sj(T) with 0 ep j, if such a 
sup exists* Otherwise Rank^^ » .
If Rankn0 * a, then we define Deg^0 m 1 {pcS^(T): 0cpi|.

The following facts are then easy to prove.

Lemma 47.(i) Suppose that 0 is an n-formula,. peS^(T) and 
0€p. Then RankriP < Rankn0*
(ii) Suppose that Rank^p » Then there is an n-formula
0 such that Rankn0 » «, Degn0 ■ 1 , and p is generated over 
T by }0j u { -I 0̂ ; 0̂ is an n-formula, T h  ÿ r ^ 0 , and 
Rankp^r < a j .
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(iii) Suppose that peSn(T) and that p is generated over 
T by [0j u i-i0rĵ ;icl }, where Rankp0r̂ < m for all ici. 
Then Rank^p < a.

We also note the following.

Observation 48. (i) Let pcSp(T). Then RanknP » 0 if and 
only if p is a principal n-type of T.
(ii) Let 0 be an n-formula. Then Rankn0 = 1 and
Degn0 m 1 if and only if 0 is minimal, where by 0 being
minimal we mean that
1 ) there are infinitely many complete n-formula Ÿ «uch 

that T p  ÿr— > 0  , and 
2 ) if 0 ' is any n-formula, then either there are only
finitely many complete n-formula 0* such that

T h 0 r ^ 0 A 0 '

or there are only finitely many complete n-formula 0* such 
that T H 0 — f 0 A-i 0'

Baldwin and Lachlan[l] prove an exchange result 
for strongly minimal formulae, one case of which is : 

if 0(z) is strongly minimal in a theory T,
A k T ,  a,beA, Ak0(a), a/cl(0,A), b/cl(0,A), then 
b€Cl([aj,A) implies that a€cl(|b),A).

This, however, does not hold for minimal formulae 
as defined above, even when all elements of the prime 
model of the theory are named. Look at the following 
example for instance •
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Let A m (A,H) be a countable model, where R ia a binary 
relation on A. 2(x,y) "aays” that y is an immediate succes­
sor of X. Under the induced ordering A is a tree with a 
first element, such that every element at the nth level has 
exactly n+2 immediate successors. Every element is at level 
n for some n < w. All elements of A are named by constants. 
Let T = Th(A). Then * x  * x* is minimal for T. Let BkT, 
and B / A. At^B in the obvious way. Let bcB-A. Then b has 
a unique immediate predecessor a, whereby a is algebraic 
over b. But a is in B-A, and so has infinitely many 
immediate successors. So b is not algebraic over a. .

We can prove a weaker exchange result, which 
however, holds between any two tuples whose types are of 
the same Cantor-Bendixson rank less than infinity.

Per the next few results, let K be an -saturated 
model of a complete theory T. Any tuples we talk about 
will be in M, and for such an n-tuple ï, tp(^) will denote 
the n-type realised by It in M. Ranks and degrees of types 
and formulae will be obviously relative to T. Any countable 
model of T will be isomorphic to an elementary substructure 
of K. So Lemmas 49 and 30 following, are valid if we are 
working inside any countable model of T. Before we can 
prove the exchange result, we need the following lemma :

Lemma 49. Let a and T# be n and m-tuples respectively,such 
that Rank„tp(a) « a < , and b is algebraic over a.

Then Rank.tp(b) < a.
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Proof.
We prove the lemma by induction on a.

It ia clearly true far a * 0.
Now suppose the lemma is true for all >0 < «. Let a,b, be 
tuples as in the hypothesis. Let k be the least natural 
number such that there is a formula 0r(x,y) and

and .
Then generates the type of % over ‘Î.

Now tpCS) is generated over T by 
Î0(1)J u {“i0 t (l):i<c«jj , 

where Eanknf ■ a, Deg^ 0  m l ,  and Hankp0 ; < a for all i.
8 0  T U l0 (x)j u i-i 01, Cî):i<o)î h  .

By compactness there is r « o such that 
T u  {#(3)} u I-i (1 ):1=0 ,. .r) ( * )

Consider the following set of formulae :
2(5) = (x )a ^(5,5))} u

i-i(3Ï)(^j(3t)A A-i^i,(3)A ÿ-(2,5)) : r<j<w )
Now suppose that 1̂' realised 2(y). Then, from looking at 
2 we can see that there must be an n-tuple a' with 

tp(a' ) a tp(a) and M k 0 (a',b') .
But then, as 0*(a,y) generates the type of ï over a, it is
clear that tp(U^ ) = tp(îî) .

Thus tp(S) is determined by S(y) over T.
Look now at one of the formulae 
Oj(y) = (33t)(#j (i)A,/\-i^l (S)a  \t-(x,5)> where j>r .trÇ.. r

We may suppose Oj(y) to be consistent, so it is satisfied 
by some d.
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But then there is c such that
KM (c) A Dec.'S) .

ĉt, *«r
Proa (♦), it follows that

, whereby *î is algebraic ever *c.
Let p be the type of c. Then 0j€p.

But Hankp0j < a, so by Lemma 47, Hanl^p < a.
But then, by the induction hypothesis Rankg, tp(d) < a.
So, for all 3 satisfying Oj(^), Eank^tp(d) < «•

Therefore Eank,,oj < a.
So the type of Ï is generated over T by one formula^ and 
a set of negations of formulae of rank less than a.
So, from Lemma 47, Rank^tp(3) < a .

Thus the lemma is proved.

We can now prove the exchange result that we have 
been aiming for. This result actually follows from some 
lemmas on ranks in Lascar[!4]. But it is not clear whether 
he noticed it in this form. Anyway, our proof here will be 
rather more longwinded, as an introduction to techniques 
used in the next section.

Lemma 50. Let a and 3 be m and n-tuples respectively, such 
that Rankm tp(3) * Rankq tp(b) = a < #» .
Then b algebraic over a implies that a is principal ever 3< 
Proof.

Let p(x) be the type of a, and let 0(a,y) generate the
—* “►type of b ever a.

S# M l=-0̂ (a,3) and T u p(x) }— Bf^y0r(x,y) for some k<w.
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First of all, let us note that if there were a formula 
o(x,3) such that Mko(a,3) , and such that 
Mk 0t(x,TÎ)a o(x,3)“ >-e(x) for all e(x) in p(x) , 
then a would realise a principal type over 3 ,generated by 

0r(x,lT) A  o(x,3) .
For let Ÿ* be a formula. By the completeness of the
formula 0 (̂a,ly), we have that either
(i) M ^  fVy.){0 (t,y)->0r'(a,3 )̂) . or
(ii) M k  (Yg')(0'(a,y)— (a,y)) .

Suppose (i) to be the case.
Now suppose that M k 0(3',3) a  o(a',^) •
Then 3' realises p(x) and so has the same type as ’3.

So by (i) we have that U k 0' (a' ,3) .
Thus U h  (V^^(0(x,3)A o(x,b)— ^0'(^,3)) .

Similarly, if (ii) is true, then 
M k (y^)(0(x,3)Ao(x,3)— > - 1 0'(x,3)) .

So the above note is established.
Now p(^) is generated over T by 
j0 (x)j u 0 i. (Ï) : i< o> j , where

Eank(p0 »  a ,  Deg^^ * 1 , and Rank^0  ̂ < a  for all i < cu.
By compactness, there is n < w such that 

T u [0(3)1 u [ - 1 0L (x):i < nlk jky0(x,y) (*)
Now suppose that for all j > n 

M f= (0(x,b)A 0(z)A^>^-'0i, (3))-^-i0j (x)
Then, the formula 0(x,b) A  0(x) a / \ - » 0;, (x) would

L<n

determine the type of x as being p(x), whereby from what we 
noted above, 3  would be principal over"b, and the lemma 
would be proved. So let us assume that for some j > n
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u h  (3?)(v^(?,S-)a,(?)aA-^/i(2)a#j(2)) .
L < r \

S O  for Bome c, M k 0(c,3)a 0(c)a / \  “j 0i (c)A  0 j (c) .
But then, by (*), 3  is algebraic over c.

Also, as M k 0j ( c) and Rank^^j < * , we have that 
Rankm tp(c) < 9L .

But then by Lemma 49, Rank,̂  tp (3) < tc.
This is a contradiction, and thus the theorem is proved*

We can now apply this lemma to the results of the 
preceding section to prove the following theorem, which is 
essentially due to Lascar[14] .

Theorem 51 » Let T be a complete theory, such that every 
complete extension of T by finitely many constants is 
algebraic. Then n(T)
Proof.

Firstly, we may as usual assume that T has not more
than n-types, for all n < w. It follows easily from this
that Rank^p < •© , for every n-type p of T.

Now let A 1= T , and a a finite tuple from A such 
that (A,a) is prime.

Then, by the conditions of the theorem,
(a ,a) is algebraic.

Suppose that 3€A and (A,a) = (A,3).
Then 3  is algebraic over a, and the types o f  the two tuples 
being the same, must have the same rank.
Thus from Lemma 50, a is principal ever 3 ,  whereby

(A,a) “ (A.S) .
The theorem now follows from Lemma 4l.
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The following proposition is implicit in the proof of the 
above theorem. It is, however, an elegant expression of the 
exchange result developed in this section, and provides an 
almost unqualified generalisation of the notion of dimensi­
on which is found in, for example, algebraically closed 
fields.

Proposition 52. Let A be a model which is algebraic over 
a finite tuple a, where the type of a in A has rank less 
than infinity. Then A is algebraic over any other 3 in A 
which realises the same type as a.

Certain important classes of theories can be exte­
nded to complete theories which satisfy the hypothesis of 
Theorem 51» Thus, for example :

Corollary 53. Let T be a countable theory with Skolem 
functions. Then n(T)

In fact, as Lascar notes, it is enough that a theo­
ry T have a simple extension satisfying the conditions of 
Theorem 51• For then, in building our non-isomorphic 
countable models of T, we just ensure that all these models 
realise the type which defines the simple extension. Using 
this fact, and through the mediating property of the strong 
elementary intersection property, Lascar proves ;

Theorem 54. Let T be a countable theory which is convex and 
model-complete. Then n(T) > .
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2.2 III Getting at least four models.

We now examine what happens when we place conditio­
ns only on the prime model of a theory. In this case, 
results are more difficult to come by. We use the same 
techniques as in the previous section, namely proving 
exchange results, but the proofs are not as immediate.

Y/e first look at the situation in which n(T) =. 3* 
We know that in this case, the countable models consist of 
a prime, a saturated, and a 'middle* model. Recall that in 
the Ehrenfeucht example, the middle model is prime over 
an element c, where c = lim am . I now show that for any 
theory T for which n(T) s* 3 , a similar situation holds.

Theorem 55. Let T be a complete theory such that 
a(T) = 3* Suppose that T has infinitely many 1 -types.
Then there is a formula 0(x), formulae 0^(x) for i<w, 
and a formula 0 (x,y) such that
1) If A is the prime model of T, then
0^ c 0 *̂  for all i<w, 0^ n 0 ^ = 0 for all i/j, and
the relation ”0 '̂ < 0 *̂' which we define to hold if and only
if A k* 3x3y(0t (x) A0J (y) A0(x,y)), is a total ordering 
such that 0 ^ < 0^ iff i < j .
2) If B is the middle model of T, then B is prime over an 
element ceB, where

a) B k  0(c) , and
b) c » lim 0n in 0® , in the sense thatn< 00
B k 3xe0n (0(x,c)) for all n<w , and if
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for some d€B, B k  0(d) and Bk(3xe0n)(0(x,d)) for
all n<w , then B k  -i 0 (d,c) .

Proof.
(Let us first note that if n(T) = 3, then T must have 

infinitely many n-types for some n<w. We have taken n to be 
1 • In the general case the proof below will give the same 
conclusion, but for n-fermulae and n-tuples, rather than 
for 1 -formulae and single elements.)

So let T be as in the hypothesis of the theorem.
Then as usual, for any type p(3) of T, T u p(c) has a prime
model. Also T must have a minimal 1-formula (where by 
minimal we mean the same as in Observation 48). For, if not, 
we can by a tree argument, get 2 *̂’ 1 -types, which would
give us too many countable models.

So let this minimal formula be 0(x).
Let [ 01, (x:) ; i<w j be the set of complete 1 -formulae of T 
such that T k 0% — > 0 . Then i/j implies that

Tl l(3x)(0j, (x) A 0 j (x)) .
Also, [0(x)j u [ —10^ (x):i<wj determine a complete 1-type 
of T, whereby T é »  T u  (0 (c) ) u ( —«0*̂ (c) :i<cu] is a 
complete theory.

Let A be the prime model of T, and let (B,c) be the 
prime model of Tc# Then Af= (Vz)(0(x)t-^\/0L (x)) .i,<cj
B must be the middle model of T, as a non-principal type is 
realised in B, and B is not saturated.

Also, by Lemma 42, there must be an- element d 
in B, such that (B,c) = (B,d) but not (B,c) « (B,d) .
But then d is principal over c, whereas c is not principal 
over d. As d is principal over c, there is a formula 
0(c,x) Which generates a principal 1 -type of T^ and such
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that B k  0(c,d) .
Put » Th((B,d)). Then T^ is the same as T^ but with c 
replaced by d.

Now suppose that there were a formula 0'(y,d), 
consistent with T^ such that
Ti f-(y,a)-^ V^(y,a)A ̂ (y)/y/\-ifi (y) ,

ùc(o
Then as in the proof of Theorem 50, 0'(y,d) would be a 
complete 1-formula of T^ satisfied in B by c, whereby c 
would be principal over d. Thus there is no such formula 
0'(y,d). So, in particular
(i) X = 1 i<w : B k  3x(0i (z)A 0(x,d)) } is infinite, for 
if not then 0 (y,d)A//^-i0  ̂(y) would do the job of 
0'(y,d). And also
(ii) By the Omitting types theorem, T^ has a model
omitting the set

2(y,d) = if(y,a)) u i,(y)l u i -'ÿt(y):l<w) .
Now as Tç is just the same as T^, and as (B,c) is a prime 
model of T^, then the set X is also equal to

! i<w :-B'1= 3x(0; (x )a 0(x ,c )) j ,
and (B,c ) emits the set of formulae 2(y,c) •

Note that, by compactness, for any formula 0(x) of L(T) , 
Tg k  6 (c) if and only if [ j<w: A k 0j(y)-> 6 (y) } is a 
cofinite set of natural numbers. f l )

Also note that, as B k  0(c,d), 0(c,x) is a complete
1-formula of T^, and (B,d) = (B,c), then 

T^ k  0(c,x)—  ̂0(x) A  -1 0  ̂(x) for all i<w.
So, by compactness, for each finite c w, there is a 

finite Zg c w such that
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T u  If (c)) U I~ifi (c):ieZa j /- fr(c,x)—  ̂f(x)A/A-'f'j (x), (2.)
A  \ jtZ,And finally note that from (]) and the definition of X, it

follows that, if icX then
l3<"! A 1= ffj (y)— >(3x)(fri (x)Af'(x.y)) j ie a

cofinite set.
We now define inductively i^cX, for n<w, such that

u I in f ,  ) £  ( i n i  T * r  all IKO) .

Supp.se that 1* has heea defined. As in^X, we have Tsy 
that Xi^ is cofinite.
By ( 2 )  there is a finite Z c cti such that if 
T u {0(c)} u l‘̂ 0j(c):jcZ } h  (3z)(0(c,x)A0i (x)) 

then ieXj,̂  - {in i •
Then Y = X^^ n (w - Z) n (X - i,̂ ) is an infinite set.
We choose i„̂ , cY.
Note that, by the completeness of the 1-formulae 0^,

we have that for all i,j<w, i/j,
T H ( \/x60t )(3y€0j )(0(x,y)) if and only if
T H (Vye0j )(3x€0t )(0(x,y)) if and only if
T k(3x€0t )(3y€0j )(0(x,y)) .
It is now easily seen that in̂ , satisfies the induction
condition. Thus the definition of the in can be carried
out.

We now put 0K to be 0̂  ̂ for all k<w.
Let k < m < w . Then {i#} c X̂ ,̂  - {l^} .
As we have A k  (3xefK )(3yefi« )(f"(x,y)) •
As we have A M  (Bxs^k )( Vyef* )(-iff(y.,x)) ,

but then by the completeness of 0  ̂,
A|= “ l(3X€^K)(3ye#m)(Vf(y»x)) .
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So part 1) of the theorem la proved#
For part 2) we have to show that there is ne element b in 
B such that B k  0(b,c) , B » and

B k  (3x)(0i. (x) A0(x,b)) for all i<w#
But this follows immediately from the fact that (B,c) omits 
2 (y,c), and from the fact that there can be no 0 j for which 
{ i<oj : A k  (3x)(3y)(0L (x) A0j (y)A 0(x,y)) ) is infinite 

for then we would have h (3y)(0j (y)A 0(c,y) ) , which 
is impossible#

This completes the proof of the theorem.

We now come to the main result of this chapter.
We would like to be able to prove that if a theory T has a 
prime model A with an infinite definable subset X such that 
X c c1(0,A) (i.e. all elements of X are algebraic), then 
n(T) > 4. However, we have as yet only been able to prove
this in the special case that every element of X is algebr­
aic 'of degree at most two*.

Theorem 56. Let T be a complete theory, with a model A 
and a formula 0 (x) such that, 0A infinite, and for every 
ae^"^ there is a formula 0 (x) such that 

A  ̂  ^(a) and A k 3^^xi / r (x) .

Then n(T) > 4.
Proof.

We may assume that T has a prime model, and that A is 
this prime model. Also we may assume that T has a minimal
1 -formula 0 (x) such that T t-0 (x)—^ 0 (x) .
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We will asBuae, for ease of notation, that ÿ-(z) is *x=x* • 
Let 1 (x) :i<o> j "be the aet of complete 1-formulae of T.
Then it follows that for each i<w, A h 3^*x^; (x) ,and for 
each aeA there is i<w with A M  *i(a).
By minimality of *x=x*, T^ = T u (c);i<w) is a
complete theory. Let (B,c) "be a prime model of T^. So c 
realises a non-principal type of T in B, where"by B is not 
a prime model of T. Therefore, "by Lemma 42, to show that 
n(T) > 4, it is enough to show that if deB and 

(B,d) 5 (B,c) , then c is principal over d in B.
So let dcB, and (B,d) = (B,c) . As d realises a principal 
1-type in (B,c), there is a complete 1-formula ÿ(c,x) of 
Tg such that B ^(c,d) .

Let X = (i<w : B 3x(^^ (x )a  ÿr(x,d)) } . It is clear

that n = 0 for i/j.
If X is finite, then as we noted in the proof of Theorem

5 5 » the formula ÿr(y,d)A (y) is a completec€A
1 -formula of T^ satisfied "by c in B, and we are done 
(where T^ is again the same as "but with d replacing c). 
So we assume that X is infinite, and aim for a contra­
diction.

Firstly, we may assume that
1) TgH ( V%)(v̂ (c,%)—
for if not, then "by the completeness of ÿr(c,x)

T^ 1- ( \ / j ^ ) ( ^ ( c , x ) —^T/ r ( x , c ) ) , in which case c will be 
oBviously principal over d.

Note that as (B,c) = (B,d), X is also equal to 
iKùü ; B h  (3x)(fi(x)A^(x,c)) 1 .
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I assert that
2 ) I g h  (Vx)(Vf(c,x)-^ (Vyiy,)(Vr(x.yi)A V^(yi,y, )->\^(c,ya))) 

(i.e. that ̂  is 2 -transitive) •
Per suppose net. Then "by the completeness of ^(c,x),

Tg I-îKc,z)-^(3yjy,)(^^f(z,yi)AvS'(yi,ya)A-ii«'(c,ya)) .
By compactness, there is n<w such that
T u  {-I (a) :i<n} H  ^(a,z) --- ^

(3y±y» ) (ÿ"(z,yi )a  ,y, )a  -I ÿ<*,y, ) )
(where a is a new constant) .

Now as X is infinite, we may choose jcX such that j>n.
Then "by the definition of X, there is ac^J such that 

B M  ̂ (a,c) .
And so, from a"bove there are ,T»g in B such that

B ̂ Vf(c,1ij.)/\ )A-i^(a,T*g) .
Now B 1= f ( , c , d )  , (B,c) = (B,d) and f { c , x )  la a complete
1-formula of T^. So it follows that

(B,"b^) N  T;^ and (B,ha)f=: t;^ .
We know that |^f| < 2 .
If Iÿ?I = 1  , then the formula defines a, so as

B (3x€^j ) (^(x,"b2 ) , we would have that B ÿr(a,"bg )
So I ÿPl = 2. Let a' "be the other element in

Now B (3x€^j )(V̂ (x,"b2 )), so we must have that 
Bl^Vr(a',B, ) and also B k  (3^x) (̂ j (x)A Vr(x,"b, )).

So also, (a^x)(ÿj(x)A^(x,c)) •
Now either B h  ÿ'(a,hi ) or B h  ^(a',"bi).
If B ̂  ÿ̂ (a,"bi ) , then "by the completeness of ÿr(c,y)

B ̂  ÿr(c,y)-4 (Vx€^j )(V^(x,c) — >^(x,y)) .
But then B ^(h^ ,y)-^ (Vxc^j ) (V̂ (x,"bi )~>^(x,y ) ) , 

where"by B M  Vr(a,"bg ) . Contradiction .
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So it must Tie the case that B ÿr(â  »^i)» hut then 
again, as B (=■ y r ( a ' ) , we must have that 

® ,y)— ^ (Vxeyij )-» ÿ-(x,y)) .
Replacing hi hy c in the line ahove, we conclude that

B t= ) .
But this was impossible. This contradiction proves 
assertion 2 )

Now suppose that 
s k (3y±y2)Wc,yi)A )Ai^(yg,c')) .
Then fr.B 2), B f { c , c *  ) .

Thus hy completeness of ÿ*(c,x), it follows that
3) I- (Vx)(\(r(c,x)-» (3yiy, )(̂ (c,yi )a Vf(y± *y* )a îif(y8 »x)))

(i.e. ÿ is 2 -dense)
Put 0(c,x) t© he the formula 

[ — iÿ^(x,c)A (Vyiy,,)(ÿ'(x,yi )a î̂ (yi »y» )~-̂ î<f(c,ya ))
A  (ay^y, )(ÿ(c,yi )A ÿ(yi ,ya ) A ÿ(yg ,x) ) ]

Then hy 1), 2), 3) and compactness, there is mi<w such that
4) T u  (c):i<mii H  (V%)(ÿr(c,z)— ^ 8 (c,z)) .
Also, as Tç h  ̂ (c,x)— ^-i^j,(x) for all i<w ,

there is mg<w, mg>mi such that
5) T u  (c);l<*s j|—  (Vx)(Vf(c,x)— (x)) .
Now choose asA, a/ÿ^ for i<ma» such that there is

hsA with A h  ÿr(&,h) .
Then, hy 4) and ”2-denBeness”, there are a^ , 8 3  in A with

A M  ÿr(a,ag)Aÿr(ag,ai)Aÿr(ai,h) . 1

Once again, there are Sg ,a& in A with 1
I

A  ̂  ÿr(a,e* )A )Aÿr(eg ) .
CentInning in this way, we can find a set } a^ : n<WJ of
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éléments of A, such that for each n>1,
A K ÿr(a,agn) Aÿ(a2n»&2n-i)A .... Aÿr(&2 )A ÿ̂ (ai »h) .
By U)(2-transitivity) and 5),for each m,n, with m>n,

A f= (3x)(ÿr(a2n,,x)A^(x,a2n)) •
So hy 4)(asymmetry) and 5),
Thus I a@n : n<w i is an infinite set.
Again, hy 4)(2-transitivity) and 5), for each n,

A 1= (3y)(V^(a2n»y)A^(y,h)) .
So [ xcA ; A h  (3y)(^(x,y)A V^(y»h)) J is infinite.

Now A t= (h) for some r<w. Then
= I X€A: A>s (3a)(3y)(^(x,y)A ̂ (y»*)A (*)) 1 iG also

infinite. As each of the complete 1-formulae of T is 
satisfied hy at most two elements, it follows that 
I i<w : ÿf c Xi } is infinite, and thus hy minimality of 
*x=x*, cofinite. But then

T^ h  (3*)(3y)(Vr(c,y)AV^(y,*)A^p(z)) .
So there is Ci€l such that 
B [= ^(c ,Ci )A (3»)(ÿr(ci,*)A^(*)) .

But (B,Ci ) f= T^^ and T ^  [-^(c^ ,x) — ^ (x) for all i<w.
So we have a contradiction, and the theorem is proved.

Corollary 57. Let A he a countable model. Then A has at 
least three countable proper elementary extensions, up to 
isomorphism over itself.
Proof.

Put T » Th(A,a]^^. Then T satisfies the conditions of 
Theorem 56. So n(T) > 4. One of the countable models of T 
will he (A»a)^^^ . The L(A)-reducts of the other three will
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he countable proper elementary extensions of A, pairwise 
non-isomorphic over A.

There are obviously many gaps to be filled in order to 
get from the results above to anywhere near proving the 
original conjecture that a theory with a minimal model has 
infinitely many countable models. But I think that the 
above work has at least pointed out a possible approach.

I view facts about the minimality and algebraicity 
of the prime model of a theory, as tools for obtaining 
lots of countable models, but by no means as a characteris­
ation of those theories with infinitely many countable 
models. Or putting it another way, the converse to the con­
jecture is not true.

However, we can now, after having been through the 
proofs in this chapter, view our original intuitions in a 
slightly more educated light. Firstly, what is no doubt 
responsible for n(T) being finite, in the known examples, 
is the denseness" of the orderings ©r relations in the 
models in the theories concerned. This also makes sense, 
when we note that the canonical methods for getting lots 
of countable models involve getting models of different 
finite "dimensions". And the notion of dimension involves 
the notion of nearness and thus of discreteness. For, a 
model is intuitively of dimension one, for example, if 
all its elements are near each other. Then, using compact­
ness one can get a model of larger dimension, by adding
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elements that are far away. Denseness, however, implies 
that one cannot distinguish elements as being near to,or 
far away from,each other. Looked at more technically, if 
the models of our theory are "discrete" in some sense, then 
whenever % is principal over a in some model, the formula 
ÿr(z,y) which makes b principal over a will in some sense 

"say"that Ÿ  is "near to" Then, by using the compactness 
methods of Lemma 49» we can, as in Lemma 49» prove nice 
rank properties by induction, which will enable us to get 
lots of countable models. The situation where Ï  is algebra­
ic over a, as in section 2.2 II, is just a very transparent 
case of nearness.
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