GAIFMAN OPERATICNS, KINIMAL MODELS AND THE NUMBER OF COUNTABLE MODELS.

Anand Pillay, Bedford College.

ProQuest Number: 10098983

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098983
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract.

We deal with questions and problems in first order countable model theory.

Chapter 1 examines countable first order Gaifman operations, which are theories whose models are determined, up to isomorphism, by their relativised reducts. We first prove some reduction and preservation results. Then we prove that the class of relativised reducts el a Gaifman operation is generalised elementary. Finally, we examine the degree of 1-cardinality of such theories.

Chapter 2 is basically concerned with trying to get lots of pairwise elementarily equivalent countable models, or to begin with, at least four models, to which my friend Salim Salem would say, "It's hard enough to get one." We first show that a minimal prime model is "fairly" algebraic. Then, under various conditions on the algebraicity of the countable models of a theory, we prove results concerning the number of its countable models. The main result is that a countable complete theory which has a model with an infinite definable subset all of whose elements are algebraic of degree at most two, has at least four counteble models, up to isomorphism.

Chapters 1 and 2 are fermally independent and self-contained. Mowever there are certain common themes. The notion of a minimal model is important in both chepters. More generally, botin chapters are concerned with a question at the centre of model theory - the number of models of a theory. In Chapter 1, it is the number of models over a
predicate, in particular the case where the numer is one.
In Chapter 2 it is the number of countable models.

Contents

page
Abstract 1
Chapter 0 Notation and preliminaries 4
Acknowledgements 10
Chapter 1 Gaifman operations 11
1.0 Introduction 11
1.1 Preservation, reduction and related results 15
1.2 Gaifman operations and 1-cardinality 26
Chapter 2 Minimal models and the number of countable models 39
2.0 Introduction 39
2.1 Prime minimal models 45
2.2 The number of countable models 54
2.2 I A general framework for getting models 57
2.2 II Getting infinitely many models 61
2.2 III Getting at least four models 69
Feferences 80

Chapter 0.

Notation and preliminaries.

I shall be concerned in this thesis with first order model theory.

A general reference for the basic definitions and results is Chang and Keisler [3] . I assume familiarity with the basic notions of model, language, theory, consistency, satisfaction and semantic and syntactic implication. For the fundamental properties of first order logic, in particular compactness, the consistency theorem (every consistent set of sentences has a model), and the Lowenheim-Skolem theorem, see [3].

I shall denote models by $A, B, M, M^{\prime}, \ldots$, and theories by T, T^{\prime}, \ldots. If X is a set, then $|X|$ will denote the cardinality of X. If A is a model, then $|A|$ will denote the universe of A. So || All denotes the cardinality of the universe of A.

If A is a model for a language I, then the language of A, $I(A)$, is just L. If T is a theory, we say that T is countable if the number of non-logical symbols appearing in T is countable. W'e identify a theory with its deductive closure.

Variables are denoted by $x, y, z, x_{1}, x_{2}, \ldots$ Constants are denoted by a, b, c, a_{1}, \ldots We often use the same symbol to denote a constant and the element which it names in a model. If A is a model, and X is a subset of $|A|$, then

- ($A, a)_{a \in X}$ is the model got from A by adding names for the elements of X .
\vec{x}, \vec{y}, \ldots and \vec{a}, \vec{b}, \ldots denote finite sequences of variables and constants respectively. If $\vec{a}=\left(a_{1}, \quad a_{n}\right)$ and A is a model,
then we often write $\vec{a} \in A$ to mean that $a_{i} \in|\hat{A}|$ for $i=1, \ldots n$. Formulae are denoted by $\varnothing, \psi, \theta, \ldots$. When we write a formula as $\phi\left(x_{1}, \ldots x_{n}\right)$, we mean that the free variables of \oint are among $x_{1}, \ldots x_{n}$. If $\vec{a} \in A$, then $A \vDash \varnothing(\vec{a})$ means that $\phi(\vec{x})$ is satisfied in A by \vec{a}. If $\phi(\vec{x})$ is a formula, and \vec{a} is a sequence of constants, then we also denote by $\phi(\vec{a})$ the result of replacing each x_{i} in \varnothing by a_{i}.

We often write $\forall \vec{x}$ to mean $\forall x_{1} \ldots \forall x_{n}$. Similarly with $\exists \vec{x}$.
If θ is an nary formula (i.e. θ is $\theta\left(x_{1}, \ldots x_{n}\right)$), then $\forall \vec{x} \in \theta(\ldots)$ means $\forall \vec{x}(\theta(\vec{x}) \rightarrow \ldots)$, and $\exists \vec{x} \in \theta(\ldots) \quad$ means $\exists \vec{x}(\theta(x) \wedge \ldots)$
$\exists^{k} \vec{x}(\theta(\vec{x}))$ 'means' there are exactly k distinct n-tuples \vec{x} such that $\theta(\vec{x})$.
$\left.\exists \leqslant k_{x} \theta(\vec{x})\right) \quad$ 'means' there are at most k distinct n-tuples \vec{x} such that $\theta(\vec{x})$.

If $\phi(x)$ is a 1-ary formula of a language L, and A is a model for L, then $\quad \varnothing^{A}=\{a \in A: A \vDash \varnothing(a)\}$

Let L be a language, P be a unary predicate of L, and $L_{0} \subseteq I-\{P\}$. If P^{A} is closed under the functions of A which are in L_{0}, then we get an L_{0}-structure whose universe is F^{A}, and whose relations and functions are just the restrictions of the relevant ones of A. We call this model $A^{P} \mid I_{0}$. And in this situation we say that A^{P} / L_{0} is defined.

Let A_{1}, A_{2} be models, and $A_{0}=A_{1}{ }^{P} L=A_{2}{ }^{P} L$ We then say that A_{1} is isomorphic to A_{2} over A_{0}, in symbols

$$
A_{1} \simeq_{A_{0}} A_{2} \text {, if there is an isomonism of } A_{1} \text { onto }
$$

A_{2} which is the identity on A_{0}.
$A \equiv B$ and $A \leqslant B$ as usual mean that A is elementarily equivalent to B, and that A is an elementary substructure of B, respectively. We write $f: A \leqslant B$ to mean thàt f is an elementary embedding of A into $B . f: A \simeq B$ means that f is an isomorphism of A onto B.

I assume familiarity with the notions of ultrafilter, ultraproduct and ultrapower. For details, and for the important Los' Theorem, see [3].

If A is a model for the language L, then $\operatorname{Th}(A)$ is the set of sentences of L which are true in A.

I is a complete theory means that for any sentence σ in the language of $T, T \vdash \sigma$ or $T \vdash \rightarrow \sigma$.
If \varnothing is a formula, then $T \vdash \varnothing$ means that $T \vdash \forall \vec{x} \varnothing$ where \vec{x} is a sequence which contains the free variables of ϕ If K is a class of models for L, then $T h(K)$ is the set of sentences of L which are true in every model A in K. The class K is said to be elementary, if there is a sentence σ such that

$$
A \in K \quad \text { if and only if } \quad A \vDash \sigma
$$

K is said to be generalised elementary if there is a set of sentences \sum such that $A \in K$ if and only if $A \neq \sum$

Let T be a theory and n a natural number. Then an n-type of T is a set of formulae, each of whose free variables is among say $x_{1}, \quad x_{n}$, which is consistent with T. A type of T is just an n-type of T for some n.

A complete n-type of T is an n-type \sum_{\wedge} of T such that for each n-formula $\phi, \phi \in \Sigma$ or $\neg \phi \in \Sigma$.

In Chapter 2, whenever we talk about types we shall mean complete types, unless we say otherwise.

If \sum is an n-type and \vec{c} is an n-tuple of a model A, then we say that \vec{a} realises \sum, if $A \neq \varnothing(\vec{a})$ for all $\varnothing \in \Sigma$.
The type of a tuale \vec{a} in a model A is the set of formulae \varnothing such that $A \vDash \varnothing(\vec{a})$.
We say that \sum is a principal n - type of T, if \sum is an n-type of T and there is an n-formula $\phi\left(x_{1}, \ldots x_{n}\right)$ consistent with T such that

$$
T \vdash \varnothing \rightarrow \psi \quad \text { for all } \psi\left(x_{1}, \ldots x_{n}\right) \in \Sigma \quad .
$$

Let A be a model and $\vec{b} \in A$. When we say that \vec{b} realises a principal type in A, we shall mean that the type of \vec{b} in A is a principal type of $\operatorname{Th}(A)$.

A model A is said to omit a type, if no tuple in A realises the type.

Let T be a complete theory. An n-formula $\phi\left(x_{1}, \ldots x_{n}\right)$ is said to be complete for T, if for every $\psi\left(x_{1}, \ldots x_{n}\right)$ $T \vdash \varnothing \rightarrow \psi \quad$ or $\quad T \vdash \phi \rightarrow \neg \psi$. A model A is atomic, if every finite sequence of elements of A satisfies a complete formula of $\operatorname{Th}(A)$ (or equivalently, realises a principal type of $\operatorname{Th}(A))$.
A is a prime model of T, if for all $B \vDash T$ there is $f: A \leqslant B$. A is said to be prime, if A is a prime model of $\operatorname{Th}(A)$. A complete theory T is atomic, if for every n-formula ϕ there is a complete n-formula ψ of T such that $T \vdash \psi \rightarrow \varnothing$, for all n. We state the following classical results.
(A) (Grzegorizyk et al[10]) The Omitting Types Theorem

Let T be a countable theory, and $\left\{\Sigma_{n}: n<\omega\right\}$ a collection of non-principal types of T. Then T has a model which omits Σ_{n} for all n.
(B) (Vaught [25]) Let A be a model for a countable language.

Then A is prime if and only if A is countable and atomic.
(C) (Vaught [25]) Let T be a complete countable theory.

Then T is atomic if and only if I has a countable atomic model.

Let K be a cardinal. A theory T is K-categorical, if all models of T of cardinality K are isomorphic to one another.

A model A is X-saturated, if for all $X \subseteq|A|$ such that
$|X|<K,(A, a)_{a \in X}$ realises all types of $\operatorname{Th}\left((A, a)_{a \in X}\right)$. A is said to be saturated if A is $\|A\|$-saturated.

Let A, B be models, I be a set, and a_{i}, b_{i}, be elements of A, B
respectively, for all $i \in I$.
Then $\left(A, a_{i}\right)_{i \in I} \equiv\left(B, b_{i}\right)_{i \in I}$ means that
$\operatorname{Th}\left(\left(A, a_{i}\right)_{i \in I}\right)=\operatorname{Th}\left(\left(B, b_{i}\right)_{i \in I}\right)$, where we represent a_{i} and b_{i} by the same constant for each i.

So if \vec{a} and \vec{b} are finite sequences of the same length,
$(A, \vec{a}) \equiv(B, \vec{b}) \quad$ if and only if \vec{a} realises the same type in A as \vec{b} realises in B.

Similarly, we write $\left(A, a_{i}\right\}_{i \in I} \simeq\left(B, b_{i}\right)_{i \in I}$ to mean that there is an isomorphism $f: A \simeq B$ such that $f\left(a_{i}\right)=b_{i}$ for all i.
A is homogeneous, if whenever $|I|<\|A\|$, and $\left(A, a_{i}\right)_{i \in I} \equiv\left(A, b_{i}\right)_{i \in I} \quad$ then $\left(A, a_{i}\right)_{i \in I} \simeq\left(A, b_{i}\right)_{i \in I} \quad$.
A is universal, if $B \equiv A$, and $\|B\| \leqslant\|A\|$ implies that there is $f: B \preccurlyeq A$.

A is full, means that A realises all types of $\operatorname{mh}(A)$.
The following fact is easy to establish.
(D) If A is a countable model which is homogeneous and full, then A is saturated.

We also have the following :
(E) (Vaught [25]) Let T be a countable complete theory with only countably many complete types. Then T has a prime model and a countable saturated model.
(F) (Ryll-Nardzewski [19]) Let I be a complete countable theory. Then T is X_{0}-categorical iff T has finitely many complete n-types for all $n<\omega$ iff all complete types of T are principal.

A simple extension of a theory T, is a theory T^{\prime} such that $T \subseteq T^{\prime}$, and such that the language of T^{\prime} is got from the language of T by adding at most finitely many new constants.

Although we do not really work with stability notions, stability is referred to now and again. So we give the definitions. Let K be a cardinal. Then we say that a theory T is K-stable if whenever $A \vDash T, X \subseteq|A|$, and $|X| \leqslant K$, then $\operatorname{Th}\left((A, a){ }_{a \in X}\right)$ has at most K complete 1-types. T is stable if it is K-stable for some infinite cardinal K. T is superstable if it is K-stable for all sufficiently large K. The notion of stability has been a useful and important tool in the study of the number of uncountable models of a countable theory. For example, the following have been proved :

If T is unstable, then T has 2^{K} models of cardinality K, for all uncountable K. (Sheleh [23])

T is categorical in all uncountable powers if and only if T is λ_{0}-stable and T does not satisfy the hypothesis of Vaught' ε twocardinal theorem. (Baldwin and Lachlan [1])

However I do not think that stability is such a sharp tool when it comes to analysing the difference between theories with finitely
many, and theories with infinitely many, countable models.

We work in general only with countable languages ana countable theories. In Chapter 1 we sometimes get an uncountable language, by adding names for elements of an uncountable model. However, in Chapter 2 everything is countable. Also for Chapter 2 we make the general assumption that all the complete theories we talk about, have only infinite models. And of course, whenever we talk about the number of models of a theory, we mean up to isomorphism.

Acknowledgements.
I would like to thank my supervisor; Wilfrid Hodges, for his advice and help throughout my period of research, and especially for providing the conjectures and results which formed the starting point for the work reported in Chapter 1 of this thesis.Thanks are also due to the Science Research Council for their financial assistance, to my parents for their continual encouragement, and to Mrs. C.Mufti for her help with the typing. I also mention Nanda P. Taylor for her sporadic but stimulating company, and her encouragement, during my period of research.

Chapter 1

Gaifman operations

1.0 Introduction

Gaifman [8] originally defined his 'single valued operations', as a means of placing in a model-theoretic setting, or of elucidating the model-theoretic content of, certain standard aigebraic constructions and operations. The kind of operations which we have in mind are exemplified by the following - forming the field of fractions of an integral aomain; forming the ultrapower from a moàel, a set and an ultrafilter on that set; given a field, forming the n-aimensional vector space over that field. Then Gaifman's idea is the following. Let us suppose that the operation under consideration takes certain moaels for a languase I_{1} to moãels fior a languace I_{2}. (I_{1} and I_{2} may possibly be many-sorteć). Then there is a theory T such that a value of the operation for A is the moadel B, if and only if tinere is a set of relations and functions r, such that $(A, B, r) \vDash T$. Also, if $\left(A, B_{i}, r_{i}\right) \vDash T$, $i=1,2$, then (A, B_{1}, r_{1}) is isomorphic to (A, B_{2}, r_{2}) over A, in symbols

$$
\left(A, B_{1}, r_{1}\right) \simeq\left(A, B_{2}, r_{2}\right)
$$

The set of relations and functions r, will serve to connect A and B, or possibly define B from A. We may stipulate that T be a first order theory, or a theory in

Liú，ω or whatever．$\ddot{\text { e }}$ mey also acio extra conditions con－ cerring the degree of rigiaity of（A，B，r）over A，for $(A, B, r) F T$ ．

Although the above many－sorted definition is more natural in the algebraic context，we can express everything in a one sortea losic，as in Gaifman［9］．This will be the definition which we shall actually work with．We shall only be concerned with the situation where all languages are countable，and the theory T is first order．

Definition 1.
Let I_{0} and I be courtable languages，and $P a$ unary preaicate in L and not in I_{0} ，such that $I_{0} \subseteq I_{\text {．}}$ Let T be a first order theory in L such that whenever $A F T$ ， then $A^{P} \mid I_{0}$ is defined．We then say that（ T, P, I_{0} ）is a countable first order Gaifman operation if and only if $A_{i} \mid=T$ ，$i=1,2$ and $A_{1}^{D}\left|I_{0}=A_{2}^{P}\right| I_{0}=A_{0}$ implies that A_{1} is isomorphic to A_{2} over \hat{A}_{0} ．
is we will only consider the countable first order situation，and as P and I_{o} will usually be clear from the context；we shall just use the phrase＂T is a Gaifman Opきこのもicr：＂。

Taisen apart from the algebraic motivation，the stuay of Gaifman operations essentially zoils cown to the study of categority over a predicate．Also Gaifman［9］notes that
the groperty of T of beire a Geifman operetion is a gereralisation of that implicit aefinability which is cheracterised by Beth's theorem. In the situation of Beth's theorem we have languages I_{0} anc̈ I vith $I_{0} \subseteq I$, ance a theory T in I such that any modicl if for Io has at most one expansion to a mociel of T. Beth's theorem trien says that T explicitly defines each new reletion of I in terme of formulae in I_{0}. In the case of Gaifman operations however, new elements as Well as new relations and functions are adaed to the model. So the immediate question is whether there is an analogous explicit definability result in this Gaifman situation. The obvious interpretation of explicit definability (which is the same as Hodges's word constructions [11], and Ershov's method of elementary definability [5]) is that for A a mociel of T, every element of A can be irterpreted as en n-tuple of $\in l e m e n t s$ from $A I_{C}$, and the holaing of a predicate of I for a sequence of elements of $\dot{\mu}$ depences uniformay on the holaing of some formula for the corresponains secuence of n-tuples in $A^{2} \mid I_{0}$. If such an exilicit aefinability result held for Gaifman operations, then it woulc validate Gaifmen's definition of his single valued operations as a stanaard characterisation of algebraic constructions. However, Hoages [11] has given an example of a Gaifmen operation T, for which no such explicit definability holds. Strengthenines and variations of the above, do hola however, for Gaifman operations which in addition satisfy certain conaitions on the degree of rigidity of A over
$A I_{0}$. Sut for plain Gaifman operations, the question of what $r:=$ can say in the way of explicit definability is siill ogen.
:ie can quite easily prove results which for a Gaifman operation T, uniformlī reduce certain properties of mociels A of T to properties or $A^{P} \mid L_{0}$. We do this in 1.1. Some of tinese results are known or have been stated in the literature. Je show also that if T is a Gaifman operation, then if $A_{i} \vDash T, \quad i=1,2, \quad I: A_{1}^{P}\left|I_{0} \leqslant A_{2}^{P}\right| I_{0}$ and $\left\|\hat{A}_{1}^{P} \mid I_{0}\right\| \leqslant \lambda_{c}$, then there is $g: A_{1} \leqslant A_{2}$ which extends f.

Gaifman [9] states that Shelah has proved this without the carcinality restriction on $A_{1}^{P} \mid I_{0}$. We use this latter result of Shelah as well as our earlier results to answer affimatively a conjecture of Gaifman [8], that the domain of a Gaifman operction is IC_{\triangle}. We also rely heavily on Shelah's results to give an interestirg characterisation of Gaifman overations.

In 1.2 we connect the 1-cardinality of Gaifman operations with a certain characterisation of minimality by Deissler [4]. Finally we give a counterexample to a conjecture of wilfred Hodges characterising Gaifman operations as being 1-cardinal and satisfying some further reduction property.

The study of categoricity over a predicate, is part of
a winder study of general model theory over a predicate. This looks to be quite difficult. Shelah [22] has generalised stability concepts to this area. Our results however, tend to be centered around consequences of the definitions, for countable models.
1.1 Preservation, reduction and related results

Usually, the following preservation theorem (Theorem 2) is deduced from the uniform reduction theorem (Theorem 3) which in turn follows from refeman's many-sorted interpolation theorem [6]. Here, however we prove the preservation resúlt independently, using Shelah's ultrapower theorem.

Theorem? Let T be a Gaifman operation. Let H_{1}, H_{2} be models of $T, \quad \vec{a}_{1} \in P^{W_{1}}, \quad \vec{a}_{2} \in P^{M_{2}}$ be n-tuples, and

$$
\left.\left(M_{1}^{P} \mid I_{0}, \vec{a}_{1}\right) \equiv M_{2}^{P} \mid I_{0}, \vec{a}_{2}\right)
$$

Then

$$
\left(u_{1}, \vec{a}_{1}\right) \equiv\left(M_{2}, \vec{a}_{2}\right)
$$

Proof

Let $M_{1}, M_{2}, \vec{a}_{1}, \vec{a}_{2}$ be as in the assumptions of the theorem. By Shelah [20], there is a set I and an ultrafilter U on I such that

$$
\left(\mu_{1}^{P} \mid I_{0}, \vec{a}_{1}\right)^{I} / U \simeq\left(\mu_{2}^{P} \mid I_{0}, \vec{a}_{2}\right)^{I / U}
$$

Consiàer now $\left(i_{i}, \vec{a}_{i}\right) I / U \quad$ for $i=1,2$. It is easily seen that $\left(\left(i_{i}, \vec{a}_{i}\right)^{I} / U\right)^{{ }^{F}} \mid I_{n}=\left(W_{i}^{P} I_{n}, \vec{a}_{i}\right)^{I / U}$ for $i=1,2$.

So $\quad\left(\left(N_{1}, \vec{a}_{1}\right)^{I} / U\right)^{P}\left|I_{0} \simeq\left(\left(L_{2}, \vec{a}_{2}\right)^{I} / U\right)^{P}\right| I_{0}$
By Los' theorem, $M_{i} \equiv M_{i}^{I} / \mathrm{U}, \quad i=1,2$.
So $M^{I} / U F^{\prime} T$ for $i=1,2$.
Thus as T is a Gaifman operation it follows from (*) that

$$
\left(\dot{u}_{1}, \vec{a}_{1}\right)^{I / U} \simeq\left(M_{2}, \vec{a}_{2}\right)^{I / U}
$$

So in particular, $\left(\hat{k}_{1}, \vec{a}_{1}\right)^{I} / \mathrm{U} \equiv\left(\mathrm{H}_{2}, \vec{a}_{2}\right)^{I / U}$ Again, by Los it follows that

$$
\left(K_{1}, \vec{a}_{1}\right) \equiv\left(\mathrm{K}_{2}, \vec{a}_{2}\right) \text {, proving the theorem. }
$$

In particular, for $n=0$, we have that, $M_{i} \neq T$, $i=1,2$ and $\mathbb{M}_{1}^{P}\left|I_{0} \equiv \dot{w}_{2}^{P}\right| I_{0}$, implies that $M_{1} \equiv M_{2}$.

We can now prove the uniform reduction theorem.

Theorem 2. Let T be ar Gaifman operation, $n<\omega$. Then for every formula $\phi\left(x_{1}, \ldots x_{n}\right)$ of L, there is a formula $\psi\left(x_{1}, \ldots x_{n}\right)$ of I_{0}, such that, for every $L \neq T$, and $\vec{a}=\left(a_{1}, \ldots a_{n}\right) \in P^{\mathbb{N}}, M \vDash \phi(\vec{a})$ if and only if $M^{\mathrm{P}}\left|I_{n}\right|=\psi(\vec{a})$.

Proof.
We first define "P-In formulae". A P-I formula ψ is an L-formula, which is in prenex normal form, whose matrix contains symbols only from I_{0}, and whose quantifiers are all relativised to P.

Then, given a $F-L_{0} n$-formula $\psi(\vec{x})$ there is an $n-$ formula $\psi^{\prime}\left(\overrightarrow{x_{i}}\right)$ in I_{0}, such that:

sind conversely, given any n-formula $\psi^{\prime}(\vec{x})$ in L_{n} there is a $P-I_{0}$ formula $\psi(\vec{x})$ such that (*) holās.

Now let $\phi\left(x_{1}, \ldots x_{n}\right)$ be an L-formula. Let $c_{1}, \ldots c_{n}$ be new constants. We write $P \vec{c}$ for $\bigwedge_{i=1 \ldots n} P c_{i}$.

Put $\Gamma=\Gamma(\vec{x})=\left\{\psi(\vec{x}): \psi\right.$ is $P-I_{0}$ formula such that $T, \overrightarrow{P C} \vdash \phi(\vec{c}) \rightarrow \psi(\vec{c})\}$

We will show that $T, \overrightarrow{P c}, \Gamma(\vec{c}) \vdash \phi(\vec{c})$.
So let $(\mathbb{N}, \vec{a}) \vDash T \cup\{\overrightarrow{\mathrm{P}}\} \cup \Gamma(\vec{c})$
(Here the elements a_{i} are interpretations of the constants c_{i})
Let $\Gamma^{\prime}(\vec{x})=\left\{\psi(\vec{x}): \psi\right.$ a $P-I_{0}$ formula, and $\left.M \vDash \psi(\vec{a})\right\}$ Then we assert that $T \cup I^{\prime}(\vec{c}) \cup\{\overrightarrow{P c}, \not \subset(\vec{c})\}$ is consistent. or if not, then
$T, P \vec{c} \vdash \dot{\varphi}(\vec{c}) \rightarrow \neg \psi(\vec{c})$, for some $\psi(\vec{x})$ in Γ^{\prime}. But then
$\neg \psi(\vec{x})$ is in Γ, whereby $N F \vec{W}(\vec{a})$. This is a contradiction.
So let $\left(N, \vec{a}^{\prime}\right) \vDash T \cup I^{\prime}(\vec{c}) \cup\{\overrightarrow{F C}, \phi(\vec{c})\}$
As (iN, $\left.\vec{a}^{\prime}\right) \mid=I^{\prime}(\vec{a})$, we can see that

$$
\left(\mathbb{N}^{P} \mid I_{0}, \vec{a}\right) \equiv\left(\mathbb{N}^{p} \mid I_{0}, \vec{a}{ }^{\prime}\right)
$$

By Theorem 2, $(\mathrm{i}, \vec{a}) \equiv\left(N, \vec{a}^{\prime}\right)$

Thus li f $\vDash \phi(\vec{a})$.
 hsve established thet $T, \vec{Z}, I(\vec{c}) \vdash \phi(\vec{c})$.

By compactness there is $\psi(\vec{c})$ in $\Gamma(\vec{c})$
such that $\quad T, \overrightarrow{P C} \vdash \psi(\vec{c}) \rightarrow \phi(\vec{c})$
So $\quad T, \overrightarrow{P C} \vdash \psi(\vec{c}) \leftrightarrow \phi(\vec{c})$
so
$T \vdash \forall^{\prime} \overrightarrow{\mathrm{x}}(\overrightarrow{\mathrm{PX}} \rightarrow(\psi(\overrightarrow{\mathrm{x}}) \longleftrightarrow \phi(\overrightarrow{\mathrm{x}})))$.
Let $\psi^{\prime}(\vec{x})$ be the I_{0} formula which corresponds to the \sum_{0} formula $\psi(\vec{x})$. Then for any $M \in T$ and $\vec{a} \in P^{M}$

$$
M \vDash \psi(\vec{a}) \text { iff } \quad \mathcal{H} \psi(\vec{a}) \text { iff } N^{P}\left|I_{0}\right| \psi^{\prime}(\vec{a})
$$

Lemma 4 Let T be a Gaifman operation, M be an infinite model of T and \vec{D} an n-tuple of M. Then \vec{b}

Proof

We first prove the lemma for the case in vihich N is countable. So suppose that N is countable. Let $\Gamma(\vec{N})$
 $\Gamma(\vec{x})$ were a nonprincipal type $\mathbb{q} \quad \operatorname{Th}(M, a) a \in F^{\text {mi }}$. Notice that $F^{\text {Mi }}$ must be countably infinite, for otherwise we could characterise $\mathbb{M}^{P} \mid I_{0}$ up to isomorphism by a set of sentenses in $L(M, a)_{a \in P^{M}}$, and then by the Lowenheim-Skolem theorem, we could find models N of T of any cardinality such that $N^{P}\left|L_{0}=M^{P}\right| I_{0}$. Thus $\left|I^{k}\right|=\lambda \nu_{0}$ So $\Lambda(y)=\left\{y \neq a: a \in P^{i n}\right\} \cup\{P y\}$ is a consistent type of $\operatorname{Th}(M, a)_{a \in P} M$. Morecver $\Lambda(y)$ is omitted in
($M, a_{a \in E}$. So $\Lambda(y)$ must be nonprincipal. So by the
 whicin omits the types $\Gamma(\vec{x})$ anä $\Lambda(y)$. Let this moüel be
 realisea $I(\vec{Z})$ whereas ($N, a_{a \in P^{k}}$ omits $I(\vec{x})$, so the two models cannot be isomorphic. This contradicts T being a Gaifman operation. So $\Gamma(\vec{x})$ must be principal.

Now let $M F T$ be of arbitrary infinite cardinality. Let $\vec{b} \in \mathrm{H}$. Let $\mathrm{N} \leqslant \mathrm{M}, \overrightarrow{\mathrm{b}} \in \mathrm{N}$ and $\|\mathbb{N}\|=\mathcal{N}_{c}$. Then from above \vec{b} realises a principal complete type of $\operatorname{Th}(\mathbb{N}, ~ a) ~ a \in P$. Let this type of \vec{b} be generated by the formula $\varphi(\vec{x} ; \vec{a})$ where $\vec{\varepsilon} r P^{\mathbb{N}}$ and $\varphi(\vec{x} ; \vec{y})$ is an $L(T)$ formula. We assert that $\varphi(\vec{x} ; \vec{a})$ also generates the type of \vec{b} in ($M, a) \vec{a} \in \eta^{\text {la }}$. For if not, there is a formula $\psi(\vec{x} ; \vec{c}), \vec{c} \in P^{M}$ and

$$
M F(\equiv \vec{x})(\dot{x}(\vec{x} ; \vec{a}) \wedge \psi(\vec{x} ; \vec{c})) \wedge(\vec{x})(\dot{\psi}(\vec{x} ; \vec{a}) \wedge \psi(\vec{x} ; \vec{c})
$$

As $\mathbb{N} \preceq M$, and $\vec{a} \in \mathbb{N}$ there is $\vec{c}^{\prime} \in P^{\mathbb{N}}$ such that $\mathbb{N} \vDash(E \vec{x})\left(\varphi(\vec{x} ; \vec{a}) \wedge \psi\left(\vec{x} ; \vec{c}^{\prime}\right)\right) \wedge(\vec{x})\left(\varphi(\vec{x} ; \vec{a}) \wedge \psi\left(\vec{x} ; \vec{c}^{\prime}\right)\right.$ But this contradicts the fact that $\dot{\phi}(\vec{x} ; \vec{a})$ generates the type of \vec{b} in ($N, a)_{a \in P^{M}}$. So the lemma is proved.

Lemma 4 now enables us to prove that elementary embeddings of "ground models" can be extended, provided that the embeaded model is countable.

Theorem 5 Let T be a Gaifman operation. Let \mathbb{H}, \mathbb{N} be models of $I, \quad\|r\| \leqslant \chi_{c}^{\prime}$ and $f: I_{n} \leqslant I^{P} \mid I_{0}$. Ther there is $g: k \leqslant N$ which extends \hat{I}.

Eroof

Ada to the language L of T, new names for the elements of P^{M} to get a countable language L^{\prime}. Similarly, expand I_{n} to L_{n}.

Let $T^{\prime}=T \cup\left\{P-I_{0}^{\prime}\right.$ sentences $\psi(\vec{a})$ such that $\left.\mathbb{H} F \psi(\vec{a})\right\}$ Then by Theorem 3, T is a complete theory in L^{\prime}. So $T^{\prime}=\operatorname{Th}(i n, a) \quad a \in P^{k}$.
Let us assume, with no loss of generality, that f is an elementary inclusion.
So (in, a) $a \in P^{M}=\operatorname{Th}(\ldots, a)_{a \in P^{M}}$.
We may also assume that N is infinite. By lemma 4, every n-tuple of ($N, a)_{a \in P^{M}}$ realises a principal type of T^{\prime}. i.e. (M, a) $a_{\in P^{M}}$ is atomic. Thus, as it is also countable, ($M, a), a \in P^{1 H}$ is a prime model of T. So there is an elementary embedding g of ($M, a)_{a \in P^{i n}}$ into

Gaifman [9] quotes Shelah as having extended our result above to the case where $\frac{\pi}{M}$ is of any cardinality. So -

Theorem 6 (Shelah) Let T be a Gaifman operation. Then for any l , W which are models of T and $f: M^{P}\left|I_{n} \leqslant N^{P}\right| I_{n}$ there is $g: M \leqslant N$ which extenãs f.

Gaifman [8] gives a slightly weaker version of the following theorem, without proof.

Theorem 7 Let T be a Gaifman operation, and $n<\omega$. Then for any $\phi\left(x_{0}, \ldots x_{n-1} ; \vec{y}\right)$ in L, there is $m<\omega$ and $\psi\left(z_{0}, \ldots z_{m_{-1}} ; \vec{y}\right)$ in I_{0}, such that for every $\mathbb{K} \mid=T$, there is $f:|M| n \rightarrow\left(F^{M}\right) m$ such that for any $\vec{b}=\left(b_{n}, \ldots b_{n-1}\right)$ in k and for all $\vec{a} \in P^{\text {hi }}$ $\mathrm{M} \vDash \psi(\vec{b} ; \vec{a})$ if and only if $\mathbb{M}^{P} \mid I_{0} \vDash \psi(f(\vec{b}) ; \vec{a})$.

Proof

Let $\varphi\left(x_{n}, \ldots x_{n-1} ; \vec{y}\right)$ be a formula in L. Let $\mathbb{L}=T$ and $\vec{b}=\left(b_{0}, \ldots b_{n-1}\right) \in K$. Then, by Iemma 4 , there is a formula $\theta(\vec{x} ; \vec{a})$ which generates the type of \vec{b} in $(N, a) \quad a \in P^{n i}$.

Therefore $\quad M=(\forall \vec{y} \in P)(\phi(\vec{b} ; \vec{y}) \leftrightarrow(\forall \vec{x})(\theta(\vec{x} ; \vec{a}) \rightarrow \phi(\vec{x} ; \vec{y})))$ Putting $\quad \psi_{\vec{b}}(\vec{z} ; \vec{y})$ for $\quad(\vec{x})(\epsilon(\vec{x} ; \vec{z}) \rightarrow \phi(\vec{x} ; \vec{y}))$
we have $\quad M \mid=(\forall \vec{y} \in P)(\phi(\vec{b} ; \vec{y}) \leftrightarrow \psi \vec{b}(\vec{a} ; \vec{y}))$
so for each $\vec{b} \in M$ there is $\psi_{\vec{b}}(\overrightarrow{\boldsymbol{z}} ; \vec{y})$ such that
$M F(\vec{\exists} \in P)(\forall \vec{y} \in P)(\phi(\vec{b} ; \vec{y}) \leftrightarrow \psi \vec{b}(\vec{z} ; \vec{y}))$
So $\quad T \vdash r \vec{x} \\left(\vec{z} \vec{z}_{i} \in P\right)\left(\forall^{\prime} \vec{y} \in P\right)\left(\psi(\vec{x} ; \vec{y}) \leftrightarrow \leftrightarrow \psi_{i}\left(\vec{z}_{i} ; \vec{y}\right)\right)$ all

By compactness there is $r<\omega$ such that

$$
i=1, \ldots r
$$

Define $\quad \psi^{\prime}\left(\vec{z}_{1}, \ldots, \vec{z}_{r}, z, z_{1}, \ldots, z_{r}, \vec{y}\right)$
to be

$$
\hat{\lambda}\left(z=z \rightarrow \psi_{i}\left(\overrightarrow{z_{i}} ; \vec{y}\right)\right.
$$

$$
i=1, \ldots r
$$

Put $\psi^{\prime}(\vec{z} ; \vec{y})$ to be $\left.\psi^{\prime}\left(\vec{z}_{1}, \ldots, \vec{z}_{r}, z, z_{1}, \ldots, z_{r}, \vec{y}\right)\right)$
Then we easily have
$T \vdash\left(\forall^{\prime} \vec{x}\right)(\exists \vec{z} \in P)\left(\forall^{\prime} \vec{y} \in P\right)\left(\phi(\vec{x} ; \vec{y}) \leftrightarrow \psi^{\prime}(\vec{z} ; \vec{y})\right)$
The uniform reduction theorem now gives us an I_{0} formula $\psi(\vec{z} ; \vec{y})$ for the formula $\psi^{\prime}(\vec{z} ; \vec{y})$. We can easily see that, given $M F T$ and $\vec{b} \in M$, there if $\vec{c} \in P^{M}$ such that for all $\vec{a} \in P^{M} \quad M \neq \phi(\vec{b} ; \vec{a})$ if and only if $M^{P} \mid L_{o} F \psi(\vec{c} ; \vec{a})$.

Let T be a Gaifman operation, and let us define the class of mods K to be $\left\{A\right.$: there is $\left.\mathbb{K} F T, M^{P} \mid L_{0}=A\right\}$. Looking for a moment at the situation described by Beth's theorem, where we only add new relations and functions to the model, Beth's theorem implies that the class of models which can be expanded to models of the theory in question is a generalised elementary class. This follows by just replacing each new symbol by its defining formula in the smaller language.

Gaifman [8] asks whether an analogous result holás for Gaifman operations. Namely, is K a generalised lementary class. Below, we answer this question affirmatively. What we apo is to first prove that
$K_{\mathcal{X}_{i}}=\left\{A \in K:\|A\|=\mathcal{N}_{0}\right\}$ is generalised elementary, in the sense that it is the class of countable models of some theory. Then we use Shelah's Theorem 6 to extend this to models of higher cardinality.

Theorem 8 Let T be a Gaifman operation. Then the class K as defined above is generalised elementary.

Proof

We show that K is the class of models of $T h(K)$. To prove this, it is enough to show that K is closed under elementary equivalence. For let $A \neq T h(K)$. If no member of K is elementarily equivalent to A, then for each $B \in K$ there is sentence σ_{B} such that $E F_{B}$ and $A に \neg \sigma_{B}$. So $K F V_{B}$. Let σ_{B}^{\prime} be the $P-I_{0}$ sentence Be f
corresponding to σ_{B}. Then $T \vdash V \sigma_{B}^{\prime}$

$$
B \in I_{i}
$$

So by compactness there are $B_{1}, \ldots B_{r} \in K, r<\omega$ such that $T \vdash V \sigma_{B_{i}}^{\prime}$

$$
i=1 . . . r
$$

$$
\text { but then } K \mid=\bigvee_{i=1 \ldots r} \sigma_{B_{i}} \text {, so } \bigvee_{i=1 \ldots r} \sigma_{B_{i}} \in \operatorname{Th}(K)
$$

But this contradicts the fact that $A F \neg \sigma_{B_{i}}, i=1, \ldots r$
and $A F \operatorname{Th}(K)$. So there is $B \in K$ such that $A \equiv B$. We will prove that K is closed under $\in l e m e n t a r y ~ e q u i-~$ valence. First, some terminology.
Let A be a structure for L_{0}. Let $I_{C}{ }^{\hat{A}}$ be the language L_{0} together with names for the elements of A. We define $T h_{p}(\hat{A})$ to be the set of those $P-I_{n}^{A}$ sentences $\psi(\vec{a})$ which correspond to L_{0}^{A} sentences $\psi^{\prime}(\vec{a})$ for which $A F \psi^{\prime}(\vec{a})$. So for any L-structure M,
(Ma) $a \in A=\operatorname{Th}_{p}(\hat{A}) \quad$ if and only if $\left(M^{P} \mid I_{0}, a\right)_{a \in A}=\operatorname{Th}(A, a)_{a \in A}$ Now suppose that $A \equiv B$, and $B \in K$.
Then it is quite easy to see that $T \cup \operatorname{Th}_{p}(\hat{H})$ is consistent.

So to prove that K is closed under elementary equivalence, it suffices to show that -:
whenever $T \cup \operatorname{Th}_{p}(\hat{\hat{A}})$ is consistent, $\lambda \in K$
We prove (*) by induction on the infinite cardinality of A. So let A be countable and $T \cup T h p(\hat{A})$ consistent. $\quad B y$ Theorem 3, $\quad T \cup T h_{p}(\hat{A})$ is complete. We show that $T \cup \operatorname{Th}_{p}(\hat{A})$ has a model which omits the type $\Sigma(x)=\{P x\} \cup\{x \neq a: a \in A\}$. If not, then by the omitting types theorem, $\Sigma(x)$ is a principal type of $T \cup T h_{p}(\hat{A})$. Namely, there is a formula $\psi(x ; \vec{a})$ of $I\left(T \cup \operatorname{Th}_{p}(\hat{A})\right)$ (where we exhibit all the names of elements of A), such that $T \cup \operatorname{Th}_{p}(\hat{A}) \vdash \psi(x, \vec{a}) \rightarrow \Sigma(x)$.
Now let $(B, a)_{a \in A}=T \cup \operatorname{Th}_{p}(\hat{A})$. So ($B, a_{a \in A} F(\exists x \in P) \psi(x ; \vec{a})$.
$(B, a)_{a \in A} F \psi(b ; \vec{a})$ for example, where $b \in P^{B}$.
Let $\psi^{\prime}(x ; \vec{y})$ be the I_{0} formula which corresponds to $\psi(x ; \vec{y})$ by the uniform reduction theorem.
Then $\left.\left(E^{P} \mid \tilde{i}_{0}, a\right)\right)_{a \in A^{\prime}} \mid \psi^{\prime}(b, \vec{a})$.
But $\quad(A, a)_{a \in A} \leqslant\left(B^{P} \mid I_{0}, a\right)_{a \in A}$
So $\quad\left(B^{\mathrm{B}} \mid I_{c}, a\right)_{a \in A} \mid=\psi^{\prime}(a, \vec{a})$ for some $a \in A$.
So again $\quad(B, a)_{a \in A} \vDash \psi(a, \vec{a})$.
But this contradicts the fact that

$$
(B, a)_{a \in A} \vDash \psi(x ; \vec{a}) \rightarrow x \neq a \quad \text { for each } a \in A
$$

So $T \cup T_{p}(\hat{A})$ has a model M which omits $\Sigma(x)$.
Then $\mathbb{H} \neq T$, and $\mathbb{M}^{P} \mid I_{0}=A$ whereby $A \in K$.

Now suppose that we have proved (*) for A of cardinality < K Now let A be an I_{0}-structure, $\|A\|=K$ and $T \cup T_{n}(\hat{A})$ be consistent.
There are λ and models \dot{H}_{α} for $\alpha<\lambda$ such that $\left\|A_{\alpha}\right\|<k$ for all $\alpha<\lambda, \alpha<\beta<\lambda$ implies $A_{\alpha} \leqslant A_{\beta}$, $A_{\alpha} \leqslant A$ for all $\alpha<\lambda$ and $A=\bigcup_{\alpha<\lambda} A_{\alpha}$.

It is easy to show that $T \cup \operatorname{Th}_{p}\left(\hat{A}_{\alpha}\right)$ is consistent for all $\alpha<\lambda$. So by the induction hypothesis, for each $\alpha<\lambda$, there is $B_{\alpha} \vDash T$ with $A_{\alpha}=3_{\alpha}{ }^{1} \mid I_{n}$.
elementarily
By Theorem 6, for each $\alpha<\lambda$, we can easily $\wedge^{\text {embed }}$ B_{α} in $B_{\alpha+1}$, over the elementary inclusion $A_{\alpha} \leqslant A_{\alpha_{r 1}}$.

So we can assume that $\mathrm{E}_{\alpha} \leqslant \mathrm{E}_{\alpha+1}$, for all $\alpha<\lambda$. By the condition of T being a Gaifman operation, we can also assume that for δ a limit ordinal,

$$
\alpha U_{\delta} B_{\alpha}=B_{\delta}
$$

Let $B=\bigcup_{\alpha<\lambda} B_{\alpha}$. Then $B \vDash T$, as $B_{\alpha} \leqslant B$ for all α.
Also $B^{P} \mid I_{0}=U_{\alpha<\lambda}\left(B_{\alpha}{ }^{P} \mid I_{0}\right)={ }_{\alpha} V_{\lambda} A_{\alpha}=A$.
So $A \in K$.
Thus the induction step is completed, and so the theorem is proved.
1.2 Gaifmen operations and 1-cerdinality.

Viewed abstractly, the way in which the model \mathbf{K} is implicitly defined from the model $\mathbb{N}^{P} \mid I_{0}$ by the Gaifman operation T, can be regarded from two aspects. One the one hand, the language I_{0} is expanded to the language L, and on the ether hand new elements are added, and the original model is assigned the unary predicate P. The uniform reduction theorem essentially solves the problems relating to the first aspect (the expansion of the language). So, α expected, the main difficulty arises in trying to work out the relationship between the model H and its P part.

One aspect of this is the question of cardinality.

Definition 2. Let T be a theory, and P a unary predicate in the language of T. Then we say that
(T, P) is 1-cardinal if and only if whenever
M is an infinite model of T, then $\|\mathbb{M}\|=\left|P^{\mathbf{M}}\right|$.

When P is clear from the context, we shall just say that "T is 1-cardinal", to mean the obvious thing.

Wilfrid Hodges has confectured that T is a Gaifman operation if and only if T satisfies the conclusion of the uniform reduction theorem and T is 1-cardinal. In Example 21 below, we dispreve this conjecture.

A very strong tool in the study of 1-cardinality is the following result of Vaught[16].

Theorem 10. (T,P) is 1-cardinel if and only if it is not the case that there are models \mathbf{X} and N of T such that $M \leqslant N, X \neq N$ and $P^{M}=P^{N}$.

Proposition 11. Let T be a Gaifman operatien. Then T is 1-cardinal.

Proof.
If T were not 1-cardinal, then there would be $\mathbf{M}=T$, such that $\|\mathbb{N}\|>\left|P^{M}\right| \geqslant \lambda_{0}$. (From things we have mentioned before, the case where $\left|P^{M}\right|<\nu_{0}$ cannot arise.)

Then, by the Lowenheim-Skolem theorem, there is
$N \leqslant \mathbf{N}$, with $P^{\mathbf{N}} \subseteq|N|$, and $\|N\|=\left|P^{\mathbf{M}}\right|$.
But then $P^{N}=P^{M}$, whereby $\quad M^{P}\left|I_{0}=N^{P}\right| I_{0}$. However, there can be no is@morphism between L and N, as $\|N\|<\|\mathbb{N}\|$. But this contradicts T being a Gaifman operation.

So the propesition is proved.

We say that a model (not necessarily in a countable language) is minimal, if it has no proper elementary substructure. We say that K is minimal over $M^{P} \mid I_{0}$, if there is no N such that

$$
N \leqslant M, N \neq M, \text { and } N N^{P}\left|I_{0}=M^{P}\right| I_{0} .
$$

Then obviously K is minimal over $\mathbb{K}^{P} \mid I_{0}$ if and only if the model ($K, a)_{a \in p^{\prime}}$ is minimal.

Proposition 12. Let T be a Gaifanan operation, and let M be a model of T.

Then K is minimal over $M^{P} \mid I_{0}$.
Proof.
Note first that this follows immediately from Theorem 10 and Proposition 11. However, we can use the strong property of T being a Gaifman operation to do the work of Theorem 10 directly.

For suppose that we had

$$
N \leqslant \mathbb{M}, N \neq \mathbf{K}, \quad \text { and } \quad N^{P}\left|I_{0}=\mathbf{u}^{P}\right| I_{\infty} .
$$

We may suppose that $\|x\|=\|N\|=\left|P^{N}\right|=\lambda$, say. As T is a Gaifman operation, N is isomorphic to \mathbb{N} over $M^{P} \mid I_{0}$. We can thus build a strictly increasing, continuous, elementary chain of models

$$
\begin{gathered}
\left\{\mathbf{n}_{\alpha}: \alpha<\lambda^{+}\right\}, \text {such that } \\
u_{\alpha}^{P}\left|I_{0}=\mathbf{u}^{P}\right| I_{0} \quad \text { for all } \alpha<\lambda^{+}, \text {and } \\
\left\|M_{\alpha}\right\|=\lambda \quad \text { for all } \alpha<\lambda^{+} .
\end{gathered}
$$

The fact that T is a Gaifaan operation allows us to carry on the construction at the limit stage.

Let $\mathbf{x}^{\prime}=U\left\{\mathbf{M}_{\alpha}: \alpha<\lambda^{+}\right\}$.

Then $\quad \mathbf{x}^{\prime} \in T, \quad \mathbf{u}^{\prime}\left|I_{0}=\mathbb{u}^{P}\right| I_{0}$, and $\left\|\mathbf{u}^{\prime}\right\|=\lambda^{+}$.
But $\left|P^{M^{\prime}}\right|=\lambda$, and so this contradicts the 1-cardinality of T. So \mathbb{X} must be minimal over $\mathbb{X}^{P} \mid I_{0}$.

We can new put together the abeve proposition and Theorem 6, to help us characterise Gaifman operations.

Theorem 13. Tis a Gaifman eperation if and only if whenever $X_{i} \vDash T, i=1,2$, and $f: M_{1}{ }^{P}\left|I_{0} \leqslant{X_{R}}{ }^{P}\right| I_{0}$, then there is $\mathrm{c}: \mathbf{w}_{1} \preccurlyeq \mathbf{k}_{2}$ which extends \mathcal{I}. Proof.

The direction from left to right is just Theorem 6. For the converse, let us suppose that the condition on extending elementary embedaings holds. Firstly, this implies that T is 1-cardinal. For, if not, then
there would be M, N models of T, such that $\|\mathbb{M}\|>\|N\|$, and $\mathbf{x}^{P}\left|I_{0}=N^{P}\right| I_{0}$. But then we would be unsble to elementarily embed K in N. So now let M and \mathbb{N} be models of T such that

$$
\mathbf{x}^{P}\left|I_{0}=N^{P}\right| I_{0} .
$$

Then there is $f: \psi \leqslant N$ such that P is the identity on $\mathbb{M}^{P} \mid I_{0}$. But then by 1 -cardinality and Theorem 10 , f must be onto, whereby f is an isemerphism of M and N. Thus T is a Gaifans eperation.

Actually the proof of the above propesition tells us something more. Let T be any theory with a unary
predicate P. Then -:

Propesition 14. Suppose that for every $M \neq T$, ($M, a)_{a \in p m i s ~ a ~ p r i m e ~ m o d e l . ~ T h e n ~ f o r ~ e v e r y ~}^{M} \mathcal{K}$, ($M, a_{\alpha \in)^{M}}$ is the unique prime model of $\operatorname{Th}\left(\left(M, a a_{a \in P^{M}}\right)\right.$.

In the next few definitions and results, T will be Just a (countable) theory, whose language contains (ameng other things) a unary predicate P.

If \mathbf{k} is a model for the language of T, we will denote by the expanded model ($\mathbb{N}, a)_{C \in M}$. (So the language of may be uncountable.) So then Theorem 10 just says that T is f-cardinal if and only if 18 minimal for all M F T. Proposition 12 and Theorem 13 inply that, if is prime for every model of T, then is minimal for every model M of T.

This differs from the situation for "fixed" models, where we may have models which are prime, but not minimal. Example 21 below will be, ameng other things, an example of a theory T such that for all models M of T, is minimal, but for which there are nodels \mathbb{N}, with \hat{q} not prime.
\therefore We will first, however, look further into the relationship between the 1-cardinality of a theory T, and the minimality of its expanded medels.

Deissler[4] has defined a notion of rank for
elements of a model, which enables him to characterise countable minimal models.
lis definition is as follows:

Definition 15. Let x be a model (in a language of any cardinality).

The rank in N of an element a $\in \mathbb{H}$ over a subset X of $K, ~ r k(a, X, X)$, is defined by induction : $\operatorname{rk}(a, X, L)=0$ if there is a formula $\phi(X, \vec{y})$ in $L(\mathbb{M})$, and $\vec{c} \in X$, such that
$\mathbf{M} \vDash \phi(a, \vec{c}) \wedge \exists^{ \pm} x \phi(x, \vec{c})$.
For ל an ordinal larger than 0
$\operatorname{rk}(a, X, X)=\zeta$ if $\operatorname{not} \operatorname{rk}(a, X, X)=\eta$ for $\eta<\zeta$, and
if there is $\phi(x, \vec{J})$ and $\vec{c} \in X$ such that
$\mathbf{x} \vDash \exists x \phi(x, \vec{c})$,
and such that for all $b \in \mathbb{N}$ with $\mathbb{M} \mathcal{F} \phi(b, \vec{c})$

$$
\operatorname{rk}(a, X \cup\{b\}, x)<\zeta .
$$

We say that $\operatorname{rk}(a, X, \mathbb{M})=\infty$ if there is ne ordinal ζ with $r k(a, X, M)=\zeta$. ($B J$ convention $\zeta<\infty$ for all ordinals ζ_{\bullet})

We define $r k(a, M)$ to be $r k(a, 0, M)$, and $r k(M)$ to be $\sup \{r k(a, M)+1: a \in \mathbb{N}\}$.

Lemma 16. a) Let x be a model (in a language of any cardinality). Then $r k(\mathbb{M})<\infty$ implies that \mathbb{M} is minimal.
b) If M is a countable model in a countable language, then $\quad r k(\mathbb{K})<\infty$ if and only if M is minimal.

Proof. Quite straightforward, as for example in Flum[7].

Let A be a model with a unary predicate P. Then we say that A is a 2-cardinal model if

$$
\|A\|>\left|P^{A}\right| \geqslant \hat{N}_{0}
$$

We say that a set of sentences Σ, almost axiomatises a class of structures K, if for any model A, $A \in \Sigma$ if and only if there is $E A$ such that $B \in K$. Keisler[12] has given a set of sentences which almost axiomatises the class of 2-cardinal models :

Theorem 17. (Keisler) Let I be a countable language which contains a unary predicate P. Then the following set of sentences Σ almost axiomatises the class of 2-carainal models for L.
$\Sigma_{n}=\left\{\exists v_{0} \forall x_{0} w_{0} \in P \exists y_{0} x_{0} \ldots . . \forall x_{n} w_{n} \in P \exists y_{n} x_{n}\left[\bigwedge_{i=0}^{n} v_{0} \neq y_{i}\right.\right.$
$\left.\phi_{j}\left(x_{0}, \ldots x_{n}, z_{0}, \ldots x_{n}\right) \longleftrightarrow \phi_{j}\left(y_{0}, \ldots y_{n}, w_{0}, \ldots w_{n}\right)\right]:$
$n<\omega, m<\omega, \phi_{0}, \ldots \phi_{m}, 2 n+1$-any formulae of $\left.L.\right\}$

It follows that if T is a theory in I, and
(T, P) is 1-cardinal, then $T \cup \Sigma$ is inconsistent.
Thus there are $\sigma_{1}, \ldots \sigma_{r}$ in Σ such that

$$
T \vdash V_{i=1}^{r} \neg \sigma_{r}
$$

But if σ is in Σ, then \neg is a sentence of the form

$$
\forall v_{0} \exists x_{0} w_{0} \in P \forall y_{0} x_{0} \ldots \ldots \exists x_{n} w_{n} \in P \forall y_{n} x_{n}
$$

$\left[\left(\bigwedge_{j=0}^{m} \phi_{j}\left(x_{0}, \ldots x_{n}, z_{0}, \ldots x_{n}\right) \longleftrightarrow \phi_{j}\left(y_{0}, \ldots y_{n}, w_{0}, \ldots w_{n}\right)\right) \longrightarrow\right.$

$$
\left.\bigvee_{i=0}^{n} v_{0}=y_{i}\right] \text {, for some } n, m<\omega \text {. }
$$

Let M be a madel for the language of T, and suppose that

If we look closely at 7^{0}, we can see thet this implies that for every $a \in M \quad \operatorname{rk}(a, M) \leqslant n$. So $r k(0) \leqslant n+1$.

Now for every model N of T, there is $i \leqslant r$ such that $\mu \vDash \neg \sigma_{i}$.
Thus there is some $n_{1}<\omega$ such that

```
rk(\hat{l})\leqslant \mp@subsup{n}{1}{}\quad\mathrm{ for all }M\inT. So we have proved :
```

Prepesition 18. Let T be a (countable) theory which has a unary predicate P. Then (T, P) is 1 -cardinal if and only if there is $n<\omega$ such that $\operatorname{rk}(\mathbb{M}) \leqslant n$, for all $k \in T$.

Let us now return to the context of Gaifman operations. Namely T is a theory in a countable language I, P is a unary predicate in I, and $I_{0} \subseteq L-\{P\}$.

Definition 19. a) T has the uniform reduction property if for any $\phi(\vec{x})$ in L there is $\psi(\vec{x})$ in I_{0}, such that for all $M \in T$ and for all $\vec{a} \in P^{N}$, $\mathbf{y} \vDash \phi(\vec{a}) \quad$ if and only if $u^{P} \mid I_{0} \vDash \psi(\vec{a})$. b) T is 1-cardinal of rank n if n is the least natural number such that $\operatorname{rk}(\mathbb{Q}) \leqslant n$ for all $\mathbb{k} \neq T$.

As mentioned before, Wilfrid Kodges conjectured that T is a Gaifman operation if and only if T is 1-cardinal and
has the unifern reduction proprty. The direction left to right is given by Fropesition 11 and Theoren 3. The oppesite direction does net hold. However, it does hold if we stipulate that T is 1 -cardinal of rank 1 .

Proposition 20. Suppese T is 1-cardinal of rank 1, and has the uniform reduction property.

$$
\text { Then } T \text { is a Gaifman operation. }
$$

Proef.
Let $\mathbf{K}_{1}, \mathbf{K}_{\mathbf{a}}$ me models of T, sach that

$$
\mathbf{u}_{1}^{P}\left|I_{0}=\mathbf{K}_{2}^{P}\right| I_{0}=\mathbf{x}_{0}
$$

As T has the uniform reduction preperty, it follows that

$$
\left(k_{1}, a\right)_{a \in M_{0}} \equiv\left(k_{8}, a\right)_{a \in M_{0}^{*}}
$$

As the model $\left(M_{1}, Q\right)_{Q \in M_{0}}$ has rank 1 , then for every element
b of u_{1} there is a formula $\psi(x)$ of $L\left(\left(M_{1}, Q\right)_{a \in M_{0}}\right)$, such
that $\left.\quad H_{1} \vDash \psi(b) \wedge \exists \begin{array}{rl} \\ x\end{array}\right)$.
Similarly for $\left(M_{a}, a\right)_{a \in M_{0}}$.
So let $b \in K_{2}$, and $\psi(x)$ define as above.
Then $M_{2} \neq \exists^{1} z \psi(x)$. Suppose that $\mathbf{k}_{2} \vDash \psi(c)$.
Then we put $f(b)=c$.
It is easily seen that the map $f: \mathbb{X}_{1} \longrightarrow \mathbb{X}_{2}$, thus defined is an isomorphism, and that $f(a)=2$ for all a in \mathbb{K}_{0}. Thus T is a Gaifman operation.

Mowever in the general case, we have a counter-example.

Our example is actually based on an idea of Shelah[21]. Shelah gives an example of a countable
non-prime minimal model, which has $2^{N_{0}}$ models which are elementarily equivalent to it and minimal.

In what follows ω_{2} will denote the set of functions frem ω to 2. ${ }^{\omega>} 2$ will denote the set of functions fres n to 2 , for $n<\omega$.

Example 21. A theory T in a countable language L, with a unary predicate P and a sublanguage $I_{0} \subseteq I-\{P\}$, such that T is 1-cardinal, T has the uniform reduction property, but T is not a Gaifman peration.

We will define a model \mathbb{M}, and T will be $T h(\mathbb{M})$. L, the language of x , will have as its non-logical symbols, a unary predicate letter P, a unary predicate letter Q_{ν} for each $v \in{ }^{\omega>}$ 2, and a binary operation letter + . L is then a countable language.

Let us fix $\eta_{0} \in \omega_{2}$.
Then we will put $\mathrm{P}^{\mathbb{X}}=\left\{\sigma \in \omega_{2}:(\exists \leqslant<\omega)(\forall \mathrm{n} \boldsymbol{k}) \sigma(\mathrm{n})=0\right\}$
And $(\neg P)^{k}=\left\{\eta \in \omega_{2}:(\exists k<\omega)(\forall n>k) \eta(n)=\eta_{0}(n)\right\}$ So intuitively, the elements of the P part of M are the sequences of 0 ' s and $1^{\prime} \mathrm{s}$ of length ω which are eventually 0 . And the rest of \mathbb{M} consists of sequences which are eventually the same as η_{0}.

If ν_{1}, ν_{2} are in $\omega_{2} u^{\omega\rangle_{2}}$, then we will write $\nu_{1} \& \nu_{2}$ te mean that ν_{1} is an initial segment of ν_{3}. Then for all $\sigma \in \mathbb{K}$, we stipulate that

$$
u \vDash Q_{v} \sigma \text { if and only if } v<\sigma \text {, for all } v \in \omega>2 \text {. }
$$

And for $\eta_{1}, \eta_{2}, \eta_{3}$ in 4 if $\vDash \eta_{1}+\eta_{2}=\eta_{3}$ if and only if

$$
\eta_{1}(n)+\eta_{2}(n)=\eta_{3}(n)(\bmod 2) \text {, for all } n<\omega \text {. }
$$

In this example the sumlanguage I_{0} will just consist of the language I without the predicate P. This is all right as in the model h, P^{h} is closed under the operation + . So the same will be true in any model of $T=T h(u)$.

$$
\text { Also, note that for any } \eta \in(\neg P)^{M}
$$

$$
(\neg \mathrm{P})^{\mathrm{M}}=\left\{\sigma+\eta: \quad \sigma \in \mathrm{P}^{\mathrm{M}}\right\}
$$

Thus $\mathbb{y} \vDash \forall x \forall y \exists z \in P(x+z=y)$.

$$
\text { So } T \vdash \forall x \forall y \exists z \in P(x+z=y)
$$

So any model N of T is generated by one element over P^{N}. So T is i-cardinal. Actually we can see that T is 1-cardinal of rank 2.

To prove the rest, we need a set of axioms for T . So we propose the following :

1) $\left.\begin{array}{l}(\exists \mathrm{X})\left(\mathrm{Px} \wedge Q_{\nu} \mathrm{X}\right) \\ (\exists \mathrm{x})(\neg P x \wedge Q \mathrm{Q})\end{array}\right\}$ for each $v \in{ }^{\omega\rangle_{2}}$ 。 $(\exists x)\left(\neg P x \wedge Q_{\nu} x\right)$
2) $(\forall x)\left(Q_{\nu_{1}} x \rightarrow Q_{\nu_{2}} x\right) \quad$ whenever $\nu_{1} \& \nu_{2}$.
3) $(\forall x)\left(Q_{\nu} x \rightarrow\left(Q_{\nu \times 0)} x \vee Q_{\nu n(1)} x\right)\right)$ for all $v \in{ }^{\omega>}$ 2.
4) $(\forall x)\left(\neg\left(Q_{\nu \cap 0\rangle} x \wedge Q_{\nu \sim 1\rangle} x\right)\right)$ for all $v \in{ }^{\omega>} 2$.
5) $(\forall z y z)(x+y=z \wedge P x \wedge P y \rightarrow P z)$
6) $(\forall x y z)(x+y=z \wedge P x \wedge \neg P y \longrightarrow \neg P z)$
7) $(\forall x y z)(x+y=z \wedge \neg P x \wedge \neg P y \rightarrow P z)$
8) $(\forall x y)(x+y=y+x)$
9) $(\forall x y z)(x+(y+z)=(x+y)+z)$
10) $(\forall x y z)(x+y=z \rightarrow x=y+z)$
11) $(\forall x y z)\left(x+y=z \wedge Q_{\nu_{1}} x \wedge Q_{\nu_{2}} y \longrightarrow Q_{\nu_{3}} z\right)$ where ν_{1}, ν_{2} and ν_{3} are in ${ }^{\omega\rangle_{2}}$,
length $\left(\nu_{3}\right)=\min \left(\right.$ lenath $\left(\nu_{1}\right)$, length $\left.\left(\nu_{2}\right)\right)$,
and $\quad \nu_{8}(1)=\nu_{1}(1)+\nu_{2}(1)(\bmod 2)$ for all

$$
1<\text { length }\left(\nu_{3}\right) .
$$

Let Σ be the set of sentences 1) to 10). It is obvious that $\Sigma \subseteq T$.

It is routine to show that Σ has elimination of quantifiers, i.e. that for any formula $\phi(\vec{X})$, there is a quantifier free formula $\psi(\vec{x})$, such that

Tト $\dagger \leftrightarrow \psi$.
The main point to note in doing the quantifier elimination is that a formula of the sort

$$
(\exists x)\left(Q_{\nu_{1}} x \wedge Q_{\nu_{2}}(x+y)\right) \text { is equivalent under } \Sigma
$$

to the quantifier free formula $\mathcal{\nu}_{3}{ }^{J}$, where

$$
\text { length }\left(\nu_{3}\right)=\min \left(\text { length }\left(\nu_{1}\right), \text { length }\left(\nu_{2}\right)\right) \text { and }
$$

$$
\nu_{a}(i)=\nu_{1}(i)+\nu_{k}(i)(\bmod 2) \text { for all } 1<\text { length }\left(\nu_{s}\right) \text {. }
$$

It follws that Σ must be complete, whereby Σ does axiomatise T. So T also has elimination of quantifiers.

We now show that T has the uniform reduction property.

So let $\phi(\vec{X})$ be a formula of I such that

$$
T \cup\{(\vec{\exists} \in P) \phi(\vec{x})\} \text { is consistent. }
$$

ey elimination of quantifiers there is a quantifier free formula of L, $\psi(\vec{x})$, such that

$$
T \vdash \forall \vec{x}(\phi(\vec{x}) \longleftrightarrow \psi(\vec{x}))
$$

Then
We can^easily get a quantifier free formula $\psi^{\prime}(\vec{x})$

$$
\begin{aligned}
& \text { of } I-\{P\} \text {, such thet } \\
& \text { T• } \forall \vec{x} \in P\left(\phi(\vec{x}) \leftrightarrow \psi^{\prime}(x)\right) .
\end{aligned}
$$

But then, for any model N of T, and $\vec{a} \in P^{N}$,
$N \vDash \phi(\vec{a}) \quad$ iff $\quad N \vDash \psi^{\prime}(\vec{a}) \quad$ iff $\quad N^{P} \mid I_{0} \vDash \psi^{\prime}(\vec{a})$. (as ψ is quantifier iree and $I_{0}=I-\{P\}$)

So Thas the uniform reduction prooerty.
It just remains to show that T is not a Gaifnan operation.

Remember that to define the model N, we began with a fixed $\eta_{0} \in \omega_{2}$. Let us now choose $\eta_{1} \in \omega_{2}$ such that for all $k<\omega$ there is i>k such that

$$
\eta_{1}(1) \neq \eta_{0}(1)
$$

Now define a model \mathbf{x}^{\prime} from η_{1}, exactly as we defined x from η_{0}. It is easily checked that M^{\prime} satisfies the axioms Σ, whereby H^{\prime} is a model of T. It is also clear that $\left(\mathbb{K}^{\prime}\right)^{P}=M^{P}$, 28 the P part of M was defined
independently of η_{0}.
However each element of $(\neg P)^{M}$ is different at aribitarily large points from each element of $(\neg P)^{K^{\prime}}$, and thus $\cdots \boldsymbol{k} \neq \mathbf{k}^{\prime}$. In fact there are $2^{N_{0}}$ pairwise nom-isomorphic models N with $N^{P}=\mathbb{N}^{P}$, and $N F T$.

Chapter 2

IInimal moajels and the number of countable models

2.0 Introunction

The original motivation behina this chapter
is the attempt to determine the possible number of countable models up to isomorphism of a complete countable theory which has a minimal model. The conjecture is that such a theory has infinitely many countable models. Such a result would strengthen the Ealdwin-Iachlan theorem, which says that an λ_{i}-categorical non' γ_{0} categorical theory has λ_{c} countable models. what we end up proving, however, are some comparatively weak results on the number of countable mooels of a theory with a certain kind of "very algebraic" prime model. Ne show that suck a theory has at least four countable models. Now it is known that $n(T)$ ($=$ number of countable models of a countable theory T) can never be equal to two. So if $n(T)>1$ then $n(T) \geqslant 3$. Thus to show that a theory has at least four countable models is the weakest possible nontrivial result.

Zssentially the only known example of a theory T with $n(T)=3$, is the "Ehrenfeucht example". And the examples of T with $n(T)$ finite are moaifications of this
example.weshow that any theory T for which $n(T)=3$ is quite a bit like the Ehrenfeucht example.

It has been thought that one could obtain a nice characterisation of those theories T for which $n(T)$ is finite,analogous to the Ryll-Nardjewski characterisation of \mathcal{N}_{c}-categorical theories. I think that such a neat characterisation is unlikely to be found, partly because theories with more than one, but only finitely many countable models are such an anomaly. Any characterisation will probably be of a rather complicated structural nature. However, if we look at λ_{0}-categorical theories, we can, rather crudely, divide them into -
a) those theories which are N_{0}-categorical because of lack of structure (e.g. theory of equality, theory of infinite abelian groups of order p), and
b) those theories which are λ_{0}-categorical aue to the presence of structure ($\epsilon . g$. theory of dense linear orderings, theory of atomless Boolean algebras). In case a) there is nothing to distinguish countable models of the theory. Whereas in case b) there is enough going on in the models to enable us to construct isomorphisms. The feeling is then that theories T with $n(T)$ greater than one, but finite, arise from modifications of λ_{0}-categorical theories of type b), as for example shrenfeucht's example comes from adding a sequence of constants to a dense linear ordering.

I present a general framework for obtaining or constructine ron-isomorphic countable models. This essentially centres arourd the presence in our theory of certain exchange properties, which allow us to get models of arbitrary finite "dimension". nis stated above, under certain strong assumptions on the degree of algebraicity of the prime model, we have as yet only been able to obtain at least four models. However I also prove a quite general exchange result, which under quite strong conaitions on the algebraicity of the theory (namely that every model prime over a finite set is actually algebraic over that set), enables us to get infinitely many courtable models. This latter result, whereby one obtains infinitely many models has been proved directly by Lascar[14], but I feel that the above-mentioned exchange result is fairly interesting for it's own sake. as for minimal models, we view minimality (of a model) as a Eeneralisation of algebraicity. In the case of a model which is algebraic, one can see directly what is responsible for it's minmality, so we woula like to connect the two notions. I actually show that a minimal prime model has a large part which is algebraic over a finite set. This also cornects our original conjecture to the later results on the number of countable models, although there are obviously many gaps to be filled in order to prove the conjecture.

I will first state a few preliminary definitions anâ observations. In this chapter all models and theories that we talk about, will be in a countable langueqe. Nodels will be infinite unless otherwise stated.

Definition 22. We say that a model f is minimal if there is no E such that $B \leqslant A$ and $B \neq A$.

It follows that a minimal mociel is countable. Definition 23. (i) Let A be a model and a A. We say that a is algebraic in A, if there is a fomula $\theta(x)$ of $L(A)$, ana n< n such that $A F \exists^{n} x \in(x) \wedge \theta(a)$. (ii) A is algebraic if for all $a \in A$, a is algebraic in A. (iii) Let T be a complete theory. Then T is algebraic if T has an algebraic model.

It is easy to see that if a model is algebraic then it is prime and minimal.

Let ${ }^{\underline{L}}$ be a theory. Then as mentiored before we denote by $n(T)$ the number of countable models of T up to isomorphism. It would be worthwhile to state and prove the following classical result of Vaught[25].

Theorem 24. Let T be a complete theory. Then $n(T) \neq 2$.

Proof. Let us assume that $n(T)>1$, and $n(T) \leqslant i$, ire will
show that $n(T) \geqslant 3$. First of $E l l$ then, T can orly have N_{0} types, for otherwise we would get too many models. Thus T has a prime model and a countable saturatea model. Also as T is not X_{0}-categorical, there must be a non-principal rtype $p(\vec{x})$ for some $n<\omega$, whereby the prime and saturated models cannot be isomorphic. Let $T^{\prime}=T \cup p(\vec{c})$, where \vec{c} is a sequence of n new constants. Then T^{\prime} has again only N_{0} types, and thus has a prime model (A, \vec{C}). A is a courtable model of T. As A realises $p(\vec{Z})$, A is not prime. Now T'must have some non-principal n-type $q(\vec{c}, \vec{X})($ because T, and thus T^{\prime} has infinitely many n-types). (A, \vec{C}) omits this type, and thus A cannot be saturatea. Thus we have at least three countable models of T.

Ooservation 25. Let T be a complete theory with no prime model. Then $n(T)=2^{\lambda_{0}}$.

Proos.
T must be non-atomic, and thus there is some $n-$ formula $\theta(\vec{x})$ which is not implied by any complete n-formula of T over T. By a standard tree method we can get ${\varepsilon^{\lambda} n-~}_{n}$ types of T, and so T must have at least $2^{V_{0}}$ countable models, to realise all these types. But $n(T) \leqslant 2^{i v_{0}}$, so the result. follows.

Observatinn 26. Let I be a complete theory with a prime model. Suppose that $A k T$, and A is minimal. Then A is prime.

Proof.
Lौt B be the prime model of T. Then $B \leqslant A$, an \bar{a} so $\bar{Z}=A$ by minimality of A.
jote from this that if T has a wime model, ther T hes at most one minimal model up to isomorphism.

Also, in so far as we are interested in the number of countáble models of a theory with a minimal model, we can by Observations 25 and 26 ,assume that the minimu model of the theory is prime. Thus in the section following, we restrici our attention to prime minimal mociels.

2ot Erime linimal hoajs.

Prowosition 27. Let T be a complete atomic theory, ana \therefore be a countable noäel of T. Then \dot{A} is minimal if ana only if A is atomic anci has no atomic proper elementary extensiono Proof.

Let A be minimal. Then as T has a prime mooel, A is prime and thus atomic. Suppose that we had $B \geqslant A, B \neq A$, and B atomic. We may take B to be countable, for if not take a countable elementary substructure. But then $A \simeq B$, so we could fina $C \leqslant \dot{A}, C \neq A$, contradicting the minimality of A.

Conversely, suppose A were atomic and not minimal, There would be $B \leqslant A, B \neq A$. But then obviously E would also be atomic, and thus $B \simeq A$; so we coula find C, with $A \leqslant C$, $A \neq C$, and C atomic。

The sbove proposition says that if A is a prime model, then A is minimal if and only if, whenever $A \leqslant B$, and $A \neq B$, there is $n<\omega$ and an n - tuple \vec{E} from $|3|^{n}-|A|^{n}$ which realises a non-principal n-type in B. Compare this with the situation for algebraic models.

Observation 28. Let A be a prime mociel. Then A is algebraic if and only if whenever $A \leq B$ and $A \neq B$, every element of B - A realises a non-principal type.

Proof.

Hote that if A is algebraic, then for every complete 1-formula $G(x)$ of $\operatorname{Th}(A)$, there is $n<\omega$ such that $A \vDash \Xi^{n} x \theta(x)$. So if $A \preccurlyeq B$, all the realisations of θ must be in A. So if $b \in B-A$ then b cannot realise a principal type。

Conversely, suppose \dot{A} were not algebraic. Then there is a complete formula $\theta(x)$ (ioe. complete for $\operatorname{Th}(A)$) which is satisfied by infinitely many elements of A. Consider the following set of sentences in the language got by adding names for elements of A and a new constant c $\Sigma=\operatorname{Th}(A, a) \cup \theta(c) \cup\{c \neq a: a \in A\}$.

By compactness Σ has a model $(B, a, c)_{\alpha \in A}$. Then $A \leqslant B$, $c \in B-A$, and c realises the principal type of $T h(A)$ determined by $\theta(x)$ 。

Pronosition 29. Let T be a complete atomic theory. Then T has a minimal model if and only if all atomic models of T are countable.

Proof.
Suppose that A is a minimal model of T. Then A is prime, and if there were an uncountable atomic model of T, we would have $A \leqslant B, A \neq B$, contradicting Proposition 27.

Conyersely, suppose that T had no minimal model. Let A be the prime model of T. Then by Proposition 27 A would have an atomic proper elementary extension A_{1}. If A_{1} is uncountable, there is nothing more to prove. If f_{1} is countable, then $A \simeq A_{1}$, and we can therefore build a
strictly increasing continuous elementary chain
$\left\{A_{i}: i<\chi_{1}\right\}$ of countable atomic models of T. (iVe can continue at the limit stage, because for S a limit orainal, $0<\mathcal{N}_{1}, A_{S}=U\left\{A_{i}: i<\delta\right\}$ is a countable atomic model of T, and is thus isomorphic to A.)

Put $A^{\prime}=\bigcup_{i<\mu_{i}}$. Then A^{\prime} is an uncountable model of T. Also, any finite tuple from $A^{\prime \prime}$ is in A_{i} for some $i<\lambda_{1}$, and so realises a principal type in A_{i} and so also in A^{\prime}. Thus A^{\prime} is atomic.

Proposition 30. Let T be a complete theory. Then
a) if I has a minimal model, then T is not λ_{0}-categorical.
b) if t is λ_{1}-categorical and not λ_{0}-categorical, then Thas a minimal model.

Proof.

a) Suppose T were λ_{o}^{\prime}-categorical. Then T would be atomic, and moreover by Ryll-liarajewski, all types of T woula be principal. Thus all models of T would be atomic. So by the previous proposition, T could not have a minimal moūel.
b) Let I be λ_{1}-categorical and not λ_{0}-categorical. By γ_{1}-categoricity, T is atomic. By non- λ_{0}-categoricity, Thas a non-principal type p. This type p will be realised in some, and thus in all, models of T of carainality λ_{1}. Thus it is easy to see that T has no uncountable atomic model. So by the previous proposition, T has a minimal model.

Proposition 31. Det I be a complete theory, and par rot necessarily complete type, such that all models of T wich omit p are isomorphic. Then if a model A of T omits p, A is prime ana minimal.

Proof.
IEt A be a model of T which omits p. If A is not prime, then f realises some non-principal type q. But then, by the Omitting Types Theorem, T has a model B which omits both p and q. But then B cannot be isomorphic to A. Contradiction. So A must be prime. T could not have an uncountable atomic model, for such a model would omit p, but would be non-isomorphic to A. Thus by Proposition 29 A is minimal.

We now come towards the main result of this section. We first need a few more definitions.

Definition 32. (i) Let A be a mocel. ine say that A_{1}^{\prime} is a principal expansion of A, if $\hat{A}^{\prime}=(A, \vec{a})$, where \vec{a} is a finite tuple from A which realises a principal type. (ii) Let T be a complete theory. We say that T^{\prime} is a principal extension of T, if $T^{\prime}=\operatorname{Th}((A, \vec{a}))$, where (A, \vec{a}) is a principal expansion of some model A of T.

Note that if A is a prime model, then every expansion of A got by aading finitely many names, is a principal expansion.
 Then cl $(\because, A)=\{$ a A : there is a formula $q(x ; \vec{y})$ of $L(\ldots$, $\vec{b} \in Z$, ana $k<\omega$ such that $A F \equiv k \notin(x ; \vec{b})$ and $A \neq \phi(a ; \vec{b})\}$. If $\varepsilon \in \subset I(X, A)$, we say thet \equiv is algebraic over X in A. If $X=\{b\}$, we say that a is algebraic over b in A, $a n a \bar{c}$ if $X=0$, $\boldsymbol{T} \in$ just say that a is aigebraic in n.

Note that to say that A is algebraic, is iust to say that $C l(O, A)=A$. He can now relate minimality to algebraicity.

Theorem 34.: Let A be a prime minimal model. d'hen A has a principel exparsion A^{*}, such that in $I\left(A^{\prime}\right)$ there is a formula $\dot{\psi}(x)$, such that $\phi^{\prime \prime} A^{\prime \prime}$ is infinite and $\phi^{\prime \prime} \subseteq c l\left(0, A^{\prime}\right)$. Proof.

By Proposition 27, A has no atomic proper elementary extension. Let I be $L(A)$. Let us add names for all the elements of A and a new constant c, so as to expand I to $I^{\prime \prime}$. Consiaer the following theory in $I^{\prime \prime}$: $T^{\prime \prime}=\operatorname{Tin}((A, a), a \in \mathcal{A}) \cup\{c \neq a: a \in A\}$. Then the L-reauct of any model of $T^{\prime \prime}$ is a proper elementary extension of A. Thus no model of $T^{\prime \prime}$ can be atomic, when viewed as a model of $\operatorname{Th}(A)$. For each $n<\omega$, put

$$
\Sigma_{n}\left(x_{1}, \ldots x_{n}\right)=\left\{\neg \psi\left(x_{1}, \ldots x_{n}\right): \psi \text { a complete } n\right. \text {-formula }
$$ of $\operatorname{Th}(A)\}$.

Then it is easy to see that the Irreduct of a model of $T^{\prime \prime}$ is atomic if and only if the model omits $\Sigma_{n}\left(x_{1}, \ldots x_{n}\right)$ for all $n<\omega$. So by the Omitting Types Theorem, there is $n<\omega$ such that $\Sigma_{n}(\vec{X})$ is principal over $T^{\prime \prime}$ 。

So, there are a finite tuple $\vec{a} \in A$, anc an i-formula $\varphi(\vec{x}, \mathrm{y}, \vec{z})$ such that :
(i) $\mathrm{I}^{\prime \prime} \cup\{\dot{\varphi}(\vec{X}, c, \vec{B})\}$ is consistent, and
(ii) $\underline{W}^{\prime \prime} \vdash \phi\left({ }_{x}, c, \vec{a}\right) \rightarrow \neg \psi(\vec{X})$, for each $\neg \psi(\vec{X}) \in \Sigma_{n}(\vec{X})$.

By (i), $\{y \in A: A F \vec{X} \phi(\vec{X}, y, \vec{a})\}$ is an infinite set. By (ii), for $\epsilon a c h ~ \neg \psi(x) \in \Sigma_{n}$, there is by compactness $b_{1}, \ldots b_{r}$ in A such that
$\operatorname{Th}\left((A, a)_{a \in A}\right) \cup_{i=1 \ldots \vdash} c \neq b_{i} \vdash \phi(\vec{x}, c, \vec{a}) \rightarrow \neg \psi(\vec{x}) \quad$.
So $\left.\operatorname{Th}((A, a))_{a \in A}\right) \vdash \phi(\vec{\lambda}, c, \vec{a}) \wedge \psi(\overrightarrow{2}) \rightarrow \bigvee_{i=1, \ldots r} c=b_{i} \quad$.
So by syntax or semantics, there is k<r such that $\operatorname{Tn}((A, \vec{a})) \vdash \exists^{k} y \exists \vec{X}\left(\varphi^{\prime}(\vec{x}, y, \vec{a}) \wedge \psi(\vec{x})\right)$.
Now we take (A, \bar{a}) to be the principal expansion A^{\prime} of A that we wanted to find.

Then the formula $\overrightarrow{\exists x} \phi(\vec{X}, y, \vec{a})$ is a formula of $I(A)$ and is satisfied by infinitely many elements of \hat{A}^{*}.

It remains to show that every element of A^{\prime} satisfying $\exists \vec{x} \dot{\varphi}(\vec{X}, y, \vec{a})$ is algebraic in A^{\prime}.

So let $A^{\prime} k \vec{X} \vec{x}(\vec{X}, \vec{b}, \vec{a})$. But every n-tuple of \hat{A}^{\prime}
satisfies a principal n-type of $\operatorname{Th}(A)$, so there is some complete n-fiormula $\psi(\vec{X})$ of $\operatorname{Th}(A)$ such that
$A \vDash \equiv \vec{x}(\dot{\psi}(\vec{x}, b, \vec{a}) \wedge \psi(\vec{x}))$ 。
But from above, there is $k<\omega$ such that
$A \vDash \exists^{k} y=\vec{x}(\psi(\vec{x}, y, \vec{a}) \wedge \psi(\vec{x}))$, whereby $b \in c l\left(0, A^{\prime}\right)$.
This proves the theorem.

Proposition 35．Let A be a homogeneous model with a principal expansion（ A, \vec{E} ）which is minimal．Then A is minimal。

Proof．
L气t A be as in the hypothesis．Suppose that $B \leqslant \dot{A}$ ． As \vec{a} realises a principal type，there is $\vec{b} \in B$ such that $(B, \vec{b}) \equiv(A, \vec{a})$ ．Thus $(A, \vec{b}) \equiv(A, \vec{a})$ ，and so by nomogeneity of $A,(A, \vec{B}) \simeq(A, \vec{a})$ ．Thus (A, \vec{B}) is minimal．Eut $(B, \vec{B}) \leqslant(A, \vec{B})$ ，aná so $B=\dot{A}$ ．So A is minimal．

Corollary 36．Let A be a model with a principal expansion （A，\vec{a} ）which is minimal and prime．then A is minimal and prime。

Proof．
Firstly it is clear that，as (A, \vec{a}) is prime and \vec{a} realises a principal type in A ，then A must also be prime． Thus A is also homogeneous．The result now follows from Proposition 35.

Corollary 37．Let A have a principal expansion（A，A ） which is algebraic．Then A is minimal and prime．

Proof．
Note that（ $\mathrm{A}, \overrightarrow{\mathrm{a}}$ ）is minimal and prime．IVow use Coroll－ ary 36.

We are interested in the extent to which the implication in Corollary 37 can be reversed．Theorem 34 gives a partial result in this direction，by shoving that
a Erime minimal model has a principal expansion with a large affinable algebraic bit. In a special case we can get a stronger result.

First of all, we make some more definitions.

Definition 38. Let A be a model, and $\phi(x)$ a formula in $I(A)$. Then we say that $\phi(x)$ is minimal in ($A, a)_{a \in A}$ if
(i) $\{x \in A: A \vDash \phi(x)\}$ is infinite, and
(ii) for each formula $\psi(x ; \vec{y})$ of $L(A)$ and $\vec{a} \in A$, either
$\{x \in \dot{A}: A \vDash \phi(x) \wedge \psi(x ; \vec{a})\}$ is finite, or
$\{x \in A: A \vDash \varphi(x) \wedge \neg \psi(x ; \vec{a})\}$ is finite.

Then as in the literature, a complete theory T is said to be strongly minimal if for every model A of T, the formula ' $x=x$ ' is minimal in ($A, a)_{a \in A}$.

Eroposition 39. Let A be a incdel such that ' $x=x$ ' is minimal in (A, a $a_{G A}$. Then A is minimal and prime if and only if A has a principal expansion which is algebraic.

Proof.
One direction is given by Corollary 37.
For thendirection, let A be minimal and prime. Theorem 34 then gives us a tuple \vec{a} in A, and a formula $\phi(x)$ of $I((\dot{A}, \vec{a}))$, such that $\phi(\hat{A}, \vec{a})$ is infinite and is a subset of $c l(\vec{a}, A)$. As ' $x=x$ ' is minimal in ($A, a)_{a \in A}$, it must be the case that $\neg \phi^{(A, \vec{a})}$ is finite。
But then $A=\phi(A, \vec{a}) \cup \neg \phi(A, \vec{a}) \subseteq c l(\vec{a}, A)$.
Thus (A, \vec{a}) is algebraic.

Cowollary LC. Let T be a strorgly minimal theory. Then $\underset{T}{ }$ has a minimal model if ana orly if T has a principsl expansion T^{\prime} with an algebraic model。

It is interesting to note that the above Corollary can also be deduced from the farsh-Baldwin-Lachlan framework in the following way :

Assuming T to be strongly minimal, let A be a minimal model of T. A will be prime. If the (Baldwin-Lachlan) dimension of the universe in A is infinite, then every countable moael of T will have infinite dimension, whereby T will be λ_{0}-categorical. But this contradicts the fact that T has a minimal model. So A must have finite dimension. But this just means that there is a finite tuple $\vec{a} \in \dot{A}$, with (A, \vec{a}) algebraic.

It is easy to find exampies which show that the conclusion of Proposition 39 aoes not in general hola. We can just put together a lot of minimal models. For example, let our model consist of ω disjoint copies of $(\mathbb{Z},<)$, each copy distinguished by a unary predicate. Then the model is minimal, but it cannot be algebraic over any finite set.

2.2 The number of countable mociels.

There are very few examples known of theories with more than one, but only finitely many countable models. Such a theory would thus seem to be a patholozical case. horeover all the examples are more or less modificatiors of the original Ehrenfeucht example, which gives a theory T with $n(T)=3$. We now give this theory。

Example

Let $A=\left(A,<, a_{i}\right)_{i<w}$ be a countable model, where < is a dense linear ordering without enapoints, $A \vDash a_{i}<a_{j} \quad$ iff $i<j$, for all $i, j<\omega$, and the a_{i} are urbounded above in A. We put $T=T h(A)$. Then T has just three ccuntable models.

A is the prime model.
The 'midale model' A_{1} is such that
$\left\{X \in A_{1}: A_{1} \vDash a_{i}<x\right.$ for all $\left.i\right\}$ is non-empty and has a first element $c . A_{1}$ is actuaily prime over c. The third model A_{2} is saturated, and
$\left\{x \in A_{z}: A_{z} \vDash a_{i}<x\right.$ for all $\left.i\right\}$ is non-empty, but has no first element.

We take the opportunity to onserve that in the model A_{1}, if $a>c$, then d realises a principal type over c, but c aoes not realise a principal tyve over d. This is, in a sense, what is responsible for the fact that $n(T)=3$.

One can mocify the above Enaingle to get e larger finite number of countiable mocíls, by aciing for and n say, a set of n urary precicates P_{i}, i<n, which partition the model a, and each of which is dense in th. Then we get n 'miadle mociels', like A_{1}, but distinguished. from each other by which of the p_{i} holas for $c=\lim _{n<\omega} a_{n}$. Altogether therefore we have $n+2$ countable models.

Lachlan has modified the example in a slightly different way to obtain a theory T with $n(T)=6$. What he does is to add to the dense linear ordering two sequences of constants, one going up, and the other going down, and all the members of the first sequence less than all the members of the second. The countable models of the theory are then determined by whether the interval between the two sets of constants is empty, open, half-open,etc. Peretyat'kin[17] has given an example of a theory m with $n(T)=3$, by adaing a sequence of constants to a certain kina of dense tree. Moodrow [24] has shown that if T is a counciole complete theory in the same language as the Ehrenfeucht example, and with elimination of quantifiers, then $n(T)=3$ implies that T is very much like the Ehrerfeucht example. I show below that any theorv T such that $n(T)=3$, is 'sinilar to' the Ehrenfeucht example.

Some other studies have been made of theories with
more than one but finitely many countable models. Rosenstein[18] showed that any such theory has a countable model which is not saturated, but realises all types of the theory. Benda[2] has shown.that, if, not only T but also every
complete extension of T by finitely many constants, has only finittly many countable models, and T is not λ_{0}-categorical then I has a countable universal model which is not saturated. This method of placing conditions on all simple extensions of a theory, is rather artificial, but erables one to prove results by iterating certain constructions. We examine later on, what happens when every complete simple extension of a theory is algebraic.

There have been only a few non-trivial results telling us when a theory has infinitely many countable models. Baldwin and Lachlan[1] proved that if T is γ_{1}-categorical and not λ_{0}-categorical, then $n(T)=N_{0}$. Lachlan[13] strengthened this by proving that if T is superstable and not λ_{0}-categorical, then $n(T) \geqslant \lambda_{0}$. Both proofs rely very heavily on the stability of the theories in question, and the proof of the former result relies a lot on the existence of a strongly minimal formula in a principal extension. we woula like to prove results without any stability assumptions. Lascar [14] proves essentially that if every complete simple extension of a theory T is algebraic, then $n(T) \geqslant \lambda_{0}$. This follows from some lemmas that he proves on Cantor-Bendixon ranks of types of the theory. I will rework some of the Lascar material in a more model-theoretic way, proving an interesting exchange result while doing so.

However if we place algebraicity conditions only on the prime model of the theory, then it looks to be much more difficult to prove that there are many countable models. I get some comparatively weak results below.

And from the proofs of these results, it seems that any attempt to push the results further will involve one in many combinatorial problems.

However, I first present a Eeneral schema for obtaining non-isomorphic countable models.

2.2 I \& general framework for getting models.

Let us first note that if all the countable models of a complete theory are homogeneous, then the theory must have infinitely many countable models. This follows at once from Rosenstein's result mentioned above, for if a countable full model is homogeneous, then it must be saturated. However, this criterion is not all that helpful, for there are an abundance of theories with infinitely many countable models, not all of which are homogeneous. Look, for example at the theory $T=\operatorname{Th}((z,<))$. We get lots of countable models of T by adding extra copies of Z. However, the model $\mathbb{Z}+\mathbb{Z}$ is not homogeneous. For any element in the first copy realises the same type as any element in the second copy, but there can be no automorphism of the model taking the one element to the other. A more helpful observation which is concerned rather with relative homogeneity, is the following-

Lemma 41. Let T be a complete theory which is not λ_{0} categorical. Suppose that if $A \vDash T$, \vec{a} is a finite sequence

Irom A, and (A, \vec{Z}) is prime, then for all \vec{b} in A of the same length as $\vec{a},(A, \vec{a}) \equiv(A, \vec{B})$ implies that $(A, \vec{C}) \approx(A, \vec{B})$. Then $n(T) \geqslant \lambda_{0}$.

Proof.
First we may assume that T has $\leqslant \lambda_{0}$ e-types, for all $n<\omega$. For otherwise we will have to have more than countably maxy countable models, to fit in all these types. It also follows that any complete simple extension of T has only χ_{0} types. Thus, every complete simple extension of T has a prime model.

Now, as T is not X_{0}-categorical, T has infinitely many n-types for some $n<\omega$. W.n.l.O.g. assume n to be 1. So let $p_{1}\left(x_{1}\right)$ be a non-principal 1-tgpe of T. Let c_{1} be a new constant. Then again $T_{1}=T \cup p_{1}\left(c_{1}\right)$ has infinitely many 1-types, so we can find $p_{2}\left(c_{1}, x\right)$ a mon-principal 1type of T_{1}. Proceeding inductively, we can thus find e-types $p_{n}\left(x_{1}, \ldots x_{n}\right)$ of T, for $1 \leqslant n<\omega$, and corresponding theories $T_{n}=T \cup P_{n}\left(c_{1}, \ldots c_{n}\right)$, such that, for alla $p_{n}\left(x_{1}, \ldots x_{n}\right) \subseteq p_{n+1}\left(x_{1}, \ldots x_{n+1}\right)$, and $p_{n+1}\left(c_{1}, \ldots c_{n}, x\right)$ is a non-principal 1-type of T_{n}.

Now, for each n let A_{n}^{\prime} be a prime model of T_{n}, and let A_{n} be the $L(T)$-reduct of A_{n}^{\prime}. Esch A_{n} is then a countabIe model of T, and we assert that $m \ldots$ implies that $A_{\text {m }}$ is mot isomorphic to A_{n}.

Suppose, by way of contradiction, that for some n $A_{n} \propto A_{n+1}$ - As A_{n+1}^{\prime} is a model of T_{n+1}, then there are $c_{1}, \ldots c_{n+1}$ in A_{n} such that $\left(A_{n}, c_{1}, \ldots c_{n+1}\right) \vDash T_{n+1}$. But there ${ }^{\text {ar }} b_{1}, \ldots b_{n}$ is A_{n} such that $\left(A_{n}, b_{1}, \ldots b_{n}\right)$ is a prime model of T_{n}. By construction of the T_{i},
$\left(A_{n}, b_{1}, \ldots b_{n}\right) \equiv\left(A_{n}, c_{1}, \ldots c_{n}\right)$, whereby $\left(A_{n}, b_{1}, \ldots b_{n}\right) \propto\left(A_{n}, c_{1}, \ldots c_{n}\right)$, by the conditions of the lemme. So ($A_{n}, C_{1}, \ldots C_{n}$) is prime. But this contradicts the fact that c_{n+1} realises a non-principal type over $\left(c_{1}, \ldots c_{n}\right)$ in A_{n}.

Thus it is easy to see that $\left\{A_{\text {m }}: 1 \leqslant\right.$ w ω \} is a set of pairwise mon-isomorphic countable models of T.

Along sinilar lines we heve :

Lemma 42. Let T be complete theory which has a model A such that : 1) A is mot prime
2) there is a finite tuple $\overrightarrow{\text { a }}$ in A such that ($A, \overrightarrow{\beta_{0}}$) is prime, 3) for any \vec{B} in A such that $(A, \vec{a}) \equiv(A, \vec{b})$, it is the case that $(A, \vec{B}) \approx(A, \vec{B})$.

Then $(T) \geqslant 4$.
Proof.
We may assume that T has a prime model and a countable saturated model. These campot be isomorphic, as the conditions of the lema imply that T has a mon-principal type. Let $p(x)$: ee the type of in A. Then $p(x)$ is nonpriacipal. Let $q(X, \vec{F})$ be a type of T which is mon-principal over $p(\vec{x})$ and extends $p(\vec{x})$ (i.e. $p(\vec{x}) \subseteq q(\vec{x}, \vec{y})$ and $q(\vec{b}, \vec{y})$ is a mon-primeipal type of $T \cup p(\vec{b})$). Let (B, \vec{b}, \vec{c}) be a prime model of $T \cup q(\vec{b}, \vec{c})$. Then, as in the proof of Lema 41, A and B are mon-isomorphic countable models of T. Also, 28 in the proof of Theoren 24, meither A mor B can be prime or saturated. Thus T has at least four countable models.

Definition 43. Let A be a model, and \vec{E} and \vec{b} finite tuples Irom A. We say that \vec{B} is primeipal over in A, if \vec{B} realises a principal type in (A,z).

The following leman is widely known.(e.g. Benda[2])

Leman 44. Let ($A, \overrightarrow{2}$) be prine. Suppose that $\vec{b} \in A$ and \vec{i} is primeipal over \vec{b} in A. Then (A, \vec{b}) is prime. Proof.

Let $\vec{C} \in A$. We show that \vec{c} realises a primcipal type in (A, \vec{b}). Firstly, there is a formula $\phi(\vec{x}, \vec{x}, \vec{y})$ which gemerates the type of (\vec{b}, \vec{C}) in (A, \vec{a}). Let $\psi(\vec{b}, \vec{z})$ gemerate the type of \vec{a} in (A, \vec{B}). Then it is quite easy to see that the formula ($\exists \vec{z})(\psi(\vec{b}, \vec{z}) \wedge \phi(\vec{z}, \vec{b}, \vec{j}))$ gemerates the type of C in (A, \vec{b}). So \vec{c} realises apincipal type in (A, \vec{b}). $A s \vec{C}$ Was an aribitrary finite tuple fron A, it follows that (A, \vec{b}) is prime.

Observation 45. It follows that if (A, x) is prine, $(A, \vec{a}) \equiv(A, \vec{b})$, and \vec{a} is principal over \vec{b}, then $(A, \vec{a}) \propto(A, \vec{F})(a s$ both these models will we prise models of the same complete theory).

Note also that if (A, \vec{a}) is prime, then any \vec{b} in A is already principal over \vec{a} in A. So we can see already that the problem of getting non-isomorphic countable medels has been reduced to the problem of proving exchange results of the following sort : if \vec{a} and $\vec{\theta}$ are finite tuples from a model A, and $(A, \vec{a}) \equiv(A, \vec{b})$, then \vec{a} principal over \vec{b} implies that \vec{b} is principal over \vec{a}.

2.2 II Gettirg infinitely many modele.

We will first define the 'Cantor-Bendixson' rank on the types of a theory. So let us fix a complete theory T. Let $S_{n}(T)$ denote the set of (complete) m-types of T.

Definition 46. (i) We define for each ordinal α, a subset $S_{n}^{\alpha}(T)$ of $S_{n}(T)$ by :

1) $S_{n}^{0}(T)=S_{n}(T)$.
2) For δ a limit ordikal, $S_{n}^{\delta}(T)=n S_{n}^{\alpha}(T)$.
3) $S_{n}^{\alpha+1}(T)=\left\{p: p \in S_{n}^{\alpha}(T)\right.$ and for all $\phi \in p$ there is $q \in S_{n}^{\alpha}(T)$ such that $q \neq p$ and $\phi \in Q\}$
(ii) If $p \in S_{n}(T)$, then we define

Rank $_{n} p=$ the least α such that $p \in S_{n}^{\alpha}(T)$, if there is such an α. Otherwise Rank $p=\infty$.
(iii) We also define with no confusion raxks and degrees of formulae, with respect to T. So let ϕ be an n-Formula consistent with T. Then

Rank $_{n} \phi=\sup \left\{\alpha:\right.$ there is $p \in S_{n}^{\alpha}(T)$ with $\left.\phi \in p\right\}$, if such a sup exists. Otherwise Rank $n_{n}=\infty$.

If $\operatorname{Rank}_{n} \phi=\alpha$, then we define $\operatorname{Deg}_{n} \phi=\left|\left\{p \in S_{n}^{\alpha}(T): \phi \in p\right\}\right|$.

The following facts are then easy to prove.

Iemma 47. (i) Suppose that ϕ is an n-formula; $p \in S_{n}(T)$ and $\phi \in p$. Then Rantin $p \leqslant$ Rackin ϕ.
(ii) Suppose that Rack $p=a<\infty$. Then there is an eformula ϕ such that $\mathrm{Rank}_{n} \phi=\alpha, \operatorname{Deg}_{n} \phi=1$, and p is generated over T by $\{\phi\} \cup\{\neg \psi: \psi$ is an m-formula, $T \vdash \psi \rightarrow \phi$, axd Rank $\left._{n} \psi<\alpha\right\}$.
(iii) Suppose that $p \in S_{n}(T)$ and that p is gemerated over
 Then Rank $p<\boldsymbol{\alpha}$.

We also mote the following.

Observation 48. (1) Let $p \in S_{n}(T)$. Then Rank $p=0$ if and only if p is a principal n-type of T. (ii) Let ϕ be an n-formula. Then Rank $\phi=1$ axd Degn $\phi=1$ if asa only if ϕ is mininal, where by ϕ being minimal we nean that

1) there are infinitely many complete n-formula ψ such that $T \vdash \psi \rightarrow \phi$, and 2) if ϕ^{\prime} is any m-formula, then either there are only finitely maxy complete m-formula ψ euch thit

$$
T \vdash \psi \rightarrow \phi \wedge \phi^{\prime}
$$

or there are oxly finitely man complete m-formula ψ such that $\quad T \vdash \psi \rightarrow \phi \wedge \neg \phi^{\prime}$

Baldwin and Lachlan[1] prove an exchange result for strongly mininal formalae, one case of which is : if $\phi(x)$ is strongly minimal in a theory T, $A \vDash T, a, b \in A, A \vDash \phi(a), a \notin c l(0, A), b \in c l(0, A)$, then $b \in c l(\{a\}, A)$ implies that $a \in c l(\{b\}, A)$.

This, however, does not hold for minimal formulae as defined above, even when all elements of the prime model of the theory are maned. Look at the following example for instance:

Let $A=(A, R)$ be a courtable model, where R is a binary relation on A. $R(x, y)$ "says" that y is an innediate successor of x. Under the induced orderiag A is a tree with a first element, such that every element at the ath level has exactly m+2 imediste successors. Every element is at level n for some \quad 人 ω. All elements of A are naned by coastants. Let $T=\operatorname{Th}(A)$. Then ${ }^{\prime} x=x^{\prime}$ is minimal for T. Let $B \neq T$, and $B \neq A . A \leqslant B$ in the obvious way. Let beB-A. Then has a uaique imediate predecessor a, whereby a is algebraic orer b. But a is in B-A, and so has infinitely many immediate successors. So bis not algebraic over a.

We can prove a weaker exchange reault, which however, holds between any two tuples whose types are of the sane Cantor-Bereixson rank less than infinity.

For the next few results, let \mathbf{x} be an \mathcal{N}_{0}-saturated model of a complete theory T. Any tuples we talk about
 the n-type realisec by in \mathbf{x}. Ranks and degrees of types and formulae will be ebviously relative to T. Any countable model of T will be isonerphic to an elenentary substructure of y. So Lemmas 49 and 50 felloving, are valia if we are working insiae any countable model of T. Before we can prove the exchange result, we need the following lema :

Lemma 42. Let \vec{a} and \vec{b} be n and m-tuples respectively, such that $\operatorname{Rank}_{n} \operatorname{tp}(\vec{a})=\alpha<\infty$, and \vec{b} ie algebraic over a. Then Rank $\operatorname{tp}(\vec{b}) \leqslant \alpha$.

Proos.
We prove the lema by induction on α.
It is clearly true for $\alpha=0$.
Now suppose the lemma is true for all $\beta<\alpha$. Let \vec{a}, \vec{b}, be tuples as in the hypothesis. Let k be the least aatural number such that there is a formula $\psi(\vec{x}, \vec{y})$ ane

Then $\psi(\vec{a}, \vec{y})$ generates the type of \vec{j} over \vec{a}.
Now $\operatorname{tp}(\vec{a})$ is generated over T by
$\{\phi(\vec{x})\} \cup\left\{\neg \phi_{i}(\vec{x}): 1<\omega\right\}$,
where $\operatorname{Rank}_{n} \phi=\alpha$, $\operatorname{Deg}_{n} \phi=1$, and Rankn $\phi_{i}<\alpha$ for all.i. So $T \cup\{\phi(\vec{x})\} \cup\left\{\neg \phi_{L}(\vec{x}): i<\omega\right\} \vdash \exists \vec{z} \psi(\vec{x}, \vec{y})$.

By compactress there is r<w such that
$T \cup\{\phi(\vec{x})\} \cup\left\{\neg \phi_{i}\left(\frac{\vec{x}}{x}\right): 1=0, \ldots r\right\} \vdash \exists \exists \vec{y} \psi(\vec{x}, \vec{y})$
Consider the following set of formulae :
$Z(\vec{y})=\left\{(\exists \vec{x})\left(\phi(\vec{x}) \wedge_{i=0 . .} \phi_{i}(\vec{x}) \wedge \psi(\vec{x}, \vec{y})\right)\right\} u$

$$
\left\{\neg(\exists \vec{x})\left(\phi_{j}(\vec{x}) \wedge \widehat{i=a_{i}} \neg \phi_{i}(\vec{x}) \wedge \psi(\vec{x}, \vec{z})\right): r<j<\omega\right\}
$$

 Σ we can see that there must be an m-tuple $\mathbf{a}^{\prime \prime}$ With

$$
\operatorname{tp}\left(\vec{a}^{\prime}\right)=\operatorname{tp}(\vec{a}) \text { and } \quad k \vDash \psi\left(\vec{a}^{\prime}, \vec{b}^{\prime}\right)
$$

But then, as $\psi(\vec{a}, \vec{y})$ generates the type of \vec{b} over \vec{a}, it is clear that $\operatorname{tp}\left(\overrightarrow{\mathrm{b}}^{*}\right)=\operatorname{tp}(\vec{b})$.

Thus $\operatorname{tp}(\vec{b})$ is determined by $\Sigma(\vec{y})$ over T.
Look now at one of the formulae

$$
\sigma_{j}(\vec{y})=(\exists \dot{x})\left(\phi_{j}(\dot{x}) \wedge_{i=Q \ldots r} \neg \phi_{i}(\dot{x}) \wedge \psi(\vec{x}, \vec{y})\right) \quad \text { where } j>r
$$

We mey suppose $\sigma_{j}(\mathcal{y})$ to be consistent, so it is satisfied by some \vec{d}.

But then there is \vec{c} such that
$\mathbf{k} \vDash \phi_{j}(\vec{c}) \wedge \bigcap_{i=0} \ldots \phi_{i}(\vec{c}) \wedge \psi(\vec{c}, \vec{d})$. From (*), it follows that
$M \vDash \exists \exists^{*} y(\vec{C}, \vec{y})$, whereby \vec{a} is algebraic over \vec{c}. Let p be the type of \vec{c}. Then $\phi_{j} \in p$. But Rank $\phi_{j}<\alpha$, so by Lemma 47, Rank $p<\alpha$. But then, by the induction hypothesis Rank $\operatorname{tp}(\vec{\alpha})<\alpha_{0}$ So, for all satisfying $\sigma_{j}(\vec{y})$, Rank $m_{m}(\overrightarrow{\mathbf{a}})<\alpha$.

Therefore Rank $\sigma_{j}<\alpha$.
So the type of \vec{b} is generated over T my one formula, and a set of negations of formulae of rank less than α. So, from Lemma 47, Rankmph B_{m}) \leqslant.

Thus the leman is proved.

We can now prove the exchange result that we have been aiming for. This result actually follows from some lemmas on ranks in Lascar[14]. But it is not clear whether he noticed it in this form. Anyway, our proof here will be rather more longwinded, as an introduction to techniques used in the next section.

Lema 50. Let \vec{a} and \vec{b} be and n-tuples respectively, such that $\operatorname{Rank}_{\mathrm{m}} \operatorname{tp}(\vec{a})=\operatorname{Rank}_{n} \operatorname{tp}(\vec{b})=\alpha<\infty$.
Then \vec{b} algebraic over \vec{a} implies that \vec{a} is principal ever \vec{b}. Proof.

Let $p(\vec{x})$ be the type of \vec{a}, and let $\psi(\vec{a}, \vec{y})$ gemerate the type of \vec{b} over $\overrightarrow{a_{0}}$.

Se $u \vDash \psi(\vec{a}, \vec{i})$ and $T \cup p(\vec{x}) \vdash \exists \vec{z} \psi(\vec{x}, \vec{y})$ for some $k<\omega$.

First of all, let us note that if there were a formula $\sigma(\vec{x}, \vec{b})$ such thet $\mathcal{N} \sigma(\vec{a}, \vec{b})$, and such that $\mu \vDash \psi(\vec{x}, \vec{b}) \wedge \sigma(\vec{x}, \vec{b}) \rightarrow \theta(\vec{x})$ for all $\theta(\vec{x})$ in $p(\vec{x})$, then \vec{a} would realise a principal type over \vec{b},generated ly

$$
\dot{q}(\vec{x}, \vec{w}) \wedge \sigma(\vec{x}, \vec{w}) .
$$

For let $\psi^{\prime}(\vec{x}, \vec{b})$ be a formula. By the completeness of the formula $\psi(\vec{a}, \vec{y})$, we inave that either
(i) $\quad \mathbb{K} \vDash(\forall \vec{y})\left(\psi(\vec{a}, \vec{y}) \rightarrow \psi^{\prime}(\vec{a}, \vec{y})\right)$
or
(ii) $\quad \mu \vDash(\forall \vec{y})\left(\psi(\vec{a}, \vec{y}) \longrightarrow \rightarrow \psi^{\prime}(\vec{a}, \vec{y})\right)$.

Suppose (i) te be the case.
Now suppose that $k \vDash \psi\left(\vec{a}^{\prime}, \vec{b}\right) \wedge \sigma\left(\vec{a}^{\prime}, \vec{b}\right)$. Then \vec{a}^{\prime} realises $p(\vec{x})$ and se has the same type as \vec{a}.

So by (i) we have that $k \neq \psi^{\prime}(\vec{a}, \vec{b})$.
Thus $\quad x k(\forall \vec{y})\left(\psi(\vec{x}, \vec{b}) \wedge \sigma(\vec{x}, \vec{v}) \rightarrow \psi^{\prime}(\vec{x}, \vec{b})\right)$.
Sinilarly, if (ii) is true, then
$\mathbf{\mu} \vDash(\forall \vec{y})\left(\psi(\vec{x}, \vec{b}) \wedge \sigma(\vec{x}, \vec{b}) \rightarrow \neg \psi^{\prime}(\vec{x}, \vec{b})\right)$.
So the above note is established.
Now $p(\vec{x})$ is generated over T by
$\{\phi(\vec{x})\} \cup\left\{\neg \phi_{i}(\vec{x}): i<\omega\right\}$, where
Rank $_{m} \phi=\alpha, \operatorname{Deg}_{m} \phi=1$, and Rank $\phi_{i}<\alpha$ for all $i<\omega$. Ey compactness, there is $n<\omega$ such that
$T \cup\{\phi(\vec{x})\} \cup\left\{\neg \phi_{i}(\vec{x}): i<n\right\} \nmid \exists \exists^{k} y(\vec{x}, \vec{y})$
Now suppese that fer all $j \geqslant n$
$M \vDash\left(\psi(\vec{x}, \vec{b}) \wedge \phi(\vec{x}) \wedge \bigwedge_{i<n} \neg \phi_{i}(\vec{x})\right) \rightarrow \neg \phi_{j}(\vec{x})$
Then, the formula $\psi(\vec{x}, \vec{b}) \wedge \phi(\vec{x}) \wedge \bigwedge_{i<n} \neg \phi_{i}(\vec{x})$ would determine the type of \vec{x} as being $p(\vec{x})$, whereby from what we noted above, \vec{a} would be principal over \vec{b}, and the lemma would be proved. So let us assume that for some $f \geqslant n$
$\psi \vDash(\exists \vec{x})\left(\psi(\vec{x}, \vec{b}) \wedge \phi(\vec{x}) \wedge \widehat{i<n} \neg \phi_{i}(\vec{x}) \wedge \phi_{j}(\vec{x})\right)$.
So for some $\vec{c}, k \not k \psi(\vec{c}, \vec{b}) \wedge \phi(\vec{c}) \wedge \widehat{i<n ~} \neg \phi_{i}(\vec{c}) \wedge \phi_{j}(\vec{c})$.
But then, by (*), \vec{E} is algebraic over \vec{c}.
Also, as $M \neq \phi_{j}(\vec{c})$ and Rank ϕ_{j} < α, we have thet Rank $_{m} \operatorname{tp}(\vec{c})<\alpha$.

But then by Lemma 49, Rank $\operatorname{tp}_{\mathrm{n}}(\vec{b})<\alpha$.
This is a contradiction, and thus the theorem is proved.

We can now apply this lemma to the results of the preceding section to prove the following theorem, which is essentially due to Lascar[14] .

Theorem 51. Let T be a complete theory, such that every complete extension of T ky finitely many constants is algebraic. Then $n(T) \geqslant \lambda_{0}$. Preof.

Firstly, we may as usual assume that T has not more than γ_{0} n-types, for all $n<\omega$. It follows easily from this that Rank $p<\infty$, for every n-type p of T.

Now let $A=T$, and \vec{a} a finite tuple from A such that (A, \vec{a}) is prime.

Then, by the conditions of the theorem,

$$
(A, \vec{a}) \text { is algebraic. }
$$

Suppose that $\vec{b} \in \mathbb{A}$ and $(A, \vec{a}) \equiv(A, \vec{b})$.
Then \vec{b} is algebraic over \vec{a}, and the types of the two tuples being the same, must have the same rank. Thus from Lemma 50, \vec{a} is principal over \vec{b}, whereby

$$
(A, \vec{a}) \propto(A, \vec{b}) .
$$

The theorem now follows from Lemma 41.

The following proposition is implicit in the proof of the above theoren. It is, however, an elegant expression of the exchange result developed in this section, and prorides an almost unqualified generalisation of the notion of aimension which is found in, for example, algebraically closea fields.

Proposition 52. Let A be a model which is algebraic over a finite tuple \vec{a}, where the type of \vec{a} in A has rank less than infinity. Then A is algebraic over any other \vec{i} in A which realises the same type as \vec{a}.

Certain inportant classes of theories can be extenaed to complete theories which antisfy the hypothesis of Theorem 51. Thus, for example:

Corollary 53. Let T be a countable theory with Skolem functions. Then $n(T) \geqslant N_{0}$.

In ract, as Lascar notes, it is enough that a theory T have a simple extension satisfying the conditions of Theoren 51. For then, in builaing our non-isonorphic countable models of T, we just ensure that all these models realise the type which defines the simple extension. Using this fact, and through the mediating property of the strong elementary intersection property, Lascar proves :

Theorem 54. Let T be a countable theory which is convex and model-complete. Then $n(T) \geqslant N_{0}$.

2. 2 III Getting at leest four mocele.

We now examine what happens when we place conaltions only on the prime model of a theory. In this case, results are more aifficult to come by. We use the same techniques as in the previous section, namely proving exchange results, but the proofs are not as immediate.

We first look at the situation in which $n(T)=3$. We know that in this case, the countable models consist of a prime, a saturated, and a 'midele' model. Recall that in the Ehrenfeucht example, the nidale model A_{1} is prime over an element c, where $c=\lim _{n<w^{2}}{ }_{n}$. I now show that for any theory T for which $n(T)=3$, a sinilar situation holds.

Theorem 55. Let T be a complete theory such that $h(T)=3$. Suppese that T has infinitely many 1-types. Then there is a formula $\phi(x)$, formulae $\phi_{b}(x)$ for $i<\omega$, and a formula $\psi(x, y)$ such that

1) If A is the prime model of T, then
$\phi i_{i}^{A} \subseteq \phi^{A}$ for all $i<\omega$, $\phi_{i}^{A} \cap \phi_{j}^{A}=0$ for all ifj, and the relation " $\phi_{i}^{A}<\phi_{j}^{A}$ " which we define to hold if and only if $A \vDash \exists x \exists y\left(\phi_{b}(x) \wedge \phi_{j}(y) \wedge \psi(x, y)\right)$, is a total ordering such that $\phi_{i}^{A}<\phi_{j}^{A}$ iff $i<j$.
2) If B is the nidale nodel of T, then B is prime over an element $c \in B$, where
a) $\mathbb{E} \vDash \phi(c)$; and
b) $c=\lim _{n<\omega} \phi_{n}^{B}$ in ϕ^{B}, in the sense that $\mathbf{B} \vDash \exists x \in \phi_{n}(\psi(x, c))$ for all $n<\omega$, and if
for some $d \in \mathbb{B}, B \vDash \phi(d)$ and $B\left(\exists x \in \phi_{n}\right)(\psi(x, d))$ for all $n<\omega$, then $B \vDash \neg \psi(d, c)$.

Proof.

(Let us first note that if $n(T)=3$, then T must have infinitely many n-types for some $n<\omega$. We have taken n to be 1. In the general case the prool below will give the same conclusion, but for n-formulae and n-tuples, rather than for 1-formulae and single elements.)

So let T be as in the hypothesis of the theoren. Then as usual, for any type $p(\vec{x})$ of $T, T \cup p(\vec{c})$ has a prime model. Also T must have a mininal 1 -formula (where by minimal we mean the same as in Owservation 48). For, if not, we can by a tree argument, get $2^{N_{0}} 1$-types, which would give us too nany countable nodels.

So let this minimal formula be $\phi(x)$.
Let $\left\{\psi_{h}(x): i<\omega\right\}$ be the set of complete 1 -formulae of I such that $T \vdash \psi_{i} \rightarrow \phi$. Then $i \neq j$ implies that

$$
T \vdash \neg(\exists x)\left(\psi_{i}(x) \wedge \psi_{j}(x)\right) .
$$

Also, $\{\phi(x)\} \cup\{\neg \psi(x): i<\omega\}$ determine a complete 1-type of T, wherely $T_{c}^{\prime}=T \cup\{\phi(c)\} \cup\left\{\neg \not h_{1}(c): i<\omega\right\}$ is a complete theory.

Let A be the prime model of T, and let (B, C) be the prime model of T_{c}^{\prime}. Then $A \vDash(\forall x)\left(\phi(x) \leftrightarrow \bigvee_{i<\omega} \psi_{i}(x)\right)$. B must be the midale model of T, as a nen-principal type is realised in B, and B is not saturated.

Also, by Lemma 42, there must be an element a in B, such that $(B, C) \equiv(B, d)$ but not $(B, C) \propto(B, d)$. But then d is principal over c, whereas c is not principal over d. As d is principal over c, there is a formula $\psi(c, x)$ which generates a principal 1-type of T_{c}^{\prime} and such
that $B \vDash \psi(c, a)$.
Put $T_{a}^{\prime}=\operatorname{Th}((B, d))$. Then T_{d}^{\prime} is the same as T_{c}^{\prime} but with c replaced by d.

Now suppose that there were a formula $\psi^{\prime}(y, a)$,
consistent with T_{d}^{\prime} such that

$$
T_{a}^{\prime} \vdash \psi^{\prime}(y, d) \rightarrow \psi(y, a) \wedge \phi(y) \bigwedge_{i<\omega} \neg \psi_{L}(y) .
$$

Then as in the proof of Theorem 50, $\psi^{\prime}(y, a)$ would be a complete 1 -formula of T_{d}^{\prime} satisfied in $B \mathrm{ky} c$, whereby c would be principal over d. Thus there is no such formula $\psi^{\prime}(y, a)$. So, in particular
(i) $X=\left\{i<\omega: B \in \exists x\left(\psi_{l}(x) \wedge \psi(x, a)\right)\right\}$ is infinite, for if not then $\psi(y, a) \wedge \widehat{i} \in X \neg \psi_{i}(y)$ would do the job of $\psi^{\prime}(y, a)$. And also
(ii) By the Omitting types theorem, T_{d}^{\prime} has a model omitting the set

$$
\Sigma(y, a)=\{\psi(y, a)\} \cup\{\phi(y)\} \cup\left\{\neg \psi_{b}(y): 1<\omega\right\} .
$$

Now as T_{c}^{\prime} is just the same as T_{d}^{\prime}, and as (B, C) is a prime model of T_{c}^{\prime}, then the set X is also equal to

$$
\left\{1<\omega: B \in \exists x\left(\psi_{1}(x) \wedge \psi(x, c)\right)\right\},
$$

and (B, C) omits the set of formulae $\Sigma(y, c)$.
Note that, by compactness, for any formula $\theta(x)$ of $L(T)$, $T_{c}^{\prime} \vdash \theta(c)$ if and only if $\left\{J<\omega: A \vDash \psi_{j}(y) \rightarrow \theta(y)\right\}$ is a cofinite set of natural numbers.

Also note that, as $B \neq \psi(c, a), \psi(c, x)$ is a complete 1-formula of T_{c}^{\prime}, and $(B, d) \equiv(B, C)$, then

$$
T_{c}^{\prime} \vdash \psi(c, x) \rightarrow \phi(x) \wedge \neg \psi_{l}(x) \quad \text { for all } 1<\omega
$$

So, by compactness, for each finite $Z_{1} \subseteq \omega$, there is a finite $\Sigma_{2} \subseteq \omega$ such that
$T \cup\{\phi(c)\} \cup\left\{\neg \psi_{i}(c): 1 \in Z_{2}\right\} \vdash \psi(c, x) \rightarrow \phi(x) \wedge \bigwedge_{j \in Z_{1}} \neg \psi_{j}(x)$.
And finally note that from (1) and the definition of x, it follows that, if if X then
$X_{i} \equiv\left\{j<\omega: A \vDash \psi_{j}(y) \rightarrow(\exists x)\left(\psi_{h}(x) \wedge \psi(x, y)\right)\right\}$ is a cofinite set.

We now define inductively $i_{n} \in X$, for $n<\omega$, such that

Suppose that i_{n} has been defined. As $i_{n} \in X$, we have by (3) that $X_{i_{n}}$ is cofinite.
By (2) there is a finite $z \subseteq \omega$ such that if
$T \cup\{\phi(c)\} \cup\left\{\neg \psi_{j}(c): y \in Z\right\} \vdash(\exists x)\left(\psi(c, x) \wedge \psi_{l}(x)\right)$ then $i \in X_{i_{n}}-\left\{i_{n}\right\}$.
Then $Y=X_{b_{n}} \cap(\omega-z) \cap\left(X-i_{n}\right)$ is an infinite set. We choose $i_{n+1} \in Y$.

Note that, by the completeness of the 1 -formulae ψ_{i},
we have that for all $i, j<\omega$, $i \neq j$,

$$
\begin{array}{ll}
T \vdash\left(\forall x \in \psi_{l}\right)\left(\exists y \in \psi_{j}\right)(\psi(x, y)) & \text { if and only if } \\
T \vdash\left(\forall y \in \psi_{j}\right)\left(\exists x \in \psi_{l}\right)(\psi(x, y)) & \text { if and only if } \\
T \vdash\left(\exists x \in \psi_{l}\right)\left(\exists y \in \psi_{j}\right)(\psi(x, y)) . &
\end{array}
$$

It is now easily seen that i_{n+1} satisfies the induction condition. Thus the definition of the i_{n} can be carried out.

We now put ϕ_{k} to be $\psi_{h_{k}}$ for all $k<\omega$.
Let $k<m<\omega$. Then $X_{i_{m}} \cup\left\{i_{m}\right\} \subseteq X_{i_{k}}-\left\{I_{k}\right\}$. As $i_{m} \in X_{i_{k}}$ we have $A \vDash\left(\exists x \in \phi_{k}\right)\left(\exists y \in \phi_{m}\right)(\psi(x, y))$. As $i_{k} k X_{l_{m}}$ we have $A \vDash\left(\exists x \in \phi_{k}\right)\left(\forall y \in \phi_{m}\right)(\neg \psi(y, x))$, but then by the completeness of ϕ_{k},
$A \vDash \neg\left(\exists x \in \phi_{k}\right)\left(\exists y \in \phi_{m}\right)(\psi(y, x))$.

So part 1) of the theorem is proved. For part 2) we have to show that there is ne element in B such that $B \in \psi(b, c), B \in \phi(b)$, and
$B \vDash(3 x)\left(\phi_{i}(x) \wedge \psi(x, t)\right)$ for all $i<\omega$.
But this follows immediately from the fact that (B, C) omits $\Sigma(y, c)$, and frem the fact that there can be ne ψ_{j} for which $\left\{i<\omega: A \vDash(\exists x)(\exists y)\left(\psi_{i}(x) \wedge \psi_{j}(y) \wedge \psi(x, y)\right)\right\}$ is infinite for then we would have $T_{c}^{\prime} \vdash(\exists y)\left(\psi_{j}(y) \wedge \psi(c, y)\right)$, which is impossible.

This completes the proof of the theoren.

We now come to the main regult of this chapter. We would like to be able to prove that if a theory T has a prime model A with an infinite definable subset X such that $X \subseteq c l(0, A)$ (i.e. all elements of X are algemraic), then $n(T) \geqslant 4$. However, we have as yet only been able to prove this in the special case that every element of X is algebraic 'of degree at mest two'.

Thecren 56. Let T be a complete theory, with a model A and a formula $\phi(x)$ such that, ϕ is infinite, and for every $a \in \phi^{A}$ there is a formula $\psi(x)$ such that

$$
\begin{aligned}
& A \vDash \psi(a) \text { and } A \vDash \exists^{\leqslant 2} x \psi(x) . \\
& \text { Then } n(T) \geqslant 4 .
\end{aligned}
$$

Proof.
We may assume that T has a prime model, and that A is this prime nodel. Alse we may assume that T has a minimal 1-formula $\psi(x)$ such that $T \vdash \psi(x) \rightarrow \phi(x)$.

We will assume, for ease of notation, that $\psi(x)$ is ' $x=x^{\prime}$. Let $\left\{\phi_{l}(x): 1<\omega\right\}$ be the set of complete 1 -fermulae of T. Then it follows that for each $i<\omega, A \neq \exists^{\leqslant 2} x \phi_{i}(x)$, and for each $a \in A$ there is $1<\omega$ with $A=\phi_{l}(a)$.

By minimality of ${ }^{\prime} x=x^{\prime}, T_{c}^{\prime}=T \cup\left\{\neg \phi_{i}(c): i<\omega\right\}$ is a complete theory. Let (B, C) be a prime model of T_{c}^{\prime}. Se C realises a non-principal type of T in B, wherety B is not a prime model of T. Therefere, by Lemma 42 , to show that $n(T) \geqslant 4$, it is enough to show that if $d \in B$ and
$(B, d) \equiv(B, C)$, then c is principal over d in B. So let deB, and (B,d) $\equiv(B, C)$. As a realises a principal 1-type in (B, C), there is a complete 1 -formula $\psi(c, x)$ of T_{c}^{\prime} such that $B F \psi(c, d)$.

Let $X=\{i<\omega: \mathcal{E} \neq \exists x(\phi)(x) \wedge \psi(x, a))\}$. It is clear that $\phi_{i}^{B} \cap \phi_{j}^{B}=0$ for $1 \neq j$.
If X is finite, then $a s$ we noted in the proof of Theorem 55, the formula $\psi(y, d) \wedge$ i $\times \neg_{i}(y)$ is a complete 1-formula of T_{d}^{\prime} satisfied by c in B, and we are dene (where T_{d}^{\prime} is again the same as T_{c}^{\prime} but with a replacing c). So we assume that X is infinite, and aim for a contradiction.

Firstly, we may assume that

1) $\quad T_{c}^{\prime} \vdash(\forall x)(\psi(c, x) \rightarrow \neg \psi(x, c))$,
for if not, then the completeness of $\psi(c, x)$
$T_{c}^{\prime} \vdash(\forall x)(\psi(c, x) \rightarrow \psi(x, c))$, in which case c will be obviously principal over d.

Note that as $(B, C) \equiv(B, d), X$ is also equal to $\left\{1<\omega: E \vDash(\exists x)\left(\phi_{i}(x) \wedge \psi(x, c)\right)\right\}$.

I assert that
2) $\quad T_{c}^{\prime} \vdash(\forall x)\left(\psi(c, x) \rightarrow\left(\forall y_{1} y_{2}\right)\left(\psi\left(x, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \rightarrow \psi\left(c, y_{2}\right)\right)\right)$ (i.e. that ψ is 2-transitive).

Fer suppose not. Then by the completeness of $\psi(c, x)$, $T_{c}^{\prime} \vdash \psi(c, x) \rightarrow\left(\exists y_{1} y_{2}\right)\left(\psi\left(x, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \wedge \neg \psi\left(c, y_{2}\right)\right)$. By compactness, there is n<w suck that $T \cup\left\{\neg \phi_{i}(a): 1<n\right\} \vdash \psi(a, x) \longrightarrow$

$$
\left(\exists y_{1} y_{2}\right)\left(\psi\left(x, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \wedge \neg \psi\left(2, y_{2}\right)\right)
$$

(where a is a new censtant).
Now as X is infinite, we way choose $j \in X$ such that $j \geqslant n$. Then by the definition of X, there is $a \in \phi_{J}^{B}$ such that B $\vDash \psi(a, c)$.

And so, from above there are w_{1}, b_{2} in B such that
$E \vDash \psi\left(c, b_{1}\right) \wedge \psi\left(w_{1}, b_{2}\right) \wedge \neg \psi\left(a, b_{2}\right)$.
Now $B \mathcal{F} \psi(c, d),(B, c) \equiv(B, d)$ and $\psi(c, x)$ is a complete 1-formula of T_{c}^{\prime}. So it fellows that

$$
\left(B, w_{1}\right) \vDash T_{b_{1}}^{\prime} \quad \text { and } \quad\left(B, b_{2}\right) \vDash T_{b_{2}}^{\prime} .
$$

We know that $\left|\phi_{j}^{\frac{J}{j}}\right| \leqslant 2$.
If $\left|\phi_{j}^{B}\right|=1$, then the formula ϕ_{j} defines a, so as $B \vDash\left(\exists x \in \phi_{j}\right)\left(\psi\left(x, b_{2}\right)\right.$, we weuld have that $E \neq \psi\left(\Omega, b_{2}\right)$ So $\left|\phi_{j}^{B}\right|=2$. Let a^{\prime} be the other element in ϕ_{j}^{B}.

Now $E \in\left(\exists x \in \phi_{j}\right)\left(\psi\left(x, m_{2}\right)\right)$, so we must have that
$B \vDash \psi\left(a^{\prime}, b_{2}\right) \quad$ and alse $\quad B \vDash\left(\mathcal{J}^{x} x\right)\left(\phi_{j}(x) \wedge \psi\left(x, b_{z}\right)\right)$.
So also, $T_{c}^{\prime} \vdash\left(\exists^{2} x\right)\left(\phi_{j}(x) \wedge \psi(x, c)\right)$.
Now either $B \vDash \psi\left(a, b_{1}\right)$ or $B \vDash \psi\left(a^{\prime}, b_{1}\right)$.
If $B \neq \psi\left(a, b_{1}\right)$, then by the completeness of $\psi(c, y)$
$B \vDash \psi(c, y) \rightarrow\left(\forall x \in \phi_{j}\right)(\psi(x, c) \rightarrow \psi(x, y))$.
But then $B \vDash \psi\left(b_{1}, y\right) \rightarrow\left(\forall x \in \phi_{j}\right)\left(\psi\left(x, w_{1}\right) \rightarrow \psi(x, y)\right)$, whereby $B \vDash \psi\left(a, b_{2}\right)$. Contradiction.

So it must be the case that $\equiv \vDash \psi\left(a^{\prime}, b_{1}\right)$, but then again, as $B \vDash \psi\left(a^{\prime}, h_{g}\right)$, we must have that
$\boldsymbol{E} \vDash \psi\left(b_{1}, y\right) \rightarrow\left(\forall x \in \phi_{j}\right)\left(\psi\left(x, b_{1}\right) \rightarrow \psi(x, y)\right)$.
Replacing b_{1} by c in the line above, we conclude that
B $\mathcal{F} \psi\left(a, b_{1}\right)$.
But this was impessible. This contradiction preves assertion 2)

Now suppose that
$B \vDash\left(\exists y_{1} y_{2}\right)\left(\psi\left(c, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \wedge \psi\left(y_{2}, c^{\prime}\right)\right)$.
Then frem 2), $B \vDash \psi\left(c, c^{\prime}\right)$ 。
Thus by completeness of $\psi(c, x)$, it follows that
3) $T_{c}^{\prime} \vdash(\forall x)\left(\psi(c, x) \rightarrow\left(\exists y_{1} y_{z}\right)\left(\psi\left(c, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \wedge \psi\left(y_{2}, x\right)\right)\right)$

$$
\text { (i.e. } \psi \text { is 2-dense) }
$$

Put $\theta(c, x)$ to be the formula

$$
\begin{array}{r}
{\left[\neg \psi(x, c) \wedge\left(\forall y_{1} y_{2}\right)\left(\psi\left(x, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \rightarrow \psi\left(c, y_{2}\right)\right)\right.} \\
\left.\wedge\left(\exists y_{1} y_{2}\right)\left(\psi\left(c, y_{1}\right) \wedge \psi\left(y_{1}, y_{2}\right) \wedge \psi\left(y_{2}, x\right)\right)\right]
\end{array}
$$

Then by 1), 2), 3) and compactness, there is $x_{1}<\omega$ such that
4) $T \cup\left\{\neg \phi_{i}(c): i<X_{1}\right\} \vdash(\forall x)(\psi(c, x) \rightarrow \theta(c, x))$.

Also, as $T_{c}^{\prime} \vdash \psi(c, x) \rightarrow \neg \phi_{i}(x)$ for all $i<\omega$,
there is $m_{2}<\omega, \mathbb{I}_{2}>m_{1}$ such that
5) $T \cup\left\{\neg \phi_{i}(c): 1<{x_{2}}\right\} \vdash(\forall x)\left(\psi(c, x) \rightarrow \bigwedge_{i<m_{1}} \neg \phi_{i}(x)\right)$. Now choose $a \in A, a \phi_{i} A_{i}$ for $i<\mathrm{m}_{2}$, such that there is
$b \in A$ with $A \vDash \psi(a, b)$.
Then, by 4) and "2-denseness", there are a_{1}, a_{2} in A with
$A \vDash \psi\left(a, a_{8}\right) \wedge \psi\left(a_{2}, a_{1}\right) \wedge \psi\left(a_{1}, b\right)$.
Once again, there are a_{3}, a_{4} in A with
$A \vDash \psi\left(a, a_{4}\right) \wedge \psi\left(a_{4}, a_{3}\right) \wedge \psi\left(a_{3}, a_{2}\right)$.
Continuing in this way, we can find a set $\left\{a_{n}: n<\omega\right\}$ of
elements of A, such that for each $n \geqslant 1$,
$A \vDash \psi\left(a_{1}, a_{2 n}\right) \wedge \psi\left(a_{2 n}, a_{2 n-1}\right) \wedge \ldots \wedge \psi\left(a_{2} ; a_{1}\right) \wedge \psi\left(a_{1}, b\right) \quad$. By 4)(2-transitivity) and 5), for each m, n, with $m>n$,
$A \vDash(\exists x)\left(\psi\left(a_{2 m}, x\right) \wedge \psi\left(x, a_{2 n}\right)\right)$.
So by 4) (asymnetry) and 5), $a_{2 m} \neq a_{2 n}$.
Thus $\left\{a_{2 n}: n<\omega\right\}$ is an infinite set.
Again, by 4)(2-transitivity) and 5), for each n,
$A \vDash(\exists y)\left(\psi\left(\varepsilon_{2 n}, y\right) \wedge \psi(y, b)\right)$.
So $\{x \in A: A \vDash(\exists y)(\psi(x, y) \wedge \psi(y, b))\}$ is infinite.
Now $A \neq \phi_{r}(b)$ for some $r<\omega$. Then
$X_{1}=\left\{x \in A: A F(\exists x)(\exists y)\left(\psi(x, y) \wedge \psi(y, x) \wedge \phi_{r}(z)\right)\right\}$ is also
infinite. As each of the complete 1 -fermulae ϕ_{i} of T is
satisfied by at mest two elements, it follows that
$\left\{1<\omega: \phi_{i}^{A} \subseteq X_{1}\right\}$ is infinite, and thus my minimality of
' $x=x$ ', cofinite. But then

$$
T_{c}^{\prime} \vdash(\exists x)(\exists y)\left(\psi(c, y) \wedge \psi(y, z) \wedge \phi_{r}(z)\right)
$$

So there is $c_{1} \in B$ such that
$\mathbf{B} \vDash \psi\left(c, c_{1}\right) \wedge(\exists x)\left(\psi\left(c_{1}, z\right) \wedge \phi_{r}(z)\right)$.
But $\left(B, c_{1}\right) \vDash T_{c_{1}}^{\prime}$ and $T_{c_{1}}^{\prime} \vdash \psi\left(c_{1}, x\right) \rightarrow \neg \phi_{i}(x)$ for all i< . So we have a contradiction, and the theorem is proved.

Corollary 57. Let A be a countable model. Then A has at least three countable proper elementary extensions, ap to isomerphism ever itself.

Proor.

Put $T=T h(A, a)_{a \in A}$. Then T satisfies the conditions of Theorem 56. So $n(T) \geqslant 4$. One of the countable models of T will be $(A, a)_{a \in A}$. The $L(A)$-reducts of the other three will
> be countable proper elementary extensions of A, pairwise non-isomorphic over A.

There are obviously many gaps to be filled in order to get from the results above to anywhere near proving the original conjecture that a theory with a minimal medel has infinitely many countable models. But I think that the above work has at least pointed out a pessible approach.

I view facts abeut the minimality and algebraicity of the prime model of a theory, as tools for obtaining lots of countable models, but by no means as a characterisation of those theories with infinitely many countable models. Or putting it another way, the converse to the conjecture is not true.

However, we can new, after having been through the preofs in this chapter, view our original intuitions in a slightly more educated light. Firstly, what is no doubt responsible for $n(T)$ being finite, in the known examples, is the "denseness" of the orderings or relations in the models in the theories concerned. This also makes sense, when we note that the canonical methods for getting lots of countable models involve getting models of different finite "dimensions". And the netion of dimension invelves the notion of nearness and thus of discreteness. For, a model is intuitively of dimension one, for example, if all its elements are near each other. Then, using compactness one can get a model of larger dimension, by adding
elements that are far away. Denseness, however, implies that one cannot distinguish elements as being near to,or far away from,each other. Looked at more technically, if the models of our theory are "discrete" in some sense, then whenever \vec{b} is principal over \vec{a} in some model, the formula $\psi(x, y)$ which makes \vec{i} principal over \vec{a} will in some sense "say"that 古 is "near to" \vec{G}. Then, by using the conpactness methods of Lemma 49, we can, as in Lemma 49, prove nice rank properties y induction, which will enable us to get lets of countable models. The situation where \vec{b} is alrebraic over \vec{a}, as in section 2.2 II, is just a very transparent case of nearness.

References.

[1] J.T. Baldwin and A.H.Lachlan, On strongly minimal sets. J. Symb. Logic 36,(1971) 79-86.
[2] M. Benda, Remarks on countable models. Fund. Math. 81,(1974). [3] C.C. Chang arı H.J. Keisler, Model Theory. (North Holland Amsterdam, 1973).
[4] R. Deissler, Dissertation. Univ. of Freiburg (1974).
[5] Yu.L. Irshov, Theories of non-abelian varieties of groups. Proceedings of the Tarski Symposium. Am. Math. Soc. 1974. [6] S. Feferman, Two notes on abstract model theory.1. Properties invariant on the range of definable relations between structures. Fund. Math. 82 (1974) 153-165.
[7] J. Flum, First order logic and its extensions. Logic Conference, Kiel 1974. Lecture Notes in Mathematics 499. (Springer-Verlag 1975). [8] H. Gaifman, Operations on relational structures, functors and classes. Proceedings of the Tarski Symposium, Am. Math. Soc. 1974. [9] H. Gaifman, Some results and conjectures concerning definability questions. Preprint. [10] A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski,

Definability of sets in models of axiomatic theories. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (10.61) 163-167. [11] W. A. Hodges, A normal form for algebraic constructions II . Logique et Analyse 71-72. (1975) 429 - 480 . [12] H.J. Keisler, First order properties of pairs of cardinals. Bull. Am. Math. Soc. 72 (1966) 141 - 144 .
[13] A.H. Lachlan, On the number of countable models of a countable superstable theory. Logic, Methodolopy and Philosophy of Science IV. (North Holland - Amst. 1973)
[14] L. Lascar, A convex model-complete theory has infinitely many countable models. Comptes Fendus, 278 Serie A (1974)
[15] M. Morley, Categoricity in power. Trans. Am. Math. Soc. 114 (1955) 514-538.
[16] M. Morley and R. Vaught, Homogeneous universal models. Math. Scand. 11. (1962) 37 - 57 •
[17] M.G. Peretyat'kin, on complete theories with a finite number of denumerable models. Algebra i Logika. 12 (1973) 550-576. [18] J.G. Rosenstein, A note on a theorem of Vaught. J. Symb. Logic 36 . (1971) .
[19] C. Ryll-Nardzewski, on the categoricity in power \mathcal{N}_{0}. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 7 (1959) 545-548. [20] S. Shelah, Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. (1972) [21] S. Shelah, On the number of minimal models. Preprint. [22]S. Shelah, Stability over a predicate. Correspondence. [23] S. Shelah, The number of non-isomorphic models of an unstable first order theory. Israel J. Nath. (1971). [24] R.E. Woodrow, A note on countable complete theories having exactly three isomorphism types of countable models. J. Symb. Logic 41 (1976) 672-680.
[25] R. Vaught, Denumerable models of complete theories.
Infinitistic Methods. (Pergamon, London, 1961) 303-321.

