GATFMAN OPERATICNS, MINIMAL MODELS AND THE NUMBER OF

COUNTABLE MCDELS.

Anand Pillay,

Bedford College.

Thesis submitted for the degree of PhD

to the University of London. 1977.



ProQuest Number: 10098983

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10098983
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Abstract.

We dea1~with questions and problems in first order
countable model theory.
Chapter 1 examines ceuntable first order Gaifman

operatiens, which are theories whose models are determined,

up to isomerphism, by their relativised reducts. We first
prove some reduction and preservation results. Then we
prove that the class of relativis=d reducts ef & Gaifman
operation is generalised elementary. Finally, we examine
the degrees of 1?card1nality of such theories.

Chapter 2 is basically concerned with trying to
get lots of palrwise elementarily equivalent countable
models, or to beéin with, at least four models, to which
my friend Salim Salem would say, "It's hard enough to get
ons," We first show that a minimal prime model is "fairly"
algebraic. Then, under various conditions on the algebrai-

clty of the countehle models of a theory, we prove results

cencerning the number of its counteble medels, . . .
The main result is that a countable complete theory which
has a model with an infinite definable subset all of whose
elements are algebraic of degree at most two, has at least
four countehle medels, up to lsomorphism,

Chapters 1 and 2 are fermally independent and
self-contained., Mewever there are certain commen themes.
The notion of a minimal nodel is important in both chepters,
More generally, both chepters are concerned with a question
at the centre of model theery - the number of models of a

theory. In Chapter 1, it is the nnmber<%1m0dels over a



predicate, in particular the case where the numker is one.

In Chapter 2 it is the number of counteable models.
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Chepter O.

Notation and preliminaries.

I shall be concerned in this thesis with first order model
theory.

A general reference for the basic definitions and results
is Chang and Keisler [3] . I assume familiarity with the basic
notions of model, language, theory, consistency, satisfaction and
semantic and syntactic implication. For the fundamental properties
of first order logic, in particular compactness, the consistency
theorem (every consistent set of sentences has a model), andlthe
Lowenheim-Skolem theorem, see [3] .

I shall denote models by A, B, M, M',... , and theories by
Ty T'ysee o« If X is a set, then |X| will denote the cardinality of
Xe If A is a model, then |A| will denote the universe of A. So
| All denotes the cardinality of the universe of A.

If A is a model for a language L, then the language of A,

L(A), is just L. If T is a theory, we say that T is countable if the
number of non-logical symbols appearing in T is countable. Ve
identify & theory with its deductive closure.

Variables are denoted by x 4, ¥ 4 2 4 X,y X4 «+ o Constants
are denoted by a , b , ¢, a,, ... We often use the same symbol to
denote a coﬁstant and the element which it names in a model.

If A is a model, and X is a subset of |A| , then

'(A,a%‘x is the model got from A by adding names for the
elements of X.

X Tye o and'g;*,... denote finite sequences of variables

and constants respectively. If 2= (a, , an) and A is a model,



then we often write T€A to mean that a; €[al for i = 1,... n.
Formulae are denoted by ¢ ,Slr y © y.++ . When we write a formula as
ﬁﬁ(x.,... Xn) s we mean that the free variables of gf are among

X,y ees X, If 2 €A , then AI=¢(3) means that ¢(3Z) is
satisfied in A by &. If gﬁ(g) is a formula, and & is a sequence of
constants, then we also denote by Qﬁ(g) the result of replacing
each x; in Qf by age.

We often write VX to mean \-fx. .o Vxn .

Similarly with X .
1f is an n-ary formula (i.e. & is B(x,, «.xn)), then

xe&(....) means VO @)—>...) , eand

35e S (.. means IR S()A o.)
?}k§T S(X)) 'means' there are exactly k distinct n-tuples
? such that O(R) .
3*"?:‘( &(R)) ‘'means' there are at most k distict n-tuples P4
such that &(X) .
If Qﬁ(x) is a 1-ary formula of a language L, and A is a model for
L , then i =€aeA:AL=Q5(a)§
| Let L be a language, P be a unary predicate of L, and

Log L - fP}. If ph is closed under the functions of A which are in
L, , then we get an L, -structure whose universe is PA, and whose
relations and functions are just the restrictions of the relevant
ones of A. We call this model AP]Ih e« And in this situation we say
that A% | L, is defined.

Let A,, A, be models, and A, = A.P L = AzP L o
We then say that A, is jsomorphic to A, over A,, in symbols

A, >~ A, , if there is an isomomhism of A, onto

A

A, which is the identity on A, .

2



A

)

B and A< B as usual mean that A is elementarily
equivalent to B, and that A is an elementary substructure of B,
respectively. We write f: A % B to mean that f is an element-
ary embedding of A into B. f: A =2 B means that f is an isomorph-
ism of A onto B.

I assume familiarity with the notions of ultrafilter,
ultraproduct and ultrapower. For details, and for the important
Los' Theorem, see [ 3] . |

If A is a model for the language L, then Th(A) is the set
of sentences of L which are true in A.

T is a complete theory means that for any sentence ¢ in
the language of T, T I & or TFH =& . '.
If ¢ is a formula, then T = ¢ means that T VY% &
where ¥ is a sequence which contains the free variables of ¢ .
If K is a class of models for L, then Th(K) is the set of sentences
of L which are true in every model A in K. The class K is said to be
elementary, if there is a sentencé ¢ such that

A€K if and only if A E O .
K is said to be generalised elerr;entary if there is a set of sentences
g such that A € K if and only if A EBS
Let T be a theory and n a natural number. Then an n-type of T is a
set of formulae, each of whose free variables is among say x, , Xny
which is ccnsistent with T. A type of T is just an n-type of T for
some n.

>
A complete n-type of T is an n-type,of T such that for each

n-formula ¢ ) ¢€Z or "1¢€Z.

In Chapter 2, whenever we talk about types we shall mean

complete types, unless we say otherwise.



if Z is an n-type and € is an n-tuple of a mod'el 4, then we say.that
@ realises 2 , if AE (@) for all FeS5 .
The type of a tusle Z in a model A is the set of formulae ¢
such that Ak ¢(3) .
Ve say that Z is a principal n- type of T,. if Z is an n-type‘of T
and there is an n-formula ¢(x. ye+X,) consistent with T such that
Tf—¢—-—>‘§l/ for all “(xi,e. x,) € > .
Let A be a model and b E€A. When we say that B realises a principal
type in A, we shall mean that the type of B in A is a principal type
of Th(A).
A model A is said to omit a type, if no tuple in A realises
the type. |
Let T be a complete theory. An n-formula ¢(x. yoeeXp)
is said to be complete for T, if for every ‘\ZP(x, yoeeXn)
Tl—-¢—-—>~.lb or T}-¢—'>-1\P.
A model A is atomic, if every finite sequence of elements of A
satisfies a complete formula of Th(A) (or equivalently, realises a
principal type of Th(A)).
A is a prime model of T, if for 211 B ET there is
f: AL B . A is said to be rrime, if A is a prime model of Th(4).
A complete theory T is atomic, if for every n-formula ¢ there is
a complete n-formula ~}~ of T such that T v — ¢ , for all n..
We state the following claSsical results.

(A) (Grzegorizyk et al[} 0]) The Omitting Types Theorem

Let T be a countable theory, and ffn : n<W}a collection
of non-principal types of T. Then T has a model which omits 2,‘

for all ne.



(B) (Vaught [25)) Let 4 be a model for a countable language.
Then A is prime if and only if A is countable and atomic.
(C) (Vaught[25]) Let T be & complete countable theory.

Ther T is atomic if and only if T has a countable atomic model.

Let X be a cardinal. A theory T is K -categorical, if
all models of T of cardinality K are isomorphic to one another.
A model A is K e-saturated, if for all X < JA| such that
IxI< ¥ , (A,a;ex realises all types of ‘I’h((A,a)MX) .
A is said to be saturated if A is ||A]| -saturated.
Let A,B be models, I be a set, and a;, b;,be elements of A,B
respectively, for all i€ 1l.
Then (4,8;),y = (B,b;),y means that
Th((A,a;) ¢ ) = Th((Byb.), ;) , where we represent a; and b: by the
same constant for each i. .
So if 2 and D are finite sequences of the same length,
(4,2) = (B,b) if and only if @ realises the same type in A as

6 - 3
b realises in B.

Similerly, we write (A,a;)elk (B,b, zer to mean that
there is an isomorphism f: A B such that f£(a,) = b, for all i.
A is homogeneous, if whenever |I| < [lAll, and
— ’ . ~ .
(A’ai)ier = (A’bé)‘»er then (A’a‘?,e'_[ ~ (A,b\)(eI .
A is universal, if B =4 , and IBL £ [lAll  implies that

there is f: B 4 A .
A is full, means that A realises all types of 'Th(A) .
The following fact is easy to establish.

(D) If A is a countable model which is homogeneous and full, then

A is saturated.



We also have the following :

(E) (Vaughtﬂﬁﬂ) Let.T be a countable complete theory with only
countably many complete types. Then T has a prime model and a
countable saturated model.

(F) (Ryll—Nardzewski[iql) Let T be a complete countable theory.
Then T is ?Vo;categorical iff T has finitely many éomplete n=-types

for 211 n< o iff all complete types of T are principal.

A simple extension of a theory T, is a theory 7' such that
TS T' , and such that the language of T/ is got from the language

of T by adding at most finitely many new constants.

Although we do not really work with stability notions,
stability is referred to now and again. So we give the definitions.
Let X be a cardinal. Then we say that a theory T is ‘K-stable
if whenever A LT , X €1al, and |X| L)X , then
Th((A,a&eX) has at most X complete 1-types.

T is stable if it is WK-stable for somé infinite cardinal K .
T is superstable if it is WK -stable for all sufficiently large K .
The notion of stability has been a useful and important tool in
the study of the number of uncountable models of a countable theory.
For example, the following have been proved :

If T is unstable, then T has 2¥ models of cardinality X , for all
uncountable 14 .+ (Sheleh 23] )

T is categorical in all uncountable powers if and only if T is
Aﬁ-stable and T does not satisfy the hypothesis of Vaught's two-
cardinal theorem. (Baldwin and Lachlan [1])

However I do not think that stability is such & sharp tool when it

comes to analysing the difference between theories with finitely
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many, and theories with infinitely many, countable models.

We work in general only with countable languages and countable
theories. In Chapter 1 we sometimes get an uncountable language,by
adding names for elements of an uncountable model. However, in
Chapter 2 everything is countable. Also for Chapter 2 we make the
general assumption that all the complete theories we talk about, have
only infinite models. And of course, whenever we talk about the

number of models of a theory, we mean up to isomorphism.
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Chapter 1

Geifmen onsrations

1.0 Iniroduction

Gaifman [8 ] originally defined his 'single valued
operations', as s means of placing in a model-theoretic
setting, or of elucidating the model—theoretic|content of,
certain standard algebraic constructicns and operatcions.

The kind of operations which we have in mind are exemplified
by the following - <forming the field of fractions of an
integral comain; forming the ultrapowecr from & model, a Set
and en ultrafilter on that set; given a field, forming the

n-dimensional vector space over that field., Then Gaifman'

s
idea is the following. Let us suppose that the operation
under consideration takes certain models for a language L,
to models ior a 1énguage ;. (L; and 1L, may possibly be
many-sorteé). Then there is a theory T such that a valus
of the operation for A is the model B, if &nd only if there
is & set of relstions end functions r, such thet

(4, B, v)FE T. 4also, if (4, By, ry)F T, 1 =1,2, then

(A, B4,7,) 4is isomorphic to (A, By, rp,) over i, in

symbols - (4, By, r,) = A(A’ Byy Tz)

The sct of relations and furctions p, will serve to
connect A and B, or possibly define B from A. Vie may

stipulate that T be a first order theory, or a thecry in
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Luy, w or whatever. e msy alsc 2dd extra conditions con-
cerrning the degree of rigidity of (&, B, r) over &, for
(4, B, ) F T.

Although the above mazny~sorted definition is more
naturel in the algebraic context, we can express everything
in a one sorted logic, & in Gacifman [q ]J. This will be
the definition which we sghall actually work with., /e shell
only be concernsd with the situation where all langusgss

ere counteble, ané the theory T is first order.

Definition 1.

Let L, and L be countable languages, and P a
unary predicate in L and nct in Ly, such thst L, ¢ L.
Let T be a first order theory in L such that whenever AET,
then &P|I, is defined. We then say thet (T, P, I,) is
a countable first order Gaifman operaetion if and only if
AUET, 1=1,2 end AP|L, = a5|L, = 4, implies that 4,

is isomorphic to A, over Ag.

As we will only consider the countable first order
situation, and as P and L, will usually be clear from
the context, we shall just use the phrase "T is & Gaifman

onzraiicn',

Taken epart from the algebreic motivation, the study of

alfman operations essentislly btoils cown to the study cof

cateyority over a predicate. Also Gaifman {c?] notes that
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T of being a Czifman operstion it a geunzra-—
lisavion of that implicit definebility which 1s characte-
rised by Zeth's thecrem. In the situaticn of Beth's theorsn
ve heve languages Ly and L with 1, ¢ L, &nd 2 theory T in
L such that any model & for Ly has at most one exyansion
to @ modz2l of T. Reth's thecrem then says that T expliciﬁly
defines sech new relstion of L in terme of formulae in 1.
In the cece of CGuifman cperstions nhowever, new slements as
well as new relations and functions zre added to the modzsl,

is an anzlogous

V)]

S50 the immediete guestion is whether ther:
licit definsbility result in this Gaifman situaticn.

The obvious interpretation of explicit dsfinability {(which

is the same as Hodged s word constructions [11], and Ershov's

method of elementary definability [§ ]) is that for i a

model of T, every element of 4 csn be interpreted as &n

D - ; s . ,
n-tunle of elements from A—IIC’ and the holding of a nre-—-

pl
H
e}
m
c.’.
W

of L for a sequence of elements of & depencs uni-

formly on the holcing of some formula for the corresjponcin

[8]]

efin-

Lo

PO . L s
sscuence of n-tuples in &Y | 1L,. such an sxplicit
ebility result held for Gaifman operaticns, then it would

-

velidate Gaifmsn's definition of his single valued ope-

d

tions as & standard char cterlﬁaulon of elgebreic cons-

-
[\Y]

tructicns., 'However, Hodges [11] hzs given an example of a
Gaifmen operation T, for which no such explicit definability
holds. Strengthenings and variations of the above, do hola
'hovever, for Gaifman operctions which in addition satisfy

certain condaitions on the degree of rigidity of A over
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)

- - - - ) L 0 -+ -
AT|{Lye 3ut for plain Gaifman opsrations, the question of
what W= cen szy in ths way of explicit definebility is etill

0 &N,

Jie can quite easily prove results which for a2 Gaifman
operation T, uniformly reduce certain properties of models
A of T to properties or APILO. We do this in 1.1. Some

of these results zre known or have been stated in the lite-

rzture. Ve show also that 1f T is a Gaifmean operstion, then
. . ] . ~ | ’\p T j
then there is g : Aigé Ag “nich extends f.

Gaifmen |9 ] states that Shelah has proved this without
the cardinglity restriction on A?ILO. We use this latter
result of Shelah as well as our earlier results to answ;r
affirmatively a conjscture of Gaifman [ 8], that the domain
of & Gaifman operction is ECA. Ve also rely heevily on
Shelah's results to give an interesting characterisation of

Gaifmaen overations

in 1.2 we connect the 1-cardinality of Gaifman opera—
tions with a certain characterisation of minimality by
Deissler [4.]. Finally we give a counterexample to a con-
jecture of Wilfred Hodges characterising Gaifman operations
as being 1-cardinal and satisfying some further reducticn

property.

The study of categoricity over a predicate, is part of
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a wider study of general model theary over & predicate,

This looks to be quite difficult. Shelah [22] has genera-
lised stability concepts to this area. Our results however,
tend to be centered around consequences of fﬁé definitions,

for countable models.

1.1 Preservation, reduction and related results

Usually, the following preservation theorem (Theorem 2)
is deduced from the uniform reduction theorem (Theofem 3)
which in turn follows from refeman's many-sorted inter-
pblation theorem f6']. . Here, however we prove the preser-
vation result independently, using Shelah's ultrapower

theoren,

Theorem 2 Let T be a Gaifman operation. Let M,, M; be

models of T, gieri, gzerz be n-tuples, and
P — _ P -
(Ilcillbo, 81) = I\izll.b, 82)

Then (M, 2,) = (Mo 8z)

Proof

Let M¥,, Mg, 84, 8 be as in the assumptions of the
theorem. By Shelah [20], there is a set I and an ultra-

filter U on I such that

- 'v_ - "/’
(1.:flLo, ai)I/U = (6|1, az)l/ ;



s = \If .
Consider now (i, 8)7/U for i =1,2
!

i

It is eesily seen that ((if , EQ)I/G)P[Lh = (M? Lo s QL)%/U
for 1 =1,2. : v

so (g, ENYU)TIL, & (05, )Y 0L, (*)
By Los' theorem, M, = M}/U, i=1,2.
so  uMY/UET for i =1,2.
Thus as T is a Geifman operation it follows from (*) that

(M, 2;)Y U

(Mz ’ 22 )I/U

4

(1y 'a’i)I/U

/

/
So in particular, (i, gi)ng-
Agalin, by Los it follows that

Lo d : o
(g5 8y) = (Mg, 82), proving the theorem.

In particular, for n = O, we have that, M{ET, i = 1,2

=l
and 1f|L, = ¥|ly, implies that I,

1{2 [ ]

We cen now prove the uniform reduction theorem.

m

Theorem 3. Let T be Gaifman operation, n < w.

Then for every formulé. $(Xy s oee X4) of L,
there is & formula ¥(%X;, ... X,) ©Of L,, such that, for
every MFET and & = (a4, ... ap)eP’, ME@(E) if and only

if M |Lo kE y(E).

EProof.

Ve first define "P-L, formulae". A P-L,formula ¥
is an L-formula, which is in prenex normal form, whose
matrix contains symbols only from L,, and whose quantifiers

are all relativised to P.

16
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Then, given a P-L, n-formula ¢(X) there is an n-

formula y'(¥) in L,, such that :

- : - hi
for any L-structure X and & = (a,, ... 8,)eP", N

(i Ey(2) if and only if L Ey' (7). J

~nd conversely, given any n-formula w'(z) in L, there
is a P-L, formuls w(i) such that (*) holds.
Fow let ¢(Xy, ++o X,) be an L-formula. Let ¢y, ... Cy DE

. —*
new constants. e write Pc for //\\ rcy ,
L.

Put T =T(X) = { v(¥) : ¢y is P-L, formula such that
T, B¢ F ¢(3)—>y(e) }

We will show that T, B¢, I(3)F (3).

So 1et (¥, a)ET u {¥¢} u r(@)

(Eere the elements a; are interpretations of the constants

cy )

Let I'(¥) = { (&) : ¢ a P-L, formula, and MEy(a) }

Then we eassert that T u I'(e) u | Fc, ¢(2) | 1is consistent.
cr if not, then

T, P¢ F ¢(2)—>=-¢(F), for some ¢(X) in T''. But then

= y(#) is in T, whereby KE=y(2). This is a contradiction.
So let (N, a')ET u ' (3) u{ F2, ¢(c) }

as (W, 3')E r'(3), we can sece that

o) o)
(U Ly, B) = (W ]|Ly, 8")

(¥, a')

-yt ~r -
By Thcorem 2, (K, a)

Thus L [ ¢(2).



A5 (4, B) wes an arbitrary model of T u 1Fc) u I(e), e
hzve estzblisned thet T, 2¢, I'(¢) b ¢(c).

By compsactness there is (@) in T(3)

such that T, F¢ F ¢(2)= ¢(2)

So T, B¢ I ¢ (S)62¢(3)

SO T FVX( B (p(X)e ¢(F))).

Let ¢'(X) Dbe the L, formula which corresponds to the P-I

formula ¥{X). Then for eany MET and 2Pt

MiEg(R) iff upEw(E) iff M| Loy (3)

Lemma 4 Let T bYbe a Gzifman operation, M be an in-
finite model of T and ¥ an n-tuple of ¥. Then B

realises in (¥, a)aepm a principal n-type of Th(li, a)aeﬁm'

Proof
wWwe first prove the lemma for the case in which I
is countsble. So suppose that ¥ is countable. Let I (Z)
be the type which ? realises in (M, a)aePM' Suppose that
I'(¥) were a nonprincipal type & Th(l, &), pli. Notice
thet PM must be countably infinite, for otherwise we could
characterise MPILO up to isomorphism by a set of sen-
tenses in  L(H, a)aePM’ and then by the Lowenheim-Skolem
theoren, we.could find models N of T of any cardinzglity
such that I |Le = M |Lo. Thus |2¥| = N,
So 1/\(y) =iy #a: ae P } u |Py] is a consistent

tyoe of Th(M, a)aePM' Moreover ~/\(y) is omitted in

18
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(M, a}aetm. So J/\(y} nust be nonprincipsl. So by the

omitting types theorem there is & model of Th(ll, a)

whioi mits th +tvn=gqg r¥ = A { v 7 4 S5=7 7

which omite the tynss I {(x) &nd /\(y). Let this model bve
~~

T o 4 LE VN = R YR I T ore vy \ 31
(I\’ C’.) . EP&-. (Irlcn ].\ l LO -_— i [ a.lo Y nc .’.6'\/ ul 2 }u [ 8)8€Pul

o

2

reall

1

w
r

r{¥) whereas (N, &) phi omits (X)), so the two
models cannot be isomorphic. This contradicts T being a

Gaeifman operation. So T(X) must be principal.

Now let MET be of arbitrary infinite cardinality.
Let Dell. Let N4M, bBeN and ||N]| =7N.. Then from sbove
T realises a principal complete type of Th(N, a)aeng
Let this type of D be generated by the formula ¢(X; &)
where Z+PY and ¢(X; ¥) 1is an L(T) formula. ‘e assert
that ¢(¥; &) also generates the type of B in (M, a),  plie

- ' - . F
For if not, therc is a formula (X; ¢), 2eP”  ana

NE (ZR)(¢(X;5 8) Au(X; ©)) A (FE)(e(Bs &) A (X5 ©)
‘ . A P

As NZ M, and BeN there is G'eP" such that
NE(E) (¢(F; 8) AvE; ©')) A ((F5 8) A (5 T7)

But tanils contradicts the fact that ¢(§; 3) generates the
= s
type of b in (N, a)aePM'

So the lemma is proved.

Lemma L4 now enables us to prove that elementary em-
beddings of "ground models'" can be extended, provided that

the embedded model is countable. -

19



ITnecrem 5 Let T De & Gzifmen operation.

- . - , ' ar ]
Let I, N Dbe models of T, I < 7\. and

20

Py
£ ¢ 1|1 T |Ly. Then there is g : KLN vwhich extends f.

£d4d to the language L of T, new names for the
elements of PM to get a countable language L',
Similerly, expand L, to L..
Let T' =T u { P-I' sentences (3) such thet K¢ (3)]}
Then by Theorem 3, T is a complete theary in L',
So T' = Th(¥, a)_ pil.
Let us assume, with no loss of generslity, that £ is an
elementary inclusion.
so (&, a)aePM}:Th(I.:, 2),, pl
We may also assume that ¥ is infinite, By lemma L,
every n~-tuple of (M, a)aePM realises a principal type of
™. i.e. (M, a)aEPM is atomic. Thus, as it is also
countable, (i, a)aepm is a prime model of T'. So there
is an els=mentary embedding g of (M, a)aePM into

(w, a)aer‘ So g : hffg N extends £, proving the theorem.

Gaifman [q ] quotes Shelah as having extended our
result sbove to the case where ¥ 1s of any cardinality.

So -



Theorem 6 (Shelah) Let T be a Gaifman operation.
Then for any I, N which are models
of T and f : K'|L, { N|L, there is g : ¥ N which

extenés f.

Gaifman [B ] gives e slightly weaker version of the

following theorem, without proof.

Theorem 7 Let T be & Gaifman operation, and n < w .
Then for any ¢(ZXys eee Xq_43y) in L, there
is m< w and ¥(Zoy eeo 2Zu_43¥) in Ly, such that fer
every M kT, there is £ : Ju|n _%;(PM)W ~such that for
eny B = (bys «ee broy) in I and for all ZeP"
B

P -
M¢(D;8) if and only if MY |L,E¢(£(B);a).

Let ¢(Xps eee Xno13¥) be a formula in L. Let MET
and B = (bo, e e bn_i)eM. Then, by lemmz L, there is a

formula G(E;g) which generates the type of b in
(Ms8)  pli

Therefore M (VyeP)(¢(B;3)6> (Vx)(0(%X;58)>¢(%;¥)))
Putting y(z;y)  for  (vx)(6(x52)>¢(X;7))
we have M= (V3eP) (¢(B35)46 y(357))

so for each ©DeM there is yz(¥;¥)  such that

M [ (22eP) (V5eP) (¢ (853 ) y(255))

so  TFYZ\/ (52, €P) (¥¥eP) (¢ (%7 >y (21 35))
Cf.u.if/;

21
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By compactrness there is r < w such that

oV %i\/(:‘éL eP)(Vyer) (¢(F;¥) >y (2137))

i=1,..r
Defin€ w'(?'i’ LI ,—Z)r'y Z, Zi, LN !ZP’S;)
to be /\ (z =73 >y (& ;7)
i=1,..r

Put  ¢'(£;7) to be Y'(Zis eensBrs Zs Zis e 5Z053))
Then we easily have

Tt (VX) (52eP) (W5 eP) (¢(F;7) v (257))

The uniform reduction theorem now gives us an L, formule
¢(z;¥) for the formula '(2;¥). We can easily see that,
given MFT and TDel, there if 3ePM such that for all

-

Zept ME ¢(B;2) if and only if N |L, Fy(3;3).

Let T %be a Gaifman operation, and let us define the
class of models K to be { A : there is N ET, MPILb= Al
Looking for a moment at the situation described by Beth's
theorem, where we only add new relations and functions to
the model, Beth's theorem implies that the class of models
which can be expanded to models of the theory in question
is a generalised elementary class., This follows by just
replacing each new symbol by its defining formula in the

smaller language.



23

Geifman | 8 ] asks whether an anslogous result holds
for Gaifman operstions. Namely, is K a generalised ele-
mentery class., Below, we answer this question affirmatively.
What we do is to first prove that
Kn, = | 4eK ¢ |Ja]l = N, } is generalised elementary, in the
sense thet it is the class‘of counteble models of some theory.
Then we use Shelah's Thearem 6 to extend this to models of

higher cerdinality.

Theorem 8 Let T be a Gaifman operation., Then the

class K as defined above is generalised elementary.

Broof

Vie show that K is the class of models of Th(K).
To prove this, it is enough to show that K 1is closed
under elementary equivalence., For let AETh(X). If no
member of K is element‘arily equivalent to 4, then for
each BeK there is sentence o, such that Bko, and
Al=m105.  So K}:\/OB . Let .of be the P-L, sentence

BeK
corresponding to  Op. Then T }—\/c}'3
Be:l

So by compactness there are By, ee. BreK, P < w

‘ '
such that T f-\/ OBL

but then K }=\/ Oy » SO \/ oy €Th(K)
L L
i=1 ® IP i=1 L] .I'

But this contradicts the fact that A;:--lo.B_L sy, i=1,.. 1



end Ak Th(K). So there is BeK such that A = B.

We will prove that K is closed under elementary equi-
valence, First, some terminology.

Let A ©ve a structure for L,. Let Lc_A be the language
L, together with nemes for the elements of A., e define
Thp(ﬁ) © be the sst of those P-L7 sentences (&) which
correspond to Lﬁ sentences ¢'(2) for which Afky'(2).
So for any L-structure U,

(M,a)aehF=ThP(A) if end only if  (KP|L,,a)  ,F

Now suppose that A = B, and BekK.

Then it is cquite easy to see that T U Thp(ﬁ) is
consistent,

So ©vo prove that K 1is closed under elementary equivalence,
it suffices to show that -: |

A . )
whenever T u ThP(A) is consistent, AeK (*)

Je oprove (*) by induction on the infinite cardinslity
of 4. 'So let A ©Dbe countable and T U Thp(ﬁ) con-
sistent. By Theorem 3, T U ThP(ﬁ) is complete.

#le show that T U Thb(ﬁ) has & model which omits the type

5(x) = {Px} U {x # a : aecAl. If not, then by the omitting
types theorem, 3(x) 1is a principal type of T u Thp(ﬁ).
Namely, there is a formula y(x;a) of L(T u ThP(ﬁ))’
(where we exhibit all the names of elements of A), such

that T U Tnp(ﬁ)}- w(x,3)=>3(x).

Now let (B,a)aeAF=T U Thp(ﬁ). So (B:ageAl=(5X€P)¢(X§3).

Th(4,a) .

24
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(B,a) = y(b;2) for example, where veP”,
ach

Let w'(x;?) be the 1, formula which corresponds to
w(x;§3 by the uniform reduction theorem.

Then (BP[LO,a)aeA# ' (b,2).

But  (4,a), , X (BP|Ly,a)__,
So (Bpilt,a)aeA = v'(a,3) for some acA.
So again (Bya) 4 k= (a,a).

But this contredicts the fact that

(B,a)aeAt= v(x;8)=> x £ a for each aeh .
So T u Thp(ﬁ) has a model M which omits 3(x).

Then MET, &and MPILD = A whereby  AcK.

Now suppose that we have proved (*) for 4 of
cerdinality < X Now let A Dbe an I,-structure,
lall = X end T u Th (&) be consistent.

¥
There are A &and models Aa for o < A such that
HAan < K for all o< A, a< @< h implies A 4 Aﬁ,
A & A forall a<hr anda A=(/a,.
a< i
A
It is easy to show that T U Thp(Aa) is consistent for
all o < A. So by the induction hypothesis, for each
. _ : _ P
@ < N, there is B =T with A, =3, | L «
elemaentar lj
By Theorem 6, for each o < A, wWe can easily/@mbed

B in B , over the elementary inclusion Aa.ﬁAA

o o+ ori”
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Se we can assume that B¢;§ 2 for all & < Ae

e+l ?

By the condition of T being a Gaifman operetion,

we can also assume that for 6 a limit ordinal,
adoPa = Bp °

Let B = U,B. . Then BET, as B, { B for all «.

P P
Also B |L, =Yy (By | 1o ) = Yoty = A .
S¢ AeKkK.
Thus the induction step is completed, and se the theorem

is proved.

1.2 Gaifmen eperatiens end i1-cerdinslity.

Viewed gbstractly, the way in which the model
¥ is implicitly defined from the model X' |L, Wy the
Gaifman operatien T, can be regarded frem twe aspects.
QOne the one band, the language L, is expanded te the
language L, &nd on the ether hand new elements are added,
and the original moedel is assigned the unary predicate P.
The uniferm reduction theerem essentially selves the
problems relating to the first aspect ( the expansion of
the lenguage). So, as expected, the main difficulty arises
in trying to work out the relationship between the model

M and 1its P part.
One aspect of this 1s the questien of cardinality.

Definition 9. Let T be a theery, and P a unary predicate

in the language of T. Then we say that
(T,P) is 1-cardinal if and enly if whenever
M is an infinite model ef T, then ||| = |Px[ .
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When P is clear frem the context, we shall Just say

that "T is 1-cardinal", to mean the ebviovs thing.

Wilfrid Hodges has conjectured that T is a
Galfman operation if and only if T satisfies the cenclusion
of the uniferm reduction theorem end T is 1-cardinszl.

In Example 21 below, we dispreve this conjecture.

. A very streng tocl in the study of 1-cardinality
is the follewing result of Vaught[lé].

Theerem 10. (T,P) is 1-cardinel if and enly if
it is not the case that there are models M and Kef T
such that ML N, M £ N and P = PV,

Prepeosition 11. Let T ®we a Gaifman operatien.
Then T is 1-cerdinel.
Proof.
If T were net 1-cerdinsl, then there weuld bpe
¥ =T, such that ||¥|| > |P”| > N, . ( Frem things
we have mentioned befere, the case where ]PM} < 7N,
cannot arise,)
Then, ®y the Lowenheim-Skolem theorem, there is
N<4M, with P c |N| , ana (M| = |PY] .
But then P = PX, wheredwy W |Io = K |L .
Hewever, thert can e ne isemorphism between M and N ,
as ||N| < ll¥Jl . But this centradicts T weing a Gaifman
operatien.

Se the prepesition is preved.
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We say that a model (not necessarily in a countsable
language) is minimal, if it has no preper elementary
substructure., We say that M is minimal over MP|LO, ir
there is no N such that

N4 ¥, NAM, and N|L = ¥|L .

Then ebvieusly M is minimal over KP]LD if and enly

if the model (M’angM is minimal.

Preposition 12. Let T be a Geifman eperation, and let
¥ be a model of T.
Then ¥ is minimal ever Mplio.
Proof,
Note first that this fellows immedistely fronm
Theorem 10 and Propesition 11. However, we cen use the
strong property of f being a Gaifman eperatien to do the
work of Theerem 10 directly.
For suppeose that we had
N M ,NAK, and NI, = XL, .
We may suppose that ||¥| = ||N|]| = |PM| = A ,8&5.
A8 T 18 a Gaifman eperation, N is isemorphic to M over
MPIIO . We can thus build & strictly increasing,
continuous, elementary chain of models
{ ¥, : « <"}, such that
£,F|Lo = WL, fer all & < A*, ana
g ll =2 for all « < At
The fact that T 1s a Gaifman operation allews us to
carry on the censtruction at the limit stage.

Let M =U{ M : «c< Aty
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Then X' ET, W L =¥|L, , and ||| = A% .

) ‘ .
But IPM | = A, and so this centradicts the 1-cerdineli-
ty of T. So M must e minimal over HP|L0 .

We can new put tegether the abeve propesition and

Theorem 6, te help us characterise Gaifman epersticns.

Theorem 13. T is a Gaifman eperatien if and enly if
whenever ¥, T , 1 =1,2 , and £: ¥,T|Lo & L,Plx,o ,
then there is g: M1‘< ¥, which extends £ .
Preef.
The directien froem left to right is just Theerem 6.
Foer the cenvefse, let us suppose that the cenditien en
gxtending elementary embeddings helds. Firstly, this
implies that T i8 {=-cerdinsl. Fer, if nct, then
there would e Y,N models of T, such that
Il >INl , apa ¥F|L, = FIL, .
But then we weuld be unsble to elementarily embed M in N .
Se new let X and X »e models of T such that
|l = KL, .
Then there is f£: M4 N such that £ is the identity en
MPIIO . But then By 1-cerdinality and Theerem 10,
f must be onto, whereby £ i1s an isemerphism of M and K.

Thus T is & Gaifman eperatien.

Actually the preef ef the abeve prepesitien tells

us something more. Let T be any theory with a unary



predicete P, Then =

Prepesition 14. Suppese that for every M ET ,

(M,a%ﬁPMiS a prime medel. Then for every M E T ,
(M,%erﬁls the unique prime model of Th((M,aLﬁ?M) .

In the pext few definitions and results, T will be
Just a (ceuntable) theory, whese language containes (ameng
other things) a unary predicate P.

If ¥ is a m;del for the language ef T, we will
denote by & the expanded medel (H,azkpn.(Se the language .
of £ may e unceuntsble.) So then Theorem 10 just says
that T 1s 1-cerdinal if end enly if £ is minimal feor =all
M F=T. Propesition 12 and Theorem 13 imply that, if R is
prime for every medel M of T, then £ is minimal fer every
model M of T,

This differs from the situation for "fixed" models,
where we may have medels which ere prime, but net minimal.
Exemple 21 below will ®be, smeng other things, an example
of a theory T such that for all models ¥ of T, & is
minimel, but for which there are medels ¥, with R net

prime.

.~ ‘We will first, however, leek further inte the
relationship between the {-cardinality of a theory T, and

the minimality eof its expanded medels.
Deissler[4] has defined a notion ef rank fer
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elements of a model, which ensbles him to characterise

ceuntable minimsl models.,

Mis definition is &8s fellows :

Definitien 15. Let X e a model (in a language ef any
cardinality).
The rank in M of an element a €¢ ¥ over s
subset X of ¥, rk(a,X,¥) ', is defined ®y inductien :
‘rk(a,X,¥) = O if there is a formula ¢(x,y) in L(¥), and
Qe X, such that |
¥ ¢(a,C) A Ix¢(x,2) .
Fer  en ordinsl lerger than O
rk(a,X,¥) = & if notkrk(a,X,M) =7 forn< Y%, and
if there is ¢(x,¥) and deX such that
XM E 3x¢(x,3),
and such that fer all WeM with ¥ [ ¢(b,23)
rk(a,Xuiel M) < Z .
We say that rk(a,X,M) =e if there is ne erdinsl g
with rk(s,X,M) = Z. (By convention < e fer all
ordinals Z.)
We define rk(a,¥) to ®e rk(a,0,M) ,
and rk(M) to be sup{ rk(a,M)+1 : ack } .

Lerna 16. &) Let ¥ be a medel (in a language of any
cardinality). Then rk(M) <e implies that M is minimal.
B) If M is a countable model in a counteble language,
then 1rk(M) <e if and only if M is minimal .



Preof. Quite straightferward, as for example in Flum[7].

Let A ®Be & model with a unary predicate P.
Then we say that A is & 2-cardinal model if
lall > |PA] > ..

We say that a set of sentences I, almost axiomatises a

class of structures K, if for any model A,
AE 2 if and only if there is B = A such that B € K .
Keisler[l2] has given a set of sentences which

almost axiomatises the class ef 2=-cardingl medels ¢

Theorem 17. (Keisler) Let L be a ceuntable language
which centailns a unary predicate P. Then the fellowing
set of sentences I almost éxiomatises the class of
2-cardinal medels feor L.
= | BVOonwoePEyozo.----VxnwnePBynzn[/\ Yo ¥ A
///\\¢J(xb,..xh,zo,..:n)f——>¢3(yb,..yn,wb,..wn)] :

‘)20
D < Wy M< W fpreeePys 20n+1-ary fermulae of L. |}

It fellews that if T is a theery in L, and
(T,P) is 1-cardinsl, then T v 3 is incensistent.

Thus there are O055+...0 1in 3 such that

7 F'sgkcﬁor .

But if o is in 3, then — ¢ i1s a sentence of the form

\fvosxowoeP\/yozo......ExhwheP\/ynzn
[(/\¢J (xo’00xntzoot-zn)é_% @5 (yos-oynowotoown)) —'>
\\//vo = ¥ y for some n,B < W o

22
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Let N be a moedel for the language of T , and suppese that
ME-o.
If we look closely at —mo , we can see thet this implies
that for every a ¢ ¥ rk(e,f) < n.
Se rk(R) < n+t1 .
Now for every model M of T, there is 1i.¢ r such that
KE o9 .
Thus there is seme n, < w such that
rk(R) < n, for all MFET . So we have preved :

Prepesition 18. Let T ®e & (countasle) theory which has

a unary predicate P.
Then (T,P) is 1-cardinal if and only if there is =n < w
such that k() < n , for all M T, “

Let us new return to the context ef Gaifman
operations. Namely T is a theory in a countable language

L, P is a unary predicate in L, and I, c L - {P} .

Definition 19. a) T has the uniferm reductien preperty
if for any ¢(X) in L there is ¥(X) in L,, such that
for all ¥ (T and fer all:ePu,

M = ¢(2) if and enly if ¥ |L, F y(3) .
®) T is i-cardinal ef rank n if n is the least natural

number such that rk(R) < n for all M|T.

As mentioned before, Wilfrid Modges conjectured that
T is a Gaifmen operation if and enly if T is {-cardinal and



has the uniferm reduction preprty. The directien left to
right is given By Prepesition 11 and Theorem 3. The
eppesite direction dees net held. Hewever, it does held
if we stipulate that T is 1-cardinal ef renk 1 .

Prepegitien 20. Suppese T is 1=-cardinal ef rank 1, and

has the uniferm reductien preperty.
Then T is a Gaifmsn eperatien. ,
Proef, |
Let MK,,¥; Be models of T, such that
5P| = 571, = k.
As T has the uniferm reduction preperty, it follews that
(Besm) 1, = (asa) o
As the model (Mi,azeﬂo has rank 1 , then fer every element
® of ¥, there is a formula y(x) ef L((Mi,akiyk) , 8uch
that = y’l‘('b)‘/\ Fxp(x) .
Similarly feor (Mz,akkh%.
So let » ¢ ¥, , and y(x) define » as above.
Then M, Fxy(x) . Suppose that X, = y(c) .
Then we put f(») = ¢ &
It is easily seen that the map f: M,— N, , thps
defined is an isomorphism, and that f(a) = a fer all

. a in ¥,. Thus‘T is a Gaifman eperatien.

Mowever in the general case, we have a
coeunter-example.
Our example is actually bpased on an 1dea of
' Shelah[21] . Shelah gives an example of a ceuntable
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nen-prime minimal medel, which has 2Wo models which are
elementarily equivalent te it and minimal.

In what follows “2 will dencte the set of
functiens frem w to 2. “>2 will denote the get of

- functions frem n te 2, for n < w .

Example 21, A theory T in a ceuntable languege L, with

& unary predicate P and a sublanguege L, ¢ L - {P} ,
such that T is i-cardinal, T has the uniferm reductien
Preperty, but T is not a Gaifman eperation.
We will define a medel M, and T will be Th(X).
L, the language ef M, will have as its non-legical
symbels , a unary predicate letter P, a unary predicate
letter Qv for each v € w>2’ and a bpinary operation letter
+ . L is then & ceuntable language.
Let us fix 7, € “
Then we will put - { o€ ¥ s (Zcw)(Vnk)o(n)=0 }
and (AP = [ ne ¥ (Few)( Vnsk)n(n)=no(n) }
Se intuitively, the elements ef the P part ef
M are the sequences of 0's and 1's of length w which are
eventuslly O. And the rest ef M consists ef sequences
which are eventually the same as 75.
| If v,,vy are in @2 u @2 , then we will write
vy <4 v; te mean that vy, is an initial segment of v,.
Then fer all o ¢ ¥, we stipulate that

w>

M F:Qvo if and oply if v<d o, fer all v ¢ 2.
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And for n,,7m,, ns in M
MF ny + 1 =715 if and only if
N1 (n) + nz(n) = ng(n) (med 2) , for all n< w .
In this example the sublangusge I, will just consist of
| the language L without the predicate P. This is all right
as in the nodel M, PM is clesed under the cperation + . So
the same will e true in any medel of T = Th(M) .
~Also, note that for any n € (- 11’)M
("P)M ={ 0o+7n: oerPH }
Thus Kl Vx\v{ylaze?( X+2z2=Y ) .
so THVxVy3zeP(x+2z=35)
So any model N of T is generated by one elementi ever

PN; So T _is t—cardinsl, Actually we can see that T is

{-cardinal ef rank 2.

Te preve the rest, we need s set ef axioms for T.

Se we propese the fellowing

1) (31:_)(Px/\ Qv;) } for each v ¢ ¥2 o
() ("PxAQx)
2) (\/quv,_x —-)Quax) whenever v, < vy .

3) (Vx)(Qx— (QueaXV Quey X)) Tor all v e “>2,
b) (V=) (Qay TN Quiy X)) for all v e %2,
5) (Vxvz)( x + ¥ = 2 APxAPy —Pz)

6) (Vxyz)('x + ¥y = 2 APx A1 Py—>41Pz)

7) (¥xyz)( x + ¥ = 2 A— Px AnPy —Pz)

8) (Yxy)(x+y=y+x)

9) (Vayz)( x+ (y + 2) = (x + 3) + %)

10) (Vxyz)( x +¥y=2—23X=Y + 2 )

1) (Vayz)( x + 7 = 2AQ, x/AQ, y—>Q, 2)

w>2

where v, ,vpe8nd vy are in ’



length(vs) = min( length(v, ),length{v,) ) ,
and va(1) = v, (1) + vo (1) (mod 2) for all
i < length(vs).
Let 2 be thé set of sentences 1) to 10).
It is obvious that 2 ¢ T .
It 1s routine to show that 2 has elimination of
quantifiers, i.e., that for any formula ¢(X), there is a
quantifier free foramula y(X) , such that \
T ¢<>¢. |

The main point to note in doing the quantifier elimination

is that a formula of the sort
(3x)( Q, * A‘Qv,(x+y) ) 1is equivalent under 3
to the quantifier free fermula 'Qvay ’ where
‘length(vy) = min(length(v,),length(v,))  and
vgtl) = v, (1) + vo(1) (med 2) for all 1 < length(vg).
It fellws that 2 must be complete, whereby 2 does
axiomatise T, So T also has elimination.of quantifiers.
We now show that T has the uniferm reduction
property.
So let ¢(¥) be a formula of L such that
T u {(3XeP)$(X)} 1is censistent.
By seliminatlien of quantifiers there 1is a quantifier free
formula of L, y(X) , such that
T V(@9 (@) ).
We cégxgbsily get a quantifier free formula w'(;)
of L - {P} , such that
T VXeP( $(X) ey’ (x) ).

But then, feor any medel N of T, and'z € PN ’
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NE¢(B) iff FEy (@) iff FlL Ey (@) .
( as ¥ is quantifier free and L, = L = {P} )

Se T has the uniform reduction prooreriv.

It Jjust remains to show that T ié net a Gaifman
operation,

Remember thsat to define the mcdel ¥, we began with
a fixed 5, € “2. Let us now choose Ny € “2 such that
for all k<w there is i>k such that

1. (1) £ no (1) o
Now define a model B’ frem 7,, exactly as we defined K
from 75« It is easily checked that Hf‘satisfies the axloms
2, whereby M’'is a medel of T. It is also clear that
(2')F = ¥ , as the P part of N was defined

independently of nq.

However esch element of (~1P)M is different at
arbitrarily large points from each element of (—1P)M‘,
and thus .- M o XK', In fact there are oMo pairwise
non-isomorphic models N with NP = HP, and X F T.
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Chapter 2

ifinimal models and the number of countable models

2.0 Introduction

The original motivation behind this chepter
is the sttempt to determine the possible number of
countable models up to isomorphism of & compléte countable
theory which has a minimal model., The conjecture is
that such & theory has infinitely many countable models.
Such a result would strengthen the Baldwin-Lachlan
theorem, which says that an N, -categorical non, -
categorical theory has (X, countable models. /hat we
end up proving, hoviever, are some comparzstively weak
results on the number of countable models of a theory
with a cerfain kind of '"very algebraic" prime model.
we show that such a theory has at least four countabls
models.Fow it is known that n(T)(= number of countable
models of & countable theory T) cen never be eguel to
two. So if n(T)>1 then n(T) »3.Thus to show that a
theory has'at least four countable models is the

weakest possible nontrivial result.
R S &

g
- s,

.
R
.

mesentially the only known example of a theory T
with n(T)=3, is the "threnfeucht example". And the

examoles of T with n(T) finite are moaifications of this



40

example.i/eshow that any theory T for which n(T)=3 is quite
& bit like the Fhrenfeucht example. |

It has been thought that one could obtein a nics
cheracterisation of those theories T for which n(T) is
finite,analogous to the Ryll-Fardjewski characterisation
of N.-categorical theories. I think thet such & neat
charscterisation is unlikely to be found, partly becausse
theories with more than ons, but only finitely many
countable models ere such an anomely. Ahy characterisation
will probebly be of a rather complicated structural
nature, However, if we look at?% -categorical theories,
we can, rather crudely, divide them into —
a) those theories which are }V,-categorical because of
lack of structure (e.g. theory of equality,theory of
infinite ebelian groups of order p), and
b) those theories which are’h@-categorical due to the
presence of structure (e.g. theory of dense linear
orderings, theory of atomless Eoolean algsbras).
In case a) there is nothing to distinguish counteable
models of the theory. ‘Whereas in case b) there is enough
going on in the models to enable us to construct |
isomorphisms.The feeling is then that theories T with n(T)
greater than ore, but finite, arise from modifications of
t\,-categorical theories of type b), as for example
shrenfeucht's example comes from adding a sequence of

constants to a dense linear ordering.
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I orcsent a gen=ral framework for obtzining or
constructing non-iscmorphic countable mocels. This
essentially centres arcund the presence in our theory of
certazin ezxchange properties, which allow us to get moaels
of arbitrary finite "dimension'", As stated sbove, undser
certain strong assumptions on the degree of algebraicity
of the prime model, we have as yet only been able to obtain
at least four models. However I alsc prove a guite general
€xchange result, which under ocuite strong conditions on
the algebraicity of the theory (namely that every model
prime ovér a finite set is actually algebraic cver that
set),enables us to get infinitely many countable models.,
This latter result, whereby onz obteins infinitely many
models has been proved directly by Lascar(l{], but I feel
that the sbove-mentioned exchange result is fairly
interesting for it's own sake.

AS for minimal models, we view minimality(of & modsl
as a generalisation of algebresicity. In the csse of a
model which is slgebreic, one can sece directly what is
responsible for it's minmality, so we would like to
connect the two notions. I actually show that & minimal
prime model has a large part which is algebraic over a
finite set. This alsb cornects our original conjecture to
the later results on the number of countable models,

elthough there are obviously many gaps to be filled in

order to prove the conjecture.
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I will first state a few preliminesry definitions and
observations, In this chapter &all models and theories that
we talk about, will be in a countable languzge. lodels will

be infinite unless otherwise stated.

Definition 22, We say that & model £ is minimsl if there is

no B such that BLA and B £ A.

It follows that s minimsal mocdel is countable.

Definition 23. (i) Let A be a model and aclh. Vie say that

a is algebraic in A, if there is a fomula 6(x) of L(4),
and n<w such that ApE3"x6(x) A 6(a) .

(ii) A is algebraic if for all aesi, a is algebraic in A.
(iii) Let T be a complete theory. Then T is algebraic

if T has an algebraic model.

It is easy to see that if a model is algebraic then
it 1s prime and minimal,
Let T be a theory. Then aé mentioned before we denote
by n(T) the number of countable models of T up to
isomorphism. It would be werthwhile to state and prove the

following classical result of Vaught[25].

Theorem 24, Let T be & complete theory. Then n(T) £ 2.

Proof. Let us assume that n(T) > 1 , and n(T) < 7N, .ve will
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show that n(T) 2 3. First of =ll1 then, T can orly have ?YO
types, for otherwise we would get too many models., Thus T
hes a prime model and a countable saturstea model. Aléo &s
T is not-hg-categorical, there must be a non-princinal n-
type p(X) for some n < w, whereby the prime and saturated
models cannot be isomorphic. Let T/ = T u p(@), where ¢ is
a scqguence of n new constants. Then T’ has egain only ?Qc
types, and thus has a prime model (&£,@). A is a coﬁntable
model of T. As A reslises »(¥), A& is not prime., Kow T'nmust
have some non-principal n-type q(T,%)(because T, and thus
T has infinitely many n-types).(A,?@) omits this type, and
thus A cannot be safurated. Thus we have at least three

countable models of T.

v
Opservation 26, Let T be & complete thecry with no prime

model. Then n(7T) = o

T must be non-atomic , and thus there is some n-
formula 6(%) which is not implied ty any complete n-formula
of T over T. By a standard treec method we can get éM‘n-
types bf T, and so T must have at least 2%5 counteable
models , to realise all these types. But n(T) < 2%, so

the result. follows.

Observation 26, Let T be a complete theory with a prime

model., Suppose that AT , and A is minimal. Then A is

prime.
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1zt B be the prime model of T. Then B4 4 , and so

2 = a4 by ninimality of A.

iote from this thst if T has a srime model,then T hes
at most one minimel model un to isomorphism.

Also,in so far as we are intsrested in the number of
countable models of a theory with & mirnimal model,we can
by Observations 25 and 26,assume that the mininm.l model
of the theory is prrime. Thus in the section following,

we restrict our attention to prime minimal models,
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2.1 Prime llinimal Wodels,

Provoositicn 27. Let T be a complete atomic theory, and =

be a countable model of T. Then 4 is minimal if and only if
4 1s atomic and has no atomic proper elementary externsion.
Proof,

Let 4 pe mirimal. Then as T has a prime modei,A is
nrime arnd thus atomic. Suppcse that we had B%%A s B £ 4,
end B atonic. Ve may teke B to be countable, for if not
teke a counteble elementary substructure. But then 4 = 3B ,
so we could find C4 4 , C # A4, contredicting the minimality
of A.

Conversely, suppose A were atomic and not minimal,
There would be B4 4 , B # 4. But thern obviously 2 would
also be atomic, and thus B =~ A , so0 we could find C, with

44 C, 4 £C, and C atonic,

Th:- sbove proposition says that if A is a prime
model, then A4 is minimal if and only if, whenever 4 £ B,

-
and 4 # B, there is n < w and an n- tuple & from

|3

"—IA[” which reslises a non-principezl n-type in B.

Compare this with the situation for algebraic models,

Observation 28. Let A be a prime moéel, Then &4 is algebraic

if and only if whenever A:$ Band 4 # B , every element of

B - A realises a non-principal type.



Proof.
Note that 1f 4 is algebraic, thern for every complets
1=formula 6(x) of .Th(A), there is n < w such that
AEZNx6(x). So if.A:é:B, all the rezlisztions of © must be
in A, So if beB-A then b cannot realise a principal type.
Conversely, suppose 4 were not algebraic. Then there
is a complete formula 6(x) (i.e. complete for Th(a) )
which is satisfied by infinitely many elements of A.
Consider the following set of sentences in the language
got by adding names for elements of A and a new constant c
3 = Th(A,aszu 6(c) u { cta : aes }. \
By compactness 3 has a model ( B,a,cgkA . Then 44 3,
ce B-4, and c realises the principal type of Th(a)

determined by 6(x).

Proposition 29, Let T be a complete atomic theory. Then T

has & minimal model if and only if all atomic models of T
are ccuntable.
Proof.
Suppose that 4 i1s a minimal model of T. Then 4 is
prime, and if there were an uncountable atomic model of T,
we would have A4 B, A £ B, contradicting Proposition 27.
Conversely, suppose that T had rno minimal model. Let
A be the prime model of T. Then by Proposition 27 A would
have an atomic proper elementary extension A;. If A, is
uncountable, there is nothing more to prove. If 4, is

countable, then 4 ~ Ay, and we can thereforebuild a
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strictly increasing continuous elementery chein

{ A, :i<N,] of countable atomic models of T. (iie can
contirue &t the limit stage, because for & a limit ordinsl,
0<'Ns Ag = Uli t i<d ] is a countable atomic model of T,
and 1s thus isomorphic to AJv

Put A/ =&£§£ . Then A' is an uncountable model of T. Also,
any finite %uple from A' is in s for some i<, &nd. so
resalises & principal type in 4, and so also in A’,

Thus A’ is atomic.

‘Proposition 30. Let T be a complete theory. Then .

a) if T has a minimzal model, then T is not'KA—categorical.
b) if T isN, -categorical and not N,-categorical, then

T has a minimal model.

Proof.

a) Suppose T were?&o—categorical. Then T would be
atomic, and moreover by Ryll-Nardjewski, &all types of T
would be principal. Thus all models of T would be atomic.
So by the previous proposition, T could not have & minimal
moael.

b) Let T beW, -categorical and not'™N, ~categorical.

Ey ?(—categoricity, T is_atomic. By non-?ﬂrcategoricity,

T hes a non-principal type p. This type p will be realised
in soze, and thus in all, models of T of cerdinality ?Q‘.
Thus it is easy to see that T has no uncountable atomic
model. So by the previous proposition,T has a minimal

model,



Proposition 31.Let T e & complete theory, &nda p a not

necessarily coaplete type, such that ell models of T which
omit p are isomorphic. Then if a model 4 of T omits D, 4
is prime and minimsl.

Proof,.

Lzt A be @ model of T which omits p. If 4 is not
prime, then 4 realises some non-principal type q. But
then, by the Omitting Types Thesorem, T has a model B which
omits both p ernd a. Zut then B cannot be isomorphic to 4.
Contradiction. So A must be prime., T could not have an
uncountable atomic model, for such a model would omit p,
but would be non-isomorphic to A. Thus by Proposition 29

4 is minimal.

1
v

e now come towards the mein result of this ssct-

ion, e first neced a few more definitions.

Definition 32. (i) Let A be a model. we say that &' is a

nrincipal expansion of 4, if 4'= (A,2), where ¥ is & finite

tuple from A which realises a principal type.
(ii) Let T be a complete theory. lie say that T' is a
principsl extension of T, if T* = Th((4,%)), where (A,%)

is a principal expansion of some model A of T.

Note that if A is a prime model, then every expans—
ion of 4 got by adding finitely many names, 1is & principal

expansion.

L8
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1, and T c |4l.

(81

Definition Z5.1st ~ be & mo
= | @eis @ there is a formula ¢(x;¥) of L{-),
beX , and kX<w such that 4k x¢d(x;b) end 2 EF¢(a;d) 1.
If secl{X,s), we say thet = is algebraic over X in A.

If X = bf , we say that a is algebreic over b in 4, and if

X = 0, we Just say that =z is algsebraic in a.
Fote that to say that A is algebraic, is just to say
that ¢1(0,4) = A

¥e can now relate minimality to algebraicity.

Theorem 3L, Let A be a prime minimel model, Then A has =

principel expansion if, such *hat in T.(4') there is a
formula'¢(x),such that ¢2° is infinite and ¢A'gc1(o,A').
Eroof.

By Proposition 27, 2 has no atomic proper elementary
extension. Let L be L(A). Let us add names for all the
elements of A and a new constant ¢, so as to expand L to
L”. Consider the following theory in L” :
™ = Th((A,ang U {c#a : aei}l. Then the L-reduct of any
model of T” is a proper elementary extension of A.

Thus no model of T” can be atomic, when viewed as a model
of Th(4).For each n<w, put

In (& seexq) = [My(xy, «oX%,) ¢ ¢ a complete n-formula
of Th(a) }.
Then it is easy to see that the IL~reduct of a model of T
is atomic if and only if the model omits 3, (xy,..%,) for

all n<w. So by the Omitting Types Thecrem, there is ncw

such that 3,(X) is principal over T%,
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50, there sre a finite tuple Ted, and sn L-Tormula
o(*,y,2) such that :

(1) ™ul¢(Z,c,Z)} is consistent, and

(i1) Tk ¢@,c,8)dy(R) , for each Ay (R)eZ, (R).

By (1), t yea : aAF=%¢(%,y,8) } is en infinite set.

By (ii), for each '1W(X>€2m, there is by compactness
b,ye..br in A such that

Th((4,a),) u&&c,ébt b ¢ (Z,c,8)—Y ay(x) .

So Th((A,aq)eA) - ¢'('>t,c,'§)/\1/f(?‘i)-—%¥c=bi .

S0 by syntex or semantics, there ié k«r such that
Th((4,3)) b Fy32(¢ (R,5,8) A y(%))

low we take (A,E) to be the principal expansion A’ of A
that we wanted to find.

Then the formula SRy (X,y,8) is a formula of L(4) and is
satisfied by infinitely many elements of A'.

It remains to chow that every element of A’ satisfying
3%¢(%,y,8) is algebraic in 4’.

So let 4’k =#¢(Z,b,2) . But every n-tuple of A’
satisfies & principal n-type of Th(a), so there is some
complete n-formula ¢ (%) of Th(A) such that |

AE 3R(¢(%,0,8) A ¥(R)) .

But from above, there is k<w such that

Ak ZRy=2(¢(Z,57,8) A\ ¥(R)) , whereby becl(0,A").

This proves the theorem,.



51

Proposition 35. L2t 4 be a homogeneous model with a

principal expansion (4,Z) which is minimal. Then 4 is
minimal.
Proof,

Lzt A be as in the hypothesis. Suppose that B:é A,

]

As & realises a principal type, there is BeB such that
(Bsb) = (
of 4, (A,b) « (A,2). Thus (4,B) is minimsl, Rut

>3

ol

s

,2) . Thus (4,B) = (A,g), and so by homogeneity
(B,g):é (A,b), and s0 B = A, So A is minimal.

Corollary 36. Let A be a model with a principal expansion

(4,2) which is minimzl and prime. then A is minimal and
prime.
Proof.

Firstly it is clear that, as (4,%) is prime znd =
reelises a principal type in A, then 4 must also be prime.
Thus A is also homogeneous. The result now follows from

Proposition 35.

Corollery *7. Let A have a principal expansion (A,%)

which is algebraic. Then A is minimal and prime,
Proof.
Note that (4,%) is minimal and prime. low use Coroll-

ary 36.

e are interested in the extent to which the
implication in Corollery 37 can be reversed, Theorem 34

gives a pertial result in this direction, by showing that
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a rrime minimal model has & principel expension with a lar-
ge definable zlgebraic bit. In a special case we can get
a stronger result.

First of all, we make some more definitions.

Definition 238, Let A be a model, and ¢(x) a formula in L(4),

Then we §ay that ¢(x) is minimal in (A,ag%A if

(1) | xed : AE¢(x) } is infinite, and

(1i) for esch formula y¥(x;¥) of L(4) and Bea, either
{ xed 3 AR¢(X)Ay(x;2) } is finite, or

{ xes ¢ Akg(x)Ay(x;8) } 1is finite,
Then as in the literature, a complete theory T is szaid
to be strongly minimal if for every model A of T, the

formula 'x=x' is minimal in (A,azéA.

Proposition 39. Let A be a mcdel such that 'x=x' is minimal

in (A,agéA. Then A is minimal and prime if and only if A
has a principal expansion which is algebraic.

One direction is given by Corollary 37.
For tﬂgtairection, let A be minimal and prime. Theorem 34
then gives us a tuple B in A, and a formula ¢(x) of
L((4,2)), such that ¢ #8) is infinite and is a subset of
cl(Z,4). 45 'x=x' is minimal in (A’ang » 1t must be the
case that ~1¢(A’g) ié finite,

But then A =,¢(A,€) U'1¢(A’a) c cl(=,a).

Thus (A,é) is algebraic.
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Coxcllery LGC. Let T be & strongly mirnimal theory.

Then T has & minimal model if and orly if T has a principsl

expansion T'/ with an algebraic model.,

It is interesting to note that the above Corollary
can glso be deduced from the Marsh-Raldwin-Lachlan
framework in the following way :

Assuming T to be strongly minimsl, let £ be a minimal
model of T. A will be prime. If the(Baldwin-Lszchlan)
dimension of the universe in 4 is infiﬁite, then every
countable model of T will have infinite dimension,whereby
T will be PN,-categorical. But this contradicts the fact
that T has a minimal model., So A must heve finite dimension.
But this just means that there is a finite tuple ZBes,

with (4,8) algebraic.

v 1is easy to find exampies which show that the
conclusion of Prpposition 3% does not in generel hold.
e can just put together a lot of minimal models. For
example, let our model consist of w disjoint copies of
(Z,<), ezch copy distinguished by & unary predicate.
Then the model is minimal, but it cannot be algebraic

over any finite set.
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The number of countable models,

There are very few examples known of theoriecs with
more than one, but only finitely many countsble models,
Such & theory would thus seem to be a pathologicel case.
loreover all the examples ere more or less modificatiorns
of the original Ehrenfeucht example, which gives & theory

T with n(T) = 3. Ve now give this theory.

Example

\

Let A = (A,<,8; )icy Pe a countable model, where
< 1s a dense linear ordering without endpoints,
A Fa < g iff i¢j , for ell i,J < w , and the g are
urbounded above in A. We put T = Th(a). Then T has just
three ccuntable models,
A 1s the prime model.
The ‘'‘middle model' Ay is such that
{ xer, t 4, F g < x for all i } is non-cmzty and has a
first element c. Ay is eactually prime over c,
The third mod=sl A, is saturated, and
| x€A, 3 Az 8, < x for all i | is non-empty, but has

no first element,

Yje take the opportunity to observe that in the model
Ays if 4 > ¢, then @ realises a principal type over ¢, but
c Goes not realise a principal tyve over d. This is, in a

sense, what is responsgible for the fact that n(T) = 3.
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One calr modify the ebove ciaiills gt
nunber of counteble molels, by edding for any n say, & set
of n unrary predicates Py, i<n, which partition the model 4,

end

[¢))

agcn of which is dense in 4. Then we get n 'middle
mocels', like 4, , but distinguished from each other by
which of the P; holdas for ¢ = %i&)aq . Altogether therefore
we have n+2 countable models. _

Lzchlan has modified the &xanqﬂe,in e elightly
different wey to obtain a theory T with n(T) = 6. What he
does is to add to the dense linear ordering two seguences
of constants, one going up, and the other going down, end
&ll the members of the first sequence less than all the
members of the second.The countable models of the theory
are then determined by whether the interval between the two
sets of constants is empty, open, half-open,etc.
Péretyat'kin[r7] has given an example of a theory T with
n(T) = 3, by adding a sequence of constants to a certain
kind of dense tree, Woodrmﬂl@ has shown that if T is &
counizhle complete thecry in the same language as the
threnfeucht example, and with elimination of quantifiers,
then n(T) = 3 implies that T is very much like the Xhren-—
feucht sxaﬁple. I show below that any theory T such that
n(T) = 3, is 'similar to' the Ehrenfeucht example.

Some other studies have been made of theories with
more than one but finitelgxgbuntable models, Rosenstein[\g]
showed that any such theory has a countable model which
is not saturated, but realises all types of the'theory.

Benda[2] has shéwn-that, if, not only T but also every
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connlete extension of T by finitely meany constants,has only
finitely many countable models, and T is not?\;—categorical
then T has a countable universal model which is not satur-
ated. This method of placing conditions on &ll simple
extensions of a theory, is rather artificiasl, but enables
one to prove results by iterating certain constructions.

We examine later on, what haopens when every complete simp-
le extension of a theory is algebraic.

There have been only a few non-trivial results
telling us when a theory has infinitely meny countable
models. Baldwin and Lachlan[i] proved that if T is Ny -cate-
gorical and not?\’o—categorical, then n(T) = N, . Lachlan[l13]
strengthened this by proving that if T is superstable and
not N,-categorical, then n(T) > N,. Both proofs rely very
heavily on the stebility of the theories in question, and
the proof of the former result relies a lot on the existen-
ce of a strongly minimal formula in a »nrincipal extension,
e would like to prove results without any stability

assumptions. Lascar(l4] proves essentially that if every

‘complete simple extension of a theory T is algebraic, then
n(T) >?NL° This follows from some lemmas that he proves on
Cantor-RBendixon ranks of types of the theory. I will rework
some of thé Lascar material in a more model-theoretic way,
proving an interesting exchange result while doing so.

However if we place algebraicity conditions only on
the prime model of the theory, then it looks to be much
more Aifficult to prove that there are many countable

models. I get some comparatively weak results below.



And from the proofs of these fesults, it seems that any
attempt to push the results further will involve one in
many combinatorial. problems.

However, I first present a genersl schema for obtai-

ning non-isomorphic counteble models,

2.2 I A4 genergl framework for getting models,

Let us first note that if &all the countable models
of a complete theory are homogeneous, then the theory must
have infinitely many countable models. This_follows at once
- from Rosenstein's result mentioned aﬁqve, for if a counteble

§uu. model is homogeneous, then it must be saturated.
However, this criterion is not all that helpful, for there
‘are an abunéance of theories with infinitely many countable
models, not all of which are homogeneous, Look, for example
at the theory T = Th((Z,<)). 7e get lots of countable
models of T by adding extra copies of Z. However, the model
Z + Z 1is not homogeneous., For any element in the first
copy realises the same type as any element in the second
copy, but there can be no automorphism of the model taking
the one element to the other. A more helpful observation
which is concerned rather with relative homogeneity, is

the following—

Lemma L1, Let T be a complete theory which is not'}QO—

categorical, Suppose that if AFT, & is a finite sequence



from A, and (4,8) is prime, then for all b im A of the same
length as 2, (A,8) = (4,0) implies that (4,2) = (A,D).
Then n(T) >‘FQ .
Proof.

Flrst we mey assume that T has < P&n-types, for all
R < w. For otherwise we will have to have more tham counta-
Bly mary coumrtable models, to f£it im all these types. It
also follows that ary complete simple extemsion of T has
only ?4 types. Thus, every complete simple extensiom of T
has a prime model.

Now, ae T is mot | -categorical, T has ixfimitely

Rany Rr-types for some A < w. W.RB.1l.0.8e assume & to be 1.
So let p,(x;) be a mom-prircipal 1-type of T. Let ¢, be a
mew comstamt., Them agaim T, = T U p;(c,;) has infimitely
manry 1-types, 0 we cam fimd p,(c, ,x) & mom-primcipal 1-
type of T,. Proceedirg inductively, we camn thus fimd
2-types Dp(Xysee+X,) of T, for 1 < R < w , ard correspomd-
img theories T, = T U pnﬁpi,..cﬁ) » such that ,for all =
Pn(xs.sﬂxn)'g. Pny (xz"ﬂxm-.) » and Dppy, (.C:.:-'cn’x) is
a mom-primcipal 1-type of T,.

Now, for each a let Ag_bp a prime model of T,, ard
let A, be the L(T)-reduct of Ag. Esch A, is thea a countab-
le model of T, and we assert that m # = implies that
Ay 18 met isomorphic to An._

Suppose, by way of comrtradictiom, that for some »
An o Any, o« A8 A4, 18 a model of T,,, , thea there are
CiseeeCp,, 1R A such that (An_,gi,..c,;*, ) E Topy o |
But there)B,,..b, im A, such that (An,B ,..B,) 1s a prime

model of T,., By comstruction of the T, ,

-
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(A sDyseeBn) = (AnsCypeecy) ,Whersby
(An 2By seebn) o (A,,C150.C,) ,by the conditioms of the
;ggga: So (An,ci,..cn) is prime. But this cemtradicts the
fact that c,,, realises a nom-primcipal type over (ci,..cn)
in Ay |

Thus it is easy to see that | Ap ¢ 1smw | is a set

of pairwise mom-isemorphic countable models of T.
Along similar limes we have :
Lemms 42. Let T be a complete theory‘which has a model A

such that : 1) A is mot prime
2) there is a fimite tuple ¥ im A such thet (A,%) is priwe,

3) for axy B im A suck that (4,2) = (4,8) , it is the case
that (4,2) = (4,%).

Then a(T) > 4.
Proof.

We may assume that T has a prime model axd a counmntab-
le saturated model. These carmot e isomorphic, as the
corditions of the lemza imply that T has a mon-primcipal
type. Let p(x)i)g the type of @ im A. Then p(R) is non-
primcipal. let q(X,¥) be a typé of T which is'non-principal

over p(i)-and extends p(R) (i.e. p(X)cq(2,¥) and q(B,¥) is
a non-p;inbipal type of T u p(®) ). Let (B,¥,3) be a prime
model of T U q(3,8). Then, as im the proof of Lemma 41,
A ard B are mom~-isomorphic countadle models of T. Alse,

a8 im the proof of Theorem 24, meither A mor B can be

prime or saturated. Thus T has at least four countable

models.
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Defimition L3. Let A Be a model, and % and » fimite tuples

from A. We say that B is primcipal over ® im 4, if B
realises a primcipal type in (4,%).

The followirg lexma is widely kmown.(e.g. Bemda[2])

Lemma L4, Let (A,Z) be prime. Suppose that PeA and 2 is
primcipal over ¥ im A. Then (A,%) is prime.
Proof. |

Let TeA. We show that ¥ realises a primcipal type
ir (A,B). Firstly, there is a formula ¢(%,X,7) which
gemerates the type ef (%,¢) in (4,%). Let y(¥,2) gemerate
the type of & im (A,%). Them it is quite easy to see that
the formula (3?)(&(?,2)/\ $(2,%,¥)) gemerates the type of
@ in (A,?). So é realiséé a principai type in (A,;). As ¢
Wwas &R ariitrary finite tuple from A, it follows that
(A,%) is priee.

Opservatior 4K, It follows that if (A,2) is prime,
(4,3)
(4,8) « (A,%) (as woth these models will we prime models

(4,8), and 3 is primcipal over », then

of the same complete theory).

Note also that if (A,3) is prime, them any B in A
is already primcipal over a2 in A. So we cam see already
that the problem of getting mom-isomorphic countable models
has been reduced to the problem of provimg exchange results
of the followimg sort ¢ if & and ¥ are rinitc}tuples from a
model A, axd (A,8) = (4,8), them & primcipal over implies

that B is primcipal over 3.



61

2.2 11 QGetting infiritely many models.

We will first defime the 'Cantor-Bemdixsor' raxk on
the types of a theory. So let us fix a complete theory T.
Let 5, (T) denote the set of (complete) m-types of T.

Definition 46. (1) We define for each ordimsl a, a subset
SH(T) of S,(T) wy :

1) S3(T) = $,(7T) .

2)For & a limit ordimal, S(T) = ns¥(T) .

3)‘ Sf,m (F) = { p : PeSH(T) and for all ¢ep there is‘quﬁ‘(T)
such that ¢#p and ¢eq } -

(11) If pes,(T), then we definme

| Rank,p = the least a« such that peSﬁ(T), if there 1is such
an a. Otherwise Rank,D =e. |

(i1i) We slso defime with mo corfusiom raxks amd degrees of
formulae, with réspect to T. So let ¢ be an m-formula
corsistent with T. Then
Rank,¢ = sup| &« ¢ there is peSS(T) with ¢ep }, if such a
sup exists. Otherwise Rank, ¢ =e .

If Rank,¢ = &, ther we defime Deg,¢ = [{peSﬁ(T):pepH.

The following facts &re them easy to preove.

Lemma 47.(1) Suppose that ¢ 1s an m-formula,. peS,(T) and
¢ep. Them Ramk,p < RaEk,¢.

(ii) Suppose that Rark,P = &<w . Then there is am m-formula
¢ such that Rank,¢ = «, Deg,¢ = 1, and p is generated over
T ey {¢} U { ¥y ¢ 1s ar n-formula, T+ ¥y —>¢, and

Rankﬂ¢<a}.
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(11i) Suppose that peS,(T) amd that p is gemerated over
T wy {¢} U {1y 11eI |, where Remk,y, < « for all ieI.
Ther Renk,.p € «.

We #ls0 rote the following,.

Observatior L8, (1) Let peS,(T). Them Ramk,p = O if axd

orly if p is a primcipal m-type of T.
"(11) Let ¢ ®e amn m-formula. Then Rank.¢ = 1 and
Degn¢ = 1 if and orly if ¢ is minimal, where By ¢ weing
2inimal we mear that
1) there are irfimnitely mamry cemplete r-formula ¥ such
| thet Ty-—¢ , and
2) 1ir ¢’ is sxy m-formula, them either there'are oily
finitely mary complete m-fermula ¥ such that
Try—eng’ )
or there are oxly firitely many cemplete m-formula y such
that Try—¢ Ag¢’

Baldwin and Lachlanr[]] preve am exchamge result
for strongly minimal formulae, ome case of which is
ir ¢(x) is stromgly mimimal in a theory T,
AET, a,9chA, AF¢(a), afcl(0,A), W€cl(0,A), then
decl(fal,A) implies that accl({n},A).
This, however, does mot hold for minimal formulae

88 defined akove, ever when all elements of the prime
model of the theory are memed. Look at the felleowing

exsmple for instance .
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Let A = (A,R) e a countadle model, where R is a Bimary
relation om A. R(x,y) "says" that y is an immediste succes-
ser of x. Umder the induced ordering A is a tree with a
first elemert, such that every element at the rth level hss
exactly a+2 immediate successors. Every element is at level
» for some B < w., All elements of A are named »y comstants.
Let T = Th(A). Them 'x = x' is minimal for T. Let BET,

and B £ A. ALB in the dbfious way. Let BeB~A. Then » has

a unique immediate predecesser a, whereby a is algebraic
over B, But a 18 in B-A, ard $¢ has irfinitely meany

immediate successoers. So » is not algewraic eover a.

We cen preve a weeker exchange result, which
however, heolds between %gg two tuples whese types are of
the same Cartor-Berdixsom rank less tham infinity.

For the next few results, let M be an ‘No-saturated
model of & complete theery T. Any tuples we talk about
will e in X, and for such an a-tuple ¥, tp(R) wi;l denote
the n-type realised »y @ in M. Ranks and degrees of types
and fermulae will pe ebviously relative te T. Any countable
rnodel or.T will ®e isemerphic te aﬁ elementary substructure
of X¥. So Lemmas 49 and 50 fellewing, are valid if we are
working inside any countable model ef T. Before we can

prove the excharge result, we need the fellowing lemma @

Lemma LG, Let & and ® be n and m-tuples respectively,such
that Rank,tp(3) = & <ew, and B is algehraic over a.

Then Ranx,tp(?) < «.
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Proef.
We prove the lemmsa ®y induction on «.
It is clearly true fer a = O.
Now suppose the lemma is.true for all 8 < «. let 2,:,33
tuples &8 in the hypothesis. Let X be the least natufal
rumber such that there is a formula w(i;;) ard
MEFTR(R,T)  and M) .
Then ¥(Z,5) gemerates the type of B over 3.
Now tp(3) is gemerated over T wy
$@) U -6 R)idcnd , _
where Rank.¢ = «, Deg.¢ = 1, and Rank,¢, < « fer all i,
so Tu {¢(X)} v {—¢ (F):icw} FFFWE,T) .
By cempactness there is r<w such that
Tu {$(X)] u [~¢ (X):1=0,..0] F FF¥(X,7) (*)
Consider ;he following set ef fermulae :
2(F) = (S E@RAL o @ A¥EINI v
{1 (32) (9, (3)/\&:/&-1#; (F)A ¥ (%,7)) ¢ r<jew ]
Now suppose that B’ realised Z(¥). Then, from loecking at
3 we car see that there must »e an r-tuple 3’ with
tp(d') = tp(d) amd NEY(E',¥) .
But then, as y(&,¥) generates the type of ® over 8, it is
clear that tp(®*) = tp(®) .
Thus tp(%) is determined by (¥) over T.
Look now at one of the formulae
0; () = (TN)(¢; (:)Acﬁ—\% ()N ¥(X,¥)) where I>r .
We mey suppese o;(¥) te e comsistemt, so it is satisfied

-
by scme d.
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But then there is C such that
KE$5 @A\ (D A¥ED)
From (*), itcfoiious that
Mf=3ﬁyw(3,?) , whereby d 1s algewsraic ever ¢.
Let p e the type eof C. Then $;€D.
But Rankp¢#; < &, 80 by Lemma L7, Rark,» < a.

But then, by the induction hypethesis Rankmtp(a) < &,
So, for all ¥ satisfying o;(¥), Ramk,tp(d) < e.

Therefore Rank,o; < «.
So the type of » is generated over T By one formula,and
. a set of negatiorns of formulee of rark less than e,
Se, from Lemma 47, Rank, tp(®) <« .

Thus the lemma is preoved.

We cen now preve the exchange result that we have
peen siming for. This result actually fellows from some
lemmse on ranks in Lascar[lA]. But it is not clear whether
he noticed it in this form. Anywsy, our proef here will be
rather more lorgwinded, as an introductiocon to techmiques
used in the next sectien.

Lennavﬁ « Let 2 and ¥ be mrand n-tuples respectively, such
—)
that Rank,tp(®) = Rank,tp(») = « <o .
Then ® algebraic over & implies that a is primcipal ever .
Proof.
Let p(X) we the type of &, and let y(3,¥) generate the

- ->

type ¢f » over .

se MEy(d,8) ard T U p(X)F FF¥¥(F,¥) for some k<w.



First of all, let us note that if there were a forxuls
o(%,») such that ¥Fo(&,%) , and such that
KE y(Z,8)A o(X,3)—>6(F) for all 6(%) im p(R) ,
then & weuld realise a principel type over'?,generated by
¥(X,®) A o(F,%) .
For let y'(%,») ®e a formula. By the coxmpleteness of the
formula w(?;jz!Awe heve that either
(1) ¥= (VPEEH>v @) or
(11) ue (DHED—w &.7) .
Suppose (i) te we the case.
New suppose that MF y(Z' ,»)Ac(d ,B) .
Then &’ realisesvp(i) and se has the seme type ss .
Se wy (1) we have that - M F y'(3',B) .
thus k(Y3 (HDE)A o(Z,3) > ¢ (2,3)) .
Similerly, if (ii) is true, then
¥k (V3)((E,3)A0(2,3)—> ¢ (Z,¥)) .
So the above note is established.
Now p(X) is generated over T by
(D} U [ (R) s icw} , where
Reankp¢ = «, Degn¢ = 1, and Rankz¢, < « for all i < w.
-By compactness, there is n < w such that
Tu {$(@)} v [=4 (R):1 < nllFyy(F,7) (*)
Now suprese that fer all J > n
M E GEDAIEAN\ =4 @) @) .
Then, the formula y(X,»)A ¢(i’)/\4>—1¢-‘ (%) would
determine the type ef X as peing p(i’), whereby from what we
noted ebove, & would e principal over b, and the lemma

would e preved. So let us assume that fer some J > n

66
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X E GDWHZDAKDA L \ 9 (D) h 85 (D)
So for some ¢, ¥ k #(Z,¥)A ¢(3)A (<\n~1¢; ()~ (3) .
But then, by (*), ¥ is algerraic over .
Alsc, as M F ¢;(3) and Rank,¢; < « , we have thet
Rankmtﬁ(E) < & .
But then by Lemma 49, Rank,tp(¥) < «.

This is a centradiction, and thus the theorem is proved.

We can now apply this lemma to the results of the
preceding sectien to prove the follewing theorem, which is

essentially due to Lascar[ld] .

Theorem 51. Let T e a corplete theory, such that every
coﬁplete extension eof T by finitely many censtants is
algewraic. Then n(T) )?\L.

Precf.

Firstly, we may &8 usual assume that T has not more
thanEQo<n—types, for all n < w. It follows easlily from this
that Rank,p < e, for every nfpype p of T.

New let A T , and & a finite tuple from A such
that (A,8) is prime.

Then, by the conditions of the theorem,

| (A,a) is algewraic.
Suppose that BeA and (A4,8) = (4,%).
Then b is algebraic over 8, and the types of the two tuples
being the same, must have the same rank.
Thus from Lemma 50, 2 is principal over ¥, whereby
(4,2) = (4,8) .

The theeorem now follows froem Lemma L41.
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The fellowirg proposition is implicit in the proef ef the
ebove thecorem. It 18, hewever, an elegant expreseien of the
excharge result develeped irn this section, and prevides an
almest unqualified generalisaticn ef the notior ef dimensi-
on which is found in, fer example, algebraically clesed
fields.

Propegitier 52. Let A we & model which is algebraic ever
& finite tuple :, wkere the type ef @ in A has rank less
than infinity. Then A is algebraic ever any eother ®in A

which realises the same type &as e

Certain impertant clesses ef theories can »e exte-
nded to complete theories which satisfy the hypothesis ef

Theorem 51. Thus, for example

Cereollary 53, Let T bPe & countable theory with Skolem

functions. Then n(T) » N

In fact, as Lascar notes, it is eneugh that a theo-
ry T have a simple extensioen satisfying the cenditions of
Theorem 51. For ther, in Building ocur non-isemerphic
countable models of T, we Jjust ensure that all these medels
realise the type which defines the simple extensien. Using
this fact, and through the mediating preperty of the streng

elementary intersectien property, Lascar proves :

Theerem 54, Let T de a ceuntable theery which is convex and

model-complete. Then =n(T) > N, .
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2.2 IIT Getting st lesst four meodels.

We new examine what happens when we place conditio-
ns only on the prime model of & theery. In this case,
results are more difficult to ceme By. We use the same
techniques as in the previous sectien, namely proving
exchange results, But the proofs are not as immediate.

We first leok at the situatien in which n(T) = 3.
We know that in this case, the ceuntable models consist of
a prime, a saturated, and a 'middle' model. Recall that in
the Ehrenfeucht example, the middle model A, is prime over
an element c, where ¢ = lim a, . I now shew that fer any

n<w
theory T fer which n(T) = 3 , a similer situstioen holds.

Theorem 55. Let T e a cemplete theory such that
2(T) = 3. Suppese that T has infinitely many 1-types.
Then there is a fermula ¢(x), ferzulae ¢L(x) fer icw,
and a formula ¥(x,y) such that
1) If A is the prime meodel of T, then
¢t c 98 for all 1cw, ¢ n ¢4 = 0 for all ifJ, ana
the relation "#f < ¢;" which we define to hold if and only
ir AE BXBy(¢L(x)/\ﬁj(y)/&v(x,y)), is & total ordering
such that ¢ < ¢& 1 1< 3.
2) If B is the middle medel of T, then B is prime ever an
element ceB, where
a) BlEg¢(c), and
») c=lim é° 1in ¢, in the semse that
B E 3xe¢, (¥(x,c)) for all ncw , and if
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for some deB, BF ¢(d) end BE (3xedy)(¥(x,d)) for
ell n<w , then BE —1y(d,c) .
Preef.

(Let us first note that if n(T) = 3, then T must have
infinitely many n-types for some n<w. We have taken n to be
1. In the general case the proof below will give the sanme
cenclusion, But fer mr-fermulae and n-tuples, rather than
for 1-formulae and single elements.)

So 1let T e a8 in the hypethesis of the theorem.
Then as usual, for any type p(X) ef T, T U p(Z) has a prime
model. Also T must have a mininal.1-fornula (where w»y
minimgl we mean the same as in Osservation 48). For, if not,

Mo 1=-types, which wouléd

we can By a tree argument, get 2
give us tee many countable models.
So let this minimsl formula ®e ¢(x).

Let { Y1 (x) : i<w ] ®e the set of complete 4-formulseof T
such that TF ¥y —>¢ . Then i#j implies that

T b =(2x) (W (x) Ay () -
Also, {¢(x)} u [~y (x):i<w} determine a complete 1-type
of T, wheredy Tho = T U [¢(c)} u [ (c)ticw] 15 a
ceaplete theory.

Let A »e the prime medel of T, and let (B,c) ®Be the

prime model of T&. Then AfE 0V&)(¢(x)e—)§>/%1(x)) .
B must e the middle model of T, as a nenifzincipal type is
realised in B, and B is not saturated.

Also, By Lemma 42, there must be an- element &
in ®, such that (B,c) = (B,4d) wut not (B,c) ~ (B,d) .
But then & is principal over c, whereas ¢ is net principal
ever d. As d is principal ever c, there 1is a fermula
w(c,x) which generates & principal 1-type of TS and such
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that B E y(c,d) .
Put T§ = Th((B,d)). Then T; is the same as T, but with c
replaced ®y d.

Now suppese that there were a formula w'(y,d),

consistent with Té such that
T ¥ 50 ¥ A s\ ) -
Then as in the: proof of Theorem 50, ¥’ (y,d) would be
coemplete 1-fermula of Ta satisfied in B By ¢, wherew®my c
would ®e principel over d. Thus there is no such formula
¥’ (y,4). So, in particular
(1) X=1{ i<w : B 3x(yy (x)A ¢(x,8)) } 4s infinite, for
if not then ¢(Y,d)ﬂ,(§}—j¢1(y) would do the jod» ;f
¥ (y,4). And alsgf

‘! has & model

(1i) By the Omitting types theorenm, T4

omitting the set

2(y,8) = {y(y,a)} v {$(¥)} v {-% (¥) i<l
New as Té is just the same as T&, and as (B,c) is a prime
model of Té, then the set X is also equal to

{ 1cw 13-k 3x(h (R)A¥(x,e)) }
and (B,c) omits the set of formulae 3(y,c) .
Note that, ®y compactness, for any formula 8(x) ef L(T) ,
T, I ©(c) if and enly if {dw: A FE y;(y)—> 6(y) }‘is a
cofinite set of natural numbers. (1)
Alse note that, ae B k y(c,d), y(c,x) is a complete
i=-formula of T,, and (8,4) = (B,e¢), then
T F v(c,x) > ¢(x)A % (x) feor all icw.

So, By cempactness, for each finite Z, ¢ w, there is a

finite 2, ¢ w such that
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!

U] v ()iten ] F p(e,m) = #(n /\ v (), (2)
And finally note that from (]) and the defiﬁition of X, it
follows that, if ieX then A
X, = {Jcw: Ay ()= Ex)W (x)Ay(x,y)) ] is a (3)

cefinite set.

We now define inductively i,eX, for n<w, such that

X, Y ling 1 e X, - {1n]  fer all o .

Suppese that i, has been defiﬁed. As 1,eX, we have By (3)
that X, 18 cefinite.
By (Z)there is a finite Z c w such that if
{#(c)l u {myj(e)sdez } F (@x)(¥(e,x)Aw (x)):
then ieX ={i,} .
Then Y=X, n(w=2)n(X=-4,) is an i‘nfiniie set.
We choese i, €Y.
Note that, ®y the completeness of the 1—formulae Vi
we have that fer all i,Jj<w, ifj,
T+ (Vxepy ) (Iyey; ) (¥(x,¥))  1if and enly if
T+ (Vyeyy ) (3xeyy )(¥(x,¥))  if and enly if
T b (2xeyp ) (3yey; ) (¥ (x,5))
It is now easily seen that i, satisfies the inductien
coendition. Thus the definition of the i, can ®e carried

out.
We now put ¢x to ®e yy,  for all kw.
Let k<m<w. Then X v i) ¢ X% - {4} .
As 1,€X, we have A k (3xegy )(3yedn ) (¥(x,¥)) .
As L4 £%,~ we have Ak (3xeg )(Vyeda)(-9(y,x)) ,
sut then by the completeness ef gy,
A 1 (3xedy ) (Iyedn ) (¥(3,x))



So part 1) of the theorem is proved.
For part 2) we have to show that there is pe element ® in
B such that BE y(e,c) , B Eg¢(®) , and
Bl (3x)(¢, (x)Ay(x,»)) for all icw.

But this fellows immediately from the fact that (B,c) omits
2(y,c), and frem the fact that there can ®e ne ¥; for which
{ 1cw 3 AFE (3x)(@y) (0 () A5 (7)A¥(x,¥)) | 1is infinite
for then we weuld have Té F Ey)(¢;(y)Aay(e,y)) , which

18 impossible.
This completes the proof of the theerex.

We new come to the main resuit of this chapter.
We would like to Be-able to prove that if a theory T has a
prime medel A with an infinite defins®le subset X such that
X glc;(O,A) (i.e. all elements of X are algewraic), then
n(T) > L. However, we have as yet enly been adle te preve
this in the special case that every element of X is algebr-

aic 'ef degree at mest two'.

Theerem 56, Let T de & corplete theery, with & medel A

and a fermula ¢(x) such that, ¢A is infinite, and for every
ae¢A_there is a fermula y(x) such that
Ak yv(a) anda A F 3%2xy(x).
Then n(T) » k.
Proof.
We may assume that T has a prime model, and that A is

this prime model. Alse we may assume that T has a minimal
1-formula y(x) such that T  ¥(x)—¢(x) .

73
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We will essume, for ease of netation, that y(x) is 'x=x'.
Let {¢; (x):i<w} De the set of cemplete 1-fermulae ef T.
Then it follews that fer each icw, Ak 3€?x¢; (x) ,and for
each acA there is icw with A F ¢ (a).

By minimality of 'x=x', T, = Tu [-¢ (c):icw] 18 a
complete theory. lLet (B,c) be & prime medel of Té. Se ¢
realises a non-principal type of T in B, wherewy B is net
& prime model of T. Therefere, ®y Lemma 42, to show that
n(T) > L, it is enough to show that if de® and

~ (3,4) = (2,c) , then c is principal over 4 in B.

So let de®, and (B,d)

(Bsc) . As d realises a principal
{-type in (B,c), there is a cemplete 1-fermula ¥(cyx) of
T, such that B k y(c,d) .

Let X = {i<w : B 3x($ (x)Ay(x,d)) } . It is clear
that ¢0 n ¢> = 0 for 1#j.

If X is finite, then as we noted in the proef of Theorem
55, the formula w(y,d)ﬁ\<:>yﬁ¢;(y) is a cemplete
{-fermula of Té satisfied »y ¢ in B, and we are dene
(where T; is again the same as T, but with d replacing c)e
Se we agssume that X is infinite, and aim fer a centra-
dictier.

Firstly, we may assume that
1) T, (Vx)(¥(e,x)— ny(x,e)),

for if not, then ®y the cempleteness of y(c,x)

T, (Vx)(y(c,x)—>y(x,¢)) , in which case ¢ will be
edvicusly principal ever d.
Note that as (B,c) = (B,d), X is alse equal to

{i<w : B F (3x)(¢ (x)A¥(x,c)) } .
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I assert that
2) Tob (Vx)(¥(erx)—> (Vya¥a) (¥(232 )N ¥(34 572 )2 ¥(c)¥2)))
(i.e. that ¢ is 2-transitive) .
Fer suppesc net. Then By the cempleteness ef z;r(c,x),
To b ¥(crx)=> (27,72 ) (¥ (X592 ) A (74,52 ) A 1 9(c,a))
By cempactness, there is m<w such that
T v {1 ¢ (a):icn] - y(a,x) —
(37, 52 ) ({2031 DA 952 572 ) 21 (2,53 )
(where a is a new censtant) .
Now as X 1s infinite, we may cheese JeX such that j>n.
Then by the definitien ef X, there is ac¢} such that
B Evy(a,c) . R
And so, from above there are ®, ,bp in B' such that
BEy(cyw)A y(n 93 )A y(a,m;) .
New B E w(c,d) » (B,c) = (B,4) and y(c,x) is a cemplete
1-formula ef T,. So it fellews that
| (B, ) T,, and (3,9,) T.’.a .
We knew that |¢%| < 2.
Ir I¢?| = 1 , then the formula ¢; defines a, 80 as
B = (3xe¢; ) (¥(x,8,) , we weuld have that B | y(a,sy)
So |¢P| = 2. Let a' be the other element in ¢5.
Now B |= (3xe¢;)(¥(x,,)), 8o we must have that
BEy(a'ysy) and alse B F (3x)(¢;(x)A y(x,m,)).
So aiso, Tél—- (2x)(¢; (x)Ay(x,e)) .
Now either B k& y(a,»,) or BF ¢(a',s,).
It BE y(a,by) , .then by the completeness of y(c,y)
B y(c,y)—> (Vxeg) ) (¥(xie) D¥(x,5)) .
But then Bk y(®,,¥)—> (Vxed;) (¥ (x,0 ) —¥(x,5)) ,
wherevy B E y(a,8,) . Contradictien .
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Se 1t must We the case that B E y(a’,», ), but then
again, as B F y(a’',s;) , we must have that

B y(e,5)> (Vxeg; ) (v(x,%s )= ¥(x,¥))
Replacing ®, Wy c in the line above, we cenclude that

B E y(a,) .
But this wes impessikle. This centradictien preves
assertien 2)
New suppese that

B (2525 ) (¥(csda A ¥(31s¥2 A ¥(¥2c’)) -

Then frem 2), Bk y(c,c’) .
Thus by completeness of y(c,x), it follows that \
3) T, (Ux) (¥(csx) > (372 Fa ) (W(Cs92 I ¥(T4 032 )A ¥(2%)))

(i.e. ¢ 18 2-dense)
Put 6(c,x) te ®e the formula
[ = ¥ (x:0)A (V5050) (W(x34 DA ¥(31,52 )5 ¥(c,7a )
A (3y152 ) (¥ (s34 )N ¥ (31 552 )A ¥ (52 5%)) ]

Then by 1), 2), 3) and cempactness, there is m,<w such that
L) Tu {—g (c)iicem I (Vx)(y(c,x)~>6(c,x)) .
Also, a8 Té  ¢(e,x)—% =g, (x) fer all icw ,

there is my<w, mg>m, such that
5) T (e (e)item il U (e, )=/ \os ()
Now choose ac€Al, ag’m for ic<m,, such that there is

beA with A F y(a,») .

Then, by 4) and "2-denseness", there are &, ,a;, in A with

AEy(a,85 )~ y(ag,ay )N y(ag,») .

Once again, there are az;,&, in A with

AF y(a,a )N ¥(8er83 )N Y (85,85)
Centinuing in this way, we can find a set { &, : ncw]} of
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elements of A, such that fer each n»1,
AF y(asasn)AY(8ans8an.g )A cove A¥(azr8. )A ¥(8y,0)
By L)(2-transitivity) and 5),for each m,n, with m>n,
AFE (3x)(y(agnsx)A¥(x,82n)) -
So by L4)(asymmetry) and 5), &gp#asn.
Thus { &n: A<w } 18 an infinite set.
Again, by 4)(2-transitivity) and 5), fer each n,
AFE (37)(¥(aznsy)A¥(y,m)) .
se { xeA : A E (@y)(w(x,y)A¢¥(y,2)) } is infinite.
Now A ¢r(®) for some r<w. ‘Then .
Xs = { zeh: ARGE) (@)W (x9N ¥(5,2)A ¢ (2)) | 15 alse
infinite. As each ef the complete 1-fermulae f; of Txis
satisfied by at mest two elements, it follows.that
{ 1cw : ¢ c X, | ie infinite, and thus by minimality ef
‘x=x', cofinite. But then
Ty, = (33) (W) (Y, 7 )N ¥ (T, 2) N ¢r (2))
So there is c,€B such that
B E y(e,cy )N (32)(¥(cy,2)N ¢ (5))
But (B,c, ) F Téz and Tzal_’l'(ci yX) =y —¢, (x) for all icw.

So we have a centradiction, end the theerem 1is preved,

Cerellary 57. Let A e & countable model. Then A has at
least three ceuntable preoper elementary extensioens, up te
isomcrphism ever itself.
Proof.

Put T = Th(A,azwA. Then T satisfies the conditiens of
Theorem 56. Se n(T) > L. One ef the countasle models of T
will be (A,a)aeA . The L(A)-reducts ef the other three will
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®e coeuntable proper elementary extensions ef A, pairwise

nen-isemerphic over A.

There are obvicousgly many gaps to e filled in erder teo
get frem the results abeve to anywhere near proving the
eriginal ceonjecture that a theory with a minimal medel has
infinitely many ceuntable medels. But I think that the
ebove work has at least pointed eut & pessible appreach.

I view facts abeut the minimslity and ealgebraicity
of the prime model of a theery, as toels fer ebtaining
i;ts of countable models, put by'ne means a8 & characterls-
afion of those theories with infinitely many countable
hodels. Or putting it another way, the cenverse te the con-
Jecture is net true.

However, we can new, after having ®»een threugh the
proeofs in this chepter, view euwr original intuitions in a
slightly more educated light. Firstly, what is no doubt
responsible for n(T) ®peing finite, in the knewn examples,
is the "denseness" eof the erderings er relatiens in the
models in the theories concerned. This slse makes sense;
when we note that the canonical metheds for getting leots
of countable models invelve getting medels ef different
finite "dimensions". And the netien ef dimension invelves
the netion of nearness and thus ef discreteness, For, &
model is intuitively ef dimension one, for example, if
all its elements are near each other. Then, using compact-

ness ene can get a model of larger dimension, by adding



elements that are far away. Denseness, however, implies
that one cannet distinguish elements as ®eing near te,eor
far away from,each other. Leeked at mere technicsally, if
the models of our theery are "discrete" in some sense, then
whenever ® is principal ever 2 in seme medel, the formula
w(x,y) which makes'g principal eover 2 will in seme sense
“gay"that © is "near te" . Then, by using the cempaciness
methods eof Lemma 49, we can, as in Lemma 49, prove nice
rank properties By inducticen, which will enskle us to get
lets of countable models. The situation where ® is algebra-
ic over 3, a8 in section 2.2 II, is just a very transparent

case of nearness.
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