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ABSTRACT.

This dissertation gives a critical survey of the present 
state of knowledge in the field of ultrasonic 
propagation in solids.

Acoustic waves of high frequency suffer 
absorption during propagation and the analysis of this 
absorption has both theoretical and technical interest.
The observed loss mechanisms in solids : thermal 
conductivity, thermoelastic relaxation, scattering, 
plastic flow, structural relaxation, anharmohic coupling 
and magnetic effects.

Theoretical explanations of these various 
types of losses in single and polycrystalline solids 
and also in high polymers, such as in rubbers and plastics 
are given. For reliable measurements, suitable
transducers and precision experimental techniques are 
essential. Ultrasonic generators such as magnetostrictive, 
piezo electric, and the recently developed multicrystalline 
ceramic transducers are described* The experiment#, 
procedures for the measurement of sound velocity and 
attenuation during propagation are broadly grouped into 
three classes, (a) Resonant methods, (b) Optical methods, 
and (c) Pulse techniques.

Optical diffraction methods are 
extensively used for velocity measurement and for the



determination of elastic and elasto-optic constants 
of solids, whereas the Resonant and Pulse methods are 
used for both velocity and absorption measurement.

At megacycle frequencies, at present, the 
pulse technique is the only method for precision 
absorption measurement. The recent measurement of 
attenuation at low tmnperatures and the relation with 
•dislocation* theory are discussed. Attenuation 
measurements lead to another practical application in 
the use of certain solids, as delay lines in radar 
systems and in devices for storing information# A 
chapter on solid delay lines has been included. The 
equivalence of the theory of beat and high frequency 
sound transmission and the earlier theory of heat 
transmission by Deli^e, have been discussed.



CHAPTER I

INTRODUGTIOn.

The systematic study of ultrasonic propagation in solids 
began in about 1925. Most of the early work v/as 
directed to measuring the velocity of ultrasonic waves 
in solids, in the form of plates, rods, bars etc., and 
thereby the early workers studied the velocity dispersion, 
reflection from plates at various angles of incidence 
and the scattering of the sound waves.

Amongst the earlier workers, Boyle and
I 3

Sproule (1929, 1931) measured the longitudinal velocity 
in metallic and non«4aetallic rods excited piezo
electric ally by attaching a small plate of quartz. Their 
object was to test Raleigh*s formula for the velocity 
of longitudinal waves in rods. Taking into account 
the Increases and decreases of cross section caused by
longitudinal compression and expansion, the velocity

%of longitudinal waves in rods was given by Raleigh as%- 

~ \T^lf I J  I +

where K is an integer characterising the mode of 
vibration, (T $ Poissons ratio, T  , the radius and

t the length of the rod. Boyle and Sproule verified
Raleigh*s correction factor. Glebe and Schlebe^(1931),
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Bohrich^(1932), Schoeneck^(1936) and Ruedy^(1935) 
made similar experiments covering a wider range of 
frequencies. They all proved further departures from 
simple relations of elastic wave propagation In solids, 
and found disagreement with Ralei^^s formula. At 
high frequencies coupling occurs between the elastic 
longitudinal oscillations and simultaneous radical 
modes of oscillations. Glebe and Hlechschmidt (1933) 
gave a theory of these processes. medy also observed 
coupling between longitudinal and radical modes with 
consequent lowering of velocity of transmission along 
the rod as the frequency increases. He envisaged also 
the scattering of radiation at the grains boundaries in 
the crystalline structure, a fact later proved 
experimentally by K#son and McSklmin^(1947) and by 
Eoth^(1948).

The jEate Lord Raleigh treated mathematically 
the problem of the reflection of plane sound waves at 
a plane interface coim&on to two media. He also treated 
the problem of the reflection of the waves from and 
transmission through a parallel faced partition of 
finite thickness, which obstructed the waves in their 
passage through a medium.

Boyle and Lehman" (1926) and Boyle and
vo-Bawlinson (1928) made measurements on the transmission



of ultrasonics in metal plates and established a 
relation between the ratio of incident and reflected 
energy of a plate suspended in a liquid# The same 
relation had been derived earlier by Raleigh who gave 
the expression as

R =
4  Cofc^ 2.Â °*/A| "+ L

where . and Aj . represent the velocity and the 
wavelength of sound in the reflecting medium, and cL the 
thickness of the plate. At normal incidence the
transmission is a minimum for a quarter wave plate.

13Richards (1932) suggested that from such measurements 
of reflected and transmitted energy, the velocity of 
propagation in solids could be calculated#

14In 1921, arising out of a theoretical 
Investigation L# Brillouin, a number of ingenious 
and very beautiful optical methods have been devised 
which reveal unmistakably, the presence of stationary 
and progressive waves of very high frequency passing 
through transparent liquids and solids.

Brillouin visualized the diffraction of 
light waves in a transparent medium stratified by sound 
waves as analogous to diffraction of X-rays by parallel
equidistant atomic layers in crystals as explained



by Bragg. The regular succession of compressed and 
expanded layers equally spaced, form a diffraction 
grating.

Experimental observation of the above
phenomena was first made independently by P. Debye

15 léand F.W. Sears of America and R. Lucas and P. B1 guard
of France in 1932. The elementary theory of the
diffraction of light by ultrasonic waves was put forward

17by C.V. Raman and N#S. Nath (1936.) They started 
from the simple basic idea that the incident plane waves 
of light^after transmission through the medium traversed 
by the sound waves, assume a corrugated form owing to the 
fluctuât!onelin the density and consequently also in 
the refractive index of the medium.

The Fourier analysis of the emerging 
corrugated wave front, can be used to give the observed 
diffraction effects, when the emergent waves are brought 
to a focus by the lens of the observing telescope. The 
results derived from the theory, give a satisfactory 
explanation of the observations of Bar (see chapter vi ) 
regarding the changes in the diffraction pattern, when 
ultrasonic Intensity and the wavelength of the incident 
light are varied.

Schaffer and Bergmann (1934) have shown that 
ultrasonic waves in transparent solids act as diffraction 
gratings for light, (see chapter VI )• The intensity 
and polarization of light diffracted by ultrasonic
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(%waves in solids were calculated by Hans Mueller (1937)# 
Mueller pointed out the essential idea that the optical 
diffraction in solids may be interpreted on the basis 
of the theory of Raman and Nath, if due account is taken 
of the photoelastic effects arising from the periodic 
strains caused by the sound waves# The calculated 
intensity distributions for natural and polarized 
incident light agree with the observations of Schaffer 
and Bergmann on glasses, quartz and calclte. The 
observations made by Hiedeman and Hoesch in glass blocks 
were also explained by Nath and Mueller (1938)#

Since 1932, a number of optical diffraction 
methods have been developed for measuring the velocity 
of propagation and the elastic properties of transparent 
and opaque solids.

Recently there has been more interest in 
measuring the velocity of ultrasonic propagation in solids 
and absorption during propagation.

The energy losses of a sound wave which is 
propagated through a solid, may be attributed to several 
different mechanisms. The chief of them are thermal 
conductivity, thermo-elastic relaxation, thermal or 
mechanical relaxation, plastic flow, elastic hysteresis, 
and scattering, (see chapter IH ). Different mechanisms 
appear to act in different regions of the frequency sca&e.
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For each type of lose, different laws hold for different 
frequency ranges. Again, the observed attenuation 
depends greatly on the type and crystalline structure 
of the material, and may change with the kind of 
pre-treatment to which a material has been subjected#

In polycrystalline specimens, the effect 
of crystal anisotropy increases the absorption and In 
single crystals and amorphous solids, the absorption 
is much less. Again, the elastic anisotropy of the 
individual crystallites which are randomly oriented, 
makes the material appear more inhomogenous to applied 
stresses and these inhomogenities lead to scattering 
of sound waves.

The high polymers such as plastics and 
rubbers, are classed as visco-elastic because of their 
relatively large energy absorption or viscosity 
coefficient. In examining the dynamic behaviour of 
these high polymers, study of the viscous behaviour is 
of the same importance as the study of their ordinary 
elastic moduli. The response of rubber-like mmterials 
to forces varying with time, has both theoretical and 
technical interest. A knowledge of the dynamic 
behaviour of rubber must be added to a knowledge of its 
static behaviour to establish a complete theory of 
rubber-like elasticity# The results of the study of
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the dynamic elastic modulus as a function of frequency and 
temperature, give the magnitudes of the molecular 
energy barriers which must be overcome as the material 
undergoes a deformation in response to an external 
force.

The attenuation of sound waves in high
ispolymers are mainly viscous. Here,one encounters the 

phenomenon of visco elastic relaxation. Within a 
relaxation region which may extend over a wide frequency 
range, the loss per cycle is constant and below and 
above,the relaxation region attenuation increases.
Recent interest in the mechanical properties of plastics 
has led to a search for suitable methods for determining 
such important quantities as attenuation and phase shift 
from which dynamic elastic moduli and dynamic viscosities 
can be calculated. A study of their behaviour with 
frequency often throws considerable light on the molecular 
structures Involved.

Radar research has contributed greatly to the 
development of electronic measurement techniques, and 
particularly to those which were related to pulse 
production and measurement. The recent development of 
short pulse technique has made available pulsed 
ultrasonics as a very convenient tool for investigating 
such mechanical properties of matter as (a) the various 
dissipative properties of solids, (b) the velocity of



u

longitudinal and shear wav@4,in solid specimens,
Cc) the dynamic elastic constants and the connection 
between the grain size of the metal crystallites and 
Raleigh's fourth power scattering law.



CHAPTER H  
Elastic Waves In solids.

Relation between stress and strain and the generalized 
form of Hooke*Blaw.

zo
From the theory of elasticity (Love 1925), it is seen 
that the deformation in any elementary region is 
completely specified by the six strain cwaponents, viz*

-- " x , z

and that the traction across the arbitrary plane passing 
throng the elementary region is specified completely 
by the six stress components.

/ 7 ' ' j

The generalized form of Hooke's law states that for small 
deformations the strain is proportional to the stress, 
so that the strain components are linear functions of 
stress components#
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The quantities , .-••• are the elastic constants
and the quantities  ̂ , ... are the elastic
coefficients. It may be shown that the matrix of the 
elastic constants || 5|| , and the matrix of elastic 
coefficients ||c|| , may be regarded as the reciprocal
of each other and it can be shown in general 

that S k -
and sJK. sKJ

These synanetry relations of the matrices reduce the number 
of independent constants from 36 to 21*

For a cubic crystal iS

also
and

supposing that the co-ordinate axes are 
parallel to the cube edges

'U — c.22. 33
C - C - m - C - C as the axes are 

^  equivalent,

Now the array of values of the elastic stiffness constant 
is therefore reduced for a cubic crystal to the matrix

o o 0

C%i- o o 0

6 o 0
Û o Û 0 0
O o o O C4.4. 0
O o o O 0



Because of the dominant role of the cubic system in 
metals, it is desirable to have the relations between 
the elastic constants and coefficients in this system#

The equation for the c's in terms of S  ̂ are

r - S., 4-
II----- ---------------( S,, + i

II
(S. -

c %  <44-

From these equations S s may be found in terms of the ^  ̂

($11 - A. ) c ^ ̂ '9

S 4M- —  n
4-4-.



These relations may be expressed in terms of two shear 
constants and the c<xapressibility
^ C ^ follows ; -

SM-4- /

s ,- - / c „ - S.

-  y^.i ■+

Elastic moduli for isotropic media*

For isotropic bodies the elastic properties are Independent 
of orientation of the axes of co-ordinates and stress- 
strain relations can be shown (Sokolnikoff 1956) that 
they are simply expressed by the constants /\ and ^  

introduced by G* Lame*

r
^11. -  A
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Again it ia easy to express the constants \  and M  
in terms of Young's modulus and Poisaon's ratio as

A ^

yu z

(T- z

E (T-
( 1+ (t) (i- 

E
2 C » +

A2-CX+9
( 3\ I
A''"

Elastic waves In solids (cubic crystal).

Considering the forces acting on an element of volume in 
a crystal we find for the equation of motion in X  
direction

: 4
•gx. BY

With similar equations for y %r directions, f  is 
the density. Using the relations X/.f(: = c. % " S. ( ̂  - 4%)

■E S.* L - W



using the relation ^  *

8ne solution is given by a longitudinal wave
1 oefc ►KX.)U  - Uo e ^

moving along the X  cube edge 

then — M) ^ r —  K

2.So that, the velocity is . ^
e = -  I ‘̂ "/v

Another solution is given by a transverse or shear wave
moving along the y cube edge with the particle motion
in the X  direction ■

LL = U.. ^
which gives ^

^  LoV - ^44-

80 that 1
c  =.

There is also another shear wave which propagates along 
110 directions with velocity



rwAPTER IS. 'o

ABSORPTION.

The analysis of attenuation of high frequency sound 
waves in solids is based on the classical theory of 
sound absorption in gases and liquids which was first 
developed by Stokes (1861) and Kirchoff (1868).

For liquids and gases the dissipative forces 
are due to viscosity and thermal conduction and these 
effects can be treated analytically.

In solids the behaviour is found to be much 
more complex and to vary considerably with the nature of 
the solid.

The loss mechanisms that have been observed 
to cause loss in solids are thermal conductivity, 
thermoelastic relaxation, scattering, plastic flow, 
structural relaxation, an harmonic coupling and magnetic 
effects. (Kittel 1947). It appears from the literature 
that in general no complete explanations are at present 
available and more experimental data are required for 
the establishment of a correct theory.

Loss from Thermal Relaxation.

This type of loss arises from the incomplete establishment 
of thermal equilibrium in a system. Energy dissipation
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results whenever all parts of a system are not at the 
same temperature. The dissipation becomes particularly

OOL
pronounced when the period of heating and cooling cycle 
is comparable with the time required for heat exchange 
between different parts of the system.

The mechanism of this type of absorption 
has been simply explained by Zener (1937) who considers 
the thermal conditions operating during the transverse 
vibration of a reed. In a vibrating reed the thermo
elastic part of the internal friction arises from the 
flow of heat back and forth across the reed. When a 
reed is bent, the outer side becomes cooled and the 
inner is heated, the state of affairs which is reversed 
in the other half of the cycle.

When the motion takes place very slowly, the 
transfer of mechanical energy into heat takes place 
reversibly and under such isothermal conditions there 
is an absence of internal friction. The same result 
will occur at very high frequencies where the mechanical 
vibrations are too rapid for heat transfer to take place 
and the conditions are adiabatic.

At intermediate frequencies there is, however, 
a resultant heat flow which results in loss of energy.



Definition of Internal friction .

In a vibrating solid, the displacement vector is
determined by a differential equation of the form

' f u / 36^ 4- L  U  =  P  + f 0 )

and by a set of boundary conditions.
p  m applied body force per unit mass
-LU • force acting upon unit mass due to the

elasticity of the solid.
The elastic coefficients in the operator L are taken to 
be the isothermal coefficients. The forces per unit mass 
which arise from temperature changes, from viscosity etc. 
are denoted by ^  .
When F is a periodic function of time, the solutions
of the equatioi^^re

F(r,t) =

u(r,t) -  u ( v j €

( i_- u = 4̂
In general U and  ̂ are not in phase with each other and 
it is just this difference in phase between (J and ^  
which gives rise in damping.

(•;*|he equation ̂ become8



If U is real, ^ will be complex*

^   ̂ z ........

where -Ç and -T are real and imaginary parts. Further I ^
if Uo be the solution of equation ( 2 ) when f is
neglected. Since the force -Ç- has only a small effect 
upon the solution of the equation ( Z ), it may be 
calculated assuming the displacement of the solid to be 
given by Uo •'O
Then the ratio

, __ Ifo.- 4 - ^ 1

^  ' ( f u .  L U . H

is a measure of the internal friction of a solid, the 
integration being over the entire solid. This definition 
is analogous to the definition of 6̂  of an electrical 
circuit. Here as in the electrical analogy, is in 
general a function of frequency*
2ener has derived an expression for the thermo elastic 

of a reed vibrating transversely to be

«  - - w - . '
Where ^  is the frequency of vibration 

Eg, s adiabatic Young's modulus
• isothermal Young's modulus
• relaxation frequency*



the relaxation frequency f is given by

where D « ^ >
m thermal diffusion constant

d - reed thickness in the plane 
of vibration.

•q ' is expressed in terms of X. (pressure attenuation
coefficient)

( energy stored )
m %7T ( energy dissipated/cycle)

Energy density of a plane sound wave is given by Ÿ^j 

Intensity « P
-  pCX

and p  m €
how considering the rate of energy dissipation in a 
slab of unit area and thickness in the direction of
sound wave, the rate of dissipation is the difference 
between the intensities into and out of the slab.

«inc. I I  A X

The dissipation in the slab per cycle is
p V A x / f c f

7\i
O ^ C * *



which gives oC - ^  1̂'̂j ^

Zener (1938) pointed out that the stress in a vibrating 
polyerystalline solid varies from crystal to crystal 
because of the elastic anisotropy of single crystals.
In addition, the single crystals are randomly oriented 
in the polycrystalline solid. Hence strains which are 
macroscopically homogeneous are not microscopically 
homogeneous. This stress fluctuation gives rise to 
heat currents between adjacent crystals and w^ch results 
in absorption.

The damping is of the form

g' _ 4 -̂ " ( s i  _ id -
^  - - 5 T -  ' e - f

where (% is the factor introduced by Zener (1938) to 
denote that fraction of total strain energy which is 
associated with fluctuations in dilation.

, the relaxation frequency may be calculated from 
the expression

^
D m Coefficient of thermal diffusivity
d n thickness of the reed in the plane

of vibration*



Plastic flow and elastic hysteresis.

It has long been observed that plastic deformation 
introduces hysteresis loops in stress-strain curves.
The stress-strain curve is straight and reversible 
provided the yeild stress is not exceeded. Once the 
yelld stress is exceeded with accompanying plastic 
deformation, the stress-strain curve is no longer 
reversible. It was soon found that this hysteresis 
disappears with aging slowly at room temperature within

oa few minutes at 100 c.
The concept of viscous slip at grain boundaries

‘iS
was introduced. (Zener 1948) The current view is that 
the hysteresis introduced by plastic deformation arises 
through the partial mobility of dislocations introduced 
by deformations. It looks as though all the deformation 
is confined to localized slip bands. The dislocations 
must then be within the slip bands themselves and a high 
concentrations of dislocations would impart to the slip 
bands a viscous like behaviour.

Ke (1947) investigated the probable causes of 
loss of energy in solids and he ascribed the loss in 
polycrystals as due to viscous slip at crystal boundaries# 
He carried out experiments on the damping of torsional 
oscillations in pure aluminium and has shown that the loss
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could be adequately accounted for by assuming that the 
metals at the boundaries of crystals behavesin a viscous 
manner*
Vegel and vValther (1935) determined Q  of commercial 
materials and found in general that ^are roughly 
independent of frequency.
The expression for %  neglecting viscosity and thermal 
losses was given by Mason (1960) as;^
^  _ B  _ J ^ ± b L .  â  -
\ ~ 2 A 2 K  “i

which shows that this type of dissipation produces a loss 
directly proportional to the frequency and does not affect 
the velocity to a first approximation.

Read (1940) found that the logarithmic decrement of
annealed single metal crystals varies inversely with

— —  6frequency and is of the order 10 éo lo for 
frequencies of the order 50 Kcs/sec. and absorption 
coefficient oC was independent of frequency*

Mason and McSkimin^ (1947) found for the value 
of a term linear in which implies that the 
mechanical hysteresis loop is independent of frequency so 
that the energy lost per cycle is constant. The 
absorption coefficient must be approximately proportional 
to the first power of the frequency*



Ordinary' viscosity gives terms quadratic in f and 
relaxation mechanisms gives term quadratic in ^ at 
low frequencies and independent of ^ at high 
frequencies*

Attenuation due to Scattering.

In polycrystals, sound scattering occurs because of a 
difference of density between adjacent elements of the 
medium or because of difference in elasticity. These 
polycrystals are made of a number of small sized crystals 
that are randomly oriented* It is probable that the 
difference in density of successive grains is negligible 
but a difference in elasticity with direction occurs 
since the grains are not all lined up and the elasticity 
depends on grain direction*

Mason and McSkimin^(1947) first calculated
this type of loss due to scattering. Raleigh's formula 

%(1929) for the scattering of a single particle is given by
S. A, _  7T T  r  A k  . <205 e

R\

where T • vol. of the particle
R - distance of the particle from the pointof observation.
K » elasticity of the medium
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s difference in elasticity
^ • angle between the direction of observation
S.A. - scattered amplitude
l.A. « incident amplitude

i'i egl e c 11 ng
the energy scattered from a single particle 

is proportional to the square of scattered amplitude 
integrated over a sphere of radius

S.E = (j.a)''
=  ( i - a )'

î\iow if a large number of grains are concentrated in a 
volume of area A and length 6^ , assuming random 
scattering from all particles, the total scattered 
energy (S.E#) will be the sum of the S.E. from each of 
the particles.

Total S.Ë, -  ̂ , ..
^ K=l

or, Total S.E, - ^ ' - r  V
— TÜ. /  Ik / _1/
/  4^, K=, N

assuming no relation between T and Inhomogenlty of 
elasticity.



, _3 N _ / -  \2.Total S.E. . 4-7̂  -r -r^ / A K
or 7171775—  - - y T  Z  U  C n r  y

k=,
T.\ 2/

( ^ )^  J is the space average of the quantity #Z

For a distribution of particle sizes, that does not differ 
much from the average, the first summation is

N T ^  - V T  - A d L x T

w W e  V  • - volume under consideration

3bKow total incident energy - A* (l.A#)
Tota-t S. E _ q-A-^d.X T  / AK J
TZ.ta_L r.E

This determines the energy attenuation factor. 

Eo - E, - E5

=  E, e z  E, ((-<=179
where

incident energy
w scattered energy

E g, • energy of the wave out of the section

We.v\e.e ̂

<  -  M  )
I 1^/ '
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Mason and McSkimin expressed the attenuation according 
to the eqn*

A - B| f +  Bg

which indicates that a component of attenuation 'is 
proportional to the frequency and another component 
proportional to fourth power of the frequency.

The component proportional to frequency is 
the same as observed for most metals and solid materials 
at low frequencies (Wegel and either 1936) and indicates 
the presence of an elastic hysteresis* The term 
proportional to the fourth power is indicative of a 
scattering of energy similar to the scattering of sound 
by small particles which as Raleigh has shown, produces 
a scattered energy compared to the incident energy that 
increases as the fourth power of frequency*

Anharmonic Coupling

The absorption of sound in solids depends substantially 
upon the relation between the wave length of sound and 
the length of the free path of Debye's heat phonons*
If the wavelength of the sound is small in comparison 
with the length of the free path of Debye's heat phonons,
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then the absorption of sound may be regarded as an 
absorption of the sound quantum produced in collision 
with Debye's heat phonons*

Such type of losses was theoretically 
calculates by Landau and Burner (1937) and Akhieser 
(1939)

Landau and Burner have shown that sound 
waves of high frequency (exceeding the inverse collison 
interval of the thermal phonons) differs from that at 
the mechanism of absorption in insulators at low 
frequency# The absorption coefficient is here 
proportional to frequency, where-as in the low frequency 
region it is proportional to its square*

3\Gurevich (1946) showed that in metals, the
absorption coefficient is also proportional to the

atfrequency and is so large that setmd ef such frequencies 
that propagation in metals ceases*

Gurevich formulated the Kinetic equation for
the variation of the number of phonons due to their 
interaction with electrons, ass-

à a  =dit Z—
where

g " the number of sound quanta (phonons) with aquasi momentum g*
hjf • number of electrons with a quasimomentum f*
(7̂  -Ç » probability of their interaction.•7
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This equation is finally reduced to 
oL tip 9 f Ng —
3 Û T  ' 2MCE,"O

0-  - 1̂ 3

T
where M •» mass of an atom

C = velocity of sound
Nq m being the equilibrium distribution 
 ̂ function of the phonons*

Uo » an energy of the order of atomic energies 
(the periodic part of the energy of an 
electron in the field of the lattice)

Eg # boundary energy of Fermi distribution.

The time of damping T  is given by the expression

^  /H£ Js. - M ( 3  g. JL

which shows that the absorption isproportional to the 
sound frequency. If is the period of sound
vibrations, then

0
1

•9^  U,
since Uû ^

% / l  —
This expression is usually less than unity^ which.means 
that all the sound waves for which the above calculations 
hold are absorbed so strongly that propagation ceases*
As these theoretical calculations apply to very high
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frequencies of the order of 10 cycles/second 
(at room temperature) it is not experimentally possible 
so far to see whether such type of losses actually 
occur or not#

Visco-Blastic Solids#

Maxwell (Kolsky 1953) expressed the rate of strain of 
a substance in two terms, one proportional to and in 
phase with the stress and one in phase with the rate of 
stress#

s' -- -É f  W

K being elastic and a viscous coefficient# Such 
materials are known as visco elastic, when there is merely 
a restoring force proportional to displacement

S « + a constant, and the material
is purely elastic#

when (T m S , it is purely viscous#
|u)tNow if a sinusoidal stress (p- - is applied to a

visco elastic substance, then substituting in ( I ) we 
have;- ,  ̂.

s = c r ( ^  v j )
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If we denote the impedance of the system as then

The quantity has the dimension of time, and is called 
the relaxation time ^  , because of its relevance to the 
simple relaxation phenomena#
The real part of the viscosity can be written as 

7| (, + uJ-T̂ )"'

The effective elastic modulus rises in the region of 
frequency for which cd ^  T  from its low frequency to 
its high frequency value.

At any pulsatance __ |

where Ko • modulus for slowly applied stress
M modulus for rapid vibration

Simultaneously there is an absorption of the oscillatory 
energy put into the body.

The phase difference between stress and strain 
can be expressed as an angle ê  , whose tangent is the 
ratio of the imaginary and real parts of the impedance 
J— r~ Kt ^  ̂

=  -k ;oO
At low frequencies stress and strain are in phase. The

— Itangent of the phase difference rises where üO = T  to 
thereafter to ~^/z 

This difference in phase represents a loss in power.
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Tan E which is used as a measure of internal friction 
is analogous to the power factor in alternating current 
theory#

Losses due to Thermal conductivity

The absorption of sound caused by thermal conductivity 
is given by (Mason 1950) as

oC % k  ‘-II "
^1} c.

\ \

It appears from the above equation that the thermal 
losses increase as the square of the frequency and hence 
it is a very significant factor in single metal crystals 
at frequencies above 1000 Me/sec#
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CHAPTER IV 
Heat and Ultrasonic Transmlssiom*

Introduction;
Most of the heat energy is concentrated in the frequency 

Is 7range from 10 to 10 megacycles and until at present 
no procedures t̂ftre available with which vibrations 
could be applied to a solid body at frequencies anywhere 
approaching those of heat*

So neither confirmation nor refutation of 
equivalence of the theory of heat and high frequency 
sound transmission has been experimentally achieved* 

Recently, however, for the studies of 
ultrasonic delay line, procedures were employed that 
could handle frequencies of the order of megacycles

34and Mason (1949) has shown that at these very high 
frequencies sound transmission began to show 
characteristics similar to those of heat transmission*

On examining the curves in figure (59) it 
is seen that the solid curve in the figure is for heat 
transmission and this includes no absorption, and it is 
higher and the peak occurs later, than the dotted curve 
which includes absorption*

Both curves are obviously the members of the 
same family, but the upper curve is for frequencies of 
the order of millions of megacycles and includes no 
absorption, while the dotted curve is at a frequency
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of about 12 megacycles and includes absorption* The 
solid curve represents heat transmission and the dotted 
one is acoustic, but the acoustic transmission with 
proper parameters will give both curves and thus it is 
evident that heat transmissions may be accounted for 
by considering it as acoustic transmission occug&ng at 
much higher frequencies,

with these studies as a basis, it was found 
that heat transmission^, after making corrections for 
the differences in frequency^ is basically the same as 
that of sound and thus it was possible to verify 
experimentally the earlier theory of Debye,

Debye's theory of heat transmission in solids.
The theory of heat transmission was first given by 
Debye, Since heat is a mechanical vibration of/crystal 
lattice, Debye suggested that It was probably transmitted 
by the relative motion of the adjacent molecules as is 
an acoustic wave, Einstein treated the solid as an 
assembly of atoms oscillating at a constant frequency 
and assuming that each oscillator could have only certain 
discrete energy levels given by n-ki) where “k  is the 
Planck's constant and K\ is any integer,

A few years later Debye produced a more 
satisfactory treatment without the obviously simplifying 
assumption that each oscillating atom had the same 
frequency, Debye treated the solid as a continuum
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neglecting its atomic structure and regarded the heat 
content as residing in the energy of stationary elastic 
waves, the wave length of which is large in comparison 
with the distances between the atoms.

The single characteristic frequency 'û 
postulated by Einstein is now replaced by a spectrum 
of frequencies, which Debye assumed to end sharply at 
a maximum frequency • In elastic solids there
are both longitudinal and transverse vibrations with 

different velocities of wave propagation. The 
number of transverse vibrations is twice the number of 
longitudinal vibrations and it can be shown that the 
number of modes of vibration lying between the frequencies 

l) and + is

Where, V is the volume of the solid.
The number of modes of vibration in a crystal lattice is 
no t̂  however^ inf ini te but is limited to 3 N where N is 
the number of lattice points in volume V  #
Thus there must be an upper limit to vibration frequency

rsuch that.

i i x y  ^ ^  _  3  N .
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Debye also used the quantum approach used by Einstein and 
assumed that the energy of vibrations of the atom is 
limited to intregal multiples of h #
The equation for the specific heat of a solid is given 
ty the expression

=  F (V
r: cj N  K  t 'P

O / T
^ (f ol

J
0

where (p z

N is the Dumber of atoms in a gram atom and 6 is the 
Debye characteristic temperature*

kl),0 VVV

iL
k

N
C

J.3

35Zucker (1966) calculated Debye temperature for 
polycrystalline aluminium using the above relationship 
and checked the values obtained against those found by 
specific heat measurements.



40

CHAPTjÆ  V  
Ultrasonic Sources,

In general, as generators of ultrasonic waves, two types 
of sources are used for work on solids, Magnetostriction 
generators are used for lower frequencies but for 
frequencies greater than 120 Kc/sec crystal sources 
are invariably employed. Recent developments of 
multi crystalline ceramic c ompound also a convenient
source of ultrasonic generation, but not very much use 
of these ceramic compounds have been found in the 
literature so far for work on solids.

Elementary theory of these sources, the method 
of generation, the mounting of the crystals are 
described and more details of the applied techniques are 
described in chapters vi\ and Vlll ,

Magnetostriction Oscillators,
A ferromagnetic rod such as iron, cobalt or nickel, when 
placed in an alternating magnetic field, suffers a change 
in length owing to it* molecular rearrangement. This 
•P'î r ^ o n ^ ^ of length is very small, but if the 
frequency of the exciting field is in resonance with 
the natural frequency of the rod, the magnitude of this 
change in length may be of the order of one thousandth 
of its length.
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and causes it to be deformed. This deformation is 
propagated along the rod towards its other end 
temporarily it exists as deformation within the grid 
coil. The state of magnetisation is changed by this 
deformation, and consequently a small e.m.f. is 
induced into the grid and produces an amplified current

IRe.in the plate circuit and inopiate coil. The 
oscillatory current in the system is thus built up to 
a large amplitude with a frequency determined by the 
longitudinal mechanical vibration of the rod.

The materials used in the magnetostriction 
oscillators comprise of ferromagnetic materials • iron, 
nickel, cobalt and their alloys. Of these, nickel 
itself, glow ray and nichrome give a moderate amplitude 
of oscillation and have a low temperature coefficient 
of frequency. Combinations of materials may also be 
used for vibrating bars. Materials of different 
temperature coefficients may be combined to get a 
desired characteristic. One material with negative 
temperature coefficient may form one part of the bar while 
a piece with poéfcive temperature coefficient may form the 
other part. In this way temperature coefficient is 
balanced out and the bar is more stable to temperature 
changes. These bars may be either longitudinally 
composite or concentrically composite depending on how 
they are joined.
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In simple materials, the magnetostriction 
effect decreases as the temperature rises and vanishes 
at the Curie point. Again in solid parts, there is 
usually some loss due to eddy currents which flow in the 
material and there are losses also due to hysteresis.
The use of laminations cuts down these losses hut even 
then the loss effect is not negligible,

Vincent (1929, 1931} and Pierce and Noyes ̂  
(1938) have devised suitable circuits to maintain the 
oscillations and it was found that for better results 
t|ie rods should be initially pol&rise<%, i,e, have some 
permament magnetisation before the alternating field is 
applied.

Crystal Oscillators,
For generation of high ultrasonic frequencies, crystal 
oscillators are used, and since most of the work of any 
importance in ultrasonic propagation in solids has been 
carried out at frequencies of the megacycle region, 
crystal oscillators are found most suitable. Crystals 
can be made to vibrate by employing either the piezo
electric or electrostrictive effect*

Piezoelectric Effect.
In 1880, the brothers Pierre and Jacques Curie discovered 
the piezoelectric effect which occurs in certain crystals
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having one or more polar axes. If such a crystal is 
rotated by 180° about one of these axes, it can not be 
made to coincide with its original position, l.e, 
the crystal lacks a centre of symmetry. On applying 
a mechanical stress along a given direction an electric 
field is produced, the magnitude of which is directly 
proportional to the applied pressure. Thus if the 
crystal is suitably cut in the form of a parallel 
faced slab or disc, equal positive or negative electric 
charges appear on the opposite faces. Shortly after 
the discovery of this effect, its converse effect,
i.e. if an electric field is applied along one of the 
axes, the crystal is mechanically strained, was 
predicted by Lippmann in 1881. The Curie brothers 
verified this prediction and showed that this converse 
effect was equal and opposite to the direct effect.
The effect was found in the following crystals: 
quartz, ammonium dihydrogen^phosphate, potassium 
dihydrogen phosphate, lithium sulphate, rochelle salt, 
dipotassi'k tartrate and tourmaline.

Quartz Crystal Source.
The quartz is the most commonly used crystal for work
on solids and hence it is more elaborately discussed.

(Fig. 6 illustrates a quartz crystal 
suitably prepared for cutting with its three mutually
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perpendicular axes, X, Y and 2# The piezoelectric 
effect will occur if an electric field is produced

tr.ealong either the X- or Y- axis, but not along, Z-axis, 
the optic axis, about which the crystal is symmetrical. 
Plates may be cut with their surfaces perpendicular 
to the X-axis as shown in fig. 6 or tbe Y-axis 
and they are designated as X-cut and Y - cut plate 
respectively. The plates can be set in vibration 
by the aid of an alternating electric field supplied 
by a suitable thermionic valve oscillator. In X-cut 
crystals, longitudinal mechanical vibrations occur in 
both X and Y directions. These are knownks * thickness* 
and•length* vibrations respectively.

If the frequency of the alternating field is 
in resonance with one of the natural frequencies of the 
crystal, a high degree of electromechanical coupling is 
obtained.
The fundamental frequencies of vibration are given by

for *thickness* vibrations and

4  = —  / X1  2.L  ̂ f

for •length' vibrations, where is the characteristic
modulus of elasticity for oscillations of this type and
direction, ci the thickness of the plate, f its density,
E  its Young*s modulus and the length.
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Substituting the values for quartz, these equations 
become CBergmann 1949) t**

f ■ 285,500 jdL Ke/sec.
and

f - 272,500Ii Kc/aec.

•length* vibrations are thus useful for the production 
of lower frequencies and the •thickness* vibrations 
for higher frequencies# With •thickness* vibrations 
it is seen that the plate must be very thin if very high 
frequencies are to be obtained#

Thus there is an upper limiting value for 
frequency beyond which the plate is too thin# This has 
two disadvantages, the first being that the plate may 
be easily broken, and secondly, for a given potential 
difference across the electrodes, the exciting field 
becomes so high that the dielectric property of the 
crystal vanishes. Ny Tse Ze (1927) has reported an upper 
frequency limit of 60 Me/sec# for which the plate was 
only 0#0ô4 mm# thick# He showed^ how ever, that this 
difficulty may be overcome by using thicker crystals and 
exciting them at one of their odd upper partiale#

Oscillator Circuit.
The connection between the quartz and the electric 
oscillator may be made in several ways# The earliest 
simplest form consists df putting the crystals in
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parallel with the capacity of the oscillating circuit*
The oscillator circuit is here%ell known one of Hartley* 
The oscillating circuit, made up of a self induction 
and a variable condenser, is tuned to the natural 
frequency of the quartz by varying the capacity* This 
type of circuit, fig* 2 , is used when powerful 
vibrations, particularly in liquids or solids, are to be 
generated#

The vacuum tube may be either a triode or a 
pentode* The advantages offered by these tubes are 
higher amplification, greater power without fracturing 
the crystal and higher frequency stability from the 
action of the screen grid* When a pentode valve is used, 
the suppressor grid may be earthed or for more power 
a small positive potential may be given*

Pierce developed such oscillators, which 
were further improved by him and later modified by 
Muller and Crossley*

another of the earliest type of piezo 
oscillator was devised by Cady in 1921 and was modified 
by Van Dyke in 1922*

In the Pierce Muller circuit, as illustrated 
in fig# 4  » both grid leak and cathode bias are used*
A very small auxiliary condenser may be connected between 
grid and plate if the grid plate capacitance provides
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insufficient feed-back* To safe-guard the crystal 
the capacitance of this condenser should be as small 
as possible. Cady's oscillator works an the 
principle of piezo electric feed back and it is 
essentially an amplifier with input and output coupled 
through a crystal with the two parts of the electrode* 
Neither condenser or coil is used and the anode circuit 
contains only resistance ofa^few thousand ohms*
For greater output crystals can be cemented together 
with the faces of the same polarity in the same direction* 
Although stacked crystals do not add their power output 
arithematically, nevertheless very great increments 
of power can be achieved* Mosaics of crystals add 
to their directional qualities as well as to the power
output* For concentrated ultrasonic beams,

42.Gruetmacher (1936) suggested the use of concave plates 
and Lablaw (1945) investigated with curved quartz 
crystals and observed that a curved crystal seems to give 
somewhat greater amplitude of ultrasonic output than a 
perfectly flat one for a specific voltage impressed.

Special properties of Quartz*
Quartz is by far the most suitable of all the piezo
electric crystals for ultrasonic generations, especially 
to work in solids at higher ultrasonic frequencies* It 
is physically robust and non-hygroscopic and it can 
withstand a reasonably high temperature* Quartz is
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easy to cut and very thin specimens may be obtained#
Its piezoelectric properties do not disappear until 
the temperature is raised above 675%*, so that it 
can operate over a wide temperature range* Its elastic 
qualities are good, it gives a very sharp resonance 
curve and its electrical resistivity is high 
(3 X 10*^ohm-cm, perpendicular to the optic axis)*
Above all, Quartz is extremely durable and chemically 
stable, and is scarcely affected by acids except 
hydrofluoric acid with which 'etching* is generally done# 
Only at high temperature and pressure quartz is 
partially soluble in water*

Other crystal sourcess
Quartz crystals are expensive and now-a-days quartz is 
becoming increasingly difficult to obtain. There are 
a number of substitutes but none of them is anything like 
as suitable* For example, Rochelle salt crystals, 
which display both piezoelectric and electrostrictive 
properties, are easy to grow, but they are susceptible 
to moisture. If the relative humidity of the 
surrounding atmosphere^ is less than 35%, the substance 
dehydrates, owing to its low vapour pressure and if

greater than 85% moisture is absorbed, then the crystal 
slowly dissolves* At 65*e, Rochelle salt breaks up into
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sodium tartrate and potassium tartrate.
Ammonium dihydrogen phosphate (A.D.P.)

and potassium dihydrogen phosphate (K.D.P.) crystals
are stron^y piezoelectric and they do not contain water
of crystalisation. So they do not dehydrate but they
deliquesce at 93% relative humidity. Both crystals
have a volume leakage due to transmission of ions
through them.

Kthylene diamine tartrate (E.D.T.) and
dipotassium tartrate (D.K.T.) crystals have high *Q*
factors but these also deliquesce when the humidity is
high, The properties of these crystals have been

33discussed in detail by Mason (1960) # Use of these 
crystals not very frequent for work on solids and 
they are mentioned in the experimental techniques, 
chapter V  M  ^

Barium Tinanate and its special properties.
Owing to high cost of large quartz slabs and limited 
supply, much work has been done since the last war for 
the development of barium titanate transducers. These 
are multicrystalline ceramic compounds of titanium.
The small crystals of barium titanate with their axes 
distributed in all directions are fused together, with 
a small amount of binding substance. Barium titanate 
is commonly called ferro-electric, since it exhibits



55

'  u ,

a - \\jih /

O  © -
Ba++ 0= Ti+^

FIk- 7 A  Crystal structure of barium titanate.

C'iystoiJulî, jipw\cùv,

Fl6fi. t)o-mawi ixLiniYiC/nt bg |;oW>'ï-ati'<m Cm W'"'*"' Ut«i*iafc



M

certain dielectric properties that are analogous to the 
special magnetic properties of ferromagnetic materials. 
They possess electro mechanical couplings of the order 
of fifty times that of quartz and have proved most 
useful in the generation of high ultrasonic frequencies. 
The dielectric constant of barium titanate has a value 
of 1200 to 1500 at room temperature and at 120°c, 
the dielectric constant may be as high as 9000. If 
the temperature is raised above this temperature, its 
crystal structure is changed from tetragonal to 
cubical. The crystal structure of barium titanate is 
shown in the fig. 7 in which the titanium atom is 
taken as the centre of symmetry. Because of its small 
size relative to the surrounding ions, the titanium 
atom is easily displaced by an electric field. In the 
tetragonal phase of barium titanate, the titanium atom 
tends to move towards one of the face centred oxygen 
atoms, owing to the potential distribution between two 
opposite oxygen atoms. Bach crystal cell, therefore, 
has a dipole moment which may be oriented toward any 
of the six oxygen atoms. Since the orientation of the 
dipole moment within one cell is influenced by the 
orientations in the neighbouring cells, there are regions 
of parallel alignments called «domains»*. If a strong 
electric field is applied, the electric axes of the 
domains oriented at right angles to the Ûeld are turned
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into the direction of the field and a uniaxial crystal 
is created.

In a barium titanate ceramic, many small 
cry stallit^es are baked together and it can be 
moulded in any shape. Each small crystallite is 
subdivided into electric domains. A large biasing 
field will switch the domains into some degree of 
alignment with the field vector. This process is 
called prepolarization. A schematic picture of the 
polarization process in barium titanate ceramic is shown 
in fig. 0. .

Methods of crystal mounting.
To derive the maximum efficiency from the^rystal proper 
consideration^ must be given for its mounting in a 
holder. The crystal before its mounting, is cleaned 
and plated to make electrical contact with the apparatus 
and also to distribute the charge more evenly over its 
surface. Cleaning of aich crystals is done by initially 
boiling the crystal in 40:1 solution of sulphuric acid 
ai^ potassium dichroma te for about five minutes. It is 
then cooled and rinsed in distilled water. Again the 
crystal is boiled in potassium hydroxide for about three 
minutes and rinsed in distilled water# Finally it is 
boiled in distilled water and in ethyl alcohol. Drying
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is then done on^wire screen#
For better resultsi^^ollowing points should be considered 
for mounting:-
(a) The mechanical damping of the crystal must be a

minimum.
(b) The frequency and amplitude of vibration should be

constant#
(c) Materials used for the holder^^the crystal electrodes 

should be physically and chemically stable.

If mechanical pressure is applied to any part of the 
crystal, except at the nodal points, vibrations will be 
damped. If the pressure exerted is sufficiently high, 
the crystal stops oscillating altogether# The weight of
the electrodes should be very small# They may consist
of sheets of metal foil cemented to the crystal mirfaces 
but it is better to coat the surfaces of the plate with 
very thin metallic layers either by electrolysis, 
evaporation or by cathode sputtering# Metals such as 
silver, gold, aluminium or chromium are generally used 
for coating. Care should be taken that the deposit
is uniform# Vigoureux^l960) advised that the metal
should be removed carefully from the edge of the plate 
leaving a narrow region clear of metal at the rim. In 
this way surface leakage between the electrodes is 
reduced.
For work on solids, the simplest way to mount a crystal
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is merely to lay it on the medium Into which 
ultrasonics will have to he transmitted* The high 
voltage end of the radio frequency generator is 
connected to its back face* A suitable return circuit 
is provided by earthing the crystal*s front face on the 
medium itself* (fig. 9 ) Bachmann^(1934) suggested
to support the crystal around its side by pins or knife 
edges, which barely constrains it* This means of 
mounting is not very convenient as it is difficult to 
handle the unit. For test work, another type of mounting 
is to fix the back face of the crystal (fig.10 ) to a 
solid support usually called&*button*. The crystal 
is supported about the edges of the button and so 
mounted that it is constrained a minimum amount. The 
crystal is cemented into the button with a thin film of 
cement.
Holders for the purpose of angular propagation d w  shown 
in fig. \\
Arrangements for nodal mountings are described in 
chapter Vll.

Coupling medium.
For ultrasonic propagation in solids, proper consideration

Ve oj\v«Ti ■% f
should be made-for coupling the vibrating crystal to the 
investigating solid sample. If the crystal is placed
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simply on the surface of the solid, very little energy
will be transmitted through the interface into the
material because of the great difference in specific
acoustic impedance at the interface. Hence it is
necessary to use some kind of coupling medium.

The coupling medium may be considered as a
transformer which matches the impedance of the crystal
to that of the solid example. Experiments on various
liquids were made, particularly various types of

?transformer oil, glycerine, water, benzene, chlorine, 
sug#r solutions, soap suds, mercury and various amalguras, 

When y - cut crystals are used, a mixture of 
rosin and oil is used, as the shear waves will not be 
efficiently transmitted through the liquid. The.y-cut 
crystals may be cemented permamently to the by a
wax or cement#

For measurements at low temperature
4É» 47Rinehart (1941) and Durand (1936) tried several kinds of

coupling materials. At room temperature, they found
cellulose acetate is most useful and for low temperature
measurements para~rubber dissolved in vaseline gave better
results#
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CHAPTER VI 
Qpticouü Methods,

Introduction,
in 1922, Leon Brillouin treated theoretically the problem 
of light scattering in a liquid through which ultrasonic 
waves were travelling. He predicted that the regular 
pattern of density variations in the liquid could act 
towards the light as a diffraction grating or as a 
crystal acts toward» X-rays, Brillouin mentioned the 
possibility of experimental verification of his 
calculations making use of elastic waves set up in a 
liquid by a quartz crystal-driven by a high frequency 
oscillator.

The experiment was done independently in 
1932 by Lucas and Bii^uard and Debye and Sears, A 
simple arrangement of such an experiment has a quartz 
of 300 Kc/s driven by a Hartley oscillator and radiating 
into a liquid contained in a glass-sided trough, A 
parallel beam of light from a sodium lamp, after passing 
through a slit, traverses the ultrasonic beam at right 
angles. In a telescope the light will foe seen separated 
into the direct beam bordered on each side by diffraction 
maxima and minima,

Debye and Sears in order to see whether 
ultrasonic waves are markedly transmitted by a solid, 
put a glass block of cross section equal to the trough



Li

and immersed it in the liquid. They concluded that 
the diffraction effect may be seen also in solids, if 
ultrasonic waves of highlntensity are used,

Bachem, Hiedemann and Asbach (1934) 
described an optical arrangement for rendering visible 
ultrasonic waves by the method of secondary interferences. 
Considerable use of these phenomena has been made in 
measuring the velocity of sound in solids and liquids.

In transparent solids, the application of 
the Debye-Sears diffraction method or Bachem-Hiedemann 
stationary wave interference method, is usually more 
difficult due to the following reasons,

(1) Flat, polished optical surfaces are essential 
and the material must be homogenous.
Sufficient homogenity is not found in many 
materials,

(2) To make the optical effects visible, considerable 
higher acoustic intensities are required. This 
may result in undue local heating of the test

 ̂ materials, especially with plastics where the 
attenuation is large. Special arrangements 
should be made to keep the temperature uniform.

Despite all these limitations, optical techniques are 
extensively used for measuring the sound velocity in both
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transparent and opaque solids.
The optical methods depend mainly on an 

analysis of standing waves. They are limited to higher 
ultrasonic frequencies ( f^lMc/s) and seldom yield 
information on losses. These optical methods, however, 
have some advantages over other methods, in that they 
require only small quantities of test materials and are 
ideally suited for the analysis of elastic properties 
of single crystals.

For the determination of sound velocity in 
solids, Schaffer and. Bergiriann^l934) first used the 
optical diffraction technique. Their method was used 
also by a number of workers for the determination of 
elastic constants of solids® The newer methods of

5O 51 50,Bar and Walti (1934), Bez-Bardili (1935), Bhagabantam
53 5̂4(1944), Schneider and Burton (1948) and Willard (1951)

are more precise. In the following pages, the various
methods are discussed in detail, together with a summary
of the results obtained.

(A) Method of Schaffer and Bergroann,
Schaffer and Bergmann"^(1934) used the phenomenon of 
diffraction of light by sound waves and determined the 
elastic constants of transparent solids. In this 
dynamical method, the crystal is usually taken in the



form of a cube. The cube may be excited with high 
frequency vibrations hy a thin quartz crystal coupled 
through an oil film to one of its faces. Multiple 
reflections and mode coupling at the boundaries produce 
within the sample, a three-dimensional system of 
standing waves of both compressional bulk type and the 
transverse shear type. The experimental arrangement 
for producing diffraction images is shown in fig, 53. *
The light diffracted by the elastic strain lattice 
produces on the screen, regular systems (circles, 
ellipses, or higher order contours), which closely 
correspond to the Lane diagrams obtained by X-ray 
diffraction in crystals#

For isotropic solids, the characteristic 
diffraction pattern depends on the elastic constants, but 
for anistropic solids, it depends also on the direction 
of light propagation. The diffraction images are 
completely independent of the external shape of the 
vibrating body#

For isotropic materials, like glass, the 
diffraction pattern consists of two concentric rings as 
shown in fig, 1̂09464.
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'L.

SS'According to the theory given hy Fues and Ludloff (1935) 
the inner circle is formed hy the diffraction of light 
by an elastic space grating generated by the longitudinal 
waves. The larger ring is produced by the shear waves 
whose smaller wavelength produces a larger angle of 
diffraction, according to the equations-

S.ne„ = JlAs.

- \o tc.
where

m angle of diffraction of the th order 
Ao • wavelength of light
X e wavelength of sound
C » velocity of sound
^ 8 frequency.
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The shear modulus Is then given by

/A . f Ao^rtj f

• L ' f

where A  # distance between the centre of the
specimen and the screen

P  • density of the specimen
C m velocity of shear waves

It can be shown that

The value of Poissons ratio becomes

a.

Hence, from the measured radii of these circles, the elastic 
constants can be easily deduced.
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In anisotropic solids, the analysis is ccMnplicated in 
that the observed pattern depends on the orientation of 
the light beam with respect to the crystal axis on the
planes of polarization of the light (Schaffer and

5̂Bergmann 1936).
In a later experiment, Schaffer, Bergmann 
61and Goehlich (1937) made a systematic determination of 

seventy varieties of Schott*s optical glass. The 
photographs were made with a cube of glass excited 
elastically from below and both polarized and unpolarized 
light were used. Typical photographs are reproduced 
in fig# $4 #

For unpolarised li^t, the inner circle 
produced by longitudinal waves comes out brighter and 
for light polarized at 46^ and viewed throu^ a crossed 
analysing hicol, it is seen that the inner circle has 
almost disappearW.. In the outer ring, the diffraction
image^extinguished in both axial points#
«Vith elliptically polarized light, the intensities of 
the two circles are equal#

A portable apparatus for optical determination 
of elastic constants of passes and crystals, designed 
by Schaffer and Bergmann is shown in fig# 53.
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Advantages and disadvantage3®
The method of Schaffer and Bergmaom has the great 
advantage that all the elastic constants may be 
determined from one and the same sample and the values 
so obtained for anisotropic bodies represent a system 
of constants complete in itself*

But apart from its serious limitation to only 
transparent solids, the method is difficult because of 
the necessity of using a very small circular aperture 
which produces a comparatively weak diffraction pattern* 
The intensity is too small for visual observation* The 
finding of resonance points of suchTpattern takes a long 
time and to evaluate, the diffraction pattern must be 
photographed.

Some of the difficulties mentioned above 
were eliminated by Szymanowski (1944) who determined 
the elastic constants of glass by using the modification 
of the method*

The transparent sample was cemented to a 
quartz which was excited by an oscillator of variable 
frequency. A strong source of polarized light, after 
passing through an adjustable slit, was made slightly 
convergent by a lens and then passed through the 
transparent sample to be investigated. The light after 
passing through the sample and the crossed Bicol, forms 
a magnified image of the slit which is viewed by a



microscope with micrometer eyepiece. The quartz le 
excited to one of its modes and the sample is set into 
strong resonant longitudinal oscillations which diffract 
the light. The sample is also set at the same time 
into transverse vibration, giving another diffraction 
pattern superimposed on the longitudinal pattern.

For the diffraction pattern due to 
longitudinal waves, one line is formed on each side of 
the central slit image, whereas two lines are formed on 
each side equidistant from the central image for the 
transverse waves. The distance between the two lines 
can be easily measured by the travelling wires of the 
micrometer eye-piece. The values of (P f t and 
£ are given by the relations -

cr
1-
a-  a 

a - 0 ^

E  - ,
Iwhere d. ■ distance between two parallellines for thet longitudinal diffraction pattern.

d » distance between two parallel lines for
^ transverse diffraction pattern,
2) m resonance frequency
Ÿ  • density of the sample
y m apparatus constant obtained by calibration
^  with a grating having a known grating

constant#
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The resonance frequency was measured either by beats or with 
an accurate wave meter.
Szymanowski * s values for the elastic constants of a sample 
of soft glass viz.,

. 3203 Kg/mm*"
E . 7889 Kg/mra^
(T > 0,2315

agree well with the accepted values for such kind of glass.

Method of Hiedemann and Hoesch.
Hiedemann and his colleagues (1935) at Cologne developed 
a method fbr measuring the elastic constants of glass.
A quartz was cemented to a glass block and excited 
elastically. Ordinary and polarized light were used 
and the sound wave gi*ating was made directly visible by 
the method of secondary interferences. The longitudinal 
sound wave was measured by using ordinary light and 
Hiedemann and Hoesch (1936) regarded the sound wave 
grating when examined between crossed Hi cols as due to 
transverse waves, the wavelength of which can be 
measured directly.

This method has the advantage over that of 
Schaffer and Bergmann in that the accuracy of the direct 
measurement of the grating spacing is somewhat higher
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but the method is more troublesome as it requires two 
sets of* photographs of the two sound wave gratings# 
Furthermore the method cannot be used with either 
anisotropic or opaque bodies* Ho systematic measurements 
were carried out in the above way.

Method of Bar and Waltl*
Bar and Waltl (1936) described a method which is 
entirely different from that of Schaffer and Bergmann,
for determlng elastic constants of isotropic solids,

5 /The method was further modified by Bez-Bardili (1936) 
and later by Bhagabantam (1944) whose improved form is 
known as the *wedge* method. The material, which need not 
be optically transparent, Is in the form of a narrow 
wedge. The quartz generator is applied to one side at 
a height above the tip which determines the thickness 
of the wedge to be traversed.

During the experiment, the wedge is immersed 
in a liquid. The principle behind this method is that if 
an ultrasonic wave travelling in a liquid meets a plane 
parallel plate of an isotropic solid of thickness, *d* 
part of the wave is reflected and part transmitted. 
Maximum transmission takes place with vertical incidence 
if the relation n A/2 • d holds where n is a whole number 
aiKi A  sound wave length in the plate. If the ray of
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souna meets the plate obliquely at an angle B  to the 
normal and Is refracted at an angle ©  to the normal 
for the longitudinal wave, the relation for maximum 
transmission is given by

»

Again
XL \ /2 m  d  C O B  ( h )

jf̂ r A  a sinO/ s i n ®  where A  is the
^ wavelength of the sound in the

liquid#
^  , the index of refraction
for sound passing from liquid to 
plate#

From those relations,

" K ^ -  ( I

For oblique Incidence, transverse waves are produced in
-  *it having a shorter wavelength %  and for which the 

index of refraction i« ^  j  \  ̂

and sin G * k " ( ^  iA It

The Pois80n*s ratio may be deduced from the relation

(P- a 2 where k is the ratio of R _ A
3(k^. I) t ^

The evaluation of and were carried out



graphically#
This method has two disadvantages#
(1) It is not easy to separate in the observations the 

longitudinal and transverse wave system by choosing 
a suitable angle of incidence*

(2) At certain angles of incidence •exchange waves* are 
produced by the transverse wave generated by 
reflection at the farther wall#

5 |Bez-Bardill (1936) measured the elastic constants of
aluminium, iron, copper, brass and glass# For this
purpose ultrasonic waves of known velocity passed
through a liquid and the path was made visible on a screen
by means of the circular diaphragm method of Bar and
Meyer (1933)# A plane parallel plate of the substance
to be investigated was put in the liquid and arranged

.  ̂ ^ so as to be set at a measured angle to the sound wave#
The critical angle of total reflection was observed both

. . .  -  . .for longitudinal and transverse waves and the velocity 
of sound was then calculated for two sorts of waves# 
Bez-Bardili further determined the velocity of sound 
from the maxima of the plate*s transmission of the two 
waves in relation to the angle of incidence using the 
similar method of Bar and Walti# The accuracy of the 
value of the constants measured was about 1%#
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'Jed,Te **Met):i od ,
The determination of the elastic constants of solids 
including some Indian rocks by the ultrasonic wedge method 
has engaged the attention of Bhagabantam (1944) and his 
co-workers for several years. Bhagabantam and

5tBhlmsenachar (1944) first described the wedge method, O/ndi 
employed it for determining the elastic constants of two 
cubic crystals, via,, pyrites and galena. Later 
Bhagabantam and Hao (1946) measured the elastic constants 
of glass, steel, brass and platinum in the frequency 
range 3-3,6 Mc/s using the same method. It was further 
used by the same workers to determine the elastic 
constants of diamond (1946) and zircon (1966)

Hao (1947, 1948, 1949) used.the *wedge* 
method and determined the elastic constants of 
potassium alum, chromium alums and some mixed alums 
and later published the values of the elastic constants 
of ammonium, potassium and chromium alums belonging to 
the cubic system and sections parallel to (100), (110) 
and (111) faces and using the frequency range of 8 Mc/s# 
The elastic constants of sodium chlorate and sodium 
brornate were also measured#

The •wedge* method developed by Bhagabantam 
and Bhlmsenachar is described as follows,

A suitably cut and slltered quartz or 
tourmaline •wedge* is used as a piezo electric vibrator#



A series-fed Hartley oscillator using a Mullard D.0.24# 
valve serves as the source of excitation. As the 
frequency of the electrical circuit is varied, different 
points on the •wedge* are thrown into resonance and It 
thus gives a continuous ultrasonic spectrum* The 
range of the spectrum depends upon the angle of the wedge# 
The crystal plate is placed on an annular brass electrode# 
The wedge is laid on the crystal using some liquid for 
securing good acoustical contact* The top of the wedge 
is touched lightly by a spring which keeps the wedge 
and the crystal pressed on to the brass electrode# The 
mount is provided with levelling screws to facilitate 
accurate alignment# The arrangement is then dipped into 
a trough containing carbon tetrachloride# The ultrasonic 
beam from the wedge passes through the crystal and then
enters the liquid# A beam of light with the usual
optical arrangement is made to pass through the ultrasonic 
grating in the liquid and Debye-Sears diffraction effects 
are observed# When the frequency of the wedge corresponds 
to the fundamental or a harmonic of the longitudinal 
vibration of the plate, the sound beam is best transmitted 
and the DebyerSears pattern will have the maximum intensity# 
The transmission frequency is measured with a wavemeter# 
Using the relation s 2df

where C * velocity of the longitudinal
sound wave in a direction 
paraJ.lel to the thickness of the 
plate
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d » measured thickness 
t - frequency of the fundamental 

and substituting the value of C  in Christoff el «s equation, 
the effective elastic constant is calculated from the 
relation

of the material#
where is the density

Advantages and Disadvantages of the •Wedge* method.
As this method does not permit the transmission of 
thickness transverse waves, it is not suitable for
obtaining the full set of elastic constants#

61Bhagabantam and Bao (1946) used a sufficiently small and 
thin specimen and could excite the shear mode only very 
feebly#

nBalkrishna (1966) who studied the elastic properties of 
some Indian rocks employing the *wedge* method reported 
that on account of the special feature of the rocks, 
namely, their hetVogenous nature in composition, grain 
size etc#, the • wedge* method is unsuitable to excite 
the shear modes in rocks like granite, dolerite etc#
The novelty of the method consists in the use of a 
continuous ultrasonic spectrum and the employment of the
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Debye-Sears effect as a delicate test for maximum 
transmission.
The method is also suitable when specimens are available 
in small bits.

Ramchandra Rao and Venugopal Rao (1955) 
reported a modified wedge method to determining the 
shear wave velocities in isotropic solids# In this 
method the specimen is placed at an angle to the sound 
beam instead of in contact with the piezo electric wedge 
as in the case of,, normal wedge method# The velocity 
of sound waves in the material is calculated, employing 
the following Raleigh*s expression for maximum 
transmission of sound waves through a plane parallel plate 
at oblique incidence; -

4 j

Where C * velocity in the surrounding medium 
C; # velocity of sound in the solid 
Ji # thickness of the specimen 
vy z order of the transmission maximum 
^  m angle of incidence#

This modified • wedge* method is particularly very useful 
for measuring the velocity in rocks where it is very 
difficult to excite the shear modes at normal incidence#
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TABLE KO, Z

Elastic constants of MadOa and MaBrO» measured by various
authors

NadO^

Author Cii , Cl2 C44 Sll S12 S44
Voigt 6.19 -2.037 1.196 24.6 12.52 8.36 15
Mason 4,90 1,386 1.17 23.36 -5.15 85.4 39.1
Bhagabantam

& 6,09 
Suryanarayana

1.18 1.18 22.9 -5.35 84,7 36.1

Rao, R.V.a.S.4,94 1,45 1.19 23,5 "5.30 84.1 38.7
Bridgeman - 50.4

laBrOg

Mason 6,16 2.366 1.54 20,6 -5.7 65,0 27.6
Rao 5,46 1,91 1.60 22,4 -6,8 66.7 32.4
Bridgemann - - - 44.1
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Plate Technique*'
Another suitable technique based on the principle of 
Bez-Bardili for the measurement of velocities and elastic 
constants of solids was described by Schneider and Burton 
(1948).

Krishna Murty and Balkrishna (1953) used the 
similar technique for the measurement of ultrasonic 
velocities in some Indian rocks. The method depends 
Ui'On the variation In intensity cf transmitted energy with 
an an̂ île between the incident beam and the sample plate*
A plane parallel sheet of material is used for the sample 
and is rotated about the vertical axis which is perpendicular 
to the horizontal sound beam. The sound beam strikes the 
sample plate at an angle 0 • Since the velocity
in the solid is usually greater than the velocity in the 
liquid, the wave trains in the solid are refracted away 
from the normal and the following relations hold.

n^ = Sin

n ■ Sin 6 y  Sin

% /
'Cc

/Or
Û)

Where n, * index of refraction for dilatationL waves f
» index of refraction for shear waves,

P m velocity of sound in the liquid. 
up
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Ct s velocity of shear waves in the solid
fiL * velocity of dilatation waves in the solid.

increases as &  increases, until at a value when 
O' 90° which means that the dilatational waves
are totally reflected and then the transmitted energy is 
the minimum.
If O  is decreased further to 0 ^  , become 90°, shear 
waves are totally reflected.
At , and the above relation becomes

C %  Cur/î.-S| q  . C . J s i . e i

Determining experimentally the values of and 0;^ and
substituting to and may be calculated.

This "rotating plate" method has the following advantages,
(i) Simple sample shape may be employed thereby 

extensive sample preparation may be avoided,
(ii) The method does not involve the sample thickness,
(ill) The sample is not damaged by the testing

procedure.
(iv) Ho tedious calculations are required for

evaluating the result and the method is simple 
and rapid.

But it has been observed by Schneider and Burton that
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ultrasonic velocities as measured by this method show
a marked dependence on the thickness of the plate used.
Although there is no simple expression relating the
sample thickness and the accuracy of the equation (l^
an emprical relation was proposed by both Eez-Bardili 

noand Sanders (1939) that if the product of the sample 
thickness (in centimeters) and measuring frequency 
(in Mc/s) is greater than 4 cm Mc/s, the Bq, ̂ f^will be 
valid#

TVBoth Vodam (1950) and Ramchandra Rao (1960) 
independently reported the measurement of elastic constants 
of various samples of glass and potash alum respectively, 
by a method which consists in the use of a quartz plate 
attached to the substance under investigation, and the 
variation of ultrasonic energy transmitted through the 
substance inside the liquid, with the frequency,is 
studied over the entire resonance breadth of the quartz# 
Since the resonance breadth of the quartz crystal covers a 
fairly wide region, the ultrasonic energy transmitted 
through the sample will exhibit a series of sharp maxima 
which are close to one another, when the frequency of 
the oscillator is continuously varied, and it can be 
easily detected by using the Debye-Sears and Lucas-Bizuard 
arrangement# Each of these transmission maxima 
corresponds to the excitation of one of the harmonics of 
the longitudinal vibrations of the crystal, and the
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differences between the successive maxima are found to 
be identical corresponding very nearly to the 
longitudinal fundamental of the crystal plate; Using 
the value of the longitudinal fundamental frequency of 
the crystal thus determined and the thickness of the 
crystal, the longitudinal velocity and hence the effective 
elastic constant at a particular direction is calculated.

With this type of set up, Ramchandra Bao, 
found that the shear modes do not come up prominently 
and overcame this difficulty by employing a Y-cut quartz 
plate for determining the velocities of shear modes; 
a main advantage of this method.

Further, higher accuracy in determination of 
elastic constants is attained by this method because of 
the large thickness of the crystal used and the increased 
number of transmission maxima obtained with moderate 
powers of the oscillator.

On the other hand, this method has the draw
back that it requires a crystal block of thickness of the 
order of 1 to 1.6 cm and is not suitable for crystals 
available in very small sizes.
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Aiethods of /illard
.iiilarci (1961) described three sound wave Interference 
methods for measuring the longitudinal and transverse 
ultrasonic velocity in opaque as well as transparent 
solids.

The first one V6 the Immersed block method.
Here one beam travels entirely in a reference liquid, 

while the other beam travels a parallel path in an 
immersed transparent test specimen. The test material 
must be transparent and have two optical faces and one 
acoustic face.

The second one is the immersed prism method • 
where one beam travels entirely in a reference liquid 
while the other beam travels an adjacent course throu^i 
an Immersed, transparent or opaque test prism, and on 
into the liquid at an an̂ jle to the first beam.

The third one is the isosceles prism method 
where the test material may be opaque and must have three 
acoustic faces with known angular inclination, and the 
attachment of at least one sound generator to the prism.

The three methods described by Willard are 
simple and direct. Longitudinal and transverse velocities 
may be measured independently in opaque as well as 
transparent solids. Materials with a wide range of 
impedance and attenuation may be measured. The accuracy 
of measurements a&g comparable with that obtainable by past
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methods. Table 4 gives the results of the velocity 
aid attenuation measurements by the above methods.
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iTFollowing the explanations of Raman and Hath (1936) on 
the Debye-Sears effect, Sreekundath (1966) has recently 
reported a new method for measuring ultrasonic wave 
velocity in solids,

OuThe method is capable of high degree of
accuracy but is applicable only to homogenous solids

a,which have/»small absorption coefficient*
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TABLE NO. 5 
Velocity of ultrasonic waves In some rocks.

Rock Density
in

gm/cm^
Grain size C l

M/sec M/sec

quartzite 2.61 0.1 mm. 6621 3400
quartzite 2.66 0.3 mm. 6610 3030
quartzite 2.64 0.6 mm. 6060 2700
Limestone 2.80 fine 7069 3403
Limestone 2.82 medium 6400 3200
Limestone 2.81 coarse 6260 3066

In coarse grained, rocks, the velocities are low and the 
absorption is high. In fine grained rocks, the 
velocities are high and the absorption is low.
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Determination of Elasto-Optloal Gonstmnts.
Isotropic substances like glasses, possess two elastic 
constants Cii and Cig which are related to Young's modulus, 
Modulus of rigidity and Poisson's ratio by the following 
relations:-

E » — p- - ^
# c„ - C,T_

1

cr
g,

Cit+ 1̂2.
Again these substances have two Pockel's elasto-optic 
constants and which are related to the corresponding
piezo-optic constants and by the relations

L  • s.
Instead of the parameters |p and it is now usual to use 

Ip and <Y where
Ip - j  M
f  * X f

^  being the refractive index.

The calculation of these index variationsis a problem of 
photoelasticity. An elastic wave creates periodically 
varying strains which in turn produce local periodic 
alterations of the optical index ellipsoid* These
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pulsations of the index ellipsoid determine the 
fluctuations of the index of refraction for light 
polarized in any direction#

For detemining the absolute values of the 
strain optical constants, a measure of the absolute change 
in the refractive index for light polarized parallel and 
perpendicular to the direction of pressure is needed#
The value of (t> - t/) can be determined by stressing the 
glass and measuring the difference between the t*vo 
refractive indices for light propagation parallel and 
perpendicular to the direction of pressure, vith light 
polarized at 46° to the direction of pressure, the light 
emerging from the glass cube under stress will be 
elliptically polar!zed,which can be analysed with the 
help of a Babinet*© Compensator.
Then it can be shown that the measured fringe shift X 
for a stress p is given by the relation

I'p-'i)

where
■ 4- X.

cA, # length of the path of light within the glass,
4) 9 distance between the two successive fringes 

in the Babinet*s Compensator for wavelength
M  # refractive iMex of the glase in the 
' undeformed state.

Thus by measuring the fringe shift for a known stress P,
the value of can be determined if (Oil - CIS)
is known.
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The method applied for the determination of elasto-optical 
constants i« similar to that of Schaffer and Bergmann (1934) 
as described before. The theory of the characteristic 
diffraction pattern formed, is given hy Fues and Ludloff 
(1936) according to which the inner ring is produced by 
the longitudinal waves and the outer ring is produced by 
the transverse waves,

t 21V  ̂ C„

t atv 4 c„-c,x

D s distance between the ^ass cube and the 
photograph plate.

f « density,
X • wavelength of light
cO • , f » frequency

• radius of the ring formed by longitudinal waves,
» radius of the ring formed ty transverse waves.

Thus by measuring Xi and , C n  and Cig can be
calculated.
Bergmann and Fues (1936) measured the elasto-optical 
constants of five different optical glasses and their 
results agree well with that of Pockel's.

Mueller^(1938) has shown that the above method with slight 
modification can be used to determine the value of 
glass and cubic crystals.
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Ufc-lô  iK liorlzonttii sXlt. Incident light polarised at
O

46 to it, the direction of polarization of the first order 
longitudinal pattern will be oriented at an angle ©  when

( low» e s ) • Tv CRTi;
j,

7| - first order Bessel function
R -
T? " * 8/ Is a function of the sound amplitude,

A  L the width of the ultrasonic field,
X • wavelength of ligiit.

If now, the variation of @ with sound amplitude is plotted 
B approaches a limiting value 0| 
when ( ) ■ R •

11Vedam (1960) measured the elasto-optical constants of glass 
by a slightly modified method of Mueller (1938).
Expanding the equation for more accurate results,

j  (
icwv^e 1-4-s) - " j / v ;

for the first order longitudinal pattern.
4neglecting the terms involving D  and higher orders,

( when plotted against the square of the sound
amplitude, a straight line is obtained from which the value 
of R can be calculated when • 0 ,

Iyengar ̂ (1966) experimentally studied the Lucas-Biquard
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effect of optical refraction in a sound field and has 
shown that the effect enables the determination of the 
absolute changes of refractive index and the ratio of 
elasto-optical constants.
The ratio of strain optical constants in glasses for three 
wavelengths ?f light is given below:

^12/ Pll

Glass 3893 A 5461 A 4338#
I 1.37 1.38 1.40
II 1.64 1.62 1.67

Iyengar concluded that his arrangaaents are valid also 
for crystalline media.
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CHAPTER Vil
Resonance Method

Introduction:
The principle of this method of measuring elastic and 
dissipative properties of materials is that if an 
oscillating force of constant amplitude and of frequency 
which can be varied, is applied to a mechanical system, 
the amplitude of the resulting vibration passes through 
a maximum at a frequency which is known as the 
resonant frequency of the system. The value of this 
resonant frequency depends on the elastic properties of 
the system whilst the breadth of the resonance peak 
gives a measure of the dissipative forces which are 
present.

Most of the early work for measuring internal 
dissipation in solids at high frequency was done by this 
method.

If suitable precautions are taken to eliminate 
extraneous damping due to air resonance, loss at the 
supports, etc., both the internal friction and the 
elastic constants of a specimen may be determined by this 
method and measurements have been made by using 
longitudinal, flexural and torsional oscillations at 
high frequencies. The method may be used when damping 
is so large that free oscillations decay too rapidly 
for accurate measurements to be made, but the method is
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not very suitable for specimens with very low internal
friction since the resonance peak becomes too sharp
for accurate work# The main disadvantage of the
resonance method is that the coupling between the
driving system and the specimen may result In a change
in resonant frequency and in the shape of the resonance
peak* It is sometimes necessary to carry out a series
of measurements, with varying degrees of coupling, to
allow for this effect.

itQuimby (19^) wassmong the first to wi^loy 
the resonance technique for measuring internal friction 
in solids. Later, Quimby (1932) in co-operation with 
Lewish Balamuth, W.T. Cooke, Fred Rose, Sidney Siegel, 
Clarke Williams and Jerrold Zacharias, developed a 
number of composite piezoelectric oscillators. These 
composite oscillators, with their succeeding 
developments are described in the following pages* The 
typical values of the elastic constants and internal 
dissipation measured by different workers are tabulated 
and compared.

Maarniramant of Internai friction In single and poly-qryet.%m.
The method described by Zacharias (1933) for the 
measurement of Young*s modulus over a wide range of 
temperature was applied to single crystals of pure nickel
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ajid to hard-drawn polycrystalline commercial nickel 
between 30*c to 400^c and in the frequency range of 
17 Kc$to 106 Kc/s, The values of the Young's modulus 
were calculated from the relationship given by Raleigh

E, . T '  ;

Where
# Young's modulus for the direction of cylinder

axis.
X m fundamental frequency of free longitudinal

vibration#
# density of the material

L, m length of the rod
(T" » Poisson's ratio 

■» radius of the rod#

The specimen forms one part of a composite piezoelectric 
oscillator of the sort described by Quimby# A quartz 
rod of square cross section equal in area to that of the 
specimen is so cut from a crystal that the optic axis 
is perpendicular to one pair of opposite sides and an 
electric axis to the other# The latter pair is coated 
with gold leaf# One end of the nickel rod (as shown in 
the fig# 12 ) is thinly copper-plated and covered with 
a molten mixture of copper oxide and boric oxide# The 
rods are then cemented together in a vacuum under 
pressure at a temperature of 600°c# The oscillator is
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supported by fine wires and a sinusoidal potential 
difference is established between the coatings of gold 
leaf. The electric field in the quartz is accompanied 
by a piezoelectric stress proportional thereto. In 
consequence of this harmonically varying stress, a 
stationary state of forced longitudinal vibration is 
established in the composite rod#
The schematic diagram of the electrical circuit is 
given in fig# 13, ,

The composite oscillator lies in a fused 
silica boat on two fine wires located at the nodes of 
vibration# The boat is situated at the centre of a 
horizontal electric furnace about which is wound a 
Solenoid. An astatic magnetometer is mounted above the 
Solenoid and over the specimen# The specimen wis 
demagnetized with a diminishing alternating current in 
the Solenoid before each observation. The temperature 
of the specimen is measured with a chromel-alumel 
thermocouple# Zacharias concluded that the variation of 
Young's modulus with temperature in these nickel samples 
depends on the previous thermal history of the samples. 
Between 30^and SOO^c, Young's moduli for annealed 
specimens were found to decrease about 13%. This is 
again followed by an increase to the Curie point of about 
6% and above the Curie point by a linear decrease.
For hard-drawn specimens and specimens quenched at 1100°e,
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the minimum is wholly absent* Young's modulus was 
found to decrease continuously to the Curie point where
the temperature coefficient changes abruptly*

gc
Cooke (1936) measured the variation of

internal friction and elastic constant with
magnetization in iron by an experimental method which
utilizes the properties of a separately excited
composite piezoelectric oscillator as described before*
In this method the composite oscillator forms one arm
of an a.c* bridge which is excited by an alternating
voltage of constant amplitude and variable frequency*
The a.c. bridge has been described by Stratton (1926)*
Values of the decrements and moduli are deduced from
the observed variation of the electrical impedance of
the oscillator with frequency* The precision of
decrement measurement fails when this quantity is as

-3great as the order of 10 *
%\Brown (1936) employed the method of Cooke 

and measured the variation of the rigidity modulus and 
torsional decrement, also magnetization in the 
unannealed and annealed Armco iron* Formulae were 
derived to evaluate the contributions to the moduli 
aid decrements arising from eddy currents in the 
vibrating ^ecimen by the change in magnetization 
produced by the varying stress* Magnetostriction and 
Wiedemann effect coefficients were also measured and 
evaluated by Brown*
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Further investigations of the internal friction in 
single and polycrystalline metals of copper, lead, 
and tin were made by Read (1938)

The experimental technique was the same as
41devised by Cooke and Brown (1936)# The frequency of 

measurements was 38*9 kilocycles and the temperature was 
about 25%. The observed longitudinal decrements for 
single crystals and the corresponding values obtained 
for polycrystals are tabled below for comparisons

Single crystal 
Polycrystal

Copper
3-6xio"̂  

3'S x%o

lead tin measured by
.̂8X10*̂  64X10^ (1938)

-3 -3H*é)Xu> Forster and §3
Korster (1937)

It thus appears that the internal friction of a single 
metal crystal is substantially less than that of the 
polycrystalline material# The effect of internal 
strain on the internal friction of crystalline copper 
is noteworthy# Read concluded that annealing in 
vacuum decreases the value of internal friction for 
copper crystals, but the decrement values for lead and 
tin crystals remain unaffected by annealing.
L# Balamuth (1934) described the composite piezoelectric 
oscillator and used it to measure the principal Young's 
modulus of rock salt between 76°k and 273^k# The 
electrical circuit is slightly different from that used
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by Zacharias*
The electrodes on the quartz are connected 

to the terminals of a variable condenser in a simple 
resonant circuit given by Cady (1922). The circuit 
is given in fig. 14 « This circuit is coupled so
loosely to the output of a vacuum tube oscillator that 
the voltage induced therein is independent of the 
impedance# The amplitude of the current which flows 
in the resonant circuit is measured with a vacuum 
thermocouple# For temperature control, the oscillator 
was enclosed in the evacuated glass cylinder together 
with a platinum resistance thermometer, and these were 
placed in a liquid bath held in a Dewar flask with 
stirring arrangement. The liquid used at temperatures 
above 213°k was methanol# Between 140° k and 2lf k 
the liquid was composed of 18#1% Chloroform, 8% ethyl 
chloride, 41 #3% ethyl bromide, 12.7% trans-dlchloroethylene 
and 19.9% trichlorethylene* Below 14Cf k, the observations 
were taken separately with the oscillator and thermometer 
immersed in liquid oxygen, liquid air and liquid nitrogen#

The frequencies of the quartz rods used were 
86,691 cycles and 111,617 cycles respectively# The 
results obtained by Balumuth agree well with the theory.

The method of Balamuth is accurate and it can
be applied to small specimens#

\\5Rose (1935) expended the method of Balamuth



I0(>

to measure all the elastic moduli of any solid crystals 
at temperatures below O^c. In 1928, Glebe and Scheibe 
showed that a suitably cut cylinder of quartz can be 
excited to torsional vibration. Bose first made use 
of such a crystal as a driver of a composite oscillator.

For fragile substances, like rock salt, the 
differential thermal expansion at the cemented interface, 
which accompanies any change in temperature, produces 
longitudinal cracks in the specimen. These are without 
effect upon the frequency of the longitudinal mode of 
vibration.

Rose overcame this difficulty by placing 
between the quartz and specimen cylinders, a cylinder of 
stout material whose coefficient of thermal expansion 
is very nearly the same as that of the specimen and made 
the use of a'triple* oscillator.

The triple oscillator of quartz-magnesium 
and rock salt and the electrical connections to the 
quartz cylinder are shown in figs. 16 and 15 T?sj>eekv«î*

The fundamental working formula of the piezoelectric 
method of all the elastic constants of any solids 
substance is given by the solutions for of the 
equation
Vw, -toM 'lil\ 4- Vs/'Ja
-  V̂n, 4i. = o
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where vv\̂  m mass of the cylinder
y C ** "Af / I ^  # frequency of the applied

/ voltage.
and ^
Where y[ is an integer,

L| ■ length of the cylinder
^ modulus of rigidity for the direction of 

cylinder axis
* density. The subscripts refer

respectively to the specimen material, the 
quartz and the intermediate material.

The electrical circuit arrangements for measuring 
resonance frequencies are identical with those of 
Balamuth. In the first place, the fundamental frequency 
of the quartz cylinder alone is measured, next the 
intermediate cylinder is attached and the fundamental 
frequency of the two part oscillator is measured. Lastly 
the specimen cylinder is attached and the fundamental 
resonance frequency of the triple oscillator is measured.

Every time, the equations are solved for # ^3»
respectively. The length of the three cylinders 

should be adjusted so that the fundamental resonance 
frequencies of the triple oscillator are the same within
ten per cent.
Both Balamuth and Rose calculated the values of Young's 
modulus and rigidity modulus following the formulae given 
by Voigt* U910). The results for rock salt with
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Balamuth*8 two part oscillator and Hose's triple 
oscillator are tabled below. The results show excellent 
agreement.

TAHLBHO.,4.. ( f e o c K

n li/Sjj X 10

T ( ' k ) BALAMUTH ROSS -
80 26.51 26.53
90 26.58 26.60 1

140 26.94 27.01 =

150 27.02 27.10
160 27.11 27.19
170 27.21 27.29
180 27.30 27.39
190 27.40 27.49
200 27.51 27.59
210 27.62 27.69 —

220 27.74 27.80
230 27.86 27.91
240 27.99 28.02
250 28.10 28.13
260 28.22 28.25
270 28.33 28.36
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Durand (1936) measured the principal adiabatic and 
isothermal elastic moduli and elastic constants of 
Nad, KCL, and MgO over the temperature ranges 8(f k 
to 270® K, 270° If to 480° K for NaCL, 80°lf to 280° K for KGL

O 0and 80 k to 560 k for MgO. Durand used the same 
experimental method as that of Rose, except that the 
cryostatic bath liquid was petroleum ether cooled by 
liquid nitrogen.

Hunter and Siegel (1942) made a series of 
measurements of the elastic moduli of N a d  over the 
range of 300°k to 1077 k, the melting temperature. The 
measurements were carried out by means of a tripartite 
piezoelectric oscillator consisting of a quartz crystal 
driver, an intermediate fused silica bar and the N a d  
specimen. The cement used at the quartz silica interface 
was red shellac applied while molten. At the silica- 
N a d  interface, a c«nent consisting of a paste of senium 
silicate and finely divided calcium carbonate was used.

The oscillator was suspended vertically on the 
axis of a tube furnace with N a d  specimen at the centre 
of the furnace, maintained at the desired elevated 
temperature. The tenqperature was measured with a 
Platinum - Platinum 10% Rhodium thermocouple, of which 
the hot injunction was closely adjacent to the N a d  
specimen.

The results of Hunter and Siegel practically
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overlap with those of Durand in the temperature interval 
2 0 %  to 23(f c.
Randall, Rose and Zener^ll939) used a method similar to 
that of Wegel and Walther (1936) to detect the contribution 
of intercrystallIne thermal currents to the internal 
friction of polycrystalline metals.

In accordance with a theory developed by 
Zener, the internal friction is a maximum when the 
vibration is partly isothermal and partly adiabatic 
with respect to adjacent grains# By passing in small 
steps, from the nearly isothermal case of very small grain 
size through maximum internal friction to the nearly 
adiabatic case of large grain size, one can detect the 
relative importance of the polycrystalline thermal 
currents.

Randall, Rose and Zener performed an
"tĥexperiment on single phase brass of,following composition 

and grain diameter.
Copper 68.74%
Zinc 31.23%
Lead 0.02%
Iron 0.008%

The Alpha—brass sample had been cold rolled to 0*315 inch 
and then annealed at about 600°o to produce a grain size



of 0*06 mm and then cold rolled to 0*125 Inch thickness* 
The cold rolled strips were cut to 12 inch lengths,
numbered and annealed at temperatures between 50 to

o900 0 in 50 steps and the following table shows the 
annealing temperature and the average ^ain diameters 
obtained*

Annealing Temperature 
in °e*

Diameter of average grain size 
by comparison v/ith A.S.T.M. 
standard*

350 0*006 mm.
400 0*009 mm.
450 0*015 mm.
500 0*025 mm.
550 0.037 nm.
600 0*055 mm.
650 0.080 mm.
700 0.11 mm.
750 0.15 mm.
800 0*26 mm.
850 0.5 mm.
900 1.0 mm.

All samples were etched with amonium and hydrogen peroxide*

Fig* 17 shows the general arrangement*
An electromagnetic drive was used without attaching any 
polepieces* The driver and the detector were air core
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solenoids whose impedances were matched to the oscillator 
and amplifier. An alternating current of variable 
frequency was supplied to the driving coil from a vacuum 
tube oscillator. The eddy currents induced in the reed 
reacted with the non-axial components of a steady 
external magnetic field (furnished by permanent magnets) 
to produce longitudinal vibrations. At the pickup end 
a small alternating potential was induced in a reciprocal 
manner which was fed into the input circuit of a linear 
amplifier. The amplifier consisted of four pentode 
stages giving a maximum voltage gain of over 10 , the 
last two plate circuits containing tuned coupling eluents.

The Q of the reed was at least 100 times 
that of the amplifier characteristic, making the 
response linear to frequency over the resonance curve 
of the reed. Turning the aaplifier,very greatly 
increased the useful amplification by cutting down 
background noise. Final voltage amplification was read 
on a D.C. microammeter in a diode rectifier circuit.
For more accurate results the authors minimised the 
loss at support with suspension of silk threads at a 
pair of displacement nodes. The radiation and viscous 
losses due to the surrounding air were minimised by 
reducing the surrounding air pressure to several 
millimeters of Hg. Varying the strength of the steady 
fields by moving the permanent magnet back and forth
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produced no noticeable change in the measured internal 
friction, showing the eddy current losses were a 
negligible factor*

For measuring the elastic constants of metals, Bancroft 
and Jacobs (1938) used an electrostatic method of 
generating longitudinal oscillations* This method 
has a distinct advantage that it is not subjected to 
thermal limitations, but the disadvantage in the use of 
this electrostatic method has been due to the fact that 
the electrostatic effects are considerably smaller than 
the corresponding magnetic or piezoelectric effects*

go
Ide (1935) partially overcame this difficulty 

in the measurements of Young*s modulus of aluminium, 
lead, nickel, steel and glass, by using very large 
specimens which were driven through a thin mica disc*
The mica disc supported the specimens, as shown in fig* *
Resonance was determined by a small crystal of Rochelle 
salt cemented to the specimen and the voltage set up 
as^lified and read on a meter* This method lacked in 
accuracy because the support at the antinode does not 
give sharp resonance*

Bancroft and Jacobs eliminated the above 
difficulty and the external damping was reduced to a 
minlmnm by placing the support at three points on a nodal 
section* This is especially advantageous for the
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measurement of internal damping* The apparatus 
designed lay Bancroft and Jacobs is briefly described 
below and is shown in fig* 19 #

The specimen is mounted in an insulated spring 
clip which is rigidly clamped in the centre of a long 
brass tube and is arranged so that the air gaps between 
these and vibrating surfaces of the specimen are of the 
order of one thousandth of an inch* Very thin pieces 
of mica are attached to the fixed electrodes to eliminate 
the possibility of accidental short circuits between the 
specimen and the driving or pickup electrodes* The first 
electrode is connected to the output of a low frequency 
oscillator while the pickup electrode is connected to 
the grid of the 1603 vacuum tube* The ^ecimen 
(accurately annealed carbon steel in the form of a 
cylindrical rod) was biased at 250 volts* and this served 
the double purpose of accentuating the driving force at 
the lower electrode and sensitizing the condenser 
microphone at the top*

The specimen with driving and pickup units 
was sealed within a gas-tight container which may be 
immersed in various tenqperature baths* % * s  È4k4aA#stre%ed 

the *
The power output of the pickup was small, and 

it was necessary to keep the input impedance of the 
aaçïlifier sufficiently high* The output impedance of the



circuit shown in fig. is 60,000 ohms. A high pass 
filter with cut off at 1000 cycles was inserted at this 
point to eliminate most of the stray noise which the 
microphone may pick up. The accuracy claimed by the 
authors was 0*1%»

Relaxation due to dislocations at low temperature.
To measure Internal damping at very low temperatures,

<̂0Eordoni selected four pure metals of cubic face-centred 
crystal structure (Pb., Cu., Al., Ag»,) and a large 
copper single crystal. The method used was an electrostatic 
one described by him in 1947#

The driving force was supplied by the 
electrostatic pressure between the rod and a small 
electrode facing one of its ends. The same electrode, 
connected to a high frequency oscillating circuit, was 
employed to measure the vibration amplitude.

To avoid any appreciable change of resonance 
frequency and damping, due to external causes, the 
vibrating rod was supported at nodal planes by needle 
points as shown in the fig# • Additional damping 
due to air was also avoided by keeping the vibrating rod 
in an evacuated container. Even at low temperature, joints 
were made air-tight by Wood*s metal soldering.
Resonant frequency and damping were first measured at 
fixed temperatures keeping the rod and its container
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inside a Dewar flask filled with a constant temperature 
bath until a thermal equilibrium was reached. The 
apparatus for low temperature measurement is described 
in fig, Z\ » The baths employed fèr constant temperature 
are listed below:-

Baths at Constant Temperature

Bath Temperature^ k Measured by

Meltings iee
Ethyl alcohol with 

solid CO;̂
Liquid air
Liquid Helium

273

203
81
4,6

Penthane Thermometer 
Penthane Thermometer

Bordoni did a wide number of measurements and the 
results can be listed by the following tables.



iiy

VZZZZZZZ22ZZZZZZZZZ2ZZZLZZZZZZZ23ZZZzzzzz

F\0t. 20 ELECTROST/4-T\C EXCl-TATNOt̂  OF 
"R E Sc N  A N T H6.TAL1_\C SA12

U Ul_l* 
- I  « '< ̂
HI oz u

CL O

V) o
CO CDsill

P|6(. 21 Low TEMPER.A1U9.E APP/'TZATUS



iq

Comparison between damping at T « fl ancl atT . 4.5°k.

Material Harmonic T  # K».

Pb. Commercial,
unannealed 1st

Pb.Chemically pure,
unannealed 1st

Pb. tt tf 2nd
Pb. « * 3rd
Cu.Commercial,

unannealed 1st
Cu.Commercial

annealed 1st
Cu.Chemically pure,

unanneal ed 1 st
Al.Commercial,

annealed 1st
Al.Chemically pure,

annealed 1st
Al.Chemically pure,

cold worked 1st
Ag» unannealed 1st

6.0 X 10

6.7 X 10 
3.4 X 10^
4.7 n

22.7 X 10^

9,6 xXO^

21,3 xid^

4.6 X10
-s2.7 xlO

6.7x10^
6.5x10^

2.2 X10

1.3 XIO
0.64x10
0.80x10

-5

- S6.0 X 10

2.4 X l6^
♦ S11.6X 10
—s1,4 X 10

0,7 X 10
-f3,0 X 10
-S0,7 X 10
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Values of Young:*8 modulus for annealed and unannealed
materials.

Material Young*8 Modulus (dynes/cm)
At room tempf at 4,6 ICf

Cu,Commercial (unannealed
(
(annealed

1.358%lo'^ 1.483 Kio'^
1.373 • 1.483 "

Cu,Chemically pure
unannealed 1.276 1.430 at 23
annealed 1.310 • 1.430 at 23

Ag. (unannealed
((annealed

0.804 • • 0.888 "
0.814 • • 0.888 '

Temperatures of maximum damping and their ratio to
Debye*# temperature.

Material 0(<’k) i<Lje

Ph. 88 36 0.40
Cu. 315 80 0.26
Al. 398 110 0.28
Ag. 215 60 0.28
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Bordoni concluded from the above measurements that 
the damping values of extensional vibrations In Pb,
Cu, Al, and Ag, reached a maximum at about ^  Debye's 
temperature, both In crystalline samples and in a single 
crystal. The maximum value Is always Increased by 
cold work and reduced by annealing. This points out 
the existence of a new relaxation effect which may be 
explained as follows*-

When a solid Is permanently strained, some 
Imperfections are Introduced In the crystal lattice such 
as, for Instance, dislocations. These imperfections 
make It easier for scsne cry stall ographl c planes to 
slide and therefore an anelastlc strain Is added to an 
elastic one. A certain amount of i^ldlng occurs at 
room temperature owing to the thermal agitation of atoms 
and to the local fluctuations of energy even when the 
values of stress are small (as Is the case with 
vibrations excited by electrostatic pressure).

So the value of Young's modulus conqputed 
from the velocity of extensional waves Is il ways lower 
for a permanently strained material than for the same 
material after an annealing process has eliminated some 
of the imperfections of the crystal lattice.

The value of modulus at room temperature 
measured In this way does not depend on vibration 
frequency at least below 100 kilocycles. The time
required by the anelastlc strain to reach Its full value
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at room temperature must then be much shorter than
-5

10 see# The thermal energy of atoms dec reason above
0 as a linear function of T  . Below 0 , the energy
decreases as a higher power of temperature and goes to 

UZero as T  • It may therefore be expected that the 
time required by the anelastic strain to take place 
under the effect of elastic stress and thermal agitation, 
becomes larger when T  is lowered# So the difference 
found at room temperature between the elastic modulus 
for a permanently strained material and the value 
measured after the material has been annealed, must 
decrease with T  as the anelastic strain decreases.
This agrees well with the results, and it is found that 
at 4#6*k, no appreciable difference exists between the 
values of Young* s modulus when the material is 
permanently strained and when it is annealed. The 
experimental results show that at liquid helium 
temperature and for very low stresses, the sliding of 
at(m planes requires a time much larger than the vibration 
period# For some value of J between 4,5**k and SOcT k", 
the sliding time must then be equal to the period 
of vibrations and according to the relaxation theory, 
at this temperature damping must reach its highest value, 
and Bordoni observed the same maximum with all the four 
metals#



The ratio of maximum damping temperature 
to Debye*B temperature is very near to and this 
agrees very well with the statistical treatment of the 
problem by Bordoni (1949) who showed that the changes in 
sliding time are always small when T  ̂  , but become
very large for “f ■ 9j5 #

The metals used in the experiment have the 
same crystal structure, their resonant frequencies are of 
the same order, and Bordoni concluded that they must reach 
their highest damping for temperatures above the value.

The resonant frequencies were found to be 
almost linear functions of J  above Debye temperature and 
near the absolute zero, the changes in frequency and 
damping vanish with a high power of temperature. This is 
also confirmed theoretically by Bordoni (1953)

Much interest has been shown in Bordoni *s 
results at low temperature, by Mason, Bommel, Filmer 
and Hutchison* This subject has been further discussed 
in chapter VIII •

Measurements in rubber and rubber like high polymers a
46 Cl,Rinehart (1941) used the method similar to that used by

'IT 11 foYQuimby (1925) and Zacharias (1933) to measuring the Young* s
modulus and specific energy loss in lucite and Karollth#
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Both Lucite and Karolith are thermo-plastic and have a 
wide softening range and they are suitable for studying 
internal losses during softening of the material. 
Frequencies used were around 50 Kc/sec* Both Lucite and 
Karolith were studied in the temperature ranges of 
-66°c to 66*0 and 26̂ 0 to 110°c respectively#

Rinehart tried several kinds of cement 
and the results seemed independent of the type of cement
used# Similar behaviour was noticed by Durand (1936)»
The most suitable cement for work above room temperature 
was found to be a cellulose acetate and for low 
temperature measurements para-rubber dissolved in vaseline 
was used#

The composite bar and its holder were placed
at the centre of a long Alundum-cored furnace and the
temperature was measured by means of a chromel-alumel
thermo-couple placed close to the specimen# At low
temperature, measurements were made by using a cryostat
consisting of a suitably insulated test tube into which
the composite bar and holder could be placed, and the
whole was immersed in a bath of low temperature mixture#

was
The temperature close to the bar/measured by means of a 
copper-constantan thermocouple# The bar was hung 
vertically and supported by fine threads, but the internal 
damping of the material was so great that no particular 
precaution was necessary in the form of supports used#
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Two types of* cooling mixture were used (1) ice and water, 
(2) dry ice and acetone#

The experimental results of loss measurements 
were found to vary with frequency for both the materials#

One of the serious difficulties in the measurement of 
internal frictional, losses by resonance method in the 
dissipation of energy at the supports and in most of 
the investigations mentioned so far, the specimen was 
suspended by fine wires and threads# Even so, some of 
the energy will travel along the suspension# Forster 
and Ko8ter (1939) used the wire supports to detect the 
flexural oscillations#

Q^^mant (1940) extended the method to 
measure the internal damping of paraffin wax at room and 
elevated temperatures up to the softening range# Two 
other materials, namely glass and polystyrene, were also 
tested to check the efficiency of the method# In this 
apparatus the specimen was in the form of a hollow metal 
cylinder suspended by two fine wires each of which was 
attached to the centre of the diaphragm of an earphone# 
One of the earphones which acted as a generator was 
connected to an oscillator, whilst the electrical output 
of the other was used for measuring the amplitude of 
vibrations# The internal damping of the paraffin wax 
was measured by finding first the loss in the metal tube



when empty and thon when filled with wax.

Using the electrostatic method as described by Bancroft 
and Jacobs (1938), Parfitt (1949) measured the internal 
dissipation in high polymers at frequencies in the range 
of 5 to 60 kilocycles# Two types of polymers were 
examined - one was amorphous polymethyl methacrylate 
(Perspex) unplasticized and plasticized with 5% dlbutyl 
phthalate and the other was polystyrene# Parfitt * s 
idea was to explain the fractional energy loss per cycle 
apart f r m  the well defined relaxation phen<mena# It 
was observed in the measurements that the fractional 
energy loss per cycle varied comparatively little with 
frequency# Young*s modulus was also found to be constant. 
Perspex and polystyrene, which differ chemically in the 
nature of the side group of the main carbon chain, gave 
losses differing by a factor about six# The presence 
of plasticizer in perspex, however, caused little change 
in the loss# In polystyrene, the loss in torsional 
vibrations was found to be equal within experimental error 
to that in longitudinal vibration, a result to be expected 
in a material in which the compressibility is small 
compared with the shear conqpliance, so that longitudinal 
vibrations mainly involve shear strains# The magnitude 
of energy loss in perspœc warn of a similar order to that



127

obtained by Rinehart, but the loss observed by Rinehart, 
was increasing with frequency, a case which is not 
confirmed by Parfitt. Attenuations measured for 
Polystyrene perspex by Mason were 10 and 24 times greater 
than those corresponding to the loss figures at
at 60 kilo cycles measured by Parfitt.

0[(,Nolle (1948) investigated the elastic properties of 
rubber-like materials at frequencies between .1 cycle 
per second to 120 kilo cycles per second and employed 
five different experimental methods to cover this range 
of frequency. At the highest frequency Nolle used a 
magnetostriction resonance method. A schematic diagram 
of the magnetostriction apparatus is shown in fig. #

A small disc sample of rubber is held under 
compression between a resonant magnetostrictive rod and Am 
anti-resonant rod# The length of the anti-resonant rod 
is half the length of the resonant rod# The anti-resonant 
rod is backed by a layer of spongy rubber which offers a 
mechanical Impedance at least smaller than the 
characteristic impedance of the rod material. The 
rubber sample may be regarded as backed an effectively 
infinite Impedance when the anti-resonant rod presents 
several times it# own characteristic impedance. The 
resonant rod is clamped at its centre in a ring of 
natural rubber, which has little effect upon the system 
because the impedance of the rod is very large at the
Centre# The resonant rod is magnetostrictively driven
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hy means of a coil surrounding the rod, to which is 
supplied several watts of a*c. signal* In addition, 
the coil carries direct current somewhat greater in 
magnitude than the peak a#c# flow in order to produce 
magnetic polarization* The relative amplitude of 
vibration of the rod is measured by means of an 
electrostatic pick-up plate which is located very near to 
the free end of the rod* The motion of the rod varies 
the capacity between this plate and ground, which remits 
in frequency modulation of a high frequency oscillator 
(about 10 Megacycles)* The frequency modulated 
oscillator signal is applied to a discriminator which 
supplies an output at the signal frequency* This output 
is amplified in a selective feceiver and applied to the 
vertical input of a cathode ray oscilloscope*

A small change In the frequency of resonance 
occurs when a rubber sample is forced into contact 
with the end of the rod* This change of resonance 
frequency is proportional to the real part of the modulus 
of the sample, and the accompanying change in band width 
is proportional to the imaginary part of the modulus*
The real and imaginary parts of the Young*s modulus 
are found from the following relations*

E = t (4 zr'-fL)
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where t = Thickness of the sample
" centre frequency of the loaded resonance

^  • centre frequency of the unloaded resonance
A O  m band width of the loaded rod

m band width of the unloaded rod
s constant for a particular rod, f is the 

density of the rod material and Z is the 
length of the rod.
E  m complex Young*s modulus in dynes/cm^

The magnetostriction resonance method is best suited for 
use in a frequency range fr(xn 10 kc to somewhat more than 
100 kilocycles* The method is advantageous because in 
principle, it is always possible by this method to obtain 
visco elastic measurements no matter how large the lose 
factor E| *

Kolle did not claim a very high accuracy of 
the method which gave variations in the results of 10 to 
20%* Though the method can be extended to a wide 
frequency and temperature range, Kolle described the method 
as tedious# The experimental measurements are inherently 
time consuming, rate of securing data is slow and the 
frequency is not continuously adjustable#
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CHAPTER Vlfl 
PULSE T&CHMIJUE

The recent development of short pulse technique has made 
available pulsed ultrasonics as a very convenient tool 
for investigating mechanical properties of matter.
The fundamentals of the pulsed ultrasonic system used 
mainly for the measurement of propagation constant 
given in block diagram and in more detail in block 
diagram (14) #

ofThe pulse generator consists essentially/^a piezoelectric 
crystal cemented to the specimen under test and excited 
by a series of short pulses from an oscillator working 
at r* f » carrier frequency#
The acoustic pulse travels through the specimen under 
consideration and is then reconverted into an electric 
pulse by a transducer at the other end of the sonic course# 
There it is amplified, detected and used to trigger another 
pulse so that a continuous succession is generated#
The sound velocity can be calculated by counting the 
number of pulses generated in the specimen in an accurately 
measured interval of time, the average time delay 
experienced by a single pulse in traversing the closed path 
and the accurately known length of the sonic path#
Sometimes the pulse is reflected from the end surface to 
the transmitting crystal where the successive echoes are
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converted into electric pulses, amplified and displayed 
on a time base sweep#
The relative amplitude of successive echoes gives a 
measure of the attenuation#

Advantagesi
The advantages of the pulse method are that 

once the apparatus has been set up the measurements of 
velocity and attenuation are rapid and simple , and very 
high frequencies can be employed#

The method is capable of giving a very high 
degree of accuracy#

Pisadvantages t
The principal difficulty of the method often lies 

in the interpretation of the experimental results# When 
the lateral dimension of the specimen is large compared 
with the length of the specimen and with the wavelength 
of the ultrasonic waves, the time of transit will correspond 
to either the dilational or distortional wave velocity 
depending on the type of pulse#

When the specimen is in the form of rods the 
pulses are reflected from the sides and a number of separate 
pulses which have travelled by different routes arrive at 
the detector#

The measured attenuation of the successive echoes 
must be interpreted with caution as there are many possible 
causes such attenuation other than the direct
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absorption by the medium itself*
In the firstlplace, the inhomogenity in the 

specimen under test will give rise to scattering which 
will break up the intensity of the beam#

In the megacycle range slight impurities 
cause scattering# Residual thermal stresses also have 
the same effect# Extensive scattering can also be 
caused by the individual polycrystals of the specimen if 
the grain size is not very small compared to the wavelength 
of the ultrasonics#

Secondly even for h(mogenous specimensthere 
will be B<MQ amount of beam spreading from diffraction 
effects# The spreading is ordinarily not serious 
because narrow angle beams are obtained at high frequency# 
However it is necessary for all specimens to be carefully 
prepared with two opposite surfaces as flat and parallel 
as possible# Any misalignment of surfaces will cause 
a distortion in the pattern of multiple echoes# As a 
result, the successive echoes decrease unevenly and may 
show an oscillatory character where some echoes are 
actually larger than their immediate predecessor#

In the third place, any thermal gradient in 
the specimen will cause refraction and consequent pulse 
distortion#

Finally the character of the film between



crystal and specimen is increasingly critical at shorter 
wavelengths# It is essential that the surfaces be 
clean and all particles and air bubbles should be 
removed so that the film should be of uniform character#
It should be thin and must have low acoustic impedance, 
otherwise the crystal element will not have a sufficiently 
broad band character to maintain good pulse shape#

For work with transverse waves, it is 
Impracticable to use a liquid or wax film# For the 
measurement of attenuation the effect of pulse distortion 
is more pronounced# To obtain precise values would 
require repeated measurements on the same specimens to 
evaluate the reproducibility and the influence of the 
film used and on specimens of different size and shape 
to eliminate the effect of geometry, beam spreading, 
reflection and the like#

The effect of pulse distortion on velocity measurw&ent 
although much smaller than that on attenuation, is 
the limiting factor in the accuracy of results# For 
successive pulses which maintained essentially the same 
pulse shape, the precision of velocity measurm&ent is 
as good as 0#1%#

With the appearance of pulse distortion for 
one reason or another, the determination of time between 
pulses become difficult# Results of the various 
investigators varied depending on the procedure and the
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interpretation of the Oscillo-rscope pattern and for 
this reason accuracy of measurements varies considerably,

Experimental methodsi*

The first reliable measurements of energy
loss in solids with the aid of pulse techniques was made

qby Mason and McSkimin (1947) and the energy loss in solids 
due to scattering was calculated on lines similar to 
Raleigh*s formula for scattering of sound in gases 
caused by inhomogenities in the medium#

The method was later applied by Roth (1948) 
to study the scattering effect in polycrystalline metals,

«ItHuntington (1960) and Price and Huntington (1960) made
similar .experiments on single and polycrystals and
studied the scattering effect and the grain size#

qqRoderick and Truell (1962) used the pulse method to
study the ultrasonic attenuation in steel and using the
water buffer method he eliminated some of the
difficulties as cited before# 

vooRolls and Mowry (1948) studied mechanical relaxation 
effects in high polymers and used pulsed ultrasonic 
waves in the frequency range 10-30 mes/sec#

\o\Ivey, Mrwca and Goth (1949) used pulsed ultrasonic waves 
to investigate viscoelastic constant of rubbers in the
frequency range from 40 kc s/sec to 10 Mes/sec and the

o otemperature range -60 to+60 e#



Mason (1960) measured the propagation constant
of plastics at ultrasonic frequencies and a similar

\ômethod was applied by him and McSkimin (1952) to 
measuring the mechanical properties of polymers#

Experimental arrangement of Mason and McSkimin.

A variable frequency oscillator is the source 
of the carrier frequency# This is sent to a wide-band 
tuned amplifier# The bias on the input tube of the 
amplifier is controlled by the puiser# The firing of 
the puiser is controlled by a sinusoidal wave of 
frequency from several hundred cycles to 6000 cycles 
and this timing wave also controls the sweep circuit of 
of the cathode ray Oscillograph# The puiser is of 
conventional design and puts a square top pulse of positive 
voltage on the two balanced input tubes of the amplifier 
that are connected in a push pull arrangement#
The carrier frequency is inserted in the suppressor grid 
of one of the tubes and is not balanced out in the 
output# When the grid is negative, the carrier output 
of the tube is neutralised and a steady state output 
appears in the amplifier#

When the gating pulse is impressed on the 
input, a pulse of alternating current of controllable 
time duration is impressed on the sending crystal#
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values are considerably different*
Microphotographs of the grain size revealed 

that the average grain size of the rods are 
0*23 ̂  0*01 mm and *130 *01 mm* This caused a
larger scattering for the rod and resulted in a higher 
attenuation* Attenuation measurements are shown in 
graph (26) and the empirical formula for attenuation 
was given as

U-A m f + f as explained before*
10Roth (1948) performed the similar experiment \

with alumin:j.um rods of the same grain size and found
serious disagreement with that published Mason*

Mason and McSkimin found that attenuation
varies with D whereas Roth found that the attenuation 

1varies as D and secondly Mason and McSkimin report a 
variation with wavelength at low frequencies 
(changing in one case to \j^ at higher frequencies), while 
Roth found a relation variation* The attenuation 
curve plotted by Roth is given in fig* 2% Huntington (1950) 
repeated the same experiment and pointed out another 
approach to this problem which appears to be applicable 
over an intermediate frequency range and theoretically 
he predicted the attenuation varying as

The absolute value predicted by this formula 
is considerably less than what is found experimentally 
and Huntington attributed the losses due to mode conversion*
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buffer amplifierz~
The vacuum tube buffer amplifiers serve 

two major purposes:- (a) they allow individual 
adjustment of the level and phase shift through each 
channel and they prevent the undesirable signals of one 
channel from entering the other*

The electronic circuit arrangement of the 
Buffer amplifier is given in fig*

Use of Seals»
To minimize phase shift errors Me Skimin

1(4. % .(1950) used plastic seals approximately thick
between specimen and rods* The seal must be uniform over
the entire area and must be thin enough so that errors
introduced by additional phase shift and loss difs negligible*
For moderate temperatures a liquid seal of poly d - methyl
styrene was found to be satisfactory* This liquid is
very viscous at room temperature* It flows quite well
above 60°c, so that with pressure of approximately
25 lbs/sq*inch, film thickness of less than 0.0001** can
be obtained. Further more this liquid is capable of

otransmitting transverse waves* At temp* above 30 c for 
transverse waves, a wax such as Carnaube should be used in 
order to provide a seal with an impedance more nearly 
matching the plastic*
Method for More Precise Measurement*



14̂

GATE H« 1
CONTINUOUS
OSCIttATW?

0

SPECIMEN
aOETEClDR
----- o

GATE
Ne 2

VARIABLE MEPCU! 
LINE

ip'

6KTE Ns 1 Ulji

N* 2 n
time

F'Sr (55)



(4̂

For testing small solid specimens 
McSkimin (1960) used a pulsed oscillator which was 
employed to initiate ultrasonic waves within the silica 
rods and specimen. The pulse width was variable from 
about 1 - 100 /U sec. Detection equipment consisted of 
a wide band (3 Me) converter-amplifier with diode 
detector* The video signals were amplified and viewed 
on an oscilloscope*

The accuracy obtained was limited by the 
precision with which the **in phase” condition was 
indicated and by the phase shift at reflection. So for 
a more precise method a continuous wave oscillator 
gated by D.C* pulses was used instead of a pulse oscillator* 
One gate^fig* 56) feeds the unit Including the specimen 
to be measured, the other a variable mercury delay line* 

These gates must be capable of suppressing the 
carrier at least 40 db between pulses to minimise phase 
errors# Also the pulse position must be variable* The 
outputs of the two channels are fed into the detector 
circuit#
Roderick and Truel preferred the water buffer method to 
the direct mount method for measurements of attenuation 
in steel# The actual experimental technique is 
described in block diagram 26. . Here the water
buffer and the sample are the sound media#

A crystal calibrated time delay is used with
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the oscilloscope so that 4, 16 and 25 micro-second 
sections of the full sweep at any time delay up to 
lOOOmicro seconds can be picked out# The delayed trigger 
can be initiated at any time up to 1000 seconds 
after the main trigger going to the transmitter#

Use of the Comparator Oscillator;-
The attenuation is determined by 

introducing an auxiliary radio frequency pulse from 
another pulsed transmitter called the comparator oscillator 
operated at the same frequency as the transmitter# The 
variable delay trigger which operates the comparator 
oscillator makes%ossible to delay this pulse in 
relation to the radio frequency pulse from the transmitter 
and so place the comparator pulse near the echo to be 
measured# The relative amplitude of each echo ts 
is determined by matching the pulse from the pulse 
comparator to it by inserting attenuation by means of a 
calibrated attenuator box and recording the attenuator 
readings# These readings give the relative amplitudes 
of the reflected pulses in decibels#

Advantage of water buffer.
The difference between the direct 

mounting method and the water Wffer method lies in the 
provision of an isolation medium between the sound source

ttand the specimen# The isolation medium makes,^possible
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to measure directly the reflection loss* In the direct 
mounting technique the reflection loss can-not be 
measured directly and is dependent on the technique of 
crystal mounting and the thickness of the resulting 
cement film as well as on pulse length and other factors* 
There is more^over no pulse distortion at the reflecting 
surfaces as with the direct mounting technique* The 
maximum measurable attenuations are as large as those 
that can be made by directly mounting the transducer 
on the specimen* The band pass of the water loaded 
transducer limits the minimum pulse length whereas with 
a solid loading transmission of very short pulses is 
possible but distorted*

\o4 loifNolle (I960), Nolle and Mowry (1948), Nolle and Mifsud 
(1962) have used pulsed ultrasonic for measuring dynamic 
mechanical properties of Rubbers and rubber like polymers*

Nolle and Mowry used a slightly modified
lOEform of the method of Pellam and Galt (1946) and 

1*1Teeter (1946) for absorption measurement in liquid*
Fig* 31 illustrates the apparatus schematically* Here 
the ultrasonic pulse travels to a reflector block spaced 
about 6 cm* from the crystal and returnsto the crystal 
as an echo*

The echo gives rise to an r*f* pulse which 
passes from the crystal through an attenuator to a wide 
band r*f* amplifier* A deflection representing the 
echo envelopeappears on the oscilloscope screen* The
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relative intensity of the echo is measured by selecting 
an attenuator-setting switch which brings the echo 
pulse to a standard height on the oscilloscope screen#
The echo return time can also be obtained from a direct 
reading dial# Intensity and range readings are 
obtained once for the case in which the sound path 
consists entirely of liquid and again for the case in 
which a flat sample of a rubber mounted on a gate-like 
frame has been swung into the sound path# The acoustic 
attenuation in the sample may be computed from the 
difference of the intensity readings#
For temperatures between 0 c and 100*c the tank is 
filled with water and for temperature below 0 c Ethyl 
alcohol was used as it has a low freezing point and^also 
a non solvent for high polymers# Velocity measurements 
in this low temp in alcohol display an uncertainty as a 
result of the temperature sensitivity of the velocity of 
sound in alcohol# So the tank is equipped with an electric 
stirring device to reduce temperature gradients#
The introduction of the polymeric substance into the 
sound path increases the echo return time in seconds 
by an amount which is given by

where d is the thickness in cm# of the sample
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• bulk wave velocity in the sample

• velocity of sound in liquid in cms/sec*

loiIvey, llrwca and Goth (1949) used also liquid medium as 
a buffer. The apparatus is shown schemetically in 
fig.
The method is simple and accurate. Here a pulsed 
compressional wave is generated and received in a liquid 
by a pair of crystal transducers, When a sample (rubber) 
is inserted in the path of the beam, the bulk wave 
velocity and attenuation can be calculated by observing 
the time shift and amplitude change of the received 
signal.
The velocity in the sample is obtained from the 
relationship /

C  z At
Where d • sample thickness (measured by a dial micrometer

at each temperature)
Ctiy » velocity in liquid.
t ht • time shift observed on insertion of the sample.

The transmitting liquid used had negligible attenuation 
coB^ared to that of rubber, so that the sample 
attenuation was obtained directly assuming no reflection 
at the liquid-sample interfaces. The assumption is 
valid if liquids of approximately Â same acoustic 
impedance as rubber are used.



The measurements were made in the temperature range
- 60 c to t* 60^c#

oAbove 0 c, water was used as a transmitting 
liquid because of its negligible attenuation and 
desirable acoustic impedance.
Below O^c, an ethylene - glycol • water mixture was 
used which had negligible attenuation down to about
- 30°c, Below this temperature a small correction
had,to be made. The velocity in this mixture is higher 
than that in water which is taken as an advantage, 
because the velocity in rubber is higher at lower 
temperatures. Thus the mismatch at the interface is 
minimized and can be neglected.

Another advantage is that the error in velocity 
measurements is a minimum when C ■ C since errors

Uy

In oi and dt are then eliminated.
Measurements were made at 44 Kc, 1 Me, 3 Me

and 10 Me.
At each frequency complete velocity • 

temperature and attenuation-taaperature curves were 
obtained. Velocity measurements were accurate within 
2% at high frequencies and 5% at low frequencies. 
Attenuation measurements were within an accuracy of 10%.
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Analysis of Experimental Results on Polymers,

Polyethylene> Nylon 6-6 and Polystyrene.

Mason and McSklmln (1951| 1952) measured the 
longitudinal and shear wave velocities on the above 
materials. Fig. 3& Shows the longitudinal velocity of 
polyethylene plotted as a function of frequency and 
temperature. The velocity rises with frequency and a 
dispersion Is Indicated. This Is confirmed by attenuation 
per wavelength curve for two different frequencies 
(26 Me and 8 Me) plotted as a function of temperature.

Fig. 34 shows attenuation per wavelength 
for shear waves.

Comparing the longitudinal and shear wave 
measurements, the Lame elastic constants can be 
calculated and this Is plotted In fig. 35* for both 
polyethylene and %lon 6-6 as a function of temperature 
for two frequencies.

The dispersion of \  (lame elastic constant) 
for polyethylene Is small but Is more prominent In 
Nylon 6-6. This correlates with the larger 
compressional viscosity component present for Nylon 6-6# 
According to rearrangement theory of compressional 
viscosity due to Debye (1939), compressional viscosity 
can enter when some part of the chain can arrange fr(%n 
one stable state to another stable state as a function
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of pressure* This rearrangement occurs across a 
potential barrier and hence requires a finite amount 
of time to occur. This lag in the rearrangement results 
in a compressional viscosity. As the frequency is 
increased, a frequency is found for which the motion can 
no longer occur in the time of a single cycle and A 
constant increases. It appears from these measurements 
that the dipole binding present in Nylon 6-6 allows a 
greater structural rearrangement under pressure than 
can occur for polyethylene which has only linear chains.

Synthetic and natural rubberss-

Ivey, Mrwca and Goth, Nolle and Mowrey, 
Nolle and Mifsud (1952) measured the velocity and 
attenuation on a wide number of rubber samples.

Figs. 36 to 4% and the table no.*7 
give the result obtained by Nolle.
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TABLE NO. 7 

10 Me. BULK WAVE ATTENUATION DATA.

MATERIAL
Temperature of 
attenuation peak.

B-lOO (Hycar OR-15 gum vulcanizate)
.......... .........  "

40
B-5 (Hycar OR-15, carbon loaded

vulcanizate) 45
U-50 (Butyl gum vulcanizate) 42
S-100 (GB-S, gum vulcanizate) 10
GN-50 (GR neoprene vulcanizate) 10
F-l-A (Perbunan gum Vulcanizate) 18
Natural rubber latex film

(Vulcanized) 18
Vinylite Mo. 1040 (plasticized) below 0
Vinylite Mo. 1310 (hard) 61
Polystyrene above 90
Teflon -10

34.
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Fig# *+̂  shows tho dependence of velocity on 
temperatures for three types of rubber at a frequency 
of 1 Me# The velocity increases with temperature 
and in butyl gum, the change is most prominent.

The fig# 44 shows the velocity temperature 
curves for butyl at 10 me, 3 Me, 1 Me, 440 Kc, 40 Kc# 
Here also an increase in velocity with frequency is 
observed#

For GR-S rubber the velocity-temperature 
curve fig# 4*̂  shows the dependence of attenuation on 
temperature for three types of rubber at 10 Me#
In this temperature region all these curves show a 
peak# Sdmilar behaviour has been observed by Nolle 
and Mowry for synthetic rubbers and by Mason for other 
polymers. These curves have relatively the same form 
at all frequencies, but as the frequency is decreased, 
the curves decrease in amplitude and shift to lower 
temperatures#

From the attenuation measurements,&it is 
apparent that thé decreasing the temperature has the 
same effect on attenuation as increasing the frequency, 
i.e# a given change in attenuation can be produced by 
either an increase in frequency or a decrease in 
temperature#



Measurments at low temperature and the relation to 
dislocation theory.

The attenuation and velocities of sound in a number of 
polycrystalline metals was first measured by Bordoni 
(1954, vide chapterVii) at frequencies in the range of 
10 - 60 Kcs, per second and in the temperature range 
4® to 300^k. Bordoni observed that the velocities 
in lead, copper, aluminium and silver increased as the 
temperature decreased. The attenuation falls 
exponentially with temperature from 300*K to 200°k and 
then rises to a maximum at a temperature characteristic 
of the metal. Below the peak temperature the 
attenuation again decreases with temperature approaching 
the value zero. Bordoni pointed out the existence of a 
new relaxation effect due to the displacement of 
structural imperfections in the crystal lattice.

Much interest has been shown by Mason (1955} 
and Hutchison and Filmer (1966) in the results of 
measurements of Bordoni#

Hutchison and Filmer measured attenuation
of 5 Mc/s sound in aluminum at a temperature as low as
o4 K. Mason used the values obtained by Bommel (1954) who 
using the pulse technique measured the velocity and 
attenuation for a single crystal lead to a taaperature 
down to 1.5 k and in the frequency range of 9-27 Mc/s.
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To prove conclusively that there is a relaxation, Eason 
theoretically evaluated the relaxation term from Bommel 
results on lead^ and showed that attenuation peaks may 
be due to the displacement of a dislocation froi% one 
atomic line to an adjacent one against the limiting 
shear stress in the metals used by Bordoni.

Hutchison and Filmer also found the 
attenuation maximum at 156°k for polycrystalline 
aluminium and this attenuation maximum observed by 
Bordoni was explained by Mason to be due to dislocation
relaxation process. Dislocations are supposed pinned 
down at irregular intervals by impurity atoms giving 
loops of average length (see model fig. H-’l )

Thermal agitation causes the loops to be 
displaced to adjacent minimum energy positions against 
the limiting shear stress and the force to stretch 
dislocations. Mason calculated that the energy changes 
associated with those two restrictions:- 

H .  cT(,^^/Tr 1

where
4) # atomic spacing along the glide plane
t • average loop length 
.. shear elastic constantAA s

limiting Wiear stress
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The decrement A  resulting from relaxation is given by 
the reaction rate theory as

A z 2-n  e
-  a / R t No

KT

w/Wo

where
COo « Ce.

CH-^)RT

No m total number of loops per c.c,
A - average dislocation loop length

m fraction of the total loop covered by one 
kink or bent portion of the dislocation 
connecting the two minimum energy positions 

m distance between adjacent atoms along the 
glide plane 

« Boltzmann’s Const*
T  » absolute temperature*

A single sized loop would then result in an attenuation 
versus temperature curve showing maximum at a specific 
temperature.
Mason computed from Bordoni’s and Bommel’s results the 
activation energy (H - A) for lead and then deduced the 
value of for lead, aluminium, silver and copper.
At higher temperatures, the dislocations become freed from 
the impurity atoms and the attenuation rises exponentially. 
The results of attenuation measurements on aluminium 
by Hutchison and Filmer is given in figs. l+g and . 
These graphs also tend to confirm the suggestion
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othat around 166 K dislocation movement plays an 
important part in the strains caused by high frequency 
stresses»

Hutchison and Filmer also deduced an 
activation energy from their results, compared then 
with those of Mason and found the values reasonably in 
agreement.
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ÜHAPTSR ly 
Solid Delay Lines.

Introduction;
Ultrasonic «éetiw^len studies in solids lead to an 
important practical application of certain solids as 
delay lines in Radar systems and in storing information 
devices. Hence these delay lines are briefly discussed. 

These delay lines consisted of a wide 
band piezo-electric transducer usually a quartz crystal 
sending out a train of an^litude modulated sound waves 
into an appropriate medium at the end of which was 
another transducer and equipment to receive the sound 
energy and convert it back to an electrical signal whose 
modulation was identical with the input.

Very long delays can be obtained by this 
method, in comparison purely electrical devices, 
because of the greatly decreased velocity of sound as 
compared to the velocity of electromagnetic propagation. 

Again, the velocity of sound in liquids is 
about a third of that in solids. Hence a good deal of 
research has been done in liquid delay lines but, 
promising results have been obtained with multiply- 
reflected beams in solids#
Early History;

To trace the background history of these delay 
lines, it should be pointed out that the first liquid



delay line was the Shockley delay unit for the 
production of a variable calibrated trigger# Quartz 
crystals were employed for transducers. The transmitting 
medium was a mixture of water and ethylene glycol held 
at a constant temperature of 66*c. The unit was 
developed and engineered by the Bell Telephone 
Laboratories in 1942#

A second ultrasonic device, using mercury 
for the transmission medium, was investigated at the 
Penn:sylvania University in 1943 and towards the end 
of 1943, M.I.T, Radiation Laboratory Staff started to 
investigate the possibilities of using mercury delay 
lines for Radar systems. The original research was 
carried out by G.D. Forbes and H. Shapiro.

Mercury delay lines built according to their 
design gave very faithful pulse reproduction at the 
required delay items of the order of 600 to 1000 micro 
second.

Forbes and Shapiro investigated other 
possibilities such as solid rods, narrow tubes, wires 
etc and following all these successful experimental 
systems, several different radar systems were developed 
which incorporated ultrasonic delay lines as an 
essential component.
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Design Considerations.

In delay line design, three parameters, namely, length 
of the delay, band width requirements and overall 
attenuation allowable, determine the choice of material, 
carrier frequency and crystal size. A fourth 
requirement at times is the reduction of secondary 
signals to a definite minimum. The mechanical 
construction should also be rugged as they are generally 
used in extreme conditions.

Factors Influencing Delay Time.

The velocities of longitudinal and shear wave 
propagation are given as

Ct . (
The delay time D of a line can be expressed as

. L i I h f -
W h e r e  L is the physical length of the delay line.
L, ^  and f are temperature dependent.

It can be shown that for any change in temperature
\W(Voznak and Mebs 1965)



Hence in order to maintain negligible variation of 
delay line length with change in temperature, the 
temperature coefficient of expansion 4- must*— cL/C
be about equal and opposite to the temperature
coefficient of shear modulus -i- •^  cKk
For most metals, the temperature coefficient of modulus 
is negative and of greater magnitude that the positive 
expansion coefficient*
Thus the material for the delay line should have a zero 
or small negative temperature coefficient of the shear 
modulus*
The total attenuation of a signal transmitted through 
an ultrasonic delay line is determined by
(a) electro-acoustic conversion efficiency of the 

quartz crystal transducers at the sending and 
receiving ends of the delay line, including the 
acoustic coupling devices employed, such as 
pressure clamps and cements, and hy

(b) internal attenuation of the propagated wave within 
delay media as discussed in chapter TfT •

Equivalent Circuit.
The equivalent electrical circuit for 

delay lines using quartz crystals has been discussed
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by W.P* Mason and H.J* McSkimin (1947) and their 
results were repeated as a basis for considering the
use of Barium Titanate ceramic ( BaTi O3 ) transducers

\\Vby d# May (1964)* The simple equivalent circuit of 
an ultrasonic delay line when driven at the resonant 
frequency of the quartz crystal is given by Voznak 
and Mebs (1966) as represented in the figure below*

where Z is the equivalent generator impedance
Co is the delay line output capacity
R l, is the load*

The impedance Z may be expressed as
Z • where is a constant which

depends on the characteristic of the quartz crystal 
transducer, i*e* its dimensions and electric and piezo 
electric properties and ( fC ) is the specific 
acoustic impedance of the delay medium, is the
density and (y the velocity of the ultrasonic 
propagation in the medium*
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C o is usually resonated at the crystal frequency by 
means of an inductor. The value of is selected
to be as high as possible consistent with obtaining 
the desired electrical band width of the load circuit.

The value of Z is usually large, 
particularly when a wide band width is required. The 
The band width of the delay line is governed by the 
relative acoustic impedance of the quartz crystal 
transducer and the delay medium. It is also influenced 
by the transducer mounting devices as shown by Mason 
and McSkimin (1947)* The frequency response of the 
delay line has a maximum at the resonant frequency of 
the quartz crystal and falls off at the low frequencies* 
So in order to obtain undistorted transmission of 
pulses, it is necessary to send the pulses through the 
line on a carrier whose frequency is near to that of the 
crystals. This allows exceedingly faithful transmission. 
Solid lines are particularly suited for purposes where 
relatively short delays are wanted, but delays longer 
than 300 micro second can be obtained by multiple 
reflection paths*
Waves in solids with Poissons ratio (T *26 have two113
angles of incidence (Arenberg 1948) at which total 
conversion from the transverse to the compressional mode 
is obtained*
Fused quartz, the most promising material, has a
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PoisBon^s ratio of about *162; for which the conversion 
angles are 46*70 aW. 27*46. Its intrinsic attenuation 
is very low and it can also be procured commercially 
very pure and relatively strain free*

Hence fused quartz is used in the design 
of two dimensional paths as illustrated in the 
figure* 5*1.

Following the path traced in fig. 5Z where 
the compression mode is represented by a full line and 
the transverse propagation as a dotted line, it is seen 
that the beam starts initially from the 45° facet in 
the compressional mode as excited by an X-cut quartz 
crystal; crosses the block and upon striking the 
quartz-air interface is reflected in the transverse mode* 
Because of the different velocities of the two modes, the 
angle of reflection differs from the angle of incidence. 
On the next reflection, the beam strikes outside the 
critical angle for exciting the compressional mode and 
it is totally reflected.

At the third reflection a situation arises 
that is identical with the first reflection except for 
the reversal in time* Consequently the beam is 
transformed from transverse to compressional vibration* 
This cycle is repeated every three reflections and 
eventually the beam in the compressional mode strikes 
the receiving crystal at normal incidence* There is then 
a family of such paths distinguished by the value



of n where 3n gives the number of reflections.
The ratio of block length to block width determines 
which path is used. The figure shows the case when
n - 6, and this type has given the most successful
results. The delay of such a block is over 400 
microseconds.

As with two dimensional patterns, if the 
transverse waves can be initiated directly by properly 
cut crystals, reflections in three dimensions form a 
very efficient use of available space and weight.

Other Materials.
Single crystals when annealed have very 

low attenuation and the small specimens of lithium 
fluoride, sodium chloride, and potassim bromide 
which were tested showed a promise of rivalling fused 
quartz. Isotropic media, such as single component glasses 
of high purity may also have attenuation, and German 
workers using glass as delay lines, have claimed better 
results both as regards absorption and temperature 
coefficient of sound*

Variable Solid Delay Lines.
By cutting the solid in three pieces, so 

that the middle wedge-shaped piece can move perpendicular 
to the sound beam, the length of the path can be shifted 
by the upward motion of the top piece* As a liquid film
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must be used to maintain acoustic contact between solid 
surfaces, losses due to mismatch in this thin film 
can be minimised by cutting; the wedge angle at 46'" and 
using the transverse mode#
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L is t  of Symbols u sed .

G * velocity of sound.
D » diffusion coefficient.
L • Young's modulus.

* adiabatic Young's modulus.
* Isothermal Young's modulus*

M » mass of an atom.
N • number of atoms in a gram atom.

Q s internal friction.
T *• absolute temperature.

» specific heat at constant pressure.
* specific heat at constant volume,

d « thickness.
f " frequency of sound,
f • relaxation frequency,
h • Planck's constant,
k a Boltzmann's constant.
1 « length,
r » radius.

06 M pressure attenuation coefficient.
^ ■ density.

a refractive index.
^ • Lame Constant,

cr s Foisson'c ratio.
A • wavelength of sound.
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List of symbols used.

^  a relaxation time.
A * decrement resulting from relaxation.
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