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Abstract

This thesis describes basic research into visual word recognition and decision 

making. Determining the best matching lexical representation for a given stimulus 

involves interactions between representations. The standard task for studying these 

processes is the lexical decision task (LDT), but there is still debate regarding the factors 

that affect how individuals make lexical decisions. The nature of lexical interactions and 

the processes underlying lexical decision-making were addressed here by testing 

response congruency effects in the masked priming variant of the LDT.

The results of seven masked priming experiments showed a robust response 

congruency effect that depends on the difficulty of the word-nonword discrimination. 

This finding resolved apparent inconsistencies in previous research. The experiments 

were simulated using the Bayesian Reader and the Spatial Coding Model (SCM). The 

probability based Bayesian Reader model failed to accommodate the findings. 

However, a good fit to the data was provided by a modified version of the SCM in 

which the assumptions regarding the nature of lexical interactions were changed such 

that word nodes inhibit only (closely) related competitors. The model also assumes 

that the difficulty of the word-nonword discrimination affects the degree to which 

stimulus typicality informs lexical decisions.

A critical issue for these experiments involved the definition of orthographic 

typicality. An algorithm for measuring orthographic typicality and for generating 

nonwords with a specific level of orthographic typicality (OT3) was developed. An 

unprimed LDT experiment showed that OT3 affected decision latency even when other 

standard measures of orthographic typicality were controlled. Two additional masked 

priming experiments showed that highly typical primes lead to faster word responses 

and slower nonword responses than less typical primes. Overall, the results of this 

research enhance our understanding of the processes underlying visual word 

recognition and lexical decision making, and also have important methodological 

implications for the field.
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0. Preface

This thesis investigates the early stages of visual word recognition. In an interactive 

activation framework (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982) 

each word is represented by a node. All word nodes form the mental lexicon. In 

recognising a word, several word nodes are activated, but only one word node 

represents the stimulus most accurately. Thus, the interaction between these word 

nodes is crucial for establishing which word node provides the best match for a given 

stimulus, both in computational models (Davis, 1999, 2010), and in humans.

The experiments investigated how this selection is achieved and the way in which 

word nodes interact with each other. Masked priming studies (see section 1.1) have 

extensively investigated this interaction using related primes and targets, e.g. 

repetition priming (e.g., Forster & Davis, 1984), semantic priming (e.g., Perea & Gotor, 

1997) and form priming (Davis & Lupker, 2006; Ferrand & Grainger, 1992; Forster, Davis, 

Schoknecht, & Carter, 1987). These are cases where the critical prime and target nodes 

form one cluster within the lexicon. In computational modelling, the experimental 

results were explained by homogeneous inhibition processes where activation in one 

word node can suppress activation in all other word nodes (e.g., Davis, 2010; Grainger 

& Jacobs, 1996; McClelland & Rumelhart, 1981). In reading normal text, words are read 

in fast succession and a strongly activated word node (from identifying the previous 

word) could interfere with recognising the next word (Grainger & Jacobs, 1999). One 

way of testing how two unrelated items interact, is investigating response congruency 

priming effects. Response congruency refers to a situation where a prime elicits an 

implicit response that is the same as the explicit response required to the target. A 

word target preceded by a word prime could result in a delayed response due to 

interference or in an advantage due to increased lexical activity. The impact of a prime 

on the lexical decision latency has been established with related primes, but the 

evidence for effects using unrelated primes is still inconclusive (Norris & Kinoshita, 

2008; Perea, Fernández, & Rosa, 1998; Perea, Gómez, & Fraga, 2010). If response 

congruency effects can emerge, this would shed light on the mechanisms in the 

14



lexicon, specifically on how activation in two unrelated word nodes is handled by the 

recognition system.

The experiments in this thesis were concerned with response congruency effects. 

Experimental data were also simulated in computational models to establish whether 

these models can account for the pattern of results.

In order to investigate the exact conditions where response congruency effects can 

emerge an effective way of manipulating the amount of lexical activity that the primes 

and the targets trigger was required. Thus, an algorithm for generating nonwords with 

a specific level orthographic typicality was developed and tested in a separate lexical 

decision experiment.

• Chapter 1 reviews the literature on response congruency effects and other 

potential sources of the effect that were not related to the lexicon and thus, 

had to be carefully avoided in the experiments.

• Chapter 2 introduces an algorithm for measuring orthographic typicality and 

empirical evidence testing the predictions of the algorithm's metric.

• Chapter 3 presents the first experiment and establishes that response 

congruency effects can emerge in lexical decision.

• Chapter 4 reviews the Bayesian Reader (Norris, 2006; Norris & Kinoshita, 2008) 

and the Spatial Coding Model (SCM, Davis, 2010) of word recognition. Also, a 

modification to the SCM is suggested and tested.

• Chapter 5 presents experiments that investigated how the task difficulty 

influences the presence or absence of the response congruency effect.
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• In Chapter 6 the impact of the primes on response congruency was tested and 

it was established that the effect depends on the primes that were used in the 

experiment.

• Chapter 7 manipulates prime lexicality and investigated the source the 

response congruency effects.

• Chapter 8 presents simulations with the modified SCM testing the effectiveness 

of the suggested changes.

• Chapter 9 summarises the experimental and computational findings.

The findings of the experiments and the simulations showed that it is not the 

lexicality of the prime, but its orthographic typicality that can trigger response 

congruency effects. Furthermore, the evidence favoured a selective inhibition 

mechanism in the lexicon over homogeneous inhibition. That means only those word 

nodes that are related to each other compete for the best match to stimulus (selective 

inhibition), but not all word nodes (homogeneous inhibition).
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1. Response congruency effects

Response congruency effects can occur in categorisation tasks. In such cases, a 

target stimulus receives a faster and more accurate response when it is preceded by an 

unrelated stimulus that elicits the same response compared to a stimulus that elicits a 

different response. This chapter explains the masked priming paradigm. Theoretical 

accounts to explain the underlying processes are reviewed and predictions specific to 

lexical decision experiments are derived. Finally, experiments where response 

congruency effects have been reported in lexical decision are reviewed.

1.1 Masked priming

The masked priming paradigm is one of the most popular experimental 

methodologies used today. In this experimental paradigm participants respond to a 

stimulus that is preceded by a briefly presented prime. Typically, the prime is masked 

by a preceding masking pattern and the target masks the prime backward (e.g., Forster 

& Davis, 1984). Also, the presentation duration is kept short (about 50 ms). Both a 

short presentation duration and the presence of preceding and succeeding stimuli 

contribute to masking the prime from conscious perception. Thus, participants cannot 

report the prime and are often unaware of its presence. The priming effect is measured 

by comparing a critical priming condition to a control condition within the same target 

stimulus (Forster, 1998).

A wealth of experimental findings has been produced using masked priming. 

Numerous concepts in cognition have been investigated, including semantics in 

numbers (Dehaene et al., 1998) and words (C. Brown & Hagoort, 1993; Greenwald, 

Draine, & Abrams, 1996), processing of orthographic form (Forster & Davis, 1991; 

Forster et al., 1987) and fearful behaviour (Siegel & Weinberger, 2009).

In particular in psycholinguistic research masked priming has been used extensively, 

for example in researching morphological processing (Frost, Forster, & Deutsch, 1997; 

Grainger, Colé, & Seguí, 1991; McCormick, Brysbaert, & Rastle, 2009), phonological 

effects in word recognition (Ferrand & Grainger, 1992, 1994; Lukatela, Frost, & Turvey, 
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1998) and in other research objectives (e.g., Kinoshita & Lupker, 2003). One very robust 

effect is the identity or repetition priming effect (e.g., Forster & Davis, 1984; Forster, 

Mohan, & Hector, 2003). The prime is a lowercase version of the target (table – TABLE) 

and is compared to unrelated primes (drive – TABLE). An advantage in reaction times 

(RT) and accuracy of the identity priming condition has been reported in lexical 

decision (Forster & Davis, 1984), in a recognition task (Evett & Humphreys, 1981; G. W. 

Humphreys, Quinlan, Evett, & Besner, 1987) and in semantic categorisation (Forster, 

1985; Klauer, Eder, Greenwald, & Abrams, 2007). Priming effects have also been 

reported when the prime is associatively related to the target, e.g. in lexical decision, 

RTs are faster when TABLE is primed by chair than by an unrelated word like drive 

(Perea & Gotor, 1997; Sereno, 1991). Thus, masked primes influence the speed and 

accuracy of responses to target stimuli. An identity priming effect indicates that 

participants abstracted from the case difference between prime and target and 

processed abstract letter identities. The associative priming effect indicates that the 

prime was processed up to a relatively high level where semantic information was 

extracted.

1.1.1 Effective masking

Whether the primes in an experiment are perceived consciously or unconsciously 

depends on the strength of the prime stimulus. The strength of the prime depends on 

the presentation duration of the prime (e.g., G. W. Humphreys, Besner, & Quinlan, 

1988; G. W. Humphreys et al., 1987) and whether it is masked (e.g., Dehaene et al., 

2001). Dehaene et al. (2001) manipulated the masking condition by varying the order 

of a 70 ms masking pattern and a 70 ms blank following after the prime. Though the 

total duration of the trials and the prime duration was kept constant, the participants 

were able to detect, name and memorise the primes initially followed by the blank and 

then by the masking pattern. Participants were not able to detect, nor to report, nor to 

memorise the primes that were initially followed by the backward mask followed by a 

blank. The spatial location of prime and mask is also important. In the standard 

paradigm (Forster & Davis, 1984) the prime is covered by the forward and the 

backward mask. Though masking can be effective with adjacent stimuli in a 

metacontrast paradigm (Ansorge & Neumann, 2005; Kahneman, 1968). Under 
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conditions with a greater spatial offset the masking effect can break down and primes 

can be perceived consciously (e.g., Breitmeyer & Hanif, 2008). Varying the time span 

during which the prime is visible is also effective in manipulating conscious perception. 

The stimulus onset asynchrony (SOA) refers to the time span between prime and target 

onset. If the SOA is increased and no masking pattern is displayed between prime and 

target, the visibility of the prime increases. This can distinguish between conscious and 

unconscious perception and hence the effectiveness of masking provided by the 

following presentation of the target. Manipulating the SOA has resulted in qualitatively 

different behavioural data. For example, orthographic effects were reported with 

primes that were presented briefly and that were unconsciously perceived, but primes 

that were presented for longer and that were consciously perceived did not produce 

orthographic effects (G. W. Humphreys et al., 1987).

An effective masking is achieved by keeping the prime presentation duration short 

and by carefully placing the forward and backward mask.

1.1.2 Strategic effects

Hindering participants from identifying the prime consciously helps to reduce the 

effect of conscious systematic strategies. Forster (1998) found that participants showed 

a substantial expectancy effect in unmasked priming, i.e. consciously available primes, 

but this effect was reduced substantially in masked primes that were unavailable for 

conscious processing. On the other hand, experiments have shown that participants 

can exploit masked primes strategically to some extent. Bodner and Masson 

manipulated the proportion of primes with informative cues for the target compared 

to the unrelated primes in several studies. The results have shown that participants can 

adjust how they are processing the prime, even if they are not aware of their strategic 

prime evaluation in lexical decision (Bodner & Masson, 2001; Bodner, Masson, & 

Richard, 2006), semantic categorisation (Bodner & Masson, 2003) and naming (Bodner 

& Masson, 2004). In general a higher proportion of related primes increased the size of 

the priming effects. The masked priming procedure still allows to minimise strategic 

effects compared to unmasked priming. The effects described by Bodner and Masson 
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can be reduced by carefully choosing the priming conditions to balance informative 

and uninformative primes.

1.1.3 Masked versus unmasked priming

Priming effects differ between masked and unmasked priming. Segui and Grainger 

(1990) showed that word frequency interacts with SOA in lexical decision. Unmasked 

primes of a lower frequency than the target interfered with target identification, 

whereas masked primes of a higher frequency showed interference effects. Segui and 

Grainger (1990) attributed the effect in masked primes to early stages in processing 

and the effect in unmasked primes to later stages. Qualitative differences have also 

been reported in repetition priming (G. W. Humphreys et al., 1988), where repetition 

effects occurred in masked but not in unmasked primes, and orthographic priming (G. 

W. Humphreys et al., 1987), where orthographic effects were found in masked but not 

in unmasked primes. Unconscious and conscious processing of a stimulus has been 

investigated using neurophysiological data as well. C. Brown and Hagoort (1993) 

measured event-related potentials in a semantic categorisation task. They attributed a 

weaker N400 in masked primes compared to unmasked primes to a less extensive 

semantic integration in masked primes. An attenuated activation by masked compared 

to unmasked words has also been reported by Dehaene et al. (2001). Furthermore, 

Dehaene et al. (2001) showed a progressively decreasing pattern of activation along 

the path of word processing comparing masked to unmasked words. This suggests that 

the same mechanisms operate on masked and unmasked stimuli (Dehaene et al., 

1998), but the processes are more or less incomplete with the masked stimuli. Finally, 

this difference in processing stages results in different effects depending on the 

priming procedure.

A major difference between masked and unmasked primes is the conscious 

perception of the unmasked stimuli. Humphreys et al. (1988; but also see Norris & 

Kinoshita, 2008) have suggested that masked primes are not perceived as two distinct 

objects by the recognition system. Thus, their processing is integrated as if it was one 

stimulus, which is not the case for unmasked primes that are perceived as two distinct 

objects. Another suggestion is that after an identification is completed the processing 
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units involved undergo a reset. This was the case in unmasked priming, but there was 

no reset in masked priming (Forster, 1999, 2009; Forster et al., 2003). In computational 

models (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Davis, 1999, 2010; 

Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981) a similar account is accepted, 

when masked priming is achieved by preserving activation and unmasked priming is 

equivalent to processing two stimuli.

These findings suggest that the masked priming paradigm is effective in highlighting 

early stages of the recognition process whilst avoiding that participants make use of 

the prime in a conscious way. Unmasked priming is more likely to investigate later 

stages of processing and effects of conscious processing.

1.1.4 Prime duration

The prime presentation duration does not only affect the stimulus perceptibility, but 

also the amount of processing that the recognition system is allowed to perform before 

target onset. Varying the SOA and keeping the primes unconscious, phonological 

priming effects were reported using a 60 ms SOA, while a shorter SOA (about 30 ms) 

did not reveal phonological priming (Ferrand & Grainger, 1992, 1994). Similarly, in an 

ERP study the onset of phonological effects was measured later than the onset of 

orthographic effects (Grainger, Kiyonaga, & Holcomb, 2006). The emergence of 

phonological and orthographic priming effects is task dependent (Grainger & Ferrand, 

1996). The size of the priming effect is also linked to the prime duration, e.g. Forster et 

al. (2003) have reported no difference between identity and form priming using 

neighbours with a prime duration of 20 ms and 30 ms. Using 50 ms prime duration the 

identity priming effect increased to about 50 ms, whereas the form priming effect 

remained static at about 30 ms. They suggested the prime duration forms a limit to the 

size of the priming effect. Though there is evidence that priming effects can be larger 

than the SOA with mixed case targets (Bodner & Masson, 1997), where repetition 

priming effects of 71 ms (high frequency word targets) to 93 ms (nonword targets) 

have been found with an SOA of 60 ms in a lexical decision task. The physical overlap 

between the prime and the target was investigated and said not to contribute to the 

results (Bodner & Masson, 1997, Experiment 2b). Though some doubts on the 
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effectiveness of the mask may remain. In general, the priming effect is bound to the 

magnitude of the prime duration.

Another aspect of timing is the persistence of the priming effect across time. The 

effect of masked primes lasts for a shorter duration than the effect of consciously 

perceived unmasked primes. Unmasked primes can leave a memory trace and 

influence the next prime-target pair. Masked primes appear to be limited in their effect 

if the SOA is greater than 150 ms (Greenwald et al., 1996). Though, the absence of 

positive priming might be due to a negative priming effect building up at SOAs around 

100 ms (Eimer & Schlaghecken, 2003; Schlaghecken, Bowman, & Eimer, 2006) and it 

cannot be concluded that any effect of priming is absent after 100 ms. More recent 

findings suggest that the priming effects measured at different SOAs differ in their loci 

and with that in their prevalence at certain points in time, e.g., Forster (2009) has 

suggested that there are different sources for form and identity priming. He has 

reported form priming diminished with a masked letter string intervening between 

prime and target (resulting in about 100 ms SOA). The identity priming effect was 

reduced but still significant. When the intervening stimulus was unmasked by 

increasing the presentation duration to 500 ms (about 550 ms SOA) form priming was 

unaffected compared to trials without intervening stimuli. But with the unmasked 

intervening stimulus the identity priming effect was reduced to the level of form 

priming. Forster (2009) concluded that there are two distinct sources of the priming 

effects and suggested the effect with unmasked intervening stimuli is located in a 

semantic level and the effect with masked intervening stimuli in a form level. The 

shorter SOA (no form priming, but identity priming) is then related to early processing 

stage on form level and the longer SOA with semantics at a later processing stage. This 

finding is pointing in a similar direction as the results by Ferrand and Grainger (1992, 

1994), where shorter SOAs were associated with earlier processing stages.

1.1.5 Conclusion

Priming is effective in shedding light on early processing stages of word recognition. 

In order to hinder conscious perception of the primes the SOA has to be short. Also, 

the forward and backward masks themselves have be effective either by ensuring the 
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prime is fully covered by the masks or by using an effective metacontrast mask. 

Preventing the primes from conscious perception is useful for hindering participants 

from becoming aware of the experimental conditions and from employing a strategy. 

Even with appropriate masking, effects of unconsciously applied strategies can emerge, 

but balancing the proportion of related and unrelated primes can avoid them.

1.2 Theoretical accounts of response congruency effects

Response congruency effects could occur in any categorisation task and effects have 

been reported in numerous studies. For example in a number magnitude estimation 

task the numbers 1 to 4 are categorised ‘smaller than five’ and 6 to 9 ‘larger than five’. 

Participants are faster to categorise 4 as ‘small’ when primed with a small numeral or 

digit such as two compared to a large prime such as seven, i.e. the sequence two – 4 is 

associated with faster responses than seven – 4 (e.g., Dehaene et al., 1998; Kinoshita & 

Hunt, 2008; Kunde, Kiesel, & Hoffmann, 2003; Naccache & Dehaene, 2001). Similar 

congruency effects were reported with a variety of different types of stimuli, including 

narrow categories semantic categorisation (Forster, 2004, Experiment 4), valence 

categorisation (Chan, Ybarra, & Schwarz, 2006) and gender categorisation (Klauer et al., 

2007, Experiment 3).

The evidence shows that response congruency effects can emerge in tasks that 

involve printed word stimuli including semantic categorisation tasks. I continue 

reviewing theoretical accounts.

1.2.1 Depth of processing

1.2.1.1 Deep Processing

In a deep processing account (Dehaene et al., 1998) the prime is analysed with 

regards to task instructions and processed up to the motor level. In a review, Kunde et 

al. (2003) coined the term ‘elaborate processing’. The response congruency effect is 

attributed to interference on the motor level. Dehaene et al. (1998) did two number 

magnitude estimation experiments and collected behavioural, ERP and fMRI data. All 

measures confirmed that there was a response congruency effect. In incongruent trials 
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where the response towards the prime is opposite the target response, a short-lived 

lateralised readiness potential was found. This was said to reflect a prime-related 

response and was followed by a stronger target related signal on the opposite side of 

the cortex. In the congruent condition this change in the signal was absent. The data 

from the fMRI study located the areas where the congruency effect emerged in the 

motor cortex. A stimuli inherent effect like associating numbers with a spatial 

orientation (Brysbaert, 1995) can be excluded, because the response hands were 

varied systematically. From the behavioural, electrical and haemodynamic data 

Dehaene et al. (1998) concluded that the primes are processed unconsciously up to the 

point of response initiation. In their account the prime is perceived and participants 

apply task instructions unconsciously to the prime. The processing of the prime is 

‘deep’ going through semantic evaluation with regards to the instructions and to the 

respective response. Eventually, a readiness potential in the respective motor cortex is 

triggered. If the readiness potential triggered by the prime response is incompatible 

with the actual target related response this will cause a conflict. Resolving this conflict 

takes time and thus, incongruent trials will be responded to slower than trials in which 

there is no response conflict. Congruent trials also benefit from the fact that the 

correct response has already received motor activation due to the prime. The 

combination of inhibition and facilitation means that congruent responses are faster 

than incongruent responses. All these processes are assumed to be unconscious to the 

participant.

1.2.1.2 Stimulus-response mapping

Instead of explaining the data by assuming a deep processing of the prime, Damian 

(2001) explained the response congruency effect as a result of repetition learning. 

Damian (2001) asked participants to judge whether the object denoted by the 

presented word was larger or smaller than a reference square presented on screen. In 

the first experiment a limited stimulus set was used and repeated frequently as primes 

and targets. The response priming effect increased with the number of blocks. Damian 

(2001) argued the increase reflected a stimulus-response mapping building up as the 

experiment progressed. In Experiment 2 the primes were replaced by a set of nouns 

that did not occur in the response set. Under these conditions the response 
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congruency effect was absent. Damian (2001) concluded that responding to the same 

stimulus repeatedly results in a stimulus-response mapping. Once this mapping is 

established the participants do not need to process the meaning of the stimulus, but 

can instead make use of their previous judgement. The data showed that stimulus-

response mappings may develop after only a very few trials. This finding challenges the 

elaborate processing account proposed by Dehaene et al. (1998). Activity in the motor 

cortex shortly after prime presentation could be the result of activating a mapping 

formed earlier in the experiment rather than the result of semantic processing.

1.2.1.3 Prime novelty

In a response to the stimulus-response mapping account, that questioned Dehaene 

et al.'s (1998) finding, Naccache and Dehaene (2001) performed an experiment using 

novel primes. According to the stimulus-response mapping account only primes that 

the participants encountered before should be effective, whereas novel primes should 

not. Naccache and Dehaene (2001) conducted a number magnitude estimation 

experiment varying prime novelty and prime notation as Arabic number and numeral 

systematically. A congruency effect was observed independently of the prime novelty 

and the notation format. The independence from prime novelty was interpreted as 

support for semantic processing and the elaborate processing account (Dehaene et al., 

1998), because a simple mapping from a specific stimulus to a response cannot explain 

the data (Naccache & Dehaene, 2001). This point is strengthened by a number of 

further studies reporting effects with novel primes (e.g., Greenwald, Abrams, 

Naccache, & Dehaene, 2003; Kinoshita & Hunt, 2008; Klauer et al., 2007; Norris & 

Kinoshita, 2008; Quinn & Kinoshita, 2008; Reynvoet, Gevers, & Caessens, 2005).

1.2.1.4 Summary

Response congruency effects are found regardless of whether participants have 

made conscious responses to the prime stimuli. The absence of congruency priming 

effects in Damian's (2001) experiment could be due to task differences and I will 

discuss this in section 1.3.
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1.2.2 Processes influencing priming effects

1.2.2.1 Action triggers

Kunde et al. (2003) argued that the effectiveness of the primes depends on the 

content of ‘action triggers’. The participants form them in accordance with the task 

instructions and adjust them while performing the task in training and throughout the 

experiment. In other words in number magnitude estimation tasks participants are 

prepared to respond to the items accordingly – even if they have not been presented 

with any stimuli. If the instructions do not mention this particular semantic dimension, 

the action triggers will not contain this information. Under these circumstances a 

congruency priming effect is not expected in an action trigger account. But the deep 

processing account that assumes automatic semantic processing predicts a congruency 

priming effect.

Kunde et al. (2003) instructed participants to judge the number magnitude with 

respect to 5. Only a subset of all digits (2 and 4 → smaller response, 7 and 9 → greater 

response) was presented to participants, but a response congruency effect with old (2, 

4, 7 and 9) and novel primes (1, 3, 6 and 8) was present (Kunde et al., 2003, Experiment 

1). However, the effect was absent when the same key assignment was used (2 and 4 

left response, 7 and 9 right response), but the instructions strictly avoided mentioning 

the semantic context of magnitude (Kunde et al., 2003, Experiment 3). In contrast to 

the semantic task, the simple mapping task revealed facilitatory priming for old primes 

(2, 4, 7 and 9) and an inhibitory priming effect in novel primes (1, 3, 6 and 8). Kunde et 

al. (2003) argued that the absence of priming in novel primes with the non-semantic 

instructions is a challenge for the deep semantic processing account. In such an 

account the semantics of the prime are analysed automatically and a congruency 

priming effect should occur regardless of task instructions. On the other hand Dehaene 

et al. (1998) argued the task instructions would be applied to the primes, which is not 

excluded by the results. Due to the way the numbers were assigned (either 2, 4, 7 and 

9 or 1, 3, 6 and 8 in the old set), some participants reported having interpreted the task 

as an even-odd distinction (Kunde et al., 2003). If so, the results suggest the task 

instructions were applied to the primes accordingly. In old primes a facilitatory effect 
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with regards to the magnitude reference 5 was measured, but this is indistinguishable 

from a positive effect in an even-odd distinction task as the two properties always 

coincided. The negative priming effect with regards to the magnitude task in novel 

primes is actually a positive effect in an even-odd distinction task. The positive effect is 

expected and the even-odd reinterpretation provides a good explanation for the 

findings – both the deep processing and the action trigger account are in line with this 

finding. Hence, the deep processing account cannot be discarded, if participants who 

were completely unaware of the actual semantic dimension just performed some other 

reasonable task.

The presence of a congruency effect in novel primes with or without semantic 

instructions indicates that stimulus-response mapping is not the only source of 

response congruency effects, in accord with Naccache and Dehaene (2001)'s finding. 

On the other hand, this empirical evidence cannot distinguish between the action 

trigger and deep processing account.

The predictions of the deep processing account and the action trigger account 

appear to be hard to distinguish. But, according to the action trigger account the 

participants prepare themselves to respond to the upcoming items, which is achievable 

in small sets e.g., in number magnitude estimation tasks the item set is usually small, 

with eight critical stimuli and 5 as the neutral item. In larger categories where items are 

not predictable the formation of action triggers is unlikely (see Klauer et al., 2007), but 

a semantic analysis is not excluded. In a size estimation task the stimuli set is large and 

hard to predict and a response congruency effect was not reported by Damian (2001). 

This suggests that participants could not form action triggers and with respect to the 

deep processing account that the semantic processing was too complex for a 

congruency effect to emerge.

1.2.2.2 Two processes model

If response congruency priming arises as a result of semantic activation, as in the 

deep processing account, this effect should occur in processing words other than 

numerals. If priming is the result of forming action triggers, then an effect is not 
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predicted in a large category. Klauer et al. (2007) conducted a valence classification 

experiment with novel primes where participants had to indicate whether the target is 

positive or negative and a gender classification experiment where participants had to 

indicate whether a first name target refers to a female or male person. Both tasks used 

novel primes and presumably a large category. In both tasks a priming effect was 

found. Klauer et al. (2007) concluded that at least two processes are involved in 

priming. First, a central priming component that is assumed to be semantic in nature. 

Secondly, a response related priming component that is similar to stimulus-response 

mapping (Damian, 2001) and action triggers (Kunde et al., 2003).

1.2.2.3 Conclusion

Response congruency effects can emerge from various sources. One source of 

priming effects is stimulus-response mapping (Damian, 2001) or as Klauer et al. (2007) 

phrased it response-related priming. Effects on the basis of this response component 

are likely to occur in motor cortex as a conflict between response options (Dehaene et 

al., 1998). On the other hand, these effects are not informative about an evaluative 

decision process. In restricting research to novel primes there are still at least two 

components that could result in a congruency priming effect. First, the participant can 

prepare themselves for the task and form action trigger sets (Kunde et al., 2003). The 

information in the action triggers maps stimuli to a response, so that interference will 

occur at response level. Secondly, a truly evaluative process can be biased by the 

influence of a prime. In order to isolate the latter effect the primes must be novel and 

the categorisation task sufficiently complex to avoid the formation of action triggers.

1.2.3 Summary

Response congruency priming effects with novel primes have been reported in 

number magnitude estimation (Naccache & Dehaene, 2001) and valence classification 

(Klauer et al., 2007) as well as in other tasks. On the other hand these effects have not 

been reported in size estimation (Damian, 2001) or as will be seen later in lexical 

decision with novel primes (Norris & Kinoshita, 2008; Perea et al., 1998, 2010). One 

dimension where these tasks might differ systematically is category size or semantic 
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coherence within categories. I review research with regards to category size and other 

effects of the experimental design in the following section.

1.3 Properties of the stimuli and the experiment

1.3.1 Category size

1.3.1.1 Cardinality

The effect of category size has been investigated by using masked primed semantic 

categorisation tasks. Analysing the no-responses to nonexemplar stimuli in a 

categorisation task Forster (2004, Experiment 1-2) found that in small categories (e.g., 

body parts) an effect of lexical frequency of the target stimulus is absent, but it is 

present in large categories (e.g. animals, Forster, 2004, Experiment 3). Also, 

nonexemplar targets can be primed by nonexemplar primes in large categories (Forster 

et al., 2003), whereas in small categories a response priming occurs in both, exemplar 

and nonexemplar targets (Forster, 2004, Experiment 4). Forster (2004) concluded that 

two different mechanisms operate in parallel and depending on category size the 

consequences of the one or the other become apparent. In small categories 

participants can predefine a set which is rapidly scanned for the target. This idea is 

related to the action trigger account (Kunde et al., 2003), where in small target sets 

responses are anticipated. Both, the serial search and the action trigger account 

produce similar predictions in small categories. The quick scan of a small response set 

allows to bypass lexical access and a frequency effect is absent. In contrast, in a large 

category such a list cannot be prepared and semantic properties are retrieved by 

means of lexical access. Thus, a frequency effect is found in large categories.

In a large category, exemplars and nonexemplars are accessed through the lexicon. 

In order to explain the small priming effect in nonexemplars in large categories Forster 

et al. (2003) suggested that accessing the lexical representation of the exemplar prime 

in an incongruent trial needs a resolution and in turn slows down incongruent 

compared to congruent responses. Though this mechanism would predict priming in 

exemplars as well, which is not consistent with the data and thus, the data provide a 

challenge for the entry opening model (Forster et al., 2003).
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1.3.1.2 Category coherence

Quinn and Kinoshita (2008) investigated the effects of category size using a different 

definition of size. In their account, the category size is not determined by the number 

of items, but by the consistency in the shared features of its members. I will use Quinn 

and Kinoshita's (2008) terminology and refer to a category that is formed by a core set 

of semantic features shared by most of its members as narrow and to a category that is 

more loosely defined as broad. Specifically in broad categories, a case where one 

member of the set shares no feature with another member can occur. As a result, 

membership in a category cannot be defined by the means of shared features, but is 

rather defined by family similarity. Wittgenstein (1989/1914) pointed this out in his 

philosophical account using the example of game and showed that there is presumably 

no feature shared by all entities that can be referred to as a game. In Forster's (2004) 

category search account the number of members is crucial because it determines 

whether an exhaustive search through its members or lexical access is performed. In 

contrast, the breadth of a category does not necessarily limit the number of its 

members.

In a semantic categorisation experiment Quinn and Kinoshita (2008) used the broad 

category of animals and manipulated the number of shared features and category 

congruency between primes and targets. The results showed that the semantic primes 

resulted in priming effects compared to category congruent primes in both exemplar 

(animal: hawk/mole – EAGLE) and nonexemplar targets (animal: pistol/boots – RIFLE). 

Response congruency showed a strong tendency in nonexemplars (animal: 

boots/camel – RIFLE), but no effect in exemplars (animal: mole/knee – EAGLE). The 

results from the experiment using narrow categories showed a response congruency 

effect in exemplar targets (body parts: arms/taxi – HAND). In nonexemplar targets a 

congruency effect occurred that was independent of semantic relatedness of prime 

and target (planets: pistol=boots/mars – RIFLE). Furthermore, in nonexemplar targets a 

frequency effect occurred in both narrow and broad categories. This frequency effect 

seems to rule out a category search account where no frequency effect was predicted 

in nonexemplars in small categories, which was in line with prior data (Forster, 2004). 
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Quinn and Kinoshita (2008) suggest that the primes activated semantic features and 

that participants used different strategies to monitor them. In narrow categories, the 

relevant set of features is small and irrelevant features are ignored. Restricting the set 

of monitored features in narrow categories is related to the idea of forming action 

triggers (Kunde et al., 2003). Whenever one of the predetermined features is activated 

the respective response is triggered. In a broad category, the set of critical features is 

not restricted as explained above (Wittgenstein, 1989/1914) and as a result all features 

are monitored. This explains why in an animal categorisation task semantically related 

primes elicit stronger congruency priming effects than category congruent primes 

(animal: pistol>boots – RIFLE) and the absence of the effect in narrow categories 

(month: pistol=boots – RIFLE).

The semantic feature overlap hypothesis assumes that various features are 

monitored in a broad category semantic categorisation task, whereas a more restricted 

set is monitored in narrow categories. Crucially in this account, these features have to 

be connected to the representation of the word naturally driven by word meaning 

rather than by arbitrary task requirements in the experiment. The authors assume that 

there is a natural set of features that constitutes body parts or animals. Relying on 

these connections a priming effect can emerge. In contrast, Quinn and Kinoshita (2008) 

argue that no priming effect emerges where no natural sets of features exist defining 

the category, e.g. in ad hoc categories. Examples of ad hoc categories include things 

that could fall on your head (Barsalou, 1983), possible gifts (Barsalou, 1982) and things 

that are larger than a 20 by 20 cm square reference (Damian, 2001). The point relates 

to Forster's (2004) restriction that priming is only predicted in an automatically 

processed task, excluding size estimation. Furthermore, this restriction can also be 

thought of as a restriction on the applicability of action triggers. As mentioned before 

action triggers are unlikely with large categories (Klauer et al., 2007), but this may refer 

to category coherence, e.g. numbers in a magnitude estimation task with reference to 

5000 are as coherent as with reference to 5 despite set sizes differing dramatically.
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1.3.1.3 Impostors

Impostors are words that share central features with a category, but are not 

members of this category (e.g., mind with respect to body parts). If an overlap in 

semantic features is necessary to produce a response congruency effect, but not the 

category membership per se, then impostors should be effective primes in a 

categorisation task. Quinn and Kinoshita's (2008, Experiment 4) data confirm that 

impostor primes show effects that are more similar to an exemplar prime than to a 

nonexemplar prime. In nonexemplar targets the impostor primes did not differ from 

exemplar primes (body part: mind=ear – LAKE) in showing a congruency effect 

compared to unrelated nonexemplar primes (body part: door – LAKE). In exemplar 

targets the impostor primes (body part: mind – HEAD) facilitated the response 

compared to unrelated nonexemplar primes (body part: door – HEAD), but the 

facilitation was less strong compared to exemplar primes (body part: ear – HEAD). This 

is in line with the prediction that semantic features are the basis for congruency effects 

in semantic categorisation. Also, participants showed high error rates in classifying 

impostors in an unprimed speeded categorisation task (30.4%). The error rate dropped 

dramatically in an unspeeded task (1.8%) showing that participants were able to 

classify the items correctly.

The impostor effect can also be transferred to a lexical decision task. Nonwords can 

vary in the degree in which they resemble words in a particular language (Coltheart, 

Davelaar, Jonasson, & Besner, 1977; Duyck, Desmet, Verbeke, & Brysbaert, 2004; Hauk 

et al., 2006; Westbury & Buchanan, 2002). Nonwords in a lexical decision task resemble 

the nonexemplar targets in a semantic categorisation task as the critical features are 

not activated. Words resemble the exemplar targets with activation in semantic 

features. An impostor in a lexical decision task can be a nonword that is sufficiently 

wordlike to facilitate a word-response rather than a nonword-response. Showing such 

an impostor effect in a lexical decision task would show that those features that differ 

between typical nonwords and impostor nonwords are very important in the early 

stages of lexical access. I will return to this point in Chapter 7.
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1.3.2 Task expertise

Kiesel, Kunde, Pohl, Berner, and Hoffmann (2009) have reported a masked priming 

study where participants had to judge whether a three by three fields chess situation 

was depicting a checking or not. The king was positioned in the upper left corner in all 

displays and the attackers (either rook or knight) varied among four positions in total. 

Only those participants who had expertise in chess playing showed a response 

congruency effect, whereas those who had just started playing chess did not. This 

finding might imply that a semantic representation has to evolve over time or that 

automaticity evolves with practice (Damian, 2001). Also, the absence of response 

congruency priming in tasks where automaticity has not evolved supports the 

assumption that automaticity is a prerequisite to find response congruency effects 

(Forster, 2004). This contrasts with e.g., linguistic stimuli where the extraction of 

meaning appears to be automatic and can hardly be suppressed (e.g., Stroop, 

1992/1935). Another interpretation is that novice participants cannot prepare 

themselves for the task and therefore fail to form appropriate action triggers (Kunde et 

al., 2003) even though the number and the sort of displays is limited. Also, a response 

related process will not affect decision speed or accuracy in novel primes (Klauer et al., 

2007).

Independent of the formulation, the participants need a certain level of familiarity 

with the categorisation task for a response congruency effect to emerge. A size 

estimation task (Damian, 2001) might involve this problem, where participants may 

never have thought about the size of an object in relation to an arbitrary reference.

1.3.3 Response speed

Prime-induced congruency effects have been reported to be strongest in fast RTs 

(Abrams, 2005; Burle, Possamaï, Vidal, Bonnet, & Hasbroucq, 2002; Greenwald et al., 

2003; Kinoshita & Hunt, 2008). Thus, the differences reported with expert and novice 

participants (Kiesel et al., 2009) can also be interpreted as a matter of the speed with 

which the task was completed. In this respect, it is worth noting that participants with 
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no training, but fast RTs showed response congruency priming effects in other tasks 

(Forster et al., 2003; Klauer et al., 2007; Kunde et al., 2003; Perea & Gotor, 1997).

The RT in a task is linked to the difficulty of the task. In a hard task slow RTs are 

expected and with this no response congruency effect. This is also related to action 

triggers and automaticity, where fast responses and response congruency effects are 

expected. Three different kinds of difficulty can arise. First, the two categories are just 

hard to distinguish because members are very similar. In such cases the responses will 

be slow, even if only part of the list is hard to categorise (e.g., Dorfman & Glanzer, 

1988). This reflects a difficulty due to the selected items in the list and it is 

independent of participants’ prior experience or the automaticity in the task. Secondly, 

a task might refer to a very few, clearly distinguishable semantic features, but some 

participants might not be able to extract this information from the stimuli quickly, e.g. 

in the chess experiment (Kiesel et al., 2009). In this case only participants with 

experience showed a response congruency effect. Turning this around, the 

participants’ experience in a categorisation can be assessed by the emergence of a 

response congruency effect. Finally, if the categories are very broad and the criteria not 

strictly assessable, the task can be perceived as hard. Especially, if there are a number 

of uncertain cases, e.g. in things to take from one’s home during a fire (Barsalou, 1983). 

In these cases a priming effect is very unlikely. One reason might be an unsystematic 

disagreement of the correct categorisation between experimenter, participants and 

within participants. Another, that these tasks will require quite some training on a 

somewhat uncertain criterion.

In summary, there are three main sources of task difficulty: very similar categories 

independent of the individual participants, difficulty of extracting the required 

information depending on individual experience, and difficulty of classification 

depending on the task as such.

For the experiments in the following chapters ensuring that there is agreement 

about the categorisation of the stimuli is important. This was achieved by checking the 

frequency of word targets and the number of correct responses these stimuli received 
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in a mega-study (Balota et al., 2007). Finally, the similarity between the stimuli in each 

category can be manipulated. I will make use of this technique in order to manipulate 

the task difficulty between experiments.

1.3.4 Conclusion

In small categories, participants can concentrate on a few distinctive features and 

bypass lexical access. Theoretical accounts such as the action trigger, entry opening 

and semantic overlap account can explain the respective empirical data. In large 

categories the entry opening account predicts congruency priming in nonexemplar 

targets in large categories as a result of interference at form level. The action trigger 

account cannot be applied to large categories. Also, a response congruency effect is 

not predicted by the semantic overlap account, because all features are monitored and 

overlapping features are effective in exemplar and nonexemplar targets. This account is 

also supported by the data from impostor primes, because the activation of some 

features can drive congruency effects. Furthermore, response congruency effects can 

only arise if the participants have some experience with the task and response 

congruency effects are more likely in fast responses.

1.4 Response congruency effects in lexical decision

In a masked primed lexical decision task the participants are asked to indicate 

whether the target is a word or a nonword (Forster & Davis, 1984). The lexical decision 

task has been criticised and identified as artificial (Forster et al., 2003), but the task is 

performed in every day life. Chaffin, R. K. Morris, and Seely (2001) pointed out that 

normal readers encounter numerous words, acronyms or slang expressions that they 

have not seen before. In order to associate them with a new meaning and prevent a 

misidentification they had to be recognised as new. For school children in the final 

years the estimate is about 10 to 15 new words per day (Landauer & Dumais, 1997). 

Perhaps, in adult life the estimate is higher for periods of changing life circumstances 

and lower in other periods. Importantly, the identification as new is similar to a lexical 

decision task. Thus, it could be argued that there is a natural mechanism to work out 

whether a letter string is known or unknown which is exactly what a lexical decision 

requires.
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In the masked priming paradigm the difference between two or more priming 

conditions is of interest and thus, the influence of the prime on the explicit task. The 

participants are not responding to the prime, but this implicit response is of specific 

interest. If prime and target are of the same lexicality the responses are congruent 

(word – WORD, nonword – NONWORD; e.g. crown – QUIET, apvxa – MIYTD) and 

otherwise they are incongruent (nonword – WORD, word – NONWORD; e.g. 

apvxa – QUIET, crown – MIYTD). A difference between congruent and incongruent trials 

would constitute a response congruency effect.

As noted earlier, participants can extract semantic information from primes, giving 

rise to response congruency effects in semantic categorisation (e.g., Forster et al., 

2003). Semantic effects have been reported in lexical decision as well (Perea & Gotor, 

1997; Sereno, 1991) indicating that the processing of the prime’s meaning influenced 

the decision process. Determining the lexicality of a stimulus requires less specific 

information that could be available earlier in processing. Thus, it is possible that 

information about prime lexicality is available, which could contribute to a response 

congruency effect in lexical decision.

1.4.1 Predictions from theoretical accounts

Theoretical accounts of congruency priming have different predictions on lexical 

decision. I review the accounts introduced in this chapter and derive predictions for 

lexical decision experiments.

1.4.1.1 Deep processing and stimulus-response mapping

The deep processing account (Dehaene et al., 1998) predicts that participants apply 

the instructions to the prime and hence, a response congruency effect can emerge in a 

lexical decision task. This contrasts with the stimulus-response mapping account 

(Damian, 2001). A response congruency effect in a lexical decision task is very unlikely, 

because the stimuli have to become associated to their respective response. Learning 

the mappings seems to be more effective with increasing number of repetitions, but 

may also be fostered by small sets of stimuli. In a lexical decision experiment, the 

number of items per category is typically greater than 50 compared to 12 per category 
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in Damian's (2001) experiments. Also, the stimuli are typically not used repeatedly as 

targets. Thus, the predictions of the deep processing and the stimulus-response 

mapping account can be distinguished in novel primes where a deep processing 

account predicts a congruency effect but stimulus-response mapping does not.

1.4.1.2 Category size

The category size or coherence is important for the serial search (Forster, 2004), the 

semantic overlap (Quinn & Kinoshita, 2008) and action trigger account (Kunde et al., 

2003), because it determines which mechanism is applicable and the predicted 

outcome.

In small categories, participants can form action triggers and a response congruency 

priming effect would be attributed to these prepared mapping relations (Kunde et al., 

2003). In a lexical decision task, the categories are large. The number of words is a few 

ten-thousand compared to the number of months or the number of planets in our 

solar system. The category of words is also semantically broad, because every possible 

word meaning is part of the category. Thus, the formation of action triggers is unlikely 

and this account would not predict a response congruency effect in lexical decision.

The category search account (Forster, 2004) predicts that there is a congruency 

priming effect in no-responses in categorisations with large categories. Though words 

being a large category, Forster (2004) argues that lexical decision is not performed 

automatically which was a necessary condition for priming effects to emerge. The lack 

of automaticity is said to explain the absence of response congruency effects in lexical 

decision (e.g., Perea et al., 1998), but also in ad-hoc categories (e.g., Damian, 2001).

Although the semantic feature overlap account (Quinn & Kinoshita, 2008) refers to 

category size as well, the category search and the semantic feature overlap account 

differ with respect to lexical decision. Quinn and Kinoshita (2008) argue that 

congruency priming only occurs in natural categories. In broad categories, various 

features are monitored. By assuming all features can be monitored, the categories of 

words and nonwords can be distinguished by their total semantic activation. With this 
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assumption the category of words would form the broadest possible category. In turn, 

a response congruency effect was predicted in lexical decision as a result of 

interference and facilitation in semantic features. Showing a response congruency 

priming effect in lexical decision would provide evidence for the broad category of 

words in a semantic feature overlap account and challenge the prediction by the 

category search model.

1.4.2 Empirical evidence

1.4.2.1 Studies reporting null effects

Prior studies specifically aimed at finding a response congruency effect in lexical 

decision have not reported significant results in Spanish (Perea et al., 1998, 2010) or in 

English (Norris & Kinoshita, 2008). An inspection of the items used in Norris & 

Kinoshita (2008) showed that the nonwords were derived from words in the 

experimental set by exchanging and transposing letters. Also, the nonwords were all 

legal and formed wordlike stimuli. Thus, it could be that the words and nonwords in 

the experiment were very similar and the difficulty of distinguishing between very 

similar stimuli hindered a response congruency effect to emerge. The experimental 

data revealed a frequency effect in word targets, but there was no sign of a response 

congruency effect in neither word or nonword targets. Another study that is relevant, 

but not specifically aimed to find a response congruency effect was conducted by 

Sereno (1991). Two masked primed lexical decision experiments (Experiment 1 and 3) 

were designed to test graphemic and associative priming. There were two control 

conditions using unrelated word and unrelated nonword primes. The results showed 

that the conditions did not significantly differ, i.e. there was no congruency effect in 

word or nonword targets. In summary, the absence of a response congruency effect in 

lexical decision has been reported by several studies.

1.4.2.2 Studies reporting an effect

Klinger, Burton and Pitts (2000, Experiment 2) have reported a response congruency 

effect in a masked primed lexical decision task, both in word and nonword targets. An 

important aspect of this experiment is the practice procedure. In order to train 
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participants to respond within a response window they were exposed to all targets four 

times prior to the experimental block. Thus, participants may have formed stimulus-

response mappings for the target stimuli during the practice blocks as suggested by 

Damian (2001). Since the primes were drawn from the same pool as the targets, the 

response congruency effect may have emerged as a result of the mapping relation. The 

conclusion that the effect is due to stimulus-response mappings is supported by the 

results of a semantic categorisation experiment where the same training procedure 

was employed (Klinger et al., 2000, Experiment 1). Next to the response congruency 

effect no other priming effects were reported. This is in contrast to other data where 

related nonexemplar primes facilitated responses to nonexemplar targets more 

effectively than unrelated nonexemplar primes (e.g., Quinn & Kinoshita, 2008). Thus, it 

is possible that in the semantic categorisation task participants did not process the 

stimuli semantically but relied on their previously learnt mappings. Similarly, stimulus-

response mappings may have triggered the response congruency effect in the lexical 

decision experiment (Klinger et al., 2000, Experiment 2) because the same training 

procedure was applied. In contrast, Norris and Kinoshita (2008) who did not observe a 

congruency effect used all novel primes and the absence of a congruency effect in their 

data could be attributed to this difference in the experimental procedure.

Another study pointing to a possible congruency effect was conducted by Jacobs, 

Grainger, & Ferrand (1995, Experiment 2), where prime novelty was added as an 

additional factor in the analysis. In the experiment, the prime visibility was increased in 

four steps. The baseline was defined at a visibility level where none of the conditions 

elicited different response times, including an all-letters-different and an identity 

priming condition. In word targets, the two highest prime visibility conditions showed a 

significant difference between the unrelated word and unrelated nonword priming 

conditions. In nonword targets, the difference between unrelated word and unrelated 

nonword primes was significant in only one visibility condition. This finding was 

interpreted as a motor priming effect stemming from the activation in congruent and 

incongruent response codes. Jacobs et al. (1995) concluded that there was no evidence 

for the contribution of activation in lexical representations, because the response 

congruency effect occurred in both word and nonword targets. The analysis of prime 
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novelty did not reveal any difference in the response congruency effect, though this 

would have supported the hypothesis that the effect was due to interference at motor 

level. Furthermore, the absence of a prime novelty effect suggests that priming in 

lexical decision is not affected by very few conscious responses to the prime as a 

target. The absence of novelty effects could also reflect a smaller number of repetitions 

than in Damian (2001). Thus, in contrast to Klinger et al.'s (2000) results the findings of 

Jacobs et al. (1995) cannot be explained in terms of stimulus-response mappings. 

Otherwise a stronger congruency effect should emerged in old compared to novel 

primes. The data suggest that the primes influenced the processing of the target, e.g. 

by biasing the response to the target or by influencing decision channels.

Finally, the data collected by C. J. Davis and Lupker (2006, Experiment 1) indicated a 

response congruency effect, although C. J. Davis and Lupker (2006) did not discuss 

response congruency effects, their analysis indicated that a response congruency effect 

was observed in low and high frequency word as well as in nonword targets.

1.4.2.3 Empirical discrepancy

In summary, the empirical evidence is inconclusive. There are several studies that 

did not report a response congruency effect in lexical decision. Three studies showed 

an effect, but one could reflect the effect of prime stimuli that were repeatedly 

presented as targets.

Comparing the masked primed lexical decision studies that reported a response 

congruency effect and those that did not, one potential difference could be the mean 

RTs. As noted earlier, response congruency effects are more likely in faster than in 

slower RTs (e.g., Burle et al., 2002). Jacobs et al. (1995) who observed an effect of 

about 20 ms reported mean RTs ranging from 399 ms to 515 ms (Experiment 2). C. J. 

Davis and Lupker (2006) reported mean RT ranging from 571 ms to 757 ms and an 

effect of about 10 ms, supporting the assumption that the effect size might decrease in 

slow responses. Compared to Jacobs et al.'s (1995) data, the RTs of experiments not 

revealing an effect were considerably slower. Norris and Kinoshita (2008) report mean 

RTs between 526 ms and 682 ms (Experiment 1). The studies in Spanish reported 676 
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ms to 811 ms (Perea et al., 1998) and 583 ms to 695 ms (Perea et al., 2010). That 

means the slowest RT in Jacobs et al.'s (1995) experiment where an effect was 

reported is still faster than the fastest mean RT in experiments showing null effects. 

Nevertheless, these RT are comparable to C. J. Davis and Lupker's (2006) data and this 

indicates that the response speed might be a factor amongst others contributing to the 

presence of response congruency effects. The impact of the response speed could 

indicate that response congruency effects are short-lived and the leaky accumulator 

model (Usher & McClelland, 2001) could accommodate this. In this account the prime 

adds evidence in one of the decision channels, but since the accumulator is leaky this 

evidence trickles out as time continues. A larger response congruency priming effect 

would emerge in fast responses where the impact of the prime is more present than in 

slower trials. There are two critical factors. First, the difficulty of the task, because a 

hard task slows down responses and increases the effect of the leakage and secondly, 

the amount of evidence fed into the accumulators is critical. The greater the evidence 

added by the prime, the less vulnerable is the response congruency to the leakage. In 

summary, a leaky accumulator model could capture the empirical data introduced so 

far.

1.4.3 Conclusions

The empirical evidence in masked primed lexical decision is unclear, with the 

majority of experiments not reporting a response congruency effect. The review 

showed that the RTs in the studies that did not report an effect were slower than in the 

study showing an effect. This is in line with results in other tasks and is predicted by the 

leaky accumulator model. If the presence of a response congruency effect depends on 

the response speed then none of the reviewed theoretical accounts can predict this 

pattern. With respect to the experiments in the following chapters a response 

congruency effect is predicted in fast RTs, but not in slow responses.

1.5 Summary

Masked priming is a suitable method to shed light on early processing in visual word 

recognition. By keeping the presentation duration of the prime short the time available 

for stimulus processing is limited and hence effects from early stages become 
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apparent. The differences between findings from masked priming and experiments 

using longer presented and consciously available primes illustrate the different 

processes the methods tap into (e.g., Seguí & Grainger, 1990). It was shown that by 

varying the time allowed for prime processing, the source of priming effects differs 

(e.g., Ferrand & Grainger, 1992). Furthermore, masking can prevent effects of 

conscious strategy, though unconsciously presented primes can be exploited 

strategically, if the proportion of informative primes is unbalanced (e.g., Bodner & 

Masson, 2003).

Effects of response congruency between the implicit prime and the explicit target 

response were reported in various tasks (e.g., in number magnitude estimation, see 

Dehaene et al., 1998). In contrast, in lexical decision the empirical data and the 

predictions from theoretical accounts are less clear, e.g. the entry opening model does 

not predict a response congruency effect (Forster, 2004), but a deep processing 

account (Dehaene et al., 1998) predicts that a response congruency effect can emerge 

after applying the task instructions to the prime stimuli unconsciously. In empirical 

data, three studies have not reported an effect of response congruency (Norris & 

Kinoshita, 2008; Perea et al., 1998, 2010), but one study has reported an effect that 

cannot be attributed to other factors in the experiment (Jacobs et al., 1995). Also C. J. 

Davis and Lupker (2006) provided data that indicate a response congruency effect.

In order to resolve the theoretical dispute the empirical discrepancy needs to be 

resolved. Also, comparing those experiments that report an effect to those not 

reporting an effect, can help to reveal what information was processed in the very 

early stages of word recognition.
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2. Orthographic typicality

This chapter reviews the experimental findings with regards to orthographic 

typicality and computational accounts for generating nonwords and selecting words 

based on sublexical properties. Concluding from the problems pointed out in the 

review, I introduce a measure for computing orthographic typicality. Finally, empirical 

evidence for the effectiveness of that measure is presented.

2.1 Review of orthographic typicality

Typicality can be defined as the result of a comparison of one entity to a whole set 

of entities with respect to a particular property. For example, Cassandra is known for 

her negative predictions (e.g., the destruction of Troy, the death of Agamemnon, her 

own demise). Another negative prediction like the abduction of Helena would be more 

typical than a positive prediction. In visual word recognition and in this chapter I refer 

to the typicality of a letter string with respect to its orthographic structure in 

comparison to the orthography of the whole language. A highly typical letter string 

resembles the orthographic properties of a language, e.g. dound in English. An atypical 

example would stand out of a text, because it is not like that language, e.g. dqrki. The 

definition of typicality is related to wordlikeness, but wordlikeness takes other 

properties into account as well. J. Humphreys (2008) showed that pseudohomophones 

like brane were rated more wordlike than other nonwords like brone. Pronounceable 

nonwords were also considered more wordlike than unpronounceable nonwords (also 

see Rubenstein, Lewis, & Rubenstein, 1971; Rubenstein, Richter, & Kay, 1975 for 

evidence in lexical decision). The rated wordlikeness was an effective predictor of RT in 

a speeded reading aloud experiment (J. Humphreys, 2008). In contrast, 

pseudohomophony and pronounceability do not directly influence the typicality of the 

orthographic structure. Though, indirectly a high similarity to an existing word could 

affect the typicality of a nonword.

2.1.1 Lexical frequency

Lexical frequency of words can be used as an approximation for the typicality of a 

word in a language, e.g. the high frequency word the is typical for English. The 
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logarithm of lexical frequency was shown to be a predictor of the required 

presentation time for reading aloud a tachistoscpically presented word (Howes & 

Solomon, 1951). Similarly, this measure predicted RTs in lexical decision (Whaley, 

1978). This finding showed that words that are more frequent are recognised faster 

and with a higher accuracy than less frequent words. Though, the frequency measures 

collected in linguistic corpora, like SUBTLEXus (Brysbaert & New, 2009), provide an 

average for the usage in the population and thus, only an approximation for the 

experience of the individual participant. This was illustrated by participants showing 

differentiated frequency effects according to their personal interests and the 

associated vocabulary (e.g., Postman & Schneider, 1951; Solomon & Howes, 1951). The 

study of large databases with several thousand words showed that the averaged 

frequencies provide good predictions for responses averaged across participants 

(Brysbaert & New, 2009; Ferrand et al., 2010). Other measures than logarithmic 

frequency were also suggested, including the rank of lexical frequency (Murray & 

Forster, 2004, 2008; but see Adelman & Brown, 2008a, 2008b; Adelman, Brown, & 

Quesda, 2006) and experiential frequency (Gernsbacher, 1984). Furthermore, the 

effect of lexical frequency appears to be task dependent, e.g. it is attenuated in 

category verification tasks (Balota & Chumbley, 1984, 1990).

In general, a higher lexical frequency is robustly associated with faster responses 

and higher accuracy in lexical decision (Brysbaert & New, 2009; Ferrand et al., 2010). 

Thus, typicality as measured by the frequency of occurrence is an effective predictor 

for reaction times. In measuring the typicality of nonwords lexical frequency is not 

applicable. One option of using lexical elements in determining the typicality of 

nonwords is comparing them to words that are similar, e.g. in counting the number of 

neighbour words where the empirical evidence is reviewed in the next section.

2.1.2 Neighbours

In order to measure the typicality of a stimulus, this letter string could be compared 

to the most similar existing words. Coltheart et al. (1977) suggested counting the 

neighbours of a letter string, where a neighbour is a word that can be formed by 

replacing one letter of the string in question, i.e. all words with Hamming distance 

44



(Hamming, 1950) of one from the target. The greater the number of neighbours N the 

higher is the typicality of that string. In Coltheart et al.'s (1977) lexical decision 

experiment an effect of N was found in the no-responses only. The nonword stimuli 

with a greater N received slower responses than those with a lower N. This indicated 

that nonwords that are more typical as approximated by N are harder to reject than 

less typical nonwords. This supported the idea of the N-metric. Following this study, a 

number of experiments investigated the effects of neighbours. Though Coltheart et al. 

(1977) did not report an effect in word targets, facilitatory effects of N were reported in 

low frequency words (Andrews, 1989, 1992, 1997) and inhibitory effects were reported 

if the neighbour was of a higher frequency than the target (Grainger, O’Regan, Jacobs, 

& Seguí, 1989).

Jacobs and Grainger (1992) showed that the semistochastic interactive activation 

model based on the original IA model (McClelland & Rumelhart, 1981; Rumelhart & 

McClelland, 1982) can predict inhibitory effects of N in word targets as a result of 

competition simulated by lateral inhibition between word nodes. Using the dual-route 

cascaded model (Coltheart, Curtis, Atkins, & Haller, 1993) Coltheart and Rastle (1994) 

showed the facilitatory effect of N in words in their simulations. Their facilitatory effect 

was due to more word nodes receiving activation in high N words compared to low N 

words which lead to a higher top-down feedback to the letter units and in turn faster 

rising activity on the high N word detector. Crucially, the difference between these 

models is the impact of lateral inhibition (source of the inhibitory effect in Jacobs & 

Grainger, 1992) relative to the weight assigned to the facilitatory effects of activating a 

word detector embedded in a cluster (source of the facilitatory effect in Coltheart & 

Rastle, 1994). Grainger and Jacobs (1996) suggested including a parameter specifying 

the weight of the input of summed lexical activation by modifying the decision criteria 

of the model. This factor would depend on the specific task requirements, e.g. in an 

experiment where nonwords are not pronounceable and easily distinguished from the 

word targets the summed lexical activity was more beneficial and thus, a lower 

criterion was assigned. Similar results were obtained in the simulations in Chapter 8. A 

lower decision criterion for summed lexical activity (or a greater weight of summed 

lexical activity) would result in facilitatory effects of N, but a lower weight would 
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emphasise identification and competition between word nodes and thus, trigger 

inhibitory effects. This assumption is compatible with Andrews' (1997) claim that the 

different outcomes of the effect of N have to be attributed to different experimental 

contexts.

Relative frequency of neighbours

Another contribution to the different results of N effects is the relative frequency of 

the target and the neighbour. Neighbours of a higher frequency than the target are 

associated with inhibitory effects in word targets (Grainger et al., 1989) and facilitatory 

effects in nonwords (Grainger & Jacobs, 1996). That means that words with a higher 

frequency neighbour were responded to more slowly than words without such a 

competitor. Nonwords with a higher frequency neighbour were responded to faster, 

which could be attributed to faster identification of their relation to the neighbour (see 

Grainger, 2008 for review). Similarly, in measuring eye movements the existence of a 

higher frequent neighbour prolonged the gaze duration on target words (Grainger et 

al., 1989; Grainger, O’Regan, Jacobs, & Seguí, 1992). Though, in a similar experiment 

Sears, Hino, and Lupker (1995) reported a facilitatory effect of higher frequency 

neighbours in low frequency words. In masked primed lexical decision experiments, 

higher frequency neighbours interfered with the target response compared to a lower 

frequency neighbour (Grainger, 1990; Seguí & Grainger, 1990). Davis and Lupker (2006) 

were able to show facilitatory priming effects from neighbouring nonwords and 

inhibitory priming effects from word neighbours in one study. Davis (2003) attributed 

these findings to two components. First, all form-related primes produced activation in 

the target. This pre-activation allowed the quicker identification of the target. Secondly, 

(higher frequency) neighbours started to inhibit the target word node laterally. In sum 

these two processes resulted in inhibitory priming effects using word primes. The 

inhibitory component was emphasised in high frequency neighbours due to a higher 

resting level of these word nodes. Since nonwords are not represented lexically they do 

not produce lateral inhibition. Thus, the facilitatory effects in form-related nonword 

primes were attributed to the absence of lateral inhibition. The underlying mechanism 

is the same as explained above, the relative contribution of the benefit of summed 

activity in the lexicon and the disadvantage of lateral inhibition. In measuring typicality 
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the first component, summed lexical activity, is particularly interesting. Whilst 

inhibitory activity reflects local interaction between two word nodes, the summed 

lexical activity is a measure of how much the target letter string reflects the 

orthographic structure of the language.

Other types of neighbours

The most common definition of neighbours refers to letter strings with a Hamming-

distance (Hamming, 1950) of one (Coltheart et al., 1977). The Hamming-distance 

allows only a like-for-like replacement (e.g., letter-for-letter, binary-for-binary, but not 

letter-for-space) but there are other operations for modifying a letter string. It could be 

argued the two strings how and howl are perceptually similarly distant as able and axle. 

The Levenshtein-distance is one alternative measure of editing distance (Levenshtein, 

1966). It includes the substitution, deletion and insertion of letters. Each operation is 

counted and the original measure weighted them equally. Thus, the distances between 

how–howl and able–axle are both equal to one. Importantly, the length of the two 

stimuli is not fixed allowing more flexibility (see Davis, 2010 for discussion of length 

specific coding). Additional flexibility also arises from letter transpositions. Damerau 

(1964) considered the three operations above and transpositions and claimed 95% of 

typing mistakes could be explained by one of these four operations. Combining the two 

accounts results in the Damerau-Levenshtein-distance, which weights all four 

operations equally and measures the editing distance by counting the required steps to 

transform one string into another. That means that drown–down, salt–slat and able–

axle all have the same distance of one operation. Different weights could be assigned 

to each operation for theoretical reasons, e.g. if one assumes that longer words inhibit 

shorter words but less so vice versa (see Davis, 2010), then shorter words are more 

confusable (i.e. more similar) to their longer neighbours and deletions were assigned a 

greater weight than additions.

The Damerau-Levenshtein-distance is a complex measure, but each single operation 

can be tested and reviewed in its own right by investigating the empirical effect of each 

single operation (transposition, deletion and addition; for substitution see the above 

discussion of N). Strong facilitatory effects were obtained using masked transposed 
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letter nonword primes in lexical decision (Lupker, Perea, & Davis, 2008 in consonant 

pairs only; Perea & Lupker, 2003a) and associative priming using lexical decision (Perea 

& Lupker, 2003b). Andrews (1996) found an effect of transposed letter neighbours in an 

unprimed lexical decision experiment, where low frequency words were facilitated by 

their higher frequency transposed letter neighbour and high frequency words were 

inhibited by their lower frequency neighbour. Higher frequency deletion neighbours 

interfered in a semantic categorisation task with the target response (Bowers, Davis, & 

Hanley, 2005). Deletion neighbours in nonwords and deletion neighbours with a higher 

frequency in words showed interference in a lexical decision task as well (Davis & Taft, 

2005). In a masked primed lexical decision experiment facilitation from nonword 

primes derived from the target by deleting one letter (Schoonbaert & Grainger, 2004) 

and by adding one letter (Van Assche & Grainger, 2006) were reported. An inhibitory 

effect of addition and deletion neighbours was also found in eye movements and in 

lexical decision (Davis, Perea, & Acha, 2009). In summary, there is empirical evidence 

that each single operation transposition, insertion, deletion and substitution (see 

above) that is involved in computing the Damerau-Levenshtein-distance resulted in 

related letter strings with demonstrable effect on the recognition of the base word.

There is also evidence that the combination of two operations results in letter 

strings relevant for the neighbourhood of a word. C. J. Davis and Bowers (2004, 2006) 

conducted a series of illusionary word and masked primed lexical decision experiments 

showing that N1Rs (neighbour once removed: a letter string formed by substituting and 

transposing a letter, e.g. stop–soap, camp–clap) and DSNs (double substitution 

neighbour: a string formed by replacing two letters, e.g. snap–stop, camp–clip) are 

similar to their base. Furthermore, C. J. Davis and Bowers (2004, 2006) showed that 

N1R strings have a greater similarity to the base word than DSNs. This suggests that in 

calculating the distance between two strings the weight assigned to transpositions 

should be lower than the weight assigned to substitutions. The effects of using related 

letter strings especially in masked priming were very successfully simulated by C. J. 

Davis (2010) using the Spatial Coding model.
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Yarkoni, Balota, and Yap (2008) used the Levenshtein distance to compute the 

orthographic Levenshtein distance 20-measure (OLD20). This index is the average of 

the number of operations required to form the 20 closest neighbours of a word. The 

lower the OLD20 value, the less operations were required to form the closest related 

strings. Thus, more wordlike letter strings are associated with lower values. They 

argued that including the transposition as a single operation instead of expressing it by 

two substitutions did not result in a marked difference and thus, used the three basic 

operations (insertion, deletion and substitution) with equal cost of one. This means 

that transpositions were assigned double the cost of a substitution which is contrary to 

C. J. Davis and Bowers' (2004, 2006) findings. Nonetheless, Yarkoni et al.'s (2008) 

regression analysis of the English Lexicon Project (Balota et al., 2007) showed that 

OLD20 was the strongest predictor in speeded reading aloud out of a set of predictors 

comprising length, frequency and N in monomorphemic and in a combined set 

comprising mono- and multimorphemic words. Furthermore, the correlation of OLD20 

and lexical decision RT was almost as strong as of lexical frequency. Yarkoni et al. (2008) 

argued that OLD20 reflects a measure of global similarity rather than a measure of 

local similarity like N. Computing a global measure of similarity like OLD20 is different 

from computing the similarity of two specific strings (e.g., the match value in Davis, 

2010). OLD20 is rather computing the similarity between a string and a whole language 

(indexed by the 20 most similar items). This is compatible with the definition of 

typicality: one entity is compared to its domain of entities. Here, this means comparing 

a word or nonword to all words in a language. Thus, these findings can be interpreted 

as showing the effect of a global measure of typicality. Further empirical evidence of 

measures of global typicality are reviewed in the next section.

2.1.3 Global measures of typicality

The orthographic code is formed of letters, where the letters have a distinctive 

function but do not bear meaning themselves. Shannon (1948) regarded language as a 

stream of letter events. Looking at the frequency of each event there are more 

common and less common events. With respect to information density the less 

common letters are more informative and more distinctive. The informativeness of a 

letter is an important property in a noisy channel which was investigated by Shannon 
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(1948). It determines how informative a letter is for the whole sequence. That means 

letters that occur very frequently bear less information than rare events. They can also 

be guessed more easily, thus the term redundancy is used. This principle becomes 

apparent in looking at the number of four letter words containing an e (821/2431) 

versus the number containing an x (32/2431, Ramsden & Ramsden, 2007). The 

presence of an x constrains the set of potential candidates more than the presence of 

an e and thus, x is more informative (and less redundant) for identifying the string. In 

fact, the token frequency rather than the type frequency of each letter would have to 

be taken into account, but this example illustrates the principle of Shannon information 

(see Miller, Bruner, & Postman, 1954 for similar explanation). Furthermore, it shows 

the relation to the neighbourhood. In forming other words, it is more likely that the x 

has to be substituted than the e. Thus the x increases the average editing distance 

(e.g., OLD20 in Yarkoni et al., 2008). An increased editing distance also means that the 

likelihood of finding a substitution neighbour (N) is reduced.

Bigrams in tachistoscopic identification

An n-gram is an ordered tuple of n letters. A bigram refers to an ordered letter pair, 

e.g. the first bigram of word is wo, the second or and so on. The order of the letters is 

crucial in recognising words, e.g. in the pair salt and slat (see Davis, 2010 for 

discussion).

Miller et al. (1954) conducted a tachistoscopic identification experiment using 

nonword stimuli. They formed the stimuli by following the order of approximation 

outlined in Shannon (1951). Thus, the nonwords were random letters, letters 

generated according their frequency in English text, letter strings formed by using the 

bigram transition probabilities and finally quadrigram transition probabilities. Their 

results showed that across all presentation durations the number of correctly reported 

letters was greater the greater the order of language approximation. Miller et al. (1954) 

hypothesised that the amount of information processed by the participants was 

constant. Thus, they computed the information per letter and multiplied it with the 

correctly reported letters. Their results indicated that the processed information was 

not constant, but the recognition speed was dependent on the typicality of the stimuli.
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In psychological research the frequency of bigrams received most attention as a 

measure of orthographic redundancy. Owsowitz (1963) explained that bigrams (or 

digrams in their publication) should be counted in a position specific fashion and the 

counts should only be used in words of the same length (also see Mayzner & Tresselt, 

1962a, 1962b, 1963). In anagram solution tasks the positional bigram frequency 

(Mayzner & Tresselt, 1962a) and summed bigram frequency (referred to as word 

transition probability in Mayzner & Tresselt, 1963) showed a facilitatory effect on 

anagram solution time. Mayzner and Tresselt (1962b) asked participants to rank words 

according to their bigram frequency and found that participants were able to do so. 

Mayzner and Tresselt concluded that bigram frequency plays an important role in word 

recognition in addition to lexical frequency and word length. Owsowitz (1963) 

extended these findings and varied lexical frequency and summed positional bigram 

frequency in a tachistoscopic identification study with ten steps of luminance intensity. 

With regards to correct identifications, bigram frequency showed an inhibitory effect in 

both low and high frequency words. Also, words with high lexical frequency were 

generally identified more accurately. Owsowitz (1963) also investigated the letters 

participants entered in the report forms in low intensity conditions when they had not 

identified the word correctly. In these data bigram frequency showed a facilitatory 

effect on letters reported correctly, but lexical frequency did not show an effect. 

Owsowitz (1963) argued this reflects a guessing strategy because the more likely 

option is correct in high bigram frequency items. Alternatively, it was suggested that 

unusual letter combinations have higher threshold for being reported and thus, 

participants guessed a more likely letter combination. In more recent terms, the 

inhibitory effect of identification could be attributed to inhibitory effects from 

neighbours (see Andrews, 1997; Davis & Lupker, 2006; Seguí & Grainger, 1990) and the 

facilitatory effect on letter recognition to a successful guessing strategy (see 

Gernsbacher, 1984).

Interestingly, Biederman (1966) repeated the tachistoscopic experiment using the 

same 16 items as Owsowitz (1963). Biederman (1966) found that high bigram 

frequency items were identified faster and more accurately than low bigram frequency 

items. In a second experiment Biederman (1966) used better controlled stimuli with 
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regards to the distribution of bigram frequency within the word (see Mayzner & 

Tresselt, 1966; for a different perspective see Seidenberg & McClelland, 1989). The 

results were compatible with the advantage of high bigram frequency in the first 

experiment. Furthermore, the effect of lexical frequency was not found in high bigram 

frequency items and vice versa in high frequency items no effect of bigram frequency 

was found.

Broadbent and Gregory (1968) reported a similar tachistoscopic identification 

experiment. Their results resembled Owsowitz' (1963) findings where low frequency 

words were identified more accurately if they had low bigram frequencies. Broadbent 

& Gregory (1971) manipulated letter and word frequency in three tachistoscopic 

identification experiments. They did not report an effect of letter frequency nor of 

bigram frequency. But Broadbent and Gregory (1971) pointed out that a particular high 

frequent bigram occurred often in the experimental stimuli and thus, participants 

could have had to rely on the more rare parts of the word.

Rumelhart and Siple (1974) used a tachistoscopic identification task using all three 

letter words in Kučera and Francis (1967) and simulated their data as well as Broadbent 

and Gregory's (1968) data. Similar to Mayzner and Tresselt's (1966) and Biederman's 

(1966) findings, Rumelhart and Siple (1974) reported a facilitatory effect of bigram 

transition probabilities with better identification in high bigram frequency items. This is 

in contrast to other findings in tachistoscopic identification (Broadbent & Gregory, 

1968; Owsowitz, 1963), but Rumelhart and Siple (1974) highlighted a difference in the 

experimental procedures. All experiments showing an inhibitory effect of bigram 

frequency used words only, whilst those reporting a facilitatory effect used both words 

and nonwords. Null effects of bigram frequency have also been reported. McClelland 

and J. C. Johnston (1977) observed no effect of bigram frequency and attributed the 

advantage of pronounceable over unpronounceable letter strings to structural 

properties. However, Massaro, Venezky, and Taylor (1979) pointed out that 

pronounceability and bigram frequency are correlated.
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Rumelhart and Siple (1974) successfully simulated Broadbent and Gregory's (1968) 

inhibitory effects of bigram frequency by setting their Pword to 1.0. This means that the 

model could rely on the fact that the target was a word. Even though the effect on 

word identification was inhibitory, Owsowitz (1963) as well as Broadbent and Gregory 

(1968) reported a facilitatory effect of bigram frequency on letter identification. This 

indicated a general facilitatory effect of bigram frequency on the letter level. The effect 

of bigram frequency on the letter level was consistently facilitatory, whereas the 

direction of the effect on word identification seems to be task dependent. If a 

computational model of word recognition includes a parameter for capturing the 

experimental conditions, both inhibitory and facilitatory effects of bigram frequency 

can be successfully simulated (Rumelhart & Siple, 1974). The importance of including a 

parameter for capturing the experimental context was also highlighted by Grainger and 

Jacobs (1996) and the simulations in Chapter 8.

Bigram frequency in lexical decision

The effect of bigram frequency has also been investigated using the lexical decision 

paradigm. Rice and Robinson (1975) showed that the mean positional bigram 

frequency had an inhibitory effect in a lexical decision task in low frequency words. 

There was no such an effect in high frequency words and nonwords. A more 

pronounced effect in low frequency words compared to high frequency words 

resembles the effects typically found in manipulating the neighbourhood density, 

though an effect in nonwords would be expected (see 2.1.2). Jastrzembski (1981, 

Experiment 2) used the summed positional bigram frequency for measuring string 

typicality in a control experiment, but did not report an effect of this manipulation in 

their lexical decision experiment. Gernsbacher (1984) presented a review and 

replicated Rice and Robinson's (1975) findings. Though, the results were attributed to 

experiential frequency as rated in a separate experiment. The low frequency words in 

Rice and Robinson's (1975) stimuli set differed markedly on that variable between 

conditions and Gernsbacher (1984) attributed their finding to experiential frequency as 

well. In a second experiment, Gernsbacher (1984) used items of previous studies 

investigating bigram frequency (Biederman, 1966; Broadbent & Gregory, 1968; 

Owsowitz, 1963; Rice & Robinson, 1975; Rubenstein, Garfield, & Millikan, 1970) and 
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reported that earlier findings could be explained by experiential frequency. 

Furthermore, Gernsbacher (1984) showed in a factorial manipulation that experiential 

frequency but not bigram frequency was an effective predictor of RT.

Andrews (1992) provided a review and highlighted experimental findings of 

manipulating total positional bigram frequency and neighbourhood density. Andrews 

(1992) reported a facilitatory effect of bigram frequency in naming in low frequency 

words. In lexical decision, Andrews (1992) did not report an effect of neighbourhood 

density or bigram frequency and concluded that an effective manipulation involves 

both variables (also see Balota & Chumbley, 1984).

McClelland and J. C. Johnston (1977) attributed their results in tachistoscopic 

identification to the pronounceability of the letter string rather than to its bigram 

frequency. Using the lexical decision paradigm, a similar effect emerged: 

pronounceable nonwords received slower no-responses than unpronounceable 

nonwords (Rubenstein et al., 1971, 1975). This cannot be attributed to legality alone, 

since illegal unpronounceable nonwords received faster no-responses than illegal 

pronounceable nonwords (Rubenstein et al., 1971). Massaro, Venezky, and Taylor 

(1979) indicated that pronounceability and bigram frequency were correlated (Heyer, 

Quasthoff, & Wittig, 2006; also see Küpfmüller, 1949).

These results imply that the effects of bigram frequency, legality, pronounceability 

and most likely neighbourhood density are strongly related and could perhaps be 

summarised as wordlikeness. The size and the direction of the effect of wordlikeness 

depends on the context of the experiment (Andrews, 1992, 1997; Siakaluk, Sears, & 

Lupker, 2002), e.g. whether the experiment comprised words only or words and 

nonwords (Rumelhart & Siple, 1974). In general, effects of orthographic relatedness 

and surface structure are more apparent in low frequency words and nonwords than in 

high frequency words (Andrews, 1989, 1992, 1997; Gernsbacher, 1984).

With regards to high frequency words, Westbury and Buchanan (1999, 2002) 

reported results of lexical decision experiments where the probability of the least likely 
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bigram showed an effect in high frequency words. High frequency words with a low 

frequency bigram were responded to faster than high frequency words with a high 

frequency least likely bigram, i.e. without a low probability bigram. There was no such 

effect in low frequency words. These findings indicated a disadvantage of typical 

orthographic structure in high frequency words only and contrasted with previous 

findings where the effect of bigram frequency was limited to low frequency words. 

Along these lines, Jared (1997) showed a consistency effect in reading aloud in high 

frequency words. The effect of consistency was previously assumed to be most 

prevalent in low frequency words (e.g., Seidenberg & McClelland, 1989). But the 

results of Jared (1997) and Westbury and Buchanan (1999, 2002) suggested that 

wordlikeness of the orthographic structure can influence word recognition in high 

frequency words as well. Together with previously reported findings, this indicates that 

the orthographic structure can affect the recognition of nonwords and high and low 

frequency words.

For measuring orthographic typicality Westbury and Buchanan (1999, 2002) used 

the lowest bigram probability in a word where the lowest bigram probability 

corresponds to the highest density of information. Other researchers (e.g., Andrews, 

1992; Gernsbacher, 1984) used some form of adding bigram frequencies or forming the 

average. The findings claimed as “paradoxical” by Westbury and Buchanan (1999, 

2002) could be explained in less surprising terms. In high frequency words, it is likely 

that all bigrams are comparably high in frequency. Thus, a very low bigram probability 

that is paired with a comparable high level of information and distinctiveness could 

allow for faster identification by reducing the potential set of candidates. In contrast, 

low frequency words are more likely formed of low frequency bigrams. Thus, a low 

probability bigram is unlikely to stand out as it does in high frequency words. This could 

explain the absence of the effect of the least likely bigram in low frequency words. This 

explanation is based on the assumption that participants needed to identify the targets 

as in hard lexical decision tasks (e.g., Grainger & Jacobs, 1996), but Westbury and 

Buchanan (1999, 2002) did not provide a list of their stimuli. Specifically, the weight 

assigned to summed lexical activity is an important variable as explained above. The 

empirical evidence suggests that the average of bigram frequency could be more 
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informative in low frequency words, whereas a peak of information density (a very low 

frequency bigram) could be informative in high frequency words.

In a lexical decision study Hauk et al. (2006) compared typical (e.g., yot, node) and 

atypical stimuli (e.g., yacht, gnode) measured by position specific bigram and trigram 

frequency. In the behavioural data atypical pseudowords received faster no-responses 

than typical pseudowords. Additionally, Hauk et al. (2006) measured event-related 

potentials (ERP) where the effect of typicality was significant in word and nonword 

targets, even though behavioural data in words was inconclusive. The study employed 

very similar pseudohomophone-word pairs and provided evidence that the typicality of 

letter strings shows a significant effect in the very early stages of word recognition 

(approximately 100 ms after target onset) in the ERP data. There is also fMRI evidence 

that trigram frequency can influence the word recognition process. Binder et al. (2003) 

showed that nonwords with high mean positional bigram frequency activate brain 

areas that are more similar to those activated by words than those activated by low 

bigram frequency nonwords. Woollams et al. (2011) showed in a fMRI study, that 

orthographic typicality activated a brain area that was different from lexicality and 

concluded that there is an independent influence on the word recognition process. 

Westbury, Buchanan, Sanderson, Rhemtulla, and Phillips (2003) provided a genetic 

algorithm for computing significant effects with several interacting factors on 

neuroimaging data especially for the domain of lexical access. However, it is not as 

straight forward to extract cognitive conclusions from this evidence (Coltheart, 2006a, 

2006b; Page, 2006). But Experiment 2 through to 9 showed that the response 

congruency and the typicality of the primes contributed to a lexical decision task. In 

particular, it was argued that more typical stimuli activated more word nodes and thus, 

the summed lexical activity was higher in typical than in atypical stimuli which then 

resulted in the observed effects in behavioural data.

In summary, manipulating the sum or average of bigram frequencies appears to 

influence low frequency rather than high frequency words (Andrews, 1992; Rice & 

Robinson, 1975). Measuring the lowest probability refers to a peak of Shannon 

information in the letter string and significant effects on RT were reported in high 
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frequency words (Westbury & Buchanan, 1999, 2002). The effect of orthographic 

redundancy may swap direction as the requirements of the experiment shift from 

identifying each word (a hard lexical decision task) to getting a reasonable idea 

whether the string is a word or not (an easy lexical decision task). This is compatible 

with Rumelhart and Siple's (1974; also see Grainger & Jacobs, 1996) suggestion in 

explaining the difference between an advantage of high bigram frequency in studies 

using word and nonword targets (Biederman, 1966; McClelland & Johnston, 1977) and 

a disadvantage in studies using word targets only (Broadbent & Gregory, 1968; 

Owsowitz, 1963).

2.2 Algorithms for generating nonwords

J. Humphreys (2008) asked participants to rate her word and nonword stimuli on a 

wordlikeness scale. The ratings were transformed to z-scores and provided a good 

predictor for naming and lexical decision latencies. Using a case alternation technique, 

wordlikeness as measured by the ratings was the only variable to survive this strong 

manipulation. This method was reliable in her experiments and could be used as a 

control routine like simulating the items (e.g., using the SCM, Davis, 2010). However, 

for generating large sets of nonwords computational methods that can give an 

estimate of the wordlikeness are required (Keuleers & Brysbaert, 2010).

There are various ways of computing and generating letter strings that have a 

certain level of orthographic properties. As outlined above bigram frequency can be 

used in a position specific and length specific way by summing, averaging or 

normalising it. Also, substituting or transposing letters in a word is an option for 

creating nonwords, but the typicality of the letter strings can vary amongst the results 

even if the base words are matched. As shown in the above, the typicality of the 

nonword foils is of crucial importance, not only for the presence or absence of effects 

in an experiment but also for the direction of these effects. The following section 

reviews previous computational accounts for generating nonwords and introduces the 

method used in this thesis in more detail.
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2.2.1 WordGen

Duyck et al. (2004) introduced WordGen as a software for generating items. Duyck 

et al. (2004) reported that WordGen was able to produce 80% pronounceable nonword 

strings with appropriate settings, which forms a benchmark for other algorithms. The 

constraints for generating items available in the software included the initial and final 

position specific bigram frequency, the minimum position-unspecific bigram frequency 

(see Westbury & Buchanan, 1999, 2002) and the summed position-unspecific bigram 

frequency. Length, neighbourhood density N and lexical frequency for words served as 

bigram independent options. The software relied on the lemma databases of CELEX 

(Baayen, Piepenbrock, & van Rijn, 1995) for Dutch, German and English and Lexique 

(New, Pallier, Brysbaert, & Ferrand, 2004) for French. In generating word items, a 

random entry in the lexical database is selected and the respective wordlist is then 

parsed up to the first entry that satisfies the criteria. The nonword generation method 

generates a random string and then verifies the criteria. It is important to note that the 

underlying bigram frequencies were derived by adding the logarithmic frequency of 

respective words in the lemma database. The summed bigram frequencies of a 

generated item are inverted from the logarithmic values in the output. This software 

was not aimed at producing items of a certain degree of typicality, but rather at 

producing wordlike nonword stimuli. Duyck et al. (2004) particularly emphasised its use 

for research in German and Dutch as no such tool existed at the time.

Bigram frequency can be used as a tool for generating stimuli, but it does not allow 

a comparison across languages. This is due to different corpus sizes and a different 

distribution of words, e.g. in terms of entropy (Felici & Pal, 2008). Thus, the 

opportunity of generating and comparing stimuli across language was not filled by the 

software. Even though, Duyck et al. (2004) argued the usage of lemma frequency per 

million resolved the problem, structural differences between the languages could not 

be accommodated. For example, English has more monosyllabic words than German, 

and one might speculate that the total number of bigrams is more evenly distributed in 

English than in German. The reason is that if words are generally shorter then the 

bigrams must convey more distinctive information than in longer words. Thus, a bigram 
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that is low frequent (below average) in German might actually be just average in 

English. The difference in morphemic structure contributes to this problem, e.g. most 

words in German show inflectional morphology whilst this is not the case in English. 

This results in an inherent incomparability of the bigram frequencies across languages.

The WordGen algorithm relies on the lemma database in estimating bigram 

frequencies. In languages such as German most words in text show overt inflectional 

morphology, but the lemma database does not account for this. Thus, by relying on the 

lemma database the frequency of bigrams related to inflection is underestimated, 

whereas bigrams reflecting the stem forms are overestimated. This could result in 

overestimating the typicality of an item that resembles infinite morphology and 

underestimating the typicality of other perhaps more frequent forms. As a result the 

nonwords could reflect this truncated language rather than the actual language found 

in texts. For example, German verbs undergo an inflection for person and tense and 

nouns show plural and case. This means that forms coinciding with the stem form in 

the lemma database occur less frequent than the database suggests, whereas other 

forms are not listed at all. Another aspect of inflection is a change in word length, i.e. 

the infinite morpheme -en is longer than inflected forms such as -e and - t. As result, 

not only the bigram count in the lemma database but also the word length specific 

count is mislead. All German verb lemmata end in -en, but in a sentence -en is only 

seen in the first and third person plural forms of the present tense and infinitives. If 

most texts report about events and what has happened, e.g. newspapers, TV 

programmes or what the speaker has done, the most prevalent would be first (-e/- ) 

and third (- t) person singular. That means the inflected forms are one letter shorter 

than the infinite form and thus, counting bigrams in a length specific way mistakes 

these words with a different length. The comparison of the CELEX GCT (German Corpus 

Type) raw data and the CELEX GOL (German Orthographic Lemma) processed data can 

highlight these differences. Due to noun plurals ending in -en which were summed in 

their singular stem forms in the lemma database, the total number of words ending 

-en is slightly smaller in GOL (814188 occurrences with a probability of 0.784 that -en 

is word final) than in GCT (925815 occurrences, 0.719 probability). The differences are 

more dramatic in -e and - t. In the GOL data words ending in -e occurred 327457 times, 
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equivalent to 0.065 probability that a words ends in -e. In the raw GCT data words 

ending in -e are more than twice as frequent with 893485 occurrences and it is also 

more likely that words end in -e with a probability of 0.157. The finding is similar in - t, 

with 398270 occurrences (probability of 0.080) in GOL and 601829 occurrences 

(probability of 0.106) in GCT. A similar argument holds for any other language where 

words undergo declination and conjugation processes with a morphological reflex, 

including Dutch.

Another problem is due to the implementation of the software. WordGen does not 

handle the special characters in languages other than English appropriately, including 

German the umlauts ä, ö and ü1. The user-interface allows to select “German” as 

language and one can enter a word like Glück [fortune] for checking its summed bigram 

frequency. The output correctly lists GL, LÜ, ÜC and CK as the bigrams forming the 

word Glück. Due to WordGen's inability of handling the Ü, the summed bigram 

frequency is computed as 2479, which is equal to the sum of the frequencies of GL 

(720) and CK (1759). This ignores two bigrams in a simple noun without producing any 

notice to the user.

2.2.2 LINGUA

LINGUA is the language-independent neighbourhood generator of the University of 

Alberta (Westbury, Hollis, & Shaoul, 2007). This software package was specifically 

designed to work with multiple languages and included a programme for building a 

corpus from text, e.g. text collections from internet resources. This enables the 

software to be used with any language of interest, even if there are no appropriate 

corpora available. Orthographic neighbourhood, lexical frequency in words and 

position specific and unspecific n-gram (e.g., bigram, trigram) frequency are measured 

according to the input corpus. The nonword generation process is based on a Markov 

chain and ensures that all n-grams occur in an existing word. Most importantly, the 

distribution of n-gram frequencies in the generated nonwords was said to resemble the 

features of the language in the input corpus based on either position specific or 

unspecific counts of the n-gram units. Westbury et al. (2007) did not provide any 

1 Thanks to Vera Heyer (Universität Potsdam, Germany) for making me aware of this.
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further details about the algorithm that is used in generating nonwords. The basic 

principle of a Markov chain is described in 2.3.

LINGUA generates pronounceable nonwords in basically any language though 

Westbury et al. (2007) did not provide a benchmark. Furthermore, LINGUA relies on 

the actual language data rather than a lemma database. Thus, it provided a solution to 

two problems observed with WordGen (Duyck et al., 2004). It can operate in any 

language and uses actual language data. LINGUA did not provide the option to 

generate nonwords that vary in typicality, e.g. if a set of atypical and typical nonwords 

was required for an experiment. Also, the actual properties of the generated nonword 

strings are not accessible to the user and the computational mechanism was not 

clarified. Hence, the software provides a good possibility of generating typical and 

pronounceable nonwords, but the user does not have the option of manipulating the 

output in a controlled way. Similar to WordGen, LINGUA does not produce a language 

independent measure of wordlikeness or typicality.

2.2.3 Wuggy

Wuggy (Keuleers & Brysbaert, 2010) generates nonwords based on the syllabic 

structure of a language. The programme requires a corpus of orthographically 

syllabified words and a list of all possible orthographic syllable nuclei. This list of nuclei 

is essential for the software, but it can depend on the specific account of phonology. 

Keuleers and Brysbaert (2010) classified [ʊ] as a consonant in diphthongs such as [aʊ͡] 

and thus, concluded [ʊ] is part of the coda (for other accounts see e.g., Hall, 2000; 

International Phonetic Association, 1999; Ladefoged & Johnston, 2011; Pompino-

Marschall, 2009). Nonetheless, Wuggy appeared to use the longest possible 

orthographic nucleus when generating nonwords, e.g. ou in house despite Keuleers and 

Brysbaert's (2010) argument that [ʊ] and thus, u was part of the coda. The reason for 

ou appearing in the list of nuclei was touch where ou [ʌ] formed the nucleus. Thus, 

Wuggy avoids problems in nonwords that may have arisen from Keuleers and 

Brysbaert's (2010) account of phonetics.
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Using the syllabified input corpus and a list of possible nuclei, all words and most 

nonwords (by using a heuristic) can be divided in onset, nucleus and coda straight 

forwardly. Wuggy measures the bigram frequency between two syllabic elements, i.e. 

onset and nucleus or nucleus and coda, by the lexical frequency of the respective 

words. The default nonword generation process relies on substituting elements in a 

base word. The algorithm keeps the orthographic length of each element (onset, 

nucleus, coda) constant per default and the number of substitutions is equal to the 

number of syllables in the base word. A so called concentric search finds the element 

that will be substituted. The algorithm searches for bigrams with a specific length 

([word beginning, onset], [onset, nucleus], [nucleus, coda], [coda, word end]) that have 

a similar frequency as the corresponding bigram in the base word. If there are no 

suitable candidates within the initial acceptable range of deviation from the original 

frequency, the acceptable deviation is increased step by step. This forms the concentric 

search around the base word. Keuleers and Brysbaert (2010) claimed Wuggy produces 

the most similar word or the most similar nonword with respect to the base word (but 

see Davis, 2010 for a review of string similarity).

By using the most similar nonwords to a set of words an additional difficulty could 

arise in a lexical decision experiment. The participants could be confronted with 

nonword foils that are matched for wordlikeness with the word targets, but that are 

also hard to distinguish from their very similar word counterparts. This contrasts with 

normal reading where it is more likely that the context of other words is supportive or 

neutral (e.g., Fischler & Bloom, 1979; Inhoff, 1984; Schuberth & Eimas, 1977). A 

situation where the context is particularly not helpful occurs in a written tongue 

twister, e.g. The sixth sick sheikh's sixth sheep's sick. An experiment with highly similar 

word and nonword targets is likely to incorporate a difficulty from distinguishing the 

stimuli, i.e. responding no when a very similar word was presented a short time ago. 

This difficulty is on top of the difficulty of distinguishing words and nonwords and is 

independent of the wordlikeness of the stimuli. Since the confusability of targets 

appears out of direct control of the experimenter it should be avoided whenever 

possible. Keuleers and Brysbaert (2010) argued that the user could provide another set 
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of words that the nonwords would then be fitted to, but finding additional appropriate 

word targets could be another difficult to achieve enterprise.

As pointed out with other algorithms, Wuggy does not produce a language 

independent measure of wordlikeness or typicality. The user has to rely on the 

algorithm in Wuggy in finding the most similar nonword or word string to a given base 

word.

2.2.4 Summary

The available software relies on n-gram frequencies, either by summing the 

frequencies of letter bigrams (WordGen: Duyck et al., 2004) or bigrams of subsyllabic 

units (Wuggy: Keuleers & Brysbaert, 2010). Only LINGUA (Westbury et al., 2007) used a 

Markov chain for estimating the typicality of the stimuli, but no further details were 

provided. A problem with all programmes is that there is no language-independent 

indicator of how typical the generated items are. With regards to language 

independent functioning, LINGUA provided the most comprehensive tool-kit and could 

be used with any language. WordGen relies on preassembled corpora in the 

programme (LEXIQUE and CELEX) and Wuggy requires a syllabified corpus (most 

dictionaries provide a syllabification, but the list of nuclei could be difficult to find). In 

generating nonwords, the programmes aimed for mimicking either a particular word or 

forming nonwords that are coherent with the language average. But for the 

experiments introduced in this thesis it was necessary to specifically vary the nonwords 

on the wordlikeness scale, including extraordinarily wordlike nonwords on the one 

extreme, but also very atypical nonwords on the other end of the scale. The software 

that was used for this purpose is introduced in the next section.

2.3 Orthographic trigram transition typicality (OT3)

The following section introduces software for analysing already selected words and 

nonwords as well as for selecting words and generating nonwords. It enables the user 

to specify how wordlike the generated nonwords should be. Following a discussion of 

the underlying algorithm and the differences between the Orthographic trigram 
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transition typicality (OT3) and other measures, experimental evidence that this 

algorithm effectively generates nonwords of either high or low typicality is provided.

2.3.1 Differences to other algorithms

In the following section, I introduce the main differences between the OT3 

algorithm and measures of orthographic typicality that have been used in the 

literature. The main differences between the standard word length and position 

specific summed bigram frequencies and the OT3 metric are the use of transition 

probabilities instead of frequency, the word length and position unspecific method of 

counting, the use of trigrams instead of bigrams and finally the use of a product instead 

of a sum.

Frequency and transition probabilities

The terms transition probability and frequency have sometimes been used 

synonymously in the literature, specifically in orthographic redundancy (e.g., Keuleers 

& Brysbaert, 2010; Mayzner & Tresselt, 1962a). However, there is an important 

difference between the two measures with respect to scaling.

The frequency of a bigram is the number of its occurrences in a corpus. Often the 

frequency is scaled by the number of words in the corpus and is presented as the 

number of occurrences per million words (e.g., Davis, 2005). This scales the number of 

letters to the number of words and makes data in English comparable across corpora. 

The comparability does not hold across languages, where a language with a more overt 

morphology than English could show a tendency to have less words to express the 

same content and as a result have tendency for more longer words. For example, the 

distinction between definite reference (the) and indefinite reference (a) could be 

expressed morphologically, making the use of the equivalent to the most frequent 

English word (the) redundant which is the case in most Slavic languages (Krifka, 1992).

In contrast to frequency, transition probabilities are scaled towards the local context 

and thus, are robust with regards to the average length of words or the corpus size (as 

long as the corpus appropriately reflects the language). In general, a transition 
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probability quantifies how likely it is that one event follows another. In bigrams, a 

transition probability describes how likely it is that the second letter of the bigram 

follows the first. It is computed by dividing the frequency of a bigram (e.g., ab) by the 

frequency of the first letter in that position (i.e., the frequency of a as a first letter in a 

bigram). This results in the probability that an a is followed by b (and forming the 

bigram ab). In other words, it is the probability of b under the condition that a is 

already known to be true, which reflects Bayes' theorem (Bayes & Price, 1763; Heyer et 

al., 2006; Küpfmüller, 1949). Each transition probability is the reciprocal of the Shannon 

information for the ordered relation between the letters, i.e. the information that a is 

followed by b. The higher the transition probability the less informative is the 

transition. The less informative a transition is (higher transition probability) the greater 

is the redundancy within the letter string.

The examples in Table 2.1 show that even though the frequency of bigrams in the 

word final position is very similar, their transition probability can be very different and 

vice versa. The first example illustrates that almost all five letter words (98%) that show 

an h in the fourth position are actually words that end in ht, whereas only 15% that 

show an e in the fourth position end in ed. In contrast, the frequency of the bigrams ht 

and ed is comparable and does not reflect the specific high orthographic redundancy of 

words ending in ght. The second example (of ...nd and ...gh) shows that the frequency 

of a bigram can also differ even if the transition probabilities are almost equal. The 

comparable transition probabilities show that the proportion of continuations is 

similar, i.e. the coherence of the pattern is similar, even though the frequency of words 
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TABLE 2.1: POSITION AND WORD LENGTH SPECIFIC BIGRAM FREQUENCY AND 
TRANSITION PROBABILITY IN FIVE LETTER WORDS ACCORDING TO N-WATCH 
(C. J. DAVIS, 2005).

Bigram Examples
Frequency/

million words
Transition
probability

...ht eight, fight, right 2727 0.98

...ed fried, speed, taxed 2739 0.15

...nd blind, pound, spend 1493 0.14

...gh cough, dough, laugh 183 0.14

In all examples “.” is used as a wildcard character to replace any single letter.



showing this pattern is different. It could be argued that for measuring the redundancy 

within the orthographic code, the transition probability is more appropriate.

Position and length dependent measures

Most bigram measures were provided in a length and position specific way (Davis, 

2005; Mayzner & Tresselt, 1962a, 1962b, 1963; Owsowitz, 1963). But measuring the 

orthographic redundancy in words of the same length implies that there are different, 

unrelated orthographies for each word length. Furthermore, this account implies that 

these word length specific orthographies would not interfere with each other. The 

result would be that the st in street is unrelated to the st in streets. C. J. Davis (1999, 

2010) argued that this is an implausible assumption. Furthermore, it was argued that 

position specific coding of letter positions is implausible and empirically not justified 

(e.g., Davis, 2010). Thus, it could be argued that counting bigram frequency or 

transition probabilities in a position and word length specific way is similarly 

implausible.

For example, the bigram ld is relatively frequent as the fourth bigram in five letter 

words and in the fifth position in six letter words, whereas it never occurs in the first 

position of five letter words and six letter words (see Table 2.2). These data indicate 
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TABLE 2.2: POSITION AND WORD LENGTH SPECIFIC BIGRAM FREQUENCY AND 
TRANSITION PROBABILITY OF LD IN FIVE AND SIX LETTER WORDS ACCORDING TO 
N-WATCH (C. J. DAVIS, 2005).

Bigram Examples
Frequency/

million words
Transition
probability

ld... NIL 0 0.00

.ld.. elder, older, oldie 116 0.02

..ld. colds, moldy, tilde 43 0.02

...ld child, world, yield 6250 0.51

ld..... NIL 0 0.00

.ld... elders, eldest, oldish 36 0.01

..ld.. folder, golden, seldom 167 0.05

...ld. fields, mouldy, yields 100 0.03

….ld behold, shield, should 1023 0.10

In all examples “.” is used as a wildcard character to replace any single letter.



two patterns. First, it could be assumed the bigram never occurs in word initial position 

and secondly, it appears to be relatively frequent in word final position. Due to the 

length specific metric it cannot be said for sure whether the bigram never occurs in 

initial position until data of all word lengths was checked. The expression word final is 

only defined for specific word length in a length specific measure. In fact, from the five 

letter word data one could assume the bigram is frequent in position four, but this will 

be disappointed in six letter words. Thus, a metric that allows capturing these 

properties of an orthography should be word length and position unspecific.

Bigrams and trigrams

There is more information in a metric that relies on trigrams than in bigrams. Thus, 

it could be argued that the bigram measures introduced above are less complex than a 

metric of trigram transition probabilities and should be preferred on these grounds. 

But it is important to note that the word length and position specific bigram frequency 

is a very rich measure, because there is not only information about the directly 

preceding letter (as the name bigram might suggest), but also there is information 

about the exact position in the word. That means the word length and position specific 

bigram transition probabilities as they were computed in Table 2.1 and 2.2 do not 

resemble the probability of one letter following another, but they reflect information 

on the number of preceding letters, the exact position in the word and the number of 

following letters. For example, there is no obvious reason why an l should not follow 

the letter b. Words with the bigram bl include blue, able, oblige, cable, edible and so 

on. In a word length and position specific bigram measure, the frequency of bl drops to 

0 in second and fourth position of five letter words. With regards to the fourth position 

the measure takes into account that this is the final position in the word even though 

this is not obvious from the bigram bl. The drop in the second position has a less 

obvious reason as there are examples of words with a bl in this position (e.g., able, 

oblige). It is simply that there is only one word with bl in that position and a word 

length of five letters (abler, Ramsden & Ramsden, 2007) and this is so low in frequency 

that a zero is displayed. That means the metric does not capture a regularity or a 

constraint on information density, rather this particular case is the result of an overly 

specific algorithm. Overspecification means the algorithm is not sensitive to rules or 
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generalisations, but rather captures singularities. In summary, a word length and 

position specific bigram measure is more rich in information than just the frequency of 

that bigram. In the following, I will refer to the actual bigram frequency, which is the 

frequency of a particular bigram counted according to the number of its occurrences 

irrespective of the word length and position in the word.

Küpfmüller (1949) investigated the redundancy of natural language transmitted 

through a noisy channel. By manipulating the length of n-grams Küpfmüller (1949) 

showed that trigrams produce very language like letter strings. In contrast, the smaller 

bigram and unigram (single letters) units tended to result in gibberish. Larger units such 

as quadrigrams tended to produce words which is a sign of overspecification. 

Producing words is very language like, but it does not allow for new input and in the 

context of information transmission utterances could be overly corrected (see Heyer et 

al., 2006 for similar argument). When generating experimental stimuli it would be 

impossible or at least very unlikely to generate nonwords. Manning and Schütze (1999) 

used n-grams on word level in generating language. They aimed for generating new but 

language like (grammatically correct) sentences. The optimum in avoiding plain 

reproductions of the input and producing language like utterances was trigrams which 

is compatible with the results at a letter level (Küpfmüller, 1949).
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In correcting for orthographic errors, trigrams can be more useful than bigrams. For 

example, a typo like jugde (example from Perea & Lupker, 2003a, 2003b) could be 

corrected by software finding that ugd never occurs in English (using CELEX, Baayen et 

al., 1995). This makes the transition from g to d a likely typo. Using Damerau's (1964) 

basic operations the guesses would be judge (transposition), juge/jude (deletion), 

jug.de (addition, where . denotes any single letter) and ju.de/jug.e (substitution). Using 

trigram transition probabilities judge (transposition) is the most likely candidate, 

followed by jude (deletion) and judde (substitution). Correcting this mistake on the 

basis of bigrams would be more challenging because all bigrams in the typo occur in 

the English CELEX database: ju (juice), ug (sugar), gd (kingdom), de (mode). This 

example shows that bigrams cannot capture regularities of letter clusters, because two 
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TABLE 2.3: BIGRAM AND TRIGRAM FREQUENCY AND 
TRANSITION PROBABILITY ACCORDING TO BNC (THE 
BRITISH NATIONAL CORPUS, 2001) FOR THE LETTER 
STRING STRST.

Bigram Frequency Transition probability

#s 59765 0.07

st 30631 0.13

tr 10774 0.03

rs 12665 0.05

st 30631 0.13

t# 84269 0.23

Trigram Frequency Transition probability

#s 59765 0.07

#st 9517 0.16

str 3179 0.10

trs 0 0.00

rst 1559 0.13

st# 10949 0.36

t# 84269 0.10

Please note, the '#' replaces the space character. The transition probability for the bigram 't#' is 
based on different metrics. In the bigram, section this probability reflects the chances that a 't' is 
succeeded by the word end (or space character), thus the denominator is the number of 't' in the 
corpus. In the trigram section, this probability refers to the proportion of words ending in 't'. That 
means the denominator is the number of all words.



letters already form the horizon of observation in bigrams. The example in Table 2.3 

shows the bigram and trigram metrics for the letter string strst. This nonword is clearly 

unpronounceable in an English context. But pronounceable strings can start in str 

(street) and end in rst (first), also the combination of rs (nurse) is perfectly acceptable. 

In a left to right parse the letter string becomes unpronounceable as soon as no vowel 

follows the initial str. As Table 2.3 shows, a trigram metric can capture this fact, but the 

bigram metrics do not reveal any reason to doubt the legality of strst. Indeed, 

according to bigrams this letter string should be a rather typical example of the English 

language.

Sum and product

It was argued above that the use of transition probabilities is preferable to the use 

of frequencies. By the use of transition probabilities each n-gram can be regarded as an 

event. A word is then constituted by the simultaneous occurrence of these events. For 

example, all n-grams involved in the representation of judge have to occur together in 

order to form the word judge. The occurrence of a single event, e.g., the trigram udg, 

does not constitute the word judge. From the statistics this constitutes an AND-relation 

between all the events involved, thus the probabilities of the individual events have to 

be multiplied to accurately represent this combination of events. In psycholinguistics 

the logarithm is often used, where the sum of logarithmic values is equivalent to the 

product. It is important to note that frequencies and transition probabilities reflect a 

different normalisation and thus, these numbers are not equivalent irrespective of the 

mathematical operations applied. That means for forming the mathematically exact 

account of the orthographic typicality using transition probabilities, they should either 

be multiplied or the logged probabilities should be added.

Forming the product of transition probabilities and forming the arithmetic mean of 

transition probabilities is not only mathematically different, the predictions differ as 

well. In Table 2.3 it can easily be seen that the product of the trigram transition 

probabilities is equal to 0, whereas the mean is equal to 0.13 indicating a rather typical 

item. In this example, the product produces the desired result. The use of the product 

and the sum of transition probabilities was also compared empirically. Loth (2007) 
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compared both methods in predicting RT in a lexical decision experiment. The results 

showed a larger effect of orthographic typicality when the product was used in the 

computation compared to the arithmetic mean (which is the sum divided by a 

constant). This was attributed to a more reliable measure when using the product of 

transition probabilities.

2.3.2 OT3 Algorithm

The aim of the OT3 algorithm is to provide a measure of how likely a letter string is 

compared to the orthographic structure of a given language model (the corpus). The 

algorithm provides an estimate of orthographic typicality. This differs from 

wordlikeness, which includes other additional factors (Grainger & Jacobs, 1996; J. 

Humphreys, 2008). For example, J. Humphreys (2008) showed that 

pseudohomophones are more wordlike than other nonwords, but pseudohomophony 

does not affect the typicality of that nonword per se. Indirectly, the existing word 

would contribute to the transition probabilities and thus, influence the estimate of 

typicality. Similarly, pronounceability is not taken into account directly. Pronounceable 

nonwords are usually considered more wordlike (J. Humphreys, 2008; Rubenstein et 

al., 1975), but their pronounceability as a categorical distinction does not change the 

typicality of a nonword even though pronounceability and typicality are well correlated 

(Massaro et al., 1979). In the following section I introduce the implementation of the 

OT3 algorithm.

The algorithm was implemented in JAVA (Java Runtime Environment, 2011) and 

operates platform independently with a JAVA Runtime environment. The linguistic 

input for the software is a corpus that specifies word frequencies which can be 

provided in actual frequency, frequency per million, the log of any frequency measure 

or any other numerical value. The alphabet is another required piece of information 

and is provided in a file listing all valid letters of the language under consideration. This 

specifies the letters that will be used in generating items, but it also specifies a filter for 

the corpus where items with letters that are not part of the alphabet are ignored. 

These items are not included in measuring transition probabilities.
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2.3.3 Initialising

The programme provides an Initialise tab, where the user specifies the folder 

containing the wordlist.txt and alphabet.txt. This folder also serves for saving the 

computed transition probabilities and a list of excluded words. Both can be used to 

check the functioning of the algorithm.

The initialisation process parses the wordlist and computes the transition 

probabilities of all trigrams. In order to start a Markov-chain, the algorithm has to use a 

unigram in the first step, a bigram in the second step and trigrams for all further steps. 

In symmetry to the start of the chain, the end is formed by a bigram and a unigram.

The first and the last element in a word is always the start or end symbol and its 

probability is always 1.0. Thus, the two unigrams can be safely ignored. The bigram 

refers to the combination of word beginning (#) and the first letter (a). Thus, it is equal 

to the probability that a word starts with a certain letter (#a). This transition probability 

is computed by summing the frequencies of all words starting with a specific letter and 

dividing these counts by the total word count. As a result of this normalisation, it does 

not matter whether frequencies are provided per million or as total values as 

mentioned above. For finalising the chain, the bigram transition probability of the last 

letter and the word end is computed in the same way. Note, that using an additional 

space character and using trigrams from start to end is only equivalent at the beginning 

of word (the probability that a word starts with a certain letter), but not at the end of 

the word. The space character would have a probability of 1.0, because it is the only 

option to continue once the first space character (bc#) was encountered (leading to 

c##). This would not reflect the probability of word ending in a certain letter (c#) and 

result in an asymmetric Markov-chain.
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The trigram transition probabilities are computed by adding the frequencies of all 

words containing a particular trigram (abc) and dividing this by the total number of 

occurrences of the corresponding initial two letters (ab). That means the first trigram in 

each word contains a single space character (#ab) and so does the last trigram (bc#). 

The trigram transition probability is equivalent to the normalised frequency of a 

trigram and thus, scales the provided frequencies. This also implies an important 

property of transition probabilities: their dependence on other alternatives. If abc has 

a frequency of 40 and it is the only relatively frequent continuation of ab, the transition 

probability will be high. In contrast, there could be other options (e.g., aba in abacus) 

with a much higher frequency and in that case the transition probability will be lower. 

This is illustrated in Table 2.4 with gre and ree. Despite their similar frequency, the 

transition probability of gre is more than eight times greater then for ree. Thus, the 

typicality of each transition depends on the local set of alternatives. This resembles the 

idea of local competition in computational models (McClelland & Rumelhart, 1981; 

Rumelhart & McClelland, 1982). A medium frequency word node was the top 

candidate in a cluster of very low frequency competitors, whereas another node with 

the same frequency in a cluster of very high frequency word nodes would make the 

medium frequency word a less competitive candidate. In transition probabilities, the 

other potential candidates scale the probability of each transition. This marks an 

important difference to using the raw frequency data.
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TABLE 2.4: EXAMPLES EVENT AND GREEN. THE TABLE SHOWS THE FREQUENCY OF THE RESPECTIVE N-
GRAM AS IN THE ENGLISH CORPUS TYPE DATABASE OF CELEX AND THE TRANSITION PROBABILITIES 
PTRANS.

Trigram Frequency Ptrans Trigram Frequency Ptrans

#e 407834 0.023 #g 330073 0.019

#ev 68166 0.167 #gr 73723 0.223

eve 134912 0.818 gre 41178 0.382

ven 58052 0.108 ree 49172 0.046

ent 266334 0.316 een 82714 0.289

nt# 213006 0.394 en# 296153 0.352

t# 1792867 0.102 n# 1444738 0.082

log product of transition probabilities -5.36 -6.207

OT3 (standardised product) 1.64 1.225



Computing the initial and final transition probabilities is including position specific 

information in the chain. That means the initial and final trigrams and all bigrams 

include information about their position at the edge of the letter string. There are 

three reasons for including this information in processing the typicality. First, there are 

empirical reasons for treating the first and the last letter of a letter string special. The 

exterior letters can be reported more accurately than interior letters (Merikle, 

Coltheart, & Lowe, 1971; Mewhort & Campbell, 1978). Furthermore, including these 

letters in a transposition (Perea & Lupker, 2003b; White, Johnson, Liversedge, & Rayner, 

2008) or replacing them (Schoonbaert & Grainger, 2004) is more disruptive to the 

recognition than manipulating internal letters only. The Spatial Coding Model (Davis, 

2010) that was used in the simulations in Chapter 4 and 8 also treats these letters 

specially. Also, ignoring the special position of first and last letters would imply text 

comes without spaces, which is clearly not the case. Separating words by spaces 

facilitates reading (Grainger & Jacobs, 1999). Secondly, the initial letter marks the 

beginning of a syllable and the final letter the end of a syllable. This is important 

phonological information for starting and ending the generating process in a 

grammatical way. A specific marking of the position in the phonological stream is not 

required in the interior letters as they have an existent preceding and succeeding item 

to convey this information. Finally, the Markov-chain requires a start and an end. By 

starting with a trigram that covers the first two letters, the information about their 

typicality would be lost. Thus, it could be argued treating the begin and the end of a 

word special is justified. But it is important to note, that this positional information is 

still minimal compared to a word length and position specific account.

The output of the initialisation procedure are five files. First, the ini_ok.csv contains 

a line by line copy of all words that were accepted by the alphabet filter rule and 

ini_nk.csv the items rejected by the filter. Third, the file bigrams.csv contains a list of all 

possible first and last letters with their frequency and the respective probability. 

Fourth, the trigrams.csv contains a list of possible trigrams as specified by the alphabet 

and their respective frequencies and transition probabilities. Finally, 

ini_standardisation.csv contains the data (mean and standard deviation for each word 
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length) that is required for computing standardised values of typicality which is subject 

of the next section.

2.3.4 Analysing words

In analysing words the algorithm relies on a Markov-chain model (see e.g., Heyer et 

al., 2006). The chain is defined by the letter string that is analysed, i.e. the letters in the 

string define which transition probability has to go into the computation. In analysing 

letter strings both requirements of a Markov chain are satisfied, the chain has a 

defined start and end and there is exactly one path in the model. That means that the 

analysis is a finite state automaton where every analysis of a specific string produces 

the same result. In order to ensure this, the probabilities are fixed once they have been 

established during the initialisation.

A letter string is defined by the co-occurrence of all its letters in a particular order. In 

order to describe the co-occurrence of events, the product of the transition 

probabilities is computed as described above. Because transition probabilities range 

between 1.0 and 0.0, each multiplication reduces the magnitude of the result. The first 

consequence is that the resulting numbers are very small and in order to scale them 

the logarithm of the product is used (see examples in Table 2.4). This log product 

expresses the magnitude of the likelihood of an item with respect to a language (as 

defined by the input corpus). By using the logarithm, the distribution of values is also 

transformed. In particular, the differences between very low values (very atypical 

items) is reduced compared to the more typical items, because there are more atypical 

items than typical ones. This can be explained by the amount of random letter strings 

compared to the number of actually existing words. For example, there are 11.9 million 

possible combinations of five letters but only about 4500 five letter words (Ramsden & 

Ramsden, 2007). Thus, the small differences between very atypical letter strings are 

less important than between two typical items. A second consequence is that the 

measure is dependent on the length of stimulus. Even if strings are formed of equal 

letters, e.g. xxxxx and xxxxxx, the additional multiplication with a transition probability 

shifts the log product by one magnitude. This is despite the fact that five or six x in a 

row are similarly unlikely in forming a word.
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A standardisation procedure is required for forming a measure that is independent 

of the length of an item. As a side effect, this standardisation provides a language 

independent measure for typicality. The OT3 algorithm continues with calculating the 

log product of each word in the corpus. A length specific routine calculates the mean 

and the standard deviation of the log products of all words. For saving computation 

time, this is done once during the initialisation process and a table specifying the 

values is saved on the hard disk. Using these numbers a z-score value of typicality of 

each stimulus can be computed, where a high value refers to highly typical stimulus 

and a low value to an atypical stimulus. By expressing typicality in terms of standard 

deviations, the measure becomes more intuitive and language and length 

independent. This standardised log product will be referred to as OT3 value.
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For illustrating the standardisation process all 5, 6, 7 and 8 letter words of the 

English Corpus Type database of CELEX (Baayen et al., 1995) were plotted with their log 

product of transition probabilities in Figure 2.1. Each word length forms a different 

layer which is due to an additional multiplication for each additional letter. Figure 2.2 

shows the respective OT3 values (standardised log product). The shape of the 

standardised curves is the same as in the unstandardised case. Thus, if stimuli of only 

one length in one language are used the standardisation procedure has no effect, apart 

from shifting the numbers. The OT3 plots for each letter length match almost perfectly 

indicating that the standardisation procedure showed the desired effect. Interestingly, 

the distribution of typical and atypical words is similar to the typical RT distribution. 
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Figure 2.1: Plot of the log product of transition probability of 5, 6, 7 and 8 letter words in the 
English Corpus Type database of CELEX. Note, that the fractional rank was used. This allows a 
comparison of the spectrum of values even though the number of words per length differs.

Figure 2.2: Plot of the standardised product of transition probability (OT3) of 5, 6, 7 and 8 letter 
words in the English Corpus Type database of CELEX. Note, that the fractional rank was used. This 
allows a comparison of the spectrum of values even though the number of words per length 
differs.



There are fewer very typical than atypical words. Figure 2.3 shows the comparison of 

all 5, 6, 7 and 8 letter words in the ECT database of CELEX and the z-scores of RT of 

Experiment 2. Both distributions are very similar giving rise to the idea that the method 

applied for analysing word stimuli results in a natural distribution. But note that the 

similarity of the distributions does not imply any correlations between RT and 

typicality.

2.3.5 Generating items

The software provides a panel for generating items where the user has to specify 

the folder with all the files that were produced during the initialisation process. The 

user specifies the length of the stimuli and whether they should be words or 

nonwords. Also, the software provides two search modes, a random walk and an 

exhaustive search. The random walk is essentially an heuristic that produces random 

letter strings of a certain length which are then compared against the criteria specified 

by the user. Those items matching the criteria are sent to the output and the procedure 

continues until the number of items specified by the user is hit. In an exhaustive 

search, the algorithm parses through every possible letter combination. For reducing 

the computational load the least demanding metric is computed first for excluding 

items from the output. That means the OT3 value is essentially a look-up in a small 

dataset of transition probabilities and can be computed faster than N, which requires 
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Figure 2.3: Histogram of OT3 values of all 5, 6, 7 and 8 letter words in the English Corpus Type 
database in CELEX and z-scores of RT of Experiment 1. Please note that the OT3 values were 
multiplied with -1 for plotting them in the same direction as the RT distribution.



numerous look-ups in the lexicon database. If the maximum number of stimuli is 

expected to be small, an exhaustive should be performed. Otherwise, the programme 

would continue listing a few items repeatedly until the specified number of items is 

reached. Where a large number of possible items is expected, the random search 

provides the user with the desired number of stimuli.

There are several optional values that can be specified by the user, these include the 

maximum and minimum number of neighbours. Additionally, the arithmetic mean of 

transition probabilities can be specified. This option also allows to specify a maximum 

deviation of the transition probabilities in the string. By using this option, it can be 

specified how homogeneous the transitions within a stimulus are. For example, a 

nonword could have a peak of a very unlikely trigram embedded in typical letter 

combinations. In bigram frequency this was referred as the consistency within the 

string (Biederman, 1966; Mayzner & Tresselt, 1966), whereas strong deviation marking 

other boundaries (e.g., morphological, syllabic) were referred as bigram troughs 

(Seidenberg & McClelland, 1989).

Duyck et al. (2004) mentioned a benchmark criterion where WordGen generated 

80% pronounceable nonwords with appropriate settings. The OT3 software was 

initialised using the BNC (The British National Corpus, 2001). In an exhaustive search, 

all five letter nonwords with an OT3 value of more than 1.20 were generated. This 

resulted in 1073 nonword items (OT3mean=1.40, OT3max=2.56, OT3min=1.20) where all 

items were legal, though about ten items appeared to be hard to pronounce (see 

Appendix C for a list of these items). This result challenges the benchmark of 80% 

pronounceable nonwords set by Duyck et al. (2004) using WordGen. Furthermore, OT3 

achieved this without referring to explicit phonological rules as Wuggy (Keuleers & 

Brysbaert, 2010).
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The results of generating nonwords using OT3 and their respective typicality values 

were compared to the position and word length specific mean log bigram frequency 

(PLMLBF, results from N-Watch, Davis, 2005) in Table 2.5. Additionally, each nonword is 

shown with a word that corresponds to the respective PLMLBF value. For an 

orientation with regards to the PLMLBF values, all 3370 five letter words in the BNC 

(The British National Corpus, 2001) database were analysed using N-Watch and 

ordered by their PLMLBF values. The rank of each word was divided by the total 

number of five words resulting in the fractional rank which is displayed alongside in 

Table 2.5. These values showed that the PLMLBF values are not distributed equally 

across the spectrum, but the majority of items scoring in a range between above 2 and 

below 3. The OT3 value of the first three nonword items indicated that these items are 

atypical in English and most likely unpronounceable. In contrast, the PLMLBF indicated 

that these items were comparable to normal English words, even though nappy and 

alike were amongst the more atypical words. Nevertheless, the examples show that 

OT3 was not misled by some high frequency letters in specific positions and thus, more 

reliable in rating these items as atypical. At the other extreme, OT3 predicts that the 

final three examples are typical in English. In contrast, the PLMLBF metric rates these 

items amongst the least typical percent of words or below. It could be argued that 

these items are not as atypical as the PLMLBF metric suggested. There was also some 

agreement between the two metrics, specifically in atypical words. Interestingly, OT3 

rated alike much higher than PLMLBF, indicating some disagreement in typical words. 

In summary, the OT3 is more likely to pick up on trespassing orthographic rules than 
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TABLE 2.5: COMPARISON OF OT3 AND WORD LENGTH AND POSITION SPECIFIC 
MEAN LOG BIGRAM FREQUENCY (PLMLBF). THE FRACTIONAL RANK OF 
PLMLBF IN FIVE LETTER WORDS IS DISPLAYED IN FRANK.

Nonword OT3 PLMLBF Word OT3 PLMLBF FRank

whrts -2.13 3.19 place 1.47 3.19 0.08

tquld -2.14 2.36 alike 1.68 2.36 0.77

qftch -2.02 2.35 nappy 0.52 2.35 0.77

mythe 1.56 1.13 rhyme 0.11 1.11 0.99

atche 1.43 0.81 hydra -0.57 0.84 1.00

answe 1.22 0.74 pygmy -1.34 0.67 1.00



PLMLBF (see Table 2.5). The next section reports experimental evidence regarding the 

psychological validity of the OT3 metric.

2.3.6 Summary

The OT3 algorithm for analysing and generating word and nonword stimuli operates 

language independently on a given corpus with word frequencies and an alphabet. The 

standardised measure provides a word length and language independent measure of 

typicality. Also, the resulting distribution of typicality results in a natural distribution 

that is found in RT data. This algorithm can also be used to analyse numerical code and 

symbols, e.g. a phonetic code. In comparison to WordGen (Duyck et al., 2004) the OT3 

metric is not based on the position specific or word length specific frequency of 

bigrams, but it uses the transition probabilities of trigrams. Furthermore, the OT3 

software provides an easy way of generating nonword items with a specified level of 

typicality. This contrasts with other nonword generator software, such as Wuggy 

(Keuleers & Brysbaert, 2010) where a base word is required for the process.

2.4 Experiment 1

This experiment aimed at testing the nonwords that were generated by the OT3 

algorithm. The nonwords were generated as highly typical and very atypical stimuli. 

Since the pronounceability of the nonwords forms a potential confound (Massaro et 

al., 1979; McClelland & Johnston, 1977), the experiment tested typicality within 

pronounceable and within unpronounceable nonwords in a standard lexical decision 

task. The word targets comprised high and low lexical frequency and typical and 

atypical word items covering a broad range. The usage of diverse word targets reflected 

the diversity amongst the nonword targets and was intended to hinder participants in 

relying on a legality judgement.

2.4.1 Methods
Participants. Twenty-eight participants from Royal Holloway, University of London 

took part in the study and either received credit points to complete their course 

requirements or £5 in exchange for their time. All were native speakers of English.
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Stimuli & Design. 160 nonword targets were selected. Half of them had a high level 

of typicality and half had a low level of typicality. Additionally, half the items in each 

typicality class were pronounceable (e.g., sument, udnop) and half unpronounceable 

(e.g., safght, vlpej). Due to a lower density of unpronounceable highly typical items, 

the unpronounceable nonwords scored slightly lower in OT3 than pronounceable items 

[t(78) = 7.387, p<0.001, d=1.65]2. The low typicality items were matched across 

pronounceability [t(57) = 0.478, p=0.634]. The mean values are presented in Table 2.6. 

Each category comprised equal numbers of 5 and 6 letter stimuli. Importantly, none of 

the nonword stimuli had any orthographic neighbours according to N-Watch (Davis, 

2005). A list with all items is provided in Appendix B.

The experiment also involved 160 word targets with half 5 and 6 letter words. The 

word targets were not matched on frequency (mean=148.1/million, min=0.3/million, 

max=3360.0/million; CELEX frequency according to N-Watch), but showed a 

considerable variance in frequency as well as in typicality (OT3mean=0.33, OT3max=2.39, 

OT3min=-2.77; see Appendix B).

Procedure. All participants were tested in a quiet room in groups of up to three. 

They were handed the ethics consent form for the lexical decision experiment. 

Participants were told that words and nonwords would be displayed on the computer 

screen in front of them. They were instructed to indicate by pressing a clearly marked 

2 effect size according to Cohen (1977, p. 44)
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TABLE 2.6: OT3 VALUES OF THE NONWORDS USED IN EXPERIMENT 1. THE VALUES 
WERE DERIVED BY USING THE ECT FREQUENCIES IN THE CELEX DATABASE. NUMBERS 
IN BRACKETS INDICATE THE ITEMS THAT INCLUDED A TRIGRAM THAT WAS NOT PRESENT 
IN THE CELEX DATABASE.

Pronounceability

Typicality Statistics
Pronounceable

nonwords
Unpronounceable

nonwords Total

High Mean 1.55 (0) 0.94 (0) 1.25

Max 2.15 2.08 2.15

Min 0.84 -0.11 -0.11

Low Mean -3.96 (11) -3.88 (10) -3.92

Max -2.54 -2.97 -2.54

Min -5.57 -5.14 -5.57



button of a button box whether the stimulus was a word or a not, responding as 

rapidly and as accurately as possible. The experiment started with ten practice trials, 

followed by 320 randomly ordered trials in four blocks separated by a self-paced break. 

The stimulus presentation and data collection was achieved by the use of DmDX 

(Forster & Forster, 2003). A Samsung CRT screen on a Windows XP PC was used.

For all presentation on screen a Courier font in size 24 was employed. Each trial 

started with a fixation asterisk presented at the centre of the screen for 500 ms. This 

was followed by the presentation of the target stimulus in uppercase. The target was 

presented until the participant responded or the response limit of 2000 ms passed. In 

case of failure to respond within the given time frame the participants saw a message 

indicating that their response was too slow. Feedback on the correctness of the 

response was provided during the practice session, but not with the experimental 

items.
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Figure 2.4: Plot of results of Experiment 1 by decile and condition. The scale of reaction times in 
ms is an approximation to reflect the actual corresponding value of z-score and reaction time.



2.4.2 Results

Participants and items showing an error rate greater than 25% were dropped from 

the analysis as in all experiments in this thesis. This criterion did not affect participants, 

but seventeen words (telex, epoch, idiom, xerox, idyll, typify, tawny, kiosk, topaz, codex, 

unripe, tract, cognac, vinyl, hyphen, lament, gauze) and five pronounceable nonwords 

(frount, govent, proust, prount, prould) were excluded from the analysis. 

Unpronounceable nonwords were not affected by the exclusion criterion. Outliers were 

removed by 3 SDs for each participant using the correct responses. This affected 1.62% 

of the remaining data. The mean RTs and error ratios are shown in Table 2.7.

Repeated measures analysis of variance

ANOVAs were performed on the RT data of correct responses. Prior to the analyses 

the raw RT data were transformed to z-scores for each participant using the mean and 

standard deviation of all correct responses of the participant. This method was 

employed throughout the thesis. In all analyses the effect size according to Cohen's 

criterion (Cohen, 1988) was computed using G*Power (Faul, Erdfelder, Lang, & 

Buchner, 2007) by entering estimated η² in the direct computation. Cohen defined f 

values 0.1, 0.25, and 0.4 as small, medium, and large effects, respectively. The word 

targets were not of interest and thus, were not analysed further. As indicated in Table 

2.6, the high typicality nonword conditions were not matched with regards to OT3. 

Thus, the effect of typicality was analysed within pronounceable and within 

unpronounceable nonwords separately. The effect of pronounceability was analysed 
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TABLE 2.7: MEAN REACTION TIMES IN MS AND ERROR RATIO IN PERCENT AS A 
FUNCTION OF CONDITION AND TYPICALITY OF EXPERIMENT 1.

Words RT 514

Error ratio 4.55

Typicality

High Low Effect

Pronounceable nonwords RT 581 498 83

Error ratio 7.14 1.16 5.98

Unpronounceable nonwords RT 535 490 45

Error ratio 3.30 0.89 2.41



within low typicality nonwords and in a regression analysis accommodating the 

unmatched OT3 values.

The separate analysis of nonword typicality in pronounceable nonword targets 

showed a significant main effect in z-scores [F1(1, 27) = 236.228, p<0.001, f=2.95; 

F2(1, 73) = 117.403, p<0.001, f=1.27], indicating that pronounceable nonwords with a 

low typicality were responded to faster than those with a high typicality. Similarly, the 

effect of typicality was significant in unpronounceable nonwords [F1(1, 27) = 95.020, 

p<0.001, f=1.88; F2(1, 78) = 51.078, p<0.001, f=0.81] where the low typicality items 

received faster responses than the high typicality items.

The analysis of pronounceability in low typicality nonwords revealed no significant 

effect of pronounceability [F1(1, 27) = 1.627, p=0.213; F2(1, 78) = 1.000, p=0.320]. A 

linear regression was performed using OT3 as a predictor for the z-scores of RT across 

all nonword targets. The analysis revealed that OT3 was a significant predictor for RT 

[F(1, 132) = 143.305, p<0.001, r²=0.521]. Since the high typicality conditions were not 

directly comparable due to unmatched OT3 values, the residuals of the regression were 

computed and are presented in Table 2.8. The residuals in the low typicality condition 

were very small and did not differ significantly between pronounceable and 

unpronounceable nonwords [t(57) = 0.763, p=0.449]. But there was a significant 

difference in the residuals of the high typicality conditions [t(73) = 4.251, p<0.001, 

d=0.98]3 indicating that the residuals were larger in pronounceable than in 

unpronounceable nonwords. That means after accommodating for the unmatched OT3 

3 effect size according to Cohen (1977, p. 44)
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TABLE 2.8: RESIDUALS OF A LINEAR REGRESSION USING OT3 
AS PREDICTOR FOR Z-SCORES OF RT IN NONWORDS IN 
EXPERIMENT 1.

Pronounceability

Typicality
Pronounceable

nonwords
Unpronounceable

nonwords

High 0.15 -0.16

Low 0.03 0.00



values, the unpronounceable nonwords received significantly faster responses than 

pronounceable nonwords.

Analysis in deciles

For a more thorough assessment of the typicality effect in the data, ten vincentiles 

for each condition were formed (Vincent, 1912). The fastest ten percent of the RT of 

one participant in each condition were assigned to the first bin, second fastest ten 

percent to the second bin and so on (Andrews & Heathcote, 2001; Balota et al., 2010; 

Balota, Yap, Cortese, & Watson, 2008; Ratcliff, 1979; Ratcliff & Murdock, 1976). In 

Figure 2.4 the mean of all participants per condition and bin is displayed, which reflects 

the behaviour of a single average (Ratcliff, 1979) or ‘ideal’ participant (Balota et al., 

2008). The result of this procedure allows to test whether the typicality effect is 

present across the whole distribution of RT. A mixed model analysis was performed 

using R (R development core team, 2007) and lmer in lme4 (Bates, 2005; Bates & 

Sarkar, 2007) package (see Appendix E for a detailed list of results). In this analysis 

participants and items were entered as random factor and thus, the data was not 

aggregated prior to the analysis which increased the power of the analysis while 

maintaining the same α-error (Baayen, Davidson, & Bates, 2008). Specifically, the 

increased power was important because the vincentiling reduced the number of 

measurements per cell. Consequently, running separate analyses using either 

participants (F1) or items (F2) as random variable was obsolete. Two separate analyses 

for pronounceable and unpronounceable nonwords were computed. The z-scores of 

reaction time of the respective conditions formed the input for the analysis. The 

typicality effect within each decile was tested using a Markov chain Monte Carlo 

(MCMC) simulation. The output were p-values according the t-distribution and MCMC 

p-values (Baayen et al., 2008), where the latter tend to be more conservative 

(Brysbaert, 2007). The effect of nonword typicality was significant using either method. 

In all ten deciles in pronounceable as well as in unpronounceable nonwords  typical 

nonwords received slower responses than atypical nonwords. This was the case in fast 

responses as well as in slow responses. The t-values increased in later deciles and the 

Ex-Gaussian analysis provided insight whether the effect size increased in slow 

responses. The analysis of pronounceability in low typicality nonwords revealed a 
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significant effect in decile seven and the slowest decile indicating faster responses to 

unpronounceable low typicality items. But the data also showed a tendency in fastest 

deciles for the opposite direction, i.e. faster responses to pronounceable low typicality 

nonwords. Thus, the analysis using the Ex-Gaussian fitting could show whether there is 

a systematic influence of pronounceability on τ.

Ex-Gaussian analysis

The distribution of reaction times is usually a positively skewed normal distribution 

(Heathcote, Brown, & Cousineau, 2004; Ratcliff, 1979; Ratcliff & Murdock, 1976). 

Following Ratcliff (1979; Ratcliff & Murdock, 1976) a convolution of a normal and an 

exponential distribution was chosen for fitting the raw data. There are various methods 

for deriving the according parameters of a distribution that describes the data 

(Cousineau, Brown, & Heathcote, 2004; van Zandt, 2000). The quantile maximum 

probability estimator (QMPE)4 account (S. Brown & Heathcote, 2003; Cousineau et al., 

2004) was chosen here. Following S. Brown and Heathcote (2003) the term Ex-

Gaussian will be used to refer to the convolution of a normal and an exponential 

distribution. Using QMPE very accurate fits can be achieved (Rouder & Speckman, 

2004) and effects that are masked in standard analysis may be revealed. Examples 

include effects in a semantic priming lexical decision task (Balota et al., 2008) and 

potential diagnostic uses in early stages of dementia (Alzheimer’s type; Balota et al., 

2010; Tse, Balota, Yap, Duchek, & McCabe, 2010). Also, Ratcliff and Murdock (1976) 

showed that the prediction of models can be falsified using the evidence from RT 

distributions, in particular when the mean RT does not provide evidence in favour of or 

against a particular model.

QMPE reveals three parameters per participant and condition describing the 

distribution of reaction times. The µ parameter reflects the central tendency of the 

Gaussian part of the distribution (the mean of the RT data were they normally 

distributed), σ denotes the standard deviation of the underlying Gaussian distribution, 

4 Please note that the account was erroneously named quantile maximum likelihood (QML) by Brown 
and Heathcote (2003). Rouder and Speckman (2004) showed that the algorithm actually uses the 
quantile maximum probability estimator (QMPE). The correct name was used in all later publications 
including the programme itself.
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and τ is the slope of the distribution describing the positive skew. The algorithm splits 

the data of each participant in each condition in quantiles (or vincentiles) and the 

parameters µ, σ and τ are estimated for each quantile distribution. Finally, these results 

are used to estimate the distribution of RT for each participant and condition. After the 

estimation process the programme produces an exit code, where numbers smaller 

than 32 indicate accurate fits, 32 and 64 indicate some uncertainty and numbers 

greater than 64 indicate some data points might be missing (S. Brown, Cousineau, & 

Heathcote, 2008).

The QMPE software was used with the raw reaction time data after removing 

outliers. In analysing this and all other experiments the exit code was always smaller 

than 64, thus the estimates can be considered accurate (S. Brown et al., 2008) and exit 

codes were not reported. Mean values of the three parameters for each condition 

averaged across participants are shown in Table 2.9.

There was a significant main effect of typicality in pronounceable nonwords on μ 

[F(1, 27) = 23.918, p<0.001, f=0.94] reflecting faster responses in low typicality trials 

than high typicality trials. There was also a significant effect on τ [F(1, 27) = 6.316, 

p=0.018, f=0.48] reflecting a longer tail of the RT distribution in high typicality trials 

than in low typicality trials which was also supported by the visual inspection of Figure 

2.4. This means that the difference between the conditions increased towards the slow 

tail of the distribution. There was no significant effect on σ [F(1, 27) = 3.320, p=0.083] 

where the tendency indicated a greater variance in high typicality trials. The analysis of 

unpronounceable nonword targets showed a significant effect on μ [F(1, 27) = 20.972, 

p<0.001, f=0.88] indicating faster responses to low typicality nonwords than to high 
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TABLE 2.9: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF 
TARGET PRONOUNCEABILITY AND TYPICALITY OF EXPERIMENT 1.

Pronounceable nonword Unpronounceable nonword

Parameter
High

typicality
Low

typicality Effect
High

typicality
Low

typicality Effect

µ 481 423 58 451 419 32

σ 53 39 14 39 30 9

τ 106 75 31 87 74 13



typicality nonwords. In contrast to pronounceable nonwords, there were no significant 

effects on σ [F(1, 27) = 2.917, p=0.099] and τ [F(1, 27) = 2.280, p=0.143]. The tendency 

in σ reflected a greater variance in high typicality trials than in low typicality trials.

The analysis of pronounceability in low typicality nonwords revealed no significant 

effects: μ [F(1, 27) = 0.367, p=0.550], σ [F(1, 27) = 2.505, p=0.125] and τ 

[F(1, 27) = 0.037, p=0.850].

2.4.3 Discussion

This experiment showed that nonword responses were significantly influenced by 

the typicality of the items. This was the case within pronounceable nonwords and 

within unpronounceable nonwords. Because there was a wordlikeness manipulation in 

word targets that mirrored that in nonword targets, the participants could not rely on 

wordlikeness for making their decisions. Rather, the experiment required participants 

to identify the words. That the word targets covered a broad range including difficult 

items was reflected in large number of errors to some word targets.

The manipulation of typicality showed a significant effect in unprimed lexical 

decision, even though the number of neighbours (N) was constantly zero in all 

nonword items. This contrasts with the use of summed bigram frequency where the 

effect was not stable if neighbourhood size was held constant (Andrews, 1992). The 

effect in the current experiment was also robust despite a pronounceability 

manipulation, because it was found in pronounceable and unpronounceable 

nonwords.

The effect of typicality was stronger in pronounceable nonwords, but the RT 

distribution in nonwords with a low typicality was very similar irrespective of their 

pronounceability (see Figure 2.4). The absence of a significant difference between 

pronounceable and unpronounceable low typicality nonwords could indicate that 

pronounceability did not show an effect per se, but rather added to the effect of 

typicality in forming very wordlike nonwords. The results were in contrast to earlier 

research where pronounceability showed an effect (Rubenstein et al., 1971). The 
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absence of an effect of pronounceability in low typicality nonwords was compatible 

with evidence observed with German stimuli (Loth, 2007). As in the current 

experiment, the lexical decision RT data showed a typicality effect in both types of 

nonwords. Low typicality nonwords received similarly fast responses independent of 

their pronounceability (pronounceable: 567 ms, unpronounceable: 570 ms). 

Furthermore, the effect of typicality was larger in pronounceable nonwords (567 ms 

and 731 ms) than in unpronounceable nonwords (570 ms and 634 ms). The current 

experiment and the previous findings in German (Loth, 2007) could indicate that 

pronounceability is not effective in low typicality nonwords, but pronounceability 

contributes to the wordlikeness in highly typical items.

The effect of typicality could be attributed to different levels of lexical activity that 

the nonwords in the different conditions triggered. Despite having no neighbours as 

measured in N, typical letter strings could have activated several word nodes that share 

letter combinations with the stimuli whereas this was not the case in atypical targets. A 

higher level of global lexical activity is more likely in word responses and thus, made it 

harder to reject the respective nonword targets. The effect size was very large with a 

difference of 80 ms in legal nonwords (f>1.00).

The more fine grained analysis of Experiment 1 revealed that the effect increased in 

slower responses. This was apparent in the increasing t-values in the analysis by 

deciles, but also in τ reflecting a significantly greater number of slower responses to 

highly typical compared to atypical pronounceable nonwords and a respective 

tendency in unpronounceable nonwords. An increasing effect size in slower responses 

is markedly different from the majority of the masked priming experiments that will 

reported in this thesis. In the current experiment, the targets differed between the 

conditions. Hence, the increase in effect size in slower responses could be attributed to 

a property of the targets themselves rather than to a change in the effect. In a network 

model, the rate of accumulating evidence in the decision channels would be different 

between nonwords in the same condition. This results in a different slope of increasing 

activity, which would be accompanied by an increase in variance. The results indicated 

a tendency for greater σ values in slower conditions, which supports this hypothesis. 
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Thus, the change in effect size across the RT distribution was not due to any processes 

that started at a later stage, but the speed of evidence accumulation which can be 

regarded as an intrinsic property of the targets.

The OT3 measure of typicality was also used in the priming studies reported in the 

following chapters. This metric showed an effect in masked priming experiments and 

the current experiment where an effect in unprimed lexical decision in pronounceable 

and unpronounceable nonwords was demonstrated. These findings add to the 

reliability of the OT3 metric of typicality.

2.5 Summary and Discussion

The review showed that the wordlikeness of word and nonword targets can 

influence the response times in lexical decision. The wordlikeness was approximated in 

various ways, including the number of neighbours N (Coltheart et al., 1977) and bigram 

frequency (e.g., Miller et al., 1954). Both, counting the number of similar words or 

using measures of orthographic redundancy resulted in facilitatory, null and inhibitory 

effects. Andrews (1992) argued that the different effects of neighbourhood density (N) 

in lexical decision could be explained by the same mechanisms that operate in different 

contexts. Grainger and Jacobs (1996) introduced a parameter in their computational 

model that weights global lexical activity and provided a theoretical account for 

facilitatory and inhibitory outcomes of manipulating neighbourhood density and 

bigram frequency. Grainger and Jacobs (1996) highlighted the importance of 

controlling for the wordlikeness of experimental items. Additional evidence for the 

effect of typicality stems from ERP (e.g., Hauk et al., 2006) and fMRI studies (e.g., 

Binder et al., 2003; Woollams et al., 2011). The experiments presented in this thesis 

also provided evidence that typicality was extracted from letter strings very quickly and 

influenced the state of the lexicon.

Even though typicality influences the presence, absence and direction of 

experimental effects (Andrews, 1989, 1992, 1997; Rumelhart & Siple, 1974), there is no 

conclusive measure of wordlikeness or typicality. C. J. Davis et al. (2009) showed that 

the standard definition of neighbourhood is too coarse for accommodating the effects 
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reported in their masked priming experiments. Other suggestions of measuring the 

neighbourhood of a word include the OLD20 measure (Yarkoni et al., 2008). But 

increasing the complexity of neighbourhood measures reflects a move to a more global 

concept of wordlikeness, such as orthographic redundancy. Whilst neighbourhood 

reflects local connections and competition, a global wordlikeness measure reflects a 

comparison to the whole language and perhaps summed lexical activity. These effects 

can be isolated. In Experiment 1 and in the following experiments, it was argued that 

summed lexical activity triggered the typicality and prime-target congruency effects, 

whereas the inhibitory connections between neighbours were not relevant. In other 

experiments, e.g. in C. J. Davis and Lupker (2006), it could be argued that the inhibitory 

effects between two word nodes were very important.

The OT3 metric for measuring orthographic typicality was suggested in this chapter. 

In contrast to other accounts, OT3 provides a language independent measure of 

typicality expressed in standard deviations. Both the unit of measurement and the 

distribution of words is familiar to psycholinguists from z-scores and RT distributions 

(see Figure 2.3). Despite using no phonological information, the algorithm was able to 

produce 99% legal nonwords and challenges the benchmark set by WordGen (80%, 

Duyck et al., 2004). Furthermore, the OT3 software allows generating nonwords in a 

specified band of orthographic typicality. In contrast to Wuggy (Keuleers & Brysbaert, 

2010), OT3 does not require a base word for nonword generation.

The unprimed lexical decision experiment supported the argument that typicality 

influences the recognition process independently of pronounceability. A strong effect 

of typicality was found in pronounceable and unpronounceable nonwords. 

Furthermore, there was no effect of pronounceability in low typicality nonwords. These 

findings provide support for the psychological validity of the suggested OT3 algorithm.

2.6 Conclusion

The OT3 algorithm provides a language-independent measure of typicality 

expressed in standard deviations. The effect of typicality as predicted by OT3 was 

reported in eleven experiments of primed and unprimed lexical decision in two 
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languages. By providing this independent measure and resolving shortcomings of prior 

accounts, this account offers a reliable method of measuring typicality.
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3. Experiment 2

3.1 Introduction

This experiment is aimed at investigating whether there is a response congruency 

effect in masked primed lexical decision that can be attributed to processes in the 

lexicon. The empirical evidence in the literature is unclear. Several studies have not 

shown such an effect (Norris & Kinoshita, 2008; Perea et al., 1998, 2010), but three 

studies reported evidence for congruency effects in lexical decision (Davis & Lupker, 

2006; Jacobs et al., 1995; Klinger et al., 2000).

The review of theoretical accounts showed that there are several mechanisms that 

could result in a congruency effect. Some of these accounts attributed the congruency 

effects to processes other than the word recognition processes which are of particular 

interest in this thesis. For example, the results by Klinger et al. (2000) could be 

attributed to stimulus-response mappings due to repeated presentation of the stimuli. 

This bypasses the lexical processes of interest. In order to investigate processes in the 

lexicon rather than other mechanisms, it is necessary to design the experiment in a 

way that avoids other potential sources of apparent congruency effects. With regards 

to stimulus-response mappings, the targets in the current experiment were not 

repeated in order to avoid stimulus-response mappings. The formation of action 

triggers is another potential source of response congruency effects in lexical decision, 

but it has been identified as unlikely since the number of items is too large in order to 

prepare for specific items (Kunde et al., 2003). Similarly, lexical decision has been 

described as not automatic (Forster et al., 2003). Thus, the task is more likely to show 

effects of a lexical evaluation process rather than overlearnt response associations. 

Adhering to these restrictions will allow testing the impact of response congruency on 

lexical processes.

Prime-induced congruency effects are most likely in fast responses (e.g., Burle et al., 

2002). In order to encourage participants to respond fast and increase the likelihood to 

find an effect, the stimuli were chosen so that the words and nonwords were relatively 
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easy to categorise. Targets were prototypical for their response category. According to 

the method outlined in Chapter 2.3 the words were chosen to have a high level of 

orthographic redundancy, whereas the nonwords scored low. The word targets were 

also high in frequency (e.g., ROYAL). The nonword targets (e.g., AUDBC) were required 

to have no orthographic neighbours (Coltheart et al., 1977). The primes were selected 

to be prototypical stimuli according to the same metrics (e.g., order, dqrki).

Under these conditions two accounts predict a response congruency effect. The 

deep processing account (Dehaene et al., 1998) suggests that the task instructions are 

applied to the prime unconsciously, which finally results in facilitation of congruent 

trials and interference in incongruent trials. The semantic overlap account (Quinn & 

Kinoshita, 2008) can predict a congruency effect, assuming that all meaningful letter 

strings, i.e. words, form a natural class and nonsense letter strings another. Finding an 

effect would support these two accounts, but challenge others such as the entry 

opening model (Forster, 1999). Furthermore, finding an effect would add evidence that 

congruency effects can emerge in lexical decision and command researching the 

empirical discrepancy outlined above.

3.2 Methods
Participants. Thirty-eight participants were recruited from the same population as in 

Experiment 1. All were native speakers of English.

Stimuli & Design. One hundred words and one hundred nonwords were selected for 

a masked priming lexical decision experiment to investigate a congruency effect 

between prime and target. The words were of a high frequency on the basis of CELEX 

English Corpus Type database (mean=336.5/million, min=24.47/million, 

max=2954.36/million; Baayen et al., 1995; N-Watch results) and were high in 

orthographic typicality as measured by the OT3 algorithm (OT3mean=1.30, OT3max=1.99, 

OT3min=0.58; see Chapter 2.3), e.g., count, large. The nonwords were selected to have 

no neighbours according to N-Watch (Davis, 2005) and to score low on the typicality 

measure (OT3mean=-2.38, OT3max=-0.81, OT3min=-4.08), e.g., dvnel, ftnzi. All stimuli were 

formed of five letters. All stimuli are listed in Appendix B.
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The words and nonwords were grouped in pairs of primes and targets. Every word 

and every nonword did double duty as target and prime, therefore the pairing 

procedure had to obey some prior set restrictions. In every prime-target pair none of 

the letters of the prime was allowed to occur in the target to prevent form priming 

effects. Each target was assigned a nonword prime and a word prime. Furthermore, it 

was made sure that a repetition of flipped pairs was avoided. In other words when a 

word primed a word (e.g., large – YOUTH) this relation was not simply flipped to form a 

pair where the former prime serves as target (giving: youth – LARGE), but another 

prime was used (e.g., count – LARGE).

In order to have every target appearing once per participant two versions of the 

experiment were designed. The words were ordered by frequency and assigned to the 

lists alternately with either the word or the nonword prime. The nonword targets also 

appeared in both lists, but their assignment was random. The ratio of incongruent and 

congruent trials was balanced in all lists to avoid strategic effects of prime evaluation 

due to the relatedness ratio (see Bodner & Masson, 2003; Bodner et al., 2006).

Procedure. All participants were tested in a quiet room in groups of up to three. 

They were handed written ethics consent forms and instructions for the lexical decision 

experiment. Participants were told that words and nonwords would be displayed on 

the computer screen in front of them. They were instructed to indicate by pressing a 

clearly marked button of a button box whether the stimulus was a word or a nonword, 

responding as rapidly and as accurately as possible. The experiment started with eight 

training trials, followed by 200 randomly ordered trials in four blocks separated by a 

self-paced break. The stimulus presentation and data collection was achieved by the 

use of DmDX (Forster & Forster, 2003). A Samsung CRT screen on a Windows XP PC was 

used.

For all presentations on screen a Courier font in size 25 was employed. Each trial 

started with a fixation asterisk presented at the centre of the screen for 500 ms. The 

anchor point for centring the presentation in this frame as well as in all other string 

presentations was the centre of the clear width of the pixel map occupied by the string. 

The fixation asterisk was followed by a blank screen for 200 ms. A row of five hash 

marks was presented at the centre of the screen for 500 ms serving as a forward mask 

to the prime. The prime was presented directly following the hash marks for three ticks 
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at 60 Hz. This is equivalent to a prime presentation duration of 50 ms, but depending 

on the actual screen device the refresh rate has some technical variance (e.g., 62 Hz 

resulting in 48.4 ms). The prime was presented in lower case. The font size of the prime 

was 75% of the target and the mask preventing ascenders and descenders from 

standing out from the forward mask and the target. Given the exact centring of the 

strings on screen masking of the prime was ensured. Directly following the prime, the 

target was presented in uppercase. The onset of the target also started the 

measurement of reaction time. Participants were required to respond within 3000 ms. 

Otherwise, they received feedback indicating that they responded too slow. During the 

training session participants received immediate feedback whether their response was 

correct. This helped the experimenter and the participants to ensure that task 

instructions were understood. The feedback was omitted in experimental trials to avoid 

interference from the presented words on screen.

3.3 Results

In all experiments reported here participants and items with error rates greater than 

25% were dropped from the analysis. In Experiment 2, this resulted in the exclusion of 

one item (visit). In total 38 participants were tested, with 19 per list. Outliers were 

removed by 3 SDs for each participant using the correct responses. This affected 1.50% 

of the remaining data points. Results are presented in Table 3.1.
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TABLE 3.1: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 2.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 498 3.70 520 3.80

Congruent 475 2.10 497 1.90

Effect 23 1.60 23 1.90



3.3.1 Repeated measures analysis of variance

An ANOVA was performed on the RT data of correct responses. Prior to the analyses 

the raw RT data were transformed to z-scores for each participant. As in Experiment 1 

the z-scores were computed using all correct responses of a single participant and 

averaged per condition for the analyses. All analyses included the list factor as a 

random variable (Pollatsek & Well, 1995; Raaijmakers, Schrijnmakers, & Gremmen, 

1999).  There was a main effect of lexical status in z-scores [F1(1, 36) = 20.149, p<0.001, 

f=0.75; F2(1, 195) = 57.494, p<0.001, f=0.54] showing that words were responded to 

faster than nonwords. All further analyses of reaction times were performed for word 

and nonword targets separately.

A main effect of congruency was found in word targets in z-scores 

[F1(1, 36) = 53.331, p<0.001 f=1.22; F2(1, 97) = 88.404, p<0.001, f=0.96] showing that 

congruent trials received faster responses than incongruent trials. This main effect was 

also present in nonword targets [F1(1, 36) = 47.479, p<0.001, f=1.15; F2(1, 98) = 72.192, 

p<0.001, f=0.86]. The effect in nonwords indicated that congruent trials received faster 

responses than incongruent trials.

In error ratio, the main effect of response congruency was significant in the separate 

analyses of words [F1(1, 36) = 7.031, p=0.012, f=0.44; F2(1, 97) = 8.968, p=0.003, f=0.30] 

and nonwords [F1(1, 36) = 11.226, p=0.002, f=0.56; F2(1, 98) = 14.907, p<0.001, f=0.39]. 

98

Figure 3.1: Plot of reaction times in Experiment 2 by deciles. The scale of reaction times is an 
approximation to reflect the actual corresponding value of z-score and reaction time.



In word and nonword targets, the congruent trials were responded more accurate than 

incongruent trials.

3.3.2 Analysis in deciles

Following the method outlined in Experiment 1, ten vincentiles for each condition 

were formed (Andrews & Heathcote, 2001; Balota et al., 2010, 2008; Vincent, 1912). In 

Figure 3.1 the mean of all participants per condition and bin is displayed, which reflects 

the behaviour of a single average participant (Balota et al., 2008; Ratcliff, 1979). A 

mixed model analysis was performed using R (R development core team, 2007) and 

lmer in lme4 (Bates, 2005; Bates & Sarkar, 2007) package (see Appendix E for a detailed 

list of results). In this analysis participants and items as well as list was entered as 

random factor. The input data were z-scores of reaction time from the separate 

analyses for word and nonword trials. The congruency effect within each decile was 

tested using a Markov chain Monte Carlo (MCMC) simulation following the method 

outlined in Experiment 1. The results indicated a significant advantage of congruent 

trials over incongruent trials in word and nonword targets in each decile. This indicated 

that in this experiment no shift of the effect occurred and the effect size was 

comparable throughout the whole RT distribution which was compatible with the 

visual inspection of Figure 3.1.

3.3.3 Analysis using the Ex-Gaussian fit

The distribution of reaction times was analysed using QMPE as outlined in 

Experiment 1. The input to the QMPE software was the reaction time data of correct 

responses after removing outliers. Mean values of the three parameters for each 

condition averaged across participants are shown in Table 3.2.
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TABLE 3.2: RESULTS OF THE EX-GAUSSIAN FITTING OF EXPERIMENT 2 USING QMPE AS A FUNCTION 
OF TARGET LEXICALITY AND CONGRUENCY.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 430 414 16 457 431 26

σ 42 40 2 39 40 -1

τ 68 62 6 62 67 -5



The parameter estimates for each participant were analysed in a repeated measures 

ANOVA. A main effect of congruency was found in word targets on µ [F(1, 36) = 11.608, 

p=0.002, f=0.57] indicating faster responses to congruent than to incongruent trials. 

There was no effect on σ [F(1, 36) = 0.228, p=0.636] or τ [F(1, 36) = 1.271, p=0.267]. 

The analysis of nonword targets showed similar results. A congruency effect was 

present on µ [F(1, 36) = 18.537, p<0.001, f=0.72] showing faster responses in congruent 

compared to incongruent trials. There was no significant effect on σ [F(1, 36) = 0.062, 

p=0.804] or τ [F(1, 36) = 0.951, p=0.336].

3.4 Discussion

The experiment clearly showed a response congruency effect in word and nonword 

targets with an advantage of congruent trials over incongruent trials (see Table 3.1). 

According to the analysis using mixed models across deciles, the effect was present in 

each decile (Figure 3.1). This implied that the congruency effect was present in the 

whole distribution rather than affecting only parts of it, e.g. slow responses only 

(Balota et al., 2008). Using the Ex-Gaussian fitting algorithm (QMPE, Heathcote et al., 

2004) the effect of congruency was found in the µ parameter. The other parameters of 

the Ex-Gaussian, the standard deviation of the normal distribution σ and the 

exponential part τ, did not reveal a significant effect of congruency. This means that the 

whole RT distribution was shifted: responses were faster in congruent trials than in 

incongruent trials. The congruency effect was also found in analysing the error score in 

word and nonword targets with fewer errors in congruent trials than in incongruent 

trials. All analyses of this experiment showed that there was a clear response 

congruency effect in both word and nonword targets. Furthermore, the effect size was 

large according to Cohen's f in word and nonword targets.

3.4.1 Empirical discrepancy

Previous empirical work was inconclusive on whether there is a response 

congruency effect in lexical decision. Some studies provided an indication that there 

was such an effect their data, even though the experiments were not explicitly aimed 

at finding a response congruency effect (Davis & Lupker, 2006; Jacobs et al., 1995). 

Studies that explicitly aimed at finding a response congruency effect did not report the 
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presence of such an effect in their data (Norris & Kinoshita, 2008; Perea et al., 1998, 

2010) which was a critical piece evidence in favour of the Bayesian Reader model 

(Norris & Kinoshita, 2008). The current experiment clearly showed a response 

congruency effect in lexical decision. Potential reasons for this discrepancy include the 

experimental procedure, the difficulty of the task and differences in the primes.

Prime novelty and adaptation

One potential reason for the empirical discrepancy could be differences in the 

experimental procedure. The targets in this experiment were only presented once, but 

primes and targets were drawn from the same pool of items. Thus, about one half of 

the primes were novel, i.e. the participant had not encountered them as a target 

before, and the other half was used as prime after the participants responded to them 

consciously. The response congruency effect could have emerged as a result of learnt 

mappings between a stimulus and its response (Damian, 2001). In a post-hoc analysis 

each experimental trial was tagged as either novel or used with regards to the prime. 

Crucially, the stimulus-response mapping account predicts an interaction of prime 

novelty and congruency. That means a congruency effect is not expected in novel 

primes and strong congruency effects in used primes. The respective post-hoc analysis 

showed that the response congruency priming effects in novel and used primes were 

numerically almost identical and the interaction was not significant, although there 

was a main effect of prime novelty (see Table A.1, Table A.2 and Appendix A for more 

details).

In the course of the experiment, novel primes were more likely at the beginning 

whereas used primes were more likely towards the end of the session. The effect of 

adaptation or 'tuning into the task' could occur in the experiment and be mistaken as 

an effect of prime novelty as reported above. Most importantly, assuming that 

participants adapt during the experiment predicts that responses become faster after 

the initial trials. This contrasts with stimulus-response mappings predicting a null effect 

in novel primes. A post-hoc analysis was performed to test the hypothesis of 

adaptation.

101



The analysis of RT with regards to the four experimental blocks showed a main 

effect in nonword targets and a very strong tendency in word targets due to slower 

responses in the first block compared all other blocks (see Table A.3, Table A.4 and 

Appendix A for more details). The main effect of block indicated that participants 

adapted during the session, specifically after the first block. Due to the experimental 

procedure the largest ratio of novel primes was presented in the first block and the 

largest ratio of used primes in the last block. Thus, the main effect of block could have 

resulted in the main effect of prime novelty. Importantly, there was no indication that 

the congruency effect was absent or reduced in novel primes compared to used 

primes. Furthermore, the magnitude of congruency priming was similar in used and 

novel primes. Thus, the response congruency effect in this experiment was unlikely to 

be related to stimulus-response mappings. The presentation of primes as targets in one 

trial was unlikely to be the reason for the empirical discrepancy outlined above.

Difficulty of the task

The task difficulty is mainly determined by the choice of the targets. Grainger and 

Jacobs (1996) provided evidence suggesting that participants can adjust their decision 

criteria as a function of the nonword foils that are used in the experiment. In this 

experiment, the targets were easy to categorise for the participants and thus, a 

different set of decision criteria may have been used than in other experiments. 

Whether or not a response congruency effect only occurs if the stimuli are very easy to 

distinguish will be examined in Chapter 5. Also, the primes were very typical examples 

of their categories and could have provided more information than primes that are less 

clear candidates of a category, e.g. nonwords that are neighbours of words. The 

typicality of the primes will be addressed in a set of experiments as well (see Chapter 

6).

3.4.2 Theoretical accounts

Deep processing account

The deep processing account (Dehaene et al., 1998) explains congruency effects by 

assuming the prime is processed in the same way as the target, though this processing 

102



is incomplete. The deep processing account can accommodate the findings of the 

current experiment. An interesting prediction from this account is that the effect of 

prime congruency is independent from the difficulty of the explicit task. That means a 

congruency priming effect could occur in difficult targets as well as in easy targets. 

According to the deep processing account the task difficulty is not the underlying 

reason for the empirical discrepancy mentioned above (but see Grainger & Jacobs, 

1996).

Semantic overlap model

The semantic overlap model (Quinn & Kinoshita, 2008) can explain response 

congruency effects in lexical decision as a result of semantic activation only if the 

monitor can form the summed activation of all semantic features. There was no 

systematic semantic relation between primes and targets in this experiment, but every 

word prime or target could activate semantic features which in turn could have 

contributed to the lexical decision. There is evidence that semantic properties of the 

targets, such as imageability (Cortese & Khanna, 2007; Morrison & Ellis, 2000), 

concreteness (James, 1975; but see Levy-Drori & Henik, 2006) and valence (Kousta, 

Vinson, & Vigliocco, 2009), can affect lexical decision latencies. Assuming that the total 

activity in semantic features can be monitored, a semantic account could 

accommodate the current findings.

3.5 Conclusion

The experimental data showed that a response congruency effect can emerge in 

masked primed lexical decision. This effect occurred with novel primes but also with 

primes that the participants had once encountered as a target. The magnitude of the 

priming effect was similar for word and nonword targets, but also for novel and used 

primes. The results challenge the assumption that congruency priming cannot occur in 

lexical decision (Forster, 2004).

The results also raised the question why this effect was absent in some studies 

(Norris & Kinoshita, 2008; Perea et al., 1998, 2010), but very clearly in present in the 

data of the current experiment. Reviewing theoretical accounts suggested reasons 
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including the target difficulty (cf. Grainger & Jacobs, 1996) and the informativeness of 

the primes. Both will be addressed in the following experiments.
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4. Computational Models

In this chapter, I review computational models of word recognition and test these 

models using the data collected in Experiment 2. I discuss the Bayesian Reader (Norris, 

2006; Norris & Kinoshita, 2008) and the Spatial Coding Model (Davis, 2010). I also 

discuss an adapted version of the latter model.

4.1 Bayesian Reader

The Bayesian Reader (Norris, 2006; Norris & Kinoshita, 2008) is a computational 

model of lexical access based on Bayes' theorem (Bayes & Price, 1763). The model can 

provide predictions for lexical decision (Norris, 2006) and masked primed lexical 

decision experiments (Norris & Kinoshita, 2008), but also the same-different task. In a 

lexical decision task the model evaluates the probability that the stimulus is a word and 

performs a lexical decision when this probability hits a threshold. The evaluation of the 

probability is based on accumulated noisy evidence at each time step. The model 

predicts the mean reaction time and error ratio per item.

4.1.1 Overview

Lexical decision in the model is not based on the identification of a single word, but 

on the overall evidence that the stimulus is word or a nonword. This process involves a 

comparison of two conditional probabilities: the probability that the stimulus is a word 

P(X|is a word) or Pword versus the probability that it is a nonword P(X|is a nonword), 

where X reflects the evidence from the input. As soon as one of these probabilities hits 

a threshold a response is triggered.

At the beginning of each trial the model is reset and the word priors reflect the 

respective word frequency. Each letter of the input is represented by a binary, position 

specific 26 element-vector. Hence, all representations of a letter string denote a point 

in a length-by-26-dimensional perceptual space. Due to this mechanism, the model can 

use a lexicon with words of a specific length only. At each cycle, the model receives a 

sample of the stimulus, which reflects the stimulus plus Gaussian zero-centred noise. 

The mean location and standard error of the mean are updated with each new sample. 
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These samples are used to compute a probability density function for each word, 

specifically the probability that the input was generated by a particular word P(I|W); 

this probability is referred to as a likelihood. Following Bayes' rule, the posterior 

probability of the word – denoted P(W|I) – is computed by multiplying the likelihood 

P(I|W) by its prior probability P(W) and dividing by the sum of all priors multiplied with 

their respective likelihood. This procedure results in the identification of a word that is 

close to the presented input, because P(W|I) reflects a relative probability. 

Additionally, a transformation of all word probabilities and a probability for the 

stimulus being a nonword is required in order to compute the probability that the 

stimulus is a word (denoted by Pword).

To make a lexical decision, the model computes the probability that the stimulus is a 

word and the probability that it is a nonword. Pword is found simply by summing P(W|I) 

across all of the words in the model's lexicon. The computation of the probability that 

the stimulus is a nonword is more complex, and depends on the assumption of a virtual 

nonword and background nonwords. Specifically, the virtual nonword is positioned 

close to the input in perceptual space, but never closer to a word than a given 

nonword distance. The probability that the input matches one of those nonwords is 

computed in the same way as for words, since the equation is blind to the lexical status 

of letter strings, but also to whether the string is pronounceable or legal. Eventually, 

the probability that the stimulus is among the background nonwords is approximated 

as 1Pword.

The processing for prime and targets does not differ. At target onset, the basis for 

drawing samples is exchanged for the target and the samples drawn from the prime 

are deleted, i.e. the position in perceptual space extracted from the samples is defined 

by the target only. Priming results in a change in the priors, which are updated 

continuously during the processing of prime and target. If the prime and the target are 

orthographically related (e.g., brown – CROWN), the prime will have increased the 

priors of similar words (including CROWN). Hence, a priming effect is predicted. If the 

prime and the target are related by their response only (e.g., quiet – CROWN), the 

prime will not have altered the priors in the perceptual space around the target. Thus, 
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when the stimulus changes from the prime to the target, the influence of the priors 

around the prime in perceptual space is wiped out quickly, due to the multiplication 

with near-zero likelihoods (for these primed words, the likelihood P(I|W) will be 

approximately zero, as they share no letters with the current input). Consequently, no 

response congruency effect is predicted.

Norris and Kinoshita (2008) showed that simulations of the Bayesian Reader 

correctly predicted no prime congruency effect for the stimuli tested in their 

experiment. They argued that the reason for this prediction is that the prime increases 

the evidence for words in a broad area of perceptual space, but does not alter the 

probability of a word or nonword response. However, it seemed plausible that the 

more informative primes used in Experiment 2 might result in large differences in Pword 

for word versus nonword primes. This possibility was tested in the following simulation.

4.1.2 Simulation

The stimuli used in the simulation were the same as in Experiment 2. Parameters 

were set to default level (see Appendix D). The decision threshold for a word decision 

was set to 0.9 and for a nonword decision to 0.01, as in Norris and Kinoshita (2008). 

The results of the simulation showed that the reaction times of the model did not 

show a congruency effect for either word or nonword targets, in contrast to the 

empirical data (see Table 4.1).
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As noted above, it seemed plausible that the relatively informative primes used in 

this simulation would produce large differences in Pword for word versus nonword 

primes. In fact, this prediction was correct as can be seen in Figure 4.1. The lefthand 

side of the graph (times less than zero) reflects the time when the prime is being 

processed. The model quickly distinguished between word (word congruent, nonword 

incongruent) and nonword primes (word incongruent, nonword congruent). 

Nevertheless, this did not result in a congruency effect, because the early difference in 

Pword is wiped out with the onset of target processing. The righthand side of the graph 

(times greater than zero) in Figure 4.1 reflects the time when the target is being 

processed. The values of Pword in Figure 4.1 differ by lexicality but not by congruency. 

The Bayesian formulation requires that priors are multiplied by likelihoods for each 

hypothesis (i.e., for each word in the model’s lexicon). At the moment of switching 

from the prime to target, the target's likelihood is approximately zero and hence any 

priming effect preserved in the prior is wiped out by a multiplication with the 

likelihood. Also, there is no trace of the prime conserved in the system. From target 

presentation onwards the likelihood of the prime is approximately zero resulting in a 

prior of approximately zero in the next cycle. Thus, the prime’s contribution to the 

pooled probabilities is wiped out as well. Hence, there is no trace of the prime after 
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TABLE 4.1: REACTION TIME OF THE BAYESIAN READER IN CYCLES AND EMPIRICAL 
DATA OF EXPERIMENT 2 IN MS AS A FUNCTION OF PRIMING CONDITION AND TARGET 
LEXICALITY. THE TABLE INCLUDES RESULTS FROM IDENTITY AND ONE LETTER-
DIFFERENT CONTROL SIMULATIONS.

Bayesian Reader 
(simulation)

Empirical data 
(Experiment 2)

Target lexicality Target lexicality

Condition Word Nonword Word Nonword

Identity 342 576

One letter-different 348 573

Incongruent 378 558 498 520

Congruent 379 562 475 497

Effect -1 -4 23 23

In order to achieve the one letter-different condition, the middle letter of the five letter stimuli 
was exchanged to form an illegal nonword. Note that each item was averaged across 50 
simulations before contributing to the means (Norris, 2006).



target onset. Even if this process was more smooth, the model computes Pword from the 

current state of the lexicon at each time step, but the probability for the stimulus being 

the prime is approximately zero after a few hundred samples drawn from an 

orthographically unrelated (i.e., primes and targets that share no letters) target. It 

follows that the model cannot predict any priming effects (positive or negative) for 

primes that are orthographically unrelated to the target. This prediction directly follows 

from the model’s fundamental assumption about how information is integrated during 

masked priming. This is consistent with the data from the mean values in Table 4.1. 

Thus, empirical data demonstrating a congruency effect for unrelated primes 

(Experiment 1; Jacobs et al., 1995) challenge the basic assumptions of the Bayesian 

Reader model.

In contrast, the model can predict priming in orthographically related primes and 

targets. In order to check this, two control conditions were created by pairing the 

target stimuli of Experiment 2 with new primes. First, an identity priming condition was 

simulated; the empirical data show strong priming effects when word targets (but not 
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Figure 4.1: Bayesian Reader simulation of Pword using the items from Experiment 1. The negative 
numbers reflect cycles with the prime visible and positive numbers with the target visible. Each 
item contributed the average of 50 simulations to the means for each data point as recommended  
by Norris (2006), nevertheless the lines do not perfectly overlap due to the stochastic element in 
the model. The model does not output values for Pword in the first five cycles of prime and target 
processing which results in the discontinuity in the lines.



nonword targets) were preceded by identity primes (Forster & Davis, 1984; Forster et 

al., 2003). Secondly, a one-letter different condition was simulated where the primes 

were created by replacing the middle letter of the five-letter stimuli; such form primes 

also reliably produce priming in word targets (e.g., Davis & Lupker, 2006; Forster et al., 

1987). The results of these simulations can be found in Table 4.1. The word targets 

showed large priming effects for both identity and one-letter different primes, relative 

to unrelated primes. However, there was no priming for nonword targets; the 

numerical difference between one-letter different and identity primes in nonword 

targets can be attributed to noise.

4.1.3 Conclusion

The Bayesian Reader model does not predict a response congruency effect. This 

prediction of the model was previously demonstrated by Norris and Kinoshita (2008). 

However, the reason for this prediction differs from the explanation given by Norris 

and Kinoshita (2008). It is not that the prime does not alter the probability of a word or 

nonword response. On the contrary, the computed probability of a word (Pword) was 

considerably greater following a word prime than following a nonword prime (see 

Figure 4.1). However, after target onset Pword is equivalent for the congruent and 

incongruent word trials, and likewise for congruent and incongruent the nonword 

trials. The reason is that priming is used to affect word priors, but these priors must be 

multiplied by likelihoods, which will be near zero for the prime words once the stimulus 

changes to an unrelated target. By contrast, in the case of related primes and targets 

the likelihood is not zero and priming can occur. This was shown by simulating an 

identity and a one-letter different control condition (Table 4.1). Although, the model's 

prediction of a null effect of congruency priming in words and nonwords is consistent 

with the authors’ own empirical data (Norris & Kinoshita, 2008, Experiment 1) and data 

gathered in Spanish (Perea et al., 1998, 2010), it disagrees with the results of Jacobs et 

al. (1995) and Experiment 2. The latter data challenge a basic assumption about the 

integration of information in the Bayesian Reader.
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4.2 Spatial Coding Model

The Spatial Coding Model (SCM; Davis, 2010) develops the Interactive Activation 

Model (IAM, McClelland & Rumelhart, 1981) that also provides the basis for the lexical 

component of other influential computational models, including the Multiple Read-Out 

Model (MROM, Grainger & Jacobs, 1996), the Dual Route Cascaded Model (DRC, 

Coltheart et al., 2001) and the Connectionist Dual-Process Model (CDP; Zorzi, 

Houghton, & Butterworth, 1998). In contrast to the IAM, the SCM uses a more flexible 

coding scheme for letter positions. This enabled the model to account for some 

shortcomings of a fixed slot coding scheme as recent work showed (Davis, 2010). 

Simulations of benchmark experiments showed that the SCM provides an excellent fit 

to empirical data, in particular to masked priming experiments (Davis, 2010). 

Conclusions about the lexical component of the model can generalise to other models 

that use a similar lexical component, and hence, I focus on the SCM here.

4.2.1 Overview

The SCM bases its lexical decisions on the opponent process model (Davis, 1999, 

2010). According to that model, there are separate channels that accumulate evidence 

for yes- and no-responses respectively. These two channels are mutually inhibitory. A 

response is triggered when one of the channels hits a threshold. The information 

feeding into the no-channel is a constant, non-specific signal that builds up as the 

decision process continues over time. The yes-channel receives two inputs from the 

lexical level of the model. The first input represents the summed lexical activation, 

which is a measure of the global wordlikeness of a stimulus. The second input is 

information about specific word identification events. The relative contribution of 

these two sources is assumed to be subject to strategic factors. For example, when the 

nonwords in an experiment are relatively unwordlike (as was the case in the 

experiment simulated here) faster reaction times can be attained by placing a greater 

reliance on summed lexical activation than unique lexical identification (cf. Grainger & 

Jacobs, 1996).
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At the start of each trial the model's activitions are reset. First the letters of the 

stimulus are recognised and the input is compared to the words in the lexicon. Each 

word is represented by a template that defines the letters in their position. By using 

the spatial coding scheme the input is compared to the word templates and a match 

value is computed. A match value is a measure of similarity between two given letter 

strings based on the spatial coding scheme. It ranges between 0.0 and 1.0. The more 

similar the two letter strings are the higher the match value is, with 1.0 marking 

equality (see Table 4.2). According to the respective match a word node receives 

activation from the stimulus presentation. As outlined above, the summed activation 

of all word nodes in the lexicon forms one source of input to the yes-channel. All word 

nodes form a competitive network and can inhibit each other. The word node with the 

strongest activity is able to suppress activation in other word nodes most efficiently. 

Identification of a word is said to occur once the activity of the corresponding word 

node hits a specific threshold. This activates an identification signal which forms the 

second source of information to the yes-channel. If the stimulus is not similar to any of 

the word nodes, the activation in each node is small and hence the summed lexical 

activation is low as well. In very wordlike stimuli the summed lexical activation is 

greater and so is the input to the yes-channel. Hence, it is possible to make a yes-

decision prior to the identification of the stimulus. When simulating masked priming, it 

is assumed that the activity of the yes- and no-channels is reset at target onset, 
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TABLE 4.2: EXAMPLES FOR MATCH VALUES 
AS CALCULATED BY THE SPATIAL CODING 
MODEL AS A FUNCTION OF STIMULUS AND 
TEMPLATE (C. J. DAVIS, 2010).

Stimulus Template Match value

table TABLE 1.00

tablet TABLE 0.86

stable TABLE 0.86

trail TRIAL 0.89

teach BEACH 0.71

scale STALE 0.86

smile STALE 0.71

lager REGAL 0.18



otherwise the initial decision bias due to the prime is difficult to overcome. Thus, the 

impact of the prime is limited to its effect on lexical activity (i.e., any “headstart” due 

to a prime has its locus at the lexical level rather than at the decision channels). As 

soon as one of the decision channels hits the threshold of 0.8 the response is triggered.

Lexical decisions based on summed activation can be performed faster, but are less 

reliable than decisions based on an identification of the stimulus (Grainger & Jacobs, 

1996). Experiment 2 used very clearly distinguishable stimuli. The nonwords were very 

unwordlike (e.g., miytd) and the words high in frequency and very wordlike (e.g., 

crown). The parameters were identical to the published version of the SCM (Davis, 

2010), except for the parameters that weight the inputs to the response channels in 

order to accommodate for the specific stimuli (see Appendix D). The global activity 

parameter was set to 0.5 (yglobal=0.5), the unique lexical identification parameter was 

set to 0.0 (yid=0.0), and the parameter weighting input to the no-channel was set to 

0.22 (nletter=0.22).

Because the current implementation of the SCM is a deterministic model and the 

main interest is in reaction time, the results reported here are restricted to reaction 

time and error rates are not considered.
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4.2.2 Simulation

The stimuli in this simulation were the same as in Experiment 2 and in the previous 

simulation. The results of the simulation are shown in Table 4.3. Note that C. J. Davis 

(2010) set the parameters of the model so that priming effects predicted by the model 

in cycles are directly comparable to priming effects in empirical data in ms.

4.2.2.1 Nonword targets

Input stimuli that are unwordlike nonwords produce negligible lexical activation in 

the model. Thus, when the trial consisted of a nonword prime followed by a nonword 

target there was very little input to the yes-channel, and hence relatively rapid no-

decisions. By contrast, when the prime was a high frequency word there was a much 

greater degree of lexical activation, resulting in a larger input to the yes-channel, which 

then inhibited the no-channel. Consequently, no-decisions were 13 cycles slower for 

nonword targets following word primes than for the same targets following nonword 

primes. The direction of the effect is compatible with the results of Experiment 2, but 

the model slightly underestimated the effect observed in nonword targets.
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TABLE 4.3: REACTION TIMES OF THE SPATIAL CODING MODEL IN 
CYCLES AND EMPIRICAL DATA OF EXPERIMENT 2 AS A FUNCTION OF 
TARGET LEXICALITY AND PRIMING CONDITION.

SCM
(simulation)

Empirical data 
(Experiment 2)

Target lexicality Target lexicality

Condition Word Nonword Word Nonword

Incongruent 170 166 498 520

Congruent 169 153 475 497

Effect 1 13 23 23

Note that the simulation was performed by using the summed lexical activation as the only input 
to the yes-channel.



4.2.2.2 Word targets

The situation for word targets is slightly more complex. In this case, inputs to the 

yes-channel facilitate faster correct decisions. Word primes accomplish this by 

increasing total lexical activation. However, another effect of word primes is to inhibit 

identification of the target word. This effect is a consequence of the lateral inhibition 

that drives the selection process in competitive network models like the SCM. For 

example, when the trial is quiet – CROWN, the prime causes the QUIET word node to 

become activated and to start sending lateral inhibitory signals to all other word nodes, 

including the CROWN word node. This lateral inhibition, which is not present when the 

prime is a nonword like miytd, persists for a little while after the onset of the target, 

and effectively slows down the identification of the target. As a consequence, the 

model actually predicts a negative priming effect of response congruency on the speed 

of target word identification. The combination of the facilitatory effect of word primes 

on summed lexical activation on the one hand and the inhibitory effect of word primes 

on target identification on the other hand produces a null effect of response 

congruency for word targets. Summed lexical activity as a function of time (in cycles) is 
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Figure 4.2: The flow of summed lexical activation in the Spatial Coding Model in word and 
nonword targets. The data was derived using the example quiet – CROWN (congruent) and 
miytd – CROWN (incongruent) for words and xvump - GIAGJ (congruent) and brown - GIAGJ 
(incongruent) for nonwords.



illustrated in Figure 4.2. Directly after target onset the activity in the congruent trial is 

greater than in the incongruent trial, but after a few cycles this pattern is turned 

around due to lateral inhibition between the word nodes corresponding to the prime 

and target words. The advantage in the early cycles of target processing and the 

disadvantage in the later cycles cancel out each other and result in the observed null 

effect. Note that the greater lexical activity associated with a congruent prime prior to 

target onset (the negative portion of the horizontal axis) does not contribute to the 

ultimate decision because of the reset of the yes- and no-channels that takes place 

when the target stimulus is presented (see Figure 4.7).

4.2.3 Inhibition in the Spatial Coding Model

The Spatial Coding Model (Davis, 2010) is unable to predict the response 

congruency effect reported in Experiment 2. Reviewing the simulations and the flow of 

summed lexical activation, the critical process was identified in the lexical component. 

Specifically, the interplay between word nodes during identification is critical. These 

processes are very similar to those in the Interactive Activation Model (McClelland & 

Rumelhart, 1981) as outlined above. The purpose of inhibition is to foster a process 

that narrows activation from a number of words down to a single word node. This aim 

can also be achieved by an alternative form of lateral inhibition called selective 

inhibition. I will explain this mechanism in more detail in the following section, and also 

present simulation results showing how this form of inhibition can account for 

response congruency effects. Furthermore, I will refer to a benchmark simulation 

highlighting the effectiveness of the modification.
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4.2.3.1 Homogeneous inhibition

Simulations of the SCM reported in 4.2.2 followed the original IA model in assuming 

homogeneous inhibition between words of the same length. The SCM extended the 

IAM in implementing masking field principles. These principles increase the strength of 

inhibitory signals from nodes coding longer words. In homogeneous inhibition the 

word node for CROWN inhibits the node QUIET just as much as CLOWN. This is the case 

despite a strong similarity of CROWN and CLOWN and CROWN and QUIET not sharing a 

single letter. For computational convenience it was assumed that a single sum of lexical 

activity is formed. First, this sum serves as input for the yes-channel. Secondly, after 

some scaling this sum provides the inhibitory signal to all word nodes. This is depicted 

in Figure 4.3.
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Figure 4.3: Homogeneous inhibition in an interactive activation model with a central unit to form 
the inhibitory signal to each word node.
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As soon as a word node becomes activated it sends an inhibitory signal to all other 

word nodes regardless of their relatedness. The inhibitory signals exchanged between 

prime and target in both directions are the reason for the absence of response 

congruency effects in the SCM (see Figure 4.4).

In conclusion, the SCM's ability to explain the data of Experiment 2 is hindered by 

inhibition between unrelated word nodes.

4.2.3.2 Selective inhibition

The homogeneous lateral inhibition that was assumed in the IAM and in the SCM is 

not the only option. Selective inhibition has been employed in the SOLAR model (Davis, 

1999) and in a modified version of the IA model (Davis & Lupker, 2006). According to 

selective inhibition, only word nodes that code orthographically overlapping words 

send inhibitory signals to each other. Thus, the QUIET word node would not inhibit the 

CROWN word node, and hence word primes would exert no inhibitory effect on the 

identification of unrelated target words. The absence of this interference would allow a 

response congruency effect to emerge.
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Figure 4.4: Prime activation in homogeneous inhibition. Emitting nodes and active connections 
are displayed stronger. Nodes in the prime cluster are hatched horizontally and the target node 
diagonally.
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Overview

There are various different ways in which selective inhibition might be implemented. 

The two main problems are setting the weights of inhibitory connections and the 

computational expense of simulating specific connection strengths for each pair of 

word nodes. In the SOLAR model (Davis, 1999) it was assumed that connection 

strengths are a continuous function of orthographic similarity (e.g., that CLOWN 

inhibits CROWN more than CHAIN inhibits CROWN). A simpler approach was taken by 

Davis and Lupker (2006), who assumed binary inhibitory weights, and counted two 

words as orthographically overlapping if they shared at least one letter in the same 

position. For example, AXLE would receive inhibitory signals from word nodes like 

ABLE, ARID and EXIT, but not from word nodes like DOOR and EMIT. However, this 

position-specific approach is not consistent with the Spatial Coding Model, and leads to 

some irregularities when words of different length are considered. For example, LATE 

and PLATE are relatively similar according the SCM’s coding scheme, even though they 

do not share any letters in the same (absolute) position. The following implementation 

of selective inhibition adopted aspects of both of the above approaches. The spatial 

coding scheme was used to determine the degree of similarity (Davis, 1999) and 

inhibitory connections were assigned binary weights (Davis & Lupker, 2006).

Connection weights

In the selective inhibition approach adopted here, two word nodes are either 

mutually inhibitory or independent, i.e. not linked by an inhibitory connection. 

Whenever the overlap between two words exceeded a criterion match value of 0.3 

there was a bidirectional inhibitory connection between the corresponding word 

nodes. This implies that a word node like CROWN receives inhibitory connections from 

the CLOWN, CHAIN, COW, and CLEAN word nodes, but not from the GROUP word node. 

More importantly, there are no inhibitory connections between words that are 

orthographically unrelated, such as QUIET and CROWN.
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Computational load

The number of inhibitory connections was limited in order to reduce the 

computational load. This was necessary because selective inhibition is notably 

computationally demanding, whereas homogeneous inhibition is less demanding; 

indeed, it was originally chosen for that reason (McClelland & Rumelhart, 1981). In a 

homogeneous inhibition account, the inhibitory signal to a word node can be 

determined by summing total word level activity. Additionally, self-excitatory input is 

added to a nodes activity in order to avoid self-inhibition. This kind of self-excitation is 

equivalent to subtracting the activity of each node from the total inhibitory signal. The 

computational advantage is that non-selective inhibition can be implemented on the 

basis of summed activity without modelling any lateral inhibitory interactions. In 

contrast, computing the inhibitory signal to a word node when selective inhibition is 

assumed necessitates multiplying each of the activities of the other word nodes by the 

inhibitory connections that these word nodes send to the node in question. That is, 

computing all of the lateral inhibitory signals at each step requires O(n²) calculations, 

where n is the number of word nodes. In the brain, such calculations can be performed 

in parallel, and so the value of n does not affect the speed of processing. When 

implementing selective inhibition on a serial computer, however, processing speed 

becomes highly dependent on the value of n. In relatively small networks the time cost 

is manageable, but in more realistically sized networks it becomes impractical to fully 

implement selective inhibition. For example, the network used in the simulations here 

encodes a lexicon of over 30,000 words, and thus would require a lateral inhibitory 

matrix of approximately one billion connections.
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In practice, the vast majority of all word nodes are not involved in the selection 

process on a given input trial. Those word nodes do not receive any activation and 

hence, do not need to be exposed to inhibitory signals in order to ensure that only one 

word is identified. The word recognition process will not differ in its outcome if only 

those word nodes are taken into account that are similar to the input stimuli. This 

implies that a feasible way of solving the computational explosion caused by selective 

inhibition is to restrict the simulation on each trial to a subnetwork of critical nodes 

(i.e., those that will become active). This idea was implemented as follows. In order to 

select the critical word nodes on each trial, match values were computed for each 

word node in the lexicon relative to the prime and target stimuli. Hence, each word 

node in the network had two values assigned to it (e.g., its match with the prime quiet 

and its match with the target CROWN). For selection purposes, only the greater of the 

two values was taken into account, and the top 30 values were then used to select the 

critical word nodes. When the prime and the target are unrelated, as in Experiment 2 

simulated here, this process results in two clusters around the location of each 

stimulus in lexical space. A network like this is presented in Figure 4.5. The inhibitory 

connections of the prime on the left do not reach the target node. Also, the figure 
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Figure 4.5: Network using selective inhibition. The nodes are the same as in Figure 4.3 and 4.4. 
The prime node on the left is displayed with its outgoing inhibitory connections, that do not reach 
the target node, that is shown with its incoming inhibitory connections. Nodes depicted in grey do  
not take part in the competition and are not simulated.
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illustrates two clusters around the prime and target node. Nodes that are not taking 

part in the competition for the best match (i.e. are not part of either cluster) are not 

simulated. Computationally, this reduces the number of connections to an upper 

boundary of 900 and therefore the algorithm is in complexity class O(1). This contrasts 

to n*(n-1) many connections in O(n²) without forming a subnetwork.

4.2.4 Simulation in selective inhibition SCM

This simulation tested whether the modifications to the SCM were successful in 

enabling the model to accommodate the findings from Experiment 2. The 

homogeneous inhibition SCM already predicted a response congruency priming effect 

in nonword targets (Table 4.3). The results of the selective inhibition simulation 

demonstrated that the modification to inhibition in the lexical component enabled the 

model to correctly predict a congruency effect for both words and nonwords (see Table

4.4).

C. J. Davis (2010) demonstrates that the SCM is able to predict the priming effect in 

ms with a very high accuracy, but in this particular experiment the model 

underestimated the priming effect by approximately 10 cycles. Nevertheless, the 

model predicts a similar magnitude of priming in word and nonword targets which is 

compatible with the empirical data.
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TABLE 4.4: REACTION TIME OF THE SELECTIVE INHIBITION SCM IN 
CYCLES AND EMPIRICAL DATA OF EXPERIMENT 2 IN MS AS A FUNCTION 
OF TARGET LEXICALITY AND PRIMING CONDITION.

Selective 
inhibition SCM

(simulation)

Empirical data 
(Experiment 2)

Target lexicality Target lexicality

Condition Word Nonword Word Nonword

Incongruent 169 165 498 520

Congruent 156 152 475 497

Effect 13 13 23 23

Note that the simulation was performed by using the summed lexical activation as the only input 
to the yes-channel.



Two factors in a homogeneous inhibition account were identified that resulted in 

the prediction of a null effect in word targets. First, there was inhibition from the prime 

word node sent out to the target word node. This resulted in delayed activation of the 

target and a lower value of the summed lexical activation. Secondly, the word target 

node started to inhibit the prime cluster. This process resulted in a lower summed 

lexical activation as well. In a selective inhibition account the prime word node does 

not inhibit the target and vice versa. Thus, in a word trial the speed of activating the 

target is independent of the lexicality of the prime. Specifically, the negative impact of 

a word prime towards the target identification was removed. The same holds for 

inhibitory signals from the target node to the prime. Thus, the summed lexical 

activation is higher in a congruent word trial than in an incongruent word trial. This is 

illustrated in Figure 4.6. In congruent word trials, the summed lexical activation is 

consistently greater than in incongruent trials until about 30 cycles after target onset. 

Note, the decision channels are reset on target onset and the advantage of congruent 

trials is limited to the first 30 cycles of target processing.
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Figure 4.6: The flow of summed lexical activity in the selective inhibition SCM. The data was 
derived using the example quiet – CROWN (congruent) and miytd – CROWN (incongruent) for 
words and xvump - GIAGJ (congruent) and brown - GIAGJ (incongruent) for nonwords.



The effect of using selective inhibition in lexical component of SCM is also visible the 

yes-channel of opponent process model. The lefthand side of Figure 4.7 (negative cycle 

numbers) shows the the prime related activity. There is no difference between 

homogeneous and selective inhibition, which reflects that there was no difference at 

lexical level (compare Figure 4.2 and 4.6). As outlined above, the decision channels are 

reset with target onset. After target onset, the three lines reflecting a congruent and an 

incongruent word response using homogeneous inhibition and an incongruent 

response using selective inhibition are almost perfectly overlapping from about cycle 

70 in Figure 4.7. Only the congruent trial using selective inhibition differs from the 

other three example decisions. This illustrates that additional evidence in favour of a 

word response was present in congruent trials, but only if selective inhibition was used.

4.2.5 Summary

The Spatial Coding Model (Davis, 2010) could not accommodate the response 

congruency priming effect reported in Experiment 2. The reason was found in the 

lexical component of the model, that is similar to the original Interactive Activation 
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Figure 4.7: The flow of activity in the yes-channel of the opponent process model using 
homogeneous and selective inhibition. The data was derived using the example quiet – CROWN 
(congruent) and miytd – CROWN (incongruent) for words and xvump - GIAGJ (congruent) and 
brown - GIAGJ (incongruent) for nonwords.



Model (McClelland & Rumelhart, 1981). However, replacing homogeneous inhibition 

with selective inhibition enabled the SCM to predict the congruency effect reported in 

Experiment 2. Whether the modification affects the model’s ability to accommodate 

other data is assessed in the next section. Also, the SCM with selective inhibition was 

used for a number of simulations in Chapter 8. In these simulations parameters of the 

model were fitted to the empirical data of Experiment 2 through to 10. Since the 

current simulation was aimed at highlighting the interactions between word nodes the 

unique lexical identification parameter was set to 0.0 (yid=0.0), but the simulations in 

Chapter 8 include a number of experiments where the explicit lexical decision task was 

more difficult than in Experiment 2. Thus, the identification of a stimulus was set to 

default level and the results showed that the findings of Experiment 2 can still be 

captured by the model.

4.3 Benchmark simulation

The following benchmark simulations give an indication about the appropriateness 

of the models outside the context of response congruency. Most importantly, the 

selective inhibition account requires a test whether this assumption impaired the 

model’s ability to predict other empirical data correctly.

Empirical evidence indicates that not all orthographic neighbours result in 

facilitatory effects on target recognition. C. J. Davis and Lupker (2006) showed that 

word neighbours used as primes result in inhibitory priming effects compared to 

unrelated word primes, whereas nonword neighbour primes result in facilitatory 

priming compared to unrelated nonword primes. The published version of the Spatial 

Coding Model predicts this outcome (Davis, 2010). However, the introduction of 

selective inhibition may have impaired the model’s ability to capture inhibitory priming 

effects. This possibility was tested in the following simulation, which used the stimuli of 

C. J. Davis and Lupker (2006). The Bayesian Reader was also tested on the same stimuli.
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4.3.1 Bayesian Reader

The Bayesian Reader predicted facilitatory form priming effects as demonstrated 

above (4.1.2). However, the model did not distinguish between word and nonword 

primes (see Table 4.5). The underlying reason is that the target is similar to the prime 

and the likelihood of the target increased during prime presentation. As a result a 

facilitatory effect of priming emerges irrespective of the lexicality of the prime. This 

incorrect prediction confirms one of the criticisms of the Bayesian Reader model made 

by Bowers (2010).

4.3.2 Selective inhibition Spatial Coding Model

It was expected that the selective inhibitory mechanism would still be able to 

explain Davis and Lupker's (2006) findings. These priming effects depend on the 

interaction between word nodes that are similar to each other (e.g., able but not door 

inhibits AXLE). The absence of inhibition to dissimilar word nodes should not greatly 

influence the model’s ability to simulate inhibitory effects in neighbour priming. The 

results of the simulations (see Table 4.5) supported the hypothesis that the model 

provides a good fit to C. J. Davis and Lupker's (2006) data. This outcome suggested that 

selective inhibition increases the explanatory scope of the model without reducing its 

ability to explain other critical data.

126

TABLE 4.5: PREDICTION OF THE BAYESIAN READER AND SPATIAL CODING MODELS USING THE STIMULI 
FROM DAVIS AND LUPKER (2006, EXPERIMENT 1) AS A FUNCTION OF PRIME LEXICALITY AND PRIME 
RELATEDNESS IN COMPARISON TO THE EMPIRICAL DATA.

Prime type Word primes Nonword primes

Prime relatedness Unrelated Related Effect Unrelated Related Effect

Bayesian Reader 483 442 41 481 440 41

Homogeneous
inhibition SCM 103 136 -33 104 86 18

Selective inhibition
SCM 109 137 -28 107 86 21

Empirical data 609 633 -24 621 603 18



4.4 Summary and Discussion

This chapter has reviewed two different approaches to modelling lexical decision 

data, and investigated the ability of those models to fit the data of Experiment 2. The 

Bayesian Reader (Norris, 2006; Norris & Kinoshita, 2008) cannot predict a response 

congruency effect due to the way information is integrated over time. The model failed 

to predict the facilitatory priming effect of prime-target response congruency, but was 

also unable to predict inhibitory priming effects (Davis & Lupker, 2006) in a benchmark 

simulation. The Spatial Coding model (SCM; Davis, 2010) did not accommodate the 

findings of Experiment 2, due to homogeneous inhibition in the lexical component of 

the model. After implementing selective inhibition the model accommodated the data 

and produced the correct prediction. Furthermore, the modified SCM still predicted 

inhibitory priming effects in benchmark simulation.

4.4.1 Homogeneous and selective inhibition

The SCM was modified in order to enable the model to predict a response 

congruency effect. Since the changes were not affecting the response channels which 

are still reset on target onset, the effect is not a matter of response congruency in the 

model. The move to selective inhibition allows lexical activity to be present in one part 

of the lexicon without affecting other, unrelated parts of the lexicon. Two separate 

clusters of activity produce a greater total lexical activity and this provides a stronger 

input to the yes-channel. The implementation of selective inhibition is economically 

reasonable, because only those nodes competing for final selection inhibit each other. 

This reduces the total amount of transmitted energy in a neuronal context, but it also 

reduces the computational load in a simulation. The SCM locates the congruency effect 

reported in Experiment 2 into the lexicon. This suggested some bias prior to the 

decision level. In fact, decision channels in the SCM are reset on target onset and the 

reason for predicting an effect is in the lexicon rather than in the decision component.

The experimental paradigm shed light on the interaction of word nodes that are 

unrelated to each other. This highlighted shortcomings of the homogeneous inhibition 

account and provided evidence in favour of selective inhibition.
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4.4.2 Target difficulty

The targets used in Experiment 2 were particularly easy to categorise in words and 

nonwords. Specifically, the nonword targets were illegal letter strings and the word 

targets were comparably high in frequency. Thus, the experiment did not reflect a 

typical lexical decision experiment. It is possible that the response congruency effect 

that was observed in Experiment 2 could be attenuated in a more typical lexical 

decision experiment, but it could also be more pronounced. The increase in the 

difficulty level of the explicit task will reduce the response speed and accuracy (e.g., 

Dorfman & Glanzer, 1988; Usher & McClelland, 2001; Whaley, 1978).

Reduced effect

A smaller effect in a more typical lexical decision experiment could be attributed to 

two underlying processes. First, the information used in the lexical decision process can 

be sampled from different sources and their relative weights could shift. Secondly, the 

slower decision process could result in a reduced effect size.

Grainger and Jacobs (1996) suggested that in a harder lexical decision experiment a 

greater weight is assigned to lexical identification than to summed lexical activity. The 

latter was the source of the congruency priming in the simulation of Experiment 2 

using the SCM (see 4.2). If summed lexical activity is assigned a lower weight, the 
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Figure 4.8: Comparison of the flow of activity in the yes-channel in the Spatial Coding Model in 
word targets. The data was derived using the example quiet – CROWN (congruent) and 
miytd – CROWN (incongruent).



difference between word primes and nonword primes in the yes-channel is reduced 

compared to the situation in Experiment 2. This would result in an attenuated 

congruency priming priming effect which would be hard to detect in empirical data. 

The example that was used for producing Figure 4.2 and 4.6 (quiet/myitd – CROWN) 

was simulated in different contexts. The activity in the yes-channel after target onset 

(i.e., after resetting the decision channels) is shown in Figure 4.8 with the specific 

adjustments for an easy (yglobal=0.5 and yid=0.0) and a hard lexical decision task 

(yglobal=0.2 and yid=1.0). The difference in the parameters reflects a shift from summed 

lexical activity to identification. Figure 4.8 shows that the critical difference between 

the congruent and incongruent condition are almost completely washed out as soon as 

the target was identified at around cycle 80.

Another potential reason for an attenuated effect is the duration of the decision 

process. In the simulations using the SCM, the difference between the word prime and 

the nonword prime condition was found in the early cycles of the target processing. In 

a more typical lexical decision experiment, the time difference between the occurrence 

of the effect and the actual decision would be increased. In the SCM (Davis, 2010), it 

was assumed that the decision is based on the average of the decision channel activity. 

Thus, in a slower decision process more cycles will feed into the average where the 

effect was not found and the response congruency effect would be attenuated. 

Decision models

The decision process in two-alternative forced-choice tasks was modelled by 

decision models (Ratcliff, 1978; Smith & Ratcliff, 2004; Smith, Ratcliff, & Wolfgang, 

2004; Zandt, Colonius, & Proctor, 2000). This group of models provides predictions 

about the reaction time distribution and error rates. Also, a prediction on whether the 

effect size in response congruency in lexical decision should increase, decrease or 

remain unchanged as a function of the target difficulty can be derived.

The leaky accumulator model (Usher & McClelland, 2001) shows similarities to the 

opponent process model that was used in the SCM (Davis, 1999, 2010). Both models 

use two integrators or response channels with one integrator for each response. These 
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integrators can mutually inhibit each other as function of their current activation level. 

In both models, a decision (or response) is triggered when one of the integrators 

exceeds a threshold. In contrast to the opponent process model, the leaky accumulator 

model shows leakage. That means the integrators are subject to spontaneous decay 

and, as a result, at each cycle a proportion of the activity is cancelled from the the 

respective integrator. This spontaneous decay is similar to the decay in the word nodes 

of SCM and thus, the leaky accumulator model provides interesting comparison to the 

SCM's decision model. In sum, activity in the integrators is influenced by three 

parameters: the incoming evidence, the leakage and the mutual inhibition between the 

integrators.

Two integrators were used by other decision models as well. The race model 

(Vickers, 1970) employed two integrators that are not connected through inhibition. 

Due to the absence of inhibition, the integrator that received a critical amount of 

evidence fastest triggers a decision. Shadlen and Newsome (2001; Ditterich, Mazurek, 

& Shadlen, 2003) introduced a decision model with feed-forward inhibition, i.e. 

incoming evidence is excitatory for one integrator and inhibitory for the other 

(counterevidence). Also, pooled inhibition that is similar to homogeneous inhibition at 

a lexical level was employed in decision models. Wang (2002) introduced such a model. 

Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) showed that linearised versions of 

all these models are equivalent to the diffusion model (Ratcliff, 1978) under certain 

parametrisations. In contrast to the above models, the diffusion model uses only a 

single integrator. The diffusion model successfully simulated a number of empirical 

findings (see Bogacz et al., 2006 for review), including lexical decision (Ratcliff, Gomez, 

& McKoon, 2004).

As Bogacz et al. (2006) showed the scope of the decision models that were 

introduced above is comparable under certain parameters. For the purpose of the 

argument here and in Chapter 8, I refer to the leaky accumulator model. This model is 

similar to the opponent process model that is used by the SCM (Davis, 1999, 2010). The 

most important difference between the two models is the leakage.
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Both hypotheses, a shift in weight assigned to summed lexical activity and slower 

decision process suggest that the presence of a response congruency effect could 

depend on the difficulty of the word-nonword discrimination. The analysis of the 

reaction time distribution that was applied in Experiment 2 could distinguish between 

the effect of these two processes. If the absence of a response congruency effect in a 

more typical experiment had to be attributed to a shift in the weights assigned to 

summed lexical activity and lexical identification, it is expected that the effect was 

attenuated across the whole distribution of RT. In case the effect was attenuated due 

to averaging or leakage, it is expected that effect was reduced in the slower responses, 

but present in the fast responses.

Increased effect

The effect size of the response congruency effect could also increase in a more 

typical experiment. In semantic priming studies size of effects attributed to 

interference increased in slow responses (Balota et al., 2008; Yap, Balota, Cortese, & 

Watson, 2006). Also, Bodner and Masson (1997) argued that a more effortful 

processing enables the prime to interfere stronger with the target. On grounds of these 

studies the congruency priming effect could increase with a harder task.

These accounts provide clear, but opposite predictions for an experiment with an 

increased task difficulty. If the response congruency effect was absent in a harder task 

the empirical discrepancy between Experiment 2 and other empirical data (e.g., Norris 

& Kinoshita, 2008; Perea et al., 1998, 2010) could be explained. The next chapter 

presents the experiments that tested these hypotheses. The respective empirical data 

was also simulated using the SCM with selective inhibition in Chapter 8 where the 

parameters denoting the influence of summed lexical activity and identifying a stimulus 

were fitted to the empirical data.
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5. Effects of target difficulty

Experiment 2 clearly demonstrated a response congruency effect in lexical decision. 

This was compatible with one of the experiments in the literature (Jacobs et al., 1995), 

but it was in contrast to three other studies (Norris & Kinoshita, 2008; Perea et al., 

1998, 2010). I have pointed out several factors in the introduction and in the discussion 

of the simulations that can contribute to the presence or absence of response 

congruency effects, including the difficulty of the explicit word-nonword discrimination 

task. The more difficult task could result in a shift of the weight that participants assign 

to summed lexical activity (Grainger & Jacobs, 1996) and by relying on identification 

the response congruency effect could diminish. The more difficult task could also result 

in a more effortful processing and thus, in an increased impact of the prime (Bodner & 

Masson, 1997). This chapter investigates the impact of the task difficulty on the 

response congruency effect.

5.1 Empirical discrepancy

Since the results are mixed across laboratories and languages, this may imply that 

the experiments differed in one or more variables. All experiments reported in the 

literature were masked primed lexical decision tasks. The task requirements were 

therefore very comparable. Thus, factors such as the category size appear not to be the 

critical variable. One important difference is the response speed in these experiments.

There appears to some relation between the mean RT of an experiment and the 

observation of a response congruency effect (see 1.4.2.3). Where the experiments with 

the faster RT tended to show a congruency effect (Experiment 1; Davis & Lupker, 2006; 

Jacobs et al., 1995), but experiments with slower responses did not (Norris & Kinoshita, 

2008; Perea et al., 1998, 2010). The simulation of Experiment 2 in the Spatial Coding 

Model (Davis, 2010) showed that the advantage of congruent over incongruent trials is 

prevalent in the early cycles of target processing (see Figure 4.6). Since the model 

averages across cycles, the impact of these cycles is reduced with a longer processing 

time. A similar prediction could be derived from the leaky accumulator model (Usher & 

McClelland, 2001). Due to the leakage in the decision channels, the impact of the 
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prime is more likely to trickle out with a longer processing duration. Both models 

suggest that slower responses are associated with a smaller response congruency 

effect. This could explain the discrepancy in the empirical results. There is also 

empirical data from other experimental paradigms in support of the idea that priming 

effects are reduced in slower responses (Abrams, 2005; Burle et al., 2002; Greenwald 

et al., 2003; Kinoshita & Hunt, 2008). Following these predictions, slowing down the 

response speed of participants by making the explicit task more difficult could resolve 

the empirical discrepancy and highlight underlying principles. In contrast, there is also 

evidence for increasing priming effects with slower responses in semantic tasks (Balota 

et al., 2008; Bodner & Masson, 1997). The results can therefore provide evidence of 

what kind of theoretical framework is applicable and shed some light on the locus of 

the effect.

In order to slow down the response speed of participants the difficulty of the 

explicit task can be increased. Reviewing Norris and Kinoshita's (2008) English stimuli 

suggested that the items were harder to categorise than the stimuli used in Experiment

2. For example, the word targets were lower in frequency (9.2 per million) compared to 

Experiment 2 (336.5 per million). In addition, the nonword targets were more wordlike 

overall than those in Experiment 2. Also, the nonwords were similar to target words 

(STEAK vs STERK; PLANT, PLANE vs PLART). Other experiments in Spanish (Perea et al., 

1998, 2010) and in French (Jacobs et al., 1995) are less straight forward to assess with 

respect to their stimuli. The aim of Experiment 2 was to use easy targets in order to 

maximise chances for finding an effect. The following experiments will make use of a 

harder explicit task.

In the following, I introduce three experiments where the task difficulty of the 

explicit lexical judgement was manipulated. In Experiment 3 the same primes and 

targets as in Experiment 2 were used, but the nonword targets were replaced by more 

wordlike items. Similarly, Experiment 4 used the primes and targets of Experiment 2, 

but the word targets were replaced by less frequent words. Finally, in Experiment 5 

both word and nonword targets were replaced. The aim of the experiments was to find 

an explanation for the empirical discrepancy between strong response congruency 
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effects (Experiment 2) and null effects (Norris & Kinoshita, 2008; Perea et al., 1998, 

2010). Furthermore, the prediction from computational models (Davis, 2010; Usher & 

McClelland, 2001) and empirical data (Burle et al., 2002) showing that the effect size 

decreases in slower responses, was tested.

5.2 Experiment 3

This experiment aimed to examine whether the prime congruency effect established 

in Experiment 2 is stable in tasks with an increased level of difficulty of the explicit 

lexical decision task and over all slower RTs. To achieve this, the nonword targets were 

replaced and made harder to reject compared to the ones used in Experiment 2.

5.2.1 Methods
Participants. Forty participants were taken from the same population as in 

Experiment 1.

Stimuli & Design. The same words were used as in Experiment 2. The nonword 

targets were selected to score higher in a typicality measure (OT3mean=-0.53, 

OT3max=0.51, OT3min=-3.41; see Chapter 2.3). All of them were pronounceable and 

appeared to have at least a high potential to form an English word according to their 

orthotactics (e.g., teirp, dulew). As in Experiment 2, N-Watch (Davis, 2005) was used to 

ensure that the nonwords do not have neighbours. The nonword primes were selected 

to score very low on the typicality measure and were also checked using N-Watch (e.g., 

qbnnj, zulmk). All stimuli were formed of five letters and are listed in Appendix B.

As in Experiment 2, pairs of primes and targets were formed with the stimuli. In this 

experiment only the words functioned as both targets and primes, though the 

matching procedure was very similar. In every prime target pair, none of the letters of 

the prime were allowed to occur in the target. Each target was assigned a nonword 

prime and a word prime. The matching differed from Experiment 2 in so far that 

nonword primes and targets were taken from disjoint sets; therefore nonwords could 

not be involved in repeated flipped pairs. Again, every target could occur in a 

congruent and an incongruent condition. For counterbalancing purposes two lists were 

formed, where each target appeared once per list.

Procedure. The procedure was the same as in Experiment 2.
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5.2.2 Results

Participants and items with an error rate greater than 25% were dropped from the 

analysis. This criterion affected none of the participants or items. Half of the 40 

participants were assigned to list 1 and list 2. Outliers were removed by 3 SDs for each 

participant using the correct responses. This affected 1.50% of the data points. The 

mean reaction times in ms and the error ratio are shown in Table 5.1.

Repeated measures analysis of variance

An ANOVA was performed using the participant-wise z-scores of correct responses. 

The list factor was always added as between participants. Congruency entered the 

analysis as a repeated factor within participants and lexicality was a repeated within 

participants factor in F1 and a between items factor in F2. The analysis revealed a main 

effect in z-scores [F1(1, 38) = 109.234, p<0.001, f=1.70; F2(1, 196) = 53.658, p<0.001, 

f=0.97]. This indicated that words were responded to faster than nonwords. All further 

analyses were performed for word and nonword targets individually.

In word targets, a significant main effect of congruency was observed in z-scores 

[F1(1, 38) = 22.584, p<0.001, f=0.77; F2(1, 98) = 32.848, p<0.001, f=0.58] indicating 

faster responses to congruent than to incongruent word trials. This was also the case in 

nonwords in z-scores [F1(1, 38) = 9.781, p=0.003; F2(1, 98) = 20.937, p<0.001, f=0.46] 

where congruent trials received faster responses than incongruent trials.
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TABLE 5.1: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 3.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 514 4.30 559 2.75

Congruent 496 1.80 548 2.35

Effect 18 2.50 11 0.40



The analysis of error data revealed a significant main effect of congruency in word 

targets [F1(1, 38) = 17.541, p<0.001, f=0.68; F2(1, 98) = 18.754, p<0.001, f=0.44] 

reflecting more erroneous responses in the incongruent than in the congruent 

condition. There was no effect in nonword targets [F1(1, 38) = 0.628, p=0.433; 

F2(1, 98) = 0.672, p=0.414].

Analysis in deciles

As in Experiment 1 the reaction times were binned in ten vincentiles and the results 

submitted to an analysis using lme4 in R (see Appendix E for a detailed list of results). 

The results showed that the congruency effect was significant in each decile in word 

targets. This suggested a stable advantage of congruent over incongruent trials across 

the whole RT distribution, which is also evident from the graph in Figure 5.1. In 

nonword targets there was no effect of congruency in decile eight, but there was a 

significant effect in all other deciles. The effect in the deciles one to seven was positive. 

That means congruent trials elicited faster responses than incongruent trials. 

Interestingly, slower responses that were binned in deciles nine and ten showed a 

negative effect. This means that incongruent trials received faster responses than 

congruent trials. Figure 5.1 illustrates this pattern. The lines for congruent and 

incongruent nonword trials cross at decile eight where no significant effect was found. 

In total, 70% (seven deciles) of the nonword trials showed a positive effect, 20% a 

negative effect and 10% no effect at all. This pattern still resulted in a significant 

positive effect in mean reaction times.
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Figure 5.1: Plot of the results of Experiment 3 by decile and condition. Note that the scale in ms is 
an approximation and data was plotted by z-scores.



Ex-Gaussian analysis

The fitting of the Ex-Gaussian parameters was performed according to the method 

outlined in Experiment 1. The results are shown in Table 5.2. There were no significant 

effects in word targets: μ [F(1, 38) = 2.678, p=0.110], σ [F(1, 38) = 0.293, p=0.592] and τ 

[F(1, 38) = 0.942, p=0.338]. The analysis in nonword targets showed a significant effect 

of congruency on two parameters: μ [F(1, 38) = 12.254, p=0.001, f=0.57] reflecting 

faster responses in congruent trials, and τ [F(1, 38) = 5.199, p=0.028, f=0.37] indicating 

a longer tail of the RT distribution in congruent than in incongruent trials. This is 

depicted in Figure 5.1, where the lines in the decile plot cross due to the smaller 

number of very slow responses in the incongruent condition. There was no effect in σ 

[F(1, 38) = 1.304, p=0.261] in nonword targets. These findings were converging with the 

analysis in deciles, apart from the absence of significant effects in word targets.

5.2.3 Discussion

The experiment replicated the response congruency effect that was reported in 

Experiment 2. This experiment aimed to replicate the null effect reported in the 

literature (Norris & Kinoshita, 2008; Perea et al., 1998, 2010) by replacing the nonword 

targets used in Experiment 2 with items that increased the difficulty of the lexical 

decision task. The effect size in this experiment was still large at around f=0.5, but it 

was considerably smaller than in Experiment 2 where it was approximately f=1.0. This 

suggested that the manipulation was effective as measured in a reduced effect size and 

a smaller congruency effect in absolute numbers. But the manipulation was not 

sufficiently strong to reduce the effect to a null. This finding indicated that a stronger 

manipulation might explain the empirical difference.

137

TABLE 5.2: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF TARGET 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 3.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 442 431 11 482 460 22

σ 43 46 -3 40 46 -6

τ 72 66 6 77 91 -14



Looking at the nonword targets, there was a response congruency effect in the 

repeated measures analysis. On closer examination, using the analysis by deciles this 

effect was prevalent in the faster responses. In slower responses, the congruency effect 

turned into a negative effect; that is incongruent trials were responded to faster than 

congruent trials. This was further supported by the Ex-Gaussian analysis, showing a 

significant effect on the exponential part of the RT distribution. Remarkably, there was 

still a strong positive congruency effect in the central tendency of the distribution. 

Replacing the nonword targets reduced the effect size and resulted in some trials 

showing a negative effect. Thus, the null effect reported in the literature could be due 

to a mixture of positive and negative effects. This would suggest that the distinctive 

difference between the experiments is the task difficulty and it implied that increasing 

the difficulty further could eliminate the congruency effect in mean RT.

The SCM (Davis, 2010) as well as the leaky accumulator model (Usher & McClelland, 

2001) suggest that the effect is decreasing with slower reaction times. The results of 

this experiment showed that the response congruency effect was reduced in the mean 

RT with more difficult nonword targets. This contrasts with reports of an increasing 

semantic effect in τ by Balota et al. (2008), whereby the exponential part of the 

distribution was larger in the congruent condition and the priming effect increased 

with the later deciles. Also, the finding contrasts with Bodner and Masson (1997) who 

suggested that the prime would increase its effect on more effortful processing. If the 

task difficulty of the explicit task determines whether a response congruency effect is 

present, this would support predictions by the SCM and the leaky accumulator model. 

But it is important to note that neither of these models predicts that the effect turns 

into a negative effect. The following experiment tested whether an increased task 

difficulty is the underlying reason for the presence or absence of a congruency effect, 

but it also tested whether a negative effect can be replicated.

5.3 Experiment 4

This experiment was designed to examine whether the prime congruency effect is 

affected by manipulating the word targets.
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5.3.1 Methods
Participants. Thirty-five participants from the same population as in Experiment 1 

took part in the study.

Stimuli & Design. The same nonwords as in Experiment 2 were used as primes and 

targets, the word primes were also kept constant. The word targets were exchanged for 

words of a lower frequency reflecting a medium range (mean=41.19/million, 

min=0/million, max=432.91/million; Baayen et al., 1995; N-Watch results). These words 

also scored medium on a typicality measure (OT3mean=0.20, OT3max=1.31, OT3min=-1.55; 

see Chapter 2.3), e.g., scoop, venue. Again, all stimuli were formed of five letters. 

Primes and targets were paired so that there were no letters shared between prime 

and target (see Appendix B for a list of all stimuli). Two versions of the experiment were 

formed for counterbalancing purposes.

Procedure. The procedure was the same as in Experiment 2.

5.3.2 Results

One participant showed extremely slow RTs with a mean of 1366 ms and was 

excluded from further analysis. As in previous experiments, participants and items 

showing an error rate greater than 25% were dropped from the analysis. This affected 

no participants, but one item (bison). Half of the participants were assigned to list 1 

and half to list 2. Outliers were removed by 3 SDs for each participant using the correct 

responses. This affected 1.77% of the remaining data. The results are presented in 

Table 5.3.
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TABLE 5.3: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 4.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 541 3.98 550 1.29

Congruent 529 3.15 538 1.59

Effect 12 0.83 12 -0.30



Repeated measures analysis of variance

An ANOVA was performed using the participant-wise z-scores. The list factor 

entered all analyses as a between participants factor and congruency as a repeated 

within participants factor. Lexicality was a repeated factor within participants in F1 and 

a between items factor in F2. There was a tendency of a main effect of lexical state in z-

scores [F1(1, 32) = 2.901, p=0.098; F2(1, 195) = 3.730, p=0.055] indicating that word 

stimuli were responded to slightly faster than the nonword stimuli.

In word targets there was a main effect of congruency on z-scores 

[F1(1, 32) = 21.733, p<0.001, f=0.82; F2(1, 97) = 20.264, p<0.001, f=0.46] showing that 

congruent word trials received faster responses than incongruent word trials. Similarly, 

there was a main effect in nonword targets [F1(1, 32) = 21.282, p<0.001, f=0.81; 

F2(1, 98) = 12.861, p=0.001, f=0.36]. This indicated that congruent nonword trials were 

responded faster than incongruent trials.
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There was no main effect of congruency on the error ratio in words 

[F1(1, 32) = 1.876, p=0.180; F2(1, 97) = 1.505, p=0.223] or nonwords [F1(1, 32) = 0.378, 

p=0.543; F2(1, 98) = 0.462, p=0.480].

Analysis in deciles

The reaction times were binned in ten vincentiles and the results submitted to an 

analysis using lme4 in R (see Appendix E for a detailed list of results). With regards to 

word targets, the results showed that the congruency effect was significant in all 

deciles apart from the slowest two. This was supported by the visual inspection of the 

RT distribution in Figure 5.2, where the advantage of congruent over incongruent word 

trials declined towards the slower responses. In nonword targets the congruency effect 
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Figure 5.2: Plot of reaction times in word targets of Experiment 4 by deciles. The scale of reaction 
times is approximation to reflect the actual corresponding z-score and reaction time.

Figure 5.3: Plot of reaction times in nonword targets of Experiment 4 by deciles. The scale of 
reaction times is approximation to reflect the actual corresponding z-score and reaction time.



was significant in all deciles. But it is important to note that the sign of the t-value in 

the last decile is negative and the lines in Figure 5.3 cross. That means in fast responses 

the congruent trials showed an advantage over incongruent trials, but in very slow 

reaction times the response congruency effect turned into a negative effect. A similar 

pattern was observed in Experiment 3.

Ex-Gaussian analysis

The fitting of the Ex-Gaussian parameters was performed according to the method 

outlined in Experiment 1 and results are shown in Table 5.4. There was a significant 

main effect of congruency in word targets on μ [F(1, 32) = 20.534, p<0.001, f=0.80] and 

on τ [F(1, 32) = 6.145, p=0.019, f=0.44]. There was no effect in σ [F(1, 32) = 2.297, 

p=0.139]. The effect in μ reflects an advantage of congruent over incongruent trials in 

the central tendency of the RT distribution. In contrast, the effect in τ reflects a greater 

number of very slow responses in congruent trials compared to incongruent trials. The 

analysis in nonword targets showed a significant effect of congruency on μ 

[F(1, 32) = 10.938, p=0.002, f=0.59] indicating faster responses in congruent trials. 

There was no effect on σ [F(1, 32) = 0.046, p=0.832] or τ [F(1, 32) = 1.293, p=0.264]. 

Even though there was a negative congruency effect in the last decile the effect in τ 

was not significant. The difference in word and nonword targets with respect to τ 

reflects a smaller difference in very slow responses between congruent and 

incongruent trials in nonword targets despite the absence of a negative effect in words.

5.3.3 Discussion

In this experiment a response congruency effect was found in both word and 

nonword targets. The word targets were exchanged for words with a lower frequency 
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TABLE 5.4: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF TARGET 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 4.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 467 441 26 473 454 19

σ 44 36 8 37 38 -1

τ 74 91 -17 78 85 -7



and a lower score in orthographic typicality compared to Experiment 2. The 

manipulation resulted in a reduced effect size compared to Experiment 2, which in 

total was similar to Experiment 3. This indicated that the manipulation was effective, 

but replacing either the nonword targets or the word targets was not a sufficiently 

strong manipulation to eliminate the congruency effect. Though, the reduced effect 

sizes suggested that combining harder nonword and word targets may result in a null 

effect and provide an explanation for the discrepancy with the literature (Norris & 

Kinoshita, 2008; Perea et al., 1998, 2010).

Interestingly, in Experiment 3 as well as in Experiment 4 the congruency effect 

diminished or turned into a negative effect in slow responses. Furthermore, there was 

a significant effect in the exponential component of word targets in Experiment 4. This 

suggested that such a negative effect is more likely the slower the responses in an 

experiment are. The null effects reported in the literature (Norris & Kinoshita, 2008; 

Perea et al., 1998, 2010) could be due to a mixture of positive and negative effects or a 

very short-lived effect. Both could cover a response congruency effect in mean RT, but 

in both cases the congruency effect was not absent, rather it was not detectable by 

analysing mean RTs. Thus, the null effects reported in the literature could be cases 

where an effect remained undiscovered.

In lexical decision tasks word targets typically receive faster responses than the 

nonword targets, but in this experiment the lexicality effect did not reach significance. 

The reduced effect of lexicality substantiated that the specific selection of word targets 

showed the expected slow down in word responses. This did not affect the response 

speed to nonword targets as strongly and hence the lexicality effect was attenuated.

The next experiment tested whether the effect diminishes if hard word and 

nonword targets are used and also whether there is an increase in the negative priming 

effect.
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5.4 Experiment 5

In this experiment the two factors that increased the difficulty of the lexical decision 

task in the previous two experiments were combined. By combining the more difficult 

word targets of Experiment 4 and the more difficult nonword targets of Experiment 3, 

the degree of difficulty of the task was increased above the levels of the previous 

experiments. The previous experiments indicated that increasing the difficulty of the 

task results in attenuated congruency effects. Thus, the current experiment could show 

a null effect of response congruency. By showing that the response congruency effect 

diminished in this set of targets the presence or absence of the congruency effect 

could be attributed to the task difficulty.

5.4.1 Methods
Participants. Twenty-four participants from the same population as in Experiment 1 

took part in the experiment.

Stimuli & Design. All primes in this experiment were the same as in Experiment 2. 

The nonword targets were taken from Experiment 3 and the word targets from 

Experiment 4. Primes and targets were paired so that there were no letters shared 

between prime and target (see Appendix B for a list of all stimuli). Two versions of the 

experiment were formed for counterbalancing purposes.

Procedure. The procedure was the same as in Experiment 2.

5.4.2 Results

As in previous experiments, participants and items showing an error rate greater 

than 25% were dropped from the analysis. This affected no participants and two items 

(bison; avail). Every list was assigned half of the participants, resulting in 12 per list. 

Outliers were removed by 3 SDs for each participant using the correct responses. This 

affected 1.39% of the remaining data. The results are presented in Table 5.5.
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Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores of correct responses. 

The list factor was always added as between participants factor and congruency 

entered the analysis as repeated within participants factor. Lexicality was a repeated 

within factor in F1 and a between items factor in F2 . There was a main effect of 

lexicality in z-scores [F1(1, 22) = 22.083, p<0.001, f=1.00; F2(1, 194) = 76.001, p<0.001, 

f=0.63] reflecting that word stimuli received faster responses than nonwords in this 

experiment. All further analyses were performed individually for word and nonword 

targets.

In word targets, the results showed a significant effect of congruency in z-scores 

[F1(1, 22) = 4.794, p=0.039, f=0.47; F2(1, 96) = 5.893, p=0.017, f=0.25] indicating that 

congruent word trials received faster responses than incongruent word trials. In 
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Figure 5.4: Plot of the results of Experiment 5 by decile and condition. The scale of reaction times 
is an approximation to reflect the actual corresponding value of z-score and reaction times.

TABLE 5.5: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 5.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 539 3.57 586 2.75

Congruent 531 4.08 576 2.83

Effect 8 -0.51 10 -0.08



nonword targets, there was a significant effect of congruency in z-scores 

[F1(1, 22) = 5.863, p=0.024, f=0.52; F2(1, 98) = 5.525, p=0.021, f=0.24] showing that 

congruent nonword trials were responded faster than incongruent nonword trials.

The analysis of error ratio in word targets did not show a significant effect of 

congruency [F1(1, 22) = 0.354, p=0.588; F2(1, 96) = 0.366, p=0.546] and there was no 

effect in nonword targets either [F1(1, 22) = 0.031, p=0.863; F2(1, 98) = 0.016, p=0.901].

Analysis in deciles

The z-score transformed reaction times were binned in ten vincentiles and 

submitted to an analysis using lme4 in R (see Appendix E for a detailed list of results). 

In word targets the congruency effect was significant in the first eight deciles indicating 

faster responses to congruent word trials than to incongruent trials. But the effect was 

not significant in the two slowest bins, which was compatible with the visual inspection 

of Figure 5.4. In nonword targets, there was a significant positive effect of congruency 

in fast as well as in slow reaction times. However, the effect was not significant in the 

centre of the distribution in deciles five and six.

Ex-Gaussian analysis

The RT data were fitted an Ex-Gaussian distribution as outlined in Experiment 1 and 

the results are shown in Table 5.6. There was a significant congruency effect in word 

targets in μ [F(1, 22) = 6.932, p=0.015, f=0.56] indicating faster responses to congruent 

trials than to incongruent trials. There was no effect in σ [F(1, 22) = 0.036, p=0.852] or 

τ [F(1, 22) = 0.058, p=0.812]. The analysis in nonword targets did not reveal significant 
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TABLE 5.6: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF TARGET 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 5.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 455 445 10 510 502 8

σ 36 35 1 46 51 -5

τ 86 87 -1 73 71 2



effects of congruency in μ [F(1, 22) = 0.952, p=0.340], σ [F(1, 22) = 0.364, p=0.552] or τ 

[F(1, 22) = 0.028, p=0.868].

5.4.3 Discussion

The results of this experiment showed a prime congruency effect. In word targets, 

the central tendency was shifted showing an advantage of congruent trials. This was 

supported in all analyses. In nonword targets the analysis in repeated measures as well 

as by deciles showed an effect, whereas the parameters derived from an Ex-Gaussian 

distribution did not. The latter could be due to the smaller effect in the central deciles 

of the RT distribution. Comparing the numerical effect in this experiment of about 8 ms 

in words and 10 ms in nonwords and the effect found in Experiment 2 of about 23 ms, 

the nominal effect size decreased clearly. A similar pattern was found in the effect size 

which was smaller than in the previous experiments. This demonstrated that with 

increasing task difficulty the congruency effect decreased. However, it also showed that 

the congruency effect is robust even in difficult tasks. That means the experiment was 

not yet compatible with the null effect reported in the literature.

A negative response congruency effect did not occur in nonword targets, which is in 

contrast to Experiment 3 and Experiment 4. Also, there was no significant effect of 

congruency in the exponential part of the RT distribution. In fact, the estimates of τ 

were very similar across conditions. This suggested that a negative congruency effect is 

not dependent on the task difficulty per se, but an asymmetry in the difficulty of the 

word and nonword targets as in Experiment 3 and 3 could contribute to their 

occurrence. The experiment showed that the task difficulty contributes to the presence 

and absence of a congruency effect, but it does not determine it.

5.5 General discussion

The three experiments in this chapter tested the robustness of the congruency 

effect established in Experiment 2 with regards to task difficulty. The predictions 

derived from computational models such as the Spatial Coding Model (Davis, 2010) 

and the leaky accumulator model (Usher & McClelland, 2001) suggested that priming 

effects could be reduced in magnitude in slower responses. This is due to averaging 
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evidence across cycles in the SCM's decision component and trickling out of the 

priming effect respectively. The mean reaction times of all experiments supported this. 

Comparing experiments Experiment 3 and 4 to Experiment 2, the effect size and the 

numerical size of the congruency effect decreased with increased task difficulty. 

Furthermore, comparing Experiment 5 to the three experiments the effect decreased 

even further. These results challenge the prediction by Bodner and Masson (1997). 

Apparently, the response congruency effect did not increase with an increase of 

opportunity for the prime to affect the processing.

5.5.1 Distributional analysis

A more fine grained analysis of the reaction times revealed that the response 

congruency effect was not only reduced, but it turned into a negative effect. A mixture 

of positive and negative effects could result in the null effects that were previously 

reported (Norris & Kinoshita, 2008; Perea et al., 1998, 2010). This would suggest that a 

priming effect was not absent, but rather that it was not detected.

In Experiment 3, the nonword targets were harder to reject than in Experiment 2 

and this resulted in a significant effect on the exponential part of the RT distribution 

reflected in τ in the Ex-Gaussian fit. In Experiment 4, the word targets were replaced 

and a similar effect was found in τ. In Experiment 3 and 4 the central tendency μ in the 

category with an increased difficulty showed a numerical difference of about 20 ms 

between congruent and incongruent trials. In these items τ showed an effect in 

opposite direction indicating that the number of very slow responses was greater in 

the congruent trials. With respect to mean reaction times, these two parameters could 

cancel each other out and a null effect would be reported. Remarkably, the negative 

congruency effect did not occur in Experiment 5 where both word and nonword targets 

were of a similar level of difficulty. In summary, a negative congruency effect and the 

corresponding effect in τ occurred in the two experiments (3 and 4) which used an 

asymmetric level of difficulty in the response categories. In contrast, no such an effect 

occurred in both experiments with a balanced difficulty of the task (2 and 5).
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5.5.2 Negative congruency effects

The presence of positive and negative effects is not equivalent to the absence of an 

effect, even though the mean RT could suggest this. In a number of experiments where 

participants had to indicate the orientation of a horizontal line, Boy and Sumner (2010) 

showed that negative priming effects only occur when positive priming effects could 

occur. In their experiments a short SOA (40 ms) triggered positive effects whereas 

longer SOAs (150 ms) triggered negative priming effects. This pattern was attributed to 

self-inhibition. In this model (Boy & Sumner, 2010) each response option is subject to a 

response threshold and an inhibition threshold. If the response threshold is hit, an 

explicit motor response is triggered. This usually occurs due to the target stimulus. If 

the inhibition threshold has not been hit, the system tries to deal with the activation as 

noise. This is the source of positive priming effects. Once the activation hits the 

inhibition threshold, it is recognised and is ‘eligible’ for inhibition (see Colombo, 1986 

for a similar suggestion). This mechanism predicts an advantage in incongruent cases, 

where the activation in the prime response hit the inhibition threshold but not the 

response threshold. In these cases, active suppression of the incongruent response 

provides an advantage for the correct target response. In congruent trials this 

suppression results in a disadvantage, because the actual target response is 

suppressed. In Boy and Sumner's (2010) experiments, the long SOA allowed the primes 

to hit the inhibition threshold and this produced negative effects, whereas shorter 

SOAs did not allow the prime to hit the threshold (see Eimer & Schlaghecken, 2003 for 

similar suggestions and review; see Kiesel, Berner, & Kunde, 2008 for mask induced 

account). In this account, negative priming effects are essentially due to the same 

mechanism as positive effects and an additional self-inhibition process. This means 

that negative effects can only occur if there is at least a potential for positive effects.

An inhibitory effect in the decision channels could also result from other sources. 

The activation of a prime could have been passed on to a semantic level, where an 

image or sensation could be in mismatch with the stimulus. The decision channels 

appear to be open to influence from a semantic level in general. Examples include 

valence (Kousta et al., 2009), imageability (Balota, Cortese, Sergent-Marshall, Spieler, & 
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Yap, 2004) and concreteness (Kroll & Merves, 1986; Schwanenflugel, Kipp Harnishfeger, 

& Stowe, 1988). Nevertheless, empirical data from semantic priming effects suggests 

that there is (possibly) a negative effect in µ and a positive in τ (Balota et al., 2008). 

This means that the central tendency of the distribution indicates that congruent cases 

receive slightly slower responses, whereas the number of very slow responses is 

greater in incongruent compared to congruent cases. Although, there were significant 

effects in τ, in all four experiments presented so far there was no sign of the 

congruency effect becoming larger in slow reaction times. In contrast, there were 

positive effects in µ and negative effects in τ. These differences suggest that the 

congruency effect is not a semantic effect.

A verification mechanism is also capable of explaining the data pattern reported in 

the present experiments. In contrast to self-inhibition which operates on response 

level, a verification mechanism operates on word nodes. Grainger and Jacobs (1999) 

argued in favour of a reset in word nodes that was similar to the adaptive resonance 

theory (Carpenter & Grossberg, 1987) and the activation-verification model (Paap, 

Newsome, McDonald, & Schvaneveldt, 1982). This mechanism resets a word node if it 

mismatches the stimulus. A word prime triggers activation in the lexicon and 

contributes to summed lexical activity. A nonword target could activate some word 

nodes that are similar to the nonword and contribute to summed lexical activity as 

well. Once the lexical activity has hit a threshold the verification mechanism is initiated. 

In a nonword trial the most active word node produces a mismatch and undergoes a 

reset. As a result the correct no-response is triggered faster than in case of a nonword 

prime that did not contribute to the summed lexical activity. That means the nonword 

response was triggered faster in the incongruent trial than in the congruent trial. A 

verification process could also result in negative congruency effects in word trials. If the 

word target is similar to another word which is higher in frequency, this similar node 

could be strongly activated. A word prime and the competitor word node would 

contribute to summed lexical activity and trigger the verification. In this case a reset 

would slow a correct yes-response on the basis of summed lexical activity and force the 

model to wait for the identification of the word target. In an incongruent word trial, 
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the nonword prime would contribute only little to summed lexical activity and a 

verification is less likely to result in a mismatch.

Positive congruency effects were observed in most trials and thus, the threshold for 

triggering a verification has to be set sufficiently high. The current experiments 

suggested that this threshold should be sensible to the respective task, because these 

effects were most prevalent in slow responses in experiments when one of the 

categories was more difficult than the other. Grainger and Jacobs (1996) suggested a 

variable deadline model that provided a mechanism for establishing at what value of 

summed lexical activation (Σ-criterion) a response should be triggered. In contrast, the 

verification threshold could be fixed. This implies that in clear cases, a response is 

triggered immediately, but in more difficult trials a verification is initiated. In particular, 

this would expose the category that was manipulated in Experiment 3 (nonwords) and 

4 (words) to be subject to a verification. Thus, the congruency effect and the anti-

congruency effect would depend on summed lexical activity. This is compatible with 

the empirical data. As shown in Chapter 4.2, the SCM (Davis, 2010) captured the 

response congruency effect in Experiment 2 through an increased level of summed 

lexical activity in the early target related cycles in congruent compared to incongruent 

word trials and vice versa in nonword trials. That means the congruency effect was 

essentially generated by a greater activity in the yes-channel in congruent compared to 

incongruent word trials and vice versa in nonwords. Thus, a reset in the word node that 

mainly contributes to summed lexical activity appears to be a plausible option for 

producing negative congruency effects. I return to this point in Chapter 8 when 

presenting the respective simulations.

Bodner and Masson's (1997) hypothesis that the prime increases its effect with 

more effortful processing was not incompatible with the data. However, the mixture of 

positive and negative effects could prevent the detection of an increasing effect, i.e. 

the effect size could be continuously growing but the onset of negative effects covers 

this. The presence of negative effects suggested that the effect of the prime is different 

in fast and slow responses. Once the prime was processed up to certain level its effect 

is inhibitory. If the pattern of negative congruency effects is replicable and a larger 
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proportion of the distribution shows a negative effect, computational models will be 

challenged.

5.5.3 Theoretical accounts of response congruency

The results of Experiment 2 to 4 provided evidence in favour of a model that can 

explain response congruency effects independent of the difficulty of the explicit task. 

The deep processing account (Dehaene et al., 1998) predicts that response congruency 

effects are dependent on the prime and its processing, but not on the target or the 

difficulty of the explicit task (see 3.4.2). The current results provided support for this 

assumption. The deep processing account also predicts that response congruency 

effects are due to interference at a motor level, more precisely positive effects were 

attributed to suppressing an erroneous readiness potential. If the negative effects that 

were observed in Experiment 3 and 3 can be explained by the self-inhibition account, 

there is additional evidence that these effects were the result of interference at 

response readiness level.

The semantic overlap model (Quinn & Kinoshita, 2008) predicts response 

congruency effects independently of the difficulty of the explicit task as well. This 

model attributed the effect to features that were activated and attributed the benefit 

in responses to an overlap in congruent cases. Other empirical data (Balota et al., 2010, 

2008) suggested that semantic effects are accompanied with increasing effect sizes 

towards the slow tail of the RT distribution. On the other hand, a similar mechanism to 

verification could be operational in semantic features. If a feature that is part of the 

overlap between prime and target was reset, a disadvantage in the congruent 

condition was predicted. In the incongruent condition a reset of a feature would not 

cause a slow down in the response.

Both, the deep processing account and the semantic feature overlap hypothesis 

predict that response congruency crucially depends on the properties of the prime. If 

the prime was hard to process the readiness potential could be smaller and the deep 

processing account would predict the absence of response congruency effects. In the 

feature overlap model a response congruency effect is not predicted if the primes 
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would not show overlapping features with the targets of either category or if the 

primes of both categories would share features with both target categories. The 

experiments in the next chapter tested whether the response congruency effect is 

dependent on the primes.

5.5.4 Empirical discrepancy

The experiments in this chapter clearly demonstrated response congruency effects 

in lexical decision. This is compatible with one of the experiments in the literature 

(Grainger & Jacobs, 1996), but it is in contrast to other studies (Norris & Kinoshita, 

2008; Perea et al., 1998, 2010). First, all experiments presented so far showed that 

congruency effects can occur even if there is no form relation or shared semantics 

between prime and target. Secondly, the manipulation of the task difficulty suggested 

that in more difficult tasks with slower responses, the effect size decreases. One option 

is to attribute the absence of congruency effects to the emergence of negative effects 

in slow responses, but all experiments showed a significant positive congruency effect 

in mean RT despite the negative effects in slow responses. In all experiments the same 

set of very informative primes was used. If the prime was less informative with regards 

to the task, the congruency effect could diminish. This would provide information 

about the sort of information that was extracted from the prime. In the following 

chapter I introduce experiments that tested this prediction, before continuing with 

simulating the current findings.

5.6 Conclusion

A response congruency effect was found in lexical decision experiments with an 

increased task difficulty. Though the effect was significant in both word and nonword 

targets in four experiments, the effect size decreased with an increased task difficulty. 

This suggested that the targets contribute to the effect, but the difficulty of the explicit 

task does not determine the presence or absence of congruency effects. The effect was 

not short-lived and was still present in slower reaction times. Although the congruency 

effect can turn into a negative effect in nonword targets as a more fine grained analysis 

of the RT distribution revealed. Computational models, such as the Spatial Coding 

Model (Davis, 2010) predict decreasing effect sizes with slower responses and are 
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compatible with the empirical data. The next chapter investigates the influence of the 

primes.
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6. Effects of prime difficulty

The experiments in the previous chapters tested whether the response congruency 

effect is affected by manipulations of the explicit task. All experiments showed the 

presence of a response congruency effect, even when the difficulty of the task was 

increased and slower responses were observed. However, one important factor was 

held constant in these experiments was the informativeness of the primes. This 

chapter introduces experiments that manipulated this factor. I begin by introducing the 

concept of prime informativeness.

6.1 Prime informativeness

All primes used in Experiment 2 through 5 had the property of being either 

extremely wordlike or extremely unwordlike. The word primes were high in frequency 

and resembled typical letter combinations (e.g., night, youth, crown; more details on 

the exact computation of typicality are provided in Chapter 2.3). Thus, these words 

trigger a comparably high level of lexical activation. By contrast, the nonwords were 

very unlike English words: they had no orthographic neighbours and were formed of 

atypical letter strings (e.g., cxnio, dvnel, sujcw). These nonwords trigger very little 

activation in the lexicon. Mapping them on a scale of how likely each item is to be a 

word, the words and nonwords would be very distant. In this respect, the primes can 

be described as very informative with regards to a lexical decision task. These 

informative primes could have a greater impact on the final decision than primes that 

are closer and more similar on a wordlikeness scale. Previous experiments (Norris & 

Kinoshita, 2008; Perea et al., 1998, 2010) that did not observe response congruency 

effects used primes that were similar to the targets with respect to wordlikeness. Thus, 

the presence of congruency response effects in Experiment 2 through 4 could have 

been critically dependent on the nature of the primes. This possibility was tested in the 

experiments reported in this chapter.

6.2 Experiment 6

This experiment combined the relatively difficult targets from Experiment 5 with 

primes that were similarly difficult, i.e., relatively uninformative. Hence, if prime 
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informativeness is a critical factor the congruency effect (which was relatively small in 

Experiment 5) could be reduced to a null effect. This would be compatible to the 

literature and shed light on the crucial difference between this and the previous 

experiments.

6.2.1 Methods
Participants. Twenty-five participants from the same population as in Experiment 1 

took part in the experiment. All were native speakers of English.

Stimuli & Design. 100 word targets were taken from Experiment 5 and were the 

same as in Experiment 4. The 100 nonword foils were also mostly taken from 

Experiment 5 and therefore virtually the same as in Experiment 3. Five of the 

nonwords had to be replaced from the set used in Experiment 3 and 5 in order to fulfil 

restrictions in forming the pairs of nonwords in the congruent condition (OT3mean=-0.52, 

OT3max=0.51, OT3min=-3.41; for a full list see Appendix B). The critical difference from 

the previous experiments was the use of primes that were relatively less informative. 

The word and nonword primes were selected by sampling without replacement from 

the set of targets, re-pairing primes with targets in such a way that primes and targets 

shared no letters. For counterbalancing purposes, two versions of the experiment were 

derived.

Procedure. The procedure was the same as in Experiment 2.

6.2.2 Results

One participant showed exceptionally slow RTs (mean of 1109 ms) and was 

therefore excluded from further analysis. As in previous experiments, participants and 

items showing an error rate greater than 25% were dropped from the analysis. This 

criterion did not affect participants, but three word targets (motto, bison, avail) were 

excluded. Half of the participants was assigned to each list. Outliers were removed by 3 

SDs for each participant using the correct responses. This affected 1.80% of the 

remaining data. The mean reaction times and the error ratios are presented in Table 

6.1.
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Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores. In all analyses the list 

factor entered as a between participants factor and congruency was added as repeated 

within participants factor. Lexicality was a repeated within participants factor in F1 and 

a between items factor in F2. There was a main effect of lexical status in z-scores 

[F1(1, 22) = 34.408, p<0.001, f=1.25; F2(1, 193) = 66.539, p<0.001, f=0.59] reflecting that 

word stimuli received faster responses than nonwords in this experiment. All further 

analyses treated word and nonword targets individually.

In word targets the congruency effect was significant in z-scores [F1(1, 22) = 7.731, 

p=0.011, f=0.59; F2(1, 95) = 11.572, p=0.001, f=0.35] indicating faster responses to 

congruent than to incongruent trials. In contrast, there was no such effect in nonword 

targets [F1(1, 22) = 0.020, p=0.890; F2(1, 98) = 0.095, p=0.759].
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TABLE 6.1: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 6.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 556 4.30 593 2.75

Congruent 542 4.04 596 2.83

Effect 14 0.26 -3 -0.08

Figure 6.1: Plot of the results of Experiment 6 by decile and condition. Note that the scale in ms in 
an approximation and data was plotted by z-scores.



The analysis of error ratio in word targets did not reveal a main effect of congruency 

[F1(1, 22) = 0.066, p=0.800; F2(1, 95) = 0.087, p=0.769]. This was also the case in 

nonword targets [F1(1, 22) = 0.203, p=0.656; F2(1, 98) = 0.181, p=0.671].

Analysis in deciles

The reaction times in z-scores were binned in ten vincentiles before being submitted 

to an analysis using lme4 in R (see Appendix E for a detailed list of results). In word 

targets the congruency effect was significant in all but the first three deciles. This was 

compatible with the visual inspection of Figure 6.1, where the effect was increasing 

with increasing RT. Also, the t-values were increasing in greater deciles indicating a 

greater effect size. In nonword targets there was a significant positive congruency 

effect in the first decile and a significant negative effect in the last decile. The t-values 

indicated that the tendency for a positive effect became smaller and the t-value turned 

negative in decile seven, indicating a negative congruency effect in slower responses. 

Figure 6.1 illustrates that the RT curves of congruent and incongruent nonword targets 

were crossing. The effect was small in all deciles.

Ex-Gaussian analysis

There were no significant effects in the parameters of the Ex-Gaussian analysis. 

There was no main effect of congruency in word targets on μ [F(1, 22) = 1.893, 

p=0.183], on σ [F(1, 22) = 0.992, p=0.330] or τ [F(1, 22) = 0.546, p=0.468]. Similar 

results were found in nonword targets on μ [F(1, 22) = 0.272, p=0.607], σ 

[F(1, 22) = 0.660, p=0.425] or τ [F(1, 22) = 0.799, p=0.381].
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TABLE 6.2: RESULTS OF THE EX-GAUSSIAN FITTING OF EXPERIMENT 6 USING QMPE AS A FUNCTION 
OF TARGET LEXICALITY AND CONGRUENCY.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 460 451 9 500 496 4

σ 47 41 6 44 49 -5

τ 97 92 5 97 103 -6



6.2.3 Discussion

The results showed that there was a prime congruency effect in word targets, but 

not in nonword targets. These results provided some support for the role of prime 

informativeness. The response congruency effect that was observed in Experiment 5 

disappeared when the same nonword targets were paired with less informative primes 

in the present experiment. This manipulation did not the reduce the effect size in word 

targets. But the congruency effect was detected in mean RT only, whereas the central 

tendency, standard deviation and exponential part of the RT distribution did not 

indicate a significant effect. Thus, manipulating the prime informativeness affected the 

word responses in this experiment. In summary, the response congruency effect was 

decreased by reducing the prime informativeness compared to Experiment 5.

Five separate experiments have provided evidence for a significant response 

congruency effect in word targets, and four out of these have shown evidence for a 

significant response congruency effect in nonword targets. These effects appear to be 

very robust and are yet at odds with prior findings in the literature (Norris & Kinoshita, 

2008; Perea et al., 1998, 2010). However, the experiments reported so far have shown 

that the size of these effects is influenced by the difficulty of the word-nonword 

discrimination task. The experiments in the last chapter showed that congruency 

effects can be reduced by making the target stimulus discrimination more difficult, and 

the present experiment showed that combining relatively difficult targets with 

relatively difficult (uninformative) primes can eliminate the congruency effect in 

nonword targets. This suggested that making the word-nonword discrimination even 

more difficult in primes and targets could completely eliminate the congruency effect. 

This possibility was tested in Experiment 7.

6.3 Experiment 7

The word and nonword targets in this experiment were selected so as to maximise 

the difficulty level of the explicit task. The same stimuli were also employed as primes, 

so that the prime informativeness was also reduced relative to the previous 

experiment. Since word targets were already selected in Experiment 6 to be relatively 
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hard to categorise, only nonwords could be manipulated further to achieve an 

increased task difficulty, without losing considerable amounts of data due to erroneous 

responses. Hence, the nonword primes and targets were replaced by more wordlike 

stimuli.

6.3.1 Methods
Participants. Thirty-six participants from the same population as in Experiment 1 

took part in the experiment.

Stimuli & Design. The stimuli in this experiment were selected to maximise the 

difficulty of the task. The 100 low frequency words used in Experiments 3, 4 and 5 were 

used as primes and targets. The words in this experiment had 1.5 neighbours on 

average according to N-watch (Davis, 2005). The nonwords were replaced by 100 items 

that had 3.7 neighbours on average according to N-Watch and were higher in 

orthographic typicality (OT3mean=1.48, OT3max=1.77, OT3min=1.33; see Chapter 2.3) than 

the words (OT3mean=0.20, OT3max=1.31, OT3min=-1.55; see Chapter 2.3). These nonwords 

were used as primes and targets (see Appendix B). As in the previous experiments, the 

primes and targets were paired so that there were no letters shared between prime 

and target. There were two versions of the experiment for counterbalancing purposes.

Procedure. The procedure was the same as in Experiment 2.

6.3.2 Results

As in previous experiments, participants and items showing an error rate greater 

than 25% were dropped from the analysis. This did not affect participants, but two 

words (inert, bison) and eight nonwords (wence, goven, becon, traid, quess, drome, 

sping, hince) were excluded. The larger number of exclusions indicated that the 

difficulty of the explicit lexical decision task was increased, as expected. Outliers were 

removed by 3 SDs for each participant using the correct responses. This affected 1.67% 

of the remaining data. The results are presented in Table 6.3.
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Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores. In all analyses the list 

factor entered as a between participants factor and congruency was added as repeated 

within participants factor. Lexicality was a repeated within participants factor in F1 and 

a between items factor in F2. There was a main effect of lexicality in z-scores 

[F1(1, 34) = 263.507, p<0.001, f=2.79; F2(1, 187) = 254.039, p<0.001, f=1.17] reflecting 

that word stimuli received faster responses than nonwords. All further analyses were 

performed for word and nonword targets individually.

There was no effect of congruency in word targets in z-scores [F1(1, 34) = 0.030, 

p=0.864; F2(1, 96) = 0.002, p=0.964]. This was also the case in nonword targets 

[F1(1, 34) = 0.219, p=0.643; F2(1, 91) = 0.101, p=0.751].
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Figure 6.2: Plot of results of Experiment 7 by decile and condition. Note that the scale in ms is an 
approximation and data was plotted by z-scores.

TABLE 6.3: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 7.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 638 3.68 794 6.75

Congruent 636 3.57 793 9.98

Effect 2 0.11 1 -3.23



The analysis of error ratio in word targets showed no effect of congruency 

[F1(1, 34) = 0.051, p=0.823; F2(1, 96) = 0.053, p=0.818]. But there was a significant 

effect of congruency on the error ratio in nonword targets [F1(1, 34) = 14.287, p=0.001, 

f=0.65; F2(1, 91) = 12.979, p=0.001, f=0.38], reflecting more erroneous responses to 

congruent trials than to incongruent trials.

Analysis in deciles

As in Experiment 1 the reaction times were binned in ten vincentiles and the results 

submitted to an analysis using lme4 in R (see Appendix E for a detailed list of results). 

The results showed that the congruency effect was significant in only one decile in 

word targets; specifically there was a significant negative effect in the slowest bin of 

responses. There was no significant effect in nonwords. This suggested that there was 

no detectable response congruency effect in this experiment, which was also 

compatible with the visual inspection of Figure 6.2 and the mean RTs in Table 6.3.

Ex-Gaussian

The data were analysed by fitting an Ex-Gaussian distribution to the RT of this 

experiment according to the method outlined in Experiment 1. The resulting 

parameters are shown in Table 6.4. There were no significant effects in word targets: μ 

[F(1, 34) = 0.063, p=0.804], σ [F(1, 34) = 0.033, p=0.856] and τ [F(1, 34) = 0.336, 

p=0.566]. The analysis in nonword targets also showed no significant effects: μ 

[F(1, 34) = 0.116, p=0.735], σ [F(1, 34) = 1.713, p=0.199] and τ [F(1, 34) = 0.426, 

p=0.518]. The absence of effects was in line with the analysis of variance and the 

analysis by deciles.
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TABLE 6.4: RESULTS OF THE EX-GAUSSIAN FITTING OF EXPERIMENT 7 USING QMPE AS A FUNCTION 
OF TARGET LEXICALITY AND CONGRUENCY.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 500 501 -1 624 629 -5

σ 35 36 -1 64 82 -18

τ 138 134 4 182 172 10



6.3.3 Discussion

There was no congruency effect in this experiment in any of the analyses of RT. This 

was finally compatible with reports in the literature (Norris & Kinoshita, 2008; Perea et 

al., 1998, 2010). This experiment differed from Experiment 6 in both, nonword primes 

and nonword targets. The targets were replaced to further increase the difficulty level 

of the explicit task and the primes to reduce the prime informativeness. Only the 

combination of both measures produced a null effect whereas the five previous 

experiments showed a robust congruency effect. The next experiment will test whether 

this has to be attributed to the primes, the targets or both.

Replacing the nonword targets successfully increased the difficulty level of the task. 

This was illustrated by both an increase in RT and in error ratio compared to previous 

experiments. The error ratio in nonword targets was relatively high (6.75% in the 

congruent and 9.98% in the incongruent condition compared to 3.8% and 1.9% 

respectively in Experiment 2). There was also a strong effect in RTs (794 ms in 

nonwords and 637 ms in words compared to about 487 ms and 508 ms in Experiment 

2) indicating the increased difficulty of the task. The RTs reported in this experiment 

were similar to those reported in the literature (see 1.4.2.3). As mentioned above, the 

nonwords in the study using English items (Norris & Kinoshita, 2008) were very 

wordlike and had a high similarity to the word targets (e.g., STEAK vs STERK). The items 

in the present experiment were not similar to each other on a pairwise level, but the 

nonwords were similarly wordlike on a whole. Thus, the word-nonword discrimination 

task was comparably difficult as indicated by slow RT and relatively high error ratios.

The absence of a prime congruency effect in the current results challenge an 

account that predicts that the priming effect increases in a more effortful task (Bodner 

& Masson, 1997), because response congruency effects were reduced with an 

increasing task difficulty and more effortful processing. The current results were 

compatible with both hypotheses that could explain reduced response congruency 

effects in more difficult tasks. The weight assigned to summed lexical activity could 

have shifted to identification as a result of the increased difficulty of the word-

163



nonword discrimination. Also, the absence of a response congruency effect could be 

reduced with a longer decision process that provides a longer time span for the effect 

to diminish or trickle out. Interestingly, this predicts that the congruency effect could 

be re-established in these targets with very informative primes. These primes would 

have a greater impact in early processing stages and thus, it takes longer for the effect 

to trickle out. In contrast, very informative primes could not re-establish the 

congruency effect, if the absence of an effect was due to a smaller weight assigned to 

summed lexical activity. The next experiment tested whether this is the case.

The current experiment used a very similar method of assigning prime and target 

pairs as Experiment 2. This means that stimuli were partly novel and partly used as 

targets prior to being employed as primes. The respective analysis of prime novelty 

(see Appendix A) did not reveal any reliable effects of used primes in Experiment 2. The 

current experiment did not show any effects using a similar method and strengthens 

the results of the analysis presented in Appendix A. The results suggested that using 

the primes as targets does not necessarily result in a stimulus-response mapping if 

there is a large number of targets (100 per category) and these are only presented 

once. However, stimulus-response mappings can occur in small sets (about a dozen 

targets) that are presented a few times (Damian, 2001). Importantly, the current 

experiment showed no sign of a stimulus-response mapping. Furthermore, it replicated 

the literature (Norris & Kinoshita, 2008; Perea et al., 1998, 2010) in terms of the 

magnitude of RTs and the absence of response congruency effects.

6.4 Experiment 8

This experiment tested whether a response congruency effect can emerge with 

targets that are relatively difficult when combined with very informative primes. Thus, 

in this experiment the same targets as in Experiment 7 and the same primes as in 

Experiment 2 were used. If a response congruency effect can be shown for the same 

set of targets used in Experiment 7, it is clear that prime informativeness is the critical 

factor.
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6.4.1 Methods
Participants. Thirty-eight participants from the same population as in Experiment 1 

took part in the experiment. All were native speakers of English.

Stimuli & Design. 100 word targets were taken from Experiment 4 and thus, the 

same as in Experiments 5, 6 and 7. The nonword targets were the same 100 wordlike 

stimuli used in Experiment 7. The prime stimuli were identical to those used in 

Experiment 2 through 5. In these experiments the same primes produced a stable 

congruency effect (see Appendix B for a list of stimuli). As in the prior experiments, 

primes and targets were paired so that they did not share any letters. In this 

experiment the prime and target stimuli were drawn from different sets. Two versions 

of the experiment were formed for counterbalancing purposes.

Procedure. The procedure was the same as in Experiment 2.

6.4.2 Results

Participants and items showing an error rate greater than 25% were dropped from 

the analysis. This affected two participants (43% and 27% error rate), four words 

(motto, inert, bison, avail) and five nonwords (chave, becon, proad, quess, sping). Of 

the remaining participants 18 had been assigned to each of the two lists. Outliers were 

removed by 3 SDs for each participant using the correct responses. This affected 1.73% 

of the remaining data. The mean RTs and error ratios are shown in Table 6.5.

Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores. In all analyses, the list 

factor was entered as a between participants factor and congruency was added as 

repeated within participants factors. Lexicality was a repeated within participants 

factor in F1 and a between items factor in F2. There was a main effect of lexical state in 

z-scores [F1(1, 34) = 228.575, p<0.001, f=2.60; F2(1, 187) = 297.329, p<0.001, f=1.26], 

reflecting that word stimuli received faster responses than nonwords in this 

experiment. All further analyses were performed for words and nonwords individually.

165



The separate analyses of response congruency in word targets showed a significant 

main effect in z-scores [F1(1, 34) = 9.912, p=0.003, f=0.54; F2(1, 94) = 6.860, p=0.010, 

f=0.27] reflecting faster responses to congruent than to incongruent trials. In contrast 

to words there was no significant effect in nonword targets [F1(1, 34) = 2.140, p=0.153; 

F2(1, 93) = 2.428, p=0.123].

Analysis in deciles

The z-score transformed reaction times were binned in ten vincentiles and 

submitted to an analysis using lme4 in R (see Appendix E for a detailed list of results). 

The congruency effect in word targets was not significant in the first three deciles, but 

in all later deciles where congruent trials received faster responses than incongruent 

trials. This pattern was very similar to Experiment 6 where the congruency effect built 

up in the first half of the RT distribution. In nonword targets, there was no effect of 
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TABLE 6.5: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND CONGRUENCY OF EXPERIMENT 8.

Lexicality

Word Nonword

Congruency RT Error RT Error

Incongruent 601 4.40 713 7.72

Congruent 588 3.70 721 7.54

Effect 13 0.70 -8 0.18

Figure 6.3: Plot of results of Experiment 8 by decile and condition. The scale of reaction times in 
ms is an approximation to reflect the actual corresponding value of z-score and reaction time.



congruency in the first seven deciles, but a negative effect in the last three deciles. That 

means slow responses to incongruent trials were faster than slow responses to 

congruent trials. This pattern was similar to the ones found in earlier experiments. In 

Experiment 3 and 6 there was a negative effect in slow responses and in Experiment 4 

the effect became smaller.

Ex-Gaussian analysis

The data were analysed by fitting an Ex-Gaussian distribution to the RT of this 

experiment according to the method outlined in Experiment 2. The results are listed in 

Table 6.6. There was a significant main effect of congruency in word targets on μ 

[F(1, 34) = 7.648, p=0.009, f=0.38], reflecting faster responses in congruent trials. There 

was no effect in σ [F(1, 34) = 0.557, p=0.460] and τ [F(1, 34) = 0.119, p=0.732]. The 

analysis in nonword targets showed no significant effects in μ [F(1, 34) = 0.099, 

p=0.755] and σ [F(1, 34) = 0.075, p=0.786]. There was a tendency in τ [F(1, 34) = 3.327, 

p=0.077], reflecting more slow responses in congruent than in incongruent trials. This 

was compatible with the analysis in deciles, where a negative congruency effect 

emerged in the slower responses.

6.4.3 Discussion

This experiment showed a significant response congruency effect in word targets. 

Even though the explicit task was formed of the same items as in Experiment 7, a 

prime congruency effect emerged with an effect size similar to Experiment 5 and 6. The 

only difference between the current experiment and Experiment 7 was the prime 

informativeness. The more informative primes resulted in a congruency effect, but the 

less informative primes in Experiment 7 did not. This showed that the difficult targets 
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TABLE 6.6: RESULTS OF THE EX-GAUSSIAN FITTING OF EXPERIMENT 8 USING QMPE AS A FUNCTION 
OF TARGET LEXICALITY AND CONGRUENCY.

Word Nonword

Parameter Incongruent Congruent Effect Incongruent Congruent Effect

µ 496 484 12 585 583 2

σ 40 37 3 51 49 2

τ 105 103 2 134 150 -16



could be used in an experimental setting that produced a congruency effect. Hence, 

the distinctively important variable was the prime informativeness.

In nonword targets, there was no significant congruency effect in the repeated 

measures ANOVA, although there was a tendency in τ in the Ex-Gaussian fitting, 

indicating a longer tail in the RT distribution for congruent nonword trials than for 

incongruent trials. This finding was supported by a significant negative congruency 

effect in the slowest three deciles. The presence of these small effects in slow 

responses indicated that there was an effect of prime congruency.

With regards to the effect of prime repetition, this experiment used primes and 

targets drawn from disjoint sets, thus the primes never occurred as targets in this 

experiment. Despite a very difficult task, the novel primes resulted in a response 

congruency effect. This contrasted with Experiment 7 where the primes were partly 

used as targets prior to their usage as a prime, but no response congruency effect 

emerged. These findings strengthened the analysis in Appendix A and suggested that 

prime novelty showed no detectable effect in this experimental paradigm.

6.5 Discussion

The experiments in this chapter varied the informativeness of the primes with 

respect to the explicit task. In Experiment 6, the task difficulty was kept constant in 

comparison to Experiment 5, but the primes were less informative. The experiment 

revealed a smaller but significant response congruency effect in word targets. In 

Experiment 7, the nonword primes and targets were replaced by very wordlike items. 

This increased the task difficulty further, but it also reduced the prime informativeness. 

In this experiment, no response congruency effect was observed, replicating the null 

effects reported in previous experiments (Norris & Kinoshita, 2008; Perea et al., 1998, 

2010). Also, the magnitude of the mean RT was similar to these experiments. 

Experiment 6 and Experiment 7 differed with respect to both prime informativeness 

and the difficulty of the explicit task. For this reason, Experiment 8 tested the same 

targets as Experiment 7, but used very informative primes. Under these conditions 

congruency effects were similar to those found in Experiment 6. This suggested that 
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congruency effects were influenced by the explicit task, specifically, the effect size 

decreased with increased task difficulty. The comparison of Experiment 7 and 

Experiment 8 suggested that the presence of a response congruency effect depended 

on prime informativeness. In Experiment 7 using less informative primes the 

manipulation of response congruency produced a null effect, but in Experiment 8 with 

very informative primes and the same targets, an effect similar to Experiment 6 was 

found.

6.5.1 Word targets

A similar congruency effect for word targets was observed in Experiment 6 and 

Experiment 8. In both experiments the congruency effect was not significant in the 

very fast responses. This is different from the experiments in the previous chapter 

where the effect showed a tendency to be stronger in fast than in slow responses. 

Furthermore, the congruency effect in the current two experiments did not decrease in 

size in slower responses.

The absence of congruency effects in fast yes-responses could reflect fast 

identifications of the target and thus, the effect of summed lexical activity was 

negligible compared to slower responses. This is compatible with Bodner and Masson 

(1997) who suggested that priming effects increase with more effortful processing. 

Specifically, the current data indicated that there was a lower boundary of processing 

effort before the primes could become effective. This minimum appeared to be relative 

to the respective explicit task, e.g. responses in Experiment 6 were generally faster 

than in Experiment 8, but the effect was building up in both experiments. Note that 

this is not incompatible with decreasing effects in slow responses. These were 

attributed to leakage in the decision channels or a reset mechanism reducing the 

observable effect in slow responses. Taken together, these findings implied that there is 

a window where congruency effects can be observed. The lower boundary appeared to 

be relative to the task requirements and the upper boundary was particularly 

influenced by the leakage in the decision system. On the other hand, the absence of 

response congruency effects in fast responses was only observed in two experiments 
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and it could also be the case that the congruency effects were not detected with the 

current methods.

6.5.2 Nonword targets

Using a standard analysis, the nonword targets did not show effects of response 

congruency in any of the three experiments reported in this chapter. It was only in a 

more fine-grained technique that negative congruency effects were revealed in slow 

responses in Experiment 6 and Experiment 8. Additionally, a very short-lived positive 

congruency effect was found in Experiment 6. Negative congruency effects in slow 

responses and positive congruency effects in fast responses were also reported in 

Experiment 3. A similar explanation can be applied across these three experiments. 

The nonword responses were amongst the slowest responses in all experiments in this 

chapter. In fast responses, only a small effect was measured because the primes were 

relatively uninformative, i.e. word primes resulted in a comparably little lexical activity 

and nonword primes produced a relatively large lexical activity. In slower responses, a 

negative effect emerged because the prime was processed up to a stage where it 

became a reasonable candidate for identification (inhibition threshold in Boy & 

Sumner, 2010), but never reached the identification threshold. This could have 

triggered a reset of the activation in the prime node and resulted in a negative 

congruency effect.

Interestingly, negative congruency effects in nonword targets only occurred in 

experiments where positive congruency effects were found in word targets. This was 

compatible with findings by Boy and Sumner (2010) showing that negative priming 

effects can only emerge if there is at least a potential for positive priming effects. It 

could be concluded that negative priming effects not only provide evidence for an 

effect of the priming conditions. They could also be interpreted as indicating that very 

similar processes as in positive priming effects were operating, but additionally 

inhibitory processes were active. For the current experiments it was suggested that 

there is a reset mechanism operating if a word node reached a required minimum 

activity and did not hit the identification threshold for a while.
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Negative congruency effects occurred in nonword targets only. The hypothesis of a 

reset mechanism provides a simple explanation for this. The reset is only triggered 

after a certain amount of processing with some mismatch between the activated 

representation and the stimulus. The word targets received faster responses in all 

experiments in this chapter and thus, it could be argued they were clear cases and not 

subject to a reset. In other experimental paradigms where responses are equally 

difficult, negative priming effects occur with all response options (Boy & Sumner, 2010; 

Eimer & Schlaghecken, 2003; Kiesel et al., 2008).

6.5.3 Prime informativeness

The three experiments in this chapter tested the effect of prime informativeness on 

the presence of congruency effects. Two experiments (Experiment 6 and Experiment 8) 

using informative primes revealed very similar results and a similar effect size of 

response congruency. The third experiment used less informative primes and produced 

a null effect (Experiment 7). The evidence was in favour of the idea that response 

congruency effects depend on prime informativeness. Informativeness with regards to 

a lexical decision task was the amount of lexical activity that stems from the prime 

presentation, where a high level of activity was an indicator for a word response and a 

low level of activity indicated a nonword response. The important metric is the 

difference between the prime categories. If the nonwords were very wordlike and 

words low in frequency, both categories were almost indistinguishable with regards to 

the summed lexical activity resulting from the prime presentation. This situation was 

tested in Experiment 7, where response congruency effects were not obtained, 

supporting the idea that such effects only emerge if the word primes produce a higher 

level of summed lexical activity than the nonword primes like in Experiment 8.

This account of prime informativeness does not refer to the lexicality of the prime 

stimuli per se, but to the lexical activity that is triggered by their presentation. If this 

assumption is correct, response congruency effects could emerge independently of the 

actual lexical status of the prime stimulus. If typicality of nonwords is an approximation 

of the total lexical activity, then typical nonword primes would behave more similarly 

to word primes than to atypical nonword primes. Hence, using typical and atypical 
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nonword primes would produce similar effects like using word and nonword primes. 

The next chapter investigates this prediction.

6.5.4 Theoretical accounts of response congruency effects

The deep processing account (Dehaene et al., 1998; Naccache & Dehaene, 2001) 

predicts that the task instructions are applied to the prime. The processing of the 

prime stimulus is unconscious and incomplete, but essentially the same as the target 

processing. It results in motor readiness in one of the response options. In this account, 

the presence of a response congruency effect is independent of the difficulty of the 

explicit word-nonword discrimination task, but the activation in the respective 

response channels depends on the processing of the prime. Thus, the empirical 

findings in this chapter are compatible with this account. In Experiment 7 and 

Experiment 8, the explicit word-nonword discrimination was the same, but the very 

informative primes in Experiment 8 resulted in a response congruency effect whereas 

the less informative primes in Experiment 7 did not. This could be attributed to a less 

successful processing of the primes in Experiment 7. Indeed, if the primes of 

Experiment 7 are used as targets (e.g., Experiment 7 and 8) the response latencies are 

considerably longer than when the primes of Experiment 8 were used as targets 

(Experiment 2).

The negative congruency effects that were observed in the experiments in this and 

the previous chapter could be explained if the deep processing account was extended 

by a reset mechanism in the motor response channels. For example, if a word prime 

triggers lexical activity which in turn causes activity in the motor response channel, this 

would facilitate a word response and cause a conflict with a nonword response 

(positive effect). The timing of a reset is crucial in the negative effects as they only 

occurred in the slowest responses. Thus, the reset would operate after the average 

response time has passed, i.e. the slow nonword responses. At this time the word and 

the nonword response channel would have received considerate activation and a reset 

mechanism (e.g., a gated dipole field, Carpenter & Grossberg, 1987) would quickly 

allow the other channel to trigger a response, i.e. slow incongruent nonword trials 
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could benefit from activation in the word response channel compared to a slow 

congruent nonword trial.

The semantic overlap model (Quinn & Kinoshita, 2008) is compatible with the data, 

because it predicts that the congruency effect depends on the features that were 

activated. That means the word primes in Experiment 7 may not have activated the 

word-related features as strongly as the primes in Experiment 8 and vice versa the 

nonword primes in Experiment 7 could have activated some word-related features 

whereas the nonword primes in Experiment 8 did not. This hypothesis provides 

another interesting prediction. If a set of nonwords could be chosen in a way that they 

activate word-related features and another set that does not, the response congruency 

effects that were observed with words and nonwords should be replicated. Quinn and 

Kinoshita (2008) used impostor primes (nonexemplars that share central features with 

a category) and observed the predicted priming effects. This prediction was tested in 

the next chapter.

The results of Experiment 7 showed that even though the primes were drawn from 

the same pool of items as the targets there was no trace of a response congruency 

effect. That means that stimulus-response mappings do not build up from a single 

presentation of large set of targets, but after a few presentations (Damian, 2001). Also, 

the action trigger account cannot account for the data. If participants prepared 

themselves to respond to a certain set of features, then a stronger effect was expected 

in Experiment 7 where primes and targets were of a similar quality than in Experiment 

8 where primes and targets differed with respect to their wordlikeness. But the 

empirical data showed that participants did not show a response congruency effect in 

Experiment 7 despite having the chance to adapt towards the targets which were also 

the primes. Rather a response congruency effect was observed in Experiment 8, where 

the set of targets that participants could adapt to was not similar to the set of primes.

6.6 Summary

The experiments in this chapter tested the impact of prime informativeness on 

response congruency effects. The informativeness of the prime towards a lexical 
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decision could be understood as difference in lexical activity that was triggered by the 

primes of in each condition. An estimate for this is the typicality or wordlikeness of a 

nonword (see Chapter 2.3 for a more detailed account). In a more typical lexical 

decision task than Experiment 2, response congruency effects were observed in 

Experiment 8 with informative primes, but not in Experiment 7 using less informative 

primes. This was the case even though both experiments used the same targets. Thus, 

prime informativeness determines whether a response congruency effect can occur in 

an experiment. The preliminary definition of prime informativeness refers to the lexical 

activity resulting from the prime, but not its actual lexical status. This suggests that a 

set of impostor nonwords (a set of very wordlike nonwords resembling words very 

closely) and a set of nonwords that is very unlike words could produce a wordlikeness 

congruency effect. The next chapter tests this hypothesis.

Negative congruency effects occurred only in nonword targets. These effects were 

only present when positive congruency effects emerged in word targets and could be 

taken as evidence for an effect of the priming conditions. The occurrence of negative 

congruency effects was attributed to a reset mechanism. The absence of negative 

effects in word targets was attributed to the generally faster responses so that they are 

not subject to this reset.
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7. Effects of prime typicality

This chapter investigates prime typicality effects in masked primed lexical decision. 

The findings of the previous chapter showed that response congruency effects 

occurred when word and nonword primes were sufficiently informative. This 

manipulation confounded prime lexicality and prime typicality. In the previous 

experiments, the distinctive difference between these two priming conditions was to 

what extent the prime could bias the decision process in the one or the other 

direction. In particular, the lexical activity triggered by a very typical and high frequency 

word prime biased the decision process towards a word response. Nonwords that were 

very unlike words showed the opposite effect by biasing the process towards a 

nonword response. Woollams, Silani, Okada, Patterson, and Price (2011) showed in an 

fMRI study that a left inferior occipital region of the left ventral occipito-temporal 

cortex (LvOT) is particularly sensitive to typicality. Specifically, the effect of typicality 

was independent of the lexicality whose effect was stronger in the posterior LvOT. The 

following experiments investigated whether orthographic typicality was a component 

in word recognition that already contributed to lexical activity. Thus, it could be 

possible to form stimuli that do not differ in lexicality but the difference in typicality is 

sufficient to affect the response speed in an experiment. These stimuli would be similar 

to impostor primes (see 1.3.1.3).

Quinn and Kinoshita (2008) found that words that share central features with a 

category resulted in similar priming effects as actual members of the category. For 

example, Quinn and Kinoshita (2008) used body parts as a category. In their 

experiment the impostor mind resulted in similar priming effects as the actual 

exemplar ear, but the positive priming effect in exemplar targets was smaller with 

impostor primes than with exemplar primes. With respect to lexical decision, an 

impostor prime could be a nonword with features of a word or vice versa. Since most 

English words are typical for the English language to certain degree, it is easier to 

manipulate nonwords to resemble English words. It was expected that the results of 

using impostor nonwords compared to clear cut nonwords would be similar to using 

word and nonword primes respectively. Specifically, nonword primes that are very 
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typical for English are expected to trigger a high level of lexical activity compared to 

very atypical nonwords. That means that orthographic typicality allows an estimation 

of the chances of the target stimulus being a real word or unknown, independently of 

the lexicality of the prime. Thus, orthographic typicality (see Chapter 2) was the shared 

feature between actual category members (words) and the impostor primes 

(nonwords).

In the experiments reported so far, typicality and lexicality were confounded, 

because the word primes were always more wordlike than the nonword primes. 

Disentangling orthographic typicality and lexicality allowed a clear test of whether the 

congruency effects observed in the earlier experiments could be attributed to lexical 

activity that could also be triggered by a nonword prime. Furthermore, it provided a 

stringent test of the idea that any learnt associations between the stimuli and their 

responses could account for the response congruency effects reported in previous 

chapters. In the case of stimulus-response mappings all primes in the following 

experiments would have to be associated with a nonword response. Thus, a null effect 

would be expected if the congruency effects reported earlier could be attributed to 

response mappings. In contrast, a congruency effect had to be attributed to a stage 

earlier than the motor response and would support the hypothesis that orthographic 

typicality contributes to the word recognition process.

In the low typicality condition the nonword primes were very atypical compared to 

English words and hence were assumed to trigger a low level of lexical activity. In the 

high typicality condition the nonword primes resembled English words, that means 

they comprised typical letter combinations such as th, ea, ight. These nonwords 

formed the equivalent of impostors in a semantic categorisation task and were 

assumed to trigger a comparably high level of lexical activity. Finding a prime typicality 

effect could shed light on whether the congruency effect reported in previous chapters 

is due to congruence in responses or due to a bias from prime induced activity in the 

lexicon.
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7.1 Experiment 9

The experiments in previous chapters suggested that response congruency priming 

effects are larger when the mean reaction time of responses is relatively fast. Also, 

within the RT distribution of a single experiment, the effect size typically decreased 

with slower responses. Thus, in order to maximise the odds of finding a typicality 

effect, the targets in this experiment were relatively easy to categorise. The word 

targets were of high frequency and the nonword targets were very unlike words, 

mirroring the target stimuli of Experiment 2. In order to disentangle lexicality and 

orthographic typicality, all primes were nonwords. In contrast to words, nonwords do 

not have lexical frequency allowing for the elimination of this confounding variable. 

Finding an effect of prime typicality would suggest that the response congruency 

effects reported above were due to the effect of the primes on the summed lexical 

activity as an indicator of lexicality.

In comparison to the Experiments 2 through to 8 that used word and nonword 

primes, the two categories of primes were more similar in this experiment. The reason 

was that a very wordlike nonword is expected not to activate the corresponding word 

node as much as the actual word. All lexical activity triggered by the nonword prime is 

the result of activity in word nodes that are similar to the stimulus. As a result it could 

be possible that a very wordlike nonword prime triggers a lower lexical activity than a 

word prime that was used in Experiment 2 and thus, the expected effect size was 

relatively small.

7.1.1 Methods
Participants. Thirty participants from the same population as in Experiment 1 took 

part in the experiment. All were native speakers of English.

Stimuli & Design. The word targets were taken from Experiment 2. These items were 

high in frequency and easy to categorise. The nonword targets were generated with 

similar restrictions as in Experiment 2. Their typicality was very low and they contained 

a combination of three letters that never occurred in English words (OT3 could not be 

computed since the respective trigrams did not occur). Furthermore, it was ensured 

177



that at least one vowel occurred in all items. The nonwords were also simulated using 

the Spatial Coding Model (SCM, Davis, 2010). Items with a σ value (reflecting lexical 

activity) of more than 0.1 after 50 cycles were excluded and replaced by other stimuli 

that fulfilled the restrictions. The primes were all nonwords. The primes with a low 

level of typicality were taken from Experiment 2. The primes with high level of 

orthographic typicality were taken from Experiment 7. Assuming that the difference 

between priming conditions in terms of lexical activity was crucial this choice 

maximised chances for finding an effect. The nonword primes in Experiment 2 were 

sufficiently different from word primes to contribute to a congruency effect. In 

contrast, the nonword primes in Experiment 7 were sufficiently similar to the word 

primes that no effect emerged. Thus, in this experiment one set of primes was very 

different from words and the other was as wordlike as possible. By generating another 

set of atypical nonwords for the use as targets, the primes and targets were recruited 

from different sets. Also, generating new targets allowed for using the primes that 

were shown to be effective in previous experiments without repetition (Appendix B for 

a list of all stimuli).

Primes and targets were paired so that there were no letters shared between prime 

and target. Two versions of the experiment were formed for counterbalancing 

purposes.

Procedure. The procedure was the same as in Experiment 2.

7.1.2 Results

As in all previous analyses, participants and items showing an error rate greater than 

25% were dropped from the analysis. This did not affect any participants or items. Half 

of the participants were assigned to each of the two lists. Outliers were removed by 3 

SDs for each participant using the correct responses. This affected 1.40% of the 

remaining data. The mean reaction times and the error ratios are presented in Table 

7.1.

Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores. In all analyses the list 

factor was a between participants factor. Lexicality was a repeated factor in F1 and 
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between items in F2 and prime typicality was added as a repeated within participants 

factor. There was a main effect of lexical status in z-scores [F1(1, 28) = 33.734, p<0.001, 

f=1.10; F2(1, 196) = 78.746, p<0.001, f=0.63] reflecting that word stimuli received faster 

responses than nonwords in this experiment. All further analyses were performed for 

word and nonword targets individually.

In word targets the prime typicality effect was significant in z-scores 

[F1(1, 28) = 27.351, p<0.001, f=0.99; F2(1, 98) = 47.387, p<0.001, f=0.70] indicating that 

word targets received faster responses when they were preceded by a high typicality 

than by a low typicality prime. The prime typicality effect was significant in nonword 

targets as well [F1(1, 28) = 13.770, p=0.001, f=0.70; F2(1, 98) = 32.747, p<0.001, f=0.58] 
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Figure 7.1: Plot of the results of Experiment 9 by decile and condition. The scale of reaction time in  
ms is an approximation to reflect the corresponding values.

TABLE 7.1: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND NONWORD PRIME TYPICALITY OF 
EXPERIMENT 9.

Lexicality

Word Nonword

Condition RT Error RT Error

Low typicality 517 4.33 544 1.20

High typicality 498 1.07 554 1.07

Effect 19 3.26 -10 0.13



showing that nonwords were responded faster when they were primed by low 

typicality stimulus than by a high typicality stimulus.

The analysis of error ratio in word targets showed a main effect of prime typicality 

[F1(1, 28) = 64.149, p<0.000, f=1.51; F2(1, 98) = 23.118, p<0.000, f=0.49] indicating 

more errors in the low typicality priming condition than in the high typicality condition. 

There was no such an effect in nonword targets [F1(1, 28) = 0.111, p=0.742; 

F2(1, 98) = 0.181, p=0.671].

Analysis in deciles

The z-score transformed reaction times were binned in ten vincentiles before being 

submitted to an analysis using lme4 in R (see Appendix E for a detailed list of results). 

The effect of prime typicality was significant in all vincentiles in word targets indicating 

faster responses to word targets with a high typicality nonword prime than to words 

with a low typicality prime. In nonword targets the effect was significant in the faster 

seven deciles indicating faster responses to nonwords primed with a low typicality 

nonword than to nonwords primed with a high typicality nonword. The effect faded 

out in slower nonword responses.

Ex-Gaussian analysis

The RT data were fitted to an Ex-Gaussian distribution as outlined in Experiment 1 

and the resulting parameters are shown in Table 7.2. There was a main effect of prime 

typicality in word targets on μ [F(1, 28) = 13.624, p=0.001, f=0.70] reflecting faster 

responses to high typicality primed words than to low typicality primed words. There 

was a strong tendency on σ [F(1, 28) = 4.079, p=0.053, f=0.38] indicating a greater 
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TABLE 7.2: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF 
TARGET LEXICALITY AND PRIME TYPICALITY OF EXPERIMENT 9.

Word Nonword

Parameter
Low

typicality
High

typicality Effect
Low

typicality
High

typicality Effect

µ 449 423 26 457 479 -23

σ 52 42 10 51 41 10

τ 68 77 -9 94 77 17



variance in the low typicality condition and no effect on τ [F(1, 28) = 1.121, p=0.299]. 

Similarly, a main effect of prime typicality was found in nonword targets on μ 

[F(1, 28) = 15.877, p<0.001, f=0.75] showing faster responses to nonwords with a low 

typicality prime than with a high typicality prime. There was also an effect on σ 

[F(1, 28) = 6.427, p=0.017, f=0.48] indicating a greater variance in response times to 

low typicality primed nonwords and no effect on τ [F(1, 28) = 2.151, p=0.154].

7.1.3 Discussion

The results of this experiment showed a typicality-lexicality interaction in word and 

nonword targets. Word responses were facilitated by a high typicality nonword prime 

compared to a low typicality prime, whereas nonword responses were facilitated by 

low typicality primes compared to high typicality primes. Thus, the results showed that 

high typicality nonwords worked as impostors by facilitating word responses and 

inhibiting nonword responses. High typicality nonword primes triggered a higher level 

of lexical activity than low typicality primes. A higher lexical activity contributed 

stronger to the yes-channel and hence, word responses were facilitated and nonword 

responses inhibited. This is compatible with Woollams et al.'s (2011) finding that 

typicality and lexicality formed separable properties of a letter string, but it also 

showed that typicality contributed to recognise a letter string as a word. In the 

previous experiments, it was assumed that the response congruency effect was 

triggered by a higher level of lexical activity induced by the prime. This hypothesis was 

supported by the current results. The task in the current experiment was easy and 

participants could rely on a global measure of lexical activity rather than identifying the 

target word (e.g., Grainger & Jacobs, 1996). Under these conditions the impact of the 

priming conditions mediated through global lexical activity was maximised and this 

facilitated the observed impostor effect.

With regards to the central tendency of the RT distribution the effect in ms in the 

present experiment was as large as in Experiment 2. Also, the magnitude of the 

typicality effect was similar in word and nonword targets resembling another result of 

Experiment 2. Despite a strong similarity of the RT distribution of word and nonword 

targets in the central tendency, the mean values were less similar. In nonwords, the 
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effect faded out towards the end of the distribution, but it remained stable in word 

targets. This was illustrated by not significant effects in the slowest three deciles in 

nonword responses and also by Figure 7.1. The decline of the effect in slow responses 

reduced the mean typicality effect to 10 ms compared to 23 ms in the central 

tendency. A reduced priming effect in slower responses in nonwords was observed in 

Experiment 3, 4, 6 and 8 as well. These findings were consistent with the suggestion of 

a reset mechanism that is activated only after some time has passed. Due to the time 

course of the reset mechanism the word responses that were generally faster were less 

or not affected. Thus, the response congruency effect was reduced in nonword targets 

but not in word targets.

This experiment showed that a congruency effect can not only emerge as a result of 

congruence in the actual responses, but also as a result of a shared level of activity. 

That means primes associated with a low level of lexical activity facilitated responses to 

targets with a low level of activity, i.e. nonwords. In contrast, primes triggering a high 

level of lexical activity facilitated responses to word targets. This pattern forms an 

interaction of target lexicality and the orthographic typicality of the prime. The target 

stimuli in this experiment were easy to categorise and it could be argued that 

participants were not identifying the targets but rather judged the orthographic legality 

of the strings. For example, Yap et al. (2006) showed how nonword legality modulates 

the lexical frequency effect in word targets. Thus, it could be argued that this 

experiment differed from a standard lexical decision task and that the categories in this 

experiment were actually less complex than assumed, i.e. participants were judging 

legality rather than lexicality. The next experiment tested this question by using targets 

that were more difficult to categorise which resembles a standard lexical decision task.

7.2 Experiment 10

Experiment 9 showed that congruency effects in masked priming can emerge as a 

result of matching or conflicting levels of typicality. The findings suggested that the 

typicality of a letter string forms an estimate of the lexical activity triggered by its 

presentation. The target stimuli in the previous experiment were very easy to 

categorise and participants could have responded on the basis of quickly judging the 
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orthographic legality of the presented stimuli. If this was the case the observed 

typicality-lexicality interaction would not necessarily involve lexical activity, but could 

be due to some quick unconscious judgement of whether the stimulus is language like 

or not. Under these assumptions the crucial feature was not lexical activity but the 

legality shared among words and high typicality nonword primes. The following 

experiment used a more difficult explicit word-nonword discrimination task to hinder 

participants from relying on legality and tested this potential rejection. The word 

targets were taken from Experiment 4 and the nonword targets from Experiment 3. 

This formed an experiment where the explicit task required a more sound word 

processing. An interaction of orthographic typicality and target lexicality in this 

experiment would support the account of lexical activity patterns. The effect size in this 

experiment was expected to be smaller than in Experiment 9, because participants had 

to rely on lexical identification to a greater extent. Thus, the impact of summed lexical 

activity in the decision process could be reduced and as a result the effect size was 

expected to be small. Most importantly, the legality account predicted a null effect in 

this experiment and finding an effect would severely challenge this idea.

7.2.1 Methods
Participants. Thirty-eight participants from the same population as in Experiment 1 

took part in the experiment. All were native speakers of English.

Stimuli & Design. The word targets from Experiment 4 and the nonword targets of 

Experiment 3 were used. These items were harder to categorise than the targets in 

Experiment 2 and Experiment 9 respectively. These items were selected to ensure that 

participants could not rely on judging the legality of the stimuli and hence, avoided a 

possible rejection to the conclusions. The primes were taken from Experiment 9. 

Hence, the primes in the low typicality condition were the same nonword primes as in 

Experiment 2 and the primes in the high typicality condition were the same as in 

Experiment 7.

Primes and targets were paired so that there were no letters shared between prime 

and target (see Appendix B for a list of stimuli). Two versions of the experiment were 

formed for counterbalancing purposes.

Procedure. The procedure was the same as in Experiment 2.
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7.2.2 Results

Participants and items showing an error rate greater than 25% were dropped from 

the analysis. This criterion did not affect any participants, but three word items (avail, 

bison, inert). Half the participants were assigned to each of the two lists. Outliers were 

removed by 3 SDs for each participant using the correct responses. The mean reaction 

times and the error ratios are presented in Table 7.3.

Repeated measures analysis of variance

ANOVAs were performed using the participant-wise z-scores. In all analyses the list 

factor entered as a between participants factor. Lexicality was a repeated within 

participants factor F1 and a between items factor in F2. Prime typicality was a repeated 

within participants factor. There was a main effect of lexicality in z-scores 

[F1(1, 36) = 20.765, p<0.001, f=0.76; F2(1, 193) = 11.982, p=0.001, f=0.40] reflecting that 

word stimuli received faster responses than nonwords. All further analyses were 

performed for word and nonword targets individually.

There was no significant effect of prime typicality in word targets in z-scores 

[F1(1, 36) = 0.879, p=0.355; F2(1, 95) = 0.520, p=0.473]. The prime typicality effect was 

not significant in nonword targets as well [F1(1, 36) = 0.739, p=0.396; F2(1, 98) = 0.618, 

p=0.434].
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TABLE 7.3: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT AS A FUNCTION OF 
LEXICALITY AND NONWORD PRIME TYPICALITY OF 
EXPERIMENT 10.

Lexicality

Word Nonword

Condition RT Error RT Error

Low typicality 567 5.59 598 2.89

High typicality 564 4.49 602 2.32

Effect 3 1.1 -4 -0.57



The analysis of error ratio revealed no significant effect of prime typicality in word 

targets [F1(1, 36) = 0.793, p=0.379; F2(1, 95) = 0.499, p=0.482] and in nonword targets 

[F1(1, 36) = 1.840, p=0.183; F2(1, 98) = 1.216, p=0.273].

Analysis in deciles

The z-score transformed reaction times were binned in ten vincentiles before being 

submitted to an analysis using lme4 in R (see Appendix E for detailed list of results). 

The effect of prime typicality was significant in word targets in the fastest two 

vincentiles indicating faster responses to word targets with a high typicality nonword 

prime than to words with a low typicality prime. There was a significant negative effect 

in the slowest bin of responses to word targets. In all other deciles the difference 

between the conditions was numerically in the positive direction. The small negative 

effect indicated that in the Ex-Gaussian analysis, an effect in τ could occur and this 

could have covered the effect in mean RT. In nonword targets the effect was significant 

in the fastest decile and in decile four where low typicality primes facilitated nonword 

responses compared to high typicality primes. Finding a small effect in the fast 

responses was also compatible the with visual inspection of Figure 7.2.
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Figure 7.2: Plot of the results of Experiment 10 by decile and condition. The scale of reaction time 
in ms is an approximation to reflect the corresponding values.



Ex-Gaussian analysis

The RT data of correct responses were fitted to an Ex-Gaussian distribution using 

QMPE. The results are shown in Table 7.4. There was a main effect of prime typicality 

in word targets on μ [F(1, 36) = 5.475, p=0.025, f=0.39] indicating faster responses to 

words preceded by high typicality primes compared to words preceded by a low 

typicality prime. There was no effect on σ [F(1, 36) = 0.939, p=0.339] and no effect on τ 

[F(1, 36) = 0.798, p=0.378]. There were no significant effects in nonword targets: µ 

[F(1, 36) = 2.082, p=0.158], σ [F(1, 36) = 0.025, p=0.874] and τ [F(1, 36) = 0.641, 

p=0.429]. The effect on µ was not significant, despite a numerical difference showing 

an advantage of nonword responses in the low typicality condition over the high 

typicality condition that was almost as large as in word targets.

7.2.3 Discussion

The analysis of this experiment revealed a small effect of prime typicality in word 

targets. The effect in words diminished towards the end of the RT distribution. 

Analysing the effect in deciles showed that the effect was negative in the slowest bin of 

responses. Importantly, the analysis using the Ex-Gaussian fitting procedure revealed a 

significant positive effect of prime typicality in the central tendency of the RT 

distribution. Using this method the number of very slow responses was reflected in τ 

and allowed a clearer picture of the more central part of the RT distribution. In 

nonword targets there was a numerical trend in mean RT and the central tendency of 

the Ex-Gaussian fitting. Even though this trend was numerically similar to word targets, 

it was not significant in nonword targets.
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TABLE 7.4: RESULTS OF THE EX-GAUSSIAN FITTING USING QMPE AS A FUNCTION OF 
TARGET LEXICALITY AND PRIME TYPICALITY OF EXPERIMENT 10.

Word Nonword

Parameter
Low

typicality
High

typicality Effect
Low

typicality
High

typicality Effect

µ 471 461 10 493 502 -9

σ 39 34 5 37 38 -1

τ 98 103 -5 109 103 6



The small effect in word targets showed both that varying the primes' orthographic 

typicality was effective in a more difficult lexical decision task than Experiment 9, but it 

also demonstrated the impact of increasing the task difficulty. In a more difficult task 

the participants had to rely on identification to a greater extent than on global lexical 

activity (Grainger & Jacobs, 1996). This contrasts with easier tasks such as Experiment 2 

and Experiment 9. Thus, the impact of priming conditions that differ on the dimension 

of global lexical activity was limited. This explained the smaller effect in the current 

experiment compared to Experiment 9. Importantly, the effect in this experiment could 

not be attributed to participants judging the legality of the presented letter strings and 

this prevented the findings of this experiment from a potential rejection to Experiment 

9.

The small effect size in this experiment could be directly related to the time scale of 

lexical identification. As soon as a word target has been identified, a strong input feeds 

into the yes-channel. From this point in time the impact of global lexical activity is 

negligibly small and hence, the effect of the prime heavily reduced, especially in slow 

responses. The result of such an interaction of mechanisms is the observed pattern of a 

typicality priming effect that is strongly reduced towards the end of the RT distribution 

in word targets.

7.3 Discussion

Both experiments in this chapter demonstrated a typicality-lexicality interaction in 

lexical decision where an orthographically typical prime facilitated word responses and 

an orthographically atypical prime facilitated nonword responses. This evidence was in 

favour of the hypothesis that not the lexicality of primes but the activity they triggered 

in the lexicon was responsible for the response congruency effects observed in 

Experiment 2 to 8. Furthermore, this typicality-lexicality interaction cannot be 

attributed to stimulus-response mappings (see Damian, 2001), because all primes in 

Experiment 9 and 10 were nonwords and their effect would not result in an observable 

difference between the conditions. This supported the argument that the congruency 

effects reported in this thesis were not due to any learnt responses. Thus, both 

experiments provided evidence for an impostor effect (see Quinn & Kinoshita, 2008) in 
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lexical decision where an impostor prime refers to a nonword that was sufficiently 

wordlike to trigger effects that were more similar to a word prime. Also, this finding 

was compatible with Woollams et al.'s (2011) results in showing that the effects of 

lexicality and typicality can be disentangled. Additionally, the experiment showed that 

typicality contributed to the lexical decision process.

This typicality-lexicality interaction showed an effect size in Experiment 9 that was 

comparable to Experiment 2 and hence, one of the largest effect sizes amongst the 

experiments reported in this thesis. In Experiment 10 the effect size was considerably 

smaller and this was directly attributed to the difficulty of the task as this was the only 

difference between the two experiments. This result also supported the findings of 

Chapter 5 where an increasingly difficult word-nonword discrimination was associated 

with a decreasing effect size in response congruency effects. The difficulty of the 

explicit task was related to the weight that is assigned to summed lexical activation by 

the participants (Grainger & Jacobs, 1996). In priming effects that are mediated 

through the summed lexical activity as in all experiments introduced so far, a reduced 

weight in the decision process results in a smaller effect. This was compatible with the 

empirical findings of the experiments in this chapter.

Negative typicality effects

In Experiment 10, negative priming effects were observed in word targets whereas 

in previous experiments only nonword targets were associated with negative effects, 

e.g. in Experiment 3. But the underlying mechanism for the reversal in the direction 

could be very similar in word and nonword targets. Indeed, if a highly typical nonword 

prime triggered some lexical activity and in turn this triggered a reset, then this typical 

prime would facilitate a nonword response and interfere with a word response. This 

mechanism could also explain the fading out of effects towards the slower end of the 

RT distribution, because activity in a word that is due to a similar nonword stimulus is 

likely to grow more slowly compared to the actual word stimulus. Thus, a reset due to a 

mismatch is more likely in slow responses.
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According to Boy and Sumner (2010) the presence of a negative effect also points on 

a potential positive effect, because self-inhibition can only occur if there was activation 

in the channel (for similar argument see Eimer & Schlaghecken, 2003; Schlaghecken et 

al., 2006). In all experiments reported in this thesis a negative effect was accompanied 

by a positive effect which strengthens this point. Thus, the negative effects also 

supplied evidence in favour of the response congruency and the impostor effect in 

masked primed lexical decision.

Theoretical accounts of response congruency

The experiments in this chapter used primes that were comparable to impostor 

primes (Quinn & Kinoshita, 2008) and thus, the semantic overlap hypothesis could 

provide an account for these findings. In this account the words can be described by 

relevant features. If the prime activated some of these features, a word response is 

facilitated and a nonword response is slowed down. Importantly, these word features 

must overlap between the prime and the target, but there was no semantic relation 

between primes and targets and no meaning associated to the nonword primes in the 

experiments. Thus, the word features appear to be features about the letter string, e.g. 

pronounceable, legal. In capturing orthographic typicality these features could relate to 

highly frequent letter combinations, but in the experiments in this chapter and all 

previous chapters, the primes and targets did not share any letters. Typicality could be 

represented by a single feature where its activation reflects the degree of typicality in 

the letter string which would enable the overlap hypothesis to account for the findings. 

In summary, the semantic feature overlap hypothesis provided an interesting view, 

specifically with regards to the impostor priming, but the difficulty is defining 

appropriate features to distinguish between words and nonwords that would still 

accommodate all findings in the empirical data.

Another account, that was able to accommodate the findings in the previous 

chapters is the deep processing account (Dehaene et al., 1998). In this account it is 

assumed that the task instructions are applied to the prime in the same as to the 

target, but the processing of the prime is incomplete. The results of the experiments in 

this chapter showed that primes that are associated with a no-response can facilitate a 
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yes-response. Although, the deep processing account assumes that the corresponding 

responses are activated and thus, all nonword primes should have pre-activated the 

no-response. It could be argued that the nonword impostor primes were indeed very 

wordlike and easily confused with words. This claim would be supported by the 

findings of Experiment 7 where a similar set of nonwords resulted in a comparably high 

error score and also findings by Quinn and Kinoshita (2008) who showed that in a 

speeded classification task impostors were very error prone but the accuracy was very 

high in unspeeded task. Thus, the recognition system would indeed apply the task 

instructions to all primes, but in the early stages of processing impostor primes fooled 

the system into activating the word response, which was the underlying reason for the 

difficulty of classifying impostors correctly. With this assumption the deep processing 

account would be able to explain the findings of Experiment 9 and 10.

7.4 Conclusion

The experiments in this chapter demonstrated an impostor effect in lexical decision, 

that means highly typical nonword primes facilitated a word response compared to less 

typical primes and vice versa low typicality nonword primes facilitated a nonword 

response compared to high typicality primes. In the previous experiments, a response 

congruency effect emerged as a result of manipulating prime lexicality and the 

typicality of the primes, but Experiment 9 and 10 provided evidence that these effects 

were triggered by the orthographic typicality of the primes independently of their 

lexicality. This suggested that the effect was not due to a congruence in responses 

between prime and target, but rather reflected the impact of the prime on a global 

measure of lexical activity. Thus, high typicality nonword primes can function like 

impostors in a lexical decision task, where they facilitated word responses.

In Experiment 9, the effect of prime typicality was comparable to Experiment 2 

where the largest response congruency effect was reported in this thesis. Experiment 

10 provided further support for the assumption that the response congruency effects 

were the result of prime induced lexical activity, because the increased difficulty of the 

explicit task may have resulted in a lower weight assigned to summed lexical activity 

(see e.g., Grainger & Jacobs, 1996). Thus, the effect size of prime typicality was 
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expected to be reduced, but not absent. The results supported this expectation. This 

also supported the conclusion from Chapter 5, where a smaller effect was reported 

with increasing task difficulty which was attributed to a shift in weight assigned to 

summed lexical activity. Importantly, the impostor effect in this chapter and the 

response congruency effect in Chapter 5 were still significant in a more difficult task. 

Thus, the observed effects cannot be explained by participants relying their lexical 

decision on legality rather than lexicality, because the targets in the explicit task did not 

allow a judgement based on legality.

A negative priming effect occurred in very slow responses to word targets in 

Experiment 10. The presence of negative priming effects implied the potential for 

positive priming effects (Boy & Sumner, 2010; Eimer & Schlaghecken, 2003; 

Schlaghecken et al., 2006). Thus, the negative priming effects strengthened the 

conclusion drawn from Experiment 10 that response congruency effects are induced by 

lexical activity triggered by the prime. Also, this provided further evidence for a reset 

mechanism as outlined in Chapter 5.5.2.
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8. Simulations in the Spatial Coding Model

This chapter introduces a method of fitting the Spatial Coding Model (SCM; Davis, 

2010) to empirical data. The results of the simulations of Experiment 2 through to 10 

and the parameters from the model fits are discussed in this chapter.

8.1 Verification in the Spatial Coding Model

The empirical data reported so far showed that a manipulation of response 

congruency and prime typicality can result in positive, null and negative effects. A 

positive effect refers to a situation where a highly typical prime (or a word prime) 

facilitates word responses compared to a low typicality prime (or a nonword prime), or 

a low typicality prime facilitates no-responses compared to a high typicality prime. A 

negative effect refers to the opposite situation where a high typicality prime facilitates 

no-responses compared to a low typicality prime. The results of Experiment 2 to 6 and 

Experiment 8 showed positive response congruency effects in mean RT where prime 

typicality and lexicality coincided, i.e. word primes were typical and nonword primes 

atypical. There was a positive impostor effect (typicality-lexicality interaction) in 

Experiment 9 and 10. But no effect was observed in Experiment 7.

A more fine grained analysis of the data revealed a sharp decline of the response 

congruency effect in the slower responses of Experiment 3. The fine grained analysis of 

the RT distribution in deciles showed that there was a negative effect of typicality in 

the slowest two deciles of the RT distribution (see Figure 5.1). In other experiments, 

small negative congruency effects were observed in slow responses as well, this 

includes the nonword targets in Experiment 4, 6 and 8. In Experiment 10, the typicality 

effect in word targets turned into a negative effect in slow responses as well. 

Furthermore, there were cases where the effect strongly declined towards the slower 

end of the RT distribution, but did not turn into a negative effect; this pattern was 

observed for the nonword targets in Experiment 9 and the word targets in Experiment 

4 and 5. Because negative priming effects and a sharp decline of the typicality effect 

occurred in a number of experiments with both word and nonword targets, a 
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satisfactory computational model of masked priming should be able to explain these 

findings.

One way to capture negative priming effects is by assuming a reset mechanism (see 

Chapter 5.5.2). The presentation of a highly typical prime (or a word prime) is assumed 

to activate word nodes that were similar to the prime stimulus, and this provides the 

source of the increased level of summed lexical activation that is assumed to trigger 

positive typicality effects. According to the reset account, once the yes-decision 

threshold is reached or a word node has hit the identification threshold, a verification 

process checks the correspondence between the word coded by the most active node 

and the pattern at the letter level. In the present experiments, the primes were never 

similar to the targets. If lexical activity triggered by the prime and activity by a nonword 

target were sufficient to trigger a yes-response on the basis of summed lexical activity, 

this verification process should always result in a mismatch and in turn, a reset of the 

most active word node. This verification-reset cycle is essentially the same as that 

proposed in adaptive resonance theory (e.g., Carpenter & Grossberg, 1987).

Resetting the most active word node results in an abrupt change of input into the 

decision channels, which could explain the effects that were observed in word and 

nonword targets. A highly typical prime contributes to summed lexical activity, whereas 

an atypical prime does not. In case the target is a nonword, the contribution of a highly 

typical delays the lexical decision. This is a situation where a positive priming effect is 

expected. Only if the lexical activity resulting from the prime and the target is 

sufficiently high a verification is triggered. That means that the verification process is 

triggered faster with a highly typical prime than with an atypical prime. As a result the 

verification mechanism turns an expected positive effect into a negative priming effect 

and thus, a negative effect can only occur if there was a potential for a positive effect. 

The process is similar in word targets, if there is another similar word that is higher in 

frequency. The verification mechanism could reset this related word node and delay a 

correct yes-response on the basis of a high level of summed lexical activity. In sum, the 

verification mechanism can produce negative effects in a situation where a positive 

effect was expected otherwise. This is compatible with the conditions on self-inhibition 
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formulated by Boy and Sumner (2010). In their account negative effects are due to an 

additional self-inhibition mechanism and can only occur if there was a potential for a 

positive effect. In the empirical data presented so far, positive and negative effects 

occurred within the same RT distribution and none of the experiments revealed a 

negative effect without showing a significant positive effect.

The relation of negative and positive priming effects is exemplified in Figure 8.1 and 

8.2. In the low typicality priming condition (Figure 8.1), there is almost no lexical 

activity during the processing of the prime (cycles with negative numbers). The 

nonword target SAULP is similar to SCALP. Thus, the activity in the word node SCALP 

and lexical activity increases after target onset. This continues until a verification is 
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Figure 8.1: The flow of activity in the low typicality priming condition of Experiment 10. The data 
was derived using the example dqrki – SAULP.

Figure 8.2: The flow of activity in the high typicality priming condition of Experiment 10. The data 
was derived using the example goven – SAULP.



triggered in about cycle 90. In contrast, the verification is triggered in about cycle 65 

with a high typicality prime (Figure 8.2). This is due to prime induced lexical activity 

which contributed to hitting the verification threshold. As a result, the reset of the 

word node SCALP is performed earlier and the correct no-response is triggered faster 

with the high typicality prime GOVEN than with the low typicality prime DQRKI. The 

high typicality prime resulted in a higher level of summed lexical activity. The positive 

priming effects that were observed in Experiment 2 were attributed to the higher level 

of summed lexical activity. But using a wordlike target such as SAULP, the verification 

threshold was hit and a reset of the most active word node performed. Thus, the 

additional verification process produced a negative priming effect.

In computational modelling of word recognition, the activation-verification model 

(Paap et al., 1982) suggested that an entry that was initially activated is verified in a 

second pass. The verification mechanism checks whether the activated entry matches 

the stimulus and, if required, resets the entry. This mechanism enables the model to 

correctly detect a mismatch between a stimulus and a very similar representation, i.e. 

correctly rejecting a nonword (false pretenders) that is very similar to an actual word. 

This verification mechanism was originally not intended to enable the model to predict 

negative priming effects, but rather to hinder the erroneous recognition of a word with 

a false pretender. Grainger and Jacobs (1999) also argued that a reset mechanism is 

important in models of word recognition. They pointed out that in normal reading 

words are identified in fast succession and the model needs a way of deactivating the 

word node corresponding to the previous stimulus. Grainger and Jacobs (1999) argued 

that the mismatch between the stimulus and the previously activated word node 

should trigger a reset and this would clear the activity of the preceding stimulus. This 

suggestion is compatible with the adaptive resonance theory (Carpenter & Grossberg, 

1987) but also with the suggestion above.

In summary, the verification mechanism described above could enable the SCM to 

predict negative effects in simulating the present data, but also to deal with false 

pretenders. Thus, the verification was implemented in the model. Due to changes in 

the model's internal equations, the parameter specifying the inhibition between the 
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decision channels (λ) was set to 0.110 as a result of scaling the values accordingly. This 

change in the parameter settings will not be reported in the following simulations as it 

served a scaling purpose after incorporating the verification into the model and thus, is 

not of theoretical interest. The verification mechanism was activated in all following 

simulations with SCM.

8.2 Fitting the Spatial Coding Model

The Spatial Coding Model (SCM) provided very good correlation with empirical data 

in unprimed and masked primed lexical decision experiments (Davis, 2010). The 

current investigation did not rely on a single set of parameters, but the SCM was fitted 

to the empirical data by varying the parameters of the model. The reason for varying 

the parameters systematically was that the experiments varied considerably in task 

difficulty and it was hypothesised that participants shifted the weights assigned to the 

summed lexical activity and word identification accordingly. Thus, for testing this 

hypothesis the model's parameters were fitted to capture the empirical data. This 

section describes how the SCM was fitted to the empirical data.

8.2.1 Empirical data

The current implementation of the SCM does not produce an RT distribution for an 

item and does not try to explain a distribution of RT like the diffusion model (Ratcliff, 

1978; Ratcliff et al., 2004). Rather, the response times of the model are deterministic. 

Thus, the simulations attempted to model the central tendency µ in the data rather 

than the entire RT distribution. The Ex-Gaussian (Heathcote et al., 2004) analysis of the 

empirical data showed that the central tendency of the RT distribution µ was less 

biased by the tail of the distribution than was mean RT and also very informative about 

the effects, particularly in Experiment 10. In this experiment an impostor effect was 

detected in µ, whereas this effect was disguised by the slower part of the distribution 

in the mean RT (also see Yap, Balota, Tse, & Besner, 2008). These data were derived for 

each experiment using QMPE (S. Brown & Heathcote, 2003) and used for fitting the 

model. All fits reported in the next section were derived by comparing the model 

output to the µ parameters estimated from the Ex-Gaussian analysis rather than the 

mean RT.
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8.2.2 Parameters

The parameter set used in C. J. Davis (2010) formed the basis for the following 

simulations (see Appendix D). For the simulations and deriving the model fit, three 

parameters were systematically varied: the weight assigned to summed lexical activity 

(yglobal) and the thresholds of the decision channels (Θyes, Θno).

The lexical decision experiments systematically differed in the level of difficulty in 

the explicit task. Grainger and Jacobs (1996) argued that the reliance on summed 

lexical activity accounted for differences in their experimental results when they 

manipulated the nonword foils between experiments ranging from wordlike to 

unwordlike items. In the SCM, the yglobal parameter allows manipulating the degree to 

which summed lexical activity influences the decision channels. If this parameter is 

high then the wordlikeness of the target has a great impact on the decision and a 

decision could be triggered prior to the identification of the target. In an experiment 

with very wordlike nonword foils, this mechanism could result in false yes-responses. 

Thus, for simulating experiments where the word and nonword targets were very 

similar with respect to their wordlikeness, the yglobal parameter should not be too high. 

This means that the model would trigger yes-decisions predominantly when the target 

word was identified and thus, avoid premature yes-responses to nonword targets.

In addition to yglobal, the decision thresholds (Θyes, Θno) were fitted to the empirical 

data. Whilst the weight of summed lexical activity manipulates the sort of information 

feeding into the decision channels, the decision threshold determines the amount of 

evidence required for triggering a response. The experiments presented in this thesis 

covered a broad range of task difficulty. The extremes were marked by Experiment 2 

(fastest mean Μ=475 ms; central tendency µ = 414 ms) and Experiment 7 (slowest 

Μ=794 ms; µ=629 ms). The reaction times provide an idea of how different the 

experiments were with a relatively easy word-nonword discrimination in Experiment 2 

compared to a relatively difficult task in Experiment 7. It could be argued that the 

lexical decision in Experiment 7 required a more thorough processing than in 

Experiment 2. The participants could have based their decision on less evidence in the 
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easy than in the more difficult experiment. One possibility of modelling this difference 

is by varying the thresholds in the decision channels of the model. A lower threshold 

would indicate a fast and to an extent sloppy response reflecting a situation like in 

Experiment 2. A higher threshold would reflect a more thorough processing mirroring 

Experiment 7.

The potential impact of the prime is greater when the decision threshold is low than 

when it is high. As mentioned earlier, the SCM averages the evidence across cycles and 

as Figure 4.6 illustrated the effect of the prime is limited to the early processing cycles. 

Thus, the effect of the early cycles is more pronounced in a fast than in a slow decision 

process. As a result, the impact of a prime decreases towards the end of a long 

decision process. That means that varying the decision thresholds is effectively 

manipulating the mixture of evidence from primes and targets. A similar prediction 

could be derived from the leaky accumulator model (Usher & McClelland, 2001) where 

evidence trickles out of the decision channels during the decision process. Thus, in a 

fast response the impact of the prime is greater than in a slow response and in the 

following simulations with the SCM the decision thresholds were fitted accordingly.

The weight of identifying a word target (yid) was not altered in the following 

simulations compared to the value outlined in C. J. Davis (2010). This contrasts with the 

simulations in Chapter 4.2 which aimed at demonstrating the difference between 

homogeneous and selective inhibition whose impact is most apparent in summed 

lexical activity. Therefore yid was reduced in Chapter 4.2. For the current simulations, it 

was assumed that the identification of a word provides strong evidence in favour of a 

yes-response. Thus, the yid parameter as well as all other parameters apart from the 

inhibition between decision channels (λ, see 8.1) were set to the values outlined in C. J. 

Davis (2010). The weight assigned to summed lexical activity (yglobal) and the decision 

thresholds (Θyes, Θno) were fitted to the empirical data.

198



8.2.3 Parameter search

A three-dimensional solution space was formed by the three parameters Θyes, Θno 

and yglobal. A cost function describing the goodness of fit was formulated for estimating 

the best solution. The root mean square error of the model's predictions and the 

empirical data was formed. Since the SCM predicts the relative difference between two 

conditions (Davis, 2010), the congruency effect, the lexicality effect and the relative 

difference of the congruency effect in word and nonword targets was computed. Thus, 

the aim was minimising the function within the parameter space as shown in Formula 

8.1.

As outlined above the µ value of the RT distribution was used. In the following 

equations the µ refers to the empirical data and the M value to the prediction of the 

model. A list of all µ and M values is provided in Table 8.1 and the resulting values for 

the minuend and the subtrahend in Table 8.2 in the results section.

The cost function defines which of two points in the solution space represents a 

better fit. The value of the cost function could only be evaluated by simulating the 

experiment with the respective parameters and using the model's prediction in 

calculating the RMSE. Thus, looking at a fine grained grid of the three parameters and 
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Formula 8.2: Computation of the congruency effect for fitting the SCM.

Formula 8.3: Computation of the lexicality effect for fitting the SCM.

Formula 8.4: Computation of the congruency effect relative to target lexicality.

Note, the conditions were abbreviated in all formulas: word congruent (wc), word incongruent 
(wi), nonword congruent (nc) and nonword incongruent (ni).

Δ congruency effect=(
−μwc+ μwi−μ nc+ μ ni

2 )−(−M wc+ M wi−M nc+ M ni

2 )

Δ lexicalityeffect=(
−μwc−μwi+ μ nc+ μ ni

2 )−(−M wc−M wi+ M nc+ M ni

2 )

Δ relative congruency=(
μwc−μwi−μnc+ μni

2 )−(M wc−M wi−M nc+ M ni

2 )

Formula 8.1: Cost function for fitting the SCM.

min
0.0≤Θ yes ,Θ no≤1.0∧0.0≤ yglobal≤2.0

(√Δ congruency effect
2
+ Δ lexicality effect

2
+ Δ relative congruency

2

3 )



the corresponding matrix of values in the cost function would have been 

computationally demanding. Although, the cost function makes the problem more 

manageable by adding the assumption that the goodness of fit is sufficiently described 

by the function, it does not alter the class of this NP complete problem. Thus, an 

heuristic algorithm was required for finding a good fit of the model. A number of 

algorithms have been developed for solving optimisation problems with several 

parameters. An important property of an appropriate algorithm is that the number of 

required values of the cost function is low, since computing these values is time 

consuming. The Nelder-Mead simplex algorithm (Nelder & Mead, 1965) was cited 9799 

times (‘Web of Knowledge - Citation Report’, 2011) and is the most cited article in The 

Computer Journal (‘Oxford Journals Reports — Most-Cited Articles as of August 1, 

2011’, 2011).

The Nelder-Mead simplex algorithm is based on a geometrical figure called simplex 

which is formed of n+1 points in an n-dimensional space. Each vertex is evaluated and 

the worst vertex is replaced with a better one. For achieving this, the worst point is 

reflected along the plane formed by the remaining vertices of the simplex. There are 

three possible results: a) the reflected point is the best solution of all vertices in the 

simplex, b) it is not the best solution, but better than the original point and c) it is even 

worse than the original point. In case of a) (best point) the simplex is expanded in the 

direction of the best fit. That is the reflection is performed not on a mirror, but on a 

mirror with a lens stretching the simplex towards greener pastures. For b) the 

algorithm finds the next worst point and starts again with a reflection. In case of c) the 

reflection is not performed and the simplex is contracted by moving the worst point 

towards the plane formed by the other vertices. This shrinks the simplex and reduces 

the search space. In the special case that the derived contracted point is even worse 

than its original, a contraction is rejected and the so-called multiple contraction is 

performed. In the multiple contraction step all vertices are moved towards the best 

vertex in the simplex. Once a step of the algorithm is completed, it starts again by 

identifying the new worst point in the simplex. The termination criterion can be 

defined as the minimum distance of the centre of the simplex between two steps. If 
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the transformation of the simplex does not result in a minimal difference, this indicates 

that the search space has been greatly reduced and the algorithm terminates.

The simplex algorithm is very effective in reducing the size of the search space, but 

it is prone to local minima of the cost function. Initial inspections of the solution space 

of Experiment 2 with two parameters supported the hypothesis that the cost function 

had several local minima. Those can be attributed to trade-offs between parameters, 

i.e. moving towards one extreme could make an unlikely option slightly more likely and 

form a local minimum. Specifically, a multiple contraction could move the figure from 

including the actual optimum to a shape where a local minimum traps the algorithm.

For coping with the local minima, the hybrid Continuous Tabu Simplex Search (CTSS) 

algorithm by Chelouah and Siarry (2005) was implemented. This algorithm combines 

the tabu search (Glover, 1989, 1990), which specifically handles local minima, with the 

effectiveness of the simplex algorithm (Nelder & Mead, 1965) in reducing the search 

space in a defined area. The tabu search explores the search space more widely. It 

starts at a random point in the solution space. For two or three dimensional problems 

that are considered here, a step in each possible direction is computed where the step 

size is usually between 0.1 and 0.2 in a normalised solution space. Thus, a geometric 

starlike shape is formed. The search moves towards the best point under consideration 

and adds all other points to a tabu list. The space around a point on the tabu list is not 

allowed to be the target of a step through space, because it is already known that one 

of its neighbours provides a better solution. The radius of the tabu list is usually smaller 

than the step size. If the central point of the star has the lowest cost of the points 

forming the star, it is a potential solution. In the original algorithm, the step size would 

be reduced until the optimum is found. In CTSS the central point and the most optimal 

outer vertices of the starlike figure are handed to the simplex algorithm for the more 

fine grained optimisation. In both accounts, this local solution is added to the solution 

list. Each solution point is surrounded by a tabu zone in the solution space which is 

larger than a single step size. The algorithm is restarted by choosing another random 

point in the solution space. By strictly avoiding the area of any previous solutions the 

search moves through the solution space until it either discovers another potential 
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solution or terminates in a cul-de-sac of prohibited areas. The termination criterion 

was set to five restarts without discovering another potential solution.

In searching for potential fits of the SCM the CTSS provided a set of potential 

solutions, but even though these solutions have been fitted by the simplex algorithm, 

an additional optimisation could be achieved by restarting simplex. This could be due 

to slightly too coarse termination criterion for the simplex algorithm with regards to 

the cost function. These changes were small and usually affected the second decimal. 

In sum, the CTSS provided a reasonable account of exploring the three dimensional 

solution space. The functionality of the SCM software was extended to include the 

simplex and the CTSS parameter search method.
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8.3 Results of the simulations

The modified version of the SCM that incorporates selective inhibition and 

verification was used for the simulations. Three parameters Θyes, Θno and yglobal were 

varied for fitting the model to the empirical data. As pointed out above the SCM 

predicts the relative differences between the conditions. Thus, RMSE values express 

the relation of the SCM's prediction to the relative effect sizes. For completeness, the 

absolute values are presented in Table 8.1 and the relative values with the respective 

RMSE in Table 8.2.
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TABLE 8.1: CENTRAL TENDENCY µ OF THE RT DISTRIBUTION OF EXPERIMENT 2 THROUGH 
TO 10 AS A FUNCTION OF LEXICALITY AND THE EXPERIMENTAL CONDITION AND THE 
RESPECTIVE PREDICTED VALUES DERIVED BY THE SCM WITH SELECTIVE INHIBITION AND 
VERIFICATION.

Lexicality Word Nonword

Congruency Congruent Incongruent Congruent Incongruent

Experiment 2 414 430 431 457

Prediction 48 65 65 91

Experiment 3 431 442 460 482

Prediction 36 46 65 86

Experiment 4 441 467 454 473

Prediction 43 63 54 73

Experiment 5 445 455 502 510

Prediction 72 82 128 137

Experiment 6 451 460 496 500

Prediction 69 80 110 119

Experiment 7 501 500 629 624

Prediction 159 161 286 285

Experiment 8 484 496 583 586

Prediction 74 83 172 172

Prime typicality High Low High Low

Experiment 9 423 449 479 457

Prediction 54 58 97 76

Experiment 10 461 471 502 493

Prediction 42 49 82 72

Note that all values are rounded.



These results showed that the model was able to capture the effect of response 

congruency and typicality. In most cases the model provided a very good fit to the 

empirical data.

The results of the model simulations showed that the modified SCM was able to 

capture the lexicality and the congruency effect. The parameters that were found by 

the search algorithm are reported in Table 8.3. With the fitted parameters the 

predicted effect sizes were close to the empirically measured data. This was illustrated 
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TABLE 8.2: COMPARISON OF THE PREDICTIONS BY THE SCM WITH VERIFICATION AND SELECTIVE INHIBITION TO 
EMPIRICAL DATA OF EXPERIMENT 2 TO 10. THE COMPARISON WAS BASED ON THE RELATIVE EFFECTS OF 
CONGRUENCY AND TYPICALITY ON THE CENTRAL TENDENCY OF RT DISTRIBUTION. THE RMSE IS THE MEASURE 
OF GOODNESS OF FIT BETWEEN THE MODEL’S PREDICTION AND THE EMPIRICAL DATA. THE TABLE SHOWS THE 
VALUE OF THE COST FUNCTION AT THE BEST FIT THAT WAS OBSERVED DURING THE SIMULATIONS.

Experiment Congruency effect Lexicality effect Relative congruency
effect

RMSE

Experiment 2 21.0 22.0 5.0

Prediction 21.5 21.5 4.5 0.4

Experiment 3 16.5 34.5 5.5

Prediction 15.5 34.5 5.5 1.1

Experiment 4 22.5 9.5 -3.5

Prediction 19.5 10.5 -0.5 2.5

Experiment 5 9.0 56.0 -1.0

Prediction 9.5 55.5 -0.5 0.4

Experiment 6 6.5 42.5 -2.5

Prediction 10.0 40.0 -1.0 2.7

Experiment 7 -3.0 126.0 -2.0

Prediction 0.5 125.5 -1.5 2.2

Experiment 8 7.5 94.5 -4.5

Prediction 4.5 93.5 -4.5 1.2

Typicality effect Lexicality effect Relative typicality
effect

RMSE

Experiment 9 2.0 32.0 24.0

Prediction -8.5 30.5 12.5 7.7

Experiment 10 0.5 31.5 9.5

Prediction -1.5 31.5 8.5 1.1



by the low RMSE values (see Table 8.2). There was one exception to this. In Experiment 

9 the model underestimated the typicality-lexicality interaction (impostor effect). Table 

8.1 shows that the SCM specifically underestimated this effect in word targets. As a 

result the interaction was underestimated and the magnitude of the main effect 

overestimated. The main effect refers to the average of the typicality effect in word and 

nonwords, which pointed into different directions. Thus, the similar effect sizes in word 

and nonword targets in empirical data resulted in a main effect of 2 ms (slightly larger 

effect in words), but the SCM's underestimation of the effect in word targets resulted 

in a prediction of -8 ms (larger effect in nonwords).

8.4 Discussion

The experiments in this thesis investigated the impact of task difficulty and prime 

typicality on the presence of response congruency and typicality effects. From the 

empirical data it was concluded that the task difficulty has an impact on the weight 

assigned to summed lexical activity (e.g., Grainger & Jacobs, 1996). Also, the amount of 
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TABLE 8.3: COMPARISON OF THE PARAMETERS PRODUCED IN FITTING THE SCM WITH 
VERIFICATION AND SELECTIVE INHIBITION TO EMPIRICAL DATA OF EXPERIMENT 2 TO 10.

Experiment yglobal Θyes Θno Primes Targets

Experiment 2 1.355 0.702 0.722 Easy Easy

Experiment 3 1.134 0.448 0.664 Easy
Easy words,
medium 
nonwords

Experiment 4 1.330 0.625 0.594 Easy Medium words,
easy nonwords

Experiment 5 0.382 0.335 0.887 Easy Medium

Experiment 6 0.498 0.402 0.843 Medium Medium

Experiment 7 0.309 0.893 0.943 Hard Hard

Experiment 8 0.941 0.693 0.818 Easy Hard

Experiment 9 1.905 0.753 0.728 Easy Easy

Experiment 10 1.534 0.498 0.698 Easy Medium

Compared to Experiment 2 the nonword targets were replaced by a more wordlike set in 
Experiment 3. In Experiment 4 the word targets were replaced, but the nonword targets were the 
same as in Experiment 2. Experiment 5 involved the nonwords from Experiment 3 and the words 
from Experiment 4. In Experiment 7 the nonwords were replaced with more wordlike items, i.e. 
“Hard” refers to the words from Experiment 4 and a new, very wordlike set of nonwords.



evidence that was required for a lexical decision could have differed as a result of the 

experimental manipulation. Thus, the model was fitted to the data by varying the three 

parameters Θyes, Θno and yglobal.

The results of the simulations showed that the SCM was able to capture the data in 

principal. Most of the fits to the data were very close, with the exception of Experiment

9. I discuss the impact of the typicality of nonwords, the task difficulty and the impact 

of the primes by comparing two pairs of experiments. Finally, I discuss the 

modifications to the SCM.

8.4.1 Typicality of nonwords

In Experiment 2 and Experiment 9, the word-nonword discrimination was similarly 

easy. But the yglobal parameter was considerably lower in Experiment 2 (1.3) than in 

Experiment 9 (1.9). Nevertheless, both values were high compared to the original SCM 

parameters (0.4). In these two comparably easy experiments the decision thresholds 

were similar to each other. That means the amount of evidence that was collected 

before a response was triggered was similar for word and nonword targets. The SCM 

predicted a response congruency effect that was smaller in word than in nonword 

targets for Experiment 2. This prediction mirrored the empirical data with regards to 

the effect size in both word and nonword targets. But the model was unable to 

produce a typicality effect in word targets that was comparably large as in the empirical 

data of Experiment 9 which was due to an underestimation of the effect in word 

targets. Despite the higher value in yglobal, the absolute response times of the model in 

congruent word trials were slower in Experiment 9 than in Experiment 2. This indicated 

that the advantage of the typical nonword primes was underestimated. Repeating the 

simulation of Experiment 2 with the parameters that were found for Experiment 9 

revealed a congruency effect that was 1.5 cycles larger in word targets (and 46 cycles in 

nonword targets). By contrast the predicted typicality effect in Experiment 9 was 13 

cycles smaller than in Experiment 2 despite a greater value of yglobal and this highlighted 

that the model underestimated the lexical activity that was triggered by the high 

typicality nonwords. Thus, only this relatively high value of yglobal enabled the model to 

predict a typicality effect at all. But a high value in yglobal also contributes to faster 
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responses in incongruent word trials. The underlying reason is the relatively high 

setting of yglobal also increases the impact of target related activity on the yes-channel. 

In this trade-off situation, this particular choice of yglobal enabled the model to correctly 

predict the effect in nonwords and the interaction of lexicality and typicality. In 

summary, the effect size in empirical data was comparable between Experiment 2 and 

9, but the model required a higher yglobal in Experiment 9 in order to produce this effect. 

This showed that the SCM underestimated the lexical activity triggered by the high 

typicality nonword primes in Experiment 9.

The fact that the SCM underestimated the typicality of the high typicality nonword 

primes is also highlighted in the parameters of Experiment 10. The model provided a 

very good fit to the empirical data, but the value of yglobal was the second highest of all 

simulations (1.5). That means this setting was still higher than in Experiment 2 even 

though the explicit task in Experiment 10 was more difficult than in Experiment 2. The 

simulations and previous computational work (Grainger & Jacobs, 1996) suggested that 

yglobal should be lower in Experiment 9 than in Experiment 2. The fit to Experiment 10 

provided here, showed that the SCM fitting algorithm compensated the 

underestimation of lexical activity in the primes by strongly emphasising the difference 

between high and low typicality primes through increasing yglobal. Compared to 

Experiment 9 the typicality effect in the empirical data was smaller and the model was 

able to capture this effect. The small imbalance in the decision thresholds in the 

parameters for Experiment 10 was similar in all simulations that used this set of targets 

and could reflect that the word and nonword categories were not equally difficult for 

the model. In summary, the fitted yglobal parameter in Experiment 10 supported the idea 

that the model underestimates the lexical activity from highly typical nonwords.

8.4.2 Task difficulty

In comparing Experiment 2, 3, 4, 5 and 7 the task difficulty steadily increased. The 

parameters of the model fits reflected this by decreasing the yglobal constantly over the 

course of experiments. This was compatible with Grainger and Jacobs' (1996) findings. 

It is also interesting to note, that the fitted parameters showed an adjustment for the 

manipulation of word and nonword targets. From Experiment 2 to 3 the nonword 
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targets were made more difficult and parameters reflected this in a relative difference 

between the decision thresholds, i.e. Θno was larger than Θyes. Vice versa in Experiment 

4, the word targets of Experiment 2 were replaced with more difficult items and Θyes 

was larger than Θno.

In Experiment 5, the step in yglobal appeared very large compared to Experiment 3 

and 4, especially since Experiment 5 essentially combined the targets of Experiment 3 

and 4. This was also accompanied by a strong imbalance in the decision thresholds, 

more precisely Θyes was considerably lower than Θno. Even though the parameter choice 

might appear extreme compared to Experiment 3 and 4, the empirical difference was 

very pronounced as well. The lexicality effect in empirical data was about six times 

larger in Experiment 5 than in Experiment 4 and the congruency effect only half in size. 

Thus, reducing yglobal enabled the model to accommodate these data. This result 

showed that the impact of using a combination of word and nonword targets that were 

more difficult to categorise than in Experiment 2 had a greater impact on the empirical 

data than just summing the steps from Experiment 2 to 3 and Experiment 2 to 4. But 

adding these steps together is exactly what the model does, unless the parameters are 

changed drastically as was shown in fitting the model.

The next step in task difficulty was from Experiment 5 to Experiment 7. Comparing 

the parameters of these two experiments shows that yglobal was decreased even further 

and the decision thresholds were increased compared to Experiment 5. This choice 

reduced the response congruency effect and produced slower responses which 

mirrored the empirical data. But note, that there was no response congruency effect in 

Experiment 7 and the primes were also replaced compared to Experiment 5.

In summary, increasing the task difficulty was reflected in the parameters of the 

model by a reduced weight of summed lexical activity an larger decision thresholds. 

The comparison of Experiment 3, 4 and 5 indicated that participants experienced a 

strong non-linear increase of the task difficulty in Experiment 5. The fitted parameters 

revealed large differences between Experiment 5 and the previous experiments, 
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whereas Experiment 2, 3 and 4 could be accommodated by comparably similar sets of 

parameters.

8.4.3 Impact of replacing primes

The comparison of Experiment 5 and 6 and Experiment 7 and 8 can shed light on the 

impact of replacing the primes in the same set of targets. If the participants adapted to 

the explicit task only, then a difference between the parameter estimates of the model 

is not expected. The empirical data of Experiment 5 and 6 revealed only small 

differences of up to 10 ms between the same set of targets, where Experiment 6 that 

used the less informative primes consistently produced slower responses. Similarly, the 

responses in Experiment 7 using less informative primes were consistently slower than 

in Experiment 8. But in these experiments the difference was up to 46 ms in the same 

set of targets as a function of prime informativeness. These differences were most 

pronounced in nonword responses.

The differences in the empirical data implied that the parameters in the model fits 

differ for the same set of targets in order to accommodate the differences in the 

lexicality effect. In comparing Experiment 5 and 6, reducing the prime informativeness 

reduced the lexicality effect, whereas in Experiment 7 and 8 a reduced prime 

informativeness increased the lexicality effect. But in both cases the more informative 

primes resulted in a larger response congruency effect. The SCM could be adapted 

through the parameters to fit Experiment 7 and 8 more successfully than with 

Experiment 5 and 6. In Experiment 8 yglobal was increased and by this means 

emphasising the lexical activity stemming from the primes. Also, the decision 

thresholds were reduced which enabled the model to produce faster responses with a 

smaller lexicality effect. Using the same approach would not result in a similarly good 

fit with Experiment 5 and 6, because the lexicality effect increased with more 

informative primes. Indeed, yglobal was smaller with more informative primes in 

Experiment 5 compared to Experiment 6. Thus, the model overestimated the response 

congruency effect and slightly underestimated the lexicality effect in Experiment 6. 

Also the Θyes was smaller in Experiment 5 than Experiment 6 which contributed to 

capturing the larger lexicality effect in Experiment 5. The SCM can accommodate a 
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greater reliance on summed lexical activity if more informative primes are used with 

the same set of targets, but less so vice versa. The model readily captured a decreasing 

lexicality effect with more informative primes.

The finding that not only the congruency effect, but also the lexicality effect varied 

as a function of prime informativeness seems to support the hypothesis that 

participants can adjust unconsciously to what extent the primes are exploited (Bodner 

& Masson, 2001, 2003, 2004; Bodner et al., 2006). On the other hand, the primes were 

always equal in the proportion of useful (congruent/valid) and misleading 

(incongruent/invalid) stimuli. The primes were also formally and semantically unrelated 

to the targets. Thus, there was no obvious way of using the primes strategically nor was 

there an obvious exploitable relation between the primes and the targets.

An alternative account is related to the deep processing account (see Dehaene et 

al., 1998; Naccache & Dehaene, 2001). It could be argued that the participants applied 

the task instructions on the prime in all experiments. In informative primes some 

information was extracted from the prime that biased the lexical processing of the 

target, e.g. a word prime increased lexical activity in comparison to a nonword prime. 

The uninformative primes were processed in exactly the same way, but extracting 

information was either less successful or the result was less distinguishable between 

the word and nonword primes. So far, this would explain larger or smaller response 

congruency effects, but not the difference in the lexicality effects. These can be 

explained by the impact of the primes on the lexicon. The differences in response 

speed were more obvious in nonword than in word targets. This could be due to the 

fact that the nonword targets triggered relatively low levels of lexical activity, i.e. they 

are more prone to the influence of lexical activity induced by a prime than the word 

targets that produce activity themselves. During the decision process the no-channel 

has to work against activity in the yes-channel from a prime. With the informative 

primes the nonword primes were particular unwordlike and thus, a nonword response 

was not interfered by prime induced lexical activity. Thus, these nonword responses 

have a tendency for being faster than those related to an less informative (i.e. more 

wordlike) nonword prime. By contrast, the incongruent nonword trials receive slower 
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responses with informative primes because the word prime is more wordlike than in 

less informative primes. Depending on how typical the less informative primes were, 

the mean nonword response could be slightly faster or slower and thus, the lexicality 

effect could be larger or smaller in informative compared to less informative primes. 

This explanation crucially depends on how much lexical activity was triggered by a 

nonword prime. It was argued above that the SCM showed a tendency of 

underestimating the lexical activity that was triggered by a nonword and this could 

have contributed to the difficulty of the SCM of capturing this specific set of data.

In summary, it appears more likely that the participants extracted information about 

the typicality of the prime automatically (Dehaene et al., 2001; Naccache & Dehaene, 

2001) and the difference in the lexicality effect can be to attributed to a different state 

of the lexicon rather than to a strategic effect. The SCM captured a smaller lexicality 

effect with increasingly informative primes more successfully than a pattern of 

increasingly informative primes paired with a larger lexicality effect.

8.4.4 Model modifications

For the purpose of simulating the experiments in this thesis the SCM had to be 

modified in two aspects. First, the lexical component of the model was adjusted. The 

homogeneous inhibition in the model was replaced by selective inhibition, as outlined 

in Chapter 4.2. Secondly, verification was introduced in the SCM. This mechanism 

resets the activity in the most active word node when the yes-decision threshold or its 

identification threshold was hit and there is a mismatch between the stimulus at letter 

level and the word node's associated template. Both mechanisms were active in the 

simulations in this chapter.

The selective inhibition in the lexicon was shown to be essential for predicting the 

typicality effect in word targets in Chapter 4.2. This modification in the lexical 

component did not impair the model's ability to predict inhibitory priming effects (see 

Chapter 4.3) which require inhibition between word nodes. The implementation of 

verification was necessary to enable the model to produce negative priming effects. 

The SCM was successful in predicting positive effects, but it also showed a small 
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negative effect on average in nonword targets in Experiment 7. Even though this 

negative effect was only small, it highlighted that the verification contributed to the 

simulations and that verification was an essential part in the simulations.

The SCM was also extended by a parameter search function which implements the 

simplex (Nelder & Mead, 1965) and the CTSS (Chelouah & Siarry, 2005) search 

algorithms. The parameter search above showed that the search algorithms worked 

and allowed fitting the model. It could be argued that the algorithm explored the 

parameter space faster than a manual search. Specifically because they did not require 

input or manual adjustments in the settings for the next simulation step allowing the 

parameter search to be run unsupervised. The simplex search is handy if a region of 

interest has already been identified, whereas the CTSS explores the parameter space 

more broadly. The results supported the idea that CTSS was effective in finding several 

minima in each simulated experiment. First, this showed that the parameter space was 

broadly explored and, secondly, that simplex alone could have been trapped by one of 

the local minima. With the combined search the SCM was enabled to find a good fit 

automatically.

8.5 Summary

The SCM was successful in predicting the typicality effects that were observed in 

Experiment 2 through to 10. The RMSE scores were very low indicating a very good fit, 

i.e. the predicted typicality and lexicality effect in cycles matched the empirical effect in 

ms very closely. The exception to this was Experiment 9 where the model 

underestimated the magnitude of the typicality effect. Furthermore, the results 

showed that modifications to the SCM, i.e. the introduction of selective inhibition and 

verification, increased the scope of the model. The parameter search algorithms that 

were incorporated into the software were also shown to be effective. Finally, the 

results of the simulations indicated that the observed typicality effects were the result 

of lexical activity, rather than motor activity or some other process that bypassed the 

lexicon.
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The simulations in this chapter showed that a computational model of visual word 

recognition such as the SCM can explain the results obtained in Experiment 2 through 

to 10. But the SCM underestimated the lexical activity that was triggered by the highly 

typical nonword primes in Experiment 9 and 10. Also, the empirical data indicated that 

the impact of task difficulty is not a linear function of combining specific targets, thus 

the parameters in Experiment 5 (a combination of more difficult targets) differed 

strongly from those in Experiment 3 (more difficult nonword targets) and 4 (more 

difficult word targets compared to Experiment 2) in order to enable the model to 

stretch for accommodating the empirical effects. In general, all simulations showed 

that response congruency and typicality effects were the result of summed lexical 

activity and it was shown in Chapter 4 that selective inhibition was necessary to 

produce an increase in lexical activity.
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9. General Issues

9.1 Summary empirical findings

9.1.1 Response congruency effect

A response congruency effect in masked primed lexical decision refers to a situation 

where word responses are facilitated by formally unrelated word primes compared to 

unrelated nonword primes, and nonword responses are facilitated by nonword primes. 

Norris and Kinoshita (2008) argued that response congruency effects would not 

emerge in lexical decision which is compatible with their own and other data reported 

in the literature (Perea et al., 1998, 2010). On the other hand, the possibility of 

obtaining a response congruency effect appears to be a critical prediction of an 

activation framework such as the Spatial Coding Model (SCM, Davis, 2010). Klinger et 

al. (2000) reported evidence for a response congruency effect in lexical decision. 

However, in this experiment the stimuli were repeated and thus, the congruency 

effects could be attributed to stimulus-response mappings that participants learnt 

during the experimental session (Damian, 2001), rather than to process occurring in 

the lexicon. The experiments reported in this thesis attempted to investigate the 

existence of response congruency effects in the lexical decision task more 

systematically.

The results of Experiment 2 clearly showed that response congruency effects can 

emerge in masked primed lexical decision. The stimuli in this experiment were not 

presented repeatedly and thus, participants were not able to form stimulus-response 

mappings. It was concluded that the observed response congruency effect in masked 

primed lexical decision was the result of lexical activity induced by word primes that 

facilitated a yes-response in word targets and interfered with a no-decision in nonword 

targets. Experiment 2 comprised a relatively easy word-nonword discrimination task 

and it could potentially be argued that this was not comparable to a standard lexical 

decision task. The difficulty of the explicit word-nonword discrimination task was 

systemically increased in Experiments 3 to 5. All three experiments revealed robust 
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response congruency effects and provided evidence that these effects can emerge in 

masked primed lexical decision.

The experiments using an increasingly difficult explicit task also tested whether 

response congruency effects are more prevalent in fast responses (see 1.4.2.3). The 

experiments in this thesis showed that the response congruency effect is robust with 

an increasing task difficulty and in slower responses. Figure 9.1 shows the response 

congruency and typicality effects of all experiments as a function of the mean RT. The 

graph shows that the effect tends to be smaller in an experiment with slower 

responses than in an experiment with comparable fast responses. This is compatible 

with the decreasing effect sizes that were reported with an increasingly difficult explicit 

task (e.g., in Experiment 2 to 5). However, the smaller response congruency effects 

were also partly due to a mixture of positive and negative effects. This was shown 

using a more fine-grained analysis in deciles. That means that response congruency 

effects were observed with slow responses. These effects were small in word targets 

and tended to be negative in nonword targets (see Figure 9.1). In summary, the 

response congruency effects reported in this thesis were influenced by the task 

difficulty and average response speed, but they did not depend on these factors.

An important difference between Experiment 2 to 5 and data reported in the 

literature were the primes. In Experiment 2 to 5 the primes were clear exemplars of 
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Figure 9.1: Plot of the response congruency effect in Experiment 2 through to 8 and the typicality 
effect in Experiments 9 and 10. The mean RT reflects the congruent trials in Experiments 2 to 8. In 
Experiments 9 and 10, the high typicality priming condition in word targets and the low typicality 
priming condition in nonword targets was used as a basis.



their categories. That means the word primes were high in frequency and 

orthographically typical (e.g., royal, thing) whereas the nonwords had no orthographic 

neighbours (N; Coltheart et al., 1977) and were orthographically atypical (e.g., dvnel, 

oyizi). It was hypothesised that the primes in these experiments were very informative 

with regards to the lexical decision task and that they biased the decision process 

towards a yes- or no-response respectively. This was in contrast to experiments in the 

literature (Norris & Kinoshita, 2008; Perea et al., 1998, 2010) where the word and 

nonword primes were very similar to each other with regards to their typicality and N. 

Additionally, Norris and Kinoshita (2008) used nonword primes that were also formally 

very similar to specific word primes such as chill and chilk, floor and floop. Concluding 

from this, it was assumed that the informativeness of the primes, i.e. the relative 

difference in typicality between the word and nonword primes, was the distinctive 

property of the experiments in this thesis and the literature.

This hypothesis was tested in the following experiments. In Experiment 6, the 

primes were less informative compared to Experiment 2 to 5. That means compared to 

the previous experiments the word primes were lower in frequency and less typical 

(e.g., rifle, solid) and the nonword primes were somewhat more typical (e.g., dulew, 

saulp). This reduced the relative difference between the prime categories and thus, the 

informativeness of the primes with regards to the word-nonword discrimination task. 

The results of Experiment 6 showed that the response congruency effect was reduced 

in word targets and diminished in nonword targets. This suggested that a stronger 

manipulation of prime informativeness could result in the absence of response 

congruency effects and resolve the empirical discrepancy with the literature.

In Experiment 7 the prime informativeness was further reduced compared to 

Experiment 6 and the targets for the explicit word-nonword discrimination were made 

more difficult to categorise. The word items (e.g., dwarf, zebra) were orthographically 

less typical than the nonword items (e.g., grome, sheme). The results of Experiment 7 

showed that there was no response congruency effect in either word or nonword 

targets. Since both primes and targets were replaced compared to Experiment 6, 

another experiment was required to unambiguously demonstrate that the prime 

216



informativeness was the distinctive factor underlying the differences between 

Experiment 2 to 6 and the previous literature. Experiment 8 used the same targets as 

Experiment 7, but the more informative primes from the previous experiments. The 

results of this experiment revealed a response congruency effect. This showed that 

within the same targets a response congruency effect can be present or absent as a 

function of the prime stimuli. The use of more informative primes explained the 

empirical discrepancy between the response congruency effects reported in this thesis 

and the absence of such effects in the literature.

9.1.2 Typicality effect

The results of Experiment 2 to 8 showed that the response congruency effect 

critically depends on prime informativeness, specifically the relative differences in 

typicality between the word and the nonword primes. This implied that the presence 

or absence of a congruency effect was not determined by the lexicality of the prime, 

but by the informativeness of the prime with respect to a word- or a nonword-

response. The orthographic typicality which was the main factor in manipulating the 

prime informativeness is independent of the prime’s lexicality. The required 

manipulation in the stimuli can be achieved more easily in nonwords, because words 

always resemble actual language and are necessarily wordlike and typical to some 

extent. Thus, sets of typical nonwords and atypical nonwords were generated by using 

the software described in Chapter 2.6. In Experiment 9, a similar set of targets as in 

Experiment 2 was used for creating an easy lexical decision task, but the primes were a 

set of typical nonwords and a set of atypical nonwords. The results revealed that 

typical nonword primes facilitated yes-responses compared to atypical nonwords and 

vice versa atypical nonword primes facilitated no-responses compared to typical 

nonword primes. These results supported the argument that the response congruency 

effect in the earlier experiments was in fact driven by the typicality of the primes. Since 

the targets in Experiment 9 formed a relatively easy word-nonword discrimination task, 

the experiment could be criticised on the grounds of having used items that made the 

explicit lexical decision task too easy for participants. Thus, the experiment was 

repeated with a more difficult explicit task. The results of Experiment 10 were 

compatible with Experiment 9 in showing that typical nonword primes facilitated yes-
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responses compared to atypical nonword primes. There was not a significant effect in 

no-responses, though there was a strong tendency in the same direction as in 

Experiment 9. In summary, Experiment 9 and 10 revealed an interaction of prime 

typicality and target lexicality, where typical primes facilitated yes-responses compared 

to atypical primes and vice versa atypical primes facilitated no-responses compared to 

typical primes. These findings supported the idea that the response congruency effects 

reported above were in fact typicality effects.

On the basis of this experimental evidence it can be concluded that the reasons the 

experiments previously reported in the literature did not obtain response congruency 

effects (Norris & Kinoshita, 2008; Perea et al., 1998, 2010) is that they did not use 

sufficiently informative primes. Nevertheless, the observed effects are better 

characterised as typicality effects rather than congruency effects, given that the 

typicality manipulation was effective in the experiments independently of the lexicality 

of primes. The findings are compatible with Woollams et al.'s (2011) findings that 

orthographic typicality is independently processed from lexicality. The effect of prime 

typicality in Experiment 10, that required participants to identify the targets, also 

suggested that typicality contributed to the word recognition process.

9.1.3 Negative typicality effects

The experiments reported here showed a robust typicality-lexicality interaction, 

whereby there was an advantage in RT and/or accuracy when a word target was 

preceded by a highly typical prime compared to an atypical prime and vice versa in 

nonwords. Nevertheless, in some experiments a typicality effect that went in the 

opposite direction was observed in the latter part of the RT distribution, i.e. highly 

typical primes facilitated no-responses and atypical primes facilitated yes-responses. 

The standard analysis of the empirical data was too coarse for detecting these negative 

priming effects. Only the application of more fine-grained methods such as forming 

vincentiles (Vincent, 1912) and fitting the data to an Ex-Gaussian distribution (Balota et 

al., 2008; S. Brown et al., 2008; S. Brown & Heathcote, 2003; Heathcote et al., 2004) 

allowed the detection of these negative effects in the data. One consequence of failing 

to detect the presence of these negative effects would have been an underestimation 
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of the positive effect that was present in the rest of the RT distribution. Another 

consequence would have been the failure to detect evidence supporting a reset of 

activity in word nodes.

In the data, positive and negative typicality/congruency effects occurred together in 

the same experiment. Specifically, the positive effect was more present in fast 

responses and the negative effects occurred in the slowest part of the RT distribution. 

For example, in nonword responses in Experiment 3 and in word responses in 

Experiment 10 a positive effect was found in fast responses and in the final deciles a 

negative effect was observed. Also, the congruency effect and the typicality-lexicality 

interaction faded out towards the end of the RT distribution, e.g. in nonword responses 

in Experiment 9 and word responses in Experiment 5. But this could also indicate that 

there was an increasing number of responses showing a negative effect towards the 

end of the distribution, rather than no effect at all. The fading out is different from the 

negative effects in that there was no clear boundary between positive and negative 

effects as in Experiment 3, but rather a mixture of both. These findings were explained 

by assuming a verification mechanism that can lead to the reset of activity in word 

nodes.

A verification mechanism that results in a reset of a word node is different from 

leakage (see Usher & McClelland, 2001). If the variation in the size of the effect over 

the course of the RT distribution were simply the result of leakage in the decision 

channels, the effect would slowly diminish towards the end of the RT distribution. But 

the empirical data implied a more abrupt mechanism that reversed the direction of the 

typicality and congruency effect. Thus, leakage could not explain the observed pattern. 

It is also important to note, that an effect that is negative still indicates an effect of 

typicality priming. In a different priming paradigm, Boy and Sumner (2010) showed that 

negative effects can only emerge if there is at least a potential for a positive effect, i.e. 

a negative priming effect is essentially due to the same processes as a positive effect 

and some additional process (inhibition, reset or verification) that is initiated with a 

delay relative to other processes. Boy and Sumner (2010) suggested that negative 

effects emerge if a response option hits an inhibition threshold, but not the response 
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threshold, i.e. the inhibition process is only started once the inhibition threshold was 

hit, but not when the stimulus was presented. In the SCM (Davis, 2010) a verification 

process was added that is initiated after the identification or yes-response threshold 

has been hit and thus, its onset is delayed relative to other processes. In summary, 

negative priming effects are the result of the same processes as positive priming 

effects, but with an additional mechanism that inhibits activity on the basis of the 

failure of a verification process. In the data presented in this thesis, negative effects 

were typically accompanied by positive effects which is compatible with this 

suggestion. Also, fine-grained analysis methods were required to detect negative 

effects, specifically if a mixture of positive and negative effects could have covered an 

actual effect.

9.1.4 Relation of typicality priming to other priming effects

It is interesting to compare the typicality priming effects observed here with 

unrelated primes to priming effects that have previously been studied for related 

primes. One noteworthy difference is the impact of target lexicality. In Experiment 2 

through to 6 and 8 to 10, the effect of a congruency or typicality manipulation in the 

primes was reported and it was shown that the effects are absent if the primes are not 

sufficiently informative, i.e. if the typicality manipulation was not sufficiently strong. In 

Experiment 2 and 9 where the most pronounced effects were observed, the absolute 

effect was greater than 20 ms in word and nonword targets. The relative effect size in 

Cohen's f was greater than 1.00 indicating a large effect size. Specifically, the effect in 

nonword targets was unusually large. In a review Forster et al. (2003) estimated the 

effect from identity priming in nonword targets in lexical decision at about 8 ms. This 

contrasts with the identity priming effect in word targets which is one of the largest 

and most stable priming effects with an effect size that is as large as the prime 

presentation duration and occasionally even greater than that (Forster et al., 2003). 

That is, there is a very strong interaction of target lexicality and the identity priming 

effect. By contrast, the effect sizes of the congruency effect in Experiment 2 and the 

typicality-lexicality interaction in Experiment 9 were comparable in word and nonword 

targets. Specifically, the effect in nonword targets was about three times as large as in 

identity priming even though there was no letter overlap between prime and target. 

220



The comparable magnitude of the congruency/typicality effects for word and nonword 

targets implied that the mechanism underlying these priming effects are different from 

those underlying identity priming and form priming. In particular, identity and form 

priming effects appeared to be the result of processing related to a specific word node, 

whereas the congruency and typicality effects reported here were attributed to general 

lexical activity independent of the target representation. This results in 

congruency/typicality effects in both word and nonword targets.

Another respect in which the congruency effect differs from form priming effects is 

the effect of word frequency. The congruency effects reported here appeared to be 

independent of the lexical frequency of the target and the relative frequency of prime 

and target. In contrast, form priming effects depend on the relative frequency of prime 

and target. For example, Grainger (1990) showed that using a neighbour prime that is 

higher in frequency than the target resulted in an inhibitory priming effect in lexical 

decision, but if the prime was lower in frequency there was no effect (though there 

was a facilitatory tendency). In a similar experiment, C. J. Davis and Lupker (2006) 

showed that a form related nonword prime facilitated a lexical decision in word targets 

whereas a related word prime showed an inhibitory effect relative to unrelated primes 

of the same lexicality. The size of this effect was attenuated in high frequency word 

targets compared to low frequency words in C. J. Davis & Lupker's (2006) data. In 

contrast, the current study of typicality revealed the largest effects with high frequency 

targets. The neighbourhood effects were attributed to inhibition between the prime 

and the target word nodes. But the congruency effect and typicality-lexicality 

interaction were attributed to word nodes that are not related and crucially, do not 

have inhibitory connections. Thus, it does not matter whether the target or the prime 

is of relatively higher frequency, because the effect of inhibition between prime and 

target is essentially absent. Furthermore, the absence of inhibitory connections 

between prime and target was crucial for simulating the data (see Chapter 4).

Both the comparison to masked identity priming and neighbour primes showed that 

the congruency effect and the typicality-lexicality interaction were not the result of 

local processes in the lexicon but of global processes. As a result the target lexicality, 
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the target frequency and the relative prime-target frequency were less critical. These 

empirical differences underline that the congruency effect and the typicality-lexicality 

interaction were the result of a different mechanism compared to priming effects in 

formally related primes. The form priming effects relied on the identification of a 

specific item whereas the effect of congruency and typicality was attributed to 

summed lexical activity. Differentiating between these processes is also compatible 

with the fMRI data by Woollams et al. (2011) who found that lexical identification and 

the typicality of letter strings activated different brain areas.

9.1.5 Theoretical accounts of response congruency

The Experiments 2 through to 8 used response congruency effects in lexical decision 

for investigating visual word recognition. Thus, it was important that these effects 

could not be attributed to other processes that were not related to word recognition. 

Damian (2001) presented evidence that response congruency effects can emerge if the 

primes have been used repeatedly as targets before. This finding was critical for Klinger 

et al.'s (2000) work where a response congruency effect was observed, but it could be 

attributed to stimulus-response mappings that the participants learnt during the 

experimental session. In order to avoid this criticism, the experiments in this thesis 

presented the targets only once. Furthermore, the congruency effect was observed in a 

number of experiments that used primes and targets from disjoint sets of items. In 

Experiment 9 and 10 a typicality-lexicality interaction was observed which cannot be 

attributed to stimulus-response mappings, because all primes were nonwords and 

thus, associated with the same response.

The deep processing account (Dehaene et al., 1998; Naccache & Dehaene, 2001) 

assumes that the task instruction are applied to the prime and the target and both 

stimuli are truly evaluated with regards to their meaning in the task. It was also argued 

that the prime and the target are processed by the same mechanisms, though the 

prime related processing is incomplete. This contrasts with the stimulus-response 

mapping (Damian, 2001) and the action trigger account (Kunde et al., 2003), where it 

was assumed that a response can be triggered without processing the meaning of the 

stimulus. This general principle is compatible with the SCM (Davis, 2010) as all primes 
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undergo the same processes as the target and their processing is incomplete. In the 

deep processing account the locus of the congruency effect is at the response level. An 

incongruent prime triggers a small response readiness potential and the target 

response interferes with the prime related potential. In a congruent trial the prime and 

the target related response coincide and thus, the target response can benefit from the 

prime. This is also compatible with SCM. Although the SCM performs a reset of the 

decision channels at target onset, the early advantage of congruent trials is preserved 

in the decision channels. Thus, it could be argued that both accounts are similar in that 

the locus of the congruency effect is at the decision/response channels. A critical 

assumption in the deep processing account is that the response channel with the 

prime related response is activated, specifically in Experiment 9 and 10 this would not 

predict the observed typicality effects. But it could be argued that the word recognition 

system is tricked into falsely adding activity to yes-channel even though the stimulus is 

a (very typical) nonword. Thus, the deep processing account can accommodate the 

findings presented in this thesis. In summary, the deep processing account provides a 

framework that can account for the response congruency and typicality effects that 

were reported in this thesis. But it does not provide insight into the processes that are 

involved in activating the yes- or the no-channel as it is not a domain specific model.

The semantic feature overlap account (Quinn & Kinoshita, 2008) predicts response 

congruency effects on the basis of features that can be activated by the prime and the 

target stimulus. If there is an overlap between the prime and the target related set of 

features a facilitatory effect is predicted. The account assumes that in a narrow 

category where only a few features are important to monitor, a priming effect is 

predicted in both exemplar and nonexemplar responses. That means if words are 

associated with particular features that can describe the letter string, such as 

pronounceable, legal and orthographically typical, a narrow category of meta-features 

could be formed. Quinn and Kinoshita (2008) showed that nonexemplar words (e.g., 

mind) that share semantic features with a category (e.g., body parts), trigger similar 

effects as an actual category member (e.g., head). These words were referred as 

impostors and in Experiment 9 and 10 a similar concept was applied in creating 

nonword primes that were very wordlike and tricked the recognition system in 
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assuming this was a word. In summary, the overlap hypothesis provides a framework of 

response congruency that relies on features of the stimuli, but not a specific account of 

how these features are activated or formed. Nevertheless, the impostor concept 

provided an interesting input into the experimental work.

In summary, the theoretical accounts provided a framework of potential sources of 

response congruency effect that should be avoided (e.g., stimulus-response mappings). 

Also, these accounts provided a framework for potential effects, such as the impostor 

effect. Such an account is domain unspecific and after being transferred into the 

domain visual word recognition provided insight in the early processing stages.

9.2 Modelling response congruency and typicality effects

The simulations with the Bayesian Reader (Norris, 2006; Norris & Kinoshita, 2008) 

showed that this model cannot account for the response congruency effect. In the 

Bayesian Reader all traces of an unrelated prime are wiped off the lexicon as soon as 

the target was presented. Another type of model that was not tested in the simulations 

is the search model. For example, the entry opening model (Forster, 1985, 1999; 

Forster et al., 1987, 2003) has no means of capturing the effect of an unrelated prime 

on the lexical decision to the target. If a word prime initiated opening its corresponding 

entry in the lexicon, there is no way in which this could benefit opening another 

unrelated entry corresponding to a word target. Only an activation model, such as the 

Spatial Coding Model (SCM; Davis, 2010) seems to be able to account for the effects.

In modelling the response congruency effect and typicality-lexicality interaction 

using the SCM (Davis, 2010) it was shown that the impact of summed lexical activity 

can explain the findings. Importantly, the modelling showed that the lexical component 

could only account for the findings if selective inhibition was used. When the model 

used homogeneous inhibition as in the Interactive Activation Model (McClelland & 

Rumelhart, 1981), the SCM was unable to account for the observed response 

congruency effects in word targets. The reason was that activity induced by the prime 

word interfered with activity induced by the target word and this resulted in a null 

effect of response congruency in word targets. By using selective inhibition this 
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interference could be avoided and the model showed an increased level of lexical 

activity in congruent word trials compared to incongruent word trials. It was argued 

that selective inhibition is more plausible, because in this account only those word 

nodes interfere with each other that are related. This limits the competition for the 

best match for the stimulus to a set of reasonable candidates. In contrast, 

homogeneous inhibition implies that activity in each word node in the lexicon is 

actively suppressed whenever a letter string is processed. Selective inhibition is more 

restrictive in its application but it still allowed the model to capture data that requires 

inhibitory connections, this includes the inhibitory priming effect of word neighbours in 

word targets (Davis & Lupker, 2006). In summary, the implementation of selective 

inhibition increased the scope of the SCM. Since the lexical component in the SCM is 

very similar to the one in the Interactive Activation Model (McClelland & Rumelhart, 

1981), the use of selective inhibition could generalise to other models that are based 

on this model, e.g. MROM (Grainger & Jacobs, 1996).

It is interesting to note, that the SCM predicted a typicality priming effect in 

nonwords independently of whether inhibition was homogeneous or selective. By 

comparison with word targets, the nonword targets triggered relatively little lexical 

activity. With homogeneous inhibition the activity stemming from the word targets 

resulted in inhibition of the prime word node and eventually in the false prediction of a 

null effect. Thus, the fact that the nonwords only triggered little lexical activity made 

the congruency effect in nonword targets immune to the choice of homogeneous or 

selective inhibition.

For capturing negative priming effects a reset mechanism was implemented in the 

SCM. This mechanism is similar to the verification mechanism in the activation-

verification model (Paap et al., 1982). When this verification fails, a reset of the 

relevant word node helps to avoid a false yes-response to nonword targets that have 

high frequency word neighbours. In the present implementation, the verification is 

triggered if the yes-channel hits the decision threshold or a word node hits the 

identification threshold. If the word node is not a match for the stimulus, the activity of 

that node is reset. This reduces the input to the yes-channel and eventually enables the 
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model to correctly produce a no-response. That means the verification process helps in 

responding correctly. Since the verification can be triggered by hitting the yes-decision 

threshold, the prime can influence when this verification is triggered. A typical prime 

contributes to the activity in the yes-channel so that in turn the threshold is reached 

faster than with an atypical prime. Thus, the verification is triggered faster as well and 

in a nonword target this results in a negative typicality effect. For example, a very 

typical prime (e.g., ifter) would increase activity in the yes-channel to a greater extent 

than an atypical prime (e.g., miqyd) and thus, the threshold would be hit faster with 

the typical prime. A typical nonword target triggers further activity in the lexicon and 

the yes-channel. Consequently, for nonword targets, verification is most likely to occur 

(and occurs earlier) when a typical target is preceded by a typical prime. This in turn 

increases the likelihood of reset in typical relative to atypical primes, and reset leads 

eventually to a faster correct no-response, explaining the negative typicality effect. The 

role of the verification process in explaining the negative priming effects in the 

empirical data adds further plausibility to the idea of such a mechanism.

In summary, simulating the empirical data showed that selective inhibition is more 

appropriate than homogeneous inhibition and added evidence in favour of a 

verification process. The simulations also suggested that only an activation model 

could capture the congruency effect and the typicality-lexicality interaction.

9.3 Measuring orthographic typicality

The results of all experiments presented in this thesis showed the effect of a global 

measure of typicality on the word recognition process. Woollams et al. (2011) found 

evidence in fMRI data that typicality is represented differently from lexicality, but also 

that typicality is processed earlier than the identity of words. Various methods of 

measuring typicality have been suggested in the literature, e.g. OLD20 (Yarkoni et al., 

2008) and transition frequencies of subsyllabic elements (Keuleers & Brysbaert, 2010). 

In Chapter 2, I introduced a measure of orthographic typicality based on trigram 

transition probabilities. Despite not using any explicit phonological information like 

Wuggy (Keuleers & Brysbaert, 2010) the algorithm produced almost all pronounceable 

nonwords (99%, see Appendix C) compared to 80% in WordGen (Duyck et al., 2004). 

226



Also, the algorithm has a generic formulation that could be applied to a phonetic code 

or any other string of characters. The typicality of a string is expressed in standard 

deviations and is independent of the specific language. Also, the distribution of values 

that stems from analysing the CELEX lexicon resembles a typical RT distribution with 

fewer typical items (fast responses) and a longer tail towards atypical items (slower 

response). The evidence showed that this measure is an effective estimate in nonword 

targets. By specifying a specific layer of typicality, the generated nonword items vary in 

their wordlikeness and in turn in their ease of pronounceability (J. Humphreys, 2008). 

Thus, nonwords for reading ability tests could be generated with different levels of 

difficulty. This could be important if patients require a regular testing of their progress, 

but the same items cannot be used again because patients could just remember them. 

Existing test batteries, such as PALPA (Kay, Lesser, & Coltheart, 1996) and LeMo (De 

Bleser, Cholewa, Stadie, & Tabatabaie, 1997), could be extended. The generic 

implementation of OT3 also allows the use in other languages.

In Experiment 1 low typicality items resulted in very similar RT independently of 

their pronounceability (but see Rubenstein et al., 1971, 1975). This indicated that 

pronounceability did not show an effect per se, although the effect of typicality was 

larger within pronounceable than within unpronounceable nonwords, i.e. the 

pronounceability could have contributed to the wordlikeness of a nonword above and 

beyond its typicality. Further evidence that typicality influences the word recognition 

process was obtained in the masked priming experiments especially Experiment 9 and 

10.

9.4 What is the purpose of selective inhibition?

All experiments in this thesis were lexical decision experiments in the lab and most 

of them used the masked priming paradigm. Thus, it could be argued these 

experiments are not resembling natural reading conditions. Nonetheless, the results 

showed a basic principle of word recognition. It was demonstrated in the modelling 

sections that a selective inhibition account is more appropriate for simulating the data. 

It could also be argued that selective inhibition is more economic than homogeneous 

inhibition. One could assume that every transmitted signal in the lexicon is associated 
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with cost (chemical energy). Using homogeneous inhibition, presenting a word to the 

recognition system would trigger inhibitory signals being sent to about 50,000 word 

nodes. The number of connections can be reduced by implementing homogeneous 

inhibition as a function of summed lexical activity (see McClelland & Rumelhart, 1981; 

Rumelhart & McClelland, 1982) compared to laterally connecting each word node with 

every other word node in the lexicon. But crucially, the total number of transmitted 

inhibitory signals is not affected by changing the emitting source. If the amount of 

transmitted signal is at least the amount of received signal, then homogeneous 

inhibition requires about 50,000 inhibitory signals being sent from a word node or a 

sum function to each word node. By contrast, this number in considerably smaller in a 

selective inhibition account. In this account it is sufficient that each word nodes has an 

inhibitory connection to word nodes that are similar and thus, take part in the 

competition for the best match. In the simulations in Chapter 8 it was assumed that his 

number is limited to the 30 most similar word nodes. Thus, the amount of inhibition in 

a selective account is 1,000 times smaller than in a homogeneous account.

The experiments provided very clear indication that unrelated word nodes are not 

affected by inhibition, i.e. are not actively suppressed by the presentation of unrelated 

words or nonwords. In contrast to lexical decision experiments, words do not appear in 

isolation in normal reading. Most written documents enable the reader to potentially 

process more than one word. In a review, Rayner (1998, 2009) argued that words in the 

parafovea are processed with regards to their form (e.g., letters, morphology, 

phonology) but not semantically. That means there is evidence that more than one 

word could be processed at a time in the form lexicon. Ideally, these words do not 

interfere with each other, but are helpful for the reading process. With homogeneous 

inhibition the activity in two word nodes would cause strong interference and finally 

the suppression of activity in one of them. Thus, the prediction of homogeneous 

inhibition is that activity in the whole lexicon is actively suppressed as soon as a letter 

string is processed. That means as soon as one starts reading the lexicon is shifted into 

a dim state. By contrast, selective inhibition allows two active word nodes and 

inhibition is limited to word nodes that could cause confusion with the actual stimulus.
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Another way of enabling the recognition system to process words in fast succession 

is a reset mechanism. Grainger and Jacobs (1999) argued that the activation in a word 

node could be eliminated if a mismatch occurs. This resembles the reset in adaptive 

resonance theory where a mismatch with the input resets the respective 

representation (Carpenter & Grossberg, 1987). The idea of a reset mechanism was 

implemented in the SCM as well in order to account for negative priming effects. In this 

account the activity that is typically triggered by the prime was not sufficient to make it 

a potential goal for a reset mechanism. Thus, the reset is not hindering the response 

congruency effects. But with homogeneous inhibition these effects are hard to obtain 

as the simulations in Chapter 4 showed. This implies that it was still necessary to use 

selective inhibition.

The experimental work presented in this thesis provided clear experimental 

evidence in favour of a selective inhibition account and constraints computational 

models of word recognition.

9.5 What is the purpose of orthographic typicality?

The experiments in this thesis were all concerned with the orthographic typicality of 

letter strings and it was argued that typicality is reflected in summed lexical activity. 

The results indicated that the typicality has an impact on the processing of words in 

isolation which is compatible with other results in the literature (Hauk et al., 2006; 

Woollams et al., 2011). Thus, it is important to know in which way this information is of 

use in the normal reading process.

Woollams et al. (2011) argued that typicality is processed earlier than the identity of 

a word. Thus, in reading the typicality of letter string could guide the planning of 

saccades. Eye tracking experiments have shown that lexical identification can continue 

while a saccade to the next word is being performed (Irwin, 1998; Yatabe, Pickering, & 

McDonald, 2009). Furthermore, the effect of word frequency also spilled over to the 

next word and provided evidence that word identification continues even after another 

word is being fixated (Kennison & Clifton, 1995; Yatabe et al., 2009). This implies that 

the word was not identified, but rather the word recognition system had some 
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indication that the stimulus can be identified soon. The SWIFT model of saccadic eye 

movements (Engbert, Nuthmann, Richter, & Kliegl, 2005; Richter, Engbert, & Kliegl, 

2006) assumes that word difficulty feeds into the planning process which was 

expressed as a function of the word's frequency and its predictability. Both measures 

are dependent on the identity of a word and thus, are only available once the word is 

known but not in an on-the-fly process. But the frequency of a word influences how 

quickly its activation in the lexicon raises and it could be argued that the growth rate of 

summed lexical activity could provide a sufficient approximation for the planning 

process. In this thesis, it was argued that the orthographic typicality of a letter string is 

strongly linked to the summed lexical activity. The effect of impostor primes (very 

wordlike nonwords) in Experiment 9 and 10 was comparable to word primes in the 

previous experiments and it could be hypothesised that impostor nonwords cause the 

word recognition system to erroneously allow a saccade even though they might 

require some more processing to be identified as a very typical unknown stimulus.

The literature on eye tracking suggests that words in the parafovea are processed to 

some extent but not identified (Rayner, 1998, 2009). This could suggest that quickly 

extractable information such as typicality is used in planning landing points or in 

skipping highly typical function words.

The experiments in this thesis highlighted the importance of typicality in the word 

recognition process. The simulations showed that selective inhibition rather than 

homogeneous inhibition is required in order to capture these findings in computational 

models.
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Appendix A: Analysis of prime novelty and adaptation in Experiment 2

As briefly outlined in 3.4.1 the primes and targets in Experiment 2 were drawn from 

the same pool of items. This means that an effect of prime novelty could have emerged 

(see Damian, 2001). In the following I present the analysis of prime novelty. 

Additionally, participants could adapted to the task during the experimental session 

which could have influenced the priming effect as well. The respective analysis is 

presented as well.

A.1 Prime novelty

If the congruency priming effect emerged as a result of stimulus-response mappings 

only used primes, i.e. primes that were presented as targets already, would have 

elicited an effect. This contrasts with novel primes where no such memory trace could 

have been established and thus, no priming effect is predicted. If the stimulus-response 

mapping account can explain the findings an interaction of prime novelty and 

congruency is expected.

Analysis

Each trial of Experiment 2 was tagged with regards to prime novelty and the data 

were used in a post-hoc analysis. The reaction times and error scores are shown in 

Table A.1 for word and in Table A.2 for nonword targets (see Table 3.1 for results 

ignoring prime novelty). The respective ANOVAs for word and nonword targets were 

computed using the z-scores of reaction time as a dependent variable. Prime novelty 

and congruency were treated as a repeated factors and list as a random factor.
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Results

The analysis showed a main effect of congruency like in previous analyses. There 

was no significant main effect of prime novelty in words by participants 

[F1(1, 36) = 1.640, p=0.208], but the effect was significant by items [F2(1, 98) = 6.355, 

p=0.013, f=0.25] indicating faster responses in trials with used than in trials with novel 

primes. In nonword targets the main effect of prime novelty was significant by 

participants [F1(1, 36) = 7.296, p=0.010, f=0.45] indicating faster responses in trials with 

used than in trials with novel primes. But this effect was not significant by items 

[F2(1, 98) = 2.663, p=0.106]. The interaction between congruency and prime novelty 

was not significant in word targets [F1(1, 36) = 0.349, p=0.559; F2(1, 97) = 0.743, 

p=0.391]. There was a tendency in nonword targets [F1(1, 36) = 3.492, p=0.070; 

F2(1, 98) = 2.445, p=0.121] indicating that the congruency effect in used primes was 

larger than in novel primes.
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TABLE A.1: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT IN WORD TARGETS OF 
EXPERIMENT 2 AS A FUNCTION OF CONGRUENCY AND 
PRIME NOVELTY.

Prime novelty

Novel Used

Congruency RT Error RT Error

Incongruent 501 2.99 496 4.66

Congruent 476 2.11 475 2.15

Effect 25 0.77 21 2.51

TABLE A.2: MEAN REACTION TIMES IN MS AND 
ERROR RATIO IN PERCENT IN NONWORD TARGETS OF 
EXPERIMENT 2 AS A FUNCTION OF CONGRUENCY AND 
PRIME NOVELTY.

Prime novelty

Novel Used

Congruency RT Error RT Error

Incongruent 523 2.78 516 4.76

Congruent 503 1.94 492 1.85

Effect 20 0.84 24 2.91



The analysis of error scores showed no significant main effect of prime novelty in 

word targets [F1(1, 36) = 2.284, p=0.139; F2(1, 97) = 2.210, p=0.140] or nonword targets 

[F1(1, 36) = 2.078, p=0.158; F2(1, 98) = 2.662, p=0.106]. There was a tendency for an 

interaction of congruency and prime novelty but this was not significant in word 

targets [F1(1, 36) = 2.774, p=0.104; F2(1, 97) = 2.549, p=0.114]. This tendency was 

stronger in nonword targets by participants [F1(1, 36) = 3.681, p=0.063] and significant 

by items [F2(1, 98) = 4.877, p=0.030, f=0.22]. The interaction is due to a significantly 

larger congruency effect with used primes compared to novel primes.

Discussion

The stimulus-response mapping account makes a very strong prediction by 

attributing the effect to used primes only. In contrast, the data showed that the 

priming effect was present in novel primes as well. The difference in the elicited 

congruency effect between novel and used primes were very small with about 5 ms. In 

word targets the effect was numerically even larger with novel primes than with used 

primes. If at all, this is in contrast to the hypothesis that congruency effects in 

Experiment 2 were the result of stimulus-response mappings. But there was indication 

that the congruency effect in nonword targets was larger with used than with novel 

primes. Importantly, the data showed that the congruency effect was present in 

nonword targets with novel primes, where the effect size was almost identical across 

novel and used primes. Thus, the obtained congruency priming effect could not be 

attributed to stimulus-response mappings.

A.2 Adaptation

The analysis of prime novelty showed that there was a tendency for congruency and 

prime novelty to interact. In word targets this refers to a stronger congruency effect 

with novel primes compared to used primes, whereas in nonword targets a stronger 

congruency effect occurred in used primes compared to novel primes. An alternative 

explanation for the numerical effects in RT and the tendency in error scores was that 

participants adapted to the experimental task during the session. This assumption was 

supported by a main effect of prime novelty indicating faster responses to trials with 

used primes than to trials with novel primes. In the course of the experiment novel 
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primes were more likely at the beginning where responses were expected to be slower, 

whereas used primes were more likely towards the end of the session and responses 

were faster. A similar explanation holds with regards to error scores. If participants 

tuned into the task, they are expected to become more sensitive to the primes (or the 

type of primes) towards the end of the session where most primes were used. Thus, an 

interaction as reported above could emerge even though there is no contribution of 

stimulus-response mappings. A post-hoc analysis was performed to test the hypothesis 

of adaptation.

Analysis

In a post-hoc analysis all data points were tagged according to the block of the 

experiment in which they appeared. The results are shown in Table A.3 for word and 

Table A.4 for nonword targets. Thus, the values for the newly created block variable 

ranged from 1 to 4. A more fine grained analysis had to be excluded, because the 

matrix of data points would have become very sparse. Hence, the following analysis 

included congruency and block as a repeated factor and list as a random factor. If this 

analysis shows that participants became faster during the experiment, it strongly 

suggests that the reason for finding a main effect of prime novelty is due to a speeding 

up process during the experiment.

Results

The results of the analysis showed again a strong main effect of congruency in word 

and nonword targets being in line with all prior analyses. The main effect of block, 

indicating a speeding up during the experiment, was not significant in word targets in 

the analysis by participants [F1(3, 108) = 2.470, p=0.062], but it was by items 

[F2(3, 276) = 4.815, p=0.003, f=0.23]. A post-hoc test showed that participants 

responded significantly slower in first block than in the second and fourth (final) block 

(all ps<0.050). There was a tendency for this difference between the first and the third 

block (p<0.150). In nonword targets the main effect of block was significant 

[F1(1, 36) = 6.215, p=0.001, f=0.42; F2(3, 285) = 8.212, p<0.001, f=0.29]. A post-hoc test 

showed the same result as found in word targets. The responses in the first block were 

significantly slower than the second and fourth block in all analyses (all ps<0.050). 
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There were tendencies for the difference between first and the third block (ps<0.200). 

There was no interaction of congruency and block in word targets [F1(3, 108) = 0.285, 

p=0.836; F2(3, 276) = 1.127, p=0.339]. This interaction was not significant in nonword 

targets as well [F1(3, 108) = 0.930, p=0.429; F2(3, 276) = 1.466, p=0.224].

The analysis of error scores showed a main effect of congruency and was in line with 

previous analyses. There was no main effect of block in word [F1(3, 108) = 0.801, 

p=0.496; F2(3, 279) = 1.688, p=0.170] and nonword targets [F1(3, 108) = 1.730, p=0.165; 

F2(3, 285) = 1.829, p=0.142]. Furthermore, there was no interaction between 

congruency and block in words [F1(3, 108) = 1.340, p=0.265; F2(3, 279) = 1.191, 

p=0.313] or in nonwords [F1(3, 108) = 1.778, p=0.156; F2(3, 285) = 0.425, p=0.735].

Discussion

The analysis showed that the first block was the slowest in the experimental session. 

Participants speeded up during the first block and there were only small differences 

between the average speed in the following blocks. This can be attributed to tuning 

into the task, e.g. adapting the thresholds or shifting weight to most reliable source of 
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TABLE A.3: MEAN REACTION TIMES IN MS AND ERROR RATIO OF EXPERIMENT 2 IN 
WORD TARGETS IN PERCENT AS A FUNCTION OF CONGRUENCY AND BLOCK

Block

1 2 3 4

Congruency RT Error RT Error RT Error RT Error

Incongruent 510 3.00 493 3.08 498 4.25 492 4.95

Congruent 481 1.81 472 2.39 473 2.18 476 2.15

Effect 29 1.19 21 0.69 25 2.07 16 2.80

TABLE A.4:MEAN REACTION TIMES IN MS AND ERROR RATIO OF EXPERIMENT 2 IN 
NONWORD TARGETS IN PERCENT AS A FUNCTION OF CONGRUENCY AND BLOCK

Block

1 2 3 4

Congruency RT Error RT Error RT Error RT Error

Incongruent 533 2.19 514 3.71 524 4.45 509 4.78

Congruent 513 1.07 498 3.01 493 2.13 486 1.41

Effect 20 1.12 16 0.70 31 2.32 23 3.37



information. As a result of the experimental procedure the first block comprised the 

largest number of novel primes. Thus, the main effect of prime novelty can also be 

attributed to participants speeding up and adapting during the experimental session. 

The absence of an interaction between congruency and block indicates that the 

congruency effect was not affected by general speeding up of the participants.

A.3 General Discussion

The post-hoc analyses of prime novelty and block showed that stimulus-response 

mapping is unlikely to be the mechanism underlying the congruency effects reported in 

Experiment 2 and that participants adapted during the experimental session, especially 

during the first block. In this experimental procedure the novel primes occurred more 

frequent early in the experiment than towards the end of the session. Thus, an effect 

of prime novelty could emerge even though it actually reflects an effect of adaptation. 

There were some numerical differences of the congruency effect to interact with prime 

novelty, but these differences were small. Most importantly, there was a congruency 

effect with novel primes which was not expected in a stimulus-response mapping 

account. The effect size was larger with novel primes in word targets and smaller in 

nonword targets. Hence, stimulus-response mapping was unlikely in Experiment 2. This 

finding was compatible with other studies that reported effects with novel primes (e.g., 

Greenwald et al., 2003; Kinoshita & Hunt, 2008; Kinoshita & Norris, 2010; Naccache & 

Dehaene, 2001; Perea & Gotor, 1997; Reynvoet et al., 2005).
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Appendix B: Experimental stimuli

The stimuli of the unprimed lexical decision experiment (Experiment 1) are listed by 

their lexicality, pronounceability and typicality. All stimuli that were used in the masked 

primed lexical decision experiments that were testing response congruency 

(Experiment 2 to 8) are presented as a triplet of the form <TARGET, congruent prime, 

incongruent prime>. In Experiment 9 and 10 the triplets are ordered as <TARGET, high 

typicality prime, low typicality prime>.

B.1 Stimuli of Experiment 1

Word targets

High typicality: cover; theme; quest; might; count; trout; cough; print; bound; yeast; 

spent; shout; ought; stand; eight; front; fight; right; tract; about; thigh; light; their; 

could; sight; there; agent; crest; force; sport; saint; after; court; thing; offer; prove; 

press; wound; event; would; expert; shaver; action; threat; expand; buying; should; 

recent; height; common; though; plight; budget; extent; proper; report; decent; 

commit; strand; format; priest; latent; office; lament; caught; market; bright; export; 

notion; expect; weight; fright; invest; prompt; forest; forget; accent; reject; intent; 

invent

Low typicality: vinyl; soggy; relax; grasp; epoch; flaky; noisy; spiky; sneak; enemy; 

telex; dodgy; idiom; aloud; tawny; idyll; codex; twirl; snipe; gauze; check; elbow; index; 

swirl; tulip; clerk; ocean; enjoy; error; smirk; kiosk; zippy; slimy; daisy; xerox; swamp; 

zebra; yummy; odour; topaz; baffle; eyelid; ethnic; hungry; icebox; chunky; snooze; 

hyphen; groovy; pigeon; cowboy; melody; zigzag; fluffy; unripe; stupid; zombie; jigsaw; 

occupy; reflex; loudly; kidnap; filthy; typify; galaxy; wisdom; shrunk; sleepy; nephew; 

nutmeg; pianos; piglet; clumsy; pyjama; matrix; cortex; rhythm; embryo; asthma; 

cognac
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Pronounceable nonwords

High typicality: reent; thaid; unces; inges; conat; derat; recto; inced; eques; thels; 

monat; inals; ficat; perat; accut; yeent; siont; iment; thets; istat; proust; foreas; frount; 

stiont; sument; uncent; whount; wition; theigh; itiont; offies; ationt; prould; frould; 

weents; prount; itions; govent; thount; thaves

Low typicality: imgoz; syheu; hytyk; zivix; zobix; zhofo; kobgu; xarvy; ubopa; atjox; 

ojuez; zuavu; udcun; snoaz; uvoap; udnop; ewusy; ofoiz; owofl; aykuz; eznotz; umdaxe; 

xibtib; vobduy; namgox; oyfoby; zoruyu; sloxuk; zezlol; tusfoh; omtelz; kymtap; paipyz; 

igvoik; ghikik; ujumli; vimfio; ikupuz; robkox; kufylt

Unpronounceable nonwords

High typicality: acque; shmat; czent; offsh; ithre; doeir; stmes; afthe; thdat; excht; 

chnit; thlys; mrsto; dexch; exchn; stmet; afght; thfut; chnis; intst; straqi; thment; 

chrent; ingthe; rafght; efught; exchis; minght; thadve; eaccut; forpre; racces; aciand; 

thwass; safght; yughts; thdrat; thques; whighe; stment

Low typicality: baetg; hrspo; rgupg; crvoz; rpapm; fdusq; vlpej; nkwog; itrnl; mgoav; 

agtmb; rpysi; pciqu; lneej; dfowo; tcytl; tcumw; iedbh; mntuc; ljemw; meoatj; gcolqa; 

xegoue; wlajma; zayfop; eauawr; aoykrn; ndskyj; smkhml; oxdojl; mpkosq; iesdss; 

noeogu; megshp; teaoac; ahptuh; hrhtel; ynciuf; eciiuk; clcanl

B.2 Stimuli of Experiment 2

Word targets

ABOUT, price, phgil; ABOVE, child, dcpsh; ADMIT, crown, lprph; AGAIN, press, wzzyc; 

ALLOW, trust, empxn; BEACH, point, sugfx; BEGIN, start, suvsc; BEING, local, rrzsh; 

BELOW, thing, xvump; BRAIN, judge, uckos; BREAD, count, migxu; BRING, plate, cljos; 

BROAD, night, sugln; BROWN, cause, fgipe; BUILD, front, acgph; CATCH, order, voysl; 

CAUSE, limit, migpv; CHILD, often, auqjs; CLASS, worth, djekb; CLEAR, visit, miguz; 

CLOSE, grand, avkra; COACH, under, fdpei; COAST, bring, dqrki; COULD, right, jazjh; 
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COUNT, large, sykdd; COURT, spend, syilb; COVER, small, pujuw; CROWN, quiet, miytd; 

EARLY, sight, cigii; EQUAL, short, ziwzw; EVENT, class, ocsym; EVERY, match, chnzk; 

FIGHT, power, embxz; FIRST, leave, hkaub; FORCE, admit, apvxa; FRONT, equal, celqi; 

FULLY, being, wzxoo; GRAND, whole, mjymb; GREEN, would, abwwa; HENCE, party, 

aivpg; HOUSE, plain, jaxxa; JUDGE, still, syniy; LARGE, youth, ftnzi; LAUGH, speed, 

mzdpe; LEAVE, sound, roccp; LIGHT, broad, eacyd; LIMIT, every, dazko; LOCAL, three, 

suuhp; MAJOR, hence, fegyp; MARCH, event, nyxoo; MATCH, world, spnfr; MIGHT, 

cover, safcn; NEVER, coast, gihlw; NIGHT, close, rojul; OFFER, plant, bxyia; OFTEN, build, 

mihjw; ORDER, laugh, sujcw; OTHER, again, ncllb; PARTY, house, ievzb; PLACE, union, 

mnstw; PLAIN, other, bfmsh; PLANT, where, ricjg; PLATE, young, igicw; POINT, march, 

hfdef; POUND, clear, qilil; POWER, light, clyym; PRESS, might, giagj; PRICE, allow, 

mvsym; QUIET, brown, aklph; RIGHT, below, axayw; ROUGH, table, bvenn; ROUND, 

state, ecajw; SEVEN, court, axypg; SHORT, fully, audbc; SIGHT, bread, mqava; SINCE, 

about, agtfw; SMALL, offer, pekiq; SOUND, catch, micpj; SPEED, brain, acnhc; SPEND, 

major, chriv; STAND, force, miqxp; START, pound, cungd; STATE, rough, imkzo; STILL, 

coach, hcneo; TABLE, round, rojrp; THICK, early, saqzs; THING, above, rakpw; THREE, 

could, cxnio; TRUST, beach, hymbp; UNDER, thick, oyizi; UNION, watch, sxzel; VISIT, 

green, cgkra; WATCH, never, miqyd; WHERE, stand, oljul; WHOLE, first, fbdfi; WORLD, 

begin, imimj; WORTH, seven, cgglb; WOULD, fight, icsxa; YOUNG, place, raxri; YOUTH, 

since, dvnel

Nonword targets

AXAYW, ievzb, build; SUJCW, imkzo, right; APVXA, ricjg, house; ZIWZW, apvxa, bread; 

MIQYD, sugln, other; SUGFX, acnhc, thick; MVSYM, lprph, laugh; AGTFW, hcneo, could; 

RAKPW, suvsc, light; AXYPG, ftnzi, would; CGKRA, oljul, seven; ECAJW, mvsym, sight; 

SAFCN, miqyd, below; OLJUL, bvenn, since; SAQZS, hymbp, bring; CHNZK, giagj, admit; 

MIQXP, wzzyc, where; CUNGD, bxyia, limit; SXZEL, avkra, march; CLYYM, rrzsh, three; 

CGGLB, mihjw, under; ROJRP, celqi, again; AUQJS, cgglb, every; IEVZB, rakpw, world; 

HCNEO, qilil, first; BVENN, axayw, short; SUUHP, ecajw, early; MIYTD, sujcw, coach; 

IMKZO, dvnel, party; PHGIL, embxz, front; FTNZI, cgkra, local; FEGYP, cxnio, brain; 

DQRKI, voysl, plate; AIVPG, uckos, sound; FDPEI, chnzk, about; JAXXA, gihlw, union; 

NYXOO, dcpsh, class; XVUMP, cljos, clear; MIGPV, hkaub, beach; SYKDD, empxn, match; 
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SUVSC, fgipe, power; DVNEL, micpj, catch; ABWWA, roccp, young; ACGPH, sykdd, offer; 

MQAVA, pujuw, worth; CIGII, mjymb, major; SUGLN, jazjh, broad; FBDFI, rojrp, press; 

PEKIQ, clyym, round; RRZSH, agtfw, above; MIGXU, aklph, close; RAXRI, cungd, pound; 

DCPSH, abwwa, often; IMIMJ, ncllb, count; HKAUB, ocsym, visit; QILIL, nyxoo, force; 

EMBXZ, cigii, start; DAZKO, fegyp, fully; WZZYC, fbdfi, plant; MICPJ, hfdef, green; GIHLW, 

dazko, court; SYILB, wzxoo, event; MZDPE, sugfx, allow; HYMBP, auqjs, cause; MIHJW, 

eacyd, grand; RICJG, mzdpe, youth; FGIPE, mqava, watch; OYIZI, djekb, place; ACNHC, 

dqrki, judge; AKLPH, miytd, order; JAZJH, syilb, point; EACYD, miguz, rough; ICSXA, 

rojul, never; CXNIO, bfmsh, table; GIAGJ, xvump, brown; MIGUZ, safcn, spend; LPRPH, 

icsxa, coast; VOYSL, migxu, hence; WZXOO, syniy, might; UCKOS, ziwzw, plain; CHRIV, 

axypg, state; BXYIA, spnfr, whole; ROCCP, jaxxa, begin; AUDBC, miqxp, still; PUJUW, 

chriv, being; MNSTW, acgph, price; BFMSH, oyizi, equal; ROJUL, migpv, thing; OCSYM, 

aivpg, fight; EMPXN, saqzs, child; HFDEF, raxri, crown; AVKRA, imimj, night; DJEKB, 

suuhp, small; CLJOS, pekiq, quiet; IGICW, sxzel, speed; NCLLB, fdpei, trust; SYNIY, audbc, 

cover; CELQI, mnstw, stand; MJYMB, phgil, large; SPNFR, igicw, leave

B.3 Stimuli of Experiment 3

Word targets

ABOUT, since, phgil; ABOVE, thing, dcpsh; ADMIT, force, lprph; AGAIN, other, wzzyc; 

ALLOW, price, empxn; BEACH, trust, sugfx; BEGIN, world, suvsc; BEING, fully, rrzsh; 

BELOW, right, xvump; BRAIN, speed, uckos; BREAD, sight, migxu; BRING, coast, cljos; 

BROAD, light, sugln; BROWN, quiet, fgipe; BUILD, often, acgph; CATCH, sound, voysl; 

CAUSE, brown, migpv; CHILD, above, auqjs; CLASS, event, djekb; CLEAR, pound, miguz; 

CLOSE, night, avkra; COACH, still, fdpei; COAST, never, dqrki; COULD, three, jazjh; 

COUNT, bread, sykdd; COURT, seven, syilb; COVER, might, pujuw; CROWN, admit, 

miytd; EARLY, thick, cigii; EQUAL, front, ziwzw; EVENT, march, ocsym; EVERY, limit, 

chnzk; FIGHT, would, embxz; FIRST, whole, hkaub; FORCE, stand, apvxa; FRONT, build, 

celqi; FULLY, short, wzxoo; GRAND, close, mjymb; GREEN, visit, abwwa; HENCE, major, 

aivpg; HOUSE, party, jaxxa; JUDGE, brain, syniy; LARGE, count, ftnzi; LAUGH, order, 

mzdpe; LEAVE, first, roccp; LIGHT, power, eacyd; LIMIT, cause, dazko; LOCAL, being, 

suuhp; MAJOR, spend, fegyp; MARCH, point, nyxoo; MATCH, every, spnfr; MIGHT, 
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press, safcn; NEVER, watch, gihlw; NIGHT, broad, rojul; OFFER, small, bxyia; OFTEN, 

child, mihjw; ORDER, catch, sujcw; OTHER, plain, ncllb; PARTY, hence, ievzb; PLACE, 

young, mnstw; PLAIN, house, bfmsh; PLANT, offer, ricjg; PLATE, bring, igicw; POINT, 

beach, hfdef; POUND, start, qilil; POWER, fight, clyym; PRESS, again, giagj; PRICE, 

about, mvsym; QUIET, crown, aklph; RIGHT, could, axayw; ROUGH, state, bvenn; 

ROUND, table, ecajw; SEVEN, worth, axypg; SHORT, equal, audbc; SIGHT, early, mqava; 

SINCE, youth, agtfw; SMALL, cover, pekiq; SOUND, leave, micpj; SPEED, laugh, acnhc; 

SPEND, court, chriv; STAND, where, miqxp; START, begin, cungd; STATE, round, imkzo; 

STILL, judge, hcneo; TABLE, rough, rojrp; THICK, under, saqzs; THING, below, rakpw; 

THREE, local, cxnio; TRUST, allow, hymbp; UNDER, coach, oyizi; UNION, place, sxzel; 

VISIT, clear, cgkra; WATCH, union, miqyd; WHERE, plant, oljul; WHOLE, grand, fbdfi; 

WORLD, match, imimj; WORTH, class, cgglb; WOULD, green, icsxa; YOUNG, plate, raxri; 

YOUTH, large, dvnel

Nonword targets

ABLIL, qyvsj, court; ABLUN, vfrsz, offer; AFFSA, jhwpz, power; APLIA, jrvgq, other; 

ARLUD, jcxsz, being; AWYNS, qcglj, could; BAKKA, xhmxv, price; BIFEL, xpkhk, march; 

BILIR, kveuq, coast; BLEPH, zufdk, trust; BLICO, qfyqz, speed; BULUM, qqcwz, catch; 

CEENA, xgpvq, would; COCRI, qqgsq, leave; COMLI, zghgz, seven; CULGA, xnrxq, first; 

DEDIO, xjtjv, plant; DULEW, ztcik, start; DULUS, xrjpj, major; ECHUR, qivkj, limit; EFEBA, 

zpnrv, thing; EGESK, xuqvq, union; EGRIS, qdbnq, youth; ENKIS, xrrfv, rough; ENRYS, 

kjkdx, coach; EUMPE, xakwx, watch; FEIRA, qzdtq, young; FESPE, qqoqq, broad; FICIM, 

xsptj, early; FILDI, qbwkk, house; FLEUM, kkjhz, party; FLIKI, vmxjx, press; FOCRO, 

zswvz, night; FOICT, xbpdx, judge; FULPH, qtjxq, since; FUTEW, qqblq, again; GEDUA, 

zhnhj, still; GEDUM, jqpsz, crown; GIBIR, vjtdz, place; GIBUR, zvpfx, whole; HUDEP, 

jyxcq, local; HYRIS, xcpxk, table; IGISS, qvvpx, order; ILDIC, ktkrz, about; ILVIS, zhcjz, 

bread; IVIVE, kqpwx, short; JACUM, qigtk, spend; JAZDA, qfpyk, quiet; JOVIC, xstmz, 

where; JUDYA, zfkgx, cover; JULIM, xctbz, never; KAKEM, xydjx, count; KARJU, vwffx, 

point; KAURS, xmqdx, below; KEDDS, vpjjx, match; KESUR, xxvyj, fight; KLUDS, jwnrx, 

often; KNUCH, jdjwq, plate; KOCIP, zhnuz, equal; KULDE, xvgwz, front; LEFEB, qhnrj, 

sound; LEFOL, zcrkv, stand; LIKIR, qzvyj, cause; LIZIM, xdcbx, under; LUSEL, jykcz, 

brown; MIKAK, zsqvz, world; MOKIL, xfpvv, state; NAULF, qhdjk, visit; NEFEB, zulmk, 
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class; NEZAL, xyjxx, worth; OBSEP, zukuj, laugh; OCOMP, kwsuz, large; OUCIS, kdybq, 

every; OUNEM, xrrlv, light; PESPE, xdqwx, grand; PESUR, zwdtj, might; PLEVO, kbtdq, 

sight; POCEF, xlmhx, right; ROSCO, zdeuj, admit; ROSUR, zgwfk, child; RUILM, xcxpk, 

hence; RUKIL, jybjq, beach; SARRO, zfekv, begin; SAULP, xcbkk, force; SEPRI, qbnnj, 

allow; SIBOU, zdpkj, clear; SIFLU, vjggz, three; SKAKA, qgmhq, round; SUROK, qzcez, 

plain; SURSA, zwmgk, event; SYSLI, qfqhx, above; TEIRP, xncnq, fully; TESEM, zbbrq, 

build; TUECT, xkyik, brain; UNENG, xyrfj, thick; URVIR, zhbfj, small; VARLI, jsydz, pound; 

VUKET, zwlwj, bring; WABIA, xkxrx, close; ZOFLI, xsnxq, green

B.4 Stimuli of Experiment 4

Word targets

ALERT, sound, cungd; ATLAS, offer, empxn; AVAIL, green, sugfx; BADGE, visit, pujuw; 

BINGO, place, jaxxa; BISON, march, wzzyc; BLACK, other, suuhp; BLITZ, young, hcneo; 

BLUFF, three, axypg; BLUNT, force, miqxp; BOARD, hence, sugln; BOOZE, plain, suvsc; 

BROWN, thick, sxzel; BULGE, coast, mihjw; CARGO, spend, miqyd; CHARM, often, oyizi; 

CLASS, judge, rojrp; CLOUD, brain, giagj; COACH, fully, pekiq; COBRA, thing, fgipe; 

COCOA, being, miytd; CROOK, plant, fbdfi; CROWD, again, fegyp; CRUDE, allow, migpv; 

CRUMB, whole, syniy; CYCLE, round, avkra; DELTA, rough, cigii; DWARF, close, cxnio; 

EAGLE, count, dqrki; ERASE, fight, imkzo; EXTRA, could, dcpsh; FAULT, price, ocsym; 

FIELD, major, uckos; FLICK, house, apvxa; FLUTE, broad, rrzsh; FRAUD, below, imimj; 

GAUGE, world, lprph; GROUP, beach, syilb; HAZEL, brown, roccp; HEDGE, about, oljul; 

ICING, party, djekb; INERT, local, clyym; KNIFE, coach, xvump; KNOCK, speed, bfmsh; 

LEVEL, admit, axayw; LOCAL, press, ievzb; LODGE, start, icsxa; LOOSE, grand, abwwa; 

LOTUS, begin, acgph; LUNCH, power, agtfw; LYRIC, state, wzxoo; MIMIC, plate, aklph; 

MINOR, table, hkaub; MORAL, sight, ziwzw; MOTOR, laugh, ecajw; MOTTO, bring, 

safcn; MOURN, leave, fdpei; NURSE, child, gihlw; OBESE, match, micpj; OZONE, first, 

phgil; PANDA, where, celqi; PANEL, short, sykdd; PANIC, every, voysl; PIECE, worth, 

rojul; PILOT, cause, auqjs; PIZZA, court, mnstw; PLAZA, front, sujcw; PROUD, might, 

ncllb; QUAKE, right, chriv; RAPID, seven, cljos; REIGN, watch, dazko; RIDGE, small, 

acnhc; RIFLE, youth, nyxoo; ROUGH, class, mqava; SCOOP, bread, ftnzi; SCRAP, night, 

mjymb; SCRUB, event, aivpg; SOLID, never, hymbp; SPACE, limit, migxu; SPASM, quiet, 
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chnzk; SPOON, large, jazjh; STAFF, build, mzdpe; STUNT, cover, raxri; STYLE, union, ricjg; 

SWARM, point, dvnel; SWIRL, above, audbc; SYRUP, catch, embxz; THEFT, would, 

mvsym; THORN, equal, saqzs; THUMB, order, qilil; TIMID, clear, rakpw; TOTAL, under, 

bvenn; TULIP, crown, eacyd; TWIST, early, hfdef; VENUE, light, cgkra; VODKA, since, 

cgglb; VOICE, stand, spnfr; WATER, pound, miguz; WHEEL, trust, bxyia; ZEBRA, still, 

igicw

Nonword targets

ABWWA, roccp, young; ACGPH, sykdd, offer; ACNHC, dqrki, judge; AGTFW, hcneo, 

could; AIVPG, uckos, sound; AKLPH, miytd, order; APVXA, ricjg, house; AUDBC, miqxp, 

still; AUQJS, cgglb, every; AVKRA, imimj, night; AXAYW, ievzb, build; AXYPG, ftnzi, 

would; BFMSH, oyizi, equal; BVENN, axayw, short; BXYIA, spnfr, whole; CELQI, mnstw, 

stand; CGGLB, mihjw, under; CGKRA, oljul, seven; CHNZK, giagj, admit; CHRIV, axypg, 

state; CIGII, mjymb, major; CLJOS, pekiq, quiet; CLYYM, rrzsh, three; CUNGD, bxyia, 

limit; CXNIO, bfmsh, table; DAZKO, fegyp, fully; DCPSH, abwwa, often; DJEKB, suuhp, 

small; DQRKI, voysl, plate; DVNEL, micpj, catch; EACYD, miguz, rough; ECAJW, mvsym, 

sight; EMBXZ, cigii, start; EMPXN, saqzs, child; FBDFI, rojrp, press; FDPEI, chnzk, about; 

FEGYP, cxnio, brain; FGIPE, mqava, watch; FTNZI, cgkra, local; GIAGJ, xvump, brown; 

GIHLW, dazko, court; HCNEO, qilil, first; HFDEF, raxri, crown; HKAUB, ocsym, visit; 

HYMBP, auqjs, cause; ICSXA, rojul, never; IEVZB, rakpw, world; IGICW, sxzel, speed; 

IMIMJ, ncllb, count; IMKZO, dvnel, party; JAXXA, gihlw, union; JAZJH, syilb, point; 

LPRPH, icsxa, coast; MICPJ, hfdef, green; MIGPV, hkaub, beach; MIGUZ, safcn, spend; 

MIGXU, aklph, close; MIHJW, eacyd, grand; MIQXP, wzzyc, where; MIQYD, sugln, other; 

MIYTD, sujcw, coach; MJYMB, phgil, large; MNSTW, acgph, price; MQAVA, pujuw, 

worth; MVSYM, lprph, laugh; MZDPE, sugfx, allow; NCLLB, fdpei, trust; NYXOO, dcpsh, 

class; OCSYM, aivpg, fight; OLJUL, bvenn, since; OYIZI, djekb, place; PEKIQ, clyym, 

round; PHGIL, embxz, front; PUJUW, chriv, being; QILIL, nyxoo, force; RAKPW, suvsc, 

light; RAXRI, cungd, pound; RICJG, mzdpe, youth; ROCCP, jaxxa, begin; ROJRP, celqi, 

again; ROJUL, migpv, thing; RRZSH, agtfw, above; SAFCN, miqyd, below; SAQZS, hymbp, 

bring; SPNFR, igicw, leave; SUGFX, acnhc, thick; SUGLN, jazjh, broad; SUJCW, imkzo, 

right; SUUHP, ecajw, early; SUVSC, fgipe, power; SXZEL, avkra, march; SYILB, wzxoo, 

event; SYKDD, empxn, match; SYNIY, audbc, cover; UCKOS, ziwzw, plain; VOYSL, migxu, 
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hence; WZXOO, syniy, might; WZZYC, fbdfi, plant; XVUMP, cljos, clear; ZIWZW, apvxa, 

bread

B.5 Stimuli of Experiment 5

Word targets

ALERT, sound, cungd; ATLAS, offer, empxn; AVAIL, green, sugfx; BADGE, visit, pujuw; 

BINGO, place, jaxxa; BISON, march, wzzyc; BLACK, other, suuhp; BLITZ, young, hcneo; 

BLUFF, three, axypg; BLUNT, force, miqxp; BOARD, hence, sugln; BOOZE, plain, suvsc; 

BROWN, thick, sxzel; BULGE, coast, mihjw; CARGO, spend, miqyd; CHARM, often, oyizi; 

CLASS, judge, rojrp; CLOUD, brain, giagj; COACH, fully, pekiq; COBRA, thing, fgipe; 

COCOA, being, miytd; CROOK, plant, fbdfi; CROWD, again, fegyp; CRUDE, allow, migpv; 

CRUMB, whole, syniy; CYCLE, round, avkra; DELTA, rough, cigii; DWARF, close, cxnio; 

EAGLE, count, dqrki; ERASE, fight, imkzo; EXTRA, could, dcpsh; FAULT, price, ocsym; 

FIELD, major, uckos; FLICK, house, apvxa; FLUTE, broad, rrzsh; FRAUD, below, imimj; 

GAUGE, world, lprph; GROUP, beach, syilb; HAZEL, brown, roccp; HEDGE, about, oljul; 

ICING, party, djekb; INERT, local, clyym; KNIFE, coach, xvump; KNOCK, speed, bfmsh; 

LEVEL, admit, axayw; LOCAL, press, ievzb; LODGE, start, icsxa; LOOSE, grand, abwwa; 

LOTUS, begin, acgph; LUNCH, power, agtfw; LYRIC, state, wzxoo; MIMIC, plate, aklph; 

MINOR, table, hkaub; MORAL, sight, ziwzw; MOTOR, laugh, ecajw; MOTTO, bring, 

safcn; MOURN, leave, fdpei; NURSE, child, gihlw; OBESE, match, micpj; OZONE, first, 

phgil; PANDA, where, celqi; PANEL, short, sykdd; PANIC, every, voysl; PIECE, worth, 

rojul; PILOT, cause, auqjs; PIZZA, court, mnstw; PLAZA, front, sujcw; PROUD, might, 

ncllb; QUAKE, right, chriv; RAPID, seven, cljos; REIGN, watch, dazko; RIDGE, small, 

acnhc; RIFLE, youth, nyxoo; ROUGH, class, mqava; SCOOP, bread, ftnzi; SCRAP, night, 

mjymb; SCRUB, event, aivpg; SOLID, never, hymbp; SPACE, limit, migxu; SPASM, quiet, 

chnzk; SPOON, large, jazjh; STAFF, build, mzdpe; STUNT, cover, raxri; STYLE, union, ricjg; 

SWARM, point, dvnel; SWIRL, above, audbc; SYRUP, catch, embxz; THEFT, would, 

mvsym; THORN, equal, saqzs; THUMB, order, qilil; TIMID, clear, rakpw; TOTAL, under, 

bvenn; TULIP, crown, eacyd; TWIST, early, hfdef; VENUE, light, cgkra; VODKA, since, 

cgglb; VOICE, stand, spnfr; WATER, pound, miguz; WHEEL, trust, bxyia; ZEBRA, still, 

igicw
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Nonword targets

ABLIL, roccp, court; ABLUN, migpv, offer; AFFSA, pekiq, power; APLIA, mnstw, other; 

ARLUD, cigii, being; AWYNS, cgglb, could; BAKKA, nyxoo, price; BIFEL, jazjh, march; 

BILIR, fegyp, coast; BLEPH, sykdd, trust; BLICO, suuhp, speed; BULUM, chriv, catch; 

CEENA, oljul, would; COCRI, sugfx, leave; COMLI, hfdef, seven; CULGA, miqyd, first; 

DEDIO, xvump, plant; DULEW, aivpg, start; DULUS, hcneo, major; ECHUR, syniy, limit; 

EFEBA, imkzo, thing; EGESK, cxnio, union; EGRIS, ncllb, youth; ENKIS, clyym, rough; 

ENRYS, giagj, coach; EUMPE, dqrki, watch; FEIRA, sugln, young; FESPE, dazko, broad; 

FICIM, rojul, early; FILDI, suvsc, house; FLEUM, avkra, party; FLIKI, mvsym, press; 

FOCRO, imimj, night; FOICT, auqjs, judge; FULPH, miytd, since; FUTEW, icsxa, again; 

GEDUA, ocsym, still; GEDUM, cljos, crown; GIBIR, empxn, place; GIBUR, eacyd, whole; 

HUDEP, syilb, local; HYRIS, agtfw, table; IGISS, aklph, order; ILDIC, rojrp, about; ILVIS, 

mzdpe, bread; IVIVE, uckos, short; JACUM, fgipe, spend; JAZDA, lprph, quiet; JOVIC, 

rakpw, where; JUDYA, embxz, cover; JULIM, safcn, never; KAKEM, ricjg, count; KARJU, 

oyizi, point; KAURS, celqi, below; KEDDS, bxyia, match; KESUR, hymbp, fight; KLUDS, 

igicw, often; KNUCH, sxzel, plate; KOCIP, bvenn, equal; KULDE, axayw, front; LEFEB, 

migxu, sound; LEFOL, chnzk, stand; LIKIR, sujcw, cause; LIZIM, pujuw, under; LUSEL, 

mjymb, brown; MIKAK, voysl, world; MOKIL, spnfr, state; NAULF, ievzb, visit; NEFEB, 

axypg, class; NEZAL, miqxp, worth; OBSEP, mqava, laugh; OCOMP, ftnzi, large; OUCIS, 

jaxxa, every; OUNEM, abwwa, light; PESPE, hkaub, grand; PESUR, fbdfi, might; PLEVO, 

raxri, sight; POCEF, qilil, right; ROSCO, ziwzw, admit; ROSUR, ecajw, child; RUILM, acnhc, 

hence; RUKIL, dcpsh, beach; SARRO, micpj, begin; SAULP, djekb, force; SEPRI, audbc, 

allow; SIBOU, wzzyc, clear; SIFLU, acgph, three; SKAKA, miguz, round; SUROK, fdpei, 

plain; SURSA, mihjw, event; SYSLI, cgkra, above; TEIRP, bfmsh, fully; TESEM, gihlw, build; 

TUECT, phgil, brain; UNENG, rrzsh, thick; URVIR, wzxoo, small; VARLI, cungd, pound; 

VUKET, saqzs, bring; WABIA, dvnel, close; ZOFLI, apvxa, green
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B.6 Stimuli of Experiment 6

Word targets

ALERT, mimic, oucis; ATLAS, ozone, echur; AVAIL, nurse, gedum; BADGE, flick, 

ocomp; BINGO, scrap, sursa; BISON, theft, vuket; BLACK, inert, ounem; BLITZ, swarm, 

ougam; BLUFF, panda, rosco; BLUNT, voice, hyris; BOARD, cycle, ilvis; BOOZE, stunt, 

karju; BROWN, field, fulph; BULGE, rapid, jovic; CARGO, level, kulde; CHARM, booze, 

lusel; CLASS, thorn, dedio; CLOUD, staff, egesk; COACH, reign, pesur; COBRA, style, 

kedds; COCOA, thumb, enrys; CROOK, blunt, uneng; CROWD, gauge, ablun; CRUDE, 

blitz, zilys; CRUMB, panel, affsa; CYCLE, rough, sibou; DELTA, bingo, gibur; DWARF, 

obese, eumpe; EAGLE, mourn, kocip; ERASE, pilot, fildi; EXTRA, scoop, mokil; FAULT, 

minor, egris; FIELD, group, sarro; FLICK, erase, gedua; FLUTE, board, jazda; FRAUD, 

loose, sysli; GAUGE, swirl, likir; GROUP, class, feiza; HAZEL, proud, urvir; HEDGE, cobra, 

varli; ICING, alert, plevo; INERT, plaza, bakka; KNIFE, cocoa, rosur; KNOCK, badge, lefeb; 

LEVEL, knock, surok; LOCAL, hedge, teirp; LODGE, charm, wabia; LOOSE, dwarf, judya; 

LOTUS, ridge, efeba; LUNCH, pizza, ivive; LYRIC, venue, tesem; MIMIC, extra, obsep; 

MINOR, black, pespe; MORAL, icing, igiss; MOTOR, wheel, nezal; MOTTO, scrub, culga; 

MOURN, space, aplia; NURSE, timid, mikak; OBESE, fault, rukil; OZONE, lyric, bilir; 

PANDA, flute, ficim; PANEL, twist, cocri; PANIC, lodge, kesur; PIECE, brown, dulus; PILOT, 

zebra, awyns; PIZZA, lotus, lefol; PLAZA, bison, enkis; PROUD, eagle, ceena; QUAKE, 

motor, lizim; RAPID, motto, tuect; REIGN, local, couza; RIDGE, lunch, bulum; RIFLE, 

coach, jacum; ROUGH, panic, fliki; SCOOP, rifle, arlud; SCRAP, bulge, bifel; SCRUB, delta, 

zofli; SOLID, crumb, kakem; SPACE, bluff, julim; SPASM, crook, futew; SPOON, water, 

ablil; STAFF, crude, dulew; STUNT, cargo, gibir; STYLE, fraud, burac; SWARM, piece, 

hudep; SWIRL, quake, nefeb; SYRUP, total, blico; THEFT, moral, ildic; THORN, avail, 

fespe; THUMB, vodka, sepri; TIMID, hazel, kaurs; TOTAL, knife, knuch; TULIP, crowd, 

focro; TWIST, cloud, bleph; VENUE, spasm, comli; VODKA, syrup, fleum; VOICE, atlas, 

saulp; WATER, solid, kluds; WHEEL, spoon, skaka; ZEBRA, tulip, foict

Nonword targets

ABLIL, gedum, ozone; ABLUN, jovic, ridge; AFFSA, kulde, lunch; APLIA, kedds, crude; 

ARLUD, egesk, voice; AWYNS, bulum, crumb; BAKKA, dulus, rough; BIFEL, ougam, 
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crowd; BILIR, uneng, cocoa; BLEPH, kaurs, mourn; BLICO, hudep, extra; BULUM, sepri, 

vodka; BURAC, dedio, loose; CEENA, gibur, tulip; COCRI, nefeb, theft; COMLI, pesur, 

quake; COUZA, egris, swirl; CULGA, enkis, timid; DEDIO, saulp, black; DULEW, ocomp, 

mimic; DULUS, kakem, reign; ECHUR, lizim, staff; EFEBA, igiss, solid; EGESK, varli, fault; 

EGRIS, fulph, coach; ENKIS, arlud, cargo; ENRYS, culga, plaza; EUMPE, affsa, class; 

FEIZA, surok, proud; FESPE, mikak, total; FICIM, sursa, delta; FILDI, couza, syrup; 

FLEUM, sarro, bison; FLIKI, burac, erase; FOCRO, eumpe, badge; FOICT, karju, spasm; 

FULPH, cocri, water; FUTEW, blico, moral; GEDUA, mokil, lyric; GEDUM, kocip, knock; 

GIBIR, pespe, panel; GIBUR, lefol, spoon; HUDEP, sysli, motor; HYRIS, futew, bulge; 

IGISS, vuket, thorn; ILDIC, kesur, nurse; ILVIS, ounem, crook; IVIVE, rosco, lotus; JACUM, 

bleph, hedge; JAZDA, urvir, wheel; JOVIC, enrys, bluff; JUDYA, plevo, pilot; JULIM, 

ceena, obese; KAKEM, sibou, stunt; KARJU, ildic, twist; KAURS, lefeb, level; KEDDS, gibir, 

blunt; KESUR, ablil, avail; KLUDS, feiza, inert; KNUCH, teirp, alert; KOCIP, dulew, hazel; 

KULDE, awyns, pizza; LEFEB, knuch, swarm; LEFOL, judya, rapid; LIKIR, tesem, space; 

LIZIM, skaka, cobra; LUSEL, foict, panic; MIKAK, lusel, style; MOKIL, efeba, scrap; NEFEB, 

rukil, group; NEZAL, oucis, scrub; OBSEP, jacum, charm; OCOMP, zilys, gauge; OUCIS, 

bakka, zebra; OUGAM, ilvis, rifle; OUNEM, hyris, atlas; PESPE, zofli, brown; PESUR, fliki, 

flick; PLEVO, wabia, fraud; ROSCO, bifel, knife; ROSUR, ivive, blitz; RUKIL, obsep, panda; 

SARRO, julim, cycle; SAULP, ficim, minor; SEPRI, jazda, local; SIBOU, nezal, eagle; SKAKA, 

fleum, piece; SUROK, aplia, icing; SURSA, fildi, field; SYSLI, focro, booze; TEIRP, kluds, 

cloud; TESEM, ablun, dwarf; TUECT, bilir, bingo; UNENG, likir, scoop; URVIR, fespe, 

lodge; VARLI, tuect, thumb; VUKET, comli, board; WABIA, rosur, flute; ZILYS, gedua, 

motto; ZOFLI, echur, venue

B.7 Stimuli of Experiment 7

Word targets

ALERT, mimic, whoss; ATLAS, ozone, grome; AVAIL, nurse, thost; BADGE, flick, shist; 

BINGO, scrap, cluse; BISON, theft, thake; BLACK, inert, prous; BLITZ, swarm, roure; 

BLUFF, panda, chave; BLUNT, voice, forse; BOARD, cycle, chise; BOOZE, stunt, dight; 

BROWN, field, lighe; BULGE, rapid, spost; CARGO, level, quess; CHARM, booze, sould; 

CLASS, thorn, wough; CLOUD, staff, wasis; COACH, reign, rieve; COBRA, style, thele; 
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COCOA, thumb, itter; CROOK, blunt, fally; CROWD, gauge, quall; CRUDE, blitz, wasky; 

CRUMB, panel, thild; CYCLE, rough, nound; DELTA, bingo, pring; DWARF, obese, becon; 

EAGLE, mourn, prind; ERASE, pilot, yough; EXTRA, scoop, shing; FAULT, minor, spere; 

FIELD, group, woust; FLICK, erase, drome; FLUTE, board, proad; FRAUD, loose, joble; 

GAUGE, swirl, thind; GROUP, class, saind; HAZEL, proud, tound; HEDGE, cobra, froat; 

ICING, alert, belve; INERT, plaza, colly; KNIFE, cocoa, tould; KNOCK, badge, lible; LEVEL, 

knock, forst; LOCAL, hedge, ifter; LODGE, charm, thant; LOOSE, dwarf, thich; LOTUS, 

ridge, dince; LUNCH, pizza, brove; LYRIC, venue, shent; MIMIC, extra, plare; MINOR, 

black, selly; MORAL, icing, hings; MOTOR, wheel, spand; MOTTO, scrub, shise; MOURN, 

space, chate; NURSE, timid, mally; OBESE, fault, hally; OZONE, lyric, hught; PANDA, 

flute, sheme; PANEL, twist, toody; PANIC, lodge, buter; PIECE, brown, mords; PILOT, 

zebra, cance; PIZZA, lotus, gress; PLAZA, bison, yourn; PROUD, eagle, tathe; QUAKE, 

motor, forry; RAPID, motto, houst; REIGN, local, coult; RIDGE, lunch, thany; RIFLE, 

coach, chand; ROUGH, panic, bleas; SCOOP, rifle, mande; SCRAP, bulge, welve; SCRUB, 

delta, goven; SOLID, crumb, rught; SPACE, bluff, dound; SPASM, crook, iffer; SPOON, 

water, whild; STAFF, crude, moure; STUNT, cargo, dider; STYLE, fraud, drand; SWARM, 

piece, fince; SWIRL, quake, manne; SYRUP, total, theve; THEFT, moral, sping; THORN, 

avail, bably; THUMB, vodka, wrive; TIMID, hazel, wence; TOTAL, knife, bence; TULIP, 

crowd, morge; TWIST, cloud, arand; VENUE, spasm, traid; VODKA, syrup, hince; VOICE, 

atlas, strat; WATER, solid, shood; WHEEL, spoon, prand; ZEBRA, tulip, chout

Nonword targets

ARAND, shise, bulge; BABLY, shing, voice; BECON, dight, syrup; BELVE, prous, twist; 

BENCE, shist, rapid; BLEAS, rught, crowd; BROVE, wasky, atlas; BUTER, sping, scoop; 

CANCE, houst, thumb; CHAND, morge, swirl; CHATE, prind, bingo; CHAVE, tould, pilot; 

CHISE, tound, mourn; CHOUT, gress, field; CLUSE, froat, thorn; COLLY, drand, water; 

COULT, wasis, badge; DIDER, hally, total; DIGHT, forse, moral; DINCE, whoss, rough; 

DOUND, welve, alert; DRAND, chise, wheel; DROME, thich, tulip; FALLY, becon, motto; 

FINCE, mally, group; FORRY, bleas, lunch; FORSE, hught, timid; FORST, wence, panel; 

FROAT, lighe, venue; GOVEN, whild, fraud; GRESS, thant, black; GROME, thind, class; 

HALLY, wrive, inert; HINCE, spost, motor; HINGS, moure, extra; HOUST, iffer, lyric; 

HUGHT, saind, board; IFFER, yough, lotus; IFTER, chand, spasm; ITTER, dound, local; 
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JOBLE, traid, charm; LIBLE, thany, spoon; LIGHE, mords, dwarf; MALLY, dince, theft; 

MANDE, forst, flick; MANNE, thost, proud; MORDS, tathe, gauge; MORGE, quall, staff; 

MOURE, spand, avail; NOUND, chate, erase; PLARE, woust, stunt; PRAND, cluse, loose; 

PRIND, theve, hazel; PRING, thele, coach; PROAD, hince, style; PROUS, chave, eagle; 

QUALL, shent, ridge; QUESS, thild, minor; RIEVE, wough, blunt; ROURE, hings, plaza; 

RUGHT, mande, obese; SAIND, grome, booze; SELLY, prand, crook; SHEME, fally, knock; 

SHENT, bably, bluff; SHING, coult, fault; SHISE, toody, brown; SHIST, drome, cargo; 

SHOOD, fince, knife; SOULD, rieve, mimic; SPAND, ifter, flute; SPERE, chout, cocoa; 

SPING, forry, delta; SPOST, arand, icing; STRAT, colly, lodge; TATHE, pring, bison; THAKE, 

sould, crumb; THANT, lible, crude; THANY, roure, cloud; THELE, nound, scrub; THEVE, 

proad, solid; THICH, belve, quake; THILD, goven, space; THIND, brove, swarm; THOST, 

bence, reign; TOODY, manne, panic; TOULD, spere, scrap; TOUND, selly, level; TRAID, 

sheme, cycle; WASIS, joble, ozone; WASKY, itter, piece; WELVE, yourn, cobra; WENCE, 

strat, vodka; WHILD, quess, nurse; WHOSS, buter, pizza; WOUGH, dider, blitz; WOUST, 

cance, rifle; WRIVE, shood, panda; YOUGH, plare, zebra; YOURN, thake, hedge

B.8 Stimuli of Experiment 8

Word targets

ALERT, union, ocsym; ATLAS, power, mzdpe; AVAIL, crown, mnstw; BADGE, point, 

wzzyc; BINGO, speed, avkra; BISON, watch, aklph; BLACK, judge, fegyp; BLITZ, cover, 

cungd; BLUFF, night, apvxa; BLUNT, offer, raxri; BOARD, fight, phgil; BOOZE, thing, 

pujuw; BROWN, cause, sxzel; BULGE, visit, roccp; CARGO, build, qilil; CHARM, would, 

syilb; CLASS, begin, miqyd; CLOUD, press, miqxp; COACH, spend, fgipe; COBRA, sight, 

migpv; COCOA, right, lprph; CROOK, event, bvenn; CROWD, leave, sugfx; CRUDE, allow, 

giagj; CRUMB, plant, fdpei; CYCLE, about, aivpg; DELTA, rough, chnzk; DWARF, house, 

imkzo; EAGLE, round, spnfr; ERASE, pound, micpj; EXTRA, could, suvsc; FAULT, order, 

dcpsh; FIELD, coach, rrzsh; FLICK, under, axayw; FLUTE, broad, axypg; FRAUD, limit, 

voysl; GAUGE, world, syniy; GROUP, admit, eacyd; HAZEL, count, dqrki; HEDGE, plain, 

bxyia; ICING, short, jaxxa; INERT, laugh, uckos; KNIFE, trust, xvump; KNOCK, still, gihlw; 

LEVEL, brain, hymbp; LOCAL, three, ftnzi; LODGE, first, chriv; LOOSE, again, miguz; 

LOTUS, where, cigii; LUNCH, party, fbdfi; LYRIC, state, saqzs; MIMIC, plate, rojrp; 
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MINOR, equal, hfdef; MORAL, quiet, pekiq; MOTOR, class, acgph; MOTTO, large, sujcw; 

MOURN, table, celqi; NURSE, catch, igicw; OBESE, child, jazjh; OZONE, march, agtfw; 

PANDA, fully, clyym; PANEL, thick, migxu; PANIC, below, mvsym; PIECE, major, sugln; 

PILOT, seven, audbc; PIZZA, never, cljos; PLAZA, force, hcneo; PROUD, beach, ecajw; 

QUAKE, front, mihjw; RAPID, often, bfmsh; REIGN, coast, sykdd; RIDGE, youth, abwwa; 

RIFLE, match, hkaub; ROUGH, since, miytd; SCOOP, bread, mqava; SCRAP, light, mjymb; 

SCRUB, might, oyizi; SOLID, every, rakpw; SPACE, worth, rojul; SPASM, other, wzxoo; 

SPOON, early, cgkra; STAFF, green, ncllb; STUNT, place, ievzb; STYLE, grand, dazko; 

SWARM, being, dvnel; SWIRL, hence, empxn; SYRUP, whole, djekb; THEFT, brown, oljul; 

THORN, small, ziwzw; THUMB, local, safcn; TIMID, close, nyxoo; TOTAL, bring, imimj; 

TULIP, above, embxz; TWIST, clear, acnhc; VENUE, start, ricjg; VODKA, price, suuhp; 

VOICE, stand, auqjs; WATER, young, cgglb; WHEEL, court, icsxa; ZEBRA, sound, cxnio

Nonword targets

ARAND, syilb, whole; BABLY, hcneo, seven; BECON, gihlw, right; BELVE, spnfr, court; 

BENCE, miguz, light; BLEAS, dqrki, worth; BROVE, sykdd, still; BUTER, phgil, local; 

CANCE, migxu, sight; CHAND, fgipe, press; CHATE, voysl, union; CHAVE, imkzo, sound; 

CHISE, mjymb, fully; CHOUT, mvsym, being; CLUSE, miqyd, front; COLLY, abwwa, grand; 

COULT, empxn, where; DIDER, saqzs, coast; DIGHT, cljos, never; DINCE, suuhp, short; 

DOUND, bxyia, plate; DRAND, ievzb, close; DROME, axypg, again; FALLY, cxnio, trust; 

FINCE, lprph, start; FORRY, imimj, leave; FORSE, cgglb, match; FORST, aivpg, place; 

FROAT, sugln, spend; GOVEN, icsxa, thick; GRESS, fbdfi, youth; GROME, hkaub, stand; 

HALLY, suvsc, judge; HINCE, apvxa, party; HINGS, audbc, early; HOUST, giagj, clear; 

HUGHT, rakpw, plain; IFFER, mnstw, catch; IFTER, hymbp, laugh; ITTER, wzxoo, allow; 

JOBLE, ftnzi, first; LIBLE, sujcw, crown; LIGHE, dazko, count; MALLY, chriv, offer; MANDE, 

rrzsh, rough; MANNE, rojrp, child; MORDS, pekiq, equal; MORGE, acnhc, plant; 

MOURE, dcpsh, class; NOUND, embxz, beach; PLARE, miytd, thing; PRAND, ziwzw, 

quiet; PRIND, uckos, cause; PRING, ecajw, house; PROAD, celqi, event; PROUS, mihjw, 

admit; QUALL, fdpei, often; QUESS, jazjh, coach; RIEVE, auqjs, watch; ROURE, jaxxa, 

visit; RUGHT, eacyd, since; SAIND, rojul, power; SELLY, acgph, march; SHEME, agtfw, 

broad; SHENT, wzzyc, could; SHING, xvump, about; SHISE, pujuw, round; SHIST, cungd, 

major; SHOOD, raxri, table; SOULD, chnzk, three; SPAND, qilil, fight; SPERE, nyxoo, 
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night; SPING, djekb, other; SPOST, ncllb, every; STRAT, oljul, would; TATHE, igicw, world; 

THAKE, syniy, brown; THANT, mzdpe, build; THANY, roccp, order; THELE, ricjg, young; 

THEVE, axayw, brain; THICH, dvnel, under; THILD, sugfx, force; THIND, ocsym, above; 

THOST, cgkra, begin; TOODY, aklph, large; TOULD, migpv, hence; TOUND, miqxp, price; 

TRAID, clyym, below; WASIS, hfdef, green; WASKY, cigii, point; WELVE, oyizi, might; 

WENCE, mqava, small; WHILD, safcn, cover; WHOSS, avkra, bring; WOUGH, sxzel, state; 

WOUST, fegyp, bread; WRIVE, bfmsh, pound; YOUGH, bvenn, speed; YOURN, micpj, 

limit

B.9 Stimuli of Experiment 9

Word targets

WOULD, manne, hymbp; ABOUT, chise, chriv; COULD, gress, jazjh; OTHER, bably, 

cigii; FIRST, bence, acnhc; WHERE, colly, dazko; STILL, prand, rojrp; NEVER, sould, 

audbc; BEING, tould, dcpsh; RIGHT, welve, empxn; AGAIN, cluse, wzxoo; WORLD, cance, 

chnzk; MIGHT, belve, voysl; THREE, dound, ncllb; HOUSE, fally, cgkra; UNDER, thost, 

bfmsh; EVERY, shing, acgph; PLACE, forry, dqrki; THING, mords, embxz; SMALL, goven, 

bvenn; SINCE, toody, mqava; OFTEN, quall, hkaub; YOUNG, strat, icsxa; NIGHT, drome, 

ecajw; CHILD, buter, rakpw; WHOLE, arand, bxyia; POINT, sheme, mjymb; PARTY, hings, 

hcneo; LARGE, thind, uckos; ROUND, bleas, phgil; POWER, hally, suvsc; EARLY, hught, 

sujcw; STATE, prind, roccp; LIGHT, roure, axayw; ORDER, sping, qilil; FRONT, mally, 

saqzs; LOCAL, shent, mnstw; LEAVE, whoss, ricjg; CLEAR, shist, syniy; ABOVE, thild, 

suuhp; START, lible, fegyp; CLASS, itter, fbdfi; TABLE, yough, mihjw; CLOSE, traid, axypg; 

UNION, chate, clyym; SHORT, wence, jaxxa; MAJOR, hince, cungd; BRING, theve, eacyd; 

FORCE, thany, gihlw; SOUND, thele, raxri; GREEN, thich, auqjs; STAND, grome, celqi; 

CAUSE, dight, imimj; PRESS, whild, oyizi; BELOW, drand, giagj; COURT, saind, syilb; 

SEVEN, proad, miqyd; BEGIN, woust, lprph; WATCH, rieve, djekb; WORTH, fince, fgipe; 

COVER, wasky, miytd; OFFER, spand, aklph; VISIT, nound, rojul; PRICE, houst, oljul; 

SIGHT, plare, abwwa; BROWN, lighe, aivpg; FIGHT, mande, ocsym; ALLOW, rught, hfdef; 

SPEND, froat, migxu; QUIET, chand, cgglb; COUNT, wrive, fdpei; SPEED, chout, agtfw; 

BREAD, coult, miguz; BUILD, chave, rrzsh; PLANT, quess, ziwzw; FULLY, spere, micpj; 

CATCH, moure, sugln; BRAIN, spost, cljos; TRUST, dince, cxnio; THICK, forse, apvxa; 
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EQUAL, forst, imkzo; YOUTH, iffer, safcn; MARCH, tound, ievzb; BEACH, pring, ftnzi; 

EVENT, shood, miqxp; MATCH, selly, nyxoo; LAUGH, brove, mzdpe; JUDGE, thant, 

mvsym; PLAIN, morge, sugfx; ADMIT, becon, wzzyc; COAST, dider, pujuw; POUND, 

thake, avkra; GRAND, joble, sxzel; ROUGH, wasis, dvnel; BROAD, shise, xvump; LIMIT, 

wough, sykdd; PLATE, yourn, igicw; HENCE, prous, migpv; COACH, ifter, spnfr; CROWN, 

tathe, pekiq

Nonword targets

JVGIO, manne, hymbp; FMPAK, chise, chriv; UXWIY, gress, jazjh; HURDV, bably, cigii; 

SLULV, bence, acnhc; FWRWI, colly, dazko; HWEIU, prand, rojrp; JENZP, sould, audbc; 

MKZKA, tould, dcpsh; JOFCI, welve, empxn; AITFB, cluse, wzxoo; QGOUM, cance, chnzk; 

QAFQN, belve, voysl; EVAFQ, dound, ncllb; TBPIV, fally, cgkra; YNJIP, thost, bfmsh; 

WUTFX, shing, acgph; VUNCZ, forry, dqrki; APLVP, mords, embxz; AWYPD, goven, 

bvenn; SZUXS, toody, mqava; YIVTR, quall, hkaub; PHBEL, strat, icsxa; SLQTU, drome, 

ecajw; IMLHL, buter, rakpw; ZVCEF, arand, bxyia; KCRAO, sheme, mjymb; YQUQD, hings, 

hcneo; ELGPW, thind, uckos; UNJDX, bleas, phgil; EFGPE, hally, suvsc; RBFEO, hught, 

sujcw; AXFVB, prind, roccp; BTINM, roure, axayw; UDXRF, sping, qilil; TEJCU, mally, 

saqzs; ACXVG, shent, mnstw; YABYQ, whoss, ricjg; ARVWA, shist, syniy; ZEGXF, thild, 

suuhp; OAHJA, lible, fegyp; VASYH, itter, fbdfi; ELCQD, yough, mihjw; NEZSU, traid, 

axypg; RXUOO, chate, clyym; IKZGP, wence, jaxxa; ABQTB, hince, cungd; QSPIB, theve, 

eacyd; XZSCU, thany, gihlw; BGZOU, thele, raxri; ZWDEV, thich, auqjs; TBWNA, grome, 

celqi; KBESV, dight, imimj; VUMQS, whild, oyizi; UKTWY, drand, giagj; TEMXV, saind, 

syilb; SZKXU, proad, miqyd; XIDNI, woust, lprph; UXHSY, rieve, djekb; KAQRB, fince, 

fgipe; VEVRJ, wasky, miytd; XGWIE, spand, aklph; IBTXC, nound, rojul; IKBVW, houst, 

oljul; IQCMD, plare, abwwa; SWSNU, lighe, aivpg; PUFKI, mande, ocsym; SJSAA, rught, 

hfdef; ELYZJ, froat, migxu; EWSJP, chand, cgglb; ZMALZ, wrive, fdpei; KYEVD, chout, 

agtfw; AVFKH, coult, miguz; BFJUX, chave, rrzsh; RPLDA, quess, ziwzw; ODLAQ, spere, 

micpj; AYZWI, moure, sugln; YAWRF, spost, cljos; SYWUK, dince, cxnio; TLIBM, forse, 

apvxa; AYWPC, forst, imkzo; QHLUX, iffer, safcn; AFJKJ, tound, ievzb; AWLWH, pring, 

ftnzi; KVWTE, shood, miqxp; DAHFJ, selly, nyxoo; NUFLQ, brove, mzdpe; LEKRC, thant, 

mvsym; QBINV, morge, sugfx; FGMAF, becon, wzzyc; LKAZO, dider, pujuw; SCIBU, thake, 

avkra; KUPYV, joble, sxzel; FCRUJ, wasis, dvnel; FQAJF, shise, xvump; FVEXA, wough, 
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sykdd; SQKEF, yourn, igicw; NAXNB, prous, migpv; HGUMK, ifter, spnfr; SUXYW, tathe, 

pekiq

B.10 Stimuli of Experiment 10

Word targets

ALERT, nound, uckos; ATLAS, goven, chriv; AVAIL, morge, rrzsh; BADGE, forry, 

mvsym; BINGO, chave, hfdef; BISON, plare, avkra; BLACK, ifter, xvump; BLITZ, cance, 

roccp; BLUFF, proad, ocsym; BLUNT, shood, rojrp; BOARD, fince, igicw; BOOZE, thany, 

dqrki; BROWN, shist, celqi; BULGE, saind, icsxa; CARGO, shent, suuhp; CHARM, quess, 

qilil; CLASS, drome, miguz; CLOUD, sheme, bvenn; COACH, rieve, fegyp; COBRA, theve, 

fgipe; COCOA, iffer, mnstw; CROOK, bleas, sugln; CROWD, thele, bxyia; CRUDE, whoss, 

gihlw; CRUMB, thind, ftnzi; CYCLE, dight, spnfr; DELTA, sping, mihjw; DWARF, becon, 

oljul; EAGLE, yourn, dcpsh; ERASE, chout, cgglb; EXTRA, colly, migpv; FAULT, grome, 

cxnio; FIELD, prous, hkaub; FLICK, spere, pujuw; FLUTE, pring, cgkra; FRAUD, hince, 

sxzel; GAUGE, mords, chnzk; GROUP, chise, miytd; HAZEL, dound, miqxp; HEDGE, strat, 

imkzo; ICING, forse, rojul; INERT, quall, aklph; KNIFE, coult, audbc; KNOCK, mally, 

abwwa; LEVEL, traid, sujcw; LOCAL, prind, mzdpe; LODGE, wasis, raxri; LOOSE, prand, 

rakpw; LOTUS, wrive, jazjh; LUNCH, dider, dazko; LYRIC, tound, bfmsh; MIMIC, buter, 

lprph; MINOR, chate, wzzyc; MORAL, shing, ziwzw; MOTOR, cluse, phgil; MOTTO, belve, 

ecajw; MOURN, tathe, aivpg; NURSE, thich, giagj; OBESE, hught, acgph; OZONE, whild, 

cigii; PANDA, itter, embxz; PANEL, wough, fbdfi; PANIC, selly, voysl; PIECE, rught, 

mjymb; PILOT, drand, auqjs; PIZZA, houst, ncllb; PLAZA, forst, imimj; PROUD, hally, syilb; 

QUAKE, thost, wzxoo; RAPID, joble, nyxoo; REIGN, wasky, cljos; RIDGE, bably, hymbp; 

RIFLE, woust, acnhc; ROUGH, mande, eacyd; SCOOP, fally, mqava; SCRAP, lible, djekb; 

SCRUB, thant, agtfw; SOLID, thake, empxn; SPACE, tould, miqyd; SPASM, roure, oyizi; 

SPOON, lighe, axayw; STAFF, moure, clyym; STUNT, brove, micpj; STYLE, arand, cungd; 

SWARM, toody, fdpei; SWIRL, bence, hcneo; SYRUP, chand, jaxxa; THEFT, sould, apvxa; 

THORN, welve, ievzb; THUMB, gress, axypg; TIMID, yough, saqzs; TOTAL, dince, pekiq; 

TULIP, wence, safcn; TWIST, manne, dvnel; VENUE, froat, ricjg; VODKA, shise, sugfx; 

VOICE, spand, sykdd; WATER, hings, suvsc; WHEEL, spost, migxu; ZEBRA, thild, syniy
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Nonword targets

ABLIL, roure, cungd; ABLUN, iffer, roccp; AFFSA, belve, dvnel; APLIA, brove, hcneo; 

ARLUD, chise, ocsym; AWYNS, dider, miqxp; BAKKA, wrive, oljul; BIFEL, yough, sujcw; 

BILIR, spost, jazjh; BLEPH, strat, migxu; BLICO, spand, pujuw; BULUM, forse, pekiq; 

CEENA, shist, sugfx; COCRI, thele, xvump; COMLI, prand, spnfr; CULGA, prind, mnstw; 

DEDIO, hally, saqzs; DULEW, sping, chriv; DULUS, becon, imkzo; ECHUR, saind, imimj; 

EFEBA, hings, phgil; EGESK, mally, nyxoo; EGRIS, tound, aklph; ENKIS, proad, rojul; 

ENRYS, hught, igicw; EUMPE, thild, oyizi; FEIRA, dound, uckos; FESPE, rught, clyym; 

FICIM, welve, bvenn; FILDI, prous, axypg; FLEUM, pring, ricjg; FLIKI, nound, mzdpe; 

FOCRO, shise, auqjs; FOICT, selly, rakpw; FULPH, grome, jaxxa; FUTEW, mords, icsxa; 

GEDUA, whoss, mvsym; GEDUM, wasis, acnhc; GIBIR, chout, voysl; GIBUR, cance, 

dazko; HUDEP, froat, giagj; HYRIS, manne, agtfw; IGISS, wence, axayw; ILDIC, spere, 

bfmsh; ILVIS, wough, chnzk; IVIVE, tould, cgglb; JACUM, gress, sxzel; JAZDA, itter, ncllb; 

JOVIC, sheme, empxn; JUDYA, morge, celqi; JULIM, tathe, acgph; KAKEM, sould, wzzyc; 

KARJU, lible, ievzb; KAURS, joble, hfdef; KEDDS, coult, miguz; KESUR, thich, cxnio; 

KLUDS, theve, migpv; KNUCH, ifter, miqyd; KOCIP, quall, sugln; KULDE, forst, syniy; 

LEFEB, houst, apvxa; LEFOL, drand, sykdd; LIKIR, chave, audbc; LIZIM, thake, safcn; 

LUSEL, chand, bxyia; MIKAK, buter, suvsc; MOKIL, quess, abwwa; NAULF, rieve, mjymb; 

NEFEB, wasky, rrzsh; NEZAL, woust, suuhp; OBSEP, whild, cigii; OCOMP, bleas, avkra; 

OUCIS, plare, djekb; OUNEM, traid, dcpsh; PESPE, yourn, fbdfi; PESUR, thany, mihjw; 

PLEVO, thant, cgkra; POCEF, thind, gihlw; ROSCO, dight, ziwzw; ROSUR, dince, micpj; 

RUILM, bence, eacyd; RUKIL, shood, fegyp; SARRO, hince, ftnzi; SAULP, goven, dqrki; 

SEPRI, toody, mqava; SIBOU, chate, lprph; SIFLU, mande, embxz; SKAKA, drome, qilil; 

SUROK, lighe, fgipe; SURSA, fince, fdpei; SYSLI, moure, ecajw; TEIRP, colly, cljos; TESEM, 

forry, raxri; TUECT, arand, aivpg; UNENG, fally, miytd; URVIR, bably, hymbp; VARLI, 

thost, wzxoo; VUKET, shing, syilb; WABIA, cluse, rojrp; ZOFLI, shent, hkaub
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Appendix C: Generated items for assessing the OT3 metric

The following list contains all 1073 five letter nonwords that were generated by the 

OT3 software after initialising with the BNC (The British National Corpus, 2001). All 

items scored better or equal to 1.20 SD above mean. Please note, that nonword was 

defined as not being listed in corpus.

withe, 2.56; nothe, 2.49; thave, 2.36; thers, 2.36; thand, 2.19; yould, 2.18; prome, 

2.11; thent, 2.10; buthe, 2.05; frome, 2.05; yound, 2.03; thate, 2.02; thice, 2.00; hathe, 

2.00; thery, 1.96; whave, 1.95; youre, 1.94; mothe, 1.94; frove, 1.92; whice, 1.92; 

thend, 1.89; gothe, 1.89; bothe, 1.89; theas, 1.88; cound, 1.88; anded, 1.87; haver, 

1.87; maked, 1.86; afted, 1.86; bethe, 1.85; thime, 1.85; sithe, 1.85; thems, 1.84; 

comme, 1.80; youse, 1.80; haved, 1.80; mithe, 1.80; puble, 1.80; beent, 1.80; ition, 

1.79; arthe, 1.79; wited, 1.79; forke, 1.79; coure, 1.78; fores, 1.78; evere, 1.78; dithe, 

1.78; thist, 1.78; hould, 1.78; comed, 1.78; coned, 1.77; comen, 1.77; thise, 1.77; 

whand, 1.77; thess, 1.77; fored, 1.77; whime, 1.76; thein, 1.76; conly, 1.76; wille, 1.76; 

prout, 1.75; theat, 1.75; thead, 1.75; stion, 1.74; bould, 1.74; thare, 1.74; thern, 1.74; 

ances, 1.74; sught, 1.74; andis, 1.73; exple, 1.73; washe, 1.73; fithe, 1.72; hater, 1.72; 

whing, 1.72; suble, 1.72; pland, 1.72; ation, 1.71; conce, 1.71; thade, 1.71; thout, 1.71; 

ofted, 1.71; forme, 1.71; hishe, 1.71; willy, 1.71; trand, 1.71; wasse, 1.71; frout, 1.70; 

thene, 1.70; whout, 1.69; reare, 1.69; thown, 1.69; abled, 1.69; hight, 1.69; whise, 

1.68; shere, 1.68; chave, 1.68; andes, 1.68; fould, 1.68; exame, 1.67; whown, 1.67; 

mance, 1.67; tothe, 1.67; yount, 1.67; saing, 1.67; buted, 1.67; althe, 1.67; thest, 1.66; 

anced, 1.66; ither, 1.66; tooke, 1.65; bithe, 1.65; couse, 1.65; wased, 1.64; orthe, 1.64; 

mence, 1.64; inces, 1.64; spere, 1.64; thert, 1.64; evers, 1.64; tione, 1.64; hiche, 1.63; 

woure, 1.63; beire, 1.63; grome, 1.63; suche, 1.63; taked, 1.63; lothe, 1.63; prive, 1.63; 

mands, 1.63; inged, 1.62; thele, 1.62; pothe, 1.62; exted, 1.62; inges, 1.62; hatte, 1.62; 

pries, 1.62; pards, 1.62; ander, 1.61; saide, 1.61; bable, 1.61; thens, 1.60; whate, 1.60; 

exper, 1.60; witte, 1.60; atere, 1.60; ithis, 1.60; stere, 1.59; prown, 1.59; thres, 1.59; 

facce, 1.59; exped, 1.59; beend, 1.59; calle, 1.59; ables, 1.58; rithe, 1.58; pithe, 1.58; 

thely, 1.58; muche, 1.58; beirs, 1.58; weent, 1.58; yeare, 1.58; thile, 1.58; forly, 1.58; 

thred, 1.58; behis, 1.58; smand, 1.57; lable, 1.57; forld, 1.57; anthe, 1.57; shose, 1.57; 
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anted, 1.57; puthe, 1.57; bight, 1.57; itted, 1.57; bects, 1.57; sione, 1.56; yoult, 1.56; 

inced, 1.56; parge, 1.56; somme, 1.56; sould, 1.56; thiss, 1.56; weres, 1.55; cland, 1.55; 

ments, 1.55; alwas, 1.55; ithat, 1.55; fiche, 1.55; whers, 1.55; thind, 1.55; aught, 1.54; 

overe, 1.54; youst, 1.54; ingle, 1.54; pares, 1.54; houre, 1.54; brome, 1.54; wered, 1.54; 

cance, 1.54; befor, 1.54; inthe, 1.54; gooke, 1.54; shers, 1.54; haded, 1.54; inted, 1.54; 

cally, 1.54; mosed, 1.53; anday, 1.53; somed, 1.53; hance, 1.53; somen, 1.53; gover, 

1.53; hothe, 1.53; sumbe, 1.53; thase, 1.52; itive, 1.52; fache, 1.52; sible, 1.52; theit, 

1.52; witer, 1.52; mathe, 1.51; looke, 1.51; forre, 1.51; bacce, 1.51; prold, 1.51; forde, 

1.51; thild, 1.51; andle, 1.51; sawas, 1.51; chand, 1.51; frose, 1.51; boure, 1.50; yough, 

1.50; offee, 1.50; tions, 1.50; andin, 1.50; shand, 1.50; thome, 1.50; reque, 1.50; rught, 

1.50; anden, 1.50; cands, 1.49; wouse, 1.49; andly, 1.49; spers, 1.49; thold, 1.49; dence, 

1.49; itere, 1.49; tooks, 1.49; atted, 1.49; beeks, 1.48; whome, 1.48; jused, 1.48; sture, 

1.48; waske, 1.48; prion, 1.48; dided, 1.48; rethe, 1.48; whold, 1.48; cours, 1.48; wiled, 

1.47; stive, 1.47; thowe, 1.47; twere, 1.47; reand, 1.47; thich, 1.47; expre, 1.47; mande, 

1.47; warge, 1.47; whiss, 1.47; thics, 1.47; andid, 1.47; thass, 1.46; methe, 1.46; seent, 

1.46; thady, 1.46; trome, 1.46; ithey, 1.46; noter, 1.46; twore, 1.46; proad, 1.46; conts, 

1.46; theld, 1.46; goved, 1.46; hince, 1.46; hithe, 1.46; duche, 1.46; colve, 1.46; frold, 

1.46; youle, 1.46; whind, 1.46; preas, 1.46; whowe, 1.46; succe, 1.45; thint, 1.45; aters, 

1.45; thaps, 1.45; oneve, 1.45; socce, 1.45; wayst, 1.45; numbe, 1.45; lated, 1.45; sters, 

1.45; rould, 1.45; mards, 1.45; pring, 1.45; ative, 1.45; outhe, 1.44; cathe, 1.44; bache, 

1.44; youts, 1.44; hatin, 1.44; ineve, 1.44; foure, 1.44; tords, 1.44; cated, 1.44; resse, 

1.44; proce, 1.44; shome, 1.44; haten, 1.44; isted, 1.44; gethe, 1.44; wared, 1.44; 

nould, 1.44; ofter, 1.44; rence, 1.44; beive, 1.44; dince, 1.43; vithe, 1.43; imple, 1.43; 

thims, 1.43; shold, 1.43; wasts, 1.43; thill, 1.43; offin, 1.43; nower, 1.43; sence, 1.43; 

wever, 1.43; sions, 1.43; nithe, 1.43; preve, 1.43; plare, 1.43; vothe, 1.43; theys, 1.43; 

saire, 1.42; thats, 1.42; reent, 1.42; thads, 1.42; whild, 1.42; fince, 1.42; inget, 1.42; 

witin, 1.42; mille, 1.42; heres, 1.42; theed, 1.42; doess, 1.42; anned, 1.42; makin, 1.42; 

prand, 1.42; hices, 1.41; polve, 1.41; thels, 1.41; thost, 1.41; showe, 1.41; thast, 1.41; 

froad, 1.41; extre, 1.41; wases, 1.41; sculd, 1.41; tople, 1.41; eques, 1.41; mucce, 1.41; 

youte, 1.41; worke, 1.41; heire, 1.41; conse, 1.41; hered, 1.41; drand, 1.41; brove, 1.40; 

thear, 1.40; winge, 1.40; worts, 1.40; saind, 1.40; moned, 1.40; coult, 1.40; spose, 1.40; 

aftes, 1.40; thany, 1.40; maing, 1.40; forse, 1.40; lawas, 1.40; anage, 1.40; bacts, 1.40; 
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facke, 1.40; havis, 1.40; wores, 1.40; beeme, 1.40; rothe, 1.40; liche, 1.40; malle, 1.40; 

ancle, 1.40; mords, 1.40; beene, 1.40; whost, 1.39; agand, 1.39; combe, 1.39; buter, 

1.39; dishe, 1.39; somes, 1.39; expen, 1.39; hings, 1.39; nowas, 1.39; twout, 1.39; 

werse, 1.39; reave, 1.39; dinge, 1.39; sethe, 1.39; itime, 1.39; ingen, 1.39; froce, 1.39; 

monly, 1.39; coust, 1.39; offir, 1.39; faing, 1.39; saine, 1.39; ithed, 1.39; wored, 1.38; 

comis, 1.38; joble, 1.38; thant, 1.38; inage, 1.38; thows, 1.38; cothe, 1.38; poing, 1.38; 

frand, 1.38; foree, 1.38; rects, 1.38; scand, 1.38; whics, 1.38; caust, 1.38; antre, 1.38; 

prowe, 1.38; acked, 1.38; ittle, 1.38; finge, 1.37; pathe, 1.37; toome, 1.37; ision, 1.37; 

ithes, 1.37; sairs, 1.37; strat, 1.37; forne, 1.37; pated, 1.37; notte, 1.37; onere, 1.37; 

soned, 1.37; weend, 1.37; gooks, 1.37; itand, 1.37; prous, 1.37; wathe, 1.37; becon, 

1.37; tiond, 1.37; milly, 1.37; enthe, 1.37; ented, 1.37; leare, 1.37; wated, 1.37; shice, 

1.37; bouse, 1.37; safte, 1.37; yethe, 1.37; alled, 1.37; whint, 1.36; mythe, 1.36; itice, 

1.36; coved, 1.36; dings, 1.36; thies, 1.36; whows, 1.36; weved, 1.36; parce, 1.36; 

exces, 1.36; saile, 1.36; yourn, 1.36; trive, 1.36; inere, 1.36; mared, 1.36; yeand, 1.36; 

wount, 1.36; minge, 1.36; werve, 1.36; fooke, 1.36; facks, 1.36; sures, 1.36; tould, 1.36; 

foris, 1.36; mosse, 1.35; ifted, 1.35; sonly, 1.35; andre, 1.35; folve, 1.35; beres, 1.35; 

shost, 1.35; torke, 1.35; trage, 1.35; bette, 1.35; fings, 1.35; ingue, 1.35; apper, 1.35; 

avere, 1.35; torts, 1.35; unces, 1.35; ancre, 1.35; iters, 1.35; exter, 1.35; beare, 1.35; 

mally, 1.35; maide, 1.35; opere, 1.35; bused, 1.35; comin, 1.34; anand, 1.34; prour, 

1.34; pleve, 1.34; humbe, 1.34; sured, 1.34; hades, 1.34; whill, 1.34; ancen, 1.34; 

monce, 1.34; tores, 1.34; intre, 1.34; sents, 1.34; hille, 1.34; thard, 1.34; bered, 1.34; 

prost, 1.34; ining, 1.34; cande, 1.34; stime, 1.34; togre, 1.34; dethe, 1.34; apped, 1.34; 

andat, 1.34; thelf, 1.34; carge, 1.34; knote, 1.34; nowne, 1.34; toold, 1.34; hiced, 1.34; 

chate, 1.34; mings, 1.33; deare, 1.33; tweve, 1.33; hught, 1.33; arked, 1.33; crome, 

1.33; reake, 1.33; faide, 1.33; lethe, 1.33; wites, 1.33; hande, 1.33; thoss, 1.33; parre, 

1.33; nowle, 1.33; clude, 1.33; scome, 1.33; trove, 1.33; tored, 1.33; beted, 1.33; shate, 

1.33; hatme, 1.33; areve, 1.33; fices, 1.33; inand, 1.33; twers, 1.33; hised, 1.33; pects, 

1.33; agere, 1.33; preat, 1.33; worme, 1.33; paing, 1.33; knowe, 1.33; wayin, 1.32; 

surce, 1.32; thous, 1.32; ithad, 1.32; antle, 1.32; trund, 1.32; wours, 1.32; theen, 1.32; 

frowe, 1.32; pread, 1.32; soure, 1.32; lible, 1.32; kince, 1.32; whare, 1.32; const, 1.32; 

brive, 1.32; parly, 1.32; thell, 1.32; backe, 1.32; goves, 1.32; therd, 1.32; lacce, 1.32; 

exhis, 1.32; gived, 1.32; cithe, 1.32; lince, 1.32; iture, 1.32; frous, 1.32; proge, 1.32; 
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pents, 1.32; stice, 1.32; thame, 1.31; ittly, 1.31; whoss, 1.31; parld, 1.31; wasys, 1.31; 

butte, 1.31; yourt, 1.31; exche, 1.31; doest, 1.31; onces, 1.31; bries, 1.31; truld, 1.31; 

wance, 1.31; atime, 1.31; peres, 1.31; sonce, 1.31; forin, 1.31; lieve, 1.31; whous, 1.31; 

logre, 1.31; locce, 1.31; upple, 1.31; deres, 1.31; suffe, 1.31; spect, 1.31; morke, 1.31; 

becte, 1.30; hards, 1.30; tiont, 1.30; toods, 1.30; imand, 1.30; gaing, 1.30; saime, 1.30; 

morts, 1.30; wasee, 1.30; trame, 1.30; inger, 1.30; fouse, 1.30; chice, 1.30; onews, 1.30; 

maged, 1.30; aften, 1.30; reace, 1.30; prood, 1.30; peare, 1.30; thour, 1.30; coule, 1.30; 

twome, 1.30; prods, 1.30; moses, 1.30; ithen, 1.30; beens, 1.30; anter, 1.30; losed, 

1.30; maket, 1.30; fland, 1.30; siond, 1.30; incle, 1.30; hosed, 1.30; pered, 1.30; refor, 

1.30; mages, 1.30; excle, 1.30; booke, 1.30; thars, 1.30; whade, 1.30; frone, 1.29; prole, 

1.29; itter, 1.29; dered, 1.29; attle, 1.29; saild, 1.29; mente, 1.29; frour, 1.29; pance, 

1.29; inews, 1.29; hadis, 1.29; wrive, 1.29; doese, 1.29; throd, 1.29; nound, 1.29; crand, 

1.29; reard, 1.29; aning, 1.29; onthe, 1.29; dooke, 1.29; intle, 1.29; onted, 1.29; wence, 

1.29; dower, 1.29; behat, 1.29; ithas, 1.29; prits, 1.29; atice, 1.29; dight, 1.29; itake, 

1.29; dould, 1.29; rathe, 1.29; ducce, 1.29; baces, 1.29; couts, 1.29; betwe, 1.29; 

whent, 1.28; istre, 1.28; grage, 1.28; moure, 1.28; mored, 1.28; prows, 1.28; wided, 

1.28; dides, 1.28; munce, 1.28; jushe, 1.28; whour, 1.28; exced, 1.28; torms, 1.28; 

efuld, 1.28; havid, 1.28; wries, 1.28; foren, 1.28; asted, 1.28; bance, 1.28; nowed, 1.28; 

atche, 1.28; coner, 1.28; calre, 1.28; offor, 1.28; mayst, 1.28; achis, 1.28; wasto, 1.28; 

diche, 1.28; hader, 1.28; arche, 1.28; usted, 1.28; bence, 1.28; trave, 1.28; orked, 1.28; 

yeave, 1.28; kinge, 1.28; grout, 1.28; iment, 1.28; thole, 1.27; shent, 1.27; parke, 1.27; 

whies, 1.27; hents, 1.27; poste, 1.27; frive, 1.27; funce, 1.27; iting, 1.27; exthe, 1.27; 

dieve, 1.27; mants, 1.27; arged, 1.27; paide, 1.27; theye, 1.27; linge, 1.27; unthe, 1.27; 

taing, 1.27; agive, 1.27; pacce, 1.27; warce, 1.27; shoss, 1.27; thron, 1.27; unted, 1.27; 

torme, 1.27; onage, 1.27; unced, 1.27; maken, 1.27; itche, 1.27; prent, 1.27; hount, 

1.27; becto, 1.27; thore, 1.27; forry, 1.27; arges, 1.27; wasks, 1.27; seare, 1.27; worce, 

1.27; crive, 1.27; tathe, 1.27; tence, 1.26; histe, 1.26; weare, 1.26; aress, 1.26; forst, 

1.26; shous, 1.26; antly, 1.26; nowee, 1.26; clare, 1.26; atent, 1.26; froge, 1.26; thied, 

1.26; wrome, 1.26; tated, 1.26; ature, 1.26; arted, 1.26; pords, 1.26; arded, 1.26; dayst, 

1.26; thart, 1.26; thict, 1.26; dathe, 1.26; thily, 1.26; alles, 1.26; preed, 1.26; fieve, 1.26; 

spece, 1.26; hooke, 1.26; stent, 1.26; pross, 1.26; thire, 1.26; exace, 1.26; rever, 1.26; 

prest, 1.26; schis, 1.26; seend, 1.26; goome, 1.26; ougge, 1.26; witle, 1.26; whins, 1.26; 
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herse, 1.25; nalle, 1.25; hadde, 1.25; afthe, 1.25; werst, 1.25; quire, 1.25; reate, 1.25; 

cleve, 1.25; lards, 1.25; walle, 1.25; werne, 1.25; greas, 1.25; cluse, 1.25; woult, 1.25; 

oftes, 1.25; lache, 1.25; gaide, 1.25; coute, 1.25; ancer, 1.25; moste, 1.25; rembe, 1.25; 

agave, 1.25; harge, 1.25; ficed, 1.25; incre, 1.25; offes, 1.25; achat, 1.25; sucts, 1.25; 

dowas, 1.25; frood, 1.25; parde, 1.25; teres, 1.25; pands, 1.25; frods, 1.25; affer, 1.25; 

thdre, 1.25; juses, 1.24; camed, 1.24; offed, 1.24; incen, 1.24; offen, 1.24; nowit, 1.24; 

knome, 1.24; cauld, 1.24; camen, 1.24; andit, 1.24; mushe, 1.24; frole, 1.24; arnme, 

1.24; surne, 1.24; appre, 1.24; conat, 1.24; hashe, 1.24; smake, 1.24; thets, 1.24; singe, 

1.24; shour, 1.24; goven, 1.24; warre, 1.24; compt, 1.24; trate, 1.24; ifere, 1.24; grame, 

1.24; prese, 1.24; mater, 1.24; usion, 1.24; quile, 1.24; morms, 1.24; lould, 1.24; belve, 

1.24; sques, 1.24; woust, 1.24; conot, 1.23; wasis, 1.23; tolve, 1.23; swere, 1.23; goice, 

1.23; tered, 1.23; nable, 1.23; siont, 1.23; mumbe, 1.23; uning, 1.23; romme, 1.23; 

attly, 1.23; evend, 1.23; hists, 1.23; salle, 1.23; witen, 1.23; samed, 1.23; ithre, 1.23; 

loome, 1.23; maded, 1.23; onced, 1.23; inion, 1.23; bount, 1.23; youge, 1.23; torks, 

1.23; frows, 1.23; quals, 1.23; samen, 1.23; forat, 1.23; theal, 1.23; thips, 1.23; hisse, 

1.23; intly, 1.23; forit, 1.23; efore, 1.23; conee, 1.23; anown, 1.23; warly, 1.23; moven, 

1.23; anxis, 1.23; ences, 1.23; sayst, 1.23; thain, 1.23; schat, 1.23; thood, 1.23; areat, 

1.23; annis, 1.23; oners, 1.23; fathe, 1.22; morme, 1.22; clund, 1.22; holve, 1.22; greve, 

1.22; herve, 1.22; roble, 1.22; wayes, 1.22; famen, 1.22; aread, 1.22; ingre, 1.22; caund, 

1.22; ament, 1.22; quage, 1.22; warld, 1.22; anche, 1.22; stres, 1.22; beffe, 1.22; welve, 

1.22; weves, 1.22; yeake, 1.22; posee, 1.22; socke, 1.22; colle, 1.22; cosed, 1.22; pethe, 

1.22; goold, 1.22; thund, 1.22; dider, 1.22; hared, 1.22; taide, 1.22; hasse, 1.22; onand, 

1.22; mosts, 1.22; quess, 1.22; aname, 1.22; iners, 1.22; iscre, 1.22; fards, 1.22; poice, 

1.22; obled, 1.22; equit, 1.21; govis, 1.21; witat, 1.21; thals, 1.21; saill, 1.21; reend, 

1.21; facte, 1.21; prons, 1.21; shole, 1.21; drome, 1.21; bleve, 1.21; oughe, 1.21; wayse, 

1.21; wasid, 1.21; prect, 1.21; eards, 1.21; beems, 1.21; begre, 1.21; atter, 1.21; 

wheme, 1.21; thavy, 1.21; trion, 1.21; womme, 1.21; himed, 1.21; roure, 1.21; heare, 

1.21; nathe, 1.21; reart, 1.21; bried, 1.21; proat, 1.21; torce, 1.21; shime, 1.21; tound, 

1.21; himen, 1.21; heive, 1.21; speas, 1.21; inume, 1.21; whood, 1.21; prien, 1.21; 

spand, 1.21; rible, 1.21; stred, 1.21; butes, 1.21; nated, 1.21; toody, 1.21; firse, 1.21; 

baced, 1.21; ovent, 1.21; romed, 1.21; thirs, 1.21; fross, 1.21; youll, 1.21; wayed, 1.20; 

conte, 1.20; nally, 1.20; romen, 1.20; lacts, 1.20; avers, 1.20; movis, 1.20; pache, 1.20; 
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sugge, 1.20; courn, 1.20; sains, 1.20; sheme, 1.20; prody, 1.20; wally, 1.20; youry, 1.20; 

chere, 1.20; gence, 1.20; quirs, 1.20; mucts, 1.20; opers, 1.20; defor, 1.20; wayme, 1.20; 

publy, 1.20; wasin, 1.20

286



Appendix D: Default parameters of computational models

D.1 Bayesian Reader

Table D.1 lists the default parameters of the Bayesian Reader (Norris & Kinoshita, 

2008) that were used in the simulations in Chapter 4.

D.2 Spatial Coding Model

Table D.2 lists the default parameters of the Spatial Coding Model (Davis, 2010) that 

were used in all simulations, unless stated otherwise.

TABLE D.2: DEFAULT PARAMETERS OF THE SPATIAL CODING MODEL.

Parameter Value Description

dt 0.050 Step size when integrating activity equations

alpha_fl 0.280 Feature-level excitation

gamma_fl 6.000 Feature-letter inhibition

alpha_lw 0.100 Letter-word excitation

gamma_lw 0.040 Letter-word inhibition

alpha_wl 0.300 Word-letter excitation

cp 2.500 Power used for contrast-enhancing bottom up 
contrast

gamma_ww 0.340 Word-word inhibition

alpha_ww 0.440 Word-word self-excitation

decay_l 0.000 Letter activity decay rate
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TABLE D.1: DEFAULT PARAMETERS OF THE BAYESIAN READER.

Parameter Value Parameter Value

InitialSD 10.0 Average 50

PositionSD 5.0 LetterRanking 1

WordRanking 10

UseLetterFrequency off MaxSteps 1500

SetWordPriors on MinSteps 5

SetLetterPriors off PrimeSteps 30

SetProbePriors off VirtualNonWordFrequency 0

UseBackgroundNonWords off P_a_WordThreshold 0.90 0.01 50



TABLE D.2: DEFAULT PARAMETERS OF THE SPATIAL CODING MODEL.

Parameter Value Description

decay_w 1.000 Word activity decay rate

decay_k 0.400 Match param

decay_d 5.000 Delay before decay begins

mf 0.350 Masking power

max_l 1.000 Maximum letter node activity

max_w 1.000 Maximum word node activity

min_l -0.200 Minimum letter node activity

min_w -0.200 Minimum word node activity

fgain 0.050 Frequency gain (controls setting of resting activities)

mu 0.680 Local activity response threshold

sigma 0.240 Variability in position code

sigma_len_slope 0.120 Gradient of sigma by length

sigma_slope 0.000 Gradient of sigma by fixation position

threshold_w 0.000 Output threshold of word nodes

lf 0.000 Length filter for length dependent lateral inhibition

leak2 0.000 Leakage across two letter channels

tdf_threshold 0.000 Activity threshold for letter nodes to send TDF

alpha_len 0.000 Pos input to nodes that match the stim length

gamma_len 0.060 Neg input to nodes that mismatch the stim length

tdm 1.000 Gate tdf signal by bottom up input

pi 1.000 Switch that controls whether matching is position 
invariant

y_global 0.400 Weight assigned to global activity in ldt

y3 1.000 Weight assigned to lexical identification in ldt

n_in 0.360 Input to No-channel in ldt

lambda_yn 0.060 Inhib between yes and no channels

ldt_gain 1.000 Gain control in lexical decision channels

yes_threshold 0.800 Threshold for responding Yes in ldt

no_threshold 0.800 Threshold for responding No in ldt

freq_bias 1.800 Size of constrained network

num_candidates 30.000

letter_noise 0.000 Letter id noise parameter
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Appendix E: Detailed results of the RT analyses in vincentiles

This appendix presents the detailed results of the analysis in deciles. The z-scores of 

reaction were used in the analysis and are presented in the tables as a function of the 

condition, i.e. incongruent/congruent or high/low prime typicality. The analysis was 

computed using lmer of the lme4 package (Bates & Sarkar, 2007) in R (R development 

core team, 2007). The tables present the respective t-values and the p-values that were 

generated using a MonteCarlo Markov chain (pMCMC) and the standard p-values 

according to the t-distribution. Brysbaert (Brysbaert, 2007) noted that the p-values that 

were derived using the MCMC computation tend to be more conservative compared to 

the t-distribution.

E.1 Analysis in deciles of Experiment 1

TABLE E.1: RESULTS OF THE ANALYSIS BY DECILE OF PRONOUNCEABLE NONWORD TARGETS IN 
EXPERIMENT 1 AS A FUNCTION OF TARGET TYPICALITY.

Decile
High 

typicality
Low 

typicality Effect t-value pMCMC p (|t|>0)

1 -0.86 -1.23 0.37 8.70 0.00 0.00

2 -0.51 -0.96 0.45 10.90 0.00 0.00

3 -0.29 -0.76 0.47 12.04 0.00 0.00

4 -0.08 -0.61 0.53 13.12 0.00 0.00

5 0.12 -0.47 0.59 14.61 0.00 0.00

6 0.40 -0.33 0.73 18.22 0.00 0.00

7 0.72 -0.14 0.86 21.68 0.00 0.00

8 1.11 0.06 1.05 25.83 0.00 0.00

9 1.64 0.47 1.17 28.86 0.00 0.00

10 2.29 1.37 0.92 21.72 0.00 0.00
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TABLE E.2: RESULTS OF THE ANALYSIS BY DECILE OF UNPRONOUNCEABLE NONWORD TARGETS 
IN EXPERIMENT 1 AS A FUNCTION OF TARGET TYPICALITY.

Decile
High 

typicality
Low 

typicality Effect t-value pMCMC p (|t|>0)

1 -0.98 -1.18 0.20 5.21 0.00 0.00

2 -0.68 -0.94 0.26 7.70 0.00 0.00

3 -0.48 -0.79 0.31 9.00 0.00 0.00

4 -0.32 -0.66 0.34 9.74 0.00 0.00

5 0.01 -0.53 0.54 10.43 0.00 0.00

6 0.22 -0.39 0.61 11.76 0.00 0.00

7 0.50 -0.24 0.74 13.44 0.00 0.00

8 0.99 0.02 0.97 14.10 0.00 0.00

9 0.87 0.44 0.43 15.97 0.00 0.00

10 1.69 1.27 0.42 11.62 0.00 0.00

TABLE E.3: RESULTS OF THE ANALYSIS BY DECILE OF LOW TYPICALITY NONWORD TARGETS IN 
EXPERIMENT 1 AS A FUNCTION OF TARGET PRONOUNCEABILITY.

Decile
Unpro-

nounceable
Pro-

nounceable Effect t-value pMCMC p (|t|>0)

1 -1.23 -1.18 -0.05 -1.52 0.13 0.13

2 -0.96 -0.94 -0.02 -0.31 0.77 0.76

3 -0.76 -0.79 0.03 0.73 0.47 0.46

4 -0.61 -0.66 0.05 1.33 0.19 0.18

5 -0.47 -0.53 0.06 1.61 0.11 0.11

6 -0.33 -0.39 0.06 1.84 0.07 0.07

7 -0.14 -0.24 0.10 2.72 0.00 0.01

8 0.06 0.02 0.04 1.28 0.20 0.20

9 0.47 0.44 0.03 0.88 0.40 0.38

10 1.37 1.27 0.10 2.63 0.01 0.01
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E.2 Analysis in deciles of Experiment 2

TABLE E.4: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 2 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.20 -1.43 0.23 7.44 0.00 0.00

2 -0.86 -1.07 0.21 7.64 0.00 0.00

3 -0.62 -0.87 0.25 9.11 0.00 0.00

4 -0.43 -0.69 0.26 9.49 0.00 0.00

5 -0.27 -0.53 0.26 9.68 0.00 0.00

6 -0.10 -0.35 0.25 9.34 0.00 0.00

7 0.10 -0.14 0.24 8.88 0.00 0.00

8 0.38 0.13 0.25 9.25 0.00 0.00

9 0.81 0.53 0.28 10.22 0.00 0.00

10 1.64 1.35 0.29 10.27 0.00 0.00
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TABLE E.5: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 2 
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.97 -1.22 0.25 8.42 0.00 0.00

2 -0.60 -0.84 0.24 8.85 0.00 0.00

3 -0.39 -0.63 0.24 8.85 0.00 0.00

4 -0.20 -0.46 0.26 9.19 0.00 0.00

5 -0.03 -0.28 0.25 9.32 0.00 0.00

6 0.15 -0.11 0.26 9.61 0.00 0.00

7 0.35 0.10 0.25 9.04 0.00 0.00

8 0.60 0.35 0.25 9.18 0.00 0.00

9 1.00 0.80 0.20 7.39 0.00 0.00

10 1.80 1.73 0.07 2.55 0.01 0.01

E.3 Analysis in deciles of Experiment 3

TABLE E.6: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 3 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.26 -1.39 0.13 4.29 0.00 0.00

2 -0.92 -1.08 0.16 5.71 0.00 0.00

3 -0.73 -0.87 0.14 4.90 0.00 0.00

4 -0.56 -0.72 0.16 5.49 0.00 0.00

5 -0.39 -0.55 0.16 5.55 0.00 0.00

6 -0.22 -0.38 0.16 5.52 0.00 0.00

7 -0.02 -0.19 0.17 5.91 0.00 0.00

8 0.24 0.04 0.20 6.77 0.00 0.00

9 0.62 0.44 0.18 6.23 0.00 0.00

10 1.38 1.23 0.15 5.00 0.00 0.00
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TABLE E.7: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 3 
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.85 -1.11 0.26 8.70 0.00 0.00

2 -0.54 -0.79 0.25 9.04 0.00 0.00

3 -0.32 -0.57 0.25 8.76 0.00 0.00

4 -0.16 -0.38 0.22 7.76 0.00 0.00

5 -0.02 -0.19 0.17 5.90 0.00 0.00

6 0.14 0.04 0.10 3.66 0.00 0.00

7 0.33 0.27 0.06 2.09 0.04 0.04

8 0.56 0.56 0.00 0.09 0.90 0.93

9 0.96 1.07 -0.11 -3.74 0.00 0.00

10 1.87 1.95 -0.08 -2.49 0.01 0.01

E.4 Analysis in deciles of Experiment 4

TABLE E.8: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 4 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.13 1.27 -2.40 4.62 0.00 0.00

2 -0.83 -0.98 0.15 5.46 0.00 0.00

3 -0.62 -0.79 0.17 6.13 0.00 0.00

4 -0.44 -0.62 0.18 6.31 0.00 0.00

5 -0.28 -0.42 0.14 4.94 0.00 0.00

6 -0.09 -0.23 0.14 5.06 0.00 0.00

7 0.12 -0.01 0.13 4.72 0.00 0.00

8 0.36 0.28 0.08 2.97 0.00 0.00

9 0.78 0.73 0.05 2.05 0.05 0.04

10 1.60 1.55 0.05 1.83 0.07 0.07
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TABLE E.9: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 4 
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.00 -1.21 0.21 6.98 0.00 0.00

2 -0.70 -0.84 0.14 5.13 0.00 0.00

3 -0.50 -0.65 0.15 5.25 0.00 0.00

4 -0.35 -0.49 0.14 5.04 0.00 0.00

5 -0.20 -0.34 0.14 4.94 0.00 0.00

6 -0.04 -0.17 0.13 4.69 0.00 0.00

7 0.16 0.04 0.12 4.41 0.00 0.00

8 0.43 0.33 0.10 3.68 0.00 0.00

9 0.84 0.76 0.08 3.00 0.00 0.00

10 1.61 1.71 -0.10 -3.27 0.00 0.00

E.5 Analysis in deciles of Experiment 5

TABLE E.10: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 5 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.29 -1.40 0.11 2.68 0.00 0.01

2 -1.00 -1.09 0.09 2.49 0.01 0.01

3 -0.79 -0.87 0.08 2.43 0.02 0.02

4 -0.63 -0.71 0.08 2.41 0.02 0.02

5 -0.45 -0.56 0.11 2.99 0.01 0.00

6 -0.26 -0.37 0.11 3.29 0.00 0.00

7 -0.05 -0.15 0.10 2.80 0.01 0.01

8 0.25 0.18 0.07 2.23 0.03 0.03

9 0.69 0.64 0.05 1.46 0.17 0.15

10 1.49 1.45 0.04 0.92 0.36 0.36
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TABLE E.11: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 5  
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.92 -1.05 0.13 3.52 0.00 0.00

2 -0.61 -0.72 0.11 3.28 0.00 0.00

3 -0.41 -0.50 0.09 2.90 0.00 0.00

4 -0.23 -0.29 0.06 2.04 0.04 0.04

5 -0.07 -0.12 0.05 1.69 0.10 0.09

6 0.11 0.05 0.06 1.74 0.08 0.08

7 0.34 0.25 0.09 2.77 0.01 0.01

8 0.62 0.52 0.10 3.17 0.00 0.00

9 1.02 0.94 0.08 2.58 0.01 0.01

10 1.90 1.73 0.17 4.88 0.00 0.00

E.6 Analysis in deciles of Experiment 6

TABLE E.12: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 6 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.29 -1.32 0.03 1.08 0.31 0.28

2 -1.00 -1.06 0.06 1.95 0.05 0.05

3 -0.80 -0.85 0.05 1.93 0.07 0.05

4 -0.61 -0.71 0.10 2.70 0.01 0.01

5 -0.45 -0.54 0.09 3.08 0.00 0.00

6 -0.25 -0.35 0.10 2.82 0.00 0.00

7 -0.02 -0.14 0.12 3.80 0.00 0.00

8 0.25 0.13 0.12 3.17 0.00 0.00

9 0.67 0.55 0.12 3.72 0.00 0.00

10 1.52 1.30 0.22 6.62 0.00 0.00
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TABLE E.13: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 6 
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.97 -1.05 0.08 2.36 0.02 0.02

2 -0.67 -0.72 0.05 1.63 0.10 0.10

3 -0.48 -0.52 0.04 1.16 0.27 0.25

4 -0.32 -0.33 0.01 0.60 0.55 0.55

5 -0.13 -0.16 0.03 1.02 0.31 0.31

6 0.05 0.05 0.00 0.06 0.97 0.96

7 0.27 0.30 -0.03 -1.20 0.23 0.23

8 0.55 0.59 -0.04 -1.38 0.15 0.17

9 1.01 1.02 -0.01 -0.54 0.59 0.59

10 1.78 1.85 -0.07 -2.15 0.03 0.03

E.7 Analysis in deciles of Experiment 7

TABLE E.14: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 7 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.21 -1.21 0.00 -0.17 0.84 0.87

2 -1.01 -1.01 0.00 0.28 0.80 0.78

3 -0.88 -0.88 0.00 0.02 0.99 0.98

4 -0.76 -0.77 0.01 0.20 0.85 0.84

5 -0.62 -0.65 0.03 0.92 0.34 0.36

6 -0.49 -0.51 0.02 0.56 0.58 0.57

7 -0.32 -0.33 0.01 0.64 0.51 0.52

8 -0.08 -0.10 0.02 0.73 0.46 0.47

9 0.30 0.32 -0.02 -0.41 0.71 0.68

10 1.14 1.22 -0.08 -2.27 0.02 0.02
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TABLE E.15: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 7 
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.73 -0.75 0.02 0.62 0.53 0.53

2 -0.47 -0.50 0.03 0.93 0.37 0.35

3 -0.29 -0.31 0.02 0.91 0.37 0.36

4 -0.10 -0.15 0.05 1.32 0.18 0.19

5 0.06 0.05 0.01 0.54 0.59 0.59

6 0.24 0.24 0.00 -0.06 0.93 0.95

7 0.47 0.49 -0.02 -0.51 0.63 0.61

8 0.79 0.74 0.05 1.74 0.08 0.08

9 1.19 1.20 -0.01 -0.24 0.80 0.81

10 1.99 1.99 0.00 -0.03 0.99 0.97

E.8 Analysis in deciles of Experiment 8

TABLE E.16: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 8 AS A 
FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -1.25 -1.30 0.05 1.49 0.14 0.14

2 -1.00 -1.60 0.60 1.78 0.07 0.07

3 -0.85 -0.91 0.06 2.03 0.04 0.04

4 -0.71 -0.78 0.07 2.26 0.02 0.02

5 -0.59 -0.66 0.07 2.46 0.01 0.01

6 -0.44 -0.52 0.08 2.99 0.00 0.00

7 -0.26 -0.36 0.10 3.07 0.00 0.00

8 -0.03 -0.11 0.08 2.63 0.01 0.01

9 0.38 0.28 0.10 3.61 0.00 0.00

10 1.29 1.18 0.11 3.47 0.00 0.00
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TABLE E.17: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 8  
AS A FUNCTION OF RESPONSE CONGRUENCY.

Decile Incongruent Congruent Effect t-value pMCMC p (|t|>0)

1 -0.81 -0.78 -0.03 -0.95 0.36 0.34

2 -0.49 -0.49 0.00 -0.21 0.87 0.84

3 -0.31 -0.28 -0.03 -0.77 0.41 0.44

4 -0.14 -0.12 -0.02 -0.80 0.43 0.43

5 0.01 0.05 -0.04 -1.39 0.17 0.17

6 0.19 0.23 -0.04 -1.62 0.10 0.11

7 0.39 0.45 -0.06 -2.01 0.05 0.05

8 0.64 0.77 -0.13 -4.60 0.00 0.00

9 1.10 1.19 -0.09 -3.13 0.00 0.00

10 1.91 1.99 -0.08 -2.70 0.01 0.01

E.9 Analysis in deciles of Experiment 9

TABLE E.18: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 9 AS A 
FUNCTION OF PRIME TYPICALITY.

Decile
Low 

typicality
High 

typicality Effect t-value pMCMC p (|t|>0)

1 -1.31 -1.43 0.12 3.52 0.00 0.00

2 -0.95 -1.13 0.18 5.48 0.00 0.00

3 -0.71 -0.91 0.20 6.02 0.00 0.00

4 -0.51 -0.72 0.21 6.31 0.00 0.00

5 -0.33 -0.56 0.23 6.96 0.00 0.00

6 -0.11 -0.37 0.26 7.89 0.00 0.00

7 0.11 -0.17 0.28 8.76 0.00 0.00

8 0.37 0.11 0.26 7.91 0.00 0.00

9 0.79 0.53 0.26 8.13 0.00 0.00

10 1.56 1.43 0.13 3.71 0.00 0.00
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TABLE E.19: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 9 
AS A FUNCTION OF PRIME TYPICALITY.

Decile
Low 

typicality
High 

typicality Effect t-value pMCMC p (|t|>0)

1 -1.25 -0.93 -0.32 -9.65 0.00 0.00

2 -0.87 -0.59 -0.28 -9.17 0.00 0.00

3 -0.64 -0.38 -0.26 -8.27 0.00 0.00

4 -0.42 -0.19 -0.23 -7.31 0.00 0.00

5 -0.22 0.00 -0.22 -7.07 0.00 0.00

6 0.00 0.17 -0.17 -5.43 0.00 0.00

7 0.22 0.35 -0.13 -3.98 0.00 0.00

8 0.54 0.59 -0.05 -1.61 0.10 0.11

9 0.91 0.97 -0.06 -1.93 0.05 0.05

10 1.77 1.76 0.01 0.25 0.82 0.81

E.10 Analysis in deciles of Experiment 10

TABLE E.20: RESULTS OF THE ANALYSIS BY DECILE OF WORD TARGETS IN EXPERIMENT 10 AS 
A FUNCTION OF PRIME TYPICALITY.

Decile
Low 

typicality
High 

typicality Effect t-value pMCMC p (|t|>0)

1 -1.15 -1.22 0.07 2.16 0.03 0.03

2 -0.89 -0.95 0.06 2.16 0.02 0.03

3 -0.72 -0.77 0.05 1.96 0.05 0.05

4 -0.56 -0.60 0.04 1.68 0.09 0.09

5 -0.41 -0.47 0.06 1.57 0.11 0.12

6 -0.24 -0.27 0.03 0.88 0.38 0.38

7 -0.04 -0.08 0.04 1.00 0.32 0.32

8 0.27 0.20 0.07 1.61 0.11 0.11

9 0.72 0.66 0.06 0.79 0.44 0.43

10 1.57 1.64 -0.07 -4.70 0.00 0.00
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TABLE E.21: RESULTS OF THE ANALYSIS BY DECILE OF NONWORD TARGETS IN EXPERIMENT 
10  AS A FUNCTION OF PRIME TYPICALITY. 

Decile
Low 

typicality
High 

typicality Effect t-value pMCMC p (|t|>0)

1 -1.04 -0.97 -0.07 -2.54 0.01 0.01

2 -0.73 -0.70 -0.03 -1.19 0.24 0.24

3 -0.55 -0.51 -0.04 -1.49 0.14 0.14

4 -0.40 -0.35 -0.05 -1.99 0.05 0.05

5 -0.26 -0.21 -0.05 -1.90 0.06 0.06

6 -0.07 -0.06 -0.01 -0.44 0.65 0.66

7 0.14 0.13 0.01 0.35 0.72 0.73

8 0.39 0.41 -0.02 -0.61 0.53 0.54

9 0.87 0.87 0.00 0.05 0.98 0.96

10 1.78 1.79 -0.01 0.69 0.50 0.49
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