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ABSTRACT

The photoabsorption of atomic hydrogen in a strong static magnetic
field is studied. The bound states are considered in some detail, approx-
imating the wavefunctions by a set of unperturbed, spherical hydrogenic
functions and a set of simple separable functions of cylindrical symmetry.
Results are presented for the energy eigenvalues of fourteen low lying
states in the range of magnetic field strengths 107:s B < 2.35 x lOg G.
The eigenfunctions corresponding to the bound states are used to obtain
electric dipole transition probabilities. For strong transitions
(Amn > 0.1 x lO8 s-l), transition probabilities in the two approximations
agree at fields of lO7 and lO8 G. However, at 5 x 108.s Bg 2.35 x lO9 G,
the cylindrical basis proves to give a better description of the system,
producing a lower set of energy eigenvalues, and the agreement between
the two sets of transition probabilities is not so good. Relativistic
and spin effects are neglected here.

The simple cylindrical functions are used to calculate photoionization
cross sections, enabling, in the case of the pure Landau continuum, all
the matrix elements occurring in these cross sections to be calculated
analytically. A second, more appropriate model for the continuum, in
the range of fields considered, is also used, in which the Coulomb
attraction of the nucleus is considered in the plane perpendicular to
the field direction. Wavefunctions and energy eigenvalues for the discrete
states in this second continuum model are calculated numerically, from
a two point boundary value equation. Calculations of the photoionization
of the lowest even and odd parity bound states at photon energies from
the (field dependent) ionization threshold to 8¥ rydbergs above it are
reported, where ¥ ='ﬁu6. The appropriate generalization of the Wigner

threshold law is given. Resonances are found at each embedded discrete



continuum level in the absence of broadening, and secondary maxima
associated with the motion along the field are predicted, and confirmed

in a simple model. Results for the two continuum models are compared

and the differences discussed in some detail.
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CHAPTER 1

INTRODUCTION

§1.1 General Background

Since the first discovery of the existence of strong magnetic
fields in a white dwarf by Kemp et al 1970 and Kemp, 1370, much work
has been carried out on the properties of atoms and ions in such
strong fields. Kemp estimated that a field of about lO7 Gauss is
present in the white dwarf Grw + 7008247, and since then, the
exlstence of large magnetic fields in pulsars thought to be up to

12

107" Gauss at the surface, have also been demonstrated (Ruderman,

1372).

The study of atoms and ions in strong magnetic fields is also
of importance in solid state physics where the effects of high fields
may be observed at low fields. This is due to two properties of
solids: (i) the mass of an electron in motion in a solid must be
represented by the effective mass m*, which may be several orders of
magnitude smaller than m, the mass of the electron in free space and
(ii) the dielectric constant of a solid is not unity, as in the case
of free space, but may have a value in the range 10 to 50 (Praddaude,
1972). Both of these facts contribute significantly to the change in
the ratio of the magnetic energy to the Coulomb energy (denoted by ¥)
from the case where the atom exists in free space. We have,

“Oc

Y =
2Ry*

au. (1.1)

* .
where o, = gé; is the cyclotron frequency and Ry*: g%ﬁg; is the
m

effective Rydberg with D the dielectric constant. Now if we suppose
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D = 50 and m*= 0.1lm, then it is clearly seen that ¥ is a factor of
2.5 x 105 greater thaq for the case where D = 1 and m = m¥. - In
other words, if a magnetic field of strength 100G (a fairly weak
field) was applied to the solid, the effects observed, would be

those of a field of 2.5 x lOgG (a strong field) in free space.

More recently, fairly intense magnetic fields of 104‘ 5 x lOuG
have been produced over large volumes in magnetically confined,
controlled thermonuclear fusion experimental devices. The effects
of these fields on the atomic properties of the trapped plasma is of
considerable importance. Laboratory magnetic fields of 2 x lOSG have
now been achieved. Very strong magnetic fields are also known to
exist in the ablation layers of targets used in inertial fusion
experiments (Lawson, 19738), where such physical processes as photoioni-
zation of atomic hydrogen (as deuterium and tritium) and of highly

stripped (hydrogenic) ions occur.

It is the effect of these strong magnetic fields on atomic
hydrogen that is studied here. It is necessary, at this point, to
define what is meant by a "strong magnetic field". A weak magnetic
field will be referred to as one in which the Coulomb force of the
nucleus dominates the magnetic field such that the ordinary Zeeman level
splitting occurs; and the quadratic Zeeman effect is negligible. The
region of field strengths in which this occurs is approximately
0<B <lO7G. We will define a strong magnetic field as one in which the
Coulomb and magnetic interactions become comparable, the quadratic

Zeeman term being non-negligible ie lO7< B< lOllG. Above about lOll

G,
the magnetic field completely dominates the Coulomb field and we move
into what is known as the quasi-Landau regime, where the motion of

electrons is close to that of free electrons in a magnetic field. These

regions, and the effects on the bound and free levels are described more

fully by Garstang, 1977.
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It is the strong field case which proves to be the most
difficult to solve, as neither the Coulomb nor the magnetic field can
be treated as a perturbation. The resulting prcblem to be solved in
order to calculate the energies and wavefunctions of the electron of
the hydrogen atom, proves to be non-separable, and as a result, no

exact solution can be found.

§1.2 Effect of the Magnetic Field on the Bound States of Atomic Hydrogen

Firstly, we will consider the problem of finding the bound state
energies and corresponding wavefunctions of the hydrogen atom in a strong
static magnetic field. It is a well-known result of quantum mechanics
that the equation to be solved is the (time-independent) Schrodinger

equation:

Y

= EJVG (1.2)
where Ej is the energy of the bound state |j>, Wj the corresponding
quadratically integrable wavefunction and H the Hamiltonian of the system.
Now the Hamiltonian for this system is the sum of the zero field
Hamiltonian, a term denoting the electron spin orbit'interaction, a term
linear in the magnetic field strength B, and a quadratic term in B, the
last two terms denoting the interaction of the atom with the external
magnetic field. The linear term in B gives rise to the linear Zeeman
effect, and the quadratic term gives rise to the quadratic Zeeman effect
(Landau and Lifshitz, 1975, Ch.XIV). For a detailed account of the
structure of the atom in magnetic fields of various strengths, see Garstang,
1977. It is sufficient to say here, that for the range of magnetic field
strengths which we are considering (ie between lO7 and lO9 Gauss), the
quadratic term in B cannot be neglected. In fact, at fields as strong as
9

107G, it will be seen later, that this term is very important to the

structure of the bound, and indeed the free, states.
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It is seen in section 2.2 that, due to the nature of the
Hamiltonian, equation (1.2) is non-separable and so cannot be solved
exactly. Unlike the case of the classical Zeeman effect in which the
principal, angular momentum and magnetic quantum numbers remain good
quantum numbers, the magnetic field is too strong to be treated as a
perturbation and the states can only be labelled by principle quantum
number n,m, the magnetic quantum number and parity 1r. In practice,
however, we continue for convenience to label the bound states with
thelr corresponding zero field labels (n,£,m), preserving the same

order for n and? as at zero field for each m and parity.

As perturbation theory Secomes inadequate at the fieldstrengths
considered here, the variational method must be used in order to find
an approximate solution to equation (1.2). This involves expanding
the wavefunctions in a suitable basis. If this basis is complete, then
the calculated energy eigenvalues and wavefunctions will be exact, but
it will be seen that it is not practical to use a complete basis set.
If we expand the wavefunction of the ground state Oyis ) in terms of a
set of basis functions {éj:j = 1)2..‘} , then we have :he following trial

solution:

\V1s j T

=Y a. ¢. (1.3)
o

J
where the aj are constants. Now it has been shown by Hylleraas and
Undheim, 1930, and MacDonald, 1933, that the exact energy of the ground

state is always a lower bound on the energy obtained using a (normalized)

trial function such as that of equation (1.3). That is,

< fﬂf *H v, drt

150 2 °
| Jlw g 1M
where E is the exact energy of the ground state. This simple

1s
(]

variational method is concerned with finding an expression for V&s in



terms of the ¢j » of the form given by equation (1.3), such that the

right hand side of equation (1.4) is a minimum. The trial function for
wis will be dependent on one or more parameters, which may be varied

until a minimum trial energy eigenvalue is obtained.  If the chosen trial
function is close to the true nature of the exact wavefunction, then the
corresponding energy will also be close to the exact energy. For a
detailed discussion see Dalgarno ig Bates, Quantum Theory Vol.l. It is
important therefore, to consider very carefully, the nature of the physical

situation before choosing appropriate trial solutions.

Trial wavefunctions for the higher excited states can also be
found, but care must be taken to ensure that all theyﬂ form an orthonormal
set. To be more specific, all states of given (m,f ) must be orthogonal.
The calculations involved in the solution of equation (1.2) are discussed

in more detail in chapters 2 and 3.

In choosing suitable trial solutions for the wavefunctions of
the bound states of the hydrogen atom, the effect of the magnetic field
on the orbit of the electron must be considered. In order to do this,

we first consider the free motion of an electron in a magnetic field.

In classical mechanics, it is found that the force exerted by an
external magnetic field on a particle, is proprotional to the product
of the charge of the particle and the velocity of the particle in the

plane perpendicular to the direction of the field. In fact

F = evB ‘ (1.5)

where B is the field strength and v the component of velocity perpendi-
cular to the field. If we take the field to be in the z direction,
then v will be the velocity in the (x - y) plane. ' As the force exerted

by this field acts in a direction perpendicular to the velocity, only
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the direction of the velocity will change, and not the magnitude.
The motion is therefore circular in the (x - y) plane with constant

radius r and (again from the results of classical mechanics) we have

2
F=mv ,
- (1.8)
Combining equations (1.5) and (1.6) we find that
r = mv . (1.7)

The classical angular frequency is defined as V/r and this can be
written

We = eB (1.8)

where w. is known as the cyclotron frequency.

The Schrodinger equation for a free electron in a magnetic
field Bz has been solved by Dingle, 1952, who shows that the energy
of the electron is unquantized in the z- direction, but that it can
only take allowed values in the (x - y) plane. From equation (1.7)
it can be seen that if we write

E = mv2 (1.9)

2
then the radius of the motion in the (x - y) plane is dependent on
the energy of the electron. This implies that the radius of the orbit
of the electron about the field directién, can also only take certain
allowed values. In fact, it has been shown by Dingle, 1952, that the

energies in the x - y plane are given by
E = (n+ PRio (1.10)
where n = 0,1,2......... Substituting equations (1.10) and (1.9) into

equation (1.7), we obtain

—

.
5 = 2 2
P —(__tj__) (2n + 1) (1.11)
eB
and the cyclotron radius is defined by
;
R:(ﬁ‘)? ) (1.12)
eB
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The discrete energy levels occupied by the electron in the
X = y plane are known as the Landau levels, and these levels are

equally spaced by H we au. (= 2o, Ry).

To summarize, to a first approximation, a free electron in
a magnetic field will describe a helical orbit about the field
direction, the radius of the orbit in the plane perpendicular to the
field direction, and the energy of the electron being quantized
according to equations (1.10) and (1.11), but the guiding centre of

the orbit "gitterbugs" as m changes.

Returning to the problem of the hydrogen atom in a magnetic
field, we would expect, in the limit as B+ < , that the Coulomb
attraction of the nucleus would become relatively negligible, and that
the electron would behave as a free electron in a magnetic field. It
has already been seen that this free motion is cylindrically symmetric
about the field direction, and so, as the magnetic field strength
becomes greater, we would expect that the orbit described by the
electron becomes more and more elongated in the z- direction, as it
approaches the Landau limit, departing from the zero field spherical
symmetry., Once the symmetry of the system has been established, it
should then be possible to describe, with great accuracy, the wave-
functions in terms of a basis of either cylindrical or spherical
functions: In practice, however, a region exists in which the orbits
are ovoid in shape, the major axis lying along the field direction, and
in this case, the system possesses neither cylindrical or spherical
symmetry, and it is this region of field strengths which is the primary

topic of study here.
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Throughout, the magnetic field strength will be measured in
terms of the parameter Y, where

Y = ™¢ Y =1 whenB = 2.35x 10°G. (1.13)

R
In fact, Y is the raigcygf the square of the radius of the first Bohr
orbit (3, ) to the square of the cyclotron radius. Now as R2 is
inversely proportional to B, it would appear that the cyclotron radius
decreases with increasing field strength, thus Y increases as B
increases. We consider three cases: firstly, if VY« 1 , then
al « R? » 1e for the ground state of the hydrogen atom, the region
to which the magnetic field confines the electron is large compared to
the dimensions of the atom, and so the effect of this field on the ground
state wavefunction is minimal. For higher excited states, however,
where the size of the orbit of the electron at zero field can approach
the cyclotron radius, the magnetic field becomes more important. In
this situation, the effects of a high magnetic field are observed at low
fields. For instance, at B = 2.35 x 1o“G (ie ¥ = 10‘5), the atomic
radius approaches the cyclotron radius at states with principle quantum
number 58 (Garstang, 1977). As Y approaches unity, the cyclotron and
Bohr radii become comparable and the effects of the field on the wave-
functions of all the bound states are significant. The fields which
are considered here, lie in the range 4.3 x lO—3 s Y<s 1 ,which
fall in this region. TFor ¥ > 1 , the cyclotron radius becomes much

smaller than the Bohr radius and in this case, the magnetic field becomes

the dominant force.

It is the region around Y =1 where it is the most difficult to
find suitable trial wavefunctions for the bound states as, for the states
of lower energy, the orbit of the electron becomes ovoid and cannot be

described exactly by a set of either cylindrical or spherical functioms.
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However, both approaches are considered here. We first take a set
of basis functions containing unperturbed spherical, hydrogenic
functions, and also a set of cylindrical functions and compare the
two sets of results, to see which is the more accurate within the
range of fields considered, ie which produces the lower set of energy

eigenvalues.

The basis of hydrogenic states was first used by Brandi, 1975,
whose results for the ground state energies are found to be in excellent
agreement with the results of Cabib et al, 1972 in the range of field

strengths 2.35 x 102« B < 2.35 x 10°G (ie 0.1 < ¥ < 1), and

substantially better than those obtained by Yafet et al, 1956 who used
a very simple cylindrical basis. It will, however, be seen that this
is not the case with states of higher energies, and that for these
higher states, the wavefunctions are much better described by a basis
of cylindrical functions for B 2 5 x lOBG.

A spherical basis has also been used by Smith et al, 1972, but
numerical results for energies are not presented and so comparison is
impossible. However, results are presented for bound-bound transition
probabilities for which comparison is possible with those obtained in

the hydrogenic and cylindrical bases (see Chapter 3 for a detailed

discussion of these results).

Praddaude, 1972, applied a basis of more complicated cylindrical
functions to the problem, which give the correct asymptotic behaviour of
the wavefunctions as r 3~ and as r = 0. The results obtained compare
well with those of the simple cylindrical basis used here (Kara and
McDowell, 1880) and these are discussed in more detail in Chapter 3.

The complicated functions of Praddaude, however, are non-separable and

therefore not of practical use in the calculation of such matrix elements
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as those occurring in the bound-bound transition probabilities and

oscillator strengths.

Perturbation calculations have been carried out by Ruder et al,
1981, who show that a perturbation treatment of the magnetic field is
adequate up to fields of the order of lO7G and obtain very good
agreement with the results of Praddaude, 1972, Cabib et al, 1972 and

Kara and McDowell, 1980, at this field strength.

Much work has also been carried out in the very high field region,
although such high fields are not considered in detail here. For
instance, Simola and Virtamo, 1978, have used a basis of Landau orbitals
for their wavefunctions and consider fields in the region Y » 1.

Results are given for ground state binding energies and ionization
energies for seven excited states and are 4-5% better than those

obtained by the simple cylindrical basis of Yafet et al, 1956, in the
range 10 < ¥ < 100. Numerous other variational calculations such as
those of Pokatilov and Rusanov, 1969, Bhaduri et al, 1977, and Dos Santos
and Brandi, 1976, who used a basis of three dimensional harmonic oscillator
functions, have also been carried out in tﬁis region. The results of Dos
Santos and Brandi, 1976, in fact, are shown to be more accurate than the
hydrogenic functions for lO9 < B < lOllG, which is exactly what we would
expect. Their results are also in good agreement with those of Praddaude,
1972. This work has also been extended by Brandi and Koiller, 1978, who
add a variational scaling parameter to each basis set (ie the hydrogenic
and three dimensional harmonic oscillator sets) to improve them, but still
do not achieve the accuracy of the cylindrical bases used by Kara and

. . 8
McDowell, 1980, and Praddaude, 1972, etc. for high fields (B » 5 x 10 G).

An additional problem is prevalent at very high fields, and that

is one concerning the relativistic effects on the bound states of such
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a system. This has been studied by Glasser and Kaplan, 1975, who
show that relativistic effects may be significant at fields as low

10 . .
as 107G for the excited states of atomic hydrogen.

Another technique for dealing with the very high field problem
has been studied by Pavlov-Verevkin and Zhilinskii, 1980 who use a
method based on perturbation theory. Their first order wavefunction
is a product of Landau functions and eigenfunctions of the Hamiltonian
describing motion in a one-dimensional Coulomb potential to a finite
distance away from the nucleus. The motion due to the Coulomb field
outside the cyclotron radius is treated as a perturbation. The range
of field strengths studied is B » lOlOG and much complicated numerical
work is involved. Results compare favourably with those of Simola
and Virtamo, 1978, and Praddaude, 1972, for B > 5% lOgG, and it is
shown that for B 2 lOlOG, third order perturbation theory is sufficient.

High Rydberg states have also been a subject of much study as,
due to the diminishing effect of the Coulomb field as the electron moves
further away from the nucleus, electrons in these states, even at low
fields possess the properties of those at lower energies in higher fields.
This quadratic Zeeman effect has been observed experimentally by Gérton
and Tomkins, 1969, Lu, Tomkins and Garton, 1378 and others, énd was
considered theoretically by Edmonds, 13870 who édopted a semiclassical

approach, which is appropriate in this region.

In a further study by Edmonds, 13973, a somewhat different approach
was used, in that the Schrodinger equation was solved, expanding the
wavefunctions in a basis of Sturmian functions. These functions have the
advantage that they form a discrete complete basis set, and so the conti-
nuum states are effectively included, which are significant for the high

Rydberg states. The basis must be truncated in order that the problem
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be finite and results for fairly low states have been compared with
those obtained using the hydrogenic basis at about lOuG. It was
found that the two sets of results were not significantly different,
and the hydrogenic basis, only requiring a few terms, was preferable
to the basis of Sturmian functions which requires an extremely large
number of terms in order that convergence may be obtained on the
eigenvalues. However, it is expected that the Sturmian basis will be
far more accurate than the hydrogenic basis for higher states. This
work- has been extended by Clark and Taylor, 1980, who use a similar
basis and calculate oscillator strengths for dipole transitions from
the ground state to states lying above n = 16 at B = 4? kG, and illus-
trate the inter-f mixing occuring at high levels due to the presence of

the quadratic Zeeman term.

Having obtained the energy levels for atomic hydrogen, it is then
easy to obtain energies for any other one electron system, as has been
shown by Surmelian and 0'Connell, 1374. They derive the basic result

2

- E (Z,B) = Z° E (1,B") (1)

i

where B’ = B/ZQ and Z is the charge on the nucleus. E (1,B') of

course, are the energies of the states of the hydrogen atom.

A scaling law for the bound-bound transition probabilities and
oscillator strengths for different nuclear charges has been derived by

Wunner, et al, 1980 and can be written

4 - - (1.15)
Dis (z,B) = 12 D¢ <1, B2 ) )
Z Z
where Dif is the dipole matrix element. So the bound-bound transition

probabilities and oscillator strengths for similar systems such as
He* can now be calculated directly from those of the simple atomic

hydrogen case. Wunner et al, 1980, used a polynomial approximation for
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Figure 1.1

'Oscillator strengths of some bound-bound transitions as a function of
magnetic field strength. The perturbation theory results in the low
field region and the adiabatic approximation results in the very high
field region have been given by Wunner et al 1980, whilst the broken
line represents the cylindrical basis results calculated in the electric

dipole approximation (Kara and McDowell, 1980).
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the dipole matrix elements and excellent agreement is obtained for
results for some oscillator strengths at B = 107G with those of

our spherical wavefunctions (see chapter u).

Throughout this thesis, the electric dipole approximation for
transitions has been used, ie the wavelength of the emitted radiation
is considered to be large compared with the dimensions of the hydrogen
atom. However, an adiabatic approximation (Wunner, 1980) is appropriate
at very high fields ( Y > 1 ) and it is shown in figure (1.1) that
the oscillator strengths go smoothly into those calculated in the
adiabatic approximation at high fields. There is also reasonable
agreement with the perturbation theory calculations at low fields
(Wunner et al, 1980), showing that this cylindrical basis gives a good
description of the wavefunctions in the range of field strengths
5 % 108 < B £2.35 x lOgG.

Two electron systems such as He, Li+ etc. have also been studied
by various authors, but no discussion of them will be given here. For

a full discussion refer to Garstang, 1977.

§1.3 Effect of the Magnetic Field on the Continuum States and the

Photoionization Spectrum -

The effect of the magnetic field on the free electron has already
been discussed in the previous section, and it was found that such an
electron is confined to Landau levels in the plane perpendicular to the
field lines, with the possibility of escape in the field directiom. We
consider the effect of a Coulomb field on these Landau levels. It has
beep shown, by a semiclassical argument (Starace, 1973) that if the
motion in the ( ¢, ¢ ) plane in cylindrical polar coordinates (we

assume B = Bz ), is decoupled from that in the z direction, and the
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Coulomb force exerted by the nucleus is approximated by a term

"% a.u., then applying the semiclassical Bohr-Sommerfeld quantization
condition, gives an energy spacing of about LST&ea.u., in the

threshold region for each value of the magnetic quantum number me.
However, as one moves away from threshold, the Landau limit is
eventually reached where the spacing is flo, a.u. This effect was
first observed experimentally by Garton and Tomkins, 1969, in Ba.
Experiments have also been carried out on Rb (Economou et al, 1979),

Sr (Fonk et al, 1978 and Lu et al, 1978) and most recently, on Cs

by Gay et al, 1980 who give results up to 8 x lOuG. All have
observed this threshold spacing. In fact, it is true that whenever
there is a mixing of fields, a pattern of equally spaced levels near
threshold will be seen (Rau, 1979). This implies that the structure
of the continuum in a semiclassical approximation is significantly
changed by the presence of a Coulomb field and this is clearly observed
in the results presented in Chapter 6. The energies calculated by the
Bohr - Sommerfeld quantization condition

J&{E _ml*ﬁ:‘ ?_ez'zd ) 1

f' nT et T, ’T} e = nrz)e ' (1.16)
where n = 0,1..... and p , g are the zeros of the integrand,
correspond to the wavefunctions calculated by the semiclassical WKB

method (Akimoto and Hasegawa, 1967).

On calculating the continuum wavefunctions we do not consider the
semi-classical method, but rather, solve the Schrodinger equation
directly, by numerical means, to obtain an exact solution. We use
the same approximation for the Coulomb field as Starace, 1973, Rau, 1979,
etc. and this renders the Schrodinger equation separable.  However, as
is shown in Chapter 6, the WKB method gives a good first approximation

to the energy eigenvalues for these calculations.
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The effect of the Coulomh field on these continuum state
functions, is to draw them to smaller p, thus significantly changing
the form of the wavefunction in the region of overlap with the bound
states (which is approximately 0 < ps 8 a ). It also has the
dramatic effect of changing considerably, the energy En corresponding
to the state 1n> , particularly at lower magnetic fields, but the
Landau limit is approached as B = = . Reéults for the continuum

wavefunctions and energies are discussed in greater detail in Chapter

6.

Photoionization cross-sections have been studied extensively
for zero magnetic field and results for many atoms and ions have been
tabulated for a wide range of energies. TFor example, the hydrogen
atom has been dealt with by Burgess et al, 1964 and many other systems
are considered by Peach, 1967 and Peach, 1970. However, little is

known about the cross sections when a magnetic field is switched on.

Only limited experimental work has been carried out in fields of
interest here, due to the difficulties in obtaining high fields in the
laboratory. At present, fields up to about lOSG have been obtained.
Amongst the experiments carried out in this field, are those performed
by Blumberg et al, 1978. They consider the photodetachment cross-
section for S in fields up to 15.7KG. Results for both +r and ¢
polarized light are given. They observe peaks at the discrete conti-
nuum levels, a phenomenum first predicted in the simple theoretical
approach of Wallis and Bowlden, 1956, where the ground state wavefunction
was taken to be of the simple form

Y o= Netb (1.17)

o

and the continuum was represented by pure Landau levels.
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We study the photoionization cross-section with both the
Landau and the Coulcmb modified continua, and study in detail the
behaviour of the cross-section at the discrete levels. (Kara and
McDowell, 1981). We find, in fact, that in our approximation, and
in the absence of broadening due to the velocity of the residual ionm,
that the behaviour of the cross section at the discrete energy levels
goes as l/k or kz depending on the parity and magnetic quantum number
of the init?al and final states. This is in agreement with the
theoretical prediction of Blumberg et al, 1979, on S . On including

the broadening effects due to the motion of the ion, agreement is

obtained with previous experimental results.

More recently, some theoretical results have been presented by
Schmidt et al, 1981. They, however, only consider photoionization
to final states whose energies lie in the interval [fiw, ,Zﬁﬁﬁ ry,
ie up to the second Landau level. The initial state is a Landau type
orbital as the field strengths studied are in the range
2.35 x 1011<B < 4.7 x 1013, ie 100 < ¥ < 2 x 10°. These are far
higher than those studied here and, due to the dominance of the
magnetic interaction, it is assumed that the continuum contains pure
Landau levels in the ( o, ¢ ) plane, with the Coulomb field only
considered along the z axis. An interesting discovery here, is that
the behaviour of the cross-section at the threshold hu-= h“ﬁ , is
constant with respect to Ez’ which is in agreement with the prediction

of‘Wigner, 1948, in the presence of a Coulomb field.

In a recent publication (McDowell, 1981) it has been shown that
the scaling law, relating cross sections for different nuclear charges,

is exactly the same as that given in equation (1.15) for the dipole
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matrix elements. The cross sections are related by
a3, 12,8) Z2,)?
— = | = .18
MEATY Z, (1.18)
where
2
—\fé = ZL u (l.lg)
and
Bi =_Ei_ _ (1.20)
2
24

Zl and Z2 being the charges of two hydrogenic ions, and hws being

the energy of the incident photon.

Cross sections for other hydrogenic ions can now be calculated
directly from those of atomic hydrogen which are given in Chapters

5 and 6.
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CHAPTER 2

ENERGIES AND BOUND-BOUND TRANSITIONS USING A BASIS OF UNPERTURBED

HYDROGENIC STATES

82.1 Introduction

This chapter is concerned with the calculation of energies and
bound-bound.transitions of atomic hydrogen in a strong static magnetic
field, the wavefunctions being expanded in a basis of unperturbed
hydrogenic functions. The reason for this choice of basis functions
is discussed in the introductory chapter. Section §2.2 derives an
expression for the Hamiltonian which includes a linear and a quadratic
term in B (the magnetic field strength). At the field strengths we
are considering, the quadratic term is not negligible. The eigenvalue
equation is also derived, from which the energies and wave functions
can be calculated. The next section calculates all the matrix elements
required to solve the eigenvalue equation derived in §2.2, and section
82.4 describes the numerical methods used in solving this equation.

In order to solve the equation, the matrix elements must all be reduced
-to a form in which they can easily be computed. This is achieved in
section 82.5. The remainder of the chapter is devoted to deriving
formulae to calculate the bound-bound transition probabilities and
oscillator strengths. The same matrix elements occur in the transition
probabilities and oscillator strengths, and these are calculated in

section §2.7,.

§2.2 The Hamiltonian And Energy Eigenvalue Equation

The Hamiltonian of a particle of mass u, charge -e and momentum

2
p = -1fV, moving in the Coulomb potential of a proton,- %7- (infinite
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mass assumed) is

(2.1)

jasd

]
2=
to

i

I

1]

]

|
<]

N

]
5 |e

When a magnetic field B is imposed on the system, by a well-known
result of classical mechanics (Goldstein, 1950, p222), the Hamiltonian

is obtained by replacing p by p + %i where

A = A(R,T) (2.2)

is the (time dependent) vector potential which represents the inter-
action between the electron and the magnetic field. The Hamiltonian

then becomes

= L eA yo _e?
H = 2 (p+==) =
. - 1 e e??
ie. H = Ho+2u{c(R.§_+A_.g)+—cz—} . (2.3)

But, by elementary vector analysis we have
p.A$ = -ifiV.A¢ = -iBi¢V.A - iKA.V$ = A.pd (2.1)

therefore,

2
= e _ e 2
H By ¥ uc R-A 2uc? A% . (2.5)

The problem we are considering is the interaction of a static magnetic
field B = B2 with the hydrogen atom. A then becomes A(Y) and it is

easy to show that A = %g_x r satisfies Bg_= V x A and so

ieﬁB 62 1 2
Ho + 2nc L+ 7502 (B x r) (2.6)

josy
"

"

where L = -ifir x v and L, is the z component of L.
Now setting cosp = B x r, i.e. taking B along the g = O axis,
we obtain (B x r)2 = B2r2sin?g. Throughout, the magnetic field will

be measured in terms of vy, where
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B Aw
y="8" = %. (2.7)
Ry 2Ry

B is measured in Gauss, Mg is the Bohr magneton and the cyclotron

frequency is

_ eB
mc - u . (2.8)
Ry is the Rydberg and we find that IEJY=1 = 2.35 x 10° Gauss =

2.35 x 105 Tesla.
We must also add to the Hamiltonian, a term representing the

spin interaction. The spin magnetic mcment of the electron is

o = -g =

where S is the spin angulér momentum vector and ge is the Landé-

g factor cofresponding to the electron. According to Dirac relat-
ivistic theory, g, can be taken to have the value 2 (Bethe and
Salpeter, 1377, p207). The term to be added to the Hamiltonian to

represent spin interaction is then

- - _e. — - —e— =
-a.3 = g s B.S 1 BS, 2ys,, . (2.10)
The Hamiltonian is now
¥2 2 i2
H = Ho + Y(Lz + 2SZ) + 4~ r° sin 8 . (2.11)

The time-independent Schr&dinger equation,
HY = EY (2.12)

is not exactly soluble and so an approximation for the wave function

¥ must be found. Let this approximation be such that
Y = Za. ¢, (2.13)

where { ¢j t jv= 1, 2 .... N} is a linearly independent set of basis

functions.
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At relatively low fields, i.e. B < 10% G, where the atom retains
its spherical symmetry and the bound states retain some of their zero-
field character, it would seem logical to assume that a basis set of
unperturbed hydrogenic states will give good results in this regiom.

This set of basis states was used by Brandi (1975), but in his paper,
results for the energies of the 14 lowest bound states are only
presented graphically. To obtain more accurate results for the energies,
and in order to go on and calculate bound-bound transition probabilities,
it was necéssary to repeat the work of Brandi. The basis set functions
are:

¢j N Rn.lgr) Yz.mg(%) X

. s.m (2'14)
33 3

i8]

R_, is the unperturbed hydrogenic radial function, Y

nl the spherical

harmonic function and Xem the spin function. n,, L., m S., Mm__ are

the principal, angular momentum, magnetic, spin angular m;mentum and

spin magnetic quantum numbers respectively, of the unperturbed state.
Equation (2.12) must be solved in order to find the energy eigen-

values Ej :j=1,2 ... N and the ajp of equation (2.13) which are the

eigenvectors; ajp :j =1, 2 ... N are the elements of the p'th

column of the eigenvector matrix.

Equation (2.12) can be rewritten

Yy H y = E ¥y y .
< ¥ 5 9’ < ¥ | 7’ (2.15)

where the integration is over all space and H is given by equation (2.11).

§2.3 Calculation of Matrix Elements <YP]H]Wq> and <YD|Wq>

(i) Matrix Element of HO

As the ¢j are mutually orthogonal functions, we have

E(0)

< T a, L a. . .
- ¢ 3 P a9 3]

. (2.16)
S e T
i

I ag ¢
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(o)

where Ej is the energy of the unperturbed state ¢j.
(ii) Matrix Element of (LZ + QSZ)

We know that

LZ Yzjngr) = mlj‘ﬁ Yzjngr) (2.17)
and
X = mg,h X (2.18)
z Sijj 55 sijj

and again using the fact that the ¢j are orthogonal, we have

%
<L a,_ ¢.[(L_+2S8)|I a > = Ia, a,vy (mg., + 2mg, 2.19
2y 41, ZIk Kq % I agp 57 (mag mss)  (2.19)
(iii) Matrix Element of ZvZr2sin28
1 A
Noting that sin2e = %-(l - 2(%02 YQO(r)) (Edmonds, 1965,

pl24), we have

Jo 1
< a,_ ¢.|3v*r%sin?e]: > = #y2 ra, .-
: a]p ¢j|4Y sin |k akq ¢k BYS ka]p akq Rjk 3 x
] Js
- P T 1 a % - a
{y (r) Y (r) -2(2°%Y (r) Y (r) Y, (r)} x
I R'jmlj kagk 5 Qjmz. g'kmzk 20
° dr (2.20)
XSijj XSkmSk
where
) r (2) (r) r* (2.21)
R. = R r) R r) r° dr . 2.21
jk 0 anj nkkk

Both Ylm(r) and Xgp. are orthogonal polynomials and also (Edmonds,
s

1965, p63)
LI a -~ %
v (¥ (r) Y (r) sing ds d¢ = {(227+1)(222+1)(223+1)}
J zlmzl 22m22 23my 5 ¢ ! 2 3
. (™ (21 %2 zg) (21 22 23 (2.22)
0 0 0 ‘mzl mzz m23

a b ¢
where ( ) is the Wigner 3-j symbol (Edmonds, 1965). Now
d e £
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using these facts and also Yg g%) (—l)m Ylké%) » equation (2,15)
b ]

becomes:

2 '
20242 - Y- 2 .-
r“sin“e|Z > = L a, = R, x
lk g % T B 5,k P %kq "k
- 1
{600 6 - (1™ (22 +1) (22 4102 /2, 2. 2\ (e, & 2
5™y j k 3

0 o] 0] s TR 0

X bg.q O (2.23)

From the results of sections (i), (ii) and (iii), i.e. equations

(2.16), (2.19) and (2.20), the total Hamiltonian matrix element becomes:

li % !
H = ra,*a R, 0., § 8 + L a,*a, x
Pq ® j,x P ka 3k ik Tmg.mg S3%k 5 ¢ 4
(o)
(E;77 + ymg. + 2ymg.) (2.24)
3 3 ]
where
;
= - (- —ml' 2
ejk {Gngk szjmzk (-1) 745 ((2zj+1)(21k+1)) B by 2
0 0 o0
2 % 2
. e
5 ] (2.25)
—mzj mgk 0

Consider the two vector-coupling coefficients contained in the expression

for ij (equation ( 2.29): from the properties of 3-j coefficients,

the term Qj 2, 2 must be zero unless mpy = mzj and
—-m 3 m o 0
]zj—2[ < Y < zj+2 (i.e. the triangular rule is satisfied) and lj+£k+2

is even. Similarly for lj Lo 2 but in this case the condition
(O 0O o

mle = My does not apply. So the rules governing the coupling of states

are that the state In,l,mg,s,ms> can only couple to itself aﬁd

ln,zi2,m2,s,ms). The only exceptions are that 4=0 states can only couple

to 2=0 and 2=2 states and %=1 states can only couple to 2=1 and £=3

states. So Hpq (the matrix element of the Hamiltonian < wp | 8 | wq >)
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will form a square matrix {Hpq} of dimension D given in table 2.1.

zj Possible D~
Choices of &
k
0 0,2 2N,
1 1,3 2N,
2(>1) L, 22 3N3

Table 2.1
This table gives the dimension of the matrix of matrix
elements of the Hamiltonian for the 3 possible cases of
zj. Nl’ N2 and N3

basis elements for each possible coupled state.

are the sums of the totzl numbers of

In all the following calculations with this basis set, spin is
omitted, the primary reason for this being that the omission of spin
enables the results to be compared with those of other workers such
as Praddaude (1972), Smith et al (1973) who also neglected spin. It
is easy to add the spin energy shift AE = 2ymsj later.

So the equation to be solved now, in order to find the energy
eigenvalues E, and the eigenvectors x , is

( {H_} -{<¢ |E|o >} ) x -= ( {H_} -E{<¢_[¢ >}) x

. Pq ¢Pl [¢q - Pq ¢Pl q -
= ({H_}-Ef{s_l})x = 0 (2.26)
' Pq Pq - =
where {qu} represents the matrix whose (p,q)'th element is qu
Due to the nature of the angular part of the unperturbed hydrogenic

functions, they form an orthonormal basis set, i.e.

* ad = (2.27)
j ¢j ¢k dr dr Gj,k .

This indicates that the matrix elements Spq form the identity matrix,
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The eigenvalue problem is then reduced to the form:
{H_}x = Ex 2.28
o % x (2.28)
here {H_} i rdr = t . Thi
where { pq} is symmetric (i.e i ¢jH ¢ dBdr = f ¢ . H ¢j d¥dr ). This

is because

<oglH o > = <ogle, > = Be
< ¢j|YLZ|¢k > =y mg< ¢j[¢k > =y mgy aj,k . (2.29)
0 = 0 (from equation (2.25))

ik kj

§2.4 Numerical Methods Used to Solve the Eigenvalue Equation

The numerical routine used to solve this eigenvalue equation
(i.e. equation (2-28)) is taken from the NAG library and a brief
description of the methods used is given here. The routine used in
_these calculations is FQ2ABF. = - .

The nxn symmetric, positive definite matrix {Hpq} is reduced
to tridiagonal form by applying n-2 orthogonal transformations of the
form

Ai+l = Pi Ai Pi » i=1,2 ... n-2 | ' (2.30)
where Ai is the matrix {Hpq} after i transformations. This reducing

scheme is known as Householders Algorithm (Wilkinson and Reinsch, 1971,

PP212). Pr is of the form

_ t
Pr = 1- 2 M, (2.31)

with wrt = (0, 0, ... 0, % ces xn), where v, is a normalized

X
r+l° “r+2°

vector. The transformations are such that if

(1) _(D (1)
all al2 EEEE aln
(1)
#21
Al- = . . (2.32)
(1) (1)
anl REEEEEEEE ann_

then,
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(2) (2)
41 %19
(2) (2) (2) (2)
a2l a22 a23 e 0 ¢ 0 o a2n
o a(2) (2) (2)

37 a34 cesacene a3n
Ay = 0 , and (2.33)
‘ (2) _(2) (2)
0 an2 an3 cereeens ann
aii) aig) 0 0 +.00o O
(3) _(3) _(3)
a21 a22 a23 O +eeee O
(3) _(3) (3)
0 332 a33 cereesne aan
(3) (3)
A3 - 0 (0] au_3 cesessaa aun (2.34)
0 0 a(s) cestseene a(s)
n3 nn

etc., until tridiagonal form is reached. So the matrix Ar contains
n-r-1 elements in the r'th row and column which have to be reduced to

zero by Pr' We now have n-r-l equations for x

] ? Xr+2 see X Also

the normalization condition is another equation which means that we now
have n-r equations in n-r variables. Thus the matrix Al can be reduced
to tridiagonal form in this way.

Example

Consider the matrix

Ay = [a b e (2.35)
b 4 e
c e f
We h = AP h P, = I-2 t W = (0 ) and
e have A2 = Pl 1 Py» where P, = - wl Wl, w, = 2%y 1%g
x22 + x32 = 1, and in this case, A2 is the tridiagonal form. Now,
Pl = 1 0 0 ‘ (2.386)

0 1-2x 2 -2%X.X

0 - ~ 2
2X2x3 1-2x
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- 2 2
AP = [a b(l—2x2 ) - 2exy%y -2bx x4 + c(1-2%,7) 1\ (2.37)
' 2 2
b 41 2x2 ) - 2ex2x3 —2dx2x3 + e(l-2x3 )
2 2
c  e(l 2x2 ) - 2fx2x3 -2ex, %y + f(l-2x3 )

The first row must remain unchanged on premultiplying Al Pl by Pl’

so in order that P, A, P. is tridiagonal, we must have

17171

c - 2x3(cx3+bx2) = 0. (1)
Since Pl is orthogonal, the moduli of the row vectors is invariant i.e.

a2 + (b + 2x2(bx2+cx3))2 = a2 + b2‘+ 2 (ii)
From (i) and (ii) we have,

ex,, - bx, = x,(b2 + %)% (ii1)

2 3 3

and also

x22 + xs2 = 1 , (iv)

For convenience, take the positive square root in equation (iii).

Equations (iii) and (iv) give two equations in 2 variables so %, and

X4 can be found in terms of b and ¢, therefore P2 can be found in terms

of b and ¢ and the tridiagonal matrix A, is easily calculated.
Now as the matrices Al and An are similar, the eigenvalues of

An will be the same as those of A The eigenvalues of the tridiagonal

l.
matrix An are calculated by the QL method. This method is a trivial
adaptation of the QR method which was devised by, and is discussed
at some length by, Francis (1961), so only a brief outline is given

here. Basically, it relies on the fact that a symmetric, tridiagonal

matrix can be written as the product of a unitary matrix and a lower

triangular matrix. Let An = B, then after k transformations Bk is
formed and
B, = Q L (2.38)
where Qk is unitary and Lk is lower triangular.
= % = * =
Brpr O B O = Qe Iy @ = L Q
= % % % .
and By, = Q*Q_y* +ee QF B Qp Qy ver Q . (2.39)

It is shown by an adaption of the proof by Francis (1961) that as
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k+=, the matrix Bk tends to a lower triangular matrix, the diagonal

elements of which, are the eigenvalues of B But B, is similar to B

k' k

which in turn is similar to Al so the diagonal elements of B, are

k
actually the required eigenvalues of Al'
In the Householder reduction routine, the best results are obtained
from a 'balanced' matrix, i.e. if the moduli of the row and column
vectors of Al vary considerably, then using row and column operations;
Al is manipulated such that the last row and column vectors have the
largest modulus. As a consequence of this, the tridiagonal matrix
will have the largest elements in the bottom right hand corner. This

necessitates the use of the QL rather than the QR transformation. .

The original matrix A, is related to By by the orthogonal trans-

1
formation P and the unitary transformation Q:

-1
= 7 = % =
B Q* B Q Q* P A; PQ S A} S, (2.10)
where S = PQ. The eigenvectors are calculated by direct substitution

of the corresponding eigenvalue into the equations

By = Ay
-1 (2.41)

STy = X
where y is the eigenvector of Bk corresponding to the eigenvalue A
and x is the eigenvector of Al corresponding to the eigenvalue A (i.e.
the required eigenvector). The eigenvectors produced by the appropriate
NAG routines, are normalized.

In our case, it is unnecessary to balance the matrix {Hpq} as the

moduli of the column vectors do not vary by more than two orders of

magnitude.

§2.5 Computation of the Matrix {HEQ}

The methods used in the computation of the terms occurring in the matrix
element Hpq’ an expression for which is given in equation (2.24), are

given below.
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1

(i) Computation of Rjk
]

Rjk is defined in equation (2.21) as being the integral over r of the

product of two hydrogenic radial functions and r2. The radial functions

can be written:

2 ,

Rnl(r) = Ne -r/n r F(-n+2+1l, 22+2, ) (2.42)
where
2+l ;
No= z+22 t ((n;zi;' ¥ (2.439)
n*Te (2041)1  ‘PTETRE

and F(a,B,x) is a confluent hypergeometric function (Landau and Lifshitz,
1975, pll8). Now, the confluent hypergeometric function can be written

as a power series in x

(-~}
o g oDt (B-1)! P 0. 141)

A e Cr= 2

where B is strictly positive. Writing a=%-n+l, and B8=22+2 and x=—2-£ s
, : n

we have

F(-n+2+l, 2242, 22 ) = g (omip)! (2041) ()P I‘P . (2.45)

- -0 (-t (22+414p)!

This expression can be written in the form E aP rP where a, satisfies

the recursion relation

_ 2(L-n+p+l) - (2.u6)
ap+l T n(p+l)(28+2+p) ép° 3, =1

This shows that the maximum value of p such that ap is non-zero is

1]
n-£-1. So Rjk now becomes

@ -1
. .
R‘k - J N. Nk o"Y5KT £j+2k+4 j zj nk a(]) a(k) Pt an
3 o 3 =0 qO P q
(2.47)
where
I S (2.48)

Y
jk nj o
Performing the integral over r, we obtain

v nj—lj-l o - zk (j) (k) , (L35+2x+ptati)! }. (2.u49)
R. T N. N a . —= :
ik p=0 q= O B e v tithetptars

1
In program HYDROGN, R., is calculated in SUBROUTINE RMAT, the coefficients

jk
a(j) and a(k)
p q

being calculated recursively and stored in arrays AC and

BC respectively. NJ and Nk are stored in AN and BN and the final sum

R'k in SUM. See Appendix (I) for details of program HYDROGN.
]
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(ii) Computation of ejk

The express;on for @jk is given by equation (2.25). Firstly, consider

the diagonal elements, i.e. when lj = % =2, say.

_ m L 2 2 L % 2
ij = 1 - (-1) (22+1) (o o o> (_m m o) : (2.50)
2 2 2 41 .4 .3
where (O o O) = (-1) {EE;E&Z (2.51)
L8 2) _ 22+2+m 2(3m? - 2(2+1)(24+3))
and (-m m o) = (1) TCHErT) (uae8) Cabes) (g (uprayye -(2+52)

For the off-diagonal elements, previously calculated selection rules

state that 2, = 2. 2, ©0,. then reduces to

k ] jk
1
0., = (1™ ((22.%241)(22,41))2 ( i 44t 2) i Ay 2)
] J ] 0 -0 O/ \-m m O
where ' (2.53)

2 2. 1
= (-1)7F V6 (2.42)(2.+1) ——
o 0 o 3 3 f(lj)

_ 2 1
= (-1)"k /6 (zk+2)<zk+1) ETE;T

(@]
o
o N

}
g u
=

o N

1
2 ; = (DM (6(e, -me2) (2, -mr1) (2 #me2) (2, 4me1) )2

) = (-1)’Lj'm {s(zj+m+2)(z].+m+1)(zj-m+2)(zj-m+1)}15

1
with f(x) ((2%+5) (2x+4) (2x+3) (2x+2M(2x+1) )% .

]

1
OjkfiSHnow in cemputable form and ((22]+l)(22 +1))° ( 3 & 2) (1
0

is calculated in SUBROUTINE THREEJ of program HYDROGN, (see

Appendix (I)).

Computation of other terms occurring in the matrix elements Hpq

is straightforward.
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§2.6 Transition Probabilities

Consider the spontaneous transition from a state m' with energy
Em' to a state m, with energy Em’ in a uniform static magnetic field B
with the emission of one photon. Both states are bound, hydrogenic
states and m' and m represent all the quantum numbers of the two states.
The angular frequency of the emitted photon is
= % (E

- Em). (2.54)

w
m'm m!

The method for finding E, and E_, has already been described in section
§2.2. -Now, let the interaction between the radiation field and the
electron be represented by a vector potential A', where

A'

A'(r,t). (2.55)
Including this in the expression for the Hamiltonian given by equation

(2.3), we get:

1 e e 2 e2
1] - — — —_— 1 -
H Qu{D+2chr+cA} 2 (2.586)
and so
[ _&_ ' 1 & 12 € 1
H'Y = H+ 3o (p.A' + A'.p) + o2 Ate + Tna? A'.Bxr (2.57)

where H is the Hamiltonian of a hydrogen atom in a uniform magnetic

field only. Choosing our gauge such that p.A' = A'.p, we have
2512
1 = £ ar & e
H' = H+uc§-'(2+2c§x£)+2—w—z (2.58)

We can eliminate the term A'2 by means of a unitary transformation
U, which does not in any way change the problem, but merely converts

the wavefunction Y to a different basis. We can write

y = Uy (2.59)
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and choose U to be of the form

U = explcfT A'(0)2dt) . (2.60)
The time dependent Schrodinger equation (H'Y = iK¥) can now be
written
{H+==A'.(p + =3 x r) + 345%2} Uy = 'ﬁ(U‘ + CA'20y) (2.61)
ye =~ Rt g2k 2uc b= oy v '

which can be reduced to
e e = Ry
{H + S Atz By iny (2.62)

where we have written

2

- e .
c = .'hi—czl—ﬁ (2.863)

The additional term in the Hamiltonian due to the interaction between
the electron and the electromagnetic field can now be treated as a

perturbation, i.e. if

1 = :
H H+ H, o (2.64)

then we treat Hin as a perturbation, where

t

:.e_l hx 2.65
Fine = SoAl-(R+uy wBxm), (2.85)

In order to find the transition probability in the length formulation,
we need to find

<m’|H. |m>

int
in terms of

<m'|z|m>.

This may be achieved by considering the commutator {r,H} where
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-ﬁZ 9 eZ 2
= - — 2.3
H A {—r sin2s . (2.66)

Consider the components of the matrix element of the commutatorA{gﬁH}:
(1) <m'|rv? - v2p|m>

Taking the x component of the above matrix element, we obtain
32 32 (2) _ % (2)
<m'|xax2 - sreXlm> = J {w R L2 (me) } dx (2.67)

where wm is the wavefunction corresponding to the state |m> and
superscript (n) denotes the n'th derivative with respect to x.

Performing the differentiation on the second term in the integrand

we get:
<m'lx§3- - 33 X[m> = {yp * pid w(2) -2y # w(l) ] * X w(2)} dx
ox 3x2 _,m' m m' 'm " 'm' m

1]

-2 J wm. w(l) . (2.68)

By similarly considering the y and z components, we obtain the final
result

<m'l£y2 - VZEJm> = =2 <m'|V|m> (2.69)
(ii) <n'|z(B x £)2 - (B x r)2¢|m>
Now, remembering that the magnetic field is taken to be in the z direction,
we can write g as the vector (0,0,1) in cartesian coordinates, and so

(g X 2)2 = y2 + x2 . (2.70)
It is now obvious that the matrix element of the commutator {gg(g x )2}
is zero.

2 2
(iii) 'z - % z|w
rs -7 L

It is immediately obvious that this matrix element is also zero.
(iv) <m'|gpz - ngjm>
Lz is given by XRy = YR,> where B, and Ey are the x and y components of
momentum respectively, i.e.
L = -i‘hxg—y+ iﬁy% : (2.71)

Considering the x component of this matrix element, we have
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ofs

<m' xLz - sz[m> = - ik [ ¢m' v ¢m dr , (2.72)
and considering the y component, we have
<m'{vl - = 1 * .
|yt, - L,yIm> iR J b x ¥ dr o (2.73)

As the partial derivatives involved in Lz are only with respect to
X or y, it obvious that the z component of this matrix element must

be zero. Therefore the total matrix element is

<m.' ELZ - nglm>_ = ik <m'l(‘yax:0)lm>

= ik <m"g x EJm> (2.74)

.

From equation (2.86) and the results of (i), (ii), (iii) and
(iv), we can write down the following expression for the matrix

element of the commutator {r,H} :
ik -
<m'[{zx,H}|m> = <m'l;~ V+ ifw B x rfm (2.75)

Now H.

int® the part of the Hamiltonian representing the interaction

between the electron and the radiation field, can be written (equation

(2.62))

«ﬁz

H = é_'.(;V'i'i’ﬁw

ie ‘
) ) 7
int ch B x r) (2.76)

L

So, from equations (2.75) and (2.76) we can write

<m'|Hint|m> = - E%-éf . <m'|{r,H}|m> . (2.77)

Also, we can write the Schrodinger equation,
= (2.78)
i wm Em wm
where Em is the energy of the electron corresponding to state wm,

Premultiplying this equation by wm' r and integrating over all space,

we obtain

% %
I Yo TH Y dt = E_ I b Ty dr , (2.79)
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o

and post-multiplying by r and premultiplying by wmf and integrating

over all space, we obtain

"
—
—~
o)

=
<
=]
~
bl
—~
s
<
=
~
[a
2]

%
me, He ¢ dt

14

boonv dr o, (2.80)

n
[}
=]
—
e

using the fact that H is hermitian. From equations (2.79) and (2.80)

we have the result
' [{z,H}m> = (B - E,) m'[zfe (2.81)

So finally, we can combine the results of equations (2.77) and (2.81)
to get the following expression for the matrix element of Hint’

<m'|H, _|m'> = - ie , A'.<m! |p|m> | (2.82)
int ¢ mm'! — =

So it has now been shown that the matrix element of Hint can be
written in terms of the matrix element of r, which is the correct
form of the matrix element in order that the transition probability
may be calculated in the length formulation. This expression, in
fact, is exactly the same as the equivalent expression for the zero
field case, (Eyring, Walter and Kimball 1957, plll). From this
expression (equation (2.82)) it has been shown by several authors
(for example, Condon and Shortley, 1963, Eyring, Walter and Kimbal,
1957) that the transition probability per unit time in the magnetic
field (which is exactly analogous to the zero field case), taking

into account emission of radiation in all directions, can be written
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as

ye2 ~ %
Am = Frodtprme <0 ZooEe [m>[2 (2.83)

(Cf. Eyring, Walter and Kimbal, 1957, plls).

There has been some dispute as to the correct form of the
Einstein 'A' coefficient, the original formulation of Smith et al
(1973) being in error: see Smith et al (1973) and Brandi et al (1976).
The result of equation (2.83), which is the length form of the
transition probability, agrees with the formula obtained by dos
Santos and Brandi (1976) which is the correct result. The result

of Smith et al (1973) was later corrected (Smith et al (1975)).

Converting the expression given by equation (2.83) to atomic
units (i.e. putting length in terms a, and frequency in terms of

4
g% ) we cbtain

2
be

3 meua , 1l ~ % » -ﬁZ 2
m'm ~ 3fc3 “m'm (53') l<m I L %5 lm)l (522) (2.84)

i=-1



1 . -
where a = I§776§7§ (the fine structure constant) and TO = 2.4187x10 17

seconds, so that the final result is
10 3 : ok
Aprg = 2:14210301x1010 w3 [em'| 3 . ree, [mwf2.  (2.89)
l:-

The ei are defined by

-1 .
€ Tt /5 (ex * ley)’ e = e (2.86)

where

]}

e, = (1,0,0), ey = (0,1,0), e, (0,0,1) (2.87)
in cartesian“coordinates.,

The formula of equation (2.85) can be checked with the known
zero-field results given by Bethe, H.A. and Salpeter, E.E. (13877).

Considering the 2p0 - lso transition, we have

= lc1.1y =
w2p,ls 3(1-3) 0.375 a.u.
1 LY 2 215 °
|<2p| = r.e. |1s>]2 = Py (Bethe, H.A. and Salpeter, E.E.,
i=-1

1977, p262) .
Therefore,

10 g 2i3
2.14210301x10*Y x (0.375)° x 39
-1

1
A2p,ls 3
6.2681 x 108 s

(2.88)
which agrees with Bethe, H.A. and Salpeter, E.E. (1977) p266.

So this result for the transition probabilities (equation (2.85))
of atomic hydrogen in a magnetic field B tends to the true zero field
result as IEJ -+ 0, unlike those of Brandi who neglect the integration
over all directions of polarization, and in consequence, their results
corresponding to zero-field are a factor of gﬂ-from the true results
of Bethe, H.A. and Salpeter, E.E. (1977) p266. In fact, in order to

compare our results with those of Brandi et al (1976) and Smith et al

(1973) it was necessary to include this factor of gﬂ-in their results.
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§2.7 Computation of Transition Probabilities

In order to find the transition probabilities, an expression

for which is given in equation (2.85), we need to evaluate the matrix

"

elements of the form <m‘|rulm>, where ru = gseu . From equations
(2.13) and (2.14), we have (ignoring spin)

<m‘lru|m> = (r) Y (r)lr IR r)

j,k jm' akm n]zj 2 my j nklk

¥ (r)> .

Now u = 0, 1 or -1 and we have (from Edmonds, 1965)

=z = = YT
r, =z = rcos = /(3 ) r Yl’0
1 . r .
-z (x + iy) = - J7 sing e’ /( D r ,l (2.90)
_ 1 ey T . i Y
r, = 5 (x=-1iy) = ;5 sind e /( I SN
and so generally, we have
= /(2
v, = (39 r Yo (2.91)
The matrix element now becomes
@
Uar
an'le m> = I a., Fa_ V() J R (r) r R (r) r? dr
H » jm' “km "3 o njz] 0 Ly
* ~ -~ "~
x |y (r) Y, (r) Y (r) da (2.92)
where dQ = sin?6d6dé. Writing
I.(j,k) = [ R (r) R (r) r3 ar (2.93)
3 ? 0 njlj nklk

and using equation (2.22) to evaluate the angular integral, we obtain

mz. L. 1 lk
an'r [m> = (-1) T I 05,0 Y((24:41)(24,41)) [ ]
H ] 0 0 0
L. 1 %
x J K (2.94)
'mlj 0 mlk

Consider the two 3j symbols in equation ©.91); the second 3j symbol
is zero unless %, - 1| % 8, < gj + 1 (i.e. the triangular rule is

J == =
satisfied), Mok = mlj + =0 and Lj + lk + 1 is even, the last

condition also applying to the first 3j symbol. ' From these selection
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rules it can be seen that transitions can only occur between states of
different parity, in fact only when A% = 1. Also, the selection rule
Am =y =0, 1 or -1 must be obeyed. This rule governing the magnetic
quantum number shows that for each transition, there is only one
value of u for which <m'|ru|m> is non-zero.

It should be noted that, at zero field, the energies of states
|n,2,m> where m = -22-1, -2¢ ... 22+l coincide and this should be
taken into account when evaluating the transition probabilities by
summing over the magnetic quantum number of the state with the lower

energy.

The total expression for the transition probability now becomes

L. 1 2
H 10 3 . ] k
A 2.1u'210301xlo O (2£j+1)(22k+1) {Is(j,k) (o -
A
x J }2 . (2.95)
My M My

(i) Computation of Is(j,k)

Is(j,k) is computed in a very similar way to that of Rjk’ the

radial matrix element occurring in the calculation of the energy

levels (see section §2.5). The final result is

- !
n.-2.-1 nk'gk 1 (zjf2k+p+q+3)

N, N a(j) a(k)

I.(3,k) = 3¢d } (2.96)
3+ _ k L.+ +p+qtlt
on q-o P 4 ij ] k
where, as before,
SAitl (ni+£i)! 1 . )
N, = { , ) 2.97
I kit 41y (PRl
i i
(1)
. 2(2.-n.+p+l) a
e : .2 2 , a =1 (2.98)
p+l ni(p+l)(2£i+2+p) )
and
vy . L+t (2.99)
koS om



(ii) Computation of < J

Let lk = £ and My =M throughout.

Case I: lj = 4 -1

k
-1 1 g \?
- -——2'__.___ .
0 0 0 (22+41)(22-1)
Case IT: 2, = 2 +1
3j k
¢l 1 2\ 2
- 2(2+1)
o 0 o (22+43)(22+2)(22+1)
8,18 2
(iii) Computation of J
“Mps W My

Case I: 1j = lk-l
(a) u=0 i.e. mj =m

_ 2
-1 1 & 2(2+m)(2-m)

22(22+1)(22-1)

(b) wu=1 i.e. mj = mk+l

2
-1 1 1) (2-1-m)(2-m)

(22+1)(22)(22-1)

(e) yu=-1i.e. mj = mk-l

(2+m)(2+m-1)
(22+1)(28)(22-1)

l-m -1 m

Case II: 2, = % +1
j k

(a) u=0 i.e. my = m

2
241 1 2 o 2(e+m+l) (24mt+2)
T (2243)(22+2)(22+1)
-m O m
(b) =l i.e. rnj = m+l
#1012} P ) ()
To(2043)(22+2)(22+1)
-m-1 1 m

(¢) p=-11i.e. mj = mk—l

(2-m+2)(L-m+1)
(22+3)(22+2)(22+1)

-

g+l 1 g\ 2
l-m -1 m

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)
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If we now consider the zero field case where, to obtain the total

transition probability, we must sum over all m,, we have
]
C "I = -
ase I zj Zk 1

2
)(21—1))

| T n, w2

. 2
(Ia(],k)) (22+1)(22-1) {((22+l

N (2(2+m)(2-m) + (2-1-m)(2-m) + (2+m)(L+m-1)

22(22+41)(22-1) )}

w

. 2 L
(Ia(j,k)) (EIII) (2.108)

Case II: fj = fk+l

2(2+1)2
Y(22+2)(28+1)

lm'] 2 2 [mo]2 )

s 2
(I,(3,k))° (22+41)(22+3) {((22+3

(2(2+m+1)(£-m+l)+(2+m+l)(2+m+2)+(2—m+2)(2—m+1))}
(22+43)(22+2)(22+1)

. 2 A+1
(Ia(J,k)) (EIII) (2.109)

and in this zero field case, the transition is between pure hydrogenic

states Inj,2j> and lnk,z >,

k

§2.8 Wavelengths and Oscillator Strengths

(i) Wavelengths
The wavelength of a transition from state m' with energy Em' to

a state m with energy Em can be written

- hc
A= T -E ] , (2.110)
n m -34 8 -1
with energies in Joules, h = 6.626x10 J. sec, ¢ = 2.99793x10 ms
and Ain metres. Transforming the energy into Rydbergs and A into
8 we have
.3487
v o= o R (2.111)
, -
m m

(ii) Oscillator Strengths

From Bethe, H.A. and Salpeter, E.E. (1977), p250, we have the
following expression for the oscillator strength of a transition from

state m' to state m
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2
farm T ﬁg.wm'm l<m']ru[m>[2 . (2.112)

. h ‘
Converting Wty tO @.u. by multiplying by.%%' and the matrix element

2
to a.u. by multiplying by ao2 (='§€2) we have

EFptm = 2 O 'l [m>]2 (2.113)

It has already been shown how to calculate l<m'|ru|m>[2, and

so it is easy to compute the wavelengths and oscillator strengths

for the bound-bound transitions.



CHAPTER 3

ENERGIES AND BOUND-BOUND TRANSITIONS USING A BASIS OF

CYLINDRICAL STATES

§3.1 Introduction

As described in Chapter 1, in very strong magnetic fields, the
electron of the hydrogen atom describes a cylindrical, rather than a
spherical, orbit. At high field strengths, therefore, it would seem
more appropriate to describe the motion of the electron with a set of
cylindrically symmetric, rather than the previously used spherically
symmetric (hydrogenic) basis functions.

This chapter describes the construction of such a basis set,
and the methods used in calculating the bound energies and transition
probabilities between the bound states (Kara and McDowell, 1980).
Unlike the case where the basis states were unperturbed hydrogenic
functions, this set of states contains elements with three variable
parameters (labtelled «, g and §)which must be carefully éssigned values
in order that parity is conserved, the functions have the same anguiar
dependence as the zero field functions at low fields, and also so that
the energies tend to the zero field limit as |B| » O and to the Landau
limit as [B| = .

Transition probabilities are calculated in the velocity as well
as the length formulation in order to ascertain the accuracy of the wave

functions.
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§3.2 Construction of the Basis Set

The new set of functions must form an odd parity basis set
representing the states-corresponding to the zero field ps £ etc.
states and an even parity basis set representing the states corr-
esponding to the zero field s, d etc states. We must also have the

following orthogonality conditions:
I l’J«:c‘ld. 1peven dv = 0 (3.1

%
J Yoad Yodq 47 = 1

%
J v ¥ dr = 1

even ‘even

where wodd is any odd parity wave function and weven is any even parity

wave function. The trial solutions for the wave functions are of the

form
(m,I) (m,)
Yy T, é 5 CaijS Xujsjsj (r) (3.2)
3’73773
where m is the magnetic quantum number, I parity and aj, Bj and 6] are

(m

three variational parameters. The basis functions X B, D (r) are

chosen to be
-8p2 }
ML RN R L I (3.9)

in cylindrical polar coordinates (p,z,$). If we let II' be a parity

operator (reflection about the (x,y) plane), then

I'(p) = o
n'(z) = -z (3.4)
n'(¢) = m+é

So, on applying ' to x(gan) (r), we see that it is o that determines

(m, H) ().

the sign of n' (X From this, we can conclude that o must

be an integer for a state to have definite parity and for even parity
basis functions a must be even, and for odd parity basis functions

a must be odd. Also, considering the matrix element <xl|x2> where
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(m.,T.)

X: = x. 27l (p)

i alBiGi ? (3.5)

we see that the integral over z, i.e.
0
A -pAz2

fz e™82% 45 (3.6)
-0

where A = @) toa, and A = Gl + 62, is zero if A is odd as the integrand
is then an odd function, and non-zero if A is even, as the integrand

is then an even function. As the only occassions on which A is odd

are when Xy and Xy have different parity, the conditions in equations
(3.1) must be satisfied (that is if the coefficients of the basis

functions are chosen such that the total wave function is normalised).

§3.3 Calculation of the Matrix Elements Occurring in the Energy

Eigenvalue Equation

In order that the energies and wave functions of the bound states
may be calculated, it is again necessary to solve the eigenvalue
equation, i.e. equation (2.12).

The non-relativistic Hamiltonian operator for a hydrogen atom in
a uniform, static, magnetic field is given by equation (2.-1l). Neglect-
ing spin effects and adopting cylindrical polar coordinates (p,z,4),

this Hamiltonian can be rewritten

32 13 32 32 ¥2 o, 2
2 e ey = —— - = - L —_ - = (3.7)
# 392 " p 3p ~p2392 " a2 T YLty -3

where r2 = p2 + 22 and atomic units (i.e. e =1 = y = ¢ = 1) are used.
The z component of angular momentum can be written in cylindrical

polar coordinates,

= .39, (3.8)
Lz i 3%

In order to solve the energy eigenvalue equation, we need to evaluate
the matrix element <xl|H|x2>, where Xy and X, are two basis elements.

We begin by operating the Hamiltonian, H, on the function Xq
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- ap =822 imyb 32 1) _8an2
Hx, = -z ‘e M2 (352 - T 082 820

- - 2 s
- z%2 082 2 gmalz +02) 32 o IMm29

342
By -8,02 3% 52 852
- pF2 o702p% [im2¢ L 02 =822
- iy %2 p32 3-52(22+p2) 3 eim2¢
ad
2
Y 2 - 2,52y g
G 02 - By of2 02 o220 ima (3.9)
But,
8 = im
39 X2 2 Xy
32 - 2
562 X2 T TR2TXp
ﬁ_, = §2 - .
55 X2 > X 2082 X,
(3.10)

o2 B3 (8,1 25,2
w2 X, = b B2-1) X, - 46282 X, - 282 X, + 4p%62° X,
3 - X2
3z X2 -z Xp T 2282 %
32 . a 2¢.2
322 Xp T E%-(ag-l) X, = 48207 X, - 283 X, t 42982% x,

So from equations ( 3,9) and (3.10), we see that the matrix elements

of the Hamiltonian may be reduced to the form

<xl|Hlx2> = (my2-8,2) T, (-2) + (dy2-18,2) T,,(2) - az(az-1) R ,(-2)
- 48,2 Ry,(2) + 282(28243+2a3) S, = 2P, + Ym, S,
(3.11)
where
S0 7 <xlxp
T (n) = <y pn Xn>
12 1| n[ 2 (3.12)
Rlz(n) = <Xllz lX2>
» -1
P12 = <Xl|r |x2> .

Note that, in each of the matrix elements, the integral over ¢

is
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2T (mg-my)
f e 2T gy = op g (3.13)
o mj ,Mg )

and so, in order that the total matrix element is non-zero, we must
have conservation of the magnetic quantum number. The integral over
z, also, gives conservation of parity, as has been seen previously.

The first three types of integral in (3.12) are elementary, and may

be expressed in the form

: ® _Ag2 ®  _An2
Iiéq = 27 Gml,mz f e™82% P 4, J o700 o3 dp (3.14)
-0 0

where 4 = §; + §, and p and q are integers, and in particular,

_ +A,B+l
S10 = Iy,
_ +A,B+ntl
le(n) = 112 (3.15)
_  +A+n,B+l
Rip(n) = I,

where B = 81 + Bp and A = a1 + o2 and n is an integer. See Appendix

(II) for evaluation of the Iiéq .

Angular Dependence of the Wave Functions

In order that the cylindrical wave functions go smoothly into
the zero-field case, we must have the correct angular dependence of the
wave functions at low fields.

The dependence on ¢ of the pure hydrogenic, zero-field wave
functions is eim¢ which is the same as that of the new cylindrical
functions. Therefore, the ¢ dependence of the cylindrical basis is
already correct.

However, we must also ensure that the wave functions have the

correct sin® and cos6 dependence. Writing a cylindrical basis function

in spherical polar coordinates (r,8,$), we have
-8 i
X = r® cos®e rB sinBe e ér elm¢ . (3.16)
The angular dependence of the unperturbed hydrogenic functions is

Y,.(8,¢). The sind dependence is sin[m[6 and the cos6® dependence is
m
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cosNe where 0 < N < & (sée Landau and Lifshitz, 1975, p600). So to
obtain the correct sinf dependence for low fields, we take

8 = [m|, |m|+1, |m|+2 ... (3.17)
To obtain the correct cosf dependence, we must have a > 0. The
value of a governs the parity of the state and for each complete wave
function, we must have a even or a odd. In order to match the cosb
dependence with that of the zero field wave functions, we can build

up the following table of parities

Corresponding Cos® Dependence Parity
Zero-field State at Zero-field e f even }
o = odd
1s 1 e
o .
2s 1l e
o
3s 1 e
o
2p_l 1 » e
6 (o}
2p0 cos
e
2pl 1
e
3p_, 1
cosB o
3po
1 e
3pl
1l e
3d_2
cosf o
3d_l
3d (1-3cos?28) e
o]
cos® o)
Bdl
1 e
3d2
Table 3.1

Table to show the parities of states in a magnetic field

by looking at their cos® dependence at zero-field.
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Evaluating the integrals occurring in the matrix element of the

Hamiltonian (i.e. S,,, T,,(#2) and R, 5(£2)) from equations (.15),

we obtain the results given in tables 3.2 and 3.3, where

(B-2)!1v/n ) .
_§;§‘257§ if B is odd

J(B,A) = { 2

(B/2 - 1)! .
—‘—-§75—l- if B is even
2A

and

K(GO,A) - (2ao - 3)!!/‘“’

X
2%0 p%072

(3.18)

(3.19)

with a = 3(ay+ay) = A/2 and A = §1+62. In these tables, the functions

J(B,4) and K(ao,A) are treated as common factors and the cases B=0,l

and A=0,2 taken as special cases, in order to facilitate computation.

To obtain total expressions for TlQ(iz), Rlz(i2) and S, ,, multiply

together the two relevant contributions from tables 3.2 and 3.3 and

multiply the result by the integral over ¢, i.e. by 2w Gml

B=0 B=1 B>1
s12
R12(-2) 1 ki B J(,A)
24 3/2. 24 >
uA
R12(2)
Y
Tl2('2) 0 - J(B,A)
2A°
1 3/ B(B+2)
T12(2 ]
(2) 247 92572 LAZ J(B,4)
Table 3.2

Integrals over p occurring in <xl|H[X2>. Note that the
coefficient of T12(-2) is (mg - Bg) which is always zero

when B = 0 as 8, = |my|, [mp + 1| ... , so the integral

is set to zero in this case.
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A=0 A =2 A=2
Y
R12(-2) 0 m K(a ,A)
AE (o]
R12(2) /n 3/ (20+1)(209-1) (o )
21372 372 4AZ - Kle g,
T12(-2)
Y v -
22 ¢ ~577 ) ka0
A 24
S12
Table 3.3

Integrals over z occurring in <xllH]x2>. Note that the

coefficient of R12(-2) is zero when A = 0 so the integral is

set to zero in this case.

Matrix Element of the Coulomb Term

The matrix element of the Coulomb term, %3 is

= 1
P, = g lzlx> (3.20)
Writing P12 in spherical polar coordinates, we have
2n 1 o A2
Pl2 = I dé J d(cose)‘J r (rcose)A (rsine)B N (3.21)
0 -1 0

where A = ay + @ is a non-negative even integer, B = By + B2 is a
non-negative integer, and A = §; + §2. Consider the two cases of odd
and even B separately,

Case I - B even

Letting u = cos®, we can rewrite P12 in terms of integrals over r and u:

jae)
"

1 ® -Ap2 B/2 A
2m du rl+A+B e Ar (1-p2) / y dr
12 o

-1

B/2
e 5 1y (s/z 2 (A72 + B/2)! (3.22)
p=0 P/ At2ptl pA/2¥B/2t1

"
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Case II - B odd

Writing cos@ in terms of sin@, we can write the expression for P

12°
A/2 m o
- A/2 . -Ar?
P, = 21 T (-1 ( / ) J 6in2atBtLy oo J PAtBHL ~Ar? ,
q:O 0o [o]
but, (3.23)
J“ n n
sin'g d8 = ( ) I (3.24)
o n/2 oB ’
hence,
A/2
B)!! ¥
Py = on  iier [ 1 (-1)Y (Aff) e | (au29)
2 A q=0 ((ﬁ—2 )12 2
where
e = A+ B+ 1
2

So the matrix complete matrix element of the Hamiltonian and
the overlap integfals are in computable form. For details of PROGRAM
CPOLAR, which solves the eigenvalue equation for this cylindrical.

basis set, see appendix (I).

§3.4 Estimating Values for the Parameter §

To ensure accurate low field energies, we choose three values
for the parameter §, namely &§;, 82 and 63, to minimize in turn, the
zero-field eigenvalues for the n = 1, 2 and 3 levels, n being the
principal quantum number. At low fields, the only n = 1 level is
the level which corresponds to the zero-field 'lso' state, which is
the first even parity state (see Table 3:1). We can approximate the
wave function of this '130' state, by the first term in the even parity
cylindrical basis set, i.e. e-ér? Similarly, the first odd parity
state corresponds to the zero-field '2po' state and its wave function

can be approximated by the first term in the odd parity cylindrical

2

basis set, i.e. ze-ar . So now minimizing the energies of the n =1
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and 2 states, the respective approximate low field wave functions

2

-8r ~8§,p2
for these states are e '!" and ze §or . We now have to find a third

wave function which is an approximation to an n = 3 state. Now,
noting that the second odd parity state (see Table 3.1) corresponds
to an n = 3 state, we can approximate the n = 3 wave function by a
linear combination of the first two odd parity cylindrical basis
functions which is orthonormal to the n = 2 approximate wave function.

Such a function can be written (by the Gram-Schmidt orthogonalization

process) as

by = Voot aw(n) (3.26)
where,
2
10 ze~527 2 (3.27)
bog = z0e 03, (3.28)

a is a constant and superscript (n) indicates that the function has

been normalised. Applying the Gram-Schmidt procedure, gives

¥, Iwb(n) = <w20+aw(n)[¢(n) = 0 (3.29)
3
which implies that
_ (n)
a = - <hlv> s (3.30)
so that
_ (n), (n)
'bz - ‘bzo - <‘b20|‘l’ lO . (3.31)
But, on normalising wlo’ we have
S {ggzs_/i}% -82r? (3.32)
10 . 3/2

where Ay = 28,. Now, letting A = §; + 83, and calculating the matrix

element occurring in wz, we obtain

5/2 1 .2
(n) _ 2A T .
pltyg > = LV am (3.339)

Substituting this result, and that of equation (3.32) in equation (3.31),

we have y /2
5/2 1 2
v, = zpe_53rz - {éz————ﬂ———% ze—szr (3.34)
243
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which gives,

w2 =w —Cw

20 10 (3.35)
where,
A 5/2 1/2
cC = 82 T
op3 (3.36)

The variational method is used to find the best values for 81, 62 and

63+ As discussed in Chapter I, the best value for the energy of any

state is the lowest value that can be obtained. So in this case, we

have to chose §;, 62 and 83 such that E___, E and E have minimum
n=1l’ "n=2 n=3

values. We can calculate these energies using the Hylleraas-Undheim

theorem (also discussed in Chapter I).

(i) Calculation of §; and E _;

By the Hyleraas-Undheim theorem, we have
- 2 - 2
<e §ir JHIe Sirey

; — (3.37)
<e-61r le—élr 5

En=l <

where H is the zero-field Hamiltonian of the hydrogen atom given by

vz 1 . . .
5 T (in atomic units). (3.38)

H = -
Performing the integrations in equation (3.37 ), and noting that the
angular integrations in the numerator and denominator cancel, the

following expression is obtained

(26871) 2 (287) (2687)
3 8 I2 -2 6 I, - Il
(287)
12

(3.39)

fin

=1

where

® 2
I;a) = J e-ar rp dr .
° (a)

Expressions for the integrals Ipa are tabulated in Appendix (IT).

Evaluating the integrals in equation $.39 ), we eventually obtain

3, 232 5,12

291 ————7rl—-' . 3.40
Bn=l < 2 il ( )

) - » - . 3 > 7‘d-E_ R -
The value of §; required to minimize En-l is given by - n-l‘i.o i.e.
.o dsl b ]

3 2% _ (3.41)
> - GeD o,

which gives
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- 8 -

§1 = = = 0.282942 (3.42)
and on substituting this value in equation (3.450) we obtain the
following value for the minimum energy of the n=1 state

E.; & -0.4244a.u. = -0.8488 Ry . (3.43)

(ii) Calculation of &, and E o

The procedure in this case, is analogous to that described in part (i),

i.e. »
- - 2
ze 527" || g 827",

E _., < .
n=2 = <ze-6252]ze-62r4> (3.44)

The zero-field Hamiltonian can be expressed in cylindrical coordinates

(Pazs¢) as
1,32 13 1 32 32 1 (3.45)
H = -% + == -= :
LS AL TS TR
where r? = p2 + 22, Substituting this expression for the Hamiltonian

into equation (3.44), and performing the integrations, we obtain

1 - 2.(285)_(285) 2 (252) (252)
a2 S (282),(262) (26271, 772 T75 - 28271,
1 2
. 56212262)I§252) %? (252)} (3.46)

As in part (i), differentiating the resulting expression for E__, by
82, we obtain the following results for §; and En=2
8§, = 0.045270 (3.u47)
Bn=2 g - 0.113177 a.u. = - 0.226354 Ry . (3.48)

(1iii) Calculation of 83 and E _,

In this case, the Hylleraas-Undheim theorem gives
E < hylley (3.49)
where an expression for ¢2 is given in equation ( 3.34 and H in
equation (3.45). Using equation (3.35), we can write
2 -
< lulny> = <vyglBlige> + CRauglElY 0> = cvyglilvyg>
- . (3.50
c<wzolH]wlo> ( )
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Now, we already know that

-62r2 -8,72 I (
<ze Hlze °2Y 5> = _ 2T 2-(42)_(45) 2. -(Ag) (Ap)
|1 7 %172 1720 4y I, 1,7 -
(42).(45) 4r - (45)
54,1,°2 1,727} - -—3" 1,727 (3.51)

where Ay = 28; (cf. equation (3.46)). We also know, from equationg

(3.46) and (3.48), and using the table of Appendix (II) , that

3/2

= - 0.113177 ~—0n . (3.52)

~§op2 —8.p2
§ar IH]ze §or >
2A25/2

<ze

We can find similar expressions to that of equation (3.52) for the

other three matrix elements in equation (3.50):

- 2 - 2
<zpe G3r lHIzpe 63r {I(A3) (A3) + A3212A3)I2A3} +
A I(A3) (A3) 7A3I§A3)I§A3)},- 15 (Ag) (3.53)
-5,02 872
<ze‘62r réilﬁéﬁi*_ .- - . %1_{12A)IéA) + 28 ZI(A) (A)
73St - ff) (3.54)
- 2 _ 2
<zpe N |H]ze 627%, o . %1-{A22IiA)I;A) 54, (I(A))Q} -
(A)
—Iu (3.55)

where A3z = 283 and A = §, + 83, Substitution of equations (3.53) -
(3.55) into equation (3.50), and also putting in the value for C given

in equation ( 3.36), gives

3/2 5/2_5/2 5/2_1/2
<, |H[y,> = 11"5/2 L S N Sy GOU BET &) W AL

2 203 15433 gab uA3

L, 5/2
2 2 2

(730 (6,24842) + = (56p4783) - = - 2T~} . (3.56)

y 2 3 3 2 5/2

A 24 54

Also, in order to obtain an expression for the minimum upper bound

on E , we need to calculate <¢2|¢2>‘

n=3
2
Pl = <by vy + Pyl o - eyl >
_ 8m (A3) 2 4T _(82) 1 ()
= T3 IS + C 3 Iu - 2C I
32 5/2,5/2 (3.57)

I
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Substituting the expressions for the matrix elements calculated in
equations (3.56) and (3.57) into equation (3.49), and differentiating

the resulting expression for Bn=3 with respect to by (82 is already
known) gives a minimum upper bound for En=3' This expression is
complicated in 83 and renders the standard variational method of parts

(i) and (ii) impossible to use. An alternative method was found using
quadratic interpolation to find the minimum. That is, the function
En=3(53) is approximated by a quadratic polynomial which agrees exactly
in function value at a certain number of points. The minimum (or maximum)
of the quadratic polynomial passing through the points (xl,yl), (x2,y2)

and (xa,ya) is given by X, + g-where,
- 2 2
p= (x2 - %) (yy - yl) - (% - xl) (y2 -y;) (3.58)
qQ= 2 (x3 - xl)(y2 - yl) - (x2 - xl)(y3 - ¥y) . (3.59)

Provided the minimum (or maximum) lies in the interval [xl,xs], we
can obtain successive approximations to its true value (Gill and Murray,
1974).
The actual value for 53 obtained is 3.74 x 10—3 giving a minimum
energy of -0.0165 Ry for the n = 3 state at zero field.
To ensure the correct high field dependence of the wave functions,
a fourth value of § is chosen to give the correct energies as B+ =.
We take g4 =‘§, as the term e—lYPz is contained in the free Landau
functions (Wallis and Bowlden, 1956), which give the correct energies
at high fields. Meuller et al, 1975, use this value for their equi-
valent of 54, and show that the correct high field energies are obtained.
To summarize, we ensure accurate low field eigenvalues by choosing
615 52 and SS to minimize in turn, the zero field eigenvalues for the
n =1, 2 and 3 levels by using a minimal basis of one, one and two

terms respectively (see table 3.4). Table (3.4) also gives the final
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zero field results using the full basis - the ground state energy

is slightly too high, and remains so at all field strengths, suggesting

that it never becomes fully cylindrical.

The 6% error at zero field

for the n = 3 level could be reduced by using more values of §, but

is sufficiently accurate for our purposes.

n Exact Energy Calculated Energy 8 Best Cylindrical
in Minimum Basis Basis Energy
1l -1.000 -0.8u488 0.283 -0.982
2 -0.250 ~-0.2264 0.0453 -0.250
3 -0.111 -0.0165 3.74(-4) -0.106
Table 3.4

Zero field eigenvalues (Ry) and corresponding values of §.

§3.5 Solving the Eigenvalue Equation

The equation to be solved in order to evaluate the energies and

wave functions is

- =0
({Hpq} E{qu})§

(cf. equation ( 2.29) where,

(p) ()
H TIcC c <x. |H|x.>
Pa i ai’Bi’ai aj’Bj’aj i 3
and
(p) (q)
S = 1¢1C C <X-|X-> s
pPa i 3 ai’Bi’Gi ajssjsaj 1]

(3.60)

(3.61)

the wave function being defined in equation (3.2 ) and H being given

in equation (3.7). As the size of the basis required in this case

is much larger than that required by the basis of hydrogenic states

described in Chapter 2, in order to obtain convergence on the eigen-
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values (typically the matrices (Hpq} and {Spq} will be of dimension
130 for the cylindrical basis and 12 for the hydrogenic states basis
for convergence on the 14 lowest eigenvalues), a different method is
used to solve equation (2.15), in order to avoid excessive inversion
and manipulation of the larger matrices. Again routines from the NAG
library are used and a brief description of the numerical procedures is
set out below. Details of the computer program to calculate the eigen-
values and eigenvectors are set out in appendix (I).

Firstly, the problem is reduced to the form

Pz = Ez (3.62)
where P is symmetric, by using Cholesky decomposition of the matrix

{Spq}. For the purpose of this section, we will abbreviate equation

(3.60) to

(H-ES)x=0 . (3.63)
Writing

s = LT, (3.64)

where L is formed using Cholesky factorization of S (Peters and Wilkinson,
1965), equation (3.63) becomes

wrhaly = eaTx . (3.65)
Now, LT is symmetric and so this reduces immediately to the symmetric
problem of equation (3.62), where

lHL'T (3.66)

P = L
and

z = L'x. (3.67)
The matrix P is then reduced to tridiagonal form with the use of the
Householder method described in section §2.4. So the problem then
becomes

@ = B _ (3.68)

where Q is tridiagonal. The selected eigenvalues, Bi, required can

then be calculated by the method of bisection (Wilkinson and Reinsch,
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1971, p2u9). Briefly, a sequence of numbers ai(x) is defined by

a;(x) = q; - %
(3.69)

ai(x) (qi - X) - PO ES) ’ i=2,3...n

i-

where {qi : i=1,2 ... n} are the diagonal elements and {ri : i=2,3 ... n}
are the off-diagonal elements of Q. The number of eigenvalues which

lie below the value x is equal to the number of negative ai(x), so

by adjusting x, the eigenvalues may be found.

When the required eigenvalues are known, the corresponding
eigenvectors can be calculated by inverse iteration. This is described
in Wikinson and Reinsch, 1971, phils.

This method of calculating the eigenvalues and éigenvectors of
a symmetric tridiagonal matrix P, is more efficient than the QL
method used in the case of the hydrogen states basis (see §2.4),
when dealing with large matrices. The primary advantage being that
there is no multiplication of large matrices involved, a time
consuming process for the computer, requiring much storage space.
Obviously, a process which calculates only selected eigenvalues (and
corresponding eigenvectors) in the case where they are not all required,
must be more economical than a method which calculates all the eigen-

values.

§3.6 Transition Probabilities

The probability that a transition will occur between states
m' and m with the emission of one photon of frequency @t the two

states being bound, is (from equation (2.85))

-1
Ao = 2.142020358 x 1010 @ , 3 I{m'lru|m>|2 sec (3.70)

in the length formulation, where ©otn is given by equation (2.54) and
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ru by equation (2.81). On evaluation of the matrix element <m'|r“lm>,
we consider the two cases of transitions between states of the same
and different parities separately.

(a) Transitions between states of the same parity

The matrix elements are of the form <Xj|rulxk> where X3 and
the full wavefunctions are given by equations ( 3.2), ( 3.3) and ( 3.5).
For transifions between states of the same parity, aj + o is even.
(iu=0
Now, r = rcosf. Writing the basis elements X3 in spherical polar

coordinates (r,8,4) where z = rcosf, p = rsinf, we have

® as . _Ap2 u ) )
<X-lr lX s = f r“]+°k+83+8k+3 R Ar ap J cosa]+ak+le sinB]+6k+le a8
j' o'k o .
2,
J e1lmemyde 4y (3.71)
)

But the integral over 6 reduces to the form
A/2 T
r (-1 (A/z) f sin™*®*29g cose de (3.72)
q=0 4 0
with A = aj ta and B = Bj + Sk. Now sin"0 = sin®™r = 0 for all n
and so this integral is zero for all A and B. So we can deduce from

this, that transitions do not occur between states of the same parity

and same magnetic quantum number (m).

(ii) p =1
Now r, = - L r sind ei¢ so in this case we can write
1 Y2 ’
xslrylx > = - . B3 e—Ar2 dr " cos e sin®*2s do
X317 1% = 7 . .
2T (m-ms+1)é (3.73)
e KT dé
0

The integral over r can easily be evaluated using the table in appendix

(11) and the integral over 8 can easily be reduced to

1

2(1;+2) (1) (%(B+2)) (2q+A)! T (3.74)
- q 29+Ay,y2  ,2q%A '
420 (N2 2
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The integral over ¢ is zero unless mj = m.k + 1, in which case it is
2m. So in this case we can conclude that transitions between states
of the same parity occur if mj =m + 1.
(iii) w = -1

1 . -i¢ . . . . .
We have, r, =57 sind e . This is very similar to the expression

for rl, and so the matrix element can be written

m

1 (7 A+B+3 -ar? A, . B+2
<xj|r_l|xk> = /o JO r e dr Jo cos 8 sin” "6 de

sz ei(mk-mj-l)¢ ab
0

(3.75)

The r and 6 integrals are exactly the same as those in equation (3,74,
and the ¢ integral is zero unless mo = m:.l + 1, in which case it is 2.
So, transitions between states of the same parity also occur if

=m. + 1.
M T

(b) Transitions between states of different parity

For transitions between states of different parity, we have
A= aj + oy odd.
(iu=0

The matrix element of ro reduces to

Q0 _ 2 Tr
x| |x.> = J rA+B+3 e S J cosA+le sinB+le de
j' 0k o o
2T .
J oHmemyde 4y (3.76)
(o]

Again, the integral over r can be evaluated with the aid of the table

in appendix (II). The integral over 8 reduces to the form

;
5(B+1) 1 T
r  (-1)P (2(§+l)) J costtAt2Pg gg (3.77)
p=0 o
if B is odd, and
B/2 p (B/2) [T 1+a+2p
I (-1) b J cos 9 sine de (3.78)
p=0 o

if B is even, which can both be evaluated directly. The integral
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over ¢ is, as in (a) part (i), 2n6mj,mk. Therefore, we can deduce,
that transitions occur between states of different parity but the
same magnetic quantum number.

(i1) w =1

The matrix element of Ty reduces to the expression given by equation
(3.75), the only difference being that A is odd and not even. The

integral over 6, in particular, is

“ ’
J cosAG sinB+26 de ,
)

which is always zero for odd A. So transitions do not occur between
states of different parity with mj =m + 1.
(iii) w = -1

The integral over § of the matrix element of r . is the same as that

1
of rs which, as shown in part (ii), is always zero. So transitions
also do not occur between states of different parity with m = mj + 1.

To summarize, the only allowed transitions are given in table

3.5.
AT Am
1
0
-1
1
0]
-1
Table 3.5

Selection rules for transitions in the cylindrical
basis. I is parity, and m the magnetic quantum

number.
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The selection rules given in table 3.5 agree with the high field
selection rules obtained by Wallis and Bowlden, 1956.

As a further test of this cylindrical basis set model, some
transition probabilities are calculated in the dipole velocity
approximation and compared with those calculated in the dipole length
approximation. In order to find the Einstein A coefficients in the
velocity formulation, we need to find <m'|Hintlm> in terms of

<m'[Vu|m> where H. is given by equation (2.65), and

t
-1 .3 3 3

- —_— = —

Vi1 Y2 (ax - ay) i Y 3z ° (3.79)

Now, from equation (2.65), we see that

2 IS
<m'|Hi o> = - = A' . <m %- V+ ifiw B xrim> . (3.80)

nt

Noting that the z component of B x r is zero, we can write the z
2
component of the matrix element as §-<m'|%;{m>. So for transitions

in which the matrix element of Vi1 is zero, the expression

H2

<o’ [0, |m> = - 2= A .<m'|; v|m> (3.81)

t

holds. This expression is the same as the equivalent zero field
expression for the transition probability in the dipole velocity
approximation (cf. equation (3.70)). So the total

transition probability for transitions in which the matrix elements

of th are zero is

a2
Am'm = Eggﬁ'mm'm |<m']V°|m>|2 . (3.82)

As in the case of the length formulation, we can see, by performing
the required differentiation, that the only case where the matrix
element of Vo is the only non-zero term, 1s the case where the two
states in the transition have different parity. Therefore, this is
the only case for which we shall calculate transition probabilities

in the velocity formulation.
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The expression for the matrix element of Vo reduces to

-] a2 T ) _
<x-lé—1x > = 278 {an PA+B+1 e br dr J sinB+le cosA le de
jloz' "k m3 My o o
»Q0 N 2 ™
- 28, J 'rA+B+3 e Ar dr J sinB+le cosA+le dae} (3.83)
o) )

where the radial integrals can be calculated using the table in
appendix (IT) and the integrals over 8, using equations (3,77) and
(3.78).

The transition probabilities in both the length and velocity
formulations, as well as wavelengths and oscillator strengths are

calulated by program CPOLAR, details of which are given in Appendix

().



-70-

CHAPTER 4

RESULTS FOR ENERGIES AND TRANSITION PROBABILITIES USING BASES OF

HYDROGENIC AND CYLINDRICAL STATES

§4.1 Introduction

In this chapter, the results of the calculations described in
chapters 2 and 3 are presented. Results are given for the energy
levels of all fourteen states which go to the n = 1, 2 and 3 levels
at zero field, for magnetic field strengths in the range 0 £ y < 1.0
or 0 £B <£2.35 x 102 G. Einstein 'A' coefficients and wavelengths
for all allowed transitions between the loweét fourteen states are
also presented. The main object of this chapter is to compare the
results for the energy levels and wavefunctions of hydrogen using the
cylindrical and hydrogenic functions and with results obtained
by various other authors. It should be noted that in these calcul-
ations, and also in those of other authors with whom we compare
our results, the accuracy of the energy eigenvalues and wavefunctions
obtained is restricted due to the fact that the sets of basis functions
used are not complete. The continuum states are not includea in the
basis sets and so we cannot expect to obtain exact energy eigenvalues.
We obtain convergence to three decimal places on the eigenvalues for
fields of up to 109 G. The calculations involving the basis set of
unperturbed hydrogenic functions, have been carried out previously by
Brandi, 1975 and Brandi et al, 1976, but as the results for the
energy levels of the fourteen lowest states were only presented
graphically, and as the results for Einstein 'A' coefficients were

incomplete, these results have been recomputed.
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§4.2 Convergence of the Energy Eigenvalues

It has already been explained (see chapter 1) that, by the
Hylleraas- Undheim theorem, adding more terms to a set of basis
functions can only improve the energy eigenvalue and therefore make
the wavefunction more accurate. It has also been shown that the
exact values of the energies are the lower bounds on these eigenvalues,
and so any improvement must be a decrease in energy.

In the case where the set of basis functions consist of
unperturbed hydrogenic functions, the eigenvalues converge (to three
decimal places) comparatively quickly, as is illustrated in table 4.1.
It should be remembered that the selection rules for the coupling of
these states are A2 = 0, 2 and Am = 0, so only states of like parity
and m can 'mix'. In table 4.1, the s, p, d and f states are added
in increasing principle gquantum number. Elso and E2Po are the energies
of the even and odd parity states respectively which converge most
quickly, and BSdz and E3pl are the energies of the even and odd parity
states which converge most slowly.

Table 4.1 shows that convergence to at least 3 decimal places
is obtained on the energies of the fourteen lowest states, using a
basis of twelve odd and twelve even périty states at B = 107 G and
22 odd and 22 even parity states at B-= 108 G, At B 25 x 108g,
the 3d2 and 3pl states are not bound in this basis, however, all the
bound state energies are converged to 3 decimal'places using a basis
of 22 odd and 22 even parity states at B = 5 x 108 G and B = 10° G.

It is found that if more states are added to this basis in an attempt
to improve the eigenvalues even further, singularities occur in the
Hamiltonian matrix {Hpq} and the program (HYDROGN) breaks down. It

is also interesting to note that the addition of g states to the basis,

has no effect on the energy eigenvalues of the states corresponding to

d states at zero field.
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The energies given in table 4.1 for the lso and 2po states at
B = 107 and 108 G are unchanged from those obtained using a basis
of just one s and one p state, i.e. using the zero field wavefunctions
for these states. At these fields, the lso and 2po states retain
nearly all of their zero field character.

On studying the eigenvectors of these states (which give the
coefficients of the basis functions for a normalised wavefunction)
it can also be seen that the amount of mixing of states which occurs
at these 'low' fields is minimal. However, as the field strength
increases, an increasing number of terms is required in the basis
set for convergence of the eigenvalues of the lowest fourteen states,
and it can be seen, from the eigenvectors for the states at high
fields, that very strong mixing of states occurs and at 107 G,
the higher energy states, e.g. 2p_l, do not bear much resemblence to
their corresponding zero field states.

For the case inwhich the basis set consists of cylindrically
symmetric functions of the type described in chapter 3, convergence
is not nearly so rapid. This is basically due to the existence of
the three variable parameters (a,B,8) occurring in the cylindrical

basis functions. The lowest even and odd parity states cannot be

- 2
represented veryaccurately at low fields by the functions ze Sor

-§1r2

and e (the lowest terms of the odd and even parity basis

sets respectively), at least not as accurately as the lowest

even and odd parity states can be represented by the first even and

odd parity unperturbed hydrogenic functions. The accurate wavefunctioms,
even at low fields, are a linear combination of many more terms than

in the hydrogenic case.
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We conclude tﬁen, that the reason for slow convergence
of the eigenvalues in this cylindrical basis, is the strong mixing
of states even at low fields. Table 4.2 shows the convergence of
the energy eigenvalues of the states corresponding to the zero
field states lso, 3d2, 2pO and 3pl. Again, we have the selection
rules Am = 0 and Am = O for the coupling of states. It can be seen
that convergence to 3 decimal places can be obtained using a basis
consisting of 128 terms (for m = O states), i.e. with N = 7, for
all field strengths up to 108 6. N is such that all possible terms
with a < N and B < N are included in the basis set; the total
number of terms in the basis set will obviously vary with the magnetic
quantum number. For field strengths of 5 x 10% G and 10% G, the best
convergence possible is obtained on all bound states. If N > 7,
the program (CPOLAR) breaks down due to the appearance of singularities
in the matrices {Hpq} and {Spq}. However, it is believed that the
eigenvalues obtained for these fields are accurate enough for our

purposes.
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Comparing the results given in tables 4.1 and 4.2, we see
that, although the eigenvalues for the cylindrical wavefunctions
require many more basis functions than those of the spherical
(hydrogenic) wavefunctions, the final converged energy results are
lower (and by the Hylleraas-Undheim theorem, better) than those of
the hydrogenic case for B > 108 G. It will be seen, in fact, that
this is the case for all the lowest fourteen states (except lso)
suggesting that a basis of cylindrical functions is more accurate
- than a basis of spherical functions at high fields. These results

will be discussed in more detail in section §4.3.

m Parity Labelling of States
e = even (in ascending energy)
o = odd
h c
0 e e s 2s 3s 3do
0 o o 2po 3po
-1 e o] 3d_l
-1 o e 2p_l 3p_l
1 e o 3dl
1 o] e 2pl Spl
-2 e e 3d_2
2 e e 3d2
Table 4.3

Table to show the labelling and order of the
energy eigenvalues. m is the magnetic quantum
number. Parity is also shown for the hydrogenic

(h) and cylindrical (c) bases.

At this point, perhaps a mention should be made of the labelling

of the states of the hydrogen atom in a magnetic field. We follow
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the conventional notation of Brandi, 1975 and label the states in
the order given in table 4.3 (the states being labelled in ascending
order)., This notation does not, however, agree with that of Smith
et al, 1973, who interchange the Bso and 3do states. Throughout,
comparison with the results obtained by Smith et al, 1973, will

assume that their states are labelled as in table 4.3.

§4.3 Comparison of the Results for the Energy Eigenvalues

Although, as already described in the previous section, energy
eigenvalues are converged to at least three decimal places for fields up
to 10® G, in both the hydrogenic and cylindrical basis sets, as
the field strength increases, an increasing number of basis functions
is required, and at B = 2.35 x 10° G (i.e. y = 1), limitations of
time and storage restrict us to only 2 figures for states which go
to zero field n = 3 states.

It should ke noted that, if the elements of two rows and
columns of the matrix Hpq (of dimension N) are almost- linearly
dependent, then this matrix becomes singular, rendering the calculation
of a set of N linearly independent eigenvectors impossible. Care
should be taken, therefore, to ensure that this case does not occur.

In the cylindrical basis, this can be avoided by choosing carefully,
values for the parameter §. The first three values of § are given

in table a.u'and a fourth value, to ensure correct high field energies
is %n
of the other three values for 8. If this is the case, then the first

Care should be taken to ensure that %-is not too close to any

value of § is excluded from the basis set.
Results for fourteen states (which are the lowest lying at
low fields) are given as a function of B in the range 107 ¢ B < 10% G

in table 4.4, in both the cylindrical and hydrogenic bases, and also
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compared graphically in figures 4.1 - 4.9. The zero field ordering
is preserved at all fields within the subset of states (n,mz), but
crossings occur between different subsets. At sufficiently high
fields, for any state (n,ﬂ,mz), except (1l,e,0) the eigenvalue
obtained in the cylindrical basis lies lower than that obtained in
the hydrogen states basis, but the lowest field at which this occurs
is state dependent. The ground state results obtained in the
cylindrical basis are anomalous, and within the range of field
strengths examined are never better than those obtained in the
hydrogen states basis.

It is clearly seen, from both table 4.4 and figures 4.1 - 4.9,
that as B increases, so do the energy eigenvalues, in fact at field
strengths greater than or equal to 108 x 5 G, some of the n = 2 and
3 states are no longer bound. The structure of the continuum of a
hydrogen atom in a magnetic field is discussed in detail in
chapter 1, but it is necessary to point out here that if it contains
pure Landau levels, and if the Coulomb force is small compared
to the magnetic field, the first of these levels lies at %hwc (a.u.),
i.e. Y Ry., where 0, is the éyclotron frequency. This explains
why some of the bound states have positivé energy.

It is clear from figures 4.1l - 4.9 that the expansion of the
wavefunctions in quadratically integrable unperturbed hydrogenic
functions breaks down above 10° G. By this field strength the atom
is needle-shaped (apart from, perhaps, the ground state) and is
better described by functions of cylindrical symmetry.

Table 4.4 also gives results of the perturbation calculations
of Ruder et al, 1981 at B = 107 G. These are in excellent agreement
with our results and prove that perturbation theory is still adequate

at B = 107 G.
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Fig 4.1

Comparison of the "lso", "2so" and "330" energies in Ry, with
increasing field strength B (G) using (i) the hydrogen states basis

(broken line) and (ii) the cylindrical basis (solid line).
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Fig 4.2

Comparison of the "2p_l" and "3p_l" energies in Ry, with increasing
field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line).. = .
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Fig 4.3

Comparison of the "2po" and "3po" energies in Ry, with increasing
field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line).
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Comparison of the "2pl" and "3pl" energies in Ry, with increasing
field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line).
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Ry, with increasing field

Comparison of the "3d_2" energies in
strength B (G) using (i) the hydrogen states basis (broken line) and

(ii) the cylindrical basis (solid line).
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Fig 4.6

Comparison of the "3d_l" energies in Ry, with increasing field
strength B (G) using (i) the hydrogen states basis (broken line) and

(ii) the cylindrical basis (solid line).
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Comparison of the "3do" energies in Ry, with increasing field strength
B (G) using (i) the hydrogen states basis (broken line) and (ii) the

cylindrical basis (solid line).
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Comparison of the "3dl" energies in Ry, with increasing field strength
B (G) using (i) the hydrogen states basis (broken line) and (ii) the

cylindrical basis (solid line).
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Fig 4.9

Comparison of the "3d2" energies in Ry, with increasing field strength.
B (G) using (i) the hydrogen states basis (broken line) and (ii) the

cylindrical basis (solid line).
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Praddaude, 1972, also used a basis of cylindrical states

of the form
X = z° plmI e-sz e-QIeI%r g L[m[(2Yp2) ; g C pQS L (ur|€|%)
p=0 q=0 s=0 qa-s
b ' (4.1)
where La(Z) is the generalized Laguerre polynomial of order a,
c =0,1, «.., m=0,1,+2, ..., € is the energy eigenvalue shifted
by y(m + [m| + 2N + 1) with N=0,1, ..., and & = 2(C + |m| + 2§) + 1.
These basis functions are obviously more complex than our
previously described cylindrical functions and also have the dis-
advantage of being non-separable. However, these functions do
have the correct behaviour as r - 0 and tend asymptotically to the
Landau solutions as r + ®. As expected, the results of Praddaude,
1972, for the energies of the lowest fourteen states at field strengths
of y =0.land y =1 (i.e. B = 2.35 x 10% and 2.35 x 10% @) are in
close agreement with our results, especially for the n = 2 states, and
in fact there is no more than 0.02 Ry difference at y = 0.1 and 0.03
Ry at vy = 1, between the two sets of results. Whilst Praddaude's
basis is more accurate than ours for some states, the simplicity of
our basis set makes it much more attractive for applications e.g.
calculating Einstein 'A' coefficients. The results for these
energies are given in table 4.5.
Table 4.5 also contains results for calulations carried out
by dos Santos and Brandi, 1976, who expand their wavefunctions in
a basis of three dimensional harmonic oscillator functions:

s (2 2R
x = (DA v, (8,4) (4.2)

where

: |
A2G0 = {r(oel) (a;b) 172 &2 2 P (4.3)
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These wavefunctions give a correct description of the electron in

a Coulomb-free field in the plane perpendicular to the magnetic

field vector, but restrict the motion parallel to the field. We

would therefore expect these functions to give their most accurate
description of the wavefunctions at field strengths at which the
cyclotron radius is larger than the Bohr radius, i.e. when y >> 1.

As expected, at the fields Yy = 0.1 and 1, the energies of the
lowest fourteen states using this basis expansion, are slightly higher
than ours and those of Praddaude, 13972. The agreement between
Praddaude and dos Santos and Brandi, in fact, improves with increasing
field strength. The agreement is good at y = 3.

Cther workers who have used this method of expanding the
wavefunctions in basis sets include Simola and Virtamo, 1978, who
expand their wavefunctions in a basis of pure Landau states - in
this method the Coulomb potential is treated as a perturbation and
so it can only be expected to be accurate when the magnetic field
domirates the Coulomb field, i.e. when y >> 1, which is beyond the
range of field strengths which we are considering. Edmonds, 1973
expanded his wavefunctions in a basis of Sturmian functions. These
have the advantage of forming a complete set (i.e. they also contain
continuum functions) although the basis has to be truncated so that
the matrices involved in the problem are of finite dimension. His
results agree well with those obtained using a basis of hydrogenic
states at very low fields (i.e. B = 10%, 3 x 10" G), but the hydrogenic
basis is to be preferred since the number of terms required in the
wavefunctions (particularly in the states with large n) using the basis
of Sturmian functions is large - and indeed becomes larger as the
field strength increases. Therefore, it is difficult to obtain
accurate energies using this basis set for high fields without

using an extremely large basis.
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Smith et al, 1973 used a basis set consisting of terms of

the form:

r

: (t)
p () = I (agt) rz + bgt) r2+l) e-'Bi
m i i

ng(e’¢)‘ (4.4)

This, like the hydrogenic basis, is spherically symmetric and

so cannot, for reasons already discussed, be accurate at B > 108 G

where the atom has cylindrical symmetry. The wave functions go into

the exact zero field functions as B + 0, and contain more terms

than the hydrogenic basis - therefore we would expect the energies

to be slightly lower than those obtained using the hydrogenic basis.
In conclusion, whilst a hydrogenic basis is superior at low

field strengths, especially for the ground states, an expansion in

functions of cylindrical symmetry is, as expected on physical grounds,

to be preferred for vy > 0.1. Such a simple basis set has not

previously been used to obtain such accurate energy eigenvalues in

the range of field strengths 0.1 < v £ 1.

- L e N

§4.4 Transition Probabilities

Transition probabilities for field strengths in the range of
interest here, and for transitions between most of the states considered
have been given by Brandi et al, 1976, using the basis set of
unperturbed hydrogenic functions. The results obtained by Brandi
are incomplete, and in the course of confirming their values, we have
obtained results for an additional four transitions (Sd2 > 2pl, 3pl
and 3d_2 - 2p_l, 3p_l) in this model. These new results are given in
table 4.6 for fields of 107 and 108 G. The results for the weak
Bd2 > 3Pil transitions vary rapidly with increasing field strength.

Smith et al, 1973, whose basis functions have been described
in the previous section, have also calculated transition probabilities

for the same field strengths, and corrected their results in a later



-94-

publication (Smith et al, 1975). The two sets of results are compared
by Brandi et al and agree to within 12% at 107 G for transitions to
2pu. However, there are larger discrepancies at this field strength
for transitions to Spil’ for example, the Smith et al results for

3s, - 3p_; is 40% lower than that given by Brandi et al. At 10°% G

the differences are much larger; the two sets of results can differ

by about a factor of three, even for strong transitions. For example,
for 3d_l - 2po, Smith et al's value is a factor of 3.u44 larger than
that of Brandi et al. Their results for the 3d,, > npy, (n = 2,3)
transitions are compared with our new hydrogenic basis values in tables

4.8 and 4.9, and are again as much as a factor of three different at 10%G.

B(G) Present Smith Present Smith
Result et al Result et al
2p_l 2pl
107 - - 7.160(-1) 6.34(-1)
3,
108 - - 2.164 7.8u(-1)
107 5.961(-1) 6.74(-1) - -
3_,
108 4,561(-1) 1.33 - -
3p_; 3y
107 - ‘ - 7.317(-5) 8.u6(=5)
3d, \
108 - - 2.010(-2) 4.41(-2)
107 9.184(-5) 7.87(-5) - -
3d_,
108 8.9uu(-2) 2.81(-2) - -
Table 4.6

Bound-bound transition probabilities for transitions from

3d2 and 3d_2 in 108 s.l calculated using a hydrogenic basis

and compared with those of Smith et al, 1975.
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The results for the cylindrical baéis calculated in the dipole
length formulation are compared, in tables 4.8 and- 4., 9-with .those
obtained by Brandi et al, 1976, and the new hydrogenic basis results
given in table 4.6. The results of Brandi et al have been multiplied
by a factor of (%1) due to the angular integrations which have been
omitted in their analysis and that of Smith et al, 1973, but ensures
that the transition probabilities tend to the correct zero-field
results (Bethe and Salpeter, 13977). At zero field, the cylindrical
results are within 3% of the exact values, and these are given in

table 4.7 for both the hydrogenic and cylindrical basis functions.

(a) (b) (e)
1s - 2p 6.17 6.27 6.25
2s - 2p 3.12(-6) 8.46(-11) 0.0
1s - 3p 1.61 1.68 1.64
2s - 3p 2.30(-1) 2.31(-1) 2.20(-1)
Table 4.7

Transition probabilities in 108 s.l for B = 0 for
transititions involving the 2p, 3p, ls and 2s states
using (a) the cylindrical basis and (b) the hydrogenic
basis. The true zero-field results given by Bethe and

Salpeter, 1977 are in column (c).



-96-

*(0) stseq TeoTJpurThD 2yl pue ‘(g

a9i1deyo ur suoTIETNOTED WOdJ (Z) “9L6T ‘TE 3® Tpueag (T)) (UY) SIseq so93e1S usloapAy ayz

Sursn uaa18 sar s3iynsay

f

‘ITF ‘0 = f ¢ dz s93els 2yl pue °pTOTJ-OJdZ 1B S23RIS 1SOMOT

HT 9yl UT pepnIoUT aJde YOTYM Inq ‘W yoes J0F 931R1S PuOddS ayjl ueyl a9y3TY Jou sajeis

P PuB § BUTATOAUT SUOT]ITSuURI} J0F ‘9 ,0T

g J0J Hnm gOT uT soT3ITTrqeqoad uorirsueqy

®g h o1qRL

(T-)9T°L  (1(T7)6T"L - - - - ®pg
AHVAa-vmm.m (1-)oe°e AAVAH‘V:@.m (T-)6S°€ - - Tpe
- - ENQO L (1-)66°2 (1)(T)eee (T-)0e"¢ e

- - - - (2)(T7)96°S (T-)66°5 “pe
AHVAmlvop.H (9-)99°T AHVAHH-Vm:.m (9-)et°¢e AﬁVAm-VOm.H (S-)h6°9 °sz

o
(1HL€"9 L2°9 (1)Le9 LT°9 (mLT'9 909 ST
y o) y o y o
T4 dz Ty




-97-

*(9) sTseq TeOTapuiTAd 8yl pue ‘(g

a91deyd uT SUOTIRTNOTED WoaF (Z) “9L6T Te 3® Tpueag (T)) (U) SIseq soieis uadoapAy ayj

8ursn usAT3 aae s3Tnsay

‘I ‘0 =1 a:mm S931B1S @Yyl puep ‘pIaIJ-0OUdZ 1B S$93P1S 1SOMOT

HT 9yl Ul pepnIoUT SJe YOTYM 3ng ‘w Yoes JOJ 911S Puod3s a8yl ueyl Jay3Ty 30U Ssajeis

S gOT uT sar3TTTqeqoad uoriTsuedy

P pue s SUTATOAUI SUOT3TSuRI} J0J °9 (0T = € J03
Q8 h °Tqel
(z)(8T)EE L (5-)nes - - - i Cpe
- . - . - . - . - - ._”
AHVAw )89°T (ET-)TT"L AAVAm )ST°€ (S-)8e°Hh pe
- _ _ . _ . _ . - . -
AHVAm Yh6*h (s-)6L°€ AHVAm )89° T (ET-)TT L PE
- - _ _ CNaTe CNate z-
ANVAm )8T°6 (6-)9T°8 Pe
o -
—_ . — - . . - - - . - Ll m
AHVAH )95°2 (T-)es°2 AHVAH )TE°2 (1-)0€"¢ AHVAH )ET*C (T-)oT°¢C Z
(o]
Aﬁvmu.ﬁ L9°1 Aavmm.a 19°T Aﬁvmm.ﬂ Z9°1 ST
y o] 4] o] y o)
Tqg dg Tqe




-98-

*(2) stseq TeoTapulThdo ay3 pue ‘(g

a931deyd uUT SUOTIRTNOTED Woxy (Z) “9L6T “Te 10 Tpueag (T)) (U) STseq saieys uadoaply ayz
gursn uaATd oauae s3iTnsdy *TF ‘0 = d azam S91B1S 92U} pukB ‘pIO9TJ-0d9Z 1B So1P]1S 3S8MOT

hT 9yl UT popnTouT aJde YoTyM Ing ‘w yoea I0J 91P1S PuoOdas a9yl ukryl I2Y3TY 10U S93B1S

§ gOT UT S9T3TTIqeqoad uoT3iTsuedy

P pue s SUTATOAUT SUOT31TSUBRI} J0J 9 gOT = € Jd07 I

©6'h o1qel

Amv@a.m GZ°¢ - - - - N@m

- . - . — . . - - .—..
AHVAH )Th*h (T-)e9°h AHVAH )96°8 20°' 1 pPE

- - Ny . e N Neas -
AHVAH 2L T (1T-)L6°T AHVAH Yoh*h (T-)e9° PE

_ - - - Nae-. e c-
ANVAH )9S h (1-)29°h PE

. - . - . - . - . - . o
AHVAN-vbs T (z-)oe't AHVAm )0S°9 (h-)LL°T AHVAN )SL°'T (¢-)11°2 s

. . L] . . L] O
Aavmm L h6°L AHVOm 9 Zh'9 Aavmm S £9°S ST

q o} 9] o) q 0
T4z dz L P




-99-

*(0) stseq TeoTapulTdo ayjl pue ‘(g

a191deyd uT suoTIBTNOTED woaF (Z) “9L6T ‘Te 39 Tpueag (T)) (U) sTSeq sa3e3s usfoapAy ayj

Butsn usaI1f aae s3iTnsay

‘I ‘0 =1 anam s931e1S 9yl pue *pIoIJ-0d0Z 3B E§93P31S 1SOMOT

#T ©Yd UT Papn{our ade YoTyM inqg ‘w Yyoes J0J 91P1S PUOIDS Yl URY] IdYBITY 30U S231B1S

P pue s SUTATOAUT SUOTITSURA} JOJ °9H g0T = € Jo3 S 40T ut saT3TTIqeqoad uoT3iTsuedy,
aTqe],
Z
AWVAwuvﬁo.m (Z-)eL°1 - - - - Pe
T
-)gz: ~)OT"§ €-)S8°1 Z-)eT"e - - pe
AHVAm )82°9 (e-) AHVA ) (¢-)
.Hl
- - -)BT* -)on* -)8z* £-)0T°S £
AHVAA )6T°T (Z-)oh°T AHVAm )8C°9 (e-)ot P
Nl
- - - - Z-)h6°8 Z-)h6°9 P
ANVA "6 (z-) €
(o]
-)Lhe -)s8-” -)es” -)ST” -)h0o°C T-)26°T sz
AHVAH Lh'6 (1-)s8°8 AHVAH )ES'E (1T-)ST°¢ AHVAH )Yho (1-)
(o]
AHV::.N €82 Advmo.m L6°T Aavhm.a hi'2 ST
q ) q bo) y o)
Hmm dg Hnam




-100-

2p_y 2p, 2Py 3 3,
B =5 x 108 G
s 5.82 9,47 2.57(+1) 1.03 2.50
2s 6.18(-1) 1.46(-1) 5.52(-1) 6.99(-2) 7.62(-1)
3d_, 3.92(-1) - - 1.25(-1) -
3d_l 1.37 9.27(-2) - 3.47(-1) 2.82(-2)
B =109 G
1s 5.57 1.33(+1) 7.31(-1) 3.20
2so 6.75(-1) 7.34(-1) 2.59(-2) 1.04
3d_, | 8.82(-1) - 9.44(~2) -
3d_; | 2.55 5.73(-2) 6.72(-1) | 2.12(-2)
B = 2.35 x 102G (y = 1.0)
lso 5.51 2.34(+1) 6.38(-1) 4,14
2s 4.68(-1) 1.71 9.40(-3) 1.22
3d_2 3.87(-1) - 8.06(-2) -
3d_l 5.82 2.90(-2) 1.33 1.02(-2)

Table 4,10

Transition probabilities in 108 s

"L for 5 x 108 < B < 2.35

x 109 G, for transitions involving states not higher than

the second state for each parity and m but which are included

in the 14 lowest states at zero field using the cylindrical -

basis. The 2pl state is not bound for B ;109 G.

The present results are generally in good agreement with those

of Brandi et al, 1976, at the two field strengths at which detailed

comparison is possible;for strong transitions (Amn > 0.1) the

disagreement is less than u%.

transitions for which there is strong disagreement.

However, there are two groups of
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(1) The very.weak transitions 2s > 2p_ and 3d,, - 3p,, at
107 G where our results are more than three orders of magnitude
larger than those of Brandi et al or Smith et al.

(ii) The transitions 3d,, - 3p_ where we agree fairly well
with Smith et al (to within 30%) and both of these results are between
one and two orders of magnitude different from those of Brandi et al
at 108 G.

The perturbation theory calculations of Ruder et al, 1981, give
results which are in very good agreement with those of the hydrogenic

basis for all transitions considered at B = 107 G.

There have been no previous published calculations of transition
probabilities in the range 108 < B < 2.35 x 109 G, so in table u4.10
we give results at three fields spanning this range. We expect these
results to be fairly accurate, since they do not involve the wave-
functions of any states in which our eigenvalues are significantly
different from those of Praddaude.

It has been found that the discrepancies occurring in the
transition probabilities (and wavelengths) throughout, can be
attributed mainly to inaccuracies in the calculation of the energy
eigenvalues. The formula for the transition probability in the
dipole length formulation (equation (2.85)) contains the factor

w - and so any slight error in the difference between the two

m'm
energies in the transition will be cubed, and so cause larger
differences to occur in the transition probability. This is
illustrated in table 4.11 where a few cases in which there are large

" differences between transition probabilities calculated in the

cylindrical and hydrogenic bases, are analysed.
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E , E [“’ 1 [3 R 12 A,
m m m'm m'm m'm -1
(Ry) (Ry) (108s™7)
B=107G
h | -0.249873 | -0.249946 | 3.890(-13)! 1.02 | 8.u6(-11)
230+2po
¢ | -0.2u47532 | -0.249870 | 1.293(-8) | 1.13 | 3.12(-6)
h | -0.114718 | -0.115041 | 3.370(-11)| 2.33 | 1.68(-8)
3p_1+3d_1
e | -0.114637 | -0.114648 | 1.331(-15)| 2.49 | 7.11(-13)
B=108g
h | -0.238129 | -0.244761 | 2.917(-7) | 1.04 | 6.50(-5)
23°+2po
¢ | -0.235771 | -0.2u4751 | 7.2u42(-7) | 1.14 | 1.77(-4)
h | -0.103987 | -0.126589 | 1.155(-5) | 2.54 | 6.28(-3)
3p_1+3d_.1
c | -0.107808 | -0.128480 | 8.83u4(-6) | 2.70 | 5.10(-3)

Table 4.11
Table to illustrate the source of the discrepancies in the
transition probabilities (Am'm) which occur between using
the hydrogenic basis (h) and the cylindrical basis (c).

Rm'm is the dipole length matrix element-

Table 4.11 illustrates the necessity of accurate eigenvalue
calculations, particularly in the An = O transitions, in order to
obtain correct transition probabilities and wavelengths.

Transition probabilities were also calculated in the dipole
velocity appfoximation for the cylindrical basis wavefunctions (see
equation (3.82)), for the transitions where Am = 0. These results
are compared with those calculated in the length approximation in

table 4.12 for field strengths 108, 5 % lO8 and 10° G. The agreement

<
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is very close and confirms the accuracy of the cylindrical wave-
functions obtained.

The results for the transition probabilities in the length
formulation for two allowed bound-bound transitions at 109 G are
plotted against field strength in figures 4.10 and 4.11. It has
already been shown (see table 4.11) that the variation of transition
probability with increasing field strength depends on both the
variation of the dipole matrix element and the energy difference,
so it is not always a monotonic function. For example, figure 4.11
shows that the lso-2po transition is monotonic, whilst figure 4.10
shows that the lso—2p_l transition has a minimum. Furthermore,
2p_, is only just bound in the hydrogen state basis at 10° G

1
(Eh 0.155 Ry) but is highly bound in the cylindrical basis

(E,

-0.232 Ry) so although the dipole matrix elements are not
very different, the transition probabilities differ by about a
factor of five. Since Ec is lower, i.e. better, it is likely that the
lower value of Am'm is more nearly correct.

In general, for An = O transitions Am'm differs little from
its zero-field value until B > 5 x 108 G when it slowly increases.
Transitions between levels which are degenerate in energy at zero
field may become relatively strong at fields above 102 G, for example,
2s°~2po has a transition probability increasing by four orders of

magnitude between 10% and 10° G.
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1s 2s 3d_; 3d,
B=108%g
2p_; 4.63(-1)
(4.63(-1))
2p, 6.42 1.73(-4)
(6.44 (1.77(-4)) ,
2p; 4,.63(-1)
(4.63(-1)
3p_; 5.08(-3)
(5.10(-3))
3p, 1.99 3.14(-1)
(2.00) (3.15(-1))
3py 5.08(-3)
(5.10(-3))
B=5x108¢
2p_ 1.37
1 (1.37)
2p 9.45 1.46(-1)
° (9.47) (1.46(-1))
3p_, 3.44(-1)
(3.47(-1))
3p 2.u4 7.62(-1)
° (2.50) (7.62(-1))
B=102%¢
2p 2.55
-1 (2.55)
2p, 1.32(+1) 7.31(-1)
(1.33(+1)) | (7.38(-1))
3p_4 6.67(-1)
(6.72(-1))
3p 2.91 1.05
°© (3.20) (1.04)
Table 4.12

Length and velocity values of the transition probability
in 108 s-l for Am = O transitions. The length values are

shown in brackets.
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Comparison of the 2p_i-1s transition probabilities (in 108 s—l) in

the dipole length approximation with increasing magnetic field strength
B (G) using (i) a basis of hydrogen states (broken line) and (ii) the

cylindrical basis (solid line).
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5 ! ] i ] l
4 5 6 7 8 9 10
l B
°915 (G)
| Fig 4.11
Comparison of the 2po - 1s transition probabilities (in 108 s—l) in

the dipole length approximation with increasing magnetic field strength
B (G) using (i) a basis of hydrogen states (broken line) and (ii) the

eylindrical basis (solid line).
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Wavelengths and Oscillator Strengths

basis

Wavelengths are calculated in both the hydrogenic and cylindrical

sets according to equation (2.111), and a few results are given in

table 4.13 for the fields considered here.

Table 4.13 emphasizes the

importance of accurate eigenvalue calculations in order to determine

the correct transition from an observed wavelength.

of the Am'm’ large discrepancies occur in the weak An

where there are also large discrepancies in the values of Em

As in the calculation

0 transitions

'm‘
B(G) 1s 2s
Q O
c h c h

107 1252 1222 138000 213300

108 1303 1271 19590 20660
) 8

5410 1371 1250 4206 4171

10° 1379 851.5 2514 -

107 1245 1215 388300 1.260 10

108 1236 1208 101500 137400
2po 8

5¢10 1137 1088 11410 8301

10° 1031 840.4 6563 -

107 1238 1208 478600 215200

108 1161 1136 23630 22240
2Py 8

5+10 835.8 789.3 4366 Loy

10° - - - -

Table 4.13

Wavelengths in A calculated in the hydrogenic (h) and cylindrical

(c) bases, for transitions from lso and 2s

7 8

10°, 107, 5x10° and lOg G, accurate to 4 figures.

8

o to 2Po,rl for fields of
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Oscillator strengths are also easy to calculate from equation
(2.113). Here, the results for the oscillator strengths for a few
allowed transitions, in the cylindrical and hydrogenic approximations
are compared, together with results calculated by Wunner et al, 1981
at B = 107 and lO8 G. Wunner et al, use a polynomial approximation
for the dipole matrix element (discussed in §1.2) and table 4.lu
demonstrates that their results are in excellent agreement with the
hydrogenic basis results. As expected, there are discrepancies between

the cylindrical and the two other sets of results at these fields.

B(G) 1s 2s
(e} Q
c h W c h W
107 |o.u28 0.ulu 0.1414 5.9u(-2) | 3.8u(-2) | 3.86(-2)
P3| .8
10° [0.429 0.413 0.392 3.65(-1)| 3.51(-1) | 3.99(-1)
107 |o.430 0.416 0.816 2.11(-2) | 6.39(-4) | 6.52(-u)
2p
° ! 108 lo.um 0.427 0.416 8.21(-2) | 6.07(-2) | 6.52(-2)
107 |7.93¢-2)| 7.95¢-2) | 7.91(-2) | 0.u58 0.437 0.425
3p
° | 10% lg.22¢-2)| 8.20(-2)| 7.91(-2) | 0.5u2 0.488 0.425
Table &4.14

Oscillator strengths for transitions from lsO and 230 to 2po 1 and 3po
>
at B = 107 and 10% ¢ in the cylindrical (c) and hydrogenic (h)

approximations. Also included are the results of Wunner et al, 1981 (W).
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CHAPTER 5

PHOTOIONIZATION CROSS-SECTIONS WHERE THE CONTINUUM CONTAINS

PURE LANDAU LEVELS

§5.1 Introduction

This chapter is concerned with the calculation of photoio-
nization cross-sections of atomic hydrogen in a magnetic field, the
initial state having cylindrical symmetry and being of the form given
by equation (3.2). Throughout this thesis we consider only the dipole
approximation. The final state will be that of a free electron in a
magnetic field, ie the motion will be confined to the discrete Landau
levels in the plane perpendicular to the magnetic field and unrestricted
in the field direction (see §1.2). 1In this chapter we show that, due
to the structure of the continuum, the total photoionization cross-
sections consist of a series of infinite peaks occurring at the Landau
energies (ie (24 + 1) Y Ry where L= 0,1...). These cross-sections,
it will be seen, are very different ffom the zero field cross-sections
in the absence of broadening. However, if broadening, due to the motion
of the residual ion, was to be considered (which it is not here), then
in the limit as B - 0, it will be seen from presented results, that the
cross-section does reduce to the same form as that of the zero field
cross-section. It is also shown that the appropriate form of the Wigner
threshold law (Wigner, 1948) is satisfied as B = 0.

Although, in reality, the Coulomb attraction of the nucleus
modifies the continuum structure, we do not consider the effect in this
chapter. Inclusion of a Coulomb force is discussed in chapter 8. It
is expected that the pure Landau continuum treatment will be satisfactory
when the Coulomb energy ‘g?l is small compared with ¥, and this is
always satisfactory for sifficiently high lying levels, and for all levels

when Y =1,
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The wavefunctions of the discrete Landau states can be
expressed analytically in cylindrical polar coordinates (Dingle, 1952),
and as these functions are separable, then the photoionization cross-
sections can also be calculated analytically. A model calculation
has previously been performed by Wallis and Bowlden (1956), in which

the initial ground state wavefunction takes the simple form

- -sr
Y/ls = Ce .
o)

It has already been shown, however, in chapter 3, that a more complete
basis set gives more accurate results for the energies and wavefunctions
of the initial state, and we would therefore expect the photoionization
cross-sections to also be more accurate using the initial state wave-

function given by equation (3.2).

§5.2 Theory

The formula for the photoionization cross-section from an initial

state i to a final state f, at zero field, takes the form
ay = 4ra h\!|<\yi|zrf...l wf>| aO (5.1
3 Bl
where « is the fine structure constant and hv is the photon energy in
Rydbergs. In (5.1), we have summed over polarizations and integrated
over angles, and this agrees with the expression given by Burke (1976).

It is more convenient to write the cross-section in the form

2

a (5.2)

_ -18 2
v = 8.56 x 10 thRifl cm

where Ri is the matrix element occurring in (5.1).

£

The structure of this Landau continuum is such that discrete levels
occur in the x - y plane, making it necessary to sum over all possible
final states, when a magnetic field is switched on. It is then possible
for the electron to go into any Landau level which is energetically

accessible, up to a maximum at £ = £ max, say, with excess energy being

released in the z- direction, such that energy is conserved overall, ie
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_ 2
hv = EI +E, + kz . (5.3)

EI is the ionization energy of the initial state, E, the energy of
the Landau level, kz2 the energy in the z- direction and hv the
energy of the incident photon.

Now, as we are now summing over final states, it is necessary
to multiply the total cross-section by the density per unit volume of
the final states, ((EZ), where Ez is the 'free energy' released in the
z- direction (Powell + Crasemann, 1961, Ch.11). The number of states
with energy between E, and E, + dE, is given by g(EZ) dBZ. As we are
dealing with a l-dimensional continuum in the z~ direction, the number of

such states is the number of points n, contained in the length element

dnz, where

(5.4)

and Lz is a quantisation length in the z- direction, tending to infinity

in the limit. Then we have

e(Ez) dEz = dnz

u

L, dkz . (5.5)

2T
We know that Ez = kz2 and, therefore, dEZ = 2kzdkz, and so the density of

states f(Ez) can be written

p(E)) = 1 L | (5.6)
Xk, 7w
The expression for the total photoionization cross-section now becomes
19

a, =8.56 x10 " hv Z |R..1° L (5.7)

if z

{-0 —2
Yk

where the final state wavefunction is dependent on., and a Zum over
magnetic sub-levels is implied. The perturbation of the bound states
by the magnetic field is fully accounted for, if the wavefunction of the
initial state is taken to have the cylindrical form discussed in chapter
3, ie

vSm’*’) =z Cﬁ,fs) 22 () (5.8)

AL
%, 0,5
where
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2
K () = o (B e int (5.9)

In chapter 3 it was discovered that, in order to obtain convergence

to 4 figures on the energy eigenvalues of 14 low lying states, it

was necessary to use a large basis, containing up to 128 terms.
However, as we are here only considering photoionization from the
ground and 2po states, and to avoid computational problems occurring
in the calculation of [Rifl2 through the multiplication of very large
numbers by very small numbers, the size of the basis can be reduced
such that only those basis elements with large coefficients remain.
The Hamiltonian has to be re-diagonalized in this new basis, and this
reduction has no effect on the calculated energies of the lowest lying

level of each parity. Details of the new basis are given in table 5.1

B(G) & max B max $'s included in basis
7

10 7 7 81, 52
8

10 7 7 51y 529 53
8

S x 10 7 7 ' 51, 52, 53
9
Table 5.1

Terms included in the wavefunctions of the lowest even and odd
parity states. All possible integer « and g up to & max and

B max, respectively are included and 5, = 0.283, 82 = 0.0453,

5. = /7

3 . (Reasons for the choice of values for % are

given by §3.4)

The wavefunctions of the final states, ie those corresponding to
the Landau levels,are given by the solutions of the Schrodinger equation

fer a free electron in a magnetic field, ie

' s . a? %22
LI etz - - — 17 = 0 5.10
where E; = Qz-mfw'(Ry) and m, is the magnetic quantum number of this free
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state. This equation has been solved by Dingle (1952) and the final

solutions are shown to be of the form

£ -1 (£ ik i
vy 2m (2) = 7" el (e) otFem oimet (5.11)
z f
where
(2) _ Bllmpl+1) _-o/2 ng |mf1:z: L \mgl
LZ (x) is the associated Laguerre polynomial defined by
L) = (-0 at KPP (R (5.13)
e —
(a-b)* dx37P
= ¥e?/ . . .
and o = /2, Now in order to find the correct normalized
solutions, we must have
Y
e @TvE, @etetian - 5, (5.18)
z’' "2

where the particle is confined to a large length Lz in the z direction

(Schiff, 1968, p.54 and Kelly, 1963). Now

X\Viisz(_r_>*%$3mf(£)ededédz AW

1 (5.15)
2w L
a
) jo qu

i k-

Z( 2 kZ) dz

The integral over ¢ is obviously 27, and the integral over z is LZSK, K °
1’

ml:a

z
=L,

1\)|I-“

The radial normalization has been carried out by Wallis and Bowlden (1956),
and the complete normalized wavefunction of the free state may now be

written as

(5.16)

(¢) 1 ¥ 81 3 Imfl /2 ~o/2
r) = /. , : 2
k (z) (ﬁﬂﬁ%((u+mﬂ)U5)°/ ©
lmel
<ﬂmfl( o) -
The energy eigenvalues corresponding to these wavefunctions are also

X

calculated by Dingle (1956) and are given by

_ 2
E, = (22 + me + lmfl + 1) + kZ Ry. (5.17)
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Fig 5.1

The behaviour of the lowest odd ("2po") and even ("lso") bound levels
and the lowest few discrete levels of the continuum are shown (schema-
tically) as a function of the magnetic field strength ¥ , ignoring

Coulomb effects on the continuum and spin splittings.
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The variation of the Landau energies and the energies of the lsO and

2po bound states with magnetic field strength is shown in fig. 5.1.

8§5.3 Evaluation of IRifl2

An expression for the total photoionization cross-section is
2

given by equation (5.7) and in this section we evaluate the lRifl . It
is first necessary to calculate the matrix element L'Xil i T, | ngl)m >
H
f
£
where Xi is given by equation (3.5) and V’i )m by equation (5.11).
H
f
There are three cases:
(1) p= -1
Here we have
2
(2) _ 1 B_o =3r° im;é -ie¢
x| r_1|1/kz’mf7 = C 3 p7z e e g e
/ (5.18)
-0/2 jmel /2 {mgl ime¢ ik,z X
e J L2+lmfl(aj e e g ded¢dz
where
2 Y L
Co = 27L_((&+1mgl )1)° (5.19)
(a) Integral over ¢
This gives
2m . .
J ot (me-nit) d¢ = 27S(mr-mi-1). (5.20)
0
Therefore, in order that the matrix elements of r_y be non-zero, we must
have me = m, + 1.
(b) Integral over z
The z integral may be expressed as
Z(d 56, k) = J z% e e dz . (5.21)
-0

This integral is complex, the real part of which is zero if « is odd and
the imaginary part is zero if « is even, as the integrand is an even

function in both cases. The integral may be written in terms of Hermite
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polynomials for odd or even &«

2
/2 -k_/45 k
Z(c, 8,k ) (1) 77 e 2 He, (—2¢) (5.22)
Z 20(/252k"(+1) ol (25)2'

(Bateman Manuscript Project, 1954). Hen(x) is the Hermite polynomial
defined by

1,2 "%X2
He (x) = (-1)® e2X & (© ). (5.23)
n —

dxn

So equation (5.22) reduces to

L:J)}*/z/ﬂ' a* -x2/2)

z(‘*,S,kz) = 20(725%-(&4.1) a‘;a((e (5.24)
with
x =k, : (5.25)
1
(25)2

(c) Integral over e

The integral over ¢ may be written

e 2
2 =% -
R (Bimsr5,%) = L €p+ e o2 /2 Lia(e) de (5.26)

withm=Im Writing this integral in termsof o~ , making use of

f"
the fact that pdp = dor, we have
k-2

2%(ﬁ+1) > A(p+1+m) -0 _ nm
’P\ (p,mf,é,‘o’) 5(15*‘3 0’2 e L¢+m(0') do (5.27)
Y o.
where
A = %(S +%)- (5.28)

Using the series expansion for the Laguerre polynomial given by

equation (5.13), we obtain

R ( ) A o (37 2P 0 |
n} Se ¥ = ; %——)-7— )jo' e
@9 f’ ’ 4L p=o 7-D v D R o (5.29)

where a=3(ptl+m+l) (5.30)



-117-

,
2§(P+1)

m
and A = ;%TE:?T (=1)" r(e+m+1) . (5.31)

Therefore, the integral over p may be expressed as

£ -p
% ) ° 1+m a D+1
- . 5.3
R(ﬁymfr 51*) A Z-D) ! a P+ ( 2)

(ii) =0

In this case the matrix element may be written

2 X
X4 1T |w£ 2mf = Cq J'Fﬁ 2 BT mimib , m/2 L]fm(g) (5.33)
. e-af/2 Jlmed ikpz o dodpdz .

(a) Integral over ¢
This gives

21\' . ’ )

I el¢\mf-ml) i$ = 2rrS(mf-m.). (5.34)
o i

Therefore, in order that the matrix elements of T be non-zero, we

must have m_. = m..
£ i

(b) Integral over z

Using the same notation as in (i) part (b), the z integral may be written

oo 2 ..
Zl+1,8,k ) = J AP L . (5.35)
oo

Again, this integral is complex, the real part being zero if (« + 1) is
odd and the imaginary part being zero if (« + 1) is even. An expression
for Z is given by equation (5.22).

(c) Integral over e

Using the same notation as in (i) part (c), the integral over g may be

written

2
® g+l -6
R (s-1,mg,5,%) = [TpfT &7

o

o_m/2 e-0‘/2 L_zilm(o') de (5.36)



-118-
and R is given by equation (5.26).
(iii) m»= 1

The matrix element, in this case, may be written
c
J

@

| 2 ,
o‘i'rﬂ”’l(c:?m 7 J(’ﬁzd 75T ST o P /2 2

f

n

2 (o) otufé ik (5-87)

z
L1+m 2% pdedzdé .

It is clearly seen, that the integrals over e and z for this case are

exactly the same as for case (i), ie M= -1, The integral over ¢ gives
2 .
-[ov gﬁ(mf+1-mi) a4 = 2n‘S(m£-mi+1) . (5.38)
Therefore, for the matrix elements of T to be non-zero, we must have
me = m, -1.

The total expression for \Riﬂz can now be written

1
2 2 .2 1
; T z C R (g+1pi=1 s .
if 0 |,u§-1 2l {«ps Cups R (p+1pl=1,m0,5,%) (5.39)

l’ A) 2
x  Z{t=tpi+1 ,s,gz)} '

It has now been shown that all the integrals occurring in a, , when the
continuum contains pure Landau levels only, can be evaluated analytically,
and computation of these cross-sections is carried out by program QMAT,
details of which are given in appendix (I).

85.4 Threshold Behaviour

The total photoionizaticn cross section from an initial bound state
(m,m) will include contributions from the transitions to final states
(v ,m), (w,m-1) and (+ ,m+l) (see section §3.6), corresponding to m= 0,1
and -1 respectively, where ™ and ™ are opposite parities. We first
consider the dependence of a,, on kz from the p= 0 contribution. It has

already been shown that

lmax

(7,m)
al = zéo D, [Z<°‘+1'3’kz)] 2 e(E,) (5.40)

where Dl is independent of kz and the dependence of the density of states

on kz is 1 . An expression for Z(« + 1, s,kz) is given by equation (5.24).

™|

2
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Expanding the Hermite polynomials in these expressions (see table

(1m.1) of appendix ( IIL )), we obtain

2
- s
kz3 b Ky ST, (5.41)

Z (+ 1, s,kz) = Cl (blkZ + Db oi+]

3

if « is even, ie if the initial state has even parity, and

2
_ 2 atly -k “/us
Z (41, s ,kz) = Cy (bo + bzkz touooot bw(lkZ e 'z (5.42)

if « is odd, ie if the initial state has odd parity, and Cl is also
independent of kz. As threshold is reached, kZ becomes increasingly
small, and in this region only the term in the smallest power of kz
occurring in a, is significant, all higher terms can be neglected. We

therefore have, near threshold

£
_ max
T,m
a.(v’ ) zo A, k, (5.43)
‘e=
if &« is even and
£ 3
(F,m) _T™x 3
ay’ ~ Z, &) (5.44)
= Z

if « is odd.
Now, considering the dependence on kz from the contributions arising

.. +
from the transitions to (w ,m-1) we have

Lrax

2
= I D [BEx)] e (5) (5.5)

(rym=1)
a‘u/

where D2 is independent of kz' Again, expanding the expressions for

Z( & ,s,kz) when « is even and odd in terms of kz, we obtain

: 2
_ 2 «y -k _“/us
Z(« ,5 ,kz) = (:2(5\o + a2kz I .a kz Je "z (5.46)
if £ is even, and

2
- 3 « 7k Js (5.47)
2(«, S,kz) = CZ(alkz + a3kZ Foeennns .a kz ez

if & is odd. Taking only the terms in the lowest powers of z in the
expressions for Z(« ,S,kz), we have

Imax A
- Y
a's_(’mm) ~ 5 - (5.48)

£ =0 kz
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if « is even and

nax
a(\:r’mﬂ) ~ B, k (5.49)
£ =0

N

if & is odd.

As B - 0, the fact that,,emax becomes very large, and that the
distance between the Landau levels becomes very small, must be taken
into consideration. As B —>0 the zero field limit is reached where
the Landau levels are infinitely close together, forming a continuum,
and the 1lst Landau level tending to zero energy. This enables the sum
over Landau levels to be replaced by an integral over all energies up
to E‘emax in the limit as B> 0. TFor example, the contribution to the
total photoionization cross section from the transition to the (i ,m)

state from an odd parity bound state, becomes

(1? m) J"max sz
b - -
a ~ By % dE, = 2B . dk, = 2Bk, (5.50)

o z
where Ei is the energy of the Landau level corresponding to £ = i. In
this case, the dependence of a {:F,m) on kz is kz. The dependence of
Z and the photoionization cross section contributions for both the
limiting case and a finite magnetic field, on kz, for all allowed tran-
sitions are summarized in Table (5.2). The dependence of the final state
on z is e ikzz = cos kzz + 1 sin kzz). If the final state has odd parity,

then only the term cos kzz contributes towards the cross section and if

the final state has even parity, then only the i sin kzz term contributes.
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Initial State Final State Dependence Dependence Dependence
Parity me Parity me of Z on kZ of a,on kz of aon kz
for finite B for B -0
even m odd m k k k 3
z z z
even m even mtl 1 k -1 k
z z
odd m odd | mi1 X K x 3
z z z
-1
odd m even [ m 1 k k
z z

Table (5.2)

The dependence of Z and the contributions to the total photoionization
cross-section on kz at threshold for all allowed transitions.

At zero magnetic field, the Wigner Law (Wigner, 1948) is satisfied,

24 +1
0
a, ~ k

where /£, is the angular momentum quantum number of the free state. For
a transition from an odd parity bound state, the total final state must be

max

max
a sum of s,d...... £°

states, where X, is the highest allowed value

for 1£_, and so

a, ~ al k + a, k5 teeveoans

At threshold, the term in k is dominant. As there is always a contribution
to the total cross-section from an s-wave, the dependence of a., on k at
threshold must be k. TFor a transition from an even parity bound state,
by a similar argument there must always be a contribution from a p-wave
and so the dependence of a., on k at threshold must be k3.

Considering now, the case where the magnetic field is switched on,
it is observed that the only dependence of the cross-section on the magnetic
field strength occurs in the contribution to the matrix element from the
integral over @ , the formula for which is given by equation (5.32).

This dependence near threshold, ie considering only the contribution from
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the first Landau level in which 4= 0, is of the form e—*??%KMﬁ m
being the magnetic quantum number of the final state. Therefore, as
B > 0, the contributions to the total cross-section from transitions to
final states with m = O can be regarded as negligible. Only the case
m = 0 is not directly dependent on ¥ . This is not surprising as it is
only them = 0 states which occur at zero field.

It can now be seen that, using the results given in table (5.2),
since there is at most only one contribution from the transition to
the final state with m = O, then if this is an odd parity state, the
dependence of a , on kZ is kz3 and if it is an even parity state, the
dependence is kz. This is in accordance with the Wigner Law and also
agrees with the results obtained by Blumberg et al 1979,

From table (5.2) it can also be seen that, for a finite field
strength B, since we are summing over m in the total photoionization
cross-section, there is always at least one contribution whose dependence

on kz is kz-l. If the incident energy h~r is such that

hV:El'l“E‘g

for some 2, then there will always be a contribution to the cross-section
from the transition to the final state with energy E, , with no energy
released in the z direction, ie k22 = 0. Therefore, for such incident
energies, the total photoionization cross-section will always be infinite
at this energy in the absence of broadening. These infinities occur
because, in using the Landau model, we have separated out the z-motion

and represented it by a plane wave. This is, of course, unsatisfactory
when kzz'% 0, even in the Coulomb-modified case discussed in chapter 6,

and we should, in principle, replace the plane wave.
ik_z g

e 2 = 2
p:

by a distorted wave with jp (kzz) replaced by

. iP (2p + 1) jp (k,z) P, (cos & ) (5.51)

. 2
K plk,2) =3 (k2) + (-1)P tan 5, (k) vy (k;2) (5.52)
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Here, Sp (kzz) is the phase shift produced by the potential which may
be taken to be short range. Consequently, by the effective range

expansion

Lim 5. (k%) ~ kPHt1lioa 2 . (5.53)
Y z z z
kg =0
we have
tan 5_(k_2) vy (k. z) ~ kP (5.54)
P z P 2z z ‘

and the threshold dependence is readily seen to be unaffected on
replacing the result in equation (5.51) with that given by equation (5.52),

provided the potential is short range in the z- direction (Wunner et al, 1981 a).

§5.5 Results

The total photoionization cross-sections and the contributions

from each of the possible Landau levels given in the form

1 .
sfff’mf) _ %z <, IJEA ’*}*Wijszﬂz (5.55)

are calculated by program QMAT, details of which are given in Appendix
(1). Results for photcionization from the bound states "lso" and "2po"
to the continuum states with energy up to 8 ¥ Ry are given in tables 5.3 -
5.10 and the total cross-sections plotted in figures 5.2 - 5.9. It is
observed from these results, that the total photoionization cross-section
has an infinite peak corresponding to the energy of each discrete Landau
level. It is clear, from table 5.2, that this is to be expected in the
absence of broadening, due to the dominance of the contribution(s) whose

dependence on k_ is as kz—l at each threshold (ie when k- 0). As the

energies of the Landau levels corresponding to all states of the same £
and with m. < 0 are degenerate, and the energies of the levels (£ sMg)
where me > 0 are equal to those of the levels ( £ + Mes M ) where

m = 0,-1,-2..., it follows (from the results given in table 5.2) that

there is always an infinite contribution to the total photoionization
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cross-section at the thresholds which correspond to the Landau energies.
In practice, however, these peaks would be finite and broadened dﬁe to
the motion of the residual ion and other effects discussed in§5.4
(Blumberg et al, 1979).

It is seen from figures 5.2 - 5.9, that the cross-sections, away
from the resonances, are very much smaller than the corresponding field-
free cross-sections. In fact the field-free case is not marked on some
of the figures, indicating that it lies beyond the scale of the graph.
However, at B = 107G, for example, we are only dealing with a very narrow
range of energies (from threshold up to about 0.5 eV), and it can be seen
that, taking the very large difference in the energy scales into considera-
tion, the lso and on cross-sections become closer to the field free cross-
section with decreasing B. For comparison, the zero field cross-sections,
as computed by Burgess (1964) are given in table 5.11 along with the
corresponding eﬁergies in ¥ Ry for the 4 field strengths which are considered
here. We would expect that, if broadening were considered, the field-free
case would be reached in the limit as B-> O. If an average smooth curve
were to be drawn such that the actual cross-section consisted of a series
of (both finite and infinite) peaks superimposed on this smooth curve, then
it would be seen that the initial gradient of this curve would increase with
decreasing field strength. In the limit as B—> 0 we would expect the initial
gradient to become infinitely large as in the zero field case. This is
illustrated schematically in figure 5.10.

Another feature of these cross-sections, is that apart from the infinite
resonances occurring at the Landau energies, there are also secondary maxima
appearing in so;e cases. These are due to maxima occurring in some
individual contributions. However, it is not necessarily true that a
maximum in one contribution will cause a maximum to occur in the total cross-

section. For example,
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Figure 5.2

The photoionization cross-section (10~

continuum at B = lO7G.

Figure 5.3

The photoionization cross-section (10

continuum at B = lO7G.

chmz) frem "lso” to

18cm2) from "2p " to

The zero field cross-section is given by the broken line.

Figure 5.4

The photoionization cross-section (10~

continuum at B = lOsG.

Figure 5.5

The photoionization cross-section (10~

continuum at B = lOBG.

The zero field cross-section is given

Figpre 5.6

The photoionization cross-section (10'18

continuum at B = § x lOBG.

Figure 5.7

The photoionization cross-section (10

continuum at B = 5 x lOSG.

The zero field cross-section is given

Figure 5.8
The photoionization cross-section (10

continuum at B = lOgG.

-18

lsch) from "lso" to

18cmz) from "2p " to

by the broken line.

2, .
cm” ) from "lso" to

18cm2) from "2po" to

by the broken line.

The zero field cross-section is given by the broken line.

Fi@gre 5.9

The photoionization cross-section (10~

continuum at B = lOgG.

18

The zero field cross-section is given by the broken line.

the Landau

the Landau

the Landau

the Landau

the Lapdau

the Landau

cmz) from "lso" to the Landau

cm2) from "2p0" to the Landau
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ENERGY
Fig 5.10

Schematic diagram to show how the "average" smooth curve superimposed
on the photoionization cross-sections, tends to the zero field limit.

Bl < B2 < B3 < B4 .
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at B = lOsG, for photoionization from the "lso" state, the

contribution from the (2,0) state has a maximum between the Landau
energies 5¥ and 7¥ Ry, however, a, 1is monotonic and decreasing

in this region (figure 5.4). A secondary maximum can occur if the
terms corresponding to a particular Landau level have a maximum
between two Landau energies and if these terms contribute significantly
to the total cross-section. For example, the case where there are
only two contributions to the total cross-section from the Landau
levels (0,-1) and (0,0) at B = lOgG for photoionization from the

"lso" state. Here, a maximum occurs between the 2 Landau energies

at YRy and 3% Ry (figure 5.8), caused by a maximum occurring in

the contribution from the state (0,0). It is shown in section 8§5.6
how these secondary maxima arise for a Landau continuum function and
very simple model functions for the bound states. The actual location
and shape of the secondary maxima depend, in a sensitive manner, on the

details of the wavefunctions.

§5.6 Secondary Maxima in aas

In this model

hv 2
8., o k—z- %!R(ﬁ',mf,s,‘d’) Z(d'as’kz) d,(‘sgl (5.56)
and L' = :+1 g = 52-1 when Am = {:? (5.57)

We are interested in the variation with h-v in the energy range

Ix + E, £ hv, where Ix is the ionization potential, and we write

- 2 . .
hv = Ix +E, + kZ . The hw dependence of a, 1is obtained by

considering
1
). s, (B -0 2 (5.58)
1
(E - X)2
where aaf) is the contribution from the £'th Landau level, h-s has been

replaced by E, X = Ix + Ql and A is independent cf E. We illustrate
the behaviour of agf) (E) by considering only simple bound state wave

functions of the form



- 8r2
llsO > = Nl e
--61:*2
I12p > = N, ze (5.59)
There are four cases to consider:
Case I: me = 0, initial state has even parity, ie is !lsO >
2 1
2B ;s A zaLs, (-2 2 (5.50)
v —T
(E - X)2
Thus
1 1 -(E-X)
a(v) (E) = A'E(E -X)2 e /25 (5.61)

where A' is also independent of E. Now differentiating agf) (E)
with respect to E, we find that there are two stationary points

occurring at

E=3{(3% + X) 1/952+x2 - 25% 3 (5.62)
providing (952 + X2 - 28X) > 0. From Table 3 it can be seen that

. . . 2 . X
the dependence of a,, on kz in the region kz ~ 0, for this case, is

(8

as kz. Therefore, close to the Landau energy E, » is an

increasing function, and so the first stationary point will be a maximum

2

and the second a minimum. If (952 + X° - 25%) $ 0, then a&f) (E)

is a monotonic increasing function (in this simple approximation).

Case II: me =t 1, initial state has even parity,
(£) - T2
a’ (E) = AE [z (0,8 , (E-%)%) (5.63)
— T
(E - X)2
Thus
-(E-X)
-1
aff) (E) = A'"E(E-X) 2 e as (5.64)

Again, differentiating agf) (E) with respect to E, we find that there

are two stationary points occurring at

1
E=35(X-5)+/x%+5%-65% 3 (5.65)
providing (X2 - 52 - 6%X)> 0. From Table 3, it can be seen that,
close to the Landau energy, the dependence of a&f) on kz is kz-l

and therefore the function is decreasing with increasing kz in this regien.
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The first stationary point will then be a minimum and the second a

(2)
1%

maximum. If (X2 - 52 - 65X) P 0, then a will be a monotonic

decreasing function.

Case III: me =t 1, initial state has odd parity, ie is 2po
(2) 132
a,’ (E) = AE ~[z(l, s, (E-x)2?) (5.66)
(E-X)2

This expression is exactly the same as that given by (5.60) and so the
stationary points are given by (5.62). From Table 3 it is seen that
the behaviour close to the Landau energy is the same as that of Case I
and sc, as in Case I, the first stationary point is a maximum and the

second a minimum and a

(2) . .. . . .
U) is a monotonic increasing function if the

stationary points do not exist.
Case IV: m

£

In this case

= 0, initial state has odd parity.

~(E-X)/
aff(s) = _AE (1 -1 (E-X) +1 (E-x)2] e 28
b L 1

(E-X)Z2 ® g2

(5.67)

so again a,, decreases Immediately above a threshold. We can write

(L)
a. (E) =

2
x; yo ot ay t a3) (5.68)

A .?_:Z (aoy3 ta,
2% y

with y = (E-X)/2¢. The behaviour is complicated, and one or more turning
points may occur. If there are two positive roots of the cubic, then a
secondary maximum occurs. The overall result, however, is that found in

cases II and IV, that secondary maxima can occur both for odd and even

parity initial states.



=155~

CHAPTER 6
Photoionization Cross-Sections Where The Continuum Is Modified By

The Coulomb Attraction Of The Nucleus

§6.1 Introduction

For fields in which the magnetic field strength does not
entirely dominate the Coulomb attraction of the nucleus, it is shown,
in this chapter, that the Coulomb force has a significant effect on
the structure of the continuum and that this, in turn, has a significant
effect on the photoionization cross-sections. The inclusion of the
Coulomb term in the calculation of the continuum wavefunctions, however,

renders the Schrodinger equationm,

A 2
HVk(ZZm = Eﬂ’izzm (6.1)

inseparable, and so some approximation must be made in order to overcome
this problem. We follow Starace (1973) and Rau (1979) in supposing that
the main effect of the Coulomb interaction is to restrict the continuum
electrons' motion perpendicular to the field lines, which is uncoupled
from the motion along the field lines. This approximation is excellent
at low fields, and gives the observed l.Shub splitting of the émbedded
levels near the ionization threshold (Garton and Tomkins, 1969).

It is found that the Coulomb modified continuum wavefunctions remain
unchanged in their z and ¢ dependence but that their radial dependence
is no longer analytic, being calculated in numerical form. The method
used in calculating these wavefunctions and their corresponding energies
is described in detail in section 86.2 and results are presented graphi-
cally for a few of the radial functioms.

The photoionization cross-sections are calculated in a very similar
way to those of the pure Landau case in $6.3. The only difference being
in the evaluation of the ¢ intggral occurring in the expression for !Riflz.

It is shown that within this model the same threshecld law holds as for the
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pure Landau case despite the inclusion of a radial Coulomb attraction,
since, in the present Coulomb-modified model, the only kz2 dependence

of the dipole matrix element arises from the motion along the field. In
practice, the reservations outlined in §5.4 may modify this result.
Detailed results are tabulated for the cross-sections and their individual
contributions and the total cross-sections are also plotted in figures
(6.15)-(6.22).

§6.2 Calculation of the Free Wavefunctions

6.2.1 Basic Method

The wavefunctions and energies of the continuum states, ie those
corresponding to the Coulomb-modified Landau levels, are given by the

solutions of the Schrodinger equation

-2 _ 13 - Y 3 v2er ax (2) By, i
R 52055 Y50 05 - B Pan - E ) (6.2)

where &, is the residual charge on the ion. The continuum functions

may be written in the form
_t ) .
\Vk(:,)m () = c ot g (p,z) eim$ (6.3)

so that f satisfies

2 2 (<)
f - g? -2 v (Vi) - B fY%,2) = 0 (5.4)
with El(") - g0 oy (6.5)
2_L 2 ,2 .
and vie,z) = r}% " %f - R (6.6)

Now, in order that equation (6.4) be separable, and that a solution
f(I) (p,z) be found, it is convenient to approximate the Coulomb term
by %§° , ie we put z = O in the Coulomb interaction. A full discussion
of this approximation is given by Starace (13973) and Rau (1879). We
can now write V(f,z) = V(p) and the equation becomes separable so that
writing

£ 0,2) = up ()32 (6.7)

we have the following equations for u and %:
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a® 3(2) = h, (p) 3(2) (6.8)
2
dz
2
and {SLE‘ + Vl(f)} up,le) =0. (6.9)
de
In equation (6.8) we have written
hele) = =22 + V() - £, (6.10)
9?2
and in (6.9) we write
- £
v, (F) = E - Vie) (6.11)
Solving equation (6.8) we find that Z(z) is of the form
.ikzz
3(z) = Ae (6.12)

where A is constant with respect to z.

Solving equation (6.9), however, is not nearly so simple. This

equation is an eigenvalue equation having eigenvalues El(}) with the
boundary conditions that the wavefunctions vanish at ¢ = 0 and ©°
ie U, (0) =u,(=) =0, (6.13)

The solutions, are, of course, the Landau functions given by equation
(5.16) if o = 0, the Schrodinger equation reducing to the form of
equation (5.10) in this case.

Starace (1973) and Rau (1973) used a JWKB approximation to u, (p)
but for our purposes this is unnecessary. As the integrals occurring
in the photoionization cross-section must be evaluated numerically, it is
more convenient to find an exact numerical solution for uy (p) from
equation (6.9). It can be shown that these numerical solutions reduce
to the pure Landau solutions in the case o = 0. Equation (6.9) can

be rewritten as a system of first order, ordinary differential equations:

ul, (e)

4 (o) )
) (6.14)

/
-V, (Ej.p) Yy ) )

'-"2 (Q)
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where Ul(e) = u (e), primes denote differentiation with respect tope,
and the boundary conditions are given by (6.13).

Basically, the method used in solving (6.14) is to integrate
outwards from ¢ = O and inwards from some large value of e » say P=R,
using a Runge-Kutta technique (Mayers, 1962) with initial estimates for
the eigenvalue and boundary conditions on ug(f). The solutions are then
matched at some point between O and R, a second approximation to the
eigenvalue and boundary conditions on u2(e) are found such that ul(f)
and its first derivative are continuous at the matching point, and the
process is then repeated with the new estimated values for El, uz(G) and
uQ(R) (Hartree, 1955),

The matching point is denoted by € o, the outward sclution (is
that found between 0 and Qo) by ul(o;t) and the inward solution (iz thz=t
and u

found between R and €o0) by u Now U

L el
= I P
gre arIiIrIEry

1(in)" 1(out) 1(in) T

to the extent of a multiplying constant, and so we can writs

Y1(out) - AUl(ou‘t) )
)
_ (5.15)
“1(in) = Pi(in) - )
The total wavefunction ul(e) must be normalized, ie
fo 2 R 2
u = 1 f.158
J [ % (out) (C)] df + -[ [ 1(in) (E)J e 1.(5.15)
) fo
Also, the following condition must be satisfied in order that the function
be continuous and have continuous gradient at the matching point:
! _ !
"1 (out) (o) = "1(in) (€o) .
“1(out) (€0) "1(in) (¢0) (6.17)

A and B are chosen such that the inward and outward solutions meet ateo,

ie such that u ) (o) = Y (in) ((’o) and also such that the normalizing

1(ou

condition is satisfied, ie

B = AUy (€0 (5.18)

Yi(in) (Po)
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and
2

2 o 2 5 R
A j [ Uounye?d de + Bj [Uim(@ ) de =1.(6.19)
o

e}

We now define N as
2

2
. R L
. { f%{ul(out)(e) Je +-[ {Ul(in) (e) J do } i (6.20)
Uy (out)(€0) ts Uy (5n) (0D

[}

and from equations (6.18) - (6.20) we obtain

A = N (6.21)a
l(out)(€o)
and
B = N ) (6.21)b
l(ln)(€ °)

Now Hartree, 1955 considers a similar problem and cbtains the following
expression for the new approximation for the eigenvalue such that the
matching condition at o (ie equation (6.18)) is satisfied. Let the
eigenvalue El be changed by an amount AEl, so that the new eigenvalue
is E, + aE, (aE, can, of course, be positive or negative), then from

1 1 1
Hartree, 1955

, o 2 R 2, |
[ul(in) - ul(out)} LB @) T et bl @) “plery (5.22)

“1(in) Ul(out)€4% (ul(out)(EO)) ? (ul(in)(€0)) i
. _ 2 /
ie 8E, = N {ul’(in) = Y out) ‘ (6.23)
"ty Leut))p=po

In order to chocse successive approximations for the gradient at O and R

(ie to obtain boundary conditions on uz(f)), we consider

/ .4 ~

. = R ou

Sein) R T (i) R = BU 4 (R (6.24)
Now we choose a first approximation for u ( )(R) as being unity (this is

not necessarily a good approximation), and this leads us to choose, as a

second approximation for ul( )(R),
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u2(in)(R) =B= N ) (6.25)
Ul(in)(Fo)
Similarly, we can choose as a second approximation for “5(out) (o),
after an initial approximation of 1,
u2(out) (0) = A = N (6.26)
Ul(out)(fo)

To summarize, after the first trial integration with
eigenvalue El and boundary conditions

vy (0)

and u2 (0)

0

ul(R)

U, (R)

1

in the limit as R-=» « , the resulting function ul(g) contains a
mismatch at @o. In order to attempt to obtain a function which is
continuous and has continuous first derivative at po, we take a second

approximation to the eigenvalue, E, + AEl, and choose new boundary

1

conditions

ul(o) ul(R) = 0

and UQ(O)

A, uz(R) = B .
We continue to take successive approximations in this way

until convergence on the eigenvalue is obtained and the inward and

outward functions u

) and U ¢ and their first derivatives, are

1(in out)

equal at fo.

The numerical integrations (both inward and outward) are actually
carried out using Merson's method, a variation on the standard Runge-
Kutta method (Lambert, 1973, Ch.4). The variation involves altering
the steplength at each calculation in order to keep the soclution within
given error bounds. This method is carried out in the NAG library
subroutine DO2ABF. The integrals involved in the calculation of N
(equation (6.20)) are also calculated numerically by the method
described by Gill and Miller,1872, using the NAG library subroutine

DO1GAF .
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The program which calculates these continuum functions
is WFCOUL and is described in more detail in Appendix (I).

6.2.2. Starting the Outward Integration

As V, (p) bas a singularity at ¢ = O, an approximation for
ul(e) using a series expansion must be found in this region. The

Schrodinger equation can be rewritten

2 .2 2 2 _
e d%u + {Ele+2«p-(n" -1}y =0 (5.27)
deQ
ie 2424 4 r(p) u, =0 (6.28)
e 1 €/ "1 - :
dez
¢ P
where r(e) = p%orpf (6.29)
with r = -m2 + 1/4 )
)
ry = 240 ) (6.30)
)
r, = El . )
Now writing u, as a series in p > we have
poy n+s
= z
u, Zo € - (6.31)

On substituting equation (6.31) into equation (6.28), it is seen that

; a_ (s+m)(s+n-1) ¢& + 2 ; a r o,tP _op
a =0 n P e '

Matching the coefficients of the powers of ¢ in the two series in
the above expression, we obtain the following conditions which must

be satisfied:

(i) for the coefficient of <>° a s(s-l)+ar =0
o oo
1
.. . £3 A~ . - =
(ii) for the coefficient of e : al(s.l)s tar +ar) 0
(iii) for the coefficient of e K (k 2 2):
als +k) (s +k-1)+ar +a v +a 7,0,
Now condition (i) gives
ro = -s(s-1) (6.33)

ie s = 3 In. (6.34)

The regular solution for u, (e) is obtained when s is given its highest

value, ie when

s =3+ Iml, (6.35)
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Solving the equations in a;s @ successively, substituting

g

in this value for s, the following results for ars 2, and a, are

obtained. As we are only considering this series expansion as a

b .
solution close to e = 0, we neglect terms of order e and higher.

a - _ 20(0 a - b. a (6.36)&
1 T+21m! Lo
2 _
a, = (44" - E/(1+2im)) a = bja (6.36)b

4(1+2ml ) (1+|ml)
3

['1)
[}

) a_ =bs,a . (6.36)c

(OLOEl (6Iml+ 5) - hat o 33

6 (1+21m) )(1+1mi )(3+21Im])
We now have the sclution

ul(e) = ap™ *2 (1+bp+ bye” + be®) + 0 (p7) (6.37)

where A is a constant (in fact the same constant given by equation
(6.21)a).

It is interesting to note here, that if no Coulomb term is
included in the Hamiltonian when calculating this final state function
(ie when Ay = 0), then bl and b3 are both zero and so the terms in
flml+ 3/2 and flml+ /2 are not included in this series expansion for
the wavefunctions near the origin. As the behaviour of the wavefunction
near the origin determines the nature of the function elsewhere, the two
caseso | = 0 and 1 (ie the pure Landau and Coulomb-modified cases
respectively) must produce wavefunctions of a different character. This
emphasizes the importance of including the effect of the Coulomb force
of the nucleus in calculating the free wavefunctions. It will be seen
later, in fact, that these wavefunctions (with the Coulomb term included)
are not only different from the pure Landau levels, but also have very
different energy eigenvalues for the field strengths which are considered
here. The structure of the Coulomb-modified continuum is discussed in
more detail below.

To ensure that equation (6.37) gives an accurate description of the

wavefunction in the region e = 0, it is necessary that the second difference
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of ul(e) agrees with ul"(e) to reasonable accuracy. It is found
that evaluation of ul(e) at the three points 0.09, 0.1 and 0.11, gives
agreement to two decimal places for B élogG. This is illustrated for
the Coulomb-modified case in table 6.1 and for the pure Landau case in
table 6.2, both for B = lO7 and lOgG, when |m| = 1. It is expected
that the results are in equally good agreement for intermediate field
strengths and energies and also for other values of m. A further check
is that by running the code with oL = 0, the numerical solution is

identical to six figures with the analytic Landau solution.
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B Bl e ule) ® 2u(O.l) u''(0.1)
@) | (¢ry (se)?
7
10 3.72 0.08 0.0286556
0.1 0.0337824 3.208 3.207

C.11 | 0.0332300

6.31 0.09 | 0.0286553
0.1 0.0337820 3.208 3.206

0.11 | 0.0392230

20 0.09 | 0.0286538
0.1 0.03377398 3.206 3.205

0.11 | 0.0392263

10 2.14 0.09 | 0.0286322
0.1 0.0337487 3.180 3.179

0.11 | 0.0391832

4.36 0.08 | 0.0286075
0.1 0.0337132 3.150 3.149

0.11 | 0.0391339

20 0.09 | 0.028434
0.1 0.0334631 2.340 2.939

0,11 | 0.0387865

Table 6.1

Table to illustrate the agreement between 52 u and u”’ at £=0.1
; (5¢)°
for the field strengths B = 10 and 10°G and energies up to 20 ¥Ry.

< o = 1, ie the Coulomb-modified case is considered and |m] = 1.
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2 i1
B E, e ule) 8~ u(0.1) u' (0.1)
(G) | (¥ Ry) (3¢)2
7
10 2 0.09 0.0269998
0.1 0.0316224 2.373 2.371
0.11 0.0364824
4 0.09 0.0269995
0.1 0.0316221 2.366 2,371
0.11 0.0364819
20 0.09 0.0269977
0.1 0.0316194 2.370 2.369
0.11 0.0364782
10° 2 0.09 | 0.0269767
0.1 0.0315891 2.3u44 2.342
0.11 0.0364359
4 0.09 0.0269535
0.1 0.0315555 2.314 2.313
0.11 0.0363890
20 0.09 0.0267674
0.1 0.031286L 2.079 2.077
0.11 0.0360133
Table 6.2

2

57 u
Table to illustrate the agreement between (Ge)* and u'' at g =0.1

when

20 YRy.

Lo

e = 0.01 for field strengths B =

7

10 and lOgG and energies up to

= 0, ie the pure Landau case is considered.
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6.2.3 Starting the Inward Integration

The inward integration is started in a region where [ul(f)[
is small and ulg?) is slowly tending to zero. Assume that Vl(El,e )
does not vary rapidly in this region, then an approximate solution can
be given by
-1 3 - [vy2
u (p) ~ v, b [Cejvl ¢ 4 De fvy dey (6.38)
1°¢ 1 )

and we require the solution which tends to zero as ¢ increases. Its

values at three points, equally spaced in ¢ , will be approximately in

geometric progression. Consider the values of u, at R + ¢ , R and

1
R - 8¢, and let the solutions here be
uy (R+ 8¢) =_2¢ )
l+x )
) (6.39)
Uy (R) = ¢ ;
uy (R- Sf) =c (1+x) )
(Yartree, 1355) where ¢ is a constant. We can write
17, - 2 L
uy (R) = ¢ uy + 0/%§ ul ) (6.10)
(50)2 (5"

(Froberg, 1365) and so

2 _ 2 4
$“u; = (8¢)7 ¢V, (E[, R) + 0 (8p); (6.41)
but 82 u, = ¢ (1+x) = 2c + ¢ = cx2 (6.42)
1+x 1+X

(the second finite difference) and so we can write

o

x = 30007 v + {15 v 2 v ()7 v ) ] (6.43)

where V, = V, (El,R). We can now obtain values for u, (R +8¢) and

Ul(R) (to within an arbitrary multiplying constant). Table (6.3) shows

that there is very good agreement between u''(R) and 52 u(R) for the
(Se)2

field strengths which are considered here when Im| = 1, if R is taken
to be a sufficient distance from the classical 1limit of the wavefunction.
We illustrate here, only the Coulomb-modified case and only the lowest

(estimated) energy eigenvalue E., for each of four field strengths.

l’
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Again, it is expected that results for other values of El and

m are in equally good agreement, as long as R is large enough.
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6.2.4. Estimating the Energy Eigenvalues of the Continuum States

In order to find solutions for u2((>) by the method described
in §6.2, it is necessary to first obtain good estimates for the
corresponding energy eigenvalues. It has been shown by Kemble, 1958
and others, that if the wavefunctions are calculated according to the
WKB approximation, then, even though the WKB wavefunctions are quantum-
mechanical, their corresponding eigenvalues can be calculated by the

semi-classical Bohr-Sommerfeld quantisation condition

’
e z
J 1{v2(zl,(=)} de = (L+ D, £=0,1....... (6.44)
) .
where V2( el) = V2( 6’2) = 0, (6.45)

(ie e, and g, are the classical turning points) and

v (e ) = El -V ( e) -1 (6.u46)

— .

2
4o
Although the eigenvalues calculated by this method will not be the

exact eigenvalues corresponding to the wavefunctions calculated by the
method described in86.2, they will provide a good first approximation,
as we would expect these wavefunctions to be of a similar form to those
calculated using the WKB approximation. These approximate eigenvalues
are calculated from equation (6.4l4), evaluating the integral numerically
by the method described by Patterson (Froberg, 1965) using subroutine .
DO1ACF from the NAG library, increasing the energy until £ has increased
from k to k+l where k is an integer. Resﬁlts are shown in tables6.4 -
6.7 for the energies which lie in the continuum for various integer values
of £ withlml= 1. The spacings between the levels are also given in these
tables.

Starace, 1973, calculated these energies and energy spacings for
hydrogen by a similar method, but for low field strengths (of the order
of lOu and lOSG). The energies and energy spacings in this case, were

calculated by differentiating equation (6.44) - it is expected that these

results are accurate for low fields, as the wavefunction with the lowest
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energy in the continuum has a large value of /4 (’Fmin = 69 for
B = lOuG). It is seen from tables 6.4 - 6.7, that as the field
strength increases, the value of 'emin decreases, In this respect,
the structure of the continuum differs greatly from the pure Landau
continuum, as the lowest Landau function, regardless of field strength,
always has.«’min = 0 (Dingle, 1952). 1Indeed, as expected, the deviation
beccmes greater as the field strength decreases. For the higher field
strengths which are considered here, it is believed that, due to the
small values of £ involved, it is better to calculate the energy spacings
directly.

It was also pointed out by Starace, 1973, that at the low fields
which he considers, near threshold, the energy spacing is approximately
3 ¥ Ry, decreasing to 2 ¥ Ry in the limit as El—»"(ie in the Landau limit).
This 3 ¥ Ry spacing at low fields was first observed experimentally by
Garton and Tomkins (1969) in their work on the principal series of Bal.
This result can be clearly seen from the spacings given in tables 6.4 - 6.7,
where energies are given until the spacing is as low as 2.1 ¥ Ry, ie the
Landau limit is almost reached where the spacing is 2 ¥ Ry. The presence
of the Coulomb force, it is shown, has the effect of increasing the level
spacings to a meximum of about 3 ¥ Ry and this is illustrated in figure 6.1.
It is clear from these results, that the Coulomb field is certainly non-
negligible in the range of field strengths which we are studying. In fact
at B = 1076, the whole structure of the continuum will be completely
different, with the lowest wavefunction having‘principle quantum number
4 = 7. For this reason, it is also expected that results for the
photolonization cross-sections are different when the Coulomb force is

included in the system.
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e
e, 2 £ Eg )( ¥ Ry) Energy
Spacing (¥Ry)
0.438 91.186 7 2.717
2.860
0.497 101.347 8 5.309
' 2.48
0.u495 110.634 9 7.789
: 2.40
0.49y 119.215 10 10.130
2.34
0.493 127.219 11 12.534
2.30
0.492 134,740 12 14.834
2.26
0.491 141.852 13 17.100
2.24
0.430 148.612 1y 19.338
2.22
0.489 155.065 15 21.551
2.20
0.487 161.251 16 23.750
2.18
0.u86 167.197 17 25.931
2.16
0.u85 172.929 18 28.097
2.186
0.484 178.463 19 30.252
2.14
0.u83 183.835 20 32.396
2.14
0.482 189.0u41 21 34.531
2.12
0.u81 1s4.101 22 36.657
2.12
0.480 199.027 23 38.776
2.12
0.480 203.828 24 40.889
2.10
0.479 208,514 25 42.996
2‘10
0.478 213.093 26 45.097 i
I ' 1
| !
! |
2 2.00
Table 6.4
The energi ) . g i in ¥ .) h
ergies El = E'"’-m and energy spacings (in ¥ Ry) of the

modified Landau levels for Im| = 1 at B = 107G calculated using the

Bohr-Sommerfeld quantization .condition.

the classical turning points are also given.

do not exist.

The values of £ , and

The levels for

L <7
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e e s El Energy Spacing ( ¥ Ry)
( ¥ Ry)
0.485 21,951 3 2.033
2.40
0.474 26.029 L 4,435
2.28
0.u485 29,552 5 6.725
2.22
0.456 32.688 6 8.949
2.18
0.448 35.541 7 11.131
2.16
O.u44] 38.172 8 13.283
2.14
0.434 40.628 9 15.414
2.12
0.428 42.937 10 17.527
2.10
0.422 u5.124 11 19.627 \
! ]
i
oo 2.00
Table 6.5
. (®) _ (&) . .
The energies E = E”'-m and energy spacings (in ¥ Ry) of the

1
modified Landau levels for im) = 1 at B =

Bohr-Sommerfeld quantization condition.
classical turning points are also given.

do not exist.

108G calculated using the
The values of £ and the

The levels XL = 0,1,2




e, e, 2 El( ¥ Ry) Energy Spacing ( ¥ Ry)
0.429 39.300 2 2.643
2.22
0.400 11.190 3 4,857
2.14
0.378 12.799 4 7.006
2.12
0.360 14,223 5 9.120
2,10
0.345 15.513 6 11.211
2.08
0.332 | 16.700 7 13.286 :
1 !
s 2.00
Table 6.6
. ) _ (») . .
The energies El = E” '-m and energy spacings (in ¥ Ry) of the

modified Landau levels forim! = 1 at B = 5 x 108G calculated using
the Bohr-Sommerfeld quantization condition. The values of £ and

the classical turning points are also given. The 4 = 0 and 1 levels
are missing.

e, e, £ El(‘Y Ry) Energy Spacing ( ¥ Ry)
0.420 5.265 1 1.140
2.22
0.372 6.856 2 3.363
2.14
0.340 8.138 3 5.503
2.10
0.317 9.242 4 7.604
2.08
0.298 10.224 5 9.880
2.06
0.283 11.117 6 11.743
2.086
0.270 11.¢9u3 7 13,794 . :
!
o 2.00
Table 6.7
Th . 2) _ (8) . in Y RY) h
e energies El = E'”’-m and energy spacings (in Y Ry) of the

modified Landau levels for Iml = 1 at B = lOgG calculated using
the Bohr-Sommerfeld quantization condition. The values of £ and
the classical turning points are also given. Note that at this

high field only 4 = 0 is missing.
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Figure 6.1

Energy spacing in ¥ Ry of the discrete levels in the Coulomb modified

continuum in the interval [2,16] Y Ry for B = 107, 108, 5 x 108 and

lOgG.
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6.2.5., Results for Energies and Wavefunctions

Having calculated good initial estimates for the energy
eigenvalues, the function u/g(e) can then be calculated by the
method described in ¥6.2.

In computing these functions, we obtain agreement at the
matching point to 4 figures in u, (¢) and its first derivative.

Table (6.8) gives the final results for the energies of all the
continuum states which lie below 8 ¥ Ry at B = 107, 108, 5 x 108 and
10% for m = 0,% 1.

At B = lO7G the lowest six Landau levels disappear, and the
lowest surviving continuum discrete state is £ = 6, m = 1 at 1.961 YRy,
while for m = O or m = -1 the lowest state has £ = 7.

At the highest field strength considered (lOgG) there are
discrete states corresponding to each of the Landau levels for m = 1,
and for all except £ = O for m = -1, while they begin at £ = 2 for
m = 0. The lowest level shifts in energy from ¥ to 0.67¥Ry.

Table (6.8) also gives the energies of the ( £ ,m) discrete
Landau levels in the absence of any Coulomb attraction (given by equation
(5.17)).  We see that the energy shifts can be very large when ¥ is
small: for example, for the lowest level at lO7G, the shift is more
than 13¥Ry. However, for lOgG, the lowest level has a shift of only
about 2.3YRy, and similar shifts persist to very high £ . The spacing

of the unperturbed levels is fairly close to the semi-classical value

aE = 3Y¥Ry
4 (6.47)

given by Starace (1973), however, this value refers to E = O and not

to the actual levels.
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B(G) Em= -1 é:=—1 Em=0 Ei:() Em =1 Errr-;z‘l
lO7 - - 1.96090 15
2,72564 15 1.02009 15 L,72564 17
5.31670 17 3.739300 17 7.31670 19

7.79648 19 6.39200 19 -
108 - - 1.41470 9
2.0488 7 0.54380 7 4,04888 11
4.,45037 9 3.20969 S 6.45037 13

6.733956 11 5.63640 11 -

- 7.84700 13 -
S x 108 0.30852 3 - 2.30852 5
2.66137 5 1.56361 5 4,66137 7
4.87242 - 7 3.98075 7 6.872 9

7.02042 9 6.23796 9 -
lOg - - 0.67461 3
1.16075 3 - 3.16075 5
3.37873 5 2.52522 5 5.37873 7
5.51588 7 4,81222 7 7.51588 9

7.61436 g 6.99740 9 -
Table 6.8

Energy eigenvalues of the discrete states in the Coulomb-modified

continuum (E) and the pure Landau continuum (EL) in ¥ Ry, for those

states which lie in the region [(0,8] ¥ Ry in the Coulomb-modified

continuum.
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Figure 6.2

Continuum radial functions u, (F) at B = lO7G , with me = -1 and
4 = 7 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E_and ECL Y Ry

respectively.

Figure 6.3

Continuum radial functions u, () at B = lO7G , with me = -1 and
£ = 8 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E,_ and ECL_Y Ry

respectively.

Figure 6.4

Continuum radial functions u,(p) at B = 107G » with m_ = -1 and
4 = g in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E_ and ECL'Y Ry

respectively.

Figure 6.5

Continuum radial functions u, (p) at B = 10% , with m. = -1 and
{ = 9 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E_ and ECL:Y Ry

respectively.
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Figure 6.6
Continuum radial functions u,g(f) at B = lO8G , with me = -1 and
£ = 4 in the Landau (broken line) and Coulomb modified (continuous

line) cases, where the energies of the states are E,_ and EcL.Y Ry

respectively.

Figgre 6.7

Continuum radial functions u‘e(f) at B = lO7G s, With me = -1 and
A = 5 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E_ and ECL_X’Ry

respectively.

Piggre 6.8

Continuum radial functions u (F) at B =5 x 108G , with me = -1 and

{4 = 2 1in the Landau (broken line) and Coulomb modified (continuous

line) cases, where the energies of the states are E, and ECLX’ Ry

respectively.

Figure 6.9

Continuum radial functions U, (p) at B =5 x 108G , Wwith me = -1 and
£ =3 in the Landau (broken line) and Coulomb modified (continuous

line) cases, where the energies of the states are E,_and Ec; ¥ Ry

respectively.

Figure 6.10

Continuum radial functions u ,(¢) at B = 5 x 10% » with m; = -1 and
£ =4 in the Landau (broken line) and Coulomb modified (continuous

line) cases, where the energies of the states are E_ and ECL_X’Ry

respectively.
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Figgre 6.11

Continuum radial functions u ,(p) at B = 10% » with mg = -1 and
4 =1 1in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the eﬁergies of the states are E_ and ECL_‘{Ry

respectively.

Figure 6.12

Continuum radial functions u, (p) at B = lOgG , with me = -1 and
£ = 2 1in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E_ and ECL ¥ Ry

respectively.

Figure 6.13

Continuum radial functions u ,(p) at B = lOgG , with mg = -1 and
£ = 3 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E,_and ECh_X'Ry

respectively.
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It is also interesting to note that there is no longer any
degeneracy in the energy levels, ie the degeneracy is lifted by the
Coulomb field, whereas for the bound states it is broken by the magnetic
field. This results in different sets of energy levels for each m which
must cause a significant change in the photoionization cross-sections from
the pure Landau case.

The label .£ is, both in the Landau and Coulomb-modified case,
the principal quantum number and gives the number of nodes in the radial
wavefunction (Powell and Crasemann, p.135). Some of the Coulomb-modified,
radial continuum wavefunctions u,(e), for m = -1 are plotted with the
corresponding Landau wavefunctions of the same principal quantum number
for various field‘strengths in figures 6.2 - 6.13. As predicted, these
2 sets of wavefunctions are very different in a region where the Coulomb
field is not of negligible strength compared to the magnetic field, for
instance at B = lO7G, the wavefunctions corresponding to the £ = 7, 8
and 9 states have opposite sign near the origin and are almost exactly
out of phase in the region (el, €>2] . At B = lOgG however, where the
Coulomb field becomes less important, the two sets of wavefunctions for
the 4= 1, 2 and 3 states are more similar and certainly have closer
corresponding energies. In each case, it can be seen that the éoulomb
attraction draws the electron to smaller p as expected. Similar behaviour

is predicted for other values of m.

§6.3 Photoionization Cross Sections

We are now in a position to calculate the photoionization cross-
section using the Coulomb modified continuum wavefunctions given by
ikyz im¢

v L({-e)m(z) = C F-% u2<€) e e (6.u8)
2!

where C is a normalizing constant and u,(p) is defined numerically at a

number of points in the interval (O,R] . The formula for evaluation of
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the photoionization cross-section is given by equation (5.7) with the
exception that the sum over A will start from Jhin and not 0, as the
principle quantum number of the state of lowest energy in the continuum
may be positive (as explained in 6.2.4).

Writing 02 = N2 , where N is the normalization constant such that
2L
z

N2 juj(e)zauz(e) de = 1, (6.49)

then we obtain the following expression for the matrix elementhigzz

2 2 . 1
2 N 8 « -5T° imid o -1
lRifl = 2nL, i‘%s Cdpsj ez e e % T.p ul((:) x
i i L, (6.50)
e}mféelkzzf dpdpdz | 2 T
This can be reduced to the form z
2
1_ N I r l 2
Bygl = vy d%s Cps x R (p18) x Z(x,s,kz) (6.51)
if Am= %t 1 and
2 N / 2
if Am = 0, where Z( &« , § ,kz) is defined by equation (5.24) and
R ‘(p,9) is given by
2
o
R'(sy8) = | Pp+3/2 e~ % u,(e) de - (6.53)

The dependence of the total photoionization cross-section on
kz’ within this model, is exactly the same as that for the pure Landau
case. For this reason, the behaviour of the cross-section near to the
threshold energies, also remains unchanged (see section §5.4). As there
is no longer any degeneracy in the continuum energy levels, there will now
be some finite, as well as infinite, peaks oécurring in the total cross-
section due to the contributions from the terms whose kz dependence at
threhold is as k, (table (5.2)). This is apparent from the results
plotted in figures (6.15) - (6.22).

The initial bound state wavefunctions 'Qso" and "2po“ used in

these calculations are exactly the same as those used to obtain the results

of Chapter 5, and are given by table (5.1).
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Total photoionization cross-sections and the contributions

from each of the possible (Coulomb-modified) continuum levels given by

SS;E,mf) (equation (5.1)), are calculated by program QMAT1, details of

which are given in appendix (I). Results for the total cross-sections

from the bound "lso" and "2po" states are tabulated in tables 6.9 - 6.12

for B = 107, 108, 5 x lO8 and lOgG, with the energy of the final state

in the range Y < Ef ¢ 8 ¥ Ry. The contributions to the total cross-

sections from the mf

in tables 6.13 -~ 6.18. For the same reason as in the pure Landau continuum

0, T 1 continua for B = lO7 and lOgG are also given

(Chapter 5), the total photoionization cross section is much smaller than
the field-free cross section within 10 ¥ Ry above the threshold energy.

In addition, for all field strengths studied here, the total photoionization
cross sections are also smaller than those calculated with the Landau
continuum. .This is due to the difference in the nature of the final state
wavefunctions in the two cases. It can be seen from figures 6.2 - 6.13,
that in the case of the Landau continuum, the radial wavefunctions are
almost entirely confined to the classically allowed region e, ¢ P % @9
where (91 and ¢ o are the roots of Vl(e) = 0. However, the Coulomb
attraction draws the electron to smaller ¢ » with the result that there

is considerable oscillation in the region of overlap with the bound state.
Consequently, the radial matrix element will tend to be much smaller in the
Coulomb modified case. At lOgG however, there is little difference in

the wavefunctions other than a drawing in of the modified function by

about 13,. ~ The difference in the results for the radial part oflRifl2

is illustrated in figure 6.14, where e is plotted against the function

1)

ul(e) 93/22‘562 (ie the radial integrand of Rif when 8 =1 and /£

for the Landau and Coulomb modified cases at B = lOgG and with m

£ -1.
It is clearly seen that when the integral of the function between 0 and
o is calculated, the result will be much smaller for the Coulomb modified

case than for the Landau case.

It is found that for high field strengths and large‘/ , the Landau

model is in good accord with the Coulomb modified model, in the sense that
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giving both cases the same threshold, the values of the A = <
contribution in each model agree well away from threshold. This is
illustrated in figure 6.25 for the m = -1 contribution to the photoio-
nization of the "2po" bound state at lOgG. However, because of the
large shift in the thresholds, and the change in threshold behaviour
(see section §5.4), the overall cross-section is very different in the
two models. As expected, the Coulomb-modified cross-sections are much
smaller, especially at low fields. For this case (2po-> m = -1) the
cross-section shows a series of finite peaks or resonances at each
discrete state energy, but decreases monotonically between peaks. For
m) the

photon energies in the range E(-(1, m) < hv < E (£, +1

J

1

dominant contribution comes from A = }l, those for A < ll being
small. The results are similar for all Am = = 1 transitions, but for
photoionization from "lso" the threshold peaks are infinitely high in
this model (figure 6.23).

The cross-section for A m = O transitions is shown for the same
two cases in figures 6.25 and 6.26. Here the infinite peaks occur for
"2po", but the cross-sections are no longer necessarily monotonic
decreasing between peaks. It is shown in section 85.6, how this maximum
arises for a Landau continuum function and very simple model wavefunctions
for the bound states. The actual location and shape of the secondary
maxima depend, in a sensitive manner, on the details of the wavefunctions.

The total photoionization cross sections from the "lso" and "2po"
states at B = lO7G are given in figures 6.15 and 6.16 respectively. The

"lsé" cross section above the lowest ( £ = 7, m. = 0) threshold is very

£
small, but above the first m. = 1 threshold is characterized by two series
(mf =Z 1) of narrow resonances. These are small features, probably
unobservable, at higher me = 0 thresholds. The cross-section, away from
the resonances, is very much smaller than the field free cross-section

in this narrow range of photon energies (from threshold to 0.5eV). The

"2po" cross section has a rather different structure. It is zero below
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the lowest ( 4 = 7, m_ = 0) threshold, where there is a strong

£

resonance peak, and this series of resonances at each successive me = 0
threshold is the dominating feature. Between these resonances there are
discontinuities at the me =1 1 thresholds, and for A > 3 the cross
section tends to rise almost monotonically between resonances. For
sufficiently large £ (not shown) it eventually starts to decrease, and
finally goes over to the Landau value.

At B = lOsG, the lsO cross section (fig.6.17) has a slightly more
complex behaviour. There is a peak after the first (3,0) level and
the total cross-section is not necessarily monotonic, decreasing between
the threshold peaks. There is a tendency for it to increase soon after
the me = 0 peaks, which are again very small. As at B = lO7G, the
cross-section eventually starts to decrease for some {4 and again goes
over to the Landau limit. The 2p cross-section (fig.6.18) is different
in character from the B = lO7G case, in that, in general, it is seen to
be decreasing from about 3 ¥ Ry, which is what we would expect for the
higher field strength. Also, the peaks corresponding to the me = I
continuum states are now much larger. No secondary maxima occur in this
cross-section, but it is not monotonic decreasing between the levels (3,0)
and (2,1).

The ls0 cross-section at B = 5 x lOsG (fig.6.19) is now seen to be
decreasing, in general, from about 2.5 ¥ Ry. The first continuum level is
no longer an me = 0 level, but an me = -1 lgvel where there is an infinite
peak. The threshold peaks become smaller with increasing energy and are
probably undetectable after about 5 ¥ Ry (when broadening is included) and
secondary maxima occur at about 3.8, 6.2, and 7.6 ﬁ’Ry, with a stationary
point also at about 5.2 ¥ Ry. The 2po cross-section at this field
strength (fig. 6.20) has a dominant resonance corresponding to the (1,1)
éontinuum level and from there, rapidly decreases with increasing energy.

There is also a fairly wide resonance, though not so high as the (1,1)

resonance, at the (1,-1) level and no secondary maxima are seen in this

cross-section.
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At lOgG, the "lso" cross-section (shown in fig 6.21) shows

a broad rescnance at the threshold of the lowest (X4 =0, m

1)
discrete level, and narrow resonances at all the higher m = 1 and
m = -1 thresholds. In general it decreases quite smoothly between

the resonances, except for a weak secondary maximum when E = h~ - I

. + . . .
lies between 6 ¥ and 7 ¥ Ry. On these m_ = - 1 contributions, is
L
superimposed the me = 0 contribution, which shows broad peaks above
each

me = 0 threshold. These peaks have widths of the order of 0.5 ¥ Ry

(¥

0.43) so should be readily resolved, while apart from the

( 4 0, me = 1) case the other peaks may be too narrow to detect. The
"2p " cross-section (fig 6.22) has a broad feature at the lowest
(4 =0, m.=1) threshold with a secondary (m. = -1) peak on its

shoulder and the same pattarn iIs followed at sach higher m_ = 1 threshold

with the seccndary m. = -1 peak becoming relatively wsakar. The m. = O

narrow as 4 increases. No non-threshold seccndary mexima are seen.

In general, it is seen from the results given by figs 6.15 - 5.22,

L
that the cverzll Eehavicur of the cross-secticns, is, 2s in the Landau

ig 5.10, althcugh (as alrezdy

P

Hy

continuum case, that illustrated by

18}

discussed) the cross-sections in this case, are much smaller.
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The function ulm =-1 Qo) is the radial part of the continuum state

wavefunction for the Landau continuum (broken line) and the Coulomb

modified continuum (continuous line).
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Figure 6.15

The photoicnization cross-section (J_O-18

cm2) from "lso" to the

Coulcomb modified continuum at B = lO7G . The corresponding (.4 ,m)
are given by the peaks and the energy is measured in units of ¥ Ry above
the field dependent ionization threshold.

Figggé 6.16

The photoionization cross-sesctien (J.O-18

cm2) from "2po" to the
Coulomb modified continuum at B = lO7G . The corresponding ({ ,m)
are given by the peaks and the energy is measured in units of ¥ Ry

above the fisld dependent ionization threshold.
Figure 5.17

. . s . . -18 2
The photoionization cross-section (190 em”) from "ls " +to the
: o
. N . 3 .
Coulomb medifiad continuum at 3 = 1C°G . The correspending (£ ,m)
are given by the peaks and the energy is measured in units of ¥ Ry

above the fisld dependent ionization threshold.

e e e
s s . . -18 2, - -
The photoionization cross-secticn (18 “cam”) from "2p " <to the
o
. s o . 3. —~ .
Coulomb modified continuum 2t 3 = 107G . The corresponding (K4 ,a)

are given by the peaks and the energy is measured in units of ¥Ry

above the field dependent ionizaticn threshold.

Figﬂ@ 8.19

18

. . s . . - 2, -
The photoicnization cross-section (10 ~“cm”) from "1 o" to the

. o . - 8 .
Coulcmb modifisd continuum &t B = 5 x 10°G . The corresponding (£ ,m)
are given by the peaks and the energy is measured in units of ¥ Ry

above the field dependent ionization threshold.

Figure 5.20

lSch) from "2po" to the

The photoionization cross-section (10~
‘o . 8 .

Coulomb modified continuum at B = S x 10°G . The corresponding (4 ,m)

are given by the peaks and the energy is measured in units of ¥ Ry

above the field dependent ionization threshold.
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Figpre 6.21

The photoionization cross-section (lO_lgcmz) from "lso” to the
Coulomb modified continuum at B = lOgG . The corresponding (£ ,m)
are given by the peaks and the energy is measured in units of ¥ Ry
above the field dependent ionization threshold.

The zero field cross-section is given by the broken line.

Figure 6.22

18

The photoionization cross-section (10~ cm2) from "2p0" to the

Coulomb modified continuum at B = lOgG . The corresponding (/f,m)
are given by the peaks and the energy is measured in units of Y Ry

above the field dependent ionization threshold.

The zero fiz2ld cross-section is given by the broken line.

Figure 5,23

. . . . -13 2, . .
The photoicnization cross-sections (10 ““cm”) frem "ls " +to the

. 9, . : .
me = -1 continuum at B3 = 10°G in the Landau (brcken line) and
Coulomb modifisd (continuous line) cases. The numbters by the peaks
indicate the corresponding principle quantum number (A) andé the energy

is measured in units of Y Ry above the field dependent ionization

thresheld.
Figure 6.24

The photoionization cross-sections ClO-lgcm2) from "2po" to the

me = -1 continuum at B = lOgG in the Landau &broken line) and
Coulomb modifiad (centinuous line) cases. The numbers by the pezks
indicate the corresponding principle quantum number ({) and the energy

is measured in units of ¥ Ry above the field dependent iorization

threshold.
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Figure 6.25

The photoionization cross-sections (1o'l

8cmz) from "lso” to the

me = O continuum at B = 10°G in the Landau (broken line) and

Coulomb modified (continuous line) cases. The numbers by the peaks
indicate the corresponding principle quantum number (£) and the energy

is measured in units of ¥ Ry above the field dependent ionization

thresheold.

Figure 6.26

The photoicnization cross-sections (lCJ-l8

cm2) from "2po" to the

me = 0 continuum at B = lOgG in the Landau (broken line) and
Coulcmb modifiad (continuous line) cases. The numbers by the peaks
indicate the corresponding principle quantum number (£) zrnd the energs

is measured in units of ¥ Ry above the field dependent icnization

threshold.
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

the "2po” State in

lO-lscm2 lO-lscm2

1.02009 (7,0) 0 o

1.021 1.268(-5) 5.378(-2)
1.2 1.774(-4) 3.403(-3)
1.4 2.565(-4) 2.041(-3)
1.6 3.152(-u4) 1.428(-3)
1.8 3.637(-4) 1.055(-3)
1.96 3.976(~4) 8.421(-4)
1.96080 (651) -~ 8.410(-u4)
1.961 5.517(-1) 9.008(-u)
2.0 2.830(-2) 1.978(-3)
2.2 1.175(-2) 3.498(-3)
2.4 8.844(-3) 4.339(-3)
2.6 7.460(-3) 4.979(-3)
2.72 6.91u4(-3) 5.307(-3)
2.72584 (7,-1) o 5.322(-3)
2.726 2.851(-1) 5.410(-3)
2.8 2.599(-2) 6.763(-3)
3.0 1.615(-2) 8.355(-3)
3.2 1.332(-2) 9.485(-3)
3.4 1.176(-2) 1.042(-2)

Table 6.9a
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

the "2po" State in

lO-l8cm2 lO_lscm2
3.6 1.073(-2) 1.122(-2)
3.79 9.997(-3) 1.191(-2)
3.79300 (8,0) 9.987(-3) o=
3.794 9.996(-3) 3.9u44(-2)
4.0 9.548(-3) 1.422(-2)
4.2 9.139(-3) 1.417(-2)
4.4y 8.796(-3) 1.440(-2)
4.6 8.505(-3) 1.471(-2)
4.72 8.350(-3) 1.491(-2)
4.72564 (7,1) co 1.492(-2)
4,726 2.883(-1) 1.501(-2)
4.8 2.779(-2) 1.633(-2)
5.0 1.823(-2) 1.784(-2)
5.2 1.561(-2) 1.831(-2)
5.31 1.476(-2) 1.943(-2)
5.31670 (8,-1) o 1.946(-2)
5.317 3.148(-1) 1.952(-2)
5.4 3.223(-2) 2.092(-2)
5.6 2.307(~2) 2.262(-2)
5.8 2.010(-2) 2.393(-2)

Table 6.9b
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Energy of the Final Total Photoionization Total Photoionization
State in ¥ Ry Cross Section from Cross Section from
”lso" State in The "2p0" State in
10718, 2 10718, 2
6.0 1.838(-2) 2.505(-2)
6.2 1.719(-2) 2.604(-2)
6.39 1.633(-2) 2.690(-2)
6.39200 (9,0) 1.632(-2) oo
6.393 1.633(-2) 4.048(-2)
6.4 1.632(-2) 3.171(-2)
6.6 1.574(-2) 2.853(-2)
6.8 1.521(-2) 2.896(-2)
2.0 1.476(-2) 2.951(-2)
7.2 1.437(-2) 3.006(-2)
7.31 1.418(-2) 3.036(-2)
7.31870  (8,1) o0 3.038(-2)
7.317 3.168(-1) 3.045(-2)
7.4 3.221(-2) 3.174(-2)
7.6 2.360(-2) 3.320(-2)
7.79 2.112(-2) 3.426(-2)
7.79648  (9,-1) oo 3.429(-2)
7.797 2.480(-1) 3.437(-2)
7.8 1.082(~-1) 3.450(-2)
8.0 3.108(-2) 3.672(-2)
Table 6.9c

Total photoionization cross-sections for transitions from the bound

states "lso" and "2po" to the Coulomb-modified continuum at B =

lO7G.

(¢,m) is given when the final state energy corresponds to the energy

of a discrete level in' the continuum.




-212-

Energy of the Final
State in ¥ Ry

Total Photoionization

Cross Section from

"lso" State in

Total photoionization

Cross Section from

The ”2po" State in

lO—lscm2 lO—lgcm2
0.543%0 (3,0) 0 oo
0.5u4 1.447(-3) 5.003(-1)
0.6 2.072(-2) 1.160(-2)
0.8 2.098(-3) 1.534(-5)
1.0 4.237(-3) 2.984(-3)
1.2 2.074(-2) 7.305(-3)
1.4l 3.65u(-2) 1.123(-2)
1.41470 (2,1) = 1.131(-2)
1.415 7.115(-1) 1.517(-2)
1.6 9.623(-2) 9.986(-2)
1.8 9.059(-2) 1.264(-1)
2.0 7.790(-2) 1.389(-1)
2.04888  (3,-1) oo 1.407(-1)
2.049 9.110(-1) 1.415(-1)
2.2 8.890(-2) 1.693(-1)
2.4 6.528(-2) 1.793(-1)
2.6 4,.8u8(-2) 1.815(-1)
2.8 3.618(-2) 1.794(-1)
3.0 2.762(-2) 1.746(-1)
3.2 2.200(-2) 1.680(-1)

Table 6.10a
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po“ State in

10-18¢n2 10" 18cn2
3.20969 (4,0) 2.178(-2) oo
3.21 2.244(-2) 2.077(-1)
3.u 1.896(-2) 1.667(-1)
3.6 2.026(-2) 1.601(-1)
3.8 2.971(-2) 1.522(-1)
4.0 3.857(-2) 1.435(-1)
4.04888 (3,1) oo 1.413(-1)
4,049 9.286(-2) 1.568(-1)
4.2 7.205(-2) 1.660(-1)
4.4 6.348(-2) 1.684(-1)
4.45037 (4,-1) o= 1.679(-1)
4,451 3.923(-1) 1.689(-1)
4.6 8.2u2(-2) 1.791(-1)
4.8 7.157(-2) 1.783(-1)
5.0 6.62u(-2) 1.733(-1)
5.2 6.361(-2) 1.664(-1)
5.4 6.290(-2) 1.585(-1)
5.6 6.352(-2) 1.500(-1)
5.63640 (5,0) 6.373(-2) -
5.637 6.412(-2) 3.926(-1)

Table 6.10b
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po” State in

107182 107182
5.8 6.5361(-2) 1.600(-1)
6.0 6.745(-2) 1.469(-1)
6.2 7.302(-2) 1.359(-1)
6.4 7.833(-2) 1.257(-1)
6.45037 (4,1) oo 1.232(-1)
6.451 4,338(-1) 1.244(-1)
6.5 1.225(-1) 1.312(-1)
6.7 1.053(-1) 1.323(-1)
6.73956 (5,-1) oo 1.316(-1)
6.74 1.507(-1) 1.322(-1)
6.8 1.066(-1) 1.371(-1)
7.0 1.019(-1) 1.375(-1)
7.2 9.940(-2) 1.337(-1)
7.4 9.706(-2) 1.283(-1)
7.6 9.u81(-2) 1.221(-1)
7.8 9.267(-2) 1.157(-1)
7.94 9.122(-2) 1.111(-1)
7.94700 (6,0) 9.115(-2) -
7.9u48 9.115(-2) 4.727(-1)
8.0 9.079(-2) 1.595(-1)
8.2 9.103(-2) 1.255(-1)

Table 6.10Cc

Total photoionization cross-sections for transitions from the bound

states "lso" and "2po" to the Coulomb-modified continuum at B = lOeG.

(L,m) is given when the final state energy corresponds to the energy

of a discrete level in the continuum.
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po" State in

10" 18:n2 10" 18n2
0.308520  (1,-1) oo 0
0.309 4.9241(-1) 2.537(-2)
0.4 4.975(-2) 2.720(-1)
0.6 3.237(-2) 2.786(-1)
0.8 2.288(-2) 2.095(-1)
1.0 1.795(-2) 1.461(-1)
1.2 1.601(-2) 9.925(-2)
1.4 1.570(-2) 6.681(-2)
1.56 1.596(-2) 4.856(-2)
1.56361 (2,0) 1.596(-2) e
1.564 1.610(-2) 2.424
1.6 1.608(-2) 2.927(-1)
1.8 5.948(-2) 1.065(-1)
2.0 8.983(-2) 5.091(-2)
2.2 7.938(-2) 2.284(-2)
2.3 6.889(-2) 1.506(-2)
2.30852 (1,1) oo 1.454(-2)
2.309 7.638(-1) 8.723(-2)
2.4 1.288(-1) 7.500(-1)
2.6 8.92u(-2) 6.931(-1)
2.66137 (2,-1) o 6.276(-1)

Table 6.11a
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po” State in

lO-lacm2 lO—lscm2
2.662 2.183(-1) 6.311(-1)
2.8 7.430(-2) 5.266(-1)
3.0 6.483(-2) 3.605(-1)
3.2 6.578(-2) 2.424(-1)
3.4 7.092(-2) 1.642(-1)
3.6 7.634(-2) 1.131(-1)
3.8 7.946(-2) 7.958(-2)
3.98 7.926(-2) 5.921(-2)
3.98075 (3,0) 7.926(-2) o
3.981 8.034(-2) 6.674
4.0 8.838(-2) 7.352(-1)
4.2 8.722(-2) 9.901(-2)
4.4 8.898(-2) 3.932(-2)
4.6 7.8939(-2) 2.542(-2)
4.66137 (2,1) = 2.375(-2)
4.662 2.511(-1) 3.042(-2)
4.8 7.770(-2) 9.02u(-2)
4.87 7.403(-2) 9.136(-2)
4.,87242 (3,-1) o 9.132(-2)
4.873 1.019(-1) 9.277(-2)
5.0 7.213(-2) 1.013(-1)

Table 6.11b
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Energy of the Final
State in Y Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po” State in

107182 10" 18n2
5.2 6.999(-2) 8.703(-2)
5.4 6.940(-2) 7.055(-2)
5.6 6.790(-2) 5.659(-2)
5.8 6.476(-2) 4.561(-2)
6.0 6.024(-2) 3.720(-2)
6.2 6.024(-2) 3.079(-2)
6.23796 (4,0) 5.404(-2) o
6.238 5.433(-2) 17.922
6.4 6.231(-2) 1.106(-1)
6.6 5.843(-2) 2.957(-2)
6.8 5.526(~2) 1.907(-2)
6.87242 (3,1) oo 1.853(-2)
6.373 8.861(-2) 2.051(-2)
7.0 5.608(-2) 4.018(-2)
7.Q20u42 (4,-1) oo 4.078(-2)
7.021 5.960(-2) 4.154(-2)
7.2 5.670(-2) 4.913(-2)
7.4 5.761(-2) 4.408(-2)
7.6 5.779(-2) 3.765(-2)
7.8 5.686(-2) 3.185(-2)
8.0 5.495(-2) 2.708(-2)
Table 6.11c

Total photoionization cross-sections for transitions from the bound

. . 8
states "lso" and "2po" to the Coulomb-medified continuum at B = 5 x 10 G.

(€,m) is given when the final state energy corresponds to the energy

of a discrete level in the continuum.
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o

Energy of the Final
State in ¥ Ry

Total Photoiconization
Cross Section from

”lso" State in

Total Photoionization
Cross Section from

The ”2po” State in

lO-lecm 2 10-18cm 2
0.674613  (0,1) oo 0
0.675 3.027(1) 9.u448(-2)
0.8 1.478 1.093
1.0 7.441(-1) 9.028(-1)
1.1 5.884(-1) 7.573(-1)
1.16075 (1,-1) o 6.763(-1)
1.161 6.245(-1) 6.905(-1)
1.2 4.928(-1) 7.776(-1)
1.4 3.477(-1) 5.729(-1)
1.6 2.586(-1) 3.797(-1)
1.8 1.994(-1) 2.554(-1)
2.0 1,578(-1) 1.762(-1)
2.2 1.271(-1) 1.244(-1)
2.4 1.036(-1) 8.958(-2)
2.52 9.193(-2) 7.423(-2)
2,52522 (2,0) 9.147(-2) o
2.526 8.177(-2) 9.443
2.6 1.054(-1) 4.703(-1)
2.8 1.353(-1) 5.261(-2)
3.0 1.118(-1) 4.748(-2)
3.16 9.061(-2) 5.107(-2)
3.16075 (1,1) v 5.107(-2)

Table 6.12a
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Energy of the Final
State in ¥ Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po" State in

10718en? 107182
3.161 2.618(-1) 9.014(-2)
3.2 1.067(-1) b.461(-1)
3.37 8.799(-2) 4.208(-1)
3.37873 (2,-1) o 4.,119(-1)
3.379 8.975(-2) 4.138(-1)
3.4 8.648(-2) 4.078(-1)
3.6 7.835(-2) 2.4u45(-1)
3.8 7.590(-2) 1.420(-1)
4.0 7.434(-2) 8.718(-2)
4.2 7.0u8(-2) 5.712(-2)
4.4 6.372(-2) 3.965(-2)
4.6 5.514(-2) 2.886(-2)
4.8 4.581(-2) 2.186(-2)
4.81222  (3,0) 4.581(-2) o
4,813 4.578(-2) 7.632
5.0 6.980(-2) 3.946(-2) -
5.2 6.585(-2) 1.926(-2)
5.37 4,920(-2) 2.701(-2)
5.37873  (2,1) oo 2.719(-2)
5.379 5.180(-2) 3.072(-2)
5.4 4,774(-2) 5.581(-2)
5.51 4.,161(-2) 7.018(-2)

Table 6.12b
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Energy of the Final

State in ¥ Ry

Total Photoionization
Cross Section from

"lso" State in

Total Photoionization
Cross Section from

The "2po" State in

1071852 1078n?
5.51588 (3,-1) o 6.997(-2)
5.516 4.185(-2) 7.048(-2)
5.6 3.836(-2) 7.373(-2)
5.8 3.593(-2) 5.u88(-2)
6.0 3.7u4(-2) 3.936(-2)
6.2 3.853(-2) 2.905(-2)
6.4 3.985(-2) 2.216(-2)
6.6 3.749(-2) 1.733(-2)
6.8 3.326(-2) 1.378(-2)
6.99 2.868(-2) 1.118(-2)
6.99740 (4,0) 2.851(-2) o
6.998 2.852(-2) 6.929
7.0 2.848(-2) 3.250
7.2 4.619(-2) 1.793(-2)
7.4 4.178(-2) 1.390(-2)
7.51 3.432(-2) 1.853(-2)
7.51588 (3,1) oo 1.868(-2)
7.516 3.u458(-2) 1.940(-2)
7.61 2.914(-2) ©3.312(-2)
7.61436 (4,-1) oo 3.319(-2)
7.615 2.917(-2) 3.373(-2)
7.8 2.412(-2) 3.383(-2)
8.0 2.337(-2) 2.576(-2)

Table 6.12c

Total photoionization cross-sections for transitions from the bound

: . 9
states "lso“ and "2po" to the Coulomb-modified continuum at B = 10°G

of a discrete level in the continuum.

(¢,m) is given when the final state energy corresponds to the energy
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Energy of the Final

State in Y Ry

Photoionization
Cross Section from

The "lso" State in

Photoionization
Cross Section from

The "2po" State in

lO_lacm2 lO—lscm2
2.72564 o 0
2.726 2.782(-1) 8.753(-5)
2.8 1.937(-2) 1.253(-3)
3.0 1.011(-2) 2.384(-3)
3.2 7.704(-3) 3.103(-3)
3.4 6.475(-3) 3.663(-3)
3.6 5.699(-3) 4.129(-3)
3.79 5.176(-3) 4.513(-3)
4.0 4.741(-3) 4.887(-3)
4.2 4.,417(-3) 5.204(-3)
4.4 4,153(-3) 5.430(-3)
4.6 3.933(-3) 5.751(-3)
4.8 3.746(-3) 5.989(-3)
5.0 3.585(-3) 6.208(-3)
5.2 3.u44(-3) 6.411(-3)
5.31 3.373(-3) 6.516(-3)
5.31670 oo 6.522(-3)
5.317 3.035(-1) 6.588(-3)

Table 6.13a
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Energy of the Final Photoionization Photoionization
State in ¥ Ry Cross Section from Cross Section from
The "lso" State in The "2po" State in
lo—l8cm2 lo-lscmz
5.4 2.134(-2) 7.698(=3)
5.6 1.300(-2) 8.780(-3)
5.8 1.062(-2) 9.531(-3)
8.0 9.347(-3) 1.014(-2)
6.2 8.512(-3) 1.067(-2)
6.4 7.304(-3) 1.113(-2)
6.6 7.433(-3) 1.155(-2)
6.8 7.052(-3) 1.192(-2)
7.0 6.734(-3) 1.227(-2)
7.2 6.463(-3) 1.258(-2)
7.4 6.228(-3) 1.287(-2)
7.6 6.021(-3) 1.3148(-2)
7.79 5.845(-3) 1.338(-2)
7.79648 bl 1.339(-2)
7.797 2.327(-1) 1.346(-2)
7.8 9.305(-2) 1.358(-2)
8.0 1.716(-2) 1.508(-2)
Table 6.13b

Photoionization cross-sections for transitions from the bound states

"lso" and "2po" to the m

£

= -1 Coulomb-modified continuum at B = 10'G.

7
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Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The "lso" State in

Photoionization
Cross Section from

The "2po" State in

lO-lacm 2 lO-lgcm 2

1.02009 0 o

1.021 1.268(-5) 5.738(-2)
1.2 1.774(-u) 3.403(-3)
1.4 2.565(-4) 2.041(-3)
1.6 3.152(-u) 1.428(-3)
1.8 3.637(-4) 1.055(-3)
2.0 4.056(-4) 7.970(-4)
2.2 4,u28(-4) 6.075(-4)
2.4 4,764(-4) 4.629(-4)
2.6 5.072(-4) 3.502(-4)
2.8 5.357(-4) 2.613(-u4)
3.0 5.622(-4) 1.909(-4)
3.2 5.870(-4) 1.35u(-4)
3.4 6.104(-4) 9.208(-5)
3.6 6.324(-14) 5.889(-5)
3.79 6.523(-4) 3.535(-5)
3.793 6.525(-4) *

3.794 6.650(-4) 2.755(-2)
4.0 8.u86(-4) 1.647(-3)
4.2 9.367(-4) 9.908(-4)
4.y 1.007(-3) 6.751(-4)

Table 6.1l4a
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Energy of the Final Photoionization Photoionization
State in ¥ Ry Cross Section from Cross Section from
The "lso" State in The “2po" State in
107182 107182

4.6 1.068(-3) 4.821(-4)
4.8 1.102(-3) 3.531(-4)
5.0 1.173(-3) 2.640(-4)
5.2 1.219(-3) 2.026(-4)
5.4 1.261(-3) 1.618(-u4)
5.6 1.302(-3) 1.369(-u)
5.8 1.339(-3) 1.2u8(-4)
6.0 1.375(-3) 1.233(-4)
6.2 1.409(-3) 1.307(-4)
6.39 1.440(-3) 1.487(-4)
6.392 1.441(-3) *

6.393 1.452(-3) 1.371(-2)
6.4 1.475(-3) 4.911(-3)
6.6 1.639(-3) 9.363(-4)
6.8 1.733(-3) 6.379(-4)
7.0 1.811(-3) 5.133(-u4)
7.2 1.880(-3) 4.536(-4)
7.4 1.942(-3) 4.291(-4)
7.6 1.999(-3) 4.,271(-4)
7.8 2.053(-3) 4.412(-4)
8.0 2.103(13) 4.675(-u4)

Table 6.14b

Photoilonization cross-sections for transitions from the bound states

7
= 0 Coulomb-modified continuum at B = 10 G.

" 1" " "
lso and 2po to the me



-225=~

Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The "lso" State in

Photoionization
Cross Section from

The "2p " State in

10'18cm2 10'18cm2

1.96030 oo 0

1.961 5.513(-1) 5.984(-5)
2.0 2.790(-2) 1.181(-3)
2.2 1.131(-2) 2.890(-3)
2.4 8.367(-3) 3.876(-3)
2.6 6.953(-3) 4.628(-3)
2.8 6.083(-3) 5.2u43(-3)
3.0 5.480(-3) 5.780(-3)
3.2 5.030(-3) 6.247(-3)
3.4 4.679(-3) 6.662(-3)
3.6 4.394(-3) 7.037(=3)
3.79 4.169(-3) 7.360(-3)
4.0 3.958(-3) 7.686(-3)
4.2 3.786(~3) 7.971(-3)
4.4 3.636(-3) 8.233(-3)
4.6 3.503(-3) 8.474(-3)
4.72 3.431(-3) 8.611(-3)
4.,72564 oo 8.617(-3)
4,726 2.840(-1) 8.708(-3)
4.8 2.292(-2) 9.992(-3)

Table 6.15a




-226~

Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The "lso" State in

Photoionization
Cross Section from

The "2po" State in

lO_lscm2 lO-lgcm2
5.0 1.3u7(-2) 1.137(-2)
5.2 1.095(-2) 1.230(-2)
5.4 9.626(-3) 1.306(-2)
5.6 8.763(-3) 1.371(-2)
5.8 8.138(-3) 1.427(=2)
6.0 7.655(-3) 1.478(-2)
6.2 7.265(-3) 1.52u(-2)
6.4 6.941(-3) 1.566(-2)
6.6 6.665(-3) 1.605(-2)
6.8 6.425(-3) 1.640(-2)
7.0 6.214(-3) 1.673(-2)
7.2 6.026(-3) 1.703(-2)
7.31 5.932(-3) 1.718(-2)
7.31670 0 1.719(-2)
7.317 3.086(-1) 1.726(-2)
7.4 2.404(-2) 1.844(-2)
7.6 1.558(-2) 1.963(-2)
7.8 1.314(-2) 2.048(-2)
8.0 1.182(-2) 2.117(-2)
Table 6.15b

Photoionization cross-sections for transitions from the bound states

" " n " =
lso and 2po to the me

1 Coulomb-modified continuum at B = lO7G.
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Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The ”lso" State in

Photoionization
Cross Section from

The "2po" State in

]_O-lscm2 10 18en?

1.16075 oo 0

1.161 1.062(-1) 1.450(-2)
1.2 1.255(-2) 1.496(=1)
1.4 8.089(-3) 1.418(-1)
1.6 6.362(-3) 7.912(-2)
1.8 6.479(-3) 4.193(-2)
2.0 7.202(-3) 2.215(-2)
2.2 7.64C(-3) 1.168(-2)
2.4 7.459(-3) 6.083(-3)
2.6 6.779(-3) 3.093(-3)
2.8 5.891(-3) 1.511(-3)
3.0 5.039(-3) 6.941(-4)
3.2 4.352(-3) 2.884(-4)
3.37873 oo 1.131(-4)
3.379 6.345(-3) 2.332(-3)
3.4 4,511(-3) 1.795(-2)
3.6 4,435(-3) 2.414(-2)
3.8 4.,153(-3) 1.551(-2)
4.0 4,295(-3) 9.475(-3)
4.2 4,636(-3) 5.768(-3)
4.4 4.894(-3) 3.528(-3)
4.6 4.921(-3) 2.177(-3)

Table 6.1l6a
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Energy of the Final Photoionization Photoionization
State in ¥ Ry Cross Section from Cross Section from
The "lso" State in The "2po" State in
10" 18en? 10" 18cn2
4.8 4.732(-3) 1.364(-3)
5.0 4.432(-3) 8.751(-4)
5.2 4.082(-3) 5.798(-4)
5.4 3.758(-3) 3.997(-4)
5.51588 o= 3.289(-4)
5.516 4,095(-3) 8.530(-4)
5.6 3.517(-3) 9.852(-3)
5.8 3.346(-3) 8.063(-3)
6.0 3.206(-3) 5.206(-3)
6.2 3.162(-3) 3.311(-3)
6.4 3.155(-3) 2.139(-3)
6.6 3.115(-3) 1.412(-3)
6.8 3.013(-3) 9.539(-4)
7.0 2.865(-3) 6.603(-4)
7.2 2.697(-3) 4.684(-4)
7.4 2.528(-3) 3.406(-4)
7.61 2.362(-3) 2.505(-4)
7.61436 oo 2.490(-4)
7.615 2.600(-3) 8.375(-4)
7.8 2.224(-3) 4.740(-3)
8.0 2.110(-3) 3.273(-3)
Table 6.16b

Photoionization cross-sections for transitions from the bound states

9

"lso" and "2po" to the m_. = -1 Coulomb-modified continuum at B = 107G.

£
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Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The "lso” State in

Photoionization
Cross Section from

The "2po" State in

10”18 2 10" 18cn2

2.52522 0 o
2.526 3.781(-4) 9.369

2.6 2.032(-2) 4.0u5(-1)
2.8 6.493(-2) 3.504(-3)
3.0 5.300(-2) 1.011(-2)
3.2 3.631(-2) 2.066(-2)
3.4 3.084(-2) 2.574(-2)
3.6 3.127(-2) 2.539(-2)
3.8 3.370(-2) 2.373(-2)
4.0 3.493(-2) 2.153(-2)
4.2 3.351(-2) 1.923(-2)
4.y 2.967(-2) 1.679(-2)
4.6 2.u54(-2) 1.439(-2)
4.8 1.932(-2) 1.215(-2)
4.81222 1.901(-2) o
4.813 1.3900(-2) 7.622

5.0 4,613(-2) 3.258(-2)

Table 6.17a
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Energy of the Final

State in ¥ Ry

Photoionization
Cross Section from

The ”lso" State in

Photoionization
Cross Section from

The "2po" State in

10™18:n2 10~ 18en2

5.2 4.505(-2) 1.412(-2)
5.4 2.841(-2) 2.350(-2)
5.6 2.056(-2) 2.352(-2)
5.8 1.970(-2) 2.068(-2)
6.0 2.205(-2) 1.782(-2)
6.2 2.455(-2) 1.541(-2)
6.4 2.515(-2) 1.333(-2)
6.6 2.337(-2) 1.145(-2)
6.8 2.000(-2) 9.723(-3)
6.99 1.635(-2) 8.241(-3)
6.9974 1.622(-2) o
6.998 1.623(-2) 6.926

7.2 3.490(-2) 1.578(-2)
7.4 3.1450(-2) 1.22u4(-2)
7.61 1.954(-2) 1.868(-2)
7.8 1.511(-2) 1.766(-2)
8.0 1.488(-2) 1.502(-2)

Table 6.17b

Photoionization cross-sections for transitions from the bound states

9

"lso" and "2po" to the me = 0 Coulomb-modified continuum at B = 10 G.
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Energy of the Final
State in ¥ Ry

Photoionization

Cross Section from
The "lso" State in

Photoionization

Cross Section from

The "2po” State in

10" 18n?2 10”18cm?2
0.674613 > 0

0.675 3.027(1) 9.4u48(-2)
0.8 1.478 1.093

1.0 7.441 9.028(-1)
1.2 4.803(-1) 6.280(-1)
1.4 3.396(-1) 4.311(-1)
1.6 2.522(-1) 3.006(-1)
1.8 1.929(-1) 2.135(-1)
2.0 1.506(-1) 1.541(-1)
2.2 1.195(-1) - 1.127(-1)
2.4 9.610(-2) 8.350(-2)
2.6 7.827(-2) 6.263(-2)
2.8 6.452(-2) 4.760(-2)
3.0 5.378(-2) 3.667(-2)
3.16 4.682(-2) 3.006(-2)
3.16075 oo 3.003(-2)
3.161 2.181(-1) 6.909(-2)
3.2 6.542(-2) 4,236(-1)
3.4 5.113(-2) 3.641(-1)
3.6 4.265(-2) 1.950(-1)
3.8 3.805(-2) 1.027(-1)
4.0 3.511(-2) 5.611(-2)
4.2 3.234(-2) 3.212(-2)
4.y 2.915(-2) 1.935(-2)

Table 6.18a
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Energy of the Final
State in ¥ Ry

Photoionization
Cross Section from

The "lso" State in

Photoionization
Cross Section from

The "2po" State in

10718n2 1078 cn
4.6 2.568(-2) 1.233(-2)
4.8 2.227(-2) 8.347(-3)
5.0 1.924(-2) 6.005(-3)
5.2 1.671(-2) 4.563(-3)
5.37 1.496(-2) 3.743(-3)
5.37873 o 3.708(-3)
5.379 1.821(-2) 7.232(-3)
5.4 1.557(-2) 3.191(-2)
5.6 1.428(-2) 4.043(-2)
5.8 1.288(-2) 2.614(-2)
6.0 1.219(-2) 1.633(-2)
6.2 1.188(-2) 1.033(-2)
6.4 1.155(-2) 6.694(-3)
6.6 1.100(-2) 4.472(-3)
6.8 1.025(-2) 3.099(-3)
7.0 3.413(-3) 2.238(-3)
7.2 8.594(-3) 1.686(-3)
7.4 7.850(-3) 1.320(-3)
7.51 7.480(-3) 1.171(-3)
7.51588 o 1.164(-3)
7.516 8.103(-3) 1.878(-3)
7.61 7.235(-3) 1.419(-2)
7.8 6.785(-3) 1.143(-2)
8.0 6.383(-3) 7.466(-3)
Table 6.18b

Photoionization cross-sections for transitions from the bound states

"lso” and "2po" to the me = 1l Coulomb-modified continuum at B = lOgG.
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§6.4 Conclusions

We have calculated the photoionization of the "lso" and ”2po"
states of atomic hydrogen in magnetic fields between 107 and 1098, at
photon energiss h~s = Ix + @ where I is the (field-dependent)
ionization threshold and 0 ¢ @ < 8yry.

The model used, treats the bound states accurataly, but approximates
Coulomb effects in the continuum by decoupling the motion'of the ejected
electron along the field lines from its motion perpendicular to the field.

The results are in general very different from those obtained ignoring

Coulomb effects in the continuum completely (Landau model).
In general the photoionization cross-section is much smaller

than in the field free case, until very high. energies. n the

(=N

o8

S

3

o
.

Landau mcdel there are discrets states (for the moticon pervendiculer

[\]]

¥

to the fi=2l14

.—4

ines) embedded In the continuum, and there are thresheld
rescnances associated with these. Depending on the zzimuthal cquantum
and parity of the irnitial and final states, the cross-section at these
threshelds behaves in both models as kf or k:-l. There are seccndary
maxima in the cross section not associated with threshold resonances

and we have shown that these arise even in the simple Landau model.

They arpear to be associated with the details of the motion of the
electron along the field lines, and since zpart from an energy independent
factor this is the same in ocur Coulemb continuum medel as in the Landau
model, they should occur at the same energies in both models, given the
same bound state wave functioms. Cur calculations indicate that they
should be more readily observabls in photoicnization of the ”lso" state.
We note that since the (.Z, me = o, I 1) 1evels are, unlike the Landau
case, no longer degenerats in the presence of a Coulomb interaction, one
should expect to see three times as many rescnances z2s had been naively
supposed; further when spin splittings are included, 211 of them will be

doublets.
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It is believed that some progress has been made towards establishing
the behaviour of the photoionization cross-section of hydrogen in a
magnetic field. However, these models do not include the effects of
broadening due to the motion of the residual ion, and treat the effect of

the Coulomb field on the continuum levels in an approximate fashion.
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CHAPTER 7

CONCLUSIONS

In summary, the absorption of atomic hydrogen in magnetic fields
in the range 1075 B < lOgG, has been studied at some length and it is
believed that significant progress has been made towards describing, with
some accuracy, the motion of the electron in both the bound and the free
states in this range of field strengths. The bound states have been
described by simple sets of cylindrical and unperturbed hydrogenic
functions. The resulting energies are compared and it is found that the
cylindrical functions best describe the system at high fields
(B 25 x lOsG), whilst for lower fields, the bound states still retain
their spherical symmetry. The energies corresponding to the cylindriecal
wavefunctions also compare favourably with those of other authors, and
the simplicity of these wavefunctions enables other matrix elements to be
calculated analytically. This is illustrated in the calculation of bound-
bound transition probabilities and oscillator strengths for all allowed
transitions between 1% low lying levels of hydrogen, results for which are
presented, and compared with the limited results of other authors.

The free states have also been studied in detail, and we consider
two models for the continuum: (i) the pure Landau continuum which is
believed to be an accurate description of the free state of the hydrogen
atom in a region where the magnetic interaction is much larger than that
of the Coulomb interaction and (ii) the Landau continuum modified by the
Coulomb attraction of the nucleus in a plane perpendicular to the direction
of the magnetic field. Wavefunctions describing the discrete states which
exist in the plane perpendicular to the field direction, and the corres-
ponding energy eigenvalues, have previously been calculated for the Landau

continuum - these are just the states of the free electron in a magnetic
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field, where the spacing between the energy levels is fiwo. a.u.
throughout. The wavefunctions and energies for the Coulomb modified
continuum are calculated on solving a two point boundary value equation
using numerical techniques. It is shown that the Coulomb field does,

in fact, have a significant effect on the Landau continuum, especially,

as expected, at the lower end of the range of field strengths considered
here, and this, in turn, has a dramatic effect én the nature of the
photoionization cross sections. It is seen, particularly at lower fields,
that the energy spacing near to threshold departs from the fiw, a.u. of the
Landau continuum, and approaches the value of 1.5fi¢) a.u., which is the
spacing predicted by the semi classical WKB approximation, for a particle
in a Coulomb and magnetic field at zero energy. However, as one departs
from the iocnization threshold, this spacing decreases until the Landau
limit is eventually reached. It is, also shown that the wavefunctions in
both types of continua, have different characteristics near the origin,
and that the effect of the Coulomb interaction is to draw the wavefunction
to smaller g , thus increasing the number of oscillations in the region of
overlap with the bound states, at lower field strengths.

Much has also been achieved in attempting to establish the behaviour
of the photoionization cross-sections. The formula for these cross-
sections is derived, and evaluated-for absorption from the lowest even and
lowest odd parity bound states in our cylindrical basis. The threshold
behaviour of the cross section has been discussed, and is the same in both
the models we consider. A resonance is seen at'the energies corresponding
to each discrete level. The primary differences found between the cross
sections where the final state i1s in the Landau continuum and those where
the final state is in the Coulomb modified continuum, are found to be (i)
that there is no degeneracy of energy levels in the Coulomb modified
continuum, and as a result of this, three times as many resonances are
seen than in the Landau continuum, and (ii) that due to the different nature

of the wavefunctions in the region of overlap with the bound states, the
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cross-sections in the Coulomb modified case, are much smaller than in
the Landau case. Other features of the cross sections have also been
discussed in detail.

Our continuum models do not include the effects of broadening
due to the motion of the residual ion, and treat the effect of the
Coulomb field on the continuum states in an approximate fashion. It
has been shown here that, on replacing the plane wave by the more
accurate distorted wave in the z direction, to include the effect of the
Coulomb field, the threshold behaviour is unchanged. The fact that
the coupling of the motion.in the z direction with that in the (g, ¢)
plane has a broadening effect has been noted by Rau (1880). Clearly
the problem is a complex one, with many more factors needing to be
considered. It is believed that some progress has been made with the
solution of a simple case, but there is much scope for further research

in this field.
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AEDendix I

Details of Computer Programs

¢AI.1 Program HYDROGN

This program calculates the energy eigenvalues and

corresponding eigenvectors of a hydrogen atom in a uniform, static
magnetic field, and also bound-bound transition probabilities, wave-
lengths and oscillator strengths. The wavefunctions are represented
by a basis of unperturbed, hydrogenic functions, discussed in Chapter 2.
A block diagram of the program is given in figure AI.l and the strucfure
is outlined below:
HYDROGN: main routine in which input is read (see table AI.l)
EIGEN: sets up the matrix containing the Hamiltonian matrix

elements and calls the NAG routine FO24BF to calculate

the eigenvalues and eigenvectors by the methods described

in Chapter 2

RMAT: computes the matrix elements of r2
THREEJ: computes the product of two Wigner 3j symbols:
VO« 28+ (4 & 2[4 & 2
0 0 0/ \m-m 0
BOUND: calculates the bound-bound transition probabilities,

oscillator strengths and wavelengths for transitions

specifiéd by IX and IY (see input data)

ONEJ: computes the product of two Wignér Sj
symbols:

VIZZ+ (2 + 1) (41 zi)(z; 1 z;)

000 -m; M m;

where =0 t1 and 4= £ t1

RMAT1: computes the integrals I (j,k) given by equation (2.93).

FAC: calculates factorials
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[RMAT [THREEJ] [Fo2aBF]  [ONEJ] [RMATI]
FAC FAC
Fig, AI,1

Block Structure of program HYDROGN

Input Data

Input data for program HYDROGN is described in table AI.l.
The energy eigenvalues and corresponding wavefunctions are calculated
for even and odd parity states with given magnetic quantum numbers
M1 and M2. Only transitions between states of different parity are
allowed, and so if transition probabilities, oscillator strengths and
wavelengths are required, additional data is read in, specifying the

particular states of each parity, for the transition.
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Input Description Format
Variable
NS 1 I5
NP IS
ND ' Number of s,p,d,f and g states in the basis 15
NF I5
NG J IS
GAM Measure of the field strength ( ¥ = ﬁuh) E15.6
M1 Magnetic quantum number of even parity states IS5
M2 Magnetic quantum number of odd parity states | IS5
NSL . I5
NPL Principle quantum numbers of the IS
NDL * lowest s,p, d,f and g states to be included IS
NFL in the basis IS
NGL J IS5
ITRANS = 1 if transition probability required I5
NNDO#* Number of transition probabilities required IS5
IX* Column of the even parity eigenvector matrix | IS5
required for the transition probability
calculations
Iy* Column of the odd parity eigenvector matrix IS
required for the transition probability
calculations
NON#* = 1 if the state with the lowest energy in the | IS
transition has even parity
= 2 if the state with the lowest energy in the
transition has odd parity.
NUPPER® Principle quantum number of the state with I5
highest energy in the transition
NLOWER?* Principle quantum number of the state with I5
lowest energy in the transition.
LUPPER* Angular momentum quantum number of the state I5
with highest energy in the transitiom.
LLOWER® Angular momentum quantum number of the state IS
with the lowest energy in the transition.

Table AI.1l

Input data for program HYDROGN. Variables marked with * ar

if ITRANS =1

e only read
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§AI.2 Program CPOLAR

The description of this program will be kept to a minimum as
it is described in some considerable detail by Kara, 1980. Basically,
the energy eigenvalues and corresponding eigenvectors of a hydrogen
atom in a uniform static magnetic field are calculated, and also the
bound-bound transition probabilities, wavelengths and oscillator
strengths are determined. The wavefunctions are represented by a
basis of cylindrical functions of the form

(m, ™) PR st ‘md
:(dps = e e

as described in chapter 3.

A block diagram of the program is shown in fig.AI.2 and the structure

is outlined telow:

CPOLAR: main routine where input is read and the matrices containing
the Hamiltonian matrix elements and overlap integrals are
generated.

BODD }. Evaluates all the integrals given by tables 3.2 and 3.3,

BEVEN ' except for the common factors J(B, 4 ) and K (‘*o’ 4), when

A>2and B > 1.

NAGR : Calls all NAG routines needed to calculate the required
eigenvalues and eigenvectors (details given below).

BBCPOL: Calculates transition probabilities, oscillator strengths and
wavelengths for four transitions in the length ( Am= 0, b 1)
and velocity (Am = 0) forms. The following routines are
called to evaluate the matrix elements of 1:‘0,t 1 and C7O.

BEVNRl: Evaluates <Xj [ |Xk> given by equation (3.73) for even

I’i_l

B. RBEVEN 1s called to calculate the integral over r.

BODDR1: Evaluates < Xj|r+l| X > given by equation (3.73) for odd B.

RBODD is called to calculate the integral over r.
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BEVNRO : Evaluates the integrals occurring in <lerOIXk> and
< le §7O|Xk> given by equations (3.76) and (3.83)
for even B. RBODD is called to calculate the integral
over r.
BODDRO : Evaluates the integrals occurring in < lerolxk> and
< le V’lek> given by equations (3.76) and (3.83) for
odd B. RBEVEN 1is called to calculate the integral over r.
The NAG routines used to calculate the eigenvalues and
eigenvectors are FOlAEF, FOl1AGF, FO2BEF, FOlAHF and FOlAFF. A

description of these routines is set out in table AIL.2.
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CPOLAR
BEVEN BOOD
BIN ——j
AIN
NAGR |

ROUT INES
FO1AEF BBCPOL
FO1AGF
FOZ2BEF
FOLAHF
FOLAFF
FROM MAG
L IBRARY BEVNRL

BODORO

RBEVEN
BEVNRO
BODDRI
RBODD
END
Fig. AL.2

Block Structure of program CPOLAR
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NAG Routine

Description

FO1AEF

FOlAGF

FO2BET

FOl1AHF

FOLAAF

Reduces the eigenproblem Ax =ASx

to the standard symmetric eigenproblem
Pz =Az. P is of the form vt a7t
Reduces the previously calculated real
symmetric matrizx P to tridiagonal form,
denoted by PP.

Calculates eigenvalues of the problem
PPy =2y in a given interval, and the
corresponding eigenvectors.,

Derives the eigenvectors of P from those
of PP corresponding to the previously
calculated eigenvalues.

Derives the eigenvectors of AXx = ASX

from those of the problem Pz = i z.

Description of

Table AIL.2

NAG library routines used in CPOLAR.
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$AI.3 Program WFPLOT

This program solves the two point boundary value problem

u" () =V(ie,e)ule) 3 u(0)=u (=) =0 (AI.1)
where an initial estimate for the eigenvalue, €, is given. The
method of solution is to reduce equation (AI.l) to a system of first
order differential equations:

ul'(e) = u, (¢) (AI.2)

u, (e) =V (e, ¢e) uy (e)
and solve these by a numerical, Runge-Kutta technique. The input
data is described in table (AI.3). The methods by which the inward

and ocutward integrations are started are described in Chapter 6.

Input Variable Description Format

NSTEP Number of steps in the interval I5
(o.11, R2/2] at which the function

u .
out(f) is to be evaluated.

LAMBDA Initial estimate for the eigenvalue E15.5
EPS.

GAM Measure of the field strength (¥=fw)| E15.6

M Magnetic quantum number of the IS

continuum state,
ICOUL Value of charge on nucleus (=0 for 15
pure Landau continuum)

R2 Cuter limit for wavefunction E15.6

calculation

Table AI.3

Input data for program WEFPLOT
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Structure of the Program

WEPLOT: The main routine in which the input data is read and
LANDAU 1is called to perform the calculations.

LANDAU: Calculates the values of u(p) at each point in the
interval [O,R2), the number of points being determined
by NSTEP (input data).

The exact value of the elgenvalue is also obtained such
that the first derivative of u(e) agrees to four decimal
places at the matching point o (which is set to R2/2
for convenience). The structure of this routine is
described in figure (AI.3), where

- - 2 / - 1 A
DELEPS = (ANORM)™ ju ', (e ) -u’ (e )

uin ( ?o) uout( fo)

1

with ANORM = N + N. w2
out in
(o N2 @ (e n?
out € o in' Co
- fo 2
Nout © -L (Mot (e)) de
rRA 2
and N, o= jeo (u, (e))¢de

(cf. equations (6.20) and (6.23))

OUT: Evaluates u(e) at the points 0.09, 0.10 and 0.11, given
the initial gradient, according to the series expansion of
equation (6.37).

IN: Evaluates u(e) at the three points R2, R2-h _ and R2-2h_,
where ho is the steplength determined by NSTEP, given the
initial gradient, according to equation (6.39).

The following routines from the NAG library are also used:

DO1ABF: Calculates the inward and outward integrations for each
steplength ho using a Runge Kutta technique. The routine
is called (NSTEP + 3) times for the outward integration to

€y> and NSTEP times for the inward integration to ey



v

[EPS - LAMBDA]

Call OUT

~

{ Begin outward integration)

v

[1=0]
——AT=1+1]
\r
C all DO2ABF

(Integrate outwards towards e,in the I'th
interval along the g axis)

'

AT ]I- NSTEP?

1Y
Fig. AI.3 ' Call IN

Structure of subroutine {Begin inward integration)
LANDAU

N

=]

¥

- J=3-1]

L
Call D02ABF

(Integrate inwards towards e, in the J'th
interval along the e axis from R?2)

N {7= NSTEP + 37|
\/Y
Call DOQ1GAF
Y (To evaluate the term N )
Print A B, EPS, u .(p,), u ' e,
o) and ,(” el ot ® Call DO1GAF
Llin & an uin e {To evaluate the term Nouf)
A +
v {Calculate ANORM for the total wavefunction |
Write to permanent store : Y
Ugple) and ule) (0<p<R2), [Calwlate DELEPS]
for use in QMAT1 , T
< v lugples) —uplead I <1077
\ 4 'N
T [EPS = ePS- DELEPS |
- ANORM and 8 = ANORM
uOUf(ea) U]n((’o)
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DO1GAF: Used to evaluate N, and N .
in out

One of the following routines (as appropriate) is required for each
call to DOlABF:
- - / .
AUXOUT: Sets F(1) = uout(() and F(2) = Ut (¢) at a particular
value of ¢ .
AUXIN: Sets F(1) = uin(f) and F(2) = u; (f) at a particular

value of e -

§AT.Y Program QMAT

Program QMAT calculates the total photoionization cross-section
given by equation (5.7). The bound state is of the form given by
equation (5.8) and the continuum contains pure Landau levels. All
the matrix elements occurring in this cross-section are evaluated

analytically. The structure of the program is outlined in figure AI.u4.

[zmvt] [RozwT

‘DIFFI ‘SUMGI

Fig.AI.4.

Block diagram of program QMAT.
The main routine is

QMAT: Input data 1s read and all calculations apart from the
integrals over z and ¢ occurring in the matrix elements,
are carried out. A flow chart describing the structure
of this routine 1is given in figure AI.S.

The variables used in this flow chart are defined as:

. %
QMATR - the matrix elementi<yilr.lyc>l
! (see §5.3)



ZINT:

DIFF:

ROINT:

SUMG:
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IMX 1 2
TOTQM - £ J<Wel Z L W > |
A min Hz-)

PCS - total photoionization cross-section.
For other variables not defined here, see table AI.L
Computes, analytically, the integral over z which occurs
in the matrix element <VilrulVe> and stores the result in
Z. This is the same as the expression for Z given by
equation (5.24). This subroutine calls the function DIFF
to calculate the differential in equation (5.24).
Calculates d* (e *

dx*
Computes analytically the integral over e » given by equation

) for ® = 0,1..... ..8 (see appendix III).

(5.32). The subprogram SUMG is called.

Calculates rM(a-p+l) recursively.
A a-p+l
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(e

L

|Read input dafta]

{Tnitialize QMATR and TOTGM to 0]

[Tnitialize ,to -1}

[Initi alize f to 0]

‘1'

{Initialize INS to0]

Y

<]

[[nitialize IDEL t31]

<

1Tnl’riqllze o fo 0]

Ba

Thitial .
{[nitialize g to m;|

N3

[DELTA = DELT(IDEL)]

F< <

(N g

=] B=6+

122441

IDEL =
JDEL+1

—{ISET=1 and « odd orISET=2 and« even?}

Iy

ISET=2 and k,=0 and Am
ISET=1

GR

Y

1
?

o
O ot

and k=0 and Am

Call ROINT

[QMATR = C(INS)x Z x RO+ GMATR |

[INS=INS +1]

Y

d = NN? £

N Y
_JTDEL= NODEL?|
N R4

wn

- 2. ALY _
QMA TR = QMATR® x I((/z*m).);\fzhc-:are =4
f Am==x1 and 2 ifAm=0

¥

[TOT QM = QMATR + TOTQM|
S

L= [mcx?

N
M= 17?
N ix

8.56E-19 x TOTQM x(X -EINIT) |

u

[PCs=

\Final enegy read in?] «

——{B_gud nexfﬂ <

Fig AL.5S
Structure of program QMAT

N

¢vY

( End)
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program QMAT is described in table (AI.4)

Input Variable

¥ Ry.

Description Format
NODEL Number of §'s to be included in the initial I5
state wavefunction.
NN Maximum value of « and p to be included in IS
the initial state wavefunction.
ISET = 1 if initial state has odd parity. I5
= 2 if initial state has even parity.
MI Magnetic quantum number of initial state.
GAM Defines field strength (¥ =%w. ). E15.6
EINIT Energy eigenvalue for the initial state
(computed by CPOLAR).
DELT(I) , The values for $ which are to be included E15.6
I =1,..NODEL in the initial state wavefunction.
IDIM The total number of terms in the initial I5
state wavefunction.
C(I), I=1,..IDIM |The values of the coefficients of the initial E15.6
state wavefunction (computed by CPOLAR).
NIMP Number of values of the final state energy IS
for which the photoionization cross-section
is to be calculated.
X Value of the energy of the final state in E15.6

Table AI.4

Input data for program QMAT.
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$AI.5 Program QMAT1

This program calculates the photoionization cross-section
given by equation (5.7), but the sum over me is not included. Only
the contribution to the final state with magnetic quantum number MF
is computed, but the sum over all possible continuum levels for this
me is included. The bound state is of the form given by equation
(5.8) and the continuum model is that described in chapter 6. The
wavefunctions of the continuum state are calculated in numerical form
and so, in this program the ¢ integral is calculated numerically.

The structure of the program is outlined in figure AI.6. A more

detailed description will be given elsewhere, (Kara, 1981).

[zvT) [Do1car | RONUM |

DIFT ‘DOlGAFl

Fig.AI.6.

Block diagram of program QMATL

The main routine is

QMAT1: Input data is read and all calculations, apart from the
integrals over z and ¢ occurring in the matrix elements, are
carried out. The structure of this routine is similar to
that of program QMAT (described in the previous section).

The only differences being that the sum over £ is now replaced

by a sum over the wavefunctions of the discrete continuum states,
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whose principle quantum numbers and energies depend on

the strength of the magnetic field, and the sum over me
(ie. ) is not included.

ZINT: The same routine as that used in program QMAT.

DITT: Also the same routine as that used in program QMAT.

o p+3n -891
j. e e ulplde, where the

RONUM: Calculates the integral
numerical calculations are carried out by the NAG routine
DOIGAF.

The following routine from the NAG library is called:

DO1GAF: This is called to carry out, by the numerical method
described by Gill and Miller, 1972 , the integral over p

(in RONUM) and the normalization constant of the total

final state wavefunction given by equation (5.3) (in QMAT1).
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The input data for program QMAT1 is described in table (AI.S).

Input Variable Description Format
NODEL IS
NN As in table (AI.4) I5
ISET IS
MI I5
MJ Magnetic quantum number of the final state. I5
GAM h E15.6
EINIT E15.6
DELT(I) ; As in table (AI.4) E15.6
IDIM IS5
c(1) J E15.6
NNOLEV Number of continuum levels to be included I5
in the cross section.
ENERGY(I) Values of the NNOLEV energy eigenvalues E15.6
of the continuum states,
NNXU Number of points at which the wavefunction IS
of the final state is given.
XX(I) Values of e at which u(e) is given. E20.13
Uu(I) Values of u(e) at the NNXU points. E20.13
NIMP As table (AI.4). I35
X1 Energy of final state for which photoio- E15.6
nization cross-section is to be calculated.

Table AI.5

Input data for program QMAT1.




-255=

" Appendix II

o 2
Evaluation of the Integral J‘ e % xb dx

We have, from Dwight, equations 860.15 and 860.16,

e

_— if a is odd

2b(a+l)/2

I, = j e™3 P ay =4 (AII.1)
’ © (a-1)1! Jm if a is even
Ja/tl ((atl)/o

)

with a an integer and where p!! is defined as
(2n)!! = 2.4.6.iieinnnn 2n

(AII.2)
and (2n-1)!! = 1.3.5.......(2n-1).
The values of this integral for 1 ¢ a < 9 are given in table AII.l

for easy reference.

= 2
If J e xb dx 1is required, it should be noted that, if"

2
b is odd, then xb e 3 is an odd function and so the integral will

be zero. If b is even, however, the value of this integral will be

2'Ia,b'
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Table AII.l

Values of Ig p for 1 ¢ a

£

S




-257=-

APPENDIX III

Expansion of the First Nine Hermite Polynomials

The Hermite polynomial Hen(x) can be written

2 n 2
He (x) = (-1)% &% /2 4 (e~ /2)
n n
dx
a" -x2/2
The polynomial representations of ——h(e ) are given below for
dx

O s n s 8. These are the only values of n required in programs QMAT
and QMAT1l for the initial state wave functions considered here, as the

maximum value for « taken, in the basis set, is 7.

n 2
0 g_h(e-x /2)
dx
2
0 ¥ /2
2
1 -xe % /2
2 -x2/2
2 (x°-1)e
2
3 (-x3+3x)e_x /2
2
b | (xt-6x243)e X /2
2
5 | (-x2+10x°-15x)e”% /2

2
6 (:‘:G—I.Sx“4~L¥5x2-li'>)e-x /2

2
5_105x°+105x)e ¥ /2
2
24105)e”% /2

7 (—x7+21x

6

8 | (x8-28x°+210x*-u20x

Table (III.1)
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