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ABSTRACT

The photoabsorption of atomic hydrogen in a strong static magnetic 

field is studied. The bound states are considered in some detail, approx­

imating the wavefunctions by a set of unperturbed, spherical hydrogenic 

functions and a set of simple separable functions of cylindrical symmetry.

Results are presented for the energy eigenvalues of fourteen low lying
7 9states in the range of magnetic field strengths 10 ^ B < 2.35 x 10 G.

The eigenfunctions corresponding to the bound states are used to obtain

electric dipole transition probabilities. For strong transitions 
8 —1CA^^ > 0 . 1 x 10 s ), transition probabilities in the two approximations 

agree at fields of 1 0 and 10^ G. However, at 5 x 10^ < B < 2.35 x 10^ G, 

the cylindrical basis proves to give a better description of the system, 

producing a lower set of energy eigenvalues, and the agreement between 

the two sets of transition probabilities is not so good. Relativistic 

and spin effects are neglected here.

The simple cylindrical functions are used to calculate photoionization 

cross sections, enabling, in the case of the pure Landau continuum, all 

the matrix elements occurring in these cross sections to be calculated 

analytically. A second, more appropriate model for the continuum, in 

the range of fields considered, is also used, in which the Coulomb 

attraction of the nucleus is considered in the plane perpendicular to 

the field direction. Wavefunctions and energy eigenvalues for the discrete 

states in this second continuum model are calculated numerically, from 

a two point boundary value equation. Calculations of the photoionization 

of the lowest even and odd parity bound states at photon energies from 

the (field dependent) ionization threshold to 8f rydbergs above it are 

reported, where . The appropriate generalization of the Wigner

threshold law is given. Resonances are found at each embedded discrete



continuum level in the absence of broadening, and secondary maxima 

associated with the motion along the field are predicted, and confirmed 

in a simple model. Results for the two continuum models are compared 

and the differences discussed in some detail.
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CHAPTER 1 

INTRODUCTION

§1.1 General Background

Since the first discovery of the existence of strong magnetic 

fields in a white dwarf by Kemp et al 1970 and Kemp, 1970, much work 

has been carried out on the properties of atoms and ions in such
7strong fields. Kemp estimated that a field of about 10 Gauss is

present in the white dwarf Grw + 70^8247, and since then, the

existence of large magnetic fields in pulsars thought to be up to 
1210 Gauss at the surface, have also been demonstrated (Ruderman, 

1972).

The study of atoms and ions in strong magnetic fields is also 

of importance in solid state physics where the effects of high fields 

may be observed at low fields. This is due to two properties of 

solids: (i) the mass of an electron in motion in a solid must be

represented by the effective mass m %  which may be several orders of 

magnitude smaller than m, the mass of the electron in free space and 

(ii) the dielectric constant of a solid is not unity, as in the case 

of free space, but may have a value in the range 10 to 50 (Praddaude, 

1972). Both of these facts contribute significantly to the change in 

the ratio of the magnetic energy to the Coulomb energy (denoted by V) 

from the case where the atom exists in free space. We have,

V  = ,.u.

where = e B is the cyclotron frequency and Ry% is the2ti D

effective Rydberg with D the dielectric constant. Now if we suppose
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D = 50 and m*’= 0.1m, then it is clearly seen that V is a factor of

2.5 X 10^ greater than for the case where D = 1 and m = m*. • In

other words, if a magnetic field of strength lO^G (a fairly weak

field) was applied to the solid, the effects observed, would be
gthose of a field of 2.5 x 10 G (a strong field) in free space.

h ilMore recently, fairly intense magnetic fields of 10 - 5 x 10 G 

have been produced over large volumes in magnetically confined, 

controlled thermonuclear fusion experimental devices. The effects 

of these fields on the atomic properties of the trapped plasma is of 

considerable importance. Laboratory magnetic fields of 2 x lO^G have 

now been achieved. Very strong magnetic fields are also known to 

exist in the ablation layers of targets used in inertial fusion 

experiments (Lawson, 1979), where such physical processes as photoioni­

zation of atomic hydrogen (as deuterium and tritium) and of highly 

stripped (hydrogenic) ions occur.

It is the effect of these strong magnetic fields on atomic

hydrogen that is studied here. It is necessary, at this point, to

define what is meant by a "strong magnetic field". A weak magnetic

field will be referred to as one in which the Coulomb force of the

nucleus dominates the magnetic field such that the ordinary Zeeman level

splitting occurs, and the quadratic Zeeman effect is negligible. The

region of field strengths in which this occurs is approximately 
70< B <10 G. We will define a strong magnetic field as one in which the

Coulomb and magnetic interactions become comparable, the quadratic

Zeeman term being non-negligible ie 10^< B < lO^G. Above about lO^^G,

the magnetic field completely dominates the Coulomb field and we move

into what is known as the quasi-Landau regime, where the motion of

electrons is close to that of free electrons in a magnetic field. These

regions, and the effects on the bound and free levels are described more 
fully by Garstang, 1977.
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It is the strong field case which proves to be the most 

difficult to solve, as neither the Coulomb nor the magnetic field can 

be treated as a perturbation. The resulting problem to be solved in 

order to calculate the energies and wavefunctions of the electron of 

the hydrogen atom, proves to be non-separable, and as a result, no 

exact solution can be found.

$1.2 Effect of the Magnetic Field on the Bound States of Atomic Hydrogen

Firstly, we will consider the problem of finding the bound state 

energies and corresponding wavefunctions of the hydrogen atom in a strong 

static magnetic field. It is a well-known result of quantum mechanics 

that the equation to be solved is the (time-independent) Schrodinger 

equation:

H y. = E. IK (1.2)

where is the energy of the bound state lj>j Ÿj the corresponding

quadratically integrable wavefunction and H the Hamiltonian of the system.

Now the Hamiltonian for this system is the sum of the zero field

Hamiltonian, a term denoting the electron spin orbit interaction, a term

linear in the magnetic field strength B, and a quadratic term in B, the

last two terms denoting the interaction of the atom with the external

magnetic field. The linear term in B gives rise to the linear Zeeman

effect, and the quadratic term gives rise to the quadratic Zeeman effect

(Landau and Lifshitz, 1975, Ch.XIV). For a detailed account of the

structure of the atom in magnetic fields of various strengths, see Garstang,

1977. It is sufficient to say here, that for the range of magnetic field
7 9strengths which we are considering (ie between 10- and 10 Gauss), the

quadratic term in B cannot be neglected. In fact, at fields as strong as 
g10 G, it will be seen later, that this term is very important to the 

structure of the bound, and indeed the free, states.
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It is seen in section §2.2 that, due to the nature of the 

Hamiltonian, equation (1.2) is non-separable and so cannot be solved 

exactly. Unlike the case of the classical Zeeman effect in which the 

principal, angular momentum and magnetic quantum numbers remain good 

quantum numbers, the magnetic field is too strong to be treated as a 

perturbation and the states can only be labelled by principle quantum 

number n,m, the magnetic quantum number and parity it. In practice, 

however, we continue for convenience to label the bound states with 

their corresponding zero field labels (n,/,m), preserving the same 

order for n and 2 as at zero field for each m and parity.

As perturbation theory becomes inadequate at the fieldstrengths

considered here, the variational method must be used in order to find

an approximate solution to equation (1.2). This involves expanding

the wavefunctions in a suitable basis. If this basis is complete, then

the calculated energy eigenvalues and wavefunctions will be exact, but

it will be seen that it is not practical to use a complete basis set.

If we expand the wavefunction of the ground state (Y^s  ̂ terms of a
o

set of basis functions [ : j = 1,2...] , then we have the following trial

solution :

V. = E a. <t>; (1.3)‘ j J J
where the a^ are constants. Now it has been shown by Hylleraas and 

Undheim, 1930, and MacDonald, 1933, that the exact energy of the ground 

state is always a lower bound on the energy obtained using a (normalized) 

trial function such as that of equation (1.3). That is.

E..  ̂ :— Llo  i5o  (1.4)

where is the exact energy of the ground state. This simple
o

variational method is concerned with finding an expression for in
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terms of the (j>. , of the form given by equation (1.3), such that the 

right hand side of equation (1.4) is a minimum. The trial function for 

will be dependent on one or more parameters, which may be varied
o

until a minimum trial energy eigenvalue is obtained. If the chosen trial 

function is close to the true nature of the exact wavefunction, then the 

corresponding energy will also be close to the exact energy. For a 

detailed discussion see Dalgarno in Bates, Quantum Theory Vol.l. It is 

important therefore, to consider very carefully, the nature of the physical 

situation before choosing appropriate trial solutions.

Trial wavefunctions for the higher excited states can also be 

found, but care must be taken to ensure that all thel^ form an orthonormal 

set. To be more specific, all states of given (m,'fr') must be orthogonal. 

The calculations involved in the solution of equation (1.2) are discussed 

in more detail in chapters 2 and 3.

In choosing suitable trial solutions for the wavefunctions of 

the bound states of the hydrogen atom, the effect of the magnetic field 

on the orbit of the electron must be considered. In order to do this, 

we first consider the free motion of an electron in a magnetic field.

In classical mechanics, it is found that the force exerted by an 

external magnetic field on a particle, is proprotional to the product 

of the charge of the particle and the velocity of the particle in the 

plane perpendicular to the direction of the field. In fact

F = evB (1.5)

where B is the field strength and v the component of velocity perpendi­

cular to the field. If we take the field to be in the z direction, 

then V will be the velocity in the (x - y) plane. ' As the force exerted 

by this field acts in a direction perpendicular to the velocity, only
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the direction of the velocity will change, and not the magnitude.

The motion is therefore circular in the (x - y) plane with constant 

radius r and (again from the results of classical mechanics) we have

^ = 2^  ' (1 .6)

Combining equations (1.5) and (1.6) we find that

r = my , (1.7)
eB

The classical angular frequency is defined as and this can be 

written

= eB (1.8)
m

where is known as the cyclotron frequency.

The Schrodinger equation for a free electron in a magnetic

field Bz has been solved by Dingle, 1952, who shows that the energy

of the electron is unquantized in the z- direction, but that it can

only take allowed values in the (x - y) plane. From equation (1.7)

it can be seen that if we write

E = mv^ (1.9)
2

then the radius of the motion in the (x - y) plane is dependent on 

the energy of the electron. This implies that the radius of the orbit 

of the electron about the field direction, can also only take certain 

allowed values. In fact, it has been shown by Dingle, 1952, that the 

energies in the x - y plane are given by

E^ — (n + ^) (l.lO)

where n = 0,1,2........  Substituting equations (1.10) and (1.9) into

equation (1.7), we obtain

r =f h V  (2n + 1)2

and the cyclotron radius is defined by
1 (1.12)

.eB
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The discrete energy levels occupied by the electron in the 

X - y plane are known as the Landau levels, and these levels are 

equally spaced by fi a.u. (= Ry) •

To summarize, to a first approximation, a free electron in 

a magnetic field will describe a helical orbit about the field 

direction, the radius of the orbit in the plane perpendicular to the 

field direction, and the energy of the electron being quantized 

according to equations (1.10) and (1.11), but the guiding centre of 

the orbit "gitterbugs" as m changes.

Returning to the problem of the hydrogen atom in a magnetic 

field, we would expect, in the limit as 3 - *  ^  , that the Coulomb

attraction of the nucleus would become relatively negligible, and that 

the electron would behave as a free electron in a magnetic field. It 

has already been seen that this free motion is cylindrically symmetric 

about the field direction, and so, as the magnetic field strength 

becomes greater, we would expect that the orbit described by the 

electron becomes more and more elongated in the z- direction, as it 

approaches the Landau limit, departing from the zero field spherical 

symmetry. Once the symmetry of the system has been established, it 

should then be possible to describe, with great accuracy, the wave­

functions in terms of a basis of either cylindrical or spherical 

functions ; In practice, however, a region exists in which the orbits 

are ovoid in shape, the major axis lying along the field direction, and 

in this case, the system possesses neither cylindrical or spherical 

symmetry, and it is this region of field strengths which is the primary 
topic of study here.
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Throughout, the magnetic field strength will be measured in 

terms of the parameter Y, where

Y = , Y  = 1 when B = 2.35 x lO^G. (1.13)
2{Ry)

In fact, Y is the ratio of the square of the radius of the first Bohr
2orbit (3g ) to the square of the cyclotron radius. Now as R is

inversely proportional to B, it would appear that the cyclotron radius

decreases with increasing field strength, thus Y increases as B

increases. We consider three cases: firstly, if Y « 1 , then

, ie for the ground state of the hydrogen atom, the region

to which the magnetic field confines the electron is large compared to

the dimensions of the atom, and so the effect of this field on the ground

state wavefunction is minimal. For higher excited states, however,

where the size of the orbit of the electron at zero field can approach

the cyclotron radius, the magnetic field becomes more important. In

this situation, the effects of a high magnetic field are observed at low
4 -5fields. For instance, at B = 2.35 x 10 G (ie Y = 10 ), the atomic

radius approaches the cyclotron radius at states with principle quantum 

number 58 (Garstang, 1977). As Y approaches unity, the cyclotron and 

Bohr radii become comparable and the effects of the field on the wave­

functions of all the bound states are significant. The fields which 

are considered here, lie in the range 4 . 3 x l O ^ < Y <  1 ,which

fall in this region. For Y »  1 , the cyclotron radius becomes much 

smaller than the Bohr radius and in this case, the magnetic field becomes 

the dominant force.

It is the region around Y = 1 where it is the most difficult to 

find suitable trial wavefunctions for the bound states as, for the states 

of lower energy, the orbit of the electron becomes ovoid and cannot be 

described exactly by a set of either cylindrical or spherical functions.
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However, both approaches are considered here. We first take a set 

of basis functions containing unperturbed spherical, hydrogenic 

functions, and also a set of cylindrical functions and compare the 

two sets of results, to see which is the more accurate within the 

range of fields considered, ie which produces the lower set of energy 

eigenvalues.

The basis of hydrogenic states was first used by Brandi, 1975,

whose results for the ground state energies are found to be in excellent

agreement with the results of Cabib et al, 1972 in the range of field

strengths 2.35 x 10  ̂ < B < 2.35 x lO^G (ie 0.1 < Y < 1  ), and

substantially better than those obtained by Yafet et al, 1956 who used

a very simple cylindrical basis. It will, however, be seen that this

is not the case with states of higher energies, and that for these

higher states, the wavefunctions are much better described by a basis
0

of cylindrical functions for B > 5 x 10 G.

A spherical basis has also been used by Smith et al, 1972, but 

numerical results for energies are not presented and so comparison is 

impossible. However, results are presented for bound-bound transition 

probabilities for which comparison is possible with those obtained in 

the hydrogenic and cylindrical bases (see Chapter 3 for a detailed 

discussion of these results).

Praddaude, 1972, applied a basis of more complicated cylindrical 

functions to the problem, which give the correct asymptotic behaviour of 

the wavefunctions as r and as r ^ 0. The results obtained compare 

well with those of the simple cylindrical basis used here (Kara and 

McDowell, 1980) and these are discussed in more detail in Chapter 3.

The complicated functions of Praddaude, however, are non-separable and 

therefore not of practical use in the calculation of such matrix elements
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as those occurring in the bound-bound transition probabilities and 

oscillator strengths.

Perturbation calculations have been carried out by Ruder et al,

1981, who show that a perturbation treatment of the magnetic field is
7adequate up to fields of the order of 10 G and obtain very good 

agreement with the results of Praddaude, 1972, Cabib et al, 1972 and 

Kara and McDowell, 1980, at this field strength.

Much work has also been carried out in the very high field region,

although such high fields are not considered in detail here. For

instance, Simola and Virtamo, 1978, have used a basis of Landau orbitals

for their wavefunctions and consider fields in the region Y »  1 .

Results are given for ground state binding energies and ionization

energies for seven excited states and are 4-5% better than those

obtained by the simple cylindrical basis of Yafet et al, 1956, in the

range 10 < Y < lOO. Numerous other variational calculations such as

those of Pokatilov and Rusanov, 1969, Bhaduri et al, 1977, and Dos Santos

and Brandi, 1976, who used a basis of three dimensional harmonic oscillator

functions, have also been carried out in this region. The results of Dos

Santos and Brandi, 1976, in fact, are shown to be more accurate than the
9 11hydrogenic functions for 10 < B < 10 G, which is exactly what we would 

expect. Their results are also in good agreement with those of Praddaude, 

1972. This work has also been extended by Brandi and Koiller,. 1978, who 

add a variational scaling parameter to each basis set (ie the hydrogenic 

and three dimensional harmonic oscillator sets) to improve them, but still 

do not achieve the accuracy of the cylindrical bases used by Kara and
g

McDowell, 1980, and Praddaude, 1972, etc. for high fields (B » 5 x 10 G).

An additional problem is prevalent at very high fields, and that 

is one concerning the relativistic effects on the bound states of such
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a system. This has been studied by Glasser and Kaplan, 1975, who 

show that relativistic effects may be significant at fields as low 

as lO^^G for the excited states of atomic hydrogen.

Another technique for dealing with the very high field problem 

has been studied by Pavlov-Verevkin and Zhilinskii, 1980 who use a 

method based on perturbation theory. Their first order wavefunction 

is a product of Landau functions and eigenfunctions of the Hamiltonian 

describing motion in a one-dimensional Coulomb potential to a finite 

distance away from the nucleus. The motion due to the Coulomb field 

outside the cyclotron radius is treated as a perturbation. The range 

of field strengths studied is B » lO^^G and much complicated numerical 

work is involved. Results compare favourably with those of Simola
9and Virtamo, 1978, and Praddaude, 1972, for B > 5 x 10 G, and it is 

shown that for B > lO^^G, third order perturbation theory is sufficient.

High Rydberg states have also been a subject of much study as, 

due to the diminishing effect of the Coulomb field as the electron moves 

further away from the nucleus, electrons in these states, even at low 

fields possess the properties of those at lower energies in higher fields. 

This quadratic Zeeman effect has been observed experimentally by Garton 

and Tomkins, 1959, Lu, Tomkins and Garton, 1978 and others, and was 

considered theoretically by Edmonds, 1970 who adopted a semiclassical 

approach, which is appropriate in this region.

In a further study by Edmonds, 1973, a somewhat different approach 

was used, in that the Schrodinger equation was solved, expanding the 

wavefunctions in a basis of Sturmian 'functions. These functions have the 

advantage that they form a discrete complete basis set, and so the conti­

nuum states are effectively included, which are significant for the high 

Rydberg states. The basis must be truncated in order that the problem
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be finite and results for fairly low states have been compared with 

those obtained using the hydrogenic basis at about lO^G. It was 

found that the two sets of results were not significantly different, 

and the hydrogenic basis, only requiring a few terms, was preferable 

to the basis of Sturmian functions which requires an extremely large 

number of terms in order that convergence may be obtained on the 

eigenvalues. However, it is expected that the Sturmian basis will be 

far more accurate than the hydrogenic basis for higher states. This 

work- has been extended by Clark and Taylor, 1980, who use a similar 

basis and calculate oscillator strengths for dipole transitions from 

the ground state to states lying above n = 15 at B = 47 kG, and illus­

trate the inter-f mixing occuring at high levels due to the presence of 

the quadratic Zeeman term.

Having obtained the energy levels for atomic hydrogen, it is then 

easy to obtain energies for any other one electron system, as has been 

shown by Surmelian and O ’Connell, 1974. They derive the basic result

E (Z,B) = Z^ E (1,b ') (1.14)

B

course, are the energies of the states of the hydrogen atom

where B̂  = /^2 and Z is the charge on the nucleus. E (1,B') of

A scaling law for the bound-bound transition probabilities and 

oscillator strengths for different nuclear charges has been derived by 

Wunner, et al, 1980 and can be written

D., CZ,B) =_!_ D. I
where is the dipole matrix element. So the bound-bound transition 

probabilities and oscillator strengths for similar systems such as 

He'*’ can now be calculated directly from those of the simple atomic 

hydrogen case. Wunner et al, 1980, used a polynomial approximation for
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Figure 1.1

Oscillator strengths of some bound-bound transitions as a function of 
magnetic field strength. The perturbation theory results in the low 
field region and the adiabatic approximation results in the very high 

field region have been given by Wunner et al 1980, whilst the broken 
line represents the cylindrical basis results calculated in the electric 
dipole approximation (Kara and McDowell, 1980),
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the dipole matrix elements and excellent agreement is obtained for
7results for some oscillator strengths at B = 10 G with those of 

our spherical wavefunctions (see chapter 4).

Throughout this thesis, the electric dipole approximation for 
transitions has been used, ie the wavelength of the emitted radiation 
is considered to be large compared with the dimensions of the hydrogen 
atom. However, an adiabatic approximation (Wunner, 1980) is appropriate 
at very high fields ( Y »  1 ) and it is shown in figure (1.1) that
the oscillator strengths go smoothly into those calculated in the 
adiabatic approximation at high fields. There is also reasonable 
agreement with the perturbation theory calculations at low fields 

(Wunner et al, 1980), showing that this cylindrical basis gives a good 
description of the wavefunctions in the range of field strengths 
5 X lO^a B <2.35 X lO^G.

Two electron systems such as He, Li^ etc. have also been studied 
by various authors, but no discussion of them will be given here. For 
a full discussion refer to Garstang, 1977.

11.3 Effect of the Magnetic Field on the Continuum States and the
Photoionization Spectrum '

The effect of the magnetic field on the free electron has already 

been discussed in the previous section, and it was found that such an 
electron is confined to Landau levels in the plane perpendicular to the 

field lines, with the possibility of escape in the field direction. We 
consider the effect of a Coulomb field on these Landau levels. It has 
been shown, by a semiclassical argument (Starace, 1973) that if the 
motion in the ( ^  j (j> ) plane in cylindrical polar coordinates (we 
assume B = Bz ), is decoupled from that in the z direction, and the
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Coulomb force exerted by the nucleus is approximated by a term 

~  a.u., then applying the semiclassical Bohr-Sommerfeld quantization
condition, gives an energy spacing of about a.u., in the

threshold region for each value of the magnetic quantum number m^. 
However, as one moves away from threshold, the Landau limit is 
eventually reached where the spacing is f i a . u .  This effect was 
first observed experimentally by Garton and Tomkins, 1969, in Ba. 
Experiments have also been carried out on Rb (Economou et al, 1979),
Sr (Fonk et al, 1978 and Lu et al, 1978) and most recently, on Cs

Lj.by Gay et al, 1980 who give results up to 8 x 10 G . All have 

observed this threshold spacing. In fact, it is true that whenever 
there is a mixing of fields, a pattern of equally spaced levels near 
threshold will be seen (Rau, 1979). This implies that the structure 

of the continuum in a semiclassical approximation is significantly 
changed by the presence of a Coulomb field and this is clearly observed 
in the results presented in Chapter 6. The energies calculated by the 
Bohr - Sommerfeld quantization condition

if, " P  " " ' " 4 ’"  (1.16)

where n = 0,1.... and ^  are the zeros of the integrand,
correspond to the wavefunctions calculated by the semiclassical WKB 

method (Akimoto and Hasegawa, 1967).

On calculating the continuum wavefunctions we do not consider the 
semi-classical method, but rather, solve the Schrodinger equation 
directly, by numerical means, to obtain an exact solution. We use 

the same approximation for the Coulomb field as Starace, 1973, Rau, 1979, 
etc. and this renders the Schrodinger equation separable. However, as 
is shown in Chapter 6, the WKB method gives a good first approximation 
to the energy eigenvalues for these calculations.
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The effect of the Coulomb field on these continuum state 

functions, is to draw them to smaller ç>, thus significantly changing 
the form of the wavefunction in the region of overlap with the bound 
states (which is approximately 0  ̂ f < 8 ). It also has the

dramatic effect of changing considerably, the energy corresponding 
to the state in> , particularly at lower magnetic fields, but the 
Landau limit is approached as B oo . Results for the continuum 
wavefunctions and energies are discussed in greater detail in Chapter 
6 .

Photoionization cross-sections have been studied extensively 

for zero magnetic field and results for many atoms and ions have been 
tabulated for a wide range of energies. For example, the hydrogen 

atom has been dealt with by Burgess et al, 1954 and many other systems 
are considered by Peach, 1957 and Peach, 1970. However, little is 
known about the cross sections when a magnetic field is switched on.

Only limited experimental work has been carried out in fields of 
interest here, due to the difficulties in obtaining high fields in the 

laboratory. At present, fields up to about lO^G have been obtained. 
Amongst the experiments carried out in this field, are those performed 

by Blumberg et al, 1978. They consider the photodetachment cross- 
section for S in fields up to 15.7kG. Results for both and cr' 

polarized light are given. They observe peaks at the discrete conti­
nuum levels, a phenomenum first predicted in the simple theoretical 

approach of Wallis and Bowlden, 1955, where the ground state wavefunction 
was taken to be of the simple form

= N (1.17)I Sq
and the continuum was represented by pure Landau levels.
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We study the photoionization cross-section with both the

Landau and the Coulomb modified continua, and study in detail the

behaviour of the cross-section at the discrete levels. (Kara and
McDowell, 1981). We find, in fact, that in our approximation, and
in the absence of broadening due to the velocity of the residual ion,

that the behaviour of the cross section at the discrete energy levels
goes as or k depending on the parity and magnetic quantum number

‘'z ^
of the initial and final states. This is in agreement with the 
theoretical prediction of Blumberg et al, 1979, on S . On including 
the broadening effects due to the motion of the ion, agreement is 
obtained with previous experimental results.

More recently, some theoretical results have been presented by 

Schmidt et al, 1981. They, however, only consider photoionization 
to final states whose energies lie in the interval ry,
ie up to the second Landau level. The initial state is a Landau type 
orbital as the field strengths studied are in the range
2.35 X 10ll<B < 4-.7 x 10^^, ie 100 < V' < 2 x 10^. These are far
higher than those studied here and, due to the dominance of the 

magnetic interaction, it is assumed that the continuum contains pure 
Landau levels in the ( ^  , <j> ) plane, with the Coulomb field only

considered along the z axis. An interesting discovery here, is that
the behaviour of the cross-section at the threshold hu= , is
constant with respect to E^, which is in agreement with the prediction 
of Wigner, 1948, in the presence of a Coulomb field.

In a recent publication (McDowell, 1981) it has been shown that 
the scaling law, relating cross sections for different nuclear charges, 
is exactly the same as that given in equation (1.15) for the dipole
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matrix elements. The cross sections are related by

ay/Zl.a, I  ̂ I h ]  ^ (1.18)

where

v*. = Z? tr (1.19)

and

EL = B (1.20)

and being the charges of two hydrogenic ions, and h-v being 
the energy of the incident photon.

Cross sections for other hydrogenic ions can now be calculated 
directly from those of atomic hydrogen which are given in Chapters 
5 and 6.
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CHAPTER 2

ENERGIES AND BOUND-BOUND TRANSITIONS USING A BASIS OF UNPERTURBED
HYDROGENIC STATES

§2.1 Introduction

This chapter is concerned with the calculation of energies and 
bound-bound transitions of atomic hydrogen in a strong static magnetic 
field, the wavefunctions being expanded in a basis of unperturbed 
hydrogenic functions. The reason for this choice of basis functions 
is discussed in the introductory chapter. Section §2.2 derives an 
expression for the Hamiltonian which includes a linear and a quadratic 
term in B (the magnetic field strength). At the field strengths we 
are considering, the quadratic term is not negligible. The eigenvalue 
equation is also derived, from which the energies and wave functions 
can be calculated. The next section calculates all the matrix elements 
required to solve the eigenvalue equation derived in §2.2, and section 
§2.4 describes the numerical methods used in solving this equation.
In order to solve the equation, the matrix elements must all be reduced 
to a form in which they can easily be computed. This is achieved in 

section §2.5. The remainder of the chapter is devoted to deriving 
formulae to calculate the bound-bound transition probabilities and 
oscillator strengths. The same matrix elements occur in the transition 
probabilities and oscillator strengths, and these are calculated in 
section §2.7.

§2.2 The Hamiltonian And Energy Eigenvalue Equation

The Hamiltonian of a particle of mass y, charge -e and momentum
2

p = -ihV, moving in the Coulomb potential of a proton,- ^  (infinite
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mass assumed) is

‘’o " ^  • (2-1)

When a magnetic field ^  is imposed on the system, by a well-known
result of classical mechanics (Goldstein, 1950, p222) , the Hamiltonian

0Ais obtained by replacing £ by p. + where

A = A(r,t) (2.2)

is the (time dependent) vector potential which represents the inter­
action between the electron and the magnetic field. The Hamiltonian 
then becomes

H =

i.e. H = + ^  { I  ( £.A + A .£ ) + ^ ^  } . (2.3)

But, by elementary vector analysis we have

= -ihV.̂ c}) = -ih(t>V._A - ihA.V^ = (2.4)

therefore,

H = «0 + ZTE-'A + • (2.5)yc 1-*—  2yc ̂

The problem we are considering is the interaction of a static magnetic 
field _B = B^ with the hydrogen atom. ^  then becomes Mr) and it is 
easy to show that _A = ^B % satisfies B^ = V x ^  and so

« = + + (2 .G)

where ^  = -ihr_ x v and is the z component of

Now setting cose = 2.; i*®* taking _B along the 0 = 0  axis,
we obtain (^ x r)% = B^fZsinZQ. Throughout, the magnetic field will 

be measured in terms of y, where
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Y = ^  . (2.7)
Ry 2Ry

B is measured in Gauss, is the Bohr magneton and the cyclotron 
frequency is

eB~  • (2 .8)

Ry is the Rydberg and we find that | ^ | = 2.35 x 10  ̂Gauss =
2.35 X 105 Tesla.

We must also add to the Hamiltonian, a term representing the 
spin interaction. The spin magnetic moment' of the electron is

“ = - S e § c  (2.9)

where 2  is the spin angular momentum vector and g^ is the Landë- 
g factor corresponding to the electron. According to Dirac relat­
ivist ic theory, g^ can be taken to have the value 2 (Bethe and 
Salpeter, 1977, p207). The term to be added to the Hamiltonian to 
represent spin interaction is then

- 1 - 1  = Se 2̂  B-S = BSz = 2yS^ . (2 .10)

The Hamiltonian is now

2
H = H^ + + 2S^) + r% sin^e . (2.11)

The time-independent SchrOdinger equation,

HT = ET (2.12)

is not exactly soluble and so an approximation for the wave function 
T must be found. Let this approximation be such that

= Z a. 4». (2.13)P j 3P :

where { (j)̂ : j-= 1, 2 .... N is a linearly independent set of basis 
functions.
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At relatively low fields, i.e. B < 10® G, where the atom retains 
its spherical symmetry and the bound states retain some of their zero- 
field character, it would seem logical to assume that a basis set of 
unperturbed hydrogenic states will give good results in this region.
This set of basis states was used by Brandi (1975), but in his paper, 
results for the energies of the 14 lowest bound states are only 
presented graphically. To obtain more accurate results for the energies, 
and in order to go on and calculate bound-bound transition probabilities, 
it was necessary to repeat the work of Brandi. The basis set functions 
are:

Xs.m;. (2-l«] ] ]
is the unperturbed hydrogenic radial function, the spherical

harmonic function and y the spin function, n., £., m„ , s., m aresm^  ̂ ] ] 4̂  ] S4
the principal, angular momentum, magnetic, spin angular momentum and 
spin magnetic quantum numbers respectively, of the unperturbed state.

Equation (2.12) must be solved in order to find the energy eigen­
values E. : i = 1, 2 ... N and the a. of equation (2.13) which are the ] ]P
eigenvectors; a^^ : j = 1, 2 ... N are the elements of the p ’th 
column of the eigenvector matrix.

Equation (2.12) can be rewritten
< T I H I T > = E < T I T > (2.15)P q P q

where the integration is over all space and H is given by equation (2.11)

§2.3 Calculation of Matrix Elements <T Ih It > and <T |t > P - - q________p q. ■

(i) Matrix Element of Ho
As the <j) j are mutually orthogonal functions, we have

< Z a. 4). I H I Z a, 4>v > = 2 a. * a.^ Ê .°̂  (2.16)- ]P ] ' o ' . kq . ]p ]q ]
j ^
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where is the energy of the unperturbed state (f>̂ .
(ii) Matrix Element of (L + 2S )z z

We know that

jm^j Zj Ajmgy (2.17)

and

Xsjüiĝ  ■ ™sj Xgjmgj (2.18)

and again using the fact that the are orthogonal, we have

*ip +2S2)|z a%q = la,
3 k

(iii) Matrix Element of yy^^sin^9

- -jp ^j"“z - " z ' -  “kq k̂' - — jp a.qY (m,. +-2.3.) (2.19)

Noting that sin^e = y  (1 - 2(j)^ (Edmonds, 1965,
pl24), we have

<Z a.p ♦.liy^r^sin^elE > = Z a. a, R.. -y * x* f
3,k jp kq jk 3

'3

Sjmsj ®k™S]ç dr (2.20)

where

R . (r) R_ „ (r) r^ dr . 
0 *3*3 %k&k (2.21)

Both Y (r) and % are orthogonal polynomials and also (Edmonds,XTn STTlg
1965, p63)

_ (r)' Y, (r) Y„ (r) sin0 d9 d(f> = {(2%i+l)(2&2+l)(2&3+l)}^&2m&2 &3m&3

(2.22)

where
f a  b c '
d e f

is the Wigner 3-j symbol (Edmonds, 1965). Now
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using these facts and also Y (r) = (-1)^ Y &(r) , equation (2.I5)
jC , ~m & ,Tn '

becomes ;

" ! ^jp ^kq »k > = 6^ . \ q  4 k  "J K 3 ,K

 ̂ ( ( 2 Y 1 ) ( 2 V D ) ^  A j  \  2W 1. 2
\0 0 oy \-m&j m£ĵ  0

'̂sjSk Lg^nig^ (2.23)

From the results of sections (i), (ii) and (iii), i.e. equations 
(2.16), (2.19) and (2.20), the total Hamiltonian matrix element becomes:

^Pq " 6 ^kq ^jk ®jk ̂ mg^mg^ ^SjS% ! ^jp" ^jq

+ ym£j + Zymĝ .) (2.24)
where

,-m -®jk = (Sljtk - (-1) "i ((21.+l)(2%t+l))2 1. 2

^k I (2.25)0
Consider the two vector-coupling coefficients contained in the expression

for 0,, (equation ( 2.2$): from the properties of 3-j coefficients,]k
the term / “̂ k must be zero unless m^^ = m̂ .̂ and

j ” k °
£•-21 < £, < £.+2 (i.e. the triangular rule is satisfied) and £.+£ +23 —  K —  3 3 k

is even. Similarly for j £^ 2 ̂  , but in this case the condition
0 0 0

m£j ” does not apply. So the rules governing the coupling of states
are that the state |n,£,m^,s,m^> can only couple to itself and 
[n,£±2,m^,s,m^>. The only exceptions are that £=0 states can only couple 
to £=0 and £=2 states and £=1 states can only couple to £=1 and £=3 

states. So H^^ (the matrix element of the Hamiltonian < | H | >)
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will form a square matrix {H } of dimension D given in table 2.1pq

Possible 
Choices of k

D

0 0,2 2Ni
1 1,3 2H2

&(>1) Z ,  Z ± 2

Table 2.1

This table gives the dimension of the matrix of matrix 
elements of the Hamiltonian for the 3 possible cases of 
2j. and are the sums of the total numbers of
basis elements for each possible coupled state.

In all the following calculations with this basis set, spin is

omitted, the primary reason for this being that the omission of spin
enables the results to be compared with those of other workers such
as Praddaude (1972), Smith et al (1973) who also neglected spin. It
is easy to add the spin energy shift AE = 2Ymg^ later.

So the equation to be solved now, in order to find the energy

eigenvalues E , and the eigenvectors x_ , is
(  {H }  -  {«j )  I e U  > }  ) X - =  (  (H } -  E { < *  |<j) > } )  X. pq p q -  pq p q “
= ( {H } - E {s } ) X = 0 (2.26)pq pq ~  “

where {A } represents the matrix whose (p,q)'th element is Apq pq
Due to the nature of the angular part of the unperturbed hydrogenic 
functions, they form an orthonormal basis set, i.e.

(j) .* dr dr = 6. , . (2.2 7)3 K 3 ,K

This indicates that the matrix elements S^^ form the identity matrix.
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The eigenvalue problem is then reduced to the form;

{Hpq} X = E X (2.28)
where (H } is symmetric (i.e. / drdr = / (j),H (j). drdr ). Thispq ] ^ k ]
is because

< > = E ,

< > = Y > = Ym^k^j.k
(from equation (2.25)) .

(2.29)

§2.4 Numerical Methods Used to Solve the Eigenvalue Equation

The numerical routine used to solve this eigenvalue equation 
(i.e. equation (2.28)) ig taken from the NAG library and a brief 
description of the methods used is given here. The routine used in 
.these calculations is F02ABF. .

The nxn symmetric, positive definite matrix is reduced
to tridiagonal form by applying n-2 orthogonal transformations of the 
form

A.. = P. A. P. , i = 1, 2 . .. n-21+1 1 1 1 ’ (2.30)

where A^ is the matrix after i transformations. This reducing
scheme is known as Householders Algorithm (Wilkinson and Reinsch, 19 71, 

pp212). P^ is of the form
P = I - 2w w r r r (2.31)

with w = (0, 0, ... 0, X ., X ., ... X ), where w is a normalized r r+1 r+2 n r
vector. The transformations are such that if

(1) (1)
'11 12 In

(2.32)

then.
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‘u  ° ° .... 0
(2) (2) (2) ,(2)
21 22 23.......... ^2n» 4 :' 4 :'.... 4 ?
0

” 4f 4f. ..  4:'
4 : '  » «  «S ’ 4f 41’ «  •» 41’ 41’ . . . 41’» » 41’ . . . 41’

» ” 41’ . . . 41’

5 and (2.33)

(2.34)

etc., until tridiagonal form is reached. So the matrix contains
n-r-1 elements in the r*th row and column which have to be reduced to
zero by P . We now have n-r-1 equations for x _, x _ ... x . Also r ^ r+1 r+2 n
the normalization condition is another equation which means that we now 
have n-r equations in n-r variables. Thus the matrix A^ can be reduced 
to tridiagonal form in this way.
Examnle
Consider the matrix 

A, =

\

a b c 
b d e

f )

(2.35)

c e
We have A^ = P^ A^ P^, where P^ = I - 2 ŵ  w^, w^ = ( 0 and 

2 2x^ + x^ =1, and.in this case, A^ is the tridiagonal form. Now,

Pi = /I 0 0 \ (2.36)

r 1-2x2^ -2X2X3

-2=2%3 ^-2-3 7
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= / a  b ( l - 2 x 2   ̂ ■ ScXgX g - 2 b X g X g  +  c ( l - 2 X g ^ )  \  ( 2 .

2 9b d(1-2X2  ̂ ” Zex^Xg -2dx2Xg + e(l-2Xg )
\ c e(l-2x - 2fx X -2exx_ + f(l-2x J

The first row must remain unchanged on premultiplying by P^,
so in order that P^ A^ P^ is tridiagonal, we must have

c - 2Xg(cXg+bx2) = 0 . (i)

Since P^ is orthogonal, the moduli of the row vectors is invariant i.e. 
+ (b + 2x2(bx2+cxg))^ = a^ + b^ + c^ • (ii)

From (i) and (ii) we have, 

=2 - =̂=3 = =̂3ex. - bx- = x,(b^ + (iii)
and also

^ 2^ + Xg2 = 1 . (iv)
For convenience, take the positive square root in equation (iii). 

Equations (iii) and (iv) give two equations in 2 variables so X2 and 
Xg can be found in terms of b and c, therefore P2 can be found in terms 
of b and c and the tridiagonal matrix Ag is easily calculated.

Now as the matrices Â  ̂and A^ are similar, the eigenvalues of 

A^ will be the same as those of A^. The eigenvalues of the tridiagonal 
matrix A^ are calculated by the QL method. This method is a trivial 
adaptation of the QR method which was devised by, and is discussed 
at some length by, Francis (1961), so only a brief outline is given 
here. Basically, it relies on the fact that a symmetric, tridiagonal 
matrix can be written as the product of a unitary matrix and a lower 
triangular matrix. Let A^ = Bj, then after k transformations B^ is 
formed and

\  = Qk (2-38)
where is unitary and is lower triangular.

Bk+i = Qk* \  Qk = Qk*Qk ^k Qk = ^k Qk
and = Qk*Qk-i* ... B Q3 Qj ... . C2.39)
It is shown by an adaption of the proof by Francis (1961) that as
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k-x», the matrix tends to a lower triangular matrix, the diagonal 
elements of which, are the eigenvalues of B^. But B^ is similar to B, 
which in turn is similar to so the diagonal elements of B^ are 
actually the required eigenvalues of A^.

In the Householder reduction routine, the best results are obtained 
from a ’balanced' matrix, i.e. if the moduli of the row and column 
vectors of A^ vary considerably, then using row and column operations,
A^ is manipulated such that the last row and column vectors have the 
largest modulus. As a consequence of this, the tridiagonal matrix 
will have the largest elements in the bottom right hand comer. This 
necessitates the use of the QL rather than the QR transformation. .

The original matrix A^ is related to B^ by the orthogonal trans­
formation P and the unitary transformation Q:

= Q* B Q = Q* P A3 P Q = A3 S . (2.W)
where S = PQ. The eigenvectors are calculated by direct substitution 
of the corresponding eigenvalue into the equations 

8% 2  =  ̂Z
.1 C2.tl)

S i  = X
where 2 is the eigenvector of B^ corresponding to the eigenvalue X 
and X  is the eigenvector of A^ corresponding to the eigenvalue X (i.e. 
the required eigenvector). The eigenvectors produced by the appropriate 
NAG routines, are normalized.

In our case, it is unnecessary to balance the matrix {H^^} as the 
moduli of the column vectors do not vary by more than two orders of 
magnitude.

§2i5 Computation of the Matrix {H } ̂  pq

The methods used in the computation of the terms occurring in the matrix 
element H^^, an expression for which is given in equation (2.24), are 

given below.
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(i) Computation of R.,

Rj^ is defined in equation ( 2.21) as being the integral over r of the 
product of two hydrogenic radial functions and r^. The radial functions 
can be written:

R^3_(r) = N F(-n+i+l, 21+2, ^  ) , (2.42)
where

' -

and F(a,3,x) is a confluent hypergeometric function (Landau and Lifshitz, 
1975, pll8). Now, the confluent hypergeometric function can be written 
as a power series in x

F(,,6.x) (2.44)
where 3 is strictly positive. Writing a=£-n+l, and 3=2Z+2 and x=-~ , 
we have

F(-n+Ul, 21+2.  ̂ (i)P ^  . (2.45)

This expression can be written in the form Z a r^ where a satisfiesP P P
the recursion relation

V i  ■ a F î j S s î ï V
This shows that the maximum value of p such that a is non-zero is

f
n-&-l. So Rj^ now becomes

r! = f N. N e"Y]k^ j \  ^k ^(j) ^(k) ^p+q
Jo ] k p=0 q=0 P %

(2.47)
where

jk
Performing the integral over r, we obtain

N M, a(i) } . (2.49)
■J p=0 q=0 ^ ^ Yjk ^

In urogram HYDROGN, R is calculated in SUBROUTINE RMAT, the coefficients]K
and a^^) being calculated recursively and stored in arrays AC and

BC respectively. N^ and N^ are stored in AN and BN and the final sum 
R* in SUM. See Appendix (I) for details of program HYDROGN.
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(ii) Computation of 0^^

The expression for 0^^ is given by equation (2.25). Firstly, consider 
the diagonal elements, i.e. when = &, say.

0., = 1 - (-1)"’ (21+1) I  I )  I  2j (2.50)

"here (o 0 o) = (3.51)

M   ̂ 2\ , .21+2+m 2(3mZ - 2(l+l)(21+3)) i
t-m m Oj ■ {(41+7)(41+6)(41+5)(41+4)(41+3)}^

For the off-diagonal elements, previously calculated selection rules
state that I, = £.± 2. 0„ then reduces tok ] ]k

0., = (-l)^^l ((2£.±2+l)(2£.+l))Z ( *]-2 ^ ] ( ^ j
 ̂  ̂ '0 0 0 / \ ^ - m m 0

where (2.53)

£. £^+2 2'j = (-1) j /6 (£ +2)(£.+l) f . .
0 0 0/  ̂ ] rv&j;

*k 2 I = ( - l) * k  /6 (£ +2)(£ +1)
0 0 0 / l*k^

] ] = (-1) 3 {6(£.+m+2)(£.+m+l)(£,-ra+2)(£.-m+1)}^
-m m 0 / i i i

/£,+2 £, 2 \ / ,\£^+m r,./- .  1V  k (-1) k {6(£,-m+2)(£,-m+l)(£,+m+2)(£,+m+l)}' .
- r a m O /  ^ I k^

iwith f(x) = ((2x+5)(2x+4)(2x+3)(2x+2K2x+l))
0j^ is^now in computable form and ((2£j+l)(2£^+l)) / £̂  £^ 2 j / £̂  £^ 2

\0 0 0/^-m m 0

is calculated in SUBROUTINE THREEJ of program HYDROGN, (see

Appendix Cl)).
Computation of other terms occurring in the matrix elements H^^ 

is straightforward.
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§2.6 Transition Probabilities

Consider the spontaneous transition from a state m ’ with energy 
^m’ ^ state m, with energy E^, in a uniform static magnetic field _B
with the emission of one photon. Both states are bound, hydrogenic 
states and m’ and m represent all the quantum numbers of the two states. 
The angular frequency of the emitted photon is

“m'm = è (3.54)
The method for finding E and E , has already been described in sectionm m '
§2.2. Now, let the interaction between the radiation field and the 
electron be represented by a vector potential , where

A» = A'(r,t). (2.55)

Including this in the expression for the Hamiltonian given by equation 
(2.3), we get:

H’ = {d + B X r + — A ’}^ - (2.56)2y *- 2c —  — c — r
and so

H' = H + — —  (p.A’ + A ’.n) + — — 2 A ’ ̂ + —— 2 A ’.B x r (2.57)2yc -c- —  —  — 2ycf 2ycf — — —

where H is the Hamiltonian of a hydrogen atom in a uniform magnetic 

field only. Choosing our gauge such that P_.A' = .p_, we have

H’ = H +-^A'.(£ + | ^ B  X r) + 1 ^ '  (2.58)

We can eliminate the term A'^ by means of a unitary transformation 

U, which does not in any way change the problem, but merely converts 
the wavefunction T to a different basis. We can write

^ = Uw (2.59)
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and choose U to be of the form

U = exp{c/^ A'(T)^dt} . (2.60)

The time dependent Schrodinger equation (H'Y = ihY) can now be 
written

A'.(pi + 1^ B X r) + Ui|) = i%(U* + CA'ZU*) (2.61)

which can be reduced to

{H + p— A'.(p + %— B X r)}^ = ihi|) (2.62)yc —  — 2c — —

where we have written

= l A n  ■ (3.63)

The additional term in the Hamiltonian due to the interaction between 

the electron and the electromagnetic field can now be treated as a 

perturbation, i.e. if

H» = H + H.\ (2.64)int

then we treat H^^^ as a perturbation, where

H . ^ = — A'.(p + 0) y B x r ) .  (2,65)int yc L —

In order to find the transition probability in the length formulation,

we need to find

<m'IH. .|m>' int '
in terms of

<m’ Ir̂ [m>.
This may be achieved by considering the commutator {r,H} where
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H = . (2.66)

Consider the components of the matrix element of the commutator
(i) <m'|rV^ - V%r|m>

Taking the x component of the above matrix element, we obtain

(*m' * -  V  (2.57)

where is the wavefunction corresponding to the state |m> and 

superscript (n) denotes the n’th derivative with respect to x. 
Performing the differentiation on the second term in the integrand 
we get:

= - 2

r * (2) * (1) * (2),
J ^ J K ’ ^  - 3*m' ’"n. ^

* (1)
j _ J m '  • (2.68)

By similarly considering the y and z components, we obtain the final 
result

<m’|rV^ - V^|m> = -2 <m’|v|m> (2.69)
(ii) <m'|HB X r̂ )2 - (B x r ) | m >

Now, remembering that the magnetic field is taken to be in the z direction, 
we can write B as the vector (0,0,1) in cartesian coordinates, and so 

(B X ;r)2 = y2 + x% . (2.70)
It is now obvious that the matrix element of the commutator {r,(B x r_)̂ } 

is zero.
2 2

(iii) In p  - “ 2 !̂ ^

It is immediately obvious that this matrix element is also zero.
(iv) <m'IrL - L r]m>'—  z z— '
L is given by xp^ - yp^, where p^ and p^ are the x and y components of 

momentum respectively, i.e.

^  = -it* Ip + • (3.21)
Considering the x component of this matrix element, we have



<m'|xL^ - L^x|m> = - ih
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(2.72)

and considering the y component, we have

<m ’ [ yL - L y I m> = ih (2.73)

As the partial derivatives involved in are only with respect to 
X or y , it obvious that the z component of this matrix element must 
be zero. Therefore the total matrix element is

lz.̂ 2 - L^rIm> = ih <m’| (-y,x,0) |m> 
= ih <m'IB X rIm> (2.74)

From equation (2.55) and the results of (i), (ii), (iii) and
(iv), we can write down the following expression for the matrix 
element of the commutator {r_,H} :

,2<ra’|{r,H}|m> = <m’ V + ihw^ B x r_|m> (2.75)

How the part of the Hamiltonian representing the interaction
between the electron and the radiation field, can be written (equation 

(2.62))
H.  ̂ = - ~ A ’ . ( - ^ V + ihco- B X r) . (2.76)int cn —  y L —

So, from equations (2.75) and (2.76) we can write

<m’IH. .Im> = ' int ' - ~  A' . <m’I{r,H}|m> ch — 1 _  I (2.77)

Also, we can write the Schrodinger equation,
H il) = E if) (2.78)m m m

where E^ is the energy of the electron corresponding to state 
Premultiplying this equation by r_ and integrating over all space, 

we obtain

\b , v H  ip dx m' —  m = Em (2.79)
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«and post-multiplying by r_ and premultiplying by and integrating 
over all space, we obtain

(h" ( £ 4.̂ ) dT

= Em' *m, r . (2.80)

using the fact that H is hermitian. From equations (2.79) and (2.80) 
we have the result

<m’|{r,H}|m> = (E^ - E^,) <m'|r|m> . (2.81)

So finally, we can combine the results of equations (2.77) and (2.81) 
to get the following expression for the matrix element of H_^^,

<m’|H. |m’> = - —  Ü) ,A'.<m'|r|m>. (2.82)' int' c mm' — '

So it has now been shown that the matrix element of H. _ can beint
written in terms of the matrix element of r, which is the correct 
form of the matrix element in order that the transition probability 
may be calculated in the length formulation. This expression, in 
fact, is exactly the same as the equivalent expression for the zero 
field case, (Eyring, Walter and Kimball, 1957, pill). From this 

expression (equation (2.82)) it has been shown by several authors 
(for example, Condon and Shortley, 19 63, Eyring, Walter and Kimbal, 
1957) that the transition probability per unit time in the magnetic 
field (which is exactly analogous to the zero field case), taking 
into account emission of radiation in all directions, can be written
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as

\ ' m  = l"“ 'l .E , r-ê.*|m>|2 . (2.83)
1 = -1

(Cf. EyringJ Walter and Kimbal, 19 57, pll5).

There has been some dispute as to the correct form of the 
Einstein 'A' coefficient, the original formulation of Smith et al 
(1973) being in error: see Smith et al (1973) and Brandi et al (1975). 
The result of equation (2.83), which is the length form of the 
transition probability, agrees with the formula obtained by dos 
Santos and Brandi (1976) which is the correct result. The result 
of Smith et al (1973) was later corrected (Smith et al (1975)).

Converting the expression given by equation (2.83) to atomic 
units (i.e. putting length in terms a^ and frequency in terms of

Llme^s , ̂  .^  ) we obtain

V'm = I-'I .E  ̂ (|^)2 (2.84)
1--1
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 ̂ r.e." [m>[2
0 i=-l

where a = j_3y q373 (^he fine structure constant) and = 2.4187x10 ^? 
seconds, so that the final result is

\ ' m  = 2.14210301x1010 ^3 I  ̂ r.e * |m>|2 . (2.85)
i=-l

A
The e^ are defined by

®±1 = (=x - (Gy). %  = (2.86)
where

= (1,0,0), e = (0,1,0), = (0,0,1) (2.87)
in cartesian^coordinates .

The formula of equation (2.85) can be checked with the known 
zero-field results given by Bethe, H.A. and Salpeter, E.E. (1977). 
Considering the 2p^ - Is^ transition, we have

^2p Is ~ 5(1-5) = 0.375 a.u.

I ,  ̂  ̂A I ,, olS ,|<2p| E r.e. |ls>p = (Bethe, H.A. and Salpeter, E.E.,
i=-i 8

1977, p262) .
Therefore,

^2p Is " 2.14210301x1010 x (0.375)3 x L

= 6.2681 X 10^ s“  ̂ (2.88)

which agrees with Bethe, H.A. and Salpeter, E.E. (1977) p266.
So this result for the transition probabilities (equation (2.85)) 

of atomic hydrogen in a magnetic field ^  tends to the true zero field 
result as )̂ | 0, unlike those of Brandi who neglect the integration
over all directions of polarization, and in consequence, their results 
corresponding to zero-field are a factor of ~  from the true results 
of Bethe, H.A. and Salpeter, E.E. (1977) p266. In fact, in order to 

compare our results with those of Brandi et al (1976) and Smith et al 
(1973) it was necessary to include this factor of in their results.
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52.7 Computation of Transition Probabilities

In order to find the transition probabilities, an expression
for which is given in equation (2.85), we need to evaluate the matrix
elements of the form <m*Ir lm>, where r = r.e . From equationsP y —  u ^
(2.13) and (2.14), we have (ignoring spin)

W " ’"- (2.89)

Now y = 0, 1 or -1 and we have (from Edmonds, HfeF)
4ttro = z = rcosG = /(— ) r ^

= - /J (x + iy) = - ^  sin9 e^* = /(|^) r Y^^^ (2.90)

^-1 = " iy) = /2 sio'G = /(|^) r Y^^_^
and so generally, we have

= "^(r) h,u • (2.91)
The matrix element now becomes

Z a;_r /(%:)

Y * (r) (r) Y (r) dS2 (2.92)
^j^Zj 3-y

where dO = sin^GdGd#. Writing

Igfi.k) = R a ^  (2.93)0 ^k^k

a n d  using equation (2.22) to evaluate the angular-integral-, we obtain

<m
mo . / £. 1 £,

I - \ -/ V (. V. Z£ .Txy V . .4 J \ 0 0 0
']r |m> = (-1)  ̂ I-(j,k) /( (2^ .+1)(2£,+1)) ^

X I  ̂ I . (2.94)
r ^ Z j  ° "'Zk

Consider the two 3j symbols in equation (2.94 )j tbe second 3j symbol 

is zero unless | £  ̂ - l| ^ £ ^  ^£j + 1 (i.e. the triangular rule is 
satisfied), m^^ - m^^ + y = 0 and £̂  + £^ + 1 is even, the last 
condition also applying to the first 3j symbol. ' From these selection
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rules it can be seen that transitions can only occur between states of
different parity, in fact only when A£ = 1. Also, the selection rule
Am = y = 0, 1 or -1 must be obeyed. This rule governing the magnetic 
quantum number shows that for each transition, there is only one
value of y for which <m'|r^|m> is non-zero.

It should be noted that, at zero field, the energies of states 
(n,£,m> where ra = -2Z-1 , -2£ ... 2&+1 coincide and this should be 
taken into account when evaluating the transition probabilities by 

summing over the magnetic quantum number of the state with the lower 
energy.

The total expression for the transition probability now becomes

. Z . 1 £,
^m’m 2.14210301x1010 (2£.+l)(2£%+l) (igCjjk)

Z .  1  Z, \
] }2 (2.95)

y m%^y
(i) Computation of Ig(j,k)

f
13(3’,k) is computed in a very similar way to that of the

radial matrix element occurring in the calculation of the energy 

levels (see section §2.5). The final result is

V J . X )  ■ . ( » . ( »  (
p=0

where, as before,

0 0

3' ' p:o q:o ' i k P 9

-£j+l (n.+£.)! 1

,<1) .  ̂ . . 1 (2.9!)
p+l ■ n^(p+l)(2£^+2+p) ’ o

and
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T £, \ .

(ii) Computation of j
0 0 0

Let = I and mjĝ  ̂= m throughout 
Case I : £. = £. -1] k 

'£-1 1 £ \ ^

0 0 0 ^

Case II : £. = £, +1] k
£+1 1 £

0 0 0 
(iii) Computation of

Case I: £j = £^-1

(a) y=0 i.e. m^ = m^
£-1 1 £  ̂^

-m 0 0
(b) y=l i.e. m^ = m^+1 

£-1 1 £ \ 2 

-m-1 1 m l

(c) y=-l i.e. m^ = m̂ -̂l

/£-1 1 £

(1-m -1 m ,

Case II : £. = i, +1 ] k
(a) y=0 i.e. m^ = m^

£+1 1 £ \ ^
-m 0 m /

(b) y=l i.e. m. = m,+1] K 
£̂+1 1 £\ 2

\-m-l 1 m /
(c) y=-l i.e. m^ = m̂ -̂l

'z+1 1 £ \ ^
1-m -1 m

(2£+l)(2£-l)

2(£+l)
(2£+3)(2£+2)(2£+l)

-m^. y m£k

2(£+m)(£-m)
2£(2£+l)(2£-l)

(£-l-m)(£-m)
(2£+l)(2£)(2£-l)

(£+m)(£+m-l) 
(2£+l)(2£)(2£-l)

2(£+m+l)(£+m+2)
(2£+3)(2£+2)(2£+l)

(£+m+l)(£+m+2)
(2£+3)(2£+2)(2£+l)

(£-m+2)(£-m+l)
(2£+3)(2£+2)(2£+l)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.105)

(2.107)
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If we now consider the zero field case where, to obtain the total
"transition probability, we must sum over all m ., we have

]
Case I : = 

1
* k - i

|<m»
L = - i

|m>|2 (2&+l)(2A-l)
y /2(&+m)(&-m) + (&-l-m)(&-m) + (£+m)(£+m-l) v -, 

2A(22+1)(2&-1)

= (IjCj.k))^ ( ^ )  (2.108)
Case II: f. = f +1] K

|<m-| |m>|2 = (IjCj.k))^ (2U1)(21.3) )

/2(&+m+l)(&-m+l)+( £+m+l) (&+m+2)+(&-m+2)( Jl-m+1) s -, 
(2A+3)(2A+2)(2A+1)

= (l3(j,k))2 ( | ^ >  (2.109)
and in this zero field case, the transition is between pure hydrogenic 
states ln.,&.> and In,' ] ] ' K K

§2.8 Wavelengths and Oscillator Strengths

(i) Wavelengths
The wavelength of a transition from state m ’ with energy E^, to

a state m with energy E^ can be written 
he ̂ = IF F r (2.110)

™ _3ii 8 -1with energies in Joules, h = 6.626x10 J, sec, c =2.99793x10 ms 
and A in metres. Transforming the energy into Rydbergs and X into 

S we have

X = 8 . (2.111)
' m ’ m'

(ii) Oscillator Strengths
From Bethe, H.A. and Salpeter, E.E. (1977), p250, we have the 

following expression for the oscillator strength of a transition from 

state m ’ to state m
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fm'm = "m'm . (2.112)

Converting to a.u. by multiplying by and the matrix element
to a.u. by multiplying by a^^ (= — 2) we have

= 2 01 ,̂  ̂ l<m 'lrjm>12 , (2.113)

It has already been shown how to calculate ]<m’|r^]m>[̂ , and 
so it is easy to compute the wavelengths and oscillator strengths 
for the bound-bound transitions.
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CHAPTER 3

ENERGIES AND BOUND-BOUND TRANSITIONS USING A BASIS OF 

CYLINDRICAL STATES

§3.1 Introduct ion

As described in Chapter 1, in very strong magnetic fields, the 
electron of the hydrogen atom describes a cylindrical, rather than a 
spherical, orbit. At high field strengths, therefore, it would seem 
more appropriate to describe the motion of the electron with a set of 
cylindrically symmetric, rather than the previously used spherically 
symmetric (hydrogenic) basis functions.

This chapter describes the construction of such a basis set, 
and the methods used in calculating the bound energies and transition 

probabilities between the bound states (Kara and McDowell, 1980).
Unlike the case where the basis states were unperturbed hydrogenic 
functions, this set of states contains elements with three variable 
parameters (labelled o c , 0  and 6)which must be carefully assigned values 

in order that parity is conserved, the functions have the same angular 
dependence as the zero field functions at low fields, and also so that 
the energies tend to the zero field limit as 1̂ 1 -» 0 and to the Landau 

limit as 1̂ | oo.
Transition probabilities are calculated in the velocity as well 

as the length formulation in order to ascertain the accuracy of the wave 

functions.
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§3.2 Construction of the Basis Set

The new set of functions must form an odd parity basis set 
representing the states—corresponding to the zero field p, f etc. 
states and an even parity basis set representing the states corr­
esponding to the zero field s, d etc states. We must also have the 
following orthogonality conditions:

*odd *even = ° O-l)

*odd '"odd 1
*

\h dx = 1even even

where is any odd parity wave function and is any even parity

wave function. The trial solutions for the wave functions are of the 
form

j,,.,
where m is the magnetic quantum number, II parity and , 3̂  and 6̂. are 
three variational parameters. The basis,functions (n) sre
chosen to be

 ̂ M  = z“ p® e""* . (3.3)

in cylindrical polar coordinates (p,z,$). If we let II’ be a parity 

operator (reflection about the (x,y) plane), then

n ’(p) = p

n ’(z) = -z (3.M-)

n ’(4) = ir+4i
So, on applying II’ to (£) > we see that it is a that 'determines
the sign of (r)). From this, we can conclude that a must

be an integer for a state to have definite parity and for even parity 
basis functions a must be even, and for odd parity basis functions 
a must be odd. Also, considering the matrix element cx^lxg^ where
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H  = ' (3.5)

we see that the integral over z, i.e. 
r  A -Az% ^z e dz , (3.6)
J —OO

where A = and A = 6^ + 6̂  > is zero if A is odd as the integrand
is then an odd function, and non-zero if A is even, as the integrand 

is then an even function. As the only occassions on which A is odd 

are when snd X2 have different parity, the conditions in equations 
(3.1) must be satisfied (that is if the coefficients of the basis 

functions are chosen such that the total wave function is normalised).

§3.3 Calculation of the Matrix Elements Occurring in the Energy 
Eigenvalue Equation

In order that the energies and wave functions of the bound states 
may be calculated, it is again necessary to solve the eigenvalue 
equation, i.e. equation (2.12).

The non-relativistic Hamiltonian operator for a hydrogen atom in 
a uniform, static, magnetic field is given by equation (2.11). Neglect­

ing spin effects and adopting cylindrical polar coordinates (p,z,$), 
this Hamiltonian can be rewritten

" = - ^ h w  ' I  - T (3-7)
where r% = p% + z^ and atomic units (i.e. e=îî = u = c = l) are used. 
The z component of angular momentum can be written in cylindrical 

polar coordinates,

In order to solve the energy eigenvalue equation, we need to evaluate 

the matrix element <x^|H|x2>, where Xĵ and X2 are two basis elements.
We begin by operating the Hamiltonian, H, on the function X2 •
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H X, = -z*: _ 1 J_ -«2P
2 p 9p̂  P ®

- z“2 p^2-2 -dgCzZ+pZ) ^ im2(j)d(p2 e
. p^2 g-«2P^ gimz* lî ^«2 .-«2Z^

9z

- i Y z“2 p®2 g-S2(z^+P^) 1_ gimzf
d(f>

But,

3(j) ^2 ’ %2

92 2
3+2 %2 = -%2 %2

^  h  ' 2P32 %2
(3.10)

92
9p^ ^2 " ^  (^2-1) %2 - 46262 %2 - 252 %2 + %2

a?
31 ’‘2 = h  ' 2z*z X;

32
9z' %2 = (ct2-l) %2 - 45202 %2 - 252 %2 + ^z^52^ %2

So from equations ( 3.9) and (3.10), we see that the matrix elements 
of the Hamiltonian may be reduced to the form

<Xj_|h1x2> = (m2^-02^) *^12^”^^ (Jy^-462^) 1 ^ 2 (2 ) - 0 2 (0 2 -1 )

- 452% Ri2(2) + 252(262+3+202) - 2P^^ +
(3.11)

where

^12 ■ <Xll%2>
TlgCn) = <Xi|p*|x2> (3.12)
12
12 ” <%ll^ l%2>

R,^(n) = <Xi|z*|x2>
P.

Note that, in each of the matrix elements, the integral over (|)

is
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î(ïïi2 mi) _ 2ir 5 (3.13)
0 ,^2 ;

and so, in order* that the total matrix element is non-zero, we must 

have conservation of the magnetic quantum number. The integral over 
z, also, gives conservation of parity, as has been seen previously.
The first three types of integral in (3.12) are elementary, and may 
be expressed in the form

12 mi, m z , e-A:' zP dz e dp (3,14)
0

where A = 6i + Ô2 and p and q are integers, and in particular,

=12 ■

Ti2(n) = jA.B+n+l (3.15)

Rl2(n) =

where B = Bi + 62 and A = a% + 02 and n is an integer. See Appendix 
(II) for evaluation of the I^^^ .

Angular Dependence of the Wave Functions

In order that the cylindrical wave functions go smoothly into 
the zero-field case, we must have the correct angular dependence of the 

wave functions at low fields.
The dependence on (J) of the pure hydrogenic, zero-field wave 

functions is e^™^ which is the same as that of the new cylindrical 
functions. Therefore, the dependence of the cylindrical basis is 

already correct.
However, we must also ensure that the wave functions have the 

correct sin9 and cos0 dependence. Writing a cylindrical basis function 

in spherical polar coordinates (r,9,<j>), we have
X = r“ cos“e r» sin®9 e"”"* . 0.16)

The angular dependence of the unperturbed hydrogenic functions is 

Ŷ m(0j<f>)* The sin9 dependence is sin^^U and the cos9 dependence is
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Ncos 0 where 0 4  N 4  (see Landau and Lifshitz, 1975, p600). So to 
obtain the correct sui0 dependence for low fields, we take

0 = |m|, |m|+l, |m|+2 ... (3.17)

To obtain the correct cos0 dependence, we must have a ^0. The 
value of a governs the parity of the state and for each complete wave 
function, we must have a even or a odd. In order to match the cos0 
dependence with that of the zero field wave functions, we can build 
up the following table of parities

Corresponding 
Zero-field State

COS0 Dependence 
at Zero-field

Parity
e = even  ̂
0 = odd

Is 1 e0
2s 1 e0
3s 1 e0

1 e

COS0 0

2Pi 1 e

1 e

COS0 0

3P, 1 e

3d ^ 1 e-2
3d , COS0 0-1
3d (l-3cos^0) e0
3d̂ COS0 01
3d^ 1 e
2

Table 3.1

Table to show the parities of states in a magnetic field 

by looking at their cos0 dependence at zero-field.
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Evaluating the integrals occurring in the matrix element of the 
Hamiltonian (i.e. and from equations C3.15 ),
we obtain the results given in tables 3.2 and 3.3, where

j (b ,a )
(B-2)!l/w

(B/2 - 1)1 
.B/2

if B is odd

if B is even
(3.18)

2A
and

K(a ,i) = (2*0 - 3)=!/'O  1----2°‘o 6*0-2
(3.19)

with = 5(01+02) = A/2 and A = Ô1 + 62. In these tables, the functions 
J(B,A) and K(o^,A) are treated as common factors and the cases B=0,1 
and A=0,2 taken as special cases, in order to facilitate computation.
To obtain total expressions for T^^( multiply 
together the two relevant contributions from tables 3.2 and 3.3 and 
multiply the result by the integral over (j>, i.e. by 2tt 5^^ .

S12
R12(-2) 

R12(2) J

T12(-2)

T12(2)

B = 0

1
2A

1
2A‘

B = 1

/tt
4A3/2

/ it

2A^
3/ir
BA5/2

B > 1

. J(b ,a )

J(B,A)

Table 3.2

Integrals over p occurring in <Xĵ  1̂ 1x2^’ Note that the
2 2coefficient of T12(-2) is (m^ - ̂ ^) which is always zero 

when B — 0 as 0 2 ” l^zl* 1^2"^ i[ •** > the integral 
is set to zero in this case.
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R12C-2)

R12C2)

T12C-2)'
T12(2)

S12

A = 0 

0

/ it

2A3/2

/ it

A = 2

/ir 
?  
3/  TT

4A3/2

/ tt

2A3/2

A = 2

K(a^,A)

(2cin-H)(2ao-l) _ ^Ca^.A)

• K(=o'A)

Table 3.3
Integrals over 2 occurring in <Xĵ 1h|x2 *̂ Note that the 

coefficient of R12(-2) is zero when A = 0 so the integral is 
set to zero in this case.

Matrix Element of the Coulomb Term

The matrix element of the Coulomb term, — , is

h 2  = (3.20)
Writing spherical polar coordinates, we have

12
r2ïï rl

d<j) d(cos9),
0 J-1

r (rcosS)^ (rsinS)^ e dr (3.21)

where A = oi + 0% is a non-negative even integer, B = 01 + 02 is a 
non-negative integer, and A = 61 + 62* Consider the two cases of odd 

and even B separately.

Case I - B even
Letting y ~ cos9, we can rewrite P^2 dn terms of integrals over r and y

^l+A+B e-AfZ /  dr
P12 = 2w

1
dy

-1
B/2

A/2+B/2+1 (3.22)
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Case II — B odd

Writing cos9 in terms of sine, we can write the expression for
A/2

= 27T I (-1)%
q=0 \ q

A/2

but,

sin’̂e de = n 2 
n/7} ^n

hence,

h 2 = 2ir

where

c =

(A+3)l! /it 
2=+^ 6=+2

A + B + 1

A+B+1 -Ar^ r e dr ,

(3.23)

(3.24)

Z (_!)% /a/2 (2q+3+l)I ïï
L q=0 I ^ /  ( ( 2 2 ± â ± l ) t ) 2  gZq+B+l (3.25)

So the matrix complete matrix element of the Hamiltonian and 

the overlap integrals are in computable form. For details of PROGRAM 
CPOLAR, which solves the eigenvalue equation for this cylindrical- 
basis set, see appendix ( I ).

§3.4 Estimating Values for the Parameter 5

To ensure accurate low field energies, we choose three values 

for the parameter 6, namely 6%, 62 and Ô3, to minimize in turn, the 
zero-field eigenvalues for the n = 1, 2 and 3 levels, n being the 
principal quantum number. At low fields, the only n = 1 level is 
the level which corresponds to the zero-field 'Is^' state, which is 
the first even parity state (see Table 3.1). We can approximate the 
wave function of this 'Is ' state, by the first term in the even parity 

cylindrical basis set, i.e. e . Similarly, the first odd parity 

state corresponds to the zero-field 'Zp^' state and its wave function 

can be approximated by the first term in the odd parity cylindrical 

basis set, i.e. ze"^^^. So now minimizing the energies of the n = 1
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and 2 states, the respective approximate low field wave functions 
for these states are e  ̂ and ze . We now have to find a third 
wave function which is an approximation to an n = 3 state. Now, 
noting that the second odd parity state (see Table 3.1) corresponds 

to an n = 3 state, we can approximate the n = 3 wave function by a

linear combination of the first two odd parity cylindrical basis ■
functions which is orthonormal to the n = 2 approximate wave function. 
Such a function can be written (by the Gram-Schmidt orthogonalization 
process) as

*2 = *20 + (3.26)
where,

= ze (3.27)
= zpe . (3.28)

a is a constant and superscript (n) indicates that the function has 

been normalised. Applying the Gram-Schmidt procedure, gives

<*21*10 '̂ = <*20+**10^l*10 >̂ " ° , (3-29)
which implies that

a = - ’ (3.30)
so that

*2 = *20 - <*2ol*10 >̂ *10  ̂ - (3.31)
But, on normalising we have

*(%) = { }i (3.32)10 ' 3/2IT

where A2 - 262* Now, letting A = 62 ^ ^3) and calculating the matrix 

element occurring in , we obtain

Substituting this result, and that of equation (3.32) in equation (3.31), 

we have
* = zpe-a;?' - (A:'/' —̂ } (9-3^)
2 2Â
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which gives,

*2 " *20 - C *10 (3.35)
where,

. . A,3/2 ,1/2
^ ■ ; * (3.36)2Â

The variational method is used to find the best values for ôj, 62 and
63. As discussed in Chapter I, the best value for the energy of any
state is the lowest value that can be obtained. So in this case, we

have to chose 6%, 62 and 63 such that E , E _ and E __ have minimumn—1 n—z n—o
values. We can calculate these energies using the Hylleraas-Undheim 
theorem (also discussed in Chapter I).
(i) Calculation of and E^_^

By the Hyleraas-Undheim theorem, we have
E < > (3.37)
n=l =  -ôir^i -6ir%<e |e  ̂ >

where H is the zero-field Hamiltonian of the hydrogen atom given by
1

H = - — - —  (in atomic units). (3.38)
Performing the integrations in equation (3.37), and noting that the 
angular integrations in the numerator and denominator cancel, the 

following expression is obtained

... :“ ■> - . . / “ > ■ . ? ■ >
---------------- Â Ü Ô ---------------

2
where

j(a)
P r* dr .

0 (a)Expressions for the integrals are tabulated in Appendix (EL).
Evaluating the integrals in equation 6.39 ), we eventually obtain

,3/2 j.l/2
i  ̂ —  " )—'n=l =  2 VTTE . < ^  -   7̂   . (3.40)

dEThe value of Ai required to minimize E . is given by ' n=l _ v. i.e.
■ B-1 , dAi ■ ’

1 - (4-)" = 0 , ca.^i)2 TTO l 

which gives
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6l = I;. = 0.282942 (3,^2)

and on substituting this value in equation (3.40 ) we obtain the 
following value for the minimum energy of the n—1 state

^n=l =  “ 0.4244 a.u. = - 0.8488 Ry . (3.43)
(ii) Calculation of 6? and E    n=2

The procedure in this case, is analogous to that described in part (i).
I.e.

<ze
~  < 2 g -G 2 r ^ |2 g - A 2 r ^ >  ' ( 3 . 4 4 )

The zero-field Hamiltonian can be expressed in cylindrical coordinates 
(p,z,4) as

where r^ = + z^. Substituting this expression for the Hamiltonian
into equation (3.44), and performing the integrations, we obtain

(-2£23i (2«2),(2.A2) . 26,2i(262)i(2S2)

+ ^  . (3.46)

'n=2 =  ^(262)̂ .(262)
1 2

As in part (i), differentiating the resulting expression for E^_2 by

62, we obtain the following results for 62 and E^.g :
62 = 0.045270 (3.47)
E < - 0.113177 a.u. = - 0.226354 Ry . (3.48)n=2 =

(iii) Calculation of 63 and E^_g

In this case, the Hylleraas-Undheim theorem gives

P < <4u|H|# > (3.49)

where an expression for ^2 given in equation ( 3.34) and H in 

equation (3.45 ). Using equation (3.35 ), we can write

<*2|H|*2> = <*2ol"l*20> + - C<i))̂ q |h 1.J.2q >

- C<^2olH|*io"' (3-50)



“60-

Now, we already know that

|H|ze"'^2r^> = - |l ^ ^^2 i(A2> j(A2) _

5A2l(A2)l^A2) } . ;(A2) (3.51)

where A2 - 262 (cf. equation (3.46)). We also know, from equations 
(3.46) and (3.48), and using the table of Appendix (ll) , that

<ze'32f |H|ze"32r^> = -0.113177-1^^ . (3.52)
2A2

We can find similar expressions to that of equation (3.52) for the 
other three matrix elements in equation (3.50 ):

<zpe"^3^' |H|zpe"^3^ > = - ^^{ljA3);(A3) ^ +
A3^l(A3)i(A3) . 7&3i(A3)i(A3)} _ (3.53)

7A3(l(A))2} - f  (3.54)

<zpe-S3r'|H|ze-*2f'> = - ^  *

Y  (3.55)

where A3 = 263 and A = 62 + 63. Substitution of equations (3.53 ) - 
(3.55 ) into equation (3.50 ), and also putting in the value for C given 

in equation ( 3.3Q, gives

<*2l H | V  = . -iz-y + Az f E i f Y  (-0.113177) - *
2A3 I5A33 8A® 4A^

2 2 2 q 2
{ —  (62^+&3^) + ~  (5Ô2+7Ô3) --- ------c7y } • (3.56)

2A^ 5A^ 4A=' ̂

Also, in order to obtain an expression for the minimum upper bound 

on E^_g, we need to calculate <^21^2 '̂

3/2 . 5/2 5/2 (3.57)ji Az 21--- .
2As7/2 8A6
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Substituting the expressions for the matrix elements calculated in 
equations (3.55) and (3.5 7) into equation (3.49), and differentiating 
the resulting expression for with respect to 6̂  (6_ is already
known) gives a minimum upper bound for E^_^. This expression is 

complicated in 6̂  and renders the standard variational method of parts 
(i) and (ii) impossible to use. An alternative method was found using 
quadratic interpolation to find the minimum. That is, the function 

E^_g(Sg) is approximated by a quadratic polynomial which agrees exactly 
in function value at a certain number of points. The minimum (or maximum) 
of the quadratic polynomial passing through the points (x̂ ,ŷ )̂, 
and (Xg,yg) is given by where,

p = (%2 - x^)2(yg _ y^) _ (Xg - x^)^(y^ - y^) (3.58)

q = 2 (Xgx^)(yg - y^) - (x^ - x^)(yg - y^) . (3.59)

Provided the minimum (or maximum) lies in the interval [x^,Xg], we
can obtain successive approximations to its true value (Gill and Murray,
1974).

—3The actual value for Sg obtained is 3.74% 10 giving a minimum 

energy of -0.0155 Ry for the n = 3 state at zero field.
To ensure the correct high field dependence of the wave functions,

a fourth value of 6 is chosen to give the correct energies as B -* =.
We take as the term e~^ is contained in the free Landau
functions (Wallis and Bowlden, 1956), which give the correct energies 
at high fields. Meuller et al, 19 75, use this value for their equi­
valent of g^, and show that the correct high field energies are obtained.

To summarize, we ensure accurate low field eigenvalues by choosing 

^1 * ^2 Sg to minimize in turn, the zero field eigenvalues for the 
n = 1 , 2 and 3 levels by using a minimal basis of one, one and two 
terms respectively (see table 3.4). Table (3.4) also gives the final
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zero field results using the full basis - the ground state energy 
is slightly too high, and remains so at all field strengths, suggesting 
that it never becomes fully cylindrical. The 6% error at zero field 
for the n = 3 level could be reduced by using more values of 6, but 
is sufficiently accurate for our purposes.

n Exact Energy Calculated Energy 
in Minimum Basis

6 Best Cylindrical 
Basis Energy

1 -1.000 -0.8488 0.283 -0.982
2 -0.250 -0.2264 0.0453 -0.250
3 -0.111 -0.0165 3.74(-4) -0.106

Table 3.4
Zero field eigenvalues (Ry) and corresponding values of 6.

§3.5 Solving the Eigenvalue Equation

The equation to be solved in order to evaluate the energies and 

wave functions is

({H } - E{S })x = 0pq pq -

(cf. equation ( 2.2 0 ) where,

,(p) p(q)
pq

and

(p) (q)

(3.60)

(3.61)

9pq = i j >

the wave function being defined in equation (3.2) and H being given 
in equation (3.7). As the size of the basis required in this case 
is much larger than that required by the basis of hydrogenic states 

described in Chapter 2, in order to obtain convergence on the eigen-
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values (typically the matrices and will be of dimension

130 for the cylindrical basis and 12 for the hydrogenic states basis 
for convergence on the 14 lowest eigenvalues), a different method is 

used to solve equation (2.15), in order to avoid excessive inversion 
and manipulation of the larger matrices. Again routines from the NAG 
library are used and a brief description of the numerical procedures is 

set out below. Details of the computer program to calculate the eigen­

values and eigenvectors are set out in appendix (I).
Firstly, the problem is reduced to the form

(3.62)
where P is symmetric, by using Cholesky decomposition of the matrix 
fSpq}. For the purpose of this section, we will abbreviate equation 
(3.60) to

(H - ES)x = 0 . (3.63)
Writing

S = LL^, (3.64)

where L is formed using Cholesky factorization of S (Peters and Wilkinson, 

1965), equation (3.63) becomes
(L"^L"'^)(l '̂x ) = E(lT'x ) . (3.65)

Now, L ^HL ^ is symmetric and so this reduces immediately to the symmetric 

problem of equation (3.62), where
P = (3.66)

and
z = L^x. (3.67)

The matrix P is then reduced to tridiagonal form with the use of the 

Householder method described in section §2.4. So the problem then 

becomes

%  = (3.68)
where Q is tridiagonal. The selected eigenvalues, E^, required can

then be calculated by the method of bisection (Wilkinson and Reinsch,
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1971, p249). Briefly, a sequence of numbers a^(x) is defined by
aj_(x) = - X

(3.69)a.(x) = (q. - x) -   rjr , i = 2, 3 ... n1 1 a  . .  V. xy1-1

where {q^ : i=l,2 ... n) are the diagonal elements and (r^ : i=2,3 ... n} 
are the off-diagonal elements of Q. The number of eigenvalues which 
lie below the value x is equal to the number of negative a^(x), so 
by adjusting x, the eigenvalues may be found.

When the required eigenvalues are known, the corresponding 

eigenvectors can be calculated by inverse iteration. This is described 
in Wikinson and Reinsch, 1971, p418.

This method of calculating the eigenvalues and eigenvectors of 
a symmetric tridiagonal matrix P , is more efficient than th.e QL

method used in the case of the hydrogen states basis (see 52.4), 
when dealing with large matrices. The primary advantage being that 
there is no multiplication of large matrices involved, a time 

consuming process for the computer, requiring much storage space. 

Obviously, a process which calculates only selected eigenvalues (and 
corresponding eigenvectors) in the case where they are not all required, 
must be more economical than a method which calculates all the eigen­
values .

§3.6 Transition Probabilities

The probability that a transition will occur between states 

m ’ and m with the emission of one photon of frequency the two
states being bound, is (from equation (2.85))

A , = 2.142020358 x lO^O w ,  ̂ Um'lr lm>P sec"^ (3.70)m'm m ’m ' ‘ y ' '

in the length formulation, where is given by equation (2.54) and
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by equation (2.91). On evaluation of the matrix element <m'|r^|m>,

we consider the two cases of transitions between states of the same
and different parities separately.
(a) Transitions between states of the same parity

The matrix elements are of the form <x.lr |xi> where x . and]' y' k 1
the full wavefunctions are given by equations ( 3.2), ( 3.3) and (3.5) 

For transitions between states of the same parity, â. + is even.

(i) y = 0

Now, r^ = rcos9. Writing the basis elements x^ in spherical polar 
coordinates (r,0,cj)) where z = rcos9, p = rsin9, we have

x,“j+*k+Sj+Sk+3 dr f’' cos*i+Ok+le sin*i+Gk+le ^6
O<Xj|rolXk> =

0
2tt

e
0

i(m%-mj)* (3.71)

But the integral over 9 reduces to the form

I (-1)4 sin^+B+Zqg COS9 d9 (3.72)
q=0 \ 4 0

with A = a. + a, and B = 3. + 0. . Now sin^O = sin̂ ir = 0 for all n 3 k ] k
and so this integral is zero for all A and B. So we can deduce from 

this, that transitions do not occur between states of the same parity

and same magnetic quantum number (m).

(ii) y = 1
Now r^ = -yj r sin9 e^^, so in this case we can write

I I  i p "  A+B+3 —Ar^ -<Xjlri|Xk> = -/2 j r e dr
^ A B+2

COS 9 sin 9 d9
0
■27r

e
0

i(m%-mj+l)^ (3.73)

The integral over r can easily be evaluated using the table in appendix 

(ll) and the integral over 9 can easily be reduced to

T  #  ■
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The integral over (p is zero unless + 1, in which case it is
27T. So in this case we can conclude that transitions between states
of the same parity occur if m^ = m^ + 1.

(iii) y = -1

We have, r ^ r sinG e . This is very similar to the expression
for r^, and so the matrix element can be written

A+B+3 -Ar^ dr A_ . B+2. Jcos 6 sin 9 d6
0
2ir ^i(m^-mj -l) <j) d(Ji (3.75)

The r and 9 integrals are exactly the same as those in equation (3,71+), 
and the (j> integral is zero unless m^ = mu + 1, in which case it is 2ir. 

So, transitions between states of the same parity also occur if 
m^ = m^ +■ 1.

(b) Transitions between states of different parity

For transitions between states of different parity, we have

A = a. + a, odd.] k
(i) y = 0
The matrix element of r reduces too

<XjlrolX,^> = A+B+3 -Ar^ r e dr cos**^9 sin^^^G d9
0
2tt ^(m%-mj)* ^ (3.75)

(3.77)

Again, the integral over r can be evaluated with the aid of the table 
in appendix (II). The integral over 9 reduces to the form 

i(B+l)
z

p=0

if B is odd, and

B/2 
Z

p=0 ' - ' '0

if B is even, which can both be evaluated directly. The integral

f ( . 1 ) P  r  cosl+A+ZPe d6
)=0 \ P ' J 0

odd, and

Z (-l)P cos^+*+2P9 sinG de
=0 \ P / ' m

(3.78)
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over 4> is, as in (a) part (i), 2-iï(S  ̂ . Therefore, we can deduce,

that transitions occur between states of different parity but the 
same magnetic quantum number.

(ii) u = 1
The matrix element of r̂  ̂reduces to the expression given by equation 
(3,75), the only difference being that A is odd and not even. The 

integral over 0, in particular, is

cos^0 sin^^^0 d0 ,

which is always zero for odd A. So transitions do not occur between 
states of different parity with m^ = m^ + 1.

(iii) y = -1

The integral over 0 of the matrix element of r ^ is the same as that 
of r^, which, as shown in part (ii), is always zero. So transitions 
also do not occur between states of different parity with m^ = m^ + 1, 

To summarize, the only allowed transitions are given in table

3.5.

Am

-1

-1

Table 3.5

Selection rules for transitions in the cylindrical 

basis, n is parity, and m the magnetic quantum 

number.
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The selection rules given in table 3.5 agree with the high field 
selection rules obtained by Wallis and Bowlden, 1956.

As a further test of this cylindrical basis set model, some 
transition probabilities are calculated in the dipole velocity 

approximation and compared with those calculated in the dipole length 
approximation. In order to find the Einstein A coefficients in the 
velocity formulation, we need to find in terms of

<m’|7^|m> where is given by equation (2.65), and

h i  = ' h  = lï • (3-79)

Now, from equation (2.65), we see that

<ra'|H. . |m> = - A ’ . <m* I—  V + ihu^ B x r|m> . (3.80)' int ' Tic —  ' y L — ‘

Noting that the z component of B x r_ is zero, we can write the z

component of the matrix element as —  <m'||— !m>. So for transitionsy ' dz I
in which the matrix element of is zero, the expression

<m’|H. |m> = - r^A' . <m'|—  v|m> (3.81)' int' no —  'y ‘

holds. This expression is the same as the equivalent zero field 
expression for the transition probability in the dipole velocity 
approximation (cf. equation (3.70)). So the total 

transition probability for transitions in which the matrix elements 

of 7^^ are zero is

I Ih I  ̂' ^3.82)

As in the case of the length formulation, we can see, by performing 
the required differentiation, that the only case where the matrix 

element of 7^ is the only non-zero term, is the case where the two 

states in the transition have different parity. Therefore, this is 

the only case for which we shall calculate transition probabilities 

in the velocity formulation.
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A+B+1 -Ar^ r e

—  2 5 '
A+B+3 -Ar^ , r e dr

0
‘TT

dr
0

. B+1

• 6+1 A—1 -sin 6 cos 9 d0

where the radial integrals can be calculated using the table in 

appendix (H) and the integrals over 0, using equations (3.77) and 

(3.78).

The transition probabilities in both the length and velocity 

formulations, as well as wavelengths and oscillator strengths are 
calulated by program CPOLAR, details of which are given in Appendix 

(I).
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CHAPTER A

RESULTS FOR ENERGIES AND TRANSITION PROBABILITIES USING BASES OF
HYDROGENIC AND CYLINDRICAL STATES

§4.1 Introduction

In this chapter, the results of the calculations described in 
chapters 2 and 3 are presented. Results are given for the energy 
levels of all fourteen states which go to the n = 1, 2 and 3 levels 
at zero field, for magnetic field strengths in the range 0 <_1.0

or 0 <_B ^2.35 x 10  ̂G . Einstein ’A ’ coefficients and wavelengths 
for all allowed transitions between the lowest fourteen states are 
also presented. The main object of this chapter is to compare the 
results for the energy levels and wavefunctions of hydrogen using the 
cylindrical and hydrogenic functions and with results obtained 

by various other authors. It should be noted that in these calcul­
ations, and also in those of other authors with whom we compare 

our results, the accuracy of the energy eigenvalues and wavefunctions 
obtained is restricted due to the fact that the sets of basis functions 

used are not complete. The continuum states are not included in the 

basis sets and so we cannot expect to obtain exact energy eigenvalues. 

We obtain convergence to three decimal places on the eigenvalues for 
fields of up to 10^ G. The calculations involving the basis set of 
unperturbed hydrogenic functions, have been carried out previously by 
Brandi, 1975 and Brandi et al, 19 75, but as the results for the 

energy levels of the fourteen lowest states were only presented 

graphically, and as the results for Einstein *A’ coefficients were 
incomplete, these results have been recomputed.
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§4.2 Convergence of the Energy Eigenvalues

It has already been explained (see chapter 1) that, by the 
Hylleraas- Undheim theorem, adding more terms to a set of basis 

functions can only improve the energy eigenvalue and therefore make 

the wavefunction more accurate. It has also been shown that the 
exact values of the energies are the lower bounds on these eigenvalues, 
and so any improvement must be a decrease in energy.

In the case where the set of basis functions consist of

unperturbed hydrogenic functions, the eigenvalues converge (to three

decimal places) comparatively quickly, as is illustrated in table 4.1.
It should be remembered that the selection rules for the coupling of

these states are AZ = 0, ±2 and Am = 0, so only states of like parity
and m can 'mix’. In table 4.1, the s, p, d and f states are added

in increasing principle quantum number. and E are the energies-̂ ô ^Po
of the even and odd parity states respectively which converge most

quickly, and E^^ and E^^^ are the energies of the even and odd parity
states which converge most slowly.

Table 4.1 shows that convergence to at least 3 decimal places

is obtained on the energies of the fourteen lowest states, using a 

basis of twelve odd and twelve even parity states at B = 10^ G and 
22 odd and 22 even parity states at B* = 10® G. At B ^ 5  % 10®G, 
the 3d^ and 3p^ states are not bound in this basis, however, all the 
bound state energies are converged to 3 decimal places using a basis 

of 22 odd and 22 even parity states at B = 5 % 10® G and B = 10® G .
It is found that if more states are added to this basis in an attempt 
to improve the eigenvalues even further, singularities occur in the 
Hamiltonian matrix and the program (HYDROGN) breaks down. It

is also interesting to note that the addition of g states to the basis, 
has no effect on the energy eigenvalues of the states corresponding to 

d states at zero field.
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The energies given in table i+.l for the Is^ and 2p^ states at
B = 10^ and 10® G are unchanged from those obtained using a basis
of just one s and one p state, i.e. using the zero field wavefunctions
for these states. At these fields, the Is and 2p states retain0 ^ 0
nearly all of their zero field character.

On studying the eigenvectors of these states (which give the 

coefficients of the basis functions for a normalised wavefunction) 

it can also be seen that the amount of mixing of states which occurs 

at these 'low* fields is minimal. However, as the field strength 

increases, an increasing number of terms is required in the basis 
set for convergence of the eigenvalues of the lowest fourteen states, 
and it can be seen, from the eigenvectors for the states at high 
fields, that very strong mixing of states occurs and at 10^ G , 

the higher energy states, e.g. 2p do not bear much resemblance to 
their corresponding zero field states.

For the case in which the basis set consists of cylindrically 
symmetric functions of the type described in chapter 3, convergence 
is not nearly so rapid. This is basically due to the existence of 

the three variable parameters (a,6,6) occurring in the cylindrical 

basis functions. The lowest even and odd parity states cannot be 
represented very accurately at low fields by the functions ze 
and e (the lowest terms of the odd and even parity basis

sets respectively), at least not as accurately as the lowest 
even and odd parity states can be represented by the first even and 

odd parity unperturbed hydrogenic functions. The accurate wavefunctions, 

even at low fields, are a linear combination of many more terms than 

in the hydrogenic case.
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We conclude then, that the reason for slow convergence
of the eigenvalues in this cylindrical basis, is the strong mixing
of states even at low fields. Table 4.2 shows the convergence of

the energy eigenvalues of the states corresponding to the zero

field states Is^, Sdg, 2p^ and 3p^. Again, we have the selection
rules Am = 0 and Att = 0 for the coupling of states. It can be seen
that convergence to 3 decimal places can be obtained using a basis
consisting of 128 terms (for m = 0 states), i.e. with N = 7, for

all field strengths up to 10® G. N is such that all possible terms
with cx ^  N and 3 are included in the basis set; the total

number of terms in the basis set will obviously vary with the magnetic
quantum number. For field strengths of 5 % 10® G and 10® G, the best
convergence possible is obtained on all bound states. If N > 7,

the program (CPOLAR) breaks down due to the appearance of singularities
in the matrices {H } and {S }. However, it is believed that thepq pq

eigenvalues obtained for these fields are accurate enough for our 

purposes.



-75-

o 00 00 00 C"co 00 CN rH en 1—1H CD O rH j- co C--
(X tn CD CO Zt CN CN
co O O O CN CN CNW iH rH rH O O O

O1 O1 O1 o1 O1 01

CN CNO CO «H o CO «Hz U3 en iH co en rH

CO co C" C'­ rH O00 O CO en CO CO
CN j- c~ 00 CO CO CO
ro O rH r—1 O O OCQ o O O rH rH rHM •H «H rH O O O

O
1

O
1

O
1

o o o

00 g co 00 Q co
Z 00 en zt a en

lO c-~ O O CN rHun o i> rH rH un
0 C'­ co 00 C- C'-
O. en m en Zt zt ztCN zr zt zt Zt zt j-

w CN CN CN CN CN CN
O
1

O1 OI O
1

O
1

O
1

00 00
CN zt CN CN zt CNz C" co rH r- co rH

CO o O on CN C"
rH rH CO CN C- oo en CO en rH zt en

co co rH 1—1 Zt <H rH
f—1 C'­ 00 00 C'­ 00 00

w en en en en en en

9 O
1

O
1

O
1

O
1

O
1

O CN 00 CD CN 00
CN rH CN CN rH CNz r- C'­ rH rH co C'­ iH 1

O o
iH

II 11

z CQ en CO r- CQ en cO [>

«% (D CD
O • X Pco CO X (Q

rH c0 P CO
TJ •H •H CD
rH •P(D Ü 43 bû
•H C QJ P
4h p TJ

X P P0 X M
p rH U<U 03 P
N o •H X

•H CD
Q) P CD CO
X T) P
X C (Ü eo

•H •H
O rH Z co
X rtJÜ vil XbO
C (p CQ. CD

•H O XTJ TJ X
C co P
O •H tu P
a, CO •Hco 03 Z
<u X CO

m p vil ECN p rcJ Po 3 CD
Zt ü >4 X

X X0) co X 4hrH QJ TJ •H O
X P 0) 3m rH X Ptu C co (D

> <ü E X
c co P E<u <ü CD Pbû p X P

•H (XCD <v CD CDp X X
X Xbû •H

P co CO eo
Q) (ü co •rHC X o(U fO eu

X Z0} co X
X X t3
X rH nJ Pex CÜX eo Xo CQT3 X P(D c X 0. Ü to •H
c X X
<u CN ü Übû T3 p P
P CO co P
o X
> co CDC O •H >o a CTJo CN Z 5

c•H
T3
§
CO(TJ
<D
E



—76—

en =t X
en r - r -

X co co co
eu to co coco CN CN CNw X X X

o o o

CNo co X
Z co en X

en ir> co c- zt X
X CN C" d- en co

O CN CN CN CN CN zteu CN CN CN CO co coCN to CO CO o O oW X X X o O o
o1 o1 ol o1 O1 9

co CD
CN zt CN CN zt CNz C-- CO X r- co X

o j- en un c-- 1—1co in co en X 00
0 o co O co CN 00

co c- co zt O CN CN
X LD co co co en enw en en en co co 00

o O O o o OCD 1 1 1 1 1 1
00
O
X CN co o CN coCN X CN CN X CNz X C- X X <n O X X

Oen X

II II
z m in co C" CQ en co r-

O <D X
co X o
X E- e: Z

CD
T) co vil X
X •H X
(U CO 00.

•H P 0) P
X 0 X TJ •H

•H td P
O X ■p fd CO
p O co E
0) P z fn
N P X (D

X eu vil P0) 00
X 1—1 8 Ip
X fO <D 0

ü X XO •H X X PX p •H 0)
T) T) S

bû P P
C •H (d co P

•H iH E C
TJ co P
C ü TJ <ü (D
0 X X Xeu 4h <ü X
co 0 •H O
(D Lp X co
P M X •H
p •H (ü •H
o CO CO co

X ü rO <D co Z
CN X X o

co X eu TJ
Zt <D fd C

P X X fd
0) X 0 X
X (Q X (d
X > p cIQ P TJ (D p o
E-* <U OJ X td •H

bû X X X p
•H P •H X o
<U 0) 0) c

CO X p
<U X o p

bû P (Ü p (D
P eu co >
O OJ 'P fd
C p P co
(U P •H

O CD
Q) co X Z X
X (D X
X X X

rü o p
X X e: CD •H
o CO

(0 <n TJ<ü X •H O CD
o eu X TJ
c co <V P
m X p X
bû TJ td fd O

, P P p c
<ü (Ü co Tl •H
> p
p O CN p CD
o eu TJ o P

o CN CO X (d

c•H
TJCDP
PCOtQ
(DE
(U
P
OJ

co0)•HbOIW
XQ)
CO
CO•H
CO
(QX



-77-

Comparing the results given in tables 4.1 and 4.2, we see 
that, although the eigenvalues for the cylindrical wavefunctions 
require many more basis functions than those of the spherical 
(hydrogenic) wavefunctions, the final converged energy results are 

lower (and by the Hylleraas-Undheim theorem, better) than those of 

the hydrogenic case for B > 10® G. It will be seen, in fact, that 

this is the case for all the lowest fourteen states (except Is^) 
suggesting that a basis of cylindrical functions is more accurate 
than a basis of spherical functions at high fields. These results 
will be discussed in more detail in section §4.3.

m Parity 
e = even 
o = odd

Labelling of States 
(in ascending energy)

h c

0 e e Is 2s 3s 3d o o O 0
0 o o

-1 e o 34.1
-1 o e 2P_1 3P-i
1 e o 34l
1 0 e 3Pi
-2 e e 34-2
2 e e 342

Table 4.3
Table to show the labelling and order of the 

energy eigenvalues, m is the magnetic quantum 

number. Parity is also shown for the hydrogenic 

(h) and cylindrical (c) bases.

At this point, perhaps a mention should be made of the labelling 

of the states of the hydrogen atom in a magnetic field. We follow
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the conventional notation of Brandi, 1975 and label the states in 

the order given in table 4.3 (the states being labelled in ascending 
order). This notation does not, however, agree with that of Smith 
et al, 1973, who interchange the 3s^ and 3d^ states. Throughout, 
comparison with the results obtained by Smith et al, 1973, will 
assume that their states are labelled as in table 4.3.

§4.3 Comparison of the Results for the Energy Eigenvalues

Although, as already described in the previous section, energy
eigenvalues are converged to at least three decimal places for fields up
to 10® G, in both the hydrogenic and cylindrical basis sets, as

the field strength increases, an increasing number of basis functions

is required, and at B = 2.35 x 10® G (i.e. y = 1), limitations of
time and storage restrict us to only 2 figures for states which go
to zero field n = 3 states.

It should be noted that, if the elements of two rows and
columns of the matrix H (of dimension N) are almost- linearlypq
dependent, then this matrix becomes singular, rendering the calculation 
of a set of N linearly independent eigenvectors impossible. Care 
should be taken, therefore, to ensure that this case does not occur.
In the cylindrical basis, this can be avoided by choosing carefully, 

values for the parameter 6. The first three values of 6 are given 

in table 3.4 and a fourth value, to ensure correct high field energies 

is Care should be taken to ensure that is not too close to any 
of the other three values for 6 , If this is the case, then the first 

value of 6 is excluded from the basis set.

Results for fourteen states (which are the lowest lying at 

low fields) are given as a function of B in the range 10^ ^  B ^  10® G 
in table 4.4, in both the cylindrical and hydrogenic bases, and also
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compared graphically in figures 4.1 - 4.9. The zero field ordering 

is preserved at all fields within the subset of states but

crossings occur between different subsets. At sufficiently high 

fields, for any state (n,m,m^), except (l,e,0) the eigenvalue 
obtained in the cylindrical basis lies lower than that obtained in 
the hydrogen states basis, but the lowest field at which this occurs 
is state dependent. The ground state results obtained in the 

cylindrical basis are anomalous, and within the range of field 
strengths examined are never better than those obtained in the 
hydrogen states basis.

It is clearly seen, from both table 4.4 and figures 4.1 - 4.9, 

that as B increases, so do the energy eigenvalues, in fact at field 
strengths greater than or equal to 10® x 5 q, some of the n = 2 and 
3 states are no longer bound. The structure of the continuum of a 

hydrogen atom in a magnetic field is discussed in detail in 
chapter 1 , but it is necessary to point out here that if it contains 
pure Landau levels, and if the Coulomb force is small compared 

to the magnetic field, the first of these levels lies at ihw^ (a.u.), 

i.e. Y Ry., where is the cyclotron frequency. This explains 
why some of the bound states have positive energy.

It is clear from figures 4.1 - 4.9 that the expansion of the 
wavefunctions in quadratically integrable unperturbed hydrogenic 

functions breaks down above 10® G. By this field strength the atom 

is needle-shaped (apart from, perhaps, the ground state) and is 

better described by functions of cylindrical symmetry.
Table 4.4 also gives results of the perturbation calculations

7of Ruder et al, 19 81 at B = 10 G . These are in excellent agreement 

with our results and prove that perturbation theory is still adequate 
at B — 10 G .
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Fig 4.1

10

Comparison of the "Is ", "2s " and "3s " energies in Ry, witho o o
increasing field strength B (G) using (i) the hydrogen states basis 
(broken line) and (ii) the cylindrical basis (solid line).
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Comparison of the "2p and "3p energies in Ry, with increasing

field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line)...
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Fig 4.3

Comparison of the "2p^" and "3p^" energies in Ry, with increasing

field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line).
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Comparison of the "2p^” and ”3p̂ '* energies in Ry, with increasing

field strength B (G) using (i) the hydrogen states basis (broken line)

and (ii) the cylindrical basis (solid line).



-85-

0 5

ÜJ
0

Q.5 108 974 65
log^Q B 

Fi g 4.5

Comparison of the "3d energies in Ry, with increasing field

strength B (G) using (i) the hydrogen states basis (broken line) and

(ii) the cylindrical basis (solid line).
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Comparison of the ”3d_^" energies in Ry, with increasing field

strength B (G) using (i) the hydrogen states basis (broken line) and

(ii) the cylindrical basis (solid line).
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Fig 4-7

Comparison of the "3d^" energies in Ry, with increasing field strength

B (G) using (i) the hydrogen states basis (broken line) and (ii) the

cylindrical basis (solid line).
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Fig 4 . 8

Comparison of the "3d^" energies in Ry, with increasing field strength

B (G) using (i) the hydrogen states basis (broken line) and (ii) the

cylindrical basis (solid line).
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Fig 4 ,9

Comparison of the energies in Ry, with increasing field strength.

B (G) using (i) the hydrogen states basis (broken line) and (ii) the 

cylindrical basis (solid line).
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Praddaude, 1972, also used a basis of cylindrical states 

of the form

X = e"YP^ z l I"'I(2y p )̂ S E C p^^ (i+r|e|̂ )
p=0 ^ q=0 s=0 ^ ^

b (4.1)
where L^(z) is the generalized Laguerre polynomial of order a,

c = 0,1, m=0,±l,±2, ..., e is the energy eigenvalue shifted

by y(m + |m| + 2N + 1) with N=0,1, and a = 2(C + |m| + 2N) + 1.

These basis functions are obviously more complex than our 
previously described cylindrical functions and also have the dis­
advantage of being non-separable. However, these functions do 

have the correct behaviour as r -► 0 and tend asymptotically to the 

Landau solutions as r -► *. As expected, the results of Praddaude,
1972, for the energies of the lowest fourteen states at field strengths 
of Y = 0.1 and Y = 1 (i.e. B = 2.35 x lo® and 2.35 x 10^ G) are in 
close agreement with our results, especially for the n = 2 states, and 

in fact there is no more than 0.02 Ry difference at y  = 0.1 and 0.03 

Ry at Y = 1» between the two sets of results. Whilst Praddaude's 
basis is more accurate than ours for some states, the simplicity of 

our basis set makes it much more attractive for applications e.g. 

calculating Einstein ’A ’ coefficients. The results for these 

energies are given in table U.5.
Table 4.5 also contains results for calulations carried out 

by dos Santos and Brandi, 1975, who expand their wavefunctions in 
a basis of three dimensional harmonic oscillator functions:

where

A ^(x) = (r(btl)  ̂e x^^^ L^^x) (4.3)
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These wavefunctions give a correct description of the electron in 
a Coulomb-free field in the plane perpendicular to the magnetic 

field vector, but restrict the motion parallel to the field. We 

would therefore expect these functions to give their most accurate 
description of the wavefunctions at field strengths at which the 
cyclotron radius is larger than the Bohr radius, i.e. when y >> 1.

As expected, at the fields y = 0.1 and 1, the energies of the 
lowest fourteen states using this basis expansion, are slightly higher 
than ours and those of Praddaude, 19 72. The agreement between 

Praddaude and dos Santos and Brandi, in fact, improves with increasing 
field strength. The agreement is good at y = 3.

Other workers who have used this method of expanding the 
wavefunctions in basis sets include Simola and Virtamo, 1978, who 

expand their wavefunctions in a basis of pure Landau states - in 
this method the Coulomb potential is treated as a perturbation and 
so it can only be expected to be accurate when the magnetic field 

dominates the Coulomb field, i.e. when y >> 1, which is beyond the 

range of field strengths which we are considering. Edmonds, 19 73 

expanded his wavefunctions in a basis of Sturmian functions. These 
have the advantage of forming a complete set (i.e. they also contain 
continuum functions) although the basis has to be truncated so that 
the matrices involved in the problem are of finite dimension. His 

results agree well with those obtained using a basis of hydrogenic 

states at very low fields (i.e. B = 10^, 3 x lo** G), but the hydrogenic 

basis is to be preferred since the number of terms required in the 
wavefunctions (particularly in the states with large n) using the basis 

of Sturmian functions is large - and indeed becomes larger as the 

field strength increases. Therefore, it is difficult to obtain 
accurate energies using this basis set for high fields without 
using an extremely large basis.
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Smith et al, 1973 used a basis set consisting of terms of 

the form:

r^ + b^^) e"^i ^ (4.4)
1, £

This, like the hydrogenic basis, is spherically symmetric and 
so cannot, for reasons already discussed, be accurate at B > 10® G 

where the atom has cylindrical symmetry. The wave functions go into 
the exact zero field functions as B 0, and contain more terms 
than the hydrogenic basis - therefore we would expect the energies 
to be slightly lower than those obtained using the hydrogenic basis.

In conclusion, whilst a hydrogenic basis is superior at low 

field strengths, especially for the ground states, an expansion in 
functions of cylindrical symmetry is, as expected on physical grounds, 
to be preferred for y ^0.1. Such a simple basis set has not 

previously been used to obtain such accurate energy eigenvalues in 

the range of field strengths 0.1 ^  y ^  1.

§4.4 Transition Probabilities

Transition probabilities for field strengths in the range of

interest here, and for transitions between most of the states considered
have been given by Brandi et al, 19 76, using the basis set of
unperturbed hydrogenic functions. The results obtained by Brandi

are incomplete, and in the course of confirming their values, we have

obtained results for an additional four transitions (Bd^ 2p^, 3p^
and 3d -► 2p ,, 3p ) in this model. These new results are given in “2 “X —X
table 4.6 for fields of 10^ and 10® G . The results for the weak 

3dg ^P+1 transitions vary rapidly with increasing field strength.

Smith et al, 19 73, whose basis functions have been described 
in the previous section, have also calculated transition probabilities 
for the same field strengths, and corrected their results in a later
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publication (Smith et al, 1975). The two sets of results are compared 

by Brandi et al and agree to within 12% at 10^ G for transitions to 

2p^. However, there are larger discrepancies at this field strength 

for transitions to 3p+^, for example, the Smith et al results for 
3s^ - 3p ^ is 40% lower than that given by Brandi et al. At 10® G 

the differences are much larger; the two sets of results can differ 
by about a factor of three, even for strong transitions. For example, 

for 3d_^ - 2p^, Smith et al's value is a factor of 3.44 larger than 

that of Brandi et al. Their results for the Bd+g np+^ (n = 2,3) 

transitions are compared with our new hydrogenic basis values in tables 
4.8 and 4.9, and are again as much as a factor of three different at 10®G

B(G) Present Smith Present Smith
Result et al Result et al

2P_1

10^ . . . 7.160(-1) 6.34(-l)
3d2 10® - - 2.164 7.84(-l)

10^ 5.96K-1) 6.74(-l) _
3d .-2 10® 4.56K-1) 1.33 - -

3Pi

107 7.317(-5) 8.46(-5)
3d2 10® - - 2.010(-2) 4.4K-2)

10? 9.184(-5) 7.87(-5) —
3d _-2 10® 8.944(-2) 2.8K-2) — —

Table 4.6

Bound-bound transition probabilities for transitions from 

3d^ and 3d g 1% 10^ s  ̂calculated using a hydrogenic basis 
and compared with those of Smith et al, 1975.
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The results for the cylindrical basis calculated in the dipole 

length formulation are compared, in tables 4.8' and' t»--,9-with those 

obtained by Brandi et al, 1976, and the new hydrogenic basis results 
given in table 4.6. The results of Brandi et al have been multiplied 
by a factor of (-^) due to the angular integrations which have been 
omitted in their analysis and that of Smith et al, 1973, but ensures 

that the transition probabilities tend to the correct zero-field 

results (Bethe and Salpeter, 1977). At zero field, the cylindrical 

results are within 3% of the exact values, and these are given in 

table 4.7 for both the hydrogenic and cylindrical basis functions.

(a) (b) (c)

Is - 2p 

2s - 2p 

Is - 3p 

2s - 3p

6.17
3.12C-6)

1.61
2.30(-l)

6.27

8.46(-ll)
1.58
2.3K-1)

6.25

0.0
1.64

2.20C-1)

Table 4.7
a -1Transition probabilities in 10 s for B = 0 for 

transititions involving the 2p, 3p., Is and 2s states 
using (a) the cylindrical basis and (b) the hydrogenic 

basis. The true zero-field results given by Bethe and 
Salpeter, 1977 are in column (c).
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2P-1 2Po 2Pl 3P_1 3Po

B = 5 X 10® G

Iso 5.82 9.47 2.57C+1) 1.03 2.50
2so 6.18(-1) 1.46(-1) 5.52C-1) 6.99C-2) 7.62C-1)

3.92(-l) - - 1.25C-1) -

34.1 1.37 9.27C-2) - 3.47C-1) 2.82C-2)

B = 10® G
Iso 5.57 1.33(+1) 7.31C-1) 3.20

2=0 6.75C-1) 7.34(-l) 2.59(-2) 1.04

34.2 3.82(-l) - 9.44(-2) -

34.1 2.55 5.73C-2) 6.72(-l) 2.12C-2)

B = 2.35 X 10® G (y = 1.0)
Iso 5.51 2.34(+l) 6.38(-l) 4.14
2so 4.68(-l) 1.71 9.40C-3) 1.22

34.2 3.87(-l) - 8.06C-2) -

34.1 5.82 2.90C-2) 1.33 1.02C-2)

Table 4.10

Transition probabilities in 10® s ^ for 5 x 10® B ^2.35 

X 10® G, for transitions involving states not higher than 
the second state for each parity and m but which are included 
in the 14 lowest states at zero field using the cylindrical 
basis. The 2p̂  ̂state is not bound for B ^  10® G.

The present results are generally in good agreement with those 

of Brandi et al, 19 76, at the two field strengths at which detailed 

comparison is possible;for strong transitions ^  0.1) the
disagreement is less than 4%. However, there are two groups of 
transitions for which there is strong disagreement.
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(i) The very weak transitions 2s 2p and 3d,, ->■ 3p,, ato o ±1  ̂±1
10^ G where our results are more than three orders of magnitude 
larger than those of Brandi et al or Smith et al.

(ii) The transitions 3d^^ - 3p^ where we agree fairly well
with Smith et al (to within 30%) and both of these results are between 

one and two orders of magnitude different from those of Brandi et al 
at 10® G.

The perturbation theory calculations of Ruder et al, 1981, give

results which are in very good agreement with those of the hydrogenic
7basis for all transitions considered at B = 10 G.

There have been no previous published calculations of transition 
probabilities in the range 10® < B < 2.35 % 10® G , so in table 4.10 
we give results at three fields spanning this range. We expect these 
results to be fairly accurate, since they do not involve the wave- 
functions of any states in which our eigenvalues are significantly 

different from those of Praddaude.
It has been found that the discrepancies occurring in the 

transition probabilities (and wavelengths) throughout, can be 

attributed mainly to inaccuracies in the calculation of the energy 

eigenvalues. The formula for the transition probability in the 

dipole length formulation (equation (2.85)) contains the factor
30) , - and so any slight error in the difference between the twom'm J O

energies in the transition will be cubed, and so cause larger 
differences to occur in the transition probability. This is 
illustrated in table 4.11 where a few cases in which there are large 

differences between transition probabilities calculated in the 

cylindrical and hydrogenic bases, are analysed.
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(Ry)
Em
CRy)

R /  m m A , m'm ^
(10®s )

B=10?G

h
2^-^Po c

-0.249873

-0.247532

-0.249946

-0.249870
3.890(-13)
1.293(-8)

1.02

1.13

8.46(-ll)
3.12C-6)

h

c

-0.114718
-0.114637

-0.115041

-0.114648
3.370(-ll)

1.33K-15)

2.33
2.49

1.68(-8)

7.1K-13)

B=10®G

h
2SoT2Po c

-0.238129
-0.235771

-0.244761

-0.244751

2.917(-7)

7.242(-7)
1.04
1.14

6.50(-5)
1.77(-4)

h
3p_i+3d_i

c

-0.103987
-0.107808

-0.126589
-0.128480

1.155(-5)
8.834(-6)

2.54
2.70

6.28(-3)
5.10(-3)

Table 4.11

Table to illustrate the source of the discrepancies in the
transition probabilities which occur between using
the hydrogenic basis (h) and the cylindrical basis (c).
R , is the dipole length matrix element, m m   ̂ °

Table 4.11 illustrates the necessity of accurate eigenvalue 
calculations, particularly in the An = 0 transitions, in order to 
obtain correct transition probabilities and wavelengths.

Transition probabilities were also calculated in the dipole 

velocity approximation for the cylindrical basis wavefunctions (see 
equation (3*82)), for the transitions where Am = 0. These results 

are compared with those calculated in the length approximation in

table 4.12 for field strengths 10^, 5  ̂ 10® and 10® G. The agreement
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is very close and confirms the accuracy of the cylindrical wave­
functions obtained.

The results for the transition probabilities in the length 
formulation for two allowed bound-bound transitions at 10® G are 
plotted against field strength in figures 4.10 and 4.11. It has 

already been shown (see table 4.11) that the variation of transition 

probability with increasing field strength depends on both the 

variation of the dipole matrix element and the energy difference, 
so it is not always a monotonie function. For example, figure 4.11 

shows that the ls^-2p^ transition is monotonie, whilst figure 4.10
shows that the Is -2p , transition has a minimum. Furthermore, o -1
2p ^ is only just bound in the hydrogen state basis at 10® G
(E^ = 0.155 Ry) but is highly bound in the cylindrical basis
(E^ = -0.232 Ry) so although the dipole matrix elements are not

very different, the transition probabilities differ by about a

factor of five. Since E^ is lower, i.e. better, it is likely that the
lower value of A , is more nearly correct, ram

In general, for An = 0 transitions A , differs little fromm'm
its zero-field value until B > 5 x lo® G when it slowly increases. 

Transitions between levels which are degenerate in energy at zero 

field may become relatively strong at fields above 10® G , for example, 

2s^-2p^ has a transition probability increasing by four orders of 

magnitude between 10® and 10® G .
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Iso 2so 3di

B=10®G

2P-1 4.63(-l)
(4.63(-l))

2Po 6.42
(6.44

1.73(-4)
(1.77(-4))

2Pi 4.63(-l)
(4.63(-l)

3P-1 5.08(-3)
(5.10(-3))

3Po 1.99
(2.00)

3.14(-1) 
(3.15(-D)

3Pi 5.08(-3)
(5.10(-3))

B=5xlO®G

2P-1 1.37
(1.37)

2Po 9.45
(9.47)

1.46(-1)
(1.46(-D)

3P-1 3.44(-l)
(3.47(-l))

3Po 2.44
(2.50)

7.62(-l)
(7.62(-l))

B=10®G

2P-1 2.55
(2.55)

2Po 1.32(+1)
(1.33(+D)

7.3K-1)
(7.34(-l))

3P-1 6.67(-l)
(6.72(-l))

3Po 2.91
(3.20)

1.05
(1.04)

Table 4.12

Length and velocity values of the transition probability 

in 10® s ^ for Am = 0 transitions. The length values are

shown in brackets.
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Fig 4.10
Comparison of the 2p_^-ls^ transition probabilities (in 1 0 s '^) in 

the dipole length approximation with increasing magnetic field strength 

B (G) using (i) a basis of hydrogen states (broken line) and (ii) the 
cylindrical basis (solid line).
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F ig 4.11
-1,Comparison of the 2p^ - Is^ transition probabilities (in 10 s ) in 

the dipole length approximation with increasing magnetic field strength 

B (G) using (i) a basis of hydrogen states (broken line) and (ii) the 

cylindrical basis (solid line).
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§4.5 Wavelengths and Oscillator Strengths

Wavelengths are calculated in both the hydrogenic and cylindrical
basis sets according to equation (2.111), and a few results are given in
table 4.13 for the fields considered here. Table 4.13 emphasizes the
importance of accurate eigenvalue calculations in order to determine

the correct transition from an observed wavelength. As in the calculation

of the A , , large discrepancies occur in the weak An = 0 transitions m'm
where there are also large discrepancies in the values of E , .m'm

B(G) Iso

c h c h

10? 1252 1222 138000 213300
10® 1303 1271 19590 20660
5*10® 1371 1250 4206 4171

10® 1379 851.5 2514 -

10? 1245 1215 388300 1.260 10
10® 1236 1208 101500 137400
5*10® 1137 1088 11410 8301
10® 1031 840.4 6563 -

10? 1238 1208 478600 215200
10® 1161 1136 23630 22240

2Pi
5*10® 835.8 789.3 4366 4404
10® - - - -

Table 4.13

Wavelengths in A calculated in the hydrogenic Ch) and cylindrical
(c) bases, for transitions from Is and 2s to 2p , for fields of 7 8 8 9 o o ^o,= l10 , 10 , 5x10 and 10 G, accurate to 4 figures.



— 103 —

Oscillator strengths are also easy to calculate from equation
(2.113). Here, the results for the oscillator strengths for a few
allowed transitions, in the cylindrical and hydrogenic approximations

are compared, together with results calculated by Wunner et al, 1981 
7 8at B = 10 and 10 G. Wunner et al, use a polynomial approximation 

for the dipole matrix element (discussed in §1.2) and table 4.14 

demonstrates that their results are in excellent agreement with the 

hydrogenic basis results. As expected, there are discrepancies between 
the cylindrical and the two other sets of results at these fields.

BCG) Is
o 2s

o

C h W c h W

10^ 0.428 0.414 0.414 5.94(-2) 3.84(-2) 3.86(-2)
10® 0.429 0.413 0.392 3.65(-l) 3.5K-1) 3.99(-l)

lo’ 0.430 0.416 0.416 2.1K-2) 6.39(-4) 6.52(-4)
10® 0.441 0.427 0.415 8.21C-2) 6.07(-2) 6.52(-2)

3Po
lo’
10®

7.93(-2) 7.95(-2) 7.9K-2) 0.458 0.437 0.425

9.22(-2) 8.20(-2) 7.3K-2) 0.542 0.488 0.425

Table 4.14

Oscillator strengths for transitions from Is and 2s to 2p , and 3p ® o o ^0,-1 o
at B = 1 0 and 10^ G in the cylindrical (c) and hydrogenic (h)

approximations. Also included are the results of Wunner et al, 19 81 (W)
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CHAPTER 5

PHOTOIONIZATION CROSS-SECTIONS WHERE THE CONTINUUM CONTAINS

PURE LANDAU LEVELS

§5.1 Introduction

This chapter is concerned with the calculation of photoio­
nization cross-sections of atomic hydrogen in a magnetic field, the 

initial state having cylindrical symmetry and being of the form given 
by equation (3.2). Throughout this thesis we consider only the dipole 

approximation. The final state will be that of a free electron in a 

magnetic field, ie the motion will be confined to the discrete Landau 

levels in the plane perpendicular to the magnetic field and unrestricted 
in the field direction (see §1.2). In this chapter we show that, due 

to the structure of the continuum, the total photoionization cross- 

sections consist of a series of infinite peaks occurring at the Landau 

energies (ie ( 2 Z  + 1) V Ry where 0,1...). These cross-sections, 

it will be seen, are very different from the zero field cross-sections 

in the absence of broadening. However, if broadening, due to the motion 
of the residual ion, was to be considered (which it is not here), then 

in the limit as B 0, it will be seen from presented results, that the 

cross-section does reduce to the same form as that of the zero field 

cross-section. It is also shown that the appropriate form of the Wigner 

threshold law (Wigner, 1948) is satisfied as B 0.

Although, in reality, the Coulomb attraction of the nucleus

modifies the continuum structure, we do not consider the effect in this

chapter. Inclusion of a Coulomb force is discussed in chapter 6. It

is expected that the pure Landau continuum treatment will be satisfactory

when the Coulomb energy 1 j is small compared with Y  , and this isI p
always satisfactory for sufficiently high lying levels, and for all levels 
when V »  1,
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The wavefunctions of the discrete Landau states can be 

expressed analytically in cylindrical polar coordinates (Dingle, 1952), 
and as these functions are separable, then the photoionization cross- 

sections can also be calculated analytically. A model calculation 

has previously been performed by Wallis and Bowlden (1955), in which 

the initial ground state wavefunction takes the simple form

n s o
It has already been shown, however, in chapter 3, that a more complete 

basis set gives more accurate results for the energies and wavefunctions 

of the initial state, and we would therefore expect the photoionization 
cross-sections to also be more accurate using the initial state wave­

function given by equation (3.2).

§5.2 Theory

The formula for the photoionization cross-section from an initial 

state i to a final state f, at zero field, takes the form

Sv = l y l  l(n >1 ^ (5.1)

where << is the fine structure constant and hv is the photon energy in 

Rydbergs. In (5,1), we have summed over polarizations and integrated 

over angles, and this agrees with the expression given by Burke (1976).

It is more convenient to write the cross-section in the form
-19 o 9a^ = 8.56 X 10 hvlR^^r cm (5.2)

where R^^ is the matrix element occurring in (5.1).

The structure of this Landau continuum is such that discrete levels

occur in the x - y plane, making it necessary to sum over all possible

final states, when a magnetic field is switched on. It is then possible

for the electron to go into any Landau level which is energetically

accessible, up to a maximum at ^ max, say, with excess energy being

released in the z- direction, such that energy is conserved overall, ie
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hv = Ej + E^ + . (5.3)
E^ is the ionization energy of the initial state, E^ the energy of

2the Landau level, k^ the energy in the z- direction and h v  the 

energy of the incident photon.

Now, as we are now summing over final states, it is necessary 

to multiply the total cross-section by the density per unit volume of 

the final states, (?(Ê ), where E^ is the 'free energy' released in the 

z- direction (Powell + Crasemann, 1961, Ch.11). The number of states 

with energy between E^ and E^ + dE^ is given by ^(E^) dE^. As we are

dealing with a 1-dimensional continuum in the z- direction, the number of 

such states is the number of points n^ contained in the length element 
dn^, where

(5.4)
2-rr

and L^ is a quantisation length in the z- direction, tending to infinity 
in the limit. Then we have

p(E ) dE = dn = L dk . (5.5)V z z z z z
2We know that E = k and, therefore, dE = 2k dk and so the density ofZ Z Z Z Z

states f(E^) can be written

p(E ) = 1 L (5.6)r z --- z
2 ^

The expression for the total photoionization cross-section now becomes
1 q 9= 8.56 X 10 h-u I |R. j L (5.7)

where the final state wavefunction is dependent on^\ and a sum over

magnetic sub-levels is implied. The perturbation of the bound states
by the magnetic field is fully accounted for, if the wavefunction of the 

initial state is taken to have the cylindrical form discussed in chapter 
3, ie

^ ^  ^ i z )  (m,TT)^^^ (5.8)
J I —

where
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(r) = z" f" e-sr' e . (5.9)
In chapter 3 it was discovered that, in order to obtain convergence

to 4 figures on the energy eigenvalues of 14 low lying states, it
was necessary to use a large basis, containing up to 128 terms.

However, as we are here only considering photoionization from the

ground and 2p^ states, and to avoid computational problems occurring
2in the calculation of ( | through the multiplication of very large 

numbers by very small numbers, the size of the basis can be reduced 

such that only those basis elements with large coefficients remain.

The Hamiltonian has to be re-diagonalized in this new basis, and this 

reduction has no effect on the calculated energies of the lowest lying 

level of each parity. Details of the new basis are given in table 5.1

B(G) max 0max s's included in basis

10^ 7 7 «1* 2̂
10® 7 7 Si> & 2 * ^

5 X 10® 7 7

10® 7 7 s 2 * ^3

Table 5.1

Terms included in the wavefunctions of the lowest even and odd 

parity states. All possible integer ol and ^ up to ct max and 

^ max, respectively are included and = 0.283, = 0.0453,

2. (Reasons for the choice of values for S are

given by §3,4)

The wavefunctions of the final states, ie those corresponding to 

the Landau levels, are given by the solutions of the Schrodinger equation
for a free electron in a magnetic field, ie

2 =  0 (5.10)

where EJ = -m̂  Y(Ry) and m^ is the magnetic quantum number of this free
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state. This equation has been solved by Dingle (1952) and the final 
solutions are shown to be of the form

where

‘i f (-’)■' æ h  .

(x) is the associated Laguerre polynomial defined by

(x) = (-1)^ al e^ x"^ d*"^ (e"*x^) (5.13)
a-D(a-b)" dx

and O' = 2. Now in order to find the correct normalized
solutions, we must have

M ' ^ î m  ,k' (5.14)z 1 z I z z

where the particle is confined to a large length in the z direction 

(Schiff, 1963, p.54 and Kelly, 1963). Now

f  i!:.4l , ' (5.15)
X l’" df ' ' ei:(kz-k:) .

0 J - % - L
The integral over <j? is obviously 2ir , and the integral over z is L^S^, ^ • 

The radial normalization has been carried out by Wallis and Bowlden (1956), 
and the complete normalized wavefunction of the free state may now be 

written as

The energy eigenvalues corresponding to these wavefunctions are also 

calculated by Dingle (1956) and are given by

= r(2^ + m^ + Im̂ I + 1) + Ry. (5.17)
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Fig 5.1

The behaviour of the lowest odd ("2p ") and even ("Is ") bound levelso o
and the lowest few discrete levels of the continuum are shown (schema­

tically) as a function of the magnetic field strength y , ignoring 

Coulomb effects on the continuum and spin splittings.
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The variation of the Landau energies and the energies of the Is^ and 
2p^ bound states with magnetic field strength is shown in fig. 5.1.

$5.3 Evaluation of

An expression for the total photoionization cross-section is
given by equation (5.7) and in this section we evaluate the IR^^I . It

is first necessary to calculate the matrix element >
( ^ )  ^where i is given by equation (3.5) and v) by equation (5.11).
z ’“ f

There are three cases:
(i) ju = -1

Here we have

z' f = Co
(5.18)

dfdfds

where

^0 ~ 2-rrL^(U+|Eijl (5-19)

(a) Integral over

This gives
r 2tt

ei<^(mf "I) = 2 ttS (mf-mi-1 ).- (5.20)

Therefore, in order that the matrix elements of r ^ be non-zero, we must 

have m^ = m^ +1.
(b) Integral over z

The z integral may be expressed as

Z ( d , S ,  k,) =
^ 2  ik :z

z*e  ̂ e dz . (5.21)
~o»

This integral is complex, the real part of which is zero if oi is odd and 

the imaginary part is zero if d. is even, as the integrand is an even 
function in both cases. The integral may be written in terms of Hermite
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polynomials for odd or even d  ;

/ . A / 2  -k2/4S k
= ^^7 2 7 1 ^ )  " (S-22)

(Bateman Manuscript Project, 1954). He^(x) is the Hermite polynomial
defined by

2
He (x) = (-1)^ e^^ d^ (e  ̂ ) . (5.23)n ---

dx^
So equation (5.22) reduces to

2 / " S

with

X = (5.25)
(2$)i

(c) Integral over f>

The integral over ̂  may be written

(p,mf,S,X) = I L^^^(cr) dp (5.25)

with m = Im^l. Writing this integral in terms of ̂  , making use of
the fact that ^ d ̂  ^  , we have

y

1?. ((S,m^,s,v) = I ^a((i+1+m) dcr (5.27)

where

^  = f  (S + ̂ ) . (5.28)

Using the series expansion for the Laguerre polynomial given by 

equation (5.13), we obtain

I u i O
p=0 (^"9/' ' ^ (5.29)

where a = 5( ^ + l  + m + X )  (5.30)
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and A = (-1 )“ P (A+m+1 ) . (5.31)

Therefore, the integral over ^ may be expressed as

= A . (5.32)

(ii) JU. = 0

In this case the matrix element may be written

M f z* z <r“/2 (5.33)
Z X J

gikgZ ̂  _

(a) Integral over 

This gives

r ^i) c[(j) = 2 TT S(m«-m. ) . (5.34)
o I  1

Therefore, in order that the matrix elements of r be non-zero, weo ’
must have m _ = m ..f 1
(b) Integral over z

Using the same notation as in (i) part (b), the z integral may be written

ZU+1,S,k ) = [ " z f  + l e-S: dz . (5.35)
 ̂ J_oa

Again, this integral is complex, the real part being zero if (^ t 1) is 

odd and the imaginary part being zero if (<< + 1) is even. An expression 
for 2 is given by equation (5.22).

(c) Integral over f

Using the same notation as in (i) part (c), the integral over ^ may be 

written

m  dç. (5.35)
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and 1R is given by equation (5.26).

(iii) >>•= 1

The matrix element, in this case, may be written

(4) . - ^  p gi'*' ^m/2 ^-a/2= t z

It is clearly seen, that the integrals over ç» and z for this case are 

exactly the same as for case (i), ie /*-= -1. The integral over cjf> gives

I e^Knif+1-nii) ^ 27rS(m -m +1) . (5.38)
0 4 1

Therefore, for the matrix elements of r^ to be non-zero, we must have
m^ = m^ -1.

2The total expression for iR̂ fl can now be written

' h f '  "  4 £  |i> i [  Z >°f >5.^) (5.39)yi = -1
X, Z vo(-1̂ 1+1 , s , ^

It has now been shown that all the integrals occurring in a^ , when the

continuum contains pure Landau levels only, can be evaluated analytically,

and computation of these cross-sections is carried out by program QMAT,

details of which are given in appendix (I).
%5.4 Threshold Behaviour

The total photoionization cross section from an initial bound state

( TT,m) will include contributions from the transitions to final states
( tt ,m), ( TT ,m-l) and ( tt ,m+l) (see section $3.6), corresponding to 0,1

and -1 respectively, where tt and """ are opposite parities. We first

consider the dependence of a..̂ on from the 0 contribution. It has

already been shown that 
Cf m) = Z D. [Zj+I.s.k )] 2 (2 ) (5.40)

^=0 '  ̂  ̂ z
where is independent of k^ and the dependence of the density of states

on k is ]^. An expression for Z(^t 1, S ,k ) is given by equation (5.24)
 ̂ k ^z
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Expanding the Hermite polynomials in these expressions (see table 

(m.l) of appendix ( TTT ) ), we obtain

Z (o^+ 1, 4,k^) = Cj_ (b^k^ + bjk^® +........ k^*') (5.41)

if o( is even, ie if the initial state has even parity, and

Z (oC+1, S ,k^) = (b^ + bgk^^ +.... + a * (5.42)

if is odd, ie if the initial state has odd parity, and is also 

independent of k^. As threshold is reached, k^ becomes increasingly 
small, and in this region only the term in the smallest power of k^ 

occurring in a.^is significant, all higher terms can be neglected. We 
therefore have, near threshold

p max
- S A k (5.43)

. e = o  ^

if CÀ is even and

J . = 0 z

if cL is odd.

Now, considering the dependence on k^ from the contributions arising
from the transitions to (ir,m-l) we have

f +.\ ^max 
^  ^s’* = ^ r(3 ) (5.45)

where is independent of k^. Again, expanding the expressions for

Z ( d  , S jk^) when d  is even and odd in terms of k^, we obtain
2

Z(«x: ,S ,k ) = C.(a + a_k  ̂+ a^k^ )e"^z (5.46)Z 6 Q ^ Z ^  Z

if o( is even, and

Z(d, S,kg) = [^(a^kg + Egk^^ +........ a^k^ )eA A &  (5.47)

if oi is odd. Taking only the terms in the lowest powers of z in the

expressions for Z(oc ,S have

max A
Z  r=0 z

(rr.an)^ r  li (5.48)
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if cd is even and
max

_  T  B, k (5.49)
.(to 4 z

if oL is odd.

As B -9 0, the fact that becomes very large, and that the

distance between the Landau levels becomes very small, must be taken
into consideration. As B -^0 the zero field limit is reached where

the Landau levels are infinitely close together, forming a continuum,

and the 1st Landau level tending to zero energy. This enables the sum

over Landau levels to be replaced by an integral over all energies up

to Ed in the limit as B 0. For example, the contribution to the max  ̂ ’
total photoionization cross section from the transition to the (ir ,m)

state from an odd parity bound state, becomes
E, k

f -  r r z
a \  ^  B. 1 dE, = 2B, dk = 2B,k (5.50)V  1-E k = z I zo z

where E^ is the energy of the Landau level corresponding to i. In
this case, the dependence of a on k is k . The dependence of' ^  z z
Z and the photoionization cross section contributions for both the 

limiting case and a finite magnetic field, on k^, for all allowed tran­

sitions are summarized in Table (5.2). The dependence of the final state 
zon z is e z (= cos k z + i sin k z). If the final state has odd parity,z z

then only the term cos k z contributes towards the cross section and ifz
the final state has even parity, then only the i sin k^z term contributes.
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Initial State Final State Dependence 
of Z on kz

Dependence
of a If on k ^ z
for finite B

Dependence
of a_jOn k ^  z
for B -Î? 0

Parity m. Parity "f

even m odd m k k k 3z z z
+ , -1even m even m-1 1 k kz z

odd m odd m-1 k k k 3z z z
odd m even m 1 k kz z

Table (5.2)

The dependence of Z and the contributions to the total photoionization
cross-section on k at threshold for all allowed transitions.z

At zero magnetic field, the Wigner Law (Wigner, 1948) is satisfied,
+1

-  k °

where is the angular momentum quantum number of the free state. For 

a transition from an odd parity bound state, the total final state must be
a sum of s,d states, where is the highest allowed value
for 1  , and so

rv a^ k + ag k +.

At threshold, the term in k is dominant. As there is always a contribution 
to the total cross-section from an s-wave, the dependence of a ^  on k at 
threshold must be k. For a transition from an even parity bound state, 

by a similar argument there must always be a contribution from a p-wave
3and so the dependence of a^ on k at threshold must be k .

Considering now, the case where the magnetic field is switched on, 

it is observed that the only dependence of the cross-section on the magnetic 

field strength occurs in the contribution to the matrix element from the 

integral over ^ , the formula for which is given by equation (5.32).

This dependence near threshold, ie considering only the contribution from
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the first Landau level in which ^ = 0, is of the form e m

being the magnetic quantum number of the final state. Therefore, as 
B 0, the contributions to the total cross-section from transitions to 

final states with m = 0 can be regarded as negligible. Only the case
m = 0 is not directly dependent on Y . This is not surprising as it is
only the m = 0 states which occur at zero field.

It can now be seen that, using the results given in table (5.2),
since there is at most only one contribution from the transition to 
the final state with m = 0, then if this is an odd parity state, the

3dependence of a ̂  on is k^ and if it is an even parity state, the

dependence is k^. This is in accordance with the Wigner Law and also

agrees with the results obtained by Blumberg et al 1979.
From table (5.2) it can also be seen that, for a finite field

strength B, since we are summing over ra in the total photoionization
cross-section, there is always at least one contribution whose dependence

on k is k If the incident energy h-v is such thatz z
h -Lf =

for some X  , then there will always be a contribution to the cross-section
from the transition to the final state with energy E_̂  , with no energy

2released in the z direction, ie k^ =0. Therefore, for such incident 

energies, the total photoionization cross-section will always be infinite 
at this energy in the absence of broadening. These infinities occur 
because, in using the Landau model, we have separated out the z-motion 

and represented it by a plane wave. This is, of course, unsatisfactory 

when k^ 0, even in the Coulomb-modified case discussed in chapter 6, 

and we should, in principle, replace the plane wave, 

ik ze Z  i^ (2p + 1) j (k z) P (cos e ) (5.51)
p = O P Z

by a distorted wave with j (k z) replaced byP z

*X p(kgZ) = jp (k^z) + (-1)9 tan (k^) y^ (k^z) (5.52)
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2Here, (k^ ) is the phase shift produced by the potential which may 

be taken to be short range. Consequently, by the effective range 
expansion

lim S (k ~  k ^ + 0(k ^ 2) ■ (5.53)P 2 z z

we have

tan S (k y  ■ (k z )  A/k 9 (5.54)p z p z z

and the threshold dependence is readily seen to be unaffected on 

replacing the result in equation (5.51) with that given by equation (5.52), 
provided the potential is short range in the z- direction (Wunner eb al, 1981 a)

§5.5 Results

The total photoionization cross-sections and the contributions 

from each of the possible Landau levels given in the form

sU.mf) ^ 1  1 2  (5.55)
Z ^=-1 z* f

are calculated by program QMAT, details of which are given in Appendix
(I). Results for photoionization from the bound states "Is^" and "2p^"

to the continuum states with energy up to 8 Y Ry are given in tables 5.3 -

5.10 and the total cross-sections plotted in figures 5.2 - 5.9. It is
observed from these results, that the total photoionization cross-section

has an infinite peak corresponding to the energy of each discrete Landau

level. It is clear, from table 5.2, that this is to be expected in the
absence of broadening, due to the dominance of the contribution(s) whose

dependence on k^ is as k^ ^ at each threshold (ie when k^ 0). As the
energies of the Landau levels corresponding to all states of the same

and with m^ < o are degenerate, and the energies of the levels (X ,m^)

where m^ > 0 are equal to those of the levels ( ^ + m^, m ) where

m = 0,-1,-2..., it follows (from the results given in table 5.2) that

there is always an infinite contribution to the total photoionization
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cross-section at the thresholds which correspond to the Landau energies.

In practice, however, these peaks would be finite and broadened due to 

the motion of the residual ion and other effects discussed in §5.4 
(Blumberg et al, 1979).

It is seen from figures 5.2 - 5.9, that the cross-sections, away

from the resonances, are very much smaller than the corresponding field-

free cross-sections. In fact the field-free case is not marked on some

of the figures, indicating that it lies beyond the scale of the graph.
7However, at B - 10 G, for example, we are only dealing with a very narrow 

range of energies (from threshold up to about 0.5 eV), and it can be seen 

that, taking the very large difference in the energy scales into considera­

tion, the Is^ and 2p^ cross-sections become closer to the field free cross- 

section with decreasing B. For comparison, the zero field cross-sections, 

as computed by Burgess (1964) are given in table 5.11 along with the 

corresponding energies in Y Ry for the 4 field strengths which are considered 

here. We would expect that, if broadening were considered, the field-free 

case would be reached in the limit as B-? 0. If an average smooth curve 

were to be drawn such that the actual cross-section consisted of a series 

of (both finite and infinite) peaks superimposed on this smooth curve, then 

it would be seen that the initial gradient of this curve would increase with 

decreasing field strength. In the limit as B-^0 we would expect the initial 

gradient to become infinitely large as in the zero field case. This is 

illustrated schematically in figure 5,10.

Another feature of these cross-sections, is that apart from the infinite 

resonances occurring at the Landau energies, there are also secondary maxima 

appearing in some cases. These are due to maxima occurring in some

individual contributions. However, it is not necessarily true that a

maximum in one contribution will cause a maximum to occur in the total cross- 

section. For example.
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Figure 5.2

The photoionization cross-section (10 from "Is " to the Landauo7continuum at B = 10 G.
Figure 5.3

The photoionization cross-section (10 ^^cm^) from "2p^" to the Landau
7continuum at B = 10 G,

The zero field cross-section is given by the broken line.

Figure 5.M-
—18 2The photoionization cross-section (10 cm ) from "Is " to the Landauo

gcontinuum at B = 10 G.

Figure 5.5
—18 2The photoionization cross-section (10 cm ) from "2p^" to the Landau

gcontinuum at B = 10 G.

The zero field cross-section is given by the broken line.

Figure 5.6
—18 2The photoionization cross-section (10 cm ) from "Is^" to the Landau

g
continuum at B = 5 x 10 G.

Figure 5.7

The photoionization cross-section (10 ^^cm^) from "2p^" to the Landau
gcontinuum at B = 5 x 10 G.

The zero field cross-section is given by the broken line.

Figure 5.8
—18 2The photoionization cross-section (10 cm ) from "Is^” to the Landau

9continuum at B = 10 G.
The zero field cross-section is given by the broken line.

Figure 5.9
—18 2 'The photoionization cross-section (10 cm ) from "2p^" to the Landau

9continuum at B = 10 G.
The zero field cross-section is given by the broken line.



-151-

B = 0

o

/ / /

ENERGY
Fig 5.10

Schematic diagram to show how the "average" smooth curve superimposed 

on the photoionization cross-sections, tends to the zero field limit.
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0
at B = 10 G, for photoionization from the "Is^" state, the 

contribution from the (2,0) state has a maximum between the Landau 

energies 5 /  and Ry, however, a^ is monotonie and decreasing 
in this region (figure 5.4). A secondary maximum can occur if the 

terms corresponding to a particular Landau level have a maximum 
between two Landau energies and if these terms contribute significantly 

to the total cross-section. For example, the case where there are 

only two contributions to the total cross-section from the Landau
glevels (0,-1) and (0,0) at B = 10 G for photoionization from the 

"Is^" state. Here, a maximum occurs between the 2 Landau energies 

at Ry and 3 Y Ry (figure 5.8), caused by a maximum occurring in 
the contribution from the state (0,0). It is shown in section $5.6 

how these secondary maxima arise for a Landau continuum function and 

very simple model functions for the bound states. The actual location 

and shape of the secondary maxima depend, in a sensitive manner, on the 

details of the wavefunctions.

j5.6 Secondary Maxima in a ^ f  

In this model
1̂  (5.56)

and oL when Am = (5.57)

We are interested in the variation with h v  in the energy range

I + E, < h-v , where I is the ionization potential, and we writeX ^  ' X
h v  = I +X
considering

2h V  = I^ + . The h v  dependence of a^ is obtained by

a^^ (E) _ AE Z(c<" , S , (E - X) = )  ̂ (5.58)
(E - X)5

where a^^ is the contribution from the^'th Landau level, h v  has been 

replaced by E, X = I^ t E^ and A is independent of E. We illustrate
f o  )the behaviour of a_J (E) by considering only simple bound state wave 

functions of the form
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-  Sr^Ils > = N, eo 1
- S|2pĝ  > = Ng z e (5.59)

There are four cases to consider:

Case I: = 0, initial state has even parity, ie is lls^ >
fi) 1 9a^ (E) = AE Z (1, % , (E - %) = ) . (5.50)

(E - X)2

Thus
1 -(E-X),

a^^^ (E) = A'E (E - X)2 e ^2S (5.61)
( X  )where A ’ is also independent of E. Now differentiating a^ (E) 

with respect to E, we find that there are two stationary points 
occurring at

E = J{(3S + X) t/gsF + X^ -2SX Ï (5.62)
2 2providing (9S + X - 2 SX) > 0. From Table 3 it can be seen that

2the dependence of a^ on in the region k^ .^0, for this case, is
(X)as k^. Therefore, close to the Landau energy , a^ is an 

increasing function, and so the first stationary point will be a maximum
2 2 (j?)and the second a minimum. If (95 + X - 2 5 X ) ^  0, then a^ (E)

is a monotonie increasing function (in this simple approximation).

Case II: m^ = + 1, initial state has even parity,

a^^ (E) = AE fZ (0, S , (E - X)̂ )]̂  (5.63)
(E - X)2

Thus

a U )
V

1 -(E-X)/
(E) = A"E (E - X)"2 e ■ 25 (5.64)

(i )Again, differentiating a^ (E) with respect to E, we find that there

are two stationary points occurring at

E = Î \(X - S) + /x^ + 5^ - 6 SX ' ] (5.65)
2 2providing (X - S -  6  S X )  "> 0 . From Table 3, it can be seen that,

(X ) . -1close to the Landau energy, the dependence of a^ on k^ is k^

and therefore the function is decreasing with increasing k^ in this region.
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The first stationary point will then be a minimum and the second a
2 2 ( X )maximum. If (X - S  - 6 & X ) ^  0, then a^ will be a monotonie

decreasing function.
Case III: m^ = + 1, initial state has odd parity, ie is 2p^

a^j^ (E) = __AE [Z(l, 5, (E-X)^)f (5.66)
(E-X)2

This expression is exactly the same as that given by (5.60) and so the 
stationary points are given by (5.62). From Table 3 it is seen that 

the behaviour close to the Landau energy is the same as that of Case I 
and so, as in Case I, the first stationary point is a maximum and the 
second a minimum and a ^  ̂ is a monotonie increasing function if the 

stationary points do not exist.

Case IV: m^ = 0, initial state has odd parity.
In this case

(JÜ  2 .  - ( = - % ) / 2 Sa (E) = AE fl - 1 (E-X) + 1 (E-X) ] e (5.67)
 X  T — 2(E-X)2  ̂ 4 T

so again decreases immediately above a threshold. We can write

- A e ^ (a^y^ + a^y^ + a^y + a^) (5.68)
2 S y

with y = (E-X)/2è. The behaviour is complicated, and one or more turning

points may occur. If there are two positive roots of the cubic, then a

secondary maximum occurs. The overall result, however, is that found in 

cases II and IV, that secondary maxima can occur both for odd and even 

parity initial states.
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CHAPTER 6

Photoionization Cross-Sections Where The Continuum Is Modified By 

The Coulomb Attraction Of The Nucleus

3 6.1 Introduction

For fields in which the magnetic field strength does not 

entirely dominate the Coulomb attraction of the nucleus, it is shown, 

in this chapter, that the Coulomb force has a significant effect on 

the structure of the continuum and that this, in turn, has a significant 

effect on the photoionization cross-sections. The inclusion of the 

Coulomb term in the calculation of the continuum wavefunctions, however, 

renders the Schrodinger equation,

(6.1)Z z

inseparable, and so some approximation must be made in order to overcome 

this problem. We follow Starace (1973) and Rau (1979) in supposing that 

the main effect of the Coulomb interaction is to restrict the continuum 

electrons’ motion perpendicular to the field lines, which is uncoupled 

from the motion along the field lines. This approximation is excellent 

at low fields, and gives the observed l.Shu^ splitting of the embedded 

levels near the ionization threshold (Carton and Tomkins, 1969).

It is found that the Coulomb modified continuum wavefunctions remain 

unchanged in their z and <j> dependence but that their radial dependence 

is no longer analytic, being calculated in numerical form. The method 

used in calculating these wavefunctions and their corresponding energies 

is described in detail in section §6.2 and results are presented graphi­

cally for a few of the radial functions.
The photoionization cross-sections are calculated in a very similar 

way to those of the pure Landau case in $6.3. The only difference being
2in the evaluation of the p integral occurring in the expression for (R^^l . 

It is shown that within this model the same threshold law holds as for the
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pure Landau case despite the inclusion of a radial Coulomb attraction,
2since, in the present Coulomb-modified model, the only dependence 

of the dipole matrix element arises from the motion along the field. In
practice, the reservations outlined in §5.4 may modify this result. 

Detailed results are tabulated for the cross-sections and their individual 

contributions and the total cross-sections are also plotted in figures
(6.15)-(5.22).

j6.2 Calculation of the Free Wavefunctions 

6.2.1 Basic Method
The wavefunctions and energies of the continuum states, ie those 

corresponding to the Coulomb-modified Landau levels, are given by the 

solutions of the Schrodinger equation

( - ^ - Ï (5.2)

where is the residual charge on the ion. The continuum functions 

may be written in the form

(£) = c p'* (6.3)

so that f satisfies

l ~  = O  (5.4)

with = Ê '̂) -mV (5.5)
and V(f,x) = - ¥ •  ■ (5.5)

Now, in order that equation (6.4) be separable, and that a solution 
(i )f C^,z) be found, it is convenient to approximate the Coulomb term 

by , ie we put z = 0 in the Coulomb interaction. A full discussion

of this approximation is given by Starace (1973) and Rau (1979). We 

can now write V(^,z) = V(^) and the equation becomes separable so that 
writing

f (^,z) = (^^^(z) (6.7)

we have the following equations for u and
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3(z) = (p) 3Cz) (6.8)
dz2

and rd + V ( f > ) i u _ f ( p ) = 0 .  (5.9)
tdp2 :

In equation (5.8) we have written

(p) = + V(p) - (6.10)

and in (5.9) we write

Vi (p) = - v(p) . (6.11)

Solving equation (6.8) we find that g(z) is of the form
ik,:3(z) = Ae (5.12)

where A is constant with respect to z .

Solving equation (6.9), however, is not nearly so simple. This
U  )equation is an eigenvalue equation having eigenvalues with the

boundary conditions that the wavefunctions vanish at ^ = 0 and
ie u ^ ( 0 ) = u ^ ( c » )  = o. (6.13)
The solutions, are, of course, the Landau functions given by equation

(5.16) if = 0, the Schrodinger equation reducing to the form of

equation (5.10) in this case.
Starace (1973) and Rau (1979) used a JWK3 approximation to u^ (p) 

but for our purposes this is unnecessary. As the integrals occurring 

in the photoionization cross-section must be evaluated numerically, it is 

more convenient to find an exact numerical solution for u^(^) from • 

equation (6.9). It can be shown that these numerical solutions reduce 

to the pure Landau solutions in the case - 0. Equation (6.9) can 

be rewritten as a system of first order, ordinary differential equations:

(f) = "2 (f) )
) (5.14)

"2 (p) = (E^,p ) (p) )
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where ) = u (^), primes denote differentiation with respect to , 

and the boundary conditions are given by (6.13),

Basically, the method used in solving (6.14) is to integrate 

outwards from ^ = 0 and inwards from some large value of ^ , say p = R, 

using a Runge-Kutta technique (Mayers, 1962) with initial estimates for 

the eigenvalue and boundary conditions on u^(^). The solutions are then 

matched at some point between 0 and R, a second approximation to the 

eigenvalue and boundary conditions on are found such that u^(^)

and its first derivative are continuous at the matching point, and the 

process is then repeated with the new estimated values for E^, and
u^(R) (Hartree, 1955;.

The matching point is denoted by f o, the outward solution (is 

that found between 0 and fo) by and the inward solution (is that

found between R and f o) by Now and 2̂.(-in) arbitrary
to the extent of a multiplying constant, and so we can write

^l(out) " ^^l(out) )
)

“l(in) ■ • j
(5.15)

The total wavefunction u^(p) must be normalized, ie

I [ t(out) dp + r [ t(in) (p)] dp = 1.(6.15)
o ¥ o

Also, the following condition must be satisfied in order that the function 

be continuous and have continuous gradient at the matching point:

"l(out) ( ' "l(iL)
"l(out) ^l(in) (6.17)

A and B are chosen such that the inward and outward solutions meet at/^o,

ie such that ( Ç*o) = (^o) and also such that the normalizing

condition is satisfied, ie

® ^ ”l(out) ( (5.18)

^l(in) ( f o)
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and
2 , , n  ̂ , 2 R 2[ [ "l(out)(p)] dp + B r [U^(.„/p)] dp =1.(6.19)

o

We now define N as 

N dp "f K̂in) (P) 1

-^l(out)(f^)- '  i -d l ( in )
' d

"1 (5.20)

and from equations (5.18) - (6.20) we obtain
A = N (6.21)a

U1(out)(fo)

and

B = (6.21)b

Now Hartree, 1955 considers a similar problem and obtains the following 
expression for the new approximation for the eigenvalue such that the 
matching condition at fo (ie equation (6.18)) is satisfied. Let the 
eigenvalue be changed by an amount ùE^, so that the new eigenvalue 

is E^ + 6E^ (aE^ can, of course, be positive or negative), then from

Hartree, 19 5 5

^l(in) ^l(out)
Kin ) u^(out ).

le a E^ = N'

f»fc

1( in)
u

_ K in )

Kout )(fo) } K i n ) (fo) )

ûE^ (6.22)

- u1(out)
u

(6.23)

l(out)J f  = fo

In order to choose successive approximations for the gradient at 0 and R 

(ie to obtain boundary conditions on Ugff)), we consider

"2(in)(R) = <6 ̂ 4)
Now we choose a first approximation for being unity (this is

not necessarily a good approximation), and this leads us to choose, as a 

second approximation for
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2(in)(^) ” 6 - N  _ (6.25)
"l(in)(f°)

Similarly, we can choose as a second approximation for ^2(out) 
after an initial approximation of 1,

'̂ 2(out) (0) = A = _ J ! ______  (6.25)
"l(out)(P°)

To summarize, after the first trial integration with 
eigenvalue and boundary conditions

^1 (0) = u^(R) = 0
and (0) = u ^(r ) = i

in the limit as R , the resulting function contains a

mismatch at ^o. In order to attempt to obtain a function which is 
continuous and has continuous first derivative at fo, we take a second 
approximation to the eigenvalue, E^ + AE^, and choose new boundary 
conditions

u^(0) = U^(R) - 0
and u^(o) = A , u (R) = B

W e  continue to take successive approximations in this way
until convergence on the eigenvalue is obtained and the inward and

outward functions u_,. \ and u,, and their first derivatives, areKin) Kout)
equal at fo.

The numerical integrations (both inward and outward) are actually 

carried out using Merson’s method, a variation on the standard Runge- 

Kutta method (Lambert, 1973, Ch.4). The variation involves altering 
the steplength at each calculation in order to keep the solution within 

given error bounds. This method is carried out in the NAG library 
subroutine D02ABF. The integrals involved in the calculation of N 
(equation (6.20)) are also calculated numerically by the method 
described by Gill and Miller, 1972, using the NAG library subroutine 

DOIGAF .
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The program which calculates these continuum functions 
is WTCOUL and is described in more detail in Appendix (I).
6.2.2. Starting the Outward Integration

As (p) has a singularity at f = 0, an approximation for 
Uĵ Cf) using a series expansion must be found in this region. The 

Schrodinger equation can be rewritten
p ̂  d^ u^ + [e^ p ̂  + 2oc,p - (m^ - 1/4)} = 0 (6.27)

de^
ie p ̂  d^ u- + r(p) u. = 0 (6.28)

where r(f) = p̂ o f^ (6.29)
2with r = -m + 1/4 )

° )
r = 2«(o ) (6.30)

)
^2 " ^1' )

Now writing u^ as a series in p , we have
OO<T n-Hs

“l = n=0 • (6.31)
On substituting equation (5.31) into equation (6.28), it is seen that

nSo "-a + pSo vio \  ^p K  = ° ' (6-32)
Matching the coefficients of the powers of p in the two series in 

the above expression, we obtain the following conditions which must 

be satisfied:
(i) for the coefficient of : a s(s-l) + a r = 0\ o o o
(ii) for the coefficient of p  ^ : a. (s-l)s + a.r + a r̂  = 0

V J . JL O  O  J .

(iii) for the coefficient of ^ (k > 2):

a^(s + k) (s + k - 1) + â .r̂  t + a^.2’̂2 = ° '
Now condition (i) gives

r — —s(s—1) (6.33)o
ie s = 2 - m . (6.34)

The regular solution for u^ (p) is obtained when s is given its highest 

value, ie when
s = J + l m | ,  (6.35)
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Solving the equations in a^, a^ . successively, substituting

in this value for s, the following results for a^, a. and a^ are
obtained. As we are only considering this series expansion as a

1+solution close to p = 0, we neglect terms of order p and higher.

â  = 2 oto a = b. a (5.35)a

^2 = - Ei(l+21nil)) (5.36)b

4(1+2I m l )(1+|m()
a.3 = (o( E_ (6|ml+ 5) - 4^ a = b a (5.36)c

3 ^O 1 O O J O

6(1+2Iml)(1+Iml)(3+2Iml)

We now have the solution
U^(p) = (l+b^ç+ bgf^ + bgf^) + 0 (f^) (5.37)

where A is a constant (in fact the same constant given by equation 

(5.21)a).

It is interesting to note here, that if no Coulomb term is 

included in the Hamiltonian when calculating this final state function 

(ie when = 0), then b^ and b^ are both zero and so the terms in 
înil + 5/2 p Y/2 not included in this series expansion for

the wavefunctions near the origin. As the behaviour of the wavefunction 

near the origin determines the nature of the function elsewhere, the two
c a s e s  at = 0 and 1 (ie the pure Landau and Coulomb-modified cases o
respectively) must produce wavefunctions of a different character. This 

emphasizes the importance of including the effect of the Coulomb force 

of the nucleus in calculating the free wavefunctions. It will be seen 

later, in fact, that these wavefunctions (with the Coulomb term included) 

are not only different from the pure Landau levels, but also have very 
different energy eigenvalues for the field strengths which are considered 

here. The structure of the Coulomb-modified continuum is discussed in 
more detail below.

To ensure that equation (6.37) gives an accurate description of the 

wavefunction in the region p = 0, it is necessary that the second difference



-165-

of u^(p) agrees with (p) to reasonable accuracy. It is found

that evaluation of u^(p) at the three points 0.09, 0.1 and 0.11, gives
9agreement to two decimal places for B 4 10 G. This is illustrated for

the Coulomb-modified case in table 6.1 and for the pure Landau case in
7 9table 6.2, both for B = 10 and 10 G, when |m I = 1. It is expected 

that the results are in equally good agreement for intermediate field 
strengths and energies and also for other values of m. A further check 

is that by running the code with = 0, the numerical solution is 

identical to six figures with the analytic Landau solution.
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B
(G)

"l 
( Ry)

f u(p ) ^ ̂ u(O.l) 
(Sf)2

u"(0.1)

10^ 3.72 0.09 0.0286556
0.1 0.0337824 3.208 3.207
0.11 0.0392300

6.31 0.09 0.0286553
0.1 0.0337820 3.208 3.206
0.11 0.0392290

20 0.09 0.0286538
0.1 0.0337798 3.206 3.205
0.11 0.0392263

10^ 2.14 0.09 0.0286322
-

0.1 0.0337487 3.180 3.179

0.11 0.0391832

4.36 0.09 0.0286075

0.1 0.0337132 3.150 3.149
0.11 0.0391339

20 0.09 0.028434

0.1 0.0334631 2.940 2.939

0.11 0.0387865

Table 6,1
Table to illustrate the agreement between  ̂̂  u and u at p = 0.1

7 9for the field strengths B = 10 and 10 G and energies up to 20 ̂ Ry 

c< ̂  = 1, ie the Coulomb-modified case is considered and |ml =1.
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B
(G)

"l 
( ^  Ry)

f u(p ) 5^ u(O.l)
(%p)2

u" (0.1)

10^ 2 0.09 0.0269998
0.1 0.0316224 2.373 2.371
0.11 0.0364824

4 0.09 0.0269995

0.1 0.0316221 2.366 2.371
0.11 0.0364819

20 0.09 0.0269977

0.1 0.0316194 2.370 2.369
0.11 0.0364782

10^ 2 0.09 0.0269767

0.1 0.0315891 2.344 2.342
0.11 0.0364359

4 0.09 0.0269535

0.1 0.0315555 2.314 2.313

0.11 0.0363890

20 0.09 0.0267674

0.1 0.0312864 2.079 2.077

0,11 0.0360133

Table 6.2

Table to illustrate the agreement between (“Se)^ and. u at p = 0.1
7 9when 5 p =0.01 for field strengths B = 10 and 10 G and energies up to

20 ^Ry. << ^ = 0, ie the pure Landau case is considered.
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6.2.3 Starting the Inward Integration

The inward integration is started in a region where lu (̂p)l 

is small and û (p,) is slowly tending to zero. Assume that V^(E^,p ) 
does not vary rapidly in this region, then an approximate solution can 
be given by

u^(p) -  [ Ce-̂ 1̂̂  + De"  ̂ (6.38)

and we require the solution which tends to zero as f increases. Its 

values at three points, equally spaced in p , will be approximately in 

geometric progression. Consider the values of u^ at R t Sp , R and 
R - Sp , and let the solutions here be

u^ (R + Sp ) =
1+x

u^ (R) = c
(6.39)

u^ (R- Sp) = c (Itx ) 
(Hartree, 1955) where c is a constant. We can write

u^^(R) = 5̂  ̂u^ + 0 / u. (6.40)

(Sp): (Sp)'

(Froberg, 1965) and so

Uj_ = (6f)^ c (E^, R) + 0 (6.41)
2 2 but s = c (1+x) - 2c + c = cx

1+x 1+x
(the second finite difference) and so we can write

(5.42)

* = Î C (Sf)^ + / 1 (Sp)* V p  + 4 (Sp)2 V^l ] (5.43)

where (E^,R). We can now obtain values for (R + Sp) and

u^(R) (to within an arbitrary multiplying constant). Table (6.3) shows

that there is very good agreement between u "(R) and u(R) for the
(Sf)2

field strengths which are considered here when Iml = 1, if R is taken 

to be a sufficient distance from the classical limit of the wavefunction, 

We illustrate here, only the Coulomb-modified case and only the lowest 

(estimated) energy eigenvalue E^, for each of four field strengths.
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Again, it is expected that results for other values of and

m are in equally good agreement, as long as R is large enough.
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6.2.4. Estimating the Energy Eigenvalues of the Continuum States

In order to find solutions for U2( p) by the method described 
in §6.2, it is necessary to first obtain good estimates for the 
corresponding energy eigenvalues. It has been shown by Kemble, 1958 

and others, that if the wavefunctions are calculated according to the 

WKB approximation, then, even though the WKB wavefunctions are quantum- 
mechanical, their corresponding eigenvalues can be calculated by the 
semi-classical Bohr-Sommerfeld quantisation condition

j {V2(Ei , p )}  ̂dp = 4 = 0 , 1 ......  (6.44)

where VgCp^^ = Vgfpg) " 0 ) (6.45)

(ie p ̂  and ^^e the classical turning points) and

V (p) = E - V ( p ) - _ ^  , (6.46)

Although the eigenvalues calculated by this method will not be the

exact eigenvalues corresponding to the wavefunctions calculated by the 
method described in§6.2, they will provide a good first approximation, 

as we would expect these wavefunctions to be of a similar form to those 

calculated using the WKB approximation. These approximate eigenvalues 
are calculated from equation (6.44), evaluating the integral numerically 

by the method described by Patterson (Froberg, 1955) using subroutine - 

DOIACF from the NAG library, increasing the energy until Z  has increased 

from k to k+1 where k is an integer. Results are shown in tables6.4 - 

6.7 for the energies which lie in the continuum for various integer values 
of Z  withIml= 1. The spacings between the levels are also given in these 

tables.
Starace, 1973, calculated these energies and energy spacings for

hydrogen by a similar method, but for low field strengths (of the order

of 10^ and lO^G). The energies and energy spacings in this case, were
calculated by differentiating equation (6.44) - it is expected that these 
results are accurate for low fields, as the wavefunction with the lowest



-170-

energy in the continuum has a large value of ^ = 69 for
L|.B = 10 G). It is seen from tables 6.4 - 6.7, that as the field

strength increases, the value of Ji . decreases. In this respect,min  ̂ ’
the structure of the continuum differs greatly from the pure Landau 

continuum, as the lowest Landau function, regardless of field strength, 

always has = 0 (Dingle, 1952). Indeed, as expected, the deviation

becomes greater as the field strength decreases. For the higher field 

strengths which are considered here, it is believed that, due to the 

small values of ^  involved, it is better to calculate the energy spacings 

directly.

It was also pointed out by Starace, 1973, that at the low fields 

which he considers, near threshold, the energy spacing is approximately 
3 y Ry, decreasing to 2 V Ry in the limit as E^-* (ie in the Landau limit). 

This 3 y Ry spacing at low fields was first observed experimentally by 

Garton and Tomkins (1969) in their work on the principal series of Bal.

This result can be clearly seen from the spacings given in tables 6.4 - 6.7, 

where energies are given until the spacing is as low as 2.1 Y Ry, ie the 

Landau limit is almost reached where the spacing is 2 Y Ry. The presence 

of the Coulomb force, it is shown, has the effect of increasing the level 
spacings to a maximum of about 3 Y Ry and this is illustrated in figure 6.1. 

It is clear from these results, that the Coulomb field is certainly non- 

negligible in the range of field strengths which we are studying. In fact
7at B = 10 G, the whole structure of the continuum will be completely 

different, with the lowest wavefunction having principle quantum number 

^  =7. For this reason, it is also expected that results for the 
photoionization cross-sections are different when the Coulomb force is 

included in the system.
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fl f2 Ê '̂ Ĉ y Ry) Energy 
Spacing (YRy)

0.498 91.186 7 2.717 2.60
0.497 101.347 8 5.309 2.48
0.495 110.634 9 7.789 2.40
0.494 119.215 10 10.190 2.34
0.493 127.219 11 12.534 2.30
0.492 134.740 12 14.834 2.25
0.491 141.852 13 17.100 2.24
0.490 148.612 14 19.338 2.22
0.489 155.065 15 21.551 2.20
0.487 161.251 16 23.750 2.18
0.485 167.197 17 25.931 2.16
0.485 172.929 18 28.097 2.16
0.484 173.469 19 30.252 2.14
0.483 183.835 20 32.396 2.14
0.482 189.041 21 34.531 2.12
0.481 194.101 22 36.657 2.12
0.480 199.027 23 38.776 2.12
0.480 203.828 24 40.889 2.10
0.479 208.514 25 42.996 2.10
0.478 213.093 26

1
1
1
1

45.097 1
1
1
1
2.00

Table 6.4-

The energies and energy spacings (in ^Ry) of the
7modified Landau levels for I ml = 1 at B = 10 G calculated using the

Bohr-Sommerfeld quantization .condition. The values of ^  , and
the classical turning points are also given. The levels for JL < 1  
do not exist.
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Fl F2 ^1 
( y Ry)

Energy Spacing ( y Ry)

0.485 21,951 3 2.033 2.40
0.474 26.029 4 4.435 2.28
0.465 29.552 5 6.725 2.22
0.456 32.688 6 8.949 2.18
0.448 35.541 7 11.131 2.16
0.441 38.172 8 13.283 2.14
0.434 40.628 9 15.414 2.12
0.428 42.937 10 17.527 2.10
0.422 45.124 1111

Oo

19.627 1112.00

Table 6.5
(^) (^)The energies = E -m and energy spacings (in ^ Ry) of the

g
modified Landau levels for )ml = 1 at B = 10 G calculated using the 

Bohr-Sommerfeld quantization condition. The values of ^  and the 
classical turning points are also given. The levels ^  = 0,1,2 

do not exist.
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fl ^2 E^( V Ry) Energy Spacing ( Y Ry)

0.429 9.300 2 2.643 2.22
0.400 11.190 3 4.857 2.14
0.378 12.799 4 7.006 2.12
0.360 14.223 5 9.120 2.10
0.345 15.513 6 11.211 2.08
0.332 16.700 7

11
13.286 11

2.00

Table 6.6
( 0) ( 0 )The energies = E -m and energy spacings (in Y  Ry) of the

gmodified Landau levels for 1ml = 1 at B = 5 x 10 G calculated using

the Bohr-Soramerfeld quantization condition. The values of ^  and

the classical turning points are also given. The -f = 0 and 1 levels 
are missing.

fl f2 E^( Y  Ry) Energy Spacing ( Y  Ry)

0.420 5.265 1 1.140
2.22

0.372 6.856 2 3.363
2.14

0.340 8.139 3 5.503
2.10

0.317 9.242 4 7.604
2.08

0.298 10.224 5 9.680
2.06

0.283 11.117 6 11.743
2.06

0.270 11.943 711oo
13.794 . 1

1
2.0 0

Table 6,7

The energies E^ = E -m and energy spacings (in Y Ry) of the
9modified Landau levels for 1ml = 1 at B = 10 G calculated using 

the Bohr-Sommerfeld quantization condition. The values of and

the classical turning points are also given. Note that at this

high field only -f = 0 is missing.
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Figure 6.1

Energy spacing in Y Ry of the discrete levels in the Coulomb modified 
continuum in the interval [2,16] Y Ry for B = 10^, 10^, 5 x 10^ and

910 G.
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6.2.5. Results for Energies and Wavefunctions

Having calculated good initial estimates for the energy

eigenvalues, the function u^(^) can then be calculated by the
method described in $6.2.

In computing these functions, we obtain agreement at the
matching point to 4 figures in u^(^) and its first derivative.

Table (6.8) gives the final results for the energies of all the
7 8 8continuum states which lie below 8 Y  Ry at B = 10 , 10 , 5 x 10 and 

lO^G for m = 0,- 1.
7At B = 10 G the lowest six Landau levels disappear, and the

lowest surviving continuum discrete state is ^  = 6, m = 1 at 1.961 Y Ry,
while for m = 0 or m = -1 the lowest state has ^  =7.

gAt the highest field strength considered (10 G) there are 

discrete states corresponding to each of the Landau levels for m = 1, 

and for all except ^  = 0 for m = -1, while they begin at = 2 for 
m = 0. The lowest level shifts in .energy from V to 0.67 fRy.

Table (6.8) also gives the energies of the ( ^  ,m) discrete 

Landau levels in the absence of any Coulomb attraction (given by equation

(5.17)). We see that the energy shifts can be very large when V is
7small: for example, for the lowest level at 10 G, the shift is more

9than 13fRy. However, for 10 G, the lowest level has a shift of only 

about 2.3 YRy, and similar shifts persist to very high / . The spacing 

of the unperturbed levels is fairly close to the semi-classical value

A E, ... ,(6.47)
given by Starace (1973), however, this value refers to E = 0 and nol 

to the actual levels.
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B(G) Z ^m = -1 Em̂=-1 ^m= 0 m = 0 ^m =1 Ê .m=1

10^ 6 - - 1.96090 15
7 2.72564 15 1.02009 15 4.72564 17
8 5.31670 17 3.79300 17 7.31670 19
9 7.79648 19 6.39200 19 -

lo' 2 - - 1.41470 9
3 2.0488 7 0.54390 7 4.04888 11
4 4.45037 9 3.20969 9 6.45037 13
5 6.73956 11 5.63640 11 -

6 - 7.94700 13 -

5 X 10® 1 0.30852 3 - 2.30852 5
2 2.66137 5 1.56361 5 4.66137 7
3 4.87242 • 7 3.98075 7 6.872 9
4 7.02042 9 6.23796 9 -

10® 0 - - • 0.67461 3

1 1.16075 3 - 3.16075 5

2 3.37873 5 2.52522 5 5.37873 7
3 5.51588 7 4.81222 7 7.51588 9
4 7.61436 9 6.99740 9 -

Table 6.8

Energy eigenvalues of the discrete states in the Coulomb-modified 

continuum (E) and the pure Landau continuum (E^) in VRy, for those 
states which lie in the region CO,8] Y Ry in the Coulomb-modified 

continuum.
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Figure 6.2
7Continuum radial functions u^(^) at B = 10 G , with m^ = -1 and 

-  1 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are and E^^ V* Ry 
respectively.

Figure 6.3
7Continuum radial functions u^ (̂  ) at B = 10 G , with m^ = -1 and 

= 8 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are Ej__ and E^^ Ry 

respectively.

Figure 6.M-
7Continuum radial functions u^(^) at B = 10 G , with m^ = -1 and 

= 9 in the Landau (broken'line) and Coulomb modified (continuous 

line) cases, where the energies of the states are Ej__ and E^^'^ Ry 

respectively.

Figure 6.5
g

Continuum radial functions u^ (^) at B = 10 G , with m^ = -1 and 
< = 9 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are E^and E^^Y" Ry 

respectively.
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Figure 6.6
g

Continuum radial functions u^(^»)at B = 1 0 G  , with m^ = -1 and
^ = 4 in the Landau (broken line) and Coulomb modified (continuous 
line) cases, where the energies of the states are and E^^ y Ry 

respectively.

Figure 6.7
7Continuum radial functions u^ (.̂ ) at B = 10 G , with m^ = -1 and 

^  = 5 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are E^ and E^^ V'Ry 
respectively.

Figure 6.8
gContinuum radial functions u^(^)at B = 5 x l O G  , with m^ = -1 and 

= 2 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are Ej_ and E^^y Ry 

respectively.

Figure 6.9

Continuum radial functions u^ (^) at B = 5 x 10 G , with m^ = -1 and 
^  = 3 in the Landau (broken line) and Coulomb modified (continuous
line) cases, where the energies of the states are E ̂ and E^^ Y  Ry 

respectively.

Figure 6.10
g

Continuum radial functions u^(f)at B = 5 x 10 G , with m^ = -1 and 

^ = 4 in the Landau (broken line) and Coulomb modified (continuous

line) cases, where the energies of the states are E^ and E^^Y^Ry 

respectively.
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Figure 6.11
gContinuum radial functions u^&(f) at B = 10 G , with m^ = -1 and 

= 1 in the Landau (broken line) and Coulomb modified (continuous 
line) cases, where the energies of the states are Ej_ and E^^ VRy 
respectively.

Figure 6.12
gContinuum radial functions u_̂  (^) at B = 10 G , with râ  = -1 and 

^  -  2 in the Landau (broken line) and Coulomb modified (continuous 
line) cases, where the energies of the states are and E^^ -y Ry 

respectively.

Figure 6.13
gContinuum radial functions u_^(p) at B = 10 G , with m^ = -1 and 

^ = 3 in the Landau (broken line) and Coulomb modified (continuous 

line) cases, where the energies of the states are E ̂ and Ê _ 'v Ry 

respectively.
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It is also interesting to note that there is no longer any

degeneracy in the energy levels, ie the degeneracy is lifted by the

Coulomb field, whereas for the bound states it is broken by the magnetic
field. This results in different sets of energy levels for each m which
must cause a significant change in the photoionization cross-sections from

the pure Landau case.

The label ^  is, both in the Landau and Coulomb-modified case,

the principal quantum number and gives the number of nodes in the radial

wavefunction (Powell and Crasemann, p.135). Some of the Coulomb-modified,
radial continuum wavefunctions û (ç>), for m = -1 are plotted with the

corresponding Landau wavefunctions of the same principal quantum number

for various field strengths in figures 6.2 - 6.13. As predicted, these

2 sets of wavefunctions are very different in a region where the Coulomb

field is not of negligible strength compared to the magnetic field, for
7instance at B = 10 G, the wavefunctions corresponding to the ^ = 7 , 8

and 9 states have opposite sign near the origin and are almost exactly
9out of phase in the region ^ 2 ^ *  At B = 10 G however, where the

Coulomb field becomes less important, the two sets of wavefunctions for 
the 1, 2 and 3 states are more similar and certainly have closer 

corresponding energies. In each case, it can be seen that the Coulomb 

attraction draws the electron to smaller as expected. Similar behaviour 

is predicted for other values of m.

§6.3 Photoionization Cross Sections

We are now in a position to calculate the photoionization cross- 

section using the Coulomb modified continuum wavefunctions given by

= C (6.48)

where C is a normalizing constant and u^(^) is defined numerically at a 

number of points in the interval [0,R] . The formula for evaluation of
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the photoionization cross-section is given by equation (5.7) with the

exception that the sum over will start from ̂  . and not 0, as themin
principle quantum number of the state of lowest energy in the continuum
may be positive (as explained in 5.2.4-).

:
2trL

2 2Writing C - N , where N is the normalization constant such that
z

.2N Jü^(^) u^(^) d^ = 1, (5.49)
2then we obtain the following expression for the matrix element I :

j yx=-1i f  2ttL z
d pd^x I 2 ^  . (G'SO)

This can be reduced to the form ^
^ 2

K [R ' (/Î, s) K Z(o<,S,k̂)  ̂ (5.51)
if A m = - 1 and 

2
^  ̂̂  (p-lfS) X. Z(f̂ +̂ yls. ) (5.52)h

if Am = 0, where Z( << , S ,k^) is defined by equation (5.24) and 

fR is given by
(^»S) = p^+5/2 g • (5.53)

The dependence of the total photoionization cross-section on 

k^, within this model, is exactly the same as that for the pure Landau 

case. For this reason, the behaviour of the cross-section near to the 

threshold energies, also remains unchanged (see section 35.4). As there 

is no longer any degeneracy in the continuum energy levels, there will now 

be some finite, as well as infinite, peaks occurring in the total cross- 

section due to the contributions from the terms whose k^ dependence at 

threhold is as k^ (table (5.2)). This is apparent from the results 
plotted in figures (5.15) - (5.22).

The initial bound state wavefunctions "Is " and "2p " used ino ^o
these calculations are exactly the same as those used to obtain the results 

of Chapter 5, and are given by table (5.1).
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Total photoionization cross-sections and the contributions

from each of the possible (Coulomb-modified) continuum levels given by

(equation (5.1)), are calculated by program QMATl, details of

which are given in appendix (I). Results for the total cross-sections
from the bound "Is " and "2p " states are tabulated in tables 6.9 - 6.12o o

7 8 8 9for B = 10 , 10 , 5 X 10 and 10 G, with the energy of the final state

in the range V < < 8 V Ry. The contributions to the total cross-
+ . 7 9sections from the m^ = 0, - 1 continua for B = 10 and 10 G are also given

in tables 6.13 - 6.18. For the same reason as in the pure Landau continuum
(Chapter 5), the total photoionization cross section is much smaller than
the field-free cross section within 10 v Ry above the threshold energy.

In addition, for all field strengths studied here, the total photoionization
cross sections are also smaller than those calculated with the Landau
continuum. This is due to the difference in the nature of the final state

wavefunctions in the two cases. It can be seen from figures 5.2 - 5.13,

that in the case of the Landau continuum, the radial wavefunctions are

almost entirely confined to the classically allowed region ^  ^ ^ g

where ^^ and  ̂are the roots of V^(^) = 0. However, the Coulomb

attraction draws the electron to smaller ^ , with the result that there
is considerable oscillation in the region of overlap with the bound state.

Consequently,the radial matrix element will tend to be much smaller in the
9Coulomb modified case. At 10 G however, there is little difference in

the wavefunctions other than a drawing in of the modified function by
about 1̂ 0 • The difference in the results for the radial part oflR^^l

is illustrated in figure 5.14, where ^ is plotted against the function

u^(^) 2 Q-Sf^ (ie the radial integrand of R^^ when /3 = 1 and / = 1)
9for the Landau and Coulomb modified cases at B = 10 G and with m^ = -1.

It is clearly seen that when the integral of the function between 0 and

to is calculated, the result will be much smaller for the Coulomb modified

case than for the Landau case.
It is found that for high field strengths and large ^  , the Landau 

model is in good accord with the Coulomb modified model, in the sense that
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giving both cases the same threshold, the values of the -̂  = ^

contribution in each model agree well away from threshold. This is

illustrated in figure 6.25 for the m = -1 contribution to the photoio-
9nization of the "2p^" bound state at 10 G. However, because of the 

large shift in the thresholds, and the change in threshold behaviour 

(see section §5.4), the overall cross-section is very different in the 

two models. As expected, the Coulomb-modified cross-sections are much 
smaller, especially at low fields. For this case (2p^-» m = -1) the 

cross-section shows a series of finite peaks or resonances at each 

discrete state energy, but decreases monotonically between peaks. For 

photon energies in the range E(4^ , m) < hv* < E (/^+1  ̂ m) the 

dominant contribution comes from ^ those for ^  being
small. The results are similar for all A m = - 1 transitions, but for 

photoionization from "Is^" the threshold peaks are infinitely high in 

this model (figure 6.23).

The cross-section for A m = 0 transitions is shown for the same 

two cases in figures 6.25 and 6.26. Here the infinite peaks occur for

"2p^", but the cross-sections are no longer necessarily monotonie
decreasing between peaks. It is shown in section §5.6, how this maximum 

arises for a Landau continuum function and very simple model wavefunctions 

for the bound states. The actual location and shape of the secondary 
maxima depend, in a sensitive manner, on the details of the wavefunctions.

The total photoionization cross sections from the "Is^" and "2p^"
7states at B = 10 G are given in figures 6.15 and 6.16 respectively. The 

"Is^" cross section above the lowest ( ^  = 7, m^ = 0) threshold is very

small, but above the first m_ = 1 threshold is characterized by two series

(m^ = - 1) of narrow resonances. These are small features, probably 

unobservable, at higher m^ = 0 thresholds. The cross-section, away from 

the resonances, is very much smaller than the field free cross-section 
in this narrow range of photon energies (from threshold to 0.5eV). The 

"2p " cross section has a rather different structure. It is zero below
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the lowest ( ^ = 7, = 0) threshold, where there is a strong

resonance peak, and this series of resonances at each successive = 0 
threshold is the dominating feature. Between these resonances there are 
discontinuities at the m^ = - 1 thresholds, and for Â  >  3 the cross 

section tends to rise almost monotonically between resonances. For 

sufficiently large (not shown) it eventually starts to decrease, and 
finally goes over to the Landau value.

g
At B = 10 G, the Is^ cross section (fig.5.17) has a slightly more 

complex behaviour. There is a peak after the first (3,0) level and 

the total cross-section is not necessarily monotonie, decreasing between 

the threshold peaks. There is a tendency for it to increase soon after
7the m^ = 0 peaks, which are again very small. As at B = 10 G, the 

cross-section eventually starts to decrease for some J  and again goes 

over to the Landau limit. The 2p^ cross-section (fig.5.18) is different
7in character from the B = 10 G case, in that, in general, it is seen to 

be decreasing from about 3 YRy, which is what we would expect for the 

higher field strength. Also, the peaks corresponding to the m^ = - 1 

continuum states are now much larger. No secondary maxima occur in this 

cross-section, but it is not monotonie decreasing between the levels (3,0) 
and (2,1).

g
The Is^ cross-section at B = 5 x 10 G (fig.6.19) is now seen to be

decreasing, in general, from about 2.5 VRy. The first continuum level is

no longer an m^ = 0 level, but an m^ = -1 level where there is an infinite

peak. The threshold peaks become smaller with increasing energy and are

probably undetectable after about 5 Y Ry (when broadening is included) and

secondary maxima occur at about 3.8, 6.2, and 7.6 Y  Ry, with a stationary

point also at about 5.2 VRy. The 2p^ cross-section at this field

strength (fig. 6.20) has a dominant resonance corresponding to the (1,1)

continuum level and from there, rapidly decreases with increasing energy.

There is also a fairly wide resonance, though not so high as the (1,1)

resonance, at the (1,-1) level and no secondary maxima are seen in this 
cross-section.
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9At 10 G, the "Is^" cross-section (shown in fig 5.21) shows 
a broad resonance at the threshold of the lowest ( -̂ = 0 , m = 1 ) 
discrete level, and narrow resonances at all the higher m = 1 and 
m = -1 thresholds. In general it decreases quite smoothly between 
the resonances, except for a weak secondary maximum when E = h-u - I^

lies between 5 Y and 7 YRy. On these m^ = - 1 contributions, is 
superimposed the mu = 0 contribution, which shows broad peaks above 
each m^ = 0 threshold. These peaks have widths of the order of 0.5 V Ry 
( Y = 0.43) so should be readily resolved, while apart from the

( ^ = 0, m^ = 1) case the other peaks may be too narrow to detect. The
"2p^" cross-section (fig 5.22) has a broad feature at the lowest 
( ^  = 0, m_j. = l) threshold with a secondary (m_ = -1) peak on its
shoulder and the same pattern is followed at each higher m̂ - - 1 threshold
with the secondary m_ = -1 peak becoming relatively weaker. The mu = 0 
thresholds new show very strong resonances which become increasingly 

narrow as increases. No non-threshold secondary maxima are seen.
In general, it is seen from the results given by figs 6.15 - 5.22, 

that the overall behaviour of the cross-sections, is, as in the Landau 
continuum case, that illustrated by fig 5.10, although (as already 

discussed) the cross-sections in this case, are much smaller.
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0.8

-  0-4

- 0.8

VJ

1 G . 012.0

Fig 6.14 

3/ _ 2
The function 1(^0 = ^ (^0 Ç   ̂e plotted against ^
The function u. m = -12̂ (^) is the radial part of the continuum state
wavefunction for the Landau continuum (broken line) and the Coulomb
modified continuum (continuous line).
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Figi-ire 6.15

—18 2The photoionization cross-section (10 cm ) from "Is^" to the
7Coulomb modified continuum at B = 10 G . The corresponding ( ,m)

are given by the peaks and the energy is measured in units of / Ry above
the field dependent ionization threshold.
Figure 6.16

-18 2The photoionization cross-section (10 cm ) from "2p^" to the
7Coulomb modified continuum at B = 10 G . The corresponding (/ ,m)

are given by the peaks and the energy is measured in units of V  Ry

above the field dependent ionization threshold.

Figure 5.17

- 1 8 2The photoionization cross-section (10 “ cm ) from "Is^" to the
3Coulomb modified continuum at 3 = 10 G . The corresponding (^ ,m)

are given by the peaks and the energy is measured in units of y Ry
above the field dependent ionization threshold.

Figure 6.13

-18 2The photoionization cross-section (10 cm ) from "2p^" to the
3Coulomb modified continuum at 3 = 10’G . The corresponding (^,m) 

are given by the peaks and the energy is measured in units of Y Ry 
above the field dependent ionization threshold.

Figure 5.19

-18 2The photoionization cross-section (10 cm ) from "Is^" to the
3Coulomb modified continuum at 3 = 5 x 10 G . The corresponding (/ ,m)

are given by the peaks and the energy is measured in units of V  Ry
above the field dependent ionization threshold.

Figure 5.20
-18 2The Dhotoionization cross-section (10 cm ) from "2p " to theo3Coulomb modified continuum at 3 = 5 x 10 G . The corresponding (-̂ ,m)

are given by the peaks and the energy is measured in units of / Ry
above the field denendent ionization threshold.
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Figure 6.21

—18 2The photoionization cross-section (10 cm ) from "Is^" to the

Coulomb modified continuum at 3 = lO^G . The corresponding (^,m)
are given by the peaks and the energy is measured in units of Y Ry
above the field dependent ionization threshold.
The zero field cross-section is given by the broken line.

Figure 6.22

-18 2The photoionization cross-section (10 cm ) from "2p^" to the
Coulomb modified continuum at 3 = lO^G . The corresponding
are given by the peaks and the energy is measured in units of Y Ry
above the field dependent ionization threshold.

The zero field cross-section is given by the broken line.

Figure 5.23

The Dhotoionization cross-sections (10 ^^cm^) from "Is " to theo
g= -1 continuum at 3 = 10 G in the Landau (broken line) and 

Coulomb modified (continuous line) cases. The numbers by the peaks 
indicate the corresponding principle quantum number (/) and the energy 
is measured in units of Y Ry above the field dependent ionization 

threshold.

Figure 6.2M-
-13 2The photoionization cross-sections (10 “ cm") from "2p^" to the

9m^ = -1 continuum at 3 = 10 G in the Landau (broken line) and 

Coulomb modified (continuous line) cases. The numbers by the peaks 
indicate the corresponding principle quantum number (/) and the energy 
is measured in units of Y" Ry above the field dependent ionization 

threshold.
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Figure 6.25

—18 2The Dhotoionization cross-sections (10 cm ) from "Is^" to the
gm^ = 0 continuum at B = 10 G in the Landau (broken line) and 

Coulomb modified (continuous line) cases. The numbers by the peaks 
indicate the corresponding principle quantum number ( i ) and the energy 
is measured in units of Y Ry above the field dependent ionization 
threshold.

Figure 6.26
-18 2The photoionization cross-sections (10 cm ) from "2p^" to the

gm^ = 0 continuum at B = lO^G in the Landau (broken line) and 
Coulomb modified (continuous line) cases. The numbers by the peaks 
indicate the corresponding principle quantum number (^) and the energy 
is measured in units of Y Ry above the field dependent ionization 
threshold.
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Energy of the Final 
State in y Ry

Total Photoionization 
Cross Section from 

"Is " State in

lO’^^cm^

Total Photoionization 
Cross Section from 
the "2p " State in

lO'^^cm^

1.02009 (7,0) 0
1.021 1.268(-5) 5.378(-2)
1.2 1.774(-4) 3.403(-3)

1.4 2.565(-4) 2.04K-3)
1.6 3.152(-4) 1.428(-3)
1.8 3.637(-4) 1.055(-3)
1.96 3.976(-4) 8.42K-4)
1.96090 (6,1) oo 8.410(-4)
1.961 5.517(-1) 9.008(-4)

2.0 2.830(-2) 1.978(-3)
2.2 1.175(-2) 3.498(-3)
2.4 8.844(-3) 4.339(-3)
2.6 7.460(-3) 4.979(-3)
2.72 6.914(-3) 5.307(-3)
2.72564 (7,-1) oo 5.322(-3)
2.726 2.85K-1) 5.410(-3)

2.8 2.599(-2) 6.763(-3)

3.0 1.615(-2) 8.355(-3)

3.2 1.332(-2) 9.485(-3)

3.4 1.176(-2) 1.042(-2)

Table 6.9a
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in

10"^®cm^

Total Photoionization 
Cross Section from 

the "2p " State in

10"^^cm^

3.6 1.073(-2) 1.122(-2)
3.79 9.997(-3) 1.19K-2)
3.79300 (8,0) 9.987(-3) O O

3.794 9.996(-3) 3.944(-2)
4.0 9.548(-3) 1.422(-2)
4.2 9.139(-3) 1.417(-2)
4.4 8.795(-3) 1.440(-2)
4.5 8,505(-3) 1.47K-2)
4.72 8.350(-3) 1.49K-2)
4.72564 (7,1) OO 1.492(-2)
4.726 2.889(-l) 1.50K-2)
4.8 2.779(-2) 1.633(-2)
5.0 1.823(-2) 1.784(-2)
5.2 1.56K-2) 1.89K-2)
5.31 1.476(-2) 1.943(-2)
5.31670 (8,-1) 1.946(-2)
5.317 3.148(-1) 1.952(-2)
5.4 3.223(-2) 2.092(-2)
5.6 2.307(-2) 2.262(-2)
5.8 2.010(-2) 2.393(-2)

Table 6.9b
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in

10“^®cm^

Total Photoionization 
Cross Section from 

The "2p " State in

10"^^cm^

6.0 1.838(-2) 2.505(-2)

6.2 1.719(-2) 2.604(-2)
6.39 1.633(-2) 2.690(-2)

6.39200 (9,0) 1.632(-2) oO

6.393 1.633(-2) 4.048(-2)
6.4 1.632(-2) 3.17K-2)
6.6 1.574(-2) 2.853(-2)
6.8 1.52K-2) 2.896(-2)
2.0 1.476(-2) 2.95K-2)
7.2 1.437(-2) 3.006(-2)
7.31 1.418(-2) 3.036(-2)

7.31570 (8,1) 3.038(-2)
7.317 3.168(-1) 3.045(-2)

7.4 3.22K-2) 3.174(-2)
7.6 2.360(-2) 3.320(-2)

7.79 2.112(-2) 3.426(-2)

7.79648 (9,-1) oo 3.429(-2)
7.797 2.480(-l) 3.437(-2)

7.8 1.082(-1) 3.450(-2)

8.0 3.108(-2) 3.672(-2)

Table 6.9c

Total photoionization cross-sections for transitions from the bound 

states "Is^" and "2p^" to the Coulomb-modified continuum at B = lO^G 

(■̂ ,m) is given when the final state energy corresponds to the energy 

of a discrete level in- the continuum.
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from

"Is " State in

10"^^cm^

Total photoionization 
Cross Section from

The "2p " State in

lO’^^cm^

0.54390 (3,0) 0 O O

0.544 1.447(-3) 5.003(-l)
0.6 2.072(-2) 1.160(-2)
0.8 2.098(-3) 1.534(-5)
1.0 4.237(-3) 2.984(-3)
1.2 2.074(-2) 7.305(-3)
1.41 3.654(-2) 1.123(-2)
1.41470 (2,1) 1.13K-2)
1.415 7.115(-1) 1.517(-2)
1.6 9.623(-2) 9.986(-2)
1.8 9.059(-2) 1.264(-1)
2.0 7.790(-2) 1.389(-1)
2.04888 (3,-1) CTO 1.407(-1)
2.049 9.110(-1) 1.415(-1)
2.2 8.890(-2) 1.693(-1)
2.4 6.528(-2) 1.793(-1)
2.6 4.848(-2) 1.815(-1)
2.8 3.618(-2) 1.794(-1)

3.0 2.762(-2) 1.746(-1)
3.2 2.200(-2) 1.680(-1)

Table 6.10a
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in
10”^^cm^

Total Photoionization 
Cross Section from 
The "2p " State in

10~^®cm^

3.20969 (4,0) 2.178(-2) o o

3.21 2.244(-2) 2.077(-l)
3.4 1.896(-2) 1.667(-1)
3.6 2.026(-2) 1.60K-1)
3.8 2.97K-2) 1.522(-1)

4.0 3.857(-2) 1.435(-1)
4.04888 (3,1) o o 1.413(-1)
4.049 9.286(-2) 1.568(-1)
4.2 7.205(-2) 1.660(-1)
4.4 6.348(-2) 1.684(-1)

4.45037 (4,-1) CO 1.679(-1)
4.451 3.923(-l) 1.689(-1)

4.6 8.242(-2) 1.79K-1)

4.8 7.157(-2) 1.783(-1)

5.0 6.624(-2) 1.733(-1)

5.2 6.36K-2) 1.664(-1)

5.4 6.290(-2) 1.585(-1)

5.6 6.352(-2) 1.500(-1)

5.63640 (5,0) 6.373(-2) trO

5.637 6.412(-2) 3.926(-l)

Table 6.10b
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in
10"^®cra^

Total Photoionization 
Cross Section from 

The "2p " State in

lO'^^cm^

5.8 6.536K-2) 1.600(-1)
6.0 6.745(-2) 1.469(-1)
6.2 7.302(-2) 1.359(-1)
6.4 7.833(-2) 1.257(-1)
6.45037 (4,1) 1.232(-1)
6.451 4.338(-l) 1.244(-1)
6.5 1.225(-1) 1.312(-1)
6.7 1.053(-1) 1.323(-1)
6.73956 (5,-1) O O 1.316(-1)
6.74 1.507(-1) 1.322(-1)
6.8 1.066(-1) 1.37K-1)
7.0 1.019(-1) 1.375(-1)
7.2 9.940(-2) 1.337(-1)
7.4 9.706(-2) 1.283(-1)
7.6 9.48K-2) 1.22K-1)
7.8 9.267(-2) 1.157(-1)
7.94 9.122(-2) l.llK-l)
7.94700 (6,0) 9.115(-2)

7.948 9.115(-2) 4.727(-l)

8.0 9.079(-2) 1.595(-1)

8.2 9.103(-2) 1.255(-1)

Table 6.10c

Total photoionization cross-sections for transitions from the bound
g

states "Is " and "2p " to the Coulomb-modified continuum at B = 10 G. o ^o
(Y,m) is given when the final state energy corresponds to the energy

of a discrete level in the continuum.
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in
10"^®cm^

Total Photoionization 
Cross Section from 

The "2p " State in
10”^^cm^

0.308520 (1,-1) oo 0
0.309 4.924K-1) 2.537(-2)
0.4 4.975(-2) 2.720(-l)
0.5 3.237(-2) 2.786(-l)
0.8 2.288(-2) 2.095(-l)
1.0 1.795(-2) 1.46K-1)
1.2 1.60K-2) 9.925(-2)
1.4 1.570(-2) 6.68K-2)
1.56 1.596(-2) 4.856(-2)
1.56361 (2,0) 1.596(-2) OO

1.564 1.610(-2) 2.424
1.6 1.608(-2) 2.927(-l)
1.8 5.948(-2) 1.065(-1)
2.0 8.983(-2) 5.09K-2)
2.2 7.938(-2) 2.284(-2)
2.3 6.889(-2) 1.506(-2)
2.30852 (1,1) OO 1.454(-2)

2.309 7.638(-l) 8.723(-2)
2.4 1.288(-1) 7.500(-l)
2.6 8.924(-2) 6.93K-1)

2.65137 (2,-1) o<a 6.276(-l)

Table 5.11a
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from 

"Is " State in

lO'^^cm^

Total Photoionization 
Cross Section from 

The "2p " State in

lO'^^cm^

2.662 2.183(-1) 6.31K-1)
2.8 7.430(-2) 5.266(-l)
3.0 5.483(-2) 3.605(-l)
3.2 6.578(-2) 2.424(-l)
3.4 7.092(-2) 1.642(-1)
3.6 7.634(-2) 1.13K-1)
3.8 7.946(-2) 7.958(-2)
3.98 7.926(-2) 5.92K-2)
3.98075 (3,0) 7.926(-2) O O

3.981 6.034C-2) 6.674
4.0 8.838(-2) 7.352(-l)
4.2 9.722(-2) 9.90K-2)
4.4 8.898(-2) 3.932(-2)
4.5 7.899C-2) 2.542(-2)
4.66137 (2,1) 2.375(-2)
4.662 2.51K-1) 3.042(-2)
4.8 7.770(-2) 9.024(-2)

4.87 7.403(-2) 9.136(-2)

4.87242 (3,-1) 9.132(-2)

4.873 1.019(-1) 9.277(-2)

5.0 7.213(-2) 1.013(-1)

Table 6.11b
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Energy of the Final 
State in Y Ry

Total Photoionization 
Cross Section from

"Is " State in 
10"^^cm^

Total Photoionization 
Cross Section from

The "2p " State in
lO'^^cm^

5.2 6.999(-2) 8.703(-2)
5.4 6.940(-2) 7.055(-2)
5.6 6.790(-2) 5.659(-2)
5.8 6.476(-2) 4.56K-2)
6.0 6.024(-2) 3.720(-2)
6.2 6.024(-2) 3.079(-2)
6.23796 (4,0) 5.404(-2)
6.238 5.433(-2) 17.922
6.4 6.23K-2) 1.106(-1)
6.6 5.843(-2) 2.957(-2)
6.8 5.526C-2) 1.907(-2)
6.87242 (3,1) c* 1.853(-2)
6.873 8.86K-2) 2.05K-2)
7.0 5.608(-2) 4.018(-2)
7.02042 (4,-1) 4.078(-2)
7.021 5.960C-2) 4.154(-2)
7.2 5.670(-2) 4.913(-2)
7.4 5.76K-2) 4.409(-2)
7.6 5.779C-2) 3.765(-2)
7.8 5.686(-2) 3.185(-2)

8.0 5.495(-2) 2.708(-2)

Table 6.11c

Total photoionization cross-sections for transitions from the bound
8states "Is " and "2p " to the Coulomb-modified continuum at B = 5 x 10 G, o o

(^\m) is given when the final state energy corresponds to the energy 
of a discrete level in the continuum.
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Energy of the Final 
State in V Ry

Total Photoionization 
Cross Section from 

"Is " State in
lO'^^cm ̂

Total Photoionization 
Cross Section from 

The "2p " State in
lO'^^cm^

0.674513 (0,1) 0
0.675 3.027(1) 9.448(-2)
0.8 1.478 1.093

1.0 7.44K-1) 9.028(-l)
1.1 5.884(-l) 7.573(-l)

1.16075 (1,-1) 6.763(-l)
1.161 6.245(-l) 6.905(-l)
1.2 4.928(-l) 7.776(-l)
1.4 3.477(-l) 5.729(-l)
1.6 2.586(-l) 3.797(-l)
1.8 1.994(-1) 2.554(-l)

2.0 1.578C-1) 1.762(-1)
2.2 1.27K-1) 1.244(-1)
2.4 1.036(-1) 8.958(-2)

2.52 9.193(-2) 7.423(-2)
2.52522 (2,0) 9.147C-2) CO

2.526 9.177C-2) 9.443

2.6 1.054(-1) 4.703(-l)

2.8 1.353(-1) 5.26K-2)

3.0 1.118(-1) 4.748(-2)

3.16 9.06K-2) 5.107(-2)

3.16075 (1,1) (TO 5.107(-2)

Table 6.12a
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Energy of the Final 
State in v' Ry

Total Photoionization 
Cross Section from 

"Is " State in
10"^^cm^

Total Photoionization 
Cross Section from 

The "2p " State in

10’^^cm^

3.161 2.618(-1) 9.014(-2)

3.2 1.067(-1) 4.46K-1)

3.37 8.799(-2) 4.208(-l)

3.37873 (2,-1) 4.119(-1)

3.379 8.975(-2) 4.138(-1)
3.4 8 . 6 4 8 ( - 2 ) 4.078(-l)
3.6 7.835(-2) 2.445(-l)
3.8 7.590(-2) 1.420(-1)

4.0 7 .4 3 4 ( - 2 ) 8 .7 1 8 ( - 2 )

4.2 7.048(-2) 5 .7 1 2 ( - 2 )

4.4 6.372(-2) 3 . 9 6 5 ( - 2 )

4.6 5.514(-2) 2 . 8 8 6 ( - 2 )

4.8 4.58K-2) 2.186(-2)

4.81222 (3,0) 4.58K-2) oo

4.813 4 . 5 7 8 ( - 2 ) 7.632

5 .0 6 . 9 8 0 ( - 2 ) 3.946(-2)

5.2 6 . 5 8 5 ( - 2 ) 1.926(-2)

5.37 4 . 9 2 0 ( - 2 ) 2 . 7 0 K - 2 )

5.37873 (2,1) 2.719(-2)

5.379 5.180C-2) 3 . 0 7 2 ( - 2 )

5.4 4.774(-2) 5.58K-2)

5.51 4.16K-2) 7.018(-2)

Table 6,12b
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Energy of the Final 
State in Y  Ry

Total Photoionization 
Cross Section from 

"Is " State in

10"^^cm^

Total Photoionization 
Cross Section from 

The "2p " State in

lO'^^cm^

5.51588 (3,-1) 6.997(-2)
5.516 4.185(-2) 7.049(-2)
5.6 3.836(-2) 7.379(-2)
5.8 3.593(-2) 5.488(-2)
6.0 3.744(-2) 3.936(-2)
6.2 3.959(-2) 2.905(-2)
6.4 3.985C-2) 2.216(-2)
6.6 3.749(-2) 1.733(-2)
6.8 3.326(-2) 1.378(-2)
6.99 2.868(-2) 1.119(-2)
6.99740 (4,0) 2.851C-2) oo

6.998 2.852(-2) 6.929
7.0 2.848(-2) 3.250
7.2 4.619(-2) 1.793(-2)
7.4 4.178(-2) 1.390(-2)
7.51 3.432(-2) 1.853(-2)
7.51588 (3,1) 1.868(-2)
7.516 3.459(-2) 1.940(-2)
7.61 2.914(-2) 3.312(-2)
7.61436 (4,-1) 3.319(-2)
7.615 2.917(-2) 3.379(-2)
7.8 2.412(-2) 3.383(-2)
8.0 2.337(-2) 2.576(-2)

Table 6.12c
Total Dhotoionization cross-sections for transitions from the bound

9states "Is " and "2p " to the Coulomb-modified continuum at B = 10 G o ^o
(f,m) is given when the final state energy corresponds to the energy 
of a discrete level in the continuum.
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

lO'^^cra^

Photoionization 
Cross Section from 
The "2p " State in

10"^®cm^

2.72564 OO 0
2.726 2.782C-1) 8.753C-5)
2.8 1.937(-2) 1.253C-3)
3.0 l.OlK-2) 2.384(-3)
3.2 7.704(-3) 3.103(-3)
3.4 6.475(-3) 3.663(-3)
3.6 5.699C-3) 4.129C-3)

3.79 5.176C-3) 4.513(-3)
4.0 4.74K-3) 4.887(-3)

4.2 4.417(-3) 5.204(-3)
4.4 4.153(-3) 5.490C-3)

4.6 3.933(-3) 5.75K-3)

4.8 3.746(-3) 5.989(-3)

5.0 3.585C-3) 6.208(-3)

5.2 3.444(_3) 6.41K-3)

5.31 3.373(-3) 6.516C-3)

5.31670 oo 6.522(-3)

5,317 3.035(-l) 6.588(-3)

Table 6.13a
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Energy of the Final 
State in Ï Ry

Photoionization 
Cross Section from 
The "Is " State in

10"^^cm^

Photoionization 
Cross Section from 
The "2p " State in

10"^®cm^

5.4 2.134C-2) 7.598(-3)
5.6 1.300(-2) 8.780(-3)
5.8 1.062(-2) 9.53K-3)
6.0 9.347(-3) 1.014(-2)
6.2 8.512(-3) 1.067(-2)
6.4 7.904(-3) 1.113(-2)
6.6 7.433(-3) 1.155C-2)
6.8 7.052(-3) 1.192(-2)
7.0 6.734(-3) 1.227(-2)
7.2 6.463(-3) 1.258C-2)
7.4 6.228(-3) 1.287(-2)
7.6 6.02K-3) 1.314(-2)
7.79 5.845C-3) 1.338(-2)
7.79648 CO 1.339(-2)
7.797 2.327C-1) 1.346(-2)
7.8 9.305(-2) 1.358(-2)
8.0 1.716C-2) 1.508(-2)

Table 6.13b

Photoionization cross-sections for transitions from the bound states
"Is " and "2p " to the m_ = -1 Coulomb-modified continuum at B = 10 G 0 ^ 0  f
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

10"^®cm^

Photoionization 
Cross Section from 
The "2p " State in

lO'^^cm^

1.02009 0 00

1.021 1.268(-5) 5.738C-2)
1.2 1.774(-4) 3.403C-3)
1.4 2.565(-4) 2.04K-3)
1.6 3.152(-4) 1.428(-3)
1.8 3.637(-4) 1.055(-3)
2.0 4.056(-4) 7.970(-4)
2.2 4.428(-4) 6.075(-4)
2.4 4.764(-4) 4.529(-4)
2.6 5.072(-4) 3.502(-4)
2.8 5.357(-4) 2.613(-4)
3.0 5.622(-4) 1.909C-4)
3.2 5.870(-4) 1.354(-4)
3.4 6.104(-4) 9.208(-5)
3.6 6.324(-4) 5.889(-5)
3.79 6.523(-4) 3.535(-5)
3.793 6.525(-4) CO

3.794 6.650(-4) 2.755C-2)
4.0 8.486(-4) 1.647C-3)
4.2 9.367(-4) 9.908(-4)
4.4 1.007(-3) 6.75K-4)

Table 6.14a
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

lO’^^cm 2

Photoionization 
Cross Section from 
The "2p " State in

10“^®cm^

4.6 1.068C-3) 4.82K-4)
4.8 1.102(-3) 3.53K-4)
5.0 1.173C-3) 2.640(-4)
5.2 1.219(-3) 2.02$(-4)
5.4 1.26K-3) 1.618(-4)
5.6 1.302(-3) 1.369C-4)
5.8 1.339(-3) 1.248C-4)
6.0 1.375C-3) 1.233(-4)
6.2 1.409(-3) 1.307(-4)
6.39 1.440(-3)
6.392 1.44K-3) oo

6.393 1.452(-3) 1.37K-2)
6.4 1.475(-3) 4.91K-3)
6.6 1.639(-3) 9.363C-4)
6.8 1.733(-3) 6.379(-4)
7.0 1.81K-3) 5.133C-4)
7.2 1.880(-3) 4.536(-4)
7.4 1.942C-3) 4.29K-4)
7.6 1.999(-3) 4.27K-4)
7.8 2.053(-3) 4.412C-4)
8.0 2.103(13) 4.675(-4)

Table 6.14b

Photoionization cross-sections for transitions from the bound states
7"Is " and "2p " to the m^ = 0 Coulomb-modified continuum at B = 10 G. o o f
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

Photoionization 
Cross Section from 
The "2p " State in

10"^^cm^

1.96090 O O 0

1.961 5.513C-1) 5.984(-5)

2.0 2.790(-2) 1.18K-3)

2.2 1.13K-2) 2.890(-3)
2.4 8.367(-3) 3.876(-3)
2.6 6.953(-3) 4.628(-3)
2.8 6.083(-3) 5.249(-3)
3.0 5.480C-3) 5.780(-3)
3.2 5.030(-3)' 6.247(-3)
3.4 4.679C-3) 6.662(-3)
3.6 4.394(-3) 7.037C-3)

3.79 4.169C-3) 7.360(-3)

4.0 3.958(-3) 7.586(-3)
4.2 3.786C-3) 7.97K-3)
4.4 3.636C-3) 8.233(-3)
4.6 3.503(-3) 8.474(-3)

4.72 3.43K-3) 8.61K-3)
4.72564 o o 8.617(-3)

4.726 2.840(-l) 8.708(-3)

4.8 2.292(-2) 9.992(-3)

Table 6.15a
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Energy of the Final 
State in / Ry

Photoionization 
Cross Section from 
The "Is " State in

lO'^^cm^

Photoionization 
Cross Section from 
The "2p " State in

lo'^^cm^

5.0 1.347(-2) 1.137C-2)

5.2 1.095(-2) 1.230(-2)

5.4 9.626C-3) 1.306(-2)

5.6 8.763(-3) 1.37K-2)

5.8 8.138(-3) 1.427(-2)

6.0 7.655(-3) 1.478C-2)

6.2 7.265(-3) 1.524(-2)

6.4 6.94K-3) 1.566C-2)

6.6 6.665(-3) 1.605(-2)

6.8 6.425(-3) 1.640(-2)

7.0 6.214(-3) 1.673(-2)

7.2 6.026(-3) 1.703(-2)

7.31 5.932(-3) 1.718(-2)

7.31670 1.719(-2)

7.317 3.086(-l) 1.726(-2)

7.4 2.404(-2) 1.844(-2)

7.6 1.558(-2) 1.963(-2)

7.8 1.314(-2) 2.048(-2)

8.0 1.182(-2) 2.117(-2)

Table 6.15b

Photoionization cross-sections for transitions from the bound states

"Is " and "2p " to the m^ = 1 Coulomb-modified continuum at B = 10 G 0 ^ 0  f
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

10"^^cm^

Photoionization 
Cross Section from 
The "2p " State in

10"^^cm^

1.15075 0

1.161 1.062(-1) 1.450(-2)

1.2 1.255(-2) 1.496(-1)

1.4 8.089(-3) 1.418(-1)

1.6 6.362(-3) 7.912(-2)

1.8 6.479(-3) 4.193(-2)

2.0 7.202(-3) 2.215C-2)

2.2 7.54C(-3) 1.168C-2)

2.4 7.459(-3) 6.083(-3)

2.6 6.779(-3) 3.093(-3)

2.8 5.89K-3) 1.51K-3)

3.0 5.039(-3) 6.94K-4)

3.2 4.352(-3) 2.884(-4)

3,37873 CO 1.13K-4)

3.379 6.345(-3) 2.332(-3)

3.4 4.51K-3) 1.795C-2)

3.6 4.435(-3) 2.414(-2)

3.8 4.153(-3) 1.55K-2)

4.0 4.295(-3) 9.475(-3)

4.2 4.636(-3) 5.768(-3)

4.4 4.894(-3) 3.528(-3)

4.6 4.92K-3) 2.177(-3)

Table 6‘. 15a
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The ’’Is ’’ State in

10"^®cm^

Photoionization 
Cross Section from 
The ’’2p ’’ State in

10"^®cm^

4.8 4.732C-3) 1.364C-3)

5.0 4.432(-3) 8.75K-4)

5.2 4.082(-3) 5.798(-4)
5.4 3.758(-3) 3.997(-4)
5.51588 c* 3.289(-4)
5.516 4.095(-3) 8.530(-4)
5.6 3.517(-3) 9.852C-3)
5.8 3.346(-3) 8.063(-3)
6.0 3.206(-3) 5.206C-3)
6.2 3.162(-3) 3.31K-3)
6.4 3.155(-3) 2.139(-3)
6.6. 3.115(-3) 1.412(-3)
6.8 3.013(-3) 9.539(-4)

7.0 2.865(-3) 6.603(-4)

7.2 2.697(-3) 4.684C-4)

7.4 2.528C-3) 3.406(-4)

7.61 2.362(-3) 2.505(-4)

7.61436 oo 2.490(-4)

7.615 2.600C-3) 8.375(-4)

7.8 2.224(-3) 4.740(-3)

8.0 2.110(-3) 3.273(-3)

Table 6.16b

Photoionization cross-sections for transitions from the bound states

’Is ’’ and "2p " to the m„ = -1 Coulomb-modified continuum at B = 10 G o ’̂o f
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Energy of the Final 
State in Y" Ry

Photoionization 
Cross Section from 
The "Is " State in

10"^®cm^

Photoionization 
Cross Section from 
The "2p " State in

lO'^^cm^

2.52522 0 oa

2.525 3.78K-4) 9.369
2.5 2.032(-2) 4.045(-l)
2.8 6.493(-2) 3.504(-3)
3.0 5.300(-2) l.OlK-2)
3.2 3.69K-2) 2.066C-2)
3.4 3.084(-2) 2.574(-2)
3.6 3.127(-2) 2.539C-2)

3.8 3.370(-2) 2.373(-2)

4.0 3.493C-2) 2.159(-2)
4.2 3.35K-2) 1.923(-2)
4.4 2.967(-2) 1.679(-2)
4.6 2.454(-2) 1.439(-2)
4.8 1.932(-2) 1.215(-2)
4.81222 1.90K-2) oo

4.813 1.900(-2) 7.622

5.0 4.613(-2) 3.258C-2)

Table 6 ,17s
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Energy of the Final 

State in V Ry

Photoionization 

Cross Section from 

The "Is " State in 
lO'^^cm^

Photoionization 

Cross Section from 

The "2p " State in 
10"^®cm^

5.2 4.505C-2) 1.412(-2)

5.4 2.84K-2) 2.350(-2)

5.6 2.056(-2) 2.352(-2)

5.8 1.970(-2) 2.068(-2)

6.0 2.205(-2) 1.782(-2)

6.2 2.455C-2) 1.54K-2)

6.4 2.515C-2) 1.333C-2)

6.6 2.337(-2) 1.145(-2)

6.8 2.000(-2) 9.723(-3)

6.99 1.635(-2) 8.24K-3)

6.9974 1.622(-2) oo

6.998 1.623(-2) 6.926

7.2 3.490(-2) 1.578C-2)

7.4 3.140(-2) 1.224C-2)

7.61 1.954(-2) 1.868(-2)

7.8 1.51K-2) 1.766(-2)

8.0 1.488C-2) 1.502(-2)

Table 6.17b

Photoionization cross-sections for transitions from the bound states

"Is " and "2p " to the m_ = 0 Coulomb-modified continuum at B = 10 G. o o r
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

10"^®cm ̂

Photoionization 
Cross Section from 
The "2p^" State in

0.674613 CO 0
0.675 3.027(1) 9.448(-2)

0.8 1.478 1.093
1.0 7.441 9.028(-l)
1.2 4.803(-l) 6.280(-l)
1.4 3.396(-l) 4.31K-1)
1.6 2.522(-l) 3.006(-l)
1.8 1.929(-1) 2.135(-1)

2.0 1.506(-1) 1.54K-1)

2.2 1.195(-1) 1.127(-1)
2.4 9.610(-2) 8.350(-2)
2.6 7.827(-2) 6.263(-2)
2.8 6.452(-2) 4.760(-2)

3.0 5.378(-2) 3.667(-2)
3.16 4.682(-2) 3.006(-2)
3.16075 3.003(-2)
3.161 2.18K-1) 6.909(-2)
3.2 6.542(-2) 4.236(-l)

3.4 5.113(-2) 3.64K-1)

3.6 4.265(-2) 1.950(-1)

3.8 3.805(-2) 1.027(-1)

4.0 3.51K-2) 5.61K-2)

4.2 3.234(-2) 3.212(-2)

4.4 2.915(-2) 1.935(-2)

Table 6.18a
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Energy of the Final 
State in Y Ry

Photoionization 
Cross Section from 
The "Is " State in

lO'^^cm^

Photoionization 
Cross Section from 
The "2p " State in

10"^^cm^

4.6 2.568C-2) 1.233C-2)

4.8 2.227(-2) 8.347C-3)

5.0 1.924(-2) 6.005(-3)

5.2 1.67K-2) 4.563(-3)

5.37 1.496(-2) 3.743(-3)

5.37873 pa 3.708(-3)

5.379 1.82K-2) 7.232(-3)

5.4 1.557C-2) 3.19K-2)

5.6 1.428(-2) 4.043(-2)

5.8 1.288C-2) 2.614(-2)

6.0 1.219(-2) 1.633(-2)

6.2 1.188(-2) 1.033(-2)

6.4 1.155C-2) 6.694(-3)

6.6 1.100(-2) 4.472(-3)

6.8 1.025(-2) 3.099(-3)

7.0 9.413(-3) 2.238(-3)

7.2 8.594(-3) 1.686(-3)

7.4 7.850(-3) 1.320(-3)

7.51 7.480(-3) 1.17K-3)

7.51588 ©a 1.164(-3)

7.516 8.103(-3) 1.878(-3)

7.61 7.235(-3) 1.419(-2)

7.8 6.785(-3) 1.143C-2)

8.0 6.383(-3) 7.466(-3)

Table 6.18b

Photoionization cross-sections for transitions from the bound states 
"Is^" and "2p^" to the m^ = 1 Coulomb-modified continuum at B = lO^G.
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§6.4 Conclusions

We have calculated the photoionization of the "Is " and "2d "o " o
states of atomic hydrogen in magnetic fields between 10*̂  and lO^G, at 

photon energies h-u = ^ where is the (field-dependent)
ionization threshold and 0  < fS <  8Yry.

The model used, treats the bound states accurately, but approximates 

Coulomb effects in the continuum by decoupling the motion of the ejected 
electron along the field lines from its motion perpendicular to the field. 

The results are in general very different from those obtained ignoring 

Coulomb effects in the continuum completely (Landau model).

In general the photoionization cross-section is much smaller 

than in the field free case, until very high.energies. As in the 
Landau model there are discrete states (for the motion perpendicular 
to the field lines) embedded in the continuum, and there are threshold 

resonances associated with these. Depending on the azimuthal quantum 
and parity of the initial and final states,the cross-section at these 
thresholds behaves in both models as k_ or k_ “ . There are secondary 
maxima in the cross section not associated with threshold resonances 
and we have shown that these arise even in the simple Landau model.
They appear to be associated with the details of the motion of the 
electron along the field lines, and since apart from an energy independent 

factor this is the same in our Coulomb continuum model as in the Landau 
model, they should occur at the same energies in both models, given the 

same bound state wave functions. Cur calculations indicate that they 
should be more readily observable in photoionization of the "Is^" state.
We note that since the (/, m^ = 0, - 1) levels are, unlike the Landau 
case, no longer degenerate in the presence of a Coulomb interaction, one 
should expect to see three times as many resonances as had been naively 
supposed; further when spin splittings are included, all of them will be 

doublets.
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It is believed that some progress has been made towards establishing 
the behaviour of the photoionization cross-section of hydrogen in a 
magnetic field. However, these models do not include the effects of 
broadening due to the motion of the residual ion, and treat the effect of 

the Coulomb field on the continuum levels in an aporoximate fashion.
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CHAPTER 7 

CONCLUSIONS

In summary, the absorption of atomic hydrogen in magnetic fields 
7 9in the range 10 < B < 10 G, has been studied at some length and it is 

believed that significant progress has been made towards describing, with 

some accuracy, the motion of the electron in both the bound and the free 
states in this range of field strengths. The bound states have been 

described by simple sets of cylindrical and unperturbed hydrogenic 

functions. The resulting energies are compared and it is found that the 
cylindrical functions best describe the system at high fields

g
(B > 5 X 10 G), whilst for lower fields, the bound states still retain 

their spherical symmetry. The energies corresponding to the cylindrical 

wavefunctions also compare favourably with those of other authors, and 

the simplicity of these wavefunctions enables other matrix elements to be 

calculated analytically. This is illustrated in the calculation of bound- 

bound transition probabilities and oscillator strengths for all allowed 

transitions between 14 low lying levels of hydrogen, results for which are 

presented, and compared with the limited results of other authors.

The free states have also been studied in detail, and we consider 

two models for the continuum: (i) the pure Landau continuum which is

believed to be an accurate description of the free state of the hydrogen 
atom in a region where the magnetic interaction is much larger than that 

of the Coulomb interaction and (ii) the Landau continuum modified by the 

Coulomb attraction of the nucleus in a plane perpendicular to the direction 

of the magnetic field. Wavefunctions describing the discrete states which 

exist in the plane perpendicular to the field direction, and the corres­

ponding energy eigenvalues, have previously been calculated for the Landau 

continuum - these are just the states of the free electron in a magnetic
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field, where the spacing between the energy levels is fTOj. a.u. 

throughout. The wavefunctions and energies for the Coulomb modified 
continuum are calculated on solving a two point boundary value equation 

using numerical techniques. It is shown that the Coulomb field does, 

in fact, have a significant effect on the Landau continuum, especially, 

as expected, at the lower end of the range of field strengths considered 
here, and this, in turn, has a dramatic effect on the nature of the 

photoionization cross sections. It is seen, particularly at lower fields, 
that the energy spacing near to threshold departs from the a.u. of the 

Landau continuum, and approaches the value of 1.5 a.u., which is the 
spacing predicted by the semi classical WKB approximation, for a particle 

in a Coulomb and magnetic field at zero energy. However, as one departs 

from the ionization threshold, this spacing decreases until the Landau

limit is eventually reached. It is, also shown that the wavefunctions in

both types of continua, have different characteristics near the origin, 

and that the effect of the Coulomb interaction is to draw the wavefunction

to smaller , thus increasing the number of oscillations in the region of

overlap with the bound states, at lower field strengths.

Much has also been achieved in attempting to establish the behaviour 

of the photoionization cross-sections. The formula for these cross- 
sections is derived, and evaluated for absorption from the lowest even and 

lowest odd parity bound states in our cylindrical basis. The threshold 

behaviour of the cross section has been discussed, and is the same in both 

the models we consider. A resonance is seen at the energies corresponding

to each discrete level. The primary differences found between the cross

sections where the final state is in the Landau continuum and those where 

the final state is in the Coulomb modified continuum, are found to be (i) 

that there is no degeneracy of energy levels in the Coulomb modified 
continuum, and as a result of this, three times as many resonances are 

seen than in the Landau continuum, and (ii) that due to the different nature 

of the wavefunctions in the region of overlap with the bound states, the
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cross-sections in the Coulomb modified case, are much smaller than in 

the Landau case. Other features of the cross sections have also been 

discussed in detail.
Our continuum models do not include the effects of broadening 

due to the motion of the residual ion, and treat the effect of the 
Coulomb field on the continuum states in an approximate fashion. It 

has been shown here that, on replacing the plane wave by the more 
accurate distorted wave in the z direction, to include the effect of the 

Coulomb field, the threshold behaviour is unchanged. The fact that 
the coupling of the motion in the z direction with that in the (̂ j4>) 

plane has a broadening effect has been noted by Rau (1980). Clearly 
the problem is a complex one, with many more factors needing to be 

considered. It is believed that some progress has been made with the 

solution of a simple case, but there is much scope for further research 

in this field.
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Appendix I 

Details of Computer Programs

|AI.l Program HYDROGN

This program calculates the energy eigenvalues and 

corresponding eigenvectors of a hydrogen atom in a uniform, static 

magnetic field, and also bound-bound transition probabilities, wave­

lengths and oscillator strengths. The wavefunctions are represented 

by a basis of unperturbed, hydrogenic functions, discussed in Chapter 2. 

A block diagram of the program is given in figure AI.l and the structure 

is outlined below:

HYDROGN: main routine in which input is read (see table AI.l)

EIGEN: sets up the matrix containing the Hamiltonian matrix

elements and calls the NAG routine F02ABF to calculate 

the eigenvalues and eigenvectors by the methods described 

in Chapter 2
RiMAT: 
THREEJ:

BOUND:

ONEJ:

computes the matrix elements of r'

computes the product of two Wigner 3̂  symbols:

RMATl:

VI 2 i - 1 ) ( 2 i - l )  2\ I A A  2 ]
\ 0 0 0/ -mj 0 /

calculates the bound-bound transition probabilities,

oscillator strengths and wavelengths for transitions

specified by IX and lY (see input data)

computes the product of two Wigner 3^

symbols :
V ( 2 A * i ) ( 2 <  *11 fij 1 A)( A ̂ A

l o o  0 / l-Hlj ^  ID;
where 0̂  ±1 and ± 1

computes the integrals I^ (j,k) given by equation (2.93).

FAC: calculates factorials
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IRMAT

FAC FAC

ONEJ

BOUNDEIGEN

RMATlF02ABFTHREEJ

HYDROGN

Fig. AI.l

Block Structure of program HYDROGN

Input Data

Input data for program HYDROGN is described in table AI.l.
The energy eigenvalues and corresponding wavefunctions are calculated 

for even and odd parity states with given magnetic quantum numbers 

Ml and M2. Only transitions between states of different parity are 

allowed, and so if transition probabilities, oscillator strengths and 

wavelengths are required, additional data is read in, specifying the 

particular states of each parity, for the transition.
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Input
Variable

Description Format

NS
NP
ND
NF
NG

GAM

Ml
M2
NSL
NFL
NDL
NFL
NGL
ITRANS
NNDO*
IX*

lY*

NON*

NUPPER*

NLOWER*

LUPPER'

LLOWER*

Number of s,p,d,f and g states in the basis

Measure of the field strength ( V =

Magnetic quantum number of even parity states 
Magnetic quantum number of odd parity states

Principle quantum numbers of the 
» lowest s,p, d,f and g states to be included 
in the basis

1 if transition probability required 
Number of transition probabilities required 
Column of the even parity eigenvector matrix 
required for the transition probability 
calculations
Column of the odd parity eigenvector matrix 
required for the transition probability 
calculations
1 if the state with the lowest energy in the
transition has even parity
2 if the state with the lowest energy in the
transition has odd parity.
Principle quantum number of the state with 
highest energy in the transition 
Principle quantum number of the state with 
lowest energy in the transition.
Angular momentum quantum number of the state 
with highest energy in the transition.
Angular momentum quantum number of the state 
with the lowest energy in the transition.

15
15
15
15
15

E15.5

15
15
15
15
15
15
15
15
15
15

15

15

15

15

15

15

Table AI.l
Input data for program HYDROGN. 
if ITRANS = 1

Variables marked with * are only read
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fAI.2 Program CPOLAR

The description of this program will be kept to a minimum as 

it is described in some considerable detail by Kara, 1980. Basically, 
the energy eigenvalues and corresponding eigenvectors of a hydrogen 

atom in a uniform static magnetic field are calculated, and also the 

bound-bound transition probabilities, wavelengths and oscillator 

strengths are determined. The wavefunctions are represented by a 

basis of cylindrical functions of the form

as described in chapter 3.

A block diagram of the program is shown in fig.AI.2 and the structure 
is outlined below:

CPOLAR: main routine where input is read and the matrices containing

the Hamiltonian matrix elements and overlap integrals are 

generated.

BODD ' Evaluates all the integrals given by tables 3.2 and 3.3,

BEVENJ except for the common factors J(B, A ) and K ( A), when

A > 2 and B > 1.

NAGR : Calls all NAG routines needed to calculate the required

eigenvalues and eigenvectors (details given below).

BBCPOL: Calculates transition probabilities, oscillator strengths and

wavelengths for four transitions in the length ( Aiii = 0, - 1)

and velocity (A m = 0) forms. The following routines are

called to evaluate the matrix elements of r , _ and V  .o,+ 1 o
BEVNRl: Evaluates < Ir^ ^1X^ > given by equation (3.73) for even

B. RBEVEN is called to calculate the integral over r.

BODDRl: Evaluates <Xjlr_^^l X^ > given by equation (3.73) for odd B.

RBODD is called to calculate the integral over r.
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BEVNRO : Evaluates the integrals occurring in <Xjr^lX^> and

< Xj I given by equations (3.75) and (3.83)

for even B. RBODD is called to calculate the integral

BODDRO
over r.
Evaluates the integrals occurring in < X^|rJ X^> and 

<Xjl given by equations (3.76) and (3.83) for

odd B. RBEVEN is called to calculate the integral over r 
The NAG routines used to calculate the eigenvalues and 

eigenvectors are FOIAEF, FOIAGF, F02BEF, FOIAHF and FOIAFF. A

description of these routines is set out in table AI.2.



-245-

end

BIN

AIN

BODDRl

BBCPOL

RBODD

BODDRO

RBEVEN

BEVNRO

EVEN BODD

BEVNRl

NAGR

CPOLAR

"ROUTINES
FOIAEF
FOIAGFF02BEF
FOIAHF
FOIAFF
FROM MAGLIBRARY

F ig. A I.2
B l o c k  S t r u c t u r e  of p r o g r a m  CPOLAR
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NAG Routine Description

FOIAEF Reduces the eigenproblera Ax =ASx

to the standard symmetric eigenproblem
-1 -TPz = /I z. P is of the form L AL

FOIAGF Reduces the previously calculated real 

symmetric matrix P to tridiagonal form, 

denoted by PP.

F02BEF Calculates eigenvalues of the problem 

PPy. = in a given interval, and the 
corresponding eigenvectors.

FOIAHF Derives the eigenvectors of P from those 

of PP corresponding to the previously 

calculated eigenvalues.

FOIAAF Derives the eigenvectors of Ax = ASx 

from those of the problem Pz = A z.

Table AI.2

Description of NAG library routines used in CPOLAR,
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§AI.3 Program WFPLOT

This program solves the two point boundary value problem

u " (f) = V( e ; e ) U (e) ; u (0) = u (-) = 0 (AI.l)

where an initial estimate for the eigenvalue, £ , is given. The

method of solution is to reduce equation (AI.l) to a system of first

order differential equations:

^1 = ^2 (AI.2)
(() = V (f,&) u^ (f)

and solve these by a numerical, Runge-Kutta technique. The input 

data is described in table (AX.3). The methods by which the inward 

and outward integrations are started are described in Chapter 6.

Input Variable Description Format

NSTEP Number of steps in the interval
Co.11, ^^/2] at which the function
u .(p) is to be evaluated, out \

15

LAMBDA Initial estimate for the eigenvalue 
EPS.

E15.5

GAM Measure of the field strength E15.5

M Magnetic quantum number of the 
continuum state.

IS

ICOUL Value of charge on nucleus (=0 for 
pure Landau continuum)

IS

R2 Outer limit for wavefunction 
calculation

E1S.5

Table AI.3

Input data for program WFPLOT
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Structure of the Program

WFPLOT: The main routine in which the input data is read and

LANDAU is called to perform the calculations.

LANDAU; Calculates the values of u(^) at each point in the
interval [0,R2], the number of points being determined 

by NSTEP (input data).

The exact value of the eigenvalue is also obtained such 

that the first derivative of u(^) agrees to four decimal 

places at the matching point (which is set to /2 

for convenience). The structure of this routine is 

described in figure (AI.3), where

OUT:

IN:

DELEPS = (ANORM) in out ^ (
uin ( f o )

with ANORM = out + "in
(Uout f o

and

N ^ out
N.in =

(cf. equations (6.20) and (6.23))

Evaluates u(^) at the points 0.09, 0.10 and 0.11, given 

the initial gradient, according to the series expansion of 

equation (6.37).

Evaluates u(^) at the three points R2, R2-h^ and R2-2h^, 

where h^ is the steplength determined by NSTEP, given the 

initial gradient, according to equation (6.39).

The following routines from the NAG library are also used:

DOIABF: Calculates the inward and outward integrations for each

steplength h^ using a Runge Kutta technique. The routine 

is called (NSTEP t 3) times for the outward integration to 

^ , and NSTEP times for the inward integration to
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s t r u c t u r e  cf subrout ine  

LANDAU

1= NSTEP?

EPS = LAMBDA

J=  NSTEP + 3?

Calculate DELEPS

EPS = EPS -  DELEPS

Cal l  OUT 
Begin outward i n t e g r a t i o n )

Calculate ANORM f o r  th e  t o t a l  wave function

Call  IN 
{Begin inward in t e g r a t io n ]

Call D01GAF  
(To e v a l u a t e  the term N:

Call  DÛ1GAF 
(To e v a l u a t e  the term N^^^

ANORM
and

ANORM

Urn'll

W r i t e  to  permanent store :
Uou^(f)  and u ^ ( p )  ( 0 < p < R 2 ) ,  

f o r  use in ÛMAT1

Pr inf  A , B , E P S ,  , u ^ > . ) ,

C all D 0 2 A 8 F  
( I n t e g r a t e  outwards towards p^in the I ' t h  

interval  a long the f> a x i s ) _________

Call D0 2ABF  

( I n t e g r a t e  inwards towards in the J ' th  

i n t e r v a l  a long the ^  axis f rom R 2]
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DOIGAF: Used to evaluate N. and Nin out

One of the following routines (as appropriate) is required for each 
call to DOIABF:

AUXOUT: Sets F(l) = ( (*) and F(2) = at a particular

value of  ̂.
AUXIN: Sets F(l) = u. (p) and F(2) = u. '(p) at a particularin V in \

value of ^ .

§AI.M- Program QMAT

Program QMAT calculates the total photoionization cross-section 

given by equation (5.7). The bound state is of the form given by 

equation (5.3) and the continuum contains pure Landau levels. All 

the matrix elements occurring in this cross-section are evaluated 
analytically. The structure of the program is outlined in figure AI.M-

SUMGDIFF

QMAT

ZINT POINT

Fig.AI.4.

Block diagram of program QMAT.

The main routine is

QMAT: Input data is read and all calculations apart from the

integrals over z and p occurring in the matrix elements, 

are carried out. A flow chart describing the structure 

of this routine is given in figure AI.5.

The variables used in this flow chart are defined as:

QMATR - the matrix element |< r^l ^^>1^
' (see I 5.3)
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■̂ nnax I -
T O T Q M  -  1  |< V I L r  I I

PCS - total photoionization cross-section.

For other variables not defined here, see table Al.ly.

ZINT: Computes, analytically, the integral over z which occurs

in the matrix element < Y l l > and stores the result in 
Z. This is the same as the expression for Z given by 

equation (5.24). This subroutine calls the function DIFF 
to calculate the differential in equation (5.24).

DIFF: Calculates d (e  ̂ ) for (K. = 0,1......8 (see appendix III)
dx®̂

POINT: Computes analytically the integral over ^ , given by equation
(5.32). The subprogram SUMG is called.

SUMG: Calculates r(a-p+1) recursively.
A a-P+1
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(St  a r t )

]n i f i  al i ze J. fo 0

I IN S = [NS + 1 

— j/3 I NN ?

I D E L =  MODEL?

Fig  A l .  5

NN?

C a l l  Z I N T

C a l l  ROINT

ma X ■

Read in pu t  d a t a

I n i  t i a  I izG

I n  i t i  a i i z e  >^to -1

I n i t i  a l i z Q  IDEL to 1

I n i t i a l i z e  I N S  to  0

DELTA - D E L T ( I D E L )

In i t  i a l i z e  to  mj

TOT QM = QMATR + TOTQM

F i n a l  energy read in ?

QMATR = C INS)x Z X RO + QMATR

I n i t i a l i z e  QMATR and TOTQM to 0-

PCS = Ô.56E-19 X TOTQM x ( X  - E I N I T )

I  S E T =  1 and odd o r I S E T = 2  and a even?

QMATR = QMATR2
I ( ( i ^ m ) ! I jwhere 1-4

Structure of program QMAT
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INPUT DATA

The input data for program QMAT is described in table (AI.M-)

Input Variable Description Format

NODEL Number of S ’s to be included in the initial 
state wavefunction.

15

NN Maximum value of ol and (i to be included in 
the initial state wavefunction.

IS

I SET = 1 if initial state has odd parity.
= 2 if initial state has even parity.

15

MI Magnetic quantum number of initial state.
GAM Defines field strength ( r  . E15.6
EINIT Energy eigenvalue for the initial state 

(computed by CPOLAR).
DELT(I) ,
I = 1,.NODEL

The values for S which are to be included 
in the initial state wavefunction.

E15.5

IDIM

C(I), 1=1,..IDIM

The total number of terms in the initial 
state wavefunction.
The values of the coefficients of the initial 
state wavefunction (computed by CPOLAR).

15

. E15.6

NIMP Number of values of the final state energy 
for which the photoionization cross-section 
is to be calculated.

15

X Value of the energy of the final state in 
Y Ry.

E15.6

Table AI.4

Input data for program QMAT.
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SAI.5 Program QMATl

This program calculates the photoionization cross-section 

given by equation (5.7)̂  but the sum over m^ is not included. Only 
the contribution to the final state with magnetic quantum number MF 

is computed, but the sum over all possible continuum levels for this 

m^ is included. The bound state is of the form given by equation 

(5.8) and the continuum model is that described in chapter 6. The 

wavefunctions of the continuum state are calculated in numerical form 
and so, in this program the f integral is calculated numerically.
The structure of the program is outlined in figure AI.5. A more 

detailed description will be given elsewhere^ (Kara,1981).

DIFF

ZINT RONUM

QMATl

DOIGAF

DOIGAF

Fig.AI.6.

Block diagram of program QMATl

The main routine is 

QMATl: Input data is read and all calculations, apart from the 

integrals over z and ^ occurring in the matrix elements, are 

carried out. The structure of this routine is similar to 

that of program QMAT (described in the previous section).

The only differences being that the sum over Z  is now replaced 

by a sum over the wavefunctions of the discrete continuum states.
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ZINT:

DIFF:
RONUM:

whose principle quantum numbers and energies depend on 

the strength of the magnetic field, and the sum over m^ 
(ie. yu.) is not included.

The same routine as that used in program QMAT.

Also the same routine as that used in program QMAT.
f i * V x -Eft ^Calculates the integral j f e where the

numerical calculations are carried out by the NAG routine 

DOIGAF.
The following routine from the NAG library is called:

DOIGAF: This is called to carry out, by the numerical method

described by Gill and Miller, 1972 , the integral over p 
(in RONUM) and the normalization constant of the total 

final state wavefunction given by equation (5.3) (in QMATl)
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Input Data

The input data for program QMATl is described in table (AI.5).

Input Variable Description Format

NODEL 15
NN As in table (AI.M-) 15
ISET 15
MI 15

MJ Magnetic quantum number of the final state. 15

GAM ^ E15.6
EINIT E15.5
DELT(I) » As in table (AI.4) E15.5
IDIM 15
C(I) E15.5
NNOLEV Number of continuum levels to be included 15

in the cross section.

ENERGY(I) Values of the NNOLEV energy eigenvalues E15.5
of the continuum states.

NNXU Number of points at which the wavefunction 15
of the final state is given.

XX(I) Values of  ̂ at which u(p) is given. E20.13
UU(I) Values of u(p) at the NNXU points. E20.13
NIMP As table (AI.4). 15
XI Energy of final state for which photoio­ E15.6

nization cross-section is to be calculated.

Table AI.5

Input data for program QMATl.
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Appendix II
rEvaluation of the Integral J -ax b , e X dx

We have, from Dwight, equations 860.15 and 860.16,

2j^(a+l)/2 

(a-l)II J ^a,b
DO 2  ,
e X dx = 4

if a is odd

if a is even
(AII.l)

^a/^1 ^(a+l)/2

with a an integer and where pi I is defined as 

(2n)I! — 2.4.6.........2n

and (2n-l)I! = 1.3.5...... (2n-l).

The values of this integral for 1 < a K 9 are given in table AII.l 
for easy reference.

(All.2)

If f ax^ bJ_e X dx is required, it should be noted that, if

b is odd, then x e is an odd function and so the integral will 

be zero. If b is even, however, the value of this integral will be

2'Ia,b"
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a,b

15b

105

32b

12

Table AII.l

Values of I^^b for 1 < a < 9



-257-

a p p e n d i x III

Expansion of the First Nine Hermite Polynomials

The Hermite polynomial Ke^(x) can be written

He (X) = (-1)" ^  .
" dx"

The polynomial representations of —  (e ^ are given below for
dx^

0 n <: 8. These are the only values of n required in programs QMAT 

and QMATl for the initial state wave functions considered here, as the 
maximum value for cL taken, in the basis set, is 7.

n
dx^

0
1 _xs-x'/2

2 (x2-l)e-x'/2

3 (_x3+3x)e-%'/2
4 (x"-6x2+3)e-%'/2

5 (-x^+lOx^-lSxJe ^ ^2

6 (x®-15x\n5x2-15)e’’‘ ^2

7
2

(-x7+21xS_l05x3+105x)e"*
8

2
(x^-28x^+210x^-420x^+105)e”^

Table fill.1)
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