Univeraty of Londen

Cryptanalysis of the EPBC authenticated encryption mode

Chris Mitchell
Royal Holloway, University of London http://www.isg.rhul.ac.uk/~cjm

Agenda

- Introduction

- Simultaneous confidentiality and integrity
- Attacking EPBC
- Completing the attack

Simultaneous encryption and integrity

- Both confidentiality and integrity are often required.
- Indeed, encrypting without integrity protection is now known to be dangerous (variety of attacks).
- One simple way to provide both services is the encrypt-then-MAC model where we encrypt the message and then compute a MAC, using two distinct keys.
- This is very effective (if used with care), but each block of data is processed twice.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

Add-redundancy-and-encrypt model

- To avoid the extra work of double processing, one widely discussed alternative to encrypt-then-MAC is the add-redundancy-and-encrypt model.
- Here, predictable redundancy is added to the plaintext (e.g. a fixed block at the end) prior to encryption, and the receiver checks for the presence of the redundancy after decryption.

Shortcomings of model

- The encryption method needs to be chosen carefully (e.g., a stream cipher is bad news)!
- So does the method of adding redundancy.
- Suppose the 'fixed block at the end' method is used.
- Obvious dangers arise if the fixed block arises by chance in the middle of the plaintext!
- Despite these dangers, the technique has often been advocated.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

EPBC mode

- One major problem with the add-redundancy-thenencrypt approach is that commonly used encryption modes are not appropriate.
- That is, if a mode like CBC is used, then relatively simple forgery attacks are possible (as we show).
- We consider a mode specially designed for use with add-redundancy-then-encrypt, namely EPBC, and show that this mode too is subject to forgery attacks. L,

Agenda

- Introduction
- Simultaneous confidentiality and integrity
- Attacking EPBC
- Completing the attack

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

CBC mode = no good!

- Having decided to use add-redundancy-andencrypt, the encryption method needs to be chosen.
- It is not hard to see that CBC mode is completely inappropriate.
- This is because ciphertext errors only propagate in a very limited way.
- That is, changing ciphertext block C_{i} only affects P_{i} and P_{i+1}. L.

CBC decryption - error propagation

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

EPBC mode

- EPBC (Efficient error-Propagating Block Chaining) was proposed by Zúquete and Guedes in 1997.
- It is a mode of operation in which ciphertext errors propagate in an unlimited way.
- Designed as an improvement of a mode called IOBC (Recacha, 1996).
- Uses an n-bit block cipher where n is even (assume $n=2 m$).

EPBC mode operation

- Uses two n-bit secret IVs: F_{0}, G_{0}.
- To encrypt plaintext $P_{1}, P_{2}, \ldots, P_{t}$:
- perform the following for $i=1,2, \ldots, t$:
- $G_{i}=P_{i} \oplus F_{i-1}$
- $F_{i}=e_{K}\left(G_{i}\right)$
- $C_{i}=F_{i} \oplus g\left(G_{i-1}\right) \quad$ [except for $\left.i=1: C_{1}=F_{1} \oplus G_{0}\right]$
where \oplus denotes bit-wise exclusive or, and g is a function mapping an n-bit block to an n-bit block.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

The function g

- Suppose X is an n-bit block, where $X=L \| R$, and L and R are m-bit blocks.
- Then:

$$
g(X)=(L \vee \sim R) \|(L \wedge \sim R)
$$

where \vee denotes bit-wise inclusive or, \wedge denotes bit-wise logical and, and ~ denotes logical negation (changing every zero to one and vice versa).

- Note that g is not one-to-one. [This is the only change between OPBC to EPBC: IOBC uses a one-to-one function g]. L-2,

EPBC encryption (also IOBC)

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

An observation

- To launch a forgery attack, it would appear to be necessary to have knowledge of the 'internal' values of F_{i} and G_{i}.
- However, since these values are never transmitted (and F_{0} and G_{0} are assumed to be secret), attacking this mode would appear to be difficult.
- Moreover, g is deliberately chosen to be not one-toone to thwart known-plaintext based forgery attacks which apply to long messages encrypted using IOBC.

Agenda

- Introduction
- Simultaneous confidentiality and integrity
- Attacking EPBC
- Completing the attack

Objective of attack

- We assume that the add-redundancy-andencrypt model is being used with EPBC.
- We also assume that the method of adding redundancy is to add a fixed block to the end of the message.
- The objective is to take a valid ciphertext and use this to construct another 'forged' ciphertext which will have the correct redundancy when decrypted.

Observation regarding \mathbf{g}

- Suppose $g(X)=L^{\prime}| | R^{\prime}$, where $L^{\prime}=\left(\lambda_{1}^{\prime}, \lambda^{\prime}, . ., \lambda_{m}^{\prime}\right)$ and $R^{\prime}=\left(r_{1}^{\prime}, r^{\prime}{ }_{2}, . ., r_{m}^{\prime}\right)$.
- Then, for every i, if $\lambda_{i}^{\prime}=0$, then $r_{i}^{\prime}=0$.
- To see this, suppose $X=L \| R$, where $L=$ $\left(\lambda_{1}, \lambda_{2}, . ., \lambda_{m}\right)$ and $R^{\prime}=\left(r_{1}, r_{2}, . ., r_{m}\right)$.
- If $\lambda_{i}^{\prime}=0$ for some i, then, since $\lambda_{i}^{\prime}=\lambda_{i} \vee \sim r_{i}$, we know immediately that $\lambda_{i}=0$ and $r_{i}=1$. Hence $r_{i}^{\prime}=\lambda_{i} \wedge \sim r_{i}=0$.
- That is, pairs $\left(\lambda^{\prime}, r_{i}^{\prime}\right)$ can never equal $(0,1)$. ROYAL HOLLOWAY, UNIVERSITY OF LONDON Information Security Group

A more general observation

- Using the same notation, if $\left(\lambda_{i}, r_{j}\right)$ is in the set A, then $\left(\lambda_{i}^{\prime}, r_{i}^{\prime}\right)$ must be a member of the set B, where the possibilities for the sets A and B are now given.
- Unless $|A|=1$, given a random set A of a certain size, the expected size of B is always smaller than $|A|$. L, Rath

The sets A and B

$\boldsymbol{A}($ set of input pairs)	\boldsymbol{B} (set of output pairs)
$\{00,01,10,11\}$	$\{00,10,11\}$
$\{01,10,11\}$	$\{00,10,11\}$
$\{00,10,11\}$	$\{10,11\}$
$\{00,01,11\}$	$\{00,10\}$
$\{00,01,10\}$	$\{00,10,11\}$
$\{10,11\}$	$\{10,11\}$
$\{01,11\}$	$\{01,11\}$
$\{01,10\}$	$\{00,11\}$
$\{00,11\}$	$\{10\}$
$\{00,10\}$	$\{10,11\}$
$\{00,01\}$	$\{00,10\}$
$\{11\}$	$\{10\}$
$\{10\}$	$\{11\}$
$\{01\}$	$\{00\}$
$\{00\}$	$\{10\}$

Using the observation I

- Our objective is to use knowledge of known plaintext/ciphertext pairs (P_{i}, C_{i}) to learn pairs $\left(F_{i}, G_{i}\right)$.
- Suppose we know s consecutive pairs, i.e. we know:

$$
\left(P_{j}, C_{j}\right),\left(P_{j+1}, C_{j+1}\right), \ldots,\left(P_{j+s-1}, C_{j+s-1}\right)
$$

where we suppose $j>1$. Unvantor Londen

Using the observation II

- We know:

$$
C_{j}=F_{j} \oplus g\left(G_{j-1}\right)
$$

- We also know that if $g\left(G_{j-1}\right)=L^{\prime} \| R^{\prime}$, where $L^{\prime}=$ $\left(\lambda_{1}^{\prime}, \lambda^{\prime}{ }_{2}, \ldots, \lambda_{m}^{\prime}\right)$ and $R^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{m}^{\prime}\right)$, then $\left(\lambda^{\prime}, r_{i}^{\prime}\right)$ can never equal $(0,1)$ for any i.
- Hence, knowledge of C_{j} gives some knowledge about F_{j}.
- Specifically we know that certain bit pairs cannot occur in F_{j}, where each bit pair contains a bit from the left half and the corresponding bit from the right half. ROYAL HOLLOWAY, UNIVERSITY OF LONDON Information Security Group

Using the observation III

- We also know:

$$
G_{j+1}=P_{j+1} \oplus F_{j}
$$

- Hence knowledge of forbidden bit pairs in F_{j}, combined with knowledge of P_{j+1}, gives us knowledge of forbidden bit pairs in G_{j+1}.
- This means we know of even more (potentially) forbidden bit pairs in $g\left(G_{j+1}\right)$. Livantor London

Using the observation IV

- Since we know:

$$
C_{j+2}=F_{j+2} \oplus g\left(G_{j+1}\right)
$$

and we know C_{j+2}, this gives us even more forbidden bit pairs in F_{j+2}, and so on.

- For sufficiently large w, we hope that we know $F_{j+2 w}$ for certain.
- This immediately gives complete knowledge of $G_{j+2 w+1}$, using knowledge of $P_{j+2 w+1}$.
- I.e. we have complete knowledge of all $F_{j+2 w}$ and $G_{j+2 w+1}$ for all sufficiently large w.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

A side remark

- In our discussion we have not used all the available knowledge.
- In fact we only use knowledge of C_{j}, C_{j+2}, C_{j+4}, \ldots and $P_{j+1}, P_{j+3}, P_{j+5}, \ldots$
- We also only learn information about F_{j}, F_{j+2}, F_{j+4}, \ldots and $G_{j+1}, G_{j+3}, G_{j+5}, \ldots$
- However, we now repeat the process starting with F_{j+1}, using all the rest of the information we have.

How big is sufficiently large?

- Consider any pair of bit positions: (i, i+m).
- Returning to our previous argument, we know that $g\left(G_{j-1}\right)$ cannot have $(0,1)$ in these two bit positions.
- Hence, we know that the pair of bit positions in $F_{j}=C_{j} \oplus g\left(G_{j-1}\right)$ can only take three of the possible four values.
- Precisely which three possibilities will depend on C_{j}, which should look random.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

How big II?

- Hence we know that the two bit positions in G_{j+1} can only take three of the possible four values.
- The possibilities for the two bit positions in $g\left(G_{j+1}\right)$ will depend on which three pairs are possible (using our table for the sets A and B).
- That is, there is a 50% chance that we will know that the two bit positions in $g\left(G_{j+1}\right)$ have only two possible values, and a 50\% chance that there are 3 possible values.

How big III?

- Using standard probabilistic arguments for stochastic processes, the probability that there will only be a single possibility for the bit pair after v iterations of the above process is equal to the top right entry in the v th power of the following 4 by 4 matrix:

How big IV?

- For $v=10$, this is 0.710 .
- For $v=20$, this is 0.953 .
- That is, after 20 iterations, i.e., if we know 40 consecutive plaintext/ciphertext pairs, we will know for certain around 95\% of the bit pairs.
- I.e., if $m=64$, we will know for certain around 120 of the 128 bits.
- There will only be a small number of possibilities for the other bit pairs.

Agenda

- Introduction
- Simultaneous confidentiality and integrity
- Attacking EPBC
- Completing the attack

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

What else needs to be done?

- Once we know some values of F_{i} and G_{i}, we need to use these values to construct a forgery.
- This is straightforward, as we now show.
- We suppose that the added redundancy prior to encryption is a fixed n-bit block, i.e. the final n-bit block of a plaintext message is equal to a fixed block, V.
- The presence (or absence) of this block is used by a decrypter to check that a message is valid (or not).

Resources for attack

- We suppose that an attacker has the first s blocks of an encrypted message $C_{1}, C_{2}, \ldots, C_{s}$, for which he/she knows the internal value G_{s}.
- We suppose the attacker also knows the final two blocks $\left(C^{\prime}{ }_{u-1}, C^{\prime}{ }_{u}\right)$ of an encrypted message for which the attacker knows the internal value $G^{\prime}{ }_{u-2}$. [NB: if $P^{\prime}{ }_{u}$ is the final plaintext block of this message, then $P^{\prime}{ }_{u}=V_{\text {. }}$]
- We suppose these two part ciphertexts have been encrypted using the same key K. [These two part ciphertexts could be the first s blocks and the final 2 blocks of a longer encrypted message].

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

A forged message

We now define a 'forged' ciphertext message:

$$
C^{*}{ }_{1}, C^{*}{ }_{2}, \ldots, C^{*}{ }_{s+2}
$$

- where

$$
\begin{aligned}
& C^{\star}{ }_{i}=C_{i}(1 \leq i \leq s) ; \\
& C^{\star}{ }_{s+1}=C^{\prime}{ }_{u-1} \oplus g\left(G^{\prime}{ }_{u-2}\right) \oplus g\left(G_{s}\right) ; \\
& C^{\star}{ }_{s+2}=C^{\prime}{ }_{u} .
\end{aligned}
$$

- When this forged message is decrypted, the final block will be $P^{\prime}{ }_{u}=V$.

Encrypt-then-MAC model

- There seem to be too many problems with the add-redundancy-and-encrypt model to be able to recommend it.
- Encrypt-then-MAC seems much safer, and is provably secure.
- However even this approach needs to be implemented with care; in particular, a decrypter must not attempt to decrypt a message if the MAC check fails.

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

Combined encryption/integrity modes

- There are alternatives to encrypt-then-MAC.
- Of particular interest is the Offset CodeBook (OCB) mode, due to Rogaway, Bellare, Black and Krovetz (2001), and a revised OCB v2.0 more recently released.
- These block-cipher-based modes only require each plaintext block to be processed once, and have a complexity-theoretic 'proof of security' (based on the assumption that the block cipher is a pseudo-random permutation family).

Standards

- OCB v2.0, together with other carefully specified ways of combining encryption and MACing, are in the process of being standardised.
- One such standard will be ISO/IEC 19772 (currently at Committee Draft stage).

ROYAL HOLLOWAY, UNIVERSITY OF LONDON

Information Security Group

Further reading

- The attack described in this talk is given in:
- C. J. Mitchell, Cryptanalysis of the EPBC authenticated encryption mode. [Copies available from the author].
- For more information on cryptography standards (including MACs, modes, etc.) see:
- A. Dent and C. Mitchell, User's guide to cryptography and standards. Artech House, 2005.
- The standard reference for much of crypto (even though it is now 10 years old) remains:
- A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.

