
Cryptanalysis of the EPBC
authenticated encryption

mode
Chris Mitchell

Royal Holloway, University of London
http://www.isg.rhul.ac.uk/~cjm

2

Agenda

Introduction

Simultaneous confidentiality and integrity

Attacking EPBC

Completing the attack

3

Simultaneous encryption and integrity

Both confidentiality and integrity are often required.

Indeed, encrypting without integrity protection is now
known to be dangerous (variety of attacks).

One simple way to provide both services is the encrypt-
then-MAC model where we encrypt the message and
then compute a MAC, using two distinct keys.

This is very effective (if used with care), but each block
of data is processed twice.

4

Add-redundancy-and-encrypt model

To avoid the extra work of double processing,
one widely discussed alternative to encrypt-
then-MAC is the add-redundancy-and-encrypt
model.

Here, predictable redundancy is added to the
plaintext (e.g. a fixed block at the end) prior to
encryption, and the receiver checks for the
presence of the redundancy after decryption.

5

Shortcomings of model

The encryption method needs to be chosen
carefully (e.g., a stream cipher is bad news)!

So does the method of adding redundancy.
– Suppose the ‘fixed block at the end’ method is used.

– Obvious dangers arise if the fixed block arises by
chance in the middle of the plaintext!

Despite these dangers, the technique has often
been advocated.

6

EPBC mode

One major problem with the add-redundancy-then-
encrypt approach is that commonly used encryption
modes are not appropriate.

That is, if a mode like CBC is used, then relatively
simple forgery attacks are possible (as we show).

We consider a mode specially designed for use with
add-redundancy-then-encrypt, namely EPBC, and
show that this mode too is subject to forgery attacks.

7

Agenda

Introduction

Simultaneous confidentiality and integrity

Attacking EPBC

Completing the attack

8

CBC mode = no good!

Having decided to use add-redundancy-and-
encrypt, the encryption method needs to be
chosen.
It is not hard to see that CBC mode is
completely inappropriate.
This is because ciphertext errors only
propagate in a very limited way.
That is, changing ciphertext block Ci only
affects Pi and Pi+1.

9

CBC decryption – error propagation
C1 C2

P1

Cq

P2

dK dK

Pq

dK

IV
Cq-1

10

EPBC mode

EPBC (Efficient error-Propagating Block
Chaining) was proposed by Zúquete and
Guedes in 1997.
It is a mode of operation in which ciphertext
errors propagate in an unlimited way.
Designed as an improvement of a mode called
IOBC (Recacha, 1996).
Uses an n-bit block cipher where n is even
(assume n=2m).

11

EPBC mode operation

Uses two n-bit secret IVs: F0, G0.

To encrypt plaintext P1, P2, …, Pt:
– perform the following for i = 1, 2, ..., t:

Gi = Pi ⊕ Fi-1

Fi = eK(Gi)

Ci = Fi ⊕ g(Gi-1) [except for i=1: C1 = F1 ⊕ G0]

where ⊕ denotes bit-wise exclusive or, and g is a
function mapping an n-bit block to an n-bit block.

12

The function g

Suppose X is an n-bit block, where X = L||R, and L and
R are m-bit blocks.

Then:
g(X) = (L ∨ ~R) || (L ∧ ~R)

where ∨ denotes bit-wise inclusive or, ∧ denotes bit-wise logical
and, and ~ denotes logical negation (changing every zero to
one and vice versa).

Note that g is not one-to-one. [This is the only change
between OPBC to EPBC: IOBC uses a one-to-one
function g].

13

EPBC encryption (also IOBC)
P1 P2

C1

Pt

CtC2

eK eKeK

F0 (IV)

F2

g

G1

G0 (IV)

F1

G2

g

Gt

Ft

14

An observation
To launch a forgery attack, it would appear to be
necessary to have knowledge of the ‘internal’ values of
Fi and Gi.

However, since these values are never transmitted
(and F0 and G0 are assumed to be secret), attacking
this mode would appear to be difficult.

Moreover, g is deliberately chosen to be not one-to-
one to thwart known-plaintext based forgery attacks
which apply to long messages encrypted using IOBC.

15

Agenda

Introduction

Simultaneous confidentiality and integrity

Attacking EPBC

Completing the attack

16

Objective of attack

We assume that the add-redundancy-and-
encrypt model is being used with EPBC.

We also assume that the method of adding
redundancy is to add a fixed block to the end of
the message.

The objective is to take a valid ciphertext and
use this to construct another ‘forged’ ciphertext
which will have the correct redundancy when
decrypted.

17

Observation regarding g
Suppose g(X) = L′||R′, where L′ = (λ′1,λ′2,..,λ′m)
and R′ = (r′1,r′2,..,r′m).

Then, for every i, if λ′i = 0, then r′i = 0.

To see this, suppose X = L||R, where L =
(λ1,λ2,..,λm) and R′ = (r1,r2,..,rm).

If λ′i = 0 for some i, then, since λ′i = λi ∨ ~ri, we
know immediately that λi = 0 and ri = 1. Hence
r′i = λi ∧ ~ri = 0.

That is, pairs (λ′i, r′i) can never equal (0, 1).

18

A more general observation

Using the same notation, if (λi, ri) is in the set
A, then (λ′i, r′i) must be a member of the set B,
where the possibilities for the sets A and B are
now given.

Unless |A| = 1, given a random set A of a
certain size, the expected size of B is always
smaller than |A|.

19

The sets A and B

{10}
{11}
{00}
{10}

{11}
{10}
{01}
{00}

{10, 11}
{01, 11}
{00, 11}

{10}
{10, 11}
{00, 10}

{10, 11}
{01, 11}
{01, 10}
{00, 11}
{00, 10}
{00, 01}

{00, 10, 11}
{10, 11}
{00, 10}

{00, 10, 11}

{01, 10, 11}
{00, 10, 11}
{00, 01, 11}
{00, 01, 10}

{00, 10, 11}{00, 01, 10, 11}

B (set of output pairs)A (set of input pairs)

20

Using the observation I

Our objective is to use knowledge of known
plaintext/ciphertext pairs (Pi, Ci) to learn pairs
(Fi, Gi).

Suppose we know s consecutive pairs, i.e. we
know:

(Pj, Cj), (Pj+1, Cj+1), …, (Pj+s-1, Cj+s-1).

where we suppose j > 1.

21

Using the observation II

We know:

Cj = Fj ⊕ g(Gj-1)

We also know that if g(Gj-1) = L′||R′, where L′ =
(λ′1,λ′2,..,λ′m) and R′ = (r′1,r′2,..,r′m), then (λ′i, r′i) can never
equal (0, 1) for any i.

Hence, knowledge of Cj gives some knowledge about Fj.

Specifically we know that certain bit pairs cannot occur in
Fj, where each bit pair contains a bit from the left half and
the corresponding bit from the right half.

22

Using the observation III

We also know:

Gj+1 = Pj+1 ⊕ Fj

Hence knowledge of forbidden bit pairs in Fj,
combined with knowledge of Pj+1, gives us
knowledge of forbidden bit pairs in Gj+1.

This means we know of even more (potentially)
forbidden bit pairs in g(Gj+1).

23

Using the observation IV

Since we know:
Cj+2 = Fj+2 ⊕ g(Gj+1)

and we know Cj+2, this gives us even more forbidden
bit pairs in Fj+2, and so on.
For sufficiently large w, we hope that we know Fj+2w for
certain.
This immediately gives complete knowledge of Gj+2w+1,
using knowledge of Pj+2w+1.
I.e. we have complete knowledge of all Fj+2w and
Gj+2w+1 for all sufficiently large w.

24

A side remark

In our discussion we have not used all the
available knowledge.
In fact we only use knowledge of Cj, Cj+2, Cj+4,
… and Pj+1, Pj+3, Pj+5, …
We also only learn information about Fj, Fj+2,
Fj+4, … and Gj+1, Gj+3, Gj+5, …
However, we now repeat the process starting
with Fj+1, using all the rest of the information we
have.

25

How big is sufficiently large?

Consider any pair of bit positions: (i, i+m).
Returning to our previous argument, we know
that g(Gj-1) cannot have (0, 1) in these two bit
positions.
Hence, we know that the pair of bit positions in
Fj = Cj ⊕ g(Gj-1) can only take three of the
possible four values.
Precisely which three possibilities will depend
on Cj, which should look random.

26

How big II?

Hence we know that the two bit positions in Gj+1 can
only take three of the possible four values.

The possibilities for the two bit positions in g(Gj+1) will
depend on which three pairs are possible (using our
table for the sets A and B).

That is, there is a 50% chance that we will know that
the two bit positions in g(Gj+1) have only two possible
values, and a 50% chance that there are 3 possible
values.

27

How big III?

Using standard
probabilistic arguments
for stochastic processes,
the probability that there
will only be a single
possibility for the bit pair
after v iterations of the
above process is equal
to the top right entry in
the vth power of the
following 4 by 4 matrix:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1000

6/16/500

02/12/10

0010

28

How big IV?

For v = 10, this is 0.710.

For v = 20, this is 0.953.

That is, after 20 iterations, i.e., if we know 40
consecutive plaintext/ciphertext pairs, we will know for
certain around 95% of the bit pairs.

I.e., if m=64, we will know for certain around 120 of the
128 bits.

There will only be a small number of possibilities for
the other bit pairs.

29

Agenda

Introduction

Simultaneous confidentiality and integrity

Attacking EPBC

Completing the attack

30

What else needs to be done?

Once we know some values of Fi and Gi, we need to
use these values to construct a forgery.

This is straightforward, as we now show.

We suppose that the added redundancy prior to
encryption is a fixed n-bit block, i.e. the final n-bit block
of a plaintext message is equal to a fixed block, V.

The presence (or absence) of this block is used by a
decrypter to check that a message is valid (or not).

31

Resources for attack

We suppose that an attacker has the first s blocks of an
encrypted message C1, C2, …, Cs, for which he/she
knows the internal value Gs.
We suppose the attacker also knows the final two blocks
(C′u-1, C′u) of an encrypted message for which the
attacker knows the internal value G′u-2. [NB: if P′u is the
final plaintext block of this message, then P′u = V.]
We suppose these two part ciphertexts have been
encrypted using the same key K. [These two part
ciphertexts could be the first s blocks and the final 2
blocks of a longer encrypted message].

32

A forged message

We now define a ‘forged’ ciphertext message:
C*1, C*2, …, C*s+2

where
C*i = Ci (1 ≤ i ≤ s);
C*s+1 = C′u-1 ⊕ g(G′u-2) ⊕ g(Gs);
C*s+2 = C′u.

When this forged message is decrypted, the
final block will be P′u = V.

33

Encrypt-then-MAC model

There seem to be too many problems with the
add-redundancy-and-encrypt model to be able
to recommend it.
Encrypt-then-MAC seems much safer, and is
provably secure.
However even this approach needs to be
implemented with care; in particular, a
decrypter must not attempt to decrypt a
message if the MAC check fails.

34

Combined encryption/integrity modes

There are alternatives to encrypt-then-MAC.

Of particular interest is the Offset CodeBook (OCB)
mode, due to Rogaway, Bellare, Black and Krovetz
(2001), and a revised OCB v2.0 more recently released.

These block-cipher-based modes only require each
plaintext block to be processed once, and have a
complexity-theoretic ‘proof of security’ (based on the
assumption that the block cipher is a pseudo-random
permutation family).

35

Standards

OCB v2.0, together with other carefully
specified ways of combining encryption and
MACing, are in the process of being
standardised.

One such standard will be ISO/IEC 19772
(currently at Committee Draft stage).

36

Further reading

The attack described in this talk is given in:
– C. J. Mitchell, Cryptanalysis of the EPBC authenticated

encryption mode. [Copies available from the author].

For more information on cryptography standards
(including MACs, modes, etc.) see:

– A. Dent and C. Mitchell, User’s guide to cryptography and
standards. Artech House, 2005.

The standard reference for much of crypto (even
though it is now 10 years old) remains:

– A. Menezes, P. van Oorschot and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997.

