TYPE-CHECKING SYSTEMS
WITH

PARTICULAR APPLICATIONS TO FUNCTIONAL LANGUAGES

by

HOCK KUEN FRANCIS YEUNG

Royal Holloway College, University of London

1 .ABUT
Submitted to the University Of London - 4a %

in September, 1976 o)37
jl_t ':q* v
for the Degree of Doctor of Philosophy,

ProQuest Number: 10097426

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10097426
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

J.Morris in his thesis discovered that conventional
type-checking systems inhibit users of typed languages
and he 1left two problems for future solution--parametric

polymorphism and circular types.

Any typed language L”* is related to a type-checking
system T by a function 0 .%. Consequently type-checking
systems may be studied independently of particular
languages. Therefore a logic to illustrate how such
systems are intended to work must preserve 1language and
machine independencies, and it must not be inhibited by
Morris* two problems. We have therefore chosen the A-K

Calculus.

Fundamental concepts of types and type-checking are
discussed and these include theorems of functionality,
a set-theoretical approach to types, and intersection-
types. .After preliminary examination of previous type-
checking systems, we propose two systems of our own.
The first one we have implemented is System-F. In attemp-
ting to generalize it beyond the work of conventional type
checkers we discovered that it 1is necessary to abandon the
distinction between so-called statically- and dynamically-

typed sys tems.

In this way we alight on our most fundamental problem.
This is how to design type-checking systems that permit
declaration of arbitrary functions and functionals whose
type declarations are incomplete or missing. We solve
this by introducing a class of type expressions we call
type abstractions. We have also introduced a way to
describe type-checking processes by certain sets of
equations, and shown how to solve them. These thoughts
are implemented in our second system, the System-Y.
Later, we explored further the nature of circular types in
the 1light of 1lattice theory. Both our systems are adequate

to handle Morris' problems.

ACKNOWLEDGEMENTS

My grateful thanks go to my thesis supervisor,
Mr. R.P. Edwards, for his guidance, constructive
criticism, and patience throughout the investigation

and preparation of this thesis.

Most importantly, 1 wish to thank my parents in
Hong Kong for giving me their 1love, wunderstanding,

encouragement and confidence throughout my studies in

Britain.

1 would also 1like to thank Miss A.C.L. Man for typing

the first draft of this thesis. ——=—-

Finally, 1 wish to thank the University of London

for its Postgraduate Studentship.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

INTRODUCTION

FART ORE

THE X-CALCULUS

Applicative Expressions and Their Conversions
Functions

Applicative Expressions

X-expressions

The Class of X-expressions

Free and Bound Variables

Substitution

Conversion

X-definability of Computable Functions
X-definability

Primitive Recursive Functions

General Recursive Functions

Church's Thesis

RECKON LANGUAGE

Basic Objects

Primitive Values

Primitive Functions

Lists

Strings

Assignments

Sequential Expressions

Call By Name and Call By Value
Conditional Branchings

Choice Expressions

37

42

13

14

15

15

16

17

18

19

19

22

23

30

31

33

34

35

35

36

42

43

43

46

47

2.10

2.11

LET and WHERE Expressions
Recursions
Polymorphic Operations

Implementation

APPENDIX A

FART TWO

INTRODUCTION

THREE SIMPLE SYSTEMS
System-L

System-H

System-M

Problems in Type-Checking
Parametric Polymorphism
Circular Types

The Effect of Type Problems On Language Design

TYPE CALCULUS

Functional Types

Types Are Sets

Union Types

Type Puzzle

Solution to the puzzle:first attempt
Intersection Types

Solution to the puzzle :second attempt
Summary of the Three Constructors
Rule of Inclusion:functional types

Closing Remark

SYSTEM-F

Basic types of System-F
Constructed Types

Type Expressions

Rules of Reduction
Coercion

Definition of the Mapping Function 0

49

51

53

55

56

60

62

62

68

74

80

80

81
82

84

84

85

86

88

88

90

91

96

99

101

103

104

104

105

105

109

109

Extension:ordered types

3.8 Application of System-F to Reckon

3.9 Parametric Polymorphism:solution

3.10 Circular Types :solution

3.11 Summary and Remarks

APPENDIX B 124

APPENDIX C 133
PART THREE

1 - SYSTEM-Y

1.1 Elements of System-Y

1.2 Type Abstractions

1.3 Type Assignments

1.4 The Mapping Function

1.5 The Reduction Function

1.6 Simplifications of the ReductionFunction

1.7 System-Y Compared with Other Static Systems

1.8 Intersection Types

1.9 The Anonymous Type

1.10 Implementation

1.11 Summary

2 SYSTEM-Y FOR CIRCULAR TYPES

2.1 Circular Types

2.2 Type-Checking of Declared Circular Types

2.3 Undeclared Circular Types

2.4 Solution to the Problem of Undeclared Circular Types

2.5 Lattice Representation of Types

2.6 Recursive Functions

2.6 Implementation

APPENDIX D 179

APPENDIX E 187

112

117

120

121

122

141

142

143

145

147

152

154

156

157

159

63

165

166

167

169

171

174

176

177

3 FUTURE DEVELOPMENTS WITH RESPECTS TO USER . 194

PARTICIPATION AND DATA STRUCTURE TYPES

3.1 Types as Objects in a Computing Model 195
3.2 Another Approach to ParametricPolymorphism 195
3.3 Declaration of Ordered Types 197
3.4 Contextual Checking of Types 200
3.5 Summary 20 3

REFERENCES 204

INTRODUCTION

Types are checked in most implementations of high level

languages (Algol68, Fortran, Pascal, etc.). However, it

is fair to say that type checking is simply regarded as an

adhoc process, and unlike other parts of language implemen-

tations (say, code generation), it is seldom mentioned.

There are a few reasons why we have to carry out this

project. Data types and structures have become increasingly

important in recent 1language designs (e.g. Algolé68) and we

believe that this trend will continue in the foreseeable

future. Hence it 1is reasonable to suggest that the naive

type-checking systems as we have now would be unable to cope

with future language developments. There are problems that

have been known for a long time but still awaiting solutions,

for example, parametric polymorphism and circular types.

We hope that in attempting to solve these problems from

first principles, we might be able to suggest some ways that

we could discuss type checking systematically. On the

other hand if type checking could be studied independently

of particular languages, we might be able to shed some

light on what future 1languages would be.

Of course, it is impossible to achieve all our aims in
one project, so we shall concentrate on solving problems in
parametric polymorphism and circular types here. We find

that these problems are well exhibited in functions and

functionals. Hence, in choosing a model to represent

these problems, there are two criteria to be satisfied.
Firstly, it must preserve language and machine indepen-
dences. Secondly, functions and functionals can be

expressed in it conveniently. We have therefore chosen

X-K Calculus as the most suitable model.

We find it necessary in Part One of this thesis to

review the known principles of the X-K Calculus so as to

exhibit those logical properties important to our work, and

then to state the notation-- Reckon, in which we propose to

abbreviate description of the larger functions needed in

subsequent parts, although (it will bear repeating) notations

are incidental to this thesis. We implemented Reckon on

the computer during our undertaking.

After preliminary examination of previous type-

checking system proposals in the 1light of our two problems,

we propose two systems of our own. In Chapter 2 of Part

Two, we discuss some of the fundamental concepts which

includes theorems of functionality, a set-theoretical

approach to types 1including unions and intersections of

types. While avoiding throwing a load of mathematical
symbols at readers, we formulate our proof of some theorems
on logical deductions. We also demonstrate that these

theorems are isomorphic to theorems in prepositional Calculus

10
The first type-checking system we have implemented is
System-F. In attempting to generalize it beyond the work
of conventional type checkers we discover that it is
necessary to abandon the distinction between so-called

statically- and dynamically- type-checking systems.

The aim of this project is to identify the underlying
logical properties of our problems and uncover their solutions
progressively. Thus we find ourselves embarking on the
logic of System-Y at the outset of Part Three. System-Y
permits declarations of arbitrary functions and functionals
even where type declarations of parameters are incomplete
or missing. This 1is possible because we have introduced a
class of type expressions which we call type abstractions.
The analogy is with the progression to X-abstraction in the
X-Calculi, or with the progression from propositional to
first order expressions in the predicate Calculi. We have
also introduced a way to describe type-checking processes
by certain sets of equations, and shown how to solve them.
Hence type checking may be studied independently of machines
or even, it transpires, of particular interpretations of a

system of types.

Both System-F and System-Y are implemented on GDC 64/
6600 computers. So as to carry conviction to the reader,
we have included the semantics of the implementing programs
and some programming examples in the appendices immediately
after theoretical discussions of the respective systems.
The semantics were written in Reckon, so the reader is

recommended to familiarize himself with the language from

11

the examples presented for this purpose in the appendix

at the end of Part One.

In Chapter 2 of Part Three, we explored further the
nature of circular types in the 1light of lattice theory,
and showed how the problem can be handled by System-Y.
What remains is for us to claim that both our systems are
capable of handling parametric polymorphism and circular

types.

PART ORE

12

13
CHAPTER ONE

THE X-CALCULUS

Our prime interest in this project 1is to study type
behaviour of computer programs with particular emphasis
on functional 1languages, but without confining ourselves

to any specific language.

Freedom from the various tedious constructs of a
specific language allow us to see type-checking problems
more clearly and deeply. We can also avoid the risk of
being misled by features of a particular language into
unfruitful investigations of problems that are of limited

interest.

With regards to the above discussions, we find that
X-K Calculus is the most suitable model for our
investigation (we shall call it simply X-Calculus
hereafter) . The X-Calculus is simple in its syntax.
It has been claimed that all computable functions on
natural numbers are X-definable [Turing,1937]. Landin
[Land in,1965] has also shown that the class of all Algol-
60 programs is a subset of the class of X-expressions;

while [MacCarthy,1963] exhibited the class of linear 1lists

over finite alphabets as only a 'conservative extension'
of natural numbers, so that X-K Calculus can describe data
structures too. In a sentence X-Calculus is adequate

for our demands on it.

14

A type system was proposed by Ledgard [Ledgard,1972]
in handling type-checking of Algol-60 programs (and thus
of only a subset of X-expressions). We shall see in
later chapters that his system shares shortcomings with
other systems, especially in checking the types of
functions. Those problems, such as parametric polymorphism
and circular types, are well amplified in X-Calculus.
Thus our choice of X-Calculus for investigation is well

justified.

Another advantage that we have experienced in using
X-Calculus is that once a normal order of evaluation is
prescribed so that each step of evaluation is defined
uniquely, the complete process of evaluation can be
studied stepwise. Intermediate results at any stage
can be obtained which proved to be invaluable in verifying
properties that are under investigation. Yet the X-

Calculus is machine independent.

1.1 Applicative Expressions and Their Conversions

In this section, we shall give a brief account of the

syntax of X-expressions and the 1laws of conversion will be

discussed towards the end of the section.

15

1.1.0 Functions

Work on X-Calculus was initially motivated by studies
of functions. The notion offunction is by no means a
novel idea, be it be regarded as rule of correspondence,
mapping or relation between two sets of objects. Suppose

f is a singulary function (function of one argument)

defined on a set of objects and yielding results in set
R2', then RE ang R* are called domain and range of £
respectively. It is possible that either or both domain

and range of a function are sets of functions and perhaps
the function itself as well. At least we do not wish to

exclude this possibility.

Example
Identity function IDENT can be defined as
IDENT (x) =x regardless of what x is, thus
IDENT (IDENT)=IDENT

1.1.1 Applicative Expressions

Functions of two arguments can be re-expressed as
corresponding functions of one argument, whose values are
functions of one argument. We shall denote functional
application by (f x) where f 1is a function and x is the

argument of £f.

16

Example
f(x,y) =((f x)y)=f* X y

where (f’ x) is the value obtained by applying

an f’ to X, which is a function of one argument.
In general; functions of n arguments (n*2) can be
re-expressed as functions of one argument, whose values are

functions of (n-1) arguments and so on.

Some brackets can be eliminated by adopting the
convention that expressions are 1left associative, for
example, f x y=((f x)y). Only where 1is any ambiguity, we

insist that brackets should be written.

1.1.2 X-expressions

Suppose function f is defined as (f x)=x*x, let wus
consider the two statements below
(1) (£ x) 1is greater than 100
(2) (f x) 1is a square function.

In deciding the truth of statement (1), we have to ask what

is the value of x and consequently the value of (f x) . So
in case (1), we are concerned with values. On the other
hand, in (2), value of x is irrelevant, and neither is

(f x) . The truth of the statement depends on how f is
defined, or simply the process that is associated with it.

Clearly the two occurrences of (f x) serve for two distinct

purposes. The former stands for value of the function.

17

while, the latter the function itself.

Such ambiguities can be avoided if extra symbols are
used to differentiate the two cases. The symbol 'X' is
used for this purpose. Statement (2) can then be re-
written as

"(Xx:(f x)) is a square function" ... (a)
The first occurrence of x in (a) is called binding wvariable
(in Algol, this is called the formal parameter of a function
). We call (a) "x-abstraction" of expression (fE x), and

(f x) is called "body" of (a).

1.1.3 The class of X-expressions

Binding variables are separated from bodies by ":" in
X-expressions. Assuming that we have an infinite set of
variables a,...,z,a*, ..., ,a”,... and also the following
symbols "x"> '"'"('', and then arbitrary strings can
be constructed from them. These strings are called well-
formed-formulae only if they satisfy any of the following
conditions
(1) a variable is a well-formed-formula
(2) if F, A are well-formed-formulae, so is (F A). They

may be called combination with F as operator and A as
operand.
(3) if M is a well-formed formula, so is (xx:M), where x is

the binding variable which may or may not occur in M.

Examples
(1) (Ax : (x x))
(2) (Ax: (Ay : (x y)))

(3) (Ax : (Ay:y))

Brackets can be omitted with the understanding that

(1) A-expressions are left associative

(2) an opening bracket " (" is placed immediately after
' and the matching closing bracket ")" is inserted as

right as possible in the subexpression.

Examples
(1) (Af:Ax:f(f x))E(Af:(Ax : (£(f x))))
(2) (AM:AN:Aa:Ab: (M a) ((N a)b))E

(AM: (AN: (Aa: (Ab: ((M a) ((N a)b))))))

1.1.4 Free and Bound variables

It is well known in mathematics that if we replace
occurrences of x in the integral "/x dx" by "y", the
resulting integral "/y dy" has the same meaning as the
original one. However this is not true for "/x y dx"
The phenomeon is formalized in A-Calculus. A variable
free or bound in a formula depending on the following
conditions stated recursively,

(1) a variable 1is free in itself

(2) A variable x is free in (F A) if it 1is free in both

18

far

all

is

F

and A. Conversely, if it is bound in either F or A,

then it is bound in (F A).

19

(3) All occurrences of x will be bound in (Xx:M) (this
statement is superfluousif x does not occur in M)
where M is a well-formed formula.A variable y which
is not the same as x, will be free or bound in (xx:M)

depends on whether it is free or bound in M.

Examp le
(1) In (Xx:(x y)), x is bound and y is free

(2) In (Xx:Xy:(x y)), both x and y are bound

1.1.5 Substitution

We use the notation "[N/x]M" to stand for the formula
obtained by substituting all occurrences of x in M by N.
Notice that if N is not a simple variable and x is bound in

M, then the resulting formula would not be well formed.

Example
(1) Cy/=x](Xx:(x x))=(Xy:(y Yy))

(2) [(Xw :w) /x] (Xx :(x x))= (X (Xw :w) : ((Xw :w) (Xw :w)))

1.1.6 Conversion

We proceed to the operations in X-Calculus --
transformation or conversion of well-formed formulae,
Notationally, we use "A->-B" to stand for conversion from A
to B, One may regard conversions as processes for
replacing a part of a well-formed formula by another well-

formed formula according to the following rules

20

(1) a“Conversion
A part M of a well formed formula can be replaced
by [y/x]M provided that variable x is not free in M and

y does not occur in M.

Examp les
for the expression (Xa:Xb:a b), we consider 3
different cases
(a) We can replace (Xb:a b) by [c/b] (Xb:a b),
thus (Xa:Xb:a b)=>»(Xa:Xc:a c)
(b) we cannot replace (a b) by [c/b](a b)

(c) we cannot replace (Xb:a b) by [a/b](Xb:a Db)

(2) g-reduction
A part ((Xx:M)N) of a well-formed formula can be
replaced by [N/x]M, provided that the bound variables
of M are distinct from both x and the free variable of

N.

Examples
(a) We can replace ((Xx:Xy:x y)z) by
[z/x] (Xy :X y) , thus
((Xx;Xy:x y)z)*(Xy:z vy)
(b) we cannot replace ((Xx:Xy:x y)y) by
[y/x] (Xy:X y)
(c) we cannot replace (Xx: ((Xx:x y)x)) by

C(Xz:z)/x] ((Xx:X y)x)

21

(3) 3-expansion

A part [N/x]M can be replaced by ((Xx:M)N), provided

that the bound variables of M are distinct both from x and

from the free variables of N.

(4) n-conversion

A part (Xx:(M x)) can be replaced by M if x is not

free in M.

Example
(Xx: (Xy:y y)x) can be replaced by (Xy:y y),

but, this is not true for (Xx: (Xy:x y)x).

(5) 6-conversion

The Calculus we have been discussing so far is known

strictly as the X-K-a3n-Calculus. We shall later informally

add some rules of correspondence to permit primitive

functions to be applied to primitive arguments, by what we

called 6-rules, to give the fuller X-K-a36ri-Calculus

Since these 6-rules are conveniences for practical computing

only, we need answer only for the interpretation of our

o3n-Calculus, and consider 6-rules as a speed up trick for

a special branch in our interpreter (see Chapter 2).

22

1.2 X-Definability of Computable Functions

Applicative expressions which have so far been

considered only syntactically may be given interpretations

as denoting computable objects.

In section 1.1.2 we said that (f x) in " (f x) is a
square function" should be replaced by (Xx:f x) which
describes the corresponding function. This 1is generalized

by the law of g-conversion which permits (Xx:M x) to be

interpreted as function for any x, M. For, if x is not
free in M, (Xx:M x)=M and this is true for anything bound
to X. In other words, for any object x ', whatever the
result is by applying M to x', the same result will be
obtained by applying (Xx:M x) to x'. Thus, n~conversion
is also called the law of Extensionality. Hence, X-

expressions describe functions and this interpretation is

complemented by regarding g-reduction as application of

function to arguments; while 3-expansion may be interpreted

as abstraction or extraction of common subexpressions to

create a function. There is no useful interpretation for

a-conversion in this respect as no new object is created by

the process.

If (Xx:Xy:F x y) denotes the function which gives the

sum of any two numbers, then ((Xx:Xy:F x y)x') can be

interpreted as the function which adds a fixed increment x'

to any given number. We say the 1latter function is

obtained from the former by "partial application", the

concept which we shall use very often 1later.

23

1.2.1 X-Definability

An object is said to be X-definable if there exists a

well-formed formula which denotes the object and in that

case we say the formula X-defines the object. For example,
we might define numeral 0 by (Xa:Xb:b), 1 by (Xa:Xb:a b),

2 by (Xa:Xb:a(a b)) and so on. It is more convenient to
use symbols to stand for complicated formulae, for example,
2 for (Xa:Xb:a(a b)). In general, we write sym”M if "M" |is

a well-formed formula to be designated by the symbol "sym".

Example
(Xa:Xb: (a(a(a b))))

and 3 is X-defined by 2

If a function f is said to beX-definable, then there
should exist a well-formed formula F such that F M->N if

f(m)=n, where m, n is X-defined by Mand N respectively.

Before we state the result that all computable
functions are X-definable, we shall give below a list of

definitions which are required for subsequent discussions.

Definition (1)
The successor function is X-defined by S, where

S-e(Xn :Xf :Xx :£f(n £ x))

Example

S £f x))

->(Xf:Xx:f((Xa:Xb:a b)f x))->-(Xf:Xx:f(f x))

24
Definition (2)
The addition function is X-defined by A, where

A" (Xm:xn:Af:Xx:m £f(n £ x))

Example
A J 2"~ (Xf:Xx:J_ f((Xa:Xb:a(a b))f x))
AXE:Xx:J_ £(£(f x)))
»(Xf :Xx : (Xa :Xb :a b)f(£f(f x)))

>(Xf :Xx:£(£f(f x)))

Definition (3)
The multiplication function is X-defined by M, where

M<-(Xm :Xn :Xf :Xx :m(n f)x)

Example
M 1 27A(Xf:Xx:2(2 £)%)

> (X£:Xx:(2 £) (2 £ x))

->-(Xf:Xx:(2 £) (£(f x)))

>>XE :Xx:f (£ (£ (£ x))))

Definition (4)
The constructor function which forms an ordered pair
from two arbitrary objects is X- defined by PAIR, where

PAIR (Xx:Xy:Xf:f x vy)

Definition (5)
The two functions for selecting the first and second
component of an ordered pair are X-defined by Kj and K2

respectively, where.

A (Xx:Xy :x)

K2 (XX :Xy :y)

Examp les

PAIR a b Ki**i a b>a

PAIR a b K2+K2 a b-»b

Definition-schema (6)

25

The constructor function which forms ordered n-tuples

from n objects (n>2) is X-defined by NTUPLE, where
given n

NTUPLE-f-CXxj :Xx2 :...:Xx*: Xf :£f x* X2 ...x"*)

Definition-schema (7)
The function which selects the i* th object out of

ordered n-tuples (i<n) is X-defined by U”, where

Definition (8)
Let G2~ (Xn:PAIR(n O0) (S(n 0))).
The predecessor function is X-defined by P, where,

P*(Xn:n G(PAIR 0 O0)Ki)

Example
P 22 G(PAIR 0 O0)Ki
-»G(G(PAIR 0 0))Ki
-)-G(PAIR((PAIR 0 0)0) (S(PAIR 0 0 0)))K*
AG(PAIR(0 0 0) (S(0 0 0)))Kj

AG(PAIR 0 1)Ki

for

26

->PAIR(PAIR 0 1 0) (S(PAIR O 0))Ki

APAIR 1 _2 Kj

-K11 2

Examp le
P 00 G (PAIR 0 O0)Ki
~“PAIR 0 0 Ki
-vKi 0 O

>0

Def ini tion (9)
If the infixed operation =+ is defined as follows
X ¢ y=0 if x<y otherwise x-y, then can be X-defined

by Sg, where

Sg-e(Xx:Xy:y P x)

Example

So 2 2-"2 P 3-"V P 2-»!

Definition (10)
The function for finding the minimum of 2 numbers can
be X-defined by MIN, where

MIN+ (Xx:Xy:So y (S y x))

Example
MIN 2.2”So 2(Sqg 2 3)
-sq 2 O

-2

27

Definition (11)
If the function LESS is defined as follows
(a) LESS X y = 1 if x<y
(b) LESS X y = 0 if x>y
then LESS can be X-defined by L where

L-f- (Xx:Xy:MIN A ox))

Example
L 2 3->MIN 1 (So 1 2)
A-MIN J J
->2
L 2 22MIN 2(So 2 2)
->MIN 2 0

>0

Definition (12)
The duplication function can be X-defined by W, where

W+ (Xf:Xx:£f =x x)

Example
W M 2 2™A (by definition 3)

So (W M) A-defines the SQUARE function.

Definition (13)
The composition function can be X-defined by B, where

B-*(Xf;Xg:Xx:f(g x))

Example

B(W M) (W M)2W M(W M 2)-“W M 4-%~16

28
Definition (14)
Let C*-(-(Af :Xx :Xy :f y x)

C<«(Xa'a C* 0 K2 K¥%)

Examp le
C 0-"0 C* 0 K2 Ki

0 K2 Kj

AKi

Example

cz—(‘lc* 0 K2

->c+ 0 K2

“0 Ki K2

Def ini tion (15)
Let H” (Xa:Xf:Xg:Xn: ((PAIR(Ki a)(f(P n)) (C(MIN n 2)))

(g(P n))))

Examples
(1) H a £ g O~(PAIR(Ki a)(f 0) (C 0)) (g 0)
e+ (Ki(Ki a) (£ 0)) (g 0)
+ (Ki a) (g 0)
-»a
(2) H a £ g (S n)H.(PAIR(Ki a)(f P(S n))
(C(MIN(S n)U)) (g(P(S n)))
-)-(PAIR(Ki a) (f n) (C _1%))(g n)
-¢(K2 (Kj a) (f n)) (g n)

>f n (g n)

Definition (16)

Let Y+ (Af: (W(B £f)) (W(B £f)))

Examp le
Yy £4(W(B £f)) (W(B £f))
->@B f) (W(B £f)) (W(B f£f))
+E£((W(B £)) (W(B £)))
+£(Y f£)
This provides the schema for defining recursive

functions in the following way.

Definition (17)

Let RE C<-(Ax :Xf :Y(H x f)), therefore

REC Xf O-vY(H X £)0
>H X £ (Y(H X £))0

)= (by definition 14)

REC Xf (S n)*H x £ (Y(H x £))(S n)
->>fn(Y(Hx£f)n)

»f n (REC X £ n)

Example
We can add the first two numbers by writing
REC 0 A(S 2)"k 2(REC 0 A 2)
“4A 2(A HREC 0 A %))
-"A 2(A 2 0)
-"A 2 1

4-3

30

1.2.2 Primitive Recursive Functions

Primitive recursive functions can be defined
recursively as follows,
(1) S, 0 and U” are primitive recursive functions.
- n

(2) If a function f of n arguments is defined by

"composition" in terms of functions g(of m arguments)

and hj, h2ee_, (each of n arguments) as follows,
f(%1, ., x*)=g(hi(x1i, e, X)), Lo, M (xi, L. oxN))

and if g, h”*, h2, ... h” are primitive recursive, then

f is primitive recursive.

(3) If a function f of n+1l arguments is defined by

"primitive recursion" in terms of functions g”“and g2

as follows

f(xi, c.., X~ 0)=gi(x1i, ce., x%N)
f (xi, T A (y+1))=g2 (xi, ..., x*,y,f(x3j,...,
XR . y))
and if gj and g2 are primitive recursive, then f£f is
also primitive recursive.

It has already been shown that 2» S and are X-
definable. If G, H*, H2, ...» A-defines g, hj, ..., h~
as mentioned in (2), then Fj A-defines f where
Fi+*Axi:Ax2:...:Ax":G(HiXiX2...x"*) (H2X1X2...)...

(H* xi X2 ... x"))

31

If G and G* A-define gj and g as mentioned in (3),

then F* A-defines £, where

F Ax :Ax : .. .Ax :Ay:REC (G X, ... x G, X, . x
z 1 z n Y (11 n)(A 1 n)y)
hence, for-loops can be A-defined by F*.

The class of primitive recursive functions is known

to,include substantially all the ordinarily wused numerical

functions [Church,194]], and as shown above, all primitive

recursive functions are A-definable.

1.2.3 General Recursive Functions

If R of n+l1l arguments is a proposition function, then
the notation y* (Ay:R x* ... x* y) stands for the 1least
value of y (if it exists) that (R Xj ... X~ y) is true.

let M” (Ax:Ay:Az: (C(y z))(x y (S z))z)

then y* can be A-defined by y, where

y+ (Y M)

32

Example
This example is for finding the 1least wvalue y

that is greater than 1.

y(Xy:L] y)0->Y M(Ay:L y)o0
AM(Y M) (Ay:L 2 y)O
~(C 0) ((Y M) (Ay:L 2 y)2)2
+K| ((Y M) (Ay;L 2 7)1)0
>Y M(Ay;L 2 y)2
->M(Y M) (Ay :L 2 y)2
B (C((Ay;L 2 y)2))((Y M)(Ay:L 2 7)2)1
->(C 0) ((¥Y M) (Ay:L 2 7)2)2
AY M(Ay:L 2 7)2
-~(C((Ay:L 2 v)2))((Y M) (Ay:L 2 7)3)2
->(C 2) ((Y M) (Ay:L 2 7)3)2
(A7:L 2 7)3)2

B2
Any general recursive functions can be rewritten in
terms of y*, g and h where g and h are primitive recursive
functions related as follows.

f(x _,x ,...,x)=h(x_,x ,...,x ,(y*(Ay:g x_ x x y)))
1 n 1 z n 1 z

If H and G A-defines g and h respectively, then F A-defines

f as follows,

F<-(Ax j;Ax” :...:Ax" :H(Xj...x" (y (Ay :G Xj...x" y))))

33

If we identify f as a while 1loop, then h is a for-loop

and g is the function for testing the exit conditions, while

y* is for finding the number of times the 1loop has to be

executed before the conditions are satisfied.

1.2.4 Church's Thesis

It was stated that every general recursive function

is 'A-definable [Church,b1941], [Kleene ,1936]. It was also

shown that every computable function is general recursive

[Minsky,b1967], [Turing,1937]. So it can be claimed that

every computable function is A-definable. This result

is important to us because it partly Jjustifies our decision

in choosing the A-Calculus for our investigation.

As part of the illustration of A-definability, we have

outlined the proof of the first part (i.e. general

recursiveness 1is included in A-definability).

34

CHAPTER TWO

THE RECKON LANGUAGE

In last chapter, it has been shown how X-Calculus can
be used in studying computable functions and processes of
computing. However, it cannot be denied that it is quite
painful to read 1long strings of symbols whose meaning is by
no means obvious. It thus fails in one very important
aspect. For, a computer program is not only an interface
between human beings and machines but it also serves as a
link of communication among human beings. A reasonable
approach to this problem is that a language L can be used so
that programs written in L can be translated mechanically
into equivalent X-expressions. Any legal X-expression
must be expressible in L. In finding such a language L,
it can be seen that it is easier to satisfy the first
requirement but not necessary the second one. For example,
Algol-60 programs can be translated into X-expressions, but
it is not possible to have partial evaluation of a function

in Algol-60.

Examp le
(X(x y z):...%x...)u is reduced initially to

(X(y z):...u...)

In the remainder of this thesis we shall have to
express programs that would call for enormous X-expressions
yet for which the abbreviating conventions of Algol-60 or

Algol-68 do not suffice, as we have Jjust suggested. We

35

need a set of conventions of our own for abbreviating 1large
X-expressions. Reckon [Edwards,1974a] is the 1language
that we claim that will satisfy all these requirements.

It is not difficult to Jjustify this statement because X-
expressions are legal expressions in Reckon so undoubtedly
it will satisfy the second requirement. As all 1legal
Reckon programs are computable so it must be expressible

in A- calculus [Edwards,b1975], thus satisfying the first
requirement. In the following sections, we give a brief

account of this 1language.

2.1 Basic Objects

As a first step in simplifying A-expressions, we may
suggest that we shall consider those objects which occur
throughout as constants, (these may include numbers,
boolean values and others) and primitive functions over
them. The rules of correspondence mapping the operator/
operand combinations into these objects may be given by the

6-rules mentioned in 1last chapter and used in the practical

interpreter, or they may be agg-defined as we do here.
2.1.1 Primitive values
(1) Integers are denoted by "1", "a2", ... and are A-defined

by 2 » 2 » e** respectively

(2) Boolean values are denoted by TRUE and FALSE and as

mentioned before, they are A-defined by 1 and 0.

2.1.

but

(1)

(2)

36

2 Primitive Functions

The use of fixed constants is not 1limited to "values"
can be extended to functions (operators) as well.
Arithemetical operations HEE and "*" stand for

addition, subtraction and multiplication respectively

and are A-defined in 1last chapter.

Logical operations : "NOT", "AND" and "OR", and are
A-defined as follows,

NOT<-(Ax: (C x)* 0)

AND-e-(Ax :Ay : (C x)* vy)

OR-<- (Ax:Ay: (C x)y 2)

Examp les

(1) NOT (TRUE)=FALSE

(Ax: (C x) 1 0)1->(C 1)1 0->K, 1 0-*0

(2) AND TRUE FALSE=FALSE

(Xx:Ay: (C x)0 y)2 0~(C 2)0 OAKA 0 040

(3) AND FALSE TRUE=FALSE

(Xx:Xy: (C x)£ y)* 2

(4) OR TRUE FALSE=TRUE

(Xx:Xy:(C x)y 2)1 04(0 2)£ 2"~*2 -

37
(5) OR FALSE FALSE=FALSE

(Ax:Xy:(C x)y]J)O 0=>(C 0)0 272%, 0 2'~2

(3) Relational operations : "> and and they are
X-defined by "L", "GR" and "EQ" respectively as follows,
I* (Xx :Xy :MIN 2(*0 y x))
GR” (Xx;Xy:MIN 2 (S x y))

EQ-«-(Xx :Xy :2 _"*(A(GR x y) (GR y x)))

Examples
(1) 2>3=FALSE

GR 2 3”~MIN 2(So 2 2)“~MIN 2 2%2

(2) 2=2 = TRUE
EQ 2 242 i(a(gr 2 2) (OR 2 2))

A2 i(a 2 2)*1

2.2 Lists

It has been stated that in X-Calculus a function of n
arguments can be expressed as a function of one argument
whose value is a function of (n-1) arguments and so on.
This tedious treatment can be avoided by wusing "Lists'¥*.
Lists can consists of nothing (i.e. NULL-1lists) or can be
constructed by pairing heads that are anything and tails
that are 1lists. We shall use the symbol "," to separate
the two parts of a list and "NIL" is used to stand for

NULL-1list.

38

Examp le

(2, (TRUE,NIL)) is a 1list
We can assume that is right associative so that
(a, (b,c)) is equivalent to (a,b,c). The notation can be

simplified further by omitting all NIL appearing as the
last element of a 1list. Beware that this is only a
convention so that does not denote the pairing

operation.

Example
(2, (TRUE,NIL)) can now stated as

(2, TRUE)

In future in order to avoid any confusion, all NIL's
at the end of a l1list have to be removed according to the
above rules. So that (2, (3)) is constructed by the

following process.

(cons truet-1ist 2 (construet-list(construet-1list 3 NIL)NIL))

assuming that cons truet-1list is the function for

constructing a pair.

It remains to replace any function of n arguments by a

function of one argument which is a list of n elements.

Example

(x(x,y,z): | is a function of 3 arguments.

Lists can be nested within each other so in Reckon we

allow very complicated structures in binding variables.

Examp le

(X (X |y (X2; (x*yX*) ,x%),x%) @ .«.)

If a list L is constructed from objects that are \-

defined by A and B(B is the X-definition of some other

lists), then L canbe X-defined by "(xf:£f A B)".

Lists not only occur as binding variables but also

occur in other contexts which are 1logically correct. Some

of the list-manipulation functions are discussed below,

(1) "NULL"

39

This is the function for testing NULL-1list. In other

words it testswhether the object under consideration

is "NIL" or not. Suppose "NIL" is X-defined by

(Xx:%*) then NULL will be X-defined by (xf:f(xa :Xb:£)).

Examples

NULL NII~ (Xf:f (Xa:Xb :0)) (Xx:£)

XX :£) Xa :Xb :£)

NULL(Xf:f a b>+(Xf:f(Xa:Xb:0))(Xf:f a b)
Xf:f a b) Xa:Xb:0)

> Xa:Xb:£)ab

40

Obviously, if "NIL" is X-defined by other well-formed
formulae, then the X-definition of "NULL" has to be changed

accordingly.

(2) HTH"’"TLII

These are 1list selectors such that, if i<m
i TH (nj,n*,...,n")=n"*
i TL (n”*)a2,.ec° * ok ok ok

and they can be X-defined by "th" and "tl" respectively as

follows,

11 (Xn :Xx :n (Xz :z Kgix)

th-*(Xn :Xx : (11 (P n)x)Kj)

Examp le
th 2 (Xf:£f A(Xg:g B C))
-+tl 2 (Xf:f A(Xg:g B C))Kj
B"HXziz K*"ifXfzf A(Xg:g B C))Kj
“(Xz:z KgiCXfif A(Xg;g B C))Kj
“(Xf:f A(Xg:g B C))K2 Kj
A(Xg:g B C)Kj

-*(Xg:g B C)Kj

As in contrast to LISP [McCarthy,1962], the selector
functions here do not test whether their argument is NULL-
list or not. We shall see 1later, as example of conditional

branchings, how they can be modified to include such tests.

41

(3)
Both are 1list constructors such that

A

(aj,az)..(a”,a”)=((aj,a2),a”,a")
and they can be A-defined by "CONS" and "CONCAT" respectively

as follows,

CON S<-(Aa :Ab :Ac:c a b)

CONCAT4-(Ax: Ay :C2 x y (y(Az:NULL(z TL x))0))
where,

C2~ (Ax:Ay:An:REC y (Cj n x) n), and

C j<-(An :Ax :Ay :Az :CONS ((n-y) TH x) z)

Example
assuming that "d" is a 1list,

CONCAT (Af:f a(Ag:g b NIL)) d

(af : . ..) d 2
“REC d (¢, 2 (aAf:...)) 2
“(Cc|l 2 (Af:...)) 2 (REC d (Cj 2 (Af:...)) 2)
+ (Az:CONS((2-2)TH(Af:...))z) (REC d (C* 2 (Af:...))
I
->CONS(1 TH (Af :...)) (REC d4 (C, 2 (Af:...))")

“CONS a (CONS b d)

A(Ac:c a (Ac:c b d))

42

2.2.1 Strings

Strings are included in Reckon as one of the system
defined types but the potential wuses of this data type have
not been fully explored and in the present CDC computer
implementation of Reckon, manipulations are 1limited to
selections, tests of nullness, and concatenations only.
Bearing this in mind and also to simplify our discussions
hereafter, we shall consider strings as special cases of
lists. This decision is well Jjustified for our purposes
with regarding to the 1logical similarities of their
structures and the operations they share with each other.
Not ational ly, we shall enclose a string by and

such as "<strings>".

2.3 Ass ignments

At first sight, we may A-define "...; x:=x"'; ..." by
(Ax:...)x* ", The effect of which is to enforce a

new entry of x in the current environment. Hence, the
original entry of x will be 1left unchanged. Consequently

it will not be possible to have the so-called "side effects"

of procedures. In Reckon, we regard assignments as

modifications on execution environments, so it can be A-

defined as follows--(A(e,x,y): (update(search x e)y)), where

"search" is the routine for finding x in e and "update"

changes the value associated with x to y. Notice that it is

not necessary for x to be a simple variable, for example, it can be

"i TH L", where L is a list.

43

2.4 Sequential expressions

Let SEQUENT Sj S2=Sj;S2, then SEQUENT can be “-defined

by (Xa :Ab : a b)

Example
SI;S2;82=(SEQUENT (SEQUENT sj ?"*27434

(Aa:Ab:K2 a b) ((Aa:Ab:K2 a b)Sj

Assuming that the order of execution is from 1left to
right, then when the expression is g-reduced Sj, S2 and s*
will be executed in that order. Moreover, the result of

execution 1is that of S*.

2.5 Call by Name and Call by Value

Generally, actual parameters or actuals can behandled

in two ways,

(1) The actuals are evaluated and values obtained are then
assigned to the formais. This process is known as

"call by value".

(2) The actual parameters are not evaluated so it is
unevaluated expressions that are assigned to the formais
and this does not exclude the case that the actual is

a variable too.

In Reckon, parameters are called by value. However

the effect of call by name can be achieved by suitable A-

44

abstraction of the actual parameters. Suppose Vv 1is the

actual that we wish to be called by name, then by suitable

A-abstraction we mean that we have to abstract v with an

arbitrary binding variable that does not occur free in v.

Conventionally we use " ()" for that arbitrary binding

variable.

Examp le

(An: ...n...)v is called by value

(An: ..o.n (), .0)(A() V) is called by name

The trick here 1is to take advantage of the ordering

rule by which (A():v) will not be evaluated until it appears

in the operator-part of a combination. So the final
effect is that n is assigned the "value" (A():v)-- a process
for evaluating v. Inside the A-body, we have to write
"n()" instead of "n" to enforce execution of (A():v) .

We can see that the combination "n ()" is quite arbitrary.

In fact, we can replace () by anything and can still

achieve the same effect.

Let us design an abbreviating convention. Recalling
that we have value specification in Algol-60, and name
specification in Reckon as just described, it appears open
to us to choose our notation either way. We may wish to

declare in a A-expression that its formal calls by name so

that subsequently programmers may discarded all () that are

used for the purpose of "call by name" and rely on a

syntax analyser to insert all omitted (), thus 1leading to

45

a much simplified notation

Had parameter passing in Algol-60 been handled by

"call by value" (as in Reckon), then presumably Algol-60

would have had name declaration as follows,

PROCEDURE f (n) ;

NAME n; BEGIN ...n... END;

oonf(v)

In A-notation, this will be

(Af:...(f v)...)(ANAME n:...n...)
after g-reduction, we have
... (ANAME n:..,n...)v...

We assume that NAME occurring immediately after A

indicates a NAME declaration. By having the name

declaration mechanism, the following two statements are

equivalent.

(1) (An:...n ()...) (A():v)

(2) (ANAME n :...n...)V

But this idea has not been implemented in any versions of

Reckon so that some work would still have to be done before

46

the idea could be materialized. Currently Reckon relies
on explicit " ()" notations.
2.6 Conditional Branchings

For simple programs, it is not difficult to predict in

advance each step of evaluation and arrange them in

sequential order. However in more complicated programs,

it.is desirable to change course of evaluation upon

occurrences of certain events in them. For example, not
to divide a number if the divisor is zero. We shall write
"conditional expressions" whose alternative paths are
called "conditional branches". It is worth mentioning

that the alternative paths in conditional expressions will

not be executed until after the "condition" has been

evaluated. In Reckon, conditional expressions can be

expressed as

IF exp” THEN expj ELSE exp” FI

where exp” 1is some expression which will yield Boolean

values when computed, while exp” and exp” are arbitrary

expressions. "IF", "THEN" , "ELSE" and "FI" are reserved

words in Reckon. One may replace "IF" and "FI" by a pair

of brackets.

Let COND exp”® (X () ;exp j) A () :exp2)=
IF exp” THEN expj ELSE exp” FI

then COND can be A-defined as (Ab:Ax:Ay: C by x ()).

Example

47

th and tl1 can now be re-defined so as to test

whether their argument is the NULL-1list or not.

th'*CXn:Ax:COND (NULL x) (X ():ERROR) (X ():th n x))

tl'*(Xn:Xx:COND(NULL x) (X () :ERROR) (X ():t1l n x))

where ERROR 1is a system- defined function for

handling error conditions.

It is not excluded that exp” , exp” and exp2 n*y be

sequential

exp”

'Examp

2.7

is by

which

expressions or conditional branchings, provided

yields Boolean results.

le

IF print x; x=3 THEN s*;s2 ELSE s”*;s” FI

Choice Expressions

Another way to express a nested conditional expression

"Choice Expression", whose general format is

CASE

exp” IN exp”, exp2» ...» exp” OUT exp” ESAC

can be X-defined as

(Xn:COND(0>n>qg) (X () :exp”?)(n TH((X():exp?®),...,(X():exp))))

48

"CASE", "IN", "ouT" and "ESAC" are reserved words in
the 1language. One may replace "CASE" and "ESAC" by a pair
of brackets. Any exp” must be an expression which yields
a numerical value when executed. Suppose i is the result
and if 1<i<gq, then exp” will be executed otherwise expg.
The discussions on the different possibilities of exp*,
exp” and exp” above are applicable here for exp*, ..., exp”®
expg and exp” respectively with some trivial adjustments.
Thg relationship between conditional expressions and choice

expressions can be illustrated by the example below.

Examp le

IF a”~ THEN b * ELSE IF a“ THEN b” ELSE b”* FI FI

is equivalent to

CASE n IN bpb” OUT b* ESAC

assuming that n is 1 or 2 depending whether a* or

a* is true, and in cases both a”* and a* are false

then n is neither 1 or 2.

The user can omit ELSE branches or OUT choices

completely. So the following expressions are also correct

(1)

(2)

IF exp';) THEN exp,l FI

CASE exp” IN exp]j,exp2 ESAC

49

2.8 LET and WHERE expressions

In writing " (Ax:x+x)3", what may be meant possibly is

"let X be 3; now evaluate the expression (x+x)". It is

felt that we may as well make this meaning more explicit by

having notations such that the above example can be re-

written as "LET xe3; x+x".

Example

(Asg:sq 2) (An:n*n) can be rewritten as

LET sq n5n*n; sq 2

One may regard the statement enclosed by "LET" and ";"

as the definition part of a function and in this respect

we may find let-notation more natural to us than A-notation

Syntactically, there are some differences between the

following two statements,

(1) LET f a b c=a b c;

(2) LET f(a,b,c)=a be;

The differences can be seen quite easily if we rewrite

them in A-notation.

(1) (Af:...) (Aa:Ab:Ac :a b c¢)

(2) (Af :...) (A(a ,b,c) :a b c)

50

It is true that the two expressions will give the same
result when applied to appropriate arguments. Differences

arise only where partial application 1is contemplated.

There are a few variations in writing let-expressions.
They are listed below with the corresponding A-expressions

to which they are mapped by Reckon implementations.

(1) LET XJj,x*,.. .,x*Eaj,a* ,.. . ; ... is equivalent to

(A(XJ ;X2 *X*e o Y o)("":az)o o«a")

(2) LET X _=a, AND xL;a AND ... AND x Ea ;

1 = n n

is equivalent to (1)

(3) Any combinations of the different variations are

allowed.

(4) Recursive function definitions will be considered

later however.

In adopting let-notations, incidentally, we require
that all functions and variables have to be defined prior
to their uses. This feature is shared by ALGOL-like

languages in which we have to define all procedures before

they are wused. On the other hand in FORTRAN, definitions
of all subroutines are placed after the main program, so
they are defined after the uses. In Reckon, we also allow
this form of programming. Post-definition mechanism can

be incorporated into the language by having where-notation.

51

Examp les

(1) x+x WHERE x=3;

(2) sq 2 WHERE sq nEn*n;

It is not uncommon to wish to express ideas in a

number of different ways in human languages. It is hoped
that 4in providing certain flexibilities in Reckon, we may
bring it closer to users' wishes. Program writing is by
no means just an exercise of grammatical rules, after all.
It is an art of expressing one's ideas. In common with

other arts, it 1is no good just playing with rules, we have
to explore the nature of it and develop our skill in it.

Thus it is of utmost importance that a language should have
enough depth for such developments. There 1is no doubt

that strict rules and unnecessary restrictions would destroy
art completely. Conversely, variations in a language may

stimulate experiments from users.

2.9 Recurs ion

If a function f is described so that the same f
description is needed as part of the description then f is

said to be defined by recursion.

Example
Factorial function might be defined as
LET factorial n=IF n=0 THEN 1
ELSE n*factorial(n-1) FI;

and in X-notation, this can be

(Xfactorial:...) (Xn:IF n=0 THEN 1 ELSE

n*factorial(n-1) FI)

It may be noted that "factorial" is free in

"(Xn :IF n=0 THEN...FI)" and this may cause errors in

execution.

definition

In order to avoid it, we have to earmark a

if it is recursive. We may do this by the

markers "REC" and "LABEL".

Examp les

"LABEL

LET REC factorial n=

IF n=0 THEN 1 ELSE n*factorial(n-1) FI;

which is equivalent to

(LABEL factorial:Xn:

IF n=0 THEN 1 ELSE n*factorial(n-1) FI)

." is expanded by syntax analyzer to "Y ..." and

"Y" was defined to have the property as described in

chapter 1.

Examples

for-loops can be defined by
LET REC for i j k sE
IF i<k THEN s(); for(i+j) j k s FI;
so that "for 1 1 10 (X():print<string>)" will
print the string of characters ten times.

Similarly, while-loops can be defined by

52

53

LET REC while p SE

IF p() THEN s(); while p s FI;

so that "while (X ():1<10) (X () :print<string>;

i:=1+4i)" will produce the same effect as the
for-loop, assuming that i is bound in outer
expression and ":=" stands for assignment.

2.10 Polymorphic Operations

There are arguments for supposing that distinct
symbols should be used for operation on operands of
different types irrespective of 1logical similarities.

For example, different symbols should be used for integer-
add, real-add and so on for the other arithemetical
operations [Laski,1968]. As far as "computer men" are
concerned, this is a splendid idea because there would be
less work in type-checking and related problems. However
most people using machines are problem-solvers and,
undoubtedly, will make 1less mistakes if they can "talk" in
their "own language". For example, mathematicians 1like

to use the same symbol not only for integer or real

addition but even for matrix-, vector-, array-, complex
number- addition, and even operations over determinants,
characters, strings, booleans and etc. We can imagine the
confusions that might arise in a mathematicalbook if one
symbol were used for adding two matrices and another for
adding its elements depending on what type ofelement they

are. The problem here is not that mathematicians do not

54
know what they are doing but the tedious treatments that
would otherwise be involved. In a certain sense this is
a moral gquestion of who is in charge, language implementors

or users?

In Reckon, we do not regard such "polymorphic"
operators as sinful. In fact, we have gone even further
to the extent that where there is no ambiguity, some

operators can be dropped completely [Edwards,1974b].

Examp les
2 <S T R I N G>2 TH <S T R I N G>
2 (Ss,T,R,I,N,G)=2 TH (S,T,R,I, N ,G)
2 3=2*3 -—
<§ T Rx1l N G>=<S T R>::<I N G>
(1,2,3)(4,5,6) =(1,2,3): ;(4,5,6)
x*=x-1 if X is an integer

X'=sl TL X if X is a 1list or string

Some of these simplifications can be regarded as
observations on our writing habits and instinctive reactions
towards certain notations* For example, in placing
<S T Rx1 N G> together as it is shown, naturally we have a
feeling of grouping them together (if readers do not agree

with this, then they may have more disagreement with ALGOL-

68 in which identifier "feel bad" is regarded as "fee lbad").
And in Arithmetic, it is conventional to write 2 (3+4) for
2* (3+4) .

Of course, one has to be careful in allowing such

55

shorthand notation in a language. There are still

numerous questions to be answered. Are we abetting bad

programming habits which are more evil than polymorphic

operators? How far can we go in this direction?

Further discussion is 1limited by the scope of this project,

so we shall 1let these questions remain as questions.

We mention the matter only by way of introduction to the

next chapter.

2.11 Implementation

There are a few versions of type-free Reckon

implemented on CDC 66/6400 at ULCC. Earlier versions of
Reckon are written in LISP, later versions are written in
Pascal. One of the Pascal versions formed the basis of the

typed-Reckon systems whose 1logic we shall now discuss.

Appendix A

Programming Examples of Reckon

We shall use Reckon very often in later chapters,

so readers are recommended to familiarize themselves with

the language from the examples present here for this

purpose.

The followings are reprints of the computer outputs

from CDC 6400. Unfortunately not all the characters we

use in this thesis are available on the CDC machine.

We 1list below the differences that will affect wus in this

appendix (as well as in appendices C and E)

character used in this thesis CDC 6400
X $
u 1
n &
< @
> \

Comments are enclosed by "COMMENT" and "COMMENTEND"

in the 1listings. A new instruction "print" is wused in

the examples, which is just ordinary I/O instruction and

the information printed will be in the format

<<<OUTPUT IS

56

EXAMPLE 1

START
BEG INNING

COMMEN T
DEFINE ''DIVIDE” AND ''DIVISIBLE"
COMM EN TEND

LET REC DIV M N A B#

IF M\N THEN DIV(M-N) N (A+l) B ELSE (A,M) FIJ
LET DIVIDE M N#DIV M N 0 OJ
LET DIVISIBLE M N#IF (2TH(DIVIDEM N))=0

THEN PRINK DIVI SIBLE> ELSE PRINT<NOT DIVISIBLE>
PRINTC DIVIDE 18 5)1
(DIVI SIDLE 2A 6)

ENDING

FINISH

<<< OUTPUT IS : [3,3] >>>

<<< OUTPUT IS ; < DIVI SIBL E> >>>
RESULT OF PROGRAM IS : <DIVISIBLE>
QED.

EXAMPLE 2

START
BEG INN ING

COMMENT
DEFINING A DO-LOOP
COMM EN TEN D

LET DOLOOP V N S#
(v;=1;
LET REC G#($();IF V\N THEN <) ELSE
so; V: =v+1l; go fi);
GO)’
LET XfO;
DOLOOP 0 6 C$0 :X;=X+n;
PRINT X
ENDING
FINISH

<<<O0UTPUT IS : 5 >>>

RESULT OF PROGRAM IS : 5
QED.

57

58

EXAMPLE 3

START
BEGINN ING

COMMENT
MAP F(X1, X2, ...,XN)= (F XI, F X2, ...,F XN)
COMM EN TEND

LET REC MAP F X#IF NULL X THEN ()
ELSE F(X. D..MAP F X* FI,*

MAP ($X: X*X) (1,2, 3, 4, 5) "

EN DING

FINISH

RESULT OF PROGRAiIN IS : [1,4,9,16,253
QED.

EXAMPLE 4

START
BEGINN ING

COMM EN T

THE ARGUMENTS OF GENLIST CAN BE INTERPRETEDAS FOLLOWS;
"X ' IS A LIST OR STRING

“F” IS THE FUNCTION TO BE APPLIED TO EACH ELEMENT OF "X
"A” IS THE VALUE PRODUCED WHEN X IS NULL

“G” IS USED TO COMBINE THE INDIVIDUAL RESULTS

COMM EN TEN D

LET REC GENLIST A G F X#IF NULL X THEN A ELSE
G(F(X.1)) (GENLIST A G F X*) FI*

LET COMBINE, IDENT# ($X: SY:X: :*Y), ($X:X),*

PRINT (GENLI ST < > COMBINE IDENT (<C>,<0>,<M>,<P>,
<U>,<T>,<E>,<R>)) ;

COMMENT GENERATE STRING FROM LIST COMMENTEND

PRINT (GENLI ST () ($X:SY:X..Y) IDENT <MACHINE>) ¥

COMMENT GENERATE LIST FROM STRING COMMENTEND

PRINT (GENLIST 0 ($X:$Y:X+Y) ($X:X*X) (1,2,3,4))

COMMENT SUM OF SQUARE CO0l11 EN TEN D

EN DING

FINISH

<<< OUTPUT IS : <COMPUTER > >>>

<<<OUTPUT IS : [<M>, <A>, <O, <H>, <I>, <N>, <E>3 >>>
<<<OUTPUT IS : 30 >>>

RESULT OF PROGRAiM Is : 30
QED.

FART TWO

59

60

INTRODUCTION

Various reasons have been offered for including types

in algorithmic languages, including the following ;

(1) Programs written in typedlanguages are easier to debug.

(2) Errors can be detected asearly as possible if type
information is available so that time would not be

wasted in executing erroneous programs.

(3) Type information can be used to produce better code,
for example, polymorphic operations can be replaced by
the apposite routine and coercion operators can be

inserted whenever necessary.

(4) Objects can be represented more economically in machines

so that storage space can be minimized.

(5) Programmers need not have to worry about machine

representation of their data.

In our project, we are more concerned with (2).
The process of detecting errors in programs based on type
information is known as type-checking. Type-checking
performed at compile time is known as static type-checking,
while that performed at run time is known as dynamic type-

checking

It will be more fruitful if type-checking process is

studied independent from particular languages. This can

be achieved by having a type-checking system so that each

computing element can be projected into a corresponding

type element by a mapping function. The type-checking

system is then independent from computing languages.

The relation between a language and a type-checking

system T* may be defined by a mapping function O0%**.

A type-checking system is characterized by its elements

and the operations that are defined on these elements.

In next chapter, we shall examine three type-checking

systems proposed by Ledgard, Hext and Morris respectively,

which will be followed by discussions on the two problems

that cannot be solved by them.

From our studies on these problems, we found that some

fundamental concepts have been overlooked by these systems,

and the concepts will be discussed in chapter 2.

We propose our system in chapter 3. Of course it is

not designed specifically for those problems, but we think

we are obliged to suggest some solutions to them from our

system. A more general system will not be proposed until

we reach Part Three of this thesis.

62

CHAPTER ONE

THREE SIMPLE SYSTEMS

This chapter 1is intended to give a brief 1literature

survey on some recent work in type-checking. The problems

that are experienced by these systems will be presented in

the last section of this chapter.

1.4 Sy stem L

It is a well known techique to prove certain properties

of computer programs by mapping them into some isomorphic

mathematical system. For example, we may use predicate

Calculus as a mathematical model to prove correctness and

equivalence of programs [Manna,b1970]. However, it is not

our aim here to find out which existing model 1is adequate

to representing a type-checking system. We are only

interested in the properties and characteristics of type-

checking systems which are suitable for functional

languages. Consequently, we shall not be embarrased if a

known model may already exist which satisfies our

requirements. But until we have established the necessary

attributes, there shall be no way that we can identify or

construct a suitable model.

The system proposed in [Ledgard,1972] is modelled

on a subset of the set of expressions in X-Calculus.

Type-constants such as [INTEGER], [INTEGERAINTEGER] and

others are treated as constants in the Calculus. There is

63

a special constant called [ERROR] which whenever present

in any part of a type expression indicates that there is a

mistake in the type combinations and consequently a mistake

in the program.

A mapping function $ is used to map each computing

expression into a corresponding type expression.

Examp les

(1)$(3)=[INTEGER]

(2)$ (TRUE)=[BOOLEAN]

Primitive operators (functions) are mapped into type-

cons tants which are pre-defined.

Examples

(1) $§ (NOT) =[BQOLEAN->BOOLEAN]

(2) $ (OR) =[[BOOLEAN ,BOOLE AN]-~BOOLEAN]

(3) $(+)=[[INTEGER,INTEGER]~INTEGER]u
[[REAL,REAL] ~REAL]u
[[INTEGER,REAL] -*REAL Ju

[[REAL, INTEGER] - >REAL]

(which we shall abbreviate to t*)

64
Three type constructors are introduced in the examples

above. They are , "u" and and the types constructed

are known as functional, wunion and tuple types respectively.

Computing variables are mapped into "pseudo type-
variables". Since the type of all computing variables
has to be declared prior to use, so, effectively, the value
of each "pseudo type-variable" is fixed by the mapping.
To. comply with the rules of X-Calculus, declaration, such

as [INTEGER]x, is mapped into the following construct

(XX: ...) [INTEGER]

there should be no confusion if we use the same notation

for computing variables and "pseudo type-variables"

Examp le

$([INTEGER]x;x)=(Xx:x) [INTEGER]

=[INTEGER] (by g-reduction)

Type expressions must be well-formed formulae in X-

Calculus and they are defined recursively as

(1) all type-constants are type-expressions

(2) all "pseudo type-variables" are type-expressions

(3) if t., t. are type expressions, then the combination
J

(t. t.) 1is also a type-expression

65

(4) if t~ is a type expression and x is a "pseudo type-

variable", then (xx:t.l) is a type-expression.

Type expressions can be reduced either by 3-reduction or,

in the case that they are combinations of type-constants, by

the following reduction rules (all t, with or without

subscripts,are any type expressions unless stated otherwise)

otherwise

RL1 t.*t.]1t is reduced to ¢t if t.=t,
¢) [1 J] k k 1 'k

[ERROR], Note that if t.=(t t t .,) and

1 11 12 in

t.=(t._ ,t, ;. «..,t.) then t,=t._ iff n=m and for

J Jgl 32 jm 1 g

every k, 1<k<n, =

AL EN gt r2 42 is reduced

(RL2) [[tJj>t T2 ul t2 §)t22]u

to tj2 if there exist Jj (1<j<n) such that ¢tj|=t~*

otherwise [ERROR].

(RL3) [ERROR]t is reduced to [ERROR].
(RL4) t [ERROR] is reduced to [ERROR].
It may be assumed that all infixed operations, such as
(x op y), are transformed into prefixed notation, say
op(x,y), before the mapping function is applied to them.
Examp le
$ (CINTEGER]x;x+3)=(Xx:t+(x, [INTEGER])) [INTEGER]

=t ~([INTEGER] ,[INTEGER])

=[INTEGER] by rule (RL2)

66
It could be much easier to understand the reduction
rules if we X-defined the functional types instead of

regarding them as constants.

Examp les
(1) [t*-)-tj] 4is X-defined by

(Xx:IF x=t~ THEN t~ ELSE [ERROR] FI)

thus , [t .9)t.]lt =
1 J K
(XxrIF x=t. THEN t. ELSE [ERROR] FI)t ,
1 J K
which , when g-reduced, yields either t* or
[ERROR]. We may therefore say that (1)

formalize rule (RL1) .

2 t,,t=-,...,t >t is X-defined b
(2) (1 2 n) n+1 Y
(X(x ,x ,...,x):
I 2 n
IF(x =t,)AND(x"=t,)AND...AND(x =t) THEN
11 2 3 n n

~n+l ELSE [ERROR] FI)

(3) 1IN ANI2AMAA2L T AA22A4A N T AT _%kAn] "A2n22*® X defined
(Xx:IF =x=t]|| THEN t EL S E IF x=t*j THEN ¢t~*
ELSE IF ... ELSE IF x=t THEN t 2
ni n2
ELSE [ERROR] FI...FI FI)
Hence, (2) and (3) formalize the corresponding

rules.

67

Summarizing now, we notice that the types of all
variables have to be declared. We have discussed various
constructed types and how type expressions are formed.
Type expressions are reduced according to reduction rules.
We have suggested the semantics of these rules by X-defining
the functional types. As System-L is a subpart of X-
Calculus, so type-checking here 1is a process which reduces
X-expressions to their normal form, and in this case, the
type-constants. Since type expressions must be well-
formed formulae too, so a mapping function is required to
map computing expressions into corresponding well-formed

formulae.

We can see from the simplicity of system-L how it is
an advantage to use an established model as the basis for
a type-checking system. Nevertheless, it is admitted by
Ledgard that his system cannot handle parametric
polymorphism (to be explained later) and other problems.
Accordingly, we shall come back to these problems in 1later

sections.

68

1.2 System-H

Hext's system[HeXt ,1966] was not defined exactly in
the format we require. This is not surprising because
his paper described a practical approach to the problem.
We shall therefore read his work with an eye to his

contribution to general theory.

His System-H is defined by four functions, TYM, TYPE,

UPTYPE and SETTYPE. TYM is his main routine while the
others are its subroutines. TYM is defined recursively.
SETTYPE maps primitives (i.e. variables and constants) in

the program to elements in the type-checking system.

"TYPE (E)" finds the type of expression E; for example, if
"E" is "2+43", then "TYPE (2+3)" 1is [INTEGER]. "UPTYPE (E,t)"
proves whether or not expression E can have type t (maybe
after coercion). This is to say UPTYPE(E,t) can be
rewritten as "EQUAL (t,TYPE(E))", assuming that coercion

will be applied whenever necessary.

The reader may relate TYPE and UPTYPE to the reduction

mechanism described in System-L.

Higher ordered types are available to describe types

of functions (or procedures), the general format of which

is [D”R], where D is the type of domain which can be
primitive or higher ordered types in turn. "R" is the
type of range which must be primitive. The restriction

means that a function cannot produce function as result.

This is a restriction that we aim to remove.

69

Structured types are also allowed. The general format

of these is (tj3,12,. .. ,t*) where t* are types. For example
lists can be described by structured types. This data type
is not particularly relevant to our discussion here, so we

shall not pursue it any further.

Two special type-constants, "GENERAL" and "UNKNOWN"
are included. One can consider "GENERAL" as the union of
all types. But the semantic of "UNKNOWN" is not mentioned
in Hext’s paper. It seems to us that it is quite 1logical

to interpret "UNKNOWN" as an intersection of all types

(most probably it will be empty). From a set-theoretical

point of view, one may regard "GENERAL" and "UNKNOWN" as

the universal set and empty set respectively. However, any
definition of universal set as "the set of all sets" offers
us 1little help in understanding its property, nor is the
name "empty set" particularly meaningful to us. When

viewed as special elements of a lattice (with partial

ordering >), as 1is the case in System-H, "GENERAL" and

"UNKNOWN" are regarded as the top-most and bottom-most

elements of the lattice in the sense that for any element e

in the 1lattice, "GENERAL">e>"UNKNOWN" is always true.

Now, we ¢try to construct a type-checking system for

Hext, following the guidelines we have set down in the

opening chapter of this part.

(1) The elements of the system include all primitive types

in the 1language and functional types for

(2)

(3)

(4)

for

70

elements t*, t*» already in the system.

Some type-constants constructed in (1) will be
assigned to primitive operators and functions (for

example, +).

To complete the set of type-constants, we have to

include "GENERAL" and "UNKNOWN".

The reduction mechanisms will be those defined by

routines TYPE and UPTYPE.

So far we regard System-H as similar to System-L except

elements "GENERAL" and "UNKNOWN". The following are

a list of remarkable differences,

(1)

The primitive types in System-H are partially ordered.
This means that the ordering does not necessarily hold
for any two arbitrary types. Generally, when t*>tj,
we say that t#* is more defined than tj. This shall be
interpreted to mean that objects of type tj can be
represented by objects of type t*. Therefore we
completely agree that such a relation should not hold
between any two arbitrary types, otherwise the
following expression will be regarded as 1legal--
"3+FALSE"— which may not be very desirable. In his
subsequent treatment it proved convenient to extend

his partial ordering to a 1lattice.

71

However, we are disappointed that partial ordering is
not defined for functional types (i.e. types constructed
by in system-H and in fact in most type-checking
systems. In the next chapter, we shall prove partial

ordering does exist among functional types (in the sense
of inclusion). Incidentally, the absence of partial
ordering among functional types in most type-checking
systems indicates that the properties of functional types
have not been properly studied. So it 1is not surprising
that these systems are not suitable for functional

languages.

(2) Types of conditional expressions
The type of the expression "IF b THEN x ELSE y FI" |is
t*u t* where t*, t* are types of x and y respectively.
The type expression t?ut” 1is read as "the union of types
t* and ty", and b stands for the Boolean expression
which yields wither TRUE or FALSE.
In general, tjUt2=tj if t|>t2, otherwise tjut2="the
least upper bound of t* and t2" which might be
"GENERAL" in a lattice. It seems to us that in having
"GENERAL" in a type-checking system, in some cases,
run-time type-checking is inevitable unless we have

some method to suppress it.

(3) Treatment of Recursive definitions
In the example "REC f [INTEGER]nEIF n=0 THEN 1 ELSE

n*f(n-1) FI", one may readily assign or deduce types

(4)

72

of every object in the right side of the definition

(let it be e) except f. In order to perform type-

checking, Hext's system will assign a first approximation

type to £, which in the absence of any knowledge can
only be [UNKNOWN]; call it tQ. Let t*» be the type
obtained for f in the i' th iteration of type deduction
and TYPE be the process for determining the type of "e",

then t**i 1is obtained as follows:

t. ,=t.uTYPE (e)
1+1 1
The series of iteration will terminate if there exists
n such that t =t The termination can onl% be
n n-1
guaranteed if there exist an upper bound for every path
in the 1lattice,which is why Hext was forced to adopt a
lattice model of types. There are thorough discussions

on such type deductions and the conditions for their

termination in [Tenenbaum,1974].

Coercion among functional types

Coercion is outside the scope of our discussion.

We mention it here because what is described in Hext's

paper 1is quite interesting. Suppose f is a formal

parameter of type and (f x) is typewise correct.

If g is the corresponding actual parameter of type
then

(a) X has to be coerced from t* to t* before g is

applied to it during execution.

(b) the result of (g x)has to be coerced from t* to t~*

73
Therefore, we require coercion from 4 to t,->t* to

be performed in two steps. It is admitted by Hext that

this idea has not been implemented.

1.2.1 Summary

We have wused System-H to illustrate two points:

(1) partial ordering among elements of a type-checking

sys tem.

(2) the wuse of "GENERAL" and "UNKNOWN" in type-checking.

Our disappointment with system-H is that there is not
enough work on functional types, so it is not an unexpected
result that system-H shares shortcomings with System-L.

In fact, in one way or the other, type-checking of functional
types 1is emerging as our central unsolved problem. So let

us turn now to Morris' treatment of this.

74

1.3 Sys tem-M

System-M [Morris,1968] is claimed to apply entirely
to functional types. Elements of this system are:
(1) type—constants which can be divided into two sub-

classes ,

(a) primitives tj ,t ~ (e .g.[INTEGER] ,[REAL]) ,
though in his paper, only the type "NUMBER" is
used in the examples.

(b) higher-ordered types: functional types are the
only class of higher ordered type mentioned in his
paper, the general form of which is [t*-)-tj] where
t*, tj are types, (which can be primitive or

functional) .

(2) type-variables, Vj, V~*,

in can be

(1)

deduction.

Primitive operators

type-expressions as before.

functionality of expressions

tells

syntactic considerations

For the purpose of

assumed already parsed into

expression (Xx:x)3 can be

assigned to

(functions)

us what type deductions

illustration,

represented

., type values as described

type-variables during type

will be mapped into

The system is used to check

in X-Calculus. Functionality

are permissible from

alone.

expressions are

tree forms. For example, the

as in diagram (1.3.1)

75

Diagram (1.3.1)

There are four rules governing the type relations

among various constructs of the 1language.

(1) All occurrences of the same bound variable must have

the same type. For example, the two occurrences of

X in diagram(1.3.1) must have the same type.

(2) Type of X~node=[type of the left des Cendant]->[type of

the right descendant]. This is to say that X-

abstractions can be interpreted as functions.

(3) If t|~*2 the type of the 1left descendant of a y-node,
then the right descendant must be of the type t*, and

the type of that y-node will Dbe t*

(4) A constant is always mapped into a pre-defined type-

constant. For example, 3 will always have the type

76

[NUMBER] (which can be abbreviated to [N], the reader

being aware that it is the only primitive type

considered here).

Type-checking

(1)

Type checking will proceed as follows,

Every node and leaf is mapped into a distinct type-

variable as shown in diagram(1.3.2) for the example

given in diagram(1.3.1). The V~'s are related to each

other according to the rules stated in the 1last

paragraph. These relationships can be represented by

a set of simultaneous equations awaiting solution.

For example.

vV4=vVv5 rule 1
v2=v,6~V5 rule 2
v2=v3-.v, rule 3
Vi=I[N] rule 4

Diagram (1 .3.2)

77

(2) All redundent variables appearing on the 1left of an

equation will be removed. For example, all occurrences
of ~4 ~ tbo replaced by . Similarly, all can
be replaced by |[N], So we shall be 1left with the

following equations.

V2= [N]->V~

Vg=[N]

If there 1is any contradiction in the remaining equations
then the expression under consideration 1is regarded as

typewise incorrect.

Example of contradictions

(1) f2 are two distinct

type constants

(2) t*=vV~*Vj where t* is a primitive type-constant, and

VA, Vj are any type-variables.

(3) If there exists two equations whose 1lefts are the same,
for example, A=B*->Cj and A=B2~C2, then we can replace
them by two additional equations, ®|~®2 Al~n2
At the completion of this step, we shall return to
step (2) again. Thus steps(2) and (3) will form a
loop which will be exited whenever step(3) is no

longer applicable-

Example

the two equations of can be
VA=[N] and
v3=v,

If there is no circularity

(4)

among the

78

replaced by

type expressions,

then the program will be regarded as typewise correct.
Example of circularity

vV .=V .9V, whi le

1 J k
V .=V .SV

J i m
if we replace Vj in the first equation by the
right side of the second equation, we shall have
v.=[v.Av >V

1 [1 m] k
Occurrence of the same type variable on both
sides of the equation, as V”~, means it describes
a circular type. There cannot exist type-

constants that have

Consequently, any programs

resulted in such a situation

accepted by System-M.

Example of step (4)
At this stage, we shall have
equations
Vs=N Vg=N Vj=N
Neither of these equations is

"(Xx:x)3" 1is typewise

whose

such properties.

type equations
will not be
the following

circular, so

correct.

79

Let us examine the two occurrences of V#* in step(1l)

again. They are "V2=V4-j. VA" and . The former
describes the type of " (xx:x)", while the 1latter occurs
when " (xx:x)" 1is applied to an argument. Therefore V2

is used to 1link up the defining instance and the applying

instance of the “'expression. Since V”* 1is the type of the

argument to be acted upon by the function " (Xx:x)" of type

so it is necessary that V#=V#*, and the same

conclusion can be applied to Vj and V~. So step (3) in

this type-checking process is analogous to the type

reduction mechanism in previous systems (although it seems

"expansion" would be a more appropriate word here).
Unlike the previous systems, type errors may not be
determined immediately they occur. Determination has to

wait until eventually some contradiction appears among the

equations. In system-H or system-L, type-checking

proceeds more or less in the same order as the program will

be executed. But in system-M, there is no predefined

order within each step, as the result will be the same if

we change the order of the equations.

In conclusion, we find that Morris' introduction of

type-variables into type algebra 1is a great advance.

For example, in the expression " (Xx:x)3", there 1is no
declaration for the type of x. Nor do we know the type of
"(xx:x)3". Nevertheless, as we have shown above, we are

able to prove that whether expressions are typewise <correct

or not.

80

1.4 Problems in type-checking

There are two main problems which cannot be solved by

any of the systems described so far. They are parametric
polymorphism and circular types. We shall only define
these problems here. Solutions to them will be proposed

in later chapters after we have discussed our own systems.

1.4.1 Parametric Polymorphism

The problem is better illustrated by example,

Examp le

(Xtwice: (twice numericfunction) (numeral) ...
(twice stringfunction) (string)...)

(Xf:Xx:f£(f x))

Assuming that the types of "numeral" and "string" are t*
and t* respectively, the types of numericfunction and
stringfunction will be and respectively.

Our problem is "what is the type of twice?".

We notice that as far as "twice" 1is concerned, it will
accept arguments of any type. Whether or not these
arguments are "happy" with each other is a matter that
cannot be determined at compile time, wunless we can express

some relationship among arguments in the type expression
of a function. This is not possible in ordinary type-

checking systems.

81

This example reveals that there are some objects in

type-free models that are unacceptable by most type-

checking systems because there is no adequate type expression

to be assigned to the objects.

1.4.2 Circular Types

Again, we illustrate this problem by example,

(Xg:g(g,2)) (x(f,n) ;IF n=1 THEN 1 ELSE n*f(f,n-1) FI)

there is no recursive definition in this example, and it

is a correct program which yields 2 as result.

In order to simplify this problem, let us assume that
the function takes only one argument, say £f(f). Suppose t
is the type of f, since f is a function, so t must be a
functional type, say thus we can write down the

following equation

t=t]-"t* oo (1)

where tj 1is the type of the argument expected by £f as we

have said before. But if f can be applied to itself, then
tj must be the same as t. Therefore (1) can be rewritten
as

t=t->t2 ... (2)
"(2)" is impossible because it 1is not possible to have a
type expression to be a subpart of itself, as can be seen

from the way that functional types are constructed.

Consequently, it will be impossible to assign a proper type

to f£.

Another example, we saw in Part One, chapter 1, how

the classes of recursive functions, for-loops and while-

loops are founded on the Y-combinator, whose expression

includes a subexpression of the form (£ f). Yet we have

just seen that the 1logical theories of type-checking

developed so far all reject expressions of this form.

1.4.3 The effect of type problems on language design

The easiest way to solve the problems posed above

is to abandon altogether these "unsafe" structures in the

82

design of a language. This could be done by insisting all

types of variables must be fully declared as in Algol-68.

The cost that we have to pay is to give wup the
expressive power and flexibility that we have enjoyed in
type-free programming. Let us illustrate this by an

example which we have generalized from [Burge, 1972] ,

Examp le
LET REC f(xj,x*, , x*,x" ,x")=
IF Xj=x~ THEN x* ELSE

A

X7 (x” XJ) (£((x* XJ) ,x*,x%,x%,x%,x%))

Suppose we have also defined the following

functions

83
LET times x yEx*y
AND pred nEn-1

AND ident =xEx;

then the factorial of any positive number n
can be obtained by simply applying £ to the

list of arguments (n,0,1,times,ident,pred).

In fact, with suitable choice of arguments, we can
describe a few list-processing functions in terms of "f"
and the corresponding 1list of arguments. Lest it Dbe
thought that this kind of thing is not serious programming,
let it be pointed out quite firmly that programs of this

generality are called operating systems or simply computers

However, in spite of the usefulness of the function
"f" in our example, it is impossible to define it in
Algol-68 because we are unable to declare its type due to

absence of parametric polymorphism from this language.

The foregoing paragraphs describe the situation that
we are facing at the moment. The problems stated here
account for the initial motives of our investigations

which are to be described in following chapters.

In this chapter

type constructors.

of functional, wunion

relations among them

established in this

two type-checking

Functional

Definition (2.0)

If tl, tJ are ty%esyvthen tf>¢j is also a type which
describes a class of functions so that each function when
applied to objects of type t*, yields an object of type t*.
Theorem (2.1) (theorem of functionality:strict)

If t.-“t. is the type of £ and t. is the type of x,

1 J 1
then tj is the type of (f x)
The proof of Theorem(2.1) comes directly from definition (2.
so we shall omit it here.

systems

types

CHAPTER TWO

TYPE CALCULUS

we shall examine properties of some

These will include the constructors
and intersection types. The inter-
are also discussed. The concepts
chapter will be used in constructing

in later chapters.

0)’

85

2.2 Types are Sets

Consider types as sets, for example, [INTEGER] is the

name of the set {1,2,3,...} and [BOOLEAN] is the name of the
set {TRUE,6FALSE} . Similarly, [INTE GE R->INTE GE R] is the name
of the set (£~ ,f%,. ..} so that for every i, f£% is in the set
[INTEGER”INTEGER] and for every x in [INTEGER], (£~ x) is in

the set [INTEGER].

Most of the theorems below may be novel to types, but
they are quite well known among sets, so in those cases
where proof is omitted, readers may consult any book on set

theory or propositional calculus.

Definition (2.2)
If A and B are types, then A includes B (A”B) means

that for every x in B, x 1is in A.

Example
let EVEN be the set {2,4,6,...1}, then it is

trivial that [INTEGER]3[EVEN]

Now, let us modify Theorem(2.1) as follows:
Theorem (2. 3) (theorem of functionality: extended)
If 1t.—"t. is the type of f and t* is the type of x,
J k

then t . is the type of (£ x) if t.£t
J I K

86

Proof

If X is in and then by Definition(2.2),

X must be in t~. Since x is in t#, then by Theorem(2.1)

(f x) must be in t*.

It is clear that Theorem(2.3) is more powerful than

Theorem(2.1) because the latter requires "t*=t”*" which is

a stronger requirement than ''t =t. ", (t_ =t. implies t.*t,
-k k 1 1- 'k

as well as t*2t*). It is worth noticing that type-checking

systems for most languages are based on the concept of
Theorem(2,1) while all our systems (System-Y and System-F)

are based on Theorem(2.3)

In considering types are sets, there is no indication
that [REAL]2[INTEGER] or [INTEGER1~CREAL]. This is
particularly true for languages where coercion does not
exist so that different symbols have to be used for integer
and real arithemetical operations as it they were distinct

types.

2.3 Union types

We shall seldom come across union types if we are only
interested in arithemetical manipulations. However, wunion
types can occur gquite naturally if we are dealing with more
complicated data structures. For example, we may have data
types called [BOYS] and [GIRLS], then the data type
[CHILDREN] can be regarded as the union of [BOYS] and [GIRLS]

Symbolically, we write

87

[CHILDREN]=[BOYS]u[GIRLS]

It is obvious that [CHILDREN]3[BOYS] and [CHILDREN] GIRLS].

In general, we have the following theorem.

Theorem (2.4) (proof omitted)

If t=tjut”, then t2tj and t2t*.

Suppose ageofchildren is the function for finding the

age of children and let us assume its type is [CHILDREN-“~INTEGER]

If [BoYs] is the type of x, then according to Theorem(2.3),

[INTEGER] will be the type of (ageofchildren x) . We notice

that the same expression is undefined under Theorem(2.1),

(but Algol-68 makes it 1legal by having coercions). On the

other hand, if [BOYS~INTEGER] and [CHILDREN] are types of

ageofboys and y respectively, then the type of (ageofboys y)

will not be defined in either theorems.

Union types can be united from any other types, including

union types.

Theorem (2.5) (proof omitted)

For any types A, B, and C,

[AuB]uC=Au[BuC]=[AuBucC]

88

2.4 Type puzzle

Suppose function f is defined as follows:

f(g)=(g 1)sS(g 1I'O)

where g is the formal parameter of f and 0 is some operation

that we shall 1leave undefined and "1", "1-0" are in [INTEGER]

and [real] respectively. Let "t" be the type of the result

of the expression "(g 1)0(g I'O)". Assuming that coercion

is not allowed, our puzzle is

"what are the types of £ and g?"

2.5 Solution to the puzzle: first attempt

According to the definition of f above, g is a function

which is defined for both integers and reals. So as our
first attempt, we 1let

type of "g"=[INTEGER”t jJu[REAL->t2]
which means that when g is applied to an integer, it yields

a result of type tj or if applied to a real, the result is

of type 12 or otherwise undefined. Ledgard and others

also used the union notation to define the type of polymorphic

operations such as "+". Correspondingly, the type of f is:

89

[[[INTEGER-*t J1uCREAL-"t*]]->t]

which follows the theorem of functionality (Theorem 2.3 or

2.1) and t is defined in 1last section.

Suppose "h" is a function of type [INTEGER”t”], then
according to Theorem(2.3), the type of (£ h) is defined and
is [t] because [[INTE GER->t jJu[REAL” t*]2CINTE GER” t*]
according to Theorem(2.4). Thus as far as the type is

concerned, f can be applied to h.

From the computational point of view, when f is applied
to h, the actual parameter h will substitute for the formal
parameter g throughout the definition of £f. So we should

end up with

(h 1)B(h 1-0)

As we have said above that the type of h is [INTE GER->t j]
which means h is applicable to integers only and will be
undefined for any other objects. Consequently, (h 1%*0)
would be undefined. This contradicts our statements above

that (£ h) is typewise correct.

So it 1is not desirable for the type of £ to be
[[INTEGER-"t J]u[REAL->'t2]'“t] nor for the type of g to be

[[INTEGER~t J]u[REAL->t2]].

We have to introduce the idea of intersection types

before we can propose our second attempt at solution of

this puzzle.

2.6 Intersection types

Definition(2.6)

If A, B are types, then for any object x, x in type

[AnB] implies that x in A and =x in B.

At first sight, it seems that the intersection of two

types must always be empty (that is, the two types have no

elements in common) .

Examples

(1) BOYSnGIRLS=EMPTY

(2) INTEGERnNnREAL=EMPTY

However, a function f applicable to BOYS may also be
applicable to GIRLS, (for example, f may be the function
for finding their height, weight, etc.). Thus we establis

the following facts:

(1) £ is in [BOYS“t]

(2) £ is in [GIRLS”*t]

where t is some appropriate type.

90

h

91

Since it is the same "f" in (1) and (2) above, it means
that f is the element of both sets. So the intersection of
[BOYS->t] and [GIRLS*t] cannot be empty and £ is in [BOYS->t]n
[GIRLS*t], Therefore we reject the provisoin most algorithmic

languages that types should be distinct.

Theorem (2.7) (proofs omitted)

If tj and 12 are types, then

(a) tjnt2£t]

(b) t|nt2ct2

(c)

(d) [tjnt2]ntr=tjn[t2nt2]=[tjnt2nt"]

2.7 Solution to the puzzle: second attempt

In this second attempt, we 1let

type of g=[INTEGER->t J]n[REAL->t2] , so that

type of f=[[[INTEGERAt|]n[REALAt2]]"t]

when f is applied to h, depending on the type of h, the

following are some of the possible cases:

92
(1) type of h is [INTEGER"t*]:
type of (f h) is undefined because [[INTEGER”“t“]n

[REAL” t21]eC INTEGER>tJ] according to Theorem(2 .7a)

(2) type of h is [REAL*t21:

type of (f h) is undefined for the same reason as (1)

(3) type of h is [[INTE GER>t jJu[REAL->t*
type of (f h) 1is also undefined according to Theorems

(2.7c and 2.3)

(4) type of h is CINTEGER-“t j]n[REAL~t 2]nt (where t can be
any type)
type of (f h) is defined because [INTEGER-*-t *]n [REAL"t”*]E

[INTEGER"tJInCREAL*t”1lnt

Readers may be interested to find that in cases

undefined above, the computation will also be undefined.

And for defined cases, they will be defined during computation.
Thus in this attempt, we have obtained the "correct"

types for both f and g. But if g is in the set "[[INTEGER-*

tj In[REAL*t”*]]" then g must be in the set " [[INTEGER>tj]u

[REAL-)-t2]]" because the latter2tbe former according to

Theorem (2.7c). In other words, our first attempt on the
type of g should also be correct. In fact, there are
infinitely many solutions because if "t" is the solution,
then for any type t*, "tut/' is also a solution. But as

we iterate the process further and further, our knowledge

93

of the type of the object diverges from our second attempt
and that is the reason why solutions in the first attempt

are less well defined than that in the second attempt.

Theorem(2.8)
If tj, t2 are types and then for any object £,
if both "f in tj" and "f in t2" are correct, then we say

"f in t2" is a more exact description than "f in tj"

Suppose we have a universal type [U] such that for any

arbitrary type t, [Uj*t is always true. Then it is obvious
that we can always assign [U] to any object andso in our
program, every object will be of the same type. This is

the situation in type-free 1languages (logically it is the
same whether we say every object has the same type or every
object has no type). So it is not enough in Jjust having
an arbitrary correct type assignment (e.g.Cu]), we always

have to look for a more exact one.

Thus in the above case, if both "g in [[INTEGER>t jn
[REAL*t2]]" and "g in [[INTEGER-“tj]Ju[REAL”12]]" are correct,
the former should be preferable to the 1latter. In general
we should ascribe intersection types to polymorphic functions

rather than wunion types.

94

Corollary

The type puzzle can be generalized as

f(g)=(g aj)s(g 3*)0 ... 0 (g a")
where for every i, 1<i<n, a* is of type t* and (g a*) 1is of
type t *

So "g" 1is of type [t~ t 'nt ->t.'n ...n t >t '], and by

1 1 2 — 2 n n

Theorem (2.7), this 1is a smaller set than any
In a more general sense, g may be of type [tj->-tj'n ...ntr->t*’
n ...] for all i, 1<i<°®°°, as in the example £f(g,a)=g(a)
where a can be of any type t* (1<i<«>). We can imagine that

the set will become smaller and smaller as i become bigger
and bigger. Thus in practice, we may regard Ctj-“tj’'n
nt**t*’'n ...] as an empty set as i approach infinity.

In other words, we could not then declare f, g (as defined
above) in typed 1languages. But f then defines a Turing
Machine or Operating System. Hence Turing Machines or
Operating Systems are proved impossible to declare in typed

languages.

Theorem(2.9)
For any types tj, t* and t,

[tjUt2]->t=[tj-)»tln[t2->t]

95

Proof

let (LI) tj be the set {a”",a2,. ..)

(L2) 12 be the set {bj,b2,...}

(L3) [tjUut2]-"t be the set {f7,f2,...}
(LA) [tj—>-t] be the set {gj,g2v**}
(L5) [tJd=>t]ln[t2”"t] be the set

(L6) [t~""t] Dbe the set {hjjh~, ...}

Deductions

(D1) for every i, is defined for the set {a“*,a2,. ..)
and produces result in the set t. (by Theorem 2.1)
(D2) forevery 3, h” is defined forthe set ({b* ,b* ,6 e}

and produces result in the set t. (by Theorem 2.1)

(D3) forevery k, there must exist i and j such that
cl,<=g.1=h.J (by definition 2.6)

Thus, c* is defined for the set {a”*,a”,. ..}as well as
the set ({b]|,b2,...} andproduces results in the set t
in both cases. In other words, ck is defined for the
set {aJd,a2,...,bJd,b2,.¢¢} and produces results in the
set t.

(DA) for every v, f* is defined for the set {a*,a2,...,b*,
b”,. ..} and produces results in the set t.

(D5) from (D3) and (DA),{f~*,f2,.. .} must be the same set
as {Cj,c2,...}, therefore

[t,ut2]*t=[t|*t]n[t2%c]

ged.

96
In fact, if we reinterpret as implication in
propositional calculus [Edwards, 1975] [Curry, IO958], then
Theorem (2.9) can be proved quite easily by truth-tables

which one can find in any textbook on propositional calculus

2.8 Summary of the three constructors

(1) We expect that our relaxation on the definition of type
functionality provides a basis for a more powerful type-

checking system.

(2) Some programs which we hold to be 1logically correct are
rejected by most systems due to the inflexibilities of

Theorem (2.1)

Examp le

(X[BOYS->INTEGER]f :...) ([CHILDREN->INTEGER] gq)

is, we believe, logically correct because "g"
can be applied to a larger domain than that
required by "f".

In this example, we extend our notation by
allowing a type to precede an object that is
not a binding wvariable. For example,
([CHILDREN-)-INTEGER] g) means the type of g is

that preceding it.

97

(3) We encountered a problem in using Theorem(2.3) when the

union type is used in an unrestricted manner. We resolved

the problem by introducing intersection types and the

concept of "more exact" type description.

(4) Theorem(2.1) has sufficed for computing systems for so

long partly because need for partial orderings of types

(coercion) has only recently been felt and partly because

functional types have been playing a very minor part in type

checking until our discovery that Algol-68 does not suffice

for declaration of the useful <class of polymorphic procedures.

Similarly, the argument can be applied to intersection

of two or more types. These are not necessary if our

concern has been restricted to primitive types only (such

as integer or real). But it will be a vital area of study

when functional types are studied seriously as in our

sys tems.

(5) In Algol-68 and etc., polymorphic functions are

restricted to only a limited number of operators and each

operator has to be redeclared for each desired type.

But, if a user can define his arbitrary intersection and

union types, we shall expect polymorphic functions to occur

more generally.

Example

Assuming MALE and FEMALE are types, then the

function sexof-child will have the type

[BOYS->MALE]n[GIRLSAFEMALE]

98

As far as we know, there is no language that currently
supports such facilities. It is our intention to examine
the nature of such type-checking systems so as to have an

insight into future 1languages.

(6) Since we already have union and intersection of types,
so implicitly we have negation of types as well. The idea

of negation type is indeed seductive.

Examp le
for any types t#* and t*, suppose function f is
defined for all types except t”* and produces

results in t*j then the type of f would be:

[[~t J]1->t2]

We believe that negation type 1is a very important area

for future research.

99

2.9 Rule of Inclusion: functional types

The rules of Inclusion for wunion and intersection

types have been stated in Theorems (2.4) and (2.7)

respectively. We have to pay special attention to the

rule of Inclusion for functional types because (1) the

result is less familiar to us and (2) it is the backbone

of all type-checking systems handling functional 1languages.

Theorem(2.10)

For all types, tj,t23jt* and t*,

if [[Et] and

(Obviously, the "only if" part is not necessarily true.

However, in type checking, the "only if" part is not

required.)

Proof

Given: (t*ct?) and

to prove: [t3>t2]2

—

(LI) be the set (AL1wh2 k1A
(L2) be the set ({b1l,b2,eee}
A2 r 14
(L3) be the set
~3
(L4) be the set
(L5) [t 2+ be the set {£fJ,£2,. ..}

(L6) [t3"'4] be the set {gJg,g2,. ..}

100

Deductions

(D1) Any function which is defined for all elements of the
set {a”*,a”,. ..} and produces results in the set {b* ~2'
.} must be an element of the set {£f*,£~,. ..}

(by Definition 2.1)

(D2) For every i, g” is defined for all elements in the set

{ej,c2,...}, since {cj,c * .)2{aj,82,...) (given), so
g” is defined for all elements in the set {a“*,a2,. ..}
(D3) For everyi, for every x and xis an element of
{a*,a”,. ..}, g”®(x) is defined, (from D2).
Let y=g”(x), according to Theorems 2.1 and 2.3, y must
be an element of the set {d~,d*,...}. Since (b*jb*,
{d~,d2j...}, therefore y is an element of {dj,d2»
.} implies that y is an element of ({bj,b2,.-.}
(DA) From (D2) and (D3), we come to the conclusion that,
for every i, g” 1is defined for all elements in the set
and produces results in the set {bj,b2,...}

(D5) From (DA) and (Dl), we obtain the result that g* must

be an element of the set ({(f*,f2,...}

(D6) Since (D5) is true for all i, therefore

{gj,g2 £1,£2 A~ that is [t t*lg[ti»121

qged

101

Ex amp les

(1) [INTEGER-REAL]J2[INTEGER-REAL]
(2) [INTEGER"REAL]2C[INTEGERuUBOOLEAN1"REAL]
(3) [[[INTEGERuBOOLEAN]->REAL]"t]2[[INTEGER->REAL]-"t]

where t is any type.

(4) From theorems 2.10 and 2.3, the expression
(A[BOYS—->INTEGER]f :...) ([GHILDREN->INTEGER]Q)

is type-wise correct.

2.10 Glosing Remark

The main purpose of the discussion here is to explore
the less familiar properties of functional types. These
properties have been 1largely ignored in other systems.

We have found that the discussion is fruitful because

(1) We shall be able to construct practical systems wupon
theoretical considerations, although the theoretical results

obtained so far are quite informal.

(2) We can have the same treatment on functional types as

of primitive types, for example, the inclusion rules.

(3) We shall have more information and knowledge to

re-examine the problems we have encountered so far in type

102

checking. We have noticed already that most of these

problems concern functional types.

We now present two systems in which we shall see

how the ideas in this chapter are put into practice.

103
CHAPTER THREE

SYSTEM-F

We feel that it is very wundesirable that a program
has to be written in a type-free 1language simply because
a subpart of it would be rejected by static type-checking
systems. Nor, on the other hand, is it desirable to
have to forgo the flexibility of type-free 1languages in
order to have static type-checking. To test out our
feelings we decided to design System-F to operate on

programs with the following goals in mind.

(1) Wherever programs are fully typed (i.e. types of all
variables are declared), the system should perform
type-checking such as one normally expects from a

static type-checking system.

(2) It should accept type-free expressions wherever they

are subparts of a typed program. A subpart of a
program can be as small as a variable, a subexpression,
expression or any other well-formed structure, or as

large as a complete program.

(3) Type-checking processes should nevertheless be

expressible in terms of simple reduction rules.

104

3.1 Basic types of System-F

There are six basic types in the system, namely

INTEGER, REAL, BOOLEAN, STRING, ANY and ERROR. We shall

use the abbreviation I, R, B, S, A and E for these types

respectively. Certainly the set of basic types can be

extended or amended , if necessary, if the system is applied
to a language with other primitive types. Type expressions
might be enclosed by square brackets, "[" and "1", in order

to distinguish them from the typefree parts of the text.

One may consider [A] as union of all types so that it may

be regarded as containing utterly inexact information.

3.2 Constructed types

Types can be constructed from the basic types or

other constructed types. There are four constructors in

Sys tem-F,

(1) types constructed by it are called functional-types

(2) "u" ,types constructed by it are called union-types

(3) "n" ,types constructed by it are called intersection-
types

(4) types constructed by it are called ordered-types

(to be discussed in §3.7)

105

3.3 Type Expressions

Type expressions can be defined recursively as

(1) if t is a basic type, then t is a type expression

(2) if t is a constructed type, then t is a type expression

(3) if tj, 12 are type expressions, then (tj 12) is a

type expression

(4) the only type expressions are those defined by (a)-(c)

Examples

(1) [I]

(2) [I->I]u[R->R]

(3) ([I~I][I])

3.4 Rules of reduction

Given a type expression (tj t*), it may be possible

to reduce it to a simpler expression according to the rules

of reduction. Before we state these rules, we shall

explain the conventions first,

(1) The symbol "=" means "reduces to", see (3) below

(2) All t*s with or without subscripts stand for any type

expression unless specified otherwise.

106

(3) (., t_.)=at

1 J w means the expression (t. t.) is reduced to ¢t

1 g €
(4) (t* tj)=t** means the same as (t* tj)=t”* except that
the reduction has to be confirmed at a later stage
(usually this means at run-time). Hence we place on
record our decision that type checking is an iterative
process in which early approximations may be refined
to subsequent better approximations. The symbol
is not part of the type expression. In other words,
it will not affect the value of the type expression it
is attached to. It might be helpful if we imagine that
there exists a special register that would be set in
those cases where appears in the reduction rules.
The parser (or other routines) on discovering the
register set would construct a modified parse tree and
unset the register. Hence, the need not exist at
all. It is included here to remind the reader of what

might happen.

(5) [tr*utj*] can be expressed as [t*utj]l*, similarly,

t.*nt.* =[t.nt.]*
1 J 1 J

(6) t*2tj means t* includes t* according to the rules of

inclus ion.

The following are the rules of reduction

(RO) t. t.=[E] if no rule 1is applicable
1 J

(R2) t.Jut. .ut . t (t.J tj)u(t«2 tj)u...u(t.*
(R3) [Ciint_2n...nt**]1tj=[(t** tj)u...u(tr”
(R4) [t.~t .][A]-t.*

1 J J
(R4a) [t.1—>tJ.][tklutkzu...ut,kn]—

[([ti—>tj]tkl)u...u([tI—>tJ.]t.kn)]*

(R5) = if
(R6) (a) tul[E]-t

(b)

(c)

Examples

tu t-t

tu[a]-[A]

(1) [A][I]l=[A]*

(2) [A][I*I]=[A]*

(3) [[I**]Ju[R"R]]J[I]=[IuE]*=[I]*

(4) [[I**]In[R*R]][I]=[IuE]=[I]

(5) [[I-»TI]1n[R->R]][IuR]=[[I->I][IuR]]Ju[[R-"R]

=[I*uR*]=[IuR]*

107

Cj)1*

t4) 1]

[luR]]

108

alternatively, we may replace [I->I]n[R“R] by

[IuR] ->CluR] ,

(5") [[IuR]*[1uR]][1uR]-[1uR]

and the advantage is that the marker is
not required in (5'). The implementor may
ignore this possibility and we can see that

in both cases the expression is reduced to
[luR] since the marker is not part of the

expression.

(6) [I**][IuR]=I*

(7) [[I->I1->I][[I*I]n[R*R]]="1I

in practice, we may try (R5) before (R4a),

so that ([IuR]-)-I][IuR]) is reduced to [I]

instead of [I]*.

(8) [I][RI=I[E]

109

3.5 Coercion

In most languages, some form of coercions are allowed.
This 1is to say the types are arranged into a partially
ordered set, the set of types being augmented by a set of
paths between them. Coercion is an operation by the
computer that corresponds to a move along an allowable path

in the partially ordered set.

It is not necessary to incorporate <coercion into our
basic system. All we need is to regard coercion as an
independent system which can be called by the type-checking
system. In the example (f a), if the type of £ and a are
[R->t] and [I] respectively, the type of (£ a) would be
([R*t][I]), which is [E] when reduced. At this point, the
coercion system will be invoked to see whether there exist
or not a coercion function CB which coerces an integer to a
real. If the function exist, the code (f a) will be
amended to (f(C* a)). The control will then be returned
to the type-checking system which will deduce the type of
the amended expression. If the coercion function does not

exist, the erroneous state is confirmed.

3.6 Definition of the mapping function §

In this section, we shall describe a simple version
of 0. The domain of 0 is expressions in A-Calculus.
It is assumed that a X-expression has only one binding

variable, $ is then defined recursively as below:

I10

(0) All constants are mapped into the respective basic

types.

(1) All primitive operators (functions) are mapped into

some fixed type expressions.

Examp le

$(~)=[B*B] where stands for negation

(2) If X is a variable, then $(x) is the type expression

assigned to x either by default or by declaration.

The default type is [A].

(3) If (f x) is a combination, then 0 (f x)=($ £f) (0 x)

(4) O(Xx:M)=(0 x)~(0 M) where M is a well-formed expression

Examples

(1) $(<STRING>)=[S]

(2) $(3)=I[1]

(3) $((Xx:x)3)=([A+A][I])=[A]

no run-time checking is required.

(4) S$((XEf:(f 3)... f <STRING>) (Xx:x))

=[A->(([A][TI]) ... ([A][S]))]1[A®A] =[A*. .. A*]

"..." represents some part of the expression

1 1
which can be ignored in our discussion.
We see that run-time checking is required
when (Ax:x) is applied to 3 as well as when

it is applied to <STRING>.

(5) O ((XCA~Alf:(f 3)...(f <STRING>)) (Xx:x))
=[[A""A] (([A-"A] [I])...([A"A] [S]))]1I[A"A]
-[a...Aa]

this example is similar to (4) with the exception
that f is declared to be [A->A] and as the result
of this declaration, no run-time checking is
required. It is very important to realize the

differences of these two examples.

(6) S$((Xf:f 3)(Xx:x))=[A~([A][I])][A~A]=[A]*

(7) S$((X[A+A]f: (f 3)) (XCllxrx))
=[[a-"A] ([A*A] Cl1l])]1[1-"1]
=[[A"AA] uAA*] [I\\AI 1

=[E] because (R5) is not satisfied.

112

3.7 Extension: ordered types

If we want to consider A~expressions with 1lists of
binding variables, we need type expressions which represent

not only the type of each binding variable, but also the

relative positions among them. Ordered types are designed
for this purpose and are constructed by the operator "&".
Examp le

[IT&R] 1is an ordered type of two elements and

it is different from [R&I]

We add the following rules for manipulating ordered types:

(1) ordered types are right associative, that is

[tjet2&t2]=[tjaCtratr]]

(2) extension of the rules of Inclusion

[t _&te &...&t. ID[t _& t & t . 1]
11 izr in - jl J2 jm
if (a) n=m and (b) for every k, 1<k<n, trrrtgn

(3) extension of the mapping function

0(x,,Xg,XT,...,x")=((0 x,)&(0 x*)&...&(# x%))

Example

*(1,2,3)=[I&I&I]

I13
If the 1list of binding variables is and

the user wishes to declare the type of them to be tj, t*

and t* respectively, then he can simply write
(X[tJT]1XT ,[t*]1x",[t*]1x~ : ...)
in other words, the system would convert ([ti]i: t 1x)
n n
into [t &t &...&t J(x ,x ,...,x).
1 z n 1 z n
Examp le
$(X([T1x,[I]ly):x+y)(2,3))
=[[T&I]” I][I&I]=[I]
In the beginning of this section, we said that ordered

types are needed to account for 1lists of binding wvariables.
But 1lists of objects are required as actual parameters for
lists of binding variables and since both the formal and
actual parameters must be of the same type, we conclude

that ordered types have to be the type of all 1lists.

It has been suggested that 1lists can be represented
by functions. To illustrate the concept of functional
data structures, Reynolds [Reynolds,1970] defined the

functions CONS, CAR and CDR as (presented here with minor

changes in notation) ; (Xx:Xy:Xz:IF z= 1 THEN x ELSE y FI),
(Xx:x 1) and (Xx:x 2) respectively. Church [Church,b1941]
has also shown us how to X-define diads, triads and the

corresponding selecting functions. Edwards [Edwards,b 1975]

however has found that it is not possible to find a general
type expression to describe the type of 1lists from their

functional representations.

114

In the 1light of these discussions, let us re-

examine the problem again.

We recall that numbers 1, 2, 3, etc. are X-defined by
(Xf:Xx: (£ x)), (Xf:Xx:£(f x)), (Xf:Xx:£(£f(f x))), and so on.
If we let the type of f and x be 3 and a respectively, then
3 must be [a->a] for the type expression to be meaningful.
Thus the type of these expressions must be [a->a]->[a->a] for
any type a. On the other hand, it is generally assumed by
us that the type of these objects is [I]. In other words,

[I] 4is wused to abbreviate the class of type expressions

[a->a]->[a->a] for arbitrary type a. Therefore, at the
outset, we have to announce that "there 1is a subset of X-
expressions (of the general format (Xf: x:f* x), where n is

a positive integer denoting the number of f's in the

expression) whose type is always [I] and need not be

deduced from underlying X-expressions". We are not saying
that the analysis of these formulae is not important, but

for our purpose, that 1is not necessary. On the other hand,
the discussion here demonstrates that the abbreviating of a

subset of X-expressions by a specific type name is an

important techique in simplifying type notations and

provides wus a foundation to investigate other type properties

Similarly we may apply the same argument to 1lists.

We state that there 1is a subset of X-expressions of the form

(Xf:£f a b) whose type is [LIST] (abbreviated to [L]).

Thus we do not have to worry how to derive the general type

from the formulae because they are all abbreviated [L].

115

In table(l), we illustrate the type of some 1list
processing functions. We find that type [L] is adequate
to describe all of them except CAR because whenever CAR
is applied to a 1list, the resulting type is always [A].
Thus we need to know more about [L]. Recalling that at
the beginning of this section, we proposed ordered types

for 1lists, so it would be 1logical to assume [L] abbreviates

the class of all ordered types. Furthermore, we adopt the
convention that if [L] is superscripted, such as [L*], then
during type reduction, [L*] can be replaced by a specific

element in [L] according to the following rule:

[L*->tj]t2 can be replaced by [t24*]|']t2

where 12 is an element of [L] and t*' is obtained by
replacing all [L”] in tj by 12. Similarly, we may apply
the same treatment on [A]. Finally, if [L*] and [L*]
denotes the expressions [t j&t*2&ee ¢&*j*] and [t2j&t22&***

&§t2”] respectively, where t#*j is any type expression, then

t[L*]=t

116

Tab le (2) shows the revised type expressions for the functions

shown in table(1l), (except NULL, which is unchanged).

It is worth noticing that each type equation above

resembles a procedure declaration in the sense that [A*]

and [L”] behave as formal parameters to operations "f",

"I", "I" and whose definitions constitute the procedure
bodies. The difference between [A”1l and [L*] is that the
actual parameter for [A”] can be any type expression, while
that for [L] must be ordered types. This suggest that we
may even associate "type" to these formais. In our

opinion the inclusion of type abstraction such as these
in a type-checking system should be a very important project.
We therefore return to type abstractions in a later chapter.

For the present let us note the tabulation:

Table (1)

FUNCTION TYPE
CONS [A*[L->L]]
CONCAT [I)-[LAL 1]
CDR [L-~L]
CAR [L->A]
NULL [LAB]
Table (2)
FUNCTION TYPE
CONS
CONCAT CL*+[Lj+CL”*|L]j]1]
CDR

CAR [LI+r+1i]]

117

3.8 Application of System-F to Reckon

An additional basic type [NILS] (abbreviated to [N]) is
added to the system so that $(NIL) or $(())=[N]. This is
necessary because in Reckon some functions do not need any
formal parameter (or NIL), but there 1is no need to introduce
any additional rule for it. The type of each system
function and operation is predefined at implementation and
is denoted here as top' for example,, t+, tcond' t and etc.
Examp les

(I) $(2+3)=[t+ I I]=[I]

(2) $((2.0)+(3'0))=[t+ R RI=[R]

(3) $(IF b THEN e~ ELSE e* FI)
=[t t., t _t
[cond b el £2

-[t _,ut if t, d[B otherwise E
[el eg] b [B] [E]
where t*, t**, t*% the types of b, e” and

e®” respectively

In typed Reckon, one can declare the type of binding

variables.

Examples
(1) (A[lln:n+n) 3

(2) LET [I]n=3;n+n;

118

However, type declarations are optional. In other
words, all programs written in type-free Reckon are 1legal
programs in typed Reckon. If the type of a variable has

not been declared, then it will be given the default type

[A] by typed Reckon.

Examp le

The following two programs are equivalent,

(1) (Xx:x+x) 3

(2) (X[A]l=x:x+x)3

It is possible to construct an ordered type for any
list from the types of its elements but since the process
is time consuming, ordered types are used only for binding
variable-1lists (and corresponding actual parameter-lists),
and in general, the crude approximation |[L] is assumed or
[L*] if all the elements are of type [t] (the subscript
being used here for a different purpose than in the 1last

section) .

Examp le

$(X[L*1p:2 TH p) (2,3,4)

=[L;+*]1[L;]

=[1]

119

In our implementation, type checking is performed at
the same time as the source program is parsed. The
advantage of this is that information gathered during type
checking can be immediately available to the parser.

The parser acts as a main program which will call for the
type checker (or part of it) whenever it thinks it needs to.
The type checker will then return control to the parser.

It has already been mentioned in the previous chapter that

the monadic operator is polymorphic in the sense that it
stands for functional application, multiplication as well as
string and 1list concatenation. One of the tasks of the

parser 1is to replace this polymorphic operator by an
appropriate typed operator based on the information provided
by the checker. The semantics of the parser and the type

checker is described in Appendix (B) .

The routine that executes the parse tree constructed by
the parser is the transformer. Further type checking is

required for parts of the parse tree at places where the

marker was appended to type expressions during reductions,

so it has been arranged that the transformer can also call
the type checker. The relationship of the three components

is shown in the following diagram.

Type Checker

Transformer * Parser

120

Typed Reckon is implemented on the CDC 64/6600 and

the programis written in Pascal. Program examples of

typed Reckon are included in Appendix(C).

3.9 Parametric Polymorphism: solution

This 1is one of the problems that we have mentioned

before. We state the example again here and see how it

can be solved in System-F.

(X twice: ... (twice nume ricfunction) (numeral)

(twice stringfunction) (string) ...)

(Xf:Xx:£(f x))

as abbreviation, we 1let e be the expression, and t~*t~,

t ~t , t , t be the type of numericfunction, stringfunction,
s s n s

numeral and string respectively. The type of twice is

then declared to be [A-v[A->A]] (abbreviated to tw) and the
type of f and x is [A] by default. The type expression is

reduced as below:

$(e)=[t ->[...((t [t Dt)...((t [t =+ 1Dt)...1]
w w n n n w S S S
[A->[A->-(A(A A))]]
~[t LA, . .A. .. 11[A>[A->(A A*)]]

~[t A L LAL LL]] [A>»>[A->A*]]

~[t ->[...A...A.w.]]t
w w

121

It can be seen that twice will accept arguments of

any type and this fact is well reflected in its type

expression. Type errors will be detected at run-time in
places where occurs. This corresponds to situations
where f is applied to x (or, in fact, the corresponding

actual parameters) and where f is applied to the results of

(£ x)

3.10 Circular types: solution

The example we have shown before is,

(Ag:g(g,2)) (A(f,n):IF n=1 THEN 1 ELSE n*f(f,n-1) FI)

let e be the expression and the type of g,f, n be[A&A]->[A],

[A], and [A] respectively.Type checking is nowjust a

simple exercise on the reduction rules as we have seen in the

case of parametric polymorphism.

$(e)=[[[A&A] >A] ~([[A&A] -"A] [[[A&A] "A]& I])]

[[A&A]~ (t*Q"]j(t= A I)I[I](t* A([A][A&(t_ A I)])))]

=[[[A&A]*A]*A] [[A&A] "~ (L , B*[I](tS ARA*X))]
conu *

[[[A&A]*A]*A][[A&A]+(t*Q"] B*[I]A*)]

[[[A&A]->A]-*A] [[A&A] "A*]

= [A]

122

3. 11 Summary and Remarks

At the beginning of this chapter, a type-checking
system was introduced. It was stated what elements are
included in the basic system. The corresponding rules
of reduction were explained. Knowledge of the rules of

Inclusion is assumed when these rules of reduction were

laid down. For illustration, the system was applied to

(1) X-expressions with one argument

(2) X-expression with 1list of arguments

(3) the

Reckon 1language

In the discussions on application, the following points

were stressed

(1) how to define the mapping function

(2) how to extend the basic system
Basically the systemis a static one. By use of the
device, it is able to issue further checking requests

in the same way as coercion operators are inserted in parse

trees. Treating further checking and coercions insertion
as coroutines, the system obtained is simple and easy to
handle. We have seen how it is impossible to carry out
all type checkings at compile time in general programming

systems. Consequently, we have had to reject the idea
purely static or purely dynamic systems. Some of the
problems are solved partly due to the use of inclusion
principles in type checking and partly due to a better
understanding of functional types. Note how extensive
of the notional type [A] plays a very important role in

Sys tem-F.

123

of

use

124

Appendix B

This appendix is intended to let readers have a better

insight into our implementation of System-F (applied to

Reckon) . Since it would be extremely tedious to define the

semantics of all routines, we shall concentrate on those

routines that best represent the concepts of System-F.

So we omit definitions of routines that are repetitions of

those already defined. The routines we shall define are

parser monadictypecheck (MTC), poly and include. Since the

transformer is 3just a standard SECD machine which calls the

type checker in the same way as the parser, its definition
is omitted here. The routine poly is the part of the type
checker responsible for monadic operations, (f x), and we

use it to illustrate how the system handles polymorphic
functions. The routine MTC 1is the interface between parser
and poly (correspondingly there is an interface between
transformer and poly). The routine include defines the

rules of inclusion stated in chapter 2.

For this document we adopt the following abbreviations
of X-expressions in addition to those which have been
incorporated into the 66/6400 implementation of the parser

described here.

We write "f.g x" for "f(g(x))".

We enclose comments in and

We write § for " ()"

125

We write "lst, 2nd, 3rd, " for "1 TH, 2 TH, 3 TH, Loat.
We write "x" x''", x'*! " for "1 TL x, 2 TL x, 3 TL x.
We write "CASE x IN x*~*f* x OR Xg”*fg x... OUT fg x ESAC"
for "IF x=X| THEN f* x ELIF x=x~ THEN f*~ x ELIF ELSE
f0 X FI", and we write ELIF for ELSE IF. Notice that it
is possible for x* to be a set of alternatives, for example,
X~ may be eee)> and in that case "x=x " should
be interpreted as "x=x* " or Loy, (in other words
X is a member of see))e
We write "LET xl x n—a,l,. ,,an,
WHILE p(X_ ,...,X) DO X = £f ,(x,, , X)
1 n 1 n
Xn:=fn(x,,...,Xn)
00;
g(xj,...,xMN"
to abbreviate general recursions
"LET REC f(x,,...,x)EIF p(x,,...,x) THEN
I n I n
f(fi(Ix"'"xn}"*"fn(xi' ,xn))
ELSE g(x3j, ... ,x")
FI;
f(aj,...,a”)"
Machine representations of types are variants of
records in Pascal, "domain", "range" and "unionelements"
are some of the field selectors we use in the definitions.

126

LET output,input,stackE”,readinput”,*;
WHILE NOT (end”)
DO
LET 1lp,rp=leftprecedence.lst stack,rightprecedence.lst input;
IF lp=rp THEN input :=input'; 1lst stack: =listcounts(lst stack)
ELIF lp<rp THEN
LET wElst input;
stack:=CASE w
IN(variables ,numbers,strings)-HJ..stack
OR keywords->IF closebracket w THEN stack*
ELSE w. .stack FI
ESAC;
input:=input¥*
ELSE
LET wElst stack;
CASE w
IN (variables ,numbers ,strings)
output:=w..output; stack:=stack*
OR keywords-*
LET op =lookup(w,parseenvironment) ;
output,stack:=op (output,stack)
ESAC
FI
OoD;

transform(output{which has now been parsed})

WHERE parseenvironment=(("LET" ,consblock), (":",consAexp), ("+",dyadcheck),

("." ,monadictypecheck{see below}),...)

127

WHERE monadictypecheck(o,s)=
(LET functy,argty=type.2nd o, type.1lst o;
IF functional functy THEN
LET wl,w2Einclude (domain functy,argty,0);
IF wl=lvwl=2 THEN
(assigntype ((range functy) ,IF wl=2 THEN insertcodetochecktype-
atruntime ELSE identityfunction FI.
consmonadcode IF w2=2 THEN insert-
coercioncode o ELSE o FI
),s")
ELSE conserrorcode (o, s)
FI
ELSE
LET wl,w2=poly(functy,argty) {to sort our polymorphic functions};

CASE wl

IN 1 (0 ,changetomultiplyop s)

OR(2,11)~(IF wl=1l1 THEN swap o ELSE o FI,

changetostringselectionop s)
OR(3,21)~(IF wl=21 THEN swap o ELSE o FI,
changetolistselectionop s)
OR(4,5,14,15,24,25,30,40)+
(assigntype (w2 ,insertcode-to-checktypeatruntime.consmonadcode o)
/s")

OR 23+ (o,changetoconcatlistop s)

OR 12+ (o,changetoconcatstringop s)

OUT conserrorcode (o,s)

ESAC

FI);

WHERE REC poly(p,q)2

CASE p

IN [ANY]+(40,[A])

OR numbers*
CASE gq
IN [ANY]”(4,[A])
OR numbers” (1,type2(p,q))
OR strings+(2,[S])

OR lists+

(LET n”length q;

LET ql,...qgn=q;
LET t1,...,tn=type ql,...,type an;
IF tl=t2=...=tn THEN (3,tl) ELSE (3,tlut2

OR unions+
(LET q ,rEunionelements q,*;
WHILE NOT (NULL q)
DO
LET wl,w2Epoly(p,1st q) ;
g:=q’; r:=consunion(w2,r)
OoD;
IF NULL r THEN (0,*) ELSE (5,r) FI)
ouT (0,4)
ESAC
OR strings+
CASE q
IN [ANY]+(14,[S])
OR numbers+ (11, [S])
OR strings+(12,[S])
OR unions+
LET q,r=unionelements q,0;
WHILE NOT (NULL q)
DO
LET wl,w2=poly(p,1st q) ;
q:=q'; r:=consunion(w2,r)
OD;
IF NULL r THEN (0,*) ELSE (15,r) FI
ouT (0,4>)
ESAC
OR lists->
CASE ¢q
IN [ANY]->(24,[A])
OR numbers-*
(LET nElength p;
LET pl,e*»e,pn=p,
LET tl1,...,tnEtype pi,...,type pn;
IF tl=...=tn THEN (21,tl) ELSE (21,tlut2

OR lists+(23,type2(p,q))

. ..utn)

. .utn)

FI)

FI)

128

129
OR unions+

(LET q ,rEunionelements q,$;
WHILE NOT (NULL q)
DO
LET wl,w2Epoly(p,1St q);
g:=q’; r:=consunion (w2 ,r)
OoD;
IF NULL r THEN (0,*) ELSE (25,r) FI)
oUT (0,%*)
ESAC
OR functionals+
LET wl,w2=include (domain p,q,1l);
(0,IF wl=0 THEN ¢ ELSE range p FI)
OR unions+
LET p ,r=unionelements p,*;
WHILE NOT (NULL p)
DO
LET wl,w2Hpoly(lst p,q);
P :=p*; r :=consunion (w2 ,r)
OD;
IF NULL r THEN (0,*) ELSE (30,r) FI

ESAC;

{end of definition: monadictypecheck}

130

WHERE REC include(f{formal parameter},a{actual parameter},c{coercion
statel})E
CASE f
IN primitives*
(LET REC pin(f,x,c)=
CASE X
IN primitives”
IF x=[ANY] THEN (2,c) ELIF COERCIBLEPRIMITIVES(f,x,c)
THEN (1,2) ELSE (0,c) FI
OR unions+
(LET x=unionelements x;
WHILE
LET wl,w2Epin(f,1st x,c); (NOT(NULL x))A(wl=0)
DO x:=x' OD; IF NULL x THEN (0,c) ELSE (2,c) FI)
ouT (0,c)
ESAC;
pin(f,a,c))
OR lists”
CASE X
IN primitives+IF x=[ANY] THEN (2,c) ELSE (0,c) FI
OR unions”
(LET x,c=unionelements x,IF c=0 THEN 3 ELSE c FI;
WHILE
LET wlw2e2,0;
IF NOT (NULL x) THEN wl,w2:=include(f,1lst x,c) FI; wl=0
DO x:=x* OD;
IF NULL X THEN (0,c) ELSE (2,c) FI)
OR lists”
(LET 11,12=elementtype f,elementtype x;
IF longlist f THEN
IF longlist X THEN
LET f,x,dEl1ll1,12,1;
WHILE
LET wl,w2=0,0;
IF NOT (NULL f) THEN wl,w2;=include(lst f£f,1st x,c);
IF w2=2 THEN 1lst x:=insertcoercioncode.lst x FI;

wlzO

DO f:=f’; x:=x'; d:=IF wl=2 THEN 2 ELSE d FI OD;

IF NULL f THEN (d,c) ELSE (0,c) FI
ELSE
LET f,x,cEll,12,1;
WHILE
LET wl,w2=0,0;
IF NOT (NULL f) THEN wl,w2:=include(lst f,x,c) FI;
wlzO
DO f:=f OD;
IF NULL £ THEN (2,c) ELSE (0,c) FI
FI
ELSE
IF longlist X THEN
LET f,x,dEll,12,1;
WHILE
LET wl,w2=0,0;
IF NOT (NULL x) THEN wl,w2:=include(f,1lst x,c);
IF w2=2 THEN 1lst x:=insertcoercioncode.lst x FI;
wlzO
FI
DO x:=x'; d:=IF wl=2 THEN 2 ELSE d FI OD;
IF NULL X THEN (d,c) ELSE (0,c) FI
ELSE include(11,12,1)
FI
FI)
oUT (0,c)
ESAC
OR functionals”® N
(LET cEI;
CASE X
IN [ANY]->(2,c)
OR functionals->
(LET wl,w2EincIude (domain x,domain £,1);
IF wl=1 THEN include(range f,range x,l1) ELSE (0,c) FI)
OR unions -»
(LET xEunionelements x; WHILE LET w l1l,w2E2,0;
IF NOT (NULL x) THEN wl,w2:=include(f,Ist x,c); wl=0 FI
DO x:=x' OD ;
IF NULL X THEN (0,c) ELSE (2,c) FI)
OUT (0,c)

ESAC)

13

132

OR unions+
(LET fjdEunionelements £,0;
WHILE
LET wl ,w2=include(l1st £f,x,c);
NOT ((NULL f)v(wl=D)
DO f:=f; d:=IF wl=2 THEN 2 ELSE d FI OD;
IF NULL f THEN (d,c) ELSE (1l,c) FI)
OUT (0,c)

ESAC

{End of definition: include}

133
Appendix C

Programming Examples of System-F

We reproduce here the computer outputs of three
programming examples which were tested on CDC 6400.
Two tests were conducted for each example, one with type

declaration and the other without.

In order to assist readers to examine intermediate
type-checking results, we have provided the function

"print type" such that " (print type x)" will print the type

of "x" at compile time (x can be any object allowed in the
language except system functions). In our current
implementation of System-F, no code 1is generated for
"print type", in other words, it does not exist at run time

The information printed by "print type" will be in the

format shown below:

Type of X is : t~#

where t* 1is the type of x

The symbol "+" in the computer outputs should be
interpreted as "+", and readers should also refer to the

table in Appendix A for other differences.

EXAT*PLE 1

START

BEG INN ING

CONN EN T
A REPEAT LOOP
RESPECTIVELY.
EXAMPLE

COMM EN TEN D

LET REC REPEAT ACTION CaiDITION#

THEN ()
REPEAT ACTION CONDITION)) ;

LET COUNTE£O;

LET SU'IL, SmSJj SUMI

CACTI ON O ;

COUNT:

=0;

(CONDITIONC)

IS APPLIED TO INTEGER, LIST AND STRING
THERE IS NO TYPE DECLARATION 1IN THIS

ELSE

1, 2» 3> 4) ,<RECKON>, O;
LET B LIMIT TOTAL #I F CODNT=LIMIT THEM PRINT TOTAL;

LET SQ()# (COUNT: =COUNT+i;
LET SPACEC) rf£COUMT: =

SUMS: = (1

com

TL SUMS) ::< >:

TRUE ELSE FALSE FI ;

SU-11 :=SUM I+ COUN T* COUi'JT) ;

T+i;
(!

LET TREDLEC) #(COUN T: = COUNT+ i;
CCOUNT TH SUML):=CCOUNT TH SULL)*3);

TH SUMS)) ;

(PRINTTYPE SC): B 4 SUML);

(PRINTTYPE SC):B 6 SUMS)

CCNIL S] *CBOOL EAN]]

CCNILS]-C CINTEGER] UNION [REAL] 1]

[[NILS] ~[BOOLEAN]]

[[NIL S] »[BOOL EAN]]

REPEATCPRIN TTYPE SO) (PRINTTYPE $():B 10 SUMTI);
REPEATC PRINT TYPE TREBLE)

REP EATC PRINTTYPE SPACE)

EN DING

FINISH

TYPE OF SQ IS : CCNILSOAC INTEGER]]
TYPE OF ($§ C) : (CB 10) SUMI)) IS
TYPE OF TREBLE IS

TYPE OF ($ C) ; CCB 4) SUML)) IS
TYPE OF SPACE IS [[NILS]~[STRING]]
TYPE OF CS C) : CCB 6) SUMS)) IS
RESULT OF TYPE CHECKING IS [ANY]
<<<OUTPUT IS :385 >>>

<<<OUTPUT IS :(3,6,9,12) >>>
<<<OUTPUT IS i< R ECK 0 N> >>>
RESULT OF PROGRAM IS c)

QED.

34

135

EXAIMPL E 2

START
BEGINNING

COMMENT

THIS EXAMPLE IS SIMILAR TO LAST ONE, BUT WITH TYPE
DECLARAIT ON S.

COMM ENTEND

LET REC CCCNILSD-CANY33-CC[NILS]~CBOOLEAN] D-CNILS] 33REPEAT
CCN IL]*-CANY] JACTION CCNIL S3-CBOOL EAN] J]CONDITION#
(ACTIONO ; (CON DITION () THEN () ELSE
REPEAT ACTION CONDITIGJ)) *

LET COUNT#O0;

LET SUML, SUMS, SUMI #(1,2,3, 4) ,<RECKON>, OJ

LET B LIMIT TOTAL #IF COUNT=LIMIT THEN PRINT TOTAL,*
COUNT: =0; TRUE ELSE FALSE Fi;

LET SQC) #(COUJT: =com T+i; SUMI:=SUM1+COUNT* COUNT) X

LET SPACE()# (COUNT: = COUNT+i;

SUMS: = (1 TL SUMS) ::< >::(1 TH SUMS)),*

LET TREBLEC)#(COmT: =COmT+4i ;

(COUNT TH SUML) := (COUMT TH SUML)* 3),*

REPEATCPRIN TTYPE SQ)CPRIMTTYPE SC):B 10 SUMI) *

REPEATCPRIN TTYPE TREBLE) (PRINTTYPE SC): B 4 SUML) ;

REPEATC PRINTTYPE SPACE) CPRINTTYPE SC):B 6 SUMS)

ENDING

FINISH
TYPE OF SQIS ; CCNILS3-CINTEGER33
TYPE OF Cs$C) : ccB 10) sSuMI)) IS : CCNILS3-C BOOLEAN] 3

TYPE OF TREBLE IS : CCNILS3-CCINTEGER3 UNION CREAL 333

TYPE OF CSC) : CCB 4) SUML)) IS : [[NIL S3~[BOOLEAN] 3
TYPE OF SPACE IS : CCNILSJAC STRING]]

TYPE OF CS C) ; CCB 6) SUMS)) IS : [CNILS3-CBOOL EAN 33
RESULT OF TYPE CHECKING IS : CNILS3

<<<OUTPUT IS : 385 >>>

<<<OUTPUT IS : (3,6,9,12) >>>

<<<OUTPUT IS ; < R E C K 0 N> >>>

RESULT OF PROGRAM IS : C)

QED.

EXAMPLE 3

START
BEG INN ING

COMMENT

36

A WHILE-LOOP IS APPLIED TO REAL, LIST AND STRING
RESPECTIVELY. THERE IS NO TYPE DECLARATION IN

THIS EXAMPLE.
CO0.IMENT SI D

LET REC WHILE ACTION CONDITION#

(CONDITIONC) THEN ACTIONO,* WHILE ACTION CONDITION

ELSE C));*
LET INCREMENT, COUNT, SUl#1. 0, 1, 0. OS
LET L, S#C 1, 2, 3, 4, 5) ,<WHI LELOOP>
LET COJ TROLC)#COUJT: =COUN T+ 1;
LET LEMGTH N P#

(NULL P THEN PRINT N; FALSE ELSE

CNULLCN TL P) THEN PRINT NS FALSE ELSE TRUE)) , *

LET SERIES N P#

CN\O. 00005 THEN TRUE ELSE PRINT N* PRINT P*

FALSE) , *

WHILE (PRINTTYPE CON TROL) (PRINTTYPE SC):LENGTH COUNT L) *

COUNT: =13i;

WHILE CONTROL (PRINTTYPE SC): LENGTH COUNT S8),*
WHILE (PRINTTYPE S () :CINCREMENT: =INCREMENT*0.5;

SUM: = SUM+INCREMENT)

)

(PRINTTYPE SC); SERIES INCREMEIMT SUM)

ENDING

FINISH

TYPE OF CON TROL IS ; [[NIL S3»[INTEGER] 3
TYPE OF (s C) : CCLE3MGTH COUNT) L)) IS
TYPE OF (s C) : C(LENGTH COUNT) S)) IS
TYPE OF CSC); CINCREMEIMI := (INCREMENT
C SUM csul + INCREMENT))) IS : [[NILS3-
TYPE OF CS C) : CCSERI ES INCREMENT) SUM))

[BOOLEAN] 3

RESULT OF TYPE CHECKING IS : CANY3

<<<OUTPUT IS : 5 >>>
<<<OUTPUT IS: 9 >>>

<<<OUTPUT IS: 0.0000305175 >>>
<<<OUTPUT IS; 0.9999694824 >>>
RESULT OF PROGRAM IS : C)

QED.

[[NILS]~[BOOLEAN] 3

[[NILS]

* 0. 5)

«- [BOOLEAN] 3

)*

[REAL] 3

IS

[[NILS]»

137

EXAMPLE 4

START
BEGINN ING

COMMENT

THIS EXAMPLE IS SIMILAR TO LAST ONE, BUT WITH TYPE
DECLARATI Q1 .

COMM EN TEN D

LET REC CCCNILS3-CANY3]»CCCNILS3»CBOOLEAN33-CNILS333WHILE
CCNILS3» CANY3 3ACTION CCNI L S3» CBOOL EAN3 3CONDI T1 ON #
(CONDITIONC) THEN ACTIONC) ,* WHILE ACTION CONDITION
ELSE C));
LET INCREMENT, COUNT, SUM#1. 0, I, 0. O*
LET L, S#C 1, 2, 3, 4, 5), <WHIL ELOOP>/
LET CON TROLC) #COUNT: =com T+i;
LET LENGTH N P#
(NULL P THEN PRINT N* FALSE ELSE
CNULLCN TL P) THEN PRINT N: FALSE ELSE TRUE)),*
LET SERIES N P#

CN\O. 00005 THEN TRUE ELSE PRINT N; PRINT P; FALSE),*
WHILE (PRINTTYPE CON TROL) (PRINTTYPE $C);LENGTH COUNT L)J
COUNT: =1i;

WHILE CONTROL (PRINTTYPE £C) :LENGTH COUNT 5S),*
WHILE (PRINTTYPE SC):CINCRHMEIT: =INCREN ENT*0. 5*
SUM: = SUM+ INCREMENT))
(PRINTTYPE SC); SERIES INCRETMENT SUM)

ENDING

FINISH

TYPE OF CONTROL IS ; CCNILS3» CINTEGER3 3

TYPE OF CSC) ; C(LENGTH COUNT) L)) IS : CCNIL S3»C BOOLEAN] 3
TYPE OF CS () : C(LENGTH COUNT) S)) IS ; CCNIL S3 »CBOOL EAN3 3
TYPE OF CSC) ; (INCREMENT ;= CINCREMENT * 0-5)),*

(SUM ;= CSUM + INCRETMEIMT))) IS ; CCNIL S3»REAL 33

TYPE OF CS C) ; CCSERI ES INCRBMENT) SUM)) IS ; CCNILS3»

[BOOLEAN 33

RESULT OF TYPE CHECKING IS ; CNILS3
<<<OUTPUT IS ; 5 >>>

<<<OUTPUT IS ; 9 >e>>

<<<OUTPUT IS ; 0.0000305175 >>>
<<<OUTPUT IS ; 0.9999694824 >>>
RESULT OF PROGRAM IS : C)

QED.

DCAMPL E 5

START

BEGINNING

COMM HJ T

PROCEDURE

TO E.ACH OTHER.
EXAMPLE.
COMM EIMTEN D

LET FACTORY B1
(LET BUFFERP,

LET

PRODUCEO
SUM,N #0, O;

"PRODUCE"

AND "CONSUIE" ARE MUTUALLY RECURSIVE

THERE IS NO TYPE DECLARATION IN THIS

B2 Al A2 D#
BUFFERCH#!, i;
(LET RECC PRODUCE, CONSUME) #

(($(): (PRINTTYPE BIC) THEN BUFFERP: =0 ELSE AlO),*
(PRINTTYPE BUFFERC=1 THEJ CONSUMEO ELSE DO)),
($(): (PRINTTYPE B2() THEN BUFFERC:=0 ELSE A2())J
(PRINTTYPE BUFFERP=1 THEN PRODUCEO ELSE DO))),*

))

(PRINTTYPE FACTORY) ($():N\100) (S () : SUMXIOO00)

(S():N: =N+ !') ($(): SUM: = SUM+N*N)
(SO: PRINT NJ PRINT SUM)

EN DING

FINISH

TYPE OF COND (Bl O0) 1IN (BUFFERP :=0) OUT (Al O)
DNOC IS : CANY]

TYPE OF COND (BUFFERC = 1) IN (CONSUME O) OUT (D O)
CNOC IS : CANY]

TYPE OF COND (B2 O0) IN (BUFFERC := 0) OUT (A2 O)
CNOC IS : CANY]

TYPE OF COND (BUFFERP = 1) IN (PRODUCE O) OUT (D O)
CNOC IS : CANY]

TYPE OF FACTORY IS CCANY]»CCANY]» CCANY] -CCANY]»CCANY]»
CANY]]11111

RESULT OF TYPE CHECKING IS : CANY]

<<<OUTPUT IS : 16 >>>

<<<OUTPUT IS : 1015 >>>

RESULT OF PROGRAM IS 1015

QED.

138

EXAMPLE 6

START
BEGINNING

COMMENT

THIS EXAMPLE IS SIMILAR TO LAST ONE,

DECLARATIONS.
COMMEN TEND

LET FACTORY CCNIL S3»CBOOLEAN]]B1l CCNILS3»CBOOL EAN]3B2
CCNILS3-C ANY3 3A1 CCNIL S3» CANY3 3A2 CCNIL S3 »ANY3 3D#

(LET BUFFERP, BUFFERCH#!'!, i;
(LET REC([CN ILS3-C ANY3 3PRODUCE

’

(($(): (PRINTTYPE BIO THEN BUFFERP: =0 ELSE AlO),*

BUT WITH TYPE

139

CCNI L S3 » CANY 33CONSUME) #

(PRINTTYPE BUFFERC=1 THEN CONSUME ()
(SO :(PRINTTYPE B20 THEN BUFFERC: =0

(PRINTTYPE BUFFERP=1 THEN PRODUCEO

PRODUCE()));
LET SUM,N#0,0;

(PRINTTYPE FACTORY) (5():N\ 100) (SO

(S():N: =N+ 1) (SO

: SUM\ 1000)
: SUM: = SUIM+N*N)

ELSE DO)),
ELSE A2())J
ELSE DO))) ;

(SO: PRINT N; PRINT SUM)
ENDING
FINISH
TYPE OF COND (Bl O0) IN (BUFFERP :=0) OUT (Al O)
CNOC IS : CANY]
TYPE OF COND (BUFFERC = 1) IN (CONSUME O) OUT (D O)
UNMOC 1s : CATMY]
TYPE OF COND (B2 O0) IN (BUFFERC = 0) OUT (A2 O0)
CNOC IS : CANY]
TYPE OF COND (BUFFERP = 1) IN (PRODUCE O) ourT (D O)
CNOC IS : CANY]
TYPE OF FACTORY IS : CCCNIL S3» CBOOL EAN3 3»CCCN IL S3 »

CBOOL EAN]]» CCCN IL S3 »CANY] 3»C CCNIL S3-C ANY] 3»C CCNILS3 »

CANY]]»CANY]]111]1

RESULT OF TYPE CHECKING IS : CANY]
<<<OUTPUT IS : 16 >>>

<<<OUTPUT IS : 1015 >>>

RESULT OF PROGRAM IS : 1015

QED.

140

PART THREE

141

CHAPTER ONE

SYSTEM-Y

Although [A] or [A->A] as proposed in System-F enable

us to tackle (or to be more precise, "bypass") problems

such as circular types and parametric polymorphism, they

add 1little to our understanding of the nature of these

types. In this chapter, we shall examine this important

topic in detail. We shall discuss the requisite reduction

mechanisms and illustrate them by examples.

1.1 Elements of System-Y

Elements of System-Y are grouped into three main

categories— type constants, type variables and type
abstractions. A type constant may be basic or functional
as in the other systems. A computing variable will be

mapped into a fresh type variable if the type of that

computing variable is not known (in System-F, it was given
default type [A]). Two or more computing variable of the
same name and within the same scope (in other words, bound

to the same binding variable) are mapped into the same type

variable otherwise into different ones. Type variables

will be assigned type values in the course of type reduction

Type abstractions are used to describe the type of

functions especially for those whose formal parameters*

types are not declared. This chapter discusses their

proper ties.

142

Notationally, we shall write t* for type constants,
Vj for type variables and yj for type abstractions.
Usually the subscript "i" or "j" bears some useful
information, for example t*» is the type expression for the
dyadic operator is probably the type variable
corresponding to the computing variable "x" and y”* is the
type of a function with "x" as formal parameter (binding
variable of A~expression) assuming that we are considering

single argument A-expressions only.

1.2 Type abstractions

In System-F we said that the type of (Ax:x) is [A->A]
In fact, it is only partly true, the function may be able
to take arguments of any type, but the result it yields is
not any type as it seems to be. The type of the result
depends on the type of the actual parameter. So this
suggests that a proper type expression for functions should
be one that can express this context- sensitive relationship
For example, immediately we can exclude simple type

variables as types for functions.

Type abstractions can be defined by equations. If O

is the mapping function which maps a computing expression

into a type expression, then

4 (Ax :M) =y~

where M is a well formed expression and y”* is a type

143

abstraction, is then defined by the following equation:

where V is a type variable and #(x)=V

Ex amp les
(1) & (AX :x) =Y

where v _(V)=V ->$(x)=V
X X X X

(2) 0(Ax:x+x)=y"*

where Y ~ (x+x)

1.3 Type assignments

There are two ways that values can be assigned to type
variables— by declaration and by application of type
abstractions to types, which will be denoted by ":E" and

":=" respectively.

1.3.1 Assignment by declaration

In the example (A[I]lx:x), x is declared to be of type
[I]. Suppose 0 (x)=V*, then we say that and [I] are
synonyms and so we write V#*:=[I], (readers may compare this

with the identity declaration of Algol-68).

Let Y be the type of (A[I]lx:x). This is defined to

be in the type abstraction

144

However, by declaration, cannot be of any wvalue but [I],
therefore y” can only have one value, which is [I+1I]

So y”* and [I->I] are also synonymous.

Notédt ionally , we can write &(A[t]x :M) = (et ; t>H (M)),
where t is any type and M is a well formed formula. We
notice that the result of the mapping consists of two
clauses separated by The first clause is an imperative

instruction to indicate the kind of assignment involved and

the second clause is the result we normally have.

1.3.2 Assignment by application of type abstraction to types

If the square function is defined as sqg(x)=x*x, we

can assume (sq 3) is evaluated according to the following

process,

(1) assign the value 3to x

(2) replace every x inthe equation by its wvalue

(3) evaluate the rightside of thedefinition

(4) finally obtain (sq3)=9

Suppose Y&£ (V*) =VA+4> (M) , (Y~ V%) can be analogously evaluated

as follows

(1) to

assign value

(2) replace every in th

evaluate (by reduction

(3)

the equation
(4) finally obtain (y* t*)
reduction on ($M) yiel

In general, whenever

to an actual parameter ¢,

process will be invoked.

be avoid in certain cases

1.4 The mapping function

The mapping function

expression

applicative

in System-Y. 0 can be

the various kinds of
(1) Cons tants (c)
(&> c)=t* where t* is
Examples
(I) (0 3)=[T

(2) (0 +)=t~

into

defined

computing

a type

145

(i. vN:=t*)

e equation by t*

in this case) the right side of

=t*->t”’, assuming that the

ds t*'.

a type abstraction y”* is applied

such as (y”* t*) above, the above

We shall see later how this can

by providing a memory for y*.

4

H>is designed to transform an

a corresponding type expression

recursively as follows for

expression:

constant

]

146

(2) Variables (x)
(0 x)=v~ , for simplicity, we assume that there will be

no name conflicts among the binding wvariables.

(3) Combinations (M N)

(0(M N))=((0 M) (0 N))

(4) Infixed expressions (x op vy)
Assuming that (x op y) can be rewritten as (op x vy)

’

then, (0 (x op y))=(0(op x y))=((0 op) (0 x) (0 y))

(5) Conditional expressions (IF b THEN e~ ELSE e” FI)
O(IF b THEN e, ELSE e” FI =(t 0 b 0 e, 0 e,
(0(1 >)) =« cond() (1)(2))
where t***”* 1is the type constant for handling conditional
expressions, the reduction routine associated with it may

vary from one implementation to another.

(6) ~.-expressions (Ax : M)

(0 (Ax :M))=Y* where (Y* V*)=[V*+(0 M)]

This mapping function definition may be enlarged for more

ambitious specific 1languages.

147

1.5 The Reduction Function

In the following discussion, we shall assume all "t",
"V" and "yY" with or without subscripts are any type constants,
type variables and type abstractions respectively except in
those cases mentioned in section(l.1]) where specific meaning
as

is attached to some subscripts. These cases are either

we have met them before in previous examples or they should

be clear from the context.

The reduction function 0 is defined recursively as

follows

(RY1) (6 t_)=t.

(RY2) (0 Vv\)=(lookup V.)

where lookup is the function that returns the value

that has been assigned by ":E" or " : to , if any
(RY3) (8 Yi>=Yi
(RY4) (0 (M N))=(02(e M) (0 N))

where M and N are any type expressions. The action

of 82 depends on the nature of M and N. The

following are some of the possible cases:

(a) both M and N are type constants
©2 reduces the combination according to an

appropriate rule of reduction as described in

System-F, for example.

148

(02 [I->R][I])=[R]

(b) M is a type abstraction:

let M be Y where v (V_)=V_->M', and M' is a type
m m m m
expression, then
(0. M N) =(V :=N; (0 M'))
2 m

for examp le,

(0(0((Ax :x+x) 3)))

(0O(Yx tl])) where $(x)=V~ and Yx(V$%$)=V~ A~ (t+ vr)

(02 Y¥Yx tl1]) by (RY4)

(VA:=[1]; (0(t~ vArY)) by (RY4 .b)
=(0g (0 t+) (0 V~) (0 V~)) by (RY5--see below)
=(03 t~ [I][I]) by (RY1,RY2)

=[1] by (RYS)

(c) M is a type constant and N is a type abstraction:

Suppose M is t~*2'’ 2~~~ N be and

(¥.L' V)=V ->N', then

n n n

(02 M N)=(02* 3 (0 N) 2>

where 02' is defined recursively as follows:

Given (02' a b c¢),

(1) if b is a type abstraction and a is 11 *1 12~

let b be Y* where Yy (V*)=V~*b', then

(02' a b c) =(Vr: =t*~; (02' t”*2 (0 b') «c))

(RYD)

(RY6)

(2) otherwise 1if a”b then ¢ else [E]

for example,

(O(O(A[I+[I~I]]1E£:((f£ 3)4)) (Ra:Ab:a+b)))
=(0 ([[I+[I+I]]+I] Y*))

where \% =V +
ya(a) a y'b

andyY, (V.)=V"*(t”~ V V.)
D b D + a D

=(e:2 [[I+[I"TI]]"I] yj by (RY4)

149

=(Q. ' Yg [I1]) by (RY4c)

=(Vr:=[1]; (s 2" [I+I]1 Yy [I1)) by (RY4cI)
=(Vy:=[!1; (62" [TI1((t+ vy)) [I1)) by (RY4cI)
=(e2 "[TI] (s] by (RY5,RY1,RY2)

=(s2 "CITIII[TI]) by (RYS)

=[1] by (RY4c2)

(0 (tdyadic 'x “y)) (83(8 tdyayi (,)(0 t~) (8 t*))

where 8% takes three arguments, and the first

argument is an element of the set of predefined

type-checking instructions (probably represented

by type constants) so that the predefined routines

will be applied to the second and third arguments,

producing a result which is the type of the

dyadic operations.

(8(tcond 8§ L Cy))-(8, (8 by) (8 tp (8

94 is similar to 03 except that it takes 4

arguments. As said before the type checking

t*))

150

routine is denoted by t

cond
Here are some examples,
(1)
(8($(((Xa:Xb:a+b)3)4)))
= (0 I I h v =V —>
(((Ya[])[})) where (ya a) a Yy
and vA)
=(82(@(Y2[1]))I[TI])
“"(eaOa¥YgCmCil) by (RY 4)
=(v*r:=[I1]; (62(0 Yy)I[I])) by (RY4Db)
=(02 Yy [I]) by (RY3)
=(V, =[']1; o(t~r v v, b RY4b
(b ['] (0 (T v ¥))) y)
=(03 t+(0 V) (0 V*)) by (RY5)
=(03 t+[I]I[I]) by (RY2)
=[I]
(2) parametric polymorphism
As before, assume that the type of numericfunction,
string fune tion, numeral and string are [t*=-2t*],
t* and t* respectively,
(0($((Xtwice: (... ((twice numericfunction)numeral)...
((twice stringfunction)string)...))

(Xf :Ax : (£(f x))))))

=(0(Yt, Y£))

(02 Y*~, Yj)

(VAr:=YE: (8 (.. . .

.(02(0(VLw[tn"tn]))[tn])...(Q(ditto))...)
.(02 (02 Yf [YIt*1) ... (0 (ditto))...)
= [tr->Er] (...(02(0 ¥Y*) Cct*]) ... (0 (ditto))...))
e (*2 Y~ [t*])...(0(ditto))...)
X=[t"]; (... (0 (VA(V2 VA~*)) ... (8 (ditto))...))
(o2[t 1 (02~~~ [t*1)) ... (0 (ditto))...)
-tn---(8 1))...)
Bt*...(02(02(6 V~,)[t "t 1) [t"]
etr. .. (02 (02 YJ[t*.7t*]) [t*])
=l >t) (et (05 Y T 1))
=le _1i £ (0(V_(V_ v)))))
t (0Z1[cC 1(02[t —=>t J[t 1)
n s s
t .t)
n s
There should be no confusion that V~*, are assigned

values in two instances corresponding to two distinct

applications of y”* and y” to their arguments.

Alternatively, we may subscript the variables in order

to differentiate the two instances. Indeed, for

implementation, each type abstraction may carry an

environment which includes all assignments to the type

variables that are accessible to it.

151

152

1.6 Simplifications of the reduction function

Let us study the example (Af: (£ 1)+(f 2)) (An:n+n)

follows :

(0($S(Af: (f 1)+(f 2)) (An:n+n)))

=(0(yf yv*)) (1)

(2)
=(VE:=Y"*; (e (t*(VA[I])(VII[I])))) (3)
=(63 t~(0(VA[I]))(0(VI[I]))) (4)

{Now reduce on the first occurrence of (0(V~A[I]))}

=(03 t7(02(0 V3j)I[I])(8(V~I[I]))) (5)
=(8,3 t:(8,2 Yn [I])(8(Vt[I]))) (6)
= =017 - A A

(Vn- (1 (83 t+(8(t_+ Vn Vn)) (8 (Vt[I])))) (7)
=(03 t~(03 t+[I]JI[I]) (8(V~[I]))) (8)
=(83 t+[I](8(VgI[I]))) (9)

{Reduce on the second occurrence of (0(VA[I])) }

=(83 tA[I](82(0 Vv*)[I]1)) (10)

=(8, t+[I](Oﬁ Y, [(11)

=(v =:=[']; (8. t£~[I1(0(t VvV VvV)))) (12)
n 3 + + n n

= (03 t_~[I](03 t+[I1[I])) (13)

=(03 t+[I][I]) (14)

=[I] (15)

153

We notice that steps 10-14 are repetitions of steps

5-9 and the purpose of both processes 1is to ensure that "f"

is applied to apposite arguments. Thus it 1is reasonable

to suggest that if we associate memories to type abstractions,

it may be possible to avoid these repetitions. This would
be more expeditious if our example were (Af: (£ 1)+ ...+
(€E 1000)). The idea of memory is simple, and it requires

that the representation of type abstractions consist now

of two parts, the definition and the memory.

The memory is used to record values of the type

abstraction for some specific arguments. Initially, the

memory is empty, and for each abstraction's application,

say (y t), if there is no value of y for this particular

value of t (correspondingly, there is no entry of t in y's

memory) , then (y t) will be reduced as usual by Rule (RY4Db)

and the result obtained is used to update the memory,

otherwise, the result equivalent to application of several

reduction rules can be simply extracted from the memory.

For example, step(11) can be replaced by (63 t~[I]I[I])

so that steps (12-14) are no longer necessary.

There is no formal need to change the reduction rules

to include explicitly references to memory because it is in

all cases equivalent to the rules already given. It is a

pragmatic device to enhance efficiency. We examine its

efficiency now.

154

1.7 System-Y compared with other Static Systems

Type checking of System-Y is performed mainly in the
parsing stage. It is reasonable to suggest that System-Y
is a static system. The marked difference between it and
other static systems 1is that type declaration is not
compulsory in it, a feature not common to other static
systems. We may ask whether more processes are required
for type checking in System-Y than in static systems where
type declaration is compulsory. Before we make any

comments on thisissue, we shall examine some examples.

Examp les

(1) type checking by other systems

How many steps are required in type-checking (A[I-*I]f:

(£ 1)+ (f 2)) (A[I]ln:n+n)?

(Al) 3 steps are required in (A[I->I]Jf:(f 1)+ (f 2)), namely

one each for the monadic operations (f 1) and (£ 2)

and one for the dyadic operation "+".

(A2) onestep in (An:n+n) for the dyadic operation "+"

(A3) onestep for the combination(A[I->I]f:...) (A[I]ln:...)

So 5 steps are required in all.

155

(2) type checking by System-Y

Consider the number of steps required in type checking our

previous example (Af: (£ 1)+(f 2)) (Xn:n+n) (without type

declaration this time)

(Bl) Type reduction rule imposes no type checking on

combination (Xf:...)(An:...). will be assigned

to VA instead.

(B2) Similarly, there is no checking on (f 1) itself, but

this combination initiates checking of (An:n+n) .

As in (A2), one step 1is required.
(B3) Since the memory of will not be empty after step
(B2), there will be checking of (f 2). In general

the number of steps required depends on the number of

entries in the memory. However, only one step is

required here.

(B4) One step 1is required for the dyadic operation "+"

as in (A1l)

Therefore 3 steps are required in all.

156

This comparision between the performances of System-Y
and other static systems was really gquite naive. It would
be optimistic to assume that System-Y is always more
efficient than others. In fact, there are overheads
involved in System-Y such as memory space and access time.
Any comprehensive comparision of efficiencies might therefore

be forced to equate system-Y with other systems.

The comparision of 1logical significance is that
System-Y checks programs in a dynamic order (the order in
which they are executed) whereas other systems check them

in static order (the order in which they are written).

1.8 Intersection types

We have said before that it is possible to declare

the type of any variable. Suppose we want x to be either

[I] or [R] in example (Xx:x+x), then we can write

(X[IuR] x:x+x)

In system-Y, x is of wunion type, while the corresponding

X-expression 1is of intersection type [I>-I]n[R->R] , thus the

type of the combinations

S((X[IuR]X:x+x)3) can be reduced to [I]

and S((X[IuR]X :x+x)3¢0) can be reduced to [R]

157

Let us use the concept of type abstraction to derive these
results. Suppose ((A[IuR]lx :x+x))=y* and ($ x)=V*, where
Y v =V _->(t v v . B declaration v can onl be

X (x) X (S ¢ x) % ! X Y

either Cl] or [R] and correspondingly Y* is defined for

these two values only,

Y*([R])=[RI-*(t*[R][R])
=[R”*R]
The results obtained are the same as before, and we say that
Y~ and [I->-I] n [R->R] are synonymous in this example.

1.9 The Anonymous Type

In X“K Calculus, it is not necessary for binding
variables to occur in their X~bodies. The type of non-
occurring binding variables is immaterial. In spite of

the fact that they can be of any type, it could be
undesirable to assign specific types to them. For example,
the generality of combinator K2 (i.e. ”"Ax:Ay:y") would be
restricted if we declared the type of its first argument.
We want to describe an object whose only property is that
it occurs as a binding variable but does not appear in the
X-body. We invent the "anonymous" type (abbreviated [Z]).
By allowing [Z] to include all other types (i.e. [Z2]12¢t,

for all types t), its properties can be described by the

158

following reduction rules (where t, tj can be any types):

(RY7) (02[Z-~tjlt)=t j

(RY8) (02 t z)=[E]

(RY9) (02 z t)=[E]

If [2] in (RY8) and (RY9) describes a non-occurring
variable there 1is no reason for it to occur independently

in either part of the combination.

If the types of non-occurring variables are not
declared, they should be assigned type [Z] by the system.
It is possible to assign type [Z] to the empty binding
variable " ()", but care must be taken here because " ()" may
occur in X-bodies. Hence reduction rule (RY7) must be

applied before (RY8).

159

1.10 Implementation

System-Y has been implemented for checking types of

a complete subset of Reckon, which includes applicative,
binary, sequential and conditional expression (type checking
of recursive functions needs further discussions, so we
shall 1leave it until next chapter). These expressions

in turn constitute the body of A-expressions which must be

ended with a special marker "endlambda". This marker

enable the scanner, parser and type-checker to detect the

end of a A-expression. At present, A-expressions can only

take single argument, so the general format is

11(11 ii"di single-binding-variable body-e xpression
"endlambda" ")"

Meanwhile, let us note some of the features of this

implementation.

(1) Scanning

During scanning, each syntactic token will be placed
in a record. For example, after scanning, "2+3" will be
represented as in diagram(1.1). A-expressions' scans are
stored as sublists, for example, (An:n+n endlambda) will
be represented as in diagram(1.2). This 1is necessary so

that the A-body will not be parsed if it is not required.

160

(2) Representations of type abstractions

These contain at 1least the following information--
memory, and definition of y. Diagram(1l.3) shows the
schema of representation so that diagram(l.3) illustrates

the representation of a fully typed “-expression.

(3) Parser

Two stacks are required for parsing, one for constructed
parse trees and the other for source symbols. Whenever a
type value 1is assigned to a type variable, the pair will be
stored in the "environment". A copy of this environment

will be made in the corresponding A-expression when it is
parsed. The parser will call the type checker (or part of
it) whenever necessary. The relationship between the

parser and the type checker is the same as in System-F.

Generally, when a A-expression is parsed, its body will be
ignored. Eventually, at some appropriate stages, this A-
body will be considered. This is facilitated by the

sublist representation of A-expression we chose as explained
above. All these processes are governed by the reduction
rules (0) . During the parse of a A-body, the parser may
be required to work on another A-body, so it is necessary to
keep a 1list of the unfinished tasks. The 1list is called
"dump" . Dumps contain the parser's state at the moment it

is interrupted.

If the binding variable of a A-expression has been
declared, the body of that particular “*-expression will be

parsed immediately and the result will be stored in the

Diagram (1.1)

end A

Diagram (1.2)

tag of record ~“TYPE '‘Pointer to memory

pointer to definition of y

Diagram (1.3)

pointer to definition of y

TYPE

pointer to memory
which is empty at

beginning

A — > n n + n end A

Diagram (1.4)

161

162

corresponding memory. In the example (A[tjut®u .. .ut*]x:...
the body of this A-expression will be parsed n times, so
that at the i' th time, x will be assigned type t*. The

results of each parse are stored in the memory accordingly.

During parsing or/and type checking, whenever new
information is obtained about the type of a A-expression,
the memory of the corresponding A-expression is updated

with the new information.

(4) Type checker and Parser co-routines

Imprecisely, one may consider the type checker as a
subroutine of the parser. More precisely, the relationship
between them is that of co-routines, because the type
checker is able to modify the actions of the parser as well
as vice-versa. There exists some program control registers
which are accessible by both type checker and parser.
The parser fetches 1its instruction from the registers.
Therefore the type checker simply has to modify the contents
of these registers for the parser to follow the course
desired by it. Alternatively, the checker can modify the
"dump", thereby altering the subsequent tasks. Information
can also be passed by the parser to the checker through the

same channels.

163

(5) Machine State

The machine state 1is represented by the 5-tuple of

current values of (the pointers to) the two stacks, input,
environment and dump. The initial wvalue of the dump is NIL
Prior to parsing or type checking on a new A-body, the
machine state will be recorded, the five-tuple thus created

will form the most recent dump and will be 1linked to the
previous dump formed in a similar way. Correspondingly,

the pointers have to be re-set for a new task as follows:

(a) the environment pointer will be set to the environment

associated with the new A-expression

(b) the dump pointer will point to the most recent entry

(c) the input pointer is set to the beginning of the new

A-expres sion

(d) the two stack pointers will be adjusted accordingly.

1.11 Summary

In this chapter, we have claimed that the types of
functions without formal parameter type declarations are
best described by type abstractions. These permit a very
general kind of type description indeed. The requisite
mapping function and reduction rules were described formally

Type checking is done on paper by solving type equations.

164

Their machine implementation was enhanced by planting a

type memory in the representation of type abstractions.

We have shown thereby how the problem of polymorphic

types is solved by System-Y. Resolution of circular types

calls for another chapter.

165
CHAPTER TWO

SYSTEM-Y FOR CIRCULAR TYPES

System-Y so far fails to handle circular functions

in two respects

(1) no mechanism is provided for declaring the type of

circular functions

(2) the type checker would enter an infinite 1loop if the

expression it 1is reducing contains wundeclared circular

functions

This problem is mentioned in nearly every discussion,
but so far there is no successful solution. In this

chapter, we try to break through the theoretical deadlock

by a practical proposal for a new basic type [C]. In order

to stimulate further thoughts in this area, we relate our

proposals to Scott’s more theoretical studies of continuous

lattices of types.

So we reopen the discussion of the previous chapter

with a view to extending it. In this attempt, we expect

to obtain a solution which 1is more informative than that

suggested in System-F (using [A]). The discussion is

divided into two parts. The first deals with declaration

of circular functions and the second with that of undeclared

ones.

166

In section (2.6), we shall briefly mention type checking
of recursive functions. The treatment of this is parallel
to that of undeclared circular functions. Owing to 1lack of
time, only the treatment of recursive functions was

implemented on the computer. However,

can be extended readily into circular types.

2.1 Circular types

We introduce into our system a new basic

by I[C]. The new type is used to

for circular functions. Define these as

to themselves. Let f be such a circular

£f*E(f £). We show below how to find the

type

Suppose it is [t]. Then the first

type of f is [C->t], the second approximation is

the third is [[[C-*t]>t]->t] and so on. For

shall represent [C-*t], [[C->t]->t], by Cc*»,

we also use C” to stand for the whole family of

Examp le

In the example (Xg: (g g) 4)

we believe

type

construct type

functions

function,

approximation

c~,

that this

denoted
expressions
applied
and let
of f'.
to

the

[[C->t]->t],

simplicity we

. and

types.

(Af:A[1]n :IF n=1

THEN 1 ELSE n*((f £f) (n-1)) FI), if the process
of f applying to itself will terminate at all,
we would expect the result to be an integer.
Hence ignoring the 1loopings in (A[1l]n:...), the
type of this A-expression must be [1->1] so that
this is the value of "t" mentioned above.

167

2.2 Type Checking of Declared Circular Types

In order to check the type compatibility of (£ g) in
which f and g are circular functions (g may be the same as
f), then ideally we would 1like to discover the "best
approximation" of both types. If it is difficult to
obtain the best approximation, we are prepared to accept a
relaxation-- that is, the ¢type of £f and g must be of
"comparable approximation" instead. That means if the
type of g is at the j’ th approximation, we require that the
type of f must be at the (j+1)’ th approximation before
type checking can be conducted on them. This 1is necessary
in order to preserve the stratification 1law which says that
in expressions (f x) the type of f must be one 1level higher

than that of x.

We assume that there exist system routines which will
be invoked by the type checker toexamine levels of
approximation and to replace some of them by other apposite
approximations in the family, where necessary. Such
replacements will be reflected in the reduction equations
by having changes in those places where adjustments are

made on the circular types.

In the following examples, it 1is assumed that £, g and
n are of the type CC>[1->1]], [[C>[1-"1]]-*[1-*1]] and [1]

respectively.

168

Examp le (!)
(6 (£((f £)n)))
=(6 ((Vr V*)V?™))
=(82 (8 (Vr V*))I[I])

=(82(e2[C[I”I]][C*[I-I]]1)I[I])

{adjustment on the 1level of approximation, in this

case, change the first instance of C*% to }
I>1 11

=(82(82[[C*[171]1~[I<U][C*[r+I]]1)I[I])

=(82[I*I][I])

=[I]

Examp le (2)
(8 ($((g g)n)))

=(8_(8(V WV))I'D
z g g

(82 (82: 1) [! 1)

{adjustment on the 1level of approximation}

(82 (82[C[C->[1-"1]]7[171]]1->"[1->1]][[C*[1->1]1]"[1->1]1)

[11)

(82[I~I][I])

=[I]

169

2.3 Undeclared Circular Types

For undeclared circular functions the process will be

more complicated. Perhaps the reader has realized already

that the type checker would enter an infinite 1loop if the

expression contained variables of circular types which are

not declared. Before we propose a solution to this problem

we must therefore strengthen our present system.

A subset s of type variables 1is formed and its members

are distinguished from others by having a bar on top of

their names, for example, V. The value of V is determined

solely by the context of the program (thus indicating a

certain degree of type deduction). For example, in the
type expression "t* [1l] V", V would be assigned value [1].
The assignment 1is written "V :-[1]". We wuse the new
notation because this assignment is different from

in the sense that V will be checked for any value that

it may possess from previous assignments (in the sense of

"e=") and any old value has to be consistent with the new

one otherwise it will be in error. For example, assume

that prior to reduction of the type expression " ((t~[B]V)

(t~[1]V))", V has no value and t* is the type constant of
the boolean operator "OR". Then on the first occurrence
of VvV, it will be assigned value [B] as said above. However
on the second occurrence, V cannot be assigned value [1],

otherwise it will be inconsistent with its previous value.

Other properties of V that we shall use in later examples are

170

(1) (82 v\)=v+r if i=j
(2) (8~ V. Vj)=(Vj:-v.;VvV.) 1if izj
according to this rule, any subsequent occurrences of Vj

will be replaced by V~.

(3) (82 Vv [t]l)= E for any type t

this is a very severe restriction on the uses of V, but

it is tolerable for our special purpose as can be seen

from our examples.

(5) (64 tcond V. V.)=(V.:-V.; V.) 1if 1i.j

Suppose (O (Xf :...))=Y£and ($ £)=V~ and in the course
of type reduction we have to assign (in the sense of :=)
value to V&, then y” will be tagged by writing V*:=y*.
The symbol "c" indicates the possibility of circularity,

and is only a marker whichwill never affect the value of the

object that it is attachedto.

171

2.4 Solution to the problem of Undeclared Circular Types

Our proposed solution can be formalized in the following

reduction rule:

(RYIO) t']) = (92[C+V] [C->V])

(62 t]->V] [C>V]) {adjustment on approxima-

tion}

where t is a type expression that has been tagged and V is

an element of S. This solution will suffice for our
examples, though we might extend it for more general cases
to :

(e2[tJ][tj]l)=(Vi:-V.; (6~CC~ V.][C+V~*]))=V.

Occurrences of the "c¢" marker on both of the arguments
of 82 indicate that the circular function is applied to
itself, so it 1is required to replace t* by [C->V] by assuming
that the type of the final result is V (i.e. it is the "t"

we mentioned in §2.1)

We have already emphasized that the use of the subset
S has to be very restrictive. Furthermore, the smaller
the object designated by V, the quicker our solution will

converge. Therefore we impose the following rule:

(RY11)

172

If t is the type of (Af:RARal:Aa2:...:Aan :...) ,

it is required that t* should be replaced by

and not simply by [C->V] when Rule (RYIO) is applied
If t** is the value of then (1) is further

reduced to

Cc- PR 1 AN) -
[>[ta1 [a2 [>V] 111

Reduction Example (1) {using the example at the outset of this chapter}

(6 ($(Ag: (g g)4) (Af:An:IF n=1 THEN 1 ELSE n*((f £)(n-1)) FI)))
=(0 (Yg ¥*))

= (02 Yg Yf)

=(Vg:=Yj; (8((Vg Vg)[I])))

=(9éW(Vg VgH[!D

=(0,(0, (0 Vg)(0 Vg))[”)

=(02(02 Yj Y£f)[I])

=(Vt:=Y'1‘:; (Oé(O Yn)[!])) {y* is tagged}

=(V~:=[I]; (8 (tcond(t= [I])[TI]1(t~ [I] ((V* vp(t_ [11)
M))

=(84 cong 'BIIIl (631 [I] (02(0(VE VE))[I])))

=(84 cong Bl [Tl (03 (03(02 T£ Y£)[']1)))

=(84 copg Bl [Tl (03 (0%:0 2[c+[r»v]] [c+[i74*]) [i])))

= (04 ong B [('3 * (03 [1-~V] C1])))

[B] [I] [I] V»

cond ('3

=(V:- ; 0. ~
(V:-[1] (4 tcond [B]l [I] [I1))

=[1]

Reduction Example (2)

(8 ($(Xf: (£ £)3) (Ax:x)))
=(e if yp

=(VE:=Y"; (6((VE VI)[I])))
=(82 (8 (VL VL)) [I])
=(82(82

= (V*:=Y*; (82(8 vpCi]))

=(62 (I1)

{onle one argument of 8” has the special marker,

RYIO or RY1ll is applicable here}

=(Vr:=[I1; (8 V*))

=[I1]

In this example, f was applied to itself but produced no

circular effect. It is important that the system handle

this case properly too.

173

so neither

174

2.5 Lattice Representation of Types

We have not attempted any formal proof on our

proposal. However, we notice that there are certain

similarities between our approximation concept of circular

types and Scott's [Scott, 19 72] lattices of data types, but

the latter is a more theoretical approach than ours.

So we shall give an account of lattice representations of

types here and re-state our approximation concept in terms

of them. We believe that it 1is worth to compare these

results.

A lattice formed from a set S, with partial ordering

>, consists of all elements of S and two special elements

1 and T such that for all x in S, we have

If x>y, we shall say x is a better approximation than y.

Examp le

The 1lattice of positive integers is:

JL

175

The 1lattice for circular types is shown in diagram(2.1)

Suppose t is then each f* can be interpreted as
follows. For every i, the value of (f* n) will be 1 if
n>j , otherwise (f|] n)=m for some integers n and m.
Therefore for each i, £~ * is a better approximation than
f':‘L (i.?.. f—?l A>E-2) . Finally we let Ct denote the set
ff3 £f3 f£3 \

We claim that is a better approximation than
in the sense that each element of 1+1 is. a better approxi-
mation than the corresponding element in C~. In other
words, for any j and ¢t, is a more exact description on

the type of a circular function than C*.

Diagram (2.1)

176

2.6 Recursive Functions

There is however no difficulty in declaring the type
of recursive functions. For example, given (LABEL f:An:
IF n=0 THEN I ELSE n*f(n-1) FI), we can say the type of £
is [I->I], or we can say [I->I] is the type of the minimal

fix-point of this recursive function.

Where the types of the recursive functions are not
declared, type deduction processes will be carried out
with the aid of the special set S as in the case of

circular functions.

In order for this to be done, the actions of the two
functions, $ and 0, should be extended as follows:
(1) ($(LABEL f:An:...)) =(t y)

rec 'f
where t is a type constant,
rec

(2) Yf)>=(®2" “~ec

where, if the type of the recursive function £f has been

declared, then define

3 8 " t Yf)=(8 Y
(3) « > rec t) (n)
otherwise, if it has not, define
(4) (0," t vy,)=(V :=[V *V]; (9 vy))
2 rec £ £ n n

during the

Values will be assigned to

course of type reduction

Examp le

2.6.

restrictions

(1)

(2)

(0O($((LABEL f:An:IF n=0 THEN 1 ELSE n*f (n-1)

=(e((tre® Yf)[I]))

=(62 (e(t*ec

=(82 (82" tree

=(V_:=V +v; (6 (6 y)I[']))
I n z n

=(82 [t

= (V*:=[I]; (8 (Ccond(t. '"nd]) [I] (tJ1]

=(® tcond™

= (84 t*ond [B] [I] (83 [I] O 2 [I-*V]

= (84 tcond [=] (83 t* [I] V))

=(V:-[I]; (0~ t”ond

=[1]

Implementation

Our current implementation

on the definition

definition of recursive functions

special marker "endlabel".

parameters of recursive functions

immediately after the name of the

"A" or in between.

(by :=)

imposes

of recursive

and V (by

as before.

FI)3)))

(VA (t

(83 t* [I] (8(VE [I]))))

[11)))

the following

functions:

must be

should be 1listed

function without

177

ended with a

any

178

Ex amp le

(LABEL f n:IF n=0 THEN ... FI endlabel)

which will be transformed by the system to

(LABEL f :An:IF ... FI endlambda endlabel)

In this implementation, rule (3) in section (2.3)
has been relaxed so that (02 VvV [t])=V, for any type t.
We are able to do this because type checking of recursive

functions is performed in two steps,

(1) type checking proceeds according to the rules stated

above until endlabel is reached.

(2) repeat the process with the type of the recursive
function found in (1) and the process finishes when

endlabel is reached again.

We have to be awarethat (using the example in last
section) "f" has to be added to theenvironment of (An :...)
before the type of this A-expression 1is checked. In the
example we noted that when [I] is assigned to V*, the wvalue
of is updated to [I->V] too.

To conclude this section, we would 1like to mention

that this version of System-Y implemented on CDC 64/6600
computers is just a minor extension of the one we proposed

in last chapter.

179

Appendix D

In this appendix, we shall describe in Reckon (the
Reckon notation uses the same abbreviations as in the
previous appendix) an implemented version of System-Y.

To bring out the main features of System-Y, it is only

necessary to consider type checking of functional applications,

and this 1is defined here by the routine "monadictypecheck”.
We.list below some of the main routines defined in this
appendix, and on the 1left are the corresponding theoretical

discussions we have met in the foregoing chapters.

chapters 1/2, Part 3. appendix D

RY4 monadictypecheck

RY4a comp at ible

RY4Db c9A

02* in RY4C act9 and act 10 in lambend
s 1.6 updatememory

§1.8 and §1.10.3 £fdlb

§2.6.1 labelend

The rest of the routines are mainly for improving the
efficiency of type reductions. For example, in the
combination (f x) , assuming the type of f is 1rr124
n(tni—xn;) and the type of x is a type abstraction with
empty memory, we would 1like to find whether there exists
tii such that it would "fit" x and this process is defined

in routine setup.

180

Readers may assume that the sets of typed A-expressions
in this implementation are defined recursively as
rootSE (functiondefinitions,bindingvariables,environments,
types)

WHERE functiondefinition=A-body

AND recursively typesE("basic",basictypes)v("union", types,
types)v ("intersection" , types ,types)v
(functional,domaintypes,rangetypes)v
("typeabstraction" ,roots,typememories)

WHERE domaintypes,rangetypes,typememoriesE

types,types,listoftypes

Machine representations of these sets are obviously
variants of records in Pascal (or unions of structures in
Algol-68) whose field selectors are
function, bv, environ, type over roots and
domain, range over functiontypes and
root, memory over type abstraction.

These selectors occur throughout the following routines.

Finally, the constants acti (where i is an integer)
are used to represent activities awaiting completion, and
for each specific value of i, acti denotes a specific

routine in the following definitions.

LET setup(root,t,o,s,i,e,d)=
LET a,b,dj,ej=IF isabstraction t THEN memory t ELSE t FI,bv root,
function root,environ root;
LET c,f=IF isfunctional a THEN (domain a,act 10)
ELSE (domain.lst a,act9) FI;
LET x,yEnewdump(o,f..a..root..s ,i,e,d) newenvir(b,c,e”);

<) cl)d ,y,x) {return to parser with new machine state)

AND C9A(o,s,i,e,d)E
LET p,argtyEroot.2nd o,type.lst o;
LET a,b,vEfunction p,bv p,environ p;
LET x,yEnewdump (o,act2..s',i,e,d) , newenvir(b,argty,v);

(*,4,a,y,x);

LET monadictypecheck(o,s,i,e,d)E
IF istypevariable.type.lst o THEN (consmonadcode o,s',i,e,d) ELSE
CASE type.2nd o
IN functional”
LET functy,argtyEtype.2nd o, type.lst o;
IF undeclaredabstraction argty
THEN
LET pEroot.lst o;
IF compatible (functy,type p)
THEN updatememory#; (consmonadcode o,s’ ,i,e,d)
ELSE
LET gqEdomain functy;
setup(p,q,0,act4..functy..s',i,e,d)
FI
ELIF compatible (functy,argty)
THEN (consmonadcode o,s',i,e,d) ELSE ERROR#
FI
OR undeclaredabs traction-)-
LET functy,argtyEtype.root.2nd o,type.1lst o;

IF emptymemory functy THEN C9A(o,s,i,e,d)

181

ELIF undeclaredabstraction argty THEN
LET argEroot.lst o;
IF compatible (funety,argty) THEN
updatememory# M (consmonadcode o,s',i,e,d) ELSE
LET mEmemory functy;
setup (arg ,domain.1lst m,o0,act3..m..s',i,e,d)
FI
ELSE
IF compatible (functy,argty) THEN
updatememory#; (consmonadcode o,s’,i,e,d)
ELSE C9A(o,s,i,e,d)
FI
FI
OR declaredabstraction-*
LET argty,functyEtype.lst o,type.2nd o;
IF undeclaredabstraction argty THEN
LET argEroot.lst o;
IF compatible (functy,argty) THEN

updatememory#; (consmonadcode o,s’ ,i,e,d)

ELSE
LET mEmemory functy;
setup(arg,domain.1lst m,o0,act5..m..s',i,e,d)
FI
ELIF compatible (functy,argty) THEN (consmonadcode o,s’ ,i,e,d)
ELSE ERROR#
FI
OUT ERROR#
ESAC

FI;

{end of definition: monadictypecheck}

LET lambend(r,dump)n
(LET o,s,i,e,d=1lst dump ;
CASE 1st s

IN act2 >

IF iserror r THEN ERROR# ELSE updatememory#

7
(consmonadcode o,s',i,e,d)

FI
OR act6>

IF iserror r THEN ERROR# ELSE updatememory#

IF NULL(2nd s)’ THEN (o,s'',i,e,d) ELSE
LET WE (2nd s) ';

fdlb(lst w,o0,act6..w..s'',i,e,d)
FI

FI

OR actT+

IF iserror r THEN ERROR# ELSE updatememory#; (o,s'',i,e,d)

OR act9”
IF iserror r THEN L9A(o,s,i,e,d) ELSE
LET w=range.type r;
IF undeclaredabstractionandemptymemory w THEN
LET c=1lst.2nd s;
LET p,g=root w,range c;
updatememory#; setup(p,q,0,s,i,e,d)
ELSE
LET p,qEtype r,1lst.2nd s;
IF pEq THEN
LET v,wE3rd s, (2nd s)';
updatememory#;
IF NULL w THEN L9ClA(o,s,i,e,d)
ELSE setup(v,w,o,s''',i,e,d)
FI
ELSE L9A(o,s,i,e,d)
FI
FI
FI
OR act 109)-
IF iserror r THEN L9A(o,s,i,e,d) ELSE

LET wEtype «r;

IF undeclaredabstractionandemptymemory.range w THEN

FI

183

184

updatememory#; setup(root.range w,range.2nd s,o,s''',i,e,d)

ELSE
IF 2nd S2W THEN L9C1lA ELSE L9A FI (o,s,i,e,d)
FI
FI
ESAC
WHERE REC L9A(o,s,i,e,d)E
(LET wbSs''';
CASE 1st w
IN (act9 ,act 10)->L9A (o ,w, i ,e ,d)
OR (act3,acth)-*
LET uE(2nd w) ';
IF NULL u THEN
IF 1lst w=act3 THEN C9A(o,w',i,e,d) ELSE ERROR# FI
ELSE setup(root.1lst o,domain.1lst u,lst w. .u..w'',i,e,d)
FI
OUT ERROR#

ESAC)

AND REC L9CIA(o,s,i,e,d)E
(LET wEs' " ;
IF 1lst w=act9 THEN
LET vE(2nd w) '’/

IF NULL V THEN L9ClA(o,w,i,e,d)

ELSE setup(3rd w,v,o,w’'"',i,e,d)
FI
ELSE updatememory#; (consmonadcode o,w*',6i,e,d)

FI)

185

AND formroot(o,s,i,e,d)=
(LET aEformrootrecord.1lst s;
IF isdeclared.lst s THEN
LET tEtype.bv.1lst s;
IF isunion t THEN fdlb(lst.unionelements t,a..o,act6..t..s’',
i,e,d)
ELSE fdlb(t,a..o,act7..t..s’ ,i,e,d)
FI
ELSE (a..o,s’ ,i,e,d)

FI)

WHERE fdlb(t,o,s,i,e,d)E
(LET a,bjVEfunction.lst o,bv. 1lst o,environ.lst o;
LET x,y=newdump (o,s,i,e,d) ,newenvir(b,t,v);

(#I#Ialylx)

AND 1labelend(o,s,i,e,d)E
CASE 1st.2nd.lst d {the first item on the stack of last dump}
IN(act2,act6,act7)”
LET pEfunction.root IF 1lst.2nd.lst d=act2 THEN 2nd.lst.lst d
ELSE 1st.lst.1lst d FI;
LET wEnewdump (o,act13..s,i,e,d) ;
(474,P,e,w)
ouT
LET rElst o;
LET o0l,sl1,il,el,dl=1st d;
(r.,o0l,sl’,il’ ,el, dl)

ESAC ;

186

LET output,stack,input,envir,dump=#,#,readinput#, #,#;
WHILE NOT (end#) DO
LET lp,rp=leftprecedence.lst stack,rightprecedence.lst input;
IF rp>lp THEN
LET wElst input;
CASE w
IN (numbers ,variables , A-exps,recexps)”
stack:=w. .stack; input :=input’
OR keywords-) -
IF closebracket w THEN stack :=stack’; input :=input'’
ELIF w=endlambda THEN
output,stack,input,envir,dump :=lambend (1st output,dump)
ELIF w=endlabel THEN
output,stack,input,envir,dump :=1labelend (output,stack,
input,envir,dump)
ELSE stack:=w..stack; input :=input’
FI
ESAC
ELSE
LET w=1lst stack;
CASE w
IN numbers-)-
output :=w. .output ; stack:=stack*
OR %-expé&+t
output,stack,input,envir,dump :=formroot (output,stack,
input,envir ,dump)
OR variables-) -
output:=(assigntypeto w)..output; stack:=stack'’
OR keywords-*
LET opElookup(w,parseenvironment);
output,stack,input,envir,dump :=op (output,stack,input,
envir ,dump)
OR recexps ->
stack:=recname.lst stack..recdefn.1lst stack..rectag..stack*
OR rectag-“output :=consrec output
ESAC

FI OD;

transform({the parsed and typechecked}lst output){as in System-F}

187

Appendix E

Programming Examples of System-Y

Again, three examples are included here as we did
for System-F in Appendix C. Since type checking of
System-Y 1is not as straightforward as System-F, so the ~

function "print type" will be more important for the

examples here because "printtype" will not only print
the type information required, but from the order this
information appears in the output, one can also obtain

the order in which the types of the expressions are checked

As an abbreviation, we write " (b?e?le”)" for "IF

b THEN ej ELSE e” FI".

Readers are recommended to compare the two results

(with and without type declaration) of each example.

To simplify the notation, all "endlambda"s are discarded

in the following 1listings.

188

EXAMPLE 1

START

COMME] T
"SQUARE" IS DEFIMED IN TERMS OF "U" AND "MULTIPLY".
IT IS THEN APPLIED TO INTEGER AND REAL RESPECTIVELY.
THERE IS NO TYPE DECLARATION IN THIS Exi-]PLE.

COMMET! TEND

(SMULTIPLY; $U: (SSQUARE: (PRINTTYPE SQUARE 2);
(PRINTTYPE SQUARE 2.0))
(PRIM TTfPE U MULTIPLY))

(SN: $M; (PRIM TTYPE N*M))

($F; $X: (PRINTTYPEC PRINTTYPE F X) X))

FINISH

TYPE OF (W . MULTIPLY) IS : CA-TYPE-ABSTRACTI ON-WI TH-
EMPTY-MEMORY1

TYPE OF (F . X) IS : [A-TYPE-ABSTRACTION-WITH-
BIPTY-M EMORY]

TYPE OF (N * M) IS : [INTEGER]
TYPE OF C(F . X) . X) IS : [INTEGER]

TYPE OF (SQUARE . 2) IS : [INTEGER]

TYPE OF (F . X) IS : [A-TYPE-ABSTRACTI ON-VI TH-

EMPTY-M EMORY]

TYPE OF (N * M) IS : [REAL]

TYPE OF ((F . X) . X) IS ; [REAL]
TYPE OF (SQUARE . 2.0) IS i [REAL]
RESULT OF TYPE CHECKING IS : [REAL]

QED.

EXAMPLE 2

START

COMMENT

THIS EXAMPLE IS SIMILAR TO LAST ONE, BUT WITH
DECLARATIQN S.

COMM ENTEND

CSCCC INTEGER]-Ct: INTEGER]”~ [INTEGER]]] &
[[REAL] - [[REAL] - [REAL]]]]MULTIPLY: $U;
(SSQUARE: (PRINTTYPE SQUARE 2)J

(PRINTTYPE SQUARE 2.0))
(PRINTTYPE W MULTIPLY))

($N: SM: (PRINTTYPE N*M))

($F; SX: (PRIN TTYPE(PRINT TYPE F X) X))

FINISH

TYPE OF (N * M) IS : [INTEGER]

TYPE OF (N * M) IS : [REAL]

TYPE OF (W . MULTIPLY) IS : [A-TYPE-ABSTRACTI ON-WI TH

HiPTY-MEMOH'/]

TYPE OF (F . X) IS : [[INTEGER]-[INTEGER]]
TYPE OF ((F . X) .X) IS ; [INTEGER]

TYPE OF (SQUARE . 2) IS : [INTEGER]

TYPE OF (F . X) IS : [[REAL]-[REAL]]

TYPE OF ((F . X) . X) IS : [REAL]

TYPE OF (SQUARE . 2.0) IS : [REAL]

RESULT OF TYPE CHECKING IS : [REAL]

QED.

TYPE

189

EXAMPLE 3

START

COMMENT

THE TAGS ENABLE EVAL TO SELECT ROUTINES FROM THE PRELUDE.
THE SELECTED ROUTINE WILL THEN BE APPLIED TO THE FIRST
ARGUMEJT OF EVAL. THERE IS NO TYPE DECLARATION 1IN THIS
EXAMPL E.

COMMEN TEN D

(SPREL UDE; STAG 1: STAGS:
(SEVAL: (EVAL 3 TAG 1) J (EVAL 3.0 TAGS))
CSX: SSELECTOR: (PRINTTYPEC
PRINTTYPE PRELUDE SELECTOR)X)))
CSF: FC SN:N+N) (SM:M+M))CSA: SB: A) (SC: SD: D)
FINISH

TYPE OF CPRELUDE . SELECTOR) IS : CA-TYPE-ABSTRACTI ON-
WITH-EMP TY-MEMOR'f]

TYPE OF ((PRELUDE . SELECTOR) . X) IS : [INTEGER]

TYPE OF (PRELUDE . SELECTOR) IS : [A-TYPE-ABSTRACTI ON-
WI TH-H'l PTY-MEMORY]

TYPE OF ((PRELUDE . SELECTOR) . X) IS : [REAL]

RESULT OF TYPE CHECKING IS : [REAL]
QED.

EXAMPLE 4

START

COMMENT

THIS EXAMPLE IS SIMILAR TO LAST ONE, BUT WITH TYPE
DECLARATION S.

COMM ENTEJ D

(SPRELUDE: STAGl: STAGS:
(SEVAL: (EVAL 3 TAGDJ (EVAL 3.0 TAGS))
(SX: SSELECTOR: (PRINTTYPEC
PRINTTYPE PRELUDE SEL ECTOR) X)))
(SF: F(SC IN TEG ERIN: N+N) ($CREALIM: M+M))
(SA: SB: A) (SC: SD: D)

FINISH

TYPE OF (PRELUDE .SELECTOR) IS : EC INTEGERI-C INTEGER]]
TYPE OF ((PRELUDE . SELECTOR) . X) IS :INTEGER]

TYPE OF (PRELUDE . SELECTOR)IS : [[REAL]-[REAL]]

TYPE OF ((PRELUDE SELECTOR) . X) IS : [REAL]

RESULT OF TYPE CHECKING IS : [REAL]

QED.

91

EXAMPLE 5

192
START

COMMENT

"GENERATE IS BOUND TO THE RECURSIVE FUNCTION "F".

"F" IS VERY SIMILAR TO OUR EXAMPLE IN i. A. 3, PART 2.

READERS ARE REMINDED THAT TYPE CHECKING OF RECURSIVE FUtvICTIONS
HAS TO BE PERFORIiED IN TWO PHASES.

NO TYPE DECLARATION IS PROVIDED IN THIS EXAMPLE

COMM EN TEN D

($G ENERATE: CSFINT; SFREAL:
(PRINTTYPE (PRINTTYPE FIN i)l + (PRINTTYPE FINTIi2);
(PRINTTYPE (PRINTTfPE FREAL) 1. 0+(PRINTTYPE FREAL)2.Q);
(PRIN TTYPE(PRIN TTYPE FINT)3+(PRINTTfPE FINT)A)J
(PRINTTYPE(PRIN TTYPE FREAL)3. 0+CPRINTTYPE FREAL) 4.0)
)

(GZNEFuUATE
($3: B=0) (SO ;1)
(SU:U-1)

(IV: SW: V*W))
(GENERATE

($A:A=0.0) ($0:1.0)
(SM: M- 1.0)
($X: $Y:X*Y)))
(SPREDICATE: SEXIT: SMODI FY: SCOMBINE:
(LABEL F N
(PRIN TTYPFCPREDI CATE N)?EXIT() I
(PRINTTYPE COMBINE N
((PRINTTYPE F) (MODIFY N)))
JEN DLABEL)

FINISH

TYPE OFPINTIS : CA-TYPE-ABSTRACT! ON-WI TH-ENPTY-M EMORYI
TYPE OFF 1IS; [[IN TEGERI*~ A-TTPE-VARIABLE)
TYPE OF ((CDIBINE . N) . (F . (MODIFY . N))) IS : A-TYPE-VARIABLE

TYPE OF ((PREDICATE +« N) ? (EXIT . O) ! ((COMBINE . N) . (F . (MODI
FY . N)))) IS: [INTEGER]

TYPE OFF IS : [[INTEGER]*-[INTEGER3]

TYPE OF ((COMBINE . N) « (F . (MODIFY . N))) IS : [INTEGER]

TYPE OF ((PREDICATE. N)? (EXIT. 0) I((COMBINE . N) . (F
FT . N)))) IS : [INTEGER]

TYPE OFFINT IS :[[[INTEGER]*- [INTEGER]]]

TYPE OFCFINT . 1) T (FINT . 2)) IS : [INTEGER]

TYPE OF FREAL IS : [A-T/P E- ABSTRACTIW-WITH-EMP TY-MErl O RY]

TYPE OF F IS : [[REAL]- A- TYPE- VARIABLc)

TYPE OF ((COMBINE .N) . (F . (MODIFY . N))) IS : A-TYPE-VARIABLE
TYPE OF (PREDICATE .N)? (EXIT. ()) I((COMBINE . N) . (F. (MODI
r/ N)))) IS : [REAL]

TYPE OF F IS : [[REAL]-[REAL]]

TYPE OF ((COMBINE. N) . (F . (MODIFY . N))) IS : [REAL]

TYPE OF ((PREDICATE .N)? (FXIT . ()) I((COMBINE . N) . (F
FY . N)))) IS : [REAL]'

TYPE OF FREAL IS : [[[REAL]-[REAL]]]

TYPE OF ((FREAL . 1.0) =+ (FREAL . 2.0)) IS : [REAL]

I'Vpc OF FINT IS : [[[INTEC ERI-C INTEGER]]:

TYP.J OF FINT IS : [™"INTEGER]- [INTEGER]]]

TYPE OF ((FINT . 3) + (FINT . 4)) IS : [INTEGER]

TYPE or FREAL IS : [[[REAL]- [RE.AL]])

T/PE OF FREAL IS : [[[REAL]-[RVAN]]]

TYPE OF ((FREAL . 3%*0) + (FREAL . 4.0)) IS : [REAL]

RESULT OF TYPE CHECKING IS : [REAL]

QED

(MODI

(MODI

193

EXAMPLE 6

START

COMMENT

THIS

1S

SIMILAR TO LAST EXAMPLES BUT WITH TfPE DECLARATIONS.

COMM EN TEND

<SGENERATE: (SFIN T; $F_REAL;

(PRINTTYPE (PRINTTYPE FINT) I + (PRINTTYPE FINT) 2):
(PRINTTYPE (PRIN-TYPE FREAL) 1. 0+(PRINTTYPE FREAL)2.0);
(PRIN TTYPE(PRINT TYPE TINT) 3+(PRINTTY?E FINT) 4)1
(PRIN TTYPE(PRINTTYPE FHEAL)3. 0+(PRIN TTYPE FREAL) 4. 0)
)
(GEN FRATE
(SCINTEGER] B; B=0) (S$():!)
(SCINTEGER] U: U-1)

($C INTEGER] V: $C IN TEGER]W: V*W))
(GENERATE

(SCREAL]A: A=0.0) ($0:1.0)

(S[REALIM: M- 1.0)

(SCREAL] X: SCREAL]Y: X*Y)))

(SPREDI CATE: SEXIT; IMO DI FY: SCOMBINE:

(LABEL F N
(PRINTITPL (PREDICATE N)? EXI T() ;
(PRINTTYPE COMBINE N
((PRINTTYPE F) (MODIFY N)))
) ENDLABEL)

)

FINISH

TYPE OF FINT IS [A-TYPE-ABSTRACTION-WI TH-EMPTY-M EMORY]

TYPE OF F IS CCINTEGER]- A-TYPE- VARIABLE]

TYPE OF ((COMBINE N) (F (MODIFY. N))) IS A- TYPE- VARIABLE
TYPE OF ((PREDICATE N) ? (EXIT) ! ((CCMBINE N) (F
FY N)))> IS [INTEGER]

TYPE OF F IS ; CCINTEGEP.]-C IN TEG ER]]

TYPE OF ((COMBINE N) (F (MODIFY .N))) IS :CINTEGER]

TYPE OF ((PREDICATE N) ? (EXIT - ())I ((COMBINE N) (F. (MO
FY N)))) IS: CINTEGER]

TYPE OF FINT IS [[[INTEGER]-: INTEGER]]]

TYPE OF (CFINT 1) + (FINT 2)) IS [INTEGER]

TYPE OF FREAL IS ; [A-Ti'PE-ABSTRACTI ON-VI TH-BIPTY-MEMORY]

TYPE OF F 1S [[REAL]- A-TYPE-VARIABLE!

TYPE OF ((COMBINE N) (F - (MODIFY. N))) IS A-TYPE- VARIABLE
TYPE OF ((PREDICATE N) ? (EXIT 0) ! ((COMBINE M) fF
FY N)))) IS [REAL!

TYPE OF F IS [[REAL!-[REAL! !

TYPE OF ((COMBINE N) (F (MODIFY .N))) IS :[REAL]

TYPE OF ((PREDICATE N) ? (EXIT ())! ((COMBINE N) (F. (MO
FY N)))) I8 [REAL]

TYPE OF FREAL IS *~ [[[REAL!-[REAL]]]

TYPE OF ((FREAL 1.U) + (FREAL 2.0)) IS [REAL!

TYPE OF FINT IS [[[INTEGER]-: INTEGER]]]

TYPE OF FINT IS [[[INTEGER]-: INTEGER]]]

TYPE OF ((FINT 3) + (FINT 4)) IS ; [INTEGER"

TYPE OF FREAL IS ; [[[REAL3-[REAL]]"

Ti'PE OF FREAL IS [[[REAL]-[RE,AL]]]

TYPE OF ((FREAL . 3.0) + (FREAL 4.0)) IS [REAL]

RESULT OF TYPE CHECKING 1S ; [REAL!

QED

194

CHAPTER THREE
FUTURE DEVELOPMENTS
WITH RESPECTS TO
USER PARTICIPATION
AND

DATA STRUCTURE TYPES

So far we have ignored programmers in our discussions
of type-checking systems. This does not mean that their
participation is not important. In fact, we think they

may participate in three ways:

(1) they may declare the type of variables - e

(2) they may define new data types as inAlgol-68 and Pascal

(3) they may present type expressions asarguments of

certain functions.

Although wuser participation is optional in our
proposal, we regard it as by no means insignificant.
On the contrary, we think more work is needed. Discussion
in this chapter represents our preliminary work in this
area in the hope of generating more definite treatment of
the issues raised. Wehave reasons for believing that

work along the lines wepropose might be more rewarding

than striving for an ideal w-order system.

195

3.1 Types as objects in a computing model

So far uses of types have been restricted to their

declaration, checking and deduction. We propose now to

allow types as arguments of certain functions. In order

to do this, we have to construct a new set of objects

whose elements are the elements of the type-checking system.

In other words, the new set consists of types. Call this

set [TYPE] and add it tothe type-checking system as one of

its types. We shall be careful to construct [TYPE] so that

it is not included in itself. Meanwhile the set [TYPE]

is available for use in programs much as other sets such as

[INTEGER] . In particular we can declare an object to be

of type [TYPE]. —_—

3.2 Another approach to parametric polymorphism

Consider anew the example,

(Xtwice: twice [I] f£* x*) (A[TYPE Jt:A[t)-t]f:A[t]lx: £ (f x))

with the type of f£' and x' , [1->-1]] and [I] respectively.
(1) t is declared to be of type [TYPE]. We can describe
the type of £ and x in terms of t. This suggests an

alternative solution to the parametric polymorphism

problem.

(Reynolds[Reynolds,1974] has also used variables, say t,

to describe the type of other variables. In order to

distinguish "t" fromothers, he introduced a new symbol

196

"A" so that instead of writing (A[TYPE] t :X[t]l=x:. . L)y

he wrote (At :A[t]1x)

(2) After the compilation of (twice [I]), t will be

assigned the wvalue[I], thus the type of f and x are

finalized to [I->I] and [I] respectively.

(3) With the finalized types of f and x, type compatibilities

e of £f' and X' will be checked as normal.

By allowing types to occur in the program as shown

above, it is no 1longer a disadvantage that the type of

twice is not known when it is defined as this information

will be available immediately before it is wused. On the

other hand, there is provided a new opportunity for

programmers to intervene actively in the process of

computation. For example, in code generation, suppose the

function ADD is applicable to both integer and real numbers,

then there will exist two routines for executing the

instruction. But, by writing ADD [I] n” n* or ADD [R] n* n*,

the programmer can guide the system's choice.

As a minor modification, we propose that (£ [t] x) is

the same as (f x) if the type of x is [t], thus allowing us

to omit thetype argument in some cases. Of course f must

be a function expecting a typeargument. In other words,

if the typeargument is absent for £, this information will

be obtainedfrom the following argument,but care must be

197

taken before we drop the type argument otherwise the

operation may be meaningless (or even erroneous)-- as in

the case of universal type predicates, for example.

For our second illustration, let us assume that it is

possible to test the type of any object in a program. For

each possible type t*, suppose there exists a predicate

is-t*. Now, types can be constructed from other existing

types, so closure of the type constructors is infinitely

large and there is an infinite number of type predicates.

The primitive predicates ought to correspond to the basic
types while the others have to be defined. Furthermore,
by allowing types as arguments of functions, one type
predicate will be enough for our purposes. Let us call it

ISTYFE so that (ISTYPE [t*] x) is true if the type of x is

[t*] otherwise false. Since ISTYPE is defined by the

system, it can share the routines that are available to the

type checker in testing any arbitrary types.

3.3 Declaration of ordered types

Once a new ordered type has been defined, it should be

treated by the type-checking system in the same way as

existing types. In order to avoid repetitions, we omit

union and intersection types here and concentrate on our

ordered types (or cartesian products of types, as they are

generally called in type and set theory or records or

structures as they are called in programming languages).

198

A cartesian product of types is defined by applying

the cartesian operator to two existing types so that,
for example, 3-dimensional integer vectors can be defined
as

DEFINE [IVEC]E[I]&[I]&I[I]

in this case, the cartesian operator will construct an
object of 3 dimensions (i.e. of 3 components) from the

domain [I] for any variables of type [IVEC].

There are three important classes of operations on

ordered types:

(1) predicates: ISTYPE
As mentioned in 1last section, the universal type
predicate is defined for any types, so it is applicable

to ordered types too.

(2) constructors
By analogy with ISTYPE, we need only one universal
constructor which we shall call "MAKE" and (MAKE [IVEC]
ij i2 ig) is an object of [IVEC]. The function MAKE
should check not only that the correct number of
arguments are given, but also that these arguments are
of correct types. MAKE obtains its type information

from the first argument which must be of type [TYPE].

199

(3) Selectors

Ordered-type declaration should construct the following

functions for selecting the 3 components of [IVEC]

vectors.

LET [IVEC”*I] xcomponent E (A[IVEC] V: 1st v)

AND [IVEC”I] ycomponent E(A[IVEC]V : 2nd v)

AND [IVEC->I] zcomponen te(A[IVEC]V: 3rd v)

"nth" 1is the function defined by the system for

selection. If Vj is the object of type [IVEC],

(ycomponent Vj) will be the second constituent of Vj.

Alternatively, the selecting functions can be made

implicit by 4including them in the definitions of

ordered types.

DEFINE [IVEC] E[I] 1xcomponent & [I]lycomponent &

[T]Izcomponent

where "|" 1is used to separate the selector from the

type of the corresponding component.

Since there 1is no restriction on the name of the

selecting functions, so the 3 dimensional real-vectors

can be defined as

DEFINE [RVEC]H [R]Izcomponent & [R]lxcomponent & [R]|ycomponent

200

This is to say (ycomponent v), for example, will be of
of type [I] or [R] depending on whether v is of type

[IVEC] or [RVEC], so that xcomponent, ycomponent and

zcomponent are polymorphic functions.

By analogy, again, the universal selecting function

can be defined in BNF as

<universal-selecting-function>::=<SELECT><cartesian-type>

<field-identifier><cartesian-ob>

where =xcomponent, etc. are field identifiers. Intending programmers

may find it helpful to compare the following two possible results.

SELECT [IVEC]xcomponent=(X[IVEC]V :1lst v)

SELECT [RVEC] =xcomponent= (X[RVEC]v:2nd v)

3.4 Contextual checking of types

Suppose the data type for personal record is defined as:

DEFINE [person] =[S]Iname & [S]lfathername & [I]|age & [I]|children

Let us consider the following two statements for constructing

a new "person'":

(1) (MAKE [person] <A.Smith> <B.Jones> 40 2)

(2) (MAKE [person] <A.Smith> <B.Smith> 2 2)

201

Both statements are permissible if the system judges type
correctness only from syntactic combination. But, we know
both statements are absured because in the first statement
the name of the person is different from his father's and
in the second statement the person is too young to have
child.

The requisite checking may be called "context-sensitive
type checking". Context-sensitive type checking takes note
that components of ordered-types might be related to each
other.

This example reveals the

checking systems in handling ordered

As the ordered-type becomes more

is required. Without it, this

shoulders of users. Various schemes

deficiency

(structured)

complicated,

responsibility

have been

of ordinary type-

types.

more contextuality
falls

on the

discussed

in [DAHL,1972], [MORRIS, 1973] and [REYNOLDS,1975] who seem

to agree that it would be safer if access to structured

types were 1limited to certain functions only, so that in
addition to the ordinary type checking on functions and their
arguments, these functions could carry out some extra type
checking processes on the arguments as well. Let wus call
these extra processes "screening", and we shall illustrate
this point in the following example.

202

Examp le

Suppose a school-file is a 1list or array or structure
of student-reCOrds, each containing information on students'
names, ages, etc. Student-records might be arranged in
alphabetical order or according to age or whatever criterion
is suitable. As there would be no direct access to the
data structures from outside functions, so the exact
representations of the records should have no relevance in
formulating algorithms in sovling problems. Permit the
following operations on student-records,

(1) INSERT<name> BEGIN age:=...; year:=...; ... END

(2) DELETE <name>

(3) UPDATE <name> BEGIN age:=...; ... END

the kinds of screening that are necessary are suggested

below:

(1) The instruction INSERT is a request to construct a new
student-record. Before the new record is placed in
the right slot, in order to avoid duplication, the
screening routine ought to check that it is needed a new

record and check information on age, year, etc.

(2) Before a student-record could be deleted, it 1is reasonable

to ask the user to provide reason for the deletion wvia the

203

second parameter of this instruction (which could be

some predefined strings or constants). Suppose the

instruction 1is "DELETE <name> <graduate>", then the

year of entry of that student should be checked to ensure

that the deletion 1is 1legal.

(3) Most of the discussions above are also applicable to the

instruction UPDATE.

3.5 Summary

Current type-checking systems fail to provide the kind

of context-sensitive screening of ordered types that is

required. Participation from programmers is particularly
desired in this area. There are 3 ways that programmers
can advise type-checking systems. We have studied two of

them in detail, while the third (type declaration) has been

elaborated in earlier parts of this thesis.

We would 1like to see types play a more active role in
programming than the purely negative one of type checking.
We have illustrated this idea by a few examples. We Dbelieve
we have done enough to indicate what we have in mind for the
future-- that algorithmic type theory will increasingly come
to be seen as the branch of logic needed for design of

memory protection systems.

204

Re ferences

BURGE ,W.H., Combinatory Programming and Combinatorial Analysis, IBM
Journal R&D, Vol.1l6, 1972.

BURSTALL, R.M., LANDIN, P.J., Programs and their proofs-an algebraic
approach. Machine Intelligence, Vol.4, ppl7-43, 1969.

CHURCH, A., The Calculi of Lambda Conversion, Annals of Mathematics
Studies, No.6, Princeton, N.J., Princeton University Press, 1941.

CURRY, H.B., FEYS, R., Combinatory Logic, North Holland, Vol.1l, 1958.

DAHL, O0.J., HOARE, C.A.R., Hierarchical Program Structure, in Structure
Programming, Academic Press, 1972.

EDWARDS, R.P., Reckon Manual, Royal Holloway College, 1974a.

EDWARDS, R.P., Implicit Operators, private communication, 1974b.

EDWARDS, R.P., A Functional View of Data Structures, book in preparation,
1975.

HEXT, J.B., Compile-time Type Checking, Computer Journal, Vol.9,
pp 365-369, 1966.

KLEENE, S.C., A-definability and recursiveness, Duke Mathematical
Journal, Vol.2, pp 340-353, 1936.

LANDIN, P.J., A correspondence between Algol 60 and Church's Lambda
Notation, CACM, Vol.8, pp 89-101 and 158-165, 1965.

LASKI, J.C., Sets and other types, Algol Bulletin, No.27 pp 41-48, 1968.

LEDCARD, H.F., A Model for Type Checking-with an application to Algol
60, CACM, Vol.1l5, pp 956-966, 1972.

MANNA, Z., PNUELI, A., Formalization of Properties of Functional
Program, JACM, Voll7, 1970.

McCarthy,J., et al., LISP 1.5 Programmer's Manual, MIT Press, 1962.
Me CARTHY, J., A Basis for a Mathematical Theory of Computation,
Computer Programming and Formal Systems (ed. Braffort), 1963.
MINSKY, M.L., Computation:finite and infinite machine, Prentice-Hall,
1967.

MORRIS, J.H., Lambda-Calculus Models of Programming Languages, MAC-TR-
57, Project MAC, MIT, 1968.

MORRIS, J.H., Types are not sets, Proc A.C.M Symposium on Principles
of Programming Languages, Boston, pp 120-124, 1973.

REYNOLDS, J.C., CEDANKEN, CACM, Vol.13, pp 308-319, 1970.

REYNOLDS, J.C., Towards a Theory of Type Structures, Proceedings of

Colloque sur la Programmation, Paris, 1974.

205

REYNOLDS, J.C., User-defined Types and Procedural Data Structures as
Complementary Approaches to Data Abstraction, at the Conf. on
New Directions in Algorithmic Languages sponsored by IFIP Working
Group 2.1, Munich, 1975.

SCOTT, D., Lattice Theory, Data Types and Semantics, Formal Semantics
of Programming Languages (ed. R.Rustin), 1972.

TENENBAUM, A.M., Type Determination For Very High Level Languages,
Ph.D Thesis, New York University, 1974.

TURING, A.M., Computability and A-definability, The Journal of Symbolic

Logic, Vol. 2, pp 153-163, 1937.

