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Ab str ac t

J.Morr is in his thesis di sc o ve r e d that c on ven ti on al  
t y p e -c h e ck i n g systems inhibit users of typed languages 
and he left two problems for future s o l u t i o n - - p ar a m et r i c  
p o l y m o r p h i s m  and circular types.

Any typed language L^ is related to a ty pe -c h e ck i n g  
system  T^ by a fu nct i o n 0 .^. C o n se q ue nt l y t y pe - c he c k in g  
systems may be studied in d e pe n d e n t l y  of p a r t i c u l a r  
languages. Th er e f or e a logic to illustrate how such 
systems are inten ded  to work  must pre se rv e language and 
ma ch i ne  in de pe nde nc ie s, and it must not be inhib it ed  by 
Morris* two problems. We have therefore chosen the À-K 
Calculus.

Fu n d a m e n t a l  concepts of types and t y p e - ch ec k in g  are 
di scu ss ed  and these include theorems of functi on al ity ,  
a s e t - t h e o r e t i c a l  approach to types, and i n t er s ec t i on -  
types. . After p re li m i n a r y  e xa m i n a t i o n  of previo us type- 
checki ng systems, we propose two systems of our own.
The first one we have im p le men te d is System-F. In a t t e m p ­
ting to gen er ali ze it beyon d the work of co nv en t i on al  type 
checkers we d i s c o ve r e d that it is n e c e s s a r y  to ab andon the 
d i s t i n c t i o n  b e t w e e n  so-called st at ic all y-  and dy n a mi c a l l y -  
typed sys t e m s .

In this way we alight on our most f u nd am en tal  problem. 
This is how to des ig n ty p e- ch e ck i n g systems that permit 
d e c l a r a t i o n  of ar bi t r ar y functions and fun cti on als  whose 
type dec l a ra t i on s  are incomp let e or missing. We solve 
this by in tro d u ci n g  a class of type ex pr ess ion s we call 
type abstractions. We have also int ro duc ed a way to 
de scr ib e t y pe -c h ec k i ng  proces se s by certain sets of 
equations, and shown how to solve them. These thoughts 
are im pl em e n te d  in our second system, the System-Y.
Later, we exp lor ed  further the nature of circular types in 
the light of lattice theory. Both our systems are adequate 
to handl e Morris' problems.



ACKNOWLEDGEMENTS

My grateful thanks go to my thesis supervisor,

Mr. R.P. Edward s,  for his guidance, c o ns t r uc t i ve  

criticism, and patien ce  th ro ug hou t the in v e s t i g a t i o n  

and p r e p a r a t i o n  of this thesis.

Most importan tl y,  1 wish to thank my parents in 

Hong Kong for givin g me their love, u n de rs ta ndi ng,  

e n c o u r a g e m e n t  and co n fi den ce  through ou t my studies in 

Britain.

1 wou ld  also like to thank Miss A.C.L. Man for typing 

the first draft of this thesis. -----

Finally, 1 wish  to thank the Un i v e r s i t y  of Lon do n  

for its Po s t g r a d u a t e  Studentship.



TABLE OF CONTENTS

A B S TR A C T 2

A C K N O W L E D G E M E N T S  3

TABLE OF CONTE NT S 4

IN TR O D U C T I O N  8

FART ORE

THE X-CALCULUS 13
1 Applicative Expressions and Their Conversions 1 4
1.0 Functions 15
1.1 Applicative Expressions 15
1.2 X-expressions 16
1.3 The Class of X-expressions 17
1.4 Free and Bound Variables 18
1.5 Substitution 19
1.6 Conversion 19
2 X-definability of Computable Functions 2 2
2.1 X-definability 23
2.2 Primitive Recursive Functions 30
2.3 General Recursive Functions 31
2.4 Church's Thesis 3 3

2 RECKON LANGUAGE 3 4
2.1 Basic Objects 35
2.1.1 Primitive Values 35
2.1.2 Primitive Functions 36
2.2 Lists 37
2.2.1 Strings 42
2.3 Assignments 42
2.4 Sequential Expressions 43
2.5 Call By Name and Call By Value 43
2.6 Conditional Branchings 46
2.7 Choice Expressions 4 7



2.8 LET and WHERE Expressions 49
2.9 Recursions 5 1
2.10 Polymorphic Operations 53
2.11 Implementation 5 5

APPENDIX A 56

FART TWO

IN T R O D U C T I O N  60

1 ' THREE SIMPLE SYSTEMS 62
1.1 System-L 6 2
1.2 System-H 6 8
1.3 System-M 7 4
1.4 Problems in Type-Checking 80
1.4.1 Parametric Polymorphism 80
1.4.2 Circular Types   81
1.4.3 The Effect of Type Problems On Language Design 82

2 TYPE CALCULUS 84
2.1 Functional Types 84
2.2 Types Are Sets 85
2.3 Union Types 86
2.4 Type Puzzle 88
2.5 Solution to the puzzle:first attempt 88
2.6 Intersection Types 90
2.7 Solution to the puzzle : second attempt 9 1
2.8 Summary of the Three Constructors 9 6
2.9 Rule of Inclusion:functional types 99
2.10 Closing Remark 101

3 SYSTEM-F 103
3.1 Basic types of System-F 104
3.2 Constructed Types 104
3.3 Type Expressions 105
3.4 Rules of Reduction 105
3.5 Coercion 109
3.6 Definition of the Mapping Function 0 109



3.7 Extension:ordered types 112
3.8 Application of System-F to Reckon 117
3.9 Parametric Polymorphism:solution 120
3.10 Circular Types : solution 121
3.11 Summary and Remarks 122

APPENDIX B 124
APPENDIX C 133

PART THREE

1 - SYSTEM-Y 141
1.1 Elements of System-Y 141
1.2 Type Abstractions 142
1.3 Type Assignments 143
1.4 The Mapping Function 145
1.5 The Reduction Function 147
1.6 Simplifications of the Reduction Function 152
1.7 System-Y Compared with Other Static Systems 154
1.8 Intersection Types 156
1.9 The Anonymous Type 157
1.10 Implementation 159
1.11 Summary 1 6 3

2 SYSTEM-Y FOR CIRCULAR TYPES 165
2.1 Circular Types 166
2.2 Type-Checking of Declared Circular Types 167
2.3 Undeclared Circular Types 169
2.4 Solution to the Problem of Undeclared Circular Types 17 l
2.5 Lattice Representation of Types 174
2.6 Recursive Functions 1 76
2.6.1 Implementation 177

APPENDIX D 179
APPENDIX E 187



7

3 FUTURE DEVELOPMENTS WITH RESPECTS TO USER . 194
PARTICIPATION AND DATA STRUCTURE TYPES

3.1 Types as Objects in a Computing Model 195
3.2 Another Approach to Parametric Polymorphism 195
3.3 Declaration of Ordered Types 197
3.4 Contextual Checking of Types 200
3.5 Summary 20 3

R E F ER E N CE S 204



INT RO D U CT I O N

Types are checked in most i m pl em e nt a t io n s  of high level 

languages (A l g o l 6 8 , Fortran, Pascal, etc.). However, it 

is fair to say that type checki ng is simply regard ed  as an 

adhoc process, and unlike other parts of language i m p l e m e n ­

tations (say, code generati on) , it is seldo m mentioned.

There are a few reasons why we have to carry out this 

project. Data  types and structures have beco me  increasingly 

impo rta nt  in recent language designs (e.g. A l g o l 6 8 ) and we 

be li e v e that this trend will continue in the for ese ea bl e  

future. Hence it is r ea son ab le to suggest that the naive 

t yp e - c h e c k i n g  systems as we have now w o ul d  be unable to cope 

with future language develop men ts . There are problems that 

have been  k n o w n  for a long time but still aw ait ing  solutions, 

for example, p a r a me t r ic  p o l y m o r p h i s m  and circu la r types.

We hope that in a t t e m pt i n g to solve these proble ms from 

first princ ip les , we might be able to suggest some ways that 

we could discuss type check ing  systemat ic al ly.  On the 

other hand if type che ck in g  could be studied i n de pe n de n t ly  

of p a r t i c u l a r  languages, we might be able to shed some 

light on what future languages woul d be.

Of course, it is im p o ss i b le  to achieve all our aims in 

one project, so we shall c on c en tra te on so lving problems in 

p a r a me t r ic  p o l y m o r p h i s m  and circular types here. We find 

that these problems are well ex h i bit ed in fun ctions and



functionals. Hence, in choosing a model to re present  

these problems, there are two criter ia  to be satisfied. 

Firstly, it must pr ese r v e language and machine i n d e p e n ­

dences. Secondly, functions and fu nc tionals can be 

e x p re s s ed  in it conveniently. We have there for e chosen 

X-K Calcul us  as the most suitable model.

We find it ne ce s sa r y  in Part One of this thesis to

r evi ew  the kn ow n  pri nc ipl es of the X-K Calculus so as to 

exh ibi t those logical p r op ert ie s imp ortant to our work, and

then to state the n o t a ti o n --  Reckon, in which we pr opose to

ab br ev iat e de s c ri p t i o n  of the larger functions needed in 

su bs eq uen t parts, altho ug h (it will bear repeating) notations 

are incide nta l to this thesis. We im pl em ent ed Reckon  on 

the com put er  during  our undertaking.

After pr e l im i n a r y  e x a m i n a t i o n  of previous type- 

ch ec ki ng s ys tem  pro posals in the light of our two problems, 

we p ro pos e two systems of our own. In Ch apter 2 of Part 

Two, we discuss some of the fundam en tal  concepts which 

includes theorems of functiona li ty , a s e t - t he o r et i c al  

approac h to types inc luding unions and interse ct io ns  of 

types. While avoiding throwing a load of m a t h e m a t i c a l  

symbols at readers, we form ula te our proof of some theorems 

on logical deductions. We also dem on s t ra t e  that these 

theorems are is omorphic to theorems in p r e po s i ti o n al  Calculus
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The first t y p e -c h e ck i n g sy ste m we have im pl em e n te d  is 

System-F. In at tem p t in g  to general iz e it beyond  the work 

of c o n ve n ti o n al  type checkers we discov er  that it is 

ne ce s s a r y  to ab andon the d i s ti n ct i o n b e tw e en  so-called 

st at i ca l l y-  and d yn am i ca l l y-  typ e- c h ec k i ng  systems.

The aim of this project is to identify the un d er lyi ng  

logical prop ert ie s of our problems and uncover their solutions 

pro gre s s iv e l y.  Thus we find ourselves e m b ar ki n g on the 

logic of Sy st em- Y at the outset of Part Three. System-Y 

permits de cl ar ati ons  of arb it r a ry  functions and fun ctionals  

even where type d ec lar at io ns of paramet ers  are incompl et e  

or missing. This is possib le be c aus e we have introd uc ed a 

class of type exp res si ons  whi ch  we call type abstractions.

The analogy is with the p r o g r e s s i o n  to X - a b s tr a c ti o n  in the 

X-Calculi, or with the p r o g r e s s i o n  from p r o p o s itional to 

first order e xp res si ons  in the pr ed ic ate  Calculi. We have 

also in t ro duc ed a way to describe t y p e - ch e c ki n g  processes 

by cert ai n sets of equations, and shown how to solve them. 

Hence type checking may be studied i n d ep e n de nt l y of machines 

or even, it transpires, of par ti c u la r  in te rp r et a t io n s  of a 

sy ste m of types.

Both System-F and Sy st em- Y are im ple me n te d  on GDC 64/ 

6600 computers. So as to carry co nv ic t i on  to the reader, 

we have included the semantics of the i m p l em e n ti n g  programs 

and some p ro g r a m m i n g  examples in the app endices immediately 

after t h eo ret ic al di sc uss ion s of the re sp ec tiv e systems.

The semantics were w r i t te n  in Reckon, so the reader is 

re com m en d e d to famil iar ize  h im sel f with the language from
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the examples p re sen ted  for this purpose in the appendix 

at the end of Part One.

In Cha pte r 2 of Part Three, we explored further the 

natu re of circula r types in the light of lattice theory, 

and showed how the p ro b l e m  can be hand le d by System-Y. 

What remains is for us to claim that both our systems are 

capable of h a nd l in g  p a r a me t r ic  p o l y m o r p h i s m  and circular 

types.



1 2

PART ORE
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C HA P T ER  ONE 

THE X-CALCU LU S

Our prime interest in this project is to study type 

b e h a v i o u r  of computer programs with pa rt ic u la r  emphasis 

on fu nc ti on al languages, but wi t ho u t  c on fin in g ourselves  

to any speci fi c language.

F r e e d o m  from the various tedious constructs of a 

sp eci f i c language allow us to see typ e - ch e c ki n g  problems 

more cl early and deeply. We can also avoid the risk of 

bein g misled  by features of a pa r ti c u la r language into 

u n f ru i t fu l  in v e st iga ti ons  of problems that are of limited 

interest.

With regards to the above dis cussions, we find that 

X-K Calculus is the most suitable model for our 

i n v e s t i g a t i o n  (we shall call it simply X-Calculus 

he re af ter ).  The X- Calculus is simple in its syntax.

It has been claimed that all computa bl e functions on 

na tural numbers are X- de fi nab le  [ T u r i n g , 1937]. Landi n  

[Land i n ,1965] has also shown that the class of all Algol- 

60 pr ograms is a subset of the class of X-expre ss ion s;  

w h i l e [M a cC a r thy ,19 63 ] exh ib it e d  the class of linear lists 

over finite alphabets as only a 'conservative extension' 

of na tural numbers, so that X-K Calculus can describe data 

stru ctu re s too. In a s e n t e n c e ,X-Calculus is adequate 

for our demands on it.
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A type sy s te m  was pr opo sed  by Le dgard [ L e d g a r d ,1972] 

in h a n d l i n g  t y p e - c h e c k i n g  of Alg ol -6 0  progr am s (and thus 

of only a subset of X-ex pre ssi on s).  We shall see in 

later chapters that his sy st em  shares sh or t c om in g s with 

other systems, e s p ec i al l y  in checkin g the types of 

functions. Those problems, such as p a r am et r ic  polymorphism 

and circular types, are well ampli fie d in X-Calculus.

Thus our choice of X-Calcul us  for i n v e st i g at i o n is well 

justified.

An ot he r adv antage that we have ex pe ri e nc e d  in using 

X-C alculus is that once a normal order of e v a l u at io n  is 

p r e s cr i b ed  so that each step of ev a l ua t i on  is defined 

uniquely, the complete process of ev a l u a t i o n  can be 

studied stepwise. Int er m ed i a te  results at any stage 

can be obtain ed  w h ic h prov ed to be in v al uab le  in ve ri f y in g  

pro per ti es  that are under investiga ti on . Yet the X- 

Calculus is m ac hi ne  independent.

1.1 A p p l i c a t i v e  E x p r es s i on s  and Their Con ve rs ion s

In this section, we shall give a brief account of the 

syntax of X- exp ressions and the laws of co nve r s io n will be 

di sc u s s e d  towards the end of the section.
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1.1.0 F u n c t ions

Work on X-Ca lc ul us was initi al ly  mo t i v a t e d  by studies

of functions. The notion of functi on  is by no means a

novel idea, be it be regard ed  as rule of co rr esp on de nce ,

ma ppi ng  or relati on b e tw e e n two sets of objects. Suppose

f is a si ng ul ary  funct io n (function of one argument)

defin ed on a set of objects and yi e ld i n g results in set

R ', then R^ and R^ are called domain and range of f 2 1 2
respect ive ly . It is possibl e that either or both domain 

and range of a fu nc tio n are sets of functions and perhaps 

the fu nc t i on  itself as well. At least we do not wish to 

exclude this possibility.

Ex amp le

Ide nti ty  functi on IDENT can be defined as 

I DE N T ( x ) = x  r e gar dle ss  of what x is, thus 

I D E N T ( I D E N T ) = I D E N T

1.1.1 A p p li c at iv e  Ex pr es s i on s

Functi ons  of two arguments can be r e- e x p r e s s e d  as 

c o r r es p on d i ng  functions of one argument, whose values are 

functions of one argument. We shall denote functi on al

ap p l i c a t i o n  by (f x) where f is a fun cti on  and x is the

argum ent  of f.
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Exa mp l e

f(x,y) = ( ( f  x)y)=f* X y

where ( f ’ x) is the value obtain ed  by applying 

an f ’ to X, wh ich  is a function of one argument.

In general; functions of n arguments (n^2) can be 

r e - e x p r e s s e d  as functions of one argument, wh ose values are 

fu nctions of ( n - 1) arguments and so on.

Some bra cke ts  can be el im in a t ed  by adopti ng  the 

c on v e n t i o n  that ex pr ess ion s are left associative, for 

example, f x y=((f x)y). Only where is any ambiguity, we 

insist that bra ck ets  should be written.

1 . 1.2 x -e x pre ssi on s

Suppose fu nc tio n f is def ined as (f x)=x*x, let us 

consider the two stateme nt s bel o w

( 1) (f x) is greater than 100

(2 ) (f x) is a square function.

In de cid i n g the truth of statement (1), we have to ask what 

is the value of x and co ns e qu en t ly  the value of (f x) . So 

in case (1), we are conc er ned  with values. On the other 

hand, in (2 ), value of x is irrelevant, and neither is 

(f x) . The truth of the statement depends on how f is 

defined, or simply the process that is a s soc iat ed  with it. 

Cl early the two occ ur ren ces  of (f x) serve for two distinct 

purposes. The former stands for value of the function.
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while, the latter the fu nct io n itself.

Such am big uities can be avoided if extra symbols are 

used to d i ff e r e n t i a t e  the two cases. The symbol 'X ' is

used for this purpose. St atement (2) can then be re ­

w r i t t e n  as

"(Xx:(f x ) ) is a square function" ...(a)

The first occ ur ren ce of x in (a) is called bin d in g variable  

(in Algol, this is called the formal pa r am e t er  of a functi on  

). We call (a) " x - a bs t r ac t i on " of ex pr e ss i o n (f x ) , and 

(f x) is called "body" of (a).

1.1.3 The class of X-e xpr es sio ns

Bi ndi ng  va ri ables are separated from bodies by ":" in 

X -ex pr es sio ns.  As s u mi n g  that we have an infinite set of 

var ia b l es  a ,. .., z ,a ^ , . . . , , a ^ ,... and also the fol lowing  

symbols "x"> ''('', and then arbit ra ry  strings can

be c o n st r uc t e d from them. These strings are called well-  

f or m e d - f o r m u l a e  only if they satisfy any of the fo ll owing 

co ndi ti on s :

( 1) a va ri ab le  is a we 1 1- f o r m e d - f o r m u l a

(2) if F, A are w e l l - f o r m e d - f o r m u l a e ,  so is (F A). They 

may be called c om bi n at i o n with F as operato r and A as 

o p e r a n d .

(3) if M is a w e l l - f o r m e d  formula, so is (xx:M), where x is 

the b i nd i n g va r ia ble  whi ch  may or may not occur in M.
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Ex amp le s

( 1 ) (Ax :(x x ) )

(2 ) (A x : (Ay :(x y ) ))

(3) (Ax :( A y :y ) )

Brac kets can be omitted with the un d e rs t a n d i n g  that

(1) A- exp re s si on s  are left a sso cia ti ve

(2 ) an opening brac ke t "(" is placed i m me dia te ly after

' and the ma tch i n g closing brack et  ")" is in serted as far 

right as possib le in the subexpression.

Examp les

(1) (Af:Ax:f(f x ) ) e (a f :(Ax : (f (f x))))

(2) ( A M : AN : Aa : A b: ( M  a ) ( (N a)b))E

( A M : ( A N : ( A a : ( A b : ( ( M  a)((N a)b))))))

1.1.4 Free and Bound variables

It is well kno wn in mat he m at i c s that if we replace all 

o ccu rr en ces  of x in the integral "/x dx" by "y", the 

re su l ti n g  integral "/y dy" has the same mean in g as the 

original one. Ho we ve r this is not true for "/x y dx"

The ph en o me o n  is fo rm al ize d in A-Calculus. A va ria ble  is 

free or bo und  in a formula de pe nd i n g on the following 

con ditions stated recursi ve ly,

( 1) a v a ri abl e is free in itself

(2) A var ia b l e x is free in (F A) if it is free in both F 

and A. Conversely, if it is bound in either F or A, 

then it is bound in (F A).
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(3) All oc c u rre nce s of x will be bound in (Xx:M) (this 

sta tement is sup erf lu ou s if x does not occur in M)

whe re M is a w e l l - f o r m e d  formula. A va ri ab l e  y which

is not the same as x, will be free or bound in (xx:M) 

depends on w he t he r  it is free or bo und in M.

Examp 1e

(1) In (Xx:(x y)), x is bound and y is free

(2) In (Xx:Xy:(x y)), both x and y are bound

1.1.5 S u b s ti t u ti on

We use the n o t a t i o n  "[N/x]M" to stand for the formula 

ob tai ne d by s u b st i t ut i n g all oc c ur re nc es of x in M by N. 

No ti c e that if N is not a simple va ri ab l e  and x is bou nd  in 

M, then the re su lti ng formula w ou l d  not be well formed.

Exa mpl e

(1) C y / x] ( X x: ( x  x ) )= ( X y: ( y  y ) )

(2) [ ( Xw : w)/x] ( Xx : (x x) ) = ( X ( Xw : w) : ( ( Xw : w) ( Xw : w) ) )

1.1.6 C o n v er s i on

We pr oceed to the operat io ns in X-Calculus -- 

t r a n s f o r m a t i o n  or co n ve r s io n of w e l l - f o r m e d  formulae, 

N o t at i o na l l y,  we use "A->-B" to stand for co nve r s io n  from A 

to B, One may regard con ve rsions as proc ess es  for 

re pl a ci n g  a part of a w e l l - f o r m e d  fo rmula by another well- 

formed formula acc ording to the follo win g rules :
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(1) a “ C o n ve r s io n

A part M of a well formed formula can be replaced 

by [y/x]M  p r ov id ed  that va ri abl e x is not free in M and 

y does not occur in M.

Examp les

for the ex p r e s s i o n  (Xa:Xb:a b), we conside r 3

di ff e re n t  cases :

(a) We can replace (Xb:a b) by [ c/ b] ( X b : a  b), 

thus (Xa:Xb:a b )-»-( X a : X c : a c)

(b) we cannot replace (a b) by [c/b](a b)

(c) we cannot replace (Xb:a b) by [ a/ b ] (X b : a b)

(2 ) g -r e d u c t i o n

A part ((Xx:M)N) of a w e l l - f o r m e d  formula can be 

replac ed by [N/x]M, pr o vi ded  that the bo und variables 

of M are disti nct  from both x and the free va ri abl e of 

N.

Exa mpl es

(a) We can replace ((Xx:Xy:x y)z) by 

[ z / x ] (X y : X y) , thus

((Xx;Xy:x y ) z ) ^ ( X y : z  y)

(b) we cannot replace ((Xx:Xy:x y)y) by 

[ y / x ] (X y : X y)

(c) we cannot replace (Xx:((X x: x y)x)) by 

C (X z :z ) / x ] ((X x :X y)x)
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(3) 3 - ex p a n s i o n

A part [N/ x ]M can be re placed by ((Xx:M)N), provided 

that the bound va riables of M are di stinct both from x and 

from the free vari abl es  of N.

(4) n - c o n v e r s i o n

A part (Xx:(M x ) ) can be replaced by M if x is not 

free in M.

Exam ple

( X x : ( X y : y  y)x) can be replaced by (Xy:y y ) , 

but, this is not true for (Xx:(Xy:x y)x).

(5) 6 -c o n v e r s i o n

The Calculus we have been dis cu ss i n g so far is know n  

st ric tl y as the X - K - a 3 n - C a l c u l u s . We shall later informally 

add some rules of cor re s po n d en c e  to permit pri mitive 

functions to be applied to primit iv e arguments, by what we 

called 6-rules, to give the fuller X-K-a36ri-Calculus .

Since these 6-rules are convenie nc es for pr ac ti cal  computing 

only, we need answer only for the in t e r p r e t a t i o n  of our 

o 3n - Ca l c ul us ,  and co nsider 6 -rules as a speed up trick for 

a special branc h in our int er pre ter  (see Chapter 2).
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1.2 X - D e f i na bil ity  of Computa ble  Functions

Ap p l i c a t i v e  ex p r ess ion s wh ic h have so far been

c on si de red  only s yn t a ct i c a l l y  may be given in te rp re t a ti o n s

as de n ot i n g c o mp ut ab le objects.

In se ction 1.1.2 we said that (f x) in "(f x) is a 

square function" should be rep lac ed  by (Xx:f x) which  

describes the co r re s p o n d i n g  function. This is gen er al i z e d  

by the law of q - c o n v e r s i o n  whi ch permits (Xx:M x) to be 

int er p r et e d  as funct io n for any x, M. For, if x is not 

free in M, (Xx:M x)=M and this is true for anything bound

to X. In other words, for any object x ', w ha t e v e r  the

result is by apply ing  M to x ', the same result will be 

obt ain ed  by applying (Xx:M x) to x '. Thus, n ~ c o n v e r s i o n  

is also called the law of E x t e n s i o n a l i t y . Hence, X-

ex pre ss io ns descri be  functions and this i n t e r p r e t a t i o n  is 

c om p l e m e n t e d  by re gar d i ng  g - r e d u c t i o n  as a p p li c at i o n of 

fu nct io n to arguments; whil e 3 -e xp a n s i o n  may be in te rp ret ed  

as ab s t r a c t i o n  or ex t ra c t i o n  of common su be xp r e ss i o ns  to 

create a function. There is no useful in t er p r e t a t i o n  for 

a - c o n v e r s i o n  in this respect as no new object is created by 

the p r o c e s s .

If (Xx:Xy:F x y) denotes the functi on whi ch  gives the 

sum of any two numbers, then ((Xx:Xy:F x y)x') can be 

in ter p r et e d  as the functio n wh i ch  adds a fixed increment x ' 

to any given number. We say the latter function is 

obtained from the former by "p artial app lic at ion ", the 

concept whi ch we shall use very often later.
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1.2.1 X - D e f inab ili ty

An object is said to be X - d e fi n a bl e  if there exists a 

we l l - f o r m e d  formula wh ic h denotes the object and in that 

case we say the formula X- de fi ne s  the object. For example, 

we might define num er al 0 by (Xa:Xb:b), 1 by (Xa:Xb:a b),

2 by (Xa:Xb:a(a b )) and so on. It is more conveni ent  to 

use symbols to stand for compli ca te d formulae, for example,

2 for (Xa:Xb:a(a b)). In general, we write sym^M if "M" is 

a w e l l - f o r m e d  formula to be de s ign ate d by the symbol "sym".

Exa mpl e

(X a:X b: (a ( a (a  b)))) 

and 3 is X- de fi ned  by 2

If a fun ct i on  f is said to be X- definable, then there

should exist a w e l l - f o r m e d  for mu la F such that F M->N if 

f(m)=n, wh er e  m, n is X- def in ed by M and N respectively.

Before we state the result that all com pu tab le

functions are X-defina bl e,  we shall give be l ow  a list of 

d ef i ni tio ns  whi c h are re qui r e d for subs eq ue nt discussions.

D ef i n i t i o n  (1)

The succe ss or functi on  is X- de fin ed by S, where 

S-e( Xn : X f : Xx : f ( n f x) )

Exam ple

S f x) )

->(Xf:Xx:f((Xa:Xb:a b)f x))->-(Xf:Xx:f(f x) )
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D e f i n i t i o n  (2)

The ad di tio n fu nct io n is X- de fin ed by A, where 

A ^ ( X m : x n : A f : X x : m  f(n f x ) )

Ex ample

A J_ 2"^ (Xf:Xx:J_ f ( ( X a :X b : a( a  b))f x) )

^(Xf:Xx:J_ f(f(f x)))

-►( X f : Xx : ( X a : Xb : a b ) f(f (f  x) ) )

->(Xf :Xx:f(f(f x)))

D e f i n i t i o n  (3)

The m u l t i p l i c a t i o n  fun ct io n is X- de fined by M, where 

M-<-( Xm : Xn : X f : Xx : m(n f)x)

Exam ple

M 1 2 ^ ( X f : X x : 2 ( 2  f)%)

-►(Xf:Xx:(2 f) (2 f x) )

->-(Xf:Xx:(2 f)(f(f x)))

->>(Xf :Xx:f (f (f (f x))))

D e f i n i t i o n  (4)

The con st ru cto r fu nct ion  which forms an ordered pair 

from two arbi tr ary  objects is X- defined by PAIR, where 

P A I R ^ ( X x : X y : X f : f  x y)

D e f i n i t i o n  (5)

The two functions for se lec ti ng the first and second

component of an ordered pair are X-def ine d by Kj and K 2

respec tiv el y,  where.
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^ ( X x :X y :x)

K 2 ( X X : X y : y )

Examp les

PAIR a b Ki^^i a b->-a 

PAIR a b K 2+ K 2 a b-»b

D e f i n i t i o n - s c h e m a  (6 )

The c o n s tr u c to r functio n which forms ordered n-tuples  

from n objects (n>2) is X -d efi ne d by N T U P L E , where for 

given n

NTUPLE-f-CXxj : X x 2 : . . . : Xx^: Xf : f x^ X 2 ...x^)

D e f i n i t i o n - s c h e m a  (7)

The funct ion  whi c h selects the i* th object out of

orde red  n-tuples (i<n) is X- de fi ned  by U^, where

Xx 1 : Xxo : . . . : Xx :x.) n  ̂ n 1

D e f i n i t i o n  (8 )

Let G ^ ( X n : P A I R ( n  0 ) ( S ( n  0))).

The p r e d e c e s s o r  fun cti on  is X-de fin ed  by P, where,  

P ^ ( X n : n  G ( P A I R 0 0)Ki)

Ex amp le

P 2-̂ 2 G(PAIR 0 0)Ki 
-►G(G(PAIR 0 0))Ki
-)-G(PAIR( (PAIR 0 0)0)(S(PAIR 0 0 0 ) ) ) K ̂ 
^G(PAIR(0 0 0)(S(0 0 0)))Kj 
^G(PAIR 0 l)Ki
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->PAIR(PAIR 0 _1_ 0)(S(PAIR 0 0))Ki

^PAIR 1  _2 Kj

- K l l  2

Examp le

P 0^0 G (PAIR 0 0)Ki 

^PAIR 0 0 Ki

-vKi 0 0

->►0

Def ini tion (9)

If the infixed op era t i on  •_ is de fined as follows 

X •_ y = 0 if x<y o th erw ise  x-y, then can be X-d efined  

by Sg, where  

Sg-e(Xx:Xy:y P x)

E x a m p 1e

So 2  2-̂ 2 P 3-̂ V P 2-»!

D ef i n i t i o n  (10)

The fu nct io n for finding the m i n i m u m  of 2 numbers can 

be X-def ine d by MIN, where 

MI N+ ( Xx : X y : S o  y (S q y x ) )

Exa mpl e

MIN 2 .2^So  2(Sq 2 3)

-^Sq 2 0 

-̂ 2
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D e f i n i t i o n  (11)

If the function LESS is defined as follows

(a) LESS X y = _1_ if x <y

(b) LESS X y = 0 if x>y

then LESS can be X-d ef i ne d by L where 

L-f-(Xx:Xy:MIN ^ x) )

Ex ample

L 2 3->MIN _l_(So 1  2)

^-MIN J_ J_

->2

L 2 2^min 2(So 2 2)
->MIN 2  0

->o

D e f i n i t i o n  (12)

The d u p l i c a t i o n  fu nct io n can be X -de fin ed  by W, where 

W + ( X f : X x : f  x x)

Ex ample

W M 2 2 ‘̂ A (by d e f in i ti o n  3)

So (W M) A-defines the SQUARE function.

D e f i n i t i o n  (13)

The c o m p o si t i on  fu nction can be X-d ef i ne d  by B, where  

B-^(Xf;Xg:Xx:f(g x) )

Exam ple

B(W M) (W M ) 2 ^ W  M(W M 2)-^W M 4-^16
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D e f i n i t i o n  (14)

Let C*-(-( A f : Xx : Xy : f y x)

C"<- ( X a ! a C * 0 K 2 K % )

Examp le

C 0-^0 C* 0 K 2 Ki 

-yO K 2 Kj 

^Ki

Ex amp le

c 2-̂1 c* 0 K2 
->C* 0 K2 

^0 Ki K 2

-♦•K2

Def ini tion (15)

Let H ^ ( X a : X f : X g : X n : ( ( P A I R ( K i  a)(f(P n ) ) ( C ( M I N  n 2)))

(g(P n))))

E xa mp le s

(1) H a f g 0^(PA I R ( K i  a)(f 0 ) (C 0 ))(g 0)

•+(Ki(Ki a) (f 0 )) (g 0 )

+ (Ki a)(g 0 )

-»a

(2) H a f g (S n)H.(PAIR(Ki a)(f P(S n) )

(C(MIN(S n ) U ) ) ( g ( P ( S  n))) 

-)-(PAIR(Ki a)(f n)(C _l^))(g n) 

-♦(K2 (K j a) (f n) ) (g n)

->-f n (g n)
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D e f i n i t i o n  (16)

Let Y + ( Af :( W (B  f ) ) (W(B f )))

Examp le

Y f^(W(B f ) ) (W(B f ))

->(B f) (W(B f)) (W(B f))

+ f ( ( W ( B  f))(W(B f)))

+f(Y f)

This provides the schema for de fi ni ng recursive 

functions in the fo ll owing way.

De fi n i t i o n  (17)

Let RE C<-( Ax : X f : Y (H x f)), therefore

REC X f 0-vY(H X f)0

->H X f (Y(H X f))0

-)-x (by de f i n i t i o n  14)

REC X f (S n)^H x f (Y(H x f))(S n)

- > > f n ( Y ( H x f ) n )

-►f n (REC X f n)

Ex ample

We can add the first two numbers by wr i ti n g  

REC 0 A(S 2)^k 2(REC 0 A 2)

-4-A 2(A H R E C  0 A ^) )

-^A 2(A 2  0 )

-̂ A 2 1  

4-3
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1.2.2 Pr im iti ve R ecu rsi ve  Functions

Pr im it ive  rec ursive functions can be defined 

r e c ur s i ve ly  as follows,

(1) S, 0 and U^ are pri mi ti v e  re cursive functions.—  n
(2) If a functi on  f of n arguments is defined by 

" c o m po s it io n " in terms of functions g(of m arguments) 

and hj, h 2 ••., (each of n arguments) as follows,

f(%l, . , x ^ )= g (h i(x i, ..., x ^ ) , . . , h ^ ( x i , . . .x ^) )

and if g, h ̂ , h 2 , ... h^ are pr im it ive  recursive, then

f is pri mi ti v e  recursive.

(3) If a functi on  f of n + 1 arguments is defined by 
"pr im i t iv e  re cur sio n"  in terms of functions g^and g 2

as follows

f(xi, ..., x^ 0 )=gi(xi, ..., x^)

f(xi, ..., x^, ( y + 1) ) = g 2 ( x i , ..., x ^ , y ,f ( x j ,...,

X r . y))

and if gj and g 2 are p ri mit iv e recursive, then f is 

also prim iti ve recursive.

It has already been shown that 2» S and are X-

definable. If G, H^, H 2 , ...» A-defines g , hj, ..., h^

as me n t io n e d in (2), then Fj A-defines f where

Fi+^Ax i:A x2 :...:Ax^:G(HiXiX2 . ..x ^) (H 2X1X2. ..)...

(H^ xi X2 ... x^))
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If Gj and G^ A-define gj and g^ as m e n t io n e d  in (3), 

then F ^ A-defines f, where

F Ax : Ax : . . . Ax :Ay:REC(G x,... x )(G„ x,... x ) y ) z 1 z n 1 1  n Z 1 n

hence, for-loops can be A- defined by F ^ .

The class of prim iti ve recursive functions is know n  

to, inc lu de  s u b s t a n t i a l l y  all the o r di n a ri ly  used n ume ric al  

functions [ C h u r c h , 194]], and as shown above, all p rim iti ve  

re cursive functions are A-definable.

1.2.3 General Re cu rsi ve Functions

If R of n + 1 arguments is a p r o p o s i t i o n  function, then 

the n o t at io n  y* (A y : R x ̂ ... x^ y ) stands for the least

value of y (if it exists) that (R Xj ... x^ y ) is true.

let M ^ ( A x : A y : A z : ( C ( y  z))(x y (S z))z)

then y* can be A- defined by y , where

y+(Y M)
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Example

This example is for finding the least value y 

that is greater than 1.

y(Xy:L ]_ y)0->Y M(A y : L y)0

^M(Y M ) (A y : L 2  y)0 

^(C 0)((Y M) (A y:L  2  y ) 2 ) 2  

+K|((Y M)( A y ;L  2  7)1)0 

->Y M(Ay; L 2  y ) 2  

->M(Y M) (Ay :L 2  y) 2

■^(C((Ay;L 2  y) 2 )) ((Y  M ) ( A y : L  2  7 ) 2 ) 1  

->(C 0) ((Y M) (Ay:L 2  7 ) 2 ) 2  

^Y M(Ay:L  2  7 ) 2

-^(C((Ay:L 2  v )2))((Y M) (A y : L 2  7 ) 3 ) 2  

->(C 2) ((Y M) (Ay:L 2  7)3)2 

(A7:L 2 7)3)2
■>2

Any general recursive functions can be re wr i t te n  in 

terms of y * , g and h where g and h are p ri m it ive  recu rsi ve  

functions related as follows.

f(x ,x ,...,x )=h(x ,x , . . . ,x , (y*(Ay:g x x x y )))1 z n 1 z n 1 z n

If H and G A-defines g and h res pe ct iv e l y,  then F A-defines 

f as f o l l o w s ,

F-<-( Ax j ; Ax^ : . . . : Ax^ : H ( X j . . . x^ ( y ( Ay : G Xj . .. x ^  y))))
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If we identify f as a while loop, then h is a for-loop 

and g is the function for testing the exit conditions, while 

y * is for finding the number of times the loop has to be 

ex ecu te d before the conditions are satisfied.

1.2.4 Church's Thesis

It was stated that every general recursive function 

is 'A-definable [ C h u r c h , 1941], [ K l e e n e ,1936]. It was also

shown that every co mputable function is general re cursive  

[ M i n s k y , 1967], [ T u r i n g , 1937]. So it can be claimed that 

every co mputable function is A-definable. This result 

is important to us bec au se it partly justifies our de ci sio n  

in choosing the A-Calculus for our investigation.

As part of the il l u st ra ti on of A-defina bi lit y, we have 

outlin ed the proof of the first part (i.e. general 

re cu r si ven es s is included in A-d ef inability).



34

C H A P TE R  TWO 

THE RECKON LANGUAGE

In last chapter, it has been shown how X-Calcu lus  can 

be used in studying computa ble  functions and p roc es se s of 

computing. However, it cannot be denied that it is quite 

painful to read long strings of symbols wh ose me a ni n g  is by 

no means obvious. It thus fails in one very important 

aspect. For, a compute r p r o g r a m  is not only an interface  

b e t w ee n  hum a n beings and machines but it also serves as a 

link of c om m u ni c a t i o n  among human beings. A reason abl e  

approach to this p r o b l e m  is that a language L can be used so 

that programs w r i t t e n  in L can be translated m e c h a n i c a l l y  

into equivalent X - e x p r e s s i o n s . Any legal X-e xp r e ss i o n  

must be exp r es s i bl e in L. In finding such a language L, 

it can be seen that it is easier to satisfy the first 

requ ire me nt  but not n e c es s a ry  the second one. For example, 

Algo l-6 0 programs can be tran sl at ed into X - e x p r e s s i o n s , but 

it is not possible to have partial ev al ua t i on  of a function 

in Algol-60.

Examp le

(X(x y z) :. .. x . .. ) u  is reduced initially to 

(X(y z):...u...)

In the re mai nd er of this thesis we shall have to 

express programs that would call for enormous X - e xpr es si ons  

yet for wh ic h the abb re v ia t i ng  conventions of Al go l-6 0 or 

A l g o l -68 do not suffice, as we have just suggested. We
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need a set of con ventions of our own for ab b re vi a ti n g  large 

X- ex p r es s i on s .  Reckon [E d w a r d s ,1974a] is the language 

that we claim that will satisfy all these requirements.

It is not dif ficult to justify this statement be cause X - 

ex pr es sio ns are legal ex pre ssi on s in Reckon so un dou b t ed l y  

it will  satisfy the second requirement. As all legal 

Reckon programs are co mputable so it must be ex pr ess ibl e  

in A - calculus [ E d w a r d s , 1975], thus satisf yin g the first 

re quirement. In the fo llowing sections, we give a brief 

account of this language.

2.1 Basic Objects

As a first step in sim pl i fy in g  A - e x p r e s s i o n s , we may 

suggest that we shall consider those objects whi ch  occur 

through out  as constants, (these may include numbers, 

bo o l e a n  values and others) and pri mitive functions over 

them. The rules of cor r es p o nd en c e mapp in g the operator/ 

operand combi na tio ns into these objects may be given by the 

6 -rules me nt io n e d in last chapter and used in the prac ti cal  

int erpreter, or they may be ag q -d e f i n e d  as we do here.

2.1.1 Primi ti ve values

(1) Integers are denoted by "1", "2", ... and are A-defined

by 2 » 2 » •** re s pe cti ve ly

(2) Bo olean values are denoted by TRUE and FALSE and as 

me nti o ne d  before, they are A-defined by 1 and 0.
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2.1.2 Pr im it ive  Func ti ons

The use of fixed constants is not limited to "values" 

but can be extend ed  to functions (operators) as well.

(1) A r i t h e m e t i c a l  ope rations : "+", and "*" stand for

addition, su btr a c ti o n  and m u l t i p l i c a t i o n  re sp ect i v el y  

and are A-defined in last chapter.

(2) Lo gical op erations : "NOT", "AND" and "OR", and are 

A- def in ed  as follows,

NOT<-( Ax: (C x)^  0)

AND-e-( Ax : Ay : (C x)^ y)

OR-<-(Ax:Ay:(C x)y 2)

Examp les

(1) N O T ( T R U E ) = F A L S E

(Ax:(C x) 1 0)1->(C 1)1 0->K„ 1 0-^0

(2) AND TRUE FALSE =F ALS E

(Xx:Ay:(C x ) 0 y ) 2  0^(C 2)0 O^K^ 0 0^0

(3) AND FALSE TR UE =FA LSE  

(Xx:Xy:(C x ) £  y ) ^  2

(4) OR TRUE FALS E=T RU E

(Xx:Xy:(C x)y 2 ) 1  0^(0 2 ) £  2 "^^2 -
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(5) OR FALSE FA L S E=F ALS E

(Ax:Xy:(C x)y ]_) 0 0-> ( C 0)0 2^%, 0 2'^2

(3) Re la ti o n al  op erations : ">" and and they are

X-defined by "L", "GR" and "EQ" r e s pe c t iv e l y as follows, 

L*̂  ( Xx : Xy : MIN 2(^0 y x) )

G R^ ( X x ; X y : M I N  2 (S q x y ) )

EQ-«-( Xx : Xy : 2  _^(A(GR x y)( GR y x) ) )

Exampl es

(1) 2>3=FALSE

GR 2 3^MIN 2(So 2  2 ) ^ M I N  2  2 ^ 2

(2) 2=2 = TRUE

EQ 2 2 ^ 2  i ( a ( g r  2  2 ) (OR 2  2))

^2 i ( A  2  2 ) ^ 1

2.2 Lists

It has been stated that in X-Calculus a function of n 

arguments can be ex p r ess ed  as a function of one argument 

wh ose  value is a function of ( n - 1) arguments and so on.

This tedious treatment can be avoided by using "Lists'*.

Lists can consists of noth ing  (i.e. NU LL- lists) or can be 

co nst ru ct ed by pa ir ing  heads that are anything and tails 

that are lists. We shall use the symbol "," to separate 

the two parts of a list and "NIL" is used to stand for 

NULL-list.
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Examp le

( 2 , (TRUE,NIL)) is a list

We can assume that is right as sociative so that

(a,(b,c)) is eq ui va len t to (a,b,c). The n o ta t i o n  can be 

s im pl if ied  further by omitti ng all NIL app earing as the 

last element of a list. Beware that this is only a 

co nv en tio n so that does not denote the pairing

o p e r a t i o n .

Exa mple

( 2 , (TRUE,NIL)) can now stated as 

(2,TRUE)

In future in order to avoid any confusion, all NIL's 

at the end of a list have to be removed ac cording to the 

above rules. So that (2,(3)) is co ns tr uct ed  by the 

follo win g process.

(cons t r u e t - 1 ist 2 (c o n s t r u e t - 1 i s t (c o n s t r u e t - 1ist 3 NIL)NIL))

assumi ng that cons truet-list is the function for 

c on s tr u c ti ng  a pair.

It remains to replace any function of n arguments by a 

functio n of one argument which is a list of n elements.

Example

(x(x,y,z): ...) is a fu nction of 3 arguments.
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Lists can be nested w it h i n each other so in Reckon we 

allow very c om pl ic ate d structures in bi nd i n g variables.

Examp le

( X ( X | y (X 2 ; (x^yX^) ,x^),x^) : . « .)

If a list L is co ns tr u c te d  from objects that are \- 

defined by A and B (B is the X-de fin iti on  of some other

lists), then L can be X-defined by "(xf:f A B)".

Lists not only occur as bin d in g  var iables but also 

occur in other contexts which are lo gically correct. Some 

of the 1 i s t - m a n i p u 1ation functions are disc uss ed below,

(1) "NULL"

This is the function for testing NULL-list. In other 

words it tests wh e th e r  the object under co ns i d e ra t i on

is "NIL" or not. Suppose "NIL" is X- d e f i n e d  by

(Xx:^) then NUL L will be X - d e f i n e d  by ( x f :f(xa :X b :£)).

Examples

NULL NII^ (X f : f (X a:X b :0) ) (X x:£)

(X X :£) (X a :X b :£)

N UL L ( X f : f  a b > + ( X f : f ( X a : X b : 0 ) ) ( X f : f  a b)

(X f :f a b) (X a:X b:0)

-> (X a :X b : £) a b

4. 0
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Obviously, if "NIL" is X-defined by other w e l l - f o r m e d  

formulae, then the X-d ef i ni t i on  of "NULL" has to be changed 

a c c o r d i n g l y .

(2) "TH","TL"

These are list selectors such that, if i <m 

i TH ( n j ,n ^ ,.. ., n^)=n^ 

i TL ( n ̂ ) a 2 , . • • * * * *

and they can be X- de fined by "th" and " t 1" r e s p ec t i ve l y  as 

f o l l o w s ,

1 1*̂ ( Xn : Xx : n ( Xz : z Kgïx) 

th-^( Xn : Xx : ( 1 1 (P n)x)Kj)

Examp le

th 2  (Xf:f A(X g :g  B C))

-+tl 2  (Xf:f A( Xg :g B C))Kj 

■^HXziz K^i f X fz f  A (X g:g  B C))Kj 

^(Xz: z Kg ïC X f if  A( X g; g  B C))Kj 

^(Xf: f A(Xg: g B C ) ) K 2 Kj 

A( Xg: g B C)Kj 

-^(Xg:g B C)Kj 

B C

-)-B

As in contrast to LISP [ M c C a r t h y , 1 962], the selector  

functions here do not test wh et h e r their argument is NULL- 

list or not. We shall see later, as example of con di tional 

bra nch in gs , how they can be mo d if ied  to include such tests.
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(3)

Both are list construc to rs such that

(aj,a2)..(a^,a^)=((aj,a2),a^,a^)

and they can be A-def in ed  by "CONS" and "CONCAT" r e s pe c ti v e l y  

as follows,

CON S-<-( A a : Ab : A c : c a b)

C0NCAT4-( Ax: Ay : C 2 x y (y(Az:NULL(z TL x))0)) 

w h e r e ,

C 2^ ( A x : A y : A n : R E C  y (Cj n x) n), and 

C j-<-( An : Ax : Ay : Az : CONS ( (n-y) TH x) z)

Exa mpl e

ass umi ng  that "d" is a list,

CONCAT (Af:f a(Ag:g b NIL)) d 

(Af : . . .) d 2 

^REC d (C, 2 (Af:...)) 2

^(C| 2 (Af:...)) 2  (REC d (Cj 2 (Af:...)) 2)

+ (A z : C O N S ( (2 -2) T H ( A f : . . . ) ) z ) ( R E C  d (C^ 2 (Af:...))

I )
->C0NS(1 TH (Af :...)) (REC d (C, 2 (Af :...))!) 

^CONS a (CONS b d)

^(Ac: c a (Ac:c b d ) )
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2.2.1 Strings

Strings are included in Reckon as one of the system 

defined types but the pote nt ial  uses of this data type have 

not been  fully explored and in the present CDC computer 

im pl e m e n t a t i o n  of Reckon, m a n i pu l at io n s are limited to 

selections, tests of nullness, and c o nc at e na t i on s  only. 

Be ari ng  this in mind and also to simplify our discus sio ns  

hereaf ter , we shall consider strings as special cases of 

lists. This d e c i si o n  is well ju sti f i ed  for our purposes 

with re g a rd i n g to the logical simi la rit ies  of their 

structures and the oper ati on s they share with each other. 

Not at ional l y , we shall enclose a string by and

such as "<strings>".

2.3 Ass ignments

At first sight, we may A-define "...; x:=x'; ..." by

(Ax:...)x* ". The effect of whi ch is to enforce a 

new entry of x in the current environment. Hence, the 

original entry of x will be left unchanged. Co n s eq u e n t l y  

it will not be possible to have the so- ca ll e d  "side effects" 

of procedures. In Reckon, we regard assig nme nts  as 

mo di f i c a t i o n s  on ex e c uti on env ir on men ts,  so it can be A- 

defined as f o l l o w s - - ( A ( e , x , y ) : ( u p d a t e ( s e a r c h  x e)y)), where  

"search" is the routine for finding x in e and "update" 

changes the value as s oc iat ed  with x to y . Notice that it is 

not necessary for x to be a simple variable, for example, it can be 

"i TH L", where L is a list.
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2.4 Sequential expres si on s

Let SEQUENT Sj S 2 = S j ; S 2 , then SEQUENT can be ^-defined 

by ( Xa : Ab : a b ) .

Ex ample

S I ; S 2 ; S 2 = ( S E Q U E N T ( S E Q U E N T  Sj ^2^^3^

( A a : A b : K 2  a b ) ( ( A a : A b : K 2  a b)Sj

A s s u mi n g  that the order of e x ec u ti on  is from left to

right, then when the ex pr e ss i o n is g-reduced Sj, S 2 and S ̂  

will be executed in that order. Moreover, the result of 

e x e cu t i on  is that of S ^ .

2.5 Call by Name and Call by Value

Generally, actual pa ram et er s or actuals can be hand le d

in two w a y s ,

(1) The actuals are evalu ate d and values obtained are then 

assigned to the formais. This process is kno wn  as 

"call by value".

(2) The actual parame ter s are not ev alu at ed so it is 

u ne v a l u a t e d  expres si on s that are assigned to the formais 

and this does not exclude the case that the actual is

a variab le too.

In Reckon, pa ra met ers  are called by value. Howe ver  

the effect of call by name can be achieved by suitable A -
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a b s t r a c t i o n  of the actual pa ram eters. Suppose v is the 

actual that we wish  to be called by name, then by suitable  

A - a b s t r a c t i o n  we m ea n that we have to abs tr ac t v wi t h an 

a r b it r a ry  b i n d i n g  v a ri a b l e  that does not occur free in v. 

C o n v e n t i o n a l l y  we use "()" for that ar b i tra ry b i n d i n g  

variable.

Ex amp  le

(An: ...n ... )v is called by value

(An: ...n ( ) , . . ) ( A ():v) is called by name

The trick here is to take adva nta ge of the or de r in g  

rule by whi c h  (A():v) will not be eva lu at e d  until it appears 

in the o p e r a t o r - p a r t  of a co mb ination. So the final 

effect is that n is assign ed  the "value" (A():v)-- a process 

for e v a l u a t i n g  v. Inside the A-body, we have to write  

" n ()" ins tead of "n" to en fo rce  e x ec u ti o n  of (A ():v ) .

We can see that the c o m b i n a t i o n  " n ()" is quite arbitrary.

In fact, we can replace () by any thi ng  and can still 

achieve the same effect.

Let us des i gn  an a bb r e vi a t i n g  convention. R e c a l l i n g  

that we have value s p e c i f i c a t i o n  in Alg ol-60, and name 

s p e c i f i c a t i o n  in Reck on as just des cri bed , it appears open 

to us to choose our n ot a t i o n  either way. We may wi sh  to 

dec lare in a A- e x pr e s s i o n  that its formal calls by name so 

that su b s e q u e n t l y  p r o gr a m me r s  may di sc a r d e d  all () that are 

used for the purpo se  of "call by name" and rely on a 

syntax an a lys er to insert all omitted (), thus leading to
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a much si mpl if i ed  n o t a t i o n  .

Had p a ra m e t e r  p a ss i n g in Alg ol - 60  been ha n d l e d  by 

"call by value" (as in Reckon), then p r e s u m a b l y  Al g ol -60  

w ou l d  have had name d e c l a r a t i o n  as follows,

PR OC E D UR E  f(n);

NAME n ; BEGIN ...n... END;

. • • • f ( v )

In A-notation, this will be

(Af:...(f v ) . . . ) ( a NAME n :...n ...)

after g-red uc ti on,  we have

. . . ( a n  AME n : .. , n .. . ) v. . .

We assume that NAME oc cu r r in g i mm e d i a t e l y  after A 

indi cat es  a NAME de cl ara ti on . By hav i n g the name 

d e c l a r a t i o n  me cha n i sm , the fol lo w in g  two st at em e n ts  are 

e q u i v a l e n t .

(1) ( A n :...n ( ) . . . ) ( A ():v)

(2) (ANAME n :...n ...)V

But this idea has not be e n i m p l e m e n t e d  in any ver si on s  of 

R eck on  so that some work w ou l d  still have to be done before
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the idea could be m a t e r ia li z ed .  Cu rr e nt l y  Reckon relies 

on ex p l ic i t  "()" notations.

2.6 C o n d i t i o n a l  Br an ch i n gs

For simple programs, it is not d i f f ic u l t to pr edict in 

adv anc e each step of ev a l u a t i o n  and arrange them in 

s e q u en t i al  order. Ho we v e r in more c om pli ca te d programs, 

it.is des ir a bl e to change course of ev a l u a t i o n  upon 

oc cu r r e n c e s  of ce rtain events in them. For example, not 

to divi de  a nu mb er if the div i so r is zero. We shall write 

" c o n d i t i o n a l  e xp r e ss i o ns "  whose alt er na t i ve  paths are 

called " c o n d i t i o n a l  branche s".  It is wor t h m e n t i o n i n g  

that the al t e rn at i ve  paths in co ndi ti o na l  exp re s si o n s will 

not be e x ec u te d  until after the "c o nd i t io n"  has been 

evaluat ed.  In Reckon, c on dit ion al  e x pr es s io n s  can be 

ex pr e s s e d  as

IF exp^ THEN expj ELSE exp^ FI

w he r e exp^ is some e x p r e s s i o n  whi c h will  yield Bo o le a n  

values w h e n computed, whi le exp^ and exp^ are ar bi tr ary  

express ion s.  "IF", "THEN", "ELSE" and "FI" are re se rve d  

words in Reckon. One may replace "IF" and "FI" by a pair 

of brackets.

Let COND exp^ (X () ; exp j ) (A () : e x p 2 ) =

IF exp^ THEN expj ELSE exp^ FI 

then COND can be A - d e f i n e d  as (Ab:Ax:Ay: C b y x () ).



47

Ex a m pl e

th and t 1 can now be re -d ef i n ed  so as to test 

w h e t h e r  their argument is the N U L L - l i s t  or not.

t h ' ^ C X n : A x : C O N D ( N U L L  x ) (X ():E R R O R ) (X ( ) : th n x ) ) 

t l ' ^ ( X n : X x : C O N D ( N U L L  x ) (X ():E R R O R ) (X ( ): t 1 n x ) )

where E R R O R  is a system- defined f u nc ti o n for 

h a n d l i n g  error conditions.

It is not ex cl u d ed  that exp^ , exp^ and e x p 2 n^^y be 

se que n t ia l  exp re s s io n s  or con di ti o n al  br a n ch in g s,  pr ov i de d  

exp^ yields Boo l e an  results.

'Examp le

IF print x ; x=3 THEN s ^ ; s 2 ELSE s^;s^ FI

2.7 Choice E x p r es si o ns

A n o t h e r  way to express a nes te d c o n d it i o na l e x p r e s s i o n  

is by "C hoice E x p r e ss io n ",  who s e  general format is

CASE exp^ IN e x p ^ , e x p 2 » ...» exp^ OUT exp^ ESAC 

wh ic h  can be X -d efi ned  as

( X n : C 0 N D ( 0 > n > q ) ( X ():ex p^)(n T H ((X ():e x p ^ ) , . . . , ( X ():exp ))))
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"CASE", " i n ", " o u t " and "ESAC" are re se rve d words in 

the language. One may replace "CASE" and "ESAC" by a pair 

of br ackets. Any exp^ must be an ex p r e s s i o n  whi ch yields 

a n u m e r i c a l  value wh en  executed. Suppose i is the result 

and if l<i<q, then exp^ will be e xe cu te d ot h er wi s e e x p g .

The di s c us s i on s on the diffe ren t po s s i b i l i t i e s  of e x p ^ , 

exp^ and exp^ above are ap p lic abl e here for exp^, ..., exp^ 

expg and exp^ r e s p ec t iv e l y with some trivial adjustments. 

Thç re la t i on s h ip  b e t w e e n  co nd it i o na l  ex pr e ss i o ns  and choice 

e x p re s s i on s  can be il lu st r a te d  by the example below.

E xa mp  le

IF a ̂ THEN b ̂ ELSE IF a^ THEN b^ ELSE b^ FI FI

is eq ui va le n t to

CASE n IN b p b ^  OUT b^ ESAC

assuming  that n is 1 or 2 de p e nd i n g  w h e t h e r  a ̂ or 

a^ is true, and in cases both a ̂ and a^ are false 

then n is nei the r 1 or 2 .

The user can omit ELSE br anc h e s or OUT choices 

completely. So the follo wi ng  e x p r e ss i o ns  are also correct

(1) IF exp^ THEN exp, FI b 1

(2) CASE exp^ IN expj,exp2 ESAC
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2.8 LET and WHERE ex p re s s io ns

In w r i t i n g  "(A x :x + x )3 ",  wh a t may be meant p o ss i b l y  is 

"let X be 3; now evaluate the ex p r e s s i o n  (x + x ) ". It is 

felt that we may as well make this m e a n i n g  more e x pl i c i t by 

h a v i n g  no t a tio ns such that the above example can be re ­

w r i t t e n  as "LET x e 3 ; x +x ".

Ex am p le

(Asq:sq 2)(An:n*n) can be r e w r it te n  as 

LET sq n5n*n; sq 2

One may regard the st a t eme nt enclos ed by "LET" and ";" 

as the d e f i ni t i on  part of a fun cti on  and in this respect 

we may find l e t- n o t a t i o n  more na tu r a l to us than A - n o t at i o n  

S yn t ac t i ca ll y , there are some di f f er en c es  b e t w e e n  the 

f o l lo w i ng  two statements,

(1) LET f a b  c=a b c; ...

(2) LET f ( a , b ,c )= a  b e ;  ...

The d if fe r en c e s can be seen quite ea sil y if we rewrite 

them in A-notation.

(1) (A f :. . .) ( A a : A b : Ac : a b c)

(2) ( Af : . . . ) ( A (a ,b , c) : a b c)
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It is true that the two ex pr es si o ns  will give the same 

result whe n appl ied  to a pp r o pr ia t e arguments. Di f f er e n ce s  

arise only whe r e  part ia l a p p l i c a t i o n  is contem pla te d.

There are a few va ri at i o ns  in w r i t i n g  le t -e x p r es s i on s .  

They are listed bel o w  with  the c o r r e s po n di n g  A - e x p r e s s i o n s  

to w hi ch  they are ma pp e d  by Reckon im pl eme nt a ti o n s.

(1) LET X j ,x ^ ,.. .,x ^ E a j ,a^ , .. . ;  ... is e q ui v a l e n t  to

(A(Xj ; X 2 * *• • • •• • )(^ ̂ : a 2 )• • «a^)

(2) LET X =a, AND x =a_ AND ... AND x E a ; ...1 1  L i .  n n
is e q ui v a le n t  to ( 1)

(3) Any co mb in a ti o n s of the d i f f er e n t va ri a t io n s  are

a l l o w e d .

(4) Re c u rs i v e functio n d e f i n it io n s will be co n sid ere d 

later however.

In a do pt in g le t- no tat io ns , in c i de nta ll y, we require 

that all functions and va ri ab les  have to be def i n ed  prior 

to their uses. This feature is shared by AL G O L - l i k e  

lan guages in w h ic h we have to define all p r o c ed u r es  be for e  

they are used. On the other hand in FORTRAN, def in i ti o n s  

of all sub ro ut ine s are pl ac ed after the main program, so 

they are de fined after the uses. In Reckon, we also allow 

this form of p ro gra mm ing . P o s t - d e f i n i t i o n  m e c h a n i s m  can 

be i n c or po r at e d  into the language by h a vi n g w h e r e - n o t a t  i o n .
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E x a m p les

(1) x+x WHERE x=3;

(2) sq 2 WHERE sq nEn*n;

It is not u n c o mm o n  to wish to express ideas in a 

n u m be r  of di ff er en t  ways in h u m an  languages. It is hoped 

that in p ro v i d i n g  certain fle x i bi li t ie s  in Reckon, we may 

bri ng  it closer to users' wishes. P r o g r a m  w r i t i n g  is by 

no means just an ex erc is e of g r a m m at ic a l rules, after all.

It is an art of e x p r e s s i n g  one's ideas. In common with 

other arts, it is no good just pl a yin g with rules, we have 

to explore the nature of it and develop our skill in it. 

Thus it is of utmost importance that a language should have 

enoug h depth for such de v el opm ent s.  There is no doubt 

that strict rules and u n n e c e s s a r y  r e s t ri c t io n s  wo u ld  de stroy  

art completely. Co nv ersely, v a r ia ti o ns  in a language may 

st im ul ate  e x pe ri m en t s  from users.

2.9 Recurs i on

If a functio n f is des cr ib e d  so that the same f 

d e s c r i p t i o n  is needed as part of the d e s c r i p t i o n  then f is 

said to be defi ne d by recursion.

E xa mp le

F a c t o r i a l  fu n ct io n  might be def ine d as 

LET fa ct or ial  n=IF n=0 THEN 1

ELSE n * f a c t o r i a l ( n - 1) FI; 

and in X-n otation, this can be
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( X f a c t o r i a l : . . . ) (Xn:IF n=0 THEN 1 ELSE

n * f a c t o r i a l ( n - 1) FI)

It may be noted that "fa ct o ri al "  is free in 

" ( X n : IF n = 0 T H E N . .. F I )"  and this may cause errors in 

e xecution. In order to avoid it, we have to e a r m ar k  a 

d e f i n i t i o n  if it is recursive. We may do this by the 

m ar ke rs  "REC" and "LABEL".

Ex amp  les

LET REC fac to ri al  n=

IF n=0 THEN 1 ELSE n * f a c t o r i a 1 ( n - 1) FI;

whi ch  is eq u iv a l en t to

(LABEL fa cto rial:Xn:

IF n = 0 THEN 1 ELSE n*fact o r i a l ( n - 1) FI)

"L AB E L  ..." is expanded by synta x an al yze r to "Y ..." and 

"Y" was defi ne d to have the p r o p e r t y  as de s c r i b e d  in 

cha pte r 1.

Ex amp l e s

for-loops can be defi ne d by 

LET REC for i j k sE

IF i<k THEN s(); for(i+j) j k s FI; 

so that "for 1 1 10 ( X ():p r i n t < s t r i n g > )" will

print the string of char act er s ten times. 

Similarly, w h i l e - l o o p s  can be d ef ine d by
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LET REC while p s e

IF p() THEN s(); wh ile  p s FI;

so that "while (X ():i < 10) ( X ():p r i n t < s t r i n g >; 

i:=l+i)" will produce the same effect as the 

for-loop, assum ing  that i is bo un d in outer 

e x p r e s s i o n  and ":=" stands for assignment.

2.10 P o l y m o r p h i c  Op er at ion s

There are arg uments for su p p os i n g that distinc t  

symbols should be used for o p e ra t i on  on operands of 

di ffe r en t  types i r re sp e ct i v e of logical sim ila rities.

For example, dif fe r en t symbols should be used for in te ger - 

add, re al- a d d and so on for the other a r i t h e m e t i c a 1 

op era t io n s  [ L a s k i ,1968]. As far as "c om p u t e r  men" are 

concerned, this is a splend id  idea bec a u se  there wou l d be 

less work in typ e -c he c ki n g  and rel at ed problems. H o we v e r  

most  people using ma ch i n es  are p r o b l e m - s o l v e r s  and, 

u n d ou b t ed l y , will  make less m is tak es  if they can "talk" in 

their "own language". For example, m a t h e m a t i c i a n s  like 

to use the same symbol not only for in teger or real 

a d d it i o n but even for matrix-, vector -, array-, comp le x 

nu mb e r-  addition, and even op er at io n s over de t er m in ant s,  

charac ter s,  strings, boo le a ns  and etc. We can imagine the 

co nf us ion s that might arise in a m a t h e m a t i c a l  book if one

symbol were used for adding two mat ri c es  and anot he r for

adding its elements de pe n di n g  on what type of el ement they

are. The p r o b l e m  here is not that m a t h e m a t i c i a n s  do not
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k no w  what they are doing but the tedious treatments that 

wou ld  o t he rwi se  be involved. In a certain sense this is 

a moral qu e sti on  of who is in charge, language i m pl e me nto rs  

or users?

In Reckon, we do not regard such " p o l y mo r p h ic "  

ope ra t o rs  as sinful. In fact, we have gone even further 

to the extent that where there is no ambiguity, some 

o pe r ato rs can be dr opped com pl e te l y  [Ed wa rds,1974b].

Exa mp les

2 <S T R I N G>=2 TH <S T R I N G>

2 (S , T ,R ,I ,N ,G) =2 TH (S ,T ,R ,I ,N ,G )

2 3=2*3 ----

<S T R x l  N G> = <S T R>::<I N G>

( 1 , 2 , 3 ) (4,5,6) = ( 1 ,2,3): ;(4,5,6) 

x*=x-l if X is an integer

X '=1 TL X if X is a list or string

Some of these s i m p l i f ic a t io n s  can be re gar ded  as 

ob se r v a t i o n s  on our wr i t i n g  habits and in s ti nc t iv e  rea ctions 

towards certain notations* For example, in pl a ci ng  

<S T R x l  N G> together as it is shown, n a t u r a l l y  we have a 

f ee li ng  of gr ou pin g them togeth er  (if readers do not agree 

w it h  this, then they may have more d is a g r e e m e n t  with ALGO L-  

68 in whi c h  iden ti fie r "feel bad" is reg ard ed  as " fee lb a d " ). 

And in Arithm eti c,  it is co n v en t i on a l  to write 2(3+4) for 

2*(3+4).

Of course, one has to be careful in allowin g such
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sh or t ha n d  n ot a t i o n  in a language. There are still 

n u m e ro u s  ques ti ons  to be answered. Are we ab et ti ng bad 

p r o g r a m m i n g  habits whic h are more evil than p o l y m o r p h i c  

op era to rs?  How far can we go in this di re ct io n?

Fu rt h er  d i s c u s s i o n  is limited by the scope of this project, 

so we shall let these que stions remain  as questions.

We m e n t i o n  the ma tt er  only by way of in t r o d u c t i o n  to the 

next chapter.

2.11 I m p l e m e n t a t i o n

There are a few versio ns  of type-free Reckon 

i m p l e m e n t e d  on CDC 66/6400 at ULCC. Ear l i er  ve r sio ns of 

Rec ko n  are w r i t t e n  in LISP, later ve rsi ons  are w r i t t e n  in 

Pascal. One of the Pascal versio ns  formed the basis of the 

t y p e d - R e c k o n  systems who se  logic we shall now discuss.
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A p p e n d i x  A 

P r o g r a m m i n g  Ex a mp les  of R eck on

We shall use Recko n very often in later chapters, 

so readers are r e c om m en d e d to fa mi li a r iz e  th e mse lve s with 

the language from the examples pre sen t here for this 

p u r p o s e .

The fol lowings are reprints of the compu ter  outputs 

from CDC 6400. U n f o r t u n a t e l y  not all the ch ar ac te r s we 

use in this thesis are av ailable on the CDC machine.

We list b el o w the d if f er enc es that will affect us in this 

a p p en d i x  (as well as in app end ice s C and E)

ch ara c t er  used in this thesis CDC 6400

X $

u !

n &

< @

> \

Comments are en cl ose d by "CO MM E N T"  and " C O M M E NT E N D"  

in the listings. A new i n s t r u c t i o n  "print" is used in 

the examples, w h i c h is just or d ina ry  I/O i ns t r u c t i o n  and 

the i n f o rm a t i on  pri nte d will be in the format

<< <O U T PU T  IS : . .
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E X A M P L E  1

START 
BEG INNING

COMM EN T
D E F I N E  ’’D I V I D E ” A N D  ’’DIVISIB LE "
COMM EN TEND

L E T  REC DIV M N A B#
IF M\N THEN DIV(M-N) N (A+1) B ELSE (A,M) FIJ 

L E T  D IV I DE  M N # D I V  M N 0 OJ 
L E T  D I V I S I B L E  M N # I F ( 2 T H ( D I V I D E M  N)) =0

THEN P R I N K  DIVI SIBL E> ELSE P R I N T < N O T  DI VI SI B L E>  Fi; 
PRINTC DI V I D E  18 5)1 
(DIVI SI DL E 2A 6 )
ENDING
FINISH

<<< O U T P U T  IS : [3,3] >>>
<<< O U T P U T  IS ; < DIVI SIBL E> >>>

R E S U L T  OF PROG RA M IS : <D IVI SI BLE >
QED.

E X A M P L E  2

STA RT  
BEG INN ING

C O M M E N T
D E F I NI N G  A DO -L OOP  
COMM EN TEN D

L E T  DOLO OP V N S#
( V; = 1 ;
LET REC G # ( $ ( ) ; I F  V\N THEN <) ELSE

s o ;  V: = v + 1 ; g o  fi );
G O  );

L E T  XfO;
D O L O OP  0 6 C $ 0 : X ; = X + n ;
P R I N T  X
ENDING
FI NI S H

< < < 0 U T P U T  IS : 5 >>>

R E S U L T  OF PRO GR AM IS : 5
QED.
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E X A M P L E  3

START 
BEGINN ING

C O M M E N T
M A P  F(X1, X2, . . . ,XN )= (F XI, F X2, .. . , F  XN) 
COMM EN TEND

L E T  REC M A P  F X # I F  NULL X THEN ( )
E LS E  F(X. D . . M A P  F X* FI,*

MAP( $X: X*X) (1,2, 3, 4, 5) "
EN DING 
FINIS H

R E S U L T  OF PROGRAiN IS : [1,4,9,16,253 
QED.

E X A M P L E  4

START 
BEGINN ING

COMM EN T
THE A R G U M E N T S  OF GE N L I S T  CAN BE I N T E R P R E T E D  AS FOLLOWS;
"X ' IS A L I S T  OR STRING
” F ” IS THE FUNCTION TO BE A P P L I E D  TO EACH E L EM E N T OF "X
" A ” IS THE V A L U E P R O D U C E D  WHEN X IS NULL
” G ” IS U S E D  TO C O M B I N E  THE INDIVIDUAL R ES U L TS
COMM EN TEN D

L E T  REC GE N L I S T  A G F X # I F  NULL X THEN A ELSE 
G( F(X .l ))  (GE NL IST  A G F X*) FI,*

L E T  COMBINE, I DENT#( $X: SY:X: :*Y), ( $X:X),*
PRINT( GENLI ST < > C O M B IN E  I DENT ( <C> ,<0 >, <M> ,<P >,

< U > , < T > , < E > , < R > ) ) ;
C O M M E N T  G E N E R A T E  STRING FROM L I S T  C O M M E N T E N D  
P R I N T ( G E N L I  ST ( ) ($X:SY:X..Y) I DEN T <M ACHIN E> ) ,*
C O M M E N T  G E N E R A T E  L I S T  FROM STRING C O M M E N T E N D  
P R I N T ( G E N L I S T  0 ($X:$Y:X+Y) ($X:X*X) (1,2,3,4))
C O M M E N T  SUM OF S QU ARE  C011 EN TEN D
EN DING
FINIS H

<<< O U T P U T  IS : < COMPUTER > >>>
< < < O U T P U T  IS : [<M>, < A>, < O ,  <H>, < I>, <N>, < E> 3 >>>
< < < O U T P U T  IS : 30 >>>

R E S U L T  OF PROGRAiM IS : 30 
QED.
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FART TWO
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I N T R OD U C TI O N

Va rious reasons have been  of fered for i n cl u d in g  types 

in a l g or i th m i c languages, in c l udi ng the fo l lo w i ng  ;

(1) Pr o gra ms w r i t t e n  in typed languages are ea si er  to debug.

(2) Errors can be detect ed  as early as po s si b l e if type

. i n fo r m a t i o n  is available so that time wou l d  not be

wa s t e d  in e x e cu ti n g erroneous programs.

(3) Type in f o rm a t io n  can be used to produce b e tt e r  code, 

for example, p o l y m o r p h i c  operat ion s can be re p lac ed by 

the apposite routine and coercion operators can be 

inserted w h e n e v e r  necessary.

(4) Objects can be re p res ent ed  more e c o n o m i c a l l y  in machin es  

so that storage space can be mi nimized.

(5) P r o gr a m me r s  need not have to wo rr y  about ma c h in e

r e p r e s e n t a t i o n  of their data.

In our project, we are more c on cer ned  with (2).

The process of det ec t i ng  errors in pro gr am s bas e d  on type 

i n f o r m a t i o n  is kn ow n as typ e- checking. T y p e - c h e c k i n g  

p e r f o r m e d  at compile time is kno wn  as static ty pe -ch eck in g,  

wh il e  that p e r fo r m ed  at run time is know n as dy n ami c type- 

che cki ng  .
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It will be more fruitful if t y p e - c h e c k i n g  pr ocess is 

stu die d i nd epe nd ent  from p a r ti c ul a r  languages. This can 

be a ch ie ve d by ha vi n g a t yp e - c h e c k i n g  sy st e m  so that each 

co mp u ti n g  element can be p r o je c te d  into a c o r r e s p o n d i n g  

type element by a m a pp i ng  function. The t y p e - c h e c k i n g  

s y s t em  is then i nd e pe nde nt from co mp ut ing  languages.

The r e la t io n  be t w e e n  a la nguage and a t y p e - c h e c k i n g  

s ys t em  T^ may be de fined by a m a p pi n g  functi on  0 ^^.

A t y p e - c h e c k i n g  sy s t em  is c h a r a c t e r i z e d  by its elements 

and the o pe ra ti ons  that are defined on these elements.

In next chapter, we shall examine three ty p e - c h e c k i n g  

systems pr o po sed  by Ledgard, Hext and Morris res p e ct i v el y ,  

w h i c h  will be follo wed  by d i s cu s si o n s on the two probl em s 

that cannot be solved by them.

F r o m  our studies on these problems, we found that some 

fu nd a me n t al  concepts have b e e n ov e r lo o k ed  by these systems, 

and the concepts wil l be di sc uss ed in c ha pte r 2 .

We prop os e our sys t e m in chapter 3. Of course it is 

not d e si g n ed  s pe ci f i c a l l y  for those problems, but we think 

we are obliged to suggest some so lutions to them  from our 

system. A more general sys t em  will not be p ro p o s e d  until 

we reach Part Three of this thesis.
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C H A P TE R  ONE 

THREE SIMPLE SYSTEMS

This chapter is intended to give a brief litera tur e  

survey on some recent work  in type-checking. The problems 

that are e x pe r i en ce d  by these systems will be pr e s e n t e d  in 

the last section of this chapter.

1 . -1 Sy s tem L

It is a well kn ow n techique to prove cer ta in pr op er ti e s  

of comput er programs by m a p pi n g  them into some i so mo rp hic  

m a t h e m a t i c a l  system. For example, we may use pr e d ic a t e  

Calcu lus  as a m a t h e m a t i c a l  model to prove co r re ctn es s and 

e q u i va l e nc e  of programs [ M a n n a , 1970]. However, it is not 

our aim here to find out whi c h  ex i sti ng  model is adequate  

to r e p r e s e n t i n g  a t y p e- c h ec k i ng  system. We are only 

i n t er e s t ed  in the proper ti es and c h a r a c t er i st i c s of type- 

ch eck in g systems whi ch  are suitable for fun cti ona l  

languages. Co nse quently, we shall not be e m ba r r a s e d  if a 

kn o w n  model may already exist whi ch  satisfies our 

req uirements. But until we have e s t a b l i s h e d  the n e c es s a ry  

att ributes, there shall be no way that we can identify or 

co nst ru ct  a suitable model.

The sy st em pr op ose d in [ L e d g a r d , 1972] is mo de l le d  

on a subset of the set of ex p re ssi on s in X- Cal culus. 

T yp e - c o n s t a n t s  such as [INTEGER], [ IN T E GE R ^ I N T E G E R ]  and 

others are treated as constants in the Calculus. There is
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a spec ia l constant called [ERROR] which w h e n e v e r  prese nt  

in any part of a type ex pr e ss i o n indicates that there is a 

m i s t ak e  in the type combinat io ns  and c o n s e q u e n t l y  a mist ak e  

in the program.

A m ap p i n g  function $ is used to map each co m pu t i ng  

e x p r e s s i o n  into a c o r r e sp o n di ng  type expression.

Exam p les

(1)$(3) =[I NT EG ER]

(2) $( T R UE ) = [B 0 0 LE A N ]

Pr im i t i v e  ope rators (functions) are ma p pe d  into type- 

cons tants wh ic h are pre-defined.

Ex am p le s

(1) $ (NOT) =[BQOLEAN->BOOLEAN]

(2) $ (OR) =[[ BOOLEAN , BOOLE AN]-^BOOLEAN]

(3) $ ( + ) = [ [ I N T E G E R , I N T E G E R ] ^ I N T E G E R ] u

[[ RE A L , R E A L ] ^ R E A L ] u  

[ [I NT EG ER, RE AL ] -^RE AL ] u 

[[REAL,INTEGER]->REAL]

(which we shall abbrev iat e to t^)
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Three type c on s t ruc tor s are int ro du ce d  in the examples  

above. They are , "u" and and the types co n s tr u c te d

are kno w n  as functional, union and tuple types respec ti ve ly.

C o m p ut i n g varia bl es  are m a p pe d  into "ps eud o type- 

va ria b l es " .  Since the type of all c om p ut ing  va ria b l es  

has to be declar ed prior to use, so, e ff ect ive ly , the value 

of each "ps eudo ty p e- va ri abl e" is fixed by the mapping.

To. comply with the rules of X-Calculus, dec la r at i o n,  such 

as [I NT EGE R]x , is map pe d into the fol lo w i ng  const ru ct

(XX: . . .) [INTEGER]

there should be no con fusion if we use the same n o t a ti o n  

for co mp ut i n g va ria bl es  and "pse udo  t y p e - v a r i a b les" .

Exam p 1e

$( [ I N T E G E R ] x ; x ) = ( X x : x ) [ I N T E G E R ]

=[INTEGER] (by g-reduction)

Type exp r e ss i o ns  must be w e l l - f o r m e d  formu lae  in X- 

Calcul us and they are def ined r e cu r s i v e l y  as

( 1) all ty p e -co ns ta nts  are ty p e- e x p r e s s i o n s

(2 ) all "ps eudo ty pe -va r i ab l e s"  are ty p e- e x p r e s s i o n s

(3 ) if t., t. are type e x pre ss io ns,  then the co m b i n a t i o n  
1 J

(t. t.) is also a t y p e - e x p re ss i on
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(4) if t ̂  is a type e x pr e ss i o n and x is a "p se ud o type- 

va ria bl e" , then (xx:t.) is a t y p e - e x p r e s s i o n .1

Type ex pr es s i on s  can be reduced either by 3-reduction or, 

in the case that they are co m bi na ti ons  of t y p e - c o n s t a n t s , by 

the fo ll o w in g  reduc tio n rules (all t, with or wi t h o u t  

s u b s c r i p t s , a r e  any type exp re ss i o ns  unless stated otherwise)

(RLl) [t.^t .] t is reduced to t, if t.=t, ot he rwi se1 J k k 1 k
[ERROR], Note that if t .=(t t t , ) and1 11 12 in
t . = ( t . , t ,. . . ,t . ) then t,=t. iff n = m and forJ J 1 j2 jm 1 J
every k, l<k<n, =

(RL2) [ [ t J j->t J 2  ̂u[ t 2 j-)-t2 2 ] u ...  ̂[ t^ j-> t ̂ 2 ̂  ̂  is re duced

to tj 2 if there exist j (l<j<n) such that tj|=t^

ot her w is e  [ERROR].

(RL3) [ERROR]t is reduced to [ERROR].

(RL4) t[ERROR] is reduced to [ERROR].

It may be assumed that all infixed o p er at io ns,  such as 

(x op y ) , are tr ans fo rm ed into pr ef ix e d notation, say 

op(x,y), be for e the ma p p i n g  functi on  is applied to them.

Ex amp  1e

$ ( C I N T E G E R ] x ; x + 3 ) = ( X x : t + ( x , [ I N T E G E R ] ) ) [ I N T E G E R ]

= t_^([ INTEGER] ,[ INTEGER])

=[ INTEGER] by rule (RL2)
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It could be much easier to u n de r s ta n d  the re duc t i o n  

rules if we X- def i n ed  the functi ona l types ins tead of 

r e g a r d i n g  them as constants.

Examp les

(1) [t^-)-tj] is X- de fin ed by

(Xx:IF x=t^ THEN t^ ELSE [ERROR] FI)

thus , [ t . -)-t . ] t =1 J K
(XxrIF x=t. THEN t. ELSE [ERROR] FI)t ,1 J K
wh ich  , when g-reduced, yields ei the r t^ or 

[e r r o r ]. We may therefore say that (1) 

formalize rule (RLl).

(2) (t,,t-,...,t ) ->t is X- d ef i n ed  by1 2 n n + 1
(X(x ,x , . . . ,x ):I 2 n

IF(x = t ,)A N D ( x ^ = t , ) A N D . ..AND( x =t ) THEN 1 1  2 2 n n

^n+1 ELSE [ERROR] FI)

(3) 1 i^ ^ i 2^^^^21'^^22^^‘ ' *^'-*^nl'^^n2^^® X defi ne d
(Xx:IF x=t|| THEN t E L S E  IF x=t^j THEN t^^

ELSE IF ... ELSE IF x=t , THEN t ^n 1 n 2
ELSE [ERROR] FI...FI FI)

Hence, (2) and (3) fo rmalize the c o r r e s p o n d i n g  

rules.
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S u m m a r i z i n g  now, we notice that the types of all 

v ar i a b l e s  have to be declared. We have di sc u ss e d  various 

c o n st r u ct ed  types and how type e x pr e s si o n s are formed.

Type e x p r e ss i o ns  are red uced a c c o r di n g  to r e d u ct i o n  rules.

We have sugge st ed the semantics of these rules by X- d ef i n in g  

the fu nc t io n a l types. As Sy ste m-L  is a sub part of X- 

Ca lculus, so t y pe - c he ck i ng  here is a pro cess whi c h reduces 

X -e x p re s s i o n s  to their normal form, and in this case, the 

ty pe- co n st a n ts .  Since type ex pr es s i on s  must be wel l-  

formed formulae too, so a m a p p in g  functi on  is req ui r ed  to 

map c o m pu t in g  e x pr es si ons  into c o r r e s p o n d i n g  w e l l - f o r m e d  

f o r m u 1a e .

We can see from the s i mp l i c i t y  of sy st e m- L  ho w it is 

an ad v a nt a g e to use an e s t a b l i s h e d  mod el  as the basis for 

a t y p e - c h e c k i n g  system. N e v e r t he l e ss ,  it is ad m it t e d by 

L e d ga r d  that his s yst em  cannot handle pa r a m e t r i c  

p o l y m o r p h i s m  (to be ex pl a in e d  later) and other problems. 

A cc o rd i n g l y ,  we shall come back to these pr ob le ms  in later 

s e c t i o n s .
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1.2 S y s tem-H

Hext's system[H e X t ,1966] was not defined ex ac t l y in 

the format we require. This is not s u r p ri s i ng  be ca use  

his paper de sc rib ed a pract ic al  approa ch  to the problem.

We shall therefore read his work wit h an eye to his 

c o n t r i b u t i o n  to general theory.

His Sys te m-H  is defined by four functions, TYM, TYPE, 

UPTYPE and SETTYPE. TYM is his main routine wh i le  the 

others are its subroutines. TYM is defined rec ursively.

SETTYPE maps pri mit iv es  (i.e. v ar iab les  and constants) in 

the p r o g r a m  to elements in the t y p e - c h e c k i n g  system.

" T Y P E ( E )" finds the type of e x pr e s si o n  E; for example, if 

"E" is "2+3", then " T Y P E (2+3)" is [INTEGER]. " U P T Y P E ( E ,t )" 

proves w h e t h e r  or not e xp r e s s i o n  E can have type t (maybe 

after coercion). This is to say UPTYPE (E, t)  can be 

r e w r i t t e n  as " E Q U A L (t ,T Y P E ( E ))", as su m in g  that co e r ci o n  

will be applied w h en e v er  necessary.

The reader may relate TYPE and UPTYPE to the r e d uc t io n  

m e c h a n i s m  de sc ri bed  in System-L.

H ig h e r ordered types are a v ail ab le  to des cri be  types 

of fun ctions (or p r o c e d u r e s ) , the general format of which  

is [D^R], whe re D is the type of domain whi ch  can be 

p r i m it i v e or higher ordered types in turn. "R" is the 

type of range wh ich must be primitive. The re s t r i c t i o n  

mea ns that a function cannot produce fu nc tio n as result.

This is a re s tr i c t i o n  that we aim to remove.
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St ru c t u r e d  types are also allowed. The general format 

of these is (t j ,12 ,. .. ,t^ ) where t ̂  are types. For example 

lists can be de s c ri be d  by structu re d types. This data type 

is not p a r t i c u l a r l y  relevant to our d i sc u s s i o n  here, so we 

shall not pursue it any further.

Two special typ e- con st an ts,  "G ENERAL" and "UNK NO WN"  

are included. One can consider "GENE RAL " as the union of 

all types. But the semantic of "UN KNOWN" is not m e n t i o n e d  

in H e x t ’s paper. It seems to us that it is quite logical 

to inter pr et  "UNKNOWN" as an i n te rs e c t i o n  of all types 

(most pr o ba bly  it will be empty). Fr o m a s e t - t h e o r e t i c a l  

point of view, one may regard "GENERAL" and "UNK NO WN"  as 

the un i ve r s al  set and empty set respec ti vel y. However, any 

d e f i n i t i o n  of univ ers al set as "the set of all sets" offers 

us little help in un d e rs t a n d i n g  its property, nor is the 

name "e mp ty set" pa r t i c u l a r l y  me a ni n g f u l  to us. When 

viewe d as special elements of a lattice (with part ia l  

or d e r i n g  >), as is the case in System-H, "GEN ERA L" and 

"U NKN OW N"  are regarded as the top-most and b o t t o m - m o s t  

e le me nt s of the lattice in the sense that for any element e 

in the lattice, " G E N E R A L " > e > " U N K N O W N "  is always true.

Now, we try to construct a ty p e- c h ec k i ng  sy st em  for 

Hext, f ol low ing  the guidelines we have set down in the 

o p e ni n g  chapter of this part.

(1) The elements of the sys t e m include all p r im i ti v e  types

in the language and functio na l types for
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eleme nts  t^, t^ already in the system.

(2) Some ty pe -c o ns t a nt s  con st r uc t e d in (1) will be 

assig ned  to pr imi ti ve operators and functions (for 

e x a m p l e ,+).

(3) To complete the set of t y p e - c o n s t a n t s , we have to 

include "GENERAL" and "UNKNOWN".

(4) The re d u cti on me ch a n is ms  will be those defi ned  by 

routines TYPE and UPTYPE.

So far we regard System-H as similar to Sys te m- L except 

for eleme nt s "GENERAL" and " U N K N O W N " . The f o l lo w i ng  are 

a list of remarka bl e differences,

(1) The pr imi t i ve  types in Sys te m- H are p a r t i a l l y  ordered. 

This means that the ord eri ng  does not n e c e s s a r i l y  hold 

for any two ar bitrary types. Genera lly , wh e n t^>tj,

we say that t ̂  is more def ined than t j . This shall be 

interpreted to mean that objects of type tj can be 

r e p re s e nt ed  by objects of type t^. Th er e f or e  we 

com pl e t el y  agree that such a rel at io n should not hold 

b e t w e e n  any two arbitr ar y types, othe rw ise  the 

fol lo w i ng  exp re s si o n  will be reg ar de d as legal-- 

" 3 + F A L S E " — whi ch may not be very desirable. In his 

su bse q ue n t  treatment it proved c o nve nie nt  to extend 

his part ia l orderin g to a lattice.
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However, we are di s a pp oi n te d  that pa rtial or de r in g  is 

not defined for fu nctional types (i.e. types c o n s tr u c te d  

by in sys te m-H  and in fact in most t y p e - c h e c k i n g

systems. In the next chapter, we shall prove part ia l 

o r d e ri n g  does exist among functio na l types (in the sense 

of inclusion). Incide nt all y, the absence of part ia l 

o r d e ri n g  among fu nctional types in most t y p e - c h e c k i n g  

systems indicates that the pr op er ti e s of f u nct io na l types 

have not been pro pe rly  studied. So it is not s u r p r is i n g  

that these systems are not suitable for f u nct ion al  

l a n g u a g e s .

(2) Types of con di ti ona l ex pr es s i on s :

The type of the ex p r es s i on  "IF b THEN x ELSE y FI" is 

t^u t^ wh ere  t ^ , t^ are types of x and y res p ec t i v el y .

The type e x pr e s s i o n  t^ut^ is read as "the union of types 

t^ and ty", and b stands for the Bo ol e a n e x p r e s s i o n  

w h i c h  yields w ith er TRUE or FALSE.

In general, t j U t 2 =tj if t | > t 2 , ot he rw i s e t j u t 2="the 

least upper bound of t ̂ and t2" w hi c h  might be 

"GE NERAL" in a lattice. It seems to us that in ha v i n g  

"GEN ERA L"  in a typ e - ch e c ki n g  system, in some cases, 

run-tim e t yp e- ch eck ing  is i ne vi ta ble  unless we have 

some me th od  to suppress it.

(3) Tr e a t m e n t  of R ec urs iv e de fin i t io n s  :

In the example "REC f [I N TE GE R ] n E I F  n=0 THEN 1 ELSE 

n*f(n-l) FI", one may re adily assign or deduce types
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of every object in the right side of the d e f in i ti o n  

(let it be e) except f. In order to p e r f o r m  type- 

checking, Hext's syste m will assign a first a p p r o x i m a t i o n  

type to f, w hi c h  in the absence of any k n o w l e d g e  can 

only be [UNKNOWN]; call it t Q . Let t^ be the type 

obtained for f in the i ' th it er at i o n of type d ed uc t i o n  

and TYPE be the process for d e t e r m i n i n g  the type of "e", 

then t^^i is obtained as follows:

t. ,=t.uTYPE(e) 1 + 1  1

The series of ite ra t io n  will ter minate if there exists

n such that t = t The t er m i na ti o n can only ben n - 1 ■'

gu ar a n t e e d  if there exist an upper bo und  for every path 

in the la tt ic e ,w hi c h is why Hext was forced to adopt a 

lattice model of types. There are th oro ug h d i s cu ss io ns

on such type deduct ion s and the condit ion s for their

te rm i na t i on  in [ T e n e n b a u m ,1974].

(4) C o e r c i o n  among functional types

Co er ci on is outside the scope of our di sc ussion.

We men t io n  it here beca us e what is de sc ri bed  in Hext's 

pape r is quite interesting. Suppose f is a formal 

p a r am e t er  of type and (f x) is typewise correct.

If g is the c o rr es p on d i ng  actual p a ra m et er  of type 

then

(a) X has to be coerced from t ̂ to t^ before  g is 

applied to it durin g execution.

(b) the result of (g x) has to be coerced from t ̂  to t^ *
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Th ere fo re , we require coercio n from to t,->t^ to3 4 1 2
be p e r fo r m ed  in two steps. It is ad m it t e d by Hext that 

this idea has not been implemented.

1.2.1 Su mmary

We have used Sy st em- H to illu st ra te two points:

( 1) p a rti al ord er in g among elements of a ty p e - c h e c k i n g  

sys tem.

(2) the use of "G EN ERAL" and "UNK NO WN"  in typ e- checking.

Our d i s a p p o i n t m e n t  with sy ste m - H is that there is not 

enou gh work  on fu nctional types, so it is not an u n e x p e c t e d  

result that sys te m- H shares sh ort c o mi ng s  with System-L.

In fact, in one way or the other, t y p e - c h e c k i n g  of f un ct io nal  

types is em er gi n g  as our central un s ol v e d problem. So let 

us turn now to Morris' treatment of this.



74

1.3 Sys tem-M

S y s t em - M  [ M o r r i s , 1968] is claimed to apply en t ir el y  

to fu n cti on al  types. Elements of this sys t e m are:

( 1) ty pe — constants which can be divided into two s u b ­

classes ,

(a) pr im it ive s tj ,t ^ ( e .g .[INTEGER] ,[R E A L ] ) , 

though in his paper, only the type "N UMBER" is 

used in the examples.

(b) h i g h e r - o r d e r e d  types: functional types are the

only class of higher ordered type me n t i o n e d  in his 

paper, the general form of which is [t^-)-tj] wher e

t ^ , tj are types, (which can be pr im it ive  or 

f u n c t i o n a l ) .

(2 ) ty pe -va ri a bl e s , Vj, V^, ..., type values as de s cr i b ed  

in ( 1) can be assigned to t yp e- v ar i a bl e s  d ur ing  type 

deduction.

P r i mi t i ve  operators (functions) will be m ap p ed  into 

t yp e - ex p r es s i on s  as before. The s ys t em  is used to check 

f u n c t i o n a l i t y  of ex pre ssions in X-Calculus. F u n c t i o n a l i t y  

tells us what type deductions are p e rm i s si b l e from 

synt ac t ic  co ns ide rat io ns alone.

For the purpose of ill ust ration, ex p re ssi on s are 

assu med  already parse d into tree forms. For example, the 

e x p r e s s i o n  (Xx:x)3 can be r e pr ese nt ed as in d i a g r a m  (1.3.1)
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D i a g r a m  (1.3.1)

There are four rules gov erning the type relations 

among various constructs of the language.

(1) All oc cur re nc es of the same bound var iab le  must have 

the same type. For example, the two o cc u r re n c es  of 

X in d i a g r a m ( 1.3.1) must have the same type.

(2) Type of X~node = [type of the left des Cendant ]->[ type of 

the right descendant]. This is to say that X- 

ab st r act ion s can be int e rp re t ed  as functions.

(3) If t |^^2 the type of the left descend an t of a y-node, 

then the right des ce nda nt must be of the type t ̂ , and

the type of that y-node will be t^

(4) A constant is always m app ed into a p r e - d e f i n e d  type- 

constant. For example, 3 will always have the type
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[NUMBER] (which can be abb re vi a t ed  to [N], the reader 

b ei n g aware that it is the only pr im it ive  type 

co ns i d er e d  here).

T y p e - c h e c k i n g

Type checking will proceed as follows,

(1) Eve r y  node and leaf is ma ppe d into a dis ti nc t type-

va ri ab le  as shown in d i a g r a m ( 1.3.2 ) for the example

given in d i a g r a m ( 1.3.1). The V^'s are related to each 

other according to the rules stated in the last 

paragraph. These re lat io n sh i p s can be r e pr e s e n t e d  by 

a set of sim ultaneous equations await ing  solution.

For example.

V4=V5

V 2= V , ^ V 5 

V 2 = V 3-.V, 

Vj=[N]

rule 1 

rule 2 

rule 3 

rule 4

V

D i a g r a m  (1 .3.2)
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(2) All redundent variables ap p ea rin g on the left of an

e qu a t i o n  will be removed. For example, all occ urr en ces  

of ^4 ^ t» o replaced by . Similarly, all can

be replaced by [N], So we shall be left with the 

f ol l owi ng equations.

V 2=V;.Vs

V 2 = [N]->V^

Vg=[N]

If there is any c o nt r a d i c t i o n  in the r e m a in i n g equ ations 

then the ex pr e ss i o n under c o n s i d e r a t i o n  is regarde d as 

typewi se incorrect.

Ex a m p l e  of c ont rad ic tio ns

( 1) f 2 are two di sti nct

type constants

(2 ) t^=V^^Vj where t^ is a primitive type-constant, and

V^, Vj are any type-variables.

(3) If there exists two equ ations who se  lefts are the same, 

for example, A=B^->Cj and A = B 2^ C 2 , then we can replace 

them by two additional equations, ®|~®2 ^ 1~ ^ 2 ’

At the co mp l et i o n of this step, we shall r etu rn  to 

s t e p (2) again. Thus s t e p s (2) and (3) will form a 

loop which will be exited w h e n e v e r  s t e p (3) is no 

longer applicable-
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E xa mp le

the two eq uations of can be rep la ced  by

V^=[N] and

V 3 =V,

(4) If there is no cir cu l ar i t y among the type e x pr e ss ion s,  

then the p r o g r a m  will be regarded as typewise correct.

E x a m pl e  of circu la rit y

V . =V . -)-V, whi le1 J k
V . =V .->V J i m

if we replace Vj in the first eq u at i o n by the 

right side of the second equation, we shall have 

v . = [ v . ^ v  ]->V,1 1 m k
Oc cu r re n c e of the same type va r iab le  on both

sides of the equation, as V ^ , means it describes

a circular type. There cannot exist type-

constants that have such properties.

Consequ ent ly , any programs whose type equat ion s

resulted in such a si tua ti on will not be

accepted by System-M.

Exa mp l e of step (4)

At this stage, we shall have the f ol low ing  

equations :

V s = N  V g = N  V j = N

N ei th er  of these equations is circular, so 

"(Xx:x)3" is typewise correct.



79

Let us examine the two occ ur rences of V ̂  in step(l) 

again. They are " V 2 =V^-j.V^" and . The former

desc rib es  the type of "(xx:x)", while the latter occurs 

w he n  "(xx:x)" is applied to an argument. T h er e fo r e  V 2 

is used to link up the defini ng  instance and the ap pl yin g  

in sta nc e of the ^'expression. Since V^ is the type of the 

argume nt to be acted upon by the funct ion  " ( X x :x )" of type 

so it is ne c e ssa ry that V^=V^, and the same 

c on c l u s i o n  can be applied to Vj and V^. So step (3) in 

this ty pe -c h ec k i ng  process is analogous to the type 

re du c t i o n  m e c h a n i s m  in previous systems (although it seems 

"e xp a n si o n " wo uld  be a more ap pr op ria te  word here).

Un lik e the previous systems, type errors may not be 

d e t e r m i n e d  i mm ed ia tel y they occur. D e t e r m i n a t i o n  has to 

wait until ev e nt u a ll y  some c o nt ra d i c t i o n  appears among the 

eq uations. In system-H or system-L, t y p e - c he c k in g  

pr oce ed s more or less in the same order as the p r o g r a m  will 

be executed. But in system-M, there is no p r ed e f i n e d  

order w i t h i n  each step, as the result will be the same if 

we change the order of the equations.

In conclusion, we find that Morris' i n t r o du c t io n  of 

ty pe - v ar i a bl e s  into type algebra is a great advance.

For example, in the ex pr e ss i o n " ( X x :x ) 3", there is no 

d e c l a r a t i o n  for the type of x . Nor do we kn ow  the type of 

"(xx:x)3". Nevert he les s, as we have shown above, we are 

able to prove that wh et h er  ex p r ess ion s are typewise correct 

or not.
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1.4 Probl em s in t yp e- c he c k in g

There are two main problems which cannot be solved by 

any of the systems de scribed so far. They are pa r a m e t r i c  

p o l y m o r p h i s m  and circular types. We shall only define 

these problems here. Solutions to them will be propose d  

in later chapters after we have dis cu s se d our own systems.

1.4.1 Pa r a m e t r i c  P o l y m o r p h i s m

The p r o b l e m  is be tt er il lus t r at ed  by example,

Ex am p  1e

( Xtw ic e: (tw ic e n u m e r i c f u n c t i o n ) ( n u m e r a l ) ...

(twice s t r i n g f u n c t i o n ) ( s t r i n g ) . ..)

( X f :Xx:f(f x ) )

A s s u m i n g  that the types of "nu meral" and "strin g"  are t^ 

and t ̂  r espec ti vel y,  the types of n u m e r i c f u n c t i o n  and 

s t r i n g f u n c t i o n  will be and res pe ctively.

Our p r o b l e m  is "what is the type of twice?".

We notice that as far as "twice" is concerned, it will 

accept arguments of any type. Wh et h er  or not these 

arg uments are "happy" with each other is a ma t t er  that 

cannot be det er mi n e d at compile time, unless we can express 

some re l at i o ns hi p  among arguments in the type e xp r e s s i o n  

of a function. This is not po ssible in o rd ina ry  type- 

chec kin g systems.
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This example reveals that there are some objects in 

t yp e- fr ee models that are u n a cc e p ta b l e by most type- 

c he c k i n g  systems bec au se there is no adequate type e xp r e s s i o n  

to be ass ig ne d to the objects.

1.4.2 Ci r cu lar  Types

Again, we il lustrate this p ro b l em  by example,

(Xg:g(g,2)) (x(f,n) ;IF n = 1 THEN 1 ELSE n*f(f,n-l) FI)

there is no recu rs ive  de f ini ti on  in this example, and it 

is a correct p r og ra m  which yields 2 as result.

In order to simplify this problem, let us assume that 

the fun ct io n takes only one argument, say f(f). Suppose t 

is the type of f, since f is a function, so t must be a 

f u n ct i o na l type, say thus we can write down the

fo ll o wi n g  equ at io n :

t = t ] -^t^ . . . ( 1 )

whe re tj is the type of the argument ex pe c t e d by f as we 

have said before. But if f can be applied to itself, then 

tj must be the same as t. Th e re f o re  (1) can be re w r it t e n  

as :

t = t->t2 ... (2 )

" ( 2 )" is imp oss ibl e because it is not p os si bl e to have a 

type ex p re s s i o n  to be a subpart of itself, as can be seen 

from the way that fu nctional types are constructed. 

Co ns e qu en tl y, it will be imposs ib le to assign a p ro pe r type 

to f .
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An ot h er  example, we saw in Part One, chapter 1, how 

the classes of re cursive functions, for-loops and whi l e-  

loops are founded on the Y - c o m b i n a t o r , wh ose  e x p r e s s i o n  

in cludes a s u b ex p r es s i on  of the form (f f). Yet we have 

just seen that the logical theories of t y p e - c he c k in g  

d ev e l o p e d  so far all reject expre ssi ons  of this form.

1.4.3 The effect of type problems on language design

The easiest way to solve the problems posed above 

is to ab andon altoget he r these "unsafe" structu re s in the 

desig n of a language. This could be done by in si s ti n g  all 

types of va ri ables must be fully declar ed  as in A l g o l - 6 8 .

The cost that we have to pay is to give up the 

ex pr e ss i v e power and fl e x ibi lit y that we have enj oyed in 

type- fre e programming. Let us illustr ate  this by an 

exam ple  which we have ge n e ral ize d from [Burge, 1972] ,

Examp 1e

LET REC f ( x j ,x ^ , , x ^ ,x ^ ,x ^ ) =

IF Xj=x^ THEN x^ ELSE

x^(x^ Xj)(f((x^ Xj),x^,x^,x^,x^,x^))

Suppose we have also defined the foll ow ing  

functions :
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LET times x yEx*y 

AND pred n E n - 1 

AND ident xEx;

then the factorial of any po si tiv e nu mb er n 

can be obtained by simply ap ply ing  f to the 

list of arguments (n,0 , 1 ,ti m es , i de nt , pr e d ).

In fact, with suitable choice of arguments, we can 

d es cr ib e a few l is t -p r o ce s s in g functions in terms of "f" 

and the c or r e sp o n di n g  list of arguments. Lest it be 

thought that this kind of thing is not serious programming, 

let it be poi nted out quite firmly that programs of this 

ge ne r a l i t y  are called opera ti ng systems or simply computers

However, in spite of the usef ul nes s of the fu nc ti o n  

"f" in our example, it is im po ssi bl e to define it in 

A l g o l -68 be ca use  we are unable to declare its type due to 

absence of pa ra m e tr i c  p o l y m o r p h i s m  from this language.

The foreg oi ng  paragra ph s descri be  the s i t u a t i o n  that 

we are facing at the moment. The problems stated here 

account for the initial motives of our i n v e s ti g a ti on s  

w h i c h are to be desc rib ed in follo wi ng  chapters.
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CH APT ER  TWO 

TYPE CALCULUS

In this chapter we shall examine p ro per ti es of some 

type con structors. These will include the co ns t ruc to rs  

of functional, union and in te rse cti on  types. The i n t e r ­

r ela ti on s among them are also discussed. The concepts 

e s t a b l i s h e d  in this chapter will be used in c o n s tr u ct i n g  

two t y p e -c he c ki n g  systems in later chapters.

2.1 F u n ct i on a l  types

D e f i n i t i o n  (2.0)

If t., t. are types, then t.->-t. is also a type which1 J j t' y 1 j
de scr ib es  a class of functions so that each fun cti on  when 

applied to objects of type t ^ , yields an object of type t ^ .

T h e o r e m  (2.1) (theorem of fu nc ti o na l i ty : s tr i c t)

If t.-^t. is the type of f and t. is the type of x, 
1 J 1

then tj is the type of (f x)

The proof of Theorem(2.1) comes directl y from d e f i n i t i o n (2.0), 

so we shall omit it here.
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2.2 Types are Sets

Co ns i de r  types as sets, for example, [INTEGER] is the 

name of the set {1,2,3,...} and [BOOLEAN] is the name of the 

set {T RU E, FAL SE}  . Similarly, [ INTE GE R->INTE GE R] is the name 

of the set { f ̂ ,f ̂ ,. ..} so that for every i, f ̂  is in the set 

[ I N T E GE R ^I N T EG ER ]  and for every x in [IN TEGER], (f^ x) is in 

the set [INTEGER].

Most of the theorems be lo w  may be novel to types, but 

they are quite well known among sets, so in those cases 

w he r e proof is omitted, readers may consult any book on set 

theory or p r o p o s itional calculus.

D e f i n i t i o n  (2.2)

If A and B are types, then A includes B (A^B) means 

that for every x in B, x is in A.

E xa m p le

let EVEN be the set {2,4,6,...}, then it is 

trivial that [ I N T E G E R ] 3 [EVEN]

Now, let us mo di fy  Theorem(2.1) as follows:

T he or em (2. 3)  (theorem of functiona lit y:  extended)

then

If t.-^t. is the type of f and t^ is the type of x,1 J k
t . is the type of (f x) if t.£t J I K
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Proof

If X is in and then by D e f i n i t i o n (2.2),

X must be in t ̂ . Since x is in t^, then by T he ore m(2 .1 )

(f x) must be in t ^ .

It is clear that Theorem(2.3) is more po w er f u l than

Th eor em (2. 1) be ca use  the latter requires " t^ = t ̂ " w hi c h is

a str on g er  re q ui rem en t than ''t .=> t. " , (t =t. implies t.^t,1- k k 1 ^ 1- k
as well as t^2 t^). It is worth no t i ci ng  that ty p e -c h e c k i n g  

systems for most languages are based on the concept of 

T heo r e m( 2 , l)  while all our systems (System-Y and System-F) 

are based on The o r e m (2.3) .

In con si d er i n g types are sets, there is no i n d ic a t io n  

that [ R E A L ] 2 [INTEGER] or [ I N T E G E R l ^ C R E A L ] . This is 

p a r t i c u l a r l y  true for languages wh ere  co er ci on  does not 

exist so that diffe re nt  symbols have to be used for integer 

and real a ri t h em eti ca l operations as it they wer e dis ti nc t  

types.

2.3 Un ion types

We shall seldom  come across uni on  types if we are only 

i n t er e s te d  in ar ith em e ti c a l ma ni pu l at i o ns .  However, union 

types can occur quite n a t ur a l ly  if we are dea li ng with more 

c o m pl i c at ed  data structures. For example, we may have data 

types called [BOYS] and [GIRLS], then the data type 

[CHILDREN] can be regarded as the union of [BOYS] and [GIRLS] 

S ym b ol ic al ly,  we write
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[ C H I L D R E N ] = [BO Y S]u [G IR LS]

It is obvious that [ C H I L D R E N ] 3 [B0YS] and [C H I L D R E N ] G I R L S ]. 

In general, we have the fol lowing theorem.

T h e o r e m ( 2.4) (proof omitted)

If t=tjUt^, then t2 tj and t2 t^.

Suppose a ge o f ch i l d r e n  is the function for finding the 

age of childr en  and let us assume its type is [CHILDREN-^INTEGER] 

If [b o y s ] is the type of x, then accor din g to T h e o r e m (2.3), 

[ i n t e g e r ] will be the type of ( ag eo f ch i l dr e n  x ) . We notice 

that the same ex pr e ss i o n is un def i n ed  under T h e o r e m ( 2.1),

(but A l g o l -68 makes it legal by ha vi n g  coercions). On the 

other hand, if [BOY S^ INT EG ER ] and [CHILDREN] are types of 

ageo fbo ys  and y res pe ctively, then the type of (ageofboys y) 

will not be defined in either theorems.

Union types can be united from any other types, including 

un io n  t y p e s .

T h e o r e m ( 2.5) (proof omitted)

For any types A, B, and C,

[ Au B ] u C = A u [ B u C ] = [ A u B u C ]
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2.4 Type p u z z le

Suppose function f is defined as follows:

f(g)=(g l)S(g I'O)

wh er e  g is the formal para met er of f and 0 is some operation 

that we shall leave undefined and "1", "1-0" are in [INTEGER] 

and [real] respectively. Let "t" be the type of the result 

of the e x pr e s s i o n  "(g l)0(g I'O)". As s u m i n g  that co erc i o n

is not allowed, our puzzle is

"what are the types of f and g?"

2.5 S o lu tio n to the puzzle: first attempt

A c c o r d i n g  to the def in it i o n of f above, g is a fun ct io n 

w hi c h  is defined for both integers and reals. So as our 

first attempt, we let

type of "g" =[ IN TE G ER ^ t  j]u[REAL->t2 ]

w h i c h  means that when g is applied to an integer, it yields 

a result of type tj or if applied to a real, the result is 

of type 12 or otherwise undefined. Le d ga rd and others

also used the union notat io n to define the type of polymorphic 

ope ra t io n s  such as "+". Co rr e s po n d in g l y,  the type of f is:
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[[ [INTEGER-^t J luCREAL-^t^] ]->t]

w hi c h follows the th eorem of f u n c t i o n a l i t y  (Theorem 2.3 or 

2 . 1) and t is defined in last section.

Suppose "h" is a function of type [I N T E G E R ^ t ^ ], then 

a cc o r d i n g  to T h e o r e m ( 2.3), the type of (f h) is d e f in e d  and 

is [ t] b e c a u s e  [ [ INTE GE R->t j ] u [ RE AL^ t ̂  ] 2 C INTE GE R^ t ̂ ] 

a c c o r d i n g  to T h e o r e m ( 2.4). Thus as far as the type is 

co ncerned, f can be applied to h.

F ro m  the com p u ta t i on al  point of view, w he n  f is applied 

to h, the actual param et er h will su bs tit ute  for the formal 

pa ra m e t e r  g t hr oug ho ut  the d e fi ni t io n  of f. So we should 

end up with

(h l )B (h  1-0)

As we have said above that the type of h is [ INTE GE R->t j ] 

w hi c h means h is app licable to integers only and will be 

u n d e f i n e d  for any other objects. Co n se qu e nt l y , (h 1*0) 

w o u l d  be undefined. This c on tra dic ts  our st ate me n ts  above 

that (f h) is typewise correct.

So it is not desirable for the type of f to be 

[ [ INTEGER-^t J ] u[ REAL->'t2 ]'^t ] nor for the type of g to be 

[[ IN T E GE R ^ t  J ] u[REAL->t2 ] ] .
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We have to in troduce the idea of i n t e r s e c t i o n  types 

bef or e  we can pro pose our second attempt at so l ut i o n of 

this puzzle.

2.6 I n t e r s e c t i o n  types

D e f i n i ti on ( 2. 6 )

If A, B are types, then for any object x, x in type 

[AnB] implies that x in A and x in B.

At first sight, it seems that the i n t e r s e c t i o n  of two 

types must always be empty (that is, the two types have no 

el eme nt s in common).

Ex am p le s

(1) B O Y S n G I R L S = E M P T Y

(2) I N T E G E R n R E A L = E M P T Y

However, a functio n f ap pl ic abl e to BOYS may also be 

a p p li c a bl e to GIRLS, (for example, f may be the funct ion  

for fi nding their height, weight, etc.). Thus we establish 

the fo ll o w in g facts:

(1) f is in [BOYS^t]

(2) f is in [GIRLS^t]

whe re  t is some ap pro pr ia te type.
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Since it is the same "f" in (1) and (2) above, it means 

that f is the element of both sets. So the i n t e r s e c t i o n  of 

[BOYS->t] and [GIRLS^t] cannot be empty and f is in [BOYS->t]n 

[GIRLS^t], Th e re f o re  we reject the provi so  in most algorithmic

la nguages that types should be distinct.

T h e o r e m (2.7) (proofs omitted)

If tj and 12 are types, then

(a) t j n t 2£tj

(b) t | n t 2Ç t 2

(c)

(d) [ t j n t 2 ] n t ^ = t j n [ t 2 n t 2 ] = [ t j n t 2 n t ^ ]

2.7 So lu t i on  to the puzzle: second attempt

In this second attempt, we let

type of g = [ INTEGER->t J ] n [ RE AL->t 2 ] , so that

type of f = [ [ [ I N T E G E R ^ t | ] n [ R E A L ^ t 2 ]]^t]

whe n f is applied to h, d ep en di ng on the type of h, the 

fo ll ow ing  are some of the po ssi ble  cases:
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(1) type of h is [ I N T E G E R ^ t ^ ]:

type of (f h) is und ef in e d  be ca u se  [ [ I N T E G E R ^ t ^ ] n 

[ RE AL^ t 2 1 ] eC INTE GE R-> t J ] ac co rd ing  to Th eor e m ( 2 . 7a)

(2 ) type of h is [ R E A L ^ t 2 l:

type of (f h) is un de f i ne d  for the same re as on  as ( 1)

(3) type of h is [ [ INTE GE R-> t j ] u [ RE AL-> t ̂  :

type of (f h) is also undef ine d a cc ord ing  to The ore ms  

(2.7c and 2.3)

(4) type of h is C INTE GE R-^t j ] n [ RE AL^t 2 ] n t (where t can be 

any type) :

type of (f h) is d ef ine d be ca u s e [ INTEGER-^-t ̂ ] n [ REA L^ t^  ] E 

[ I N T E G E R ^ t J I n C R E A L ^ t ^ l n t  .

Rea der s may be in te r es t e d to find that in cases 

un d e f i n e d  above, the co m p u t a t i o n  will also be und efined.

And for defi ne d cases, they will be defined duri ng  computation.

Thus in this attempt, we have obtain ed  the "c o r rec t"  

types for both f and g . But if g is in the set "[[INTEGER-^ 

tj ] n [ RE AL^t^]]" then g must be in the set " [ [ INTE GE R-> t j ] u 

[ RE AL-)-t 2 ] ] " b e ca u s e the l a t t e r 2 tbe former a c c o r d i n g  to 

The o r e m ( 2. 7 c ). In other words, our first at tempt on the 

type of g should also be correct. In fact, there are 

infinitely many so lutions b e ca u s e if "t" is the solution,  

then for any type t ̂ , "tut/' is also a solution. But as 

we iterate the process further and further, our kn o w l e d g e
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of the type of the object diverges from our second attempt 

and that is the re as o n  why solutions in the first attempt 

less well de fined than that in the second attempt.are

T h e o r e m ( 2. 8 )

If tj, t 2 are types and then for any object f,

if both "f in tj" and "f in t 2 " are correct, then we say 

"f in t2" is a more exact d e s c r i p t i o n  than "f in tj"

Suppose we have a uni ve rs a l  type [U] such that for any 

a rb i t r a r y  type t, [Uj^t is always true. Then it is obvious 

that we can always assign [U] to any object and so in our

program, every object will be of the same type. This is

the s i tu a t i o n  in type-free languages (logic al ly it is the 

same w h e t h e r  we say every object has the same type or every 

obje ct has no type). So it is not enough in just h a vi n g  

an ar b it rar y correct type assi gnm en t (e.g.Cu]), we always 

have to look for a more exact one.

Thus in the above case, if both "g in [ [ INTE GE R-> t j ] n

[ R E A L ^ t 2 ]]" and " g in [ [ INTE GE R-^t j ] u [ RE AL^ 12 ] ] " are correct, 

the former should be pr e f er a b le  to the latter. In general 

we should ascribe i n t e r se c t io n  types to p o l y m o r p h i c  functions 

rathe r than union types.



94

C o r ol l a ry

The type puzzle can be g e n er a li z e d as 

f(g)=( g aj)S(g 3^)0 ... 0 (g a^)

whe re  for every i, l<i<n, a^ is of type t ̂  and (g a^) is of 

type t ^ .

So "g" is of type [ t ̂ t  ’ n t _->t. ' n ...n t ->t '], and by1 1 2  2 n n
T h e o r e m ( 2 .7), this is a smaller set than any

In a more general sense, g may be of type [tj->-tj’n ...nt^->t^’ 

n ...] for all i, l<i<°°, as in the example f(g,a)=g(a) 

whe re  a can be of any type t ̂  (l<i<«>). We can imagine that

the set will becom e smaller and sm aller as i b ec ome  big g er  

and bigger. Thus in practice, we may regard Ctj-^tj’n ... 

n t ^ ^ t ^ ’n ... ] as an empty set as i appro ach  infinity.

In other words, we could not then declare f, g (as defi ne d  

above) in typed languages. But f then defines a Turi ng  

M ac h i n e  or O p er a ti ng  System. Hence Tu ri n g  Ma ch i n es  or 

O p e r a t i n g  Systems are proved imp oss ib le  to declare in typed 

l a n g u a g e s .

T heo re m( 2.9 )

For any types tj, t^ and t,

[tjUt2]->t = [tj-)»t]n[t2->t]
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Proof

let (LI) tj be the set {a ̂ ,a 2,. . . )

(L2) 12 be the set {bj,b2,...}

(L3) [tjUt2]-^t be the set {f^,f2,...} 

(LA) [tj->-t] be the set { g j , g 2 v * * }  

(L5 ) [ t J-> t ] n [ t 2^t ] be the set

(L6) [t^^t] be the set {hjjh^,...}

Ded uc t i on s

(Dl) for every i, is defined for the set { a ̂ ,a 2 ,. . . )

and produc es  result in the set t. (by T h e o r e m  2.1)

(D2) for every j, h ̂ is de fined for the set {b^ ,b ^ , • • • }

and produces result in the set t. (by T h e o r e m  2.1)

(D3) for every k, there must exist i and j such that

c,=g.=h. (by d e f i n i t i o n  2 .6 )K 1 J
Thus, c^ is de fined for the set { a ̂ ,a ^ ,. . . } as well as

the set { b | , b 2 ,...} and produces results in the set t

in both cases. In other words, c, is d e f i ne d  for thek
set {a J ,a 2 ,...,b J ,b 2 ,.••} and produc es  results in the 

set t .
(DA) for every v, f^ is defi ned  for the set { a ^ ,a 2 ,...,b ^ , 

b ̂ ,. . .} and produces results in the set t.

(D5) from (D3) and (DA), {f ̂ ,f 2 ,.. . } must be the same set

as { C j , C 2 ,...}, therefore

[ t , u t 2 ] ^ t = [ t | ^ t ] n [ t 2^c]

qed.



96

In fact, if we re i n te r p r e t  as i m p l i c a t i o n  in

p r o p o s i t i o n a l  calculus [Edwards, 19 7 5 ] [Curry, I 958], then 

T he o r em ( 2 .9 )  can be proved quite easily by t r ut h - ta b l es  

w hi c h  one can find in any textbook on p r o p o s itional calculus

2.8 Summary of the three co n st ru ct ors

(1) We expect that our re l a x a t i o n  on the d e f i n i t i o n  of type 

f u n c t i o n a l i t y  provid es  a basis for a more po we rf ul  type- 

ch ec k in g  system.

(2) Some program s which we hold to be log ically co rrect are 

rej ec t e d by most systems due to the in f l e x i b i l i t i e s  of 

T h e o r e m ( 2.1)

Exa mp 1e

(X[BOYS->INTEGER]f : . ..) ( [ CHILDREN->INTEGER] g)

is, we believe, logi ca lly  correct b ec a u se  "g" 

can be applied to a larger dom a in  than that 

requir ed by " f".

In this example, we extend our no t a t i o n  by 

al low in g a type to pr ec ed e an object that is 

not a b i n d i n g  variable. For example,

( [ CHILDREN-)-INTEGER] g) means the type of g is 

that pre ce di n g  it.
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(3) We en c o u n t e r e d  a pr o b l e m  in using Th eo re m(2 .3)  wh en  the 

union type is used in an u n r e s t r i c t e d  manner. We res olv ed  

the p r o b l e m  by int ro du ci n g i n t e r s e c t i o n  types and the 

concept of "more exact" type description.

(4) Th e or em (2 .1)  has suffic ed for co mpu t i ng  systems for so 

long partl y be c au s e  need for partial order ing s of types 

(coercion) has only recen tl y been felt and part ly  b e cau se  

f un c ti o n al  types have been play ing  a very minor part in type 

c h e ck i n g until our d is cov ery  that A l g o l -68 does not suffice 

for d e c l a r a t i o n  of the useful class of p o l y m o r p h i c  procedures.

Similarly, the argument can be applied to i nt e r s e c t i o n  

of two or more types. These are not n e c e s s a r y  if our 

c on ce rn has been re str ic t ed  to pr im i ti v e  types only (such 

as inte ge r or real). But it will be a vital area of study 

w h e n  f un cti on al  types are studied se r i ou s l y as in our 

sys t e m s .

(5) In A l g o l -68 and etc., po l y m o r p h i c  functions are 

r es t r i c t e d  to only a limited number of o pe rat ors  and each 

o p e ra t o r has to be r ed ec la red  for each desired type.

But, if a user can define his a rb itr ar y i n t e r s e c t i o n  and 

uni on types, we shall expect p o l y m o r p h i c  fu nctions to occur 

more generally.

Ex amp le

A s s um i n g MALE and FEMALE are types, then the 

fu nct io n sex o f -c h i ld  will have the type 

[BOYS->MALE]n[GIRLS^FEMALE]
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As far as we know, there is no language that cur re nt l y  

supports such facilities. It is our in te n ti o n  to ex amine 

the na tu re  of such ty p e - c h e c k i n g  systems so as to have an 

insight into future languages.

(6 ) Since we already have union and i n t e r s e c t i o n  of types, 

so im p li c i tl y  we have n eg a t i o n  of types as well. The idea 

of ne g a t i o n  type is indeed seductive.

Exam p 1e

for any types t ̂ and t ̂ , suppose fu nct ion  f is 

de fined for all types except t ̂ and produc es  

results in t^j then the type of f w ou l d  be:

[ [~t J ]->t 2 ]

We b e l ie v e  that n e g a ti o n  type is a very imp or ta nt  area 

for future research.



99

2.9 Rule of Inclusion: functional types

The rules of In cl us ion  for union and i n t e r s e c t i o n  

types have been stated in T h e o r e m s (2.4) and (2.7) 

respec tiv el y.  We have to pay special at te n t io n  to the 

rule of I ncl usi on  for functi on al types b e ca u se  (1) the 

result is less familiar to us and (2 ) it is the b a ck b o ne  

of all t y p e - ch e c ki ng  systems ha n d l i n g  fun ct ion al  languages.

T h e o r e m ( 2 . 10)

For all types, t j , t 2 jt^ and t ̂ ,

if [[Et] and

(Obviously, the "only if" part is not necessarily true. 

However, in type checking, the "only if" part is not 

r e q u i r e d .)

Proof

Given: (t^ct^) and

to prove: [ t j->-t2 ]2 [

(LI ) b e the set { ̂ 1 » ̂ 2 ’ * * ' ^
(L2) ^2 b e the set { b 1 , b 2 , • • • }

(L3) ^3 b e the set

(L4) b e the set

(L5) [t 2  ̂ be the set { f J , f 2 ,. . . }

(L6 ) [t 3"' 4 ] be the set {g J ,g 2 ,. . . }
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D ed u c ti o n s

(Dl) Any fu nc tio n whi ch  is defined for all ele me nt s of the 

set { a ̂ ,a ^ ,. . . } and pr oduces results in the set {b ̂ ^ 2 ' 

...} must be an element of the set { f ̂ ,f ̂ ,. . . }

(by D e f i n i t i o n  2.1)

(D2) For every i, g  ̂ is defined for all elements in the set 

{ c j , C 2 ,...}, since { c j ,c ^ . )2 { a j ,8 2 ,...) (given), so 

g ̂ is defined for all elements in the set {a ̂ ,a 2 ,. . . }

(D3) For every i, for every x and x is an el em en t of

{ a ̂ ,a ^ ,. . .}, g^(x) is defined, (from D2).

Let y=g^(x), a cc ord ing  to Theor ems  2.1 and 2.3, y must 

be an ele ment of the set {d^,d^,...}. Since (b^jb^,

. . . { d ^ ,d 2 j ...}, th erefore y is an ele men t of { d j , d 2 » 

...} implies that y is an element of { b j , b 2 ,.-.}

(DA) Fro m  (D2) and (D3), we come to the co n cl u s i o n  that,

for every i, g^ is de fined for all elements in the set

and produ ces  results in the set { b j , b 2 ,...}

(D5) Fr om  (DA) and (Dl), we obtain the result that g^ must 

be an element of the set { f ̂ ,f 2 ,...}

(D6 ) Since (D5) is true for all i, therefore

{g j , g 2 f 1 , f 2  ̂ that is [ t t ̂  ] ç[ t j->> 12 1

qed
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Ex amp les

( 1 ) [ i n t e g e r ->r e a l ]2[i n t e g e r -̂ r e a l ]

(2) [INTEGER^REAL]2C[INTEGERuBOOLEANl^REAL]

(3) [[[ INTEGERuB00LEAN]->REAL]^t]2[[INTEGER->REAL]-^t]

where t is any type.

(4) From  theorems 2.10 and 2.3, the e x p r e s s i o n  

(A[BOYS->INTEGER]f : . . . ) ([GHILDREN->INTEGER]g)

is type-wise correct.

2.10 Gl o s in g  Remark

The main purpose of the d i s c us s i on  here is to explore  

the less fa miliar pr ope r t ie s  of functio na l types. These  

p r o pe r t ie s  have bee n  largely ignored in other systems.

We have found that the d i s c u s s i o n  is fruitful b ec au se

(1) We shall be able to construct pr a ct ica l systems upon 

t he o r et i c al  co ns i der at io ns,  although the t h e o re ti c al  results 

o bt ai ne d so far are quite informal.

(2) We can have the same tre atment on fun ct i on a l  types as 

of p r im i t i ve  types, for example, the incl us ion  rules.

(3) We shall have more i n fo r m a t i o n  and kn o w l e d g e  to 

re -e x am i n e the problems we have en co u nt e r ed  so far in type
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checking. We have no ti ce d already that most of these 

prob lem s concern fun cti ona l types.

We now present two systems in which we shall see 

how the ideas in this chapter are put into practice.
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CH AP T ER  THREE 

SYSTEM-F

We feel that it is very un de si r a bl e  that a p r o g r a m  

has to be w r i t t e n  in a type-free language simply be ca us e  

a subpart of it wou ld  be rejected by static t yp e - c h e c k i n g  

systems. Nor, on the other hand, is it de si ra bl e  to 

have to forgo the f l ex ibi li ty of type-free languages in 

order to have static ty pe- checking. To test out our 

feelings we decided to design Syste m- F to operate on 

progra ms with  the follo wi ng goals in mind.

(1) W h e r ev e r  programs are fully typed (i.e. types of all 

va ria b le s  are declared), the syste m should p e r f o r m  

t yp e -c h e c k i n g  such as one n o r m al l y  expects from a 

static t y p e -c he c ki n g  system.

(2) It should accept type-free ex p r ess io ns  w h e r e v e r  they 

are subparts of a typed program. A subpart of a 

p r o g r a m  can be as small as a variable, a sub exp re ss i o n,  

e x p r e s s i o n  or any other w e l l - f o r m e d  structure, or as 

large as a complete program.

(3) T y p e - c h e c k i n g  pro cesses should ne v e rt h e l e s s  be 

e x p re s s ib l e  in terms of simple reduc ti on rules.
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3. 1 Basic types of S ystem-F

There are six bas ic  types in the system, name ly  

INTEGER, REAL, BOOLEAN, STRING, ANY and ERROR. We shall 

use the a b b r e v i a t i o n  I, R, B, S, A and E for these types 

re sp ec tiv ely . Cer ta in l y  the set of ba si c types can be 

ex te n de d  or amended , if necessary, if the s yst em is applied 

to a language with other pr imi ti ve types. Type ex pr es si o ns  

mi ght  be enc lo se d by square brac ke ts,  "[" and "]", in order 

to di s t i n g u i s h  them from the typefree parts of the text.

One may consid er [A] as union of all types so that it may 

be reg ar ded  as co nta i n in g utterly inexact information.

3.2 Co n st r u c t e d  types

Types can be c o ns t r uc te d  from the basic types or 

other co n s t r u c t e d  types. There are four c o n st r u ct o r s in 

Sys t e m - F ,

( 1) types c o n st r u ct ed  by it are called f u n c t i o n a l - t y p e s

(2 ) "u", types co n st r u c t e d  by it are called un i o n- t y p es

(3 ) "n", types co n st r u ct ed  by it are called i n t e r s e c t i o n -

types

(4 ) types co nst ru cte d by it are called o rd e r ed - t y p e s

(to be d i s cu s se d  in §3.7)
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3.3 Type E x pr e s s i o n s

Type ex pre s s io ns  can be defined r e c u r s i v e l y  as

( 1) if t is a ba sic  type, then t is a type e x p r e s s i o n

(2 ) if t is a c o n s tr uc t ed  type, then t is a type e x p r e s s i o n

(3) if tj, 1 2 are type expre ss ion s, then (tj 1 2 ) is a 

type e x p r e s s i o n

(4) the only type e x pr es s io n s  are those defin ed  by (a)-(c) 

Exa mp l e s

( 1) [I]

(2) [I->I]u[R->R]

(3) ([I^I][I])

3.4 Rules of re d uc tio n

Given a type e x p re s s io n  (tj t^), it may be po s s ib l e  

to reduce it to a simpler ex pr e s s i o n  ac co r d in g  to the rules 

of reduction. Before we state these rules, we shall 

e x p l a i n  the co n ve nti on s first,

(1) The symbol "=" means "redu ce s to", see (3) b el o w

(2) All t*s with or wit ho ut subscri pt s stand for any type 

ex pr e s s i o n  unless spe ci fi e d  otherwise.
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(3) (t. t . ) =i t, means the e x p r e s s i o n  (t. t.) is reduced to t,1 J K 1 J tC

(4) (t^ tj)=t^* means the same as (t^ tj)=t^ except that 

the re d u c t i o n  has to be co nf irm ed at a later stage 

(usually this means at run-time). Hence we place on 

record our d e ci s i on  that type check in g is an it erative  

process in whi ch early a p p r ox i ma t i on s  may be ref ine d  

to s ub seq ue nt  bet t er  a pp r o xim ati on s.  The symbol

is not part of the type expression. In other words, 

it will not affect the value of the type e x p r e s s i o n  it 

is attach ed to. It might be helpf ul if we imagine that 

there exists a special reg is t e r that wou ld be set in 

those cases where appears in the re d uc t i on  rules.

The p ars er (or other routines) on di s c o v e r i n g  the 

re gis t er  set would cons tru ct a mo dif i e d  parse tree and 

unset the register. Hence, the need not exist at

all. It is inc lud ed  here to remind the reader of what 

might happen.

(5 ) [t^*utj*] can be e x p re s se d as [t^utj]*, similarly,

t.*nt.* =[ t. nt .]*1 J 1 J

(6 ) t^2 tj means t^ includes t ̂ a c c o rd i n g to the rules of 

inclus i o n .

The fo ll o w in g are the rules of r ed uc ti on

(RO) t. t.=[E] if no rule is ap pl ic abl e 
1 J
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(R2) t . J u t . . . . ut . t (t . J t j ) u ( t «2 t j ) u . . . u ( t . ^  Cj)]*

(R3) [ C i i n t _ 2 n... nt^ ^ ]t j = [( t^ ^  tj ) u . . . u ( t ^ ^  t^)]

(R4) [ t.^t . ] [ A ] - t .* 1 J J

(R4a) [t.->t.][t ut u...ut, ]-1 J kl k 2 kn
[ ( [ t .->t . ] t ) u . . . u ( [ t .->t . ] t. ) ] * 1 J kl 1 J kn

(R5) = if

(R6 ) (a) tu[E]-t

(b) tu t-t

(c) tu[A]-[A]

E xa mp les

(1) [A][I]=[A]*

(2) [A ] [I ^I] =[A ]*

(3) [ [ I ^ ^ ] u [ R ^ R ] ] [ I ] = [ I u E ] * = [ I ] *

(4) [ [ I ^ ^ ] n [ R ^ R ] ] [ I ] = [ I u E ] = [ I ]

(5) [[I-»“I]n[R->R]][IuR]=[[I->I][IuR]]u[[R-^R] [luR]]

= [ I * u R * ] = [ I u R ] *
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a lte rn at ive ly , we may replace [I->I]n[R^R] by 

[IuR]->CluR] ,

(5') [ [ I u R ] ^ [ l u R ] ] [ l u R ] - [luR]

and the advan tag e is that the ma r k e r  is

not requir ed in (5'). The i m p l e m e n t o r  may 

ignore this p o s s i b i l i t y  and we can see that 

in both cases the ex p r e s s i o n  is re d uc e d  to 

[luR] since the m ark er is not part of the 

expression.

(6 ) [I ^^ ][ I uR ] = I*

(7) [[I->I]->I][ [I^I]n[R^R]]=^I

in practice, we may try (R5) bef or e  (R4a), 

so that ( [ I u R]-)-I ] [ I uR] ) is r ed uce d to [I] 

instead of [I]*.

(8 ) [I][R]=[E]
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3.5 Co er ci o n

In most languages, some form of coe rcions are allowed. 

This is to say the types are arr an ge d into a p a r t i a l l y  

o rd er ed  set, the set of types being au gm en ted  by a set of 

paths b e t w e e n  them. C oe rc io n is an o p er a ti o n  by the 

c omp u t er  that co rre sp ond s to a move along an al low ab le path 

in the p a r t i a l l y  ordered set.

It is not ne c es s a r y  to in c or por at e co erc io n into our

ba sic  system. All we need is to regard coe rc io n  as an

i n d ep e n de n t  s y st e m  wh ich  can be called by the t yp e - ch e c k i n g

system. In the ex ample (f a ) , if the type of f and a are

[R->t] and [I] res p e ct i v el y,  the type of (f a) wo uld  be

([R^t][I]), w hi c h  is [E] when reduced. At this point, the

c oe r c io n  s ys te m  will be invoked to see wh e t h e r  there exist
Ror not a coe rc ion  functi on C^ wh ich coerces an integer to a 

real. If the function exist, the code (f a) wil l be 

amended to (f(C^ a)). The control will then be re tur ne d 

to the ty p e -c h e c k i n g  sys t e m whi ch  will deduce the type of 

the amended exp ression. If the co er cio n fu nc ti o n  does not 

exist, the e rro ne ou s state is confirmed.

3.6 D e f i n i t i o n  of the ma p pi n g  fu nc tio n $

In this section, we shall des cri be  a simple ve r s io n  

of 0 . The domain of 0 is ex pr e ss i o ns  in A-Calculus.

It is assumed that a X - e xp r e ss i o n has only one b i n d i n g  

va riable, $ is then defined r e c u r s i v e l y  as below:
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(0) All constants are mapped into the re spe c t iv e  ba si c  

types.

(1) All p r i m i ti ve  operators (functions) are ma p p e d  into 

some fixed type expressions.

Examp  le

$(~)=[B^B] where stands for n e g a t i o n

(2) If X is a variable, then $(x) is the type e x p r e s s i o n  

as sig ne d to x eithe r by default or by d e cla ra ti on .

The default type is [A].

(3) If (f x) is a combination, then 0 (f x)=($ f)(0 x)

(4) 0 ( Xx : M) = ( 0 x)^(0 M) where M is a w e l l - f o r m e d  e x p r e s s i o n  

Ex am pl es

(1) $( < S TR ING >) =[S ]

(2) $(3)=[I]

(3) $ ( ( X x : x ) 3 ) = ( [ A + A ] [ I ] ) = [ A ]

no run-time checking is required.

(4) $((Xf:(f 3)... f < S T R I N G > ) ( X x : x ) )

= [A->(([A][I]) . . . ([A][S ])) ][ A^ A] = [A*. ..A*]

"..." represe nts  some part of the e x p r e s s i o n
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which can be ignored in our discussion.

We see that run-time checking is require d  

whe n (Ax:x) is applied to 3 as well as whe n  

it is applied to <STRING>.

(5) 0 ( ( X C A ^ A l f :(f 3)...(f < S T R I N G > ) ) ( X x :x ) )

= [ [ A"^A] ( ( [ A-^A] [ I ])...( [ A^A] [ S ] ) ) ] [ A^A]

- [ A . . . A ]

this example is similar to (4) with the e x c ep t i on  

that f is declar ed to be [A->A] and as the result 

of this dec laration, no run-ti me check in g is 

required. It is very important to realize the 

d if fe ren ces  of these two examples.

(6 ) $((Xf:f 3 ) ( X x : x ) ) = [ A ^ ( [ A ] [ I ] ) ] [ A ^ A ] = [ A ] *

(7) $ (( X [ A + A ] f : ( f  3 ) ) (XCllxrx))

= [ [ A-^A] ( [ A^A] Cl])][l-^l]

= [ [ A"^A] "^A* ] [ I“̂ I ]

=[E] be cause (R5) is not satisfied.
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3.7 Extens ion : ordered types

If we want to consi de r A~ ex pr e ss io n s with lists of 

b i n d i n g  variabl es,  we need type ex p re ssi on s w h i ch  rep re se n t  

not only the type of each b i nd i n g va riable, but also the 

re la t iv e  posit io ns  among them. Or de red  types are d e s i gn e d  

for this pu rp ose  and are c on str uct ed  by the operat or  "&".

Examp le

[I&R] is an ordered type of two element s and 

it is di ff er ent  from [R&I]

We add the foll ow ing  rules for m a n i p u l a t i n g  ordered types:

(1) ord ered types are right associative, that is

[ t j & t 2 & t 2 ]= [tj &C t^ &t^ ]]

(2) e x t e n s i o n  of the rules of In clu si on

[ t & t • _& . . .& t . ] d [t & t & t . ]11 i 2 in - jl J 2 jm
if (a) n =m  and (b) for every k, l<k<n, t^^^tj^

(3 ) e x t e n s i o n  of the ma p p i n g  function 

0 ( x , , X g , X T , . . . , x ^ )=( ( 0  x ,)&(0 x ^ ) &...&(# x^))

Ex am p le

* (1 , 2, 3 ) =[ I& I &I ]
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If the list of bi n d i n g  v a ria bl es  is and

the user wishes  to declare the type of them to be tj, t^

and t ̂  r esp ec ti vel y,  then he can simply write

(X [tJ ] XJ , [ t ^ ] x ^ ,[t^]x^ : ...)

in other words, the s ys tem  wo ul d convert ([t ,]x t  ]x )1 1  n n
into [t &t &...&t ](x ,x_,...,x ).1 z n 1 z n

Examp le

$ ( ( X ( [ I ] x , [ I ] y ) : x + y ) ( 2 , 3 ) )

= [[I &I ]^  I][I&I]=[I]

In the b e g i n n i n g  of this section, we said that or dered 

types are ne ed e d to account for lists of b i n d i n g  var iables. 

But lists of objects are requir ed as actual p a r am e t er s  for 

lists of bi n d i n g  va riables and since both the formal and 

actual pa r am e t er s  must be of the same type, we conclude  

that ordered types have to be the type of all lists.

It has been su gg es ted  that lists can be re p r e s e n t e d  

by functions. To il lu str ate  the concept of functional 

data st ru ctu res , Reynolds [ R e y n o l d s , 1970] defi ned  the 

fu nctions CONS, CAR and CDR as (presented here with minor  

changes in no tation); (Xx: Xy :X z:I F z= 1 THEN x ELSE y FI), 

(Xx:x 1) and (Xx:x 2) re spectively. Church [ C h u r c h , 1 941] 

has also shown us how to X-defi ne diads, triads and the 

c o r r e s p o n d i n g  se le ct ing  functions. Edwards [ E d w a r d s , 1975] 

h o w e v e r  has found that it is not po s si ble  to find a general 

type ex p r e s s i o n  to descri be the type of lists from their 

fun ct i o na l  rep re sen tat io ns.
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In the light of these di sc us s io n s , let us r e ­

exa min e the p r o b l e m  again.

We recall that numbers 1, 2, 3, etc. are X - de f i n e d  by

(Xf:Xx:(f x)), (Xf:Xx:f(f x ) ), (Xf: Xx: f(f (f  x))), and so on. 

If we let the type of f and x be 3 and a r e s p e ct i v el y,  then 

3 must be [a->a] for the type e x p r e s s i o n  to be m e an in gf ul .

Thus the type of these ex pr es sio ns  must be [ a->a ]->[ a->a ] for 

any type a. On the other hand, it is ge ne r al l y  as s um ed by 

us that the type of these objects is [I]. In other words,

[I] is used to abb re via te the class of type e x p re s s io n s  

[ a->a ]->[ a->a ] for arbit ra ry  type a. Th er ef ore , at the 

outset, we have to announ ce that "there is a subset of X - 

e x p r es s i on s  (of the general format (Xf: x:f^ x ) , whe r e  n is 

a p o s it i ve  integer den ot in g the nu mb er of f's in the 

ex pre ss io n) whose type is always [I] and need not be 

ded uc e d from u n d er l yi n g  X - e x p r e s s i o n s " . We are not saying 

that the analysis of these formulae is not imp ortant, but 

for our purpose, that is not necessary. On the other hand, 

the d i s c u s s i o n  here demonstrates that the a b b r e v i a t i n g  of a 

subset of X- e x pr e s si on s  by a specif ic  type name is an 

imp ort an t techique in s i m pl i f yi n g  type n o ta t i on s  and 

pro vi d e s us a fo u nd a t io n to i nv es ti gat e other type p r o pe r t ie s

Si mi l ar l y  we may apply the same argument to lists.

We state that there is a subset of X- ex p r e s s i o n s  of the form 

(Xf:f a b) who s e  type is [LIST] (a bb reviated to [L]).

Thus we do not have to wo rr y  how to derive the general type 

from the formu la e becau se they are all ab b r e v i a t e d  [L].
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In table(l), we il lustrate the type of some list 

p r o c e s s i n g  functions. We find that type [L] is adequate  

to de scribe all of them except CAR becau se  w h e n e v e r  CAR 

is applied to a list, the r es u lt ing  type is always [A].

Thus we need to know more about [L]. R e ca l l i n g  that at 

the b e g i n n i n g  of this section, we pro po s ed  ord ered types 

for lists, so it wou ld be logical to assume [L] ab b r evi at es  

the class of all ordered types. Fur th er m o re ,  we adopt the 

co nv e n t i o n  that if [L] is s up e rs cri pte d,  such as [L^], then 

during type reduction, [L^] can be replac ed by a spe ci fi c  

e le me nt  in [L] a cc ord in g to the f ol low in g rule:

[L^->tj]t2 can be replac ed  by [ t 2^ ^ | ' ] t 2

wh ere  1 2 is an element of [L] and t ̂ ' is ob ta ine d by 

r e p la c i ng  all [L^] in tj by 12 . Similarly, we may apply 

the same tr eatment on [A]. Finally, if [L^] and [L^] 

denotes the ex p r es si o ns  [ tj j& t^ 2 &•• • & ^ j ^ ] and [ t 2 j &t 2 2 &*** 

& t 2^] res pe ctively, whe re t ̂ j is any type ex pr es s i on , then

t[L^]=t
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Tab l e (2) shows the revised type e xp re ss ion s for the functions 

s hown in table(l), (except NULL, which is unchanged).

It is wo rt h no t ic i n g that each type e q u a t i o n  above 

re sem bl es a pr oce du re  de c l ar a t io n in the sense that [A^] 

and [L^] behave  as formal pa ram ete rs  to op era t i on s "f",

"I", "I" and wh ose  def in i ti o n s con st itu te the pr o ce d u re

bodies. The di f fe ren ce  b e t w e e n  [A^l and [L^] is that the 

actual pa r a m e t e r  for [A^] can be any type exp re ssi on,  wh ile  

that for [L ] must be ordered types. This suggest that we 

may even ass ociate " type" to these formais. In our

op in i on  the in cl us ion  of type a bs t r a c t i o n  such as these 

in a ty p e - c h e c k i n g  sys t e m should be a very im portant project. 

We there fo re  return to type a bs tr ac tio ns  in a later chapter. 

For the pres en t let us note the tabulation:

Table (1)

FUNCT ION TYPE

CONS
CONCAT
CDR
CAR
NULL

[A^[L->L]] 
[ L-)-[ L^L ] ] 
[ L-^L ] 
[L->A] 
[L^B]

Table (2)

FUN CTI ON

CONS
CONCAT
CDR
CAR

TYPE

C L ^ + [ L j+ CL ^ |L j ] ]]

[LÎ+r+li]]
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3.8 A p p l i c a t i o n  of System -F to Reckon

An add it io n a l bas ic type [NILS] (a bbr ev iat ed to [N]) is

added to the sy s te m  so that $(NIL) or $(())=[N]. This is

n e c e s s a r y  be ca use  in Recko n some functions do not need any

formal pa r a m e t e r  (or NIL), but there is no need to intr od uc e

any ad di ti on a l rule for it. The type of each sy st e m

functio n and o p er a ti o n  is p r e d ef in e d at i m p l e m e n t a t i o n  and

is den oted here as t , for example, t , t ,, t and etc.op ^ ’ + cond

Examp les

(I) $(2 +3 )= [t +  I I]=[I]

(2) $ ( ( 2 . 0 ) + ( 3 ' 0 ) ) = [ t +  R R]=[R]

(3) $(IF b THEN e ̂ ELSE e^ FI)

=[t t t t ]cond b el e 2
-[t ,ut g] if t, d[B] othe rwi se  [E ] el e 2 b

where t^, t^^, t^^ the types of b, e ̂ and

e^ r e sp e c t i v e l y

In typed Reckon, one can declare the type of bi n d i n g  

v a r i a b l e s .

Ex amp le s

(1) (A [l ]n:n+n)3

(2) LET [I]n=3;n+n;
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However, type declarations are optional. In other 

words, all programs w r i t t e n  in type-free Reckon are legal 

pro gra ms  in typed Reckon. If the type of a va r i ab l e  has 

not been  declared, then it will be given the defa ul t type 

[A] by typed Reckon.

Examp le

The fol lowing two programs are equiva le nt,

(1) ( X x : x + x ) 3

(2) ( X [ A ] x : x + x ) 3

It is po ss ibl e to cons tr uct  an ordered type for any 

list from the types of its elements but since the process  

is time consuming, ordered types are used only for bi n d i n g  

v a r i a b l e - l i s t s  (and c or r e sp o n di n g  actual p a r a m e t e r - l i s t s ) ,  

and in general, the crude ap p r o x i m a t i o n  [L] is assumed or 

[L^] if all the elements are of type [t] (the s u bsc rip t  

bei ng  used here for a diff er ent  purpose than in the last 

s e c t i o n ) .

Examp le

$( X[ L^ ]p: 2 TH p ) (2,3,4)

= [L;+^][L;]

=  [ I ]
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In our im p l em en ta tio n, type ch eck ing  is p e r f o r m e d  at 

the same time as the source p r o g r a m  is parsed. The 

ad van ta ge of this is that in fo r ma t i on  ga th ere d du ri ng type 

che ck i n g can be i mm e d ia t e ly  ava ilable to the parser.

The par s e r acts as a main pr o g r a m  whi ch will call for the 

type checker (or part of it) w h e n e v e r  it thinks it needs to.

The type checker will then return control to the parser.

It has already been m e nt i o ne d  in the pr evious chapter that 

the m on a d ic  opera to r is p o l y m o r p h i c  in the sense that it

stands for functio na l application, m u l t i p l i c a t i o n  as well as 

string and list concaten ati on.  One of the tasks of the 

par se r  is to replace this p o l y m o r p h i c  opera tor  by an 

a p p ro p r i at e  typed opera to r based on the in f o rm a t io n  p r o v i de d  

by the checker. The semantics of the pa rs er  and the type 

che cke r is desc rib ed in Ap pe ndix(B).

The routine that executes the parse tree c o n st r uc t e d  by 

the parser is the transformer. Fu r t he r  type ch ec ki n g is 

requir ed for parts of the parse tree at places wh ere  the 

m a r k e r  was appended to type ex p re ss i on s  during reduc ti ons ,

so it has been arranged that the tra ns fo rm e r can also call 

the type checker. The r e l at i o ns h i p of the three com po nen ts  

is shown in the follo win g diagram.

Type Checker

T r a n sf o r me r  ^ Parser
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Typed Reckon  is i m p le m en t e d on the CDC 6 4/6600 and

the p r o g r a m  is w r i t t e n  in Pascal. P r o g r a m  ex amp les  of

typed Reckon are included in App end ix( C) .

3.9 P a r a m e t r i c  Pol ymo r p hi s m : sol ut io n

This is one of the pro bl ems  that we have m e n t i o n e d  

before. We state the example again here and see how  it 

can be solved in System-F.

(X twice: . . . (twice nume ric function) (numeral) . . .

(twice s t r i n g f u n c t i o n ) ( s t r i n g ) ...)

(Xf :Xx:f(f x ) )

as ab b re v ia tio n, we let e be the ex p res sio n,  and t^^t^,

t ^t , t , t be the type of n u m e r i c f u n c t i o n ,  s t r i ng f u nc t i on ,  s s n s
n um er al  and string respe ct ive ly.  The type of twice is

then dec la re d to be [A-v[A->A]] (a b br evi at ed to t ) and thew
type of f and x is [A] by default. The type e x p r e s s i o n  is 

reduced as below:

$ ( e ) = [ t  ->[...((t [t ])t )...(( t [ t -+t ])t )...]]w w n n n  w s s s
[A->[ A->-(A(A A))]]

~[t . A. . . A. . . ] ] [ A->[ A->(A A*)]]w
~[t . A. . . A. . . ] ] [ A-»-[ A->A* ] ]w
~[t ->[...A...A.w. ]]t w w
=[ .. . A .. . A .. . ]
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It can be seen that twice will accept ar gu ments of 

any type and this fact is well ref lected in its type 

expre ssi on . Type errors will be detec te d at ru n- tim e in 

places where occurs. This corres pon ds  to situ at io ns

w he r e f is applied to x (or, in fact, the c o r r e s p o n d i n g  

actual parameters) and where f is applied to the results of 

( f x) .

3.10 Ci r cul ar types: soluti on

The example we have shown before is,

( A g : g ( g , 2 ) ) ( A ( f , n ) : I F  n = 1 THEN 1 ELSE n* f(f,n-l) FI)

let e be the e x p re s si on  and the type of g , f , n be [A&A]->[A],

[A], and [A] respectively. Type ch ec kin g is now just a

simple exerc ise  on the re d uc t i on  rules as we have seen in the 

case of p a ra m e t r i c  po lym orp hi sm .

$ ( e ) = [ [ [A&A] ->A] -̂ ( [ [A&A] -̂ A ][[[A&A]  ̂ A ] & I ] ) ]

[ [ A & A ] ^ ( t ^ Q ^ j ( t =  A I)[I](t* A ( [ A ] [ A & ( t _  A I)])))]

= [ [ [ A & A ] ^ A ] ^ A ] [ [ A & A ] ^ ( t  , B*[I](t^ A A*))]con u *
=[[[ A & A ] ^ A ] ^ A ] [ [ A & A ] + ( t ^ Q ^ j  B*[I]A*)]

- [[[A&A]->A]-^A][[A&A]^A*]

= [A]
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3. 1 1 Summary and Remarks

At the b e g i n n i n g  of this chapter, a t y p e - c h e c k i n g  

sy s t e m  was introduced. It was stated what elements are 

i n c l ud e d  in the bas ic system. The c o r r e s p o n d i n g  rules 

of r e d u ct io n  were explained. K n ow l e dg e  of the rules of 

I n c l u s i o n  is assumed when these rules of re du c t i on  were 

laid down. For illust ra ti on,  the sys t em  was ap plied to

( 1) X - e x p re s s io n s  with one argument

(2) X - e x p r e s s i o n  with list of arguments

(3) the Re cko n language

In the d is cu ss ion s on app lication, the f oll owi ng  points 

were stres se d

( 1) how  to define the map pi ng function

(2 ) how to extend the ba sic s ys tem

Ba si c al l y  the syste m is a static one. By use of the

device, it is able to issue further che ck in g re quests

in the same way as coercion op erators are inserted in parse 

trees. Tre at in g further ch ecking and coercions in se rt ion

as c or out ine s,  the syste m obtained is simple and easy to

handle. We have seen how it is imposs ibl e to carry out 

all type checkings at compile time in general p r o g r a m m i n g
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systems. Co ns equ ent ly , we have had to reject the idea of 

purely static or purely dyna mic  systems. Some of the 

p rob le ms  are solved partly due to the use of in cl u si o n  

p ri n c i p l e s  in type checking and partly due to a b et t er  

u n d e r s t a n d i n g  of func ti on al types. Note how ex t e n s i v e  use 

of the n o ti o n al  type [A] plays a very impor ta nt  role in 

Sys t e m - F .



1 24

A pp e n d i x  B

This ap pe n di x  is intended to let readers have a bet t e r  

ins igh t into our i m p l e m e n t a t i o n  of System-F (applied to 

Reckon). Since it w o ul d  be ext re me l y  tedious to define the 

s ema nt ic s of all routines, we shall con ce n tr a t e on those 

routines that best represent the concepts of System-F.

So we omit defin it ion s of routines that are rep et it io n s of 

those already defined. The routines we shall define are 

p a r s e r , m o n a d i c t y p e c h e c k ( M T C ) ,  poly and include. Since the 

tr a n sf o r me r  is just a stand ar d SECD ma ch ine  whic h calls the 

type che cker in the same way as the parser, its d e f in it i on  

is omi tte d here. The routine poly is the part of the type 

ch ecker re sp o ns i b le  for mo n a di c  operat io ns , (f x ) , and we 

use it to ill ust rat e how the sy ste m hand les  p o l y m o r p h i c  

functions. The routine MTC is the inter fac e b e t w e e n  parser  

and poly (co r r es p o nd i n gl y  there is an inter fac e b et w e e n  

t r a ns f o rm er  and poly). The routine include defines the 

rules of in cl us io n  stated in chapter 2 .

For this docume nt  we adopt the f o llo wi ng  a bb r ev i a ti o n s  

of X - ex p r es s i on s  in addit io n to those which have been 

i nc o rp o r a t e d  into the 66/6400 i m p l e m e n t a t i o n  of the parser 

d e s c ri b e d here.

We write "f.g x" for " f (g (x))".

We enc lo se comments in and

We write (j) for "()"
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We wri te "1st, 2nd, 3rd, ..." for "1 TH, 2 TH, 3 TH, ...". 

We wri te "x", x'', x'*', ..." for "1 TL x, 2 TL x, 3 TL x.

We write "CASE x IN x^^f^ x OR Xg^fg x... OUT fg x E SAC"

for "IF x = X| THEN f ̂ x ELIF x = x^ THEN f^ x ELIF ... ELSE

f 0 X FI", and we write ELIF for ELSE IF. N oti ce  that it

is p o s si b l e for x^ to be a set of alterna ti ves , for example,

X ̂  may be •••)> and in that case " x = x " should

be i n te r p r e t e d  as " x = x^ ̂ or . ..", (in other words

X is a mem b e r of •••))•

We wri te  "LET x x  =a ,, . . ., a ;1 n 1 ’ n
WHILE p (X ,... ,X ) DO X = f , ( x , , . . ., X );1 n 1 1 1  n

X n : = fn ( x, , . .. , X n)

00 ;

g ( x j , . . . ,x^)"

to a b br e vi a t e general rec urs io ns

"LET REC f ( x, , . .. , x  )EIF p (x , , . . . , x  ) THEN I n  I n
f ( f | ( x , . . . , x  },.*.,f ( x , . . . , x  ))I I  n n 1 n

ELSE g (x j , . . . ,x^)

FI;

f ( a j , . . . , a^)"

Mac hi n e r e p r es e nt a t io n s  of types are varian ts  of 

records in Pascal, "domain", "range" and " u n i o n el e m en t s "  

are some of the field selectors we use in the definit ion s.
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LET output,input,stackE^,readinput^,^;
WHILE NOT(end^)
DO

LET lp,rp=leftprecedence.1st stack,rightprecedence.1st input;
IF lp=rp THEN input :=input'; 1st stack: = listcounts(1st stack) 
ELIF lp<rp THEN 

LET wElst input; 
stack:=CASE w

IN(variables,numbers,strings)-h j ..stack 
OR keywords->IF closebracket w THEN stack*

ELSE w . .stack FI
ESAC; 

input:=input*
ELSE

LET wElst stack;
CASE w
IN (variables , numbers , strings)

output:=w..output; stack:=stack*
OR keywords-^

LET op =lookup(w,parseenvironment); 
output,stack:=op(output,stack)

ESAC
FI

OD;
transform(output{which has now been parsed})

WHERE parseenvironment=(("LET",consblock),(":",consAexp),("+",dyadcheck),
(".",monadictypecheck{see below}),...)
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WHERE monadictypecheck(o,s)=
(LET functy,argty=type.2nd o,type.1st o;

IF functional functy THEN
LET wl,w2Einclude(domain functy,argty,0);

IF wl=lvwl=2 THEN
(assigntype((range functy),IF wl=2 THEN insertcodetochecktype-

atruntime ELSE identityfunction FI. 
consmonadcode IF w2=2 THEN insert- 
coercioncode o ELSE o FI

),s')
ELSE conserrorcode(o,s)
FI

ELSE
LET wl,w2=poly(functy,argty) {to sort our polymorphic functions}; 

CASE wl
IN 1̂ (0 ,changetomultiplyop s)
0R(2,11)^(IF wl=ll THEN swap o ELSE o FI, 

changetostringselectionop s)
OR(3,21)^(IF wl=21 THEN swap o ELSE o FI, 

changetolistselectionop s)
0R(4,5,14,15,24,25,30,40)+
(assigntype(w2 ,insertcode-to-checktypeatruntime.consmonadcode o) 
,s')

OR 23+(o,changetoconcatlistop s)
OR 12+(o,changetoconcatstringop s)
OUT conserrorcode(o,s)
ESAC 

FI );

WHERE REC poly(p,q)2 
CASE p
IN [ANY]+(40,[A])
OR numbers^

CASE q
IN [ANY]^(4,[A])
OR numbers^(1,type2(p,q)) 
OR strings+(2,[S])
OR lists+



1 28

(LET n^length q;
LET ql,...qn=q;

LET t1,...,tn=type ql,...,type qn;
IF tl=t2=...=tn THEN (3,tl) ELSE (3,tlut2 ...utn) FI) 

OR unions+
(LET q ,rEunionelements q,^;
WHILE NOT(NULL q)
DO

LET wl,w2Epoly(p,1st q); 
q:=q’; r :=consunion(w2,r)

OD;
IF NULL r THEN (0,*) ELSE (5,r) FI)

OUT (0,4)
ESAC 

OR strings+
CASE q
IN [ANY]+(14,[S])
OR numbers+(11,[S])
OR strings+(12,[S])
OR unions+

LET q,r=unionelements q,0;
WHILE NOT(NULL q)
DO

LET wl,w2=poly(p,1st q) ; 
q :=q'; r :=consunion(w2 ,r)

OD;
IF NULL r THEN (0,*) ELSE (15,r) FI 

OUT (0,4>)
ESAC 

OR lists->
CASE q
IN [ANY]->(24,[A])
OR numbers-^

(LET nElength p;
LET p 1,•»•,pn=p,

LET t1,...,tnEtype pi,...,type pn;
IF tl = ...=tn THEN (21,tl) ELSE (21,tlut2 ...utn) FI) 

OR lists+(23,type2(p,q))
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OR unions+

(LET q ,rEunionelements q,$;
WHILE NOT(NULL q)
DO

LET wl,w2Epoly(p,1 St q); 
q:=q’; r:=consunion(w2,r)

OD;
IF NULL r THEN (0,*) ELSE (25,r) FI) 

OUT (0,*)
ESAC 

OR functionals+
LET wl,w2=include(domain p,q,l);

(0,IF wl=0 THEN (p ELSE range p FI)
OR unions+

LET p ,r=unionelements p,^;
WHILE NOT(NULL p)
DO

LET wl,w2Hpoly(lst p,q); 
p :=p* ; r :=consunion(w2 ,r)

OD;
IF NULL r THEN (0,*) ELSE (30,r) FI 

ESAC;

{end of definition: monadictypecheck}
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WHERE REC include(f{formal parameter},a{actual parameter},c{coercion 
state})E

CASE f
IN primitives^

(LET REC pin(f,x,c)=
CASE X
IN primitives^

IF x =[ANY] THEN (2,c) ELIF COERCIBLEPRIMITIVES(f,x,c)
THEN (1,2) ELSE (0,c) FI 

OR unions+
(LET x=unionelements x;
WHILE

LET wl,w2Epin(f,1st x,c); (NOT(NULL x))A(wl=0)
DO x:=x' OD; IF NULL x THEN (0,c) ELSE (2,c) FI)

OUT (0,c)
ESAC;
pin(f,a,c))

OR lists^
CASE X
IN primitives+IF x=[ANY] THEN (2,c) ELSE (0,c) FI 
OR unions^

(LET x,c=unionelements x,IF c=0 THEN 3 ELSE c FI;
WHILE

LET w 1,w 2e 2,0 ;
IF NOT(NULL x) THEN w 1,w2:=include(f,1st x,c) FI; wl=0 

DO x:=x* OD;
IF NULL X THEN (0,c) ELSE (2,c) FI)

OR lists^
(LET 11,12=elementtype f,elementtype x;

IF longlist f THEN 
IF longlist X THEN 

LET f,x,dEll,12,l;
WHILE

LET wl,w2=0,0;
IF NOT(NULL f) THEN w 1,w2;=include(1st f,lst x,c); 

IF w2=2 THEN 1st x:=insertcoercioncode.1st x FI; 
wlzO

FI
DO f:=f’; x:=x’; d:=IF wl=2 THEN 2 ELSE d FI OD;
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IF NULL f THEN (d,c) ELSE (0,c) FI
ELSE

LET f,x,cEll,12,l;
WHILE

LET wl,w2=0,0;
IF NOT(NULL f) THEN wl,w2:=include(1st f,x,c) FI; 
wlzO 

DO f:=f OD;
IF NULL f THEN (2,c) ELSE (0,c) FI

FI
ELSE

IF longlist X THEN 
LET f,x,dEll,12,l;

WHILE
LET wl,w2=0,0;

IF NOT(NULL x) THEN wl,w2:=include(f,1st x,c);
IF w2=2 THEN 1st x:=insertcoercioncode.1st x FI; 
wlzO

FI
DO x:=x'; d:=IF wl=2 THEN 2 ELSE d FI OD;
IF NULL X THEN (d,c) ELSE (0,c) FI 

ELSE include(11,12,1)
FI

FI)
OUT (0,c)
ESAC 

OR functionals^ »
(LET c e I;

CASE X
IN [ANY]->(2,c)
OR functionals->
(LET wl,w2EincIude(domain x,domain f,l);

IF wl=l THEN include(range f,range x,l) ELSE (0,c) FI)
OR unions -»
(LET xEunionelements x; WHILE LET w 1,w 2e 2,0;

IF NOT(NULL x) THEN wl,w2:=include(f,Ist x,c); wl=0 FI 
DO x:=x' OD ;
IF NULL X THEN (0,c) ELSE (2,c) FI)

OUT (0,c)
ESAC )
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OR unions+
(LET fjdEunionelements f,0;
WHILE

LET w l ,w2=include(1 St f,x,c);
NOT((NULL f)v(wl = D)

DO f:=f; d:=IF wl=2 THEN 2 ELSE d FI OD; 
IF NULL f THEN (d,c) ELSE (l,c) FI) 

OUT(0,c)
ESAC

{End of definition: include}
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A p p e n d i x  C 

P r o g r a m m i n g  Examples of System-F

We re pro du ce here the computer outputs of three 

p r o g r a m m i n g  examples which were tested on CDC 6400.

Two tests were co nd ucted for each example, one with type 

d e c l a r a t i o n  and the other without.

In order to assist readers to examine i n te r m ed i a te  

ty pe - c h e c k i n g  results, we have pro vid ed  the funct ion  

"print type" such that "(print type x)" will print the type 

of "x" at compile time (x can be any object allowed in the 

language except system  functions). In our current 

i m p l e m e n t a t i o n  of System-F, no code is gen er a te d  for 

"print type", in other words, it does not exist at run time 

The i nf o r m a t i o n  pri nted by "print type" will be in the 

format shown below:

Type of X is : t^

wh er e  t^ is the type of x

The symbol "+" in the compu ter  outputs should be 

in te r pr e t ed  as "+", and readers should also refer to the 

table in Ap pe nd i x A for other dif ferences.
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EXAT^PLE 1

START 
BEG INN IN G

CONN EN T
A R E P E A T  L O O P  IS AP P L I E D  TO IN TEG ER, L I S T  A N D  STRING 
RE SP EC TI VEL Y.  T H E R E  IS NO T Y P E  DE C L AR A T IO N  IN THIS 
E X A M P L E  
COMM EN TEN D

L E T  REC R E P E A T  ACTION CaiDITION#
CACTI ON O ;  (CONDITIONC) THEN ( ) ELSE 
R E P E A T  ACTION CONDITION));

L E T  COUNTfO;
L E T  SU'IL, S m S j  SUMI 1, 2.» 3> 4),<RECK0N>, O;
L E T  B L I M I T  TOTAL #I F CO D N T = L I M I T  THEM P R I N T  TOTAL;

COUNT: =0; TR UE  ELSE FA LS E  FI ;
L E T  SQ()#(COUNT: = COUNT+i; SU-11 : = SUM I + COUN T* COUi'JT) ;
L E T  SPACEC ) rfC COUMT: = c o m  T+i;

SUMS: = (1 TL SUMS)::< >::(! TH SUMS));
L E T  TREDLEC ) #( COUN T: = COUNT+ i;

C COÜN T TH SUML ) : = C CO UN T TH SU1L ) * 3 ) ;
R E P E A T C P R I N  T T YP E  SO) ( P R I N T T Y P E  $():B 10 SUM I);
REPEATC PRINT TYPE TREBLE) ( P R I N T T Y P E  SC): B 4 SUML);
REP EATC P R I N T T Y P E  SPACE) (P R I N T T Y P E  SC):B 6 SUMS)
EN DING 
FINISH

TY PE OF SQ IS : CCNILSO^C INTEGER]]

TY PE OF ($ C) : (CB 10) SUMI)) IS : C C NIL S] *-C BOOL EAN ] ]

T Y P E  OF T R E B L E  IS : C CN IL S]-C C INTEGER] UNION [REAL] ] ]

T Y P E  OF ($ C) ; C CB 4) SUML)) IS : [[NILS]  ̂ [ B OO LEA N] ]

TY PE  OF SPA C E IS : [[NILS]^[ STRING]]

TY PE OF C S C ) : C CB 6 ) SUMS)) IS : [ [NIL S] *• [ BOOL EAN ] ]

R E S U L T  OF T Y P E  CHECKING IS : [ANY]

< < < O U T P U T  IS : 385 >>>
< < < O U T P U T  IS : (3,6,9,12) >>>
< < < O U T P U T  IS : < R E C K 0 N> >>>

R E S U L T  OF PR O G R A M  IS : C )
QED.
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EX AIM PL E 2

START
B EG I N N I N G

COMM EN T
THIS EX A M P L E  IS S I M IL A R  TO L A S T  ONE, BUT WITH T Y P E  
DECLARAIT ON S.
COMM EN t e n d

L E T  REC C C C N I L S D - C A N Y 3 3 - C C [ N I L S ] ^ C B O O L E A N ]  D-CNILS] 3 3 RE P E AT  
C CN IL]*-CANY] ] ACTI ON C CN I L S3 - C BOOL EAN] ] C O N D I T I O N #  
( A C T I O N O ;  ( CON DITION ( ) THEN () E LS E  
R E P E A T  ACTI ON CON DI Tl ŒJ ) ) ,*

L E T  C0UNT#0;
L E T  SUML, SUMS, SUMI #( 1,2,3, 4),<RECK0N>, OJ
L E T  B L I M I T  TO TAL # I F C O U NT = L IM I T  THEN P R I N T  TOTAL,*

COUNT: =0; T R U E  E L S E  FAL SE  Fi;
L E T  SQC ) #( COUJT: = c o m  T+i; SUM I : = SUM 1 + CO UNT* CO UN T) ,*
L E T  S P AC E ( )# ( C OU N T : = COUNT+i;

SUMS: = ( 1 TL SUMS) : : < >::(1 TH SUMS)),*
L E T  TREBLEC ) #( C O m T :  = C O m T + i ;

( C O U N T  TH SUML ) : = ( COUM T TH SUML)* 3),*
R E P EA T C PR IN  TT YP E SQ ) C PRIM TTYPE SC) :B 10 SUM I ) ,*
R E P EA T C PR I N  TT YP E TREBLE) ( P RI N T T Y P E  SC): B 4 SUML);
REPEATC P R I N T T Y P E  SPACE) C PRINT TY P E SC ):B  6 SUMS)
ENDING
FINISH

T YP E  OF SQ IS ; C CN IL S3 - C IN TEG ER3 3

T YP E  OF C $ C) : C CB 10) SUMI)) IS : C CNILS3-C BOOLEAN] 3

TYP E OF T R E B L E  IS : C CNI L S3 - C C IN TEGER3 UNION C REAL 3 3 3

T Y P E  OF CS C) : C CB 4) SUML)) IS : [[NIL S3 ̂ [ B OO L E AN ] 3

T Y P E  OF S P A C E  IS : CCNILSJ^C STRING]]

TYPE OF CS C) ; C CB 6 ) SUMS) ) IS : [ C N IL S3 - C BOOL EAN 3 3

R E S U L T  OF T YP E  CHECKI NG  IS : CNILS3

< < < O U T P U T  IS : 385 >>>
< < < O U T P U T  IS : (3,6,9,12) >>>
< < < O U T P U T  IS ; < R E C K 0 N> >>>

R E S U L T  OF PROGRAM IS : C)
QED.
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E X A M P L E  3

START 
BEG INN IN G

CO M M E N T
A W H I L E - L O O P  IS A P P L I E D  TO REAL, L I S T  A N D  ST RIN G 
RE SPE CT IV E L Y.  THE R E IS N O  T Y P E  DE C LA R A TI O N  IN 
THIS EXAMPLE.
C 0.1 M E N T  SI D

L E T  REC W H I L E  ACTION  CONDITION#
(COND ITI ON C)  THEN ACTIONO,* WHI L E  ACTIO N C O N DI T IO N  
ELSE C) ),*

L E T  IN C REM EN T, COUNT, SU1#1. 0, 1, 0. OS 
L E T  L, S#C 1, 2, 3, 4, 5) , < WHI L ELOOP> ,*
L ET COJ TROL C ) # CO UJ T: = CO UN T+ 1 ;
L E T  L E nIGTH N P#

(NULL P THEN P R I N T  N; FAL S E ELS E
CNULLCN TL P) THEN PRINT NS FALSE ELSE TRUE)),*

L E T  SER IE S N P#
CN\0. 0 0 0 0 5  THEN T R U E ELSE PRINT N,* P R I N T  P,* FALSE),* 

W H I L E  ( P R I N T T Y P E  CON TROL) ( P R I N T T Y P E  S C ) : L E N G T H  COUNT L ) ,* 
COUNT: = i;
W H I L E  CONTROL ( P R I N T T Y P E  SC): L E N G T H  COUNT S),*
W H I L E  ( P R I N T T Y P E  S():CINCREMENT: = INCREMENT*0.5;

SUM: = SUM+INCREMENT) )
( P R I N T T Y P E  SC); SERIES INCREMEÏMT SUM)

ENDING
FI NI S H

TYP E OF CON TROL IS ; [ [NIL S3»[ INTEGER] 3

TY PE OF c s C ) : C CLE3MGTH COUNT) L) ) IS : [ [ N I L S ] ^ [ B O O L E A N ] 3

TYP E OF c s C ) : C (LENGTH COU nJT) S) ) IS : [ [NILS] «-[BOOLEAN] 3

TY PE  
C SUM

OF C S C ) ;  
CSU1 +

C IN CREM EIMT : = ( INCREMENT 
IN CREMEN T) ) ) IS : [[NILS3-

* 0. 5) ),* 
[ R E A L ] 3

T Y P E  OF C S 
[BOOLEAN] 3

C) : C C SERI ES INCREMENT) SUM)) IS : [[ NI L S ]»

R E S U L T  OF TYPE CHECKING IS : CANY3

< < < O U T P U T  IS : 5 >>>
< < < O U T P U T  IS : 9 >>>
< < < O U T P U T  IS : 0 . 0 0 0 0 3 0 5 1 7 5  >>>
< < < O U T P U T  IS ; 0 . 9 9 9 9 6 9 4 8 2 4  >>>

R E S U L T  OF PR O G R A M  IS : C )
QED.
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E X A M P L E  4

START 
BEGINN  ING

C O M M E N T
THI S E X A M P L E  IS SIM ILA R TO L A S T  ONE, BUT WITH TYPE 
DECLARATI Ql .
COMM EN TEN D

L E T  REC C C C N I L S 3 - C A N Y 3 ] » C C C N I L S 3 »C B O O L E A N 3 3 - C N I L S 3 33 WHILE 
C CNILS3» C ANY3 3 ACTION C C NI L S3 » C BOOL EAN3 3 CON DI Tl ON # 

(CO ND I T IO N C ) THEN ACTIONC),* WH IL E  ACTIO N CONDI TI ON  
ELSE C) );

L E T  INCREMENT, COUNT, SUM#1. 0, I, 0. 0,*
L E T  L, S#C 1, 2, 3, 4, 5), < WHIL ELOOP>/
L E T  CON TROL C ) #COUN T: = c o m  T+i;
L E T  L E N G T H  N P#

(NULL P THEN PRIN T N,* FALSE ELSE
CNULLCN TL P) THEN PRINT N: FALS E E L S E TRUE)),*

L ET  SERIES N P#
CN\0. 0 0 0 0 5  THEN T R UE  ELSE P R I N T  N; P RI N T P; FALSE),*

W H I L E  ( P R I N T T Y P E  CON TROL) ( P R I N T T Y P E  $ C ); L EN G T H  COU N T  L)J 
COUNT: = i;
W H I L E  CONTROL (P R I N T T Y P E  £C ):LENGTH COUNT S),*
W H I L E  ( P R I N T T Y P E  SC ) : C IN CRHMEIT: = INCREN ENT*0. 5,*

SUM: = SUM+ INCREMENT) )
( P R I N T T Y P E  SC); SERIES INCRETMENT SUM)

ENDING
FINISH

TYPE OF CONTROL IS ; C CN IL S3» C IN TEGER3 3

T Y P E  OF CS C) ; C (LENGTH COUNT) L) ) IS : C C NIL S3 »C BOOLEAN] 3

TYP E OF CS ( ) : C (LENGTH COUNT) S) ) IS ; C C NIL S3 » C BOOL EAN3 3

TY PE  OF CS C) ; ( I N C R E M E N T  ; = C IN C R E M E N T  * 0-5)),*
(SUM ; = C SUM + IN CRETMEIM T) ) ) IS ; C C NI L S3 » C REAL 3 3

TYPE OF CS C ) ; C C SERI ES INCRBMENT) SUM)) IS ; CCNILS3 »  
[BOOLEAN 3 3

R E S U L T  OF T YP E  CHECKING IS ; CNILS3

< < < O U T P U T  IS ; 5 >>>
< < < O U T P U T  IS ; 9 >•>>
< < < O U T P U T  IS ; 0 . 0 0 0 0 3 0 5 1 7 5  >>>
< < < O U T P U T  IS ; 0 . 9 9 9 9 6 9 4 8 2 4  >>>

R E S U L T  OF P R O G R A M  IS : C)
QED.
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DC AM PL E 5

START
BEG IN N I NG

COMM HJ T
P R O C E D U R E  " P R O D U C E "  A N D  "CON SUI E"  A R E M U T U A L L Y  R E C U R S I V E  
TO E.ACH o t h e r . THER E IS NO TYP E  D E C L AR A T IO N  IN THIS 
EXAMPLE.
COMM EIM TEN D

L E T  F A C TO RY  B1 B2 A1 A2 D#
(LET BUFFERP, BUFFERC#!, i;

(LET RECC PRODUCE, CONSUME) #
(($(): ( P R I N T T Y P E  BIC) THEN BUFFERP: = 0 ELSE AlO),*

( P R I N T T Y P E  BUFFERC=1 TH E  J CON SUM E O  ELSE D O ) ) ,  
( $ ( ) : ( P R I N T T Y P E  B2() THEN B UF F E R C : = 0  ELSE A2())J 

( P R I N T T Y P E  BUFFERP=1 THEN PRO DUC E O  ELSE DO))),* 
P R O D U C E O  ));

LET SUM,N #0, O;
( P R I N T T Y P E  F A C T O R Y ) ( $ ( ) : N \ 1 0 0 ) ( S ( ) : SUMXIOOO)

( S():N: =N+ !)($(): SUM: = SUM + N*N)
( S O :  P R I NT  NJ P R IN T  SUM)

EN DING 
FINI SH

T Y P E  OF COND (B1 O )  IN (B UF FER P :=0) OUT (A1 O )
DNOC IS : CANY]

TYPE OF CON D (B UF F ER C = 1) IN ( CONS UM E O )  O U T  (D O )
CNOC IS : CANY]

TYPE OF COND ( B2 O )  IN (B UFF ERC  : = 0) O U T  (A2 O )
CNOC IS : CANY]

TYPE OF COND (BU FF E R P = 1) IN ( P R O D U C E  O )  O U T  (D O )
CNOC IS : CANY]

TYPE OF FA C TO R Y  IS : CC A N Y ] » C C A N Y ] » C C A N Y ] - C C A N Y ] » C C A N Y ] »
CANY]]]]]]

R E S U L T  OF TYPE CHECKING IS : CANY]

< < < O U T P U T  IS : 16 >>>
< < < O U T P U T  IS : 1015 >>>

R E S U L T  OF P R O G R A M  IS : 1015
QED.
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E X A M P L E  6

START
B E G I N N I N G

CO M M E N T
THIS E X A M P L E  IS S IM I L A R  TO L A S T  ONE, BUT WITH TYPE  
DECLARATIONS.
COM M E N  T E ND

L E T  F A C T O R Y  C CN I L S3 » C BOOL EAN ] ] B 1 C C N IL S3 » C BOOL EAN ] 3 B2 
CCN ILS3-C ANY3 3A1 C CNI L S3 » C ANY3 3 A2 C C N IL S3 » ANY3 3 D#

(LET BUFFERP, BUFFERC#!, i;
(LET REC( [ CN ILS3-C ANY3 3 PRODUCE, C C NI L S3 » C ANY 3 3 CONSUME) # 
(($(): ( P R I N T T Y P E  B I O  THEN BUFFERP: =0 EL SE AlO),*

( P R I N T T Y P E  BUFFERC=1 THEN CONSUME() E LS E  D O ) ) ,  
( S O  :( PRIN TTYPE B 2 0  THEN BUFFERC: =0 ELSE A2())J 

( P R I N T T Y P E  BUFFERP=1 THEN P R O D U C E O  ELSE D O ) ) ) ;  
PRO DUC E() ));

L E T  SUM,N#0,O;
( P R I N T T Y P E  FACTORY) (5():N\ 100) ( S O  : SUM\ 1 000)

( S( ) :N: =N+ 1 ) ( S O  : SUM: = SUIM+N*N)
( S O :  PRINT N; p r i n t  SUM)

ENDING
FINISH

T YP E  OF COND (B1 O )  IN (BUFFERP :=0) O UT (A1 O )
CNOC IS : C ANY]

T YP E  OF C ON D  (B UFFERC = 1) IN ( C O N S U M E  O )  OUT (D O )
U nIOC i s  : CATMY]

TY PE OF COND ( B2 O )  IN (BUFFE RC  := 0) OUT (A2 O )
CNOC IS : CANY]

TYPE OF COND  (BUFFERP = 1) IN ( P R O D U C E  O )  O U T (D O )
CNOC IS : CANY]

TY PE  OF FACTORY IS : C C CNI L S3 » C BOOL EAN3 3 » C C C N IL S3 »
CBOOL EAN ] ] » C C CN IL S3 »C ANY] 3»C C CNIL S3-C ANY] 3 »C C CNILS3 » 
C AN Y ]] » C AN Y ] ]] ] ] ]

R E S U L T  OF TY P E CH EC KI N G  IS : CANY]

< < < O U T P U T  IS : 16 >>>
< < < O U T P U T  IS : 1015 >>>

R E S U L T  OF PROGRAM IS : 1015
QED.
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PART THREE
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C HA P T E R  ONE 

SY STE M- Y

A l t ho u g h [A] or [ A->A] as p r op os ed  in Sy s tem -F enable 

us to tackle (or to be more precise, "bypass") problems 

such as circula r types and pa r a m e t r i c  p o l ym o r ph i s m,  they 

add little to our u n d e r s t a n d i n g  of the natur e of these 

types. In this chapter, we shall ex amine this im po rt ant  

topic in detail. We shall discuss the requi sit e re d u ct i o n  

me ch a n i s m s  and illu st ra te them by examples.

1.1 Ele me nt s of System -Y

El em en ts  of Sy ste m- Y are gro up ed into three ma i n  

c a t e g o r i e s — type constants, type va ria bl e s and type 

a bs tr ac tio ns . A type co nstant may be bas ic  or fun cti ona l  

as in the other systems. A co mp ut i n g v a ri ab le  will be 

m ap p ed  into a fresh type var iab le  if the type of that 

co mpu t i ng  va ri ab l e  is not known (in System-F, it was given 

default type [A]). Two or more c o mp ut in g va r iab le of the 

same name and w i t h i n  the same scope (in other words, bound  

to the same b i n d i n g  variable) are ma pp ed  into the same type 

va ria b l e o t he rw i se  into dif ferent ones. Type v ar ia bl es  

will be assign ed type values in the course of type re d uc t i on

Type a bst ra ct ion s are used to descr ib e the type of 

functions e s p e c i a l l y  for those whose formal parameters*  

types are not declared. This chapter d i scu ss es  their 

proper t i e s .
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N o t a tio n a 1 l y , we shall write t ̂  for type constants,

Vj for type varia bl es  and yj for type ab stractions.

U s u a ll y  the subsc ri pt "i" or "j" bears some useful 

info rma ti on , for example t^ is the type e x p r e s s i o n  for the 

dyadi c op er ato r is pr ob a bl y  the type va ri ab le

c o r r e s p o n d i n g  to the compu ti ng  va ri ab l e  "x" and y ^ is the 

type of a function with "x" as formal p a r a m e t e r  (binding 

va ri a bl e  of A~ exp ression) assumin g that we are c o n s id e r in g  

single argument A - e x p r es s i on s  only.

1.2 Type abs tra cti on s

In Syste m-F  we said that the type of (Ax:x) is [ A->A] .

In fact, it is only partly true, the fun ct io n may be able 

to take arguments of any type, but the result it yields is 

not any type as it seems to be. The type of the result 

depends on the type of the actual par ameter. So this 

sugges ts that a proper type e x p r e s s i o n  for fun ctions should 

be one that can express this context- sen sitive re lat i o ns h i p  

For example, im me d i at e l y we can exclude simple type 

v a r i ab l e s as types for functions.

Type abs tr act ion s can be defined by equations. If 0 

is the m a p pi n g  function which maps a co mp u t in g  e xp r e s s i o n  

into a type exp ression, then

4» ( Ax :M) =y^

where M is a well formed e xp r e s s i o n  and y ^ is a type
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ab st r act io n,  is then defined by the fo llo w i ng  equation:

whe re  V is a type var ia ble  and #(x)=V .

Ex amp les

( 1 ) 4> ( A X : x) =Y

where v (V ) =V ->$(x)=VX X X  X X

(2) 0( A x: x + x ) = y ^

where Y ^ ( x + x)

1.3 Type ass ig nments

There are two ways that values can be as si g n ed  to type 

v a r i a b l e s — by d e c l a r a t i o n  and by a p p l i c a t i o n  of type 

ab st r ac t i on s  to types, whi ch  will be den oted by " : e " and 

":=" re spectively.

1.3.1 As s ig n m e n t  by d e c la r at i o n

In the ex ample (A[I]x:x), x is decla red  to be of type

[I]. Suppose 0(x)=V^, then we say that and [I] are

synonyms and so we write V^:=[I], (readers may compare this 

wit h the identity de c l ar a t io n  of A l g o l - 6 8 ).

Let Y be the type of (A[I]x:x). This is de fi ne d to 

be in the type a b s t r ac t i on
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However, by declara ti on,  cannot be of any value but [I],

therefore y ̂  can only have one value, whi ch  is [ I+I] .

So y ̂  and [ I->I] are also synonymous.

Notât ionally , we can write 4>( A [ t ] x : M) = ( : e t ; t->4> (M) ) ,

whe re t is any type and M is a well formed formula. We 

notice that the result of the ma p pi n g  consists of two 

clauses se par at ed by The first clause is an imp era tiv e

in s t r u c t i o n  to indicate the kind of a ss i g nm e n t involv ed and 

the second clause is the result we no r m a l l y  have.

1.3.2 A s si g n m e n t  by a pp l i c a t i o n  of type a b s t r a c t i o n  to types

If the square functi on  is defined as sq (x)=x*x, we 

can assume (sq 3) is evalu at ed  ac co rd i ng  to the fo ll ow i n g  

p r o c e s s ,

(1) assign the value 3 to x

(2 ) replace every x in the eq ua ti on  by its value

(3 ) evalua te the right side of the de f in i t io n

(4) finally obtain (sq 3)=9

Suppose Y £ (V^) =V^+4> (M) , (y  ̂ V ̂  ) can be a n a l og o u sl y  e v al ua te d

as f o 1 lows :
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( 1) assign value to (i.e. V\:=t^)

(2 ) replace every in the eq u a ti o n  by t ̂

(3) evalua te  (by re d u ct io n  in this case) the right side of 

the e q u a ti o n

(4) fin ally obtai n (y^ t^)=t^->t^’ , as s um i n g that the 

. r e d u ct io n  on ($M) yields t^'.

In general, w h e n e v e r  a type a b s t r ac t i on  y ̂  is applied 

to an actual p a ra m e te r  t, such as (y ̂  t ̂ ) above, the above 

pr ocess will be invoked. We shall see later how this can 

be avoid in cer tain cases by p r o v i d i n g  a me mo ry  for y ̂ .

1.4 The m a p p i n g  function 4>

The ma p p i n g  fu nc tio n 4> i s de si gn e d  to t r a ns f o rm  an 

ap pl i ca t i ve  e x p re s s io n  into a c o r r e s p o n d i n g  type e x p r e s s i o n  

in System-Y. 0 can be defined re c ur s i v e l y  as follows for 

the various kinds of c om put ing  expression:

( 1 ) Cons tants(c)

( 4> c)=t^ where t ̂  is a type constant

Exa mp l e s

(I) (0 3)=[I]

(2 ) (0 +)=t^
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(2) Var ia ble s(x )

(0 x)=V^ , for simplicity, we assume that there will be

no name conflicts among the bi nd ing  variables.

(3) Co m bi n a ti on s  (M N)

(0(M N ) ) = ( ( 0  M ) (0 N ) )

(4) Infixed e xp r es sio ns (x op y)

A s s u m i n g  that (x op y) can be re w r it t e n as (op x y) , 

then, (0 (x op y ) ) = ( 0 (op x y ))=((0 o p )(0 x )(0 y ))

(5) C o n d i ti on a l ex pr ess ion s (IF b THEN e ̂ ELSE e ̂  FI)

(0(IF b THEN e, ELSE e^ FI)) =( t ,(0 b)(0 e,)(0 e,))1 2 cond 1 2
where t^^^^ is the type constant for h a n d l i n g  c o n d i ti o n al  

ex pr e ssi ons , the r ed uct ion  routine ass oci a te d  w it h it may 

vary from one i m p l e m e n t a t i o n  to another.

(6 ) ^.-expressions (Ax:M)

(0(A x :M))=Y^ where (Y^ V ^ ) =[ V ^ +( 0  M ) ]

This m a pp i n g funct ion  de f in i t io n  may be en l ar g e d for more 

ambi tio us  specific languages.
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1.5 The R e d u c t i o n  Functi on

In the f o ll ow in g dis cu ssion, we shall assume all "t",

"V" and " y " with  or wi t h o u t  subscri pt s are any type constants, 

type va ri a b le s  and type ab str ac t io n s  r e s p e c t i v e l y  except in 

those cases m e n t i o n e d  in s e c t i o n (1.1) where s pe ci fi c me an ing  

is att ac he d to some subscripts. These cases are ei th e r  as 

we have met them before in previo us  examples or they should 

be clear from the context.

The re d u c t i o n  functi on  0 is defined r e c u r s i v e l y  as 

follows :

(RYl) (6 t_)=t.

(RY2) (0 V \ ) = ( l o o k u p  V.)

w h e r e  l o o k u p  is the f u n c t i o n  that  r e t u r n s  t he v a l u e  

t h a t  h a s  b e e n  a s s i g n e d  b y " : e " or " : to , if any

(RY3) (8 Yi>=Yi

(RY4) (0 (M N ) ) = ( 02 (e M) (0 N) )

where M and N are any type ex pr essions. The action

of 8 2 depends on the nature of M and N. The

fo llo w i ng  are some of the p os si bl e cases:

(a) both M and N are type constants

©2 reduces the c o m b i n at i o n acco rd ing  to an 

app ro p r ia t e  rule of re duction as d e s c r i b e d  in 

System-F, for example.
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(02 [I->R][I ])=[R]

(b) M is a type abstraction:

let M be Y where v (V ) =V ->M ' , and M ' is a type 'm 'm m m
exp ression, then

( 0_ M N) = (V :=N; (0 M'))2 m

for examp 1e ,

( 0 ( 0 ( ( Ax :x + x ) 3)) )

= ( 0(Yx tl])) where $(x)=V^ and Y x ( V % ) =V ^ ^ (t +  V^)

= (02 Yx tl]) by (RY4)

=(V^:=[I]; (0(t^ V^^)) by (RY4 .b)

= ( 0g (0 t+)(0 V^ ) (0  V^)) by (RY5--see below)

=(03 t^ [I][I]) by ( R Y 1,RY2)

=[I] by (RY5)

(c) M is a type constant and N is a type abstract io n:

Suppose M is t ̂ ‘̂ 2 ’  ̂̂  ̂  N be and

(y V ) =V ->N ' , then Tn n n

(02 M N ) = ( 02* tj (0 N) t2>

where 02' is defined re c u rs i v e l y  as follows:

Given (02' a b c ),

(1) if b is a type a b st ra c ti o n  and a is 11 ̂ 1 1 2 ̂  '

let b be y ^ where Yy ( V ^) = V ^^ b ' , then

(02' a b c) = (V^: = t^^; (02' t ̂ 2 (0 b') c ) )
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(2) otherwise if a^b then c else [E] 

for example,

(0 (0 ( A [ I + [ I ^ I ] ] f : ((f 3)4) ) (Aa:Ab:a+b)))

= ( 0 ([[I+[I+I ]]+ I]  Y^))

where y (V )=V +y, a a a b
a nd Y, ( V . ) = V ^ ( t ^  V V.)D b D + a D

= ( 8 2 [[I+[I^I]]^I] yj  by (RY4)

= (@ 2 ' Y g [I]) by (RY4c)

=(V^:=[I]; (8 2 ' [I+I] Yy [I])) by (RY4cI)

= ( V y :=[!]; (8 2 ' [I] (8 (t+ Vy)) [I])) by (RY4cI)

=( 8 2 '[I](8 ] by (RY5,RY1,RY2)

= ( 8 2 'CI][I][I]) by (RY5)

=[I] by (RY4c2)

(RY5) (0 (tdyadic '̂ x ^y)) (83(8 t d y a y i (,)(0 t^)(8 t^))

where 8 ̂  takes three arguments, and the first 

argument is an el ement of the set of pr e d e f i n e d  

t y p e - c h e c k i n g  in s t ru cti on s (probably r ep r e s e n t e d  

by type constants) so that the p r e d e f i n e d  routines 

will be applied to the second and third arguments, 

p r o d u c i n g  a result which is the type of the 

dy adi c operations.

(RY6) (8(tcond S  L  Cy))-(8,(8 by) (8 t p ( 8  t^))

9^ is similar to 0 3 except that it takes 4 

arguments. As said before the type checking
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r o utine is d e n oted by t cond

Here are some examples,

( 1)

( 8 ( $ ( ( ( X a : X b : a + b ) 3 ) 4 ) ) )

= (0((y [I])[I])) where (y V )=V ->ya a a a b
and V^)

= ( 8 2 ( @ ( Y 2 [I]))[I])

“ ( e a O a Y g C m C i l )  by (r y 4)

= (V^:=[I]; (62(0 Y y ) [ I ] ) )  by (RY4b)

=(02 Yy [I]) by (RY3)

= (V, : = [!]; (0(t^ V V,))) by (RY4b)b + a b
=(03 t+(0 V )(0 V^)) by (RY5)

=(03 t+[I][I]) by (RY2)

= [I]

(2 ) p a r a m e t r i c  p o l y m o r p h i s m

As before, assume that the type of n u m e r i c f u n c t i o n ,  

s t r ing f une t i on , nu m e r a l  and string are [t^-^t^],

t^ and t^ r e s p e c t i v e l y ,

( 0 ( $ ( ( X t w i c e : ( . . . ((twice n u m e r i c f u n c t i o n ) n u m e r a l )...

((twice s t r i n g f u n c t i o n ) s t r i n g ) ...))

( Xf : Ax : ( f ( f x) ) ) ) ) )

= ( 0 ( Y t „  Yf))

=(02 Y^„ Yj)

= (V^^:=Yf: (8 (.. . ...
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X

.(0 2 (0 (V [ t ^ t  ]))[t ])...(9( ditto ))...)LW n n n

.( 02 (02 Yf [ ) [ t^] ) . . . (0 ( ditto ))...)

: = [t^->t^]; ( . . . ( 02(0 Y^) C t^]) . . . (0 ( ditto ))...)) 

•(^2 Y^ [ t ^ ] ) .. . ( 0 ( ditto ))...)

=[t^]; ( . . . ( 0 ( V ^ ( V 2 V ^ ^ ) ) . . . ( 8 ( ditto ))...))

( 0 2 [ t^^t^ ] ( 0 2 [ t^-^ t^ ] [ t^ ] ) ) . . . ( 0 ( ditto ))...)

-t n - - - ( 8 ]))...) 

■ t ^ . . . (0 2 (02(6 V ^ „ ) [ t ^ ^ t ^ ] ) [ t ^ ]  

• t^... (0 2 (02 Yj[ t^.^t^]) [ t^]) . . .

: = [t ->t ]; ( . . . t ...(02 Y [ t ] )s s n ^ X s
:=[t ]; (...t ...(0(V (V V )))s n r f X
. t . ..(02[C ](02[t ->t ][t ])n ^ s s  s
.t ...t ...)n s

.))

.))

There should be no c o n f u s i o n  that V^, are a s s i g n e d

values in two instances c o r r e s p o n d i n g  to two dist i n c t  

ap p l i c a t i o n s  of y ^ and y ^ to their arguments. 

A l t e r n a t i v e l y ,  we may s u b script the v a r i a b l e s  in order 

to d i f f e r e n t i a t e  the two instances. Indeed, for 

im p l e m e n t a t i o n ,  each type a b s t r a c t i o n  may carry an 

e n v i r o n m e n t  wh i c h  includes all a s s i g n m e n t s  to the type 

v a r i a b l e s  that are a c c e s s i b l e  to it.
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1.6 S i m p l i f i c a t i o n s  of the red u c t i o n  function

Let us study the example (Af:(f l)+(f 2))(An:n+n)

follows :

( 0 ($(Af:(f l)+(f 2))(An:n+n)))

= ( 0 (yf y ^ ) ) (1)

=(Vf:=Y^; ( e ( t ^ ( V ^ [ I ] ) ( V j [ I ] ) ) ) )

(2 )

(3)

=(63 t ^ (0 ( V ^ [ I ] ) ) (0 (Vj[I]))) (4)

{Now reduce on the first o c c u r r e n c e of (0(V^[I]))}

=(03 t^(02(0 V j ) [ I ] ) ( 8 ( V ^ [ I ] ) )) (5)

=(8, t^(8, Y [ I ] ) ( 8 ( V  [I]))) (6) 3 + 2 n t
= (V : = [!]; (8- t^(8(t_^ V V ) ) ( 8 ( V [ I ] ) ) ) ) (7) n 3 + + n n t
=(03 t^(03 t + [ I ] [ I ] ) ( 8 ( V ^ [ I ] ) ) )  (8)

=(83 t + [ I ] ( 8 ( V g [ I ] ) ) ) (9)

{Reduce on the second o c c u r r e n c e  of (0 (V^[I])) }

=(83 t ^ [ I ] (82(0 V^)[I])) (10)

=(8, t [ I ] (0, Y„ [I]))J + z n
=(V :=[!]; (8. t ^ [ I ] (0 (t V V )))) n 3 + + n n
= (03 t_^[I](03 t+[I][I]))

( 11)

( 12)

(13)

=(03 t+[I][I]) (14)

= [I] (15)
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We notice that steps 10-14 are r e p e t i t i o n s  of steps 

5-9 and the purpose of both p r o c esses is to ensure that "f" 

is ap p l i e d  to apposite arguments. Thus it is r e a s o n a b l e  

to s u g gest that if we a s s o ciate m e m o r i e s  to type a b s t r a c t i o n s ,  

it may be poss i b l e  to avoid these repetitions. This would 

be more e x p e d i t i o u s  if our example were (A f : (f 1) + ...+

(f 1000)). The idea of m e m o r y  is simple, and it r equires 

that the r e p r e s e n t a t i o n  of type a b s t r a c t i o n s  consist now 

of two parts, the d e f i n i t i o n  and the memory.

The m e m o r y  is used to record values of the type 

a b s t r a c t i o n  for some specific arguments. I n i tially, the 

m e m o r y  is empty, and for each a b s t r a c t i o n ' s  ap p l i c a t i o n ,  

say (y t), if there is no value of y for this p a r t i c u l a r  

value of t ( c o r r e s p ondingly, there is no entry of t in y's 

memory), then (y t) will be reduced as usual by Rule (RY4b) 

and the result obtained is used to update the memory, 

otherwise, the result e q u i v a l e n t  to a p p l i c a t i o n  of several 

r e d u c t i o n  rules can be simply e x t r a c t e d  from the memory.

For example, step(ll) can be r eplaced by (63 t^[I][I])

so that steps (12-14) are no longer necessary.

There is no formal need to change the r e d u c t i o n  rules 

to include e x p l i c i t l y  refer e n c e s  to memo r y  b e c a u s e  it is in 

all cases e q u i v a l e n t  to the rules already given. It is a 

p r a g m a t i c  device to enhance efficiency. We e x a mine its 

e f f i c i e n c y  now.
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1.7 S y s t e m - Y  compared with other Static Systems

Type chec k i n g  of S y s t e m - Y  is p e r f o r m e d  m a i n l y  in the 

p a r s i n g  stage. It is r e a s o n a b l e  to s u ggest that Syst e m - Y  

is a static system. The m a r k e d  d i f f e r e n c e  b e t w e e n  it and 

other static systems is that type d e c l a r a t i o n  is not 

c o m p u l s o r y  in it, a feature not common to other static 

systems. We may ask w h e t h e r  more p r o c e s s e s  are r e q u i r e d  

for type checking in Syst e m - Y  than in static systems where 

type d e c l a r a t i o n  is compulsory. Before we make any

comments on this issue, we shall e x amine some e x a mples.

Examp les

( 1) type c hecking by other systems

How many steps are requ i r e d  in t y p e - c h e c k i n g  (A[I-^I]f:

(f l) + (f 2)) (A[I]n:n + n)?

(Al) 3 steps are r e q u i r e d  in (A[I->I]f:(f l) + (f 2)), nam e l y 

one each for the m o n a d i c  o p e r a t i o n s  (f 1) and (f 2 ) 

and one for the dyadic o p e r a t i o n  "+".

(A2) one step in (An:n+n) for the dyadic o p e r a t i o n  "+"

(A3) one step for the c o m b i n a t i o n  ( A [ I->I ] f : . . . ) ( A [ I ] n : . . . )

So 5 steps are r e q u i r e d  in all.
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(2) type c h e c k i n g  by Syst e m - Y

C o n s i d e r  the num b e r  of steps r e quired in type c h e c k i n g  our

p r e v i o u s  example (Af:(f l)+(f 2))(Xn:n+n) (without type

d e c l a r a t i o n  this time)

(Bl) Type r e d u c t i o n  rule imposes no type c h e c k i n g  on

c o m b i n a t i o n  ( X f : . . . ) ( A n :...). will be a s signed

to V^ instead.

(B2) Similarly, there is no c h e c k i n g  on (f 1) itself, but 

this c o m b i n a t i o n  initiates c hecking of (An:n+n).

As in (A2), one step is required.

(B3) Since the m e m o r y  of will not be empty after step 

(B2), there will be chec k i n g  of (f 2). In g e neral 

the n u m b e r  of steps required depends on the n u m b e r  of 

e ntries in the memory. However, only one step is 

r e q u i r e d  h e r e .

(B4) One step is r e q u i r e d  for the dya d i c  o p e r a t i o n  "+" 

as in (Al)

T h e r e f o r e  3 steps are r equired in all.
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This c o m p a r i s i o n  b e t w e e n  the p e r f o r m a n c e s  of S y s t e m - Y  

and other static systems was really quite naive. It w o u l d  

be o p t i m i s t i c  to assume that S y s t e m - Y  is always more 

e f f i c i e n t  than others. In fact, there are o v e r h e a d s 

i n v o l v e d  in S y s t e m - Y  such as m e m o r y  space and access time.

Any c o m p r e h e n s i v e  c o m p a r i s i o n  of e f f i c i e n c i e s  m i g h t  the r e f o r e  

be forced to equate syste m - Y  with other systems.

The c o m p a r i s i o n  of logical s i g n i f i c a n c e  is that 

S y s t e m - Y  checks progr a m s  in a dyn a m i c  order ( the order in 

w h i c h  they are executed) w h e r e a s  other systems check them 

in static order (the order in w h ich they are w r i t ten).

1.8 I n t e r s e c t i o n  types

We have said b e f o r e  that it is p o s s i b l e  to de c l a r e  

the type of any variable. Suppose we want x to be either

[I] or [R] in e x ample (Xx:x+x), then we can write

(X [I u R ] x :x+x)

In system-Y, x is of union type, w hile the c o r r e s p o n d i n g  

X - e x p r e s s i o n  is of i n t e r s e c t i o n  type [ I->-I ] n [ R->R] , thus the 

type of the co m b i n a t i o n s

$ ( ( X [I u R ] X :x + x ) 3) can be re d u c e d  to [I ]

and $ ( ( X [IuR]X :x + x ) 3•0) can be re d u c e d  to [R]
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Let us use the concept of type a b s t r a c t i o n  to derive these 

results. Suppose ( ( A [ I uR]x : x + x) ) =y^ and ( $ x)=V^, where

Y (V ) =V ->(t, V V ). By de c l a r a t i o n ,  V can only beX X  X + X X •' X
eit h e r  Cl] or [R] and c o r r e s p o n d i n g l y  Y ̂  i s de f i n e d  for 

these two values only,

Y ^ ( [ R ] ) = [ R ] - ^ ( t ^ [ R ] [ R ] )

=[R^R]

T h e  results o b t a i n e d  a r e  the s a m e  as b e f o r e ,  a n d  w e  s a y  t h a t  

Y ^  a n d  [ I->-I ] n [ R->R] a r e  s y n o n y m o u s  in  t h i s  e x a m p l e .

1.9 The A n o n y m o u s  Type

In X “K Calculus, it is not n e c e s s a r y  for b i n d i n g  

v a r i a b l e s  to occur in their X~bodies. The type of n o n ­

o c c u r r i n g  b i n d i n g  v a r i a b l e s  is immaterial. In spite of 

the fact that they can be of any type, it could be 

u n d e s i r a b l e  to assign speci f i c  types to them. For example, 

the g e n e r a l i t y  of c o m b i n a t o r  K 2 (i.e. ” Ax:Ay:y") w o u l d  be 

r e s t r i c t e d  if we d e c l a r e d  the type of its first argument.

We want to describe an object whose only p r o p e r t y  is that 

it occurs as a b i n d i n g  vari a b l e  but does not appear in the 

X-body. We invent the " a n o n y m o u s "  type ( a b b r e v i a t e d  [Z]). 

By a l l o w i n g  [Z] to include all other types (i.e. [ Z ] 2 t,

for all types t ) , its p r o p e r t i e s  can be d e s c r i b e d  by the
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f o l l o w i n g  r e d u c t i o n  rules (where t, tj can be any types):

(RY7) (02[Z-^tj]t)=t j

(RY8) (02 t Z)=[E]

(RY9) (02 Z t)=[E]

If [Z] in (RY8) and (RY9) d e s c ribes a n o n - o c c u r r i n g  

v a r i a b l e  there is no reason for it to occur i n d e p e n d e n t l y  

in e i t h e r  part of the combination.

If the types of n o n - o c c u r r i n g  v a r i a b l e s  are not 

declared, they should be assi g n e d  type [Z ] by the system.

It is p o s s i b l e  to assign type [Z ] to the empty b i n d i n g  

v a r i a b l e  "()", but care must be taken here b e c a u s e  "()" may 

occur in X-bodies. Hence r e d u c t i o n  rule (RY7) must be 

a p plied b e f o r e  (RY8).
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1.10 I m p l e m e n t a t i o n

S y s t e m - Y  has been i m p l e m e n t e d  for c h e c k i n g  types of 

a complete subset of Reckon, wh i c h  includes a p p l i c a t i v e ,  

binary, s e q u e n t i a l  and c o n d i t i o n a l  e x p r e s s i o n  (type checking 

of r e c u r s i v e  functions needs further d i s c u s s i o n s ,  so we 

shall leave it until next chapter). T h e s e  e x p r e s s i o n s  

in turn co n s t i t u t e  the body of A - e x p r e s s i o n s  w h i c h  must be 

e nded with a special m a r k e r  "en d l a m b d a " .  This m a r k e r  

enable the scanner, parser and t y p e - c h e c k e r  to detect the 

end of a A - e x p r e s s i o n . At present, A - e x p r e s s i o n s  can only 

take single argument, so the g e neral format is

11(11 iî ii s i n g l e - b i n d i n g - v a r i a b l e  b ody-e xp r e s s i on

" e n d l a m b d a "  ")"

M e a n w h i l e ,  let us note some of the features of this 

i m p l e m e n t a t i o n .

(1) Scan n i n g

D u r i n g  scanning, each s y n t a c t i c  token will be p l a c e d  

in a record. For example, after scanning, "2+3" will be 

r e p r e s e n t e d  as in d i a g r a m ( 1. 1). A - e x p r e s s i o n s ' scans are 

stored as sublists, for example, (An:n+n endlambda) will 

be r e p r e s e n t e d  as in d i a g r a m ( 1.2). This is n e c e s s a r y  so 

that the A-body will not be parsed if it is not required.
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(2) R e p r e s e n t a t i o n s  of type a b s t r a c t i o n s

These c o n tain at least the f o l l o w i n g  i n f o r m a t i o n - -  

memory, and d e f i n i t i o n  of y . D i a g r a m ( 1 . 3 )  shows the 

sche m a  of r e p r e s e n t a t i o n  so that diagra m ( l . A )  i l l u s t r a t e s  

the r e p r e s e n t a t i o n  of a fully typed ^ - e x p r e s s i o n .

(3) P arser

Two stacks are r e quired for parsing, one for c o n s t r u c t e d  

parse trees and the other for source symbols. W h e n e v e r  a 

type value is a ssigned to a type v a r i able, the pair will be 

s tored in the " e n v i r o n m e n t " .  A copy of this e n v i r o n m e n t  

will be made in the c o r r e s p o n d i n g  A - e x p r e s s i o n  whe n  it is 

parsed. The parser will call the type c h e cker (or part of 

it) w h e n e v e r  n e c essary. The r e l a t i o n s h i p  b e t w e e n  the 

p a r s e r  and the type checker is the same as in System-F. 

G e n e r a l l y ,  w h e n  a A - e x p r e s s i o n  is parsed, its body will be 

ignored. E v e n t u a l l y ,  at some a p p r o p r i a t e  stages, this A - 

body will be considered. This is f a c i l i t a t e d  by the 

sublist r e p r e s e n t a t i o n  of A - e x p r e s s i o n  we chose as e x p l a i n e d  

above. All these p r o c e s s e s  are g o v e r n e d  by the r e d u c t i o n  

rules (0). Duri n g  the parse of a A-body, the p a r s e r  may 

be r e quired to work on another A-body, so it is n e c e s s a r y  to 

keep a list of the u n f i n i s h e d  tasks. The list is called 

"dump". Dumps contain the pars e r ' s  state at the mome n t  it 

is i n te r r u p t e d .

If the b i n d i n g  v a r i a b l e  of a A - e x p r e s s i o n  has been 

declared, the body of that p a r t i c u l a r  ^ - e x p r e s s i o n  will be 

parsed i m m e d i a t e l y  and the result will be stored in the
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D i a g r a m  (1.1)

end A

D i a g r a m  (1.2)

tag of r e c o r d  ^TYPE T ’p o i n t e r  to m e m o r y

pointer to d e f i n i t i o n  of y

D i a g r a m  (1.3)

po inter to d e f i n i t i o n  of y

TYPE

p o i n t e r  to m e m o r y  
w h i c h  is empty at 
b e g i n n i n g

I
A — > n n + n end A

D i a g r a m  (1.4)
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c o r r e s p o n d i n g  memory. In the example ( A [ tjut^u . . .u t ^ ]x : . . .) , 

the bo d y  of this A - e x p r e s s i o n  will be parsed n times, so 

that at the i' th time, x will be a s s i g n e d  type t^. The 

results of each parse are stored in the m e m o r y  accord i n g l y .

Duri n g  p a r s i n g  or/and type checking, w h e n e v e r  new 

i n f o r m a t i o n  is obtained about the type of a A - e x p r e s s i o n ,  

the memo r y  of the c o r r e s p o n d i n g  A - e x p r e s s i o n  is u p dated  

with the new information.

(4) Type c h e cker and P a r s e r  c o - r o u t i n e s

Imprec i s e l y ,  one may cons i d e r  the type c h e cker as a 

s u b r o u t i n e  of the parser. More p r e c i s e l y ,  the r e l a t i o n s h i p  

b e t w e e n  them is that of co - r o u t i n e s ,  b e c a u s e  the type 

c h ecker is able to m o d i f y  the actions of the p a r s e r  as well 

as vice - v e r s a .  There exists some p r o g r a m  control registers 

w h i c h  are a c c e s s i b l e  by both type checker and parser.

The parser fetches its i n s t r u c t i o n  from the registers. 

T h e r e f o r e  the type c h ecker simply has to m o d i f y  the contents 

of these r egisters for the p a r s e r  to f o l l o w  the course 

d e sired by it. A l t e r n a t i v e l y ,  the ch e c k e r  can m o d i f y  the 

"dump", thereby alte r i n g  the s u b s e q u e n t  tasks. I n f o r m a t i o n  

can also be passed by the parser to the checker through the 

same c h a n n e l s .
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(5) M a c h i n e  State

The mac h i n e  state is r e p r e s e n t e d  by the 5-tuple of 

c urrent values of (the poin t e r s  to) the two stacks, input, 

e n v i r o n m e n t  and dump. The initial value of the dump is NIL 

Prior to p a r s i n g  or type c h e c k i n g  on a new A-body, the 

m a c h i n e  state will be recorded, the fi v e - t u p l e  thus created 

will form the most recent dump and will be linked to the 

p revious dump formed in a similar way. C o r r e s p o n d i n g l y ,  

the p o i n t e r s  have to be re-set for a new task as follows:

(a) t h e  e n v i r o n m e n t  p o i n t e r  w i l l  b e  s e t  to th e e n v i r o n m e n t  

a s s o c i a t e d  w i t h  t he n e w  A - e x p r e s s i o n

(b) the dump p o inter will point to the most recent entry

(c) the input po i n t e r  is set to the b e g i n n i n g  of the new 

A -expres s ion

(d) the two stack p ointers will be a djusted a c c o rdingly.

1.11 Summary

In this chapter, we have claimed that the types of 

f u n ctions w i t h o u t  formal p a r a m e t e r  type d e c l a r a t i o n s  are 

best d e s c r i b e d  by type a b s t r a ctions. These permit a very 

general kind of type d e s c r i p t i o n  indeed. The r e q u i s i t e  

m a p p i n g  f u n c t i o n  and r e d u c t i o n  rules were d e s c r i b e d  formally 

Type chec k i n g  is done on paper by s o l ving type equations.
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Their ma c h i n e  i m p l e m e n t a t i o n  was enha n c e d  by p l a n t i n g  a 

type m e m o r y  in the r e p r e s e n t a t i o n  of type abstr a c t i o n s .

We have shown thereby how the p r o b l e m  of p o l y m o r p h i c

types is solved by System-Y. R e s o l u t i o n  of c i r c u l a r  types

calls for another chapter.
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C H A P T E R  TWO 

SY S T E M - Y  FOR C I R C U L A R  TYPES

S y s t e m - Y  so far fails to handle c i r c u l a r  functions  

in two respects :

( 1) no m e c h a n i s m  is p r o v i d e d  for d e c l a r i n g  the type of 

c irc u l a r  functions

(2 ) the type checker w o u l d  enter an infinite loop if the 

e x p r e s s i o n  it is r e d u c i n g  contains u n d e c l a r e d  c i rcular 

f unctions

This p r o b l e m  is m e n t i o n e d  in n e a r l y  every d i s c u ssion, 

but so far there is no s u c c e s s f u l  solution. In this 

chapter, we try to b reak through the t h e o r e t i c a l  d e a d l o c k 

by a p r a c t i c a l  prop o s a l  for a new ba s i c  type [C]. In order 

to sti m u l a t e  further thoughts in this area, we relate our 

p r o p o s a l s  to S c o t t ’s more t h e o r e t i c a l  studies of conti n u o u s  

lattices of types.

So we reopen the d i s c u s s i o n  of the p r e v i o u s  chapter 

with a view to e x t e n d i n g  it. In this attempt, we expect 

to obta i n  a s o l u t i o n  w h i c h  is more i n f o r m a t i v e  than that 

s u g g e s t e d  in S ystem-F (using [A]). The d i s c u s s i o n  is 

d i v i d e d  into two parts. The first deals wi t h  d e c l a r a t i o n

of circu l a r  functions and the second with that of u n d e c l a r e d  

ones.



1 6 6

In s e c t i o n  (2.6), we shall b r i e f l y  m e n t i o n  type checking 

of rec u r s i v e  functions. The t r e atment of this is paral l e l  

to that of u n d e c l a r e d  c i r c u l a r  functions. O w ing to lack of 

time, only the t r e a tment of r e c u r s i v e  functions was 

i m p l e m e n t e d  on the computer. However, we b e l i e v e  that this 

can be e x t e n d e d  readily into circ u l a r  types.

2.1 C i r c u l a r  types

We i n t roduce into our s y s t e m  a new b a s i c  type d e n oted  

by [C]. The new type is used to c o n struct type e x p r e s s i o n s  

f o r  circ u l a r  functions. Define these as f unctions applied 

to themselves. Let f be such a circu l a r  function, and let 

f * E ( f  f ). We show b e l o w  how to find the type of f'.

Suppose it is [ t ]. Then the first a p p r o x i m a t i o n  to the 

type of f is [C->t], the second a p p r o x i m a t i o n  is [[C->t]->t], 

the third is [ [ [ C-^t ]-> t ]->t ] and so on. For s i m p l i c i t y  we 

shall rep r e s e n t  [C-^t], [[C->t]->t], ... by C ̂ , C^, ..., and

we also use C ̂  to stand for the w h o l e  family of types.

Examp le

In the example (Xg:(g g ) 4) (A f : A [ 1 ] n : IF n=l 

THEN 1 ELSE n*((f  f)(n-l)) FI), if the process 

of f a p p l y i n g  to itself will ter m i n a t e  at all, 

we w o u l d  expect the result to be an integer. 

Hence igno r i n g  the loopings in ( A [ l ] n : ...), the 

type of this A - e x p r e s s i o n  must be [1->1] so that 

this is the value of "t" m e n t i o n e d  above.
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2.2 Type C h e c k i n g  of Decl a r e d  C i r c u l a r  Types

In order to check the type c o m p a t i b i l i t y  of (f g ) in 

w h i c h  f and g are circ u l a r  functions (g may be the same as 

f ), then ideally we w o uld like to d i s c o v e r  the "best 

a p p r o x i m a t i o n "  of both types. If it is d i f f i c u l t  to 

o b t a i n  the best a p p r o x i m a t i o n ,  we are p r e p a r e d  to accept a

r e l a x a t i o n - -  that is, the type of f and g must be of

" c o m p a r a b l e  a p p r o x i m a t i o n "  instead. That means if the 

type of g is at the j ’ th a p p r o x i m a t i o n ,  we require that the 

type of f must be at the ( j + 1) ’ th a p p r o x i m a t i o n  before 

type c h ecking can be c o n d u c t e d  on them. This is n e c e s s a r y  

in order to p r e s e r v e  the s t r a t i f i c a t i o n  law w h i c h  says that 

in e x p r e s s i o n s  (f x) the type of f must be one level h i g h e r 

than that of x.

We assume that there exist s y s t e m  routines w h i c h  will 

be i n voked by the type c h ecker to e x amine levels of

a p p r o x i m a t i o n  and to replace some of them by other apposite

a p p r o x i m a t i o n s  in the family, w here necessary. Such 

r e p l a c e m e n t s  will be ref l e c t e d  in the r e d u c t i o n  e q u a t i o n s  

by hav i n g  changes in those places w here a d j u s t m e n t s  are 

made on the circ u l a r  types.

In the f o l l o w i n g  examples, it is assumed that f, g and 

n are of the type C C->[ 1->1 ] ] , [[ C->-[ 1-̂ 1 ] ]-̂ [ 1-̂ 1 ] ] and [1]

re s p e c tively.
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Examp 1e (!)

(6 (f((f f)n)))

= ( 6 ((V^ V^)V^))

= ( 8 2 (8 (V^ V^))[I])

= ( 8 2 (e2 [ C ^ [ I ^ I ] ] [ C ^ [ I - I ] ] ) [ I ] )

{ a d j u s t m e n t  on the level of a p p r o x i m a t i o n ,  in this

case, change the first instance of C^ to }I ->• I 1 I

= ( 8 2 (8 2 [ [ C ^ [ l ^ l ] ] ^ [ I < U ] [ C ^ [ r + I ] ] ) [ I ] )  

= ( 8 2 [I^I][I])

= [I]

Examp 1e (2)

(8 ($((g g ) n ) ))

= ( 8 _ ( 8 (V V ))[!])2 g g
= ( 8 2 (8 2 : ] ) [ ! ] )

{ a d j u s t m e n t  on the level of a p p r o x i m a t i o n }

= (82 (82[C[C->[1-^1]]^[1^1]]->'[1->1] ][ [C^[l->1]]^[1->1]] )

[1])

= ( 8 2 [I^I][I]) 

= [I]
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2.3 U n d e c l a r e d  C i r c u l a r  Types

For u n d e c l a r e d  c ircular functions the process will be 

more c o m p licated. Perhaps the reader has r e a l i z e d  already  

that the type checker w o u l d  enter an i nfinite loop if the 

e x p r e s s i o n  c ontained var i a b l e s  of c i r c u l a r  types w h i c h  are 

not declared. Before we p r opose a solu t i o n  to this p r o b l e m  

we must therefore s t r e n g t h e n  our p r esent system.

A subset s of type v a r i a b l e s  is formed and its me m b e r s  

are d i s t i n g u i s h e d  from others by h a v i n g  a bar on top of 

their names, for example, V. The value of V is d e t e r m i n e d  

solely by the context of the p r o g r a m  (thus i n d i c a t i n g  a 

c e r t a i n  degree of type d e duction). For example, in the 

type e x p r e s s i o n  "t^ [1] V", V w o u l d  be assigned value [1].

The a s s i g n m e n t  is w r i t t e n  " V : -[1]". We use the new

n o t a t i o n  b e c a u s e  this as s i g n m e n t  is d i f f e r e n t  from

" : in the sense that V will be c h e cked for any value that 

it may p o s sess from previ o u s  a s s i g n m e n t s  (in the sense of 

":-") and any old value has to be c o n s i s t e n t  with the new 

one o t h e r w i s e  it will be in error. For example, assume 

that prior to r e d u c t i o n  of the type e x p r e s s i o n  " ( ( t ^ [B ]V ) ... 

(t^[l]V))", V has no value and t^ is the type cons t a n t  of 

the b o o l e a n  opera t o r  "OR". Then on the first o c c u r r e n c e  

of V, it will be a s s i g n e d  value [B] as said above. H o w e v e r  

on the second occu r r e n c e ,  V cannot be a s signed value [1], 

o t h e r w i s e  it will be i n c o n s i s t e n t  with its prev i o u s  value. 

Other p r o p e r t i e s  of V that we shall use in later e x a m p l e s  are
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( 1 ) ( 8 2 V\)=V^ if i = j

(2) (8 ^ V. V j ) = ( V j : - V . ; V . )  if izj

a c c o r d i n g  to this rule, any s u b s e q u e n t  o c c u r r e n c e s  of Vj 

will be r eplaced by V^.

(3) (8 2 V [t])= E for any type t

this is a very severe r e s t r i c t i o n  on the uses of V, but 

it is tolerable for our special pu r p o s e  as can be seen 

from our examples.

(5) (64 tcond V. V . ) = ( V . : - V . ;  V.) if i.j

Suppose ( 0 ( Xf :... ) ) = Y £ and ($ f)=V^ and in the course

of type r e d u c t i o n  we have to assign (in the sense of :=)

value to V ̂ , then y ̂  will be tagged by w r i t i n g  V^:=y^.

The symbol "c" indicates the p o s s i b i l i t y  of c i r c ularity, 

and is only a m a r k e r  w h i c h  will never affect the value of the

object that it is a ttached to.
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2.4 S o l u t i o n  to the p r o b l e m  of U n d e c l a r e d C i r c u l a r  Types

Our p r o p o s e d  s o l u t i o n  can be f o r m a l i z e d  in the following 

r e d u c t i o n  rule:

(RYIO) t'"]) = (92[C+V][C->V])

= ( 6 2 t ]->V] [ C->“V ] ) {adjustment on approxima­

tion}

=V

w h e r e  t is a type e x p r e s s i o n  that has bee n  tagged and V is 

an element of S. This s o l u t i o n  will suffice for our 

examples, though we might extend it for more ge n e r a l  cases 

to :

(e2[tJ][tj])=(Vj:-V. ; (6^ C C ^ V .][C + V ^ ]))=V .

O c c u r r e n c e s  of the "c" m a r k e r  on both of the arguments  

of 8 2 indicate that the c i r c u l a r  f u n c t i o n  is a p p lied to 

itself, so it is requi r e d  to r e place t^ by [C->V] by a s s u m i n g 

that the type of the final result is V (i.e. it is the "t" 

we m e n t i o n e d  in § 2 . 1)

We have already e m p h a s i z e d  that the use of the subset 

S has to be very restrictive. F u r t h e r m o r e ,  the smaller 

the object d e s i g n a t e d  by V, the q u i cker our s o l u t i o n  will 

converge. T h e r e f o r e  we impose the f o l l o w i n g  rule:



1 72

(RYll) If t is the type of (A f : A a 1 : A a 2 : . . . : A an : . . .) , 

it is r equired that t ̂  should be repl a c e d  by

and not simply by [C->V] w h e n  Rule (RYIO) is applied 

If t^^ is the value of then ( 1) is further

r e d uced to

[C->[t ,‘̂ [t ^ . . . [ t ->V]...]]]al a 2 an

R e d u c t i o n  E x a m p l e  (1) {using the example at the outset of this chapter}

(6 ($(Ag:(g g)4)(Af:An:IF n=l THEN 1 ELSE n*((f f)(n-l)) FI)))

=(0 (Yg Y^))

= (02 Yg Yf)

=(Vg:=Yj; (8((Vg Vg)[I])))
=(9,(0(V V ))[!])2 g g
=(0 (0 (0 V )(0 V ))[!])2 2 g g
=(02(02 Yj Yf)[I])

=(V :=Y^; (0,(0 Y )[!])) t t z n {y^ is tagged}

=(V^:=[I]; (8(tcond(t= [I])[I](t^ [I] ((V^ v p ( t _  [I])

)))))
=(84 cond [B][I] ( 6 3 1 [I] (02(0(Vf Vf))[I])))

=(84 cond [B] [I] (03 * (03(02 Tf Yf )[!])))

=(84 cond [B] [I] (03 * (0^:0 2[c+[r»v]][c+[i^^^])[i])))

= (04 cond [B] [I] ('3 * (03 [I-^V] Cl])))

cond [B] [I] ('3 [I] V »
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=(V:-[I]; (0. t  ̂ [B] [I] [I])) 4 cond
= [I]

Reduction Example (2)

(8 ($(Xf:(f f)3)(Ax:x)))

= (e ïf y p

=(Vf:=Y^; (6((Vf Vf)[I]))) 

=(82(8(Vf Vf))[I])

=(82(82

= (V^:=Y^; (82(8 vpCi])) 

=(62 (I])

{onle one argument of 8^ has the special marker, so neither 

RYIO or RYll is applicable here}

=(V^:=[I]; (8 V^)) 

=[I]

In this example, f was applied to itself but produced no 

circular effect. It is important that the system handle 

this case properly too.
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2.5 L a ttice R e p r e s e n t a t i o n  of Types

We have not a t t e m p t e d  any formal proof on our 

proposal. However, we notice that there are ce r t a i n  

s i m i l a r i t i e s  b e t w e e n  our a p p r o x i m a t i o n  concept of c ircular  

types and Scott's [Sc o t t ,  19 72] lattices of data types, but 

the latter is a more t h e o r e t i c a l  appr o a c h  than ours.

So we shall give an account of lattice r e p r e s e n t a t i o n s  of 

types here and r e-state our a p p r o x i m a t i o n  concept in terms 

of them. We b e l i e v e  that it is w o r t h  to compare these 

results.

A lattice formed from a set S, wit h  p a rtial orde r i n g 

>, consists of all elements of S and two special elements 

1 and T such that for all x in S, we have

If x>y, we shall say x is a b e t t e r  a p p r o x i m a t i o n  than y .

Examp le

The lattice of p o s i t i v e  integers is:

Z 3I

Jl
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The lattice for circ u l a r  types is shown in d i a g r a m ( 2.1)

S uppose t is then each f^ can be i n t e r p r e t e d  as

follows. For every i, the value of (f^ n ) will be 1 if

n>j , o t h e r w i s e  (f| n)= m  for some integers n and m.

T h e r e f o r e  for each i, f^  ̂ is a b e t t e r  a p p r o x i m a t i o n  than

f^ (i.e. f-? ^>f-^). F i n a l l y  we let C denote the set1 1 1  t
f f 3 f 3 f 3 \

We claim that is a b e t t e r  a p p r o x i m a t i o n  than
1 + 1 '■in the sense that each e l ement of is a b e t t e r  a p p r o x i ­

m a t i o n  than the c o r r e s p o n d i n g  element in C^. In other 

words, for any j and t, is a more exact d e s c r i p t i o n  on

the type of a c i rcular f u n c t i o n  than C ^ .

D i a g r a m  (2.1)
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2.6 R e c u r s i v e  Fun c t i o n s

There is h o w e v e r  no d i f f i c u l t y  in d e c l a r i n g  the type 

of rec u r s i v e  functions. For example, given (LABEL f:An:

IF n=0 THEN I ELSE n*f(n-l) FI), we can say the type of f 

is [I->I], or we can say [I->I] is the type of the m i nimal  

f i x - p o i n t  of this r e c u r s i v e  function.

Where the types of the r e c u r s i v e  functions are not 

declared, type d e d u c t i o n  p r o c e s s e s  will be c a r ried out 

w i t h  the aid of the special set S as in the case of 

circular functions.

In order for this to be done, the actions of the two 

functions, $ and 0 , should be e x t e n d e d  as follows:

(1) ($(LABEL f : A n :...)) = (t y )r e c ' f
where t is a type constant,r ec

(2 ) Y f ) > = ( ® 2 " ^ e c

w here, if the type of the r e c u r s i v e  f u n c t i o n  f has bee n 

d eclared, then define

(3) (8 _" t Y f )=(8 Y ) 2 rec t n

otherwise, if it has not, define

(4) (0„" t y , ) = ( V  :=[V ^V]; (9 y ))2 rec f f n n
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Values will be assigned to (by :=) and V (by :-)

d u r i n g  the course of type r e d u c t i o n  as before.

E x a m p  1e

(0($((LABEL f:An:IF n=0 THEN 1 ELSE n*f(n-l) FI)3)))

=(e((tre^ Yf)[I]))

=(62(e(t^ec 

=(82(82" tree
. =(V :=V +V; (6 (6 y )[!]))I n z n

=(82 [I])

= (V^:=[I]; (8 (Ccond(t. '̂ n d ] )  [I] (t J l ]  (V^ (t_ [I]))))))

=(®4 tcond ™  (83 t* [I] (8(Vf [I]))))
= (84 t^ond [B] [I] (83 [I] O 2 [I-^V] [I])))

= (84 tcond [ = ] (83 t* [I] V))

= (V:-[I]; (0^ t^ond 

=[I]

2.6.1 Implementation

Our current i m p l e m e n t a t i o n  imposes the f o l l o w i n g  

r e s t r i c t i o n s  on the d e f i n i t i o n  of r e c u r s i v e  functions:

( 1) d e f i n i t i o n  of rec u r s i v e  f unctions must be ended with a 

special mark e r  " e n d l abel".

(2 ) p a r a m e t e r s  of r e c u rsive functions should be listed 

i m m e d i a t e l y  after the name of the f unction w i t h o u t  any 

"A" or in between.
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Ex amp 1e

(LABEL f n:IF n=0 THEN ... FI endlabel)

w h i c h  will be t r a n s f o r m e d  by the s y s t e m  to

(LABEL f : A n : I F ... FI e n d l a m b d a  endlabel)

In this i m p l e m e n t a t i o n ,  rule (3) in s e ction (2.3) 

has been relaxed so that (02 V [t])=V, for any type t.

We are able to do this b e c a u s e  type c h e c k i n g  of r e c u r s i v e

functions is p e r f o r m e d  in two steps,

( 1) type c h e c k i n g  proce e d s  a c c o r d i n g  to the rules stated 

above until e n d l a b e l  is reached.

(2 ) repeat the process with the type of the rec u r s i v e 

fu n c t i o n  found in ( 1) and the process finishes whe n  

en d l a b e l  is re a c h e d  again.

We have to be aware that(using the example in last

section) "f" has to be added to the e n v i r o n m e n t  of (An : ...)

befo r e  the type of this A - e x p r e s s i o n  is checked. In the 

e x ample we noted that w h e n  [I] is assig n e d  to V^, the value 

of is u p d a t e d  to [I->V] too.

To conclude this section, we w o u l d  like to m e n t i o n  

that this v e r s i o n  of S y s t e m - Y  i m p l e m e n t e d  on CDC 64/6600 

computers is just a m i n o r  e x t e n s i o n  of the one we p roposed  

in last chapter.
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A p p e n d i x  D

In this appendix, we shall desc r i b e  in R e c k o n  (the 

R e c k o n  n o t a t i o n  uses the same a b b r e v i a t i o n s  as in the 

p r e v i o u s  appendix) an i m p l e m e n t e d  v e r s i o n  of System-Y.

To b r i n g  out the main features of System-Y, it is only 

n e c e s s a r y  to c onsider type c h e c k i n g  of f u n c t i o n a l  applications, 

and this is defined here by the routine " m o n a d i c t y p e c h e c k ” . 

We . l i s t  b e l o w  some of the mai n  routines de f i n e d  in this 

appendix, and on the left are the c o r r e s p o n d i n g  t h e o r e t i c a l  

d i s c u s s i o n s  we have met in the f o r e g o i n g  chapters.

chapters 1/2, Part 3. a p p e n d i x  D

RY4

RY4a

RY4b

0 2 * in RY4C 

§ 1 . 6

§ 1.8 and §1.10.3 

§2 .6.1

m o n a d i c t y p e c h e c k

comp at i b le

C9A

act9 and act 10 in lambend

up d a t ememory

fdlb

1 ab e 1 end

The rest of the routines are m a i n l y  for i m p r o v i n g  the

e f f i c i e n c y  of type reductions. For example, in the

c o m b i n a t i o n  (f x) , a s s u m i n g  the type of f is 1^ ^ 12 "̂̂ '

n(t ,->t  ̂) and the type of x is a type a b s t r a c t i o n  with n 1 n z
empty memory, we w o u l d  like to find w h e t h e r  there exists

t., such that it w o u l d  "fit" x and this process is defined  11
in routine setup.
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Readers may assume that the sets of typed A - e x p r e s sions 

in this i m p l e m e n t a t i o n  are de fined re c ur s i v e l y  as 

r o o t S E ( f u n c t i o n d e f i n i t i o n s , b i n d i n g v a r i a b l e s ,e n v i r o n m e n t s , 

t y p e s )

WHERE fu n c t i o n d e fi n i t io n=A -bo dy

AND r e c ur s i ve l y  t y p e s E ( " b a s i c " , b a s i c t y p e s ) v ( " u n i o n " , t y p e s ,

types)v ( " i n t e r s e c t i o n " ,types , types)v 

( f u n c t i o n a l ,d o m a i n t y p e s ,r an g e typ es) v  

( " t y p e a b s t r a c t i o n " ,r o o t s ,typememories) 

WHERE d o m a i n t y p e s ,r a n g e t y p e s ,t y pe mem or ies E

t y p e s ,t y p e s ,l i s toftypes

M a c hi n e  r ep r e s e n t a t i o n s  of these sets are obv io u sl y  

varian ts of records in Pascal (or unions of s t ru ctu re s in 

A l g o l - 6 8 ) whose field selectors are 

function, bv, environ, type over roots and 

domain, range over f u nc t i on t y pe s  and 

root, me m or y  over type abs traction.

These sel ectors occur thr oug ho ut  the fol lo wi n g  routines.

Finally, the con stants acti (where i is an integer) 

are used to r e pr es en t ac tivities awa it in g completion, and 

for each sp ec if ic value of i, acti denotes a spe ci fic  

routine in the fo llo w i ng  de finitions.
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LET setup(root,t,o ,s,i,e ,d)=
LET a,b,dj,ej=IF isabstraction t THEN memory t ELSE t FI,bv root, 

function root,environ root;
LET c,f=IF isfunctional a THEN (domain a,act 10)

ELSE (domain.1st a,act9) FI;
LET x,yEnewdump(o,f..a..root..s ,i,e,d),newenvir(b,c,e^); 

(<f),c|),d. ,y,x) {return to parser with new machine state)

AND C9A(o,s,i,e,d)E
LET p,argty Ero ot. 2nd o , t y p e . 1st o;

LET a,b,vEfunction p,bv p,environ p;
LET x,yEnewdump(o,act2..s ',i ,e, d), new en vi r(b ,ar gty ,v) ; 

(*,4,a,y,x);

LET monadictypecheck(o,s,i,e,d)E
IF istypevariable.type.1st o THEN (consmonadcode o,s',i,e,d) ELSE 

CASE type.2nd o 
IN functional^

LET func ty, arg tyE typ e.2nd o, t yp e . 1st o;
IF undeclaredabstraction argty 
THEN

LET p E r o o t .1st o;
IF compatible(functy,type p)
THEN updatememory#; (consmonadcode o,s’,i,e,d)
ELSE

LET qEdomain functy;
setup(p,q,o,act4..functy..s',i,e,d)

FI
ELIF compatible(functy,argty)
THEN (consmonadcode o,s',i,e,d) ELSE ERROR#
FI

OR undeclaredabs traction-)-
LET f u n c t y ,a rgt yEt ype .ro ot.2nd o , t y p e . 1st o;

IF emptymemory functy THEN C9A(o,s,i,e,d)
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ELIF undeclaredabstraction argty THEN 
LET argEroot.1st o;

IF compatible(funety,argty) THEN
updatememory# ;■ (consmonadcode o,s',i,e,d) ELSE 
LET mEmemory functy;

setup(arg ,domain.1st m,o,act3..m..s',i,e,d)
FI

ELSE
IF compatible(functy,argty) THEN

upda t e m e m o r y # ; (consmonadcode o , s ’,i,e,d)
ELSE C9A(o,s,i,e,d)
FI

FI
OR declaredabstraction-^

LET a r gt y,f unc tyE typ e.1st o,type.2nd o;
IF undeclaredabstraction argty THEN 

LET argEroot.lst o;
IF compatible(functy,argty)THEN

u p datememory#; (consmonadcode o,s’,i,e,d)
ELSE

LET mEmemory functy;
setup(arg,domain.1st m,o,act5..m..s',i,e,d)

FI
ELIF compatible(functy,argty) THEN (consmonadcode o,s’,i,e,d) 
ELSE ERROR#
FI

OUT ERROR#
ESAC

FI;

{end of definition: monadictypecheck}
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LET lambend(r,dump)n 
(LET o,s,i,e,d=lst dump ;

CASE 1st s 
IN act2 ->

IF iserror r THEN ERROR# ELSE updatememory# ;
(consmonadcode o,s',i,e,d)

FI
OR act6->-

IF iserror r THEN ERROR# ELSE updatememory# ;
IF NULL(2nd s)’ THEN (o,s'',i,e,d) ELSE 

LET W E (2nd s)';
fdlb(lst w,o,act6 ..w..s'',i,e,d)

FI
FI

OR actT+
IF iserror r THEN ERROR# ELSE updatememory#; (o,s'',i,e,d) FI 

OR act9^
IF iserror r THEN L9A(o,s,i,e,d) ELSE 

LET w=range.type r ;
IF undeclaredabstractionandemptymemory w THEN 

LET c=lst.2nd s ;
LET p,q=root w,range c;

updatememory#; setup(p,q,o,s,i,e,d)
ELSE

LET p,qEtype r,1st.2nd s ;
IF pEq THEN

LET v,wE3rd s,(2nd s)'; 

up d a t e m emo ry# ;
IF NULL w THEN L9ClA(o,s,i,e,d)
ELSE setup(v,w,o,s''',i,e,d)
FI

ELSE L9A(o,s,i,e,d)
FI

FI
FI

OR act 10-)-
IF iserror r THEN L9A(o,s,i,e,d) ELSE 

LET wEtype r;
IF undeclaredabstractionandemptymemory.range w THEN
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updatememory#; se tup(root.range w,range.2nd s ,o,s''',i ,e,d) 
ELSE

IF 2nd S2W THEN L9C1A ELSE L9A FI (o,s,i,e,d)
FI

FI
ESAC

WHERE REC L9A(o,s ,i,e,d)E 
(LET w5s''';

CASE 1st w
IN(act9 , act 10)->L9A(o ,w, i ,e ,d)
0R(act3,act5)-^

LET uE(2nd w) ';
IF NULL u THEN

IF 1st w=act3 THEN C9A(o,w',i,e,d) ELSE ERROR# FI 
ELSE setup(root.1st o,domain.1st u,lst w..u..w'',i,e,d)
FI

OUT ERROR#
ESAC)

AND REC L9CIA(o,s,i,e,d)E 
(LET wEs' "  ;

IF 1st w=act9 THEN 
LET vE(2nd w )’

IF NULL V THEN L9ClA(o,w,i,e,d)
ELSE setup(3rd w,v,o,w’'',i,e,d)
FI

ELSE updatememory#; (consmonadcode o,w*',i,e,d)
FI)
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AND formroot(o,s,i,e,d)=
(LET aEformrootrecord.1 St s;

IF isdeclared.1st s THEN 
LET tEtype.bv.1 St s;

IF isunion t THEN fdlb(1st.unionelements t,a..o ,act6 ..t..s',
i,e,d)

ELSE fdlb(t,a..o,act7..t..s’,i,e,d)
FI

ELSE (a..o,s’,i,e,d)
FI)

WHERE fdlb(t,o,s,i,e,d)E
(LET a,bjVEfunction.1st o,bv. 1st o,environ.1st o;
LET x,y=newdump(o,s,i,e,d),newenvir(b,t,v);

(#,#,a,y,x)
)

AND labelend(o,s,i,e,d)E
CASE 1st.2nd.1st d {the first item on the stack of last dump} 
IN(act2,act6,act7)^

LET pEfunction.root IF 1st.2nd.1st d=act2 THEN 2nd.1st.1st d
ELSE 1st.1st.1st d FI;

LET wEnewdump(o,act 13..s,i,e,d) ;
(4^#,P,e,w)

OUT
LET rElst o;

LET ol,sl,il,el,dl=lst d ;
(r.,ol,sl’,il’,el,dl)

ESAC ;
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LET output,stack,input,envir,dump=#,#,readinput#,#,#;
WHILE NOT(end#) DO

LET lp,rp=leftprecedence.1st stack,rightprecedence.1st input;
IF rp>lp THEN

LET wElst input;
CASE w
IN(numbers,variables,A-exps,recexps)^ 

stack:=w..stack; input :=input'
OR keywords-)-

IF closebracket w THEN stack :=stack’; input :=input'
ELIF w=endlambda THEN

output,stack,input,envir,dump :=lambend(1st output,dump) 
ELIF w=endlabel THEN

output,stack,input,envir,dump :=labelend(output,stack, 
input,envir,dump)

ELSE stack:=w..stack; input :=input’
FI

ESAC
ELSE

LET w=lst stack;
CASE w 
IN numbers-)-

output :=w..output ; stack:=stack*
OR %-exp&+

output,stack,input,envir,dump :=formroot(output,stack, 
input,envir,dump)

OR variables-)-
output:=(assigntypeto w)..output; stack:=stack'

OR keywords-^
LET opElookup(w,parseenvironment);

output,s tack,input,envir,dump :=op(output,s tack,input,
envir,dump)

OR recexps ->
stack:=recname.1st stack..recdefn.1st stack..rectag..stack* 

OR rectag-^output : =consrec output 
ESAC 

FI OD;
transform({the parsed and typechecked}1st output){as in System-F}
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A pp e n d i x  E 

P r o g r a m m i n g  Ex a m pl es  of Sys te m-Y

Again, three examples are included here as we did 

for Sys tem -F  in A p p e n d i x  C. Since type c he ck in g of 

Sy st em -Y is not as s t r a i g h t f o r w a r d  as System-F, so the ^ 

fu nc t io n  "print type" will be more imp ortant for the 

examp les  here bec a u se  "p r i nt t y p e "  will not only print 

the type i n fo r m a t i o n  required, but from the order this 

i n f o r m a t i o n  appears in the output, one can also obtain  

the order in wh ic h  the types of the ex pre s s io n s  are checked

As an ab b r ev ia ti on,  we wri te  "( b ?e ^ l e^ ) "  for "IF

b THEN ej ELSE e^ FI".

Readers are re co m m e n d e d  to compare the two results 

(with and wi t h o u t  type de cl ar ati on)  of each example.

To si mpl ify  the not ation, all " e n d la m b da " s  are discarded 

in the f o ll ow in g listings.
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E X A M P L E  1

STA RT  

COMME] T
"S QU A RE "  IS DEFI M E D  IN TERMS OF "U" A N D  "MULTIPLY". 
IT IS THEN A P P L I E D  TO INT EGER AN D REAL RE SPE CTIVELY.  
T H E R E  IS NO T Y PE  DECLARATION IN THIS EXAÎ-] PL E.
COMMET! TEND

( SMULTIPLY; $U: ( SSQUARE: ( P R I N T T Y P E  S Q U A R E  2); 
( P R I N T T Y P E  S Q U A R E  2.0))
(PRIM TT f P E  U M U L T I P L Y ) )

( SN: $M; ( PRIM T T Y PE  N*M ) )
( $F; $X: (PRINT TYP EC  P R I N T T Y P E  F X) X))
FINI SH

TYP E OF (W . M U L T I P L Y )  IS : C A - T Y P E - A B S T R A C T I  ON-WI T H ­
EM P TY-M EM 0 RY 1

T Y P E  OF (F . X) IS : [ A - T Y P E - A B S T R A C T I O N - W I T H -
BIPTY-M EMORY]

T Y P E  OF (N * M) IS : [INTEGER]

TYPE OF C(F . X) . X) IS : [INTEGER]

TYP E OF (SQUARE . 2) IS : [INTEGER]

TYP E OF (F . X) IS : [ A - T Y P E - A B S T R A C T I  ON-VI TH-
EMPTY-M EMORY]

TYPE  OF (N * M) IS : [REAL]

TYPE OF ((F . X) . X) IS ; [REAL]

TYPE OF (S Q U A R E  . 2.0) IS î [REAL]

R E S U L T  OF T Y P E  C H E C K I N G  IS : [REAL]
QED.
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E X A M P L E  2

START

CO MME NT
THIS EXAM PL E IS SI M IL A R  TO L A S T  ONE, BUT WITH TY P E  
D E C L A R A T  I QN S.
COMM EN T E N D

CSCCC INTEGER]-Ct: INTEGER]^ [INTEGER]]] &
[[ R E A L ] - [[ R E A L ] - [ REAL] ]]]MULTIPLY: $U;
( SSQUARE: ( P R I N T T Y P E  S Q U A R E  2)J 

( P R I N T T Y P E  SQUARE 2.0))
( P R I N T T Y P E  W M U LT I P LY ))

($N: SM: ( P R I N T T Y P E  N*M) )
( $F; SX: (PRIN TTYPE( PRINT T Y PE  F X) X))
FINIS H

T Y P E  OF (N * M) IS : [INTEGER]

TYPE OF (N * M) IS : [REAL]

TYPE  OF (W . M U L T I P L Y )  IS : [ A - TY P E-ABST RAC TI  ON-WI TH
HiPTY-MEMOH'/]

T YPE OF (F . X) IS : [[ INTEGER]-[ INTEGER] ]

TYPE OF ( (F . X) . X )  IS ; [INTEGER]

T Y P E OF (S Q U A R E . 2) IS : [INTEGER]

TYPE OF (F . X) IS : [[REAL ]- [RE AL] ]

TY PE OF ( (F . X) . X) IS : [REAL]

TY PE OF ( SQUARE . 2.0) IS : [REAL]

R E S U L T  OF T Y P E  CHECKING IS : [REAL]
QED.
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E X A M P L E  3

START

COM MENT
THE TAGS EN A B L E  EVAL TO SELECT R O U T I N E S  FROM T HE  PRELUDE. 
THE S E L E C T E D  ROUTINE WILL THEN BE A P P L I E D  TO THE FIRST 
A R G U M E J T  OF EVAL. THERE IS NO  TYP E  DE C LA R A T I O N  IN THIS 
EXAMPL E.
COMM EN TEN D

( SPREL UDE; STAG 1 : STAGS:
( SEVAL: ( EVAL 3 TAG 1) J ( EVAL 3.0 TAGS))
CSX: SSELECTOR: (PRINTTYPEC

P R I N T T Y P E  P R E L U D E  SEL EC TO R) X) ) )
C SF: FC SN:N+N) ( SM:M+M) ) C SA: SB: A) ( SC: SD: D)
FI NI S H

T YP E  OF C P R E L U D E  . SELECTOR) IS : C A - T Y P  E-ABST RAC TI  ON-
W IT H - E M P  TY-MEMOR'f ]

T Y P E  OF ( ( P R E L U D E  . SELECTOR) . X) IS : [INTEGER]

TY PE  OF ( P R E L U D E  . SELECTOR) IS : [ A - T Y P E - A B S T R A C T I  ON-
WI TH-H'l PT Y- ME MOR Y]

T YP E  OF ( ( P R E L U D E  . SELECTOR) . X) IS : [REAL]

R E S U L T  OF T Y P E  CHECKIN G IS : [REAL]
QED.
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E X A M P L E  4

START

COM MENT
THIS  E X A M P L E  IS SI M I L A R  TO L A S T  ONE, BUT WITH TYPE 
DECLA RAT IO N S.
COMM EN T EJ D

(SPRELUDE: STAGl: STAGS:
( SEVAL: ( EVAL 3 T A G D J  ( EVAL 3.0 TAGS))
(SX: SSELECTOR: (PRINTTYPEC

P R I N T T Y P E  P R E L U D E  SEL ECTOR) X )) )
( SF: F( SC IN TEG ERIN: N+N) ( $C REALIM: M+M) )
( SA: SB: A) ( SC: SD: D)
F IN I S H

T Y P E  OF ( P R E L U D E  .SELECTOR) IS : EC INTEGERI-C INTEGER]]

TYPE OF ( ( P R E L U D E  . SELECTOR) . X )  IS : [INTEGER]

TY P E  OF ( P R E L U D E  . SELECTOR) IS : [[ REAL ]-[ REAL ] ]

TYP E OF ( ( P R E L U D E  . SELECTOR) . X) IS : [REAL]

R E S U L T  OF T Y P E  CHECKING IS : [REAL]
QED.
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S T A R T

COMMENT
" G E N E R A T E  I S  BOUND TO TH E  R E C U R S I V E  F UN CTI O N  " F " .
" F "  I S  VERY S I M I L A R  TO OUR EX A MP LE IN i .  A.  3 ,  P A R T  2 .
R E A D E R S  A R E  RE M I ND E D  TH A T T Y P E  C H E C K I NG  O F  R E C U R S I V E  FUtvJCTIONS 
HAS  TO B E  P E R F O R i E D  IN TWO P H A S E S .
NO T Y P E  D E C L A R A T I ON  I S  P R O V I D E D  I N T H I S  EXAMPLE 
COMM EN TEN D

( $ G  EN ERA T E :  C S F I N T ;  S F R E A L :
( P R I N T T Y P E  ( P R I N T T Y P E  F I N  i ) 1 + ( P R I N T T Y P E  F I N T Î 2 ) ;  
( P R I N T T Y P E  ( P R I N T T f P E  F R E A L )  1 .  0 + (  P R I N  T T Y P E  F R E A L ) 2 . Q ) ;  
( P R I N  T T Y P E (  P R I N  T T Y P E  F I N T ) 3 + (  P R I N T T f P E  F I N T ) A ) J  
( P R I N T T Y P E ( P R I N  T T Y P E  FREAL ) 3 .  0 + C P R I N T T Y P E  F R E A L )  4 . 0 )
)

( GZNEFuATE 
( $ 3 :  B = 0  ) ( S O  ; 1 )
( S U : U - 1  )
(  I V :  SW: V*W ) )

( G E N E R A T E  
( $ A :  A = 0 .  0  ) ( $ 0 : 1 . 0  )
( $M: M- 1 .  0 )
($X: $Y:X*Y ) ) )

( S P R E D I C A T E :  S E X I T :  SMODI FY:  S C O M B I N E :
( L A B E L  F N :

( P R I N  T T Y P F C P R E D I  C A T E  N ) ? E X I T ( )  I 
( P R I N T T Y P E  C O M B I N E  N

( ( P R I N T T Y P E  F )  ( M O D I F Y  N )  ) )
) EN D L A B E L )

)
F I N I S H

T Y P E  OF P I N T  I S  : C A - T Y P E - A B S T R A C T !  ON- WI  T H - E N P T Y - M  EMORYI

T Y P E  OF F  I S  ; [ [ I N  TEG ERI*-  A - T T P E - V A R I A B L E )

T Y P E  OF ( ( CD-I B I N E  .  N )  .  ( F .  ( M O D I F Y  .  N)  ) ) I S  : A - T Y P E - V A R I A B L E

T Y P E  OF ( ( P R E D I C A T E  • N )  ? ( E X I T  .  O )  ! ( ( C O M B I N E  .  N)  .  ( F  .  ( MODI
FY .  N )  ) ) ) I S :  [ I N T E G E R ]

T Y P E  OF F  I S  : [  [ IN TEG E R ] * - [ IN TE GE R3  ]

T Y P E  OF ( ( C O M B I N E  .  N )  • ( F  .  ( M O D I F Y  .  N)  ) ) I S  : [ I N T E G E R ]

T Y P E  OF ( ( P R E D I C A T E  .  N )  ? ( E X I T  .  O )  ! ( ( C O MB I N E  .  N )  .  ( F .  ( MODI
FT .  N ) ) ) )  I S  : [ I N T E G E R ]

T Y P E  OF F I N T  I S  : [ [  [  I N T E G E R ] * -  [ I N T E G E R ]  ]  ]

T Y P E  OF C F I N T  .  1 )  T ( F I N T  .  2 )  ) I S  : [ I N T E G E R ]

T Y P E  O F  F REA L I S  : [ A -  T / P  E- AB S TRA C T I W - W I T H - E M P  TY- M Erl 0  RY ]

T Y P E  OF F  I S  : [ [ R E A L ] -  A-  T Y P E -  V A R I A B L c )

T Y P E  OF ( ( C O M B I N E  .  N )  .  ( F  .  ( M O D I F Y  .  N)  ) ) I S  : A - T Y P E - V A R I A B L E

T Y P E  OF ( ( P R E D I C A T E  . N )  ? ( EXI  T .  ( ) )  ! ( ( CO MBI N E . N )  .  (  F  .  ( MOD I
r /  .  N ) ) ) )  I S  : [ R E A L ]

T Y P E  OF F  I S  : [ [  REAL ] - [  REAL ] ]

T Y P E  OF ( ( C O M B I N E  .  N)  .  ( F  .  ( M O D I F Y  . N)  ) ) I S  : [ R E A L ]

T Y P E  OF ( ( P R E D I C A T E  . N )  ? ( F X I T  .  ( ) )  ! ( ( C O M B I N E  .  N )  .  ( F  .  ( MO D I
FY .  N )  ) ) ) I S  : [ R E A L ]  '

T Y P E  OF F REA L I S  : [ [ [  REAL ] - [  REAL ] ]  ]

T Y P E  OF ( ( F R E A L  .  1 . 0 )  -r ( F R E A L  .  2 . 0 ) )  I S  : [ R E A L ]

I ' V p c  OF F I N T  I S  : [ [ [  I N T E C  E R I - C  I N T E G E R ]  ] :

TYP. J  OF F I N T  I S  : [ "" "" I N T E G E R ] -  [ I N T E G E R ]  ] ]

T Y P E  OF ( ( F I N T  .  3 )  + ( F I N T  . 4 )  ) I S  : [ I N T E G E R ]

T Y P E  o r  F RE A L  I S  : [ [  [  REAL ] -  [ RE.AL ] ] )

T / P E  OF F R E A L  I S  : [ [  [  R E a L ] - [  R»  ̂AI  ̂] ] ]

T Y P E  OF ( ( F R E A L  . 3 * 0 )  + ( F R E A L  .  4 . 0 ) )  I S  : [ R E A L ]

R E S U L T  OF T Y P E  CH E C K I NG  I S  : [ R E A L ]

QED
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EXAMP LE 6

S T A R T

COMMENT
T H I S  I S  S I M I L A R  TO L A S T  EXAMPLES BUT WITH T f P E  D E C L A R A T I O N S .
COMM EN TEND

< S G E N E R A T E :  ( S F I N  T;  $F_REAL;
( P R I N T T Y P E  ( P R I N T T Y P E  F I N T )  1 + ( P R I N T T Y P E  F I N T )  2 ) :  
( P R I N T T Y P E  ( P R I N - T Y P E  FREAL ) 1 .  0 + (  P R I  N T T Y P E  F REAL ) 2 .  0  ) ;
( P R I N  T T Y P E (  P R I N T  T Y P E  T IN T)  3 + (  P R !  N T T Y ?  E F I N T )  4 ) 1  
( P R I N  T T Y P E ( P R I N T T Y P E  FHEAI.  ) 3 .  0 + (  P R I N  T T Y P E  F R E A L )  4 .  0 )
)

(GEN FRA T E  
( $C I N T E G E R ]  B;  B = 0  ) ( $ ( ) : ! )
( $C I N T E G E R ]  U: U - 1 )
( $C I N T E G E R ]  V: $C IN T E G E R ] W:  V*W ) )

( G E N E R A T E  
( $C R E A L ]  A:  A = 0 .  0  ) ( $ 0 : 1 . 0  )
( $ [ R E A L ] M :  M- 1 . 0 )
(  $C R E A L ]  X:  $C R E A L ]  Y:  X * Y  ) )  )

( S P R E D I  C A T E :  S E X I T ;  IMO DI FY:  S C O M B I NE :
( L A BE L  F  N :

( P R I N T I T P L  ( P R E D I C A T E  N ) ?  EXI  T(  ) ;
( P R I N T T Y P E  C O M B I N E  N

( ( P R I N T T Y P E  F )  ( M O D I F Y  N )  ) )
) EN D L A B E L )

)
F I N I S H

T Y P E  OF F I N T  I S  : [ A - T Y P E - A B S T R A C T I O N - W I  T H - E M P TY - M EMORY]

T Y P E  OF F  I S  : CC I N T E G E R ] -  A - T Y P E -  V A R I A B L E ]

T Y P E  OF ( ( C O M B I N E  .  N )  .  ( F  .  ( M O D I F Y  .  N )  ) ) I S  : A -  T Y P E -  V A R I A B L E

T Y P E  OF ( ( P R E D I C A T E  . N )  ? ( E X I T  . ( ) )  ! ( ( C C M B I N E  .  N )  .  ( F .  ( MOD I
FY .  N ) ) ) >  I S  : [  I N T E G E R ]

T Y P E  OF F  I S  ; C C IN TEG E P . ] - C  IN TEG ER]  ]

T Y P E  OF ( ( C O M B I N E  . N )  .  ( F  .  ( M O D I F Y  .  N )  ) ) I S  : C I N T E G E R ]

T Y P E  OF ( ( P R E D I C A T E  . N )  ? ( E X I T  • ( ) )  I ( ( C O M B I N E  .  N )  .  ( F .  ( MO D I
FY .  N ) ) ) ) I S :  C IN TEG ER]

T Y P E  OF F I N T  I S  : [ [ [ I N T E G E R ] - :  I N T E G E R ] ] ]

T Y P E  OF ( C F I N T  .  I )  + ( F I N T  . 2 )  ) I S  : [  I N T E G E R ]

T Y P E  OF F R E A L  I S  ; [ A - T i ' P E - A B S T R A C T I  O N - V I  T H - B I P T Y - M E M O R Y ]

T Y P E  OF F  I S  : [ [ R E A L ] -  A - T Y P E - V A R I A B L E !

T Y P E  OF ( ( C O M B I N E  .  N )  .  ( F  - ( M O D I F Y  .  N )  ) ) I S  : A - T Y P E -  V A R I A B L E

T Y P E  OF ( ( P R E D I C A T E  .  N )  ? ( E X I T  .  ( ) )  ! ( ( C O MB I N E  .  M)  .  f F .  ( MO D I
FY . N )  ) ) ) IS  : [ R E A L !

T Y P E  OF F  I S  : [ [  REAL ! - [  RE A L !  !

T Y P E  OF ( ( C O M B I N E  .  N )  .  ( F  .  ( M O D I F Y  .  N)  ) ) I S  : [  R E A L ]

T Y P E  OF ( ( P R E D I C A T E  .  N )  ? ( E X I T  .  (  ) )  ! ( ( C O M B I N E  .  N )  .  ( F  .  ( MODI
FY .  N ) ) ) )  I S  : [ R E A L ]

T Y P E OF F REA L I S  ̂ [ [ [ R E A L ! - [ R E A L ] ] ]

T Y P E OF ( ( F R E A L  . l . U )  + ( F R E A L  .  2 . 0 ) ) I S  : [ R E A L !

T Y P E OF F I N T  I S  : [ [ [ I N T E G E R ] - :  I N T E G E R ] ] ]

T Y P E OF F I N T  I S  : [ [ [  I N T E G E R ] - :  I N T E G E R ] ] ]

T Y P E OF ( ( F I N T  . 3 )  + ( F I N T  .  4 )  ) I S  ; [ I N T E G E R ' '

T Y P E OF F REAL I S ; [ [ [ R E A L 3 - [ R E A L ] ] ' '

T i ' P E OF F REAL I S : [ [ [ R E A L ] - [ R E , A L ] ] ]

T Y P E OF ( ( F R E A L  . 3 . 0 )  + ( F R E A L  .  4 . 0 ) ) I S  : [ R E A L ]

R E S U L T  OF T Y P E  CH E C K I NG  I S  ; [ R E A L !

QED
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C H A P T E R  THREE 

FUTURE D E V E L O P M E N T S  

WITH  RES PE CTS  TO 

USER P A R T I C I P A T I O N  

AND

D AT A  STRU CT URE  TYPES

So far we have ignored p r o g ra m m er s in our dis cu s si o n s  

of t y pe - c h e c k i n g  systems. This does not mean that their 

p a r t i c i p a t i o n  is not important. In fact, we think they 

may p a rt i c i p a t e  in three ways:

(1) they may dec lare the type of va ria b l es  — •

(2) they may define new data types as in A l g o l - 6 8  and Pascal

(3) they may pres en t type exp re ss i o ns  as arguments of

c er ta in  functions.

Al t h o u g h  user p a r t i c i p a t i o n  is option al  in our 

proposal, we regard it as by no means in significant.

On the contrary, we think more work is needed. D i s c u s s i o n  

in this chapter r e pre sen ts  our pr e l i m i n a r y  wor k  in this 

area in the hope of g e n er a ti n g  more definite treatment of 

the issues raised. We have reasons for b e l i e v i n g  that

w or k  along the lines we pro pos e mig ht  be more r ew ard in g

than st ri vi n g  for an ideal w- o rd e r  system.
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3.1 Types as objects in a co mp ut ing  model

So far uses of types have been  r e s t r ic t e d to their 

d ec l a rat io n,  ch eck ing  and deduction. We pro po se now to 

allow types as a rgu men ts  of ce rtain functions. In order 

to do this, we have to con st r uc t  a new set of objects 

w h o s e elements are the el em ent s of the t y p e - c h e c k i n g  system. 

In other words, the new set consists of types. Call this 

set [TYPE] and add it to the t y p e - c h e c k i n g  s y s te m  as one of

its types. We shall be careful to co ns tru ct [TYPE] so that

it is not inclu de d in itself. M e a n w h i l e  the set [TYPE] 

is av ai l ab l e  for use in progr ams  much as other sets such as 

[INTEGER]. In p a r t i c u l a r  we can dec lare an object to be 

of type [TYPE]. ---

3.2 A n ot h e r a p pr oac h to p a r a m e t r i c  p o l y m o r p h i s m  

Co ns i de r  anew the example,

(Xtwice: twice [I] f * x * ) ( A [ TYPE ] t : A [ t-)-t ] f : A [ t ] x : f ( f x) )

wit h the type of f ' and x' , [l->-l] and [ I ] r es p e ct ive ly .

(1) t is d e c l a re d  to be of type [TYPE]. We can descr ibe  

the type of f and x in terms of t. This su ggests an 

al te r na t i ve  so l uti on to the p a r a m e t r i c  p o l y m o r p h i s m  

p r o b 1e m .

( R e y n o l d s [ R e y n o l d s , 1974] has also used va r ia bl e s,  say t, 

to de sc rib e the type of other va riables. In order to

di s t i n g u i s h  "t" from others, he int ro d uc e d  a new symbol
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"a " s o  that instead of w r i t i n g  (A [T Y P E ] t : X [ t] x :. . .) ,

he wrote ( At : A[t ] x )

(2) Aft e r  the c o m p i l a t i o n  of (twice [ I]), t will be 

assigne d the value [ I ] , thus the type of f and x are

fi nal iz ed  to [I->I] and [I] respe cti vel y.

(3) With the f i na li ze d types of f and x, type compatibilities 

• of f ' and X ' will be che ck ed as normal.

By a l l owi ng  types to occur in the p r o g r a m  as shown 

above, it is no longer a d i s a d v a n t a g e  that the type of 

twice is not kn own  w he n it is def ined as this in f o r m a t i o n  

will be ava il a b le  im me d i a t e l y  befor e it is used. On the 

other hand, there is pr o vi d e d  a new op po r t u n i t y  for 

p r o g ra m m er s  to in te rve ne ac ti ve ly  in the process of 

com putation. For example, in code g ene rat io n, suppose the 

fun cti on  ADD is a pp l i ca bl e  to both integer and real numbers, 

then there will exist two routines for e x e c u t i n g  the 

in struction. But, by w r i t i n g  ADD [I] n ̂ n^ or ADD [R] n ̂ n^, 

the p r o g r a m m e r  can guide the system's choice.

As a minor m o d i f ic at i on ,  we pr op ose  that (f [ t] x) is 

the same as (f x) if the type of x is [ t ], thus al lo wi n g us 

to omit the type argument in some cases. Of course f must

be a fu nc tio n ex pe c t in g  a type argument. In other words,

if the type argume nt is absent for f, this in f o r m a t i o n  will

be ob tai ne d from the fo ll o wi n g  argument, but care must be
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taken bef or e  we drop the type argument ot her w i se  the 
o p e r a t i o n  may be m e a n i n g l e s s  (or even e r r o n e o u s ) - -  as in

the case of un iv e r sa l type p r e d i c a t e s ,for example.

For our second i ll us tr ati on,  let us assume that it is 

p os si ble  to test the type of any object in a program. For 

each pos s i bl e  type t ̂ , suppose there exists a pre di c at e  

is-t^. Now, types can be c on st r uc t e d from other ex is t in g  

types, so closure of the type co ns tr u c to r s  is i n fi nit el y  

large and there is an infini te nu mb er  of type pre dicates.  

The pr i m it i v e pr ed i ca t e s ought to c o r re s p on d  to the basic 

types while the others have to be defined. Fu rt he rmo re , 

by al low i n g types as ar guments of functions, one type 

p r e di c a te  will be enough for our purposes. Let us call it 

ISTYFE so that (ISTYPE [t^] x) is true if the type of x is 

[t ̂ ] ot h e r w i s e  false. Since ISTYPE is de fined by the 

system, it can share the routines that are av ai la bl e to the 

type che ck er in testing any ar b it ra r y types.

3.3 D e c l a r a t i o n  of ord ered types

Once a new ordered type has been defined, it should be 

treated by the t y p e - c h e c k i n g  sys t em  in the same way as 

ex is t i n g  types. In order to avoid repet it io ns,  we omit 

un ion  and i n t e r s e c t i o n  types here and co n ce nt r at e  on our 

or dered types (or ca r t es ia n  pr o duc ts of types, as they are 

g e n er a l ly  called in type and set theory or records or 

st ru ct ure s as they are called in p r o g r a m m i n g  languages).
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A ca r te si a n product of types is def ined by applyi ng  

the ca r t e s i a n  op e rat or  to two ex is t in g  types so that,

for example, 3 -d i m e n s i o n a l  integer vectors can be defined

as :

DEFINE [ I V E C ] E [ I ] & [ I ] & [ I]

in this case, the ca r te si a n op e ra tor  will const ru ct  an 

object of 3 dim en s i on s  (i.e. of 3 components) from the 

do ma i n  [I] for any va ri a b le s  of type [IVEC].

There are three impo rta nt classes of o pe rat io ns on 

orde red  types:

(1) predi cat es:  ISTYPE

As m e n t i o n e d  in last section, the un ive r s al  type 

pr ed i ca t e  is defi ne d for any types, so it is ap pl ic a b le  

to or dered types too.

(2) con st r uc to r s

By an alogy with  ISTYPE, we need only one un iv e r sa l  

c on s tr u c t o r  whi ch  we shall call "MAKE" and (MAKE [IVEC] 

ij i 2 i g ) is an object of [IVEC]. The fu n ct i o n MAKE 

should check not only that the correct n um be r of 

a rgu me nt s are given, but also that these argum ent s are 

of correct types. MAKE obtains its type i n f or m a ti o n  

from the first argument whi c h  must be of type [TYPE].
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(3) Selectors

0 r d e r e d - type d e c l a r a t i o n  should c on st ru ct the foll ow ing  

f unctions for se lec ti ng the 3 compone nt s of [IVEC] 

v e c t o r s .

LET [IVEC^I] x co m p o n e n t  e (A[ IVEC] V : 1st v)

AND [IVEC^I] y co mp on ent  e (A [ IVEC] V : 2nd v)

AND [IVEC->I] z c omp onen t e( A [ I VE C] V : 3rd v)

"nth" is the fun ct io n  defined by the syst em for 

selection. If Vj is the object of type [IVEC], 

(ycomponent Vj) will be the second co ns ti t ue n t  of Vj. 

Al te r n a t i v e l y ,  the s el e ct ing  functions can be made 

im pli ci t by i n cl u d i n g  them in the de f in it io ns  of 

or der ed  t y p e s .

DEFINE [I V E C ] e[ I ] 1x c o m p o n e n t  & [ I ]1 y co mp on en t &

[ I] I z c o m p o n e n t

wh ere  "|" is used to separate the selec tor  from the 

type of the c o r r e s p o n d i n g  component.

Since there is no r e s t r i c t i o n  on the name of the 

s e l ec t i ng  functions, so the 3 di m en s i on a l  re a l -v ect or s  

can be de fined as

DEFINE [RVEC]H [R]Izcomponent & [R]1xcomponent & [R]|ycomponent
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This is to say (y component v ) , for example, will be of 

of type [I] or [R] d ep e n d i n g  on w h e t h e r  v is of type 

[IVEC] or [RVEC], so that xc omp o n en t,  y c o m p o n e n t  and 

zcompo nen t are p o l y m o r p h i c  functions.

By analogy, again, the un i v ers al s e le c ti n g  fu nc tio n  

can be defi ne d in BNF as

<universal-selecting-function>: :=<SELECT><cartesian-type>

<field-identifier><cartesian-ob>

where xcomponent, etc. are field identifiers. Intending programmers 

may find it helpful to compare the following two possible results.

SELECT [ I V E C ]x c o m p o n e n t = ( X [I V E C ]V : 1st v)

SELECT [RVEC] x c o m p o n e n t = (X[R V E C ] v : 2nd v)

3.4 C o n te x t ua l  checki ng of types

Suppose the data type for pe r so na l  record is def in ed as:

DEFINE [person] = [S]I name & [S]1fathername & [I]|age & [I]|children

Let us co nsi de r the fo ll o wi n g  two stat em en ts for c o n s t ru c t in g  

a new " p e r s o n " :

(1) (MAKE [person] < A.S mit h>  <B. Jones> 40 2)

(2) (MAKE [person] <A .S mi th>  <B .S mi th >  2 2)
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Both sta te me n t s are p e r m i s s i b l e  if the s y s t em  judges type 

co rre c t ne s s  only from sy nt a ct i c  co mb ination. But, we know 

both s t ate men ts  are abs ured b e c a us e in the first st at em ent  

the name of the pe rso n is d if fer en t from his father's and 

in the secon d s ta tem ent  the per s on  is too y o un g  to have 

child.

The re q u isi te  c he ck in g may be called " c o n t e x t - s e n s i t i v e  

type checking". C o n t e x t - s e n s i t i v e  type checki ng takes note 

that c o m pon en ts  of o rd e r e d - t y p e s  might be related to each 

other.

This example reveals the de f ic i e n c y  of or d in a r y type- 

ch eck in g systems in h a n d l i n g  or dered (structured) types.

As the o r d e r e d - t y p e  be co m es  more co mp lic ate d,  more contextuality 

is required. Wi th out  it, this r e s p o n s i b i l i t y  falls on the 

shou lders of users. Va ri ou s schemes have been di s c uss ed  

in [ D A H L , 1972], [ M O R R I S , 1973] and [ R E Y N O L D S , 19 75] who seem 

to agree that it w o ul d  be safer if access to s t ru c t u r e d  

types were limited to certain fu nctions only, so that in 

a dd i t io n  to the o r di na ry  type c h ec ki ng  on fun ctions and their 

arguments, these functions could carry out some ext ra  type 

c he ck in g pr o c es se s  on the argum en ts  as well. Let us call 

these extra pr oce ss es " sc r e en i n g" , and we shall il lu st rat e 

this point in the fo ll o w in g  example.
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E xamp 1e

Suppose a s c h o o l- f i le  is a list or array or str ucture  

of s t u d e n t - r e C O r d s , each c on t a i n i n g  i n f o r ma t i on  on students' 

names, ages, etc. St u d en t - r e c o r d s  might be arranged in 

al p h a b e t i c a l  order or ac c o rd i n g to age or w h a t e v e r  crit er ion  

is suitable. As there wou ld  be no direct access to the 

data s tr uc tu res  from outside functions, so the exact 

r e p r e s e n t a t i o n s  of the records should have no r el e va nce  in 

f o r m u l a t i n g  alg ori thm s in so vling problems. Permit the 

fo ll o wi n g  ope rat ion s on s t u d e nt - r ec or d s,

(1) IN SE R T <n am e > BEGIN a g e :=...; ye ar:=...; ... END

(2) DELETE <name>

(3) UPDATE <name> BEGIN a g e :=...; ... END

the kinds of sc re en ing  that are ne c e s s a r y  are su gg est ed  

below:

(1) The in s t ru c t i o n  INSERT is a request to const ru ct  a new 

st ud e nt -r ec ord . Before the new record is placed in 

the right slot, in order to avoid d up lic at io n, the 

sc re en ing  routine ought to check that it is needed a new 

recor d and check in f o r m a t i o n  on age, year, etc.

(2) Before a s t u d e n t - r e c o r d  could be deleted, it is reason abl e  

to ask the user to pro vi de reason for the de l et ion  via the
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second p a r am e te r  of this in s t r u c t i o n  (which could be 

some p r e d e f i n e d  strings or constants). Suppose the 

i ns t r u c t i o n  is "DELETE < n a m e > <graduate>", then the 

year of entry of that student should be checked to ensure 

that the d e le t io n  is legal.

(3) Most of the di s cu s s io ns  above are also ap p li c a bl e  to the 

i n s t r u c t i o n  UPDATE.

3.5 Summary

Cu rrent ty pe - ch e c k i n g  systems fail to provide the kind 

of c o n t e x t - s e n s i t i v e  sc re e n in g  of ordered types that is 

required. P a r t i c i p a t i o n  from pr o gr a m m e r s  is p a r t i c u l a r l y  

des ire d in this area. There are 3 ways that pr o g ra m m er s  

can advise t y p e - c h e c k i n g  systems. We have studied two of 

th em  in detail, wh il e  the third (type d e cl a ra tio n) has been  

e la b o r a t e d  in earl ie r parts of this thesis.

We wo u ld  like to see types play a more active role in 

p r o g r a m m i n g  than the p ure ly  ne ga t i ve  one of type checking.

We have ill us tr a t ed  this idea by a few examples. We believe 

we have done enough to indic ate  w ha t  we have in mind for the 

fut ure --  that a l g o r i t h m i c  type theory will i n cr e a s i n g l y  come 

to be seen as the br an c h  of logic nee d ed  for design  of 

m emo ry  p r o t e c t i o n  systems.
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