
Error Oracle Attacks on CBC Mode:
Is There a Future for CBC Mode Encryption?

Chris J. Mitchell

Technical Report
RHUL–MA–2005–7

30 April 2005

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports



Abstract

This paper is primarily concerned with the CBC block cipher mode. The
impact on the usability of this mode of recently proposed padding oracle
attacks, together with other related attacks described in this paper, is con-
sidered. For applications where unauthenticated encryption is required, the
use of CBC mode is compared with its major symmetric rival, namely the
stream cipher. It is argued that, where possible, authenticated encryption
should be used, and, where this is not possible, a stream cipher would appear
to be a superior choice. This raises a major question mark over the future use
of CBC mode, except as part of a more complex mode designed to provide
authenticated encryption.

1 Introduction

The CBC (Cipher Block Chaining) ‘mode of operation’ for a block cipher
has been in wide use for many years. A mode in this sense is simply a way
of using a block cipher to encrypt a string of bits (often referred to as a
‘message’).

CBC mode, as originally specified in the 1980 US FIPS Pub. 81 [15],
was first defined as one of four modes of use for the DES block cipher [16].
Since then, CBC mode, together with the other three modes from FIPS 81,
has appeared in a number of other standards, including ISO/IEC 10116, the
international standard for modes of operation (the second edition of which
was published in 1997 [9], and a third edition of which is nearing completion
[12]). For further details of block cipher modes of operation see, for example,
Chapter 5 of [7].

2 Encryption and integrity-protection

CBC mode, along with all the other modes of operation standardised in
ISO/IEC 10116, is designed only to provide confidentiality protection for
encrypted data. Thus, if the integrity and/or origin of the data is also to be
protected, then use of a separate mechanism, e.g. a Message Authentication
Code (MAC) or a digital signature is required; see, for example, [7, 14]
for discussions of these cryptographic primitives and for details of relevant
standards.

Over the last few years, a number of proposals for new modes of operation
offering both confidentiality and integrity protection have appeared. These
modes, often referred to as ‘authenticated-encryption techniques’, include

1



OCB [20], EAX [4] and CCM [17, 23]. These techniques are also currently
being standardised — the second working draft of what is intended to become
ISO/IEC 19772 on authenticated encryption was published late in 2004 [11].

In parallel with these recent developments, a number of implementation-
based attacks against CBC mode have been discovered — see, for example,
[5, 6, 18, 21, 24]. In these attacks, use of a so called ‘padding oracle’ enables
an attacker to discover information about the plaintext for a CBC-encrypted
message. More specifically, we suppose that the decrypting device, after
recovering the plaintext from the ciphertext, checks that the padding format
is correct. If it is not, an error message is generated, the presence or absence
of which can be detected by the cryptanalyst. This constitutes the ‘padding
oracle’, and practical examples of the existence of such oracles has been
demonstrated. The cryptanalyst uses such an oracle by making carefully
designed modifications to ciphertexts, and then observing whether or not
the modified ciphertext induces a padding failure — this, in turn, reveals
information about the plaintext.

There are two main responses to the existence of such attacks, which ap-
pear to pose a genuine threat to the security of some secure communications
systems. (As we discuss below, not all systems are subject to such attacks;
however, the possibility of such attacks may be sufficiently significant to mean
that adopting countermeasures across the board is probably advisable).

• The first is to observe that error messages of all kinds, including padding
error messages, should be designed with care. Careful implementation
of such messages would probably have prevented the practical realisa-
tion of most, if not all, of the so far described attacks.

• The second, most notably advocated by Black and Urtubia [5], and also
by Paterson and Yau [18], is to always provide integrity in conjunction
with encryption, and to arrange error messages appropriately. Clearly,
for such an approach to be effective, the integrity check must be per-
formed before any necessary padding is checked. If this line of argument
is followed, then the most logical approach is to use an authenticated-
encryption technique such as one of those referred to above.

The second of the above arguments is clearly convincing, and is one we
return to below in suggesting that CBC mode should never be used without
some accompanying integrity check. However, for practical reasons we do
not support the argument that encryption should never be used without an
accompanying integrity check. The reason for this latter claim is that there
appear to be applications where unauthenticated encryption is needed. These
include the following.

2



• Applications where data errors are acceptable. If the data to be en-
crypted consists of image or audio data (e.g. a digitised voice or video
channel), then a certain proportion of errors in the recovered plaintext
data may be acceptable to the recipient. This is because, after conver-
sion back to an analogue version, the resulting (corrupted) signal will
still be usable. For example, a modest number of errors in a digitised
voice signal will often result in a degraded but nevertheless comprehen-
sible version. Moreover, if the communications system in use required
all such corrupted signals to be rejected, retransmission may not be an
option, e.g. for a real-time audio or video channel (as would be used
in a telephone call or video conference). In such a case, a slightly cor-
rupted version of the original signal is clearly preferable to no signal at
all.

Hence, if an integrity check is used in such a scenario, the result will
be an unacceptable degradation in the channel. Thus, in these cir-
cumstances (as arise, for example, in mobile telephone wireless trans-
missions) use of a cryptographic integrity check is not really practical.
Current such applications typically use a stream cipher because of its
lack of error propagation.

Of course, use of an error-correcting code applied to the entire cipher-
text may alleviate such problems and allow use of an authenticated
encryption mode. However, if the error rates are highly variable, then
such an approach may simply be too complex to be practicable (and
any scheme that imposes latency will be unacceptable in real-time ap-
plications, such as voice).

• Very high bandwidth channels (bulk encryption). The second case is
where very large volumes of data are to be encrypted at high speed,
for example, when encrypting all of the data sent on a high bandwidth
channel, such as an optical fibre trunk. One major advantage of en-
crypting at a low level of the protocol hierarchy is that all address
information can be encrypted, revealing no information about traffic
flows to an interceptor.

In this case it may simply be impractical to include an integrity check,
typically because generating and verifying such values, and dealing with
any necessary retransmissions, at very high data rates may be infeasibly
complex. It is arguably more appropriate to provide error protection
at higher levels of the protocol hierarchy.

As a result of these and other applications of unauthenticated encryption, we
claim that mandating authenticated encryption is not always possible. As a

3



result it is necessary to decide which types of encryption are most appropriate
when integrity checks are not performed, and this is the main theme of this
paper.

Finally note that trivial distinguishing attacks exist on CBC in a chosen
ciphertext setting. The main contribution of this paper, and the earlier
work on padding oracle attacks, is to demonstrate that one can also perform
message recovery attacks, which are, of course, stronger than distinguishing
attacks.

3 CBC mode — definition, properties, and a

fundamental observation

We next describe how CBC mode works, and outline important properties.

3.1 Definition of CBC mode

Use of CBC mode encryption requires that the plaintext to be encrypted is
first padded so that its length is a multiple of n bits, where n is the block
length of the block cipher in use. The padded plaintext is then divided into
a series of n-bit blocks: P1, P2, . . . , Pq, say. An n-bit starting variable (also
sometimes called an initialisation vector or IV) is also required.

If the chosen starting variable is denoted by S, then encryption involves
computing a sequence of ciphertext blocks C1, C2, . . . , Cq, as follows:

C1 = eK(P1 ⊕ S), Ci = eK(Pi ⊕ Ci−1), (i > 1)

where eK(X) denotes the block cipher encryption of n-bit block X using
the secret key K, and ⊕ denotes the bit-wise exclusive-or of blocks.

3.2 Properties of CBC mode

In CBC mode, if the same message is enciphered twice then the same ci-
phertext will result, unless the starting variable is changed. Moreover, if two
messages agree for the first t blocks, for some t, then the first t blocks of ci-
phertext will be the same (again unless a different starting variable is used).
Hence the starting variable S should be different for every message.

A ‘proof of security’ of CBC mode was published by Bellare et al. in
1997 [2]. This proof requires the starting variable S to be random and not
selectable by an attacker; in fact there are also advantages with choosing
S to be a secret (known only to the legitimate sender and receiver). This

4



is supported by recent work of Rogaway [19], who obtains superior security
proofs for this technique when the starting variable is a one-time secret.

Managing starting variables is clearly a non-trivial issue for the user. One
way of achieving the use of a different value of S for every encrypted message
is simply to generate a random value for S, and to send this with the en-
crypted message. However this does not meet the requirement that starting
variables should ideally be secret. Providing a different secret starting vari-
able for every message can be achieved in a variety of ways, including sending
a counter with the message and using an encrypted version of this counter
as the starting variable, or generating a random value for every message and
encrypting it before sending it to the recipient with the encrypted message.

Use of CBC mode results in a property known as error propagation. That
is, a single bit error in the ciphertext will result in the loss of an entire block of
plaintext. Moreover, the corresponding single bit in the next plaintext block
will also be in error. To see why this holds, consider the decryption step used
to yield Pi (for any i), namely: Pi = dK(Ci) ⊕ Ci−1, where d denotes block
cipher decryption. First observe that Pi is a function of just two ciphertext
blocks: Ci and Ci−1. Also, if Ci contains one or more bit errors, then Pi will
be completely garbled because of the randomising effects of the block cipher.
Finally, if Ci−1 contains one bit error, then this will affect the recovered value
of Pi in precisely the same bit position.

3.3 A key observation

We next point out a simple yet important property of CBC mode that gives
rise to both padding oracle attacks and more general message-content based
attacks on this mode of operation.

Suppose P1, P2, . . . , Pq is a (padded) plaintext message which has been
CBC-encrypted to obtain the ciphertext C1, C2 . . . , Cq, using the block cipher
secret key K and the starting variable S. Suppose also that a cryptanalyst
submits a ciphertext X1, X2, . . . , Xs−1, Cj, Xs+1, . . . , Xt for decryption, where
1 < s ≤ t and j > 1, and that the decrypted result is P ′

1, P
′
2, . . . , P

′
t .

Then P ′
s = dK(Cj) ⊕ Xs−1 (regardless of which starting variable is used

in the decryption, since s > 1). Moreover, by definition, Pj = dK(Cj)⊕Cj−1

(since j > 1). Hence we have the following simple equation:

P ′
s ⊕ Pj = Xs−1 ⊕ Cj−1. (1)

This equation is the basis of all the padding oracle attacks referred to above.
It is also the reason why we question here the use of CBC mode without
any accompanying data integrity check. More specifically, equation (1) is

5



the basis of two main types of attack designed to learn information about
the plaintext corresponding to an encrypted message. These are as follows.

1. The first class of attack is designed to learn information about a single
block of plaintext. Using the above notation, the cryptanalyst sets
Xs−1 = Cj−1 ⊕ Q where Q is a particular bit pattern (e.g. containing
just a single ‘1’ bit in a chosen position); the other values Xi can be
chosen arbitrarily. Then, from (1), we immediately have:

P ′
s ⊕ Pj = Q. (2)

That is, the attacker can select the exact difference between Pj and
the plaintext block P ′

s obtained by the decrypter. If the attacker also
has a means of learning whether or not the recovered plaintext block
P ′

s generates some type of formatting error, then this approach will
enable the attacker to learn precisely targetted information about the
plaintext block Pj.

2. The second class of attack involves learning information about a pair of
consecutive plaintext blocks for an enciphered message C∗

1 , C
∗
2 , . . . , C

∗
t

(which may or may not be be the same as C1, C2, . . . , Cq, although it
must have been encrypted using the same block cipher key K). Suppose
that the P ∗

1 , P ∗
2 , . . . , P ∗

t is the plaintext corresponding to ciphertext
C∗

1 , C
∗
2 , . . . , C

∗
t . Using the previously established notation, the crypt-

analyst sets Xi = C∗
i (i 6= s) and submits the resulting ciphertext to

the decrypter.

Note that we are here concerned with the entire plaintext message,
and so we need to consider which starting variable will be used by the
decrypter to recover the plaintext. For the purposes of discussing this
case we assume that the starting variable is always sent with the ci-
phertext, perhaps in encrypted form. As a result the attacker has some
control over the starting variable; in particular the attacker can en-
sure that the starting variable originally used to encrypt the ciphertext
C∗

1 , C
∗
2 , . . . , C

∗
t is used on each occasion.

Then, applying (1), we immediately have:

P ′
i = P ∗

i , (i 6= s; i 6= s + 1) (3)

P ′
s ⊕ Pj = C∗

s−1 ⊕ Cj−1, and (4)

P ′
s+1 ⊕ P ∗

s+1 = C∗
s ⊕ Cj. (5)

In this case the attacker will therefore know that the plaintext mes-
sage P ∗

1 , P ∗
2 , . . . , P ∗

t and the message P ′
1, P

′
2, . . . , P

′
t recovered by the

6



decrypter will be identical in all blocks except for numbers s and s+1,
where we have:

P ′
s ⊕ P ∗

s = P ∗
s ⊕ Pj ⊕ C∗

s−1 ⊕ Cj−1, and (6)

P ′
s+1 ⊕ P ∗

s+1 = C∗
s ⊕ Cj. (7)

If the attacker has a means of learning whether or not the recovered
plaintext will generate some type of formatting error, then this ap-
proach will potentially enable the attacker to learn information about
P ∗

s ⊕Pj. This will arise if the difference between two correctly format-
ted messages always possesses a certain property. We give an example
of such an attack below.

4 Error oracle attacks

The idea behind a padding oracle attack was outlined in Section 2. In such
an attack it is assumed that the attacker has one or more valid ciphertexts,
and can also inject modified ciphertexts into the communications channel.
Moreover, the decrypter will, immediately after decryption, check that the
padding employed in the recovered plaintext is in the correct format or not.
If it is not, the decrypter is assumed to generate an error message which can
be detected by the attacker — whether or not an error message is generated
provides the ‘padding oracle’, which can be used to learn information about
a message.

We now consider what we call an error oracle attack. In this scenario an
attacker, as for a padding oracle attack, submits an encrypted message to a
decrypter. The decrypter expects all plaintext messages to contain certain
structure, and we suppose that the nature of this structure is known to the
attacker. We further suppose that, in the absence of such structure, the
decrypter exhibits behaviour different to that it exhibits if the structure is
present, and that this behaviour is detectable by the attacker. Examples of
possible detectable behaviours include the sending of an error message or the
failure to carry out an action, e.g. sending a response. The attacker then
submits carefully tailored ciphertext messages to the decrypter, and thereby
learns information about the plaintext from the behaviour of the decrypter.
Padding oracles are simply a special case of these error oracles. Note that
an error oracle is very similar to what Bellare, Kohno and Namprempre [3]
refer to as a reaction attack. More generally, these are all examples of what
have become known as side channel attacks.

Whilst the possibility of such attacks has been practically demonstrated,
such oracles will not always exist. Indeed, such oracle attacks will probably

7



only be possible in certain special circumstances. It is thus possible to argue
that selection of cryptographic techniques should only take account of such
attacks in circumstances where they are likely to arise. The problem with
this is that, when designing a cryptographic protocol, it is not easy to predict
when implementations might be subject to error oracle attacks. Indeed, the
error oracle may exist in a higher level protocol, designed and implemented
completely independently of the cryptographic functionality. We thus suggest
that it is good practice always to design cryptographic schemes such that
error oracles are never a threat, and we make this assumption throughout
the remainder of this paper.

We next give three examples of how error attacks might be realised in
practice. In each case we suppose that an attacker has intercepted a CBC-
encrypted ciphertext C1, C2, . . . , Cq (the target ciphertext) for which as much
information as possible is to be obtained about the corresponding (padded)
plaintext P1, P2, . . . , Pq (the target plaintext).

Before proceeding note that in the first example we need the attacker to
be able to force the decrypter to re-use the starting variable originally used
to encrypt the message. However, the other two attacks work regardless of
which starting variable the decrypter uses.

4.1 Example 1: A linear error detection attack

Suppose that a higher-level protocol is designed to error-protect all the
messages it sends. Suppose further that the technique used for this error-
protection is a 16-bit CRC (Cyclic Redundancy Check). We thus suppose
that the target plaintext P1, P2, . . . , Pq incorporates a 16-bit CRC. This is,
of course, bad practice, but it might be mandated by a higher level proto-
col designed completely independently of the protocol responsible for data
encryption. Suppose also that the attacker can find out, for any chosen ci-
phertext, whether or not the error detection process fails after decryption
(this is our error oracle).

Next suppose that the attacker constructs a query to the error oracle
by replacing ciphertext block Cs with Cj for some s 6= j (s > 1, j > 1)
in the ciphertext string C1, C2, . . . , Cq (the attacker also arranges for the
decrypter to use the same starting variable as was originally used to pro-
duce C1, C2, . . . , Cq). If the ‘plaintext’ recovered by the decrypter is labelled
P ′

1, P
′
2, . . . , P

′
q, then, from equations (6) and (7), we immediately have:

P ′
i ⊕ Pi = 0, (1 ≤ i < s and s + 1 < i ≤ q),

P ′
s ⊕ Ps = Ps ⊕ Pj ⊕ Cs−1 ⊕ Cj−1, and

8



P ′
s+1 ⊕ Ps+1 = Cs ⊕ Cj.

Given that the original message contains a CRC check, the corrupted
plaintext will contain a valid CRC if and only if the ex-or of the valid message
with the corrupted message has a valid CRC (by linearity). Moreover, from
the above equations the attacker knows precisely the form of this exclusive-
or, with the only unknown being the value of Ps ⊕ Pj. The probability that
the corrupted message will pass the CRC is only 2−16, but in this event the
attacker will essentially know 16 bits of information about Ps ⊕ Pj, since we
will know that a degree 16 polynomial divides a polynomial with coefficients
involving Ps ⊕ Pj and some known values.

Hence after an expected number of around 215 CRC error oracle queries we
will have learnt at least 16 bits of information about the message. A message
containing 28 = 256 n-bit blocks will have nearly 216 candidate ordered pairs
(s, j), i.e. there is a good chance that at least one of the ‘corrupted’ messages
will yield a correct CRC. Given that a sufficient number of different error
oracle queries can be constructed, this technique can be used to discover up
to 16(q − 2) bits of information regarding the plaintext P1, P2, . . . , Pq.

This general approach can be extended in several ways. First, note that
the ciphertext C1, C2, . . . , Cq could be modified by replacing more than block,
giving more possible variants to be submitted to the error oracle. Second,
the replacement ciphertext block could be taken from a different encrypted
message (as long as it has been encrypted using the same key). Third, the
same approach will work if the message contains any other type of error
protection based on a linear code. If, for example, an 8-bit CRC was used
instead of a 16-bit CRC, then discovering 8 bits of information about the
plaintext would require an expected number of only around 128 queries.

4.2 Example 2: A message structure attack

For our second example we suppose that the target plaintext P1, P2, . . . , Pq

contains a fixed byte in a known position. Suppose that the fixed byte is
the jth byte in block Ps for some s > 1. There are many protocols that set
certain bytes to zero (or some other fixed pattern) as ‘future proofing’, e.g. to
enable the recipient of a message to determine which version of a protocol is
being used. Suppose also that if this particular byte of a decrypted message
is not set to the expected value then the decrypter will exhibit a particular
detectable behaviour.

This scenario enables the attacker to learn the value of the first byte of all
but the first block of the plaintext using a series of error oracle queries, the
expected number of which will be around 128 per block, as follows. For each

9



j (1 < j ≤ q; j 6= s), the attacker constructs a series of ‘ciphertexts’ with
modifications to just two blocks Cs−1 and Cs, where the modified ciphertext
has the form:

C1, C2, . . . , Cs−2, Cj−1 ⊕Qt, Cj, Cs+1, Cs+2, . . . , Cq

for t = 0, 1, . . . , 255. The n-bit block Qt has as its jth byte the 1-byte
binary representation of t, and zeros elsewhere. The attacker submits these
ciphertexts to the error oracle in turn, until one is found which does not
cause an error, i.e. the recovered plaintext P ′

1, P
′
2, . . . , P

′
q for the manipulated

ciphertext has the property that the jth byte of P ′
s is equal to the correct

fixed byte. If this occurs, say, for Qu, then, from equation (2), the attacker
immediately knows that

Pj = P ′
s ⊕Qu.

That is, given that the jth byte of P ′
s is known to equal the fixed byte, the

attacker has discovered the value of the jth byte of Pj. This approach can
be used to find the jth byte of every block of the original plaintext (except
for P1).

Similar results hold for parts of bytes or multiple bytes.

4.3 Example 3: Content-based padding oracle attacks

The third attack we consider is a type of padding attack which will only
work if the attacker knows something about the message structure (and this
structure has appropriate properties). This differs from a ‘standard’ padding
oracle attack which does not require any assumptions to be made regarding
the plaintext. However, such a scenario is not particularly unlikely — it
also enables us to attack padding methods which are essentially immune to
regular padding oracle attacks.

First suppose that the CBC-encrypted data is a fixed length message, and
that the attacker knows the message length, which we suppose is equal to
(q−1)n+r (where q and r satisfy q ≥ 1 and 1 ≤ r < n). Suppose, moreover,
that padding method 1 from ISO/IEC 9797-1 [10] is in use; that is, suppose
that padding merely involves adding zeros to the end of the message until
the message length is a multiple of n bits1. Hence the attacker knows that
the last n− d bits of Pq are all zeros.

This scenario enables the attacker to learn the value of the last n−d bits
of all but the first block of the plaintext, using an expected number of around
2n−d−1 error oracle queries per block. For each j (1 < j ≤ q; j 6= 1), the

1Note that this padding method is only usable in circumstances where the message
length is fixed.

10



attacker constructs a series of ‘ciphertexts’ with modifications to the final
two blocks Cq−1 and Cq, where the modified ciphertext has the form:

C1, C2, . . . , Cq−2, Cj−1 ⊕Qt, Cj

for t = 0, 1, . . . , 2n−d − 1. The n-bit block Qt has as its final n − d bits the
binary representation of t, and zeros elsewhere. The attacker submits these
ciphertexts to the error oracle in turn, until one is found which does not
cause an error, i.e. the recovered plaintext P ′

1, P
′
2, . . . , P

′
q for the manipulated

ciphertext has the property that the final n−d bits of P ′
q are all zeros. If this

occurs for Qu say, then, from equation (2), the attacker immediately knows
that

Pj = P ′
q ⊕Qu.

That is, given that the final n − d bits of P ′
q are known to be all zeros, the

attacker has discovered the value of the final n− d bits of Pj. This approach
can be used to find the final n−d bits of every block of the original plaintext
(except for P1).

Note that such an attack would apply equally well to messages padded
using padding method 2 of ISO/IEC 9797-1 [10], i.e. the method that involves
adding a single one to the end of the message followed by the minimum
number of zeros necessary to ensure that the padded message length is a
multiple of n.

5 Error oracle attacks on stream ciphers

So far we have focussed on CBC mode. However, one of the main objectives
is to consider which method of symmetric encryption is most suited for use
in circumstances where authenticated encryption is not appropriate. We
therefore need to consider the vulnerability of stream ciphers to error oracle
attacks, since stream ciphers are the main alternative to use of CBC mode.
Note that by stream ciphers we mean to include use of a block cipher in CTR
and OFB modes.

First, observe that stream ciphers typically do not require the use of
padding, and hence padding oracle attacks are not an issue. Black and Ur-
tubia [5] point out that, on occasion, stream ciphers do use padding, although
it is not clear how often this occurs; moreover, a best practice recommenda-
tion to never pad plaintext prior to use of a stream cipher could eliminate
any such issues.

Second, we claim that error oracle attacks analogous to those based on
equations (6) and (7) do not apply for stream ciphers, since, when using a

11



stream cipher, different parts of a single ciphertext message are encrypted
using different keystream sequences; hence it is not possible to learn anything
about the plaintext by exoring two different portions of ciphertext. The same
is true when combining two different ciphertexts since, even if the ciphertext
strings are taken from the same point in the encrypted messages, different
keystream sequences will be used (as long as starting variables are employed
to ensure that different messages are encrypted using different keystream
sequences).

Third, observe, however, that error oracle attacks analogous to those
based on equation (2) do apply to stream ciphers. This arises because a
single bit change in stream cipher ciphertext gives rise to a single bit change
in the same position in the recovered plaintext. We consider a simple, but not
necessarily unrealistic, example. Suppose that an attacker knows that two
consecutive plaintext bits will always be equal to one of three possibilities,
namely: 00, 01 and 10. Suppose, moreover, that the combination 11 will
cause a formatting error detectable by an attacker. If the ciphertext bit
corresponding to the second of these ‘formatting’ bits is changed, and the
resulting ciphertext is submitted to the error oracle, then if there is no error
then the attacker knows that the first plaintext bit of the two is a zero, and
if there is an error then the attacker knows that the first plaintext bit of the
two is a one.

In summary, although stream ciphers are certainly not immune to error
oracle attacks, the risk is somewhat less serious than for CBC mode, since
less attack variants apply in this case. Also note that, although a recently
proposed attack on the GSM stream cipher uses the fact that the plaintext
that is stream ciphered is redundant [1], the main problem arises because of
the relatively weak keystream generator in use, not through padding oracle
attacks.

6 CBC mode versus stream ciphers

We now consider whether a stream cipher or CBC mode encryption is more
suitable for use in cases where authenticated encryption is not appropriate.
We start by considering the impact of error oracle attacks.

The recent focus by a number of authors on padding oracle attacks has led
to the impression that problems can be addressed by either managing padding
error messages more carefully or (preferably) by choosing a padding method
which cannot be exploited. An obvious candidate for such a technique is
padding method 2 from ISO/IEC 9797-1 [10], i.e. the method that involves
adding a single one followed by the minimum necessary number of zeros.

12



However we should point out that Black and Urtubia [5] do point out some
residual issues with this technique, although they would appear to be much
less serious than the issues for other padding methods. Black and Urtubia
also propose other padding methods for which padding oracle attacks cannot
succeed.

However, the content-based padding oracle attack described in Section 4.3
suggests that no padding method is ‘safe’ when an attacker knows informa-
tion about the structure of the message and has access to an error oracle.
Moreover, simply requiring that systems should be designed not to give er-
ror oracles is not realistic. This is because the error oracle may be part of
a higher-level protocol, designed completely independently of the protocol
layer implementing encryption. That is, the presence of such error oracles
may be something out of the hands of the designer and implementer of the
encryption system.

We next observe that, as discussed in Section 5, CBC mode encryption
is at a significantly greater risk from error oracle attacks than stream cipher
encryption. This is because use of a stream cipher typically involves no
padding, and only some error oracle attacks work.

This suggests the following preliminary conclusions, namely that: (a) au-
thenticated encryption should be used wherever possible, and (b) if unauthen-
ticated encryption is necessary, then stream ciphers appear to offer certain
advantages over CBC mode with reference to side channel attacks. We next
looks at how these preliminary findings need to be modified in the context of
the two example cases where unauthenticated encryption is appropriate (as
discussed in Section 2).

• Applications where data errors are acceptable. In such an application it
is very important that the encryption technique does not significantly
increase the error rate. That is, if the channel has the property that the
error probability for a received ciphertext bit is p, then the probability
of an error in a plaintext bit after decryption should not be significantly
greater than p. This property holds for a stream cipher, but does not
hold for CBC mode, where the error probability will be increased from
p to around (n/2+1)p (for small p). Hence, in this type of application,
as exemplified by the choice of a stream cipher for GSM and UMTS
encryption, a stream cipher has very significant advantages over CBC
mode.

• Very high bandwidth channels (bulk encryption). Here it is important
that the cipher be capable of running at the highest possible speed (for
a given complexity of hardware). Typically, stream ciphers, such as
SNOW 2.0 [8] or MUGI [22], can be implemented to run significantly

13



faster than CBC-mode block cipher encryption. Hence again stream
ciphers offer significant practical advantages.

7 Conclusions: The end of CBC mode?

As we have mentioned above, the existing discussions of padding oracle at-
tacks give the impression that the error oracle problem can be solved by
designing padding methods appropriately and ensuring that padding error
messages are carefully designed. Whilst there is no doubt that, if CBC
mode it to be used, then it should be used with a carefully selected padding
method2, this by no means solves all the issues associated with error oracles.

However, we would suggest that the problem is more general than this.
As we have demonstrated, if messages to be encrypted contain certain types
of known structure, then error oracle attacks may be possible regardless of
the padding method used. Moreover, the designer of the encryption protocol
cannot always predict the nature of the messages that are to be protected
using the protocol, and hence preventing such attacks by stopping structured
messages is essentially impossible. As we have already pointed out, this
problem is known to arise elsewhere, as exemplified by certain attacks on
GSM encryption [1].

Whilst all these problems would be avoided if the encryption protocol
provided both confidentiality and integrity checking, we have shown that
this is not always appropriate. Thus the designer of an symmetric encryp-
tion system for which it is not appropriate to provide integrity protection
is typically faced with a choice between CBC mode encryption and use of
a stream cipher. We suggest that a stream cipher is always to be preferred
for two main reasons: first, stream ciphers are less prone to error oracle at-
tacks (although not completely immune), and second, they appear to be a
much better fit to those particular applications where it is not appropriate
to provide integrity checking.

Hence, as a result, for any system employing symmetric encryption, the
choice would appear to be between a combination of symmetric encryption
of some kind and an integrity check (such as a MAC) or a stream cipher
(including use of a block cipher in CTR or OFB modes). However, as argued
by a number of authors (see, for example, Bellare, Kohno and Namprempre
[3]) it is important to combine encryption and authentication with care to
avoid unintended weaknesses. This suggests that it is probably always desir-

2This observation has influenced the UK ballot comments on ISO/IEC FCD 10116 [12],
in which it is suggested that the revised standard recommends the use of Padding Method
2 from ISO/IEC 9797-1 [10].

14



able to use a specifically designed authenticated-encryption mode (some of
which also have efficiency advantages), rather than an ad hoc combination
of encryption and a MAC.

Thus our conclusion is that there would appear to be two main choices
for the user of a symmetric encryption system: an authenticated-encryption
system (see, e.g. [20, 4, 17, 23, 13]) or a stream cipher. This prompts the
suggestion in the title of this paper that, except for legacy applications, naive
CBC encryption should never be used, regardless of which padding method
is employed.

References

[1] E. Barkan, E. Biham, and N. Keller, Instant ciphertext-only crypt-
analysis of GSM encrypted communications, Advances in Cryptology
— CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings
(D. Boneh, ed.), Lecture Notes in Computer Science, vol. 2729, Springer-
Verlag, Berlin, 2003, pp. 600–616.

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, A concrete security
treatment of symmetric encryption, Proceedings of the 38th IEEE sym-
posium on Foundations of Computer Science, IEEE, 1997, pp. 394–403.

[3] M. Bellare, T. Kohno, and C. Namprempre, Breaking and provably re-
pairing the SSH authenticated encryption scheme: A case study of the
encode-then-encrypt-and-MAC paradigm, ACM Transactions on Infor-
mation and System Security 7 (2004), 206–241.

[4] M. Bellare, P. Rogaway, and D. Wagner, The EAX mode of opera-
tion, Fast Software Encryption, 11th International Workshop, FSE 2004,
Delhi, India, February 5-7, 2004, Revised Papers (B. Roy and W. Meier,
eds.), Lecture Notes in Computer Science, vol. 3017, Springer-Verlag,
Berlin, 2004, pp. 389–407.

[5] J. Black and H. Urtubia, Side-channel attacks on symmetric encryption
schemes: The case for authenticated encryption, Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, USA, August 5-9,
2002, USENIX, 2002, pp. 327–338.

[6] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, Password inter-
ception in a SSL/TLS channel, Advances in Cryptology — CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,

15



California, USA, August 17-21, 2003, Proceedings (D. Boneh, ed.), Lec-
ture Notes in Computer Science, vol. 2729, Springer-Verlag, Berlin, 2003,
pp. 583–599.

[7] A. W. Dent and C. J. Mitchell, User’s guide to cryptography and stan-
dards, Artech House, 2005.

[8] P. Ekdahl and T. Johansson, A new version of the stream cipher SNOW,
Selected Areas in Cryptography, 9th Annual International Workshop,
SAC 2002, St. John’s, Newfoundland, Canada, August 15-16, 2002, Re-
vised Papers (K. Nyberg and H. Heys, eds.), Lecture Notes in Computer
Science, vol. 2595, Springer-Verlag, Berlin, 2003, pp. 47–61.

[9] International Organization for Standardization, Genève, Switzerland,
ISO/IEC 10116: 1997, Information technology — Security techniques
— Modes of operation for an n-bit block cipher, 2nd ed., 1997.

[10] International Organization for Standardization, Genève, Switzerland,
ISO/IEC 9797–1, Information technology — Security techniques —
Message Authentication Codes (MACs) — Part 1: Mechanisms using
a block cipher, 1999.

[11] International Organization for Standardization, Genève, Switzerland,
ISO/IEC 2nd WD 19772: 2004, Information technology — Security
techniques — Authenticated encryption mechanisms, November 2004.

[12] International Organization for Standardization, Genève, Switzerland,
ISO/IEC FCD 10116, Information technology — Security techniques —
Modes of operation for an n-bit block cipher, 3rd ed., 2004.

[13] International Organization for Standardization, Genève, Switzerland,
ISO/IEC WD 19772: 2004, Information technology — Security tech-
niques — Authenticated encryption mechanisms, 2004.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography, CRC Press, Boca Raton, 1997.

[15] National Institute of Standards and Technology (NIST), Gaithersburg,
MD, Federal Information Processing Standards Publication 81 (FIPS
PUB 81): DES Modes of Operation, December 1980.

[16] National Institute of Standards and Technology (NIST), Gaithersburg,
MD, Federal Information Processing Standards Publication 46-3 (FIPS
PUB 46-3): Data Encryption Standard, October 1999.

16



[17] National Institute of Standards and Technology (NIST), NIST Special
Publication 800-38C, Draft Recommendation for Block Cipher Modes
of Operation: The CCM Mode For Authentication and Confidentiality,
September 2003.

[18] K. G. Paterson and A. Yau, Padding oracle attacks on the ISO CBC
mode padding standard, Topics in Cryptology — CT-RSA 2004, The
Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA,
USA, February 23-27, 2004, Proceedings (T. Okamoto, ed.), Lecture
Notes in Computer Science, vol. 2964, Springer-Verlag, Berlin, 2004,
pp. 305–323.

[19] P. Rogaway, Nonce-based symmetric encryption, Fast Software Encryp-
tion, 11th International Workshop, FSE 2004, Delhi, India, February
5-7, 2004, Revised Papers (B. Roy and W. Meier, eds.), Lecture Notes
in Computer Science, vol. 3017, Springer-Verlag, Berlin, 2004, pp. 348–
359.

[20] P. Rogaway, M. Bellare, and J. Black, OCB: A block-cipher mode of
operation for efficient authenticated encryption, ACM Transactions on
Information and System Security 6 (2003), 365–403.

[21] S. Vaudenay, Security flaws induced by CBC padding — Applications
to SSL, IPSEC, WTLS . . . , Advances in Cryptology — EUROCRYPT
2002, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Amsterdam, The Netherlands, April 28 – May 2,
2002, Proceedings (L. Knudsen, ed.), Lecture Notes in Computer Sci-
ence, vol. 2332, Springer-Verlag, Berlin, 2002, pp. 534–545.

[22] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, A new
keystream generator MUGI, Fast Software Encryption, 9th International
Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised
Papers (J. Daemen and V. Rijmen, eds.), Lecture Notes in Computer
Science, vol. 2365, Springer-Verlag, Berlin, 2002, pp. 179–194.

[23] D. Whiting, R. Housley, and N. Ferguson, RFC 3610, Counter with
CBC-MAC (CCM), Internet Engineering Task Force, September 2003.

[24] A. K. L. Yau, K. G. Paterson, and C. J. Mitchell, Padding oracle attacks
on CBC-mode encryption with secret and random IVs, Fast Software En-
cryption, 12th International Workshop, FSE 2005, Paris, France, Febru-
ary 21-23, 2005, Revised Papers, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2005, p. to appear.

17


