INTERACIIONS BENWEHN STARS AND INLERSZELLAR MATERIAL

HMESIS

```
submitted to the University of London
    for the degree of
    Doctor of Philosophy
```

 by
 KRNNGMH NEILSON DODD
 JUNE, 1954.

ProQuest Number: 10123884

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10123884
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKHOWIEDGMENTS

I wish to recora my aincere thanks to Professor W.H. MeCrea for his helpful guidonce, invaluable eriticism and kind encouxagement during ny course of study under his supervision.

I wish to thank the Royel Astronomical Society and the Cambriage Philosophical Socioty for the use of some of their diagrams in this thesis.

PREFACE

The contribution of the work described in this thesis to the advancement of the subject lies primarily in strengthening the foundations of the accretion theory by the exemination of various aspects of the mechanism. The work also Indleates that the accretion process may piay an important part in the ovolutaon of binary atars. With the exception of the account of the Bondi-moyle mechanism, the work in Chapter I of this thesis is original, Hovevor, the iden of considering the effect of denaity eradient arose from the worts of Gething and vome of the disoussion in this chapter is due to Professor liccsea. The account of the Bondi aecretion process in Chapter IV is not oxiginal, but the present weiter differs slightly from Bondi on the interpretation of the results and reasons sre given Ior this. The remaining work of the thesis is original, but with the oxception of Chepters II and III, the probleme wore suggented by Professor MeCrea.

The work in Chapter II, Chepter VII, the second part of Chapter IV and the owfginal part of Chapter I has already been published as (8)(25)(13)(9) respeetively.

ABSMRACT

In Chapters I to IV of this thesis, the mechanism, oxiginally put forward by Hoyle, Iyttleton and Bondi, by which stars can copture large amounts of interstellar material is examined and extended. The rate of accretion of intersteliar material is determined on various sssumptions about the nature of this material. The resistive force is also evaluated under various conditions. The effect of tempereture and variation of material density is considered.

In Chaptor V, a theory of binary star formation is Investigated in which the resistive force is considered to remove part of the gravitational energy of a pair of stars and so leave them gravitationa11y bound together. It is found that under suitable eircumstances such binary star Pormations can occur, but no estimate has been obtained of the probability of such a formation.

In the remaining two chapters, the moaifications are considered which have to be applied to the accretion theory when the star is a binary. The dynamical effects of accretion on the binary are considered and estimates are made of the time required for the size of the binery orbit to be apprecisbly roduced.

工ABJTS OF CONPBMIS

Page
Introduction. 1.
Chapter I: The Mechanism of Accretion. 10.
Motion of a Particle Under an Inverse Square Central Force. 10.
The Bondi-Hoyle Accretion Mechenism. 12.
The Resistive Force in the Absence of Collisions. 21.
Gonsexvation of Thergy in the Absence of Collisions. 25.
The Cut-off Distonce. 26.
Value of the Force when Accretion is present. 30.
Comparison of the Aocretion and Resistive Foree at different Velocities. 32.
Veriation of p in a direction perpendicular to $O x$. 35.
The Bfifect of Tempernture on the Resistive Force. 50.
Chapter II: The Unsteady Aceretion Problem. 57.
The Equations. 58.
The Proposed Method. 59.
The Fumerical Solution. 62.
Results and Conclusion. 70.
Chapter III: An Elaboration of the Bondi-Hoyle echanism. 73.
The Radius of the Stroem. 77.
The Resistive Force. 80.
Chapter IV: Gaseous Accretion. 34.
The Bondi Process. 84.
Accretion by the Star at Supersonic Velocities. 89.
Chepter V: A Theory of Binary Star Formation. 104.
Mathematical Investigation。 106.
Discussion of Results. 110.
Effect of Unequal Initial Masses. 114.
Time of Eneounter. 116.
Conclusion. 117.
A Simple Statistical Theory of Binary Star Formetion. 118.
Chapter VI: Interactions between Binary Stars and Intergtellar Material. 124.
The Sharing of Accreted Iaterial by the Unequal Components of a Binary of small Separation. 129.
The Rate of Reauction of the Separation of the Components of an Accreting Binary. 132.
Note on the Brfect of a Resistive Force on the Eccentrieity of a Central orbit. 139.
Chapter VII: A Numerical Dotermination of the Iorque experlenced by a Binaxy Star in acloud of Particles. 142.
Numerical Method. 143.
The Problem. 147.
Celculation of the Torque experienced by a Binary. 150.
Comparison of the Result with a Theoretical Formula. 153.
Rate of Reduction of Seraration of Binary Components. 155.
Another Set of Orbits. 156.
Concluding Remaries. 159.
Heferences. 160.

Introduction

There is direct astronomical evidence of the existence of diffuse clouds of matter in interstellar space. These clouds are concentrated fairly close to the plane of the galaxy and almost certainly exist mainly along the spiral arms. The clouds consist mainly of atomic hydrogen with probably about ten per cent (by numbers of atoms) of helium and traces of heavier elements. Mixed with the gas is about one per cent of dust particles whose sizes are of order $10^{-5} \mathrm{~cm}$. The composition of the particles is uncertain. On the whole, the evidence indicates that the gas and dust are well mixed although clouds which appear to contain large proportions of dust can be observed. The kinetic temperature of the gas in normal regions of apace (i.e. not too close to hot stars) is between 50 and $100^{\circ} \mathrm{A}$, the hydrogen being largely neutral and not ionised. But the internal temperature of the dust particles is only a few degrees absolute. The presence of the dust in the gas causes heat to be radiated and so enables the gas temperature to be fairly uniform over large regions of space. In HII regions near 0 and B type stars, the kinetic temperature is of the order of $10,000^{\circ} \mathrm{A}$ and there is probably no dust.

The average density of the gas over the entire region which it occupies may be described as of the order of one hydrogen atom per c.c. However, the density is by no means uniform and regions of much higher density exist. Strymgren (2) estimates that in typical regions of density maxima, there are 100 hydrogen atoms per c.c. But even denser regions exist, such as the neighbourhood of the orion nebula where there may be 1000 hydrogen atoms per c.c. Some photographs of the denser regions show a filamentary structure so that the density may be even higher within the filaments.

The fact thet the density of the gas is so variable enables the dense regions to be referred to as gas "clouds". These clouds move with the general rotation of the gelaxy but they also have random velocities relative to each other. The stars in the dense regions are of course immersed in the clouds and are moving relative to them owing to their own peculiar motions.

In the phase of evolution of the galaxy before the formation of stars, these gaseous regions probably existed in similar conditions to those we observe today but the density may have been considerably greater. The stars are thought to have been formed by condensing from the gaseous material.

The existence of the clouds of interstellar material raises a number of important questions in theoretical
astronomy. There is the question of the gain or loss of material by the star and the influence of this on the star's evolution. There is also the question of the gain or loss of momentum by the ster and the consequent effect on the star's motion. This may be caused by the gravitational attractions of the clouds as a whole and also by the effects which occur in the immediate neighbourhood of the star due to its motion relative to the cloud in which it is immersed. The possibility and conditions for condensations to form is also an important problem. All these questions require to be answered in relation to the past evolution of the stars but it is also necessary to know if the processes are still active in present conditions.

There is observational evidence that interactions between stars and interstellar material must have occurad and in comparatively recent times. Recent observation has revealed an association between regions of interstellar material and population I stars. Detailed observation has shown an association of particular cstegories of very luminous stars with the regions of highest density and this strongly suggests continuing intake of interstellar material by the stars. Some of the brightest stars must have been formed in comparatively recent times and so were presumably formed from interstellar material by iresh condensations or else by absorption of interstellar material by already existing stars.

Although all this evidence indicates a gain of material by the stars, there are certain classes of stars in particular, novae which eject material into space. Novae may be responsible for the distribution of the heavier elements in the universe.

In this thesis an attempt has not been made to examine all the problems arising from the existence of the interstellar clouds but merely to examine some possible mechanisms of the interactions between sters and interstellar material and to consider one or two of their implications.

It has been realised for sone time that when a star moves through a region of space containing interstellar material, the star may pick up or "accrete" some of this material. However, it appeared from Eddington's works ${ }^{(3)}$ that the star would only pick up material lying within a distance from its path of the order of the radius of the star. Considering the low density of the interstellar material, this "accretion" would be too smell to produce any important astrophysical effects.

In 1939, Hoyle and Lyttleton ${ }^{(4)}$ suggested a mechanism by which substantially larger amounts of material could be captured by a star and they indicated the importance of such a process to stellar evolution. It may be mentioned that some aspects of the mechanism had already been realised by NBLke ${ }^{(5)}$ as far back as 1910 and by Moreux ${ }^{(6)}$ in 1922.

Between 1939 and 1944 a series of papers by Hoyle and Lyttleton developed the "Accretion Theory" and its applications. But it was not until 1944 that the mathematical theory of the accretion process was considered in detail in a paper by Bondi and Hoyle ${ }^{(7)}$. The mechanism which they described involved an "accretion column" which extended in the wake of the star. In this paper, the resistive force exerted on the star by the material was also considered and a value for it was obtained by considering the behaviour of the accretion column at a great distance from the star. Hhe unsteady behaviour of the accretion column was afrexempa numerically in a paper by Doad ${ }^{(8)}$. In 1952, a paper by Nodd nd MeCrea (9) showed that the value of the resistive not depend on the formation of an accretion column provided the interstellar material has the properties assumed in the Bondi-Hoyle mechanism. This paper gave consideration to the effects of nonuniformity in the density of the interstellar material (although this aspect had previousiy been considered by Gething ${ }^{(10)}$). The importance of the resistive force was also stressed. A year later, NoCrea ${ }^{(1.1)}$ considered the effects of density and velocity variations in the interstellar material on the Lyttleton theory of comet formation which is one of the applications of the accretion theory. In all the woric up to this stage, the undisturbed interstellar material had been treated as consisting of inelastic particles with
negligible relative motion. These properties are possessed by the particles of a gas at very low absolute temperatures provided that any hest developed in the gas can be radiated away rapidiy. In 1952, Bonai ${ }^{(12)}$ considered the rate of accretion by a star at rest in a cloud of gas at temperatures other than zero absolute. In 2953, Dodd ${ }^{(13)}$ examined mumerically the rate of accretion by a star moving through a sas treatiag the latter as a hyarodynamical medium, but results were obteined onig in the oase of isothermal flow. ψ_{p} to the preseat, no astimate has been obtained of the resistive force oxperienced by a star in moving through a gas at temperetures other than zero absolute (whers the ranaon particie motiona do not exist). Recontiy a papor by Mecrea ${ }^{(14)}$ has indieated the possible iaportance of a star being "trapped" by a cloud of material. It was shown that if a atar enters a cloud with a saitebiy small velocity, the resistiva force will bring the star to rest after which the star will madergo a symuetrical accretion of material, as for example in the bondi process.

In Chapter I of this thesis, the Bondi-Hoyle mechenism of aceretion 13 deseribed wad axpressions for the rate of aocretion and for the resistiva foree are obtained. The resistive force is then determined on the assumption thet the perticles of the eloud do not experience collisions between themselves. The agrement betwoen the dominant terms of the
expressions for the forces is then noted and the implications of this are discussed. A discussion follows of the "cut-off effect" which limits the magnitude of the force. The effects of a nonmuform cloud density are then examined and it is shown that in certain circumstances a circulatory current of material can be established about the star. The chapter ends with a mention of the temperatures under which the above consideration can be expected to be valid.

In Chapter II, an account is given of a numerical investigation of the unsteady behaviour of the Bondi-Hoyle accretion mechanism. It is found, as already suggested by Bondi and Hoyle that large perturbations tend to reduce the rate of accretion and their value for the minimum rate of accretion is approximately conlimed.

In Chapter III, an account is given of an elaboration of the Bondi-Hoyle mechanism in which the eceretion column is treated as consisting of a gas at a temperature removad Irom 0° A. This treatment indicates that there is a deilaite limit to the temperature which can be allowed in the accretion colum, The resistive force is examined and an upper limit to its value is found. This treatment is midway between the inelastic particle mechanism of Bondi and Hoyle and the hydrodynamical treatment of the next chapter.

In Chapter IV, a briei discussion is given of the Bondi symmetrical accretion process for a gas at temperatures
removed from $0^{\circ} \mathrm{A}$. This is followed by an account of a numerical investigation to determine the accretion rate by a star moving through an isothermal gas at temperatures removed irom 0°. the results are in good agreement with a formula conjectured by Bondi on the basis of results for the simpler mathematical models of the situation.

In Chapter V, a theory of binary star formation is investigeted in which the resistance of the cloud is considered to rersove part of the gravitational energy of a pair of stars and so leave them gravitationally bound together. It is found that under suitable circumstances such binary star formetions can occur but no estimate has been obtained of the probability of such a formation. It is shown that the encounter between the stars must occur early in the lives of the stars if it is to result in a binary star and it is shown that during the encounter, the stars have their masses greatly increased by accretion. The chapter onds with an interesting Iittle piece of methematics concerned with the statistics of multiple system formation but it is not really relevant to the main work of the chapter.

In Chapter VI, the modifications are considered which have to be applied to the accretion theory when the ster is a biaery. It is found that the accretion process depends on the ratio of the separation of the binary components to the local menn interstellar distence. The dynamical effects of
accretion on the binary are considered and estimates are made of the time required for the size of the binary orbit to be appreciably reduced.

Chapter VII is an account of a numericel investigation to check one of the results obtained in the last chpater. The work is also of interest as it involves the restricted three-body problem. The result is in satisiactory agreement with the work of the last chapter.

Chaptor I: The Mechanism of Accretion.

Motion of a Partiole Uncer on Inverse Square Contral Foxce.

In order to give on account oi the mechanism of accretion we hove to wee the resulits of the elencentary theory of the motion of a particio under an inverse square contrel force so it will be useful to start by considering this theory. The particle whose motion is examined will later be considered as a partiele of interstellar material and the centre of force will be a ster.

Whe suppose a parificle to experience a force μ / r^{2} per unit mess of the particle directed towards the contre O wioich is at rest in a Nlewtonian frame of reference, μ is a constant and r is the distance of the particle from O. The particle moves in a plane through O so lot its position be indicated by polar coordinates (r, θ) with respect to some axis through O. Then we heve the equations

$$
\begin{array}{cl}
r^{2} \dot{\theta}=h & \text { (consearvation of angular momentum), (1.1) } \\
\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{\mu}{r}=E & \text { (consearvation of onergy), } \tag{1.2}
\end{array}
$$

where h and E are constants; A being the angular raomentum of unit nese of the particle about O and E being the energy of unit mass of the particle. Eliminating $\dot{\theta}$ from (1.1) and (1.2) gives

$$
\begin{equation*}
\dot{r}^{2}+\frac{R^{2}}{r^{2}}=\frac{2 \mu}{r}+2 E . \tag{1.3}
\end{equation*}
$$

writing $\quad r^{\prime}=d r / d \theta$ we hove $\dot{r}^{2}=r^{\prime 2} \dot{\theta}^{2}$
so from (1.1)

$$
\begin{equation*}
\dot{r}^{2}=r^{\prime 2} \frac{\ell^{2}}{r^{4}} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{r}\right)=-\frac{r^{\prime}}{r^{2}} \tag{1.5}
\end{equation*}
$$

From (2.3) and (2.4), $\frac{r^{2} h^{2}}{r^{4}}+\frac{h^{2}}{r^{2}}=\frac{2 \mu}{r}+2 E$
hence Prom (1.5), $\quad \frac{d}{d \theta}\left(\frac{1}{r}\right)= \pm \sqrt{\frac{2 E}{h^{2}}+\frac{2 \mu}{h^{2} r}-\frac{1}{r^{2}}}$.
Talking the plus sign,

$$
\begin{gathered}
\frac{d(1 / r)}{\sqrt{\left(\frac{2 E}{h^{2}}+\frac{\mu^{2}}{h^{4}}\right)-\left(\frac{1}{r}-\frac{\mu}{h^{2}}\right)^{2}}}=d \theta \\
\therefore \cos ^{-1}\left\{\frac{\frac{1}{r}-\frac{\mu}{h^{2}}}{\sqrt{\frac{2 E}{R^{2}}+\frac{\mu^{2}}{h^{4}}}}\right\}=\theta-C
\end{gathered}
$$

where C is a constant. This may be written in the form

$$
\begin{equation*}
\frac{l}{r}=1+e \cos (\theta-c) \tag{1.6}
\end{equation*}
$$

which is a conic section, where

$$
\begin{array}{r}
l=h^{2} / \mu \\
e=\sqrt{\frac{2 E h^{2}}{\mu^{2}}+1} \tag{1.8}
\end{array}
$$

and $\theta=C$ is the major axis of the conic section.
We wish to consider in more detail the motion when the particle is projected from infinity with speed v parallel to a fixed direction $O x$ and at a perpendicular distance σ
from O, as in Fig. 2.2. It is evident from (2.2) that the particle will eventually recede to infinity with speed v apter being deflected through an angle β. We have

$$
h=v \sigma, E=\frac{1}{2} v^{2} .
$$

Wo also note that by putting $r \rightarrow \infty, \theta \rightarrow \pi$, (1.6) gives

$$
\begin{equation*}
\cos C=1 / e . \tag{1.9}
\end{equation*}
$$

To obtain the distance x Prom 0 at which the particle hits $O x$ we put $r=x, \theta=0$ in (1.6) which eaves

$$
\begin{equation*}
x=\frac{l}{2}=\frac{R^{2}}{2 \mu}=\frac{v^{2} \sigma^{2}}{2 \mu} \tag{1.10}
\end{equation*}
$$

From (1.1), the velocity component of the particle perpendicular to $O x$ when it hits $O x$ is
from (3.10)

$$
\begin{align*}
r \dot{\theta}=\frac{h}{x} & =\frac{v \sigma}{x} \\
& =\sqrt{\frac{2 \mu}{x}}, \tag{2,13}
\end{align*}
$$

Hence at this instant, from (1.2),

$$
\begin{gather*}
\frac{1}{2}\left(\dot{r}^{2}+\frac{2 \mu}{x}\right)-\frac{\mu}{x}=E=\frac{1}{2} v^{2} \\
\therefore \dot{r}=v . \tag{1.22}
\end{gather*}
$$

The Bondi-Hoyle Accretion Mechanism.

We are now in a position to consider the accretion mechanism ave to Gondi and Hoyle (7). This mechanism

Fig. 1.1.

Fig. 1.2.
is a dovelopment of thet originally put forward by Hoyle and Iytbleton ${ }^{(4)}$. Bondi and Hoyle considered the interstellar material to consist of particles which heve negligible xolative motion when at a grent distance from the star. Whese particles do not attract one another but are affected by the gravitation of the star. Instead of considering the star to be moving relative to a cloud of interstollar material which is at rest, we may assuse the atar to be at rest at O and the cloud to be moving in the direction $O x$ with speed v when at a great distence from the star. It then follows that each partiele of the cloud will describe a hyperbolic orbit, as constdered ebove. Since, however, all particles hit $O x$, it follows that there will be a high probebility of collisions oceurring on $0 x$. It is further assumed that these collisions are inelastic. If we consider the eloud to bo of uniform density f when at a great distance from the star, it Pollows that the total momentum component perpendicular to $O x$ of the meterial arriving at an element $d x$ of $O x$ in time $d t$ will be zero. Consequently, from (1.12), this material will comence to move along $O x$ with velocity v and will become involved in fuxther collisions with incoming particles. When the process begins, a collision on $O x$ may only be a chance occurrence but once material has begun to accumulate alone $O x$, collisions rapidiy become
inevitable. Thus a system is set up in which there is an acoumulation of material along $O x$ and this is continue.ily supplied with further moterial by inooming paraicles.

The assumption of inelastic colilsions on $O x$ woula appear to bo justipiei if the cloud consists of dust particles. If the cloud consists of a gas, the initiol essumption that the particles have negligible relative motion is equivalent to supposing that the gas is near zero absolute tomperature. The assumption of inelastic collisions is justified if it can be supposed that the heat genozated in the collisions is radiated avay quickly so that the gaa does mot gain any appreciable thermal. eversy. This supposition will be justified is the gas contains 21 m 1 tod a mounts of dust, as this facilitates radiation.

We shall neat establish the equations governing the unsteady motion of the tataterial on $O x$. Let $v(x, t)$ be the velocity of every particle at x in the direction $0 x$ at time t and lot $m(x, t)$ be the mass of material per unit lencth of $O x$ st x st tine t. F2rst, consider the conservation of mass on the element of the exis $O x$ between x and $x+d x$. The increese of mass in this element in time $d t$ is

$$
d(m(x, t) d x)=\frac{\partial m}{\partial t} d x d t+O\left([d t]^{2}\right) .
$$

In this time, a mass $M(x, t) V(x, t) d t$ enters the element from the left and a mass $m(x+d x, t) V(x+d x, t) d t$ leaves from the right. We also have to consider the material entering the element from the surrounding space. From (1.10) we have

$$
\begin{equation*}
d x=\frac{v^{2}}{\mu} \sigma d \sigma . \tag{1.13}
\end{equation*}
$$

Consequently the material hitting the element $d x$ will heve originally come from a tubular region with $O x$ as axis of thickness do and of radius σ. The mass of material passing any section of this region in time $d t$ is $\begin{aligned} & 2 \pi \sigma d \sigma \cdot \rho v d t \\ & =\frac{2 \pi \mu e}{v} d x d t .\end{aligned}$

Consequently the mass of material arriving at $O x$ per unit length per unit time is

$$
\begin{equation*}
m=2 \pi \mu e / v \tag{1.14}
\end{equation*}
$$

and so the mass arriving at our element $d x$ is mdxdt.
The conservation of mass then gives

$$
\begin{aligned}
\frac{\partial m}{\partial t} d x d t+O\left([d t]^{2}\right) & =m d x d t+m(x, t) v(x, t) d t-m(x+d x, t) v(x+d x, t) d t \\
& =m d x d t-\frac{\partial}{\partial x}(m v) d x d t+O\left([d x]^{2}\right) .
\end{aligned}
$$

Letting $d x$ and $d t \rightarrow 0$ we have

$$
\begin{equation*}
\frac{\partial m}{\partial t}=m-\frac{\partial(m v)}{\partial x} \tag{2.15}
\end{equation*}
$$

Consider the material on the axis between x and $x+d x$ at time t. Its mass is $m(x, t) d x$. As t increases, this material will move along the axis and will also be mixed with material which has recently hit the axis. The original material will gain momentum from the material added. This is equivalent to a force on the original material equal to the loss of momentum by the incoming material in the direction $O x$ per unit time. The mass of material per unit time hitting the axis between x and $x+d x$ is $m d x$. This has its velocity reduced by $v-V(x, t)$ so the force acting on the original material in the direction $O x$ is $m(v-v) d x$. It is also acted on by a force $-\mu m d x / x^{2}$ in the direction $O x$ due to the eravitation of the star. (Here $\mu=$ mass of star \times constant of gravitation). Hence the equation of motion for the original material is

$$
\begin{equation*}
m d x \frac{d v}{d t}=m(v-v) d x-\mu m \frac{d x}{x^{2}} . \tag{1.16}
\end{equation*}
$$

Since the x and t in $V(x, t)$ are connected by

$$
\frac{d x}{d t}=v
$$

we have

$$
\frac{d V}{d t}=\frac{\partial V}{\partial t}+V \frac{\partial V}{\partial x}
$$

so (1.16) becomes

$$
\begin{equation*}
m v \frac{\partial V}{\partial x}+m \frac{\partial V}{\partial t}=m(v-V)-\frac{\mu m}{x^{2}} \tag{1.17}
\end{equation*}
$$

(1.15) and (1.17) are the equations determining m and V.

In forming equation (2.17), it was assumed that a partiele at x is not influenced by the partieles on the axis at greater or smaller aistances from the ster. This is reasonable provided that two separated particles on the axis do not come together. This is the case if

$$
\begin{equation*}
\frac{\partial U}{\partial x}>0 . \tag{1.18}
\end{equation*}
$$

Further consideration will be given to the unsteady problem in Chapter II. Here we shall consider the possibility of a "steady state, n in which m and U are independent of t. In this case, (1.15) and (1.17) become

$$
\begin{equation*}
0=m-\frac{d}{d x}(m v) \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
m v \frac{d v}{d x}=m(v-v)-\frac{\mu m}{x^{2}} \tag{1.20}
\end{equation*}
$$

m is independent of x, so (1.19) integrates to

$$
\begin{equation*}
m v=m(x-\alpha) \tag{1.21}
\end{equation*}
$$

where α is a constant. For $x>\alpha, m v>0$ and as $m \geqslant 0$, V must be positive. For $x<\alpha, V$ must be negative. By considering the aynamies of the materiel on the axis near $x=\alpha$, we see that at $x=\alpha$, we must have $v=0$ Putting $V=0, x=\alpha$ in (1.20), we obtain

$$
m(\alpha)=m v \alpha^{2} / \mu
$$

which is useful as an order of magnitude estimate of m along the axis.

It is clear from this, that all the material hitting O_{x} at $x<\alpha$ must eventuelly fall into the star, while all
the material hitting $O x$ at $x>\alpha$ will eventually escope to infinity. However, equations (1.19) and (1.20) do not determine α and consequently its value in any particular case must depend on the unsteady conditions existing before the steady state was eatablished. But 1imits can be put on the value of α. In order that (1.18) should be satispied, we require $\alpha=\mu / v^{2}$. Also Bondi and Hoyle claim that $\alpha<2 \mu / v^{2}$ in order that the system shall be stable, though their derivation of this is not immediately obvious. Even when α is given, the equetions (1.19) and (2.20) do not determine a unique solution but so far as the star is concerned, the value of α gives all that is required, for the rate at which the star collects material (i.e, "the rate of accretion") is

$$
\begin{equation*}
m-\alpha=\frac{2 \pi \mu e}{v} \alpha \tag{1.22}
\end{equation*}
$$

Apart from the accretion, the mechanism also causes the star to experience a resistive force. To determine this force, consider a point x ($\gg \infty$) on the axis. In the steady state, the amount of material passing along the axis past this point in unit time is the same as the amount of material hitting the axis in unit time between the point x and $x=\alpha$. Thus the mass of material per unit time passing x is

$$
m(x-\alpha)=m x .
$$

Eliminating M from (2.20), (1.21) we obtain

$$
\frac{d V}{d x}=\frac{v-v}{x-x}-\frac{\mu}{x^{2} v}
$$

and putting $V=v(1+u)$ in this gives approximately, for large x,

$$
\frac{d u}{d x}+\frac{u}{x}=-\frac{\mu}{x^{2} v^{2}}
$$

the solution of which is

$$
u=-\frac{\mu}{v^{2} x}(\ln x+A)
$$

where A is a constant which depenas on the perticular solution of (1.20) and (1.21). Therefore

$$
\begin{equation*}
v \sim v\left(1-\frac{\mu}{v^{2} x} \ln x\right) \tag{1.23}
\end{equation*}
$$

Hence the momentum of the material passing x in unit time is

$$
m \times v\left(1-\frac{\mu}{v^{2} x} \ln x\right)
$$

but the original momentum of this meterial was $m x v$ so the Loss of momentum is

$$
\begin{equation*}
\frac{m \mu}{v} \ln x=\frac{2 \pi \rho \mu^{2}}{v^{2}} \ln x \tag{1.24}
\end{equation*}
$$

which is an expression for the resistive force on the star. This expression tends to infinity with x but in reality other stars must produce a "cut-off effect" which enables us to limit the value of x. This will be dealt with in more detail below.

In the Bondi-Hoyle mechonism, it is interesting to note that, onee a steady state has been established and provided a smell region of the accretion column near $\boldsymbol{x}=\boldsymbol{\alpha}$ remains unchanged, the rest of the materiel on the axis may undergo disturbances without the steady state being permenently destroyed. For new stems of material will "grow" in both airections from the neutral point $x=\alpha$ to replace the disturbed meterial. (This result follows from the assumption that there is no pressure in the material on the axis.) The disturbences may be due to the eravitational interaction of material on the axis, as taken into account in the Lyttleton theory of comets, or in the outward moving stream they may be due to a drist of material off the axis for reasons which will be given later.

The Resistive Force in the Absence of Col11sions.

If we entirely exclude the possibility of collisions between the particles of the cloud, even in the vicinity of $O x$, then every particle will describe a hyperbolic orbit about O. We shall evaluate the resistive force experienced by the star in this case. As is usual in such work, we neglect the effect of particles colliaing directly with the surface of the star because such particles will constitute a negligible portion of all the particles involvea.

In order to obtain a general result we relax the condition that the interstellar material is of uniform density and assume only that the density, when at a great distance from the star, is independent of x. At O let us introduce right handed rectangular axes $O x y z$ and in the plane Oyz_{z} let us introduce polar coordinates (σ, φ) with O as pole and $O y$ as axis. Then at great distances from the star, the density of the interstellar material is $\rho \equiv \rho(\sigma, \varphi)$. Consider the element of the plane $O y z$ which is bounded by the lines φ and $\varphi+d \varphi$ and the ares σ and $\sigma+d \sigma$. The mass of material moving past the star in unit time, which was originally directed towards points in this element, is d $\sigma \cdot \sigma d \varphi \cdot v \rho(\sigma, \varphi)$. Now the components of the velocity gained by this material in passing the star, in the directions $O x, O y, O z$ are

$$
-v+v \cos \beta,-v \sin \beta \cos \varphi,-v \sin \beta \sin \varphi
$$

where $\beta=\pi-2 C$ (see Fig. 2.1). Since C is given by (1.9) and using (1.8), these components become

$$
\frac{-2 v}{\frac{v^{4} \sigma^{2}}{\mu^{2}}+1}, \frac{-2 \frac{v^{3} \sigma}{\mu} \cos \varphi}{\frac{v-4 \sigma^{2}}{\mu^{2}}+1}, \frac{-2 \frac{v^{3} \sigma}{\mu} \sin \varphi}{\frac{v^{4} \sigma^{2}}{\mu^{2}}+1}
$$

Now the force experienced by the star is equal and opposite to the momentum gained by all the material passing the star in unit time. Thus, the components of the force are

$$
\left.\begin{array}{l}
X=2 v^{2} \int_{0}^{\varepsilon} \int_{0}^{2 \pi} \sigma \rho\left(1+\frac{v^{4} \sigma^{2}}{\mu^{2}}\right)^{-1} d \sigma d \varphi \tag{1.25}\\
Y=\frac{2 v^{4}}{\mu} \int_{0}^{\Sigma} \int_{0}^{2 \pi} \sigma^{2} \rho \cos \varphi\left(1+\frac{v^{4} \sigma^{2}}{\mu^{2}}\right)^{-1} d \sigma d \varphi \\
Z=\frac{2 v^{4}}{\mu} \int_{0}^{\Sigma} \int_{0}^{2 \pi} \sigma^{2} \rho \sin \varphi\left(1+\frac{v^{4} \sigma^{2}}{\mu^{2}}\right)^{-1} d \sigma d \varphi
\end{array}\right\}
$$

where \sum is the limit of integration for σ and will be discussed later.

We shall first apply (2.25) to the case of $\rho=$ constant. In this case we obtain

$$
\begin{align*}
& X=\frac{2 \pi e \mu^{2}}{v^{2}} \ln \left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right) \tag{2.26}\\
& Y=Z=0 .
\end{align*}
$$

If we let x be the distance at which the limiting particles (1.e. those originally at a alatance \sum from $O x$) cut $O x$, we can use (1.20) to write (1.26) in the form

$$
\begin{align*}
X & =\frac{2 \pi e \mu^{2}}{v^{2}} \ln \left(1+2 \frac{v^{2}}{\mu} x\right) \\
& \sim \frac{2 \pi e \mu^{2}}{v^{2}} \ln x \tag{1.27}
\end{align*}
$$

for large x. It will be noted that this expression is identical with that for the force in the Bonal-Hoyle mechanism, (1.24). Consequently the value of the resistance does not depend upon the realization of the special conditions required to produce streaming along the axis. This statement applies only to the dominant term of the resistance. Since, however, the problem is in any
event somewhat idealized, only this term need be considered.
This result is of some importance for reasons which will now be considered. The resistanoe (1.24) appears to depend upon the existence of the outward-plowing stream along the accretion axis. This depends in the fixat place upon the density of the cloud whead of the stax being sufficiently undform. For, if the density varies appreciably in a direction transverse to the motion of the star, the stream will not form. In this ease, even if collisions between cloud particles along the axis have theix moximum possible effectiveness, it will be shown later that the material will drift to one side of the axis instead of accumulating along the axis.

In the second place, even when the density is uniform, the existence of the stream depenas upon the attainment of a steady state. This in turn depends upon the perticleorbits pessing through the aecretion axis. But perturbetions by other stars, though insufficient to change the general character of the orbits below the out-off value of x, may nevertheless cause them to miss the axis by a sma 11 amount and so prevent the formation of the stream. Such effects will apply more to particles associated with the larger values of σ coneerned (which are those contributing the main part of the force, as shown by the non-convergence of the expression for the force) than to
particles assoclated with the smaller values of σ. Thus the latter particles may still produce an inward-ilowing stream on the axis near the star in the manner of the Bondi-Hoyle mechanism, even where the outward-moving stream is not established, or only partielly established.

The importance oi the egreement between (1.24) and (1.27) 1ies in the fact that the Porce remains the same in spite of the above difficulties. At any rate, the force is the same in the two extreme cases where no particles collide and where all particles collide and we may therefore expect it to be the same for intermediate cases. We note further that the derivation of (1.27) does not depend physically upon the sssumption of a gteady state. The result will continue to hola for a non-steady state (including the case where the density depends on x) provided e is taken to be a suitable mean value of the density ahead of the star. It will also continue to hold If the path of the star is not rectilinear. Conservation of Energy in the Absence of Collistons.

In the case of afixed star with material moving past 1t, it is clear that the speed of a given particle tends eventually to the original value v. So there is no energy change. Since the star does not move, the foree $F(=x)$ performs no work and this is in accordance with the conservation of energy. It is interesting to check that the energy
is also conserved in the case where the star is moving with velocity v and the material is et rest. In the case of the star being at rest, let a particle originally at a distance σ from the axis be deflected through an angle β. Then the force on the star is

$$
F=\int_{0}^{\Sigma}(2 \pi \sigma d \sigma \rho v) \times v(1-\cos \beta)
$$

which reduces to (1.26). If now we superpose a velocity v on the system, so that the star is moving through a medium at rest, the force F is unchanged, but it does work at a rate $F v$. The ultimate velocity of the particle originally at a distance σ from the axis is now V where

$$
\begin{aligned}
V^{2} & =v^{2}+v^{2}-2 v v \cos \beta \\
& =2 v^{2}(1-\cos \beta)
\end{aligned}
$$

The energy gained by the particle is

$$
\frac{1}{2} \times \operatorname{mas} \operatorname{arc} 2 v^{2}(1-\cos \beta)
$$

Hence the total energy gained by the medium

$$
=\int_{0}^{\Sigma} \frac{1}{2} \times(2 \pi \sigma d \sigma \cdot \rho v) \times 2 v^{2}(1-\cos \beta)=v F_{1}
$$

so the energy of the system is still conserved. The Cut-off Distance.

Since (1.26) tends to infinity with Σ, there must in reality be some limitation on the value of Σ. This limitation is determined by the presence of neighbouring stars which prevent the orbits of the particles from
being affeeted by the star under consideretion. It seems, therefore, that the upper limit Σ, or "cut-off aistance," shoula be taken as about half of the loeal mean interstellar aistance. We have seen that (1.26) may be written

$$
\begin{equation*}
F=\frac{2 \pi e \mu^{2}}{v^{2}} \ln \left(1+2 \frac{v^{2}}{\mu} x\right) . \tag{1.28}
\end{equation*}
$$

Bondi and Hoyle considered that this formula should be used where the cut-off distance is substituted for x. This gives somewhat different results and so it is important to look more closely into the matter. We can do this by determining the velue of F when the star is surrounded by a "sphere of cut-off." In reality, the cut-off suriece will not be a sphere but will depend on the positions and masses of neighbouring stars. In Fig. 1.2, the star is considered to be at rest at the centre O of the eut-off sphere of radus d. Haterial particles enter the sphere from the left with veloeity in a direction $O x$ and leave it with the same speed after being doflected through various angles β but without suffering collision, Consider a particle entering the sphere at a distance σ from the axis $O x$. Let the coorainates of the point of entry with respect to 0 be (α, θ_{0}) and let the axis of symmetry of the particle's orbit make an angle C with $O x$. Then from the geometry $\beta=\pi-2 C$. The force on the star is therefore

$$
\begin{align*}
& \int_{0}^{d} 2 \pi \sigma d \sigma \cdot v \rho \cdot v(1-\cos \overline{\pi-2 c}) \\
& \quad=2 \pi \rho v^{2} \int_{0}^{d}(1+\cos 2 C) \sigma d \sigma \tag{1.29}
\end{align*}
$$

The equation of the orbit of the particle origine.iny at a distance σ from $0 x$ is given by $(1.6),(2.7)$ and (1.8)
where $h=\sigma v, E=\frac{1}{2} v^{2}-\frac{\mu}{d}$. Putting $\left(d, \theta_{0}\right)$ in (1.6) gives $C=\theta_{0}-\psi$ where $\cos \psi=\frac{1}{e}\left(\frac{l}{d}-1\right)$.
But $\theta_{0}=\pi-\varnothing$, where $\sin \phi=\sigma / d$.

$$
\begin{aligned}
& \therefore C=\pi-\phi-\psi \\
& \therefore \cos 2 C=\cos (2 \pi-2 \phi-2 \psi)=\cos (2 \phi+2 \psi)
\end{aligned}
$$

Now $\cos 2 \phi=1-2 \sin ^{2} \phi=1-2 \frac{\sigma^{2}}{d^{2}}$

$$
\sin 2 \phi=2 \sin \phi \cos \phi=2 \frac{\sigma}{d} \cdot \frac{\sqrt{d^{2}-\sigma^{2}}}{d}
$$

$$
\cos 2 \psi=2 \cos ^{2} \psi-1
$$

$$
=2 \frac{1}{e^{2}}\left(\frac{\ell}{d}-1\right)^{2}-1=\frac{1}{e^{2}}\left(1-2 \frac{\sigma^{2} v^{2}}{d \mu}+2 \frac{\sigma^{4} v^{4}}{d^{2} \mu^{2}}-\frac{v^{4} \sigma^{2}}{\mu^{2}}\right)
$$

$$
\sin 2 \psi=2 \sin \psi \cos \psi=2 \sqrt{1-\frac{1}{e^{2}}\left(\frac{l}{d}-1\right)^{2}} \cdot \frac{1}{e}\left(\frac{l}{d}-1\right)
$$

$$
=\frac{2}{e^{2}} \cdot \frac{\sigma v^{2}}{d \mu}\left(\frac{\sigma^{2} v^{2}}{d \mu}-1\right) \sqrt{d^{2}-\sigma^{2}}
$$

So (1.29) is

$$
2 \pi e v^{2} \int(1+\cos 2 \phi \cos 2 \psi-\sin 2 \phi \sin 2 \psi) \sigma d \sigma
$$

which reduces to

$$
\frac{4 \pi \rho v^{2}}{d^{2}} \int \frac{\left(d^{2}-\sigma^{2}\right) \sigma d \sigma}{1+2 \frac{v^{2} E}{\mu^{2}} \sigma^{2}}
$$

Integrating from $\sigma=0$ to Σ we obtain

$$
\begin{equation*}
\frac{\pi e \mu^{2}}{E}\left[\left(1+\frac{\mu^{2}}{2 d^{2} v^{2} E}\right) \ln \left(1+\frac{2 v^{2} E}{\mu^{2}} \Sigma^{2}\right)-\frac{\Sigma^{2}}{d^{2}}\right] \tag{1.30}
\end{equation*}
$$

We note that if we keep Σ fixed and let $d \rightarrow \infty$, (1.30)
becomes the usual formula (1.26). To get the full force we put $\Sigma=d$ in (1.30), ie.,

$$
\begin{equation*}
\frac{\pi e \mu^{2}}{E}\left[\left(1+\frac{\mu^{2}}{2 d^{2} v^{2} E}\right) \ln \left(1+\frac{2 v^{2} E d^{2}}{\mu^{2}}\right)-1\right] \tag{1.31}
\end{equation*}
$$

We can now compare (1.31) with (1.26) and (1.26) putting $\Sigma=d$ and $x=d$ respectively. For $v \rightarrow 0,(1.26)$ and (1.31) both behave like $2 \pi \rho v^{2} d^{2}$ which $\rightarrow 0$ with v, whereas (1.28) behaves like $4 \pi e \mu d$ which is constant. For large $v,(1.26)$ and (1.51) both behave like

$$
\frac{2 \pi e \mu^{2}}{v^{2}} \ln \left(\frac{v^{4} d^{2}}{\mu^{2}}\right)
$$

whereas (1.28) behaves 111 ke

$$
\frac{2 \pi e \mu^{2}}{v^{2}} \ln \left(\frac{v^{2} \alpha}{\mu}\right)
$$

which is less by a factor of 2. When $E=0$, 1.e. $\frac{1}{2} v^{2}=\mu / d \quad,(1.32)$ has value

$$
\pi e \mu d \times 2
$$

while (1.26) and (1.28) both have value

$$
\pi e^{\mu d \times 1 \cdot 6}
$$

In view of the closer agreement between (1.31) and (1.26) than betweon (1.31) and (1.28), it appears that (1.26) with \sum equal to the cut-off aistance is a better formula for the force than that sugeested by Bondi and Hoyle.

It may be noted that a formula similar to (1.31) was obtained by Hoisey人 in 1932 (16).

Value of the Frofe when Acoretion is present.

In reality, we expect that the material passing elose to the star will collide on the axis $O x$ and form an acoretion column as described by Bondi and Hoyle. According to their theory, the particles hitting the axis up to a/distance $x=2 \mu / v^{2}$ from the star are captured by it. Thus, these particies camot be considered to contribute to the resistive force. Now a particle originally at a distance σ Prom $O x$ hits $O x$ at $x=v^{2} \sigma^{2} / 2 \mu$, from $(1,10)$. Thus a particle outting $O x$ at $x=2 \mu / v^{2}$ must originally have been at a distance σ from $O x$ given by

$$
\begin{align*}
& \frac{2 \mu}{v^{2}}=\frac{v^{2} \sigma^{2}}{2 \mu} \\
& \therefore \sigma=2 \mu / v^{2} \tag{1.32}
\end{align*}
$$

Thus when accretion is present, the resistive force is

$$
\begin{align*}
F & =\frac{2 \pi e \mu^{2}}{v^{2}}\left\{\ln \left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right)-\ln \left(1+\frac{v^{4} \sigma^{2}}{\mu^{2}}\right)\right\} \\
& =\frac{2 \pi e \mu^{2}}{v^{2}}\left\{\ln \left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right)-\ln \left(1+\frac{v^{4}}{\mu^{2}}\left(\frac{2 \mu}{v^{2}}\right)^{2}\right)\right\} \\
& =\frac{2 \pi e \mu^{2}}{v^{2}} \ln \frac{1}{5}\left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right) \tag{1.33}
\end{align*}
$$

In considexing the rectilinear motion of the star while undergoing acoretion we use the oquation of motion

$$
\frac{d(m v)}{d t}=-F
$$

where m is the mass of the star and F is given by (1.33). Thus

$$
v \frac{d m}{d t}+m \frac{d v}{d t}=-F
$$

But $\mathrm{dm} / \mathrm{dt}$ is the rate of aceretion which we may denote by M. Hence

$$
m \frac{d v}{d t}=-(F+M v)
$$

The total effective "resistance" is therefore

$$
\begin{equation*}
F+M v \tag{1.34}
\end{equation*}
$$

It will be seen that for large values of v, the Pommlae (1.26) and (1.33) give similar results. At small velocitios, however, the difference is more marked. In particulax, (1.33) vanishes at a non-zero velocity, namely when

$$
\frac{v^{4} \Sigma^{2}}{\mu^{2}}=4
$$

$$
\begin{equation*}
\text { 1.e. } \quad v^{2}=2 \mu / \Sigma \tag{2.35}
\end{equation*}
$$

For this value of v, we notice from (1.32) that $\sigma=\Sigma$ so that, at this velocity, the star is accreting all the material which comes within its cutoff sphere. For higher velocities, the accretion rate is

$$
\begin{equation*}
\frac{4 \pi \mu^{2} e}{v^{3}} \tag{1.36}
\end{equation*}
$$

as in the Bondi-Hoyle mechanism (maximum value), but for Lower velocities, the accretion rate cannot exceed

$$
\begin{equation*}
\pi \Sigma^{2} e v \tag{1.37}
\end{equation*}
$$

this expression being the mass of all the material which comes within the cut-ops sphere in unit time.

Comparison of the Accretion and Resistive Force at different

Velocities.

For the purpose of numerical examples, it is found convenient in this work to use units of measurement which make e and G (the constant of gravitation) unity. We also take the unit of distance to be about one parsec. Taking

$$
\begin{aligned}
& G=6 \cdot 67 \times 10^{-8} \text { c.g.s. }\left[M^{-1} L^{3} T^{-2}\right] \\
& e=10^{-22} \text { gm./c.c. }\left[M L^{-3}\right]
\end{aligned}
$$

and the unit of aistence $=3 \times 10^{18} \mathrm{~cm}$. we obtain

$$
\begin{aligned}
& \text { undt of mass }=2.7 \times 10^{33} \mathrm{gm}, \\
& \text { unit of time }=3.87 \times 10^{\prime 4} \text { sec. }=1.23 \times 10^{7} \text { years, } \\
& \text { undt of veloeity }=0.0775 \mathrm{~km} . / \mathrm{sec} .
\end{aligned}
$$

It may be noted that is we take the unit of density to be $f \times 10^{-22} \mathrm{gm} . / \mathrm{c} . \mathrm{c}$. , then the units of mass, time and veloelty must be multiplied by $f, f^{-\frac{1}{2}}$ and $f^{\frac{1}{2}}$ respectively.

For the purpose of a comparison of the aceretion and the force at aifferent velocities, the graphs in Fig. 1.3 have been drawn for a star of unit mass. Using the above units and taking the eut-off distance to be holf a parsec, the force (1.33) becomes

$$
F=\frac{2 \pi}{v^{2}} \ln \frac{1}{5}\left(1+\frac{v^{4}}{4}\right) .
$$

This is the curve DEB in Fig. 2.3. The acoretion formula (1.36) becomes

$$
M=\frac{4 \pi}{v^{3}}
$$

which is the eurve CB. The aceretion Pormula (1.37) for low velocities becomes

$$
M=\frac{\pi}{4} v
$$

which is the curve $0 C$. The accretion rate multiplied by the velocity gives the M_{v} tem of (1.34) and this is the eurve OAGB. When the force (1.35) is added to this, we obtain the total effective resiatance to the motion of the

star (1.34) which is the curve OARB.
A rough calculation using the latter curve shows that the time required for the star (mass Ω / M_{0}) to have its velocity reduced from $1 \mathrm{~km} . / \mathrm{sec}$. to $0.1 \mathrm{~km} . / \mathrm{sec}$. is about 10 years for $e=10^{-22} \mathrm{gm} . / \mathrm{c} . c$.

Variation of e in a direction perpendicular to O_{x}.

We shall now consider the effects of a variation in the interstellar material density in a direction perpendiocular to the accretion axis. For any applications of the results it is almost certainly adequate to use a 1 near approximation to the variation of the density. This case will certainly serve to illustrate the nature of the results. But we may also notice that the forces Y and Z in (1.25) which arise from the variation of e are in fact unaffected by quadratic terms in this variation.

Let the variation of density be in the direction of O_{y}. Then we may waite

$$
\begin{equation*}
e=e_{0}(1+b \sigma \cos \phi) \tag{1.38}
\end{equation*}
$$

Substituting this in (2.25) gives

$$
\begin{align*}
& X=\frac{2 \pi e_{0} \mu^{2}}{v^{2}} \ln \left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right) \\
& Y=\pi e_{0} b \mu\left\{\Sigma^{2}-\frac{\mu^{2}}{v^{4}} \ln \left(1+\frac{v^{4} \Sigma^{2}}{\mu^{2}}\right)\right\} \tag{1.39}\\
& Z=0
\end{align*}
$$

which are the components of the force experienced by the star when there are no collisions between the particles of the interstellar material. Thus if the value of b is appreciable, the star will tend to be deplected towards the denser regions of the cloud by the force Y.

We shall now obtain approximate values for the force components in the event of the particles colliding on the axis $O x$. Consider the element of $O x$ between x and $x+d x$. We suppose a.11 the particles arriving at this element in time $d t$ to suffer inelastic collisions and thus coalesce. It should be remarked that the term "coalesce" is not intended to heve any special physical connotations. It is convenient merely as a general description of the state of affairs treated by the mathematics. All that is implied is that subsequent to the collision, the particles move with a common velocity. This velocity will have an initial component v along $O x$ as we have seen, but it will also have a component U perpendicular to Ox since there will be a greater mass of material arriving from some directions then from others. We must now obtain this component U. The material hitting the axis in time dt which was originaliy directed towards points in the element of the plane $O y z$ bounded by the lines φ and $\varphi+d \varphi$ and the ares σ and $\sigma+d \sigma$, has mass

$$
\begin{equation*}
d \sigma \cdot \sigma d \varphi \cdot v \rho d t \tag{1.40}
\end{equation*}
$$

and on hitting the axis has a velocity component parallel to Dy of

$$
\begin{equation*}
-\sqrt{\frac{2 \mu}{x}} \cos \varphi \tag{1.41}
\end{equation*}
$$

from (1.21). The component of momentum of this material parallel to $O y$ is therefore

$$
d \sigma \cdot \sigma d \varphi \cdot \rho v d t \sqrt{\frac{2 \mu}{x}} \cos \varphi \text {. }
$$

Thus the resultant momentum of all the material originally at distances between σ and $\sigma+d \sigma$ from $O x$ is

$$
\begin{align*}
& \int_{\varphi=0}^{2 \pi} d \sigma \cdot \sigma d \varphi \cdot \rho v d t \sqrt{\frac{2 \mu}{x}} \cos \varphi \\
& =\sqrt{\frac{2 \mu}{x}} \sigma d \sigma \cdot v d t \int_{0}^{2 \pi} e^{\cos \varphi d \varphi .} \tag{1.42}
\end{align*}
$$

From (1.40), the mass of such material is

$$
\begin{align*}
& \int_{\varphi=0}^{2 \pi} d \sigma \cdot \sigma d \varphi \cdot e^{v d t} \\
& =\sigma d \sigma \cdot v d t \int_{0}^{2 \pi} e d \varphi . \tag{1.43}
\end{align*}
$$

Hence the velocity component of this material parallel to y_{0}, after coalescing on the axis is obtained by dividing (2.42) by (1.43):

$$
\begin{equation*}
U=\sqrt{\frac{2 \mu}{x}} \frac{\int_{0}^{2 \pi} \rho \cos \varphi d \varphi}{\int_{0}^{2 \pi} e d \varphi} \tag{1.44}
\end{equation*}
$$

Substituting for e from (1.38), this gives

$$
\begin{equation*}
U=b \mu / v \tag{1.45}
\end{equation*}
$$

which, we note, is independent of x.
The next step is to determine the ultimate velocity components ($v_{\infty} x^{N}, U_{\infty}$) along and perpendicular to $O x$ of the material colliding on the element of axis $d x$. The path of this material is given by (1.6),(1.7) and (1.8) with

$$
h=x U \text { and } E=\frac{1}{2}\left(U^{2}+v^{2}\right)-\mu / x \text {. }
$$

Putting $r=x, \theta=0$ in (1.6) gives

$$
\cos C=\frac{1}{e}\left(\frac{l}{x}-1\right) .
$$

Putting $r=\infty, \theta=\theta_{\infty}$ in (1.6) gives

$$
\cos \left(\theta_{\infty}-C\right)=\frac{-1}{e}
$$

where θ_{∞} is the direction of the other asymptote of the orbit from that which is approached by the material. It follows that the direction of the asymptote which is approached by the material is given by

$$
\theta_{\infty}^{\prime}=-\left(\theta_{\infty}-2 C\right)
$$

The ultimate velocity $\omega=\sqrt{v_{\infty}^{2}+U_{\infty}^{2}}$ of the material is given by the energy equation to be

$$
\begin{gathered}
\frac{1}{2} \omega^{2}=E \\
\therefore \quad \omega^{2}=U^{2}+v^{2}-2 \mu / x .
\end{gathered}
$$

Hence $\quad v_{\infty}=\omega \cos \theta_{\infty}^{\prime}, U_{\infty}=\omega \sin \theta_{\infty}^{\prime}$
which reduce to

$$
\begin{align*}
& v_{\infty}=\left(\mu^{2}-\mu x U^{2}+x^{2} v U^{2} \omega\right) \omega /\left(\mu^{2}+x^{2} U^{2} \omega^{2}\right) \\
& U_{\infty}=\left(\mu x v U-\mu x U \omega+x^{2} U^{3} \omega\right) \omega /\left(\mu^{2}+x^{2} U^{2} \omega^{2}\right) \tag{1.47}
\end{align*}
$$

The mass of the material pursuing this orbit per unit time is, from (1.43),

$$
2 \pi \rho_{0} \mu d x / v
$$

The components of the momentum lost by this mass are the components of the force on the star, 1.e.,

$$
\left.\begin{array}{l}
X=\int \frac{2 \pi e_{0} \mu d x}{v}\left(v-v_{\infty}\right) \tag{1,48}\\
Y=\int \frac{2 \pi e_{0} \mu d x}{v} U_{\infty}
\end{array}\right\}
$$

Retaining only the dominant term for large x and $U \ll v$, we have

$$
v-v_{\infty} \sim \frac{\mu}{x v}, \quad U_{\infty} \sim U
$$

Substituting these values in (1.48) gives

$$
\begin{aligned}
& X=\frac{2 \pi e_{0} \mu^{2}}{v^{2}} \ln x \\
& Y=\pi e_{0} v U \Sigma^{2}=\pi e_{0} b_{\mu} \Sigma^{2}
\end{aligned}
$$

These expressions are the same as the dominant terms of (1.39). So again the force is the same whether collisions do or do not take place on $O x$. We may expect that the force will be the same in the intermediate case where some particles collide and some do not.

In the case of collisions on $O x$, not all the resulting material has sufficient energy to escape to infinity. This applies to material for which $E<O$
1.0.,

$$
\frac{1}{2}\left(U^{2}+v^{2}\right)-\mu / x<0
$$

i.e.,

$$
\begin{equation*}
x<2 \mu /\left(U^{2}+v^{2}\right) \tag{1.49}
\end{equation*}
$$

Thus all the material colliding on the axis at points x satisfying (1.49) remains gravitationally bound to the star. Such material therefore begins to move in elliptic orbits about the star. It will be shown later that if U is independent of x, which is the case for a linear variation of density, these elliptic orbits do not intersect, so that a species of circulatory flow is established. The total mass of materiel which is thus captured by the star per unit time is

$$
\begin{equation*}
\frac{4 \pi e_{0} \mu^{2}}{v\left(U^{2}+v^{2}\right)} \tag{1.50}
\end{equation*}
$$

Neglecting U^{2}, this rate is the same as the maximum rate in the Bondi-lioyle mechanism for uniform density e_{0}.

Strictly speaking, the condition (1.49) is not exact, since to escape from the star it is only necessary for the material to reach the cutoff distance d from the star. A particle just reaching this point would have energy $-\mu / d$. The condition should therefore be $E<-\mu / d$
1.e.

$$
x<2 \mu /\left(U^{2}+v^{2}+2 \mu / d\right)
$$

so the capture rate is

$$
\frac{4 \pi e \cdot \mu^{2}}{v\left(U^{2}+v^{2}+\frac{2 \mu}{d}\right)}
$$

This rate differs little from (1.50) and is shown in Fig. 1.3 (taking $d=\frac{1}{2}$ parsee) by the curve PB , neglecting U^{2}. This compares with CB which is for (1.50), neglecting U^{2}.

We shall now prove that the elliptic orbits do not intersect when U is independent of x. We shall first find the condition that the equation

$$
A+B \cos \theta+C \sin \theta=0
$$

has no real solution in θ. This may be written

$$
A+\sqrt{B^{2}+C^{2}} \cos (\theta+\gamma)=0, \quad \gamma=\text { constant }
$$

and the lest hand side of this is never zero is

$$
A^{2}>B^{2}+C^{2}
$$

which is the required condition.
Jet the particles, resulting from collisions on $O x$ at a distance x from O, move in the ellipse

$$
\frac{l}{r}=1+e \cos (\theta+\varepsilon)
$$

Then $l=x^{2} U^{2} / \mu, \quad e=\sqrt{1+\frac{x^{2} U^{2}}{\mu^{2}}\left(V^{2}-\frac{2 \mu}{x}\right)}$ where $V^{2}=v^{2}+U^{2}$. Since $(x, 0)$ lies on this ellipse, we have

$$
\text { So } \quad \sin \varepsilon=\sqrt{1-\frac{1}{e^{2}}\left(\frac{u^{2}}{\mu^{2}} x-1\right)^{2}}
$$

$$
\begin{aligned}
\cos \varepsilon & =\frac{1}{e}\left(\frac{e}{x}-1\right)=\frac{1}{e}\left(\frac{U^{2}}{\mu} x-1\right) . \\
\sin \varepsilon & =\sqrt{1-\frac{1}{e^{2}}\left(\frac{U^{2}}{\mu^{2}} x-1\right)^{2}} \\
& =\frac{1}{e} \sqrt{1+\frac{x^{2} U^{2} V^{2}}{\mu^{2}}-\frac{2 U^{2} x}{\mu}-\frac{U^{4} x^{2}}{\mu^{2}}-1+\frac{2 U^{2} x}{\mu}} \\
& =\frac{1}{e} \sqrt{\frac{x^{2} U^{2} v^{2}}{\mu^{2}}}=\frac{x U v}{e \mu} .
\end{aligned}
$$

How let two of the ellipses be

$$
\begin{gathered}
\frac{l_{1}}{r}=1+e_{1} \cos \left(\theta+\varepsilon_{1}\right), \\
\frac{l_{2}}{r}=1+e_{2} \cos \left(\theta+\varepsilon_{2}\right) . \\
\text { Eliminating } r, \frac{e_{1}}{l_{2}}=\frac{1+e_{1} \cos \left(\theta+\varepsilon_{1}\right)}{1+e_{2} \cos \left(\theta+\varepsilon_{2}\right)} \\
\text { So } l_{1}+l_{1} e_{2} \cos \left(\theta+\varepsilon_{2}\right)=l_{2}+l_{2} e_{1} \cos \left(\theta+\varepsilon_{1}\right) \\
\therefore l_{1}+l_{1} e_{2}\left[\cos \theta \cos \varepsilon_{2}-\sin \theta \sin \varepsilon_{2}\right]=l_{2}+l_{2} e_{1}\left[\cos \theta \cos \varepsilon_{1}-\sin \theta \sin \varepsilon_{1}\right] \\
\therefore\left(l_{1}-l_{2}\right)+\cos \theta\left(l_{1} e_{2} \cos \varepsilon_{2}-l_{2} e_{1} \cos \varepsilon_{1}\right)+\sin \theta\left(l_{2} e_{1} \sin \varepsilon_{1}-l_{1} e_{2} \sin \varepsilon_{2}\right)=0 .
\end{gathered}
$$

For no real solution we require

$$
\begin{aligned}
& l_{1}^{2} e_{2}^{2} \cos ^{2} \varepsilon_{2}+l_{2}^{2} e_{1}^{2} \cos ^{2} \varepsilon_{1}-2 l_{1} l_{2} e_{1} e_{2} \cos \varepsilon_{1} \cos \varepsilon_{2} \\
+ & l_{2}^{2} e_{1}^{2} \sin ^{2} \varepsilon_{1}+l_{1}^{2} e_{2}^{2} \sin ^{2} \varepsilon_{2}-2 l_{1} l_{2} e_{1} e_{2} \sin \varepsilon_{1} \sin \varepsilon_{2}<l_{1}^{2}+l_{2}^{2}-2 l_{1} l_{2}
\end{aligned}
$$

1.e. $O<l_{1}^{2}\left(1-e_{2}^{2}\right)+l_{2}^{2}\left(1-e_{1}^{2}\right)-2 l_{1} l_{2}\left(1-e_{1} e_{2}\left[\cos \varepsilon_{1} \cos \varepsilon_{2}+\sin \varepsilon_{1} \sin \varepsilon_{2}\right]\right)$ i.e. $0<\frac{U^{4}}{\mu^{2}} x_{1}^{4}\left(2 \frac{U^{2} x_{2}}{\mu}-\frac{U^{2} V^{2}}{\mu^{2}} x_{2}^{2}\right)+\frac{U^{4}}{\mu^{2}} x_{2}^{4}\left(2 \frac{U^{2} x_{1}}{\mu}-\frac{U^{2} V^{2}}{\mu^{2}} x_{1}^{2}\right)$

$$
-2 \frac{U^{4}}{\mu^{2}} x_{1}^{2} x_{2}^{2}\left(1-\left[\left(\frac{U^{2}}{\mu} x_{1}-1\right)\left(\frac{U^{2}}{\mu} x_{2}-1\right)+\frac{U^{2} v^{2}}{\mu^{2}} x_{1} x_{2}\right]\right)
$$

i.0. $0<x_{1}^{4}\left(2 x_{2}-\frac{V^{2}}{\mu} x_{2}^{2}\right)+x_{2}^{4}\left(2 x_{1}-\frac{V^{2}}{\mu} x_{1}^{2}\right)+2 x_{1}^{2} x_{2}^{2}\left(\frac{V^{2}}{\mu} x_{1} x_{2}-x_{1}-x_{2}\right)$
i.e. $0<2 x_{1}^{4} x_{2}+2 x_{1} x_{2}^{4}-2 x_{1}^{3} x_{2}^{2}-2 x_{1}^{2} x_{2}^{3}-\frac{V^{2}}{\mu}\left(x_{1}^{4} x_{2}^{2}+x_{2}^{4} x_{1}^{2}-2 x_{1}^{3} x_{2}^{3}\right)$
ide. $0<2\left(x_{1}-x_{2}\right)^{2}\left(x_{1}+x_{2}\right)-\frac{V^{2}}{\mu}\left(x_{1}-x_{2}\right)^{2} x_{1} x_{2}$
2.e. $\frac{V^{2}}{2}<\frac{\mu}{x_{1}}+\frac{\mu}{x_{2}}$
which is true since from the energy equation,

$$
\frac{1}{2} V^{2}-\mu / x_{1}<0 \quad \text { and } \frac{1}{2} V^{2}-\mu / x_{2}<0 .
$$

Hence the ellipses do not intersect. This result has been proved only for the ease where U is independent of x. If $d U / d x$ is positive and of sufficient magnitude, material in different orbits will suffer further collisions, as illustrated in Fig. 1.4(a) and the resulting motion will be highly complicated. Similarly if $d U / d x$ is negative and of sufficient magnitude, collisions will occur as illustrated in Fig. 1.4(b). Even in the case of a linear variation of density, the circulating streams may be destroyed and the material absorbed by the star if the density gradient varies from place to place along the path of the star.

Returning to the case of a linear variation of density, we have seen that the material which remains gravitationally bound to the star describes a series of elliptic orbits. We shall now consider whether these orbits cut the surface of the star. For an ellipse, if A and B are the major and minor axes respectively, then

$$
\begin{aligned}
& l=\frac{B^{2}}{A}=\frac{A^{2}\left(1-e^{2}\right)}{A} \\
& \therefore A(1-e)=l /(1+e)
\end{aligned}
$$

But $A(1-e)$ is the minimum distance from the star to the ellipse. Since we are assuming the ellipse to be highly eccentric, $e \Omega 1$. Hence the minimum distance from the star to the ellipse is approximately $l / 2$. But $l=R^{2} / \mu$ and $h=x U=x b \mu / v$. Hence the minimum value of b such that the ellipse does not cut the surisee of the star is given by

$$
R=l / 2=\frac{\mu}{2}\left(\frac{b x}{v}\right)^{2},
$$

where R is the radius of the star.
For the outermost ellipse, we put $x=2 \mu / v^{2}$ approximately, from (1.49), and obtain

$$
\frac{1}{b}=\sqrt{\frac{2}{R}\left(\frac{\mu}{v^{2}}\right)^{3}}
$$

As an example, consider a star like the sun with $R=7 \times 10^{10} \mathrm{~cm}$, and mass $2 \times 10^{33} \mathrm{gm}$. We obtain

$$
\frac{1}{b}=\frac{8.23 \times 10^{19}}{v^{3}}
$$

where v is here in $\mathrm{km} / \mathrm{sec}$. For $v=5 \mathrm{~km}$,/sec., we need $1 / b=6.58 \times 10^{17}$ cm., i.e., a 100 per cent variation of density in less than a parsec. For $v=/ \mathrm{km} / \mathrm{sec}$. on the other hand, we only need $1 / b=8.23 \times 10^{19} \mathrm{~cm}$, 1.e., a 100 per cent variation of density in about 28 parsecs. Thus, while at high velocities, all captured material is likely to fall on to the star; at lower velocities, circulatory streams of material may be formed without any undue variation of density.

The differences between the accretion process in the Bondi-Hoyle mechanism and the capture process here described may now be discussed. In the first place we have to recall that when an accretion column has been established in accordance with the Bonai-lloyte theory, the incoming cloud-particles collide with material already in the column and not directly with each other. Now the consequence of a transverse density-gradient in the cloud is to give the incoming material a resultant transverse momentum. In that case there cannot therefore be an accretion colunn lying symmetrically along the aceretion axis. If the resultant transverse momentum is sufficiently large, there can in fact be no accumulation of material along the axis for the incoming particles to collide with;
the only collisions to be considered would be collisions along the axis between the incoming particles themselves. If also the cloud-density were sufficiently small, such collisions would be rare and there would be no accretion. However, for any given cloud-density e_{0}, there must be a range of values of the density-gradient as measured by b which leads to a situation intermediate between that of the Bondi-Hoyle theory $(b=0)$ and the extreme ease of no accretion. Such an intermediate case must have the general character of that treated above.

In this case all the material arriving at the axis O_{x} in $O \leqslant x \leqslant X$ where X is given by (1.49), is captured by the star. Thus the amount of material "eaptured" is approximately the same as that "accreted" in the BondiHoyle theory. In the present case, however, the eaptured material may not all fall on to the star but some may go to form a distribution revolving in the vicinity of the star.

We notice that, whereas the parameter X is
indeterminate on steady-state considerations in the case $b=0$. It becomes determinate in the case of $b \neq 0$ here considered.

It is important to appreciate how this case differs from that considered by Bondi and Hoyle. In the present case the incoming particles are assumed to "coalesce" on the accretion axis. This means merely that, owing to
collisions in the vicinity of the axis, the particles arriving there at any instant acquire a common velocity. Owing to the assumption that b is not zero (though it may be very small) this velocity at any point of the axis has a non-zero component perpendicular to the axis. It is part of the assumption that on eccount of this lateral dxift the material concerned is not involved in further collisions with subsequently axriving incoming particles. In the case considered by Bondi and Hoyle, on the other hand, the material proceeds to move along the axis where it does encounter further incoming particles. Thus, although the present case is intermediate between that of Bondi and Hoyle and that of no collisions, it does not yield either of these cases as limits. In partioular, it is not possible to infer that X must be determinate In Bondi and Hoyle's case by attempting to treat it as a limit of this case.

The more interesting point is that the angular momentum about O per unit mass of the captured material is, on the average

$$
\begin{equation*}
\frac{1}{x} \int_{0}^{x} U d x=b \frac{\mu^{2}}{v^{3}} \tag{1.51}
\end{equation*}
$$

taking $X=2 \mu / v^{2}$. If we take μ to correspond to the mass of the Sun and $v=5 \mathrm{~km} / / \mathrm{sec}$, as a typical value, this gives about $1.4 \times 10^{35} \mathrm{~b} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$

We may compare this with the angular momentum per unit mass of the Sun itself. According to values given by Chapman (17), this is about $5 \times 10^{14} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$. Thus the value given by (1.51) is greater than or equal to this if. b^{-1} is less than about 100 parsees. Now b^{-1} is the distance over which the cloud-density changes by 100 per cent, and 100 parsecs would be a large value for the radius of a eloud ${ }^{(18)}$.

It is then tempting to conclude that any significant accretion of mass is likely to be accompanied by a significant change in the star's angular momentum. Nevertheless it has to be noted that, although the densitygradient required to produce this result is so small, its component transverse to the star's path would have to be in the same airection over a. great length of this path. Without much further investigation it is therefore impossible to say whether the effect has any general sienificance in regard to the phenomenon of stellar rotation. It may serve merely to endow separate portions of accreted material with varying amounts of angular momentum about the star in a. manner suggested by Gething in relation to Iyttleton's theory of comets.

In connection with the above discussion, it should be noted that a variation of the undisturbed material velocity In a direction transverse to the alrection of the star's
motion can also produce angular momentum in the accreted material and this has been investigated by McCrea(11). The Effect of Temperature on the Resistive Force.

We have assumed so far, that the particles of the undisturbed interstellar material have no relative motion. If the particles are the molecules of a gas this is only true if the gas is at zero absolute temperature. At other temperatures each particle has a random component of velocity superposed on the common velocity v relative to the star. Provided this random component is not too large, we may expect the mechanism producing the resistive force still to hold approximately. It is difficult to make a quantitative estimate of the temperature such that the force is not appreciably chenged, but this will now be attempted in the case where there are no collisions between particles.

In the case where there is no random velocity, the resistive force is $e F(v)$ where

$$
\begin{equation*}
F(v)=\frac{\pi \mu^{2}}{E}\left[\left(1+\frac{\mu^{2}}{2 d^{2} v^{2} E}\right) \ln \left(1+\frac{2 v^{2} E d^{2}}{\mu^{2}}\right)-1\right] \tag{1.52}
\end{equation*}
$$

from (1.31).
Now suppose each particle hes superposed on its initial velocity v, a velocity c. Let c have the same magnitude and direction for every particle and let the direction be that of a given line through O making an
angle Θ with $O x$ (Fig. 1.2). Then the resultant initial velocity of each particle will be V given by

$$
\begin{equation*}
V^{2}=v^{2}+c^{2}+2 v c \cos \theta \tag{2.53}
\end{equation*}
$$

and this will make an angle Φ with $O x$, given by

$$
\begin{equation*}
\sin \Phi=\frac{c}{V} \sin \Theta \tag{1.54}
\end{equation*}
$$

It follows that the resulting force will be $e F(V)$ making an angle Φ with $O x$. The component of this along $O x$ is $e^{F(V)} \cos \Phi$.

Next suppose the particles have superposed on their initial velocity v a random velocity component. This component is to be considered as of constant magnitude but uniformly distributed in direction. The resulting force will now be along $O x$ and of magnitude

$$
\begin{align*}
& \frac{e}{4 \pi} \int_{\alpha=0}^{2 \pi} \int_{\theta=0}^{\pi} F(V) \cos \Phi \sin \Theta d \Theta d \alpha \\
= & \frac{e}{2} \int_{0}^{\pi} F(V) \cos \Phi \sin \Theta d \Theta . \tag{1.55}
\end{align*}
$$

We shall evaluate this integral on the assumption that terms of order $(c / v)^{3}$ and higher terms may be neglected. Let us write $V=v+\delta v$ and $F(V)=A_{0}+A_{1} \delta v+A_{2}\left(\delta_{v}\right)^{2}+\ldots$ where $A_{0}, A_{1}, A_{2}, \ldots$ are independent of δ_{v} and Θ. We have

$$
\begin{aligned}
\delta v & =v\left(\frac{1}{2} \frac{c^{2}+2 v c \cos \theta}{v^{2}}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}\left[\frac{c^{2}+2 v c \cos \theta}{v^{2}}\right]^{2}+\ldots\right) \\
& =v\left(\frac{c}{v} \cos \theta+\frac{1}{2} \frac{c^{2}}{v^{2}} \sin ^{2} \theta\right)
\end{aligned}
$$

and $\quad \cos \Phi=\sqrt{1-\frac{c^{2}}{V^{2}} \sin ^{2} \Theta}$

$$
\begin{aligned}
& =\sqrt{1-\frac{c^{2}}{v^{2}} \sin ^{2} \Theta\left(1-\frac{2 \delta v}{v}+\ldots\right)} \\
& =1-\frac{1}{2} \frac{c^{2}}{v^{2}} \sin ^{2} \Theta .
\end{aligned}
$$

Thus (1.55) becomes

$$
\begin{align*}
\frac{e}{2} \int_{0}^{\pi}\left[A_{0}+A_{1} v\left(\frac{c}{v} \cos \Theta\right.\right. & \left.\left.+\frac{1}{2} \frac{c^{2}}{v^{2}} \sin ^{2} \Theta\right)+A_{2} v^{2} \frac{c^{2}}{v^{2}} \cos ^{2} \Theta\right] \\
& \times\left(1-\frac{1}{2} \frac{c^{2}}{v^{2}} \sin ^{2} \Theta\right) \sin \Theta d \Theta . \\
= & e A_{0}+e \frac{c^{2}}{v^{2}}\left[-\frac{1}{3} A_{0}+\frac{1}{3} A_{1} v+\frac{1}{2} A_{2} \cdot v^{2}\right] \tag{1.56}
\end{align*}
$$

so the fractional change in the force is

$$
\left(\frac{c^{2}}{v^{2}}\right)\left[-\frac{1}{3}+\frac{1}{3} \frac{A_{1} v}{A_{0}}+\frac{1}{2} \frac{A_{2} v^{2}}{A_{0}}\right] .
$$

In this expression, the sum of the terms in the square bracket is of order unity. This can be indicated by considering the limiting forms of $F(v)$ when $v \rightarrow 0$ and when $v \rightarrow \infty$, i.e.

$$
F(v) \sim 2 \pi d^{2} v^{2} \quad \text { as } \quad v \rightarrow 0
$$

In which case the sum of these terms is $5 / 6$, and

$$
F(v) \sim 8 \pi \mu^{2} \frac{\ln v}{v^{2}} \text { as } v \rightarrow \infty
$$

In which case the sum of these terms is $\frac{1}{2}$. Thus the fractional change in the force is of order c^{2} / v^{2}.

This formula will also hold approximately in the case where the velocity magnitude is also random if we take c to represent the R.in.S. velocity. For the change not to be more than about 25 per cent we need $c \leqslant \frac{1}{2} v$. Now for gases we have the relation

$$
\begin{aligned}
p v=R T & =\frac{1}{3} M c^{2} \\
\therefore T & =M c^{2} / 3 R
\end{aligned}
$$

where T is the absolute temperature, R is the gas constant, c is the R.M.S. velocity of the gas molecules and M is the molecular weight of the gas. For atomic hydrogen, $M=1$ and putting $c^{2}=\frac{1}{4} v^{2}$ we have

$$
\begin{align*}
T & =v^{2} / 12 R \\
\therefore T & =10 v^{\circ} \mathrm{A} \tag{1.57}
\end{align*}
$$

if v is measured in kno/sec. (1.57) gives the value of T above which the force will be altered by more than about 25 per cent from its value at $T=0^{\circ} \mathrm{A}$. (1.57) applies only to the case of no collisions between the particles.

It is extremely difficult to assess the effect of temperature when collisions occur and an accretion column forms. It may be worthwhile to mention here an extremely simplified case which has been considered, not to determine
the effect of temperature, but to examine if under certain circumstances the accretion rate can be increased. Consider the star to be at rest at O and the particles which issue from A (at a great distance) in Fig. 1.5(a) to be of two kinds: (i) those with velocity $v+\delta$ and (ii) those with velocity $v-\delta$; there being equal numbers of each type of particle so that the average velocity is the usual v. The first type of particle will hit the axis at C and the second type at B, say, As will now be shown, this model gives an increased rate of accretion by a factor of $\left(1-\delta^{2} / v^{2}\right)^{-3}$ over the rate in the case where all the particles have velocity v. The effect is small, e.g. for δ / v as large as 0.45 , the rate of accretion is only doubled.

In Fig. 1.5(b), consider the point D on the axis at a distance x from the star. Two streams of particles will collide at D. These are type (i) particles originally at a distance σ_{1} from the axis and type (ii) particles originally at a distance σ_{2} Prom the axis. From (1.20),

$$
\begin{gather*}
x=\frac{\sigma_{1}^{2}(v+\delta)^{2}}{2 \mu}=\frac{\sigma_{2}^{2}(v-\delta)^{2}}{2 \mu} \\
\therefore d x=2 \sigma_{1} d \sigma_{1} \frac{(v+\delta)^{2}}{2 \mu}=2 \sigma_{2} d \sigma_{2} \frac{(v-\delta)^{2}}{2 \mu} . \tag{1.58}
\end{gather*}
$$

The mass of type (i) particles hitting $O x$ between x and $x+d x$ in time $d t$ is

$$
2 \pi \sigma_{1} d \sigma_{1}(v+\delta) d t(e / 2) .
$$

(The $(e / 2)$ is because half of the density is due to type (i) and hall to type (ii) particles). This is, from (1.58)

$$
m_{1}=\pi \rho d t \frac{\mu d x}{(v+\delta)}
$$

Similarly, the mass of type (ii) particles is

$$
m_{2}=\pi \rho d t \frac{\mu d x}{(v-s)} .
$$

Hence the total mass hitting $d x$ in time $d t$ is

$$
\begin{equation*}
m_{1}+m_{2}=\pi \rho d t \mu d x \frac{2 v}{v^{2}-\delta^{2}} \tag{1.59}
\end{equation*}
$$

The velocity V of this along the axis is given by the momentum equation (assuming all the material coalesces and then moves freely under the gravitation of the star),

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) V & =m_{1}(v+\delta)+m_{2}(v-\delta) \\
\therefore V & =\left(v^{2}-\delta^{2}\right) / v .
\end{aligned}
$$

The maximum value of x such that material hitting the axis between x and $x+d x$ does not escape to infinity is

$$
X=\frac{2 \mu}{V^{2}}=\frac{2 \mu v^{2}}{\left(v^{2}-\delta^{2}\right)^{2}}
$$

From (1.59), the accretion rate is therefore

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) X & =\pi e \mu \cdot \frac{2 v}{v^{2}-\delta^{2}} \cdot \frac{2 \mu v^{2}}{\left(v^{2}-\delta^{2}\right)^{2}} \\
& =\frac{4 \pi \mu^{2} e}{v^{3}}\left(1-\frac{\delta^{2}}{v^{2}}\right)^{-3}
\end{aligned}
$$

Chapter II: The Unsteady Accretion Problem.

In the Bond-Hoyle mechanism of accretion, we saw In Chapter I that a consideration of the "steady state". In which a star is moving through a cloud of interstellar material of uniform density, does not give a unique solution for the motion. Bondi and Hoyle therefore concluded that the amount of material captured by a star must depend on the perturbations previousiy suffered by the star and its column of interstellar material. They then obteined an approximate solution in the case of a star moving from empty space into a cloud of uniform density, the density of the interstellar material being discontinuous across the surface of the eloud.

In the present chapter a method is suggested which may be used when the density is not discontinuous at the edge of the cloud. The method may also be used when the density within the cloud varies with time. A case similar to that considered by Bondi and Hoyle and also one other ease have been examined using this method. Considersble computation was required and this was performed on the Manchester University Glectronic Computer.

The Hanchester University Blectronic Computer has been constructed by Ferranti Ltd. and is the only engineered electronic machine in operation in this country.

It is a development of the experimental machine built in the Department of Blectrical Engineering at lanchester University by T. Kilburn and F.C. Williams. Also the Manchester University Electronic Computer is the only machine in the country with an auxiliaxy magnetic storage system, which is essential for large problems.

The Equations.

Using a slightiy different notation, the equations governing the unsteady state, (1.15) and (1.17), may be written

$$
\begin{gather*}
\frac{\partial m}{\partial \tau}=a-\frac{\partial(m v)}{\partial \xi} \tag{2.1}\\
m v \frac{\partial v}{\partial \xi}+m \frac{\partial v}{\partial \tau}=a(c-v)-\frac{\mu m}{\xi^{2}} \tag{2.2}
\end{gather*}
$$

where τ is the time, $\bar{\xi}$ is the distance along the accretion axis, c is the speed of the star relative to the cloud, a is the mass of material hitting unit length of the axis per unit time and the other variables are as in Chapter I. In the new notation, we let the neutral. point $(x=\alpha)$ be $\xi=\beta$.

It may be noted here that a steady state (derined as a state in which m, V and a are all independent of τ, cannot exist unless e is independent of τ. But if e becomes independent of τ, it does not follow that a steady state will occur immediately. However, the system will
immediately start tending towards such a steady state. The Iroposed. Method.

Let us concentrate attention on a particle of material in the column. Its position at any time will be $\xi=X(\tau)$, say. Let the values of V, a and M in the neighbourhood of the particle be V, A and M respectively. Now $V(\xi, \tau)$ is the velocity of a particle at point ξ at time τ. So

$$
\begin{equation*}
V(X(\tau), \tau)=V(\tau)=\frac{d X}{d \tau} \tag{2.3}
\end{equation*}
$$

and

$$
\frac{d V}{d \tau}=\frac{\partial V}{\partial \xi} \frac{d X}{d \tau}+\frac{\partial V}{\partial \tau}
$$

which from (2.3)

$$
\begin{equation*}
=\frac{\partial V}{\partial \xi} v+\frac{\partial v}{\partial \tau} \tag{2.4}
\end{equation*}
$$

Substituting (2.4) in (2.2) we obtain

$$
\begin{equation*}
\frac{d V}{d \tau}=\frac{A}{M}(c-V)-\frac{\mu}{X^{2}} \tag{2.5}
\end{equation*}
$$

We also have

$$
M(\tau)=m(x(\tau), \tau)
$$

$$
\begin{align*}
\frac{d M}{d \tau} & =\frac{\partial m}{\partial \xi} \frac{d X}{d \tau}+\frac{\partial m}{\partial \tau} \\
& =\frac{\partial m}{\partial \xi} v+\frac{\partial m}{\partial \tau} . \tag{2.6}
\end{align*}
$$

Writing (2.1) es

$$
\frac{\partial m}{\partial \tau}+\frac{\partial m}{\partial \xi} v=a-m \frac{\partial V}{\partial \xi},
$$

and substituting for the left-hand side from (2.6) we have

$$
\begin{equation*}
\frac{d M}{d \tau}=A-M\left(\frac{\partial V}{\partial \xi}\right)_{\xi=x} \tag{2.7}
\end{equation*}
$$

Let us suppose equations (2.3), (2.5) and (2.7) to be solved, giving X, V and M as functions of τ starting from the boundary condition $\xi=\xi$, when $\tau=\tau$. . Then the function X would represent the path of the particle as shown by $\xi, M B K$ in Fig. 2.1. In this ease (as shown in the diagram) the particle starts to move away from the star but then returns and falis into it. If a somewhat larger value of ξ had been taken in the boundary condition, say $\xi=\xi_{2}$ then the path would have been ss $\xi_{2} A I$, indicating that the particle escapes from the star. If the density e is constant so that a also is constant, then the system must eventually become steady and there is a value ξ_{3} of ξ at $\tau=\tau_{0}$ such that the particle neither falls into the star nor escapes from it, but follows a

Fig. 2.1.

F1E. 2.2.
path $\xi_{3} J$ and comes to rest at $\xi=\xi_{4}$. This value ξ_{4} is whet we denoted by β above.

In generel, the method may be looked upon as a way of determining the alteration in β caused by a change from one constant value of e to another. It is not necessery that the change be instantaneous; the value of e between the two constant values may be any function of time.

The Humerical Solution.

The object of the numerical investigation was to obtain the value of β in the case of a star entering a eloud with a discontinuous change of density at its edge, and also to examine the effect on β of a slower change in e.

On account of the gradient on the richt-hand side of (2.7), it is not possible to solve (2.3), (2.5) and (2.7) for a single particle. It is necessary to solve for a number of paths simultaneously. It is a property of the equations (parabolic equations) that disturbances are propagated along the paths $\xi, B K$, etc, and not from one path to another.

The star is supposed to enter a cloud from empty space at a time $\tau=0$. The value of a is supposed to increase either instantaneously, or else linearly with time from zero to its final value which is reached at $\tau=\mu t_{c} / c_{3}$
after which a remains constant. (The factor μ / c^{3} is to make t_{c} a dimensionless constant.) The surface of the cloud is taken to be of such a shape that a is a function of τ only. It is at this point that the problem here considered differs from that of Bondi and Hoyle. They considered the cloud to have a plane boundary when at a great distance from the star. As the eter eppeoher the olou, the boundery boomeg asstortod from the ofox As the star approaches the cloud, the boundary becomes distorted and they take this into account. In this problem, on the other hend, the surface of the cloud (and in generel the surfaces of constent density), when at a great distance from the star, is supposed to be such that as the star approaches, the surface will become distorted and will fall on to the axis $O \xi$ in such a way that all points on it hit the axis at the same instant. This makes a a function of τ only and independent of ξ The suriaces of constant density in the undisturbed cloud will be surfaces of revolution with the path of the star as axis, and the surfaces will present a concave side towards the star. In view of the difference between this problem and that of Bondi and Hoyle, it is not justifiable to expect that the values of β will be the same in the two cases.

The general method given in this paper could be applied
to a cloud with a plane boundary, but this would make a a function of τ as well as of ξ. The extra information that would have to have been stored in the electronic machine would have considerably reduced the rate of computation. For this reason it was decided to use the simpler case for the purpose of obtaining a result.
The equations may first be mede dimensionless by the transformation

$$
\begin{aligned}
X=8\left(\mu / c^{2}\right) x, \xi & \left.=8\left(\mu / c^{2}\right)\right\}, \tau=\left(\mu / c^{3}\right) t, M=1024\left(\mu \bar{A} / c^{3}\right) m, \\
V & =4 c \bar{v}, V=4 c v, A=\bar{A} a
\end{aligned}
$$

where \bar{A} here indicates the final value attained by A. The equations (2.3), (2.5) and (2.7) become

$$
\begin{align*}
& \frac{d x}{d t}=\frac{v}{2} \tag{2.8}\\
& \frac{d v}{d t}=\frac{1}{4}\left(\frac{a(1-4 v)}{1024 m}-\frac{1}{64 x^{2}}\right), \tag{2.9}\\
& \frac{d m}{d t}=\frac{a}{1024}-\frac{m}{2}\left(\frac{\partial v}{\partial s}\right)_{3=x} \tag{2.10}
\end{align*}
$$

The numerical factors in the transformation were necessitated by the decision to use an electronic calculating machine. In any machine there are limits between which numbers must lie. In the machine used the limits were

$$
-\frac{1}{2} \leqslant N<\frac{1}{2} \text {. }
$$

Scale factors must therefore be inserted to ensure that the
variables all lie in this range. The equations involve a single parameter a. In the equations, the derivatives with respect to t indicate ratios of small changes wich, In the distance-time diagram (Fig. 2.1), are taken in the direction of the path.

The solution of the problem was obtained by building up a network formed by ten particle paths and the lines $t=$ constant as in Fig. 2.2. Denoting the paths by the integers 2 to 10 and taking equel intervals Δ in t, we may attach a number pair (r, p) to each point of the network, where r is the number of the path on which the point lies and p indicates that the point is on $t=p \Delta$ The values of the variables at any point of the network will be denoted by the appropriate symbol with the number pair of the point as a suffix.

Since only about three significant ifigures were required in β, it was not thought worth while to use more than second-order approximations for the derivatives in equations (2.8) to (2.10). Thus $\mathrm{i}_{\mathrm{g}}^{\mathrm{n}}(2.8),(d x / d t)_{r, p}$ was represented by

$$
\left(x_{r, p+1}-x_{r, p-1}\right) / 2 \Delta
$$

and similarly for $(d \mathrm{~m} / d t)_{r, p}$ in (2.10). As a formula. of this sort for $(d v / d t)_{r, p}$ would have oaused oscillation in the solutions, it was decided to use

$$
v_{r, p+1}-v_{r, p}=\frac{\Delta}{2}\left\{\left(\frac{d v}{d t}\right)_{r, p+1}+\left(\frac{d v}{d t}\right)_{r, p}\right\} .
$$

For $(d v / d J)_{r, p}$ in (2.20) the approximation

$$
\left(v_{r+1, p}-v_{r-1, p}\right) /\left(x_{r+1, p}-x_{r-1, p}\right)
$$

was used except at the edges of the network ($r=1$ and 10) where the third-order approximation of the type

$$
\left(-11 v_{1, p}+18 v_{2, p}-9 v_{3, p}+2 v_{4, p}\right) /\left(-11 x_{1, p}+18 x_{2, p}-9 x_{3, p}+2 x_{4, p}\right)
$$

was used.
The equations (2.8) to (2.10) then give the formulae:

$$
\begin{gather*}
x_{r, p+1}=x_{r, p-1}+\Delta v_{r, p,} \tag{2.11}\\
m_{r, p+1}=m_{r, p-1}+\frac{a_{p} \Delta}{512}-\Delta m_{r, p} \frac{\left(v_{r+1}, p-v_{r-1, p}\right)}{\left(x_{r+1, p}-x_{r-1, p}\right)}, \quad \text { (2.12) } \tag{2.12}\\
v_{r, p+1}=\left(\frac{v_{r, p}}{4}+\frac{\Delta a_{p}\left(\frac{1}{4}-v_{r, p}\right)}{8192 m_{r, p}}+\frac{\Delta a_{p+1}}{32768 m_{r, p+1}}-\frac{\Delta}{2048 x_{15 p}^{2}}-\frac{\Delta}{2048 x_{r, p+1}^{2}}\right) \\
\text { divided by }\left(\frac{1}{4}+\frac{\Delta a_{p+1}}{8192 m_{r, p+1}}\right), \tag{2.13}
\end{gather*}
$$

with the appropriate change in the last term of (2.12)
when $r=1$ or 10 .
The initial conditions were as follows: The initial values of x were taken at equal intervals so that

$$
x_{r, 0}=\epsilon+r(\delta x), \quad r=1,2, \ldots, 10 .
$$

ϵ and δx being suitably chosen constants. There is no material in the column initially, so

$$
m_{r, 0}=0
$$

and the initial velocity is C, so

$$
v_{r, 0}=\frac{1}{4} \text { and } a_{0}=0 .
$$

The first-order approximations for the variables at $t=\Delta$ were token:

$$
\begin{aligned}
x_{r, 1} & =\epsilon+r(\delta x)+\frac{1}{8} \Delta \\
m_{r, 1} & =\Delta^{2} / 2048 t_{c} \\
v_{r, 1} & =\frac{1}{4}-\frac{\Delta}{1024 x_{r, 1}^{2}} \\
a_{1} & =\Delta / t_{c} .
\end{aligned}
$$

These formulae are for the case where a increases linearly from zero at $t=0$ to unity at $t=t_{c}$ and then remains constant. In the case of an instantaneous increase in the value of a from zero to unity, the last three formulae are changed to

$$
\begin{aligned}
m_{r, 1} & =\Delta / 1024 \\
v_{r, 1} & =\frac{1}{4}-\frac{\Delta}{768 x_{r, 1}^{2}} \\
a_{1} & =1 .
\end{aligned}
$$

By using the above formulae the network can be built up. The best way to determine the value of β is to find, for various values of t, the value of x (which we
shall refer to as η) at which $v=0$. This can be determined by an interpolation between the points of the network on the lines $t=$ constant. If the results are plotted, a curve is obtained like Lha in Fig. 2.1. This curve passes through all the maxima of the paths and so tends to $\}=\beta / 8\left(\mu / c^{2}\right)$.

It wes found that 2.8 soon as the maximum of a path had been passed, the path rapidly fell away towards the t exis. In machine computation this meant that the velocity grew (negatively) so rapidly that there was a danger of it going out of the number range. To avoid this, arrangements were made at certain intervals of t to interpolate between the paths and to continue the integration with ten new peths. Thus, in Fig. 2.1, suppose that the integration had been performed up to $t=t_{1}$, so that the networle was $\xi_{,} \xi_{2} A B$. At this point a new set of paths would be formed by selecting five of the original paths and forming five new ones by mid-point interpolation between the old paths. These ten new paths would intersect $A B$ between C and D_{2} say. The next part of the network woula be like CDFE. At $t=t_{2}$ a Eurther ten paths would be formed and the integration would continue from cht

Considering the points on $A B$, the changes in v and x from one point to another are small until the velocity
goes negative. After this, the changes become large. These large changes reduce the accuracy of the interpolation botween paths. For this reason it wes found wise to choose the disposition of $C D$ with respect to $A B$ so that at D, v was just slightiy positive.

The instructions to cause the machine to earry out the calculations had to be punched in a certain code on to paper tepe. The tape was about 24 feet long. These instructions were put into the machine by means of a tape reader. The value of $\boldsymbol{t}_{\boldsymbol{c}}$ was specified on the tape and so each different value of t_{c} involved a slight alteration of the tape. The values of $\epsilon, \delta x$ (used in forming $x_{r, 0}$) and Δ were specipied by the setting of switches on the machine. When these switches had been set, the machine was caused to form the initial conditions and to integrate up to $t=1$ and then stop. The values of the variables at the points on $t=1$ could then be printed out on peper if desired or they could be examined by means of a matrix of dots which appeared on the screen of a cathode ray tube. It was then necessary to tell the machine, by the manipulation of switches, whether to carry on the integration or whether flast to form ten new paths. In the latter case, the disposition of the new paths with respect to the old ones had to be specified again by switches. The machine would
then integrate up to $t=2$, when the deeisions would be taken again as at $t=1$, after an examination of the variables. To avoid the risk of exrors due to a unit of the machine not functioning properiy, it wes arranged for each part of the calculation to be repeated until two consecutive results agreod. This could be tested by the machine itself. Only when agreement was reached, would the next part of the celculation be attempted. Integrations were tried with $\Delta=\frac{1}{8}$ and $\Delta=\frac{1}{16}$ and as these agreed to the desired limits of accuracy, it was decided to use $\Delta=\frac{1}{8}$. A value of about 0.001 was found to be satisfactory for δx. It may be thought that the accuracy would be improved by making δx as small as possible but this ald not appear to be the case because when δx was reduced much below 0.001 , oscillations rapidily appeared in the values of the variables. The reason for this is not clear. It may possibly have been due to some number range trouble. When the machine was in good working order it could integrate between two integral values of t with $\Delta=\frac{1}{8}$ in five minutes. This involved 80 applications of each of the Sormulae (2.11), (2.12) and (2.13).

Results and Conclusion.

Host of the work consisted of preliminary integrations to determine the best values to take for parameters such
as \triangle, ϵ and δx. The Pinal results are set out in the accompanying table. This shows the value of 8η (i.e. the values of $8 x$ at which $v=0$) for various values of t. The column headed $t_{c}=0$ is for an instantaneous chenge in density when the star enters the cloud. The figures in this column converge to a value near 1.13. This may be compared with the case conslaered by Bondi and Hoyle who obtained 1.25. These values are the estimates of $\beta c^{2} / \mu$. The figures for $t_{c}=1$ could not be carried far enough to get an accurate value for $\beta c^{2} / \mu$ because beyond $t=7$ the accumulation of truncation errors caused the solutions to become inaccurate. They show, however, thet the value of β is changed substantially from the ease $t_{c}=0$.

It is interesting to notice that although the curve of zero velocity (i.e. $\}=\eta(t)$) tends to a higher value in the case of $t_{c}=2$ than in the case of $t_{c}=0$, it is initially below the $t_{c}=0$ eurve. The first few values of the $t_{c}=2$ curve show that it starts below the $t_{c}=1$ curve although it is expected to go above it eventualiy.

The general conclusion from the numerical investigation is that the more violent the change of density, the smaller is the value of β. This confirms the findings of Bondi and Hoyle.

Table of 8η

t	$t_{c}=0$	$t_{c}=1$	$t_{c}=2$
1.125	0.65	0.53	0.52
2.125	0.84	0.78	0.67
3.125	0.98	0.93	0.85
4.125	1.09	1.03	
5.125	1.116	1.11	
6.125	1.12	1.16	
7.125		1.21	

Chapter III: Δn Blaboration of the Bondi-Hoyle lechanism.
Bondi and Hoyle ${ }^{(7)}$ considered the flow of material in the accretion colum wich, according to their theory, would be fomed by particle collisions ocourring in the wake of a star. They supposed the properties of the material entering the accretion colum to be such that it rapidiy loses heat by radiation and so the aceretion column could be treated mathematically as a linear distribution of material. In this chapter we formulate the equations governing a more elaborate model of the accretion column.

We suppose the mechanism by which materis. is "Pocussed" on to the axis $O x$, is the same as described by Bondi and Hoyle. We assume however, that the accretion column consists of a stream of gas around the accretion axis. This stream is kept in position by the steady shower of particles which arrive from the surxounding space. Although the boundary of this stream will not be clearly derined in roality, we introduce for the purpose of a mathematical treetment a definite boundary with cireular section of radus $r(x)$ where x is the distance from the star 0 . We suppose that within this boundary, conaitions are uniform over any cross-section. Let $m(x)$ be the mass of gas per unit length of the stream, $V(x)$ the velocity and $p(x)$ the pressure of the gas.

It should be mentioned here that the width of the stream has been briefly discussed on page 89 of (19).

We now obtain the equations determining the conditions in the strean of gas in a steady state. By considering the conservation of mass on an element of the axis, we obtain

$$
\begin{equation*}
m v=m(x-\alpha) \tag{3.1}
\end{equation*}
$$

es in the Bondi-Hoyle mechanism, (1.21). As in the Bondi-Hoyle mechanisin we can also obtain an equation of motion like (1.16) but there will now be an adaitional term on the right hand side representing the force on the element of material between x and $x+d x$ due to the pressure in the gas. The force due to pressure on the plane end of the element at x is

$$
\pi r^{2}(x) p(x)
$$

and the force due to pressure on the plane end at $x+d x$ is

$$
\pi r^{2}(x+d x) p(x+d x)
$$

the disference between these boing

$$
d x \frac{d}{d x}\left(\pi r^{2} p\right)
$$

This is the force due to pressure on the element and it is in the direction $x O$. So setting up the equation of motion we have, for the steady state,

$$
\begin{equation*}
m v \frac{d v}{d x}=m(v-v)-\frac{\mu m}{x^{2}}-\frac{d}{d x}\left(\pi r^{2} p\right) \tag{3.2}
\end{equation*}
$$

The stream has its shape mantained by its pressuxe being balanceg by the force due to the momentum component, perpendicular to $O x$, of the paxticles which hit unit length of the axis in unit time. From (1.11) this is

$$
m \sqrt{\frac{2 \mu}{x}}
$$

The outward foree per unit length of axis due to prossure is

$$
2 \pi r(x) p(x)
$$

Equating these forces,

$$
\begin{equation*}
2 \pi r p=m \sqrt{\frac{2 \mu}{x}} \tag{3.3}
\end{equation*}
$$

In deriving (3.3) we assume that

$$
\frac{d r}{d x} \ll 1
$$

otherwise both (3.2) and (3.3) would be affected, since the force due to the outward pressure of the gas in the stream would not quite be perpendicular to $O x$.

If we consider the gas in the stream to be perfect we have

$$
\begin{equation*}
p V=\frac{1}{3} n M c^{2} \tag{3.4}
\end{equation*}
$$

where p is the pressure of a volume V of gas containing n particles ench of mass M and having R.M.S. velocity C. That is

$$
n c^{2}=\sum_{j} c_{j}^{2}
$$

c_{j} being the velocity of the j th particle at any time. Now C is constant for a given temperature so we can take c^{2} to be a measure of the temperature. For our element of the tube, we have

$$
\begin{aligned}
V & =\pi r^{2} d x \\
n M & =m d x
\end{aligned}
$$

so (3.4) becomes

$$
\text { p. } \pi r^{2} d x=\frac{1}{3} m d x c^{2}
$$

$$
\begin{equation*}
\therefore \pi r^{2} p=\frac{1}{3} m c^{2} \tag{3.5}
\end{equation*}
$$

taking c^{2} to be a function of x and the same over any section of the stream perpendicular to $O x$.

We obtain a further equation by considering the conservation of energy within the element between x and $x+d x$. The energy consists of kinetic energy of translational motion, heat energy and gravitational potential energy. Thus:
energy entering per unit time energy leaving per unit time. $\left[m v\left(\frac{1}{2} v^{2}+\frac{1}{2} c^{2}-\frac{\mu}{x}\right)\right]_{x}+\frac{1}{2} m v^{2} d x=\left[m v\left(\frac{1}{2} v^{2}+\frac{1}{2} c^{2}-\frac{\mu}{x}\right)\right]_{x+d x}$ + radiation loss per unit time.

So

$$
m v^{2}=\frac{d}{d x}\left[m v\left(v^{2}+c^{2}-\frac{2 \mu}{x}\right)\right]+2 \text { (radiation loss from }
$$

stream for unit length per unit time). (3.6)

Equations (3.1),(3.2),(3.3),(3.5) and (3.6) are five equations for the five quantities m, v, p, r, c^{2}. The Radius of the Stream.

It is not proposed to discuss these equations in general but we shall use them to get an estimate of r near the neutral point $x=\alpha$, which exists, as in the Bondi-lloyle mechanism by virtue of equation (3.1). As a suitable function for the radiation loss is not known, we shall assume a value for c and so avoid the use of (3.6). Remembering that $V=0$ at the neutral point $x=\alpha$, we obtain from (3.2), neglecting the last term,

$$
\begin{equation*}
m(\alpha)=\frac{m v \alpha^{2}}{\mu} . \tag{3.7}
\end{equation*}
$$

Dividing (3.5) by (3.3) gives

$$
\frac{r}{2}=\frac{\frac{1}{3} m_{c^{2}}}{m \sqrt{\frac{2 \mu}{\alpha}}}
$$

For definiteness let us take $\alpha=2 \mu / v^{2}$ so that

$$
r=\frac{8 \mu R T}{v^{4}}
$$

where R is the gas constant and T is the temperature in
the stream ($R T=\frac{1}{3} \bar{M} c^{2}$ where $\bar{M}=1$ for atomic hydrogen). The values of r and $2 \mu / v^{2}$ are compared in the accompanying table for a few values of v.

It will be seen thet only in the lower two cases is $r \ll 2 \mu / v^{2}$, which is a necessary condition for the Bondi-Hoyle mechanism to operate. For $v=1 \mathrm{~km} . /$ sec. T must not exceed a few aegrees absolute in order that this condition should be satisfied, although at $5 \mathrm{Km} . / \mathrm{sec}$. it can go up to about $100^{\circ} \mathrm{A}$. If $v=0.1 \mathrm{Km} . /$ sec., it is evident that T must be a fraction of a degree absolute. In general $4 R T / v^{2}$ must be smell cormared with unity since

$$
r=\frac{4 R T}{v^{2}} \cdot \frac{2 \mu}{v^{2}}
$$

Knowing r, the density e_{0} in the stream can be obtained from $m=\pi r^{2}$ e。

$$
\therefore \rho_{0}=\frac{8 \mu^{2}}{r^{2} v^{4}} e
$$

where e is the density in the undisturbed interstellar material. Two values of eo/e are given in the accompanying table.

By the above calculations, estimates have been obtained of the thickness of the axial stream and of its density in the region of the neutral point. We have seen that if the temperature of the material in this stream goes above a certain value, determined by the

Table of r and eo/e for $T^{\circ} A$
and a star of solar mess.

velocity of the star through the cloud, the value of r becomes so large that our equations can no longer be expected to hold. But it Lollows that at such temperatures, the Bondi-Hoyle mechanism cannot hold either. This does not 1 mply that there is no accretion. It merely means that the Bondi-Hoyle mechanism is no longer an adequate representation of the accretion process. It seems that there are three stages of the accrotion process depending on the temperature in the aceretion column. For temperatures very near 00 A ., the mechanism will be that of Bondi and Hoyle. For temperatures somewhat greater, the mechanism will be that described in the present chapter and for still greater temperatures the mechanism will be a completely aerodynamic one. The temperature at which the second stage gives way to the third is not clearly defined. It depends on the velocity of the star relative to the cloud and will be about the temperature at which r becomes of the order of $2 \mu / v^{2}$. In the next chapter an account is given of the attempts which have been made to estimate the accretion rate when the problem is treated aerodynamically.

The Resistive Force.

It is possible to obtain an expression for the resistive force on the basis of the model considered here in the seme way as in the Bondi-Hoyle mechenism. This
will now be done on the assumption that there is no radiation loss. We shall see that the resistive force is increased by a factor of 3 . This gives an upper limit to the value of the force when there is a radiation loss. For large x, (3.1) becomes

$$
\begin{equation*}
m v \bumpeq m x . \tag{3.8}
\end{equation*}
$$

Substituting (3.5) in (3.2), we obtain

$$
m v \frac{d v}{d x}=m(v-v)-\frac{\mu m}{x^{2}}-\frac{1}{3} \frac{d}{d x}\left(m c^{2}\right)
$$

which becomes, using (3.8),

$$
\begin{equation*}
\frac{d v}{d x}=\frac{v-v}{x}-\frac{\mu}{v x^{2}}-\frac{1}{3 m x} \frac{d}{d x}\left(m c^{2}\right) \tag{3.9}
\end{equation*}
$$

If the radiation loss is zero, (3.6) integrates to

$$
m v^{2} x+A=m v\left(c^{2}+v^{2}-\frac{2 \mu}{x}\right)
$$

where A is a constant of integration. Using (3.8) we get

$$
\begin{equation*}
c^{2}=v^{2}-V^{2}+\frac{A}{m x}+\frac{2 \mu}{x} . \tag{3.10}
\end{equation*}
$$

We then substitute this in (3.9). We put $V=v(1+u)$ and expand the various terms, retaining only first powers of u. We obtain approximately,

$$
\frac{d u}{d x}+\frac{u}{x}=-\frac{3 \mu}{v^{2} x^{2}}
$$

of which the solution is

$$
u=-\frac{3 \mu}{v^{2}} \frac{\ln x}{x}+\frac{B}{x}
$$

$\$ 0$

$$
v \sim v\left(1-\frac{3 \mu}{v^{2}} \frac{\ln x}{x}\right)
$$

from which the factor of 3 in the force arises. Substituteing this expression for V in (3.10) gives

$$
c^{2} \sim 6 \mu \ln x / x
$$

so $c^{2} \rightarrow 0$ as $x \rightarrow \infty$. Dividing (3.5) by (3.3) gives

$$
\begin{aligned}
& \frac{r}{2}=\frac{\frac{1}{3} m_{c^{2}}}{m \sqrt{\frac{2 \mu}{x}}} \\
& \therefore r \sim \frac{\sqrt{2 \mu x} \ln x}{v},
\end{aligned}
$$

so $r \rightarrow \infty$ with x. Thus, the thermel energy is used up in expanding the stream of gas. Although $r \rightarrow \infty$,

$$
\frac{d r}{d x} \propto \frac{1}{2} \frac{1}{\sqrt{x}} \cdot \ln x+\sqrt{x} \cdot \frac{1}{x} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

so our assumption that $d r / d x \ll 1$ is satisfied for large x. Substituting the above expression for r in (3.3) gives

$$
p=\frac{m \sqrt{\frac{2 \mu}{x}}}{2 \pi \cdot \frac{\sqrt{2 \mu x} \ln x}{v}} \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

From this consideration of the asymptotic behaviour of the stream of gas, we see that the velocity V and hence the resistive force is not very different when pressure is taken into account from the case of inelastic collisions considered by Bondi and Hoyle. When the radiation loss is taken into account, the difference will be even less. Since this treatment is midway between that of Bondi and Hoyle and the aerodynamical case, we have an indication that the force will be little different in the aerodynamical case. This is useful because no estimate of the force has been made in the latter ease.

Chapter IV: Geseous Acoretion.

The Bondi Process.

The problem of the interaction of a star with interstellar material, when the latter is a gas at a temperature other than zero absclute, was Pirst treated by Bondi ${ }^{(12)}$ in the special case of a star at rest relative to the material. Bondi considered the problem for verious values of the ratio of specific heats of the gas, γ, but for the purpose of illustrating the results, we shall. here examine only the isothermal case where $\gamma=1$.

The star is considered to be at rest in an infinite cloud of gas which at infinity is also at rest and of uniform density C_{∞} and pressure p_{∞}. The motion of the gas is spherically symmetrical and steady, the increase in mass of the star being ignored so that the field of Porce is unchanging. The pressure p and density e are related everywhere by

$$
\begin{equation*}
p=A_{e} \tag{4.1}
\end{equation*}
$$

A being a constant. If we take r to be the radial coordinate and v the inward velocity of the ges, the equation of continuity is

$$
\begin{equation*}
4 \pi r^{2} e^{v}=\text { constant }=B(\text { say }) \text {, } \tag{4.2}
\end{equation*}
$$

where B is the accretion rate. Bernoulli's equation is

$$
\frac{1}{2} v^{2}+\int \frac{d p}{e}-\frac{\mu}{r}=\text { constant }
$$

ie.

$$
\begin{equation*}
\frac{1}{2} v^{2}+A \ln \left(\frac{e}{e_{\infty}}\right)-\frac{\mu}{r}=0 \tag{4.3}
\end{equation*}
$$

Let c denote the sound speed, then

$$
\begin{equation*}
c^{2}=\frac{d p}{d e}=A \tag{4,4}
\end{equation*}
$$

Let us introduce non-dimensional variables x, y, z as Sol.1ows:

$$
\begin{aligned}
& v=x \frac{\mu}{c^{2}}, \\
& v=y c, \\
& e=z e_{\infty} .
\end{aligned}
$$

Then (4.2) and (4.3) take the forms

$$
\begin{gather*}
x^{2} y z=\lambda \tag{4.5}\\
\frac{1}{2} y^{2}+\ln z=\frac{1}{x} \tag{4,6}
\end{gather*}
$$

where λ is given by

$$
\begin{equation*}
B=4 \pi \lambda \mu^{2} e_{\infty} / c^{3} \tag{4.7}
\end{equation*}
$$

Eliminating z from (4.6), using (4.5), we obtain

$$
\left(\frac{1}{2} y^{2}-\ln y\right)=-\ln \lambda+\left(\frac{1}{x}+2 \ln x\right)
$$

The two quantities in brackets are plotted in Fig. 4.1. Our problem is to find y as a function of x. Suppose for the present that $\ln \lambda=O$. Then for any value G of x, we obtain two values H and I for y. By letting G take all possible values of x, we obtain a set of points H and a set I as possible solutions of (4.8). The set H is excluded however as it does not satisfy $y \rightarrow 0$ as $x \rightarrow \infty$. The solution I is therefore the only one possible. It will be noted that this solution $\rightarrow 0$ as $x \rightarrow \infty$ and as $x \rightarrow 0$. If $\ln \lambda \neq 0$, the same procedure is possible except that the curve $D E F$ is displaced downwards a distance $\ln d$. However no solution is possible if E is displaced below B, ice. if

$$
2-2 \ln 2-\ln \lambda<\frac{1}{2},
$$

and there is a critical case when E and B are at equal heights. Let the value of λ in this case be denoted by λ_{c}, then

$$
\begin{aligned}
2- & 2 \ln 2-\ln \lambda_{c}=\frac{1}{2} \\
\therefore \lambda_{c} & =\frac{1}{4} e^{3 / 2}=1 \cdot 12 .
\end{aligned}
$$

In the critical case, the solution I has two branches, one $\rightarrow 0$ and the other $\rightarrow \infty$ as $x \rightarrow 0$. Bondi refers to the two branches as Type I and II respectively. We have thus shown that a solution to the problem is
87.

possible if $O \leqslant \lambda \leqslant \lambda_{c}$. Bondi concluded that the rate of accretion is not determinate without introducing other considerations such as stability. It is the opinion of the present writer that this is not the case and that in fact the rate of eccretion is given by putting $\lambda=\lambda_{c}$. This follows from the assumption that the star will swallow up any material falling into it, however much. If any smaller value of λ is taken, we are assuming at the start that the star swallows material at a limited rate. Looking at the matter physically, we may say that for $\lambda<\lambda_{c}$, the eravitational attraction of the star together with the gas pressure at infinity serve to drive the gas towards the star. But the star refuses to accept more then a certain amount of gas per unit time and consequently a pressure (and therefore a density) gradient is built up near the star which retards the ges as we have seen and so prevents the specifted accretion rate from being exceeded.

However when $\lambda=\lambda_{c}$, the gravitation and gas pressure at infinity are only just sufficient to drive the gas towards the star at the required rate. In this case, there is no retardation and the pressure gradient is less than for $\lambda<\lambda_{c}$. In the opinion of the present writer, the Type I motion has no physical significance.

The assumption actually made, namely that the star is capable of swallowing up an infinitely large amount of gas
is equivelent to putting $\lambda=\infty$. A solution in this case is not possible, however, since the ineritia of the gas prevents it reaching the star at any rate greater than that given by $\lambda=\lambda_{c}$. Consequently this is the maximum posaible accretion rate and is the rate which will occur in reality.

$$
\text { Taking } \lambda=\lambda_{c} \text {, the accretion rate is given by (4.7) }
$$

to be

$$
4 \pi(1.12) \mu^{2} e_{\infty} / c^{3} .
$$

This compares with the maximum rate in the Bondi-Hoyle mechanism which is

$$
\frac{4 \pi \mu^{2} e_{\infty}}{V^{3}}
$$

V being the velocity of the star. In the light of these two results, Bondi conjectured that the formula

$$
\begin{equation*}
\frac{4 \pi \mu^{2} e_{\infty}}{\left(c^{2}+V^{2}\right)^{3 / 2}} \tag{4.9}
\end{equation*}
$$

should give approximately the rate of capture in the case of a star moving through the gas. Actually, Bondi's own 'general purposes' estimate is one-half this rate, but his arguments, when applied to an isothermal ges, would lead to (4.9) as given.

Accretion by the Star at Supersonic Velocities.

We now give the results of a study of the isothermal flow of a gas near a star which is moving with a supersonic
velocity relative to the gas. The reason for considering isothermal flow is that it introduces a certain mathematical simplification. However, two physical arguments can be given to justify this. In the first place, the temperature of the gas will probably be affected by the heat radiated from the star, and so will, to some extent, be a function of the aistance from the star. In this case, the simplified problem, in which this radiation is ignored, is unitrely to represent the situation accurately whether isotherms. or adiabatic flow is considered. In the second place, it is believed that, when dust is mixed with a gas, this enables the gas to radiate heat and thus maintain a unfform temperature. The assumption of isothermal flow is not, therefore, as artificial as may at first be thought. The restriction to supersonic velocities of the star is necessitated by the method used to study the Plow; this will be shown below. It may be explained, however, that in the supersonic case the rate of accretion by the star is not affected by any boundary condition at the surface of the star, whereas in the subsonic case it is necessary to specify the rate of accretion before it is possible to determine the Plow.

We may consider the star to be at rest at the origin of coordinates and the gas to be moving with a veloeity V when at a great distance from the star. Let the $z-a x i s$ of
cylindrical polar coordinates (r, α, z) be taken in the direction of V. Then the steady flow of gas past the star will be axially symmetric. Thus we may write down the equations of continuity,

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}(e v r)+\frac{\partial}{\partial z}(e u)=0, \tag{4.10}
\end{equation*}
$$

the equations of motion,

$$
\begin{align*}
& v \frac{\partial v}{\partial r}+u \frac{\partial v}{\partial z}=k-\frac{1}{e} \frac{\partial p}{\partial r}, \tag{4.11}\\
& v \frac{\partial u}{\partial r}+u \frac{\partial u}{\partial z}=\mathcal{Z}-\frac{1}{e} \frac{\partial p}{\partial z}, \tag{4.12}
\end{align*}
$$

and the equation of state for the gas,

$$
\begin{equation*}
p=A_{e} \tag{4.13}
\end{equation*}
$$

In these equations, u, v are the velocity components of the gas parallel to the directions of z and r respectively, e is the density of the gas, p is the pressure of the gas, \mathbb{R}, \mathcal{Z} are the components of the gravitational. force of the star, i.e.

$$
\begin{equation*}
R=-\frac{\mu r}{\left(r^{2}+z^{2}\right)^{3 / 2}}, \quad Z=-\frac{\mu z}{\left(r^{2}+z^{2}\right)^{3 / 2}}, \tag{4.14}
\end{equation*}
$$

and A is a constant depending on the temperature of the gas. The speed of sound C in the gas is given by

$$
\begin{equation*}
c^{2}=\frac{d p}{d e}=A \tag{4.15}
\end{equation*}
$$

and so is constent throughout the rield.

The method used to study the flow was the 'method of characteristics'. The detailed theory of the method cannot be given here, but the derivation of the formulae used can be outlined.

We assume the existence of a velocity potential \varnothing such that

$$
u=\frac{\partial \phi}{\partial z}, \quad v=\frac{\partial \phi}{\partial r} .
$$

From (4.11) and (4.15) we obtain

$$
\begin{equation*}
\frac{\partial e}{\partial r}=\frac{e}{c^{2}}\left[R-v \frac{\partial v}{\partial r}-u \frac{\partial v}{\partial z}\right] \tag{4.16}
\end{equation*}
$$

and from (4.12) and (4.15) we obtain an expression for $\partial e / \partial z$. Substituting this and (4.16) in (4.10) we obtain
$R\left(u^{2}-c^{2}\right)+2 u v S+T\left(v^{2}-c^{2}\right)=v R+u Z+v c^{2} / r$,
where

$$
\begin{equation*}
R=\frac{\partial^{2} \phi}{\partial z^{2}}, \quad S=\frac{\partial^{2} \phi}{\partial+\partial z}, \quad T=\frac{\partial^{2} \phi}{\partial r^{2}} . \tag{4.17}
\end{equation*}
$$

How

$$
d u=R d_{z}+S d r, \quad d v=S d_{z}+T d r,
$$

$$
\begin{equation*}
R=(d u-S d r) / d z, T=(d v-S d z) / d r \tag{4.18}
\end{equation*}
$$

Substituting (4.18) in (4.17) we obtain $S=\frac{\left(u^{2}-c^{2}\right) d u d r+\left(v^{2}-c^{2}\right) d v d z-v R d z d r-u Z d z d r-v c^{2} d z d r / r}{\left(u^{2}-c^{2}\right)(d r)^{2}-2 u v d z d r+\left(v^{2}-c^{2}\right)(d z)^{2}}(4.19)$
as an expression for S at any point in the field. For a solution to the problem, S must be finite at all points
in the field. Hence, when the denominator is zero, the numerator must be also. The denominator is zero if

$$
\begin{equation*}
\frac{d r}{d z}=\frac{u v \pm c\left(u^{2}+v^{2}-c^{2}\right)^{\frac{1}{2}}}{u^{2}-c^{2}} . \tag{4.20}
\end{equation*}
$$

This equation represents two directions through any point, and hence it also represents two families of curves called 'characteristics', a member of each family passing through each point. It will be noticed that these curves are real only if the flow is supersonic, i.e. if $u^{2}+v^{2}>c^{2}$. If we introduce the new variables θ and m , where θ is the inclination of the streamline to the z-axis, i.e.

$$
\begin{equation*}
\tan \theta=v / u, \tag{4,21}
\end{equation*}
$$

and m, the lach angle, is derined by

$$
\begin{equation*}
c=\left(u^{2}+v^{2}\right)^{\frac{1}{2}} \sin m, \tag{4.22}
\end{equation*}
$$

then (4.20) becomes

$$
\begin{equation*}
\frac{d r}{d z}=\tan (\theta \pm m) . \tag{4.23}
\end{equation*}
$$

From (4.23) it follows that at any point the streamline bisects the angle between the characteristics. To obtain relations holding along the characteristies, we equate to zero the numerator of (4.19) and use the substitution (1.22). We also vrite $U^{2}=u^{2}+v^{2}$. After some reduction we obtain

$$
\begin{equation*}
\frac{d U}{U} \mp \tan m d \theta-\frac{d z}{\cos (\theta \pm m) \cos m}\left[\frac{\sin \theta \sin ^{2} m}{r}+\frac{\sin \theta}{U^{2}} R+\frac{\cos \theta}{U^{2}} Z\right]=0 \tag{4.24}
\end{equation*}
$$

for these relations. For isothermal flow c is a constant, and so from (4.22)

$$
d U / U=-\cot m d m .
$$

Substituting this in (4.24) and using (4.14), we find
$d m \pm \tan ^{2} m d \theta+\frac{\tan ^{2} m \sin m d z}{\cos (\theta \pm m)}\left[\frac{\sin \theta}{r}-\frac{\mu}{c^{2}} \frac{r \sin \theta+z \cos \theta}{\left(r^{2}+z^{2}\right)^{3 / 2}}\right]=0$, (4.25)
or, say,

$$
\begin{equation*}
d_{m}+\Theta_{ \pm} d \theta+Z_{ \pm} d_{z}=0 . \tag{4.26}
\end{equation*}
$$

The characteristic relations require further consideration on the $z-a x i s$, since it is necessary to determine the value of $\sin \theta / r$. On the $z-a x i s$ we have $r=0, v=0, \theta=0$; hence $S=\partial v / \partial z=0$.
Distinguishing values of variables on the z-axis by the suffix 0 , we see that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\sin \theta}{r}=\frac{1}{U_{0}} \lim _{r \rightarrow 0} \frac{U \sin \theta}{r}=\frac{1}{U_{0}} \lim _{r \rightarrow 0} \frac{v}{r}=\frac{1}{u_{0}}\left(\frac{\partial v}{\partial r}\right)_{0}=\frac{T_{0}}{u_{0}} . \tag{4.27}
\end{equation*}
$$

On the $z-a x i s,(4.17)$ takes the form

$$
\begin{equation*}
R_{0}\left(u_{0}^{2}-c^{2}\right)-T_{0} c^{2}=T_{0} c^{2}+u_{0} \mu / z^{2} . \tag{4.28}
\end{equation*}
$$

Now

$$
R_{0}=\frac{\partial u_{0}}{\partial z}=\frac{\partial}{\partial z} \frac{c}{\sin m_{0}}=-\frac{\cot m_{0}}{\sin m_{0}} \frac{\partial m_{0}}{\partial z} .
$$

Substituting this in (4.28), we have

$$
\begin{equation*}
\frac{T_{0}}{u_{0}}=\frac{1}{2}\left[-\cot ^{3} m_{0} \frac{\partial m_{0}}{\partial z}-\frac{\mu}{c^{2} z_{0}{ }^{2}}\right] . \tag{4.29}
\end{equation*}
$$

It is convenient to measure distances in terms of μ / c^{2}. Let us refer to the families of characteristic curves as the (-) family and the (+) family, according to the sign in (4.23). The method consists of taking an arbitrary curve $A D$ at a sufficient distance upstream Prom the star (at the oxigin), so that on it the flow may be considered to be almost undisturbed by the gravitational effect of the star (Fig. 4.2). A number of points A, B, C, D are taken on the curve. Consider the points C and D. Suppose through D a streight ine is dravm in the (-) characteristic airection and through C a straight line is drawn in the (+) characteristic direction, the directions being obteined at D and C on the assumption that the flov is uniform. Then these will intersect at a point $E_{1}\left(r_{1}, z_{1}\right)$. A pair of relations like (4.26) can then be used to obtain values of m and θ at $E_{1}\left(m, \theta_{1}\right.$, say), where the differentials in (4.26) are replaced by finite differences and the functions $\Theta_{ \pm}$ and $Z_{ \pm}$are evaluated at C and D. Knowing r_{1}, z_{1}, m_{1} and θ_{1}, a new point $E_{2}\left(r_{2}, z_{2}, m_{2}, \theta_{2}\right)$ oan be found from D and C using gradients $\theta \pm m$ and functions $\Theta_{ \pm}$ and $Z_{ \pm}$which are means of their values at D and $E_{\text {, }}$

Fig. 4.2.

Fig. 4.3.
and at C and E_{1}. Thus an iteration can be set up leading to a point E. This point is considered to be the intersection of the characteristics through C and D. In a similar manner, F is found from C and B, then G from F and E, and so on, until a region $A D H$ has been filled in.

In the undisturbed plow, $\theta=0$ and $U=$ constant $=V$, hence $m=$ constant. Thus in the undisturbed flow, each family of characteristics is a set of parallel straight lines. If the curve $A D$ is taken sufficiently upstrean, the charateristics in the region $A D H$ are almost straight. It can be seen from this discussion that the curve $A D$ is not completely arbitrary as it must intersect every characteristic of either family not more than once. The point I (being the mesh point adjacent to A on the $(+)$ characteriatic through A) requires special treatment because it is necessary to evaluate $\sin \theta / r$ at A. Since we assume uniform flow on $A D$, it follows that $\sin \theta / r \rightarrow 0$ at A.

The caleulation in the region on the other side of $A H$ is similar except that a different calculation is required to obtain points like J on the z-axis. We know that on the z-axis, $r=\theta=0$. Using the $(-)$ characteristic direction at I, we cen find a point J_{1} on the z-axis. The value of m at this point can be found by a relation
(4.26) using Θ_{-}_ and $Z_{\text {_ }}$ evaluated at I. Using the values at J_{1}, we find a point J_{2} such that $I J_{2}$ has a gradient which is the mean between the values of the gradient evaluated at I and at J_{1}. The value of m at J_{2} can be found with a relation (4.26) using values of Θ_{-}and $Z_{\text {_ }}$ which are the means of the values calculated at I and J_{1}. A difficulty arises, however, as it is necessary to calculate $\sin \theta / r$ at J_{1}. For this we use (4.27) and (4.29), which tell us that at each point on the z-axis

$$
\begin{equation*}
\frac{\sin \theta}{r} \rightarrow \frac{1}{2}\left(-\cot ^{3} m \frac{\partial m}{\partial z}-\frac{\mu}{c^{2} z^{2}}\right) . \tag{4.30}
\end{equation*}
$$

To evaluate $\partial m / \partial z$ we use

$$
\left(\frac{\partial m}{\partial z}\right)_{1}+\left(\frac{\partial m}{\partial z}\right)_{2}=2 \frac{m_{1}-m_{2}}{z_{1}-z_{2}},
$$

where suffix \mid is for values at J_{1} and suffix 2 is for values at A. The value of $\left(\partial \mathrm{m} / \partial_{z}\right)_{2}$ is easily found from (4.30), since, at $A, \sin \theta / r \rightarrow 0$. Hence

$$
\left(\frac{\partial m}{\partial z}\right)_{2}=-\frac{\mu}{c^{2}}\left(\frac{\tan ^{3} m}{z^{2}}\right)_{2}
$$

Hence, an iteration can be set up to find the point J The value of $\partial \mathrm{m} / \partial z$ at J must be stored for use when finding the next point on the axis, K.

Towards the end of the calculation, at L, the (-)
characteristics become steeply inclined to the z-axis and if carried far enough would turn right over. For this reason it is better to use $d r / \sin (\theta-m)$ instend of $d z / \cos (\theta-m)$ in the $(-)$ characteristic relation (4.25). In the calculations which were performed, the curve AD wes taken to be an are of the circle $r^{2}+z^{2}=4 \mu / c^{2}$, with modifications in some cases to suit the geometry of the characteristics. This boundary appeared to be sufficiently removed from the stax, because the characteristics in the region $A D H$ were almost straight. Sixteen points were taken on this boundary, and the ilow was investigated for four values of the initial Mach angle (i.e. four velues of V / C).

Fig. 4.5 shows the characteristic pattern in the case where $m=45^{\circ}$ in the undisturbed flow (i.e. $V / c=\sqrt{ } 2$). Only the characteristic pattern in the region of the star is shown. The initial boundary is not shown, as it is off the left-hand edge of the figure. Some of the (+) characteristics in the top lept corner of the figure have been omitted. This accounts for their irregular spacing in this region. It will be seen that the pattern has not been continued downards sufficiently to touch the positive z-axis. To have done so would have required a considerably smaller mesh size, owing to the rate at which the gravitational force changes near the star, and so a greatly
increased time for the calculation. The pattern has, however, been continued sufficiently for an estimate to be rade of the rate of accretion by the star. If material is captured by the star, then there rust be a stagnation point S on the positive z-axis. Since $u=v=0$ at a stagnation point, there must be a surface enclosing a small volume round S upen which the gas velocity is equal to the sound speed c. On this surface it follows from (4.22) that $m=90^{\circ}$. Since the stremm line through the stagnation point will out the z-axis at right angles, it follows that the $(+)$ characteristic will be parallel to the z-axis near S. (Incidentally, the $(-)$ characteristics will also be parallel to the z-axis on the small surface enclosing S .) Thus the dip in the (+) characteristic near C (Fig. 4.3) gives an indication of the position of S. The following consideration also gives an indication of the position of S. On any line parallel to the z-axis, θ is negative and $\theta \rightarrow 0$ as $|z| \rightarrow \infty$. For lines feiriy near the z-axis, θ will clearly have its minimum value in the region of the stagnation point. But this does not apply for lines very close to the z-axis, and consequently this method of determining S is less reliable and is only used as a check on the position of S determined by the above method. In Fig. 4.5 , the (+) characteristics in the region of C are approximately parallel to the z-axis.

The line $D C$ is the locus of the points of minimum θ on these characteristics. By extrapolating this line, the point E is obtained. Since, in Fig. 4.3, the dip in the characteristics is near this point, we may suppose that E is elose to the stagnation point S. Taking E as the estimated position of S, the rate of accretion by the star can be estimated by finding the stream-line $F G E$ which passes through E. The part $G E$ of the stream-1ine has to be guessed, with the help of the fact that the streamline at E cuts the z-axis at right angles, and with the knowledge of θ along the innermost $(+)$ characteristic. Having obtained the point G, the part $F G$ of the streamline aan be found, since the values of θ are known at all points of the mesh. The limiting distance a of F from the $z-a x i s$ is the radius of the 'tunnel' swept out of the gas by the star. The rate of accretion of gas by the star is then $\pi a^{2} V_{e_{\infty}}$.

The values of the radius a in terms of μ / c^{2} are given for the four inftial values of m in the accompanying table under the heading 'Found'. The values under '(4.9)' are those those calculated from the formule (4.9). Owing to the crudeness of the method by which the points E, G and F have been determined, the conclusion to be drawn from this table is merely that the calculations indicate a rate of accretion of the same order as would be given by formula

Table of $a c^{2} / \mu$

m	Found	(4.9)
20°	0.19	0.23
30°	0.45	0.42
45°	0.70	0.74
60°	0.90	0.99

(4.9). No importance should be attached to precise values in the column 'Found', since the method of determining E and G might well produce errors up to 50% in the value of a.

It is hoped that these calculations will help to bridge the gap between the cases of zero gas temperature and of zero star velocity, which have been previously studied, and so will strengthen the foundation of the accretion theory. It will be noted that in the case of gaseous accretion, there is no accretion column, and so the possibility of the inflowing material missing this axis cannot arise. It is also of mathematical interest that in the supersonic gaseous case the rate of accretion is determined by the steady-state equations, whereas in the mechenism of Bondi na Hoyle it is necessary to consider unsteady conditions before the precise accretion rate cen be obtained.

From the hydrodynamical point of view, the calculation may also be of interest. In Fig. 4.3, two of the (+) characteristics run together at A. This is an indication of the formation of a shock wave which extends in the direction $A B$.

The computation of the characteriatic mesh was performed on the Manchester University Mlectronic Computer. It took about four hours to compute the mesh shown in Fig. 4.3. A similar time was required for each of the other three anses.

Ohapter V: A Theory of Binary Star Formation.

The number of binary stars that have been observed is very considerable and in the neighbourhood of the sun, binary stars are about half as numerous as single stars. The problem of the origin of binary systems is therefore one of some importance to astronomy. There appear to be only three logically possible theories: the binaries may have been formed by the disintegration of originally single stars; they may have been born or created as double stars; or they may have been formed by the coming together of two originally single stars.

We shall consider briefly the three types of theory. The first or fission theory was for some time the accepted one of binary formation. However, later examination(20)(21) indicated that it is inadequate to explain the formation of binaries. The second theory which says that binary stars were formed by the condensation of two stars within each other ${ }^{7} \mathrm{~s}$ gravitational influence is now the theory receiving most attention. In the third theory, two originally independent stars are considered to come together and remain together. If we look upon the stars as particles, it can be shown that if two stars approach from a great aistance, they must necessarily separate again to a great aistance in the absence of forces other than their gravitational
attraction. Although the fact that stars are innte bodies may alter this gtatement in certain circumstances, the problem has never been seriously considered and all theories of this type assume that forces are brought into play in some other way. The most obvious way is by the introduction of a third star. Thus, if three stars approach from a great distance, it is possible for one to recede to infinity leaving the other two gravitationally bound together.

The theory we wish to consider here the second and third types, but the place of thesthir star is taken by the interstellar material. Hother nofas, two gtars are considered to approach from a great aftrance apart in a region of interstellar material. During the approach and subsequent encounter, each star will experience a resistance to its motion and so will lose energy. If this energy loss is sufficient, the stars will not again recede to a ereat distance apart but will remain gravitationally bound together. Once the binary has formed in this way, its orbital elements may be subsequently affected by the interstellar material as will be explained in the next chapter.

If we examine more closely the second theory of binary formation, we see that some similar process must occur because after the stars have condensed, their subsequent motions mast for some time be influenced by the star-forming
medium. It is during this early stage that we consider the theory here put forward to have been of most importance. Mathematical Investication.

In considering the dynamics of a binary forming encounter between two stars, as described above, we must imagine the stars to approach Prom a separation of the order of the local mean interstellax distance since at greater separations, each star is more likely to be influenced by other neighbouring stars. The maximum initial velocities of the stars neeessary to produce a capture will depend on the initial directions of motion and on the masses of the stars. A full investigation of the binary forming encounter would be quite difficult in view of the numerous parameters involved. However, a simple example has been investigated in order to find the order of magnitude of the initial velocities. The case considered is that of two stars of equal mass approsching with equal speeds in almost opposite directions. Starting with an initial separation d the initial speeds are found so that the stars never again separate to a distance of more than $\frac{1}{2} d$. The centre of mass of the stars is taken to be at rest in the medium which has density ρ.

Since the velocities of the stars are necessarily small. the accretion mechanism must be considered to be that in which all the material coming within the cut-off distance of
either star is captured by it so that the accretion rate is given by (2.37) and there is no resistive foree of the form (1.33). However, owing to the presence of the other star, we would expect the cut-off distance for either star to be reduced to about half the separation of the two stars at any instant. With this modification we can write down the equations of motion for oither of the stars. Let the frame of reference be such that the origin O is at the mass centre of the stars and let $O x$ pass through the starting points of the stars. Then the motion of either star will be almost rectilinear and coineident with $O x$. Let x be the position, v the velocity along $O x$ and m the mass of one of the stars at time t, then

$$
\begin{equation*}
\frac{d x}{d t}=v \tag{5.1}
\end{equation*}
$$

The equation of motion is

$$
\begin{equation*}
\frac{d(m v)}{d t}=\frac{G m^{2}}{4 x^{2}} \tag{5.2}
\end{equation*}
$$

when the stars are approaching, where G is the constant of gravitation. The modified rate of accretion is, from (1.37)

$$
\begin{equation*}
\frac{d m}{d t}=\pi x^{2} e|v| . \tag{5.3}
\end{equation*}
$$

Consider the star which is initially at $x=-\frac{1}{2} \alpha$. Then the velocity of this star will be positive so dividing (5.3)
by (5.1) gives

$$
\frac{d m}{d x}=\pi e^{x^{2}}
$$

whence

$$
\begin{equation*}
m=\frac{1}{3} \pi e x^{3}+M \tag{5.4}
\end{equation*}
$$

where M is the mass of the star when it reaches the origin. From (5.2).

$$
m \frac{d v}{d t}+v \frac{d m}{d t}=\frac{G_{m^{2}}}{4 x^{2}}
$$

and using $(5.1),(5.3)$ and (5.4), this becomes

$$
\frac{d\left(v^{2}\right)}{d x}+\frac{2 \pi e x^{2}}{M+\frac{1}{3} \pi e x^{3}} v^{2}=\frac{G\left(M+\frac{1}{3} \pi e x^{3}\right)}{2 x^{2}}
$$

of which the solution is

$$
v^{2}=\frac{1}{\left(M+\frac{1}{3} \pi e^{x^{3}}\right)^{2}}\left[G\left(-\frac{M^{3}}{2 x}+\frac{\pi_{P}}{4} M^{2} x^{2}+\frac{\pi^{2} e^{2}}{30} M x^{5}+\frac{\pi^{3} e^{3}}{432} x^{8}\right)+A\right]
$$

A being a constant of integration. Now (5.4) implies that as the stars approach each other, they accrete the material lying within the cone whose vertex is at O and whose semiangle is $\pi / 4$. It is supposed that the stars narrowly miss a collision at O and then proceed and come to rest at $x= \pm \frac{1}{4} d$. Since after passing O each star will be entering a region which has just been cleared of material by the other star, we assume that the stars do not accrete between O and their first position of rest. Thus, in this
\qquad

$$
(d . d)\left[A+\left(-x^{5} \frac{g^{2} \pi}{5 \varepsilon+}+2 x M^{5} \frac{s^{5} \pi}{0 \varepsilon}+x^{5} M \frac{2 \pi}{4}+\frac{2 M}{x s}\right) v\right] \frac{1}{s\left(\varepsilon_{x g} \pi \frac{1}{2}+M\right)}={ }^{s} v
$$

Thus there is a limit above which a must not go. This limit is obtained by equating to zero the cubic expression in (5.7).

part of the motion, we have from elementary considerations for else by putting $e=0$ and changing the sign of G in (5.5)).

$$
\begin{equation*}
v^{2}=\frac{G M}{2 x}+B, \tag{5.6}
\end{equation*}
$$

B being a constant which is determined by the fact that $v=0$ at $x=\frac{1}{4} d$. So $B=-\frac{2 G M}{d}$.

The condition at the origin is that at $x=\delta$ (where δ is a small positive quantity). v^{2} given by (5.6) must be the same as v^{2} at $x=-\delta$ given by (5.5). From this it follows that

$$
A=-\frac{2 G M^{3}}{d}
$$

To obtain the maximum initial velocity of a star we pat $x=-\frac{1}{2} d$ in (5.5). We obtain

$$
\begin{gather*}
\left.v^{2}=\frac{G e d^{2}}{\left(\alpha-\frac{\pi}{24}\right)^{2}}\left[-\alpha^{3}+\frac{\pi}{16} \alpha^{2}-\frac{\pi^{2}}{960} \alpha+\frac{\pi^{3}}{110592}\right]\right\} \tag{5.7}\\
\alpha=M / e d^{3}
\end{gather*}
$$

which gives v for various values of M. It will be noted that when α is large enough, v^{2} will be negative owing to the negative coefficient of α^{3} in (5.7). 人 The solution is approximately $\alpha=0.135$. The physical significance is that stars with $\alpha>0.135$ aannot be brought to rest at a separation of $\frac{1}{2} d$ even if their initial velooities (at separation () are zero.

The accompanying tables give the maximum initial velocities and resulting masses (M) of the stars undergoing such a binary forming encounter, for given initial masses and interstellar material densities. The initial masaes are such that the diagonal figures in the tables correspond to $\alpha=0.135$. For these tables, the value of d was taken to be half a parsec. This value was taken because although the present mean interstellar distance in the neighbourhood of the sun is about one parsec, if the binary stars were formed by the method suggested then the mean interstellar distance of the original single stars must have been rather less.

The initial velocities given in the table are unfortunately too large for the ascumption about the accretion rate to be satisfied. The maximum velocity for this assumption to hold is given by the condition (1.35). Applying this condition at the point $x=-\frac{1}{2} d$ we obtain the velocities given in brackets in the table. We must therefore look upon these as representing the order of magnitude of the maximum velocities. It may be thought that by using the appropriate aceretion conditions for higher velooities, a higher maximum could be obtained. It is not likely thet much can be ceined in this direction however because as Fig. 1.3 shows, the accretion rate and effective resistance to the star fall off rapialy after the point D which represents the veloeity given by condition (1.35).

Table of masses of stars resulting from the binary forming encounter of stars of initial separation $\frac{2}{2}$ parsec and of given initial masses in a medium of given density.
e
Initial Masses (in Solar Masses)
emo/c.e.

10^{-22}	0.023	(0.029)	(0.091)	(0.712)
10^{-21}	0.222	0.230	(0.290)	(0.91)
10^{-20}	2.21	2.22	2.30	(2.90)
10^{-19}	22.1	22.1	22.2	23.0

Table of maximum initial velocities ($\mathrm{km} / \mathrm{sec}$) of stars in the binary forming encounter.
e

Initial Masses (in Solar Masses)

0.00069
0.0069
0.069
0.69
mosec

10^{-21}
2.13
(0.0035)
0.0945

10-20
70.1
6.75
0.2998
(0.0035)
(0.011)
(0.035)
$\begin{array}{llccc}10^{-19} & 2240 & 222 & 21.3 & 0.945 \\ & (0.0035) & (0.011) & (0.035) & (0.11)\end{array}$

The bracketed velocities are very small and consequently this binary forming encounter process oan only be considered to apply to stars which are slmost at rest initially. But this is all that is necessary for the appliaation to the second theory. fThis point, ineidentally, shows that the above reotilinear treatment of the problem is all that is necessary.) The next point to note is that the resulting masses of the stars are almost independent of the initial masses. The resulting masses are therefore only dependent on the density e and also on d, being proportional to d^{3}. To obtain a binary conaisting of two components of solar mass we would require a density of between 10^{-21} and 10^{-20} gn./c.c. (with $\alpha=\frac{3}{2}$ parsec). This is high compared with densities of elouds observed at present (10 0^{-22} m./e.e.) but it must be remembered that when the binaries were formed, considerably different conditions of the interatellar material must have prevailed. of course, for a given value of e, any desired resulting mass can be obtained by a suitable choice of d. The importance of the presont calealations is that the masses of observable binaries ean be obtained with quite reasonable values of e and d.

In the table of resulting masses, the bracketed figures are included for the cases which do not result in captures. It is seen, of course, that in all cases the masses of the stars are increased. It follows that if a star does not form a binary in its first encounter with another star, then
it can never again do so in a medium of the same density except possibly by a three body encounter. It also follows that if a binary forms, it oannot subsequently pick up a third star to form a tertiary system, under the influence of the medium alone. It is however possible for three or more initial condensations to become mutually attracted and form a multiple system. To investigate the case of three condensations, we may consider three equal condensations at the corners of an equilateral triangle and examine their motions as they approsch their common centre of mass through the medium. If we do this, we obtain an expression like (5.7) except that G is increased by a certain factor. Thus, the initial velocities of approach v, as given by (5.7), aro no smaller than for a binary forming encounter. Similarly for four condensations originally at the corners of a tetrahedron.

When a binary forming encounter of the type discussed above occurs, the mass of material acoreted by the two stars is about a half of that originally contained within a sphere of diameter d. Consequently, there will still be sufficient interstediar material left to form a resistive medium for further accretion effects to oceur. The formation of multiple systems leaves somewhat less unaccreted material.

In the above treatment of the binary forming encounter, the stars subsequently form a binary star whose components have highly elongated orbits. If the stars originally have
slight lateral velocities off $O x$, then the stars will follow paths which are curved but none-the-less elose to O_{x}. so that the above treatment may still be expected to hold approximately. However, the orbits of the resulting binaries will be elliptic, or in the extreme case, circular. It is important to consider the maximum separation in such eases. Consider a binary with an elongated orbit and one with a ciroular orbit. Let the stars be of equal mass m and in the elongated orbit, let the maximum separation be $2 R$. Then the energy of the binary is $-G \mathrm{~m}^{2} / 2 R$. In the circular orbit, the energy is

$$
\frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}-\frac{G m^{2}}{2 r}
$$

where v is the velocity of each gtar and r is the radius of the orbit. But $v=\sqrt{G m / 4 r}$ (see equation (6.1)) so the enerey is $-G m / 4 r$. Equating these energies we have $R=2 r$ so that in a binary forming encounter, if the stars separate to $\frac{1}{2} d$ in the elongated case, they would separate to about $\frac{1}{4} d$ in the eiraular case and to intermediate distances in the elliptic case.

Effect of Unequal Initial Masses.
If the masses of the condensations are not equal initially, let the masses at any instant be m_{1}, m_{2}, the positions x_{1}, x_{2} and the inward directed velocities v_{1}, v_{2} respectively. Then (5.2) becomes

$$
\frac{d\left(m_{1} v_{1}\right)}{d t}=\frac{G-m_{1} m_{2}}{\left(x_{1}-x_{2}\right)^{2}}=\frac{d\left(m_{2} v_{2}\right)}{d t}
$$

from which it follows that at any instant,

$$
\begin{equation*}
m_{1} v_{1}=m_{2} v_{2}+\text { constant. } \tag{5.8}
\end{equation*}
$$

If, in this case, we consider the masses to tunnel out regions of radii equal to their aistances from the neutral point of the gravitational field (i.e. the point where the gravitational attraction of m_{1} and m_{2} are equal and opposite) then the accretion rate for m_{1} is given by

$$
\begin{equation*}
\frac{d m_{1}}{d t}=\pi e v_{1}\left[\frac{\sqrt{m_{1}}\left|x_{1}-x_{2}\right|}{\sqrt{m_{1}}+\sqrt{m_{2}}}\right]^{2} . \tag{5.9}
\end{equation*}
$$

If the condensations start from rest, the constent in (5.8) is zero and so (5.9) and the corresponding expression for $d m_{2} / d t$ are equal. Thus during the encounter, both masses accrete equally and since the total mass of the accreted material ereatly exceeds the masses of the initial condensations, it follows that the masses of the stars after the encounter are practically equal. If, however, the initial velocities are not zero, the aceretion rates will. be unequal and so some difference may be expected in the resulting masses. It is not possible to estimate the extent of this difference in general but a rough integration of the equations on a hand machine for unequal initial masses with velocities of the required order has given
resulting stars of mass-ratio 1:2. It is difficult without further investigation to say whether mass-ratios as large 23 1:10 could be obtained, but this process can at any rate account for some differences between the masses of the components of the resulting binaries.

time of Encounter.

Returning to the case of equal initial masses, we shall estimate the time required for the condensations to move from their initial positions to their positions of minimum separation. For definiteness we shall consider the case where the initial velocities are zero and $\alpha=0.135$. Then the time is

$$
\int_{-d / 2}^{0} \frac{d x}{v}=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{-0.5 d}^{-0.375 d} \frac{d x}{v}, \quad I_{2}=\int_{-0.375 d}^{0} \frac{d x}{v} .
$$

I_{2} was estimated graphically to be $1.31 / \sqrt{G e}$. To estimate I_{1}, the approximate behaviour of v near $x=-\frac{1}{2} d$ is required. We can get this by putting $x=-\frac{1}{2} d+\delta$ in the differential equation for v^{2}. This equation becomes

$$
\frac{d\left(v^{2}\right)}{d \delta}+\frac{1}{2} \frac{\pi e d^{2}}{m_{0}} v^{2}=\frac{2 G m_{0}}{d^{2}}
$$

of which the solution is

$$
\begin{equation*}
v^{2}=\frac{2 G m_{0}}{d} \cdot \frac{\delta}{d}, \tag{5.10}
\end{equation*}
$$

where m_{0} is the initial mass of a condensation. The true expression for v^{2} is greater than this, so using (5.10) to estimate I_{1} will not give an underestimate of the time. Using (5.10) and the iact that $m_{0}=\operatorname{cd}^{3}\left(\alpha-\frac{\pi}{24}\right)$ we obtein $I_{1}=7.81 / \sqrt{G e}$ so that the total time of the encounter is $9.12 / \sqrt{G e}$. For $e=10^{-22}$ gm./e.c. this is 1.12×10^{8} yeara and for $c=10^{-20}$ gm./c.c. it is 1.12×10^{7} yeazs.

Conclusion.

We may summarize the results of the present investigation by saying that our theory of binery formation applied st an early stage of stellar evolution is consistent with the eccretion theory and under suitable cireumatances, systems with three or four components can also be formed. If the situation investigated is in any way related to what oceurred wher the stars first condensed we may draw the following conclusions: The possibility of a given condensation becoming a component of a binary will depend on the mass which it can attain before becoming attracted particularly to one of its neighbours. If it is attracted early in its life it has a high chance of becoming a binary component. In this case the mass of the resulting component is practicelly independent of the mass of the originsl condensation and depends only on the interstellar meterial density and on its original distance from its prospective partner (but, of course, the
mass of the component may subsequently be altered by further accretion). But if the mass of a condensation increases past a certain value before becoming particularly attracted to a neighbour, there is no chance of it becoming a binary component except by a three body encounter.

A Simple Statistical Theory of Binary Star Formation.

According to the theory developed above, once a condensation has had an encounter with another, which does not result in capture, there is no chance of the condensation becoming a component of a binary by a further encounter. This was not realised in the early stages of the development of this theory and consequently a simple statistical theory was worked out on the assumption that the chances of a star having a binary forming encounter does not vary with time. As this theory is mathematically interesting, it is included here.

We consider the stars to be contained in a number of "star systems", each system containing r stars, where r may be any positive integer. Thus if $+=1$, the system is a single star. If $r=2$, the system is a binary star and so on.

Let $N(t)=$ number of star systems per unit volume at time t $N_{r}(t)=$ number of star systems, containing T stars, per unit volume at time t,
so

$$
N=\sum_{r=1}^{\infty} N_{r} .
$$

We assume that close encounters occur between the star systems and that such encounters may result in the two systems becoming bound together to form a single system. Since the number of elose encounters per unit volume per unit time will be proportional to N^{2} and since a fixed proportion of these close encounters may be expeoted to result in captures, we may take αN^{2} a.s the number of eaptures per unit volume pea unit time where α is a constent. At such a cepture, two syatems combine to form one so that the total number of sygtems is reduced by one at each capture. Hence

$$
\begin{aligned}
d N & =-\alpha N^{2} d t \\
\therefore \frac{d N}{d t} & =-\alpha N^{2} .
\end{aligned}
$$

The probability that a given capture is between two single stars is $\left(N_{1} / N\right)^{2}$ since N_{1} / N is the probability that each system is a single ster. The probability that a given copture is between a single star and a binary is $2 N_{1} N_{2} / N^{2}$ and so on. Thus

$$
d N_{1}=-\alpha N^{2}\left[2\left(\frac{N_{1}}{N}\right)^{2}+\frac{2 N_{1} N_{2}}{N^{2}}+\frac{2 N_{1} N_{3}}{N^{2}}+\ldots\right] d t .
$$

The coefficient 2 of $\left(N_{1} / N\right)^{2}$ is due to the fact that each capture between two single stars removes two single stars.

$$
\begin{aligned}
\therefore \frac{d N_{1}}{d t} & =-\alpha N^{2} \frac{2}{N^{2}} N_{1} N \\
& =-2 \alpha N_{1} N
\end{aligned}
$$

Similarly we obtain

$$
\begin{aligned}
& \frac{d N_{2}}{d t}=\alpha\left(N_{1}^{2}-2 N N_{2}\right) \\
& \frac{d N_{3}}{d t}=\alpha\left(2 N_{1} N_{2}-2 N N_{3}\right) \\
& \frac{d N_{4}}{d t}=\alpha\left(2 N_{1} N_{3}+N_{2}^{2}-2 N N_{4}\right)
\end{aligned}
$$

Let $\quad N_{4}(1+3)$ be the number of 4-systems formed by collisions between a single star and a 3-system and let $N_{4(2+2)}$ be the number of $4-s y s t e m s$ formed by collisions between two binaries. Then

$$
\begin{aligned}
& \frac{d N_{4(1+3)}}{d t}=\alpha\left(2 N_{1} N_{3}-2 N N_{4(1+3}\right) \\
& \frac{d N_{4(2+2)}}{d t}=\alpha\left(N_{2}^{2}-2 N N_{4(2+2)}\right)
\end{aligned}
$$

Putting $N_{1}=n, N_{r}=O(r=2,3, \ldots)$ at $t=0$ we obtain the numbers of systems per unit volume at $t=T$ as in the second column of the accompanying table. The present observed value of N_{2} in the neighbourhood of the sun is about a

hale of the value of N_{1}. So putting

$$
\frac{1}{2}=\frac{N_{2}}{N_{1}}=1-\frac{1}{n \xi}
$$

where $\xi=\frac{1}{n}+\alpha T$, we get $\frac{1}{n \xi}=\frac{1}{2}$.
At the value of T satisfying this, the numbers of systems per unit volume are given in the third colum of the table.

To obtain the average ages of the various types of system at $t=T$, proceed as follows: The number of r-systems lost in time $d \tau$ is given by $-2 N \alpha$. $N o d \tau$. Let a certain set of r-systems in existence at time t be marked and let $n_{r o}$ be the number of them at time t and let n_{r} be the number of them subsequently, then

$$
\begin{aligned}
& d n_{r}=\frac{n_{r}}{N_{r}}\left(-2 N_{\alpha} \cdot N_{r} d \tau\right) \\
& \therefore \frac{d n_{r}}{d \tau}=-2 \alpha N n_{r} \\
& \therefore \log n_{r}=-2 \alpha \int N d \tau \\
& \log \left(\frac{n_{r}}{n_{r 0}}\right)=-2 \alpha \int_{t}^{T} N d \tau \\
& =-2 \log \left(\frac{\frac{1}{n}+\alpha T}{\frac{1}{n}+\alpha t}\right) \\
& \frac{n_{r}}{n_{r 0}}=\left(\frac{\frac{1}{n}+\alpha t}{\frac{1}{n}+\alpha T}\right)^{2}=\frac{N^{2}(T)}{N^{2}(t)} .
\end{aligned}
$$

The average age of the r-systems in existence at time T is

$$
\frac{1}{N_{r}(T)} \int_{0}^{T}(T-t)\left(\frac{N^{2}(T)}{N^{2}(t)}\right) d N_{r}^{*}
$$

where $N_{r}^{x}(t)=$ number of r-systems per unit volume at time t, including those which are incorporated in systems of Larger r. The comnection between N_{r} and $N_{r}{ }^{*}$ is

$$
\frac{d}{d t}\left(N_{r}{ }^{*}-N_{r}\right)=2 \alpha N N_{r} .
$$

Using this, the average age becomes

$$
\frac{N^{2}(T)}{N_{r}(T)} \int_{0}^{T} \frac{N_{r}(t) d t}{N^{2}(t)} .
$$

This is given in the fourth column of the table when $n \xi=2$.

Chapter VI: Interactions between Binary Stars and Interstellar Material.

In problems involving accretion by a single star, we have seen that there is essentially only one centre of gravitation, namely the star itself. When we come to consider accretion by binary stars, there are two such centres and this fact renders on exact mathematical treatment extremely difileult. It is simple to show, however, that the accretion mechanism must be considerably modified in the case of binary stars. In this chapter, these modifications are considered and an attempt is made to estimate the dynamical effects of accretion on binary stars by means of a somewhat simplified treatment.

Consider a binary star consisting of two stars A and B each of mass m, rotating in a common circular orbit of radius r with its centre at rest relative to the interstellar materiel. Then the equation of motion is

$$
\frac{G_{m m}}{(2 r)^{2}}=\frac{m v^{2}}{r}
$$

where v is the velocity of ether star. Thus

$$
\begin{equation*}
v=\sqrt{\frac{G m}{4 r}} \tag{6.1}
\end{equation*}
$$

Consequently

$$
\frac{2 G m}{v^{2}}=8 r
$$

In order for the accretion rate by each component star to be that given in equation (1.36), it is necessary for an acoretion column to extend to a distance 8 r behind the star. This is clearly impossible, for neither star can capture the meterial at the centre 0 of the binary orbit since this is equally attracted by each star. Material originally nearer to A then 0 may be captured by A. Let the tangent to the orbit of \mathbb{A} at A be $A C$. Ignoring the other star let us find where material originally near 0 would hit AC. For this we use equation (1.10), putting $\sigma=r$ and $\mu / v^{2}=4 r$. Hence $x=r / 8, x$ being the distance from A to the point where the said material hits AC. The rate of accretion is therefore much less than that for a single star moving with the same velocity. This calculation show, however, that all the material that can possibly be captured by A, hits AC very close to the gtar and provided the collisions are inelastic, all this material will eertainly be gravitationelly bound to the star. Thus, as the stars revolve, they will each tunnel out a section of radius r So unless there is some means of replacing the material captured, the region of space occupied by the binary will soon be cleared of interstellar material.

In the case of a binary of Iarge separation, of the order of a quarter to one-half of the mean interstellar distance, the possibility of replecing the material captured
w111 depend on the motion of the binary relative to the interstellar material and relative to its neighbours. In the simplest case for a binary at rest relative to both the interstellar material and its neighbours, the gravitation of the binary as a whole will draw in the material from the surrounding space. But there is a limit to this process owing to the cut-off efiect of the neighbouring stars. Thus, the accretion process can only occur for a limited period and will then cease. In the more realistic eases where the binary is moving relative to the interstellar material and relative to its neighbours, the accretion process can be continued. This is partly due to the fact thet the binary will be continually moving into fresh regions of interstellar material. There is also the possibility that the sphere of influence of the binary may be extended due to the neighbours moving more rapialy relative to the interstellar material and therefore being less capable of capturing it .

In the case of binaries of small separation, they may be considered as a single star as far as distant material is concerned. An accretion system will then form as for a single star. It is only when we consider what happens to the material flowing in along the axis towards the binary that we need to take account of the fact that there are really two stars. This material will be heading for the
centre of mass of the binary, but since there will be nothing solid there to stop it, it will continue to move past the centre of mass under its momentum. As soon as it has passed the centre of mass, it will be slowed down and pulled back. The result will be that a steady state is established In wich a dense cloud is formed round the stars. These will continuously tunnel out material from this cloud but it will be replaced by the material flowing in along the axis. There are thus two accretion stages: the large scale one in which the binary is considered as a single star and the small scale one in which each star captures material from a cloud which forms round the binary. It will be noted that the centre of mass of the binary is at rest in this cloud. If the interstellar material is gas, the assumption of inelastic collisions is equivalent to assuming the gas cools quickly so that pressure does not develop to any appreciable extent. The material forming the cloud round the binaries will therefore be in a similar condition of temperature and pressure as that in undsturbed space. It will, however, be more dense.

Before going on to discuss the effects of accretion in more detail, we shall mention the conditions which must be satisilied in order that a binary may be considered to be "oi small separation" in the sense used above. The separation must be small compared with
(1) Half the local mean interstellax distance;
(2) The distance Prom the binary to the neutral point on the accretion column of the large seale accretion process (1.e. $2 \mu / \nu^{2}, \mu$ being the total mass of the binary x constant of gravitation and v being the velocity of the mass centre of the binary relative to the interstellar material.)

The derinition of "small" is somewhat arbitraxy but Irom the geometry of the problem, the mechanism appears to work if the separation does not exceed 5 per cent of the lesser of (1) and (2). So in the recommended units, the maximum separation for a binary of small separation is the lesser of $\frac{1}{40}$ (supposing the mean interstellar distance to be a parsec) and $M / 10 v^{2}, M$ being the total mass of the binary. For example, consider a binary consisting of two stars each of unit mass. If the velocity of the binary relative to the interstellar material is less than about $0.3 \mathrm{~km} . / \mathrm{sec}$, , the maximum separation is $\frac{1}{40} \quad(=5000$ astronomical units). If the velocity is 50 units (about $4 \mathrm{~km} . / \mathrm{sec}$.$) the maximum separation is only \frac{1}{12500}(=16$ astronomical units). The small values of v are most interesting as they give maximum accretion effects and it is for small values of v that the maximum allowable separation is greatest.

The Sharing of Aecreted Material by the Unequal Components of

a Binary of Small Separation.

Consider a binary of small soparation consisting of components of masses m_{1}, m_{2} describing circular orbits of radii r_{1}, r_{2} respectively about their mass centre with velocitios v_{1}, v_{2} and let s be the separation, i.e.

$$
s=r_{1}+r_{2}
$$

We have

$$
\begin{equation*}
\frac{v_{1}}{v_{2}}=\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}} . \tag{6.2}
\end{equation*}
$$

Let R_{1}, R_{2} be the distances of the components from the point D where the attractions of the components are equal, then

$$
\begin{equation*}
\frac{G m_{1}}{R_{1}^{2}}=\frac{G m_{2}}{R_{2}^{2}} \quad \text { and } \quad R,+R_{2}=s \tag{6.3}
\end{equation*}
$$

As previously explained, we consider a cloud to form around the binary and each component sweeps up the material in circular sections of radii R_{1}, R_{2}. Thus if C_{c} is the density of the cloud,

$$
\frac{\text { accretion by } m_{1}}{\text { accretion by } m_{2}}=\frac{\pi R_{1}^{2} e_{c} v_{1}}{\pi R_{2}^{2} e_{c} v_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}} \cdot \frac{v_{1}}{v_{2}}
$$

$$
\text { Prom }(6.2),(6.3) \quad=\frac{m_{1}}{m_{2}} \cdot \frac{m_{2}}{m_{1}}=1 \text {. }
$$

Thus the accreted material is shared equally between the components. This statement breaks down if there is a grent difference between the masses of the components because in this case, the centre of mass of the system will be close to
or within the star of greater mass. Thus the material. from the large-scale accretion system will fall airectly on to this star and no cloud will form. So it appears that for binaries of small separation, the accretion process tends to equalise the masses of the components it these were originally nearly equal and it tends to increase the aisparity of the masses if these were originally considerably diferent.

It must be made clear that the above discussion is only intended to be approximate, as for example, when it is said that the components of the binary sweep out efreulaz sections of madif R_{1}, R_{2}. Such a pictuxe of the process is obviously not exact since the circle of larger radius will be rotated about a line which intersects it. Consequently the statement, that the scoreted material is shared equaliy between the components can only be expected to apply accurately when the compononts are almost equal. just as the statement that all of the material is captured by one of the components is only true when the disparity in the component masses is very greet.

We may here obtain an expression for the density e_{c} of the cloud which forms around the binary. The equations of motion for the components (ignoring vecretion effects) are

$$
\begin{equation*}
\frac{m_{1} v_{1}^{2}}{r_{1}}=\frac{m_{2} v_{2}^{2}}{r_{2}}=\frac{G m_{1} m_{2}}{s^{2}} \tag{6,4}
\end{equation*}
$$

Hence

$$
v_{1}^{2}=G m_{2} r_{1} / s^{2}
$$

but from (6.2)

$$
\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}} \quad \therefore \frac{r_{1}}{r_{1}+r_{2}}=\frac{m_{2}}{m_{1}+m_{2}}
$$

1.e.

$$
\begin{align*}
\frac{r_{1}}{s} & =\frac{m_{2}}{m_{1}+m_{2}} \\
\therefore \quad v_{1}^{2} & =G m_{2}^{2} / s\left(m_{1}+m_{2}\right) \tag{6.5}
\end{align*}
$$

To ind e_{c}, the accretion by m, is

$$
\pi R_{1}^{2} e_{c} v_{1}=A / 2
$$

A being the total accretion by the binary per unit time, from the large scale system. From (6.3),

$$
\begin{aligned}
\frac{R_{1}}{R_{2}} & =\sqrt{\frac{m_{1}}{m_{2}}} \\
\therefore \frac{\sqrt{m_{1}}}{\sqrt{m_{1}}+\sqrt{m_{2}}} & =\frac{R_{1}}{R_{1}+R_{2}}=\frac{R_{1}}{s} \\
\therefore \quad \frac{A}{2} & =\pi R_{1}^{2} e_{c} v_{1} \\
& =\frac{\pi s^{2} m_{1}}{\left(\sqrt{m_{1}}+\sqrt{m_{2}}\right)^{2}} e_{c} \sqrt{\frac{G m_{2}^{2}}{s\left(m_{1}+m_{2}\right)}} \\
e_{c} & =\frac{A\left(\sqrt{m_{1}}+\sqrt{m_{2}}\right)^{2} \sqrt{m_{1}+m_{2}}}{2 \pi \sqrt{G} s^{3 / 2} m_{1} m_{2}} .
\end{aligned}
$$

The cloud density e_{c} is in general substantially greater than that of the undisturbed interstellar material For a binary of given total mass and moving with a given velocity. e_{c} is least when the masses of the components
are equal. C_{c} of course depends on the material A arriving from the large scale accretion system and this in tum depends on the velocity of the binary as a whole relative to the interstellar material. Consider for example a binary consisting of equal components of unit mass and at a separation $s=1 / 12500$ parsec. Then, when the velocity of the binary is 2.8 (in the recommended units), $\quad e_{c}=1.97 \times 10^{6} \mathrm{e}$ but when the velocity is 50 , $e_{c}=3.58 \times 10^{2} \mathrm{e}$.

Cc is less, the greater the separation S. If the velocity of the binary is 2.8 , then when

$$
\begin{array}{ll}
s=1 / 12500, & e_{c}=1.97 \times 10^{6} e \\
s=1 / 40, & e_{c}=3.58 \times 10^{2} \mathrm{e} .
\end{array}
$$

but when
The Rate of Reduction of the Separation of the Components of an Accreting Binary.

Suppose that the binary with components m_{1}, m_{2} considered in the last section is involved in an accretion process such that the components accrete at rates M_{1}, M_{2} and experience forces F_{1}, F_{2} in a direction opposite to their motion and tangential to their orbits, respectively. We wish to know the rate at which the separation of the components 18 reduced by the process. It is assumed that the time required for the process to have an appreciable effect is larger than the period of revolution of the binary.

Referring to the angular momentum of the binary about its
mass centre as Φ, we use the fact that the rate of change of angular momentum of the binary is equal to the moment of the sores acting, 1.e.

$$
\frac{d \Phi}{d t}=-F_{1} r_{1}-F_{2} r_{2} .
$$

Now

$$
\begin{aligned}
\Phi & =m_{1} r_{1} v_{1}+m_{2} r_{2} v_{2} \\
& =m_{1} \cdot \frac{s m_{2}}{m_{1}+m_{2}} \cdot \frac{\sqrt{G} m_{2}}{\sqrt{s\left(m_{1}+m_{2}\right)}}+m_{2} \cdot \frac{s m_{1}}{m_{1}+m_{2}} \cdot \frac{\sqrt{G} m_{1}}{\sqrt{s\left(m_{1}+m_{2}\right)}} \\
& =\frac{\sqrt{G s} m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

So $\quad \frac{d \Phi}{d t}=\sqrt{G}\left\{\frac{1}{2} \frac{1}{\sqrt{s}} \frac{d s}{d t} \cdot \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}}+\frac{\sqrt{s} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}} \frac{d m_{1}}{d t}+\frac{\sqrt{s} m_{1}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}} \cdot \frac{d m_{2}}{d t}\right.$

$$
\left.-\frac{1}{2} \frac{\sqrt{5} m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{3 / 2}}\left(\frac{d m_{1}}{d t}+\frac{d m_{2}}{d t}\right)\right\}=-F_{1} r_{1}-F_{2} r_{2}
$$

Now $\quad \frac{d m_{1}}{d t}\left(\frac{\sqrt{G s} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}}-\frac{\sqrt{G s} m_{1} m_{2}}{2\left(m_{1}+m_{2}\right)^{3 / 2}}\right)$

$$
\begin{aligned}
& =M_{1} \frac{\sqrt{G s} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}}\left(1-\frac{m_{1}}{2\left(m_{1}+m_{2}\right)}\right) \\
& =M_{1} \frac{\sqrt{G s} m_{2}}{2\left(m_{1}+m_{2}\right)^{3 / 2}}\left(m_{1}+2 m_{2}\right) \\
& =M_{1} \frac{\sqrt{G s} m_{1} m_{2}}{2\left(m_{1}+m_{2}\right)^{3 / 2}}+M_{1} r_{1} v_{1}
\end{aligned}
$$

Similarly for the terms in $d m_{2} / d t$. So (6.7) becomes

$$
\begin{aligned}
& \frac{\sqrt{G}}{2} \frac{1}{\sqrt{s}} \frac{d s}{d t} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{\frac{1}{2}}}=-\left(F_{1}+M_{1} v_{1}\right) v_{1}-\left(F_{2}+M_{2} v_{2}\right) r_{2}-\frac{\left(M_{1}+M_{2}\right) \sqrt{G s} m_{1} m_{2}}{2\left(m_{1}+m_{2}\right)^{3 / 2}} \\
& \therefore-\frac{1}{s} \frac{d s}{d t}=\frac{2 s}{G m_{1} m_{2}}\left[v_{1}\left(F_{1}+M_{1} v_{1}\right)+v_{2}\left(F_{2}+M_{2} v_{2}\right)\right]+\frac{M_{1}+M_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

The approximate time for a 10 per cent reduction of the separation is $\delta t=\frac{1}{10} /-\frac{1}{s} \frac{d s}{d t}$. If $-\frac{1}{s} \frac{d s}{d t}$ is in the recommended units,

$$
\begin{equation*}
\delta t=\frac{1.23 \times 10^{6}}{\left(-\frac{1}{s} \frac{d s}{d t}\right)} \text { year. } \tag{6.9}
\end{equation*}
$$

We shall now consider the application of (6.8) and (6.9) to a number of cases: The results of the calculations are given in the accompanying table in the case of $e=10^{-22} \mathrm{gm} / \mathrm{c} \cdot \mathrm{c}$. Results are given for a binary in which the components are both of unit mass in the recomended units and for one in which the components are of masses 1 and 2. Results ere given for separations of $\frac{1}{2}$ and $\frac{1}{5}$ parsec for binaries of large separation. For binaries of small separation, the results are independent of the separation as we shall see.

We Ps.rst notice the top two rows of the table. These give the velocities of the components relative to the mass centre of the binary, using formula (6.5).

Rates of Reduction of Component Separation of Binary Stars.

Case 1.: A binary of small separation whose mass centre is moving relative to the interstellar material with a velocity which is such that the accretion is greatest. This velocity is given by (1.35) where μ is now the total mass of the binary x constant of gravitation. Thus, in the recommended units, (1.35) becomes

$$
v^{2}=4\left(m_{1}+m_{2}\right)
$$

taking $\Sigma=\frac{1}{2}$. The total large scale aceretion is given by (1.36) or (1.37), i.e. $\pi v / 4$.

Consequently, since the accreted material is shared equally we have

$$
M_{1}=M_{2}=\pi v / 8 .
$$

We consider the diameter of the cloud round the binary to be about twice the separation of the binary components. Consequently, within this cloud, there is insufficient material for a resistive force-producing mechanism to operate. Hence

$$
F_{1}=F_{2}=0
$$

These values of M_{1}, M_{2}, F_{1} and F_{2} are substituted in (6.8) to obtain the values of δt given in the table. It will be noticed, using the values of v_{1} and v_{2} given in the table, that the S disappears from (6.8) when $F_{1}=F_{2}=O$ and consequently, the rate of reduction of the separation is independent of the separation.

Case 2.: A binary of small separetion whose mass centre is moving relative to the interstellar material with a velocity 50 (about 4 Km /sec.). The only difference from Case 1 f is that the accretion rate is given by (2.36), 1.e.

$$
\frac{4 \pi\left(m_{1}+m_{2}\right)^{2}}{(50)^{3}} .
$$

So

$$
M_{1}=M_{2}=2 \pi\left(m_{1}+m_{2}\right)^{2} /(50)^{3} .
$$

Case 3.: A binary of large separation whose mass centre is almost at rest in the interstellar material. It is assumed that the binary moves through the medium with just sufficient speed for the effective interstellar material density to remain constant. The mathemoticel model is taken to be a binary having its mass centre at rest in the medium which is maintained at a constant density. We obtain values for δt on two different assumptions:
(a) We assume that the components sweep out circular sections of radii R_{1}, R_{2} given by (6.6). It has already been shown that in this case the accretion rates by the compononts are equal. It must be remembered, however, that in this case, the material swept up is the original interstellar material, so that in using the formula (1.37) we put $\Sigma=R_{1}$ or R_{2} and e is unity in the recomended units. Hence the accretion rate for either component is

$$
M_{1}=M_{2}=\pi R_{1}^{2} v_{1},
$$

v_{1} being given at the top of the table and R, being given by
(6.6). It is assumed that $F_{1}=F_{2}=0$.
(b) We assume that no accretion occurs but that the material In the circular sections of radii R_{1}, R_{2} exerts resistive forces on the components. To obtain this force we use (1.26) with $\Sigma=R_{1}$ or R_{2}. Hence

$$
\begin{gathered}
M_{1}=M_{2}=0, \\
F_{1}=\frac{2 \pi m_{1}^{2}}{v_{1}^{2}} \ln \left(1+\frac{v_{1}^{4} R_{1}^{2}}{m_{1}^{2}}\right), \\
F_{2}=\frac{2 \pi m_{2}^{2}}{v_{2}^{2}} \ln \left(1+\frac{v_{2}^{4} R_{2}^{2}}{m_{2}^{2}}\right) .
\end{gathered}
$$

Case 4.: A binary of large separation whose mass centre is moving with velocity 50 relative to the interstellar material in a direction perpendicular to the plane of the binary orbit. Bach component has its own accretion system. The accretion is given by (1.36), 1.0.

$$
M_{1}=\frac{4 \pi m_{1}^{2}}{(50)^{3}}, \quad M_{2}=\frac{4 \pi m_{2}^{2}}{(50)^{3}} .
$$

For the force we use (1.33) with $\Sigma=R_{1}$ or R_{2}. Thus

$$
\begin{aligned}
& \mathcal{F}_{1}=\frac{2 \pi m_{1}^{2}}{(50)^{2}} \ln \frac{1}{5}\left(1+\frac{(50)^{4} R_{1}^{2}}{m_{1}^{2}}\right) \\
& \mathcal{F}_{2}=\frac{2 \pi m_{2}^{2}}{(50)^{2}} \ln \frac{1}{5}\left(1+\frac{(50)^{4} R_{2}^{2}}{m_{2}^{2}}\right)
\end{aligned}
$$

approcimately. (Accurately, we should put $\sqrt{(50)^{2}+v_{i}^{2}}$ for the velocity.) However, these forces act almost perpendicular to the plane of the binary orbit. The values
of F_{1}, F_{2} are the components of $\mathcal{F}_{1}, \mathcal{F}_{2}$ in the plane of the orbit. Thus
and

$$
\begin{aligned}
& F_{1}=\frac{v_{1}}{\sqrt{(50)^{2}+v_{1}^{2}}} \exists_{1} \bumpeq \frac{v_{1}}{50} 7_{1} \\
& F_{2} \bumpeq \frac{v_{2}}{50} \mathcal{F}_{2} .
\end{aligned}
$$

Values of δt are given in the table for three cases:
(a) When the resistive force is absent, i.e. M_{1}, M_{2} as above and $F_{1}=F_{2}=0$.
(b) When the accretion is absent, i.e. F_{1}, F_{2} as above and $M_{1}=M_{2}=0$.
(e) When both accretion and the resistive force are present, i.e. $\quad F_{1}, F_{2}, M_{1}, M_{2}$ as above.

It will be seen from the table that the values of δt vary between 10^{5} and 10^{9} years and consequently binary stars can be appreciably affected by the accretion process in astronomically reesonable periods of time. For higher densities of the interstellar material, shorter times are required, the time δt being inversely proportional to the square soot or the density.

Hote on the fiffect of a Resistive Force on the Eocentricity of a Central Orbit.

We have been unable to arrive at any general conclusions about the effect of accretion on the eceentricity of an elliptic binary orbit. In order to ascertain the effect, it would be
necessary to do a detailed integration of the effects over a complete revolution of the binary. We can show this to be the case as follows: Consider a particle of unit mass moving under a central force μ / r^{2}. The eccentricity of the orbit is given by (1.8), ie.

$$
\begin{equation*}
e=\sqrt{1+\frac{2 E R^{2}}{\mu^{2}}} . \tag{6.10}
\end{equation*}
$$

When at a distance r Iron the centre, let the velocity of the particle be v in a line which is a perpendicular distance p from the centre. We consider the effect on e of a small reduction of v at this point. From (6.10),

$$
\frac{d e^{2}}{d v}=\frac{2}{\mu^{2}} \frac{d\left(E h^{2}\right)}{d v}
$$

but $E=\frac{1}{2} v^{2}-\mu / r, h=p v$,

$$
\begin{aligned}
\therefore \frac{d e^{2}}{d v} & =\frac{2}{\mu^{2}} \frac{d}{d v}\left(p^{2}\left[\frac{1}{2} v^{4}-\frac{\mu}{r} v^{2}\right]\right) \\
& =\frac{2}{\mu^{2}} p^{2}\left(4 \cdot \frac{1}{2} v^{3}-\frac{2 \mu}{r} v\right) \\
& =\frac{4 v p^{2}}{\mu^{2}}\left[\frac{1}{2} v^{2}+E\right] .
\end{aligned}
$$

The effect of the eccentricity therefore depends on the sign of $\frac{1}{2} v^{2}+E$. Consider a circular orbit of radius R and let the velocity be v_{0}. Then

$$
\begin{aligned}
& \frac{v_{0}^{2}}{R}=\frac{\mu}{R^{2}} \\
\therefore & v_{0}^{2}=\mu / R \\
\therefore & E=\frac{1}{2} v_{0}^{2}-\frac{\mu}{R}=-\frac{\mu}{2 R} \\
\therefore & \frac{1}{2} v_{0}^{2}+E=0 .
\end{aligned}
$$

Consider now an elliptic orbit with the same value of E. At points on this elliptic orbit such that $r<R$, we have $\frac{\mu}{R}<\frac{\mu}{r} \quad$ but

$$
\frac{1}{2} v^{2}=E+\frac{\mu}{r}
$$

so at such points, $v>v_{0}$. Hence

$$
\frac{1}{2} v^{2}+E>0 .
$$

But for $\quad r>R, \frac{\mu}{R}>\frac{\mu}{r} \quad \therefore \frac{1}{2} v^{2}+E<0$.
Hence, a resistive force tends to reduce the eccentricity of an orbit if it acts while the particle is within the circular orbit of equal energy but tends to inerease the eccentricity if it acts while the particle is outside the circular orbit. It is not, therefore, possible to say that a resistive force always reduces the eccentricity. It is necessary to integrate the effect over the whole orbit to determine whether any particular resistive force reduces the eccentricity.

If a binary star is in motion through an interstellar medium, there is in general an interchange of angular momentum between the binary and the medium, with consequent effects upon the orbital elements of the binary. A full mathematical treatment of the aerodynamical problem is quite beyond the range of existing techniques. In order to estimate the effects, use was made in Chapter VI of known results for simpler problems. In this simplified treatment, the intersteller material is supposed to consist of particles which move under the gravitational influence of the components of the binary but ao not influence one snother. This supposition is equivalent to assuming that the interstellar material is a gas at zero absolute temperature. On this supposition, if the orbits of the binary components are circular, the determination of the motion of a given particle of interstellar material is reduced to the classical "restricted three body problem". A considerable amount of computation on this problem was performed by E. Stromgren (22) and his collaborators between 1919 and 1931 in order to determine the forms of periodic orbits of the bodies. These calculations were almost entirely concerned with the motion of the bodies in a plane.

The orbits (for various initial conditions) of a particle of negligible mass in the field of a binary star have recently been determined by numerical integration on the fanchester University Electronic Computer. The binary was taken to consist of a pair of particles of equal mass, pursuing a common circular orbit. This chapter is an account of this work and its application.

It should be atated explicitly here that the particleorbits ere not restricted to plane motion but are in three dimensions.

Humerical Method.

We wish to determine the motion of a particle C of negligible mass in the gravitational field of two other particles A and B which are of equal mass and are revolving under their mutual eravitational attraction in a common circular orbit of radius a, the centre of which is at rest in a Newtonian frame of reference. The two particles A and B are always at the ends of a diameter of the common orbit and each moves with the velocity

$$
V=(\mu / 4 a)^{\frac{1}{2}}
$$

where $\mu=$ mass of $A(o r B) \times$ constant of gravitation. If we place a frame of reference Oxyz with its origin O at the centre of the eircular orbit and such that this orbit is in the x, y plane, the equations of motion for the particle C are

$$
\begin{aligned}
& \dot{u}=-\frac{\mu}{R_{1}^{3}}(x-a \cos \theta)-\frac{\mu}{R_{2}^{3}}(x+a \cos \theta), \\
& \dot{v}=-\frac{\mu}{R_{1}^{3}}(y-a \sin \theta)-\frac{\mu}{R_{2}^{3}}(y+a \sin \theta), \\
& \dot{\omega}=-\frac{\mu}{R_{1}^{3}} z-\frac{\mu}{R_{2}^{3}} z, \\
& \dot{x}=u, \dot{y}=v, \dot{z}=\omega, \theta=V t / a,
\end{aligned}
$$

where (x, y, z) are the coordinates and (u, v, w) the velocity components of C at time t and

$$
\begin{aligned}
& R_{1}^{2}=(x-a \cos \theta)^{2}+(y-a \sin \theta)^{2}+z^{2} \\
& R_{2}^{2}=(x+a \cos \theta)^{2}+(y+a \sin \theta)^{2}+z^{2}
\end{aligned}
$$

In the calculations by Strbmgren the bodies A and B were reduced to rest by a suitable change of variables but this would be of no help for our purpose. So the equations of motion were integrated as they stand, except for a transformation to make the variables aimensionless. This was obtained by measuring aistances in terms of a, velocities in terms of $(\mu / a)^{\frac{1}{2}}$ and time in terms of $\left(a^{3} / \mu\right)^{\frac{1}{2}}$. The variables were also scaled dow so as to be accommodated in the number range of the machine in the manner eustomery in this type of computation.

The method of integration used was a modified form of the Runga-Kutta process which has been developed by S. Gill (23) especially for use in electronic machines. We used this process in the following form: Let the independent variable be y_{0} and the dependent variable be $y_{i}\left(y_{0}\right),(i=1,2, \ldots, n)$ and the differential equations be

$$
\frac{d y_{i}}{d y_{0}}=f_{i}\left(y_{0}, y_{1}, \ldots, y_{n}\right) .
$$

Let Y be the initial value of y_{0} so that $y_{i, 0}=y_{i}(Y)$ are given. Let h be the integration step in y_{0} then we osculate the following quantities with $\alpha=0$,

$$
\begin{aligned}
& k_{i, \alpha}=k f_{i}\left(y_{0, \alpha}, y_{1, \alpha}, \ldots, y_{n, \alpha}\right) \\
& r_{i, \alpha+1}=A_{\alpha}\left(k_{i, \alpha}-q_{i, \alpha}\right)-B_{\alpha} q_{i, \alpha} \\
& y_{i, \alpha+1}=y_{i, \alpha}+r_{i, \alpha+1} \\
& q_{i, \alpha+1}=q_{i, \alpha}+3 r_{i, \alpha+1}-\left(A_{\alpha}+2 B_{\alpha}\right) k_{i, \alpha}
\end{aligned}
$$

where $q_{i, 0}=0$ and A_{α}, B_{α} are given in the following table

$$
\begin{array}{ccc}
\alpha & A_{\alpha} & B_{\alpha} \\
0 & \frac{1}{2} & 0 \\
1 & 1-\sqrt{\frac{1}{2}} & 0 \\
2 & 1+\sqrt{\frac{1}{2}} & 0 \\
3 & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

From the values for $\alpha=0$, the values for $\alpha=1,2$ and 3 are calculated. Then

$$
y_{i, 4}=y_{i}(Y+h)
$$

The process is repeated, starting with $y_{i}(Y+h)$ to obtain $y_{i}(Y+2 h)$ but the values taken for $q_{i, 0}$ will be the same as $q_{i, 4}$ of the previous step. The error involved in this process is of order h^{5}. To obtain the values of the variables at a given point, the method only requires a knowleage of the variables at the previous point and not at several previous points. This removes the need for storing previous values in the machine and also the need for shirting these values after each step. Another advantage is that no special starting procedure is necessary. The quantities $q_{i, 4}$ are used to give an indication of the previous behaviour of the variables but they are usually small and there is practically no loss of accuracy if they are taken to be zero at any point. This enables changes in the magnitude of h to be made without the need for any special calculations. Although the calculations described here were performed with a ifixed integration step h, it is possible to make the machine automatically adjust the size of the step so as to keep a specified accuraey. It is also obvious that this integration method on the machine can be used for the general problem of three bodies or in fact of any number of bodies subject to the storage limitations in the machine but the time
required for each integration step would be increased.
The cosines and sines in the equations of motion were calculated directly from the power series using terms up to that involving $\Theta^{\prime 2}$ where Θ is such that

$$
\left.\theta=\pi_{n} \neq \Theta \quad \text { (} n \text { being any integer }\right)
$$

and $0 \leqslant \Theta \leqslant \pi / 2$.

The machine took 11 seconds to advance the integration by one step. This, however, involved two actual calculations and a comparison of the results to eliminate the risk of "random" machine errors. At intervals of two or four steps, the values of x, y, z, u, v, ω, t and $\left(x^{2}+y^{2}+z^{2}\right)$ were printed out. Each printing required 10 seconds and involved six decimal digits and a sign for each variable.

If the particle C were to approach too elosely to either A or B, the rapid variation in the gravitational field would considerably affect the accuracy of the solutions and this might not be noticed by examining the printed results. To remove this risk, it was arranged for the machine to stop if R, or R_{2} became less than $\frac{1}{8} a$. This aid not occur very often so that few orbits were lost on this account. The Problem.

The main problem consisted of finding the angular momentum gained by the particle C when it is projected parallel to the $z-2 x i s$ towards the revolving bodies A and B. More precisely,
the indtial conditions were

$$
\begin{aligned}
& x=R \cos \phi, \quad y=R \sin \phi, \quad z=4 a \\
& u=0, \quad v=0, \quad \omega=-W
\end{aligned}
$$

where various values of R and \varnothing were taken; ϕ being meesured from a direction parallel to the x-axis. Orbita were obtained for one value of W only. This was $1.6(\mu / a)^{\frac{1}{2}}$. This value of the velocity is of the right order to give a result for comparison with our other methods of estimation. The particular factor 1.6 wes selected from the relevant range because, after the variables have been scaled down, it gives a convenient number in the scale of two, for use in the mechine. The orbits were computed in most cases until the z coordinate of C was less than $-4 a$. The initial and final values of z (i.e. $\pm 4 a$) were arbitrary but were taken to be sufficiently large so that beyond these limits the angular momentum of C would not have been appreciably changed.

For each of the orbits obtained, the final value of the angular momentum per unit mass of C about O (1.e. $x v-y u$) Wes then calculated on a desk machine. The inttial conditions were, of course, such that the initial angular momentum about 0 was zero in a.ll orbits.

In the accompanying table, the angular momentum per unit mass gained by C is given in the dimensionless form.
$R=0.75 a$
+0.5170
+0.7710
+1.0187
+1.1260
+0.7457
-0.0502
-0.4189
-0.4642
-0.3426
-0.1552
+0.0549
+0.2784
+0.2567
$R=0.5 a$
+0.3000
+0.4577
+0.2458
-0.1382
-0.1674
+0.0404
+0.1230

To obtain these orbits, a step of 0.25 in aimensionless time wes used. About 20 steps were required for each orbit. lost of the values given are correct to within one per cent. This limit of accuracy wes sufficient for our requirements but the machine could be made to work to a considerably hicher accuracy. Orbits vere not obtanned for the four cases: $R=a, 1.25 a$ and $\varnothing=60^{\circ}, 75^{\circ}$, owing to the close approach of C to either A or B resulting in the machine being stopped as mentioned above. The values given in the table (in square brackets) are obtained by graphical interpolation between the numbers in the columns. The values in the range $\phi=180^{\circ}$ to 360° are a repetition of those given in the table. Inspection of the numbers in any column shows that they lie approximately on a sine curve and the oscillation is about a mean value that is small compared with the amplitude of the oscillation. This situation makes it difficult to obtain an accurate value for the mean. Since the function is necesserily periodic (period π) the best method (24) is simply to take the arithmetic mean of the values in each column. The mean values, $f(R)$, are given In the bottom row of the table. These values are accurate to about 5 per cent except for the cases $R=a$ and $1 \cdot 25 a$ where only 10 per cent accuracy is cleimed.

Calculation of the Torque experienced by a Binary.

From the results of the work described in the last section, it is possible to calculate the torque experienced
by a binary moving in a certain way through a cloud of interstellar material. For consider the binary consisting of A and B to be moving in the direction $O z$ with velocity W through a cloud of particles which are at rest at a Ereat aistance from the binary. By giving the entire system a velocity- W, we have the situation described above, neglecting the effect of the gravitational field upon the angular momentum outside $z= \pm 4 a$. The mass of material which erosses the plane $z=4 a$ between the circles

$$
x^{2}+y^{2}=R^{2} \quad \text { and } \quad x^{2}+y^{2}=(R+d R)^{2}
$$

in unit time is

$$
2 \pi R d R . W_{e}
$$

where e is the mass of particles per unit volume in the undisturbed cloud. The angular momentum gained by this mess in its encounter with the revolving system is

$$
2 \pi R d R \text {. We } f(R)
$$

so the total angular momentum gained by the material in unit time is

$$
2 \pi W e \int_{0}^{\infty} R f(R) d R
$$

This is the rate of loss of angular momentum by the rotating system and so is equal to the torque acting on it. This expression was evaluated for $W=\left(\cdot 6(\mu / a)^{\frac{1}{2}}\right.$ by plotting $R f(R)$ and obtaining the integral by counting squares.

The result was

$$
\begin{equation*}
2 \pi e a^{2} \mu \times 0 \cdot 6 \tag{7.1}
\end{equation*}
$$

The function $R f(R)$ rises and falls steeply near its maximum value. Consequently, the value of the integral is not appreciably affected by an inaccuracy in the maximum value of the function. The maximum value of $R f(R)$ was estimated from the graph to be 0.5 at $R=1.25 a$. A 20 per cent error in this maximum value would only have caused a 5 per cent error in the value of the integral but as we have already stated, we do not expect this maximum value to be in error by more than 10 per cent. [As an alternative to the graphical method, on attempt wes made to fit a curve of the type $A x^{2} \exp (-B x)$. This vas fitted to two of the accurately known values; namely at $R=0.75 a$ and $R=1.5 a$. The values of A and B were 1.89 and 2.27 respectively. The result of the integration was then 13 per cent less than that obtained by graphical integration but as the curve did not fit very well, the result from the graphical method is considered to be the more accurate.] After this discussion of various errors we consider that 10 per cent accurecy can be claimed for the final result (7.1).

A question arises as to whether the effect of particles passing very near the revolving bodies is laxge compared with the effect of the remaining particles. In the immediate
neighbourhood of one of the bodies, a particle will behave almost as if it were influenced by this body alone. The effect of the particles on a single star has been examined In Chapter I and equation (1.26) eives the foree on the star due to the particles passing within a given distance of the star. It is seen that this force tends to zero as the given distance tehas to zero. It follows that particles, pessing very close to efther component of the revolving system considered here, do not contribute appreciably to the total effect.

It will be noticed that we have neglected any change in the motion of A and B. This is justified because, as we shall see later, the orbital elements of the binary are only appreciably affected by the torque after a period which is several times the period of revolution of the binary. Comparison of the Result with a Theoretical Formula,

It is possible to obtain a theoretical formula for the torque in cases where W / V is large compared with unity. Fron equation (1.26), the force exerted on a single star due to its passage through a cloud of interstellar material is

$$
\begin{equation*}
2 \pi e \mu^{2} U^{-2} \ln \left(1+\Sigma^{2} U^{4} \mu^{-2}\right) \tag{7,2}
\end{equation*}
$$

where e is the density of the undisturbed cloud, U is the velocity of the stax relative to the cloud and $\mu=$ mass of star \times constant of gravitation. Σ is a "cut-off distance" which is of the order of half the distance to the nearest
neighbouring stax. The Porce scts in the opposite direction to the velocity. If we assume that this formula holds for each component of a binary star which is moving perpendicular to the plene of its orbit, we put

$$
\Sigma=a \quad \text { and } \quad U^{2}=W^{2}+V^{2}
$$

In (7.2) to obtain the force on each component. The force on each component can be resolved into a force parallel to the airection of motion of the binary relative to the cloud and into a force tangential to the comon circular orbit. The forces of the latter type, acting on the two components, together fom a torque of value

$$
\begin{equation*}
T=2 \pi e a^{\frac{1}{2}} \mu^{\frac{5}{2}} W^{-3} \ln \left(1+a^{2} W^{4} \mu^{-2}\right) \tag{7.3}
\end{equation*}
$$

$11 \mathrm{~W} / \mathrm{V}$ is large compared with unity. This condition is imposed by the mechanism which produces the force (7.2). Sach star "tunnels" through the intergtellar material and this condition ensures that one star does not tunnel through a. region which has already been disturbed by the other star. Putting $W=1.6(\mu / a)^{\frac{1}{2}}$ we obtain

$$
T=2 \pi e a^{2} \mu \times 0.49
$$

so that the formula is in satisfactory agreement with the numerical result (7.1). In this case, $W=3.2 \mathrm{~V}$ so this agreement is in the region of W where we might hardiy expect the fommla to hold accurately. It is also to be
noted that the formula does not overestimate the torque.
It should be noted that this agreement between the formula (7.3) and the numerical result is only offered as aditional support for the formula. Formula (7.3) rests on the reasoning given above and so its application is not limited to the value of W used in the numerical work. Rate of Reduction of Separation of Binary Components. If we neglect any variation in the masses of the components of the binary, the effect of the torque is to reduce the separation of these components. To determine the rate of reduction of this separation, let E be the total energy of the binary at time t, ice.
$E=\frac{1}{2} m V^{2}+\frac{1}{2} m V^{2}-\frac{1}{2} G m^{2} / r=-G m^{2} / 4 r$ where $m=$ mass of A. (or B), $G=$ constant of gravitation and $r=$ the radius of the orbit of the binary at time t. In a time interval $d t$, the loss of energy is

$$
-d E=G m^{2} d r / 4 r^{2}
$$

But this also equals the work done by the torque T in $d t$, i.e. $\quad T V d t / r$

Hence

$$
\frac{1}{r} \frac{d r}{d t}=\frac{2 T}{m\left(G_{m r}\right)^{1 / 2}}
$$

so that a 10 per cent reduction of the separation will occur in the time $m\left(G_{m a}\right)^{\frac{1}{2}} / 20 T$, approximately.

We may illustrate this formula by a specific example, using the value of T given by (7.1). Consider a binary
consisting of two equal stars, each of 5 solar masses and separated by a distance of 0.2 parsec. If this binary moves through a cloud of intersteliar material of density $10^{-22} \mathrm{gm} . / \mathrm{c} . \mathrm{C}$, in a direction perpendicular to the plane of its orbit with velocity $1.05 \mathrm{~km} . / \mathrm{sec}$., the separation will be reducea by 10 per cent in about $2.68 \times 10^{7} \mathrm{yrs}$. The period of revolution of the binary is $9.36 \times 10^{5} \mathrm{yrs}$. Another Set of Orbits.

A set of less accurate integrations were performed to Ifn the orbits of the particle C after being released from rest at various points on the sphere

$$
x^{2}+y^{2}+z^{2}=(4 a)^{2} .
$$

For some positions of release, the particle C moved once through the circular orbit of the bodies A and B and then receded to a distance greater than $4 a$ from the origin. For other positions of release, the particle C receded to a distance of less than $4 a$ from the origin and then returned for one or more encounters with the revolving system before esceping from the sphere. One of the more complicated orbits was computed socurately and projections of it on the planes $y=0$ and $z=0$ are shown in Fig. 7.1. In one of these, the positions of C are marked when $A B$ has turned through various multiples of $\frac{1}{2} \pi$. The accuracy of the curves is not guarenteed beyond the point D where the particle has a close encounter with one of the

F1g. 7.2.
revolving bodies. In the orbits which were computed, the particle C eventually escaped from the sphere and it seems eertain that this would always occur. For, it is impossible for C to settle into a periodic orbit around the revolving system; otherwise, by reversing the time coordinate, it would be possible for periodic orbits of C to become non-periodic. When G escapes from the sphere of radius $4 a$, it had gained energy from the revolving system. It will also have gained a proportional amount of angular momentum. This follows from the fact that the revolving system as a whole hes no translatory motion and so any forces (as opposed to torques) scting on it during the encounter with the particle can do no work. The angular momentum per unit mass gained by C (i.e. $x v-y u$) while inside the sphere was evaluated for the various orbits and was considered as a function of the point of release of C. Then by a crude integration over the surface of the sphere, a mean value was obtained. This was

$$
0.58(\mu a)^{\frac{1}{2}}
$$

This result cen be used to obtain the torque exerted on the rotating system when material falls steadily from the surface of the sphere and there are no particle collisions. We may compare this result with that obtained on the assumption that the particles collide and are oventually all captured
by one or other of the revolving bodies. In this case the angular momentum per unft mass gained by a particle C is $a V$ (V being the velocity of A or of $B=\frac{1}{2}(\mu / a)^{\frac{1}{2}}$) which is

$$
\frac{1}{2}(\mu a)^{\frac{1}{2}} .
$$

We thus see that these results, and hence the torques, are of the same order when all the material is catpured as when no material is eaptured. It would thon appear that the torque will be of the same order whatever fraction of the material is captured by the revolving bodies.

Concluding Remarics.

Although, in the cases we have considered, the interaction of non-revolving material with a binary causes a reduction in the angular momentum of the latter, we do not cleim to have show that this is always the case. In fact, there appears to be no dynamical principle which would be violated if such were not the case.

The work described in the present chapter ves undertaken with the object of checking the mathematical basis of the work in Chapter VI, but the problem of angular momentum exchange in the gravitational interaction of a particle with a revolving system is in itself a problem of purely dynamical interest and may be worthy of further investigation when hich-speed computing facilities become more generally available.

References.
(1) J.A. Hynek, Astrophysies, New York 1951, 1.591.
(2) B. Stromgren, Ap. J., 108, 242, 1948.
(3) A.S. Edaington, The Internal. Constitution of the Starg, Cambridge 1926, p. 391.
(4) F. Hoyle and R.A. Iyttleton, Proc. Camb. Phil. Soc.: 35, 405, 1939.
(5) F. N8lke, Abh. naturwiss. Ver. Bremen, 20, 1 and 29, 1910.
(6) T. Moreux, origine et formation des mondes (Paris) 1922.
(7) H. Bondt and F. Hoyle, K.स., 104, 273, 1944.
(8) K. I. Doda, M. H. , 112, 374, 1952.

(10) P.J.D. Gething, MoK., 111, 468, 1951.
(11) W.H. MeCrea, Hemoires de Ia Societe Royale des Seiences
ae Jiese Quatrieme Serie, Tome XIII, Fasc. I-II, D. 377.

(13) K. N. Doad, Proc. Camb. Ph11. Soc. 49, 486, 1953.
(14) W.H. MeCrea, MoN., 213, 162, 1953.
(15) K.N. Doda, N.J. 213, No. 4, 1953 .
(16) N.D. Moiseyev, Atti Reale Accad. Haz. Jincei (6), 15, 135, 1932.
(17) S. Chapman, M.N. 208, 236, 1948.
(18) W.H. MeCree, The Obscrvatory, 70, 100, 1950.
(19) R.A. Lyttleton, The Comets and their origin, Cambridge 1953. (20) J. Jeans, The Universe Around Us, Cambridge 1945, p.232.
(21) R.A. Kyttleton, The Stability of Rotating Iiguid Masses, Cambriage 1953.
(22) E. Strimgren, Kopenhagen Meddelauk No. 39, 1922 (also later numbers).
(23) S. G111, Eroc. Comb. Ph11. Soc. $47,96,1951$.
(24) E.T. Whittaker and G. Robinson, The Galeulus of Observations, Blackie, p.264.

