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P h 2 F A C E

Tho ocrftribution of tho work described in this thesis 
to the advancement of the subject lies primarily in 
Btrencthcnlr^g the foundations of the accretion theory by 
the examination of various aspects of tho mechanism*
The work also indicates that the accretion process may 
p la y  an Important part in the evolution of binary stars# 

With the exception of the account of the Bondi-Hoyle 
mechanism^ the work i n  Chapter I of this thesis is 
original, however, the idea of considering the effect 
of density gradient arose from the work of Cething and 
some of the discussion in this chapter is due to 
Professor McCroa. The account of the Bondi accretion 
process in Chapter IV is not original, but the present 
v.Tlter differs ali^tly from Bondi on the interpretation 
of the results and reasons are given for this# The 
remaining work of the thesis is original, but with tho 
exception of Chapters II and III, the problems were 
suggested by Professor McCrea*

The work in Chapter II, Chapter VII, the second part 
of Chapter IV and the original part of Chapter I has 
already been published as ( 8 ) (la) ( 10 ) ( 9) yegpeo-tiveXy^



ABSÎMCT

In Chapters I to IV of this thesis, the mechanism, 
orielnally put forward by Hoyle, lyttleton and Bondi, by #iieh 
stars can capture large amounts of interstellar material is 
examined and extended. fhe rate of accretion of interstellar 
material is determined on various assumptions about tho nature 
of this material. îhe resistive force is also evaluated 
under various conditions. îhe effect, of temperature and 
variation of material density Is considered.

In Chapter V, a theory of binary star formation is 
investigated in which the resistive force is considered to 
remove part of the gravitational energy of a pair of stars and 
80 leave them gravltationally bound together. It is found 
that under suitable circumstances such binary star formations 
can occur, but no estimate has been obtained of the probability 
of such a formation.

In the remlnlng two chapters, the modifications are 
considered ttiich have to be applied to the accretion theory
tshen the star is a binary, îhe dynamical effects of
accretion on the blnazy are considered and estimates ai’e
made of the tin© required for the size of the binary orbit
to be appreciably reduced.
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Introduction
There is direct astronomical evidence of the existence 

of diffuse clouds of matter in interstellar space. These 
clouds are concentrated fairly close to the plane of the 
galaxy and almost certainly exist mainly along the spiral 
arms. The clouds consist mainly of atomic hydrogen with 
probably about ten per cent (by numbers of atoms) of helium 
and traces of heavier elements. Mixed with the gas is 
about one per cent of dust particles whose sizes are of order 
lO’  ̂ cm. The composition of the particles is uncertain.
On the whole, tho evidence indicates that the gas and dust 
are well mixed although clouds which appear to contain large 
proportions of dust can be observed. The kinetic temperature 
of the gas in normal regions of apace (i.e. not too close to 
hot stars) is between 50 and lOu^A, the hydrogen being largely 
neutral and not ionised. But the internal temperature of 
the dust particles is only a few degrees absolute. The 
presence of the dust in the gas causes heat to be radiated and 
30 enables the gas temperature to be fairly uniform over large 
regions of apace. In HII regions near o and B type stars, 
the kinetic temperature is of the order of lo.OOO^A and there 
is probably no dust.



The average density of the gas over the entire region 
which it occupies may be described as of the order of one 
hydrogen atom per c,c. However, the density is by no means
uniform and regions of ranch higher density exist.

{ Ê iâ trôm gren ' estimates that in typical regions of density 
maxima, there are 100 hydrogen atoms per c.c. But even 
denser regions exist, such as the neighbourhood of the Orion 
nebula where there m y  be luOO hydrogen atoms per c.c, Borne 
photographs of the denser regions show a filamentary structure 
so that the density may be even higher within the filaments.

The fact that the density of the gas is so variable 
enables the dense regions to be referred to as gas ’’clouds”, 
These clouds move with the general rotation of the galaxy but 
they also hove random velocities relative to each other.
The stars in the dense regions are of course immersed in the 
clouds and are moving relative to them owing to their own 
peculiar motions.

In the phase of evolution of the galaxy before the 
formation of stars, these gaseous regions probably existed 
in similar conditions to those we observe today but the 
density may have been considerably greater. The stars are 
thought to have been formed by condensing from the gaseous 
material.

The existence of the clouds of interstellar material 
raises a number of important questions in theoretical
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astronomy. There is the question of the gain or loss of 
material by the star and the influence of this on the star’s 
evolution. There is also the question of the gain or loss 
of momentW) by the star and the consequent effect oa the 
star’s motion. This may be caused by the gravitational 
attractions of the clouds as a whole and also by the effects 
which occur in the Immediate neighbourhood of the star due to 
its motion relative to the cloud in which it is immersed.
The possibility and conditions for condensations to form is 
also an important problem, All these questions require to 
be answered in relation to the past evolution of the stars 
but it is also necessary to know if the processes are still 
active in present conditions.

There is observational evidence that interactions between 
stars and interstellar material must have occua^d and in 
comparatively recent times. Recent observation has revealed 
an association between regions of interstellar material and 
population I stars. Detailed observation has shown an 
association of particular categories of very liminous stars 
with the regions of highest density and this strongly 
suggests continuing intake of interstellar material by the 
stars. Some of the brightest stars must have been formed in 
comparatively recent times and so were presumably formed from 
interstellar material by fresh condensations or else by 
absorption of interstellar material by already existing stars.
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Although all this evidence indicates a gain of material by the 
stars, there are certain classes of stars in particular, 
novae which eject material into space, novae laay be 
responsible for the distribution of the heavier elements in 
the universe.

In this thesis an attempt has not been made to examine 
all the problems arising from the existence of the inter
stellar clouds but merely to examine some possible mechanisms 
of the interactions between stars and interstellar material 
and to consider one or two of their implications.

It has been realised for some time that when a star 
moves through a region of space containing interstellar 
material, the star may pick up or ’’accrete” some of this 
material. However, it appeared from Eddingtoh’s work^^^ 
that the star would only pick up material lying within a 
distance from its path of the order of the radius of the 
star. Considering the low density of the interstellar 
material, this '’accretion” would be too small to produce any 
important astrophysicol effects,

in 1909, Hoyle and lyttleton^^^ suggested a mechanism 
by which substaatially larger amounts of material could be 
captured by a star and they indicated the importance of such 
a process to stellar evolution. It may be mentioned that 
some aspects of the mechanism had already been realised 
by Hhlücê ^̂  as far back as 1910 and by Moreux^^^ in 1922,



5 .

Between 1989 oad 1944 a series of papers by Hoyle and
Lyttletou Qeveloped the ’’Accretion Theory” and its applications.
But it was not UMtil 1944 that the mathematical theory of the
accretion process was considered in detail in a paper by

( 7 iBoxidi and Hoyle , The mechanism which they described 
involved an ’accretion column” which extended in the wake of 
the star. In this paper, the resistive force exerted on the 
star by the material was also considered and e value for it 
was obtained by coasidurlng tho behaviour of the accretion 
coluL3U at a great distance from the teady
behaviour of the accretion column was ]p%r exami^pd numerically 
in a paper by Dodd^^^. in 1952, a pater bfe^odd ind î cCrea(^) 
showed that the value of the resistive depend
on the formation of an accretion column provided the inter
stellar material has the properties assmaed in the Boudi-Hoyle 
mechauidm, This paper gave consideration to the effects of 
non-uni form!ty in the density of the interstellar material 
(although this aspect had previously been considered by 
d e t h i n g ^ , The importance of the resistive force was 
also stressed, A year later, McCrea^^^^ considered the 
effects of density and velocity variations in the interstellar 
material on the iyttleton theory of comet formation which is 
one of the applications of the accretion theory. In all the 
worx up to this stage, the undisturbed interstellar material 
had been treated as consisting ox inelastic particles with
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negligible relative motion. iteae properties are poeaesaed by 
the particles ef n gaa at very low absolute temperatures 
provided that any best developed i a  the gas can be radiated 
sway rapidly. In lÿËi;, B o n d i eousidercd the rate of 
accretion by a star at rest iu a cloud of gms at temperatures 
other than zero absolute, la 1958, Dodd * examined 
aiuiierically the rat© of accretion by a star moving thro%h 
a gas treating the latter a© a hydrodynmslcal medium, but 
results were obtained only ia the case ot isothermal flow.
Up to the present, no estimate has been obtained of the 
resistive force experienced by © a tar in üiovin̂ j through a 
gaa at temperatures other than zero absolute (where the 
random particle motions do not exist). Recently n paper by 
McOren^  ̂ has indicated the possible importance of a star 
beiug ** trapped” by a cloud of meter ini. It was shown that 
if a star enters a cloud with « suitably small velocity, the 
resistive force will bring the star to rest after which the 
star will undergo a symietrical accretion at toriml, as for 
eiampl© in the Bondi process.

In Chapter I of this thesis, the Bondi-Moyle mechanism 
of accretion is described and expressions for the rete ef 
accretion and for the resistive force rr© obtained. The 
resistive force is then dctemilned on the essumptian that the 
particles of the cloud do not experience collisions between 
themselves. fhe agreement- between the dominant terms of the



expressions for the forces is theu noted and the implications 
oi this are discussed, A discussion follows of the 'cut-off 
effect” which limits the magnitude of the force. The effects 
of a non-uniform cloud density are then examined end it is 
shown that la certain circumstances a circulatory current of 
material can be established about the star. The chapter ends 
with a mention of the temperatures under which the above 
consideration can be expected to bo valid.

In Chapter II, an account i s  given of a numerical 
investigation of the unsteady behaviour of the Bondi-Hoyle 
accretion mechanism. It is found, as already suggested by 
Bondi and Hoyle that large perturbations tend to x*oduce the 
rate of accretion and their value for the minimum rate of 
accretion ia approximately confirmed.

In O hapter III, axx account is given of an élaboration 
of the Boiidl-Hoyle mechanism in which the accretion column 
is treated as consisting of a gas at a temperature removed 
from O^A, This treatment indicates that there is a definite 
limit to the temperature which can be allowed in the accretion 
column. The resistive force ia examined and an upper limit 
to its value is found. This treatment is midway between the 
inelastic particle mechanism of Bondi and Hoyle and the 
hydrodynaoiical treatment of the next chapter.

In Chapter lY, a brief discussion is given of the Bondi 
symaetrical accretion process for a gas at temperatures
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removed from i f  A ̂  This is followed by aa account of e 
numerical investigation to determine the accretion rate by 
a star moving through an iaothermal gas at temperatures 
removed from C^A, The results ore in good agreement with a 
formula conjectured by Bondi on the basis of results for the 
simpler mathematical models of the situation.

In Chapter V, a theory of binary star formation is 
investigated in which the resistance of the cloud is considered 
to remove part of the gravitational energy of a pair of stars 
and 30 leave them gravltationally bound together. It is 
found that under suitable circumstances such binary star 
formations can occur but no estimate has been obtained of the 
probability of such a formation. It is shown that the 
encounter between the stars must occw early in the lives of 
the stars if it is to result in n binary star and it ia shown 
that during the encounter, the stars have their masses greatly 
increased by accretion. The chapter ends with an interesting 
little piece of mathematics concerned with the statistics of 
multiple system formation but it is not really relevant to the 
main work of the chapter.

In Chapter VI, the modifications are considered which have 
to be applied to the accretion theory when the star is a 
binary. It Is found that the accretion process depends on 
the ratio of the separation of the binary components to the 
local mean interstellar distance. The dynamical effects of
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accretion ou the binary are considered and estimates are made 
of the time required for the size of the binary orbit to be 
appreciably reduced.

Chapter Vil is an account of a numerical investigation to 
check one of the results obtained in the last chpater. The 
work is also ox interest as it involves the restricted 
tliree-body problem. The result is in satisfactory agreement 
with the work of the last clmpter.
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Ci'i&ptor I : Tiie Meoh&nlam of Accretion#

:..otion of r rarviole Under an Imxrso Squaro Oontrul Force#
In order to ^Ive r,n account of the mechanism of 

roeretion v;c have to iico the of the elementary
theory cf the notion of a particle under an Inverse square 
ccrtral force so it rill he useful to start by considering 
this theor^% The particle rhoae notion is examlnod 
rill later be considered as a particle of interstellar 
material and the centre of force rd.ll be a star#

%e suppose a particle to experience a force 
per unit mass of the particle directed towards the 
centre 0 which is at rest in a Nsrtonian frame of 
reference* is a constant and r is the distance of 
the particle from 0 « The particle moves in a plane 
through 0 80 lob its position be indicated by polar 
coordinates ( '̂ , ̂  ) with respect to some axis through O ,
Then we have the equations

(conservation of angular momentum), (1.1) 
-f -E (conservation of energy), (1.2)

where Ü and E are constants; Ü being the angular 
momentum of milt naee of the particle about 0  and E being 
the energy of unit mass of the particle. Eliminating 6  

fro m  (1*1) and (1.2) gives

f ' 4̂ 2E. (i #3)
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Writing *r'= <i'r/jL6 have
30 from (1*1) (1*4)

»d (1.6)

From (1.0) and (1*4), -t 2E4̂- 4"̂ 4-

hMoe rtoB (1.5).
Taking the plas sign,

(<A) = olfi

-, I - s = <9- C

tihoro C  is a constant. This may be written in the form

^  -e.c-cT3 {(9 — c) (1*6)

which ia a conic section, vAcre

^  = -A.'yA (1.7)

.yyrr-e
and (9-C in  the %mjor axis of the conic section*

we wish to consider in more detail the motion when the 
particle is projected from infinity with speed %r parallel 
to a fixed direction Ox. and at a perpendicular distance <r
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from 0  , us in Fig. 1,1* It is evident from (1*2) that 
the partielo will eventmlly recede to infinity with 
speed ^  after being deflected through an angle ^ »
We have

, E = f

Wo also note that by putting  ̂ x , (1,6) gives

C = (1#9)

To obtain the distance x. from 0  at \Aloh the particle 
hits Ox wo put v = x  ̂ <9 = 0 In (1,6) vhlch gives

(1.10)
Fron (1.1), the voloeitj,' compoaeat of the partlele 
I)erperifiicular to 0-k idiea It hits Ox ia

à ^  ^  -  V l±6 =

from (1,10) - M  ■ (1.11)
Hence at this instant, from (l.S),

(1,12)
The Bonli-Eovl© Accretion Mechanism,

We are now in a position to consider the accretion
(7)mechanism due to Bondi and Hoyle , This mechanism
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\ r

Fig. 1.1

vr

V

Fig. 1.2.
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is a IcveXôpmcnt of that, originally put fonmrd by Eoyle

(4)and Lyttloton • Bondi and Hoyle ooneldored the 
interstellar- mtcrlal to consist of particles which have 
negligible relative motion vfhen at a great distance from 
the star. These particles do not attract one another but 
are affected by the gravitation of the star. Instead of 
considering tho star to be moving relative to a cloud of 
interstellar material which is at rest, we may assume the 
star to be at rest at 0  and the cloud to be moving in the 
direction Ox with speed \ r  whan at a great distance from 
the star. It then follows that each particle of the cloud 
will describe a hyperbolic orbit, as considered above#
Since, hovvovcr, all particles hit Ox , it follows that there 
will bo a hl#i probability of collisions occurring on Ox. .
It is further assumed that those collisions are inelastic#
If we consider the cloud to bo of uniform density Ç when 
at a great distance from the star, it follows that the 
total momentum component perpendicular to jf Ox of the 
material arriving at an element d x  of Ox in time ct6 
v/ill be zero. Consequently, from (1.12), this material 
will commence to move along Ox with velocity i r  and will 
become involved in f'lrther oolliaions with incoming 
particles. When the process begins, a collision on O x  

may only bo a chance occurrence but onoo material has begun 
to accumulate along O x , collisions rapidly become
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inevitable. Thus o stern is sot up in \mica there is an 
accumulation of along O x and this is contlnueAly
supplied wl-th further naterlml by Incoming par bides.

The assumption of inelastic collisions on O x would 
appear to be juittlfied if the cloud consists of. dust 
pnrtlcles. If tho cloud consists of a gas, the initial 
resumption that the particles have negligible relative 
motion is equivalent to supposing that the gas is near 
zero absolute tonpcrature. • The assumption of inelastic 
collisions is justified if it can be supposed that the 
heat generated ir the collisions Is radiated amy quickly 
so that the gas does rot gain any appreciable thermal 
energy. This suppositior. will be justified if the gas 
contains limited amounts cf dust, as this facilitates 
radiation.

-.c shall next establish the équations governing the 
unsteady motion of tho imterial on Ox , lot be
the volocity of every particle at x in the direction Ox 
at time t  and lot YTL(x̂ t.) be the mass of material nor 
unit length of Ox &t x at time t  . First, consider 
the conservation of mass on the element of the axis Ox 

between x and x  4-dx . The inoremse of rmso in this 
element in time cLfc la *
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In this time, a mass T (V (x .,t) lX (^ _ ,t)< L b  enters the element
from the left and a mass 'n \ . ix .+ J .x . jb )^ (> ^  + <i.x.jt)<d.t leaves 
from the right. We also have to consider the material 
entering the element from the surrounding space. From 
(1.10) we have

JLx. -  4^ (T ciff. (1,10)

Consequently the material hitting the element d-x- will 
have originally come from a tubular region with O x as 
axis of thickness d.o and of radius 6 . îhe mass of 
material passing any section of this region in time oLt is

ZKSets '. ç v e L t  

from (1.10) = 2J ^ .£ l£ .J ix c L t.

Consequently tho mass of material arriving at O x per 
unit length per unit time is

1YV= iTT/^q/v (1.14)

and so tho nmss arriving at our element o lx  ig *
The conservation of mass then gives
^ ^ d x d - t  +  =  Y Y V o L x d t '*^)îlC X jh)lX (x^t)À .t - ) T i ( X ’¥jLx,^t)iy(K+jLx^(^cLk

= YYcJixelt ( )T lir )c L x < lfc  f" 0([<LcJ^,

Letting dx and <Lt —> 0  we have
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Consider the material on the axis between x  and x at 
time t  » Its mass is ÏÏL(x^è}dx , As t  increases, this 
material will move along the axis and will also be mixed 
with material viiich has recently hit the axis# fhe original 
material ?/lll gain momentum from the material added#
This is equivalent to a force on the original imterial 
equal to tho loss of momentum by the incoming material in 
the direction Ox per unit time. The mass of material 
per unit time hitting the axis between x  and x .^Jbc is Ywd*. 
This has its velocity reduced by bo the force
acting on the original material In the direction O x is 
>vv ( v - . It is also acted on by a force 
in the direction O x  due to the gravitation of the star. 
(Here yx =• nass of star x constant of gravitation). Hence 
the equation of motion for the original material is

Y T LJb c^^-  Yf>^(xr-U)cLxi — ixlTTLî . (1.16)
JLt  ̂ ^ f x ^

Since the x and fc in U(x^ t) are connected

we have ^
J i t àx

so (1*16) becomes

(1.15) and (1#17) are the equations determining YR and IT.
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In forming eq.ua.tlon (1.17), it vms assumed that a 

particle at x is not influenced hy the particles on the 
axis at greater or smaller distances from the star. This
is reasonable provided that two separated particles on the 
axis do not come together. This is the ease if

(1.18)
èx

Further consideration vdll he given to the unsteady 
problem in Chapter II. Here we shall consider the 
possibility of a "steady state," in vdiich Ml and IT are 
Independent of 6 . In this ease, (1.15) and (1.17) become

C ^ y ^ - ^ C W O )  (1.19)

YïllT^ = (1.20)

vn is Independent of x , so (1.19) integrates to
mir-«v(x-at) (1.21)

where is a constant. For x >oi., ï ï lV '> û  and as Dl 
XT must be positive. For x  <oC , }T must be negative.
%  considering the dynamics of the material on the axis 
near x. -ac , we see that at x -  ec , we must have XT- O , 
Putting V-0 , X  tn (1.20), t o  obtain

Which is useful as an order of magnitude estimate of Ml. 
along the axis.

It is clear from this, that all the material hitting O x 

at X  < X must eventually fall into the star, while all
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the material hitting Ox. at x will eventually escape 
to infinity. However, equations (1,19) and (1,20) do not 
determine ^  and consequently its value in any particular 
case must depend on the unsteady conditions existing before 
the steady state vmb established. But limits can be put 
on the value of • In order that (1*18) should be 
satisfied, we require x - , Also Bondi and Hoyle
claim that in order that the system shall be
stable, thou# their derivation of this Is not immediately 
obvious* Even when oc. le given, the equations (1,19) and 
(1,20) do not determine a unique solution but so far as 
the star is concerned, the value of gives all that is 
required, for the rate at which the star collects material 
(i.e. "the rate of accretion") is

vw-o4= 3ZSZlLo< (1.22)
V-

Apart from the accretion, the mechanism also causes 
the star to experience a resistive force. To determine 
this force, consider a point x { ) on the axis. In
the steady state, the amount of material passing along the 
axis past this point in unit time is the same as the amount 
of material hitting the axis in unit time between the 
point X and x  - o l   ̂ Thus the mass of material per 
unit time passing x is

VYX. ^ X  —-o(L̂
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Eliminating YKl from (1.20% (1.21) we obtain

J .V  ■ o -V ' /*•
. x - x  X.-IT

and putting V = v - ( l - t ^ )  in this gives approximately, for 
large

^  = ^oL X X  x^

the solution of which is

u.= - - ^ ( æ^ x  + a)

where A is a constant vjhich depends on the particular 
solution of (1*20) and (1,21). Therefore

Hence the momentum of the material passing x in unit time
is

v>vxir 6  ~

but the original momentum of this material m s  wtxir so 
the loss of momentum is

which is an expression for the resistive force on the star. 
This expression tends to infinity with x. but in reality 
other stars must produce a "cut-off effect" vdiich enables 
us to limit the value of x * This will be dealt with in  

more detail below#
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In the Bondi-IIoyle mechanism, it is intorosting to 

note that, once a steady state has been established and 
provided a small region of the accretion column near x =<d 
remains unchanged, the rest of the material on the axis 
may undergo disturbances without the steady state being 
permanently destroyed. For now stems of material will 
"grow" in both directions from the neutral point x -cc  

to replace the disturbed material. (This result follows 
from the assumption that there is no pressure in the 
material on the axis.) The disturbances nay be due to 
the gravitational interaction of material on the axis, 
as taken into account in the lyttleton theory of comets, 
or in the outward moving stream they may be due to a drift 
of material off the axis for reasons which will be given 
later.
The Resistive Force in the Absence of Collisions.

If we entirely exclude the possibility of collisions 
between the particles of the cloud, even in the vicinity 
of O x , then every particle will describe a hyperbolic orbit 
about 0  . 4ve shall evaluate the resistive force 
experienced by the star in this case. As is usual in such 
wrk, we neglect the effect of particles colliding directly 
vdth the surface of the star because such particles vd.ll 
constitute a negligible portion of all the particles 
involved.
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In order to obtain a. general result we relax the 

condition that the interstellar material is of uniform 
density and assume only that the density, vjhon at a great 
distance fro m  the star, is independent of jc , At O  lot us 
introduce right handed rectangular axes 0%,^^ and in the 
plane let us introduce polar coordinates («■ ,y>)
with 0  as pole and 0 ^  as axis. Then at great distances 
from the star, the density of the interstellar material 
is ç= Ç (<Tj ĉ ) . Consider the element of the plane
0 ^ ^  which is bounded by the lines y> and y + d y  and 
the arcs cr and o~ + do- , The mass of material moving 
past the star in unit time, vdiioh m s  originally directed 
tomrda pointa in this element, is cL<r. v ^ ( e ,  ,

How the components of the velocity gained by this material 
in passing the star, in the directions 0^^ Oj. are

where p=7T-2C (see Fig, 1.1), Since C  is given by 
(1.9) and using (1.8), these components become

o 1 v V  -) iZlki .- Ixr ~ 1  - z

/"I + ' / -p: + I

How the force experienced by the star is equal and opposite 
to the momentum gained by all the material passing the star 
in unit time. Thus, the components of the force are
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Y  = ^  (1.25)

where £  la the limit of integration for <r and will be
discussed later.

We shall first apply (1.25) to the ease of ^ = constant.
In this case we obtain

X  = î ^ * j  ,1.26,
Y  = 2 = 0 .

If \ve let X. be the distaxice at vàiich the limiting 
particles (i.e. those originally at a distance Z  from O x  ) 

cut 0% , me can use (1,10) to write (1,S6) in the form

X  = ( I +

(1.27)

for large x  , it will be noted that this expression is 
identical with that for the force in the Bondi-Hoyle 
mechanism, (1.24). Consequently the value of the 
resistance does not depend upon the realization of the 
special conditions required to produce streaming along the 
axis. This statement applies only to the dominant term 
of the resistance. Since, however, the problem la in any
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event aoraevdiat Idealized, only this term need be considered.

This result is of some Importance for reasons which 
will now be considered. The resistance (1.24) appears 
to depend upon the existence of the outward-flowing stream 
along the accretion axis. This depends in the first place 
upon the density of the cloud ahead of the star being 
sufficiently uniform. For, if the density varies apprec
iably in a direction transverse to the motion of the star, 
the stream will not form. In this case, even if collisions 
between cloud particles along the axis have their maximum 
possible effectiveness, it will be shown later that the 
material will drift to one side of the axis instead of 
accumulating along the axis.

In the second place, even vdien the density is uniform, 
the existence of the stream depends upon the attainment of 
a steady state. This in turn depends upon the partlole- 
orbits passing through the accretion axis. But perturba
tions by other stars, though insufficient to change the 
general character of the orbits below the cut-off value of 
X , may nevertheless cause them to miss the axis by a 
small amount and so prevent the formation of the stream.
Such effects will apply more to particles associated vdth 
the larger values of c concerned (which are those 
contributing the main part of the force, as shovm by the 
non-convergence of the expression for the force) than to



25.
partiales associated with the smaller values of <r . Thus 
the latter particles may still produce an inward-flowing 
stream on the axis near the star in the manner of the 
Bondi-hoyle mechanism, even «here the outvmrd-moving stream 
is not established, or only partially established.

The importance of the agreement between (1.24) and
(1.27) lio3 in the fact that the force remains the same in 
spite of the above dlffloulties. At any rate, the force 
is the same in the two extreme cases where no particles 
collide and vdiere all particles collide and we may therefore 
expect it to be the same for intermediate cases. We note 
further that the derivation of (1.27) does not depend 
physically upon the assumption of a steady state. The 
result will continue to hold for a non-steady state 
(Including the case where the density depends on x ) 
provided ç is taken to be a suitable mean value of the 
density ahead of the star. It will also continue to hold 
if the path of the star is not rectilinear.
Conservation of iaaergy in the Absence of Collisiona.

In the ease of e fixed star v/lth material moving past 
it, it is clear that the speed of a given particle tends 
eventually to the original value w . So there is no energy 
change. Since the star does not move, the force F ( = X ) 
performs no work and this is in accordance v;ltli the conserva
tion of energy. It is interesting to check that the energy
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Is also oonaerved In the case vflaers the star Is moving with 
velocity v~ and the material is at rest. In the ease of 
the star being at rest, let a particle originally at a 
distance <r from the axis he deflected throu# an angle y3 . 
Thon the force on the star is

which reduces to (1.S6). If now we superpose a velocity v- 
on tho system, so that the star is moving through & medium 
at rest* the force F la unchanged, but it does work at 
a rate F i r ♦ The ultimate velocity of the particle 
originally at a distance from the axis is now V  where

V ^= 2 ir

- 2

The energy gained by the particle Is 

Hence the total energy gained by the medium

= C X ĵ 2 7Ttf-ci<r.ç =
Jo

so the energy of the system is still conserved.
The Cut-off Distance.

SlncG (1.S6) tends to Infinity with Z , there must in 
reality be some limitation on the value of 21 . This 
limitation is detei'mlned by the presence of neighbouring 
stars TJîilch prevent the orbits of the particles from
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being affected by the star under consideration. It seems, 
•therefore, that the upper limit 51 , or "cut-off distance,"
should be taken as about half of the local moan interstellar
distance. «0 have seen that (1.26) may be written

F  = U.ta)

BontU and Hoyle considered tlmt this formula should be 
used where the cut-off distance is substituted for x  •
This gives somewhat different results and so it is 
important to look more closely into the matter# he can 
do this by determining the value of F when the star is 
surrounded by a "s#ero of cut-off." In  reality* the 
cut-off surface will not be a sphere but will depend on 
the positions and masses of ne labouring stars. In 
Fig. 1.2* the star is considered to be at rest at tho 
centre O  o f the cut-off sphere of radius cl . lliterial 
particles enter the sphere from the left with velocity 
in a direction O x  and leave it with the same speed after 
being deflected through various angles /s but v/ithout 
suffering collision. Consider a particle entering the 
sphere at a distance from the axis O x  . let the 
coordinates of the point of entry with respect to O  

be ( ) and let the axis of symmetry of the particle ̂g
orbit make an m g le  C with O x , Then from the geometry 
^ = 7r-2C , The force on the star is therefore
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 ̂2 K<r<i<r. u-ç.

= 27TÇV*'^ p-f 2 c}<r ole- (1.29)

The equation of the orbit of the particle originally at a 
distance <r from Ox. la given by (1,6),(1.7) and (1.8)

whore JL = t r v ^  £ = . mttlng { <L_,^o ) in (1,6)

gives C  = <9o - where 9^ ~ ~ l) .

But 6o = ~K—/ i  , ïiiere ^  = «/d ■

C  = 7T- ̂ -y/ 

c x n 'X C = c ..tn {x lX  

H o w  C-<ra 2 ^  =  /  — J2  ^  =  /  — 2

o(-
Zy/ = 2 ̂ -coy/ ~ /

- 2 r  .

So (1.29) is

I T T ç v * - ^  +  ^ - < » 2 ^ C ^ 2  y^ -<iU^ 2,y^ <r ol«r

c-<o
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which reduces to

.1 f O’ d<r47T9
d" J / -^2 3Ll£ <r

Integrating from <r =0 to 2  we obtain

TFe/.- 
£

We note that if we keep Z  fixed and let (1*00)
becomes the usual formula (1.26). To get the full force 
we put in (1.00), i.e.*

We can now compare (1.21) with (1.26) and (1.28) putting 
Z =oL and x = d  respectively. For -w-^O , (1,26) 
and (1.31) both behave like ZTC^v'-d.^ which —* 0  with v~ , 
vdiereas (1.28) behaves like which is constant.
For large V~ , (1,26) and (1,21) both behave like

i r ^  V

whereas (1,28) behaves like

which is less by & factor of 2* V W n  E  = O , i.e. 
i = y^/2 , (1.01) has value

vâxiXe (1*26) and (1*28) both have value
%r  ̂/ ̂
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In view of the closer agreement between (1.31) and (1.26) 
than between (1.51) and (1.S3), it appears that (1.26) 
vrtth Z  equal to the cut-off distanee is a better formula 
for the force than that suggested by Bondi and iioyle.

It may be noted that a formula similar to (1.31) was
ey (16)obtained by Kolsey/ in 1932

Value of the Frooe vdien Aoorction is present.
In reality, we expect that the material passing close 

to the star will collide on the axis O x  and form an 
accretion oolumn as described by Bondi and Hoyle.
According to their theory, the particles hitting the axis

wvaxi tv«,cam,
up to distance j c =2/^/v *- from the star are captured 
by it. Thus, these particles oacnot be considered to 
contribute to the resistive force. How a particle
originally at a distance <r from Ox hits O x  at 
X  = I T , from (1.10). Thus a particle cutting Ox 
at X- ^ 2 /^ /v -^ must originally have been at a distance c 

from O x  given by

2 fx  _ i r V *
V-*- 2 ^

<r = (1.32)

Thus when aocretlon is present, the resistive force is
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F- )̂j
= 0  - ( i - m w ) ]

= a - ^ 1

In considering the reetllinear motion of the star «toile 
undergoing aooretlon we use the equation of motion

d { Wv VC r—

#iere vyv, is the mass of the star and F is given by (1*33). 
Thus

=-r.

But dwt/dt la the rate of accretion which we m y  denote 
by M  , Hence

+ n  1̂ .

The total effective "resistance" is therefore
F + M i n  (1.34)

It will be seen that for large values of or, the 
formulae (1,26) and (1.33) give similar results. At small 
velocities, however, the difference is more marked. In 
particular, (1.33) vanishes at a non-zero velocity, namely 
«toen

^  -  h-

i.e. 2/M-/Z1. (1,35)
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For this value of *6 v;e notice from (1.22) that e-=Z 
30 that, at this velocity, the star is accreting all the 
material «toioh comes within its cut-off sphere. For 
higher velocities, the accretion rate is

V-* (1.36)

as in the Bondi-Hoyle mechanism (maximum value), but for 
lower velocities, the accretion rate cannot exceed

7T V) (1.07 )

this expression being the imas of all the material which 
comes within the cut-off sphere In unit time.
ComnarlBon of the Aooretlon and Resistive Force at different 
Velocities.

For the purpose of numerical examples, it Is found 
convenient In this work to use units of measurement «toloh 
make ç and G (tho constant of gravitation) unity. We 
also take the unit of distance to be about one parsec.
Taking

,-sG- - 6-67 X /O'* c. g.5. 

Ç = / 0 " \ _ / c . c .

and the unit of distance =■ 3 x 
we obtain
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unit of mass = 2-7x/O** jm..,
unit of time = 3 S7x /O'* sec. = /• 23 x/o’years,
unit of velooity = 0  0775'Awv./see.

It may be noted that if we take the unit of density to be 
^ y. / c . c . , then the unite of mass, time and
velocity must be multiplied by f , f and respectively.

For the purpose of a comparison of the accretion and 
the force at different velocities, the graphs in Fig. 1.3 
have been drawn for a star of unit mass. Using the above 
units and taking the cut-off distance to be half a parsec, 
the force (1,83) becomes

F =

This is the curve in Fig. 1.3. The accretion formula
(1,36) becomes

v;hich is the curve CB, The accretion formula (1,87) for
low velocities becomes

n  = 4-
whlch is the curve OC. The accretion rate multiplied by 
the velocity gives the Mv- term of (1.34) and this is the 
curve OAGB, When the force (1.83) is added to this, we 
obtain the total effective resistance to tho motion of the
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Star (1.24) Wkloh la the curve OAHB.

A rou^ calculation using the latter curve shows that 
the time required for the star (mss ̂  / M o  ) to have its 
velocity reduced from 1 km./see. to 0.1 km./sec. is about 
10 years for ç = /O
Variation of € in a direction nernendloular to Oat .

We shall now consider the effects of & variation In 
the Interstellar material density in a direction perpendi
cular to the accretion axis. For any applications of the 
results it is almost certainly adequate to use a linear 
approximation to the variation of the density. This 
case will certainly serve to illustrate the nature of the 
results. But we may also notice that the forces Y  and Z  
in (1.25) Tdiich arise from the variation of are in fact 
unaffected by quadratic terras in this variation.

Let the variation of density be In the direction of 
Then we may write

Ç. = Ç« {/ +

Substituting this in (1,25) gives

Z =  o

(1,08)

(1.09)

V
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which are the components of the force experienced by tho 
star when there are no collisions between the particles of 
the interstellar material. Thus if the value of -t- is 
appreciable, the star will tend to be deflected towards 
the denser regions of the cloud by the force Y .

le shall now obtain approximate values for tho force 
components in the event of the particles colliding on the 
axis Ox. . Consider the element of Ox between x  and 
jc.+-<tx , se suppose all the particles arriving at this 
element in time to suffer inelastic collisions and
thus coalesce. It should be remarked that the term 
"coalesce" is not intended to have any special physical 
connotations. It is convenient merely as a general 
description of the state of affairs treated by the mathematics. 
All that is implied is that subsequent to the collision, 
the particles move with a common velocity. This velocity 
will have an initial component ir along O x  as we have 
seen, but it will also have a component U perpendicular to 
Ox since there will be a greater mass of material arriving 
from some directions than from others. ï/e must now obtain 
this component U . The material hitting the axis in 
time J-t which was originally directed towards points in 
the element of the plane O b o u n d e d  by the lines f  and 
Ÿ ->■ and the arcs <r and c -e ol«r , has mass

(1.40)



37,
and on hitting the axis has a velocity component parallel 
to of

- (1.41)

from (1.11). The component of momentum of this material 
parallel to Oy is therefore

cL<r. Ç y>.

Thus the resultant momentum of all the material originally 
at distances between and <»■ + cA«- from is

27T

\ <J«r. tc. Ç u-olfc y
t.i’o Y ^ /

~ «"c/o-. J (1.4S)

From (1.40), the mass of such material is
air
 ̂ c/tf . <?-d. y>. Ç’O'Jt

Y =o

2TT
= <r

/-ITT
cL<r. v d t \  ^ d f .  ( 1 . 4 3 )Vo

Hence the velocity component of this material parallel to 
■^O , after coalescing on the axis is obtained by
dividing (1.42) by (1.43);

_ /3T j. f y ̂  r(J  ̂ I —  , (1.44)
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Substituting for ç from (1.38), this gives

U  = V  (1,45)

which, we note, is independent of x  .
The next step is to determine the ultimate velocity 

components ( U.o ) along and perpendicular to O x of
the material colliding on the element of axis dx. . The 
path of this material is given by (1.6),(1.7) and (1.8) 
with

A . - x U  and £ =

Putting v = jc , <9=0 in (1.5) gives

^  = e -{)•

Putting f  = «3 , <9 = in (1.6) gives

c-o-s ̂ Sco — ^

where ^  is the direction of the other asymptote of the 
orbit from that which is approached by the material. It 
follows that the direction of the asymptote which la 
approached by the material is given by

6l = -

The ultimate velocity ^  of the material is
given by the energy equation to be
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f o** = £

^ = U  - 2 .

Hencô '̂ cc =  ̂ U '̂  = <o ..4-ŵ 6/
Mil oh recluoe to

=. -i-X^'O’ ü  K^U^tO^ (1.46)

Uoû ~ (^>1 V^U'-^dc.UDi-x} (1#47)

Tho mass of tho material piirsulng this orbit p§r 
unit time is, from (1#43),

ITT go/^cLc/V:

The components of tho momentum lost by this mass are the 
components of the force on the atar, i.e.,

x =  \  (.--ig 7
> (1.48)

Y  = LL \

Retaining only the dominant term for large x  and U<"̂  ir,
m  have

o r -  Voa , U.O '^V.

Substituting these values in (1.48) gives

X -
Y - ^  =: TTg* -6-yu- H  .
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These expressions are the same as the dominant terms of 
(1.39). So again the force la tho same whether collisions 
do or do not take place on O x.. We may expect that the 
force will be the same in the intermediate case where some 
particles collide and some do not*

In the case of oollisinns on O x   ̂not all the resulting 
material has sufficient energy to escape to infinity. This 
applies to material for which E < 0

< 0

i.e., x <  (1.49)

Thus all the material colliding on the axis at points x  

satisfying (1,49) remains gravitationally bound to the star. 
Such material therefore begins to move in elliptic orbits 
about the star. It v/lll be shovm later that if U is 
independent of x  , which Is the case for a linear variation 
of density, these elliptic orbits do not intersect, so that 
a species of circulatory flow is established. The total 
mass of material which is thus captured by the star per 
unit time is

'ir('üVxr9 ■ (1.50)

Neglecting U , this rate is the same as the maximum rate 
in the Bondi-Hoyle mechanism for uniform density e, .
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Strictly speaking, the condition (1.43) is not exact, 

since to escape from the star it is only necessary for the 
material to reach the cut-off distance <d from the star.
A particle just reaching this point would have energy-/*-/^. 
The condition should therefore be E  < - / ^ / c L

i»0* X. <

80 the capture rate is

This rate differs little from (1.50) and is shomi in 
Fig. 1.3 (taking i parsec) by the curve FB, neglecting 
This compares with CB vdiloh is for (1.50), neglecting ,

We shall now prove that the elliptic orbits do not 
intersect when U is independent of x  . We shall first 
find the condition that the equation

A B> <xr> S-i-C. S = O  
has no real solution in ^ * This may be written

and the left hand side of tills is never zero if

vhlch is the required condition.'
let the particles, resulting from collisions on O x  

at a distance -*• from O  , move in the ellipse
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^  - I (& t- e).

Then -£ = ^ ^  v̂ - whore V = ^ .
Since ( ^ ) lies on this ellipse, v/e have

=4 (̂ “ 0
So =. yÿ - h - ( ^ x -  l)

= é / i ^ W ^ W ^ W ^

n J_ _ x U v
^ s f - p r  -

How let tTO of the ellipses he

 ̂= I - t

- / -e -€ -f 6 ?̂ .

Eliminating v- , :ii - 1-̂
-€x I 't^i.<-ery(&i'6»)

So -̂/ -t Æx i' 4 . x I  6̂̂ -h ej

4 f4 i .Cxĵ -o <9«c>̂ f a. - ->41,̂^ £XJ — -̂ x + £, — <9--Cuvû 6^

For no real solution we require

'-2i, ̂ x-^i^,.^<£i^£x
^  4 x  -t - 2  4 ,4z-e , t x " ^ 4 , \ 4 2 - 2 ^ f 4 2
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- l ^ ^ . w (  / - [ ( ^ ^ . - l ) ( ^ ^ ^  - l ) - > -

i .0. <9 < A /  (2 ^ ^ _ ̂  ( f x , x , - x .  - x ^

i.e. 0 <  2ac/x, + l x , x ^  - 2 x , ^ x - - 2 x . ^ x i - ^ ^ ( x . ‘> x ^ - ,x ^ x ,^ - 2 x fx ^  

i.e. 0 < 2 ( x , - x ^ ) ^ ( x ,  + x ^  ~ ^ ( ^ > - x ^ ) \ x ^  

i.e. 2- Jĉ

which is true since from the ene rg y egmtlon,

2 V^’- '/y ^ x , < 0  and % V z ̂  0.

Hence the ellipses do not intersect* îhis result has 
been proved only for the case vMere U  is independent 
of ^  # If dU /cLx is positive and of sufficient 
magnitude, material In different orbits will suffer further 
collisions, as illustrated in Fig. 1.4(a) and the resulting 
motion will be highly complicated. Similarly if d U /d x is 
negative and of sufficient magnitude, collisions will occur 
as illustrated in Fig. 1.4(b). Bven In the case of a 
linear variation of density, the circulating streams may 
be destroyed and the material absorbed by the star if the 
density gradient varies from place to place along the path 
of the star.



44.

to

H
tiû•H

(g

<

lO
H

ÜO•H

c3



45.
Returning to the oaae of a linear variation of density, 

v/e have seen that the material vJhich remains gravitationally 
bound to the star describes a series of elliptic orbits.
We shall novi consider whether those orbits out the surface 
of the star. For an ellipse, if A  and E> are the major 
and minor axes respectively, then

B».
A A

But is the minimum distance from the star to the
ellipse. Since me are assuming the ellipse to be hl^ÿily 
eccentric, -t—  I . Hence the minimum distance from the 
star to the ellipse is approximately -£ /z . But 
and X  = X  = X l r ^ / ‘\}- , Hence the minimum value of ^  such 
that the ellipse does not out the surface of the star is 
given by

vAere R is the radius of the star.
For the outermost ellipse, we put approximately,
from (1.49), and obtain

As an example, consider a star like the sun with 
R -7 A /o'" cm, and mass 2>^I0^^ gm. We obtain
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—  = % 2 3 '(/O'"'
■(r u®

vAiere v  is here in km,/sec. For v - S  km./see,, v;e need 
l/-êr = é  S S ^ I O ' ^  cm., i.e., a ÎOO tier cent variation of 
density in loss than a parsec. For tr = / km./see., on 
the other hand, we only need l / - t r -  8-23 * 1 0 '’’ cm., 
i.e., a 100 per cent variation of density in s,bout 28 parseca. 
Thus, #ille at high velocities, all captured material is 
likely to fall on to the star; at lower velocities, 
circulatory streams of material may be formed without any 
undue variation of density.

The differences between the accretion process in the 
Bondi-Hoyle mechanism and the capture process here 
described may now be discussed. In the first place we 
have to recall that when an accretion column has been 
established In accordance vdth the Ik>ndi-lIoyle theory, the 
incoming cloud-partioles collide with ?naterial already in 
the column and not directly with each other. How the 
consequence of a transverse dcnslty-gradient in the cloud 
is to give the incoming material a resultant transverse 
momentum. In that case there cannot therefore be an 
accretion column lying symmetrically along the accretion 
axis. If the resultant trsxisverse momentum is sufficiently 
large, there can in fact be no accumulation of material 
along the axis for the incoming particles to collide with;
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the only collisions to be considered would be collisions 
along the axis between the incoming particles themselves.
If also the cloud-density were sufficiently small, such 
collisions would be rare and there would be no accretion.

However, for any given cloud-density Ço , there must 
be a range of values of the denslty-gradient as measured 
by Jlr which leads to a situation intermediate between that 
of the Bondi-Hoyle theory ('&-= O ) and the extreme ease of 
no accretion. Such an intermediate ease must have the 
general character of that treated above.

In this case all the material arriving at the axis Ox. 

in 0 $ x . $ X  where X  is given by (1.49), is captured by 
the star. Thus the amount of material "captured" is 
approximately the same as that "accreted" in the Bondi- 
Hoyle theory. In the present ease, however, the captured 
material may not all fall on to the star but some may go to 
form a distribution revolving in the vicinity of the star.

We notice that, whereas the parameter X is 
indeterminate on steady-state considerations In the case 
■ tr=0 , it becomes determinate in the case of -6- # 0  here
considered.

It is important to appreciate how this case differs 
from that considered by Bondi and Hoyle. In the present 
case the incoming particles are assumed to "coalesce" on 
the accretion axis. This means merely that, ov/ing to
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collieions In the vicinity of the axis, the particles 
arriving there at any Instant acquire a common velocity. 
Owing to the assumption that &  is not zero (though it may 
he very small) this velocity at any point of the axis has 
a non-zero component perpendicular to the axis. It is 
part of the assumption that on account of this lateral 
drift the material concerned is not involved in further 
collisions with subsequently arriving incoming particles.
In the ease considered by Bondi and Hoyle, on the other 
hand, the material proceeds to move along the axis vihere 
it does encounter further incoming particles. Thus, 
althougii the present case is intermediate between that of 
Bondi and Hoyle and that of no collisions, it does not 
yield either of these eases as limits. In particular, 
it is not possible to infer that X must be determinate 
in Bondi and Hoyle’s case by attempting to treat it as a 
limit of this case.

The more interesting point is that the angular momentum 
about 0  per unit mass of the captured material is, on 
the average

taking X  = . If v/e take to correspond to the
m&B3 o f the Sun and km^/eeo# as a typical value,
this ^ives about / 4
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We may compare this v/ith the angular momentum per 
unit mass of the 3un itself. According to values given 
by Chapman(^ , this is about Thus
the value given by (1.51) is greater than or equal to this 
if ' Is less than about 100 paraecs. How -C-'' is 
the distance over which the cloud-density changes by 
loo per cent, and 100 parsecs would be a large value for 
the radius of a cloud

It is then tempting to conclude that any significant 
accretion of mass is likely to be accompanied by a 
significant change In the star's angular momentum. 
Nevertheless it has to be noted that, although the denslty- 
gradient required to produce this result is so small, its 
component transverse to the star's path would have to be in 
the same direction over a great length of this path.
Without much further investigation it is therefore impossible 
to say whether the effect has any general significance 
in regard to the phenomenon of stellar rotation. It may 
serve merely to endow separate portions of accreted material 
with varying amounts of angular momentum about the star in ’ 
a manner suggested by Gething in relation to Lyttleton's 
theory of comets.

In connection with the above discussion, it should be 
noted that a variation of the undisturbed material velocity 
in a direction transverse to the direction of the star's
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motion can also produce angular momentum in the accreted 
material and this has been investigated by MoGrea^^^).
The Effect of Temperature on the Resistive Force.

Viie have assumed so far, that the particles of the 
undisturbed interstellar material have no relative motion. 
If the particles are the molecules of a gas this is only 
true if the gas is at zero absolute temperature. At 
other temperatures each particle has a random component 
of velocity superposed on the common velocity ir relative 
to the star. Provided this random component is not too 
large, we may expect the mechanism producing the resistive 
force still to hold approximately. It is difficult to 
make a quantitative estimate of the temperature such that 
the force is not appreciably changed, but this will now be 
attempted in the case where there are no collisions between 
particles.

In the case vâiere there is no random velocity, the 
resistive force is ^ where

from (1.31).

How suppose each particle has superposed on its 
initial velocity v- , a velocity c . Let c  have the 
sane magnitude and direction for every particle and let the 
direction be that of a given line through O  making an
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angle ©  with O x  {Fig. 1.2). Then the resultant initial
velocity of each particle vdll he V given by

V*’= c*-+ 2irc ©  (1.53)
and this will make an angle $ with O x  , given by

^  = "^r €) ( 1.54 )

It follows that the resulting force will be Ç F ( ^ )  making 
an angle $ with O x  . The component of this along O x  

is ^ F (V ) cxn i  ,

Hext suppose the particles have superposed on their 
initial velocity a random velocity component. This 
component la to be considered as of constant magnitude but 
uniformly distributed in direction. The resulting force 
will now be along O x  and of magnitude

m  7T
^ ^ F ^-c:> ^  & J ie t

=o €) - O

= -£. ( F^yj 0<77> ©  cf ®. (1. 55)2 J©
We shall evaluate this Integral on the assumption that
terms of order C ^ / v - Y  and hi^er terms may be neglected.
Let us write V'= t r + h v - and F ( Y )  = A o - i - A x ( ^ ^ ^ + -  -

where A o j A , j A ^ , . . .  are independent of Sv- and O  .
Vie have .A  <-‘- + Z v < i . c ^ e  i ( ~ i ) rc^+2vcc«0l*; )

% x r  =  -ir [ z  + ~ 2 T L  ^  r -  J

- V-
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and 6C3

=  I ~  x
Thus (1.55) becomes

^  ĵ A*+" A,V- "A

^ (  I ~ Z  ©ct ©.

= eA« +e A.n-+--L (1.56)

80 the fractional change in the force is

In this expression, the sum of the terms in the square
bracket is of order unity. This can be indicated by 
considering the limiting forms of F {v ) when v->o 
and when ir— »■«» , i.e.

F ( v j ^  27T jL^v-^ as ir-^O

in which case the sum of these terms is 5/6, and

F (y ^  %'KfAj- as TJ"—

In vdiich ease the sura of these terras is -̂.
Thus the fractional change in the force is of order c^rrl
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This formula will also hold approximately in the ease 
where the velocity magnitude is also random if v/e take c- 
to represent the R.M.S. velocity. For the change not to 
he more than about 25 per cent we need c, , Now
for gases we have the relation

= R T  = Y M

..T=
where T  is the absolute temperature, R is the gas constant, 
c is the R.M.3. velocity of the gas molécules and M  is 
the molecular wei^t of the gas. For atomic hydrogen,
FI ■ I and putting c*- v/e have

T = ' V ^ I 2 R

. . r  = (1.57)

if XT is measured in km./sec, (1.57) gives the value 
of T  above which the force will be altered by more than
about 25 per cent from its value at 7 ~ = 0 * A  . (1,57)
applies only to the case of no collisions between the 
particles.

It is extremely difficult to assess the effect of 
temperature vdien collisions occur and an accretion column 
forms. It may be worthvdille to mention here an extremely 
simplified ease v/hlch has been considered, not to determine
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the effect of temperature, hut to examine if under 
certain circumstances the accretion rate can be increased. 
Consider the star to be at rest at O  and the particles 
which issue from A {at à great distance) in Fig. 1.5(a) 
to be of two kinds; (!) those v/ith velocity -ir-vS and 
(ii) those with velocity xr-s ; there being equal 
numbers of each type of particle so that the average 
velocity la the usual xr, The first typo of particle 
will hit the axis at C and the second type at B, say.
As v/ill now be shown, this model gives an increased rate 
of accretion by a factor of * over the rate
in the case vâxere all the particles have velocity xr .
The effect is small, e.g. for S/xr as large as O '/ f .S ' , 

the rate of accretion is only doubled.
In Fig. 1.5(b), consider the point D on the axis at 

a distance x  from the star. Tv/o streams of particles 
will collide at D. These are type (1) particles 
originally at a distance from the axis and type (11)
particles originally at a distance «I from the axis. 
From (1.10),

2/- V

- J L x .  i r r Æ - .
ir- 2/^ (1.58)



55.
The maas of type (1) particles hitting O x  between x  

and X. + X x  in time X b is

ZTT<r,Jie-, ( i r - t -  ^ ( ^ / z ) .

(The ( ^ / l )  is because half of the density is due to 
type (i) and half to type (ii) particles). This is, 
from (1.58)

Similarly, the mass of type (ii) particles is

y r ^ ^ . K ^ d t  —

Ilence the total mass hitting d x  in time d t  is

YW, H- m,. = K ^ d b ^ d x  — r  (1.59)

The velocity V  of this along the axis is given by the 
momentum equation (assuming all the material coalesces 
and then moves freely under the gravitation of the star),

("m.,-f Tvvi.) V  = wti {v"-*-s)

V  =  s 9/v-
The maximum value of x  such that material hitting the 
axis between x  and x - ^ X x  does not escape to infinity is

X  -  -
V*
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From (1.59), the accretion rate la therefore

= jTC/^'e

(xr^ -  S'/



57.
Chapter II; The hnateady Accretion Problem.

In the Bondi-Hoyle mechanism of accretion, we saw 
in Chapter I that a consideration of the "steady state", 
in wiiich a star is moving throu# a cloud of interstellar
material of uniform density, does not give a unique
solution for the motion. Bondi and Hoyle therefore 
concluded that the amount of material captured by a star 
must depend on the perturbations previously suffered by 
the star and its column of interstellar material. They 
then obtained an approximate solution in the case of a
star moving from empty space into a cloud of uniform
density, the density of the Interstellar material being 
discontinuous across the surface of the cloud.

In the present chapter a method is suggested vdiioh 
may be used vdien the density is not discontinuous at the 
edge of the cloud. The method may also be used vdien the 
density within the cloud varies with time. A case 
similar to that considered by Bondi and Hoyle and also 
one other case have been examined using this method. 
Considerable computation was required and this was 
performed on the Manchester University Electronic Computer.

The launchester University Electronic Computer has 
been constructed by Ferranti ltd, and is the only 
enginoered electronic imchine in operation in this country.
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It Is a development of the experimental machine built in 
the Department of Electrical ISngineering at Manchester 
University by T. Kilburn and F.C. Williams. Also the 
Manchester University Electronic Computer is the only 
machine in the country with an auxiliary magnetic storage 
system, which is essential for large problems.
The Equations.

Using a sli^tly different notation, the equations 
governing the unsteady state, (1.15) and (1,17), may be 
OTitten

m iW (s.i)
à 5

m i r ^ +  (2 .2 )

vàïere r is the time, I is the distance along the accretion 
axis, c is the speed of the star relative to the cloud,
O , is the mass of material hitting unit length of the 
axis per unit time and the other variables are as in 
Chapter I, In the new notation, vie let the neutral 
point (x. = c6 )T)g

It may be noted here that a steady state (defined as 
a state in which IF and 0. are all independent of ^ )
cannot exist unless ç is independent of r , But if ç 
becomes independent of r , it does not follow that a steady 
state will occur immediately. However, the system will



59.
Immediately start tending towards such a steady state.
The Pronosod Method.

Let us concentrate attention on a particle of material 
in the coluBBi. Its position at any time will he ^ = X A )  , 
say. Let the values o f  ^ ^  and TH in the neighbourhood 
of the particle be V  , A end M  respectively. How 

j is the velocity of a particle at point | at 
time r , So

= = (2.0)

and
d v  ^  2 2 L d J L  ^
d r  à ! oic àr "

vdiich from (2,3)

_  U T o r  +
TT- (2.4)

Substituting (2.4) in (2.2) we obtain

 ̂ (2.5)

We also have

SO
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£ Ü1  ̂  m  ̂  m
'i'% </r ^

= (2.6) 
 ̂3 ■

Writing (2,1) as

and substituting for the left-hand side from (2 ,6 ) we have

let us suppose equations (2.3), (2.6) and (2.7) to he 
solved, giving A  , V and M  as functions of ^ starting 
from the boundary condition I = ̂ , when zr = c , , Then
the function X would represent the path of the particle 
as shown by in Fig. 2 .1 . In this ease (as shown
in the diagram) the particle starts to move away from the 
star but then returns and falls into it. If a aomevdiat 
larger value of I had been taken in the boundary condition, 
say i = Ii then the path v/ould have been as I, AI , 
indicating that the particle escapes from the star. If 
the density ç is constant so that d  also is constant, 
then the system must eventually become steady and there is 
a value of I at zr = r« such that the particle neither
falls into the star nor escapes from it, but follov/s a
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—  N

T(ort)
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path $3 T  and comes to rest at 1 =3^ . ïhis value Iv
Is ivlmt v;e denoted by /3 above.

In general, the method may he looked upon as a ?my 
of determining the alteration in /i caused hy a change 
from one constant value of ç to another. It Is not 
necessary that the change he instantaneous; the value 
of f hetv;een the tvm constant values may ho any function 
of time.
The numerical Solution.

The object of the numerical investigation m s  to 
obtain the value of /i in the case of a star entering a 
cloud v/ith & discontinuous oïiange of density at its edge, 
and also to examine the effect on /5 of a slov/er change 
in Ç .

On account of the gradient on the ri^t-liand side of 
(2,7, it is not possible to solve (2.S), (2.5) and (2.7) 
for a single particle. It is necessary to solve for a 
number of paths simultaneously. It is a property of the 
equations (parabolic equations) that disturbances are 
propagated along the paths i, B>K , etc. and not from 
one path to another.

The star is supposed to enter a cloud from empty space 
at a time r = 0  , The value of CL is supposed to increase
either instantsneously, or else linearly v/ith time from 
zero to Its final value vdxioh is reached at r = ^
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after which 0 . remains constant. (The factor is
to make a dimensionless constant.) The surface of
the cloud is taken to be of such a shape that (X is a 
function of r only. It is at this point that the problem 
here considered differs from that of Bondi and Hoyle.
They considered the cloud to have a plane boundary vMon 

at a great distance from the star. Ae the - Btar-e.pproaohoo 
the -cloud, the boundary beooaes disterted-from the -otaas 
As the star approaches the cloud, the boundary becomes 
distorted and they take this into account. In this, 
problem, on the other hand, the surface of the cloud 
(and in general the surfaces of constant density), when at 
s great distance from the star, is supposed to be such 
that as the star approaches, the surface will become 
distorted and will fall on to the axis 0 |  in such a 
way that all points on it hit the axis at the same Instant. 
This makes d  a function of Z" only and Independent of ^ .
The surfaces of constant density in the undisturbed cloud 
v/ill be surfaces of revolution with the path of the star 
as axis, and the surfaces will present a concave side 
tovmrds the star. In view of the difference between this 
problem and that of Bondi and Hoyle, it is not justifiable 
to expect that the values of / i will be the same in the 
two oases.

The general method given in this paper could be applied



64.
to a cloud with a plane boundary, but this would make CL 
a fimctlon of r as well aa of B • The extra information 
that would have to have been stored in the electronic machine 
would have considerably reduced the rate of computation.
For this reason it was decided to use the simpler ease for 
the purpose of obtaining a result.

The equations may first be made dimenslonless by the 
transformation

r = 0 / c ^ > ,  M  = / 0 2 4 ( ^ 4 / 4 3 V ^  
1/ = 4uï?^ V  - J A = A o -

where A  h e re indicates the final value attained by A .
The equations (2.2), (2.5) and (2.7) become

sLï. - ir (2.8)
dt 2,

(2.9)- I / «■('<~ I \
-Là 4 4 ^xy>

f b l  = __2:____ èZr)
dit toxif. ^ \'ÿSÂ -̂ (2.10)

The numerical factors in the transformation were necessitated 
by the decision to use an electronic calculating machine.
In aïiy machine there are limits between which numbers must 
lie. In the machine used the limits were

Scale factors must therefore be inserted to ensure that the
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variables all lie in this range. The equations involve 
Ë single parameter c l . In the equations, the derivatives 
with respect to t Indicate ratios of small changes vdiich, 
in the distance-time diagram (Fig. 2.1), are taken in the 
direction of the path.

The solution of the problem was obtained by building up 
a network formed by ten particle paths and the lines 
6 = constant as in Fig. 2.2. Denoting the paths by the 
integers 1 to 10 and taking equal intervals A in ^ , 
we may attach s, number pair ( ̂ ,/» ) to each point of the 
network, where f  is the number of the path on which the 
point lies and indicates that the point is on t  =/?A ,
The values of the variables at any point of the network 
will be denoted by the appropriate symbol with the number 
pair of the point as a suffix.

Since only about three significant figures were required 
in ̂  , it was not thought v/orth while to use more than 
second-order approximations for the derivatives in equations 
(2.3) to (2.10). Thus (2.8), ('oLx/otfĉ  ̂ was 
represented by

and similarly for (  In (2.10), As a formula
of this sort for (eLrr/J.t)r^p would have caused oscillation 
in the solutions, it was decided to use
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For C c L ^ / < L i ) ^ p  In (2.10) the approximation

( ^ + 1, p ~  p

was used except at the edges of the network ( f = 1 and 10) 
where the third-order approximation of the typo

vmB used*
The equations (2.8) to (2.10) then give the formulae:

^  ( 2 #11 )

(2.12)

\ ■9- 2 n 2 ^ f ,p  32748 «V.Î/-+/ 204:8 x̂ ,. 2o^%jc^^J

di.id.dt, smX J-
with the appropriate change in the last term of (2.12) 
when '* '=  1 or 10.

The initial conditions were as follows: The initial
values of X v/e re taken at equal intervals so that

2C.-ÇC — ^  -K j  'f' ~ 1/ Lf ‘" j  ^

^  and S jc being suitably chosen constants. There is 
no material in the column initially, so
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YV\-t, o -

and the initial velocity is c , so

o ~ ~ĵ  o nJ ct, = O.

The first-order approximations for the variables at t  - A  

were taken:

X r , i  ^  e + - T  C % x ) - + -  

VVLr,; — A  % 6cy

^5' ~ It- ~  IO Z L p X .\, ■’

These formulae are for the case vitoere «- increases linearly
from zero at fc=0 to unity at 6 and then remains 
constant. In the case of an Instantaneous Increase in 
the value of «• from zero to unity, the last three 
formulae are changed to

VWr,| =• A / \O lL f .^

i ~ J ï Ù ï T

a ,  ■= /.

By using the above formulae the network can be built 
up. The best way to determine the value of is to
find, for various values of t  , the value of x. (#iioh we
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shall refer to as ) at which -O --0 . This cam be deter
mined by an interpolation between the points of the network 
on the lines ^ = constant. If the results are plotted, 
a curve is obtained like li-tH in lig. R.l. This curve 
passes through all the maxima of the paths and so tends 

to 3 =/a/8(/V‘̂'t)
It was found that as soon as the maximum of a path 

had been passed, the path rapidly fell away towards the 
t  axis. In machine computation this meant that the 
velocity grew (negatively) so rapidly that there was a 
danger of it going out of the number range. To avoid 
this, arrangements wore made at certain intervals of à. to 
interpolate between the paths and to continue the inte
gration with ton new paths. Thus, in Fig. 2.1, suppose 
that the integration had been performed up to 6=6, ,
so that the network tma -AB. At this point a new
set of paths would be formed by selecting five of the 
original paths and forming five new ones by mid-point 
interpolation between the old paths. These ten now 
paths would intersect AB betvfoen G and D, say. The next 
part of the network would be like CDFB. At 6 = 6^ a 
farther ten paths would be formed and the integration 
would continue from GH.

Considering the points on AB, the changes in and jc 
from one point to another are small until the velocity



69.

goes negative. After this, the changes become large.
These large changes reduce the accuracy of the interpolation 
between oaths. For this reason it was found wise to 
choose the disposition of CD with respect to AB so that 
at D, V  was just slightly positive.

The instructions to cause the machine to carry out 
the calculations had to bo punched in a certain code on 
to paper tape. The tape was about 24 feet long. Those 
instructions were put into the machine by means of a 
tape reader. The value of 6« was specified on the 
tape and so each different value of 6c involved a 
slight alteration of the tape. The velues of ^ , Sx 
(used in forming ) and A were specified by the 
setting of switches on the machine. %'hen these svdtches 
had been set, the machine was caused to form the initial 
conditions and to integrate up to 6 = l and then stop.
The values of the variables at the points on 6 = 1  could 
then be printed out on paper if desired or they could 
be examined by means of a matrix of dots which appeared 
on the screen of a cathode ray tube. It ras then 
necessary to tell the machine, by the manipulation of 
switches, whether to carry on the integration or whether 
first to form ten new paths. In the latter case, the 
disposition of the new paths with respect to the old ones 
had to be specified again by switches. The machine would



70.

;hon integrate up to ^ = S, vAen the deolslons would he 
taken again as at 6 = 1$ after an examination of the 
variables, fo avoid the of errors due to a unit
of the rc'.ehl-no not functioning properly, it arranged 
for each part of the calculation to be repeated until 
tv/o conecc/ative results agreed. This could be tested 
by the oiaohine Itself. Only when agreezrcnt vms reached, 
would the next part of the oaleulation be attempted# 
Integrations were tried with ^  - g and and as
these agreed to the desired limits of accuracy, it was 
decided to use ^ . A value of about 0.001 was 
found to be satisfactory for Sx . It may be thought 
that the accuracy would be improved by making Sx as 
small as possible but this did not appear to be the case
because wiien was reduced much below 0.001,
oscillations rapidly appeared in the values of the
variables. The reason for this is not clear. It may

y
7)08311)1/ have keen due to son© number vs jig e trouble.

'..hen. the machine v;as in good vjorkirig oi’der it could 
Integrate between two integral values of à with 4 ®i 
in five aioutes. This involvea 80 applications of each
of the formulae (2.11), (f.12) and (2.10).
Results enl Conclusion.

J'ost of the work oonsiated of pi’elimimry integrations
to determine the best valuea to take for parameters such
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as A  , Ê and . The final results are set out in the 
accompanying table. This shows the value of 8,̂  {i.e. 
the values of Sx at which v-=0 ) for various values of 6 , 
The column headed 6e « O  is for an Instantaneous change 
in density when the star enters the cloud. The figures 
in this column converge to a value near 1.13. This may 
be compared with the case considered, by Bondi and Hoyle 
who obtained 1.25. These values are the estimates of

. The figures for 6c = 1 could not be carried 
far enough to get an accurate value for because
beyond 6=7 the accumulation of truncation errors caused 
the solutions to become inaccurate. They show, however, 
that the value of yi Is changed substantially from the case
6c = 0  .

It is interesting to notice that although the curve 
of zero velocity (i.e. ) tends to a higher value
in the ease of 6c = 1 than in the case of 6^= 0, it is
initially below the 6c = 0 curve. The first few values 
of the 6c = £ curve show that it starts below the 6c= 1 
curve although it is expected to go above it eventually.

The general conclusion from the numerical investigation 
is that the mere violent the change of density, the sms.ller
is the value of /3. This confirms the findings of Bondi
and Hoyle.
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Table of Su.

fc 6c = 0 6c = f 6c =2

1,123 0,65 0.50 0,52
2.125 0.84 0.78 0,67
3.125 0.98 0.90 0,85
4.125 1.09 1.00
5.125 1.116 1.11
6.125 1.12 1.16
7,125 1.21
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Chapter III: im  Elaboration of the BoMl-Hoyle Keehanlsm.

Bondi and Hoyle ̂ ^ ̂ considered the flovî of material 
in the accretion colusm vdiich, according to their theory, 
would to formed by particle collisions occurring in the 
wake of a star. They supposed the properties of the 
material entering the accretion coltunn to be such that it 
rapidly loses heat by radiation and so the accretion column 
could be treated mathematically as a linear distribution 
of ni&terlal. In this chapter we formulate the equations 
governing a more elaborate model of the accretion column.

We suppose the mechanism by which material is "focussed" 
on to the axis O x , is the same as described by Bondi and 
Hoyle, We assume however, that the accretion column 
consists of a stream of gas around the accretion axis.
This stream is kept in position by the steady shower of 
particles which arrive from the surrounding space, Althoui^i 
the boundary of this stream will not be clearly defined in 
reality, we introduce for the purpose of a mathematical 
treatment a definite boundary with circular section of 
radius t-(x) where x is the distance from the star 0  *
V<e suppose that within this boundary, conditions are uniform 
over any cross-section. Let )7l(x) be the mass of gas per 
unit length of the stream, IT C x) the velocity and f> (x )  

the pressure of the gas.



74.
It should ho mentioned here that the width of the 

stream has been briefly discussed on page 89 of ^9),
We now obtain the equations determining the conditions 

in the stream of gas in a steady state. By considering the 
conservation of mass on an element of the axis, we obtain

m f lV  = r v ^ ( x -  a t) (3.1)

as in the Bondi-Hoyle mechanism, (1.21). As in the 
Bondi-Hoyle mechanism we can also obtain an equation of
motion like (1.16) but there will now be an additional term
on the right hand side representing the force on the element 
of material between x  and x- due to the pressure in
the gas. The force due to pressure on the plane end of
the element at x is

n r ^ K ^ ) f > C x )

and the force due to pressure on the plane end at x+oLt is 

the difference between these being

X

This is the force due to pressure on the element and it is 
in the direction x O  , So setting up the equation of 
motion we iiava, for the steady state,

(8.2)
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The stream has its shape maintained by its pressure being 
balance/ by the force due to the momentum component, 
perpendicular to O x  , of the particles which hit unit length 
of the axis in unit time. Prom (1.11) this is

*vu /jfi V JC ■
The outward force per unit length of axis due to pressure 
is

n r ^ C x ) p U ) .

Bquating these forces,

(3.2)

In deriving (2,3) w© assuras that

otherwise both (2.2) and (3.3) would be affected, since 
the force due to the outward pressure of the gas in the 
stream would not quite be perpendicular to O x ,

If we consider the gas in the stream to be perfect we
have

py = "3 n (2.4)

wiiere p  is the pressure of a volume V of gas containing 
^  particles each of mass M  and having velocity c .
That is

wc »■ = c >,
J
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Cj being the velocity of the j th particle at any time. 
How c is constant for a given temperature so we can take

to be a measure of the temperature. For our element 
of the tube, we have

V  = Ki-̂ cLx. 
W.M = y ü , j ix

so (3,4) becomes
P -T T i-^ d x  -  -f yricAxc*-

K = j-)72c' (3,5)

taking to be a function of x  and the same over any
section of the stream perpendicular to O x  .

Se obtain a further equation by considering the 
conservation of energy within the element between x  and 
>c+oLx , The energy consists of kinetic energy of 
translational motion, heat energy and gravitational 
potential energy. Thus:
energy entering per unit time energy leaving per unit time.

= j j T i i r f  i v \

'  ̂ccvv,.>t 4̂A. a, ,
♦J;

+ iro-*Lu«*>t«-<rvv
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-£oa-* -^ro>^

-<ii**-.o.^ -ptu- c u ^  ùZZï̂ . (S3)

Equations (3»1), (S,E), {33), {2»5) and (3,6) are five 
equations for the five quantities Ml, P > *
The Radius of the Stream.

It is not proposed to discuss these equations in 
general hut we shall use then to get an estimte of r
near the neutral point x = a c , which exists, as in the
Bondi-Koyle mechanism by virtue of equation (5.1), As 
a suitable function for the radiation loss is not know, 
we shall assume a value for c and so avoid the use of 
(5.6), Remembering that X T - O at the neutral point x =,&,
we obtain from (3.2), neglecting the last term,

Dividing (3.5) by (3.3) gives

V- V Mlc

f n ( ^ )  = ( s. ? I

- \ / F

For definiteness let us take x. = 2 ^ / v ^  so that

where is the gas constant and T  is the temperature in
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the stream ( R T = j ^ c - ^  vû isre 61 = / for atomio hydrogen). 
The values of f and 2^/v-’- are compared in the 
accompanying table for a few values of .

It will be seen that only in the lower tvjo cases is 
f  , which is a necessary condition for
the Bondi-Hoyle mechanism to operate. For xr =/ K m , / s e e . ,  

T  must not exceed a few degrees absolute in order that 
this condition should be satisfied, althou^ at S’ Km,/sec. 
it can go up to about /00®A , if -o- = o . l Km./sec,, it 

is evident that T  must be a fraction of a degree absolute. 
In general I t - R T /v '- must be simll compared with unity since

r  = k £ T j ± : , ,
-Ü-’-

Knowing V , the density Ç̂, in the stream can be 
obtained from M. -TTf

- fc = e

where ^ is the density in the undisturbed interstellar 
material. Two values of Co/ç are given in the 
accompanying table.

By the above calculations, estimates have been 
obtained of the thickness of the axial stream and of its 
density in the region of the neutral point. Se have 
seen that if the temperature of the material in this 
stream goes above a certain value, determined by the
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Table of t  and e«/e for T “A  

and a star of solar mass.

^•ÜUoA../d jL c )  ^ -^ -« x -ra A c ^  ^  -a A -c .^  €®Ac.
0.1 2.9 x T
1.0 0.0 X l o S T  8,9 X 10'' 1.81 x lo/T^
5.0 4,8 X lo'̂ xT 0.6 X 10"̂  1.10 x 10^7^
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velocity of the star through the cloud, the value of ^ 
becomes so large that our equations can no longer be 
expected to hold. But it follows that at such tempera
tures, the Bondi-Hoyle mechanism cannot hold either.
This does not imply that there Is no accretion. It 
merely means that the Bondi-Hoyle mechanism is no longer 
an adequate representation of the accretion process. It 
seems that there are three stages of the accretion process 
depending on the temperature in the accretion column*
For temperatures very near 0®A,, the mechanism will be 
that of Bondi and Hoyle. For temperatures somewhat 
greater, the mechanism will be that described in the 
present chapter and for still greater temperatures the 
mechanism will be a completely aerodynamic one, The 
temperature at which the second stage gives way to the 
third is not clearly defined. It depends on the velocity 
of the star relative to the cloud and vfill be about the 
temperature at vdiich- v  becomes of the order of .
In the next chapter an account is given of the attempts 
which have been made to estimate the accretion rate when 
the problem is treated aerodynamically.
The Resistive Force.

It is possible to obtain an expression for the 
resistive force on the basis of the model considered here 
in the same way as in the Bondi-Hoyle mechanism. this
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will now be done on the assumption that there is no 
radiation loss. b’e shall see that the resistive force 
is increased by a factor of 3. This gives an upper limit 
to the value of the force vdien there is a radiation loss. 

For large jc , (3.1) becomes

Ï Ï I V  =£h (3,8)

Substituting (3,5) In (3,2), ?;e obtain

YYIv 4 ^  = v w ^ v - A ) -obc. ' OoLx.

vdiioh becomes, using (3,8),

 ̂ (3.9)

If the radiation loss is zero, (3.6) integrates to

*n. tr*j: + a  = MllT

Where A is a constant of integration. Using (3,8) we 

get

= . (3.10)

le then substitute this in (3,9). We put
and expand the various terms, retaining only first povjers
of ^  . We obtain approximately,

^  • *̂  = __3£2_
JLx ^
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of which the solution is

ac=_ 1/ :>c

So

from which the factor of 3 in the force arises* Substitut 
ing this expression for ^  in (0.10) gives

c 6  ̂ ^ > c  

80 — > O  as x . - ^ o o  ^ Dividing (0.5) fey (3*0) gives

r_  ^ 3  Mlc*-ye
■'■ f  ------ ^  ^

80 r  oo with XL , Thus, the thersml energy is used 
up in expanding the stream of gas. Although ■r~><>o ,

SO our assumption that c L -r/Ù .jc «  I ig satisfied for 

large x , Substituting the above expression for i~ in 
(3,0) gives

I t L

V 2a*,3c, Ac
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From thia consideration of the aaymptotie behaviour 

of the stream of gas, to see that the velocity IT and 
hence the resistive force is not very different Mien pressure 
is taken Into account from the case of inelastic collisions 
considered by Bondi and Hoyle, M e n  the radiation loss 
is taken into account, the difference v/ill be even less.
Since this treatment is midway between that of Bondi and 
Hoyle and the aerodynamical case, m  have an indication 
that the force will be little different in the aerodynamical 
case. This is useful because no estimate of the force has 
been made in the latter case.
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Chapter IV s Gaseous Aeoretlon.

The Bondi Process.
The problem of the interaction of a star with 

interstellar material, when the latter is a at a 
temperature other than zero absolute, was first treated 

by B o n d i I n  the special ease of a star at rest relative 
to the material, Bondi considered the problem for various 
values of the ratio of specific heats of the gas, y  , 
but for the purpose of illustrating the results, we shall 
here examine only the isothermal case Mere y = j .

The star is considered to be at rest in an infinite 
cloud of gas Mich at infinity is also at rest and of 
uniform density and pressure . The motion of
the gas is spherically symmetrical and steady, the increase 
in mass of the star being ignored so that the field of 
force is unchanging. The pressure p  and density ç are 
related everywhere by

r = Ae, (4.1)

A  being 8. constant. If we take -r to be the radial 
coordinate and Tk the inward velocity of the gas, the 
equation of continuity is

XtTT = 6

where B ig the accretion rate. Bernoulli's equation is
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jL «0 «

1 ^ ’’ ^ - ^ ( toc) (4,3)

Let c denote the aound speed, then

= i f  =e (4.4)

Let ue introduce non-dimensional variables ^  as
follows :

(4.6)

e = ire«-

Then (4.8) and (4,3) take the forms

= A , (4.5)

?/here A is given by

B = 4'n'A/^^£^y4^.

Eliminating J from (4,6), using (4*5), we obtain

C~^ ÿ^—   a. A + + 2 -6v_jc) (4.8)

(4.7)
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The two quentitles In brackets are plotted in Fig. 4,1.
Our problem is to find as a function of x. , Suppose 
for the present that -A.. A = 0  . Then for any value G

of X. , we obtain tv/o values H and I for ^  . By letting
(r take all possible values of x. , we obtain a set of 
points H and a set I as possible solutions of (4.8).
The set H is exeluded hovrevor as it does not satisfy 
as X —  ̂ , The solution I is therefore the only one
possible. It will bo noted that this solution— > 0  

as X. -> and as x  O  , If A + O  , the same

procedure is possible except that the curve P E  F i g  

displaced downv/arda a distance A . Hov/ever no 
solution is possible If E  is displaced belovî B , i.e. if

2 . - 2 . / ^ 2  — A ̂

and there is a critical case M e n  £ and 6 are at equal
heights. Let the value of A in this case be denoted
by , then

2 — 2 - ^ 2  — ~ 2

In the critical case, the solution 1 has two branches, 
one — > 0  and the other — as x  —>• O  , Bondi 

refers to the two branches as Type I and II respectively. 
We have thus shown that a solution to the oroblem is
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possible if O i X  < Ac • Bondi concluded that the rate 
of accretion is not determinate without introducing other 
Considerations such as stability. It is the opinion of the 
present vjrlter that this is not the case and that in fact 
the rate of accretion is given by putting A =Ac . This 
follows from the assumption that the star will swallow up 
any material falling into it, however much. If any 
smaller value of A Is taken, we are assuming at the start 
that the star swallows material at a limited rate. looking 
at the matter physically, we may say that for A < Ac , 
the gravitational attraction of the star together with the 
gas pressure at infinity serve to drive the gas towards the 
star. But the star refuses to accept more then a certain 
amount of gas per unit time and oonsefjuently a pressure 
(and therefore a density) gradient is built up near the 
star Which retards the gas as we have seen and so prevents 
the specified accretion rate from being exceeded.

However when A = Ac , the gravitation and pressure 
at infinity are only just sufficient to drive the gas 
towards the star at the required rate. In this case, there 
is no retardation and the pressure gradient is less than 
for A < Ac , In the opinion of the present v/riter, the 
îype I motion has no physical significance.

The assumption actually made, namely that the star is 
capable of swallowing up an infinitely large amount of gas
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is oguivalent to putting A =•<=> , A solution in this
case is not possible, however, since the inertia of the gas 
prevents it reaching the star at any rate greater than that 
given by A =Ac , Consequently this is the nmxlmum 
possible accretion rate and is the rate which will occur 
in reality,

Taking A = Ac, , the accretion rate is given by (4,7)
to be

This compares with the maximum rate in the Bondi-Hoyle 
mechanism lAioh is

V  being the velocity of the star. In tho light of these 
two results, Bondi conjectured that the formula

(4,9)

should give approximately the rate of capture in the case 
of a star moving through the gas. Actually, Bondi’s own 
’general purposes* estimate is one-half this rate, but his 
arguments, when applied to an isothermal gas, would lead 
to (4,9) as given.
Accretion by the Star at Supersonic Velocities.

We now give the results of a study of the isothermal 
flow of a gas near a star which is moving with a supersonic
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velocity relative to the gas. The reason for conaidering 
isothermal flow is that it introduces a certain mathematical 
simplification. However, two physical arguments can he 
given to justify this. In the first place, the temperature 
of the gas will probably be affected by the heat radiated 
from the star, and so will, to some extent, be a function 
of the distance from the star. In this case, the simplified 
problem, in which this radiation is ignored, is unlikely 
to represent the situation accurately whether isothermal 
or adiabatic flow Is considered. In the second place, it 
is believed that, when dust is mixed with a gas, this 
enables the gas to radiate heat and thus maintain a uniform 
temperature. The assumption of isothermal flow is not, 
therefore, as artificial as may at first be thought. The 
restriction to supersonic velocities of the star is neces
sitated by the method used to study the flow; this will be 
shovm below. It may be explained, however, that in the
supersonic case the rate of accretion by the star is not
affected by any boundary condition at the surface of the star,
vdîcreaa in the subsonic ease it is necessary to specify 
the rate of accretion before it is possible to determine 
the flow.

Me may consider the star to be at rest at the origin of 
coordinates and the gas to be moving with a velocity V v&en 
at a great distance from the star. let the ^ -axis of
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eylindrical polar coordinates Be taken in the
direction of V . Then the steady flow of gas past the 
star will he axially symmetric. Thus we may vnplte dov/n 
the equations of continuity,

the equations of motion.

p ^ ( £ v s - )  ( t < ^ )  (4.10)

if ̂ (4.11)

and the equation of state for the gas,

f = A ç  (4,13)
f

In these equations, tt, or are the velocity components of 
the gas parallel to the directions of ^  and -r respectively, 
£ is the density of the gas, f> is the pressure of the 
gas, 2  are the components of the gravitational
force of the star, i.e.

and A is e constant depending on the temperature of the 
gas. The speed of aound c in the gas is given by

c ’’ = ^  = (4.15)

and 80 is constant throu,^out the field.
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îho method used to study the flow was the 'method 

of oharacteristica'. The detailed theory of the method 
cannot ho given here, hut tho derivation of the formulae 

used can he outlined.
he aasuîse the existence of a velocity potential f6  

such that

Sj " ■

From (4.11} and (4.15) we obtain

l a - - ^ 4 ^  - • ' I ? - T f X

and from (4,12) and (4.15) we obtain an expression for 
• Substituting this and (4.16) in (4.10)

wo obtain

(4.17)K + 2u.v-S + T -v'/i. + u-2 + -u-cyV;

.her. , ^ = ^ 7 5 5 " .

J L u ^ =  R  c L y  f  Sd.'T-  ̂ = T c L i^ ^

R = u. - 6 2» ; S o l^ ^ d i~ . (4.18)SO

(4,19)

Substituting (4.18) in (4.17) we obtain

( — 2u.V-o(̂ o('r + jJ*-

as an expression for S at any point in the field. For 
a solution to the problem, 5 must be finite at all points
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in the field. Hence, ¥;hen the denominator is sero, the 
mnnorator must he also. The denoalnator is zero If

ol T tcir ± c C<*^+ tr̂ - c*) '■ (4.20)

This equation represents t?-‘o directions throu#i any point, 
and hence it also represents two families of curves called 
’characteristics’, a member of each family passing through 
each point. It will he noticed that these curves are 
real only if the flow is supersonic, i.e. if 
If we introduce the new variables ^  and »«- , vAere & is 
the inclination of the streamline to the ^  -axis, i.e.

t ^ G  =  (4.21)

and vw , the ilaoh angle, is defined by

c  = (4.22)

then (4,20) becomes

^  ^  /<9=fcv̂ . (4.28)

From (4.28) it follows that at any point the streamline 
bisects the angle between the characteristics. To obtain 
relations holding along the characteristics, we equate to 
zero the numerator of (4.19) and use the substitution
(4,22). We also ?srite 6'*’= ct.’-+y’- , After some
reduction we obtain
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for those relations. For isothermal flow c is a constant, 
and so from (4.22)

d U ^ U  — — c-ĉ  w,. c(-Wl, .

Substituting this in (4.24) and using (4.14), we find

dtw. * b < ^ ^ d 6  ^  q  (4.25)

or, say, JL>ŷ  ■*■ ^  Z ^ < 1 ^  = 0 . (4,26)
The characteristic relations require further 

consideration on the ^ -axis, since it is necessary to 
determine the value of -4^ S / 'T  , On the ^ -axis we 
have - r - O j  - v -= Oj  S = 0  ; hence S = ,^y/à^ = û  . 
Distinguishing values of variables on the j- -axis by the 
suffix 0  , we see that

On the ^  -axis, (4,17) takes the form

(4,28)

low Ro = ^ - - - E_ _  = _
^  ̂̂  ^  o 'w-e ^ ̂
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Substituting this in (4.28), ve h&ve

2̂r

It is convenient to measure distances in terms of 
f ^ / c . ^  , let us refer to the families of characteristic 
curves as the (-) family and the (+) family, according to 
the sign in (4.22). The method consists of taking an 
arbitrary curve A D  at a sufficient distance upstream 
from the star (at the origin), so that on it the flow may 
be considered to be almost undisturbed by the gravitational 
effect of the star (Fig, 4.2), A number of points

6, <1̂ D  are taken on the curve. Consider the points C  
and D . Suppose througii D  a strai#it line is drawn in 
the (— ) characteristic direction and through C  a straight 
line is draim in the (+) characteristic direction, the 
directions being obtained at D  and C  on the assiuaption 
that the flow is uniform. Then these will intersect at 
a point E, . A pair of relations like (4.26)
can then be used to obtain values of wv. and G at 
E, 6),, say), where the differentials in (4.26) are
replaced by finite differences and the functions
and Z *  are evaluated at C  and D  , Knowing , g,, *L, 
and <9, , a new point £i 2i>-y can be found
from D  and C using gradients and functions
and Zj; #%leh are means of their values at D and E,
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j K 0

Fig. 4.2.

Fig, 4.8.
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and at C  and £, . fhus an iteration can be set up leading 
to a point E . This point is considered to he the 
Intersection of the characteristics throng C  and D  .
In a similar manner, F  is found from C  and B  , then G-
from F and E , and so on, until a region A D H  has been
filled in.

In the undisturbed flow, ( 9 - 0  and Ü  = constant = V ,
hence vw =■ constant. Thus in the undisturbed flow, each
family of characteristics is a set of parallel strai^t 
lines. If the curve A D  is taken sufficiently upstream, 
the characteristics in the region A D H  are almost 
straiglit. It can be seen from this discussion that the 
curve A D  is not completely arbitrary as it must intersect 
every characteristic of either family not more than once.

The point I (being the mesh point adjacent to A on the
{ + ) characteristic through A ) requires special treatment
because it is necessary to evaluate at A .
Since we assume uniform flow on A D , it follow that
-<1:^ 6/r O  at A  .

The calculation in the region on the other side of AH 
is similar except that a different calculation is required 
to obtain points like J on the -axis. We know that on 
the ^  -axis, -r- = Ô  = O , Using the {-) charocterlstlo 
direction at I , we can find a point on the ^-axis.
The value of vw at this point can be found by a relation
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(4.26) using © _  and Z _  evaluated at I . Using the 
values at T, , we find a point such that IJi has
a gradient ïdilch Is the mean betvreen the values of the 
gradient evaluated at I and at J . The value of vv>. 
at can be found with a relation (4,26) using values
of © _  end Z_ i*ioh are the means of the values 
calculated at I and 'F , A difficulty arises, however, 
as it is necessary to calculate at Ji . For this
we use (4,27) and (4.29), which tell us that at each point 
on the ^ -axis

— - - - > î(- (4.00)
To evaluate we use

-V H\| —  iM.1.

à. -

where suffix I Is for values at J, and suffix 2 is for 
values at A  . The value of { is easily found 
from (4,20), since, at A  , - * - 0  , Kence

/
I ^ i J x  L A' A-

Hence, an Iteration can be set up to find the point J" 
The value of at T  must be stored for use fdien
finding the next point on the axis, K  ,

Towards the end of the calculation, at L , the (-)
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charactoristics become steeply Inclined to the y  -axis 
and if carried far enough would turn right over. For this 
reason it Is better to use ^ . - r instead of 
e l | f A 9 - v w )  in the (-) characteristic relation (4,25).

In the calculations «diioh were performed, the curve AD 
was taken to be an arc of the circle '•'''+5)^* ,
with modifications in some cases to suit the geometry of 
the characteristics. This boundary appeared to be 
sufficiently removed from the star, because the character
istics in the region A D H  were almost straight.
Sixteen points were taken on this boundary, and the flow 
was investigated for four values of the initial Much angle 
(i.e. four values of V/c ),

Fig. 4.0 shows the characteristic pattern in the case 
where in the undisturbed flow (i.e. \ / / c = n/ 2 .  ) .

Only the characteristic pattern in the region of the star is 
shorn. The initial boundary is not shown, as it is off 
the left-hand edge of the figure. Some of the {+) character
istics in the top left comer of the figure have been 
omitted. This accounts for their Irregular spacing in 
this region. It will be seen that the pattern has not 
been continued dovmmrda sufficiently to touch the positive 
^-axis. To have done so would have required a considerably 
smaller mesh size, owing to the rate at which the gravita
tional force changes near the star, and so a greatly
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lïicreasod time for the calcîilatlon. The pattern has, 
however, been continued sufficiently for an estimate to 
be raado of the rate of accretion by the star. If material 
is captured by the star, then there must bo a stagnation 
point S on the positive y  -axis. Sines u,-tr=0 at a 
stagnation point, there must be a surface enclosing a small 
volume round S upon which the gas velocity Is equal to 
the sound speed c , On this surface it follows from
(4.22) that = . Since the stream line through the
stagnation point will cut the y  -axis at rlgiit angles, it 
follows that the (+} characteristic will be parallel to the 
'2f- -axis near 5 . (Incidentally, the (-) characteristics 
will also be parallel to the g- -axis on the small surface 
enclosing 5 .) Thus the dip in the (■*■) characteristic 
near C  (Pig. 4.8) gives an indication of the position of 5 .

The following consideration also gives an indication of 
the position of S . On any line parallel to the y  -axis,
S is negative and û - > 0  as . for lines fairly
near the y  -axis, 0  will clearly have its minimum value 
in the region of the stagnation point. But this does not 
apply for lines very close to the y  -axis, and consequently 
this method of determining S is less reliable and is only 
used as a check on the position of S determined by the 
above method. In Fig. 4,0, the (+) characteristics in the 
region of C  are approximately parallel to the ^ -axis.
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The line D C  is the locus of the points of minimum (9 on 
these eharacteristica. By extrapolating this line, the 
point E is obtained. Since, in Pig. 4.8, the dip in the 
characteristics is near this point, we may suppose that E 
is close to the stagnation point S , Taking E as the 
estimated position of S , the rate of accretion by the star 
can be estimated by finding the stream-line FCrE which 
passes throu#! E , The part 6-E of the stream-line has 
to be guessed, with the help of the fact that the stream
line at £ cuts the ^ -axis at ri#it angles, and with the 
knowledge of <9 along the innermost (+) characteristic *
Having obtained the point C , the part F & of the stream
line can be found, since the values of <9 are known at all 
points of the mesh. The limiting distance o. o f  F from 
the ^ -axis Is the radius of the ’tunnel* swept out of the 
gas by the star. The rate of accretion of gas by the star 
Is then W a-'-V ç^ ,

The values of the radius o, in terms of are given
for the four initial values of in the accompanying table 
under the heading ’Found*. The values under *(4.9)* are 
those those calculated from the formula (4.9). Owing to 
the crudeness of the method which the points E ,6 and
F have been determined, the conclusion to be drawn from 
this table is merely that the calculations indicate a rate 
of accretion of the same order as would be given by formula
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Table of

VYV Found (4.9)

20° 0,19 0.20
30° 0.45 0.42
45° 0,70 0,74
60° 0.90 0.99



103.

(4.9). So importance should he attached to precise values 
In the column ’Found', since the method of determining E 
and G- might well produce errors up to 50# in the value 
of a. .

It la hoped that these calculations will help to bridge 
the gap between the oases of zero gas temperature and of aero 
star velocity, which have been previously studied, and so 
will strengthen the foundation of the accretion theory.
It will be noted that in the case of gaseous accretion, 
there is no accretion column, and so the possibility of the 
inflovîing material missing this axis cannot arise. It is 
also of mathematical interest that in the supersonic gaseous 
case the rate of accretion is determined by the steady-state 
equations, vdieress in the mechanism of Bondi and Hoyle it is 
necessary to consider unsteady conditions before the precise 
accretion rate can be obtained.

From the hydrodyimaical point of view, the calculation 
may also be of interest. In Fig. 4,3, two of the (+) charac
teristics run together at A  . This is an Indication of the 
formation of a shock vmve îstoich extends in the direction A  6  .

The computation of the characteristic mesh was performed 
on the l&nohester University 331ectronlc Computer. It took 
about four hours to compute the mesh shovm in Fig. 4,3, A 
similar time was required for, each of the other three oases.



104.
Chapter 7 : A Theory of Binary Star Formation.

The number of binary stars that have been observed is 
Very considérable and in the neighbourhood of the sun. binary 
stars are about half as numerous as single stars. The 
problem of the origin of binary systems is therefore one of 
some importanee to astronomy. There appear to be only three 
logically possible theories: the binaries may have been formed
by the disintegration of originally single stars; they may 
have been born or created as double stars; or they may have 
been formed by the coming together of two originally single 
stars.

We shall consider briefly the three types of theory.
The first or fission theory was for some time the accepted 
one of binary formation. However, later examination^^ ^
indicated that it is inadequate to explain the formation 
of binaries. The second theory which says that binary stars 
were formed by the condensation of two stars within each 
other's gravitational influence is now the theory receiving 
most attention. In the third theory, two originally 
independent stars are considered to come together and remain 
together. If we look upon the stars as particles, it can 
be shown that if two stars approach from a great distance, 
they must necessarily separate again to a great distance in 
the absence of forces other than their gravitational
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attraction. Although the fact that stars are finite bodies 
may alter this statement in certain eireumstanoes, the 
problem has never been seriously considered and all theories 
of this type assume that forces are brought into play in 
some other way. The most obvious way is by the introduction 
of a third star. Thus, if three stars approach from a great 
distance, it is possible for one to recede to infinity 
leaving the other two gravitationally bound together.

The theory we wish to consider here cMnbgwtion of
the second and third types, but the plaoej of third star 
is taken by the interstellar material. M o t h e r  jjyrds, two 
stars are considered to approach from a greafr“» M fCanoe apart 
in a region of interstellar material. During the approach 
and subsequent encounter, each star will experience a 
resistance to its motion and so will lose energy. If this 
energy loss is sufficient, the stars will not again recede 
to a great distance apart but will remain gravltationally 
bound together. Once the binary has formed in this way, its 
orbital elements may be subsequently affected by the 
interstellar material as will be explained in the next 
chapter.

If we examine more closely the second theory of binary 
formation, we see that some similar process must occur 
because after the stars have condensed, their subsequent 
motions must for some time be influenced by the star-forming
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medium. It is during this early stage that we oonsider the 
theory here put forward to have been of most importance. 
Mathematical Investigation.

In considering the dynamics of a binary forming 
encounter between two stars, as described above, we must 
imagine the stars to approach from a separation of the order 
of the local mean interstellar distance since at greater 
separations, each star is more likely to be influenced by 
other nei#bouring stars. The maximum initial velocities of 
the stars necessary to produce a capture will depend on the 
initial direotions of motion and on the masses of the stars.
A full investigation of the binary forming encounter would 
be quite difficult in view of the numerous parameters 
involved. However, a simple example has been investigated 
in order to find the order of magnitude of the initial 
velocities. The case considered is that of two stars of 
equal mass approaching with equal speeds in almost opposite 
directions. Starting with an initial separation cL the 
initial speeds are found so that the stars never again 
separate to a distance of more than i d  . The centre of mass 
of the stars is taken to be at rest in the medium which has 
density g .

Since the velocities of the stars are necessarily small, 
the accretion mechanism must be considered to be that in 
which all the material coming within the cut-off distance of
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either star is captured by it so that the accretion rate is 
given by f1.07) and there is no resistive force of the form 
(1.03). However, owing to the presence of the other star, 
we would expect the cut-off distance for either star to be 
reduced to about half the separation of the two stars at any 
instant. With this modification we can write down the 
equations of motion for either of the stars. Let the frame 
of reference be such that the origin O  is at the mass centre 
of the stars and let 0 >c. pass through the starting points of 
the stars. Then the motion of either star will be almost 
rectilinear and coincident with O x . Let ^  be the position.

the velocity along Ox, and ^  the mass of one of the 
|:tars at time t . then

= IT (5.1)cLt
The equation of motion is

(5.2)
d t  4. JC»

when the stars are approaobing, where G  is the constant 
of gravitation. The modified rate of aooretion is, from 

fl.37)
oL
c L t

= 7 t I v ) .  (6,9)

Consider the star whioh la initially at x - - - ^ c L  . Then 
the velocity of this star will be positive so dividing (5.3)
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by (5.1) gives

=- 7T£

whence wt. = ^  7Tg M  (5.4)

where M  is the mass of the star when it reaches the origin. 
From (5.2),

wx.4^ +  ir Azh = -^r2> 
d t  J i t

and using f6#1).(5.0) and (6#4), this becomes

dCv̂ ) 27Te^" E('M + j-TTex̂)
<Lx- ^  M  +^7Tçx.'* 2 jc*-

of which the solution is

A being a constant of integration. Now (5,4) implies that 
as the stars approach each other, they accrete the material 
lying within the cone whose vertex is at O and whose semi- 
angle i a  TC/lf. . It is supposed that the stars narrowly miss 
a collision at O  and then proceed and come to rest at 
AC- = ± 1- cL . Since after passing O  each star will be 
entering a region which has just been cleared of material by 
the other star, we assume that the stars do not accrete 
betvieen 0  and their first position of rest. Thus, in this
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part of the motion, we have from elementary considerations 
(or else by putting' ç = 0  and changing the sign of G- in 
(5.5)),

V*-= ■+ B, (5.5)

B> being a constant which is determined by the fact that v = 0
2&-n

The condition at the origin is that at Ac = S (where S is a 
small positive quantity), v ’" given by (5.6) must be the same 
as TJ"- at Ac. = -S given by (5.5). Prom this it follows 
that A = -

To obtain the maximum initial velocity of a star we put 
x =  - in (5,5). We obtainr __z[!___ ,

( < - F S  (6.71
oC = M y^ç^ .

which gives ^  for various values of M  . it will be noted 
that when is large enough, will be negative owing to

S£B  o f P o i i T C
the negative coefficient of in (5*7), / The solution
is approximately oc = O 135"  ̂ The physical signifioance is
that stars with oC>O I5 S  cannot be brougiit to rest at a 
separation of even if their initial velocities (at
separation ^  ) are &ero.
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Bigcuasioa of liesults.

The aooompanylf% tables give the maximum initial velocities 
and resulting masses (M) of the stars undergoing such a binary 
forming encounter, for given initial masses and interstellar 
material densities. The initial masses are such that the 
diagonal figures in the tables correspond to o c -O - IZ S  ,

For these tables, the value of cL was taken to be half a 
parsec. This value was taken because although the present 
mean interstellar distance in the neighbourhood of the sun is 
about one parseo. if the binary stars were formed by the method 
suggested then the mean interstellar distance of the original 
single stars must have been rather leas.

The initial velocities given in the table are unfortunately 
too large for the assumption about the accretion rate to be 
satisfied. The maximum velocity for this assumption to hold 
is given by the condition (1.35). Applying this condition at 
the point ^  = -fcl we obtain the velocities given in brackets 
in the table. We must therefore look upon these as represent
ing tne order of magnitude of the maximum velocities. It may 
be thought that by using the appropriate accretion conditions 
for higher velooitias. a higkier maximum could be obtained.
It is not likely that much can be gained in this direction 
however because as Fig. 1.3 shows, the accretion rate and 
effective resistance to the star fall off rapidly after the 
point D which represents the velocity given by condition (1.35).
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Table of masses of stars r8saltli% from the binary forming 
enooonter of stars of initial separation ^ parseo and of 
given initial masses in a medlam of given density.

10
10
10
10

./0.0*

-£2
-21
-20
-19

Initial Masses fin Solar Masses) 
0,00069 0.0069 0.069 0,69

0.023 
0,222 
2,21
22.1

(0.029)
0.230
2.22 

22.1

(0.091)
(0.290)
2.30
22.2

(0.712)
(0.91)
(2.90)
23.0

Table of maximum initial velocities (km./see.) of 
stars in the binary forming enoounter.

gra./e.c

10-""

10-21

10-20

10-19

Initial Masses (in Solar Masses) 
0.00069 0.0069 0.069 0.69

0.0299
(0.0035)

2.13
(0.0035)

70.1
(0.0035)
2240
(0.0035)

0.0945(0.011)
6.75(0.011)
222(0.011)

0.299> 
(0.035)
21,3
(0.035)

0.945(0.11)
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The braoketod velocities are very small and consequently 
this binary forming enoounter process can only be considered to 
apply to stars which are almost at rest initially# But this 
is all that la neoemaai'y for the applioatlon to the second 
theory# (This point, incidentally, shows that the above 
rectilinear treatment of the problem is all that is necessary#) 
The next point to note is that the resulting masses of the stars 
are almost independent of the initial masses# The resulting 
masses Eire therefore only dependent on the density ^ and also 
on cL , being proportional to # To obtain a binary consist
ing of two components of solar mass we would require a density 
of between 10 '̂ ' and 10 "̂ * gm#/o#c. (with ci. « | parseo)#
This is high compared with densities of clouds observed at 
present (10 ~̂  ̂ gm#/c#e*) but it must be remembered that when 
the binaries were formed, considerably different oonditions 
of the interstellar material must have prevailed# Of course, 
for a given value of g , any desired resulting mass can be 
obtained by a suitable choice of cl , The importance of the 
present calculations is that the masses of observable binaries 
can be obtained with quite reasonable values of g and #

In the table of resulting masses, the bracketed figures 
are included for the oases which do not result in captures#
It is seen, of course, that in all cases the masses of the 
stars are increased# It follows that if a star does not 
form a binary in its first enoounter with another star, then ^
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it can ne ve r again do so in a medians of the same density except 
possibly by a three body encounter* It also follows that if 
a binary forme, it cannot subsequently pick up a third star to 
form a tertiary system, under the influence of the medium alone* 
It is however possible for throe or more initial condensations 
to become mutually attracted and form a multiple system. To 
investigate the case of three condensations, we may consider 
three equal condensations at the corners of an equilateral 
triangle and examine their motions us they approach their 
common centre of mass through the medium. If we do this, wo 
obtain an expression like (5.7) except that O is increased by 
a certain factor. Thus, the initial velocitios of approach ir , 
as given by (5.7), arc no smaller than for a binary forming 
encounter. Similarly for four condensations originally at 
the corners of a tetrahedron.

When a binary forming enoounter of the type discussed 
above ocours, the mass of material accreted by the two stars 
is about a half of that originally contained within a sphere 
of diameter (L . Consequently, there will still be sufficient 
interstellar material left to form a resistive medium for 
further accretion effects to occur. The formation of multiple 
systems leaves somewhat less unaooreted material.

In the above treatment of the binary forming encounter, 
the stars subsequently form a binary star whose components \

I \have highly elongated orbits. If the stars originally have 4
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8ligl:it lateral velocities off Ox , then the stars will follow 
paths which are curved but none-the-less close to Ox, ,
80 that the above treatment may still be expected to hold 
approximately. However, the orbits of the resulting binaries 
will be elliptic, or in the extreme case, circular. It is 
important to consider the maximum separation in such cases. 
Consider a binary with an elongated orbit and one with a 
circular orbit. Let the stars be of equal mass v»v and in the 
elongated orbit, let the maximum separation be 2R • Then 
the energy of the binary is - . In the circular
orbit, the energy is

L w. TN'r*. ̂  ± ... _ G2-r
where ir is the velocity of each star and r is the radius of 
the orbit. But ar = y/Gwy^ r  (see equation (6.1)) so the 
energy is . Equating these energies we have R - l r
30 that in a binary forming encounter, if the stars separate 
to  j J i in the elongated case, they would separate to about 
^dL in the circular case and to intermediate distanoes in 
the elliptic case.
Effect of Unequal Initial Masses.

If the masses of the condensations are not equal initially, 
let the masses at any instant be yyx.,, , the positions
and the inward directed velocities ^  respectively.
Then (6.2) becomes
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<^C^i _ (r  ̂ d
c i t

from vvhicli it follows that at any Instant,

wv.

If, in this case, we oonsider the masses to tunnel out 
regions of radii equal to their distances from the neutral 
point of the gravitational field (i.e. the point where the 
gravitational attraction of and '̂ a. are equal and
opposite) then the accretion rate for vw, is given by

cL wv
T T p XT. l Æ L i ± L Z ± l l lL  +  j ; z :  J •

(5.9)
oLt ^  ' L  f f :; +  j n = r ^

If the condensations start from rest, the constant in (5.8) 
is zero and so (5,9) and the corresponding expression for 

are equal. Thus during the encounter, both 
masses accrete equally and since the total mass of the 
accreted material greatly exceeds the masses of the initial 
condensations, it follows that the masses of the stars after 
the encounter are practically equal. If, however, the 
initial velocities are not zero, the accretion rates will 
be unequal and so some difference may be expected in the 
resulting masses. It is not possible to estimate the 
extent of this difference in general but a rough integration 
of the equations on a hand machine for unequal initial 
masses with velocities of the required order has given
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resulting stars of mass-ratio 1:2, It is difficult without 
further Investigation to say whether mss-ratlos as large 
as It 10 could be obtained, but this process can at any rate 
account for some differences between the masses of the 
components of the resulting binaries.
Time of Encounter,

Returning to the case of equal Initial masses, we shall 
estimate the time required for the condensations to move 
from their Initial positions to their positions of minimum 
separation# For definiteness we shall consider the case 
where the initial velocities are zero and ô = 0 /35' *
Then the time is

o

-<1/2
where

-O j7S ji
Jix. 

V-
'-O'S'cL -’0'37Sji

I t  waa estimated graphically to be I B l/C^ç , To 
estimate Z, , the approximte behaviour of -o- near-t-=-joL 
Is required. %e can get this by putting x. = -  in
the differential equation for , This equation becomes

c ^ C ^ )  ^  JL . ^ g.4 -
cL^ 2 wi-ft cL

o f which the solution is

j-, (5.10)
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Y/here wto is the initial mass of a condensation, The true 
expression for is greater than this, so usin^ (5,10)
to estimate h  will not give an underestimate of the time.
Using (5,10) and the fact that Y?e
obtain I, = 7 8ly4^g so that the total time of the
encounter is 1 , For ^ - 1 0  gm,/c,c, this
is I - I I ^ I O ^  years and for = 10^^ gm,/e#o., it is

years*
Conolusion,

We may summarize the results of the present investigation 
by saying that our theory of binary formation applied at an 
early stage of stellar evolution is consistent with the 
accretion theory and under suitable circumstances, systems 
with three or four components can also be formed# If the 
situation investigated is in any v/ay related to what occurred 
when the stars first condensed we may draw the follovjing 
conclusions: The possibility of a given condensation becoming
a component of a binary will depend on the mass which it can 
attain before becoming attracted particularly to one of its 
ne labours# If it is attracted early in its life it has a 
high chance of becoming a binary component. In this case 
the mass of the resulting component is practically independent 
of the mass of the original condensation and depends only 
on the interstellar material density and on its original 
distance from its prospective partner (but, of course, the
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mass of the component may subsequently be altered by further 
accretion). But If the mass of a condensation increases past 
a certain value before becoming particularly attracted to a 
neighbour, there is no chance of it becoming a binary 
component except by a three body encounter.
A Simple Statistical Theory of Binary 3tar Formation.

According to the theory developed above, once a 
condensation has had an encounter with another, which does 
not result in capture, there is no chance of the condensation 
becoming a component of a binary by a further encounter.
This vme not realised in the early stages of the development 
of this theory and consequently a simple statistical theory 
was worked out on the assumption that the chances of a star 
having a binary forming encounter does not vary with tine.
AS this theory is mathematically Interesting, it is included 
here.

Vie consider the stars to be contained in a number of 
"star systems”, each system containing r  stars, «here r may 
be any positive integer. Thus if v- = 1, the system is a 
single star. If r = 2,the system is a binary star and so on.

Let N(t) - number of star systems per unit volume at time t
number of star systems, containing r stars,

per unit volume at time t ,

so N  = 21 Nr.f = i
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V;G assume that close encounters ocoui* between the star systems 
and that such encounters may result in the two systems 
becoming bound together to form a single system. Since 
the number of close encounters per unit volumo per unit 
time will be proportional to N *  and since a fixed proportion 
of these close encounters may be expected to result in 
captures, we may take o i N^ as the nimber of captures per 
unit volume per unit time where oi is a constant. At 
such a capture, two systems combine to form one so that the 
total number of systems is reduced by one at each capture, 
hence

J f \ l  — -  oi

The probability that a given capture is between tv;o single 
stars is (N,/N) since N,/N ig the probability that 
each system is a single star. The probability that a given 
capture is between a single star and a binary is I N i N ^ / N ^  

so on. Thus

The coefficient 1 of (H,/N) ig to the fact that each 
capture between two single stars removes two single stars.
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4 ^  N ,Nd t

= - 2 ^ N , N

Similarly we obtain

cc ( n , ^ - 2 N N , )

à ^b . = u  ( i N i h l ^ - l N N s )  
cLt . ^ ^

é l S  ^  u. ( lN , N ^  + N ^  -  2 N N ^
cL t

Let A/if 0+3; be the nnmber of 4-eysteme formed by 
collisions between a single star and a S-aystem and let

be the number of 4-systems formed by collisions 
between two binaries# Then

^ ( 2 N , N , - 2 N N ^ ( , J

Jib

Putting /V, =n_̂  N r  = 0  ( r  = 2j3^ .) at t  = 0  we obtain the 
numbers of systems per unit volume at  ̂=T as in the second 
column of the accompanying table# The present observed 
value of /Vj. in the nei^bourhood of the sun is about a
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4

r
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half of the value of N, » So putting

I —T— I I
where  ̂ ^ $ we get " % •
At the value of T  aatisfying this, the numbers of systems 
per unit volume are given in the third column of the table.

To obtain the average ages of the various types of system 
at t  =^T , prooeed as follows î The number of r •systems 
lost in time is given by  ̂ Let a certain
set of 'f •systems in existenoe at time t be marked and 
let YVfo be the number of them at time t  and let o-f 
be the number of them subsequently, then

oLtv.-=

• =. " 2 p̂  N VV.T
JLr
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The average age of the f-systems In existence at time 1~

lËiere (t) = number of f -systems per unit volume at 
time 6 , including those isdiioh are incorporated in systems 
of larger r • The oonnection between Nr and Nr is

= 2oc NNr.cCC '
Using this, the average age becomes

NVT) N t-
Nr/T) 1

This is given in the fourth oolmn of the table when Til =X .
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Chapter Vis Interactions between Binary Stars and Interstellar 

jiaterlal.

In problems involving accretion by a single star, we have 
seen that there is essentially only one centre of gravitation, 
namely the star Itself. When we come to consider accretion 
by binary stars, there are two such centres and this fact 
renders an exact mathematical treatment extremely difficult.
It is simple to show, however, that the accretion mechanism 
must be considerably modified in the ease of binary stars.
In this chapter, these modifications are considered and an 
attempt is made to estimate the dynamical effects of 
accretion on binary stars by means of a aomeidiat simplified 
treatment.

Consider a biiuary star consisting of two stars A and B 
each of mass yn, , rotating in a common ciroulo.r orbit of 
radius V  with its centre at rest relative to the interstellar 
material. Then the equation of motion is

G- WN-YW

~

where or is the velocity of either star. Thus

Consequently

^ Sr.1)
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In order for the accretion rate by each component star to be 
that given in equation (1.06), it I s  necessary for an 
accretion eoluran to extend to a distance behind the
star. This is clearly impossible, for neither star can 
capture the material at the centre 0 of the binary orbit 
since this is equally attracted by each star. Material 
originally nearer to Â than 0 may be captured by A. Let 
the tangent to the orbit of A at A be AC, Ignoring the 
other star let us find «fcere material originally near 0 
would hit AC, For this we use equation (1,10), patting

and Hence x .= - t~ /S jJ c . being the
distance from A to the point where the said material hits 
AC. The rate of accretion Is therefore much less than that 
for a single star moving with the same velocity. This 
calculation shows, however, that all the material that can 
possibly be captured by A, hits AC very close to the star and 
provided the collisions are inelastic, all this material will 
certainly be gravitationally bound to the star. Thus, as the 
stars revolve, they will each tunnel out a section of radius f  
3o unless there is some means of replacing the n»terial 
captured, the region of space occupied by the binary will 
soon be cleared of interstellar material.

In the case of a binary of large separation, of the 
order of a quarter to one-half of the mean interstellar 
distance, the possibility of replacing the material captured
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will depend on the motion of the binary relative to the 
interstellar material and relative to its neighbours. In 
the simplest ease for a binary at rest relative to both the 
interstellar material and its Belabours, the gravitation 
of the binary as a whole will draw in the material from
the surrounding space. But there is a limit to this
process owing to the cut-off effect of the neighbouring 
stars. Thus, the accretion, process can only occur for a
limited period and will then cease. In the more realistic
oases where the binary is moving relative to the interstellar 
material and relative to its neighbours, the accretion 
process can be continued. This is partly due to the fact 
that the binary will be continually moving into fresh 
regions of interstellar material. There is also the 
possibility that the sphere of influence of the binary may 
be extended due to the nei^bours moving more rapidly 
relative to the interstellar material and therefore being
less capable of capturing it .

In the case of binaries of small separation, they may 
be considered as a single star as far as distant material
is concerned. An accretion system will then form as for a
single star. It is only when v/e consider what happens to 
the material flowing in along the axis towards the binary 
that we need to take account of the fact that there are 
really two stars. This material will be heading for the
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centre of mass of the binary, but since there vdll be 
nothing solid there to stop it, it will continue to move past 
the centre of mass under its momentum. As soon as it has 
passed the centre of mass, it will be slowed down and pulled 
back. The result v/ill be that a steady state is established 
in vdiich a dense cloud is formed roujid the stars. These 
v/ill continuously tunnel out material from this cloud but 
it v/ill be replaced by the material flowing in along the 
axis. There are thus two accretion stages; the large 
scale one in v/hich the binary is considered as a single star 
and the smll scale one in which each star captures zmterlal 
from a cloud v/hioh forms round the binary. It will be 
noted that the centre of mass of the binary is at rest in 
this cloud. If the interstellar material is gas, the 
assumption of inelastic collisions is equivalent to assuming 
the gas cools quickly so that pressure does not develop to 
any appreciable extent. The material forming the cloud 
round the binaries will therefore be in a similar condition 
of temperature and pressure as that in undisturbed space.
It will, however, be more dense.

Before going on to discuss the effects of accretion in 
more detail, we shall mention the conditions vdiich must be 
satisfied in order that a binary may be considered to be 
"of small separation" in the sense used above. The 
separation must be, small compared with
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(1) Half the loeal mean interstellar distance;
(2) The distance from the binary to the neutral point 

on the accretion column of the large scale accretion 
process (i.e. ^  being the total mass of the
binary / constant of gravitation and U" being the velocity 
of the mass centre of the binary relative to the interstellar 
material.}

The definition of "small" is somewhat arbitrary but 
from the geometry of the problem, the mechanism appears to 
work if the separation does not exceed 5 per cent of the 
lesser of (1) and (2). So in the recommended units, the 
maximum separation for a binary of small separation is the 
leaser of ^  (supposing the mean interstellar distance 
to be a paraee) and l ^ / l o - o ' - , M  being the total mass of 
the binary* For example, consider a binary consisting of 
two stars each of unit mass. If the velocity of the binary 
relative to the interstellar material is less than about 
0,2 km./sec,, the maximum separation is ^  ( = 5000
astronomical units). If the velocity is 50 units (about 
4 km,/sec.) the maximum separation is only iiy oo" ( = 16 
astronomical units)* The small values of v  are most 
interesting as they give maximum accretion effects and it is 
for small values of x r that the maximum allowable separation 
is greatest.
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The Sîmrlnfi of Accreted tÆaterlal b.v the tJnecixial Components of 
6 Binary of 3to11 semratlon.

Consider a binary of small separation consisting of 
components of masses m., ̂ vvv,̂ describing circular orbits 
of radii 'f 'l ) respectively about their mass centre with
velocities v , a n d  let s be the separation, i.e.

s = v, + SI

ïie have ju; -r. wl  ̂ (6.2)
i t "  = ^  ■

Let j  Rx be the distances of the components from the 
point D where the attractions of the oomponenta are equal, then

and f?, f =& (6.3)

As previously explained, we consider a cloud to form around 
the binary and each component sweeps up the material in 
circular oectlons of radii R,, , Thus if Çc is the
density of the cloud,

accretion by vn., k C çj, ^ ,  _ A.* ITL
I T r T F Z ^ '  ^accretion by ^

from (6.2),(6.0) = J22i. üli. = /.
V W i .  V W - ,

Thus the accreted material is shared equally between the 
components. This statement breaks dovm if there is a great 
difference between the masses of the components because in 
this case, the centre of mass of the system will be close to
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or within tli¥ star of, greater mss. Thus the material from 
the large-scale accretion system will fall directly on to 
this star and no cloud will form, 3o it appears that for 
binaries of small separation, the accretion process tends to 
equalise the masses of the components if these v/e re originally 
nearly equal and it tends to increase the disparity of the 
masses if these were originally considerably different.

It must be made clear that the above discussion is only 
intended to be approximate, as for example, when It is said 
that the components of the binary sweep out circular sections 
of radii R,, , Such & picture of the process is
obviously not exact since the circle of larger radius will 
be rotated about a line vhioh intersects it. Consequently 
the statement, that the accreted mterial is shared equally 
between the components can only be expected to apply 
accurately when the components are almost equal, just as the 
statement that all of the material is captured by one of the 
components is only true vhen the disparity in the component 
masses is very great.

be may here obtain an expression for the density of
the cloud which forms around the binary. The equations of 
motion for the components (ignoring accretion effects) are

wvi'ir,’- G-nt.vM (6.4)
f, s*
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Hence u] ̂

but from (6*S) si _ wn.
Ŝa, ^  -f fa. 1̂-4-

l#0* Id _
£> Wv I -, vw

'O' ̂ ■= 0~ v w ^  (^I (6,5)

To find , the accretion by is

7r R| gc = A /2,

A being the total accretion by the binary per unit time, 
from the large scale system. From (6*2),

/?> _ / WV.I

Ri v/'^i

. ______) 5 -------  = ---------
' ji;; R, y- *i  ̂ (6»*)

-. j  *Çt.-u;

7T s » -m, _ /  G- %
"t V ^  S vvv,-f-vv* ̂

~ 2frj6^ vv\. •

The cloud density is in general substantially
greater than that of the undisturbed interstellar material ç * 
For a binary of given total irnss and moving with a given 
velocity, is least vdien the masses of the components
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are equal, o f course depends on the material A  arriving 
from the large scale accretion system and this in turn depends 
on the volooity of the binary as a whole relative to the inter
stellar material. Consider for example a binary consisting 
of equal components of unit imss and at a separation 
5= i / l l 5 0 O  parsee. Then, #ien the velocity of the binary 
is 2.8 (in the recommended units), Çc = I ■‘̂7 ^ I 0 \

but vdien the velocity is 50, Ç c -  S S IO''ç^.

Çc is less, the greater the separation s. If the velocity 
of the binary is 2,8, then vdien

6 =1 l//2 5-00,
but vôien s = I / I 4.O  ^ Çc. = i -

The Hate of Reduction of the Separation of the Components of 
an Aeeretlng Binary.

Suppose that the binary with components vw., considered 
in the last section is involved in an accretion process such 
that the components accrete at rates M,, M i  and experience 
forces F , j FI in a direction opposite to their motion and 
tangential to their orbits, respectively. We wish to know 
the rate at which the separation of the oomponenta is 
reduced by the process. It is assumed that the time 
required for the process to have an appreciable effect is 
larger than the period of revolution of the binary.

Referring to the angular momentum of the binary about its
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mass centre ms Î , we use the fact that the rate of change 
of angular momentum of the binary is equal to the moment 
of the forces acting, i.e.

= - F, -r, - /\ .
ot C

Mow -f-

= VYI,. i n -  + YWi __ yô:^. .

So

^  W \ ,  ^

7 2- v/s ot t ̂ VVV| C ^ l ”+ V̂Vv, -f

M o w  ^  J (rs ^  yjo^S Wo., VM.̂
ctfc \ H. v̂x.)'- 2 6vx,

- M, f  I ~  J 7  ~  )( ^ 1  - I -  V W . y  ^  ^  ^  ( V H i - f  V M . 1 ^

= M ,
2 , i- v̂ i)

= n  +  M.f) -ü̂.
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Similarly for the terms in d y » .^ / j l t  . So (6.7) becomes

= - ('F + M.vrA-Z/I+Mix/Jri-
1 -t-vvvx.)*’ 2(vv\, 4-w,

■■• - i É r  -
The approximate time for a 10 per cent reduction of the 
separation is ht ~ î k / t ~ ^ ^  . If - ^  is in the

roeommended units,

= J-2.3 X /o‘--  (6.9)

L S otfyl

Se shall now consider the application of (6.8) and (6,9) to a 
number of cases; The results of the calculations are given 
in the accompanying table in the ease of ^ = /o gs./c.c. 
Results are given for a binary in which the components are 
both of unit mass in the recommended units and for one in 
«hioh the components arc of masses 1 and g« Results are 
given for separations of \  and ^  parses for binaries of 
large separation. For binaries of small separation, the 
results are independent of the separation as we shall see.

We first notice the top two rows of the table. These 
give the velocities of the components relative to the m s s  
centre of the binary, using formula (6,5).
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Case 1.: A binary of small separation viiose ness contre is
moving relative to the interstellar material with a velocity 
which is such that the accretion is greatest. This 
velocity is given by (1.85) #ter@ /*- is now the total mass of 
the binary X constant of gravitation. Thus, in tho 
recommended units, (1.55) becomes

= If. (yn., -r vw-x.̂

taking Z  . The total large scale accretion is given by 
(1.56) or (1.57), 1,0. K v / i ^ .

Consequently, since the accreted material is shared equally 
we have

M , = M x  = 7re-/g.

We consider the diameter of the cloud round the binary to be 
about twice the separation of t W  binary components. 
Consequently, within this cloud, there is insufficient material 
for a resistive force-producing mechanism to operjito. Hence

F, = Fk = 0

These values of M,, Mj, F, and F  are substituted in (6.8)
to obtain the values of S t given in the table. It will be 
noticed, using tho values of xr, and given in the table,
that the s disappears from (6.8) when F, = -  O and
consequently, the rate of redaction of the separation is 
independent of the separation.
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Case S.: A binary of small separation whose mass centre is
moving relative to the interstellar material with a velocity 50
(about 4 Km./sec.), The only difference from Case ly is 
that tho accretion rate is given by (1.36), i.e.

C s c Ÿ  .

So M| — Ml 2. ~ 7 7T" ̂V%a. I + VM-x) t  C .

Case 3.Î A binary of large separation v/hose tsass centre is
almost at rest in the interstellar material. It is assumed
that the binary moves throu^ÿi the medium with just sufficient 
speed for the effective interstellar material density to 
remain constant. The mathematical model is taken to be a 
binary having its mass centre at rest in the medium which is 
maintained at a constant density. we obtain values for h t  

on two different assumptions;
(a) We assume that the components sweep out circular sections 
of radii R, ,Ri given by (6.6). It has already been shown that 
in this case the accretion rates by the components are equal.
It must be remembered, however, timt in this case, the 
material swept up is the original interstellar material, so 
that in using the formula (1.37) we put £  = R, or and 
Z. is unity in the reooimended units. Hence the 
accretion rate for either component is

M ,

■vr, being given at the top of the table and R, being given by
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(6.6). It is assumed that r , - F^ _  = 0  ,
(b) We assume tiiat no accretion occurs but that the material 
in tho circular sections of radii R, , R̂ . exerts resistive
forces on the components. To obtain this force wo use
(1.86) with Z  = R, or R% . Hence

M, =n,. =0,

F  = 32£j!hL
xr,^ I VYv,- /,

f . A  + î ^ )

Case 4.; A binary of large separation whose mass centre is 
moving with velocity 50 relative to the Interstellar material 
in a direction perpendicular to tho plane of the binary 
orbit. Each component has its own accretion system* The 
accretion is given by (1,06), i.e.

M  = 4-TT V*-,*- M  _ 47rw-x
'• ( s t y  J ' - (é ro )^ •

For the force we use (1.00) with Z  = F  or Ri, Thus

0  -

approcimately, (Accurately, we should put -/CrojV 
for the velocity.) However, these forces act almost 
perpendicular to the plane of the binary orbit. The values
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of Fj , Fk are the components of in the plane

of the orbit. Thus

F. = . jt J£L ̂

and, ^
Values of St are givon in the table for three easess

(a) Y»hen the resistive force Is absent, l.e* M)i as
above and F, =F, = 0.

.F'j jFl
(b) “<hon the accretion is absent, i»e* M* as above and 

M, = M x  = 0.
(o) When both accretion and the resistive force are present, 

i.e. Fj F4, as above.
It will be seen from the table that the values of St 

vary between and /<?’ years and consequently binary
stars can be appreciably affected by the accretion process 
in astronomically reasonable periods of time. For hi^ÿier 
densities of the interstellar material, shorter times are 
required, the time h t being inversely proportional to the 
square root of the density.
Hote on the Effect of a Resistive Force on the Sceentrleity 
of a Central Orbit.

We have been unable to arrive at any general conclusions 
about the effect of accretion on the eccentricity of an elliptic 
binary orbit. In order to aecertain the effect, it would be



140.
necessary to do a detailed integration of the effects over a 
complete revolution of the binary. We can show this to be 
the case as follov/s: Consider a particle of unit mass moving
under a central force /-/f*" . The eccentricity of the orbit 
is given by (1.8), i.e.

^  . (5.10)

# e n  at a distance f  from the centre, let the velocity of 
the particle be ir in a line which is a perpendicular distance 
/’ from the centre. We consider the effect on -c. of a 
small reduction of o- at this point. From (6.10),

<2.^^ _ 2 J i(E -V -)
JL'O- ~ 7T- 

but E  = %  or’-— / - / V   ̂ ^  ^  tTj

The effect of the eccentricity therefore depends on the sign of 
-5_d’- + E  , Consider a circular orbit of radius R and let
the velocity be u.. Then
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R  = ^

• • Va^ -  / * - / R

"  ^  ~ " X  ̂

- • ^ û o*” "f E  — O,

Consider now an elliptic orbit with the same value of E .
At points on this elliptic orbit such that i - < R  , we have

but

80 at such points, o~ > xFo , Hence

X 'V ^ +  E  >  O .

But for > r > R j  1 £ <  O.
Hence, a resistive force tends to reduce the eccentricity 

of an orbit if It acts while the particle is within the 
circular orbit of equal energy but tends to increase the 
eccentricity if it acts «toile the particle is outside the 
circular orbit. It is not, therefore, possible to say that a 
resistive force always reduces the eccentricity. It is 
necessary to integrate the effect over the whole orbit to 
determine whether any particular resistive force reduces 
the eccentricity.
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Chapter VII: A Hamorlcal Determination of the lorcjue

experienced hy a Binary Star In a Cloua 
of iartlcles.

If a bimrj/' star is In motion throu#i an Interstellar 
medium, there is In general an interchange of angular 
momentum between the binary and the medium, with 
consequent effects upon the orbital elements of the 
binary. A full mathematical treatment of the aerodyna
mical problem la quite beyond the range of existing 
techniques. In order to estimate the effects, use was 
made in Chapter VI of known results for simpler problems.
In this simplified treatment, the interstellar material is 
supposed to consist of particles which move under the 
gravitational Influence of the components of the binary but 
do not influence one another. This supposition is equiva
lent to assuming that the interstellar material is a gas at 
zero absolute temperature. On this supposition, if the 
orbits of the binary components are circular, the determination 
of the motion of a given particle of interstellar material Is 
reduced to the classical "restricted three body problem",
A considerable amount of computation on this problem v/as 
performed by E. StrSmgren (22) and his collaborators between 
1919 and 1931 in order to determine the forms of periodic 
orbits of the bodies « These calculations were almost 
entirely concerned with the motion of the bodies in a plane.
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The orbits (for various initial conditions) of a particle 

of negligible mass in the field of a binary star have recently 
boon determined by numerical integration on the Manchester 
University Electronic Computer. The binary was taken to 
consist of a pair of particles of equal mass, pursuing a 
common circular orbit. This chapter is an account of this 
work and its application.

It should be stated explicitly here that the particle- 
orbits are not restricted to plane motion but are in three 
dimensions.
Numerical Method.

%e wish to determine the motion of a particle C of 
negligible mass in the gravitational field of two other 
particles A and B which are of equal mass and are revolving 
under their mutual gravitational attraction in a common 
circular orbit of radius ct , the centre of which is at 
rest in a Newtonian frame of reference. Thé two particles 
A and B arc always at the ends of a diameter of the common 
orbit and each moves with the velocity

V =
where = mass of A (or B) x constant of gravitation.

If we place a frame of reference with its
origin 0  at the centre of the circular orbit and such that 
this orbit is in the plane, the equations of motion
for the particle C are
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^3 (pc+ceeo^ôjl,

-O' = _ (̂y. - ee-ul̂ v.̂  ^

‘ ^  ^  ■ K Î

>t = te, ê̂  = T/, < 9 - V t / a - j

Where ( ^ ) are the ooorâinates and { v, w  ) the
velocity components of C at time t and

R,*” = — o-e<a6)) + ̂  y -ce^Uti^(^ ^  ̂

= ^ x  + o . c ^ 6 ^  -*■ -t c L -A < ^ ^ ) ■*■ ^ •

In the calculations by StrBmgren the bodies A and B were 
reduced to rest by a suitable change of variable^ but 
this would be of no help for our purpose. So the equations 
of motion were integrated as they stand, except for a 
transformation to make the variables diraensionless. This 
w&B obtained by measuring distances in terms of , 
velocities in terms of and time in terms of »

The variables were also sealed down so as to be accommodated 
in the number range of the machine in the manner customary 
in this type of computation.
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The method of Integration used was a modified form of 
the Runga-Kutta process which has been developed by 3. Gill^^®^ 
especially for use in electronic machines. We used this 
process in the following form: Let the independent variable
be y.0 and the dependent variable be y = 1,2̂ . y
and the differential equations be

Let Y  be the initial value of y. so that yi^o = y-.^Y) are 
given. Let Â . bo the integration step in y* then \m  

calculate the following quantities with oC = 0  ,

~ {yo.o yi.tj

n,-., = A„ -1/^,") ~

‘î/i.K-.i" -  ( A oc + 2E >^J^Lju

where and are given in the following
table

oc A .  3 ,

0  i  O

1 I -  V i  0

2 i ^ y t  o

3 t i
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Prom the values for o c = 0  , the values for <<. = /, 2 and 3 are 
calculated. Then

The process Is repeated, starting with to obtain
yi^Y+2-^ but the values taken for will be the
same as of the previous step. The error Involved in
this process is of order . To obtain the values of the
variables at a given point, the method only requires a 
knowledge of the variables at the previous point and not at 
several previous points. This removes the need for storing 
previous values in the machine and also the need for shifting 
those values after each step. Another advantage is that no 
special starting procedure is necessary. The quantities 
are used to give an Indication of the previous behaviour 
of the variables but they are usually small and there is 
praetioally no loss of accuracy If they are taken to be zero 
at any point. This enables changes in the magnitude of -A, to 
be made without the need for any special calculations.
Althouj^ the calculations described here were performed with a 
fixed integration step JL , it is possible to make the machine 
automatically adjust the size of the step so as to keep a 
specified accuracy. It Is also obvious that this integration 
method on the machine can be used for the general problem 
of three bodies or In fact of any number of bodies subject 
to the storage limitations in the machine but the time
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required for each integration step would be increased.

The cosines and sines in the equations of motion iwre 
calculated directly from the power series using terms up to 
that involving Where &  is such that

(9 - TTvx.*® ( w  being any integer) 
and O  $ ©  ^ ^/2-

The machine took 11 seconds to advance the integration 
by one step. This, however, involved two actual calculations 
and a comparison of the results to eliminate the risk of 
"random" machine errors. At intervals of two or four steps, 
the values of x, y, a., i;; t and were printed
out, Each printing required 10 seconds and involved six 
decimal digits and a sign for each variable.

If the particle C were to approach too closely to either 
A or B, the rapid variation in the gravitational field would 
considerably affect the accuracy of the solutions and this 
might not be noticed by examining the printed results. To 
remove this risk, it was arranged for the machine to stop 
if R, or became less than . This did not occur
very often so that few orbits were lost on this account.
The Problem.

The main problem consisted of finding the angular momentum 
gained by the particle C when it is projected parallel to the 
y  -axis towards the revolving bodies A and B, More precisely.
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tiio initial conditions were

X. = R  ^   ̂ y  = R <f)^ ^

u. = Ik = O, o  =-

where various values of R and >2̂ were taken; ^  being 
measured from a direction parallel to the x  -axis. Orbits 
were obtained for one value of IV only. This was 
I- é> . This value of the velocity is of the right
order to give a result for comparison with our other methods 
of estimation. The particular factor 1 6  m.B selected 
from the relevant range because, after the variables have 
been scaled down, it gives a convenient number in the scale 
of two, for use in the machine. The orbits were computed 
in most oases until the y  coordinate of C was less than -4<>- • 
The initial and final values of y (i.c« ^ 4 A. ) were 
arbitrary but were taken to be sufficiently large so that 
beyond these limits the angular momentum of C would not have 
been appreciably changed.

For each of the orbits obtained, the final value of the 
angular momentum per unit mass of C about O  (i.e. xir- yu. ) 
ws-s then calculated on a desk machine. The initial conditions 
were, of course, such that the initial angular momentum about 
0  was zero in all orbits.

In the accompanying table, the angular momentum per 
unit mass gained by C is given in the dimensionless form.
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To obtain these orbits, a step of 0-25’ in diraensionless tirae 
was used. About £0 steps were required for each orbit.
Most of the values given are correct to within one per cent. 
This limit of accuracy vms sufficient for our requirements 
but the machine could be made to work to a considerably 
hi^er accuracy. Orbits were not obtained for the four 
cases: R = a . )  l- lS ^ a . and 0  — é O j  7 S  , owing to the
close approach of C to either A or B resulting in the machine 
being stopped as mentioned above. The values given in the 
table (in square brackets) are obtained by graphical 
interpolation between the numbers in the columns. The 
values in the range ^  - /80* to 360° are a repetition of 
those given in the table. Inspection of the numbers in any 
column shows that they lie approximately on a sine curve and 
the oscillation is about a mean value that is small compared 
with the amplitude of the oscillation* This situation 
makes it difficult to obtain an accurate value for the mean. 
Since the function is necessarily periodic (period ir ) the 
best method is almpl^ to take the arithmetic mean of the
values in each column. The mean values, J fR )  , are given 
in the bottom row of the table. These values are accurate to 
about 5 per cent except for the cases /?==*- and I Z ^ a .  

only 10 per cont accuracy .is claimed.
Calculation of the Torque experienced by a Binary.

From the results of the work described in the last 
section, it is possible to calculate the torque experienced
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by a binary moving in a certain way through a cloud of 
interatellar material. For consider the binary consisting 
of A and B to be moving in the dl.rcction 0-ÿ with velocity V  
throu^ a cloud of particles rdilch are at rest at a great 
distance from the binary. By giving the entire system a 
velocity-W, we have the situation described above, neglect
ing the effect of the gravitational field upon the angular 
momentum outside ^ = ^ 4 * ^  , The mass of material which 
crosses the plane between the circles

and ( R - f d R )

in unit time is
2TT RJR. W ç

where ^ is the mess of particles per unit volume in the 
undisturbed cloud. The angular momentum gained by this 
mass in its encounter with the revolving system is

27TRJR. W e / ( r)

30 the total angular momentum gained by the material in 
unit time is ^

2 7 t W ç  \  R /("RjVR.

ïhis Is the rate of lose of angular momentum "by the rotating 
system and so is equal to the torque acting on It* This 
expression was evaluated for V /  -  (  C ("/^A) ̂  by plotting 
^ obtaining the integral by counting squares#
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The result m s

27Tç«.y.. X 0-6. (7.1)

The function R J'C R ) rises and falls steeply near its 
maximum value. Consequently, the value of the integral is 
not appreciably affected by an inaccuracy in the maximum 
value of the function. The maximum value of R f ( R ) was
estimated from the graÿh to be 0.5 at R= l-2So- , a 20 per

,*• *

cent error in this maximum value would only have caused a 
5 per cent error in the value of the integral but as we have 
already stated, we do not expect this maximum value to be 
in error by more than 10 per cent. [ Aa an alternative to the 
graphical method, an attempt was made to fit a curve of the 
type • This was fitted to ttvo of the
accurately knovm values; namely at R = 0-75«. and R =  I S o . , 
The values of A  and B were 1.89 and 2.27 respectively.
The result of the integration was then IS per cent less than 
that obtained by graphical integration but as the curve did 
not fit very well, the result from the graphical method is 
considered to be the more accurate,J After this discussion 
of various errors we consider that 10 per cent aocure.cy can 
be claimed for the final result (7.1),

A question arises as to whether the effect of particles 
passing very near the revolving bodies is large compared with 
the effect of the remaining particles. In the immediate
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neighbourhood of one of the bodies, a particle will behave 
almost as If it were Influenced by this body alone. The 
effect of the particles on a single star has been examined 
in Chapter I and equation (1.26) gives the force on the 
star due to the particles passing within a given distance of 
the star. It is seen that this force tends to zero aa the 
given distance tends to zero. It follows that particles, 
passing very close to either component of the revolving 
system considered here, do not contribute appreciably to the 
total effect.

It will be noticed that we have neglected any change in 
the motion of A and B. This is justified because, as we 
shall see later, the orbital elements of the binary are only 
appreciably affected by the torque after a period vdiioh is 
several times the period of revolution of the binary. 
Comparison of the Result with a Theoretical Formula,

It is possible to obtain a theoretical formula for the 
torque in cases where U//v is large compared with unity. 
From equation (1.26), the force exerted on a single star due 
to its passage through a cloud of Interstellar material is

(7.2)

where g is the density of the undisturbed cloud, U is the
velocity of the star relative to the cloud and /*• = mass of
star X constant of gravitation. Z  is a "cut-off distance"
which is of the order of half the distance to the nearest
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neighbouring star. The force acts in the opposite direction 
to the velocity. If we assume that this formula holds for 
each component of a binary star which is moving perpendicular 
to the plane of its orbit, we put

Z  and U ’’= W ^ + V *

in (7.2) to obtain the force on each component. The force 
on each component can be resolved into a force parallel to 
the direction of motion of the binary relative to the 
cloud and into a force tangential to the common circular 
orbit. The forces of the latter type, acting on the two 
components, together form a torque of value

T  = 2 TTç -t- a.»- W (7.3)

if W 7 v  is large compared with unity. This condition is 
imposed by the mechanism ïdiich produces the force (7.2).
Such star "tunnels" throu^ the interstellar material and 
this condition ensures that one star does not tunnel throu#i 
a region which has already been disturbed by the otlier star. 

Putting W  = f we obtain

T” = 27Tq_a.*-^ X

so that the formula is in satisfactory agreement with the 
numerical result (7.1). In this case, W'=3-2V so this 
agreement is in the region of W  where we mi^t hardly 
expect the formula to hold accurately. It is also to be
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noted that the formula does not overestiaato the torque.
It should he noted that this agreement between the 

formula (7.2) and the numerical result is only offered as 
additional support for the formula. Formula (7.2) rests 
on the reasoning given above and so its application Is not 
limited to the value of V  used in the numerical work.
Hate of Reduction of Separation of Binary Components.

If we neglect axy variation in the masses of the 
components of the binary, the effect of the torque is to 
reduce the separation of these components. To determine 
the rate of reduction of this separation, let E be the 
total energy of the binary at time t  , i.e.

E  = % ~-^GryyS-/'r ~~Q-yAy-/A-r vdiere vw= maaa of
A (or B ), (r = constant of gravitation and v-= the radius 
of the orbit of the binary at time t in a time
interval cLt , the loss of energy is

— JLE — G- rvviol- i" /  Lf.-t'y

But this also equals the work done by the torque T" in , 
i.e. T Y J L h / i -

Hence els- _ IT
'T  JL t ~

30  that a 10 per cent reduction of the separation will occur 
in the time r<n̂  (6 -*^< r)^ /2 0 T ^ approximately.

b’e may illustrate this formula by a specific example, 
using the value of T  given by (7.1). Consider a binary
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consisting of two equal stars, each of 5 solar masses and 
separated by a distance of 0.1 parsec. If this binary moves 
through a cloud of interstellar material of density 
10"^^gm,/o.c. in a direction perpendicular to the plane of 
its orbit with velocity 1.05 km./sec,, the separation will 
be reduced by 10 per cent in about £.68 x lo? yrs. The 
period of revolution of the binary is 9.36 ̂  10^ yrs.

Another Set of Orbits.
A set of less accurate integrations were performed 

to find the orbits of the particle C after being released 
from rest at various points on the sphere

For some positions of release, the particle C moved once 
throu#! the circular orbit of the bodies A and B and then 
receded to a distance greater than from the origin.
For other positions of release, the particle C receded to 
a distance of less than 4«»- from the origin and then 
returned for one or more encounters with the revolving 
system before escaping from the sphere. One of the more 
complicated orbits was computed accurately and projections 
of it on the planes =0 and O  are shown in 
Fig. 7.1, In one of these, the positions of C are marked 
when AB has turned through various multiples of jTT , The 
accuracy of the curves is not guaranteed beyond the point D 
vÆiere the particle has a close encounter with one of the
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revolving bodies. In the orbits ¥/hioh isfere computed, the 
particle C eventually escaped fro® the sphere and it seems 
certain that this would al¥®ys occur. For, It is Impossible 
for C to settle into a periodic orbit around the revolving 
system; otherwise, by reversing the time coordinate, it 
ïiould be possible for periodic orbits of C to become 
non-periodio. V*hon G escapes from the sphere of radius 4-«- » 
it had gained energy from the revolving system. It will also
have gained a proportional amount of angular momentum. I’his 
follovra from the fact that the revolving system as a nAole 
has no translatory motion and so any forces (aa opposed to 
torques) acting on it during the encounter v/ith the particle 
can do no work, îhe angular momentum per unit mass gained 
by C (i.e.Xv--^M- ) ^Alle inside the sphere ï/as evaluated 
for the various orbits and vms considered as a function of 
the point of release of C, Then by a crude integration over 
the surface of the sphere, a mean value vma obtained. This 
was

This result can be used to obtain the torque exerted on the 
rotating system «hen material falls steadily from the surface 
of the sphere and there are no particle collisions. Be may 
compare this result with that obtained on the assumption 
that the particles collide and are eventually all captured
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by one or other of the revolving bodies. In this case the 
angular momentum per unit mass gained by a particle C is “-V 
( V being the velocity of A or of B ) which is

Vt'e thus see that these results, and hence the torques, are of 
the same order «Aen all the material is oatjured as vdien no 
material is captured. It would then appear that the torque 
will bo of the same order «Aatever fraction of the imterial 
is captured by the revolving bodies.
Concludln/; Remarks.

Althou#!, in the oases we have considered, the 
interaction of non-revolving material vdth a binary causes 
a reduction in the angular momentum of the latter, we do not 
claim to have shown that this is altmys the case. In fact, 
there appears to be no dynamical principle vAlch v/ould be 
violated if such were not the case.

ïhe work described in the present chapter m s  undertaken 
with the object of checking the mathematical basis of the work 
in Chapter VI, but the problem of angular momentum exchange 
in the gravitational interaction of a particle with a 
revolving system is in itself a problem of purely dynamical 
interest and may be worthy of further investigation ïAen 
hi^-speed computing facilities become more generally 
available.
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