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Abstract

For all sufficiently large odd integers n, there exists a set of 2n−1 permutations

that pairwise generate the symmetric group Sn, and there is no larger set

having this property. This was proved by Blackburn in 2006. He proved a

similar result for An, that is, for all sufficiently large even integers n such that

n ≡ 2 (mod 4), there exists a set of 2n−2 permutations that pairwise generate

the symmetric group An, and there is no larger set having this property. We

give explicit versions of these results. We prove that the result for Sn holds

for all odd integers n except for 5, 9 and possibly 15. We prove that the result

for An holds for all even integers n such that n ≡ 2 (mod 4), except for 6 and

possibly 10, 14 and 18.

For n ≥ 21, our proofs extend and refine the proofs given by Blackburn;

we use a similar probabilistic method. Whereas those proofs use an asymp-

totic upper bound for the number of conjugacy classes of primitive maximal

subgroups of Sn, we determine and use an explicit upper bound. Also, we

develop theory concerning imprimitive maximal subgroups of Sn which we use

in GAP programs, and we use detailed information about primitive maximal

subgroups of Sn which we obtain from the GAP data library. For n < 21 we

use constructive proofs.

We also answer the following question of Maróti in the affirmative: For

all sufficiently large integers n, does there exist a set of n3 permutations that

pairwise generate An ? In fact we prove a stronger result for most values of n.
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Chapter 1

Introduction

In this chapter we present our main theorem, and discuss an important prop-

erty of a pairwise generating set of order 2n−1 for Sn, when n is odd. We also

describe the structure of this thesis.

1.1 Our main theorem

Let G be a finite group that can be generated by two elements. We say that

a subset X ⊆ G generates G pairwise if for all g1, g2 ∈ X with g1 6= g2 we

have that g1, g2 generate G. We write µ(G) for the largest order of a set that

generates G pairwise.

Blackburn proved in 2006 that for all sufficiently large odd integers n, we

have µ(Sn) = 2n−1, and that for all sufficiently large even integers n with n ≡ 2

(mod 4) we have µ(An) = 2n−2 [2]. In this thesis we prove the following.

Theorem 1.1.1. Let n be a positive integer.

1. If n is odd and n 6= 5, 9, or 15, then µ(Sn) = 2n−1.

2. We have µ(S5) = 13 < 16 = 25−1 and 235 ≤ µ(S9) ≤ 244 < 256 = 29−1.

3. If n ≡ 2 (mod 4), and n 6= 6, 10, 14, or 18, then µ(An) = 2n−2.

4. We have µ(A6) = 11 < 16 = 26−2.
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We also answer the following question of Maróti in the affirmative: Is

µ(An) ≥ n3 for all but finitely many values of n ? We actually prove a

stronger result.

1.2 A covering and a pairwise generating set

If X generates G pairwise, then no distinct pair of elements of X is contained

in a proper subgroup of G. That is

|X ∩H| ≤ 1 for all H < G.

Equivalently, no distinct pair of elements of X is contained in a maximal

subgroup of X. We say that a set L of proper subgroups of G is a covering if

G is the set-theoretic union of the subgroups in L, and then since

|X ∩H| ≤ 1 for all H ∈ L,

the order of any pairwise generating set is less than the number of subgroups

in any covering. In 1994, Cohn defined σ(G) to be the least integer m such

that G is the union of m of its proper subgroups [4], so σ(G) is the minimal

number of subgroups in a covering of G. It follows that µ(G) ≤ σ(G).

Let n be an odd integer, and let L be the set of all intransitive maximal

subgroups of Sn, together with An. There is a one-one correspondence be-

tween the intransitive maximal subgroups of Sn and the partitions of the set

Ω = {1, . . . , n} into two non-empty subsets, that is the two orbits of the sub-

group, ∆ and Ω \∆ say, are the parts of the corresponding partition. Since n

is odd there are precisely 2n−1 − 1 intransitive maximal subgroups of Sn (cor-

responding to the 2n−1 − 1 partitions of the set Ω = {1, . . . , n} into precisely

two subsets), so |L| = 2n−1.

An element of Sn which has only one orbit on Ω is an n-cycle. Since n

is odd, an n-cycle is an even permutation and so is an element of An. Any

element g of Sn which has two or more orbits on Ω is contained in at least

11



one of the intransitive maximal subgroups of Sn, for suppose that g has orbits

∆1, . . . , ∆r on Ω, then g is contained in the intransitive maximal subgroup

which has orbits ∆1 and ∆2 ∪ . . . ∪ ∆r. Therefore L is a covering for Sn. It

follows that σ(Sn) ≤ 2n−1 and so µ(Sn) ≤ 2n−1.

(In 2005, Maróti proved for odd integers n > 3, that if n 6= 9, then L is

in fact a minimal covering so σ(Sn) = 2n−1 [18]. He also proved that if n ≡ 2

(mod 4), then σ(An) = 2n−2.)

In order to prove that µ(Sn) ≥ 2n−1, we use the covering L as a starting

point to try to find a pairwise generating set for Sn of order 2n−1. Suppose

that X is such a set. Then

|X ∩H| = 1 for all H ∈ L.

Furthermore, since |X| = |L|, each element of X must be contained in only

one of the subgroups in L. An element g of Sn which has three or more orbits

on Ω is contained in more than of the subgroups in L, for suppose that g has

orbits ∆1, . . . ∆r on Ω, then g is contained in both the intransitive maximal

subgroup which has orbits ∆1 and ∆2 ∪ . . . ∪ ∆r, and that which has orbits

∆1 ∪ . . . ∪ ∆r−1 and ∆r (these are not the same because r ≥ 3.) Therefore

each element of X must have at most two orbits on Ω. Since n is odd, an

element g of Sn which has two orbits on Ω is not contained in An, for then

g is the product of two disjoint cycles, one of which is of odd length and one

of which is of even length, so g is not an even permutation. An element of

Sn which has only one orbit on Ω is an n-cycle and is contained in An, and

so X must contain exactly one n-cycle. The remaining 2n−1 − 1 elements of

X must therefore each have two orbits on Ω, and this pair of orbits must

be different for each element (because each element must be contained in a

different intransitive maximal subgroup.) This is certainly always possible,

since there are 2n−1 − 1 partitions of the set Ω into precisely two subsets.

However, this is not sufficient to ensure that X generates Sn pairwise, as
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if n > 3, then Sn has many more maximal subgroups to consider. We must

ensure that

|X ∩H| ≤ 1 for all H < Sn, H /∈ L,

that is, no other maximal subgroup of Sn (one not in L) contains more than

one element of X.

We prove that µ(Sn) ≥ 2n−1 for most values of n by extending and refining

the probabilistic method of Blackburn; we prove that a pairwise generating

set of order 2n−1 exists, without actually constructing such a set. This proof

requires an explicit (but not tight) upper bound for the number of conjugacy

classes of primitive maximal subgroups of Sn. It also requires a detailed study

of the imprimitive maximal subgroups of Sn. For n ∈ {7, 11, 13, 17, 19} we

give a constructive proof of the existence of a pairwise generating set for Sn of

order 2n−1, for n = 3 and we actually give the pairwise generating sets for S3 of

order 4 = 23−1. We study the awkward cases n = 5 and 9. The results for An

where n ≡ 2 (mod 4) are proved using a similar combination of probabilistic

and constructive methods.

1.3 The structure of this thesis

Following preliminaries in Chapter 2, as a gentle introduction in Chapter 3

we give constructive proofs and consider µ(Sn) for some small values of n.

In Chapter 4 we give an overview of our proof for Sn using the probabilistic

method, in order to motivate Chapters 5, 6, and 7 which are on probabilities,

imprimitive maximal subgroups of Sn and primitive maximal subgroups of Sn

respectively. These chapters provide the results necessary for our actual proof

using the probabilistic method which is given in Chapter 8. We consider µ(An)

where n ≡ 2 (mod 4) in Chapter 9, and finally in Chapter 10 we address the

question of Maróti. We include ten appendices, the first of which is a pairwise

generating set for S9, and the remaining nine are computer programs.
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Chapter 2

Preliminaries

This chapter contains a collection of definitions, notation, preliminary results,

and well known theorems, organised into two sections - group theory and com-

binatorics.

2.1 Group theory

2.1.1 Group actions and permutation groups

Let G be a group and let X be an non-empty set. Suppose that there is a map

a : X × G → X which satisfies a(x, 1G) = x, and a(a(x, g), h) = a(x, gh) for

all x ∈ X and g, h ∈ G. Then we say that this map defines an action of G on

X. Following the usual convention, we write xg for a(x, g), thus the conditions

above become

x1G = x

(xg)h = xgh

for all x ∈ X and g, h ∈ G.

The set of permutations of X under composition is a group called the

symmetric group on X and is denoted by Sym(X). A permutation group is

any subgroup of a symmetric group, and any subgroup of Sym(X) acts on X

in an obvious way (as well as sometimes in a less obvious way, as we shall see).

For a positive integer n, we let Ω be the set Ω = {1, . . . , n} we use Sn for the
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symmetric group Sym(Ω), and we use An for the alternating group Alt(Ω).

We use e for the identity element 1Sn of Sn.

An action of G on X allows us to define a homomorphism of G into

Sym(X), in the following way. Define φ : G → Sym(X) by letting φ(g)

be the map φ(g) : X → X, defined by φ(g) : x 7→ xg for all x ∈ X and g ∈ G.

Now for each g ∈ G, the map φ(g) is clearly a well defined map from X to X,

and it is injective because if φ(g)[x] = φ(g)[y] for some x, y ∈ X, then xg = yg,

(xg)g−1
= (yg)g−1

and x = y, by the definition of a group action. So indeed

φ(g) ∈ Sym(X). The map φ is a group homomorphism because for all x ∈ X

and g, h ∈ G we have

x[φ(g)φ(h)] = [xφ(g)]φ(h) = (xg)φ(h) = (xg)h = xgh = x[φ(gh)].

The homomorphism φ is called the permutation representation of the action of

G on X. The kernel of the action is the kernel of the permutation representa-

tion, that is g ∈ G such that φ(g) = 1Sym(X), or equivalently g ∈ G such that

xg = x for all x ∈ X. An action is called faithful if ker φ = 1G, in which case

G is isomorphic to the image of its permutation representation in Sym(X).

An action is transitive if for all x, y ∈ X there exists g ∈ G such that xg = y,

and the action is intransitive otherwise.

We give a useful faithful and transitive action of G on itself. Let g ∈ G

and for all h in G let hg = hg, that is g acts on all the elements of G by

right multiplication. We call the permutation representation of this action

the right regular representation of G. Thus for each g ∈ G we have an image

ĝ ∈ Sym(G) which is the map ĝ : h 7→ hg.

Two actions of an abstract group, G, on sets X and Y , are equivalent if

there exists a bijection ψ : X → Y such that

[ψ(x)]g = ψ(xg) for all x ∈ X and g ∈ G.

For g, h ∈ G, we say that g is conjugate to h if g = k−1hk for some k ∈ G.

15



We define the conjugacy class containing g,

[g]G = {k−1gk | k ∈ G},

and if H ≤ G we define the conjugacy class of subgroups

[H]G = {k−1Hk | k ∈ G}.

For x ∈ X, we define the point stabiliser

Gx = {g ∈ G | xg = x}.

The set of point stabilisers of a transitive action of G is a conjugacy class

of subgroups of G, and if faithful transitive actions of G on X and Y are

equivalent, then each action has the same conjugacy class of point stabilisers.

2.1.2 Permutation isomorphism

Two permutation groups, say G ≤ Sym(X) and H ≤ Sym(Y ) are permutation

isomorphic if there exists a group isomorphism φ : G → H, and a bijection

ψ : X → Y such that

[ψ(x)]φ(g) = ψ(xg) for all x ∈ X and g ∈ G.

If an abstract group G acts faithfully on a set X, then G (acting in this way) is

permutation isomorphic to the image φ(G) of the permutation representation

φ of this action in Sym(X) (acting in the obvious way on X.) The necessary

isomorphism is simply the permutation representation φ, and the bijection is

the identity map, and we have by definition

xφ(g) = xg for all x ∈ X and g ∈ G.

Hereafter we do not specify which action of a group we are talking about, if it

is completely clear from the context (in particular, a permutation group acts

in the obvious way, unless stated otherwise).
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If an abstract group G acts faithfully on a set X of order n, then G is

permutation isomorphic to a subgroup of Sn. We let ψ be any bijection ψ :

X → Ω = {1, . . . , n} and define an equivalent action of G on Ω by [ψ(x)]g =

ψ(xg). We let σ : G → Sn be the permutation representation of this action.

Then G is permutation isomorphic to σ(G) < Sn and σ and ψ are the necessary

isomorphism and bijection respectively, since

[ψ(x)]σ(g) = ψ(xg).

Different bijections from X to Ω define in this way conjugate subgroups of Sn,

as we now explain. Let ψ1 and ψ2 be bijections from X to Ω and let σ1 and

σ2 be the corresponding isomorphisms, and let g ∈ G. Then for all x ∈ X we

have ψ−1
1 ([ψ1(x)]σ1(g)) = xg = ψ−1

2 ([ψ2(x)]σ2(g)). Let π = ψ1ψ
−1
2 ∈ Sn. Then

for all x ∈ X we have [ψ1(x)]σ1(g) = ψ1ψ
−1
2 ([ψ2(x)]σ2(g)) = π([π−1ψ1(x)]σ2(g)) =

[ψ1(x)]π
−1σ2(g)π. Therefore σ1(g) = π−1σ2(g)π, so σ1(G) and σ2(G) are conju-

gate subgroups of Sn. We say that an element g of G induces the element σ(g)

of Sn.

Lemma 2.1.1. Two subgroups of Sn are permutation isomorphic if and only

if they are conjugate.

Proof. Let G ≤ Sn, and suppose that G is permutation isomorphic to a sub-

group φ(G), where φ is the permutation isomorphism and ψ is the bijection

such that [ψ(ω)]φ(g) = ψ(ωg) for all ω ∈ Ω and g ∈ G. Then since ψ ∈ Sn,

we write this as [(ω)ψ]φ(g) = (ωg)ψ for all ω ∈ Omega, so ψφ(g) = gψ and

φ(g) = ψ−1gψ. Thus G is conjugate to φ(G).

Conversely, let G ≤ Sn, and let ψ ∈ Sn. Then let φ be the homomorphism

φ : G → G defined by φ : g 7→ ψ−1gψ for all g ∈ G. Then φ is a permutation

isomorphism and ψ the associated bijection since [ψ(ω)]φ(g) = [ωψ]ψ
−1gψ =

ωgψ = ψ[ωg].

When an abstract group G acts faithfully with degree n, we have shown

that G acting in this way is permutation isomorphic to all the subgroups in

17



a conjugacy class of subgroups of Sn. We often simply say that the abstract

group G is a subgroup of Sn, when we are actually referring to one of the

subgroups of Sn which is permutation isomorphic to G acting in a way which

is clear from the context. Also, we call the subgroups in the conjugacy class

copies of G in Sn. For example we refer to the subgroup S2 × S3 of S5, when

we mean a subgroup of S5 which is permutation isomorphic to S2 × S3 acting

intransitively with degree 5, or we discuss the copies of S2 × S3 in S5.

If faithful actions of G on X and Y are equivalent, then they are permu-

tation isomorphic. However, the converse is not true in general. We give an

example to illustrate this point.

Example 2.1.1. The symmetric group S6 has two faithful degree 6 actions

which are permutation isomorphic but not equivalent. The first is the usual

action on {1, . . . , 6}. The point stabilisers of this action are the intransitive

subgroups, S5. The second action is the right multiplication action of S6 on

the right cosets of a transitive subgroup which is isomorphic to S5. (This

transitive subgroup is itself the image in S6 of a permutation representation

of the transitive conjugation action of S5 on its six Sylow-5 subgroups.) This

transitive subgroup is a point stabiliser of this second action, and is certainly

not one of the point stabilisers of the first action. For further details see [20,

Section 2.4.3].

It is important to make the distinction between isomorphism, permutation

isomorphism and equivalence. Sometimes when we are talking about isomor-

phism we say (abstract group) isomorphism, in order to emphasise that we are

not talking about permutation isomorphism.

An abstract group G acts on itself by conjugation. Let g ∈ G and for

all h in G let hg = g−1hg. For each g ∈ G, the image Inn(g) ∈ Sym(G) of

the permutation representation of this action is not only a permutation of G,

18



it is an automorphism, so we have Inn(G) ≤ Aut(G) < Sym(G). Automor-

phisms which arise in this way are called inner automorphisms, and any other

automorphism of G is an outer automorphism.

It is interesting to note that if there are two faithful transitive actions

of degree n an abstract group G which are permutation isomorphic, but not

equivalent, then the permutation isomorphism φ from G to G must be an

outer automorphism of G. For if the permutation isomorphism φ were an

inner automorphism, then conjugacy class of point stabilisers of the actions

would be the same, and the actions would be equivalent. Moreover, the outer

automorphism φ must not stabilise setwise each of the conjugacy classes of

core free index n subgroups of G (again, because actions are equivalent if and

only if the set of point stabilisers is the same). In our example above, the

permutation isomorphism is indeed an outer automorphism of S6.

Lemma 2.1.2. Let G be a finite group, and let n be a positive integer.

1. There is a one-one correspondence between faithful transitive actions of

G of degree n, up to equivalence, and core-free index n subgroups of G,

up to conjugacy.

2. There is a one-one correspondence between faithful transitive actions of

G of degree n, up to permutation isomorphism, and subgroups of Sn

which are isomorphic to G, up to conjugacy.

3. The number of conjugacy classes of transitive subgroups of Sn which are

isomorphic to G is at most the number of conjugacy classes of core-free

index n subgroups of G.

4. The number of conjugacy classes of transitive subgroups of Sn which are

isomorphic to G is at most the number of faithful transitive actions of

G of degree n, up to equivalence.
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Proof. 1. Suppose that G acts faithfully and transitively with degree n. The

set of point stabilisers is a conjugacy class of index n subgroups of G. These

subgroups are core-free because the action is faithful. Two equivalent such

actions of G define the same conjugacy class, because equivalent actions have

the same set of point stabilisers.

Conversely, given a conjugacy class [H]G of core-free index n subgroups

of G, the right coset action of G on the set of cosets [G : H] is a transitive

action, which is faithful because H is core-free. Using the set of cosets [G : K]

of a different representative, K = g−1Hg say, gives an equivalent action: let

ψ : [G : H] → [G : K] be defined by ψ : Hx 7→ Kg−1x, then

[ψ(Hx)]y = [Kg−1x]y = Kg−1(xy) = ψ[H(xy)] = ψ[(Hx)y].

2. Suppose that G acts faithfully and transitively on a set X of order n. We

have described above how G is permutation isomorphic to the subgroups in

a conjugacy class of subgroups which are isomorphic to G. Clearly any other

action which is permutation isomorphic to this action of G on X is permutation

isomorphic to the same conjugacy class of subgroups of Sn.

Conversely, given a transitive subgroup G of Sn, then G acts faithfully and

transitively on Ω (in the obvious way). By Lemma 2.1.1, the (obvious) action

of any other representative (on Ω), of the conjugacy class [G]Sn is permutation

isomorphic to this action.

3. and 4. If two actions of a group G are equivalent then they are certainly

permutation isomorphic, but the converse to this does not hold in general.

Thus the number of actions of G up to permutation isomorphism is at most

the number of such actions up to equivalence. Parts 3 and 4 then follow from

parts 1 and 2 above.
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2.1.3 Products and semi-direct products of groups

Let G and H be groups. We obtain another group called the direct product

G×H which has elements and product operation

G×H = {(g, h) : g ∈ G, h ∈ H},
(g, h)(x, y) = (gx, hy).

It follows that 1G×H = (1G, 1H) and (g, h)−1 = (g−1, h−1).

If there is a homomorphism φ : H → Aut(G), we obtain the semi-direct

product G :φ H (or G o H) associated with this homomorphism which has

elements and product operation

G :φ H = {(g, h) : g ∈ G, h ∈ H},
(g, h)(x, y) = (gxφ(h−1), hy).

It follows that 1G:φH = (1G, 1H) and (g, h)−1 = (g−1φ(h−1), h−1). It is necessary

that φ(h) is an automorphism of G for each h ∈ H to ensure that this product

is associative. G :φ H has subgroups G∗ = G × {1H} and H∗ = (1G) × H

which are isomorphic to G and H respectively. The action by conjugation of

H∗ on G∗ is permutation isomorphic to the action of H on G since

(1, h)−1(g, 1)(1, h) = (1, h−1)(g, h) = (gφ(h), 1).

(This would not be true without the inverse in the definition of the product.)

The wreath product G o H is a particular type of semi-direct product. If

G and H are permutation groups, say G ≤ Sl and H ≤ Sm, then there is

a homomorphism φ : H → Aut(Gm), defined as follows. For h ∈ H, and

(g1, . . . , gm) ∈ Gm, let

φ(h) : (g1, . . . , gm) 7→ (g1h−1 , . . . , gmh−1 ).

Then φ(h) is an automorphism of Gm (without the inverse this would not be

true). Gm is called the base group, and the wreath product G oH is simply the

semi-direct product Gm :φ H.
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2.1.4 Maximal subgroups of the symmetric and alter-
nating groups

Suppose that the action of a group G on a set X is transitive and B =

{B1, . . . , Bk} is a partition of X into (disjoint) subsets such that Bg
i ∈ B

for all i and all g ∈ G. Then B is a system of blocks for G. The action of G is

primitive if no such (non-trivial) system exists, and is imprimitive otherwise.

Therefore a subgroup of Sn is either intransitive, (transitive) imprimitive,

or (transitive) primitive. The O’Nan Scott theorem classifies maximal sub-

groups of Sn and An, and here we give this theorem as it is described in [13]

Theorem 2.1.3 (The O’Nan-Scott theorem). Let n be a positive integer. If

X is An or Sn, and G is any maximal subgroup of X with G 6= An, then G

satisfies one of the following:

1. G = (Sm × Sk) ∩X, with n = m + k and m 6= k (intransitive case);

2. G = (Sm o Sk) ∩X, with n = mk, m > 1, k > 1 (imprimitive case);

3. G = AGL(k, p) ∩X, with n = pk and p prime (affine case);

4. G = (T k.(Out(T ) × Sk)) ∩ X, T nonabelian simple, k ≥ 2, |T |k−1 = n

(diagonal case);

5. G = (Sm oSk)∩X, with n = mk, m ≥ 5, k > 1, excluding the case where

X = An and G is imprimitive on Ω (wreath case);

6. T /G ≤ Aut(T ), T nonabelian simple, T 6= An and G acting primitively

(almost simple case).

Although it is not explicitly mentioned, maximal subgroups in parts 3 to

6 of this theorem are (transitive and) primitive. Not all subgroups in these

classes are maximal. The main theorem in [13] tells us that if G is a subgroup

of Sn in classes 1 to 5, then G is maximal in AnG, and if G is a subgroup
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of An in classes 1 to 5, then G is maximal in An except for five exceptions

(which occur when n = 7, 8, 11, 17 and 23). An explicit list of exceptions to

maximality is given for subgroups in class 6.

We give a lemma which provides the order of a conjugacy class of sub-

groups.

Lemma 2.1.4. Let an abstract group G act faithfully and transitively with

degree n, and suppose that (when considering G as a subgroup of Sn), G is a

maximal subgroup of Sn other than An. Then Sn contains n!/|G| copies of G.

Proof. Let σ be the permutation representation of an equivalent action of G

on Ω, and let M = σ(G) so |M = |G|. Then [M ]Sn is the set of copies of G in

Sn, and Sn acts on the set of subgroups [M ]Sn by conjugation. In this action,

the stabiliser of the subgroup M is the normaliser NSn(M) of M in Sn, and

certainly contains M . We have M ≤ NSn(M) ≤ Sn. Since M 6= An, we know

that NSn(M) 6= Sn. Then by maximality of M , the stabiliser NSn(M) must be

M itself. The action is also transitive. Then by the Orbit-Stabiliser Theorem,

|[M ]Sn | × |NSn(M)| = |Sn|, so |[M ]Sn | = n!/|G|.

We give some further notation, and then a lemma concerning the affine

maximal subgroups. Suppose that a permutation g ∈ Sn consists of r disjoint

cycles of lengths l1, l2, . . . , lr, where l1, l2, . . . , lr are positive integers such that

1 ≤ l1 ≤ l2 ≤ . . . ≤ lr and l1 + l2 + . . . + lr = n. Then g has r disjoint orbits

on Ω (some of which may be trivial orbits of length 1), and we say that g is a

(l1, l2, . . . , lr)-cycle. Usually if l1 = . . . = ls = 1 for some s < r, we simply say

that g is a (ls+1, . . . , lr)-cycle (that is we omit the cycles of length 1), and if g

is a (t)-cycle, we say that g is a t-cycle (we drop the brackets). For example,

the element (1234) ∈ S4 is a 4-cycle and has one orbit on Ω = {1, 2, 3, 4}, the

element (123)(4) ∈ S4 is a (1, 3)-cycle or a 3-cycle and has two orbits on Ω (of

which one is trivial), and the element (12)(34) ∈ S4 is a (2, 2)-cycle and has

two orbits on Ω. If r = 2 we sometimes say that g is a bi-cycle.
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If n = pd for a prime p, then AGL(d, p) is a maximal subgroup of Sn. So

if p > 3 is prime AGL(1, p) is a maximal subgroup of Sp, and we use this fact

in the following lemma. We use ϕ to denote the Euler’s totient function, that

is ϕ(n) is the number of integers that are less than n and are co-prime to n,

for example ϕ(6) = 2, since 1 and 5 are co-prime to 6.

Lemma 2.1.5. Let p be an odd prime. Each copy of AGL(1, p) in Sp contains

exactly pϕ(p− 1) elements which are (p− 1)-cycles, and each of the p distinct

copies of Sp−1 in Sp contains exactly ϕ(p − 1) of these (p − 1)-cycles. Also

any fixed (p − 1)-cycle is contained in exactly ϕ(p − 1) of the (p − 2)! copies

of AGL(1, p).

Proof. AGL(1, p) is the group of affine transformations of a vector space of

dimension 1 over Zp under composition. Therefore AGL(1, p) = {Ta,b : a ∈
Zp \ 0, b ∈ Zp}, where Ta,b : Zp → Zp is defined by Ta,b : x 7→ ax + b, for

all x ∈ Zp. It is isomorphic to the semidirect product Zp o GL(1, p), so

|AGL(1, p)|= |Zp| × |GL(1, p)| = p(p − 1) = p2 − p. Now AGL(1, p) contains

a cyclic normal subgroup of order p (which consists of the transformations

{T1,b : b ∈ Zp}), and p cyclic subgroups of order (p− 1) which are not normal

(for example {Ta,0 : a ∈ Zp \ 0}. Clearly AGL(1, p) as a maximal subgroup

of Sp has the same structure. It has a single cyclic normal subgroup of order

p, which contains (p − 1) elements which are p-cycles. It also has p cyclic

subgroups of order (p − 1). These are conjugate by the p-cycles. They each

fix a different point of {1, 2, . . . , p} and are contained in the p different copies

of Sp−1 in Sp. Pairwise they intersect trivially, and the non-trivial elements of

these subgroups account for the other p(p−2) elements of AGL(1, p) (therefore

all elements of AGL(1, p) are elements of cyclic groups of order p or (p− 1)).

Now a cyclic group of order (p− 1) contains exactly ϕ(p− 1) elements which

are (p−1)-cycles, and so AGL(1, p) contains exactly pϕ(p−1) elements which

are (p− 1)-cycles.
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Now we count pairs (h,H) in two ways, where H is any copy of AGL(1, p)

and h is any (p− 1)-cycle in H. Let r be the number of such pairs.

First we have r = xy, where x is the number of (p− 1)-cycles in Sp, and y

is the number of copies of AGL(1, p) which contain a fixed (p− 1)-cycle. This

number is independent of the choice of cycle, since all (p − 1)-cycles and all

copies of AGL(1, p) are conjugate in Sp. Then x = p (p − 2)!, and y is the

number we wish to find out, and r = p (p− 2)! y.

Second we have r = zw, where z is the number of (p − 1)-cycles in any

fixed copy of AGL(1, p) (again, this number is independent of the choice of

copy), and w is the number of copies of AGL(1, p) in Sp. We have already

shown that z = pϕ(p − 1), and by maximality of AGL(1, p) in Sp, we have

w = p!/|AGL(1, p)| = (p− 2)!. So r = pϕ(p− 1) (p− 2)!.

Equating our two expressions for r gives us p (p−2)! y = pϕ(p−1) (p−2)!,

so y = ϕ(p−1) which means that any fixed (p−1)-cycle is contained in ϕ(p−1)

copies of AGL(1, p).

2.1.5 Simple groups

A group G is simple if the only normal subgroups of G are the trivial subgroup

{1G} and G itself. We first state a theorem from [11], known as the power

order theorem, that tells us that there are at most two finite simple groups of

a given order (up to isomorphism).

Theorem 2.1.6 ([11] Theorem 6.1). Let S and T be non-isomorphic finite

simple groups. If |Sa| = |T b| for some natural numbers a and b, then a = b

and S and T either are A2(4) and A3(2) or are Bn(q) and Cn(q) for some

n ≥ 3 and some odd q.

If a finite simple group is abelian, then all subgroups are normal, so the

only proper subgroup must be the trivial subgroup {1}. It follows that abelian

finite simple groups are cyclic of prime order. Our next two results concern
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the order of nonabelian finite simple groups. A group is solvable if it has a

subnormal series in which all the factor groups are abelian (a subnormal series

is a sequence of subgroups, each a proper normal subgroup of the next). The

next theorem follows from the Feit-Thompson Odd Order Theorem, which

tells us that any finite group of odd order is solvable.

Theorem 2.1.7. A nonabelian finite simple group has even order.

Proof. Suppose a finite simple group G is of odd order. Then by the Feit-

Thompson Theorem [8], it is solvable. However, since G is also simple, the

only subnormal series of G is the trivial one, {1} / G. Therefore the factor

group G/{1} must be abelian. It is isomorphic to G. So G itself is abelian

(and also cyclic of prime order). Therefore a nonabelian finite simple group

has even order.

We have the following corollary.

Corollary 2.1.8. The order of a nonabelian finite simple group is divisible

by 4.

Proof. Let T be a nonabelian finite simple group. By 2.1.7, we have |T | = 2m

for some integer m. A group of order 2 is abelian, and so m > 1. The

right regular representation T̂ < Sym(T ) is isomorphic to T and so is also

simple. Since T̂ ∩Alt(T )E T̂ , we have T̂ ∩Alt(T ) = T̂ (if the intersection of a

permutation group with the alternating group is trivial, then the group is of

order 2). Therefore T̂ ≤ Alt(T ).

Now if ĝ ∈ T̂ , and if ĝ 6= 1T̂ = 1̂T , then ĝ does not fix any points of T , for

if tg = t for some t ∈ T , then g = 1T .

By the first Sylow theorem, T̂ has a subgroup of order 2, and hence T̂ has

an element, ĝ say, of order 2. Since ĝ does not fix any points of T , and since

|T | = 2m, ĝ must be a product of m disjoint transpositions. Then m must be

even, because ĝ ∈ T̂ ≤ Alt(T ).
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The Classification of Finite Simple Groups tells us that there are three

main classes of nonabelian finite simple groups. They are

Alternating groups: An where n ≥ 5.

Simple groups of Lie type: comprising infinite families of groups - each

family can be further classified as either classical and exceptional.

Sporadic groups: twenty six groups which do not fall into any of the families

above.

Each simple group of Lie type is associated with a vector space over a finite

field. There are six separate families of classical finite simple groups, and

these are each parametrised by a dimension d and a field order q (of the

associated vector space). Each simple group of Lie type is also associated

with a Lie algebra (over the same finite field as the associated vector space),

and an alternative parametrisation is by the rank r (of the associated algebra)

and the field order q. Our table below is adapted from the table of classical

simple groups in [12, Table 5.1.A], which shows the correspondence between

two different parametrizations and different notations for the classical simple

groups. This table is included here to show the relationship between rank and

dimension, as we will later use Lemma 2.1.9, which concerns the rank of a

classical group, together with Lemma 2.2.4 which concerns the dimension of

the associated vector space. We have added a column to the table, in which we

give the relationship between the rank r and the dimension d of the associated

vector space.

Our next lemma follows directly from the following statement from Cameron,

Neumann and Teague’s paper [3, Section 4.].

“If G0 is a classical simple group of rank r defined over GF (q)

that has a proper subgroup of index n then, with finitely many

exceptions, n ≥ qr. (See Cooperstein [6] and references quoted
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Family Lie notation and rank Classical notation
Linear An−1(q) n− 1 Ln(q), PSL(n, q) d = r + 1
Unitary 2An−1(q) bn/2c Un(q), PSU(n, q) bd/2c = r
Symplectic Cm(q) m PSp2m(q), PSp(2m, q) d = 2r
Orthogonal Bm(q) m Ω2m+1(q), PΩ(2m + 1, q) d = 2r + 1
Orthogonal Dm(q) m PΩ+

2m(q), PΩ+(2m, q) d = 2r
Orthogonal 2Dm(q) m− 1 PΩ−

2m(q), PΩ−(2m, q) d = 2r + 2

Table 2.1: The relationship between rank and dimension for classical simple
groups

there. In fact the only exception is PSL(2, 9) acting as a group of

degree 6).”

Lemma 2.1.9. Let n be a positive integer such that n 6= 6. Let Xr(q) be a

classical simple group of Lie rank r. If there is a transitive (faithful) action of

Xr(q) of degree n, then n ≥ qr.

2.2 Combinatorics

This section contains mostly unrelated results which are of a combinatorial

nature.

Lemma 2.2.1. Let n be an even positive integer. If n ≡ 0 (mod 4) then
(

n

1

)
+

(
n

3

)
+ . . . +

(
n

n/2− 1

)
= 2n−2.

If n ≡ 2 (mod 4), then
(

n

1

)
+

(
n

3

)
+ . . . +

(
n

n/2− 2

)
+

1

2

(
n

n/2

)
= 2n−2.

Proof. For any positive integer n, by the binomial theorem we have

2n = (1 + 1)n =

(
n

0

)
+

(
n

1

)
+ . . . +

(
n

n

)
.

Let n be an even positive integer. Then there are an odd number of terms in

this sum, and since
(

n
k

)
=

(
n

n−k

)
for 0 ≤ k ≤ n, we have

2n−1 =

(
n

0

)
+

(
n

1

)
+ . . . +

1

2

(
n

n/2

)
.
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Let P be the set of partitions of Ω = {1, . . . , n} into two parts. Then each

element of P is of the form {∆, Ω\∆} for some ∆ ⊂ Ω such that 0 ≤ |∆| ≤ n/2,

and |P| = 2n−1. Now let E be the set of partitions of Ω = {1, . . . , n} into two

parts of even order (this includes the partition {∅, Ω}), and let O be the set

of partitions of Ω into two subsets of odd order. Thus we have P = E ∪ O.

There is a bijection β : E → O defined by

{∆, Ω \∆} 7→ {∆ \ 1, (Ω \∆) ∪ 1} if 1 ∈ ∆,

{∆, Ω \∆} 7→ {∆ ∪ 1, (Ω \∆) \ 1} if 1 ∈ Ω \∆.

Therefore |E| = |O| = |P|/2 = 2n−2.

If n ≡ 0 (mod 4) then n/2− 1 is odd, and so

|O| =
(

n

1

)
+

(
n

3

)
+ . . . +

(
n

n/2− 1

)
,

and our result follows.

If n ≡ 2 (mod 4), then n/2 is odd, and so

|O| =
(

n

1

)
+

(
n

3

)
+ . . . +

(
n

n/2− 2

)
+

1

2

(
n

n/2

)
,

and again our result follows.

The analysis of Stirling’s series for the Gamma-function in Whittaker and

Watson’s book [19] allows us to obtain the following bounds on r!. (The

Gamma-function is the indefinite integral Γ(z) =
∫∞
0

tz−1e−tdt.)

Lemma 2.2.2. Let r be a positive integer. Then

(r

e

)r√
re < r! <

(r

e

)r√
re2,

or stated alternatively,

exp [r ln r − r + 1
2
ln r + 1

2
] < r! < exp [r ln r − r + 1

2
ln r + 2].
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Proof. From [19, Section 12.12] we have that if z is a positive integer, then

Γ(1) = 1 and Γ(z) = (z − 1)! so

z! = Γ(z + 1) = zΓ(z).

Furthermore, from [19, Section 12.33] we have that if x > 1 then

Γ(x) = xx− 1
2 e−x(2π)

1
2 eθ/12x,

where 0 < θ < 1. If x > 0 then 0 < θ/12x < 1/12, and so 1 < eθ/12x < e1/12.

Combining this with the fact that e
1
2 < (2π)

1
2 < e, we have that if x > 1 then

e
1
2 < (2π)

1
2 eθ/12x < e1+1/12 < e2. So if x > 1 we have

xx− 1
2 e−xe

1
2 < Γ(x) < xx− 1

2 e−xe2.

Therefore for any positive integer r,

rr+ 1
2 e−re

1
2 < r! < rr+ 1

2 e−re2.

We use this upper bound for a factorial in the next lemma.

Lemma 2.2.3. Let n be a positive integer such that n ≥ 146, and let k be a

divisor of n such that 5 ≤ k ≤ n
2
. Then

|Sn/k o Sk| ≤ e753
( n

5e

)n

n
5
2 .

Proof. We apply Lemma 2.2.2.

|Sn/k o Sk| = (n/k)!k k!

< exp [(n
k

ln n
k
− n

k
+ 1

2
ln n

k
+ 2)k + (k ln k − k + 1

2
ln k + 2)]

= exp[(n ln n− n ln k − n + k
2
ln n− k

2
ln k + 2k)

+ (k ln k − k + 1
2
ln k + 2)]

= exp [(n ln n− n + 2)− n ln k + (k
2

+ 1
2
) ln k + (1

2
ln n + 1)k].
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We examine how the exponent varies for a fixed value of n. Let n be fixed and

define a function f(x) on the range [5, n/2] = {x ∈ R : 5 ≤ x ≤ n/2}.

f(x) = x
2
ln x + (1

2
ln n + 1)x + (1

2
− n) ln x + (n ln n− n + 2).

Then

d

dx
f(x) = 1

2
ln x + 1

2
+ (1

2
ln n + 1) + 1

x
(1

2
− n)

= 1
2
ln x + (1

2
ln n + 3

2
) + 1

x
(1

2
− n),

and

d2

dx2
f(x) = 1

2x
− 1

x2 (
1
2
− n)

= 1
2x2 (2n + x− 1).

All values of f(x) are finite and the second derivative is positive (on the defined

range), so if f(x) does have a turning point (within this range), it must be a

minimum. Now we show as long as n ≥ 146 we have f(5) > f(n/2), and then

it follows that f(5) > f(x) for all x ∈ [5, n/2].

f(5)− f(n/2)

= [(5
2

+ 1
2
− n) ln 5 + (1

2
ln n + 1)5]− [(n

4
+ 1

2
− n) ln n

2
+ (1

2
ln n + 1)n

2
]

= 1
2
n ln n− (1

2
+ ln 5 + 3

4
ln 2)n + 2 ln n + (5 + 3 ln 5 + 1

2
ln 2).

Let g(y) = f(5)− f(y/2) for y ∈ R, y ≥ 1. Then

g(y) = 1
2
y ln y − (1

2
+ ln 5 +

3

4
ln 2)y + 2 ln y + (5 + 3 ln 5 +

1

2
ln 2),

and
d

dy
g(y) = 1

2
ln y + 1

2
− (1

2
+ ln 5 + 3

4
ln 2) + 2

y

= 1
2
ln y − (ln 5 + 3

4
ln 2) + 2

y
.

The first derivative is positive when 1
2
ln y − (

ln 5 + 3
4
ln 2

)
+ 2

y
≥ 0, so is

certainly positive when y ≥ e2(ln 5+ 3
4

ln 2) = 70.7 (to 1 decimal place) and fur-

thermore g(146) > 0. It follows that g(y) > 0 for all y ≥ 146, and so if
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n ≥ 146, we have f(5) > f(n/2). Then since |Sn/k o Sk| < exp[f(k)], we have

|Sn/k o Sk| ≤ exp[f(5)] = e753
( n

5e

)n

n
5
2 .

We give two further useful upper bounds.

Lemma 2.2.4. Let k and d be integers such that 1 ≤ k ≤ d− 1. Let V d
q be a

vector space of dimension d over Fq, and let Lk(V
d
q ) be the set of k dimensional

subspaces of V d
q . Then

|Lk(V
d
q )| = (qd − 1)(qd−1 − 1) . . . (qd−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
≤ q(d+1)2/4.

Proof. The number of sets of k distinct linearly independent vectors in V d
q

(that is, the number of possible bases for a k dimensional subspace) is (qd −
1)(qd−q) . . . (qd−qk−1), and the number of these sets which span the same k di-

mensional subspace (which is equal to the number of bases for a k dimensional

vector space over Fq) is (qk − 1)(qk − q) . . . (qk − qk−1), so we have

|Lk(V
d
q )| = (qd − 1)(qd − q) . . . (qd − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

=
(qd − 1)(qd−1 − 1) . . . (qd−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Now for 0 ≤ i ≤ k − 1, we have

qd−i − 1

qk−i − 1
<

qd−i

qk−i − 1
<

qd−i

qk−i−1
= qd−k+1,

so |Lk(V
d
q )| < (qd−k+1)k = qk(d−k+1). We analyse the exponent for a fixed value

of d. Let f(k) = k(d−k+1), then we have f ′(k) = d−2k+1, and f ′′(k) = −2.

Therefore f(k) has a maximum value at k = (d + 1)/2 and this maximum is

f((d + 1)/2) = (d + 1)2/4.

Lemma 2.2.5. A group of order k has at most klog2 k subgroups, and at most

klog2 k−log2 n index n subgroups.
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Proof. Let G be a group of order k, and let H < G. Let {g1, . . . , gm} be a

minimal set of generators for H, and for each 1 ≤ i ≤ m, let Hi = 〈g1, . . . , gi〉.
Let Hm+1 = G and H0 = 1G. Then for each 1 ≤ i ≤ m + 1, we have

|Hi|/|Hi−1| ≥ 2, so

k = |G| = |Hm+1|
|Hm|

|Hm|
|Hm−1| · · ·

|H1|
|H0| ≥ 2m+1 ≥ 2m,

and it follows that m ≤ log2 k. Therefore each proper subgroup of G is gener-

ated by at most log2 k of the k elements of G, so there are certainly at most

klog2 k possible proper subgroups.

If the index of H in G is n, then we have

k = |G| = |Hm+1|
|Hm|

|Hm|
|Hm−1| · · ·

|H1|
|H0| ≥ n2m,

and it follows that m ≤ log2 k − log2 n. Therefore each index n subgroup of

G is generated by at most log2 k − log2 n of the k elements of G, so there are

certainly at most klog2 k−log2 n possible index n subgroups.
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Chapter 3

Constructive proofs for Sn

In this chapter we give constructive proofs for our results concerning µ(Sn)

where n is odd and n ≤ 19. This proves Theorem 1.1.1 part 1 for n ≤ 19 and

part 2.

3.1 Introduction

We give the theory discussed in our introductory chapter in a lemma. Recall

that we defined a bi-cycle to be a permutation g ∈ Sn which has precisely two

orbits on Ω = {1, . . . , n} (one of these orbits may be trivial of length 1).

Lemma 3.1.1. Let n be an odd integer. Let L be the set containing An and

the intransitive maximal subgroups of Sn. Then L is a covering for Sn of order

2n−1. If µ(Sn) = 2n−1, then a maximal pairwise generating set for Sn consists

of one n-cycle and 2n−1 − 1 bi-cycles, each from a different subgroup in L.

The covering L is a good starting point to find a pairwise generating set

for Sn, for if a set X consists of one n-cycle and 2n−1 − 1 bi-cycles, each from

a different subgroup in L, then certainly each subgroup in L contains exactly

one element of X. However, if X is a pairwise generating set, then no other

maximal subgroup of Sn (not in L) can contain more than one element of X

either. For n ∈ {5, 7, 11, 13, 17, 19}, Sn has only one further conjugacy class of

maximal subgroups, the affine subgroups, and S3 has no maximal subgroups
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other than those in L. This makes it quite straightforward to use a constructive

proof. (Note that we have µ(S1) = 21−1 = 1, since the set {e} is (trivially) a

pairwise generating set of order 21−1 for S1 = {e}.)

3.2 n = 3

The group S3 of permutations of the set {1, 2, 3} has the following elements,

S3 = {e, (12), (23), (13), (123), (132)},

and the four non-trivial proper subgroups of S3 are

{e, (12)}, {e, (23)}, {e, (13)} and A3 = {e, (123), (132)}.

The covering L for S3 contains all of these subgroups, and there are the fol-

lowing two possibilities for a set containing one element from each subgroup,

X = {(12), (23), (13), (123)} or X = {(12), (23), (13), (132)}.

Then clearly each subgroup of S3 contains at most one element of X, so X

generates S3 pairwise. Therefore we have

µ(S3) ≥ 4.

Since µ(S3) ≤ 4 we have µ(S3) = 4 = 23−1. (We can see that this is a maximal

pairwise generating set simply by inspection.)

3.3 n = 5

When n = 5, the covering L consists of A5 together with the intransitive

maximal subgroups S1×S4 and S2×S3. Since 5 is prime, S5 has no imprimitive

maximal subgroups. We know that S5 has at least four conjugacy classes of

maximal subgroups: one of these classes contains only A5; two classes must

contain the intransitive maximal subgroups S2 × S3 and S4 respectively; and
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one must contain the affine groups AGL(1, 5). The following short GAP code

tells us that S5 has exactly four conjugacy classes of maximal subgroups.

gap> s:=SymmetricGroup(5); m:=MaximalSubgroupClassReps(s);;

gap>Length(m);

> 4;

The maximal subgroups of S5 are therefore alternating, intransitive or affine.

By Lemma 2.1.4, if G 6= An is a maximal subgroup of Sn, then the number of

copies of G in Sn is n!/|G|. The maximal subgroups of S5 together with their

orders and the number of copies are given in Table 3.1.

Class Order Number of copies
Alternating A5 60 1
Intransitive S1 × S4 24 5
Intransitive S2 × S3 12 10

Affine AGL(1, 5) 20 6

Table 3.1: The maximal subgroups of S5

The covering L is a minimal covering of S5 of order 1+5+10 = 16 = 25−1.

If µ(S5) = 25−1, there is a pairwise generating set for S5 of order 25−1 and it

would have to contain five 4-cycles, one from each of the copies of S4 in S5.

We now rule this out, and then we determine how many 4-cycles a pairwise

generating set can possibly contain.

Lemma 3.3.1. A pairwise generating set for S5 contains at most a total of

three elements which are 4-cycles or 5-cycles.

Proof. Let X generate S5 pairwise. By Lemma 2.1.5, each 4-cycle is contained

in exactly ϕ(5 − 1) = 2 copies of AGL(1, 5). Since S5 contains six copies of

AGL(1, 5), X contains at most three 4-cycles.

X contains at most one element of A5, and therefore X contains at most
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one 5-cycle. However, any 5-cycle is also contained in one of the six copies of

AGL(1, 5) and so if X contains a 5 cycle, it then contains at most two 4-cycles.

Therefore X contains at most a total of three 4-cycles and 5-cycles.

Lemma 3.3.2. There exists a pairwise generating set for S5 which contains

three 4-cycles.

Proof. A 4-cycle is an odd permutation and so it is not contained in A5,

and a 4-cycle is not contained in S2 × S3. Therefore it suffices to check that

three 4-cycles are not contained in the same copy of S4 or AGL(1, 5). Let

M1, . . . , M6 be the six copies of AGL(1, 5) in S5, and let T1, . . . , T5 be the

five copies of S4 in S5. Then T1 contains 3! = 6 elements which are 4-cycles,

say g1, g
−1
1 , g2, g

−1
2 , g3, g

−1
3 . By Lemma 2.1.5, each 4-cycle (and therefore its

inverse) is contained in two copies of AGL(1, 5), and each copy of AGL(1, 5)

contains exactly two 4-cycles from each of the five copies of S4. Suppose that

g1, g
−1
1 ∈ M1 ∩ M2. Suppose g2, g

−1
2 ∈ M3 ∩ M4 and g3, g

−1
3 ∈ M5 ∩ M6. In

this way T1 induces a partition P1, of the set of copies of AGL(1, 5), that is

P1 = {{M1,M2}, {M3, M4}, {M5,M6}}. Now for each distinct pair Mj,Mk

of copies of AGL(1, 5) we have 4 divides |Mj ∩ Mk|, and |Mj ∩ Mk| divides

|AGL(1, 5)| = 20, so |Mj ∩Mk| = 4. Each Ti induces a similar partition Pi,

but because |Mj ∩Mk| = 4, no two parts from these partitions are the same.

Suppose without loss of generality that

P1 = {{M1,M2}, {M3,M4}, {M5,M6}},
P2 = {{M1,M3}, {M2,M5}, {M4,M6}},
P3 = {{M1,M4}, {M2,M6}, {M3,M5}},
P4 = {{M1,M5}, {M2,M4}, {M3,M6}},
P5 = {{M1,M6}, {M2,M3}, {M4,M5}}.

Then we can pick three 4-cycles, h1, h2 and h3 such that h1 ∈ T1 ∩M1 ∩M2,

h2 ∈ T2∩M4∩M6 and h3 ∈ T3∩M3∩M5. Therefore there are three 4-cycles in
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S5, no two of which are in the same maximal subgroup. Therefore a pairwise

generating set can contain three 4-cycles.

Note that the following three 4-cycles generate S5 pairwise, and in fact this

proves the previous lemma:

(2354), (1354), (1324).

A theoretical proof is included above to introduce the reader to the concept

of the induced partition of the conjugacy class of subgroups Sn−1 which will

be used again in the proof of Lemma 3.4.1.

We have determined that a maximal pairwise generating set contains at

most three 4-cycles. We will eventually give a construction of a maximal

pairwise generating set which does have three 4-cycles, but it could equally

have two 4-cycles and a 5-cycle. In Table 3.2 we recall the possible cycle

structures for elements of S5, which we will use in the proof of our next lemma

(we have omitted cycles of length 1).

Cycle structure Example Number
- e 1
2 (12) 10

2,2 (12)(34) 15
3 (123) 20

2,3 (12)(345) 20
4 (1234) 30
5 (12345) 24

120

Table 3.2: The cycle structures of the elements of S5

Lemma 3.3.3. We have µ(S5) ≤ 13.

Proof. Let X generate S5 pairwise. Elements of X with different cycle struc-

tures are considered in turn.
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First suppose that X contains a 2-cycle. It then can not contain a (2,2)-

cycle because any combination of a 2-cycle and a (2,2)-cycle is contained in

some copy of S2 × S3 or S4. It also can not contain a 3-cycle because any

combination of a 2-cycle and a 3-cycle is contained in either some copy of

S2 × S3 (if they are disjoint) or some copy of S4 (if they are not disjoint).

Furthermore, any 2-cycle is contained in four copies of S2 × S3, and therefore

X contains at most six (2,3)-cycles, which come from the remaining six copies

of S2 × S3. By Lemma 3.3.1, X contains at most a total of three 4-cycles and

5-cycles. All cycle structures have now been considered and therefore if X

contains a 2-cycle, |X| ≤ 10.

Suppose that X does not contains a 2-cycle, but does contain a (2,2)-cycle.

It contains at most one (2,2)-cycle (since all (2,2)-cycles are contained in A5),

and no 3-cycles (again because of A5). A (2,2)-cycle is contained in exactly two

copies of S2 × S3, and therefore X contains at most eight (2,3)-cycles, which

come from the remaining copies of S2 × S3. By Lemma 3.3.1, X contains at

most a total of three 4-cycles and 5-cycles. All cycle structures have now been

considered and therefore if X contains a (2,2)-cycle, |X| ≤ 12.

Suppose that X does not contain a 2-cycle or a (2,2)-cycle. It contains at

most one 3-cycle (since all 3-cycles are contained in A5). A 3-cycle is contained

in exactly one copy of S2 × S3, and therefore X contains at most nine (2,3)-

cycles, which come from the remaining copies of S2 × S3. By Lemma 3.3.1,

X contains at most a total of three 4-cycles and 5-cycles. All cycle structures

have now been considered and therefore if X contains a 3-cycle, |X| ≤ 13.

Finally, suppose that X does not contain a 2-cycle, a (2,2)-cycle or a 3-

cycle. Since there are ten copies of S2×S3, X contains at most ten (2,3)-cycles.

Also, by Lemma 3.3.1, X contains at most three 4-cycles and 5-cycles, and

therefore again |X| ≤ 13.

Lemma 3.3.4. We have µ(S5) = 13.
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Proof. Let X contain the following 13 elements:

Ten (2,3)-cycles - each one from a different copy of S2 × S3;

Three 4-cycles - from different copies of S4, such that no two are in the same

copy of AGL(1, 5) (this is possible by Lemma 3.3.2).

Certainly each copy of S2 × S3 contains exactly one (2,3)-cycle from X,

and clearly no 4-cycles. Three copies of S4 contain a 4-cycle from X, and two

do not contain an element of X. Each copy of AGL(1, 5) contains one 4-cycle

from X. Since all elements of AGL(1, 5) are in cyclic subgroups of order 5

or 4, any copy of AGL(1, 5) does not contain any (2,3)-cycles. A5 does not

contain any elements from X, since X contains only odd permutations.

Therefore each maximal subgroup contains at most one element from X,

so X generates S5 pairwise, and µ(S5) ≥ 13. Then by Lemma 3.3.3, our result

follows.

3.4 n ∈ {7, 11, 13, 17, 19}
For all odd values of n, Sn has (n − 1)/2 conjugacy classes of intransitive

maximal subgroups. If n is prime, then Sn does not contain any imprimitive

maximal subgroups, but it does have at least two conjugacy classes of primitive

maximal subgroups, one which contains only An, and one which contains the

affine groups AGL(1, p). Therefore we know that if n ∈ {7, 11, 13, 17, 19}, then

Sn has at least (n − 1)/2 + 2 conjugacy classes of maximal subgroups. The

following short GAP code tells us that there are no more.

gap>for n in [7,11,13,17,19] do

> s:=SymmetricGroup(n);

> m:=MaximalSubgroupClassReps(s);

> l:=Length(m)-(n-1)/2-2;

> Print(l); od;
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> 0 0 0 0 0

Therefore as in the case n = 5, for these values of n the maximal subgroups

of Sn are alternating, intransitive and affine.

As discussed in the proof of Lemma 2.1.5, all the non-trivial elements of

an affine maximal subgroup of Sn where n is prime are contained in cyclic

subgroups of order n or n− 1. Therefore the only elements of affine maximal

subgroups which are bi-cycles are (n− 1)-cycles.

A pairwise generating set of order 2n−1 for these values of n must contain

n elements which are (n − 1)-cycles, such that no pair are in the same affine

maximal subgroup, and no two are in the same copy of Sn−1 in Sn. (Recall

that this was not possible for n = 5).

Lemma 3.4.1. Let p be prime such that p ≥ 7. There exists a subset of Sp

of order p + 1, which contains p elements which are (p − 1)-cycles and one

p-cycle, such that the following conditions hold.

No two are in the same copy of AGL(1, p) in Sp.

No two are in the same copy of Sp−1 in Sp.

Proof. By Lemma 2.1.5, a fixed (p − 1)-cycle in Sp is contained in ϕ(p − 1)

copies of AGL(1, p) in Sp.

Now for i ∈ {1, . . . , p} let Ti denote a copy of Sp−1 in Sp. The (p−1)-cycles

in Ti can be partitioned such that each part contains the ϕ(p − 1) elements

which are powers of the same (p − 1)-cycle. Let Pi be the corresponding

partition of the set of affine maximal subgroups, where each part contains the

ϕ(p− 1) copies of AGL(1, p) which contain the same ϕ(p− 1) elements which

are (p − 1)-cycles in Ti. Thus each Pi has (p − 2)!/ϕ(p − 1) parts, and each

part corresponds to ϕ(p− 1) elements which are (p− 1)-cycles.

Now start with Y = ∅. Select any (p − 1)-cycle from T1, and add it to

Y . This is contained in ϕ(p − 1) of the copies of AGL(1, p). Discard from
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each Pi all parts which contain these particular copies (i.e. discard one part

from P1, and ϕ(p − 1) parts from the other Pi). Now select a (p − 1)-cycle

from T2 which is one of the elements which corresponds to a remaining part

of P2, and add it to Y . Again this is contained in ϕ(p − 1) of the copies

of AGL(1, p). Discard this part from P2, and from the other Pi the parts

which contain these particular copies (at most ϕ(p − 1)). Proceeding in this

manner, after choosing k elements which are (p− 1)-cycles, we have discarded

at most 1 + (k − 1)ϕ(p − 1) parts from each Pi. Since initially each Pi has

(p− 2)!/ϕ(p− 1) parts, when Y contains p such (p− 1)-cycles we are left with

at least (p − 2)!/ϕ(p − 1) − (1 + (p − 1)ϕ(p − 1)). Together these contain

(p− 2)!− (1 + (p− 1)ϕ(p− 1)2) copies of AGL(1, p) which do not contain an

element of Y .

Now (p − 2)! − (1 + (p − 1)ϕ(p − 1)2) > 1 for p ≥ 7. Therefore we have

many copies of AGL(1, p) left from which to select any single p-cycle, and add

it to Y whilst preserving the given conditions.

Note that the final inequality in this proof does not hold for n = p = 5,

that is 3!− (1 + 4ϕ(4)2) < 0.

Lemma 3.4.2. If n ∈ {7, 11, 13, 17, 19} then µ(Sn) = 2n−1.

Proof. Let n be prime, n ≥ 7. Let Y be a subset of Sn, which contains n

elements which are (n − 1)-cycles and one n-cycle, such that the following

conditions hold.

No two are in the same copy of AGL(1, n) in Sn.

No two are in the same copy of Sn−1 in Sn.

Such a set exists by Lemma 3.4.1. Let Z be a subset of Sn which contains
(

n
r

)

elements which are (r, n − r)-cycles for each 2 ≤ r < n/2, such that no two

are in the same intransitive maximal subgroup of Sn. This is certainly always
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possible since for each 2 ≤ r < n/2, there are
(

n
r

)
partitions of the set Ω into

precisely two subsets. Let X = Y ∪ Z, so |X| = 2n−1.

Then An, the intransitive maximal subgroups and the affine maximal sub-

groups each contain only one element of X. If n ∈ {7, 11, 13, 17, 19} then there

are no further maximal subgroups of Sn, so X generates Sn pairwise, and we

have µ(Sn) ≥ 2n−1.

In fact we will prove later that for any prime n which is not of the form

(qd−1)/(q−1), the only maximal subgroups of Sn are alternating, intransitive

or affine, and so this proof holds for values of n that satisfy this condition.

However, all such values of n (except for those included in this section) will

be covered later by our probabilistic proof.

3.5 n=9

We know that S9 has at least seven conjugacy classes of maximal subgroups:

four conjugacy classes of intransitive maximal subgroups; one conjugacy class

of imprimitive maximal subgroups S3 o 33; a conjugacy class of primitive max-

imal subgroups which contains A9; and a conjugacy class of affine maximal

subgroups AGL(2, 3). The following GAP code tells us that S9 has exactly

seven conjugacy classes of maximal subgroups, so there are no more.

gap> s:=SymmetricGroup(9); m:=MaximalSubgroupClassReps(s);;

gap> Length(m);

> 7;

We give the maximal subgroups in Table 3.3.

If µ(S9) = 29−1, then by Lemma 3.1.1, there is a subset of S9 containing a

9-cycle, and 29−1− 1 bi-cycles which generates S9 pairwise. In particular such

a set would contain 84 elements which are (3, 6)-cycles - exactly one from each

of the
(
9
3

)
= 84 intransitive maximal subgroups S3×S6 of S9. However, we now

show that the size of the conjugacy class of imprimitive maximal subgroups
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Class Order Number of copies
Alternating A9 9!/2 1
Intransitive S1 × S8 8! 9
Intransitive S2 × S7 2!7! 36
Intransitive S3 × S6 3!6! 84
Intransitive S4 × S5 4!5! 126
Imprimitive S3 o S3 1296 280

Affine AGL(2, 3) 432 840

Table 3.3: The maximal subgroups of S9

S3oS3 prevents a pairwise generating set from containing more than 70 elements

which are (3, 6)-cycles. In the proof of the next lemma we use the fact that

there is a one-one correspondence between imprimitive maximal subgroups of

S9, and partitions of {1, . . . , 9} into three subsets of order three, that is, the

parts of the partition are the blocks for such a subgroup. This concept will

be explored further in our chapter on imprimitive maximal subgroups of Sn,

Chapter 6.

Lemma 3.5.1. A fixed (3, 6)-cycle in S9 is contained in four distinct imprim-

itive maximal subgroups of S9.

Proof. Let W be the conjugacy class of imprimitive maximal subgroups S3 oS3

of S9. We show that the (3, 6)-cycle g = (123)(456789) is contained in four

distinct subgroups from W .

Let g ∈ H where H ∈ W . Then there are three blocks for H and the set of

blocks is a partition of {1, . . . , 9} into three subsets of order 3. First suppose

that 1 and 2 are in the same block, B1 say. Then Bg
1 = B1, and it follows that

Bgi

1 = B1 for all positive integers i, so 3 ∈ B1 and B1 = {1, 2, 3}. Let B2 be

the block containing 4, so 5 /∈ B2 otherwise by a similar argument we would

have 4, 5, 6, 7, 8, 9 ∈ B2. It is easy to see that the blocks of H must be




1
2
3



 ,





4
6
8



 ,





5
7
9



 .
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(Although the blocks are written vertically this is just for ease of display, each

block is simply a set, and the relative heights of the elements is irrelevant.)

On the the other hand, if 1 and 2 are in different blocks, it is easy to see

that there are the following three possibilities for the blocks of H




7
4
1



 ,





8
5
2



 ,





9
6
3



 or





9
6
1



 ,





7
4
2



 ,





8
5
3



 or





8
5
1



 ,





9
6
2



 ,





7
4
3



 .

Therefore there are four possibilities for the blocks for H, and so four possi-

bilities for H.

Since all (3, 6)-cycles are conjugate in S9, this result holds for all (3, 6)-

cycles in S9.

Lemma 3.5.2. We have µ(S9) < 29−1

Proof. The imprimitive maximal subgroup S3 o S3 is a maximal subgroup of

S9, so by Lemma 6.3.2 there are |S9|/|S3 o S3| = 9!/(3!33!) = 280 copies of

S3 o S3 in S9.

By Lemma 3.5.1, a fixed (3, 6)-cycle in S9 is contained in four distinct

copies of S3 o S3 in S9, and we know that in a pairwise generating set no two

elements can be contained the same maximal subgroup. Therefore a pair-

wise generating set for S9 contains at most 280/4 = 70 elements which are

(3, 6)-cycles. However we remarked earlier that if µ(S9) ≥ 29−1, then a pair-

wise generating set exists which contains 84 elements which are (3, 6)-cycles.

Therefore µ(S9) < 29−1.

Our next proof uses a list of permutations which generates S9 pairwise.

This list was obtained using a GAP program to choose (3, 6)-cycles randomly

from different intransitive maximal subgroups S3 × S6 and add this to the

list, then after each selection checking that the set of elements in the list does

indeed generate S9 pairwise. Then 8-cycles from S8 were added manually. The

GAP program made different lists of varying sizes with each run; that used in

this proof was the largest, and contains sixty four (3, 6)-cycles.

45



Lemma 3.5.3. We have 235 ≤ µ(S9) ≤ 244.

Proof. Let Y be the pairwise generating set for S9 of order 73 which is listed

in Appendix A and consists of the following:

9 elements which are 8-cycles,

64 elements which are (3, 6)-cycles.

In GAP we define the variable y to be a list of the elements of Y . Then the fol-

lowing code returns true, which confirms that indeed the set Y does generate

S9 pairwise.

gap>x:=[y[1]];

>for g in y do tally:=[];

> for h in x do

> if Order(Group(g,h))=Factorial(9) then Add(tally,h); fi;

> od;

> if tally=x then Add(x,g); fi;

>od;

gap>x=y;

>true

The only bi-cycles in S9 which are contained in imprimitive maximal sub-

groups S3 o S3 are (3, 6)-cycles and 9-cycles. The following GAP code returns

[[1,8],[3,6],[9]], which tells us that the only bi-cycles which are con-

tained in affine maximal subgroups AGL(2, 3) are (1, 8)-cycles, (3, 6)-cycles

and 9-cycles.

gap>mscr:=MaximalSubgroupsClassReps(SymmetricGroup(9));

>m:=mscr[7]; bicycles:=[];

>for c in ConjugacyClasses(m) do

> cl:=CycleLengths(Representative(c),[1..9]);

> if (Length(cl)=2 or Length(cl)=1)

46



> and (AsSet(cl) in bicycles)=false then

> Add(bicycles,AsSet(cl));

> fi;

>od;

No bi-cycles are contained in A9. Therefore we can choose
(
9
2

)
= 36 ele-

ments which are (2, 7)-cycles, and
(
9
4

)
= 126 elements which are (4, 5)-cycles

from distinct intransitive maximal subgroups, and be sure that no pair of

these elements is contained in any other maximal subgroup of S9. Let Z be

a pairwise generating set for S9 of order 36 + 126 = 162 which consists of the

following:

(
9
2

)
= 36 elements which are (2, 7)-cycles,

(
9
4

)
= 126 elements which are (4, 5)-cycles.

Let X = Y ∪ Z, so |X| = 162 + 73 = 235. No pair of elements of X is

contained in a maximal subgroup of S9, so X generates S9 pairwise and we

have µ(S9) ≥ 235.

Now let X be a pairwise generating set for S9 of order µ(S9). An element g

of S9 which has three distinct orbits on Ω is contained in A9 since then either

all of the orbits of g are of odd length, or only one is of odd length, but in both

of these cases, g is an even permutation. Let x be the number of elements

of X which are either 9-cycles, or have three distinct orbits on Ω, and note

that x ≤ 1. Let y be the number of bi-cycles in X. Then by Lemma 3.5.1

we have y ≤ (
9
1

)
+

(
9
2

)
+ 70 +

(
9
4

)
= 241. Let z be the number of elements

of X which have four or more orbits on Ω. Note that such an element g is

contained in at least ten different intransitive maximal subgroups, for if orbits

of g are ∆1, . . . , ∆4, then g is contained in the intransitive maximal subgroup

which has orbits ∆ and Ω \∆, where ∆ = ∆i for any i, or ∆ = ∆i ∪∆j for

any distinct pair ∆i, ∆j. There are
(
4
1

)
+

(
4
2

)
= 10 such possibilities for ∆.
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Therefore |X| = x+y+z, and since each element in the cover L contains at

most one element of X we have x+y+10z ≤ 256, so |X| ≤ 256−9z. Since we

know that |X| ≥ 235, we must have z ≤ 2. Therefore |X| ≤ 242+2 = 244.

We know that a pairwise generating set for S9 can contain between sixty

four and seventy (3, 6)-cycles, and we would like to determine this precisely.

However since
(
84
70

)
> 250, and (2!5!)70 > 2550, there are more than 2600 sets of

seventy (3, 6)-cycles, each of which are from a different copy of S3 × S6. This

is too many to check all possible combinations.

It is possible that a faster computer programming language could be used

to randomly select elements from different intransitive maximal subgroups in

a similar way to our program which found a set of sixty four (3, 6)-cycles which

pairwise generate S9. Alternatively, further study of the maximal subgroups

of S9 could lead to an exact value for µ(S9).

3.6 n=15

Using GAP, we know that S15 does not have any primitive maximal subgroups

other than A15, and bi-cycles that are contained in imprimitive maximal sub-

groups of S15 are 15-cycles, (3, 12)-cycles, (5, 10)-cycles and (6, 9)-cycles. It

follows that

µ(S15) ≥
(
15
1

)
+

(
15
2

)
+

(
15
4

)
+

(
15
7

)
+

(
15
8

)
= 215−1 − [

(
15
0

)
+

(
15
3

)
+

(
15
5

)
+

(
15
6

)
].

However, neither constructive or probabilistic methods have so far yielded a

full solution to this case.
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Chapter 4

Overview of proof for Sn using
the probabilistic method

When n is odd and n ≥ 21, it is cumbersome to use our constructive proofs that

µ(Sn) = 2n−1, so we use a probabilistic method. In this chapter we present an

overview of our proof using this method. This motivates Chapters 5, 6 and 7,

which provide the results necessary for our actual proof of Theorem 1.1.1 part 1

for n ≥ 21, which is given in Chapter 8.

4.1 Introduction

Let n be an odd integer such that n ≥ 21. Recall that in Lemma 3.1.1

we proved that if L is the set containing An and the intransitive maximal

subgroups of Sn, then L is a covering for Sn of order 2n−1. Furthermore if

µ(Sn) = 2n−1, then a maximal pairwise generating set for Sn consists of one

n-cycle and 2n−1 − 1 bi-cycles, each from a different subgroup in L.

We use Blackburn’s method (given first in [2]) to choose a set X which has

this property. Then we study the probability that any fixed pair of distinct

elements of X is contained in a proper subgroup of Sn. We prove that this

probability is so low, that the probability that no pair of distinct elements

of X is contained in any proper subgroup of Sn is non-zero, or equivalently,

the probability that X generates Sn pairwise is non-zero. We conclude that a
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pairwise generating set of order 2n−1 exists, so µ(Sn) ≥ 2n−1. Since µ(Sn) ≤
σ(Sn) = 2n−1 (except when n = 9), part 1 of Theorem 1.1.1 for n ≥ 21

follows. Different techniques are required, depending on the value of n under

consideration.

4.2 Choosing a pairwise generating set

We write Ω for the set {1, 2, . . . , n}, and let

I = {∆ ⊂ Ω : |∆| < n/2}.

Since n is odd, I contains precisely half of the subsets of Ω, so |I| = 2n−1. For

a subset ∆ ⊂ Ω, define

C(∆) = {g ∈ Sn : g is a (|∆|, n− |∆|)-cycle such that ∆g = ∆}.

If ∆ 6= ∅, the elements of C(∆) are all of the bi-cycles from Sn which have

orbits ∆ and Ω \ ∆, that is, all of the bi-cycles from a single intransitive

maximal subgroup. The elements of C(∅) are all of the n-cycles from Sn. Now

for each ∆ ∈ I, choose g∆ ∈ C(∆) uniformly and independently at random.

Then define

X = {g∆ : ∆ ∈ I}.

Since |X| = |I|, we have |X| = 2n−1.

Certainly X contains precisely one element from each subgroup in our

covering of Sn. However, it is possible that a distinct pair of elements of X

is contained in some subgroup not in the covering, which would mean that X

does not generate Sn pairwise. The probability of this is low.

We aim to show that the probability is suffiently low that we can conclude

that a set X chosen in this way exists, which does indeed generate Sn pairwise.

The Lovász Local lemma provides us with the tool to reach this conclusion.
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4.3 The Lovász Local lemma

Lemma 4.3.1 (Lovász Local lemma (see [1])). Let Γ = (V, E) be a finite

graph with minimum valency d. Suppose that we associate an event Ev to

every vertex v ∈ V , and suppose that Ev is independent of any subset of

the events {Eu : u � v}. Let p be such that Pr(Ev) < p for all v. Then

Pr(
⋂

v∈V Ev) > 0 whenever ep(d + 1) < 1 (where e is the constant such that

ln e = 1).

We define a graph Γ = (V, E) as follows. The vertices of Γ are the two

element subsets of I. For example for each pair ∆1, ∆2 ∈ I such that ∆1 6= ∆2,

we have a vertex {∆1, ∆2}. A pair v, v′ of vertices are joined by an edge

precisely when v ∩ v′ 6= ∅. Therefore

|V | =
(|I|

2

)
= 2n−1(2n−1 − 1)/2 = 2n−2(2n−1 − 1),

and each vertex has valency d, where

d = 2(|I| − 2) = 2(2n−1 − 2) = 2n − 4.

Now we fix a distinct pair ∆1, ∆2 of elements of I, and thus fix the cor-

responding vertex {∆1, ∆2} of the graph Γ. We write E{∆1,∆2} for the event

that the pair g∆1 , g∆2 is contained in a maximal subgroup of Sn. This is the

same as the event that the pair g∆1 , g∆2 is contained in a proper subgroup of

Sn, which is the same as the event that 〈g∆1 , g∆2〉 is a proper subgroup of Sn,

and the same as the event that the pair g∆1 , g∆2 does not generate Sn. It is

clear that E{∆1,∆2} is independent of any subset of the events Eu, where u ∈ V

is not adjacent to {∆1, ∆2}.
We define p = 1/e2n so we have ep(d + 1) < 1 and, we will prove that

Pr(E{∆1,∆2}) < p,

or if it is more convenient we will prove directly that

e(d + 1) Pr(E{∆1,∆2}) < 1.
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Since {∆1, ∆2} is an arbitrary vertex of the our graph Γ, the conditions of the

Lovász Local lemma are satisfied, and we may conclude that Pr(
⋂

v∈V Ev) > 0.

Obviously
⋂

v∈V Ev is precisely the event that X generates Sn pairwise. So

can conclude that the probability that X generates Sn pairwise is non-zero.

Therefore a pairwise generating set of order 2n−1 exists, so µ(Sn) ≥ 2n−1.

Since µ(Sn) ≤ σ(Sn) = 2n−1 (except when n = 9), part 1 of Theorem 1.1.1 for

n ≥ 21 follows.

4.4 Small, medium and large values of n

The full proof using the probabilistic method is given in Chapter 8. There

are separate sections for small, medium and large values of n, as different

techniques are required.

We say that values of n which greater than or equal to 225 are large values

of n. For these values we follow closely the methods used in [2]. We differ

from [2] in two respects. Where that paper uses an asymptotic bound for

the probability that our pair g∆1 , g∆2 is contained in an imprimitive maximal

subgroup which is permutation isomorphic to Sn/3 o S3, we use a bound which

is an explicit function of n. Also, where that paper uses an asymptotic bound

for the number of conjugacy classes of primitive maximal subgroups of Sn, we

use explicit bounds. These methods allow us to prove that if n ≥ 225 then

Pr(E{∆1,∆2}) < p.

For n < 225, if we use the method above which successfully proves our

result for large values of n, the upper bound for the probability that our pair

g∆1 , g∆2 is contained in an imprimitive maximal subgroup exceeds p. There-

fore we need to calculate a more accurate upper bound for this probabil-

ity. The system for computational discrete algebra, GAP (Groups, Algorithms,

Programming), provides a convenient tool for these calculations. The theory

which we use in the GAP programs is developed in Chapter 6. For the medium
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values of n, that is where 33 ≤ n ≤ 223, we apply this theory to prove that

Pr(E{∆1,∆2}) < p.

Finally we deal with the remaining small values of n, that is less than 33.

GAP is used again - as well as calculating probabilites as for medium values of n,

this time the GAP data library provides specific detail about maximal subgroups

of Sn. For these values we prove directly that e(d + 1) Pr(E{∆1,∆2}) < 1.

We prove results concerning probabilities in Chapter 5, concerning imprim-

itive maximal subgroups of Sn in Chapter 6, and concerning primitive maximal

subgroups of Sn in Chapter 7.
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Chapter 5

Probabilities

In this chapter we give results concerning upper bounds for some probabilities

which we require for our proof using the probabilistic method, and which moti-

vates our work in the next two chapters on imprimitive and primitive maximal

subgroups of Sn.

5.1 Introduction

Let n be an integer such that n ≥ 3, and let Ω = {1, . . . , n}. (In our previous

chapter we considered only odd values of n, but now we consider all positive

integers n.) Let ∆1, ∆2 ⊂ Ω such that |∆1|, |∆2| ≤ n/2, and ∆1 6= ∆2. Now

for i ∈ {1, 2}, define

C(∆i) = {g ∈ Sn : g is a (|∆i|, n− |∆i|)-cycle such that ∆ig = ∆i}.

If ∆i 6= ∅, the elements of C(∆i) are all of the bi-cycles from Sn which have

orbits ∆i and Ω \ ∆i. The elements of C(∅) are all of the n-cycles from Sn.

For i ∈ {1, 2} choose g∆i
∈ C(∆i) uniformly and independently at random.

Lemma 5.1.1. Let H be a set of subgroups of Sn. Then

Pr({g∆1 , g∆2} ⊂ H for some H ∈ H) ≤
∑
H∈H

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)| .
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Proof. We have

Pr({g∆1 , g∆2} ⊂ H for some H ∈ H) ≤
∑
H∈H

Pr({g∆1 , g∆2} ⊂ H)

=
∑
H∈H

Pr(g∆1 ∈ H)× Pr(g∆2 ∈ H)

=
∑
H∈H

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

5.2 Some upper bounds

We apply Lemma 5.1.1 to the case where H is a single conjugacy class of

subgroups of Sn or An, and then to the case where H is a union of conjugacy

classes of subgroups of Sn or An. We first extend a result from [2].

Lemma 5.2.1. Let n ≥ 3 be an integer, and let G be a subgroup of Sn. If

g ∈ Sn is an n-cycle, then g is contained in less than n conjugates of G in

Sn. If g ∈ Sn is a bi-cycle, then g is contained in less than n2 conjugates of

G in Sn

Proof. We count pairs (h,H) in two ways, where h is an element of Sn which is

conjugate to g, and H is a subgroup of Sn containing h and which is conjugate

to G. Let r be the number of such pairs.

Let g be an n-cycle. First we have r = xy where x is the number of elements

of Sn which are conjugate to g, and y is the number of conjugates of G in

Sn which contain any fixed n-cycle - this number is the same for all n-cycles

because all n-cycles are conjugate in Sn. Then x = (n−1)! and y is the number

for which we we want to determine an upper bound, and r = (n−1)!y. Second

we have r = zw, where z is the number of n-cycles in any fixed conjugate of

G in Sn (again this number is the same for all conjugates of G because all

n-cycles are conjugate in Sn), and w is the number of conjugates of G. Clearly

z < |G|, and by the orbit-stabiliser theorem, w = |Sn : NSn(G)| ≤ n!/|G|. So
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r < n!. Comparing these two results for r gives (n − 1)!y < n!, so we have

y < n.

Now let g be an (s, n− s)-cycle where 1 ≤ s ≤ n/2. First we have r = xy

where x is the number of elements of Sn which are conjugate to g, and y is the

number of conjugates of G in Sn which contain any fixed (s, n− s)-cycle - this

number is the same for all n-cycles because all (s, n− s)-cycles are conjugate

in Sn. Then if s < n/2 then x =
(

n
s

)
(s − 1)!(n − s − 1)! = n!/s(n − s) and

again y is the number for which we we want to determine an upper bound,

so r = y n!/s(n − s). If s = n/2, then x = 1
2

(
n

n/2

)
(n/2 − 1)!(n/2 − 1)! =

2n!/n2, so r = 2y n!/n2. Second we have r = zw, where z is the number

of (s, n − s)-cycles in any fixed conjugate of G in Sn, and w is the number

of conjugates of G. Clearly z < |G| and by the orbit-stabiliser theorem,

w = |Sn : NSn(G)| ≤ n!/|G|. So again r < n!. Comparing these two results

for r gives y n!/s(n − s) < n! if s < n/2, and 2y n!/n2 < n!. So we have

y < n2.

For a subgroup M of X, we write [M ]X for the conjugacy class containing

M , that is the set of subgroups of X which are conjugate to M by an element

of X.

Lemma 5.2.2. Let n be an integer such that n ≥ 3, let X be Sn or An, and

let M < X. Then

Pr({g∆1 , g∆2} ⊂ H for some H ∈ [M ]X) ≤ n2|M |
|C(∆1)| .

Proof. From Lemma 5.1.1,

Pr({g∆1 , g∆2} ⊂ H for some H ∈ [M ]X)

≤
∑

H∈[M ]X

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

=
1

|C(∆1)||C(∆2)|
∑

H∈[M ]X

|C(∆1) ∩H||C(∆2) ∩H|.
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For all H ∈ [M ]X , we have |C(∆1) ∩H| ≤ |H| = |M | , so

1

|C(∆1)||C(∆2)|
∑

H∈[M ]X

|C(∆1) ∩H||C(∆2) ∩H|

≤ 1

|C(∆1)||C(∆2)|
∑

H∈[M ]X

|M ||C(∆2) ∩H|

=
|M |

|C(∆1)||C(∆2)|
∑

H∈[M ]X

|C(∆2) ∩H|.

From Lemma 5.2.1 we know that a fixed bi-cycle is contained in at most n2

conjugates of any subgroup of X, so

∑

H∈[M ]X

|C(∆2) ∩H| ≤ n2|C(∆2)|.

Substituting this we have

Pr({g∆1 , g∆2} ⊂ H for some H ∈ [M ]X) ≤ |M |
|C(∆1)||C(∆2)| × n2|C(∆2)|

=
n2|M |
|C(∆1)| .

Now we apply the above to a set of conjugacy classes of subgroups. This

follows directly from the above and so is stated without a proof.

Lemma 5.2.3. Let n be an integer such that n ≥ 3, let X be Sn or An, and

let M be a set of conjugacy classes of subgroups of X. Let M be an upper

bound for |M|, and let m be an upper bound for the order of all the groups in

all the conjugacy classes in M. Then

Pr({g∆1 , g∆2} ⊂ H for some H ∈ [M ]X for some [M ]X ∈M)

≤ n2mM

|C(∆1)| .
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This lemma motivates the work on primitive maximal subgroups in Chap-

ter 7, where we find upper bounds for the number of conjugacy classes of

particular types of primitive maximal subgroups of Sn. Our final lemma in

this section provides a lower bound for C(∆) as a function of n which we can

use together with the previous two results. We use the convention that 0! = 1.

Lemma 5.2.4. Let n be an integer such that n ≥ 3 and let ∆ ⊂ Ω such that

|∆| ≤ n/2. Then if n is odd we have

|C(∆)| ≥ (
n−1

2

)
!
(

n−3
2

)
!,

and if n is even we have

|C(∆)| ≥ (
n−2

2

)
!2.

In both cases we have

|C(∆)| ≥ e2
(

n−3
2e

)n−1
.

Proof. First note that C(∅) = (n−1)!, so the first two inequalities hold for ∆ =

∅. Now suppose that ∆ 6= ∅. Then we have |C(∆)| = (|∆| − 1)!(n− |∆| − 1)!,

so

|C(∆)| ≥ min
1≤d<n/2

(d− 1)!(n− d− 1)!.

If d is an integer such that 1 ≤ d ≤ (n − 1)/2, we have 2d ≤ n − 1 and so

d ≤ n− d− 1, and d/(n− d− 1) ≤ 1. Therefore

((d + 1)− 1)!(n− (d + 1)− 1)! = d!(n− d− 2)!

= (d− 1)!(n− d− 1)!× d/(n− d− 1)

≤ (d− 1)!(n− d− 1)!

Therefore if n is odd

min
1≤d≤n/2

(d− 1)!(n− d− 1)! = ((n− 1)/2− 1)!(n− (n− 1)/2− 1)!

=
(

n−1
2

)
!
(

n−3
2

)
!,
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and if n is even

min
1≤d≤n/2

(d− 1)!(n− d− 1)! = (n/2− 1)!(n− n/2− 1)!

=
(

n−2
2

)
!2.

We now apply the consequence of Stirling’s formula proved in Lemma 2.2.2,

that is, r! >
(

r
e

)r√
re.

(
n−1

2

)
!
(

n−3
2

)
! ≥ (

n−3
2e

)n−3
2

√
(n−3)e

2

(
n−1
2e

)n−1
2

√
(n−1)e

2

= e2 (n−3)n/2−1(n−1)n/2

(2e)n−1

≥ e2
(

n−3
2e

)n−1
,

and

(
n−2

2

)
!2 ≥

[(
n−2

2

)n−2
2

√
(n−2)e

2

]2

= e2
(

n−2
2e

)n−1

≥ e2
(

n−3
2e

)n−1
.

59



Chapter 6

Imprimitive maximal subgroups

In this chapter we discuss the imprimitive maximal subgroups of the symmetric

group, and we give an explicit upper bound for the probability that a pair of bi-

cycles selected randomly from two different intransitive maximal subgroups is

contained in an imprimitive maximal subgroup Sn/3 oS3. We also determine an

upper bound for the probability that the pair is contained in any imprimitive

maximal subgroup. These bounds are needed in Chapter 8 for the proof of

Theorem 1.1.1 using the probabilistic method.

6.1 Introduction

Let n be any positive integer, and let ∆1, ∆2 ⊂ Ω = {1, . . . , n} such that

|∆1|, |∆2| ≤ n/2, and ∆1 6= ∆2. Recall that for a subset ∆ ⊂ Ω, we define

C(∆) to be the set of elements of Sn which have orbits ∆ and Ω \∆ on Ω (so

if ∆ 6= ∅ then C(∆) is a set of bi-cycles, and C(∅) is the set of n-cycles in Sn).

For j ∈ {1, 2}, let g∆j
be selected uniformly and independently at random

from C(∆j).

In Sections 6.2 and 6.3 we give some background and preliminary results

on imprimitive maximal subgroups of Sn, and bi-cycles which are contained in

these subgroups. In Section 6.4 we adapt a lemma and its proof from [2]. This

provides an explicit upper bound for the probability that the pair g∆1 , g∆2 is

contained in an imprimitive maximal subgroup Sn/3 oS3 of Sn. When used with
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Lemmas 2.2.3 and 5.2.3 (to take into account the other imprimitive maximal

subgroups), this gives an explicit upper bound for the probability that the

pair g∆1 , g∆2 is contained in any imprimitive maximal subgroup of Sn. We use

this bound later for large values of n. This bound however, is too high to be

of use for medium and small values of n. In Section 6.5 we develop the theory

which allows us to calculate a tighter, but more complicated upper bound for

the probability that the pair g∆1 , g∆2 is contained in any imprimitive maximal

subgroup of Sn. We use this bound later in a GAP program, for medium and

small values of n.

6.2 The imprimitive action of a wreath prod-

uct

An imprimitive action of a group is a transitive action for which there exists

system of blocks. We describe an imprimitive faithful action of degree n of the

wreath product Sn/k o Sk where k is a non-trivial divisor of n. This action is

often called the standard action. (There is also a primitive action of a wreath

product, which is referred to as the product action.)

We use the definition of the wreath product of two permutation groups

given in Chapter 2. That is Sn/k o Sk is the semi-direct product Sk
n/k :φ Sk,

where φ is the homomorphism φ : Sk → Aut(Sk
n/k), defined as follows. For

h ∈ Sk, and (g1, . . . , gm) ∈ Sk
n/k, let

φ(h) : (g1, . . . , gl) 7→ (g1h−1 , . . . , glh−1 ).

Therefore elements of Sn/k o Sk are of the form (g, h) where g = (g1, . . . , gk)

is an element of the base group Sk
n/k and y is an element of the top group Sk.

The definition of the product of two elements (g, h) and (x, y) in a semi-direct
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product gives us

(g, h)(x, y) = (gxφ(h−1), hy)

= ((g1, . . . , gk)(x1h , . . . , xkh), hy)

= ((g1x1h , . . . , gkxkh), hy).

Lemma 6.2.1. The following rule defines an imprimitive action of Sn/k oSk on

{1, . . . , n/k} × {1, . . . , k}. For (i, j) ∈ {1, . . . , n/k} × {1, . . . , k} and (g, h) ∈
Sn/k o Sk, where g = (g1, . . . , gk) ∈ Sk

n/k and h ∈ Sk, let

(i, j)(g,h) = (igj , jh).

There is exactly one block system under this action; the blocks are {1, . . . , n/k}×
{j} for j ∈ {1, . . . , k}.

Proof. To prove that the rule given defines an action, we must show that for

all (g, h) and (x, y) in Sn/k o Sk and (i, j) ∈ {1, . . . , n/k} × {1 . . . , k}, we have

[(i, j)(g,h)](x,y) = (i, j)[(g,h)(x,y)].

Indeed, from the definitions we have that

[(i, j)(g,h)](x,y) = (igj , jh)(x,y)

= (igjx
jh , jhy)

= (i, j)[(g,h)(x,y)].

For each j ∈ {1, . . . , k}, let Bj = {1, . . . , n/k}× {j}. Then Bj is a block since

B
(g,h)

j = {(i, j)(g,h) : i ∈ {1, . . . , n/k}}
= {(i, jh) : i ∈ {1, . . . , n/k}} = Bjh .

These are the only blocks by the following argument. Let B be a block,

let (i, j), (i′, j′) ∈ B and let (r, s) ∈ {1, . . . , n/k} × {1 . . . , k}. We will show

that if j 6= j′, then (r, s) ∈ B. Suppose that j 6= j′ and j′ 6= s. Let g be the
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element of Sk
n/k with the transposition (i r) in the jth position, and with 1Sn/k

elsewhere, and let h = (j s). Then (i′, j′)(g,h) = (i′, j′) ∈ B, so (g, h) fixes B

and (i, j)(g,h) = (igj , jh) = (i(i r), j(j s)) = (r, s) ∈ B. Suppose that j 6= j′ and

j′ = s, then we may use the same argument with j and j′ exchanged to show

that (r, s) ∈ B. Since B is a block it is a proper subset of Ω, so we must

conclude that j = j′.

Now we show that if (i, j), (i′, j) ∈ B, then (r, j) ∈ B for all r ∈ {1, . . . , n/k}.
Let g be the element of Sk

n/k with (i r) in the jth position, and with 1Sn/k
else-

where, and let h = 1Sk
. Then (i′, j)(g,h) = (i′, j) ∈ B, so (g, h) fixes B and

(i, j)(g,h) = (igj , jh) = (r, j) ∈ B.

Therefore any block is of the form {1, . . . , n/k}×{j} for some j ∈ {1, . . . , k}.

To visualise the action, we put the elements of {1, . . . , n/k}×{1, . . . , k} in

an array with n/k rows and k columns, as shown below. We let the element

(i, j) be the entry in the ith row and the jth column in an array on the left

hand side, and the image of (i, j) under the action of (g, h) in the same position

in an array on the right. For each j we let Bj = {1, . . . , n/k}× {j} thus Bj is

the block which consists of the n/k entries originally in the j-th column, and

we write Bj at the head of the column containing this block.

B1 · · · Bk

(1, 1) · · · (1, k)
...

...
(n/k, 1) · · · (n/k, k)

7→
B1h · · · Bkh

(1g1 , 1h) · · · (1gk , kh)
...

...
(n/kg1 , 1h) · · · (n/kgk , kh)

Using the techniques given on page 16 we see that Sn/k o Sk acting in this

way is permutation isomorphic to all the subgroups in a conjugacy class of

subgroups of Sn. That is, a bijection ψ : {1, . . . , n/k} × {1, . . . , k} → Ω gives

an equivalent action of Sn/k o Sk on Ω, if we define

ω(g,h) = ψ([ψ−1(ω)](g,h)) for ω ∈ Ω and (g, h) ∈ Sn/k o Sk.
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Let σ : Sn/k o Sk → Sn be the homomorphism defined by the following rule

ωσ(g,h) = ω(g,h) for all ω ∈ Ω.

Then σ is the permutation representation of this action of Sn/k o Sk on Ω, and

Im σ is an imprimitive subgroup of Sn, with blocks ψ(B1), . . . , ψ(Bk).

Example 6.2.1. Let n = 12 and k = 4. The wreath product S3 o S4 acts

imprimitively on the set {1, 2, 3} × {1, 2, 3, 4}. We look at the action of the

element (g, h), where g = ((12), e, (23), (123)) and h = (234). We write the

elements of {1, 2, 3} × {1, 2, 3, 4} in an array on the left, and we write the

image of each element under (g, h) in the corresponding position in an array

on the right.

B1 B2 B3 B4

(1, 1) (1, 2) (1, 3) (1, 4)
(2, 1) (2, 2) (2, 3) (2, 4)
(3, 1) (3, 2) (3, 3) (3, 4)

7→
B1 B3 B4 B2

(2, 1) (1, 3) (1, 4) (2, 2)
(1, 1) (2, 3) (3, 4) (3, 2)
(3, 1) (3, 3) (2, 4) (1, 2)

Now let ψ : {1, 2, 3} × {1, 2, 3, 4} → {1, . . . , 12} be the bijection defined by

ψ : (i, j) 7→ i + 3(j − 1). Then using the equivalent action as defined above,

the element (g, h) acts on Ω as follows.

B1 B2 B3 B4

1 4 7 10
2 5 8 11
3 6 9 12

7→
B1 B3 B4 B2

2 7 10 5
1 8 12 6
3 9 11 4

The blocks are the sets of entries in each column, that is the subsets {1, 2, 3},
{4, 5, 6}, {7, 8, 9}, and {10, 11, 12}. Now if we let σ : S3 o S4 → S12 be

the permutation representation as defined above, then σ(g, h) is the element

(1 2)(3)(4 7 10 5 8 12)(6 9 11) of S12.

It can be shown that the imprimitive subgroup Im σ of Sn is a maximal

imprimitive subgroup and furthermore such a maximal imprimitive subgroup

is actually an (imprimitive) maximal subgroup of Sn.
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There is a one-one correspondence between partitions of Ω into subsets of

equal order and imprimitive maximal subgroups of Sn; for each proper divisor

k of n, each partition of Ω into k subsets of order n/k is the block system for

a unique imprimitive maximal subgroup (which is permutation isomorphic to

Sn/k o Sk acting imprimitively.)

When the context is clear we refer to a subgroup of Sn which is permutation

isomorphic to Sn/k oSk acting imprimitively simply as a subgroup Sn/k oSk of Sn.

6.3 Bi-cycles in wreath products

The imprimitive action of Sn/k o Sk on {1, . . . , n/k} × {1, . . . , k} naturally

induces an action on the set of blocks. That is

B
(g,h)

j = Bjh for j ∈ {1, . . . , k}, (g, h) ∈ Sn/k o Sk.

Similarly, an imprimitive subgroup of Sn acts on a natural way on the set of

blocks of Ω. So an element of an imprimitive subgroup of Sn induces an element

of Sk, where k is the number of blocks. The element (1 2)(3)(4 7 10 5 8 12)(6 9 11)

of S12 in Example 6.2.1 induces the following permutation in the set of blocks

{4, 5, 6} 7→ {7, 8, 9} 7→ {10, 11, 12} 7→ {4, 5, 6}

{1, 2, 3} 7→ {1, 2, 3},

and hence a 3-cycle in S4. This concept is used in the next lemma, which is

stated without proof in [2].

Lemma 6.3.1. Let n be a positive integer, and let M be an imprimitive maxi-

mal subgroup of Sn which is permutation isomorphic to Sn/k oSk acting imprim-

itively, where k is a non-trivial divisor of n. Let g ∈ M be an (r, n−r)-cycle for

a positive integer r such that 1 ≤ r ≤ n/2. Then exactly one of the following

cases occurs.
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1. We have that r = xn/k for a positive integer x, and the two orbits of g

are unions of x and k−x blocks, respectively. The permutation g induces

an (x, k − x)-cycle in Sk.

2. We have that r = yk for a positive integer y, one orbit of g intersects

each block in a set of size y, and the other orbit of g intersects each block

in a set of size n/k − y. The permutation g induces a k-cycle in Sk.

An n-cycle in M always induces a k-cycle in Sk.

Proof. Let g = (ω1 . . . ωn) ∈ M be an n-cycle. Note that ωg
s = ωs+1 if 1 ≤

s ≤ n − 1, and ωg
n = ω1. Since k|n, the permutation gk maps ω1 7→ ωk+1 7→

ω2k+1 7→ . . . 7→ ω(n/k−1)k+1 7→ ω1, so the set {ω1, ωk+1, . . . , ω(n/k−1)k+1} is an

orbit of gk on Ω. For 1 ≤ l ≤ k, let

Bl = {ωs | 1 ≤ s ≤ n and s ≡ l (mod k)}.

Then the sets Bl are the k orbits of gk on Ω. Furthermore they are the blocks

for M , and the natural action of g on the blocks

B1 7→ . . . 7→ Bk 7→ B1

induces a k-cycle in Sk.

Let g = (ω1 . . . ωr)(ωr+1 . . . ωn) ∈ M , and let B1 be the block for M contain-

ing ω1. Let ∆ = {ω1 . . . ωr}, and note that for all l such that 1 ≤ l ≤ r, we have

ωl = ωgl−1

1 ∈ Bgl−1

1 . Let x be the largest integer such that B1, B
g
1 , . . . , B

gx−1

1

are all distinct. Then 1 ≤ x ≤ k, and Bgx

1 = B1 (for if Bgx

1 = Bgl

1 for some

0 < l < x then Bgx−l

1 = B1). Also, for all l such that 1 ≤ l ≤ r, we have ωl ∈
Bgl−l

1 = Bgl−1 (mod x)

1 . For l ∈ {2, . . . , x} let Bl = Bgl−1

1 . Therefore B2, . . . , Bx

are blocks, and ∆ ⊂ B1∪. . .∪Bx. It follows that ∆ = (∆∩B1)∪. . .∪(∆∩Bx),

and this union is disjoint. Let y = |∆∩B1|, and note that 1 ≤ y ≤ n/k. Since

∆ ∩Bl = (∆ ∩B1)
gl−1

, we have |∆ ∩Bl| = |∆ ∩B1| = y for l ∈ {1, . . . , x}, so

r = yx.
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First suppose that B1 ⊆ ∆, so ∆ ∩ Bl = Bl for l ∈ {1, . . . , x}. Then

∆ is the union of x blocks B1 ∪ . . . ∪ Bx, and Ω \ ∆ is the union of the

remaining k − x blocks. Also y = |∆ ∩ B1| = |B1| = n/k so r = xn/k.

Now let Bx+1 be the block containing ωr+1, and note that for all l such that

1 ≤ l ≤ n − r, we have ωr+l = ωgl−1

r+1 ∈ Bgl−1

x+1 . Let z be the largest integer

such that Bx+1, B
g
x+1, . . . , B

gz−1

x+1 are all distinct. Then 1 ≤ z ≤ n − k, and

Bgz

x+1 = Bx+1 (for if Bgz

x+1 = Bgl

x+1 for some 0 < l < z then Bgz−l

x+1 = Bx+1).

Also, for all l such that 1 ≤ l ≤ n− r, we have ωr+l ∈ Bgl−l

x+1 = Bgl−1 (mod z)

x+1 . For

l ∈ {2, . . . , z} let Bx+l = Bgl−1

x+1 . Therefore Ω \∆ ⊂ Bx+1 ∪ . . . ∪ Bx+z, and it

follows that z = k − x. The natural action of g on the blocks

B1 7→ . . . 7→ Bx 7→ B1

Bx+1 7→ . . . 7→ Bk 7→ Bx+1

induces an (x, k − x)-cycle in Sk.

Now suppose that B1 * ∆, so y < n/k. We may assume that ωr+1 ∈ B1.

Then ωr+l ∈ Bgl−1

1 = Bgl−1 (mod x)

1 for l ∈ {1, . . . , n − r}, so Ω \ ∆ ⊂ B1 ∪
. . . ∪ Bx, and it follows that x = k so r = yk. Furthermore |∆ ∩ Bl| = y and

|(Ω \ ∆) ∩ Bl| = n/k − y for l ∈ {1, . . . , k}. The natural action of g on the

blocks

B1 7→ . . . 7→ Bk 7→ B1

induces a k-cycle in Sk.

If a bi-cycle in an imprimitive maximal subgroup of Sn satisfies the condi-

tions of part 1 of Lemma 6.3.1 above, we say that it is respectful. If it satisfies

the conditions of part 2 we say that it is disrespectful. We also say that an

n-cycle in such a subgroup is disrespectful because it too induces a k-cycle

in Sk. It follows directly from Lemma 6.3.1 that a bi-cycle can not be both

respectful and disrespectful in a fixed imprimitive subgroup.
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Example 6.3.1. Let H = S2 o S5 < S10, and let the block system of H be

{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}. Then the bi-cycle (1 3 2 4)(5 7 9 6 8 10) is

respectful, and induces a (2, 3)-cycle in S5. The bi-cycle (9 10)(1 3 5 7 2 4 6 8) is

also respectful, and induces a (1, 4)-cycle in S5. The bi-cycle (1 3 5 7 9)(2 4 6 8 10)

however is disrespectful and induces a 5-cycle in S5.

For fixed subgroup H = Sn/k o Sk of Sn, we define Hresp to be the set of all

the respectful bi-cycles in H, and Hdis to be the set of all the disrespectful bi-

cycles and the n-cycles in H. Since a fixed bi-cycle in H is not both respectful

and disrespectful, it follows that Hresp ∩ Hdis = ∅. The lemma which follows

is the last in this section and involves counting bi-cycles.

Lemma 6.3.2. Let H be an imprimitive maximal subgroup Sn/k o Sk of Sn,

and let ∆ ⊂ Ω be such that d = |∆| ≤ n/2. If C(∆) ∩Hresp 6= ∅, then

|C(∆) ∩Hresp| = (n/k)!k(k/n)2(dk/n− 1)!(k − dk/n− 1)!.

If C(∆) ∩Hdis 6= ∅ and d > 0 then

|C(∆) ∩Hdis| = k!(d/k)!k(n/k − d/k)!kk/d(n− d).

If C(∆) ∩Hdis 6= ∅ and d = 0 then

|C(∆) ∩Hdis| = (k − 1)!(n/k)!k−1(n/k − 1)!.

Proof. First suppose that g ∈ C(∆)∩Hresp. Then d > 0 and g is a (d, n− d)-

cycle, and by Lemma 6.3.1, ∆ and Ω \ ∆ are a union of dk/n and k − dk/n

blocks of H respectively. To visualise this we represent H as an array

B1 . . . Bdk/n Bdk/n+1 . . . Bk

δ . . . δ ∗ . . . ∗
...

...
...

...
δ . . . δ ∗ . . . ∗

where the elements of ∆ and Ω \ ∆ are represented by the symbols δ and

∗ respectively. We count the number of possibilities for g. Without loss of
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generality we may fix the first element of the first cycle of g. There are then

(dk/n − 1)! ways of choosing the order of the dk/n − 1 blocks from which to

choose the next dk/n − 1 elements of the first cycle. Within each of these

blocks there are n/k choices of an element to pick, giving us altogether a

further (n/k)dk/n−1 choices. Now for the next dk/n elements of the first cycle

we can chose from the remaining n/k − 1 elements in each block - a total of

(n/k − 1)dk/n choices. Continuing in this manner, in total there are

(dk/n− 1)!(n/k)dk/n−1(n/k − 1)dk/n . . . 1dk/n = (dk/n− 1)!(n/k)!dk/n/(n/k)

possibilities for the first cycle of g. Using the same argument, but replacing

dk/n by k− (dk/n) where necessary (because the elements of the second cycle

are taken from the k − dk/n blocks of H containing the elements of Ω \ ∆)

gives us a total of

(k − dk/n− 1)!(n/k)!k−dk/n/(n/k)

possibilities for the second cycle of g. Thus

|C(∆) ∩Hresp| = [(dk/n− 1)!(n/k)!dk/n/(n/k)]

× [(k − dk/n− 1)!(n/k)!k−dk/n/(n/k)]

= (n/k)!k(k/n)2(dk/n− 1)!(k − dk/n− 1)!.

Now suppose that g ∈ C(∆) ∩ Hdis and d > 0. So g is a (d, n − d)-cycle,

but this time ∆ and Ω \∆ have an intersection of size of d/k and (n − d)/k

respectively with each of the k blocks of H. This time the blocks of H are

written
B1 . . . Bk

δ . . . δ
...

...
δ . . . δ
∗ . . . ∗
...

...
∗ . . . ∗
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Without loss of generality we may fix the first element of each cycle of g.

There then are (k − 1)! ways of choosing the order of the k − 1 blocks from

which to chose the next k − 1 elements of the first cycle. This then fixes the

order in which the elements of the first cycle are taken from the blocks for H.

Within each of these blocks there are d/k choices of an element to pick, giving

us altogether a further (d/k)k−1 choices. Now for the next k elements of the

first cycle we can chose from the remaining d/k − 1 elements from ∆ in each

block - a total of (d/k− 1)k choices. Continuing in this manner, in total there

are

(k − 1)!(d/k)k−1(d/k − 1)k . . . 1k = (k − 1)!(d/k)!k−1(d/k − 1)!

possibilities for the first cycle of g.

The order of the blocks from which we take the elements of the second

cycle of g is fixed - it must be the same as that of the first cycle. The first

element of the second cycle is fixed, but for the next k − 1 elements, we have

n/k − d/k choices of which element of Ω \ ∆ to pick from each block. Thus

we have altogether (n/k − d/k)k−1 choices. For the next k elements we have

n/k−d/k−1 choices, giving us altogether (n/k−d/k−1)k choices. Continuing

in this manner, there are

(n/k − d/k)k−1(n/k − d/k − 1)k . . . 1k = (n/k − d/k)!k−1(n/k − d/k − 1)!

possibilities for the second cycle of g. Thus

|C(∆) ∩Hdis| = [(k − 1)!(d/k)!k−1(d/k − 1)!]

× [(n/k − d/k)!k−1(n/k − d/k − 1)!]

= k!(d/k)!k(n/k − d/k)!kk/d(n− d).

Finally suppose that g ∈ C(∆) ∩ Hdis and d = 0 (so g is an n-cycle).

Without loss of generality we may fix the first element of g. There then are

(k−1)! ways of choosing the order of the k−1 blocks from which to chose the
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next k − 1 elements of g. This then fixes the order in which the elements of

g are taken from the blocks for H. Within each of these blocks there are n/k

choices of an element to pick, giving us altogether a further (n/k)k−1 choices.

Now for the next k elements of g we can chose from the remaining n/k − 1

elements in each block - a total of (n/k − 1)k choices. Continuing in this

manner, in total there are

(k − 1)!(n/k)k−1(n/k − 1)k . . . 1k = (k − 1)!(n/k)!k−1(n/k − 1)!

possibilities for g. Thus

|C(∆) ∩Hdis| = (k − 1)!(n/k)!k−1(n/k − 1)!.

6.4 An upper bound

For a non-trivial divisor k of n, the set of subgroups of Sn which are per-

mutation isomorphic to Sn/k o Sk acting imprimitively is a conjugacy class of

subgroups, which we denote by Hk. This section concerns H3, which is non-

empty when 3 divides n. When our result is combined with Lemmas 2.2.3

and 5.2.3 (to take into account the other imprimitive maximal subgroups of

Sn), we get an explicit upper bound for the probability that the pair g∆1 , g∆2

is contained in any imprimitive maximal subgroup of Sn. We use this bound

later for large values of n. Note that the proof of Lemma 6.4.1 is an adapted

version of the proof of [2, Lemma 9]– our adaptation makes that result explicit.

Lemma 6.4.1. Let n be a positive integer. For i ∈ {1, 2}, let ∆i ⊂ Ω, such

that |∆i| ≤ n/2 and ∆1 6= ∆2. Let g∆i
be selected uniformly and independently

at random from C(∆i). Let E be the event that the pair g∆1 , g∆2 is contained

in a subgroup from H3. Then

Pr(E) < 3e10n42−
4n
3 .
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Proof. If 3 does not divide n, this probability is zero. Thus we may assume

that 3 divides n. We write EA for the event that the pair g∆1 , g∆2 is contained

in a subgroup from H3, and that g∆2 is disrespectful in this group. We write

EB for the event that the pair g∆1 , g∆2 is contained in a subgroup from H3,

and that g∆1 is disrespectful in this group. We write EC for the event that

the pair g∆1 , g∆2 is contained in a subgroup from H3, and that both g∆1 and

g∆2 are respectful in this group. Then

E = EA ∪ EB ∪ EC ,

and so

Pr(E) ≤ Pr(EA) + Pr(EB) + Pr(EC).

First we find an upper bound for Pr(EA).

Pr(EA) ≤
∑

H∈H3

Pr({g∆1 , g∆2} ⊂ H and g∆2 is disrespectful in H.)

=
∑

H∈H3

Pr(g∆1 ∈ H)× Pr(g∆2 ∈ Hdis)

=
∑

H∈H3

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩Hdis|
|C(∆2)|

≤ max
H∈H3

|C(∆2) ∩Hdis|
|C(∆2)|

∑
H∈H3

|C(∆1) ∩H|
|C(∆1)| .

From Lemma 5.2.1 we know that a fixed bi-cycle or n-cycle is contained in at

most n2 conjugates of any subgroup of Sn, so

∑
H∈H3

|C(∆1) ∩H| ≤ n2|C(∆1)|.

Substituting this we have

Pr(EA) ≤ n2 max
H∈H3

|C(∆2) ∩Hdis|
|C(∆2)| .

Lemma 6.3.1 tells us that if C(∆2)∩Hdis 6= ∅, then |∆2| = 3y for some integer

y such that 1 ≤ y ≤ n/6. Then |C(∆2)| = (3y − 1)!(n − 3y − 1)! and by

Lemma 6.3.2,

|C(∆2) ∩Hdis| = 2 y!3(n/3− y)!3

y(n/3− y)
.
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Substituting again, we have

Pr(EA) ≤ n2 2 y!3(n/3− y)!3

(3y − 1)!(n− 3y − 1)!y(n/3− y)

= 18n2y!3(n/3− y)!3

(3y)!(n− 3y)!

We apply Stirling’s formula as presented in Lemma 2.2.2.

Pr(EA) ≤ 18n2

[(
n/3−y

e

)n/3−y √
n/3− ye2

]3 [(
y
e

)y √
ye2

]3

[(
3y
e

)3y √
3ye

1
2

] [(
n−3y

e

)n−3y √
n− 3ye

1
2

]

≤ 18e11n2y(n/3− y)

3
3−n

= 6e11n23−ny(n/3− y).

Then finally since y(n/3− y) ≤ n2/36 when 1 ≤ y ≤ n
6
, we have that

Pr(EA) ≤ e11n23−nn2/6

≤ e10n43−n.

If we apply exactly the same argument but with ∆1 and ∆2 exchanged, we

obtain the same upper bound for Pr(EB).

Now we find an upper bound for Pr(EC). Let H ∈ H3 be such that H

contains respectful bi-cycles from both ∆1 and ∆2, and let g be a bi-cycle from

C(∆1) ∩ Hresp. By Lemma 6.3.1 we have that |∆1| = n/3 and ∆1 is a union

of blocks of Ω under the action of H. Since there are three blocks of order

n/3, ∆1 is one of the blocks. The same argument applies to ∆2, and since

∆1 6= ∆2, the blocks must be ∆1, ∆2, and Ω\(∆1∪∆2). Thus H is completely

determined by ∆1 and ∆2 and

Pr(EC) = Pr({g∆1 , g∆2} ⊂ H and both are respectful in H)

= Pr(g∆1 ∈ Hresp)× Pr(g∆2 ∈ Hresp)

=
|C(∆1) ∩Hresp|

|C(∆1)|
|C(∆2) ∩Hresp|

|C(∆2)| .
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Now for i ∈ {1, 2}, |C(∆i)| = (n/3 − 1)!(2n/3 − 1)!, and by Lemma 6.3.2,

|C(∆i) ∩Hresp| = (n/3− 1)!2(n/3)!. Therefore

Pr(EC) =

[
n
3
!
(

n
3
− 1

)
!(

2n
3
− 1

)
!

]2

=

[(
n
3

)
!2

(
2n
3

)
(

2n
3

)
!
(

n
3

)
]2

.

Again by Stirling’s formula, it follows that

Pr(EC) ≤
[
2

(( n

3e

)n
3

√
n

3
e2

)2 (
3e

2n

) 2n
3

√
3

2n
e−

1
2

]2

=
2e7n

3.2
4n
3

≤ e7n2−
4n
3 .

Combining our upper bounds, and using the inequality 3−n < 2−
4n
3 gives

Pr(E) ≤ e10n43−n + e10n43−n + e7n2−
4n
3

≤ 3e10n42−
4n
3 .

Our result follows.

6.5 A tighter upper bound

Recall that n is a positive integer, and ∆1, ∆2 ⊂ Ω such that |∆1|, |∆2| ≤ n/2,

and ∆1 6= ∆2. Also, g∆j
is selected uniformly and independently at random

from C(∆j). Define Eimprim to be the event that the pair g∆1 , g∆2 is contained

in an imprimitive maximal subgroups of Sn.

The result in our previous section, when combined with Lemmas 2.2.3

and 5.2.3 (to take into account the other imprimitive maximal subgroups of

Sn), we get an explicit upper bound for Pr(Eimprim), which we use later for

large values of n. This bound however, is too high to be of use for medium

and small values of n. Now we develop the theory which allows us to calculate
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a tighter (but much more complicated) upper bound. Recall that for a fixed

non-trivial divisor k of n, Hk is the conjugacy class of subgroups of Sn which

are permutation isomorphic to Sn/k o Sk acting imprimitively.

By Lemma 5.1.1 we have

Pr(Eimprim) ≤
∑

k|n
k 6=1,n

∑
H∈Hk

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

=
1

|C(∆1)||C(∆2)|
∑

k|n
k 6=1,n

∑
H∈Hk

|C(∆1) ∩H||C(∆2) ∩H|.

Let k be a fixed non-trivial divisor of n. The results in this section give an

upper bound for
∑

H∈Hk

|C(∆1) ∩H||C(∆2) ∩H|.

The total number of subgroups H ∈ Hk which contain permutations from

both C(∆1) and C(∆2) is h1 + h2 + h3 + h4, where

h1 = |{H : H ∈ Hk such that C(∆1) ∩Hresp 6= ∅ and C(∆2) ∩Hresp 6= ∅}|,
h2 = |{H : H ∈ Hk such that C(∆1) ∩Hresp 6= ∅ and C(∆2) ∩Hdis 6= ∅}|,
h3 = |{H : H ∈ Hk such that C(∆1) ∩Hdis 6= ∅ and C(∆2) ∩Hresp 6= ∅}|,
h4 = |{H : H ∈ Hk such that C(∆1) ∩Hdis 6= ∅ and C(∆2) ∩Hdis 6= ∅}|.

It follows from the definitions of the hi that

∑
H∈Hk

|C(∆1) ∩H||C(∆2) ∩H| = h1 × |C(∆1) ∩Hresp| × |C(∆2) ∩Hresp|

+ h2 × |C(∆1) ∩Hresp| × |C(∆2) ∩Hdis|
+ h3 × |C(∆1) ∩Hdis| × |C(∆2) ∩Hresp|
+ h4 × |C(∆1) ∩Hdis| × |C(∆2) ∩Hdis|.

In Lemma 6.3.2 we gave expressions for |C(∆i) ∩ Hresp| and |C(∆i) ∩ Hdis|
in terms of n, k and di. We now do the same for the hi. In Section 6.2 we

observed that there is a one-one correspondence between subgroups H ∈ Hk
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and partitions of Ω into k subsets of order n/k. The partition is a system of

blocks for the subgroup - each part is a block. We count suitable partitions to

determine h1, h2, h3 and h4.

First we define two functions of non-negative integer variables x and y.

For x > 0, define p(x, y) to be the number of partitions of a set of size x into

subsets of size y, and op(x, y) to be the number of ordered partitions of a set

of size x into subsets of size y. Define p(0, y) = op(0, y) = 1. The next result

is standard so is stated without proof.

Lemma 6.5.1. Let x and y be non-negative integers, and define p(x, y) and

op(x, y) as above. Then

p(x, y) =





x!
y!x/y(x/y)!

if x > 0 and y | x,

0 if x > 0 and y - x,
1 if x = 0.

op(x, y) =





x!
y!x/y if x > 0 and y | x,

0 if x > 0 and y - x,
1 if x = 0.

Let d1 = |∆1|, d2 = |∆2| and i = |∆1 ∩∆2|. Note that i ≤ min (d1, d2) and

if d1 = d2 then i ≤ d1 − 1.

Lemma 6.5.2. Let h1, h2 and h3 be as defined above. If d1, d2 > 0, then

h1 = p(i, n/k)× p(d1 − i, n/k)× p(d2 − i, n/k)× p(n + i− d1 − d2, n/k),

otherwise h1 = 0. If d1 > 0 and i = d1d2/n, then

h2 = p(d1−i, (n−d2)/k)×op(i, d2/k)×p(n+i−d1−d2, (n−d2)/k)×op(d2−i, d2/k),

otherwise h2 = 0. If d2 > 0 and if i = d1d2/n, then

h3 = p(d2−i, (n−d1)/k)×op(i, d1/k)×p(n+i−d1−d2, (n−d1)/k)×op(d1−i, d1/k),

otherwise h3 = 0.
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Proof. We apply Lemma 6.3.1. For a fixed H ∈ Hk, if C(∆1) ∩Hresp 6= ∅ and

C(∆2) ∩ Hresp 6= ∅, then ∆1 is a union of d1k/n blocks for H, and ∆2 is a

union of d2k/n blocks. Consequently ∆1∩∆2 must be a union of ik/n blocks,

and Ω \ (∆1 ∩∆2) must be a union of (n + i− d1 − d2)k/n blocks. Therefore

each subgroup counted in h1 corresponds to a partition {B1, . . . , Bk} of Ω such

that:

1. |Bi| = n/k;

2. B1 ∪ . . . ∪Bik/n = ∆1 ∩∆2;

3. Bik/n+1 ∪ . . . ∪Bd1k/n = ∆1 \∆1 ∩∆2;

4. Bd1k/n+1 ∪ . . . ∪B(d1+d2−i)k/n = ∆2 \∆1 ∩∆2.

Such a partition is represented below. The i elements of ∆1 ∩ ∆2 are all

represented by the symbol δ12, the d1 − i elements of ∆1 \ (∆1 ∩ ∆2) by the

symbol δ1, the d2 − i elements of ∆2 \ (∆1 ∩ ∆2) by the symbol δ2, and the

n + i− d1 − d2 elements of Ω \ (∆1 ∪∆2) are represented by the symbol ∗.

B1 . . . B ik
n

. . . B d1k
n

. . . B (d1+d2−i)k
n

. . . Bk

δ12 . . . δ12 δ1 . . . δ1 δ2 . . . δ2 ∗ . . . ∗
...

...
...

...
...

...
...

...
δ12 . . . δ12 δ1 . . . δ1 δ2 . . . δ2 ∗ . . . ∗

The number of such partitions is

h1 = p(i, n/k)× p(d1 − i, n/k)× p(d2 − i, n/k)× p(n + i− d1 − d2, n/k).

Now we consider h2. If d1 = 0 then C(∆1) is the set of n-cycles, which by

definition are disrespectful in any imprimitive maximal subgroup, so h2 = 0. If

d1 > 0 we apply Lemma 6.3.1 again. For a fixed H ∈ Hk, if C(∆1)∩Hresp 6= ∅
and C(∆2)∩Hdis 6= ∅, then ∆1 must be a union of d1k/n blocks for H, but this

time the intersection of ∆2 with each of the blocks must be of order d2/k. It

follows that the order of the intersection of ∆1 ∩∆2 with each of the blocks is
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either 0 or d2/k, and i = (d1k/n)× (d2/k) = d1d2/n. Each subgroup counted

in h2 corresponds to a partition {B1, . . . , Bk} of Ω such that:

1. |Bj| = n/k;

2. B1 ∪ . . . ∪Bd1k/n = ∆1;

3. |Bj ∩∆2| = d2/k for j ∈ {1, . . . , k}.

Again, see the representation below.

B1 . . . Bd1k/n Bd1k/n+1 . . . Bk

δ12 . . . δ12 δ2 . . . δ2
...

...
...

...
δ12 . . . δ12 δ2 . . . δ2

δ1 . . . δ1 ∗ . . . ∗
...

...
...

...
δ1 . . . δ1 ∗ . . . ∗

To count the number of such partitions, first we look at the d1k/n blocks which

contain the elements of ∆1. Each of these blocks contains d2/k elements of

∆1∩∆2 and (n−d2)/k elements of ∆1\(∆1∩∆2). There are p(d1−i, (n−d2)/k)

ways of assigning the d1 − i elements of ∆1 \ (∆1 ∩∆2) (note that d1 − i > 0,

since d1 > 0 and i = d1d2/n < d1). This fixes these blocks, and there are then

op(i, d2/k) ways of assigning the remaining elements of these blocks (that is

the elements of ∆1 ∩∆2). In total there are p(d1− i, (n− d2)/k)× op(i, d2/k)

possibilities for these first d1k/n blocks. By a similar argument, the elements

of Ω \∆1 can be assigned in p(n + i − d1 − d2, (n − d2)/k) × op(d2 − i, d2/k)

ways, and so the total number h2 is the product of these two numbers.

The same argument with ∆1 and ∆2 exchanged gives us our expression

for h3.

We extend the definition of the functions p and op to include the case where

y is a list of non-negative integers y1, . . . , yk. For x > 0 define p(x, [y1, . . . , yk])

to be the number of partitions of a set of order x into k subsets of orders
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y1, . . . , yk, and op(x, [y1, . . . , yk]) to be the number of ordered partitions of a

set of order x into k subsets of orders y1, . . . , yk. Define p(0, [y1, . . . , yk]) =

op(0, [y1, . . . , yk]) = 1. Again the next result is standard so is stated without

proof.

Lemma 6.5.3. Let y1, . . . , yk and x be non-negative integers. Define

p(x, [y1, . . . , yk]) and op(x, [y1, . . . , yk]) as above. If ml is the number of times

the integer l appears in the list [y1, . . . , yk], then

p(x, [y1, . . . , yk]) =





x!
y1!...yk!m1!...mx!

if x > 0 and
∑k

j=1 yj = x;

0 if x > 0 and
∑k

j=1 yj 6= x;

1 if x = 0.

op(x, [y1, . . . , yk]) =





x!
y1!...yk!

if x > 0 and
∑k

j=1 yj = x;

0 if x > 0 and
∑k

j=1 yj 6= x;

1 if x = 0.

.

Now we consider h4. For a fixed H ∈ Hk, if C(∆1) ∩ Hdis 6= ∅ and

C(∆2)∩Hdis 6= ∅, then by Lemma 6.3.1 the intersection of ∆1 and ∆2 with each

of the k blocks for H must be of order d1/k and d2/k respectively. Therefore

the order of the intersection of ∆1 ∩ ∆2 with each of the blocks for H is at

most min(d1, d2)/k, but the orders of these intersections are not necessarily

all the same. We write a decreasing list of the orders, and we call this list the

shape of the intersection. We illustrate this concept with an example.

Example 6.5.1. Let n = 18, d1 = 9, d2 = 6 and i = 3. Let k = 3, so

then h4 is the number of subgroups H ∈ H3 such that C(∆1) ∩ Hdis 6= ∅
and C(∆2) ∩ Hdis 6= ∅. Let H be such a subgroup, and let B1, B2, B3 be

the blocks for H. Then |Bj ∩ ∆1| = 9/3 = 3, |Bi ∩ ∆2| = 6/3 = 2, and

0 ≤ |Bj ∩∆1 ∩∆2| ≤ 2. There are two possible shapes of ∆1 ∩∆2 - they are
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[2, 1, 0] and [1, 1, 1], as represented below.

B1 B2 B3

δ12 δ12 δ1

δ12 δ1 δ1

δ1 δ1 δ1

∗ δ2 δ2

∗ ∗ δ2

∗ ∗ ∗

B1 B2 B3

δ12 δ12 δ12

δ1 δ1 δ1

δ1 δ1 δ1

δ2 δ2 δ2

∗ ∗ ∗
∗ ∗ ∗

Let m = min(d1, d2)/k and define

I = {[y1, . . . , yk] : yj integers such that m ≥ y1 ≥ . . . ≥ yk ≥ 0 and
k∑

j=1

yj = i}.

The set I contains all possible shapes of ∆1 ∩∆2 for a fixed subgroup in Hk.

Lemma 6.5.4. Let h4 and I be as defined above. For [y1, . . . , yk] ∈ I, let m0

be the number of zeros in the list [y1, . . . , yk]. Then

h4 =
∑

[y1,...,yk]∈I
p(i, [y1, . . . , yk])

× op(n + i− d1 − d2, [y1 + (n− d1 − d2)/k, . . . , yk + (n− d1 − d2)/k])

× op(d1 − i, [d1/k − y1, . . . , d1/k − yk])

× op(d2 − i, [d2/k − y1, . . . , d2/k − yk])) /m0!

Proof. h4 is the number of partitions {B1, . . . , Bk} of Ω such that:

1. |Bj| = n/k;

2. |Bj ∩∆1| = d1/k for j ∈ {1, . . . , k}.

3. |Bj ∩∆2| = d2/k for j ∈ {1, . . . , k}.

Such a partition is represented in the figure below. For a fixed shape

[y1, . . . , yk] ∈ I we count the number of partitions of Ω which satisfy our

three conditions above, and have ∆1 ∩ ∆2 of this shape. We do this by first

counting the number of unordered partitions of ∆1 ∩ ∆2 into sets of order
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B1 . . . . . . . . . . . . . . . Bk

δ12 . . . δ12 . . . δ12 . . . δ12
...

...
...

... δ12 . . . δ12

δ1 . . . δ1

δ12 . . . δ12

δ1 . . . δ1
...

...
...

...
δ1 . . . δ1 . . . δ1 . . . δ1

δ2 . . . δ2 . . . δ2 . . . δ2
...

...

δ2 . . . δ2
...

...
∗ . . . ∗

δ2 . . . δ2
...

... ∗ . . . ∗
...

...
∗ . . . ∗ . . . ∗ . . . ∗

y1, . . . , yk. This fixes k−m0 of the blocks, where m0 is the number of zeros in

the list [y1, . . . , yk]. We then multiply by the number of ordered partitions of

∆1 \ (∆1 ∩∆2) into sets of order d1/k − y1, . . . , d1/k − yk, and divide by m0!

which fixes the remaining blocks. As the blocks are now fixed, we multiply by

the number of ordered partitions of ∆2 \ (∆1∩∆2) and Ω \ (∆1∪∆2) into sets

of the appropriate orders. Finally we sum this expression over all shapes in I
to give h4.

Now, since

Pr(Eimprim) ≤ 1

|C(∆1)||C(∆2)|
∑

k|n
k 6=1,n

∑
H∈Hk

|C(∆1) ∩H||C(∆2) ∩H|,
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and for a fixed divisor k of n we have

∑
H∈Hk

|C(∆1) ∩H||C(∆2) ∩H| = h1 × |C(∆1) ∩Hresp| × |C(∆2) ∩Hresp|

+ h2 × |C(∆1) ∩Hresp| × |C(∆2) ∩Hdis|
+ h3 × |C(∆1) ∩Hdis| × |C(∆2) ∩Hresp|
+ h4 × |C(∆1) ∩Hdis| × |C(∆2) ∩Hdis|,

we have an upper bound for Pr(Eimprim) in terms of n, k, d1, d2 and i. We will

use this upper bound later in our GAP programs for small and medium values

of n.
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Chapter 7

Primitive maximal subgroups

The O’Nan-Scott theorem classifies maximal subgroups of Sn. For odd values

of n we use this classification, together with another well known result, to sort

primitive maximal subgroups of Sn into types. Then we determine an explicit

upper bound for the number of conjugacy classes of each type (these bounds

also apply when n is even). We summarise the bounds in Table 7.1 at the end

of the chapter.

7.1 Sorting into types

The O’Nan-Scott theorem is stated in the preliminaries chapter (see Theo-

rem 2.1.3). It says that maximal subgroups of the symmetric group belong to

one of the following classes: intransitive, transitive imprimitive, primitive non-

basic, affine, diagonal, almost simple. The next result allows us to subdivide

the class of almost simple maximal subgroups. First we define the subspace

subgroups and the (primitive) subspace actions of an almost simple group with

classical socle. This definition is taken from [16].

Let H be a finite almost simple group, that has classical socle T and

naturally associated vector space V over a field of characteristic p. Let K be a

maximal subgroup of H. Then K is a subspace subgroup if one of the following

holds:
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(1) K = GU for some proper non-zero subspace U of V , where U is totally

singular, non-degenerate, or, if H is orthogonal and p = 2, a non-singular

1-dimensional space (U is any subspace if T = PSL(V ));

(2) T = PSL(V ), H contains a graph automorphism of T , and K = GU,W

where U,W are proper non-zero subspaces of V , dim V = dim U+dim

W and either U ≤ W or U ∩W = 0;

(3) T = Sp2m(q), p = 2 and K ∩ T = O±
2m(q).

A subspace action of H is the action of H on the set of cosets [H : K], where

K is a subspace subgroup of H.

Theorem 7.1.1. [14, Proposition 2] Let H be an almost simple primitive

subgroup of Sn, and let T = soc H. Then one of the following holds:

1. T = Am acting on the k-subsets of {1, . . . , m}, or on partitions of

{1, . . . , m} into l sets of size k, where m = kl, k > 1, l > 1; n =
(

m
k

)
or

m!/k!ll respectively;

2. T is a classical simple group and H is acting on subspaces;

3. H = M23 or M24 and n = 23 or 24 respectively;

4. |H| < n5.

We now consider odd positive integers only, and combine Theorem 2.1.3

and Theorem 7.1.1.

Theorem 7.1.2. Let n be an odd positive integer, such that n 6= 23. Let M

be a primitive maximal subgroup of Sn other than An. Then M is one of the

following:

1. Sm, for some integer m ≤ n − 1, acting on the set of k-subsets of

{1, . . . , m} for some integer k such that 2 ≤ k ≤ m − 1, or on the
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set of partitions of {1, . . . , m} into k-subsets, for some proper divisor k

of m;

2. An almost simple group (with classical socle) acting on subspaces;

3. An almost simple group of order at most n5;

4. Sk oSlogk n (acting primitively), for some integer k such that n is a power

of k;

5. AGL(logp n, p) acting on a vector space of dimension logp n over Fp, for

a prime p such that n is a power of p.

Proof. Suppose that M is in class 6 (almost simple) of the O’Nan-Scott Theo-

rem. Then soc M satisfies the hypotheses of Theorem 7.1.1. If soc M is in part

1 of Theorem 7.1.1, then for some fixed integer m we have that soc M is per-

mutation isomorphic to Am acting (in the natural way) on the set of k-subsets

of {1, . . . , m} for some integer k such that 2 ≤ k ≤ m−1, or on the set of parti-

tions of {1, . . . ,m} into k-subsets, for some proper divisor k of m. Furthermore

since M is almost simple, we have Am = soc M ≤ M ≤ Aut(Am) = Sm, and

if Am acts in this way with degree n then so does Sm. Then by maximality of

M we must have that M ∼= Sm. Clearly m ≤ n− 1.

If M is in class 5 (diagonal) of the O’Nan-Scott Theorem, then n = |T |k−1

where T is a nonabelian finite simple group, and k is an integer such that

k ≥ 2. However, by Theorem 2.1.7, the order of a nonabelian finite simple

group is even. So |T | is even which contradicts our hypothesis that n is odd.

So class 5 of the O’Nan-Scott Theorem is ruled out.

For any positive integer n, if a maximal subgroup M of Sn is in part i

of the theorem above, we say that M is a maximal subgroup of type i. For

example, AGL(1, 5) is a type 5 maximal subgroup of S5. Note that although

Theorem 7.1.2 is concerned with odd values of n only, the remainder of this

chapter applies to all positive values of n.
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For i ∈ {1, . . . , 5}, let

Mi = {M : M ≤ Sn, M maximal, M is of type i}, and

Mi = {[M ]Sn : M ∈ Mi}.

So Mi is the set of type i maximal subgroups of Sn, and Mi is the set of

conjugacy classes of such subgroups. Our goal in this chapter is to find explicit

upper bounds for each |Mi| . First we deal with M4 and M5 as these are the

easiest cases.

If n is a proper power of an integer k such that k ≥ 2, then there is precisely

one primitive action of the wreath product Sk o Slogk n on a set of size n (up

to equivalence), so by Lemma 2.1.2 there is one conjugacy class of subgroups

of Sn which are permutation isomorphic to this action. Since k ≥ 2 we have

logk n ≤ log2 n. Thus |M4| ≤ log2 n.

Similarly, if n is a power of a prime p, there is precisely one (natural) action

of the affine group AGL(logp n, p) on a vector space of dimension logp n over

Fp (up to equivalence). For a fixed n, there is at most one prime p of which n

is a power, thus |M5| ≤ 1.

Types 1, 2 and 3 are more difficult. For a fixed (abstract) group G,

Lemma 2.1.2 provides us with methods of finding an upper bound for the

number of conjugacy classes of transitive subgroups of Sn which are isomor-

phic to G. We use these methods to arrive at our upper bounds for |M1|,
|M2| and |M3|.

7.2 Type 1 primitive maximal subgroups

Lemma 7.2.1. We have that

|M1| < n2.

Let M ∈ M1, so M ∼= Sm for an integer m such that m ≤ n− 1.
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Suppose that M is permutation isomorphic to Sm acting (in the natural

way) on the set of k-subsets of {1, . . . , m} for some integer 2 ≤ k ≤ m − 2.

Then n =
(

m
k

)
since this is the number of such k-subsets. For fixed m and

n, there is at most one integer k such that 1 ≤ k ≤ m/2 which satisfies

this equation, ko say, and then clearly m − ko is the only other solution (if

k0 = m/2 these solutions are the same). So M is permutation isomorphic to

Sm acting on the set of ko-subsets of {1, . . . , m}, or the set of (m−ko)-subsets

of {1, . . . , m}. However these two actions of Sm are equivalent. So there is at

most one such action of Sm (up to equivalence).

Now suppose that M is permutation isomorphic to Sm acting (in the natu-

ral way) on the set of partitions of {1, . . . , m} into k-subsets, for some proper

divisor k of m. Then 2 ≤ k ≤ m−1, and so there are most m−2 such actions

of Sm. (In fact n = m!
k!(m/k)(m/k)!

, since this is the number of such partitions,

and for fixed m and n, we conjecture that there are at most two solutions

to this equation, so there are at most two such actions. However this is not

proved here.)

Thus M is permutation isomorphic to Sm acting in one of at most 1+(m−
2) = m−1 non equivalent ways. So for each m ≤ n−1, by Lemma 2.1.2 there

are at most m− 1 conjugacy classes of groups in M1 which are isomorphic to

Sm.

Thus in total

|M1| ≤
n−1∑
m=2

(m− 1) =
(n− 1)(n− 2)

2
< n2.

7.3 Type 2 primitive maximal subgroups

The next lemma is useful for counting conjugacy classes of type 2 and 3 max-

imal subgroups.

Lemma 7.3.1. Let n be a positive integer. Except for An, every maximal

subgroup of Sn is the normaliser of its socle.
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Proof. For any subgroup G of Sn, we have

soc G E G ≤ NSn(soc G) ≤ Sn.

Let M be a maximal subgroup of Sn other than An. Since soc M 6= An, it

follows that soc M 5 Sn, so NSn(soc M) < Sn. Then by maximality of M we

have M = NSn(soc M). That is, M is the normaliser in Sn of soc M .

Now we define a set of subgroups and a corresponding set of conjugacy

classes of these subgroups.

Tcl = {T : T ≤ Sn, T is a classical simple group,

T is the socle of an almost simple group acting on subspaces}, and

Tcl = {[T ]Sn : T ∈ Tcl}.

Lemma 7.3.2. We have that

|M2| ≤ |Tcl|.

Proof. Let f be the map f : M2 → Tcl defined by

f : [M ]Sn 7→ [soc M ]Sn M ∈ M2.

We first show that f is well-defined. Let G1, G2 ∈ M2 and suppose that

[G1]Sn = [G2]Sn . Then G1 = g−1G2g for some g ∈ Sn and so soc G1 =

g−1soc G2g and [soc G1]Sn = [soc G2]Sn .

Now let G ∈ M2. Then G is a classical almost simple group, so soc G is a

classical simple group. G is permutation isomorphic to an action of a classical

almost simple group on subspaces, and soc G is a subgroup of G, so soc G is

also permutation isomorphic to an action on subspaces. Although soc G is not

necessarily primitive, it is a non-trivial normal subgroup of primitive group

and is therefore transitive. Thus [soc G]Sn ∈ Tcl.

Finally we show that f is injective. Let G1, G2 ∈ M2 and suppose that

[soc G1]Sn = [soc G2]Sn . Then soc G1 = g−1soc G2g for some g ∈ Sn. Therefore
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NSn(soc G1) = NSn(g−1soc G2g) = g−1(NSn(soc G2))g. Since Gi 6= An, by

Lemma 7.3.1 we have that G1 = NSn(soc G1) and G2 = NSn(soc G2). So

G1 = g−1G2g, and [G1]Sn = [G2]Sn .

Thus f : M2 → Tcl is injective, and so |M2| ≤ |Tcl|.

Lemma 7.3.3. If n 6= 6 then up to (abstract group) isomorphism there are at

most

6(n− 1) log2 n

classical simple groups which act transitively with degree n.

Proof. There are six types of classical simple group. A classical simple group

of a particular type is determined (up to isomorphism) by its Lie rank, and the

order of the field over which its associated vector space is defined. Let T be a

classical simple group of Lie rank r, with associated vector space defined over

a field of order q, which acts transitively with degree n. Then since n 6= 6, by

Lemma 2.1.9 we have that qr ≤ n. Therefore 2 ≤ q ≤ n, and 1 ≤ r ≤ log2 n.

So T may be one of up to six types, there are up to n − 1 possibilities for q,

and up to log2 n possibilities for r. Thus there are at most

6(n− 1) log2 n

possibilities for T (up to isomorphism).

Lemma 7.3.4. The number of actions of degree n of a classical simple group,

that are induced by a subspace action of an almost simple group of which it is

the socle, is bounded above by

6(log2 n + 1).

Proof. Let T (d, q) be a classical simple group, where d and q are the dimension

and field order respectively of the associated vector space. We fix q and d and

consider the different types of classical simple group in turn. For each type
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we consider the actions of T (d, q) that might be induced by subspace actions

of an almost simple group with socle T (d, q), under the various parts of the

definition of a subspace action (see page 83). The bounds determined below

are not tight, but further refinement is not necessary for our purposes.

First let T (d, q) be linear. Then T (d, q) = PSL(d, q) acts transitively on

the set of k-dimensional subspaces for each 1 ≤ k ≤ d − 1, and there are

less than d relevant actions (of any degree) under part (1) of the definition.

Furthermore, for each 1 ≤ k ≤ d/2, the action of T (d, q) = PSL(d, q) on

each of the sets {(U,W ) : dim U = k, dim W = n − k, U ≤ W} and

{(U,W ) : dim U = k, dim W = n− k, U ∩W = ∅} is transitive, so there are

certainly less than 2d actions under part (2) of the definition.

Now let T (d, q) be symplectic. For each fixed dimension 1 ≤ k ≤ d−1, the

action of T (d, q) = PSp(d, q) on the set of totally singular k-dimensional sub-

spaces and on the set of non-degenerate k-dimensional subspaces is transitive

(some of these sets may be empty - for example the 1-dimensional subspaces are

all totally singular, so there are no non-degenerate 1-dimensional subspaces).

Therefore there are less than 2d actions under part (1) of the definition. If

there is a degree n subspace action of T (d, q) = PSp(d, q) under part (3) of

the definition, then

n =
|Sp(d, q)|
|O±(d, q)| =

qd/2(qd/2 + 1)

2
or

qd/2(qd/2 − 1)

2
.

At most one of these can be true for fixed q and d, so we need consider only

one of O+(d, q) and O−(d, q). Therefore there is at most one action of T (d, q)

under part (3) of the definition.

Finally let T (d, q) be unitary or orthogonal. For each fixed dimension

1 ≤ k ≤ d−1, the action of T (d, q) on the set of totally singular k-dimensional

subspaces and on the set of non-degenerate k-dimensional subspaces is tran-

sitive (again some of these may be empty). Also, when q is even, the action

of an orthogonal group on non-singular 1-dimensional subspaces is transitive.
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Altogether there are less than 2d actions under part (1) of the definition. The

action of an orthogonal group under part (3) of the definition of subspace

action has already been counted in the symplectic case above.

In all cases there are less than 3d relevant actions of T (d, q). Suppose that

r is the rank of T (d, q). In our previous proof we observed that 2 ≤ q ≤ n, and

1 ≤ r ≤ log2 n. Since d ≤ 2r + 2 by Table 2.1.5, we have that d ≤ 2 log2 n + 2.

Our result follows.

Lemma 7.3.5. We have that

|M2| < 150n ln2 n.

Proof. We prove that 150n ln2 n is an upper bound for |Tcl|. Our result then

follows by Lemma 7.3.2. First, note that S6 has one conjugacy class of prim-

itive maximal subgroups (this is the class of subgroups PGL(2, 5) which are

isomorphic, but not permutation isomorphic, to S5.)

Now let n 6= 6. Let [T ]Sn ∈ Tcl. Then by Lemma 7.3.3, there are at most

6(n − 1) log2 n possible choices for T (up to isomorphism). For a fixed T ,

the action of T (on Ω) is induced by a subspace action of the almost simple

group of which T is the socle. By Lemma 7.3.4 there are at most 6(log2 n+1)

such actions of T , and so certainly less than this many non-equivalent such

actions. Then by Lemma 2.1.2 the number of conjugacy classes of transitive

subgroups of Sn which are permutation isomorphic to T is bounded above by

6(log2 n + 1). Thus

|Tcl| ≤ 6(n− 1) log2 n× 6(log2 n + 1)

= 36(n− 1) log2 n(log2 n + 1)

< 150n ln2 n.
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7.4 Type 3 primitive maximal subgroups

We define

Tsmall = {T : T ≤ Sn, T simple transitive, |T | ≤ n5}, and

Tsmall = {[T ]Sn : T ∈ Tsmall}.

Lemma 7.4.1. We have that

|M3| ≤ |Tsmall|.

Proof. Let f be the map f : M3 → Tsmall defined by

f : [M ]Sn 7→ [soc (M)]Sn M ∈ M3.

The map is well defined and injective by the same arguments as in the

proof of Lemma 7.3.2. Now let M ∈ M3. Since |M | ≤ n5, we have that

|soc M | ≤ n5, and so [soc M ]Sn ∈ Tsmall. Thus f : M3 → Tsmall is injective,

and so |M3| ≤ |Tsmall|.

Lemma 7.4.2. Up to isomorphism, there are at most 2n4 simple groups of

order at most n5, which act transitively with degree n

Proof. If a simple group acts transitively with degree n it must have an index

n subgroup, and hence must have order divisible by n. So there are at most n4

possible orders for a simple group of order at most n5 which acts transitively

with degree n. By Theorem 2.1.6 there are at most two simple groups of a

given order (up to isomorphism). Thus there are at most 2n4 abstract simple

groups of order at most n5, which act transitively with degree n.

Lemma 7.4.3. The number of conjugacy classes of core-free index n subgroups

of a group of order at most n5 is at most

n20 log2 n.
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Proof. A conjugacy class of subgroups is non-empty, so the number of con-

jugacy classes of subgroups of a group is at most the number of subgroups.

Also, by Lemma 2.2.5, a group of order at most n5 has at most

n5(log2 n5−log2 n) = n20 log2 n

index n subgroups. We get the following sequence of inequalities.

|{[H]T : H ≤ T , H core-free index n}| ≤ |{H : H ≤ T , H core-free index n}|
≤ |{H : H ≤ T , H index n}|
≤ n20 log2 n.

Lemma 7.4.4. We have that

|M3| ≤ 2n4(5 log2 n+1).

Proof. We prove that 2n4(5 log2 n+1) is an upper bound for |Tsmall|. Our result

then follows by Lemma 7.4.1.

Let [T ]Sn ∈ Tsmall. Then by Lemma 7.4.2 there are at most 2n4 possible

choices for T (up to isomorphism). By Lemma 2.1.2, the number of conjugacy

classes of transitive subgroups of Sn which are isomorphic to T is at most

the number of conjugacy classes of core-free index n subgroups of T . By

Lemma 7.4.3 this is bounded above by n20 log2 n. Thus

|Tsmall| ≤ 2n4 × n20 log2 n = 2n4(5 log2 n+1).
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7.5 Summary

The table below summarises the main results of this chapter.

Type of maximal subgroup of Sn Upper bound for |Mi|
1 - symmetric almost simple primitive n2

2 - classical almost simple primitive 150n ln2 n.
3 - small almost simple primitive 2n4(5 log2 n+1)

4 - wreath product primitive log2 n
5 - affine primitive 1

Table 7.1: Upper bounds for the number of conjugacy classes of primitive
maximal subgroups of Sn of fixed types
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Chapter 8

Proof for Sn using the
probabilistic method

In Chapter 4 we gave an overview of our proof of Theorem 1.1.1 part 1 for

n ≥ 21 using the probabilistic method, in order to motivate the work in Chap-

ters 5, 6 and 7. In this chapter we give the full proof.

8.1 Introduction

We use the strategy presented in Section 4.1. Let n be an odd integer such

that n ≥ 21. Let

I = {∆ ⊂ Ω : |∆| < n/2}.

Since n is odd, |I| = 2n−1. For a subset ∆ ⊂ Ω, define

C(∆) = {g ∈ Sn : g is a (|∆|, n− |∆|)-cycle such that ∆g = ∆}.

Now for each ∆ ∈ I, choose g∆ ∈ C(∆) uniformly and independently at

random. Then define

X = {g∆ : ∆ ∈ I}.

Since |X| = |I|, we have |X| = 2n−1.

Define a graph Γ = (V,E) as follows. The vertices of Γ are the two element

subsets of I. We join a pair v, v′ of vertices by an edge precisely when v∩v′ 6= ∅.
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Therefore

|V | =
(|I|

2

)
= 2n−1(2n−1 − 1)/2 = 2n−2(2n−1 − 1),

and each vertex has valency d, where

d = 2(|I| − 2) = 2(2n−1 − 2) = 2n − 4.

Now we fix a distinct pair ∆1, ∆2 of elements of I, and thus fix the correspond-

ing vertex {∆1, ∆2} of the graph Γ. We write E{∆1,∆2} for the event that the

pair g∆1 , g∆2 is contained in a maximal subgroup of Sn. We define p = 1/e2n

so we have ep(d + 1) < 1, and we will prove that

Pr(E{∆1,∆2}) < p,

or if it is more convenient we will prove directly that

e(d + 1) Pr(E{∆1,∆2}) < 1.

Then we will apply the Lovász Local lemma (Lemma 4.3.1) to conclude that

there exists a set of 2n−1 elements that generate Sn pairwise.

Define Eimprim to be the event that the pair g∆1 , g∆2 is contained in an

imprimitive maximal subgroup of Sn, and Eprim to be the event that the pair

g∆1 , g∆2 is contained in a primitive maximal subgroup of Sn other than An.

We have chosen X in such a way that it contains at most one even element

(an n-cycle), and at most one element from each of the intransitive maximal

subgroups. Therefore if the pair g∆1 , g∆2 is contained in a maximal subgroup

of Sn, that subgroup must be transitive, but not An. Thus

E{∆1,∆2} = Eimprim ∪ Eprim,

and consequently

Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim).
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8.2 Large values of n

Recall that we defined large values of n to be those greater than or equal to

225. In this section we consider these large values of n. First we deal with

Pr(Eimprim). Define Eimprim1 to be the event that the pair g∆1 , g∆2 is contained

in an imprimitive maximal subgroup of Sn which is permutation isomorphic

to Sn/3 oS3, and Eimprim2 to be the event that the pair g∆1 , g∆2 is contained in

an imprimitive maximal subgroup of Sn which is permutation isomorphic to

Sn/k o Sk, where k is a proper divisor of n such that k ≥ 5.

Since n is odd, 2 and 4 are not proper divisors of n, so

Eimprim = Eimprim1 ∪ Eimprim2 ,

and consequently

Pr(Eimprim) ≤ Pr(Eimprim1) + Pr(Eimprim2).

Lemma 8.2.1. If n ≥ 149, then Pr(Eimprim1) < p /7.

Proof. First we show that if x ∈ R and x ≥ 148, then

21e11x42−
x
3 < 1.

We let F (x) be the natural logarithm of 21e11x42−
x
3 . Then it suffices to show

that F (x) < 0.

F (x) = ln 21 + 11 + 4 ln x− x(ln 2)/3

and F ′(x) = 4/x− ln 2/3.

Now ln 2/3 > 4/x when x > 12/ ln 2 = 17.3 (to 1 decimal place). So F ′(x) is

negative if x ≥ 18. Furthermore F (148) = −0.2 (to 1 decimal place). This is

the smallest integer value of x for which F (x) < 0. Therefore if x ≥ 148, then

F (x) < 0, and we have proved our first inequality.
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Now by Lemma 6.4.1, we have that Pr(Eimprim1) < 3e10n42−
4n
3 , and so

7Pr(Eimprim1)/p < 7× 3e10n42−
4n
3 × e2n

= 21e11n42−
n
3 .

Using our first inequality, if n ≥ 148 then 7Pr(Eimprim1)/p < 1, and our result

follows.

We combine the results from Lemmas 5.2.3 and 5.2.4 to give the following,

which we then use for the remaining proofs in this section.

Lemma 8.2.2. Let n be a positive integer, and let X be Sn or An. Let M be

a set of conjugacy classes of subgroups of X. If M is an upper bound for |M|,
and m is an upper bound for the order of all the groups in all the conjugacy

classes in M, then

Pr({g∆1 , g∆2} ⊂ H for some H ∈ [M ]X for some [M ]X ∈M)

≤
(n

e

)2
(

2e

n− 3

)n−1

mM.

Lemma 8.2.3. If n ≥ 225, then Pr(Eimprim2) < p /7.

Proof. First we show that if x ∈ R and x ≥ 225 then

537

22
e5x

11
2 (x− 3)

(
4x

5(x− 3)

)x

< 1.

If x ≥ 148, then 4x
5(x−3)

≤ 4×148
5×145

= 592
725

, so

537

22
e5x

11
2 (x− 3)

(
4x

5(x− 3)

)x

<
537

22
e5x

13
2

(
592

725

)x

.

We let F (x) be the natural logarithm of the right hand side of this inequality.

Then it suffices to show that F (x) < 0.

F (x) = 5 + ln
537

22
+

13

2
ln x− x ln

725

592

and F ′(x) =
13

2x
− ln

725

592
.
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Now 13
2x

< ln 725
592

when x > 13
2

/ ln 725
592

= 32.1 (to 1 decimal place). So F ′(x) is

negative if x ≥ 33. Furthermore F (225) = −0.01 (to 2 decimal places). This

is the smallest integer value of x for which F (x) < 0. Therefore if x ≥ 225,

then F (x) < 0, and we have proved our first inequality.

Let n > 146. Then we have an upper bound e753
(

n
5e

)n
n

5
2 for the order of

Sn/k o Sk where k ≥ 5 from Lemma 2.2.3. The number of conjugacy classes of

imprimitive maximal subgroup is the number of proper divisors of n, which

is less than n/2. Thus we apply Lemma 8.2.2 with these values for m and M

respectively.

Pr(Eimprim2) <
(n

e

)2
(

2e

n− 3

)n−1

× e753
( n

5e

)n

n
5
2 × n

2

and so

7Pr(Eimprim2)/p < 7×
(n

e

)2
(

2e

n− 3

)n−1

× e753
( n

5e

)n

n
5
2 × n

2
× e2n

=
537

22
e5n

11
2 (n− 3)

(
4n

5(n− 3)

)n

.

Using our first inequality, if n ≥ 225 then 7Pr(Eimprim2)/p < 1, and our result

follows.

Now we deal with Eprim. Maróti tells us that if a primitive group acts

with degree n ≥ 25, then it has order at most 2n−1 [17, Corollary 1.4], so for

conjugacy classes of primitive maximal subgroups, we apply Lemma 8.2.2 with

m = 2n−1. Our work in Chapter 7 provides us with an upper bound for the

number of conjugacy classes of primitive maximal subgroups. Recall that for

odd values of n we used Theorem 7.1.2 to divide primitive maximal subgroups

of Sn into five types. For i ∈ {1, . . . , 5}, define Eprimi
to be the event that the

pair g∆1 , g∆2 is contained in a type i primitive maximal subgroup of Sn. Then

since n is odd,

Eprim = Eprim1 ∪ . . . ∪ Eprim5 ,
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and consequently

Pr(Eprim) ≤ Pr(Eprim1) + . . . + Pr(Eprim5).

Lemma 8.2.4. If n ≥ 63, and i ∈ {1, 2, 4, 5} then Pr(Eprimi
) < p /7.

Proof. First we show that if x ∈ R and x ≥ 43, then

525

e2

(
8e

x− 3

)x

x5 ln2 x < 1.

We let F (x) be the natural logarithm of the left hand side. Then it suffices to

show that F (x) < 0.

F (x) = ln 525− 2 + x[ln 8 + 1− ln(x− 3)] + 5 ln x + 2 ln(ln x),

and F ′(x) = ln 8 + 1− ln(x− 3)− x

x− 3
+

5

x
+

2

x ln x
.

Now F ′(x) is a decreasing function if x ≥ 6, and F ′(13) < 0, so F ′(x) < 0 for

all x ≥ 13. Since F (43) = −0.5 (to 1 decimal place), if x ≥ 43 then F (x) < 0.

For i ∈ {1, 2, 4, 5}, we see from Table 7.1 that the number of conjugacy

classes of type i primitive maximal subgroups is bounded above by 150n2 ln2 n.

We apply Lemma 8.2.2 with m = 2n−1 and M = 300n2 ln2 n (we use a higher

bound than necessary so that we can apply this proof again for Lemma 9.5.4).

We show that if n ≥ 43, then 7Pr(Eprimi
)/p < 1.

P r(Eprimi
) <

(n

e

)2
(

2e

n− 3

)n−1

× 2n−1 × 300n2 ln2 n,

and so

7Pr(Eprimi
)/p < 7×

(n

e

)2
(

2e

n− 3

)n−1

× 2n−1 × 300n2 ln2 n× e2n

=
525

e2
n5 ln2 n

(
8e

n− 3

)n

.

Using our first inequality, if n ≥ 43 then 7Pr(Eprimi
)/p < 1, and our result

follows.

Lemma 8.2.5. If n ≥ 521, then Pr(Eprim3) < p /7.
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Proof. First we show that if x ∈ R and x ≥ 521, then

56

e
x9

(
4e

x− 3

)x−1

x20 ln x/ ln 2 < 1.

We let F (x) be the natural logarithm of the left hand side. Then it suffices to

show that F (x) < 0. We have

F (x) = ln 56− 1 + 9 ln x + (x− 1) ln 4e

− (x− 1) ln(x− 3) + 20 ln2 x/ ln2 2,

F ′(x) =
9

x
+ ln 4 + 1− x− 1

x− 3
− ln(x− 3) + 40 ln x/x ln2 2.

Now 40 ln 521/521 ln2 2 < 1, so 40 ln x/x ln2 2 < 1 when x ≥ 521. So

F ′(x) ≤ ln 4 + 3− ln(x− 3).

Furthermore ln 4 + 3− ln(521− 3) < 0, so F ′(x) < 0 for all n ≥ 521. Finally

F (521) = −320.7 (to 1 decimal place). Therefore if x ≥ 521 then F (x) < 0.

Now we use our upper bound from Lemma 7.4.4 and apply Lemma 8.2.2

with m = n5 and M = 4n4(5 log2 n+1) (here a bound of M = 2n4(5 log2 n+1) would

suffice, but we use twice this number to allow this proof to apply again later

in Lemma 9.5.4, for the An case).

Pr(Eprim3) <
(n

e

)2
(

2e

n− 3

)n−1

× n5 × 4n4(5 log2 n+1),

and so

7Pr(Eprim3)/p < 7×
(n

e

)2
(

2e

n− 3

)n−1

× n5 × 4n4(5 log2 n+1) × e2n

=
56

e
n9

(
4e

n− 3

)n−1

n20 ln n/ ln 2.

Using our first inequality, if n ≥ 521 then 7Pr(Eprim3)/p < 1, and our result

follows.

At this point we have sufficient information to conclude that if n ≥ 521,

then Pr(E{∆1,∆2}) < p. For each degree n ≤ 1000, Dixon and Mortimer give

details of cohorts of primitive groups in their book [7]. The next lemma allows

us to use that information to deal with the remaining large odd values of n.
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Lemma 8.2.6. The number of conjugacy classes of primitive maximal sub-

groups of Sn other than An is bounded above by the number of cohorts of

primitive groups of degree n.

Proof. Let [M ]Sn be a conjugacy class of primitive maximal subgroups of

Sn where M 6= An. If soc M denotes the socle of M , then [soc M ]Sn is

a corresponding conjugacy class of subgroups, which is represented by ex-

actly one cohort, of degree n. Moreover, by maximality of M , we know that

M = NSn(soc M), and therefore [M ]Sn is the only conjugacy class of primi-

tive maximal subgroups which is represented by this cohort. Thus we have

established an injection from the set of conjugacy classes of primitive maximal

subgroups of Sn into the set of cohorts of primitive groups of degree n.

For n ≤ 1000, we see in [7, Table B.4] that there are at most 10 cohorts

of primitive groups which act with degree n, excluding the alternating and

affine group. Thus accounting for a possible conjugacy class of affine maximal

subgroups (which are present when n is a power of an odd prime), we may

apply Lemma 8.2.2 with M = 11.

Lemma 8.2.7. If 33 ≤ n ≤ 1000, then Pr(Eprim) < 5p /7.

Proof. First we show that if x ∈ R and 33 ≤ x ≤ 1000, then

154

5e
x2

(
8e

30

)x−1

< 1.

We let F (x) be the natural logarithm of the right hand side. Then it suffices

to show that F (x) < 0.

F (x) = ln
308

5
− 1 + 2 ln x− (x− 1) ln

30

8e

and F ′(x) =
2

x
− ln

30

8e
.

Now 2
x

< ln 30
8e

when x > 2 / ln 30
8e

= 6.2 (to 1 decimal place). So F ′(x) is

negative for x ≥ 7. Furthermore F (33) = −0.2 (to 1 decimal place). Therefore

if x ≥ 33 then F (x) < 0.
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Now we apply Lemma 8.2.2 with m = 2n−1. We use M = 22 so that this

proof can be used again later for Lemma 9.5.6, although M = 11 would suffice

here.

Pr(Eprim) <
(n

e

)2
(

2e

n− 3

)n−1

× 2n−1 × 22,

and so

7Pr(Eprim)/5p < 7×
(n

e

)2
(

2e

n− 3

)n−1

× 2n−1 × 22× e2n

5

=
308

5e
n2

(
8e

n− 3

)n−1

If n ≥ 33, then n− 3 ≥ 30 and so

7Pr(Eprim)/5p <
308

5e
n2

(
8e

30

)n−1

.

Using our first inequality, if 33 ≤ n ≤ 1000 then 7Pr(Eprim)/5p < 1, and our

result follows.

We are now in a position to give a proof of part of our main result. First

we summarise the results so far from this section. Recall that n is odd.

If . . . then . . .
n ≥ 149 Pr(Eimprim1) < p /7
n ≥ 225 Pr(Eimprim2) < p /7
n ≥ 43 Pr(Eprimi

) < p /7 for i ∈ {1, 2, 4, 5}
n ≥ 521 Pr(Eprim3) < p /7
33 ≤ n ≤ 1000 Pr(Eprim) < 5p /7

Table 8.1: Summary of results in Section 8.2

Proof of Theorem 1.1.1 part 1 for n ≥ 225. As remarked earlier,

Pr(Eimprim) ≤ Pr(Eimprim1) + Pr(Eimprim2),

P r(Eprim) ≤ Pr(Eprim1) + . . . + Pr(Eprim5),

103



and

Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim).

Using the results given in the table above, we conclude that if n ≥ 225, then

Pr(E{∆1,∆2}) < p. Our result follows.

8.3 Medium values of n

Recall that we defined medium values of n to be those such that 33 ≤ n ≤ 223.

By Lemma 8.2.7, if 33 ≤ n ≤ 1000, then Pr(Eprim) < 5p /7. Therefore for

medium values of n, it remains to show that Pr(Eimprim) < 2p /7.

Lemma 8.3.1. If 3 ≤ n ≤ 223 and if n /∈ {5, 9, 15, 21, 27}, then we have

Pr(Eimprim) < 2p /7.

Proof. This proof uses two GAP programs and applies the theory on imprimitive

maximal subgroups of Sn developed in Chapter 6.

The first program, with filename countingpartitions and included as

Appendix B, creates two functions, p(x,y) and op(x,y). The variable x must

be a positive integer, and the variable y must be either a positive integer, or a

list of integers which sum to x. Then the GAP functions p(x,y) and op(x,y)

are the same functions as in Lemmas 6.5.1 and 6.5.3, so if x= 0 then p(x,y)

and op(x,y) both return the value 1. If x> 0, if y is an integer, then p(x,y)

returns the number of partitions of a set of order x into subsets of order y, and

if y is a list, then p(x,y) returns the number of partitions of a set of order x

into subsets of the orders in the list y. The function op(x,y) is the equivalent

for ordered partitions.

The second program, with filename medium and included as Appendix C,

uses these two functions. As remarked in Chapter 6, we have that

Pr(Eimprim) ≤ 1

|C(∆1)||C(∆2)|
∑

k|n
k 6=1,n

∑
H∈Hk

|C(∆1) ∩H||C(∆2) ∩H|.
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Our work in Section 6.5 give us an upper bound for |C(∆1)∩H||C(∆2)∩H| as

a function of d1, d2, i, k and n, where d1 = |∆1|, d2 = |∆2|, and i = |∆1∩∆2|,
so using the inequality above, we have an upper bound for Pr(Eimprim) as

a function of d1, d2, i and n. For each n there are many different possible

combinations of d1, d2, i, each of which will give a different upper bound for

Pr(Eimprim).

Before we run the program medium, we must define a variable test, which

must be a list of integers containing the values of n which we wish to con-

sider. For each odd integer in test, our program loops through each possible

combination of d1, d2, and i in turn. We now explain these combinations.

The variables d1, d2 and i represent d1, d2, and i respectively. Recall that

0 ≤ d1, d2 ≤ (n − 1)/2, and at most one of d1, d2 = 0. We consider d1 as

each integer in the list [1..(n-1)/2]. For each d1 we consider each integer

d2 in the list [0..d1]. We consider only d2≤d1, because our upper bound for

Pr(Eimprim) is symmetric in the variables d1 and d2, that is, the value is un-

affected if we exchange these two variables. This reduces computer processing

time. Also, we do not consider the case d1= 0 because at most one of d1 and

d2 is zero. The order of the intersection i can be anything from zero to d1− 1

if d1 = d2, or zero to min(d1, d2) otherwise. All of these values are considered.

For each possible combination of d1, d2 and i, we assign to a variable

combprob the calculated upper bound for Pr(Eimprim) for this particular com-

bination. We append combprob to a variable list called imprimprob. After

all possible combinations, we let the variable ub be the maximum of the list

imprimprob, so ub is an upper bound for Pr(Eimprim) for this value of n. If

ub< 2p /7 then we know that Pr(Eimprim) < 2p /7. Otherwise we have failed

to prove that Pr(Eimprim) is sufficiently small, and this value of n is added to

the list bad_n.

This proof therefore is acheived by the following sequence of commands

and output in GAP:
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gap>Read("c:/gap4r4/countpartitions");

gap>test:=[3..224];

>[3..224]

gap>Read("c:/gap4r4/medium");

gap>bad_n;

>[5,9,15,21,27]

Proof of Theorem 1.1.1 part 1 for 33 ≤ n ≤ 223. By Lemmas 8.2.7 and 8.3.1,

we have that if 33 ≤ n ≤ 223, then Pr(E{∆1,∆2}) < p. Our result follows.

8.4 Small values of n

Our result does not follow for values of n less than 33 because the bound for

Pr(Eprim) is too high. In the next lemma, for the small values of n, we use

the GAP data library to provide the orders of the primitive maximal subgroups

of Sn, and thus obtain a tighter upper bound for Pr(Eprim).

Lemma 8.4.1. If 23 ≤ n ≤ 31, then Pr(E{∆1,∆2}) < p.

Proof. This proof uses two GAP programs. The first is called countpartitions,

and was used and discussed in the proof of Lemma 8.3.1. The second is called

small and is included as Appendix D. Before running the program small, we

must define a variable called test, which must be a list of integers containing

the values of n which we wish to consider. The first part of small is identi-

cal to the first part of program medium which was used in Lemma 8.3.1, and

it calculates an upper bound for Pr(Eimprim) using the theory developed in

Chapter 6. This bound is assigned to the variable ub_imprim.

The second part of small calculates an upper bound for Pr(Eprim). Let

M1, . . . , Mr be a complete set of representatives of the conjugacy classes of

primitive maximal subgroups of Sn other than An. Then by Lemmas 5.2.2
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and 5.2.4,

Pr(Eprim) <

r∑
i=1

n2|Mi|
(n−1)

2
! (n−3)

2
!
.

The GAP command MaximalSubgroupClassReps speedily provides candidates

for the Mi for the small values of n under consideration. The program small

calculates the upper bound for Pr(Eprim) given in this inequality, and assigns

it to the variable ub_prim.

Recall that Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim), and we aim to

show that Pr(E{∆1,∆2}) < p where p = 1/e2n. We have an upper bound

ub_imprim+ub_prim for Pr(E{∆1,∆2}), and in the final part of small we com-

pare this bound to p. If it exceeds p, that is, if our bound fails to be sufficiently

low, we add the value of n under consideration to the list bad_n.

This proof therefore is completed by the following sequence of commands

and output in GAP:

gap>Read("c:/gap4r4/countpartitions");

gap>test:=[5..31];

>[5..31]

gap>Read("c:/gap4r4/small");

gap>bad_n;

>[5,7,9,11,13,15,17,19,21].

8.5 n = 21

The bound for Pr(Eprim) obtained in the previous proof is too high to be

used in the case n = 21, so in Lemma 8.5.2 we calculate an even lower bound.

We also increase our target by reducing the degree of our graph Γ. We give

a preliminary lemma. Recall the notation C(∆) which denotes the set of

elements of Sn which have orbits ∆ and Ω\∆, and let P be the conjugacy class

of maximal subgroups of Sn which are permutation isomorphic to PΓL(3, 4)

(acting with degree 21 in the usual way).
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Lemma 8.5.1. S21 has three conjugacy classes of primitive maximal subgroups

other than A21, including P as defined above.

1. The only primitive maximal subgroups of S21 which contain a bi-cycle or

a 21-cycle are those in P.

2. Let H ∈ P. Then H contains 48 elements which are 7, 14-cycles, from

each of 360 different C(∆). In total H contains 48 × 360 = 17 280

elements which are 7, 14-cycles. In addition, H contains 11 520 elements

which are 21-cycles. H contains no other bi-cycles.

3. Let ∆ ⊂ Ω such that |∆| = 7. Then |C(∆)∩H| 6= ∅ for exactly 7!14!/336

different subgroups H ∈ P.

Proof. 1. We use a GAP program called s21bicycles which is included as Ap-

pendix E. First s21bicycles puts representatives of the conjugacy classes of

primitive maximal subgroups of S21 other than A21 in a list called primsubgroups.

Second, it determines the cycle lengths of the elements of each of these rep-

resentatives, and whenever it encounters a 21-cycle or a bi-cycle, it adds the

name of the representative together with the cycle lengths to a set called

bicycles. This proof is therefore achieved by the following sequence of com-

mands and output in GAP:

gap>Read("c:/gap4r4/s21subgroups");

gap>primsubgroups;

>[PGL(2,7), S(7), PGammaL(3,4)].

gap>bicycles;

>[[PGammaL(3,4),[21]], [PGammaL(3,4),[7,14]].

2. Again we use the GAP program called s21bicycles. The third part of this

program assigns the representative of P to the variable pgl. It makes a list

714cycles of all the (7, 14)-cycles in pgl, and a set 7orbits of the orbits of

length 7 of these bi-cycles. It also makes a list of the 21-cycles in pgl. Then
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for each orbit in 7orbits, it counts how many of the elements of 714cycles

have this as an orbit, and assigns this total to a set called results. This proof

is therefore achieved by the following sequence of GAP commands and output.

gap>Read("c:/gap4r4/s21bicycles");

gap>Length(set7orbits);

>360

gap>results;

>[48].

gap>Length(714cycles);

>17280

gap>Length(21cycles);

>11520

3. Let P be a fixed subgroup which is permutation isomorphic to PΓL(3, 4)

(so P ∈ P). We count pairs (∆, H) in two ways, where ∆ ⊂ Ω and |∆| = 7,

H is conjugate to P (so H ∈ P), and C(∆) ∩H 6= ∅. Let r be the number of

such pairs.

First we have r = xy where x is the number of ∆ ⊂ Ω such that |∆| = 7, so

x =
(
21
7

)
. The number which we wish to determine is y, that is the number of

subgroups H ∈ P such that C(∆)∩H 6= ∅ for a fixed ∆ ⊂ Ω with |∆| = 7 (this

number is the same for all such ∆ because all such C(∆) are conjugate in S21).

Second we have r = zw, where z is the number of ∆ such that C(∆)∩H 6= ∅
for a fixed subgroup H ∈ P (again this number is the same for such subgroups

because all C(∆) are conjugate in Sn). By part 2 we have z = 360. By the

orbit-stabiliser theorem we have w = |P| = |S21 : NS21(P )|, and by maximality

NS21(P ) = P . We use GAP to provide the order of PΓL(3, 4).

gap>Order(pgl);

>120,960.
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So w = 21!/120 960. Equating the two expressions for r gives

r =

(
21

7

)
y = 360× 21!/120 960,

so y = 7!14!/336.

Even though this result allows us to calculate a tighter upper bound for

P (Eprim), it is not low enough to apply the Lovász Local lemma. We solve

this problem in our next lemma. Recall that in Section 8.1 we defined a set I

of 2n−1 = 221−1 subsets of Ω = {1, . . . , 21}, a set X of order 221−1 which we

hope will be a pairwise generating set for S21, and a graph Γ which has the

two element subsets of I as its vertex set. We need to prove that

Pr(E{∆1,∆2}) e(d + 1) < 1,

where d is the degree of Γ. If n = 21, then part 1 of Lemma 8.5.1 tells us that

only some of the pairs of elements of X can possibly be contained in a maximal

subgroup of Sn. As a result of this, we can reduce the maximum degree of our

graph Γ, and then our bound for Pr(E{∆1,∆2}) is indeed sufficiently low.

Lemma 8.5.2. µ(S21) = 221−1.

Proof. Let n = 21. The set X contains at most one even element (a 21-cycle),

and at most one element from each of the intransitive maximal subgroups

of S21. By Lemma 6.3.1, the only elements of X which are contained in

imprimitive maximal subgroups of S21 are the 3, 18-cycles, the 6, 15-cycles,

the 9, 12-cycles, the 7, 14-cycles and the 21-cycle. By our previous lemma, the

only elements of X which are contained in primitive maximal subgroups of

S21 are the 7, 14-cycles and the 21-cycle. It follows that the pair g∆1 , g∆2 can

only be contained in a maximal subgroup if {∆1, ∆2} ⊂ I ′ where

I ′ = {∆ ⊂ Ω : |∆| ∈ {0, 3, 6, 7, 9}}.

Indeed for any vertex v of Γ, the probability Pr(Ev) is non-zero only when

v ⊂ I ′. Therefore we may reduce the edge set of Γ so that a pair v, v′ of vertices
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is joined only we have both v ⊂ I ′ and v′ ⊂ I ′ (as well as v∩v′ 6= ∅). The graph

Γ retains the property that for each vertex v, the event Ev is independent of

the events {Eu : u 6= v}. However, since

|I ′| =
(

21

0

)
+

(
21

3

)
+

(
21

6

)
+

(
21

7

)
+

(
21

9

)
= 465 805,

the maximum degree of Γ is now

d = 2(|I ′| − 2) = 931 606.

Now using Lemma 8.5.1 we find an upper bound for Pr(Eprim). We have

Pr(Eprim) ≤
∑
H∈P

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)| .

P r(Eprim) = 0 unless |∆1|, |∆2| ∈ {0, 7}. Let H ∈ P . At most one of |∆1|, |∆2|
is equal to 0, so suppose without loss of generality that |∆1| = 7. Then if

C(∆1) ∩ H 6= ∅ we have |C(∆1) ∩H|/|C(∆1)| = 48/6!13!. If |∆2| = 7, then

similarly if C(∆2)∩H 6= ∅ we have |C(∆2) ∩H|/|C(∆1)| = 48/6!13!. If |∆2| =
0, then by Lemma 8.5.1 if C(∆2) ∩ H 6= ∅ we have |C(∆2) ∩H|/|C(∆1)| =

11 520/20!. Since 11 520/20! < 48/6!13!, we have

Pr(Eprim) <
7!14!

336
×

(
48

6!13!

)2

= 112/5!12!.

Finally, we use the GAP program countpartitions as in previous proofs,

and then a program called n21, which is included as Appendix F. The first

part of n21 is identical to the first part of the programs medium and small

which were used in Lemmas 8.3.1 and 8.4.1 respectively, and calculates an

upper bound for Pr(Eimprim) using the theory developed in Chapter 6. This

bound is assigned to the variable ub_imprim.

The second part of n21 calculates an upper bound for Pr(Eprim) using the

inequality above, and assigns it to the variable ub_prim. So we have an upper

bound ub=ub_imprim+ub_prim for Pr(E{∆1,∆2}). In the final part of n21 we
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check that ub e(d + 1) < 1, and if not we add this value of n to the list bad_n

(of course in this case we have n = 21).

We run the following sequence of commands and output in GAP:

gap>Read("c:/gap4r4/countpartitions"); test:=[21];

>[21]

gap>Read("c:/gap4r4/n21"); bad_n;

>[ ].

Therefore ub e(d + 1) < 1, so e(d + 1) Pr(E{∆1,∆2}) < 1. We apply the Lovász

Local lemma and conclude that the probability that X generates S21 pairwise

is non-zero.
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Chapter 9

Proof for An

Our results for µ(Sn) concerns odd values of n. In this chapter we prove

Theorem 1.1.1 parts 3 and 4, which concern µ(An) where n ≡ 2 (mod 4). We

use a probabilistic method to prove that if n ≡ 2 (mod 4) and n ≥ 22, then

µ(An) = 2n−2. We give a constructive proof that µ(A6) = 11 < 26−2.

9.1 Introduction

µ(An) = 2n−2 holds trivially when n = 2, since the set {e} which contains only

the identity permutation, generates A2 = {e} pairwise. Let n ≡ 2 (mod 4)

and n ≥ 6. First we give covering of An of order 2n−2. Define collections of

subsets of Ω by

I1 = {∆ ⊂ Ω : |∆| is odd and |∆| < n/2},
I2 = {∆ ⊂ Ω : |∆| = n/2 and 1 ∈ ∆},
I = I1 ∪ I2.

Now for each ∆ ∈ I, define the subgroup M∆ of An to be the maximal subgroup

which preserves the partition {∆, Ω\∆} of Ω. If ∆ ∈ I1, then M∆ is intransitive

and M∆
∼= (S|∆| × S(n−|∆|)) ∩ An. If ∆ ∈ I2, then M∆ is imprimitive and

M∆
∼= (Sn/2 o S2)∩An. For all ∆ ∈ I, M∆ is a maximal subgroup of An. Note
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that n/2 is odd because n ≡ 2 (mod 4), and

|I| = |I1|+ |I2| =
(

n

1

)
+

(
n

3

)
+ . . . +

(
n

n/2− 2

)
+

1

2

(
n

n/2

)
,

so |I| = 2n−2 by Lemma 2.2.1. Then {M∆ : ∆ ∈ I} is a set of 2n−2 subgroups

of An, and in our first lemma we prove that this is a covering of An. (Maróti

proves in [18, Theorem 4.1] that this covering is actually a minimal covering).

Lemma 9.1.1. If n is an even integer such that n ≡ 2 (mod 4) and n ≥ 6,

then {M∆ : ∆ ∈ I} is a covering of An.

Proof. Let n be an integer such that n ≡ 2 (mod 4), and let g ∈ An. We

write g as a product of disjoint cycles g = g1 . . . gr. We make the following

observations.

1. The sum of the lengths of the orbits of g is n which is even. Therefore

an even number of the orbits must be of odd length.

2. A cycle of even length is an odd permutation. Since g is an element of

An, an even number of the cycles g1, . . . , gr must be odd permutations,

thus an even number of the orbits must be of even length.

Therefore r is even (in particular r 6= 1 and g is not an n-cycle.)

First suppose all the orbits of g are of even length. Let ∆ be a set which

contains alternate elements from each of the cycles of g, including the element

1 from the cycle which contains 1. For example if g = (1 2)(3 4 5 6) ∈ A6, then

we could have ∆ = {1, 3, 5}. Then ∆ ∈ I2 and g ∈ M∆.

If g is an (n/2, n/2)-cycle (so g has exactly two orbits, both of odd length),

then let ∆ be the orbit which contains the element 1. Then ∆ ∈ I2 and

g ∈ M∆.

Otherwise g has two or more orbits of odd length, and at least one of these,

∆ say, must be of odd length less than n/2. Then ∆ ∈ I1 and g ∈ M∆.

In all cases, g ∈ M∆ for some ∆ ∈ I, so the union of the M∆ is all of An.
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A pairwise generating set contains at most one element from each subgroup

in any covering, so a pairwise generating set for An contains at most 2n−2

elements, so µ(An) ≤ 2n−2.

Lemma 9.1.2. If n is an integer such that n ≡ 2 (mod 4) and n ≥ 6, and

if µ(An) = 2n−2, then a maximal pairwise generating set consists of 2n−2 bi-

cycles which are each a product of two disjoint cycles of odd length.

Proof. Suppose that µ(An) = 2n−2 and X generates An pairwise with |X| =

2n−2 = |I|. Let g ∈ X, so then g must be contained in only one of the

subgroups in the covering {M∆ : ∆ ∈ I}. We write g as a product of disjoint

cycles g = g1 . . . gr as in the proof of the previous lemma, and let ∆i be the

orbit of the cycle gi.

If all of the orbits of g are of even length, then again as in the proof of

the previous lemma, let ∆ be a set which contains alternate elements from

each of the cycles of g, including the element 1 from the cycle which contains

1. Since r ≥ 2 there are at least two possibilities for ∆. For example if

g = (1 2)(3 4 5 6) ∈ A6, then ∆ = {1, 3, 5} or ∆ = {1, 4, 6}. Therefore g is

contained in more than one M∆ with ∆ ∈ I2. Therefore at least two of the

orbits must be of odd length.

Suppose g has two or more orbits of odd length and two or more orbits of

even length. If there are two orbits, ∆1, ∆2 say, of odd length at most n/2,

then g ∈ M∆1 and g ∈ M∆2 . Otherwise there is one orbit ∆1 say of odd length

greater than n/2, and the sum of the lengths of the other orbits is less than

n/2. Suppose that ∆2 is another orbit of odd length and ∆3, ∆4 are orbits of

even length. Then g ∈ M∆2∪∆3 , g ∈ M∆2∪∆4 , and ∆2 ∪∆3, ∆2 ∪∆4 ∈ I1. In

both of these cases, g is contained in more than one M∆. Therefore none of

the orbits are of even length.

Therefore all the orbits of g must be of odd length. If r ≥ 4, then at least

two, ∆1, ∆2 say, are of length ≤ n/2. Then g ∈ M∆1 and g ∈ M∆2 , that is g
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is contained in more than one M∆.

Therefore r = 2 and g is a product of two disjoint cycles of odd length.

9.2 n = 6

We follow a short diversion to consider this small case. The five conjugacy

classes of maximal subgroups of A6 are determined using GAP or the Atlas of

Finite Groups [5], and are given in Table 9.1. (The intransitive subgroups A5

Class Order Number of copies
Intransitive A5 60 6
Intransitive (S2 × S4) ∩ A6 24 15
Imprimitive (S2 o S3) ∩ A6 24 15
Imprimitive (S3 o S2) ∩ A6 36 10

Linear PSL(2, 5) 60 6

Table 9.1: The maximal subgroups of A6

are isomorphic, but not permutation isomorphic, to the primitive subgroups

PSL(2, 5).) There are six possible cycle structures for an element of A6, these

are given in Table 9.2.

The following GAP code tells us that the maximal subgroup PSL(2, 5) of A6

Cycle structure Example Number
- e 1

2,2 (12)(34) 15 · 3 = 45
2,4 (12)(3456) 15 · 3! = 90
3 (123) 20 · 2 = 40

3,3 (123)(456) 10 · 4 = 40
5 (12345) 6 · 4! = 144

Total 360

Table 9.2: The cycle structures of the elements of A6

contains twenty four (1, 5)-cycles (in two conjugacy classes each of order 12)
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and twenty (3, 3)-cycles.

gap>mscr:=MaximalSubgroupsClassReps(AlternatingGroup(6));

>m:=mscr[6]; bicycles:=[m];

>for c in ConjugacyClasses(m) do

> cl:=CycleLengths(Representative(c),[1..6]);

> if Length(cl)=2 then Add(bicycles, [cl,Length(AsSet(c))]; fi;

>od;

gap>bicycles;

>[PSL(2,5),[[1,5],12],[[1,5],12],[[3,3],20]

Lemma 9.2.1. We have µ(A6) = 11.

Proof. First we prove that µ(A6) ≤ 11, and then we give a pairwise generating

set for A6 of order 11.

Let X be a pairwise generating set for A6 of order µ(A6). Then µ(A6) =

|X| = x + y + z + v + w, where x, y, z, w and v are the number of (2, 2)-cycles,

(2, 4)-cycles, 3-cycles, (3, 3)-cycles, and 5-cycles respectively in X. Each of

the six copies of PSL(2, 5) in A6 contains twenty (3, 3)-cycles, and A6 contains

in total 1
2

(
6
3

) · 4 = 40 elements which are (3, 3)-cycles, so a fixed (3, 3)-cycle

must be contained in three copies of PSL(2, 5). Furthermore, a fixed 5-cycle

is contained at least one of the six copies of PSL(2, 5), so we have

3v + w ≤ 6.

A 5-cycle is contained in one copy of A5, a (2, 2)-cycle is contained in two

copies of A5, and a 3-cycle is contained in three copies of A5, so we have

2x + 3z + w ≤ 6.

It follows that x+z +v +w ≤ 6. A fixed (2, 4)-cycle is contained in two of the

ten copies of S3 oS2, so y ≤ 5. Therefore µ(A6) = |X| = x+y+z+v+w ≤ 11.
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Now let X be the set

{(2, 3, 4, 6, 5), (1, 3, 4, 6, 5), (1, 4, 6, 5, 2), (1, 6, 5, 2, 3),

(1, 2, 3, 4, 6), (1, 5, 2, 3, 4), (1, 2)(3, 4, 5, 6), (1, 6, 5, 3)(2, 4),

(1, 2, 3, 5)(4, 6), (1, 5, 2, 4)(3, 6), (1, 3)(2, 5, 4, 6)}.

Using GAP, we confirm that this is a pairwise generating set for A6. We assign

the elements of X to a list x, and then the following code yields a sequence of

integers which are all 4, 5 or 360.

gap> for g in x do for h in x do

> Print(Order(Group(g,h)));

> od; od;

Since |X| = 11, our result follows.

9.3 Probabilistic proof

Recall our definition of I given in Section 9.1. For each ∆ ∈ I, define

C(∆) = {g ∈ Sn : g is a (|∆|, n− |∆|)-cycle such that ∆g = ∆}.

Since n is even, a (|∆|, n− |∆|)-cycle is an even permutation, and each C(∆)

contains bi-cycles from An where the length of each cycle is odd. We choose

a set X of elements of An by choosing elements g∆ ∈ C(∆) uniformly and

independently at random. Then define

X = {g∆ : ∆ ∈ I}.

Now define a graph Γ = (V,E) as follows. The vertices are the two element

subsets of I, and a pair v, v′ of vertices are joined by an edge precisely when

v ∩ v′ 6= ∅. Then the degree of each vertex is

d = 2(|I| − 2) = 2(2n−2 − 2) = 2n−1 − 4.
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We fix a distinct pair g∆1 , g∆2 of elements of X, and thus fix the corresponding

vertex {∆1, ∆2} of Γ.

We write E{∆1,∆2} for the event that the pair g∆1 , g∆2 is contained in a

maximal subgroup of An. As in the proof for Sn in Chapter 8, we define

p = 1/e2n so we have ep(d + 1) < 1, and we will prove that

Pr(E{∆1,∆2}) < p,

or if it is more convenient we will prove directly that

e(d + 1) Pr(E{∆1,∆2}) < 1.

Then by the Lovász Local lemma (Lemma 4.3.1) we conclude that there exists

a set of 2n−2 elements that generate An pairwise. This definition of p is smaller

than necessary, but allows us to use some results from the Sn case.

We have chosen X in such a way that the pair g∆1 , g∆2 is not contained in

an intransitive subgroup of An. Therefore

E{∆1,∆2} = Eimprim ∪ Eprim,

where Eimprim is the event that the pair g∆1 , g∆2 is contained in an imprimitive

maximal subgroup of An, and Eprim is the event that the pair g∆1 , g∆2 is

contained in a primitive maximal subgroup of An. Consequently

Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim).

9.4 Primitive maximal subgroups of An

In Theorem 9.4.1 we show that if n ≡ 2 (mod 4), then a primitive maximal

subgroup of An is almost simple, and we subdivide this class of maximal

subgroups further. Recall the definition of a subspace action of an almost

simple group, given on page 83.

Theorem 9.4.1. Let n be a positive integer such that n ≡ 2 (mod 4), and let

M be a primitive maximal subgroup of An. Then M is one of the following:
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1. An almost simple group with socle Am, for some integer m ≤ n − 1,

acting on the set of k-subsets of {1, . . . , m} for some integer k such that

2 ≤ k ≤ m− 1, or on the set of partitions of {1, . . . , m} into k-subsets,

for some proper divisor k of m;

2. An almost simple group (with classical socle) acting on subspaces;

3. An almost simple group of order at most n5.

Proof. If M is almost simple (so M is in class 6 of the O’Nan-Scott theorem),

then by Theorem 7.1.1, M is in one of the three parts above.

Suppose that M is in class 5 (diagonal) of the O’Nan-Scott theorem. Then

n = |T |k−1 where T is a non-abelian finite simple group, and k is an integer

such that k ≥ 2. However, by Corollary 2.1.8, the order of a non-abelian finite

simple group is divisible by 4. So n is divisible by 4 which contradicts our

hypothesis. So class 5 of the O’Nan-Scott theorem is ruled out.

Suppose that M is in class 4 (affine) of the O’Nan-Scott theorem, then

since n is even, it is equal to a non-trivial power of 2. So n is divisible by 4

which contradicts our hypothesis. So class 4 of the O’Nan-Scott theorem is

also ruled out.

Suppose that M is in class 3 (wreath) of the O’Nan-Scott theorem, then

since n is even, it is equal to a non-trivial power of an even number. So

again n is divisible by 4 which contradicts our hypothesis. So class 3 of the

O’Nan-Scott theorem is also ruled out.

(Classes 1 and 2 of the O’Nan-Scott theorem do not contain primitive

subgroups).

We now define three sets of maximal subgroups of An, and three sets of

conjugacy classes of maximal subgroups of An. For i ∈ {1, 2, 3} define Gi to be

the set of maximal subgroups M of An under part i of Theorem 9.4.1 above.
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Then define

Gi = {[M ]Sn | M ∈ Gi},

so Gi is the set of conjugacy classes of subgroups in Gi.

We use the work in Chapter 7, and the fact that a conjugacy class [G]Sn

of subgroups of Sn corresponds directly to either one or two conjugacy classes

[G∩An]An of subgroups of An, to provide upper bounds for |G1|, |G2| and |G3|.
First recall that on page 85 we definedM1 to be the set of conjugacy classes

of maximal subgroups Sm of Sn, where Sm is acting on k-sets. In Lemma 7.2.1

we proved that |M1| ≤ n2. In fact, that proof did not depend in any way

on maximality of the subgroups, so the bound applies equally to the set of

conjugacy classes of (not necessarily) maximal subgroups Sm of Sn, where Sm

is acting on k-sets. It follows that

|G1| ≤ 2n2.

Now recall that on page 88 we defined Tcl to be the set of conjugacy classes

of classical simple subgroups of Sn that are the socles of almost simple groups

acting on subspaces, and in Lemma 7.3.5 we proved that |Tcl| ≤ 150n ln2 n. It

follows that

|G2| ≤ 300n ln2 n.

Finally, recall that on page 92 we defined Tsmall to be the set of conju-

gacy classes of simple transitive subgroups of Sn of order at most n5 and in

Lemma 7.4.4 we proved that |Tsmall| ≤ 2n4(5 log2 n+1), so we have

|G3| ≤ 4n4(5 log2 n+1).

9.5 Large values of n

First we deal with Pr(Eimprim). Note that Eimprim is the same as the event

that the pair g∆1 , g∆2 is contained in an imprimitive maximal subgroup of Sn.

We have specified X in such a way that the pair g∆1 , g∆2 is not contained in an
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imprimitive maximal subgroup Sn/2 o S2. Furthermore since 4 does not divide

n there is no imprimitive maximal subgroup Sn/4 o S4 of Sn. Define Eimprim1

to be the event that the pair g∆1 , g∆2 is contained in an imprimitive maximal

subgroup Sn/3 o S3 of Sn, and Eimprim2 to be the event that the pair g∆1 , g∆2

is contained in an imprimitive maximal subgroup Sn/k o Sk of Sn, where k is a

proper divisor of n such that k ≥ 5. Then we have

Eimprim = Eimprim1 ∪ Eimprim2 ,

and consequently

Pr(Eimprim) ≤ Pr(Eimprim1) + Pr(Eimprim2).

Lemma 9.5.1. If n ≥ 150, then Pr(Eimprim1) < p /7.

Proof. This is proved by an argument identical to that used in the proof of

Lemma 8.2.1.

Lemma 9.5.2. If n ≥ 226, then Pr(Eimprim2) < p /7.

Proof. This is proved by an argument identical to that used in the proof of

Lemma 8.2.3.

Now we deal with Eprim. For i ∈ {1, 2, 3} define Eprimi
to be the event

that the pair g∆1 , g∆2 is contained in a primitive maximal subgroup M of An

such that M = G ∩ An, and M ∈ Gi, that is G is in part i of Theorem 9.4.1.

Then since n ≡ 2 (mod 4), by Theorem 9.4.1

Eprim = Eprim1 ∪ Eprim2 ∪ Eprim3 ,

and consequently

Pr(Eprim) ≤ Pr(Eprim1) + Pr(Eprim2) + Pr(Eprim3).

Lemma 9.5.3. If n ≥ 46, and i ∈ {1, 2} then Pr(Eprimi
) < p /7.
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Proof. We apply Lemma 8.2.2 with M = Gi, and then use an argument iden-

tical to that in the proof of Lemma 8.2.4.

Lemma 9.5.4. If n ≥ 522, then Pr(Eprim3) < p /7.

Proof. We apply Lemma 8.2.2 with M = G3, and then use an argument

identical to that in the proof of Lemma 8.2.5.

At this point we have sufficient information to conclude that if n ≥ 522,

then Pr(E{∆1,∆2}) < p.

If M is a maximal subgroup of An, then M = G ∩ An for a subgroup G

such that G = NSn(soc G) (note that it may or may not be the case that

NSn(soc G) < An.) The next lemma is similar to Lemma 8.2.6 and refers to

the cohorts of primitive groups described in [7].

Lemma 9.5.5. The number of conjugacy classes of primitive subgroups G of

Sn such that G = NSn(soc G) is bounded above by the number of cohorts of

primitive groups of degree n.

Proof. Let [G]Sn be a conjugacy class of primitive subgroups of Sn such that

G = NSn(soc G). Then [soc G]Sn is a corresponding conjugacy class of sub-

groups, which is represented by exactly one cohort, of degree n. Moreover,

[G]Sn is the only conjugacy class of primitive maximal subgroups which corre-

sponds to this cohort. Thus we have established an injection from the set of

conjugacy classes of primitive subgroups G of Sn such that G = NSn(soc G)

into the set of cohorts of primitive groups of degree n.

For n ≤ 1000, we see in [7, Table B.4] that there are at most 10 cohorts

of primitive groups which act with degree n, excluding the alternating and

affine group. Since each conjugacy class [G]Sn of subgroups of Sn corresponds

directly to either one or two conjugacy classes [G∩An]An of subgroups of An,

we may apply Lemma 8.2.2 with M = 22.
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Lemma 9.5.6. If 34 ≤ n ≤ 1000, then Pr(Eprim) < 5p /7.

Proof. This is proved by an argument identical to that used in the proof of

Lemma 8.2.7.

We summarise our results. Recall that n ≡ 2 (mod 4).

If . . . then . . .
n ≥ 148 Pr(Eimprim1) < p /7
n ≥ 226 Pr(Eimprim2) < p /7
n ≥ 46 Pr(Eprimi

) < p /7 for i ∈ {1, 2}
n ≥ 522 Pr(Eprim3) < p /7
34 ≤ n ≤ 1000 Pr(Eprim) < 5p /7

Table 9.3: Summary of results in Section 9.5

Proof of Theorem 1.1.1 part 3 for n ≥ 226. As remarked earlier, we have

Pr(Eimprim) ≤ Pr(Eimprim1) + Pr(Eimprim2),

P r(Eprim) ≤ Pr(Eprim1) + Pr(Eprim2) + Pr(Eprim3),

and

Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim).

Using the results given in the table above, we conclude that if n ≥ 226, then

Pr(E{∆1,∆2}) < p. Our result follows.

9.6 Medium values of n

By Lemma 9.5.6 we know that if 34 ≤ n ≤ 1000, then Pr(Eprim) < 5p /7. It

remains to show that Pr(Eimprim) < 2p/7.

Lemma 9.6.1. If 30 ≤ n ≤ 222, then Pr(Eimprim) < 2p /7.
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Proof. This proof is similar to the proof of Lemma 8.3.1. We use two GAP

programs and apply the theory on imprimitive maximal subgroups developed

in Chapter 6.

The first program, with filename countingpartitions and included as

Appendix B, is explained and used in the proof of Lemma 8.3.1.

The second program, with filename medium_an, is included as Appendix G.

This is the GAP program medium used in the proof of Lemma 8.3.1 with the

following modifications. We test values of n such that n ≡ 2 (mod 4). We

consider only odd values of |∆1| and |∆2|, such that 1 ≤ |∆1|, |∆2| ≤ n/2 to

take account of how we have now defined our set I. Furthermore, if |∆1| =

|∆2| = n/2, then again from the definition of I, we have i ≥ 1, and so in this

case we calculate the variable combprob for the variable i taking values in the

list [1..n/2-1].

Before we run the program medium_an, we must define a variable test,

which must be a list of integers containing the values of n which we which to

consider. As in medium, a value of n is added to a list bad_n if we consider it

and fail to prove that Pr(Eimprim) is sufficiently small.

This proof therefore is achieved by the following sequence of commands

and output in GAP:

gap>Read("c:/gap4r4/countpartitions");

gap>test:=[6..224];

>[6..224]

gap>Read("c:/gap4r4/medium_an");

gap>bad_n;

>[6,10,14,18,22,26]

Proof of Theorem 1.1.1 part 3 for 34 ≤ n ≤ 222. By Lemmas 9.5.6 and 9.6.1,

we have that if 34 ≤ n ≤ 222, then Pr(E{∆1,∆2}) < p. Our result follows.
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9.7 Small values of n

Our result does not follow for values of n less than 34 because the bound for

Pr(Eprim) is too high. In the next lemma, for the small values of n, we use

the GAP data library to provide the orders of primitive maximal subgroups,

and thus obtain a tighter upper bound for Pr(Eprim).

First, the following short GAP program tells us that if n ≡ 2 (mod 4) and

n ≤ 30, then Sn has two conjugacy classes of primitive maximal subgroups,

namely An and one other, and An has only one conjugacy class of primitive

maximal subgroups, and these subgroups are G ∩ An, where G is a primitive

maximal subgroup of Sn other than An.

gap>for n in [6,10,14,18,22,26,30] do Print("\n",n);

> ms:=MaximalSubgroupClassReps(SymmetricGroup(n));

> for g in ms do if IsPrimitive(g,[1..n]) then Print(g);fi;od;

> ma:=MaximalSubgroupClassReps(AlternatingGroup(n));

> for g in ma do if IsPrimitive(g,[1..n]) then Print(g);fi;od;

>od;

The output of this code is the following.

>6 AlternatingGroup(6) PGL(2,5) PSL(2,5)

10 AlternatingGroup(10) P\Gamma L(2,9) M(10)

14 AlternatingGroup(14) PGL(2,13) PSL(2,13)

18 AlternatingGroup(18) PGL(2,17) PSL(2,17)

22 AlternatingGroup(22) M(22):2 M(22)

26 AlternatingGroup(6) P\GammaL(2,25) P\Sigma L(2,25)

30 AlternatingGroup(6) PGL(2,29) PSL(2,29)

This means that for these n ≤ 30, the event Eprim is the same as event that

the pair g∆1 , g∆2 is contained in a primitive maximal subgroup of Sn other

than An.

Lemma 9.7.1. If n ∈ {26, 30}, then µ(An) = 2n−2.
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Proof. This proof uses two GAP programs. The first is called countpartitions,

and was used and discussed in the proof of Lemma 9.6.1. The second is

called small_an and is included as Appendix H. Before running the program

small_an, we must define a variable called test, which must be a list of in-

tegers containing the values of n which we wish to consider. The first part

of small_an is identical to the first part of program medium_an which was

used in Lemma 9.6.1, and it calculates an upper bound for Pr(Eimprim) using

the theory developed in Chapter 6. This bound is assigned to the variable

ub_imprim.

The second part of small_an calculates an upper bound for Pr(Eprim) in

the same way as the second part of the program small. By Lemmas 5.2.2

and 5.2.4,

Pr(Eprim) <
n2|M |

(n/2− 1)!2
,

where M is a primitive maximal subgroup of Sn other than An. The program

small_an calculates the upper bound for Pr(Eprim) given in this inequality,

and assigns it to the variable ub_prim.

Recall that Pr(E{∆1,∆2}) ≤ Pr(Eimprim) + Pr(Eprim), and we aim to

show that Pr(E{∆1,∆2}) < p where p = 1/e2n. We have an upper bound

ub_imprim+ub_prim for Pr(E{∆1,∆2}), and in the final part of small_an we

compare this bound to p. If it exceeds p, that is, if our bound fails to be

sufficiently low, we add the value of n under consideration to the list bad_n.

This proof therefore is completed by the following sequence of commands

and output in GAP:

gap>Read("c:/gap4r4/countpartitions"); test:=[6..30];;

gap>Read("c:/gap4r4/small_an"); bad_n;

>[ 6,10,14,18,22].
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9.8 n = 22

The upper bound for Pr(Eprim) obtained in the previous proof is too high to

be used in the case n = 22, so in Lemma 9.8.2 we calculate an even lower

bound. We also increase our target by reducing the degree of our graph Γ. We

give a preliminary lemma. Recall the notation C(∆) which denotes the set of

elements of Sn which have orbits ∆ and Ω\∆, and let S be the conjugacy class

of maximal subgroups of Sn which are permutation isomorphic to M(22) : 2

(acting with degree 22 in the usual way).

Lemma 9.8.1. S22 has only one conjugacy class of primitive maximal sub-

groups other than A22; it is S as defined above. Let H ∈ S.

1. The only bi-cycles contained in H are (11, 11)-cycles.

2. H contains 120 elements which are (11, 11)-cycles, from each of 672

different C(∆). In total H contains 672× 120 = 80 640 elements which

are (11, 11)-cycles.

Proof. 1. We use a GAP program called s22bicycles which is included as Ap-

pendix I. First, s22bicycles puts representatives of the conjugacy classes of

primitive maximal subgroups of S22 other than A22 in a list called

primsubgroups. Second it determines the cycle lengths of the elements of

each of these representatives, and whenever it encounters a bi-cycle, it adds

the name of the representative together with the cycle lengths to a set called

bicycles. This proof is therefore achieved by the following sequence of com-

mands and output in GAP:

gap>Read("c:/gap4r4/s22subgroups"); primsubgroups;

>[M(22):2].

gap>bicycles;

>[[M(22):2],[11]].
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2. Again we use the GAP program called s22bicycles. The third part of this

program assigns the representative of S to the variable m11. It makes a list

11_11cycles of all the (11, 11)-cycles in m11, and a set 11orbits of the orbits

of length 11 of these bi-cycles. Then for each orbit in 11orbits, it counts how

many of the elements of 11_11cycles have this as an orbit, and assigns this

total to a set called results.This proof is therefore achieved by the following

sequence of GAP commands and output.

gap>Read("c:/gap4r4/s22bicycles"); Length(set11orbits);

>672

gap>results;

>[120].

gap>Length(11_11cycles);

>80640

Even though this result allows us to calculate a tighter upper bound for

P (Eprim), it is still not low enough to apply the Lovász Local lemma. We

solve this problem in our next lemma. Recall that in Section 8.1 we defined a

set I of 2n−2 = 222−2 subsets of Ω = {1, . . . , 22}, a set X of order 222−2 which

we hope will be a pairwise generating set for S22, and a graph Γ which has the

two element subsets of I as its vertex set. We need to prove that

Pr(E{∆1,∆2}) e(d + 1) < 1,

where d is the degree of Γ. If n = 22, then part 1 of Lemma 9.8.1 tells us

that only some of the pairs of elements of X can possibly be contained in a

maximal subgroup of Sn other than An. As a result of this, we can reduce

the maximum degree of our graph Γ. Then our bound for Pr(E{∆1,∆2}) is

sufficiently low.

Lemma 9.8.2. µ(A22) = 222−2.

Proof. Let n = 22. The set X contains at most one element from each of the

intransitive maximal subgroups of S22. By Lemma 6.3.1, the only elements
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of X which are contained in imprimitive maximal subgroups of S22 are the

(11, 11)-cycles. By our previous lemma, the only elements of X which are

contained in primitive maximal subgroups of S22 are the (11, 11)-cycles. Recall

that

I2 = {∆ ⊂ Ω : |∆| = n/2 and 1 ∈ ∆}.

It follows that the pair g∆1 , g∆2 can only be contained in a maximal subgroup

if {∆1, ∆2} ⊂ I2. Indeed for any vertex v of Γ, the probability Pr(Ev) is non-

zero only when v ⊂ I2. Therefore we may reduce the edge set of Γ so that a

pair v, v′ of vertices is joined only we have both v ⊂ I2 and v′ ⊂ I2 (as well

as v ∩ v′ 6= ∅). The graph Γ retains the property that for each vertex v, the

event Ev is independent of the events {Eu : u 6= v}. However, since

|I2| = 1

2

(
22

11

)
= 352 716,

the maximum degree of Γ is now

d = 2(|I2| − 2) = 705 428.

Now we find an upper bound for Pr(Eprim). From Lemma 5.1.1,

Pr(Eprim) ≤
∑
H∈S

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

=
1

|C(∆1)||C(∆2)|
∑
H∈S

|C(∆1) ∩H||C(∆2) ∩H|.

By Lemma 9.8.1, for all H ∈ S, if C(∆1)∩H 6= ∅ then |C(∆1)∩H| = 120, so

Pr(Eprim) ≤ 1

|C(∆1)||C(∆2)|
∑
H∈S

120|C(∆2) ∩H|

From Lemma 5.2.1 we know that a fixed bi-cycle is contained in at most n2

conjugates of any subgroup of Sn, so

∑
H∈S

|C(∆2) ∩H| ≤ n2|C(∆2)|.
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Substituting this, and a lower bound for |C(∆1)| from Lemma 5.2.4, we have

Pr(Eprim) ≤ 120

|C(∆1)||C(∆2)| × n2|C(∆2)|

=
120n2

(n/2− 1)!2
.

Finally, we use the GAP program countpartitions as in previous proofs, and

then a program called n22_an, which is included as Appendix J. The first

part of n22_an is identical to the first part of the programs medium_an and

small_an which were used in Lemmas 9.6.1 and 9.7.1 respectively, and calcu-

lates an upper bound for Pr(Eimprim) using the theory developed in Chapter 6.

This bound is assigned to the variable ub_imprim.

The second part of n22_an calculates an upper bound for Pr(Eprim) using

the inequality above, and assigns it to the variable ub_prim. So we have an

upper bound ub=ub_imprim+ub_prim for Pr(E{∆1,∆2}). In the final part of

n22_an we check that ub e(d+1) < 1, and if not we add this value of n to the

list bad_n (of course in this case we have n = 22).

We run the following sequence of commands and output in GAP:

gap>Read("c:/gap4r4/countpartitions"); test:=[22];

>[22]

gap>Read("c:/gap4r4/n22_an"); bad_n;

>[ ].

Therefore ub e(d + 1) < 1, so Pr(E{∆1,∆2})e(d + 1) < 1. We apply the Lovász

Local lemma and conclude that the probability that X generates S22 pairwise

is non-zero.

9.9 n ∈ {10, 14, 18}
Using GAP, we can show that bi-cycles that have two orbits of odd length and

that are contained in transitive maximal subgroups of A18 are (3, 15)-cycles

and (9, 9)-cycles in imprimitive subgroups, and 17-cycles and (9, 9)-cycles in
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PSL(2, 17). It follows that

µ(A18) ≥
(
18
5

)
+

(
18
7

)
= 218−2 − [

(
18
1

)
+

(
18
3

)
+ 1

2

(
18
9

)
].

Using similar arguments we can show that

µ(A14) ≥
(
14
3

)
+

(
14
5

)
= 214−2 − [

(
14
1

)
+ 1

2

(
14
7

)
],

and

µ(A10) ≥
(
10
1

)
+

(
10
3

)
= 210−2 − 1

2

(
10
5

)
.

However, neither constructive or probabilistic methods have so far yielded a

full solution to these cases.
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Chapter 10

A question from Maróti

In this chapter we answer in the affirmative a question posed to us recently.

We give results of an asymptotic nature, that is, we give a lower bound for

µ(An), when n is sufficiently large. These results could be strengthened, or

possibly made explicit using the techniques given earlier in this thesis.

10.1 Introduction

Maróti asked the following question:

Is µ(An) ≥ n3 for all but finitely many values of n ?

We answer this question in the affirmative. In fact we prove the following

theorem which is a stronger result. This theorem could be strengthened sig-

nificantly by some refinement of our proofs, and could also be made explicit.

Theorem 10.1.1. Let n be a positive integer. If n is sufficiently large then:

1. If n is prime and not of the form n = (qd − 1)/(q − 1) where d is an

integer such that d ≥ 2 and q is a prime power, we have

µ(An) ≥ (n− 2)! ;

2. If n is prime, we have

µ(An) ≥ bn!/n32n−1c ;
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3. If n is odd, we have

µ(An) ≥
⌊

2
√

n

27n2
√

n

⌋
;

4. If n is even and n ≡ 2 (mod 4), we have

µ(An) = 2n−2;

5. If n is even, we have

µ(An) ≥
(

n

n/10

)
.

As in previous chapters, our starting point is to consider a covering for An

(a minimal covering if one is available), and look for a pairwise generating set

which consists of at most one element from each subgroup in this covering.

For odd values of n we look for pairwise generating sets for An which

consist of n-cycles only (when n is odd, an n-cycle is an even permutation).

We consider odd prime values of n in Section 10.2 and odd composite values

of n in Section 10.3. For even values of n, in Section 10.4 we look for pairwise

generating sets for An which consist of (p, n−p)-cycles only, where p is a prime

such that n/10 ≤ p ≤ n/5 (when n is even, a bi-cycle is an even permutation).

Part 4 of this theorem follows from Theorem 1.1.1. We give constructive proofs

for odd prime values of n, and probabilistic proofs for composite values of n.

10.2 n is prime

We will prove that when n is prime and n 6= 11, 23 there are only three types

of maximal subgroups of Sn other than An, and only three types of maximal

subgroups of An. We first state a theorem of Guralnick.

Theorem 10.2.1. [9, Theorem 1] Let G be a nonabelian simple group with

H < G and |G : H| = pa, p prime. One of the following holds:

1. G = An and H ∼= An−1 with n = pa;
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2. G = PSL(d, q) and H is the stabilizer of a line or hyperplane. Then

|G : H| = (qd − 1)/(q − 1) = pa (note d must be prime and d > 2);

3. G = PSL(2, 11) and H ∼= A5;

4. G = M23 and H ∼= M22 or G = M11 and H ∼= M10;

5. G = PSU(4, 2) ∼= PSp(4, 3) and H is the parabolic subgroup of index 27.

Now we use Guralnick’s theorem together with the O’Nan-Scott theorem.

Theorem 10.2.2. Let p be a prime integer, and let M be a maximal subgroup

of Sp other than Ap. If p 6= 11, 23, then M is one of the following:

1. Intransitive, Sk × Sp−k, 1 ≤ k < p/2;

2. Affine, AGL(1, p);

3. Linear almost simple, NSp(PSL(d, q)), p = (qd−1)/(q−1) for an integer

d ≥ 2 and prime power q.

If M is a maximal subgroup of Ap, then M = G ∩ Ap where G is one of the

above.

Proof. Let M be a maximal subgroup of Sp other than Ap. Because p is prime,

Sp does not have imprimitive maximal subgroups, so if M is transitive then

it is primitive, and by the O’Nan-Scott theorem (see Theorem 2.1.3) it is a

wreath (product action), affine, diagonal or almost simple. However M is not

a wreath (product action) because p is not a proper power of a prime, and

M is not diagonal because p is not a power of an order of a finite simple

group (the order of any finite simple group is even, and we rule out p = 2

because S2 does not have any maximal subgroups). If M is almost simple,

then soc M is a non-abelian finite simple group which acts transitively with

degree p and so has a non-trivial subgroup of index p (a point stabiliser).

Then we apply Theorem 10.2.1 and we observe that the only possibility is

that soc M = PSL(d, q) where p = (qd − 1)/(q − 1).
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Let n = p > 2 be an odd prime integer. The subgroups M ∩Ap, where M

is AGL(1, p) or M is Sk ×Sp−k, where 1 ≤ k < bp/3c is a covering for Ap: the

p-cycles are contained in the affine maximal subgroups; Ap does not contain bi-

cycles; and an element of Ap which is a union of at least three disjoint cycles is

contained in at least one of the intransitive maximal subgroups in this covering.

The order of this covering, and hence an upper bound for µ(Ap), is

(p− 2)! +
∑

1≤k<bp/3c

(
p

k

)
.

If p is not of the form p = (qd − 1)/(q − 1) for an integer d ≥ 2 and prime

power q, then it is straightforward to find a pairwise generating set for Ap of

order (p−2)! which consists of one p-cycle from each affine maximal subgroup,

as we see in the proof of Theorem 10.1.1 part 1 below.

The Sylow-p subgroups of Sp are cyclic groups of order p, each consisting

of p− 1 elements which are p-cycles together with the identity element. Each

distinct pair of Sylow-p subgroups intersect trivially, and there are (p−1)! ele-

ments which are p-cycles in Sp. Therefore there are (p−2)! Sylow-p subgroups

of Sp which disjointly contain all the p-cycles.

The abstract group AGL(1, p) is the group of affine transformations of a

vector space of dimension 1 over a field of order p. These affine transformations

are bijections, so AGL(1, p) acts with degree p and the images of the permu-

tation representations of this action is the conjugacy class of affine maximal

subgroups of Sp. It is a semi-direct product, that is AGL(1, p) ∼= Zp o Zp−1,

and is the union of a cyclic subgroup of order p and p conjugate cyclic sub-

groups of order p − 1. Each pair of these subgroups of AGL(1, p) intersect

trivially, and |AGL(1, p)| = p(p − 1). Since the subgroups of Sp which are

permutation isomorphic to AGL(1, p) are maximal, there are (p − 2)! such

subgroups. The cyclic subgroup of order p of an affine maximal subgroup is

a Sylow-p subgroup of Sp. It follows that a Sylow-p subgroup is contained in

exactly one affine maximal subgroup, since there are an equal number of each.
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Proof of Theorem 10.1.1 part 1. Let p not be of the form p = (qd − 1)/(q −
1) for an integer d ≥ 2 and prime power q, and let p 6= 11, 23. Let the

set X consist of exactly one p-cycle from each Sylow-p subgroup of Sp, so

|X| = (p − 2)! and X ⊂ Ap. A p-cycle is transitive on Ω, so the elements

of X are not contained in intransitive maximal subgroups. Since each affine

maximal subgroup contains exactly one Sylow-p subgroup, each affine maximal

subgroup contains exactly one element of X. By Theorem 10.2.2 there are

no further maximal subgroups of Ap. Therefore no pair of elements of X is

contained in a maximal subgroup of Ap, so X generates Ap pairwise.

When p is of the form p = (qd − 1)/(q − 1) for an integer d ≥ 2 and prime

power q, we find a pairwise generating set for Ap which consists of at most

one p-cycle from each affine maximal subgroup, but we must also take into

account the linear almost simple primitive maximal subgroups of Ap. We give

a preliminary lemma prior to the proof of Theorem 10.1.1 part 2.

Lemma 10.2.3. Let p be a prime integer such that p ≥ 25 and p = (qd −
1)/(q−1) for an integer d ≥ 2 and prime power q, and let P = NSp(PSL(d, q))

be a linear almost simple primitive subgroup of Sp. Then P contains less than

2p−1/(p− 1)

Sylow-p subgroups of Sp.

Proof. We count pairs (H, K) in two ways, where H is a Sylow-p subgroup of

Sp, and K is conjugate to P in Sp and K contains H. Let r be the number of

such pairs.

First we have r = xy, where x is the number of Sylow-p subgroups of Sp,

and y is the number of subgroups of Sp which are conjugate to P and which

contain a fixed Sylow-p subgroup of Sp. The number y is the same for all fixed

Sylow-p subgroups because they are all conjugate in Sp. Then x = (p − 2)!

and by Lemma 5.2.1 we have y < p. Therefore r < p(p− 2)!.
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Second we have r = zw, where z is the number of Sylow-p subgroups of

Sp contained in a fixed subgroup conjugate to P , and w is the number of

subgroups which are conjugate to P . Now P is primitive, so by [17, Corollary

1.4] is of order less than 2p−1. Then since P = NSp(PSL(d, q)), by the Orbit-

Stabilizer theorem there are more than p!/2p−1 such subgroups, so w > p!/2p−1.

Therefore r > zp!/2p−1.

Comparing these two bounds for r gives p(p − 2)! > zp!/2p−1, so z <

2p−1/(p− 1).

Proof of Theorem 10.1.1 part 2. Let p ≥ 25 and let p be of the form p =

(qd − 1)/(q − 1) for an integer d ≥ 2 and prime power q. We do not rule

out the possibility that there may be more than one pair q, d such that p =

(qd− 1)/(q− 1). However since (qd− 1)/(q− 1) = qd−1 + . . . + q + 1, it follows

that 2 ≤ q < p and d is determined by q, so there are certainly less than p

such pairs. Therefore there are less than p conjugacy classes of maximal linear

almost simple primitive subgroups of Sp. We describe an iterative process to

find a set X of p-cycles which consists of at most one p-cycle from each Sylow-

p subgroup of Sp such that no pair is contained in a maximal linear almost

simple primitive subgroup of Sp. Then by Theorem 10.2.2, no pair of elements

of X is contained in a maximal subgroup of Ap, so X generates Ap pairwise.

Define S1 to be the conjugacy class of Sylow-p subgroups of Sp, so |S1| =

(p− 2)!. For 2 ≤ q < p, if an integer d exists such that p = (qd − 1)/(q − 1),

and if NSp(PSL(d, q)) is a primitive maximal subgroup of either Ap or Sp,

define Lq1 to be the conjugacy class of subgroups of Sp which are permutation

isomorphic to NSp(PSL(d, q)). For the remainder of this proof we ignore those

q for which no such d exists, or for which NSp(PSL(d, q)) is not a primitive

maximal subgroup of Ap or Sp. If H ∈ Lq1 , then H = NSp(H) is a primitive

group acting with degree p ≥ 25 so |NSp(H)| < 2p−1 by [17, Corollary 1.4].

Then by the Orbit-Stabilizer theorem, |Lq1| > p!/2p−1.
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Let x1 ∈ Sp be a p-cycle. For each q, let Lq1 be the set of subgroups in Lq1

which contain x1. Then |Lq1| < p by Lemma 5.2.1. Let S1 be the set of Sylow-

p subgroups which are contained in all of the subgroups in all of the Lq1 . Since

there are less than p different Lq1 , each containing less than p subgroups, each

of which by Lemma 10.2.3 contain at most 2p−1/(p− 1) Sylow-p subgroups, it

follows that

|S1| < p22p−1/(p− 1).

Let S2 = S1 \ S1, so S2 is the set of Sylow-p subgroups of Sp, none of which

are contained in the same linear almost simple subgroup as the element x1.

Now |S2| > (p− 2)!− p22p−1/(p− 1), so |S2| > 0. Let x2 be any p-cycle from

any of the subgroups in S2, and let X2 = {x1, x2}. Then X2 is a set of order

2 which generates Ap pairwise. We continue in the same manner, using the

following method for the i-th iteration:

If |Si| > 0, let xi be any p-cycle from any of the subgroups in

Si, and let Xi = Xi−1 ∪ {xi}. For each q, let Lqi
be the set of

subgroups in Lqi
which contain xi, and let Si be the set of Sylow-

p subgroups which are contained in all of the subgroups in all

of the Lqi
. Then |Si| < p22p−1/(p − 1). Let Si+1 = Si \ Si, so

|Si+1| > (p− 2)!− ip22p−1/(p− 1).

This can be repeated until Si+1 = ∅ for some value of i. Then the set Xi is a set

of order i that generates Sp pairwise. Since |Si+1| > (p−2)!−ip22p−1/(p−1), we

have |Si+1| > 0 if (p−2)!− ip22p−1/(p−1) > 0, that is if i < (p−1)!/p22p−1 =

p!/p32p−1. Therefore X = Xbp!/p32p−1c is a pairwise generating set for Ap of

order bp!/p32p−1c.

10.3 n is odd composite

When n is not prime there are more types of maximal subgroup of An to

consider, and we return to the probabilistic method of previous chapters.
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Let n be an odd composite number and suppose that p is the smallest

non-trivial divisor of n. The subgroups M ∩An, where M is Sn/p o Sp or M is

Sk×Sn−k, where 1 ≤ k < bn/3c is a covering for An: the n-cycles are contained

in the imprimitive maximal subgroups; An does not contain bi-cycles; and an

element of An which is a union of at least three disjoint cycles is contained in

at least one of the intransitive maximal subgroups in this cover. The order of

this covering, and so an upper bound for µ(An), is

n!

(n/p)!pp!
+

∑

1≤k<bn/3c

(
n

k

)
.

For a fixed divisor k of n, a fixed n-cycle g is contained in exactly one

subgroup Sn/k o Sk; the blocks of the subgroup are the orbits of gk on Ω. We

try to find a pairwise generating set X which consists of at most one n-cycle

from each subgroup Sn/p oSp. However, it is possible that some other transitive

maximal subgroup of An (that is, one not included in this covering) contains a

pair of elements of X. As in previous chapters, we find an upper bound for the

probability that this is the case, and then if possible, apply the Lovász Local

lemma to prove that such a set X exists which does generate An pairwise.

First we give five preliminary lemmas.

Lemma 10.3.1. If k is a non-trivial divisor of a positive integer n such that

k <
√

n, then we have

|Sn/k o Sk| > |Sk o Sn/k|.

If k and l are non-trivial divisors of n such that k < l ≤ √
n, then we have

|Sn/k o Sk| > |Sn/l o Sl|.

Proof. Let A = k!k+1[(n/k)(n/k − 1) . . . (k + 1)]. Then

|Sn/k o Sk| = (n/k)!kk!

= [(n/k)(n/k − 1) . . . (k + 1)]kk!kk!

= A [(n/k)(n/k − 1) . . . (k + 1)]k−1,
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and

|Sk o Sn/k| = k!n/k(n/k)!

= k!kk!n/k−kk![(n/k)(n/k − 1) . . . (k + 1)]

= Ak!n/k−k.

Thus
|Sn/k o Sk|
|Sk o Sn/k| =

[(n/k)(n/k − 1) . . . (k + 1)]k−1

k!n/k−k
.

This ratio has (n/k − k)(k − 1) terms in both the numerator and the denom-

inator (we ignore those terms which are equal to 1). Since k <
√

n, all of

the terms in the numerator are greater than k, and all the terms in the de-

nominator are at most k, so the ratio is certainly greater than 1. Therefore

|Sn/k o Sk| > |Sk o Sn/k|.
Now let B = (n/l)!kk!, and note that k < l ≤ √

n ≤ n/l < n/k. Then

|Sn/k o Sk| = (n/k)!kk!

= [(n/k)(n/k − 1) . . . (n/l + 1)]k(n/l)!kk!

= B[(n/k)(n/k − 1) . . . (n/l + 1)]k,

and

|Sn/l o Sl| = (n/l)!ll!

= (n/l)!l−k(n/l)!k[l(l − 1) . . . (k + 1)]k!

= B(n/l)!l−k[l(l − 1) . . . (k + 1)].

Thus
|Sn/k o Sk|
|Sn/l o Sl| =

[(n/k)(n/k − 1) . . . (n/l + 1)]k

(n/l)!l−k[l(l − 1) . . . (k + 1)]
.

This ratio has n(l−k)/l terms in both the numerator and the denominator (we

ignore those terms which are equal to 1). All of the terms in the numerator

are greater than n/l, and all the terms in the denominator are at most n/l, so

the ratio is certainly greater than 1. Therefore |Sn/k o Sk| > |Sn/l o Sl|.
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From this Lemma we know that max k|n
k 6=1,p,n

|Sn/k oSk| is |Sp oSn/p| or |Sn/k0 o
Sk0|, where p is the smallest divisor of n and k0 is the second smallest divisor

of n. We give an example of a value of n for each of these cases, to show that

indeed both do occur.

Example 10.3.1. Let n = 578 = 2 · 172, then p = 2, k0 = 17 and |Sp o Sn/p =

S2 o S289| = 2!289289! > |Sn/k0 o Sk0 = S34 o S17| = 34!1717!.

Let n = 338 = 2 · 132, then p = 2, k0 = 13 and |Sp o Sn/p = S2 o S169| =

2!169169! < |Sn/k0 o Sk0 = S26 o S13| = 26!1313!.

However, when n is odd, and sufficiently large, we have the following.

Lemma 10.3.2. Let n be an odd integer which is the product of at least three

primes (not necessarily all distinct), let p be the smallest divisor of n and let

k0 be the second smallest divisor of n. Then if n is sufficiently large we have

max
k|n

k 6=1,p,n

|Sn/k o Sk| = |Sn/k0 o Sk0|.

Proof. The result holds trivially if n = p3, since then k0 = p2 which is the only

non-trivial divisor of n other than p. So suppose that n 6= p3, and note that

in this case k0 ≤
√

n. By Lemma 2.2.2 we have

|Sn/k o Sk| = (n/k)!k k!

> exp [(n
k

ln n
k
− n

k
+ 1

2
ln n

k
+ 1

2
)k + (k ln k − k + 1

2
ln k + 1

2
)]

= exp[(n ln n− n ln k − n + k
2
ln n− k

2
ln k + k

2
)

+ (k ln k − k + 1
2
ln k + 1

2
)]

= exp [(n ln n− n + 1
2
)− n ln k + (k

2
+ 1

2
) ln k + (1

2
ln n− 1

2
)k]

> exp [n ln n− n + 1
2
− n ln k − 1

2
k].

Since k0 ≤
√

n, we have ln k0 ≤ 1
2
ln n, and

|Sn/k0 o Sk0| > exp [n
2

ln n− n− 1
2

√
n]

= exp [n
2

ln n−O(n)].
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Also by Lemma 2.2.2 we have

|Sp o Sn/p| = p!n/p (n/p)!

< exp [(p ln p− p + 1
2
ln p + 2)n

p
+ (n

p
ln n− n

p
ln p− n

p
+ 1

2
ln n− 1

2
ln p + 2)]

= exp[(1− 1
2p

)n ln p + n
p

ln p + (1
p
− 1)n + 1

2
ln n− 1

2
ln p + 2])

< exp [(1− 1
2p

)n ln p + n
p

ln n + 1
2
ln n + 2].

We first consider the cases p = 3 and p = 5. We have

|S3 o Sn/3| < exp [(1− 1
6
)n ln 3 + n

3
ln n + 1

2
ln n + 2]

= exp [n
3

ln n + O(n)],

and

|S5 o Sn/5| < exp [(1− 1
10

)n ln 5 + n
5

ln n + 1
2
ln n + 2]

= exp [n
5

ln n + O(n)].

So if p = 3 or p = 5 we have |Sn/k0 o Sk0| > |Sp o Sn/p|, and our result holds.

Now note that p ≤ n
1
3 so ln p ≤ 1

3
ln n, and suppose that p ≥ 7. Then

(1− 1
2p

)n ln p + n
p

ln n ≤ 1
3
(1− 1

2p
)n ln n + n

p
ln n

≤ [1
3
(1− 1

2p
) + 1

p
]n ln n

≤ 19
42

n ln n.

Substituting this we have

|Sp o Sn/p| < exp [19
42

n ln n + 1
2
ln n + 2]

= exp [19
42

n ln n + O(n)],

and again, our result holds.

Lemma 10.3.3. Let n be an odd integer which is the product of at least three

primes (not necessarily distinct). Then if n is sufficiently large we have

|Sn/p o Sp|
|Sn/k o Sk| ≥ 2

√
n−3,

where p is the smallest divisor of n and k is any other non-trivial divisor of n.
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Proof. By Lemma 10.3.1 we have

max
k|n

k 6=1,p,n

|Sn/k o Sk| = |Sn/k0 o Sk0|,

where k0 is the second smallest divisor of n. First suppose that n 6= p3, and

note that p < k0 ≤
√

n ≤ n/k0 < n/p, and k0 − p ≥ 2. Let D = (n/k0)!
pp!.

Then

|Sn/p o Sp| = D [(n/p) . . . (n/k0 + 1)]p,

and

|Sk0 o Sn/k0| = D (n/k0)!
k0−p[k0 . . . (p + 1)],

so if k is any other non-trivial divisor of n,

|Sn/p o Sp|
|Sn/k o Sk| ≥

[(n/p) . . . (n/k0 + 1)]p

(n/k0)!k0−p[k0 . . . (p + 1)]
.

This ratio has n(k0− p)/k0 terms in both the numerator and the denominator

(ignoring those terms which are equal to 1). All of the terms in the numerator

are greater than n/k0, and all of the terms in the denominator are at most

n/k0, so the ratio is certainly greater than 1. Furthermore, the number of

terms in the denominator which are less than n/2k0 is at least (n/2k0− 1/2−
1)(k0 − p) ≥ √

n − 3 (there are this many in the factor (n/k0)!
k0−p, and

perhaps more in the factor [k0 . . . (p + 1)].) Therefore the ratio is at least

[(n/k0)/(n/2k0)]
√

n−3 = 2
√

n−3.

Now suppose that n = p3, so in this case k = p2. Then

|Sn/p o Sp|
|Sn/k o Sk| =

|Sp2 o Sp|
|Sp o Sp2| =

p2!p p!

p!p2 p2!
=

[p2 . . . (p + 1)]p−1

p!p2−p
.

(We have cancelled p2! p!p). This ratio has (p2 − p)(p − 1) terms in both the

numerator and the denominator (ignoring those terms which are equal to 1).

All of the terms in the denominator are at most p. All of the terms in the

numerator are greater than p, and at least (p − 1)(p2 − 2p + 1) = (p − 1)3

of these terms are at least 2p. Therefore the ratio is at least 2(p−1)3 which is

greater that 2
√

n−3 when n is sufficiently large.
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Lemma 10.3.4. Let n be a positive integer, and let Π be the set of blocks for

an imprimitive maximal subgroup H of Sn which is Sn/k o Sk, where k is a

non-trivial divisor of n. Let C(Π) be the set of n-cycles in H. Then

|C(Π)| = |Sn/k o Sk|
n

.

Proof. We show that for a fixed n-cycle g and a fixed divisor k of n, the set of

orbits of gk on Ω is the unique set of k blocks for g. We write g = (ω1 . . . ωn)

so then

gk = (ω1ωk+1 . . . ωn−k+1)(ω2ωk+2 . . . ωn−k+2) . . . (ωkω2k . . . ωn).

For 1 ≤ i ≤ k, let Oi be the orbit {ωi+jk : 0 ≤ j < n/k} of gk on Ω. Then

Ogj

i = Oi+j (mod k), so {O1,O2, . . . ,Ok} is a set of k blocks for g.

Conversely, in a set of k blocks for g, suppose that B is the block that

contains ω1. Since g is an n-cycle, it acts transitively on the set of blocks.

Therefore B, Bg, . . . , Bgk−1
are all distinct, and the set of blocks must be

{B, Bg, . . . , Bgk−1}. We have ω2 = ωg
1 ∈ Bg, . . . , ωk = ωgk−1

1 ∈ Bgk−1
, and

it follows that {ωi+jk : 0 ≤ j < n/k} = Bgi−1
for 1 ≤ i ≤ k. That is a set of k

blocks for g is the set of orbits of gk on Ω.

So the n-cycles in H are precisely those n-cycles g for which the orbits

of gk on Ω are the blocks for H. We count the number of such n-cycles

g = (ω1 . . . ωn). We may assume that ω1 = 1 and so the block containing ω1

is the orbit of gk containing 1, we label this block B1. Then ω2 may be an

element of any of the k − 1 remaining blocks - we choose which block and

label it B2. Then ω3 be an element of any of the remaining k − 2 blocks -

we choose which block and label it B3. Continuing in this manner we have

(k − 1)! choices until we have determined which block corresponds to which

orbit. Then there are different possibilities for the order in which the elements

of each block appear in the n-cycle g, as we now explain. The element ω1 = 1

is fixed, but ω2 can be any of the n/k elements from B2. Continuing in this
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manner, for all i such that 2 ≤ i ≤ k, the element ωi can be any of the n/k

elements from Bi, thus we have (n/k)k−1 choices. Then ωk+1 can be any of the

n/k−1 remaining elements from B1 \ω1, and for all i such that 1 ≤ i ≤ k, the

element ωk+i can be any of the n/k−1 remaining elements from Bi \ωi, so we

have a further (n/k − 1)k choices. Similarly ω2k+i can be any of the n/k − 2

remaining elements from Bi \ {ωi, ωk+i}. Continuing in this manner we have

a further (n/k − 2)k . . . 2k1k choices until all the ωi are determined. Thus the

total number of n-cycles in H is

(k − 1)! (n/k)k−1(n/k − 1)k(n/k − 2)k . . . 2k1k = k! (n/k)!k/n.

The proof of Lemma 10.3.4 uses mostly counting arguments, but we now

give an outline of two more group theoretical proofs in addition.

For a fixed non-trivial divisor k of n, each n-cycle is contained in exactly

one imprimitive maximal subgroup Sn/k o Sk (suppose g is the n-cycle, then

it is contained in the subgroup for which the system of blocks is set of orbits

of gk on Ω). Since these subgroups are conjugate in Sn, there are the same

number of n-cycles in each one, so all the n-cycles in Sn are divided equally

between them. Using the orbit-stabiliser theorem and maximality of Sn/k o Sk

in Sn, there are n!/|Sn/k o Sk| imprimitive maximal subgroups Sn/k o Sk in

Sn. The number of n-cycles in Sn is (n − 1)!, so each Sn/k o Sk contains

(n− 1)! / (n!/|Sn/k o Sk|) = |Sn/k o Sk|/n.

Alternatively, we will show that the set of n-cycles in a fixed Sn/k o Sk

is a single conjugacy class. Then since the group stabiliser of an n-cycle is

simply the cyclic group generated by the n-cycle itself, by the orbit-stabiliser

theorem we have |C(Π)| |Zn| = |Sn/k o Sk|. Suppose that g = (ω1 . . . ωn) and

g′ = (ω′1 . . . ω′n) are contained in the same Sn/k oSk. Then the orbits of gk on Ω

(namely {ωi+jk : 0 ≤ j < n/k} for 1 ≤ i ≤ k) are the same as the orbits of g′k

on Ω (namely {ω′i+jk : 0 ≤ j < n/k} for 1 ≤ i ≤ k), and they are the blocks for
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this subgroup. Let h be the permutation which maps ωi 7→ ω′i for 1 ≤ i ≤ n.

Then gh = g′, and h is also in the same Sn/k o Sk, since for 1 ≤ i ≤ k, we have

{ωi+jk : 0 ≤ j < n/k}h = {ω′i+jk : 0 ≤ j < n/k}, that is h preserves the block

system for the subgroup.

Lemma 10.3.5. Let n = pq where p and q are distinct prime integers. Let Π

be a partition of Ω into p subsets of order q, and let C(Π) be set of n-cycles in

Sn which are elements of the imprimitive maximal subset of Sn which is Sq oSp

and for which Π is the set of blocks.

1. There are q!p−1 imprimitive maximal subgroups H of Sn which are per-

mutation isomorphic to Sp o Sq and such that C(Π) ∩H 6= ∅.

2. If H is an imprimitive maximal subgroup H of Sn which is Sp o Sq, and

if C(Π) ∩H 6= ∅, then |C(Π) ∩H| = (p− 1)!(q − 1)!.

Proof. 1. We write Π = {B1, . . . , Bp} and first we show that imprimitive

maximal subgroups H of Sn which are permutation isomorphic to Sp o Sq and

such that C(Π) ∩ H 6= ∅, are precisely those subgroups for which the set of

blocks Φ = {C1, . . . , Cq} has the property

|Bi ∩ Cj| = 1 for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Then we show that there are q!p−1 candidates for Φ.

First let H be an imprimitive maximal subgroup of Sn having a set of

blocks Φ = {C1, . . . , Cq} satisfying the property above. For each pair i, j

such that 1 ≤ i ≤ p and 1 ≤ j ≤ q, let ωi+(j−1)p be the (unique) element

of Bi ∩ Cj, and let g = (ω1 . . . ωn). Then Bi = {ωi+(l−1)p : 1 ≤ l ≤ q},
so Bg

i = {ω(i+1)+(l−1)p (mod n) : 1 ≤ l ≤ q} = Bi+1 (mod p), so Π is a set of

blocks for g. By a similar argument, Φ is also a set of blocks for g. Therefore

g ∈ C(Π) ∩H, and so C(Π) ∩H 6= ∅.
Now let C(Π)∩H 6= ∅, where H is Sp oSq, and Φ = {C1, . . . , Cq} is the set

of blocks for H. Let g = (ω1 . . . ωn) ∈ C(Π)∩H. Then Π is the set of orbits of
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gp on Ω, and Φ is the set of orbits of gq on Ω, and for 1 ≤ i ≤ p, 1 ≤ j ≤ q, we

may assume that Bi is the block containing ωi and Cj is the block containing

ωj. Then Bi = {ωi+(l−1)p : 1 ≤ l ≤ q} and Cj = {ωj+(l−1)q : 1 ≤ l ≤ p}, so

Bi ∩ Cj = {ωm : 1 ≤ m ≤ n and m ≡ i (mod p) and m ≡ j (mod q)}. Then

|Bi ∩ Cj| = 1 by the Chinese remainder theorem.

Now we count the candidates for partitions Φ = {C1, . . . , Cq} of Ω into sub-

sets of order p satisfying the property above. Suppose that B1 = {ω1, . . . , ωq},
and for 1 ≤ j ≤ q let Cj be the subset containing ωj. Then since C1 con-

tains exactly one element from each Bi, there are qp−1 choices for the other

p − 1 elements of C1. Similarly C2 contains exactly one element from each

Bi \ (Bi ∩C1), there are (q − 1)p−1 choices for the other p− 1 elements of C2.

Continuing in this manner we make q!p−1 choices in order to determine all the

elements of the Cj, so there are this many candidates for Φ.

2. Suppose that H is an imprimitive maximal subgroup H of Sn which is SpoSq,

and let g = (ω1 . . . ωn) ∈ C(Π) ∩H. We show that there are (p − 1)!(q − 1)!

possible candidates for g.

The orbits of gp on Ω are the sets in Π, and the orbits of gq on Ω are the

blocks for H. Suppose without loss of generality that ω1 = 1. Let B1 ∈ Π be

the set containing ω1 and let C1 be the block for H containing ω1. Then ω2

may be an element of any of the p − 1 remaining sets of Π \ B1 and any of

the q − 1 remaining blocks of Φ \ C1. Continuing in this manner, there are a

total of (p−1)!(q−1)! choices until the order in which the elements ω1, . . . , ωq

appear in the blocks of Π and Φ is determined. There are no further choices,

since |Bi ∩ Cj| = 1 for all i and j, by the proof of part 1. Moreover any g

determined in this manner is contained in C(Π)∩H, so the number of such g

is (p− 1)!(q − 1)!.

We now give outline of an alternative proof for part 2. of Lemma 10.3.5.
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Let n, p, g and C(Π) be as defined in Lemma 10.3.5, and suppose that H and

H ′ are imprimitive maximal subgroups of Sn that are which are permutation

isomorphic to Sp o Sq and such that C(Π) ∩ H 6= ∅ and C(Π) ∩ H ′ 6= ∅. Let

Φ = {C1, . . . , Cq} and Φ′ = {C ′
1, . . . , C

′
q} be the sets of blocks for H and H ′

respectively, and let g be the permutation defined by g : Bi ∩ Cj 7→ Bi ∩ C ′
j

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Then (C(Π) ∩H)g = C(Π) ∩H ′, so |C(Π) ∩H| =

|C(Π) ∩H ′|. Therefore by Lemma 10.3.4. and Lemma 10.3.5 part 1, we have

|C(Π) ∩H| = |C(Π)|/q!p−1 = (p− 1)!(q − 1)!.

Proof of Theorem 10.1.1 part 3. Let n be an odd composite integer, and let p

be the smallest (prime) non-trivial divisor of n. Define

I ′ = {Π : Π is a partition of Ω into p subsets of order n/p}.

Then |I ′| = n!
(n/p)!pp!

. Let I be a non-empty subset of I ′. For each Π ∈ I, let

C(Π) be the set of n-cycles g such that Π is the set of orbits of gp, and choose

gΠ ∈ C(Π) uniformly and independently at random. Define

X = {gΠ : Π ∈ I},

so we have |X| = |I|. We aim to show that the probability that X generates

An pairwise is non-zero if |X| < 2
√

n

27n2
√

n
.

Define a graph Γ = (V,E) as follows. The vertices of Γ are the two element

subsets of I. For example for each pair Π1, Π2 ∈ I such that Π1 6= Π2, we

have a vertex {Π1, Π2}. A pair v, v′ of vertices are joined by an edge precisely

when v ∩ v′ 6= ∅. Therefore

|V | =
(|I|

2

)
=

(|X|
2

)
,

and each vertex has degree d, where

d = 2(|I| − 2) = 2(|X| − 2).

Let v = {Π1, Π2} be a vertex of Γ. We consider the probability that the

corresponding pair of elements gΠ1 , gΠ2 of X generates a proper subgroup of
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An. Define Ev to be the event that the pair gΠ1 , gΠ2 is contained in a maximal

subgroup of An. Define Eimprim to be the event that the pair gΠ1 , gΠ2 is

contained in an imprimitive maximal subgroup of An, and define Eprim to be

the event that the pair gΠ1 , gΠ2 is contained in a primitive maximal subgroup

of An.

If the pair gΠ1 , gΠ2 is contained in a maximal subgroup of An, it is transitive

because gΠ1 and gΠ2 are n-cycles. Therefore

Ev = Eimprim ∪ Eprim,

and consequently

Pr(Ev) ≤ Pr(Eimprim) + Pr(Eprim).

First we consider Pr(Eimprim). The imprimitive maximal subgroups of An

are M ∩ An, where M is an imprimitive maximal subgroup of Sn. Note that

no pair of elements of X is contained in a subgroup Sn/p o Sp. If n = p2, then

these are the only imprimitive maximal subgroups of Sn, so Pr(Eimprim) = 0.

Suppose that n is the product of at least three primes (not necessarily all

distinct). We have

Pr(Eimprim) ≤
∑

k|n
k 6=1,p,n

∑

H∈[Sn/koSk]

|C(Π1) ∩H|
|C(Π1)|

|C(Π2) ∩H|
|C(Π2)|

≤
∑

k|n
k 6=1,p,n

∑

H∈[Sn/koSk]

|H|
|C(Π1)|

|C(Π2) ∩H|
|C(Π2)|

≤ 1

|C(Π1)| max
k|n

k 6=1,p,n

|Sn/k o Sk|
∑

k|n
k 6=1,p,n

∑

H∈[Sn/koSk]

|C(Π2) ∩H|
|C(Π2)| .

From Lemma 5.2.1 we know that a fixed n-cycle is contained in less than n

conjugates of any subgroup of Sn, so

∑

H∈[Sn/koSk]

|C(Π2) ∩H| < n|C(Π2)|.
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Substituting this we have

Pr(Eimprim) <
1

|C(Π1)| max
k|n

k 6=1,p,n

|Sn/k o Sk|
∑

k|n
k 6=1,p,n

n

<
n
√

n

|C(Π1)| max
k|n

k 6=1,p,n

|Sn/k o Sk|

=
n2
√

n

|Sn/p o Sp| max
k|n

k 6=1,p,n

|Sn/k o Sk|

(this last substitution follows from Lemma 10.3.4). Using the result from

Lemma 10.3.3, if n is sufficiently large then

Pr(Eimprim) <
23n2

√
n

2
√

n

= exp[−n1/2 ln 2 +
5

2
ln n + 3 ln 2].

Now suppose that n = pq, where p and q are distinct primes. We have

Pr(Eimprim) ≤
∑

H∈[SpoSq ]

|C(Π1) ∩H|
|C(Π1)|

|C(Π2) ∩H|
|C(Π2)| .

By Lemma 10.3.5, the number of terms in this sum is certainly at most q!p−1,

and the same lemma gives values for |C(Π1) ∩H| and |C(Π2) ∩H|. Thus

Pr(Eimprim) ≤ q!p−1 [(p− 1)!(q − 1)!]2

|C(Π1)||C(Π2)|

= q!p−1

[
(p− 1)!(q − 1)!n

q!pp!

]2

=
1

q!p−1
.

We examine the reciprocal of this last expression, and we use the lower bound

for a factorial given in Lemma 2.2.2.

q!p−1 ≥ exp

[
(p− 1)

(
q ln q − q +

1

2
ln q +

1

2

)]

= exp
[p

2
(q ln q − q)

]

= exp
[n

2
ln q − n

2

]

> exp
[n

4
ln n− n

2

]
.
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(This last line follows because q >
√

n.) We conclude that if n = pq, where p

and q are distinct primes, and if n is sufficiently large then we have

Pr(Eimprim) < exp
[
−n

4
ln n +

n

2

]
.

Now we consider Pr(Eprim). Let M1, . . . , Mr be a complete set of represen-

tatives of the conjugacy classes of primitive maximal subgroups of An. Then

Pr(Eprim) ≤
r∑

i=1

∑

H∈[Mi]

|C(Π1) ∩H|
|C(Π1)|

|C(Π2) ∩H|
|C(Π2)|

≤
r∑

i=1

∑

H∈[Mi]

|H|
|C(Π1)|

|C(Π2) ∩H|
|C(Π2)|

≤ 1

|C(Π1)|2
n−1

r∑
i=1

∑

H∈[Mi]

|C(Π2) ∩H|
|C(Π2)|

≤ 1

|C(Π1)|2
n−1

r∑
i=1

n.

From [15] we know that the number of primitive (not necessarily maximal)

subgroups of Sn is bounded above by nc1 ln n, so 2nc1 ln n certainly provides an

upper bound for the number of primitive maximal subgroups of An. So we

have r ≤ 2nc1 ln n, and we substitute |C(Π1)| from Lemma 10.3.4. So

Pr(Eprim) <
n

(n/p)!pp!
2n−12n1+c1 ln n

=
n2+c1 ln n2n

(n/p)!pp!
,

when n is sufficiently large. We use the lower bound for factorials given in
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Lemma 2.2.2 again to see that

(n/p)!pp! > exp

[
p

(
n

p
ln n− n

p
ln p− n

p
+

1

2
ln n− 1

2
ln p +

1

2

)

+

(
p ln p− p +

1

2
ln p +

1

2

)]

= exp

[
n ln n− n ln p− n +

p

2
ln n +

p

2
ln p− p

2
+

1

2
ln p +

1

2

]

> exp
[
n ln n− n ln p− n− p

2

]

> exp

[
n

2
ln n− n−

√
n

2

]
.

Therefore if n is sufficiently large,

Pr(Eprim) < exp

[
2 ln n + n ln 2 + c1 ln2 n− n

2
ln n + n +

√
n

2

]

= exp

[
−n

2
ln n + (1 + ln 2)n +

√
n

2
+ c1 ln2 n

]
.

Comparing our upper bounds for Pr(Eimprim) and Pr(Eprim), we see that if

n is sufficiently large, then the largest of these is 23n2√n

2
√

n , that is the upper

bound for Pr(Eimprim) when n is a product of three or more primes. Then

since Pr(Ev) ≤ Pr(Eimprim) + Pr(Eprim), we have

Pr(Ev) <
24n2

√
n

2
√

n
.

Recall that d = 2|X|−4 is the degree of our graph Γ. If Pr(Ev) e(d+1) < 1,

then we can apply the Lovász Local lemma (see Lemma 4.3.1) to conclude that

Pr(
⋂

v∈V Ev) > 0. Now if n is sufficiently large, and if

|X| ≤ 2
√

n

27n2
√

n
,

then certainly

Pr(Ev) e(d + 1) = Pr(Ev) e(2|X| − 3)

< Pr(Ev)2e|X| < 1.

Since
⋂

v∈V Ev is precisely the event that X generates An pairwise, we have

µ(An) ≥ b 2
√

n

27n2
√

n
c if n is sufficiently large.
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10.4 n is even

When n is even, the subgroups M ∩ An, where M is Sn/2 o S2 or M is Sk ×
Sn−k, where k is odd and 1 ≤ k < n/2 is a covering for An: An does not

contain n-cycles; the (n/2, n/2)-cycles, and any element which is the product

of disjoint cycles of even length only, are contained in the imprimitive maximal

subgroups in this covering; any other element is contained in at least one of

the intransitive maximal subgroups in this covering. By Lemma 2.2.1, the

order of this covering, and so an upper bound for µ(An), is

2n−2 if n ≡ 2 (mod 4),
2n−2 + 1

2

(
n

n/2

)
if n ≡ 0 (mod 4).

The result µ(An) = 2n−2 if n is sufficiently large and n ≡ 2 (mod 4) follows

from Theorem 1.1.1, but is included as Theorem 10.1.1 part 4 for completeness.

In the proof of Theorem 10.1.1 part 5, we again use the probabilistic method.

We first give a theorem which classifies maximal subgroups of An, which is an

extension of [2, Theorem 3] and its proof.

Theorem 10.4.1. There exists a constant c, such that for all positive integers

n and for each maximal subgroup M of An, one of the following holds:

1. M = (Sk × Sn−k) ∩ An, 1 ≤ k < n/2;

2. M = (Sn/k o Sk) ∩ An, k ∈ {2, 3, 4};

3. |M | ≤ (
n
5e

)n
ec ln n.

Proof. If M is imprimitive, then M = (Sn/k o Sk) ∩ An (imprimitive action),

where k is some proper divisor of n. If k ≥ 5, then |Sn/k o Sk| ≤ e753
(

n
5e

)n
n

5
2

by Lemma 2.2.3. If M is primitive, then |M | ≤ 2n−1 by [17, Corollary 1.4].

Proof of Theorem 10.1.1 part 5. Let n be an even integer such that n ≥ 50,

and let p be a prime integer such that n/10 ≤ p ≤ n/5 (such a prime exists
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by Bertrand’s postulate - see [10, Theorem 418]). Define

I = {∆ ⊂ Ω : |∆| = p}.

Then |I| =
(

n
p

)
. For each ∆ ∈ I, let C(∆) be the set of bi-cycles which have

orbits ∆ and Ω \ ∆, and choose g∆ ∈ C(∆) uniformly and independently at

random. Define

X = {g∆ : ∆ ∈ I}.

Then |X| = |I| = (
n
p

) ≥ (
n

n/10

)
, and we aim to show that the probability that

X generates An pairwise is non-zero.

Define a graph Γ = (V,E) as follows. The vertices of Γ are the two element

subsets of I. For example for each pair ∆1, ∆2 ∈ I such that ∆1 6= ∆2, we

have a vertex {∆1, ∆2}. A pair v, v′ of vertices are joined by an edge precisely

when v ∩ v′ 6= ∅. Therefore

|V | =
(|I|

2

)
=

(|X|
2

)
,

and each vertex has degree d, where

d = 2(|I| − 2) = 2(|X| − 2).

Let v = {∆1, ∆2} be a vertex of Γ. We consider the probability that the

corresponding pair of elements g∆1 , g∆2 of X generates a proper subgroup of

An. Define Ev to be the event that the pair g∆1 , g∆2 is contained in a maximal

subgroup of An. Let c be the constant used in Theorem 10.4.1, and define E1

to be the event that the pair g∆1 , g∆2 is contained in a maximal subgroup of

An of order at most
(

n
5e

)n
ec ln n. We show that Ev = E1.

Suppose that the pair g∆1 , g∆2 is contained in a maximal subgroup M of

An. We prove that M is in part 3 of Theorem 10.4.1. The bi-cycles g∆1 and

g∆2 are (p, n−p)-cycles where p is prime. An intransitive maximal subgroup of

Sn is determined by a partition Ω into two subsets - the parts of the partition

are the orbits of the group, and the orbits of any element of the group are
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contained in these two orbits. Since g∆1 and g∆2 each have a different pair

of orbits on Ω, M is not intransitive. Suppose M is imprimitive, that is

M = (Sn/k o Sk) ∩ An for some k. Since p is prime, by Lemma 6.3.1 we have

p = n/k (and ∆1 is one of the blocks of M) or p = k (and ∆1 contains exactly

one element from each of the blocks of M). If p = n/k, then k = n/p ≥ 5

since p ≤ n/5. If p = k, then k ≥ 5 since p ≥ n/10 and n ≥ 50. Then by

Lemma 2.2.3 we have |M | ≤ (
n
5e

)n
ec ln n. If M is primitive, then |M | ≤ 2n−1

by [17, Corollary 1.4]. Therefore M is in part 3 of Theorem 10.4.1, and we

conclude that Ev ⊆ E1.

Clearly E1 ⊆ Ev, therefore Ev = E1 and Pr(Ev) = Pr(E1). We now prove

that Pr(E1) = o(2−n), taking the proof from [2, Lemma 8] (modified since

that result applied to odd values of n). Let M1, . . . , Mr be a complete set of

representatives of the conjugacy classes of transitive maximal subgroups of An

of order at most
(

n
5e

)n
ec ln n. Then

Pr(E1) ≤
r∑

i=1

∑

H∈[Mi]

|C(∆1) ∩H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

≤
r∑

i=1

∑

H∈[Mi]

|H|
|C(∆1)|

|C(∆2) ∩H|
|C(∆2)|

≤ 1

|C(∆1)|
( n

5e

)n

ec ln n

r∑
i=1

∑

H∈[Mi]

|C(∆2) ∩H|
|C(∆2)|

≤ 1

|C(∆1)|
( n

5e

)n

ec ln n

r∑
i=1

n.

From [15] we know that the number of primitive (not necessarily maximal)

subgroups of Sn is bounded above by nc1 ln n, and that the number of imprim-

itive maximal subgroups of Sn is no(1). Since a conjugacy class of subgroups

of Sn splits into at most two conjugacy classes of subgroups of An, we have

r ≤ nc2 ln n. We use the result |C(∆1)| ≥ e2
(

n−3
2e

)n−1
from Lemma 5.2.4. Then

Pr(E1) <

(
2e

n− 3

)n−1 ( n

5e

)n

ec ln n−2n1+c2 ln n

= o(2−n).
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So if n is sufficiently large, Pr(Ev) < 1/e(d+1). In that case we apply the

Lovász Local lemma (see Lemma 4.3.1) to conclude that Pr(
⋂

v∈V Ev) > 0.

Since
⋂

v∈V Ev is precisely the event that X generates An pairwise, we have

µ(An) ≥ (
n

n/10

)
.
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Appendix A

A pairwise generating set for S9

This is a list of length 73. The elements generate S9 pairwise. This list is used
in the proof of Lemma 3.5.3.

y:=[(1,2,3,4,5,6)(7,8,9), (1,2,3,6,5,7)(4,9,8), (1,2,4)(3,5,7,9,6,8),
(1,2,5,9,8,4)(3,7,6), (1,2,8)(3,6,5,9,4,7), (1,2,9,8,4,7)(3,5,6),
(1,2,9,3,6,5)(4,7,8), (1,3,2)(4,7,9,8,5,6), (1,3,9,4,8,2)(5,7,6),
(1,3,7,5,9,6)(2,4,8), (1,3,4)(2,6,9,7,5,8), (1,3,5,7,8,4)(2,6,9),
(1,3,5,7,4,9)(2,6,8), (1,3,7,9,2,6)(4,8,5), (1,3,2,7,8,6)(4,5,9),
(1,3,5,8,6,7)(2,9,4), (1,4,5)(2,3,9,8,7,6), (1,4,8,6,7,3)(2,5,9),
(1,4,7,6,8,9)(2,5,3), (1,4,8)(2,5,7,6,3,9), (1,4,2,6,9,5)(3,8,7),
(1,4,7)(2,6,5,8,3,9), (1,5,2)(3,6,7,4,9,8), (1,5,3,7,9,2)(4,6,8),
(1,5,9,3,4,8)(2,6,7), (1,5,6)(2,7,9,4,3,8), (1,5,9,3,6,4)(2,8,7),
(1,5,2,8,4,7)(3,6,9), (1,5,3)(2,9,4,6,7,8), (1,6,2,3,4,8)(5,9,7),
(1,6,8)(2,3,7,9,4,5), (1,6,7)(2,3,8,5,4,9), (1,6,9,4,7,3)(2,5,8),
(1,6,4)(2,5,8,9,7,3), (1,6,2,5,8,4)(3,7,9), (1,6,4,2,7,3)(5,9,8),
(1,6,5,2,8,3)(4,7,9), (1,6,3)(2,9,5,7,4,8), (1,7,8,9,6,2)(3,5,4),
(1,7,2)(3,6,9,8,4,5), (1,7,9,6,5,2)(3,8,4), (1,7,3)(2,4,6,5,9,8),
(1,7,9,8,4,5)(2,6,3), (1,7,5,3,4,6)(2,8,9), (1,8,7,3,5,2)(4,6,9),
(1,8,9,5,2,3)(4,7,6), (1,8,2,4,7,6)(3,5,9), (1,8,3,6,9,7)(2,4,5),
(1,8,5)(2,6,4,9,3,7), (1,8,2,7,4,3)(5,9,6), (1,8,4,6,5,9)(2,7,3),
(1,8,9)(2,7,6,5,3,4), (1,8,5,2,9,6)(3,4,7), (1,8,7)(2,9,5,3,6,4),
(1,9,7,2,4,3)(5,8,6), (1,9,3)(2,5,8,7,6,4), (1,9,3,6,8,4)(2,5,7),
(1,9,4,3,7,8)(2,5,6), (1,9,6)(2,7,5,8,4,3), (1,9,5,2,7,8)(3,6,4),
(1,9,7,5,6,4)(2,8,3), (1,9,7)(2,8,4,3,5,6), (1,2,3,8,4,5)(6,9,7),
(1,4,5,7,2,6)(3,8,9),
(1,2,3,4,5,6,7,8),(2,3,4,5,6,7,8,9),(1,4,3,5,6,7,8,9),
(1,2,4,5,6,7,8,9),(2,1,3,5,6,7,8,9),(2,1,3,4,6,7,8,9),
(1,2,3,4,5,7,8,9),(2,3,1,4,5,6,9,8),(1,2,3,4,5,6,7,9)];
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Appendix B

GAP program: countpartitions

This program is used in the proofs of the following lemmas: 8.3.1, 8.4.1, 8.5.2,
9.6.1, 9.7.1, 9.8.2.

p:=function(x,y)
local f1,f2,indexf2,tally,f3,f,f4;
f1:=x; f2:=y;
# If y is an integer...
if IsInt(f2) then

if f1=0 or f2=0 then
return 1;

elif IsInt(f1/f2) then
return Factorial(f1)/(Factorial(f2)^(f1/f2)*Factorial(f1/f2));

else
return 0;

fi;
fi;
# If y is a list...
if IsList(f2) then

if f1=0 or Sum(f2)=0 then
return 1;

elif f1=Sum(f2) then
# We create f3, a list of the multiplicity of each non-zero
# integer in the list y.
f3:=[];
indexf2:=1;
for f in f2 do

if indexf2=1 then
tally:=1;

else
if f=f2[indexf2-1] then

tally:=tally+1;
else

if f2[indexf2-1]>0 then
Append(f3,[tally]);

fi;
tally:=1;

fi;
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if indexf2=Size(f2) and f>0 then
Append(f3,[tally]);

fi;
fi;
indexf2:=indexf2+1;

od;
# We use f3 to calculate our function.
f4:=Factorial(f1);
for f in f2 do

f4:=f4/Factorial(f);
od;
for f in f3 do

f4:=f4/Factorial(f);
od;
return f4;

else
return 0;

fi;
fi;

end;

op:=function(x,y)
local g1,g2,g3,g;
g1:=x; g2:=y;
# If y is an integer...
if IsInt(g2) then

if g2=0 then
return 1;

elif IsInt(g1/g2) then
return Factorial(g1)/(Factorial(g2)^(g1/g2));

else
return 0;

fi;
fi;
# If y is a list...
if IsList(g2) then

if g1=0 or Sum(g2)=0 then
return 1;

elif g1=Sum(g2) then
g3:=Factorial(g1);
for g in g2 do

g3:=g3/Factorial(g);
od;
return g3;

else
return 0;

fi;
fi;

end;

160



Appendix C

GAP program: medium

This program is used in the proof of Lemma 8.3.1.

# A variable called "test" which is a list of positive integers must be
# defined before this program is run. The program checks all odd integers n
# in this list.
#--------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#--------------------------------------------------------------------------
bad_n:=[];
for n in test do

if IsInt((n-1)/2)=true then
ub:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..(n-1)/2] do # d1 is $|\Delta_1|$

cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [0..d1] do

cd2:=Factorial(d2-1)*Factorial(n-d2-1);
if d1=d2 then max_i:=d1-1; else max_i:=Minimum(d1,d2); fi;
for i in [0..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0; d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then # d1>0

d1resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
if IsInt(d2*k/n) and d2>0 then

d2resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);

fi;
if IsInt(d1/k) then

d1dis:=Factorial(k)*Factorial(d1/k)^k
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*Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));
fi;
if IsInt(d2/k) and d2>0 then

d2dis:=Factorial(k)*Factorial(d2/k)^k
*Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

elif d2=0 then
d2dis:=Factorial(k)*Factorial(n/k)^k/n;

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n) and d2>0

and IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k) and i=d1*d2/n then

h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)
*op(n+i-d1-d2,(n-d2)/k);

prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n) and d2>0

and i=d1*d2/n then
h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)

*op(n+i-d1-d2,(n-d1)/k);
prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do

Append(rest,[((n-d1-d2)/k)+ipart[r]]);
od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
h4:=h4+h;

od; # ends the ipart loop
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prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
od; # ends the d2 loop

od; # ends the d1 loop
ub:=Maximum(imprimprob);

#--------------------------------------------------------------------------
# (GAP does not provide a value for e, so we use a number slightly larger).

target:=1/((2719/1000)*(2^n));
if (ub<2*target/7)=false then

Add(bad_n,n);
fi;

fi;
od;
#--------------------------------------------------------------------------
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Appendix D

GAP program: small

This program is used in the proof of Lemma 8.4.1.

# A variable called "test" which is a list of positive integers
# must be defined before this program is run. The program checks
# all odd integers n in this list.
#--------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#--------------------------------------------------------------------------
bad_n:=[];
for n in test do

if IsInt((n-1)/2)=true then
ub:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..(n-1)/2] do # d1 is $|\Delta_1|$

cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [0..d1] do

cd2:=Factorial(d2-1)*Factorial(n-d2-1);
if d1=d2 then max_i:=d1-1; else max_i:=Minimum(d1,d2); fi;
for i in [0..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0;
d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then # d1>0

d1resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
if IsInt(d2*k/n) and d2>0 then

d2resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);

fi;
if IsInt(d1/k) then
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d1dis:=Factorial(k)*Factorial(d1/k)^k
*Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));

fi;
if IsInt(d2/k) and d2>0 then

d2dis:=Factorial(k)*Factorial(d2/k)^k
*Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

elif d2=0 then
d2dis:=Factorial(k)*Factorial(n/k)^k/n;

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n) and d2>0 and

IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k) and i=d1*d2/n then

h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)
*op(n+i-d1-d2,(n-d2)/k);

prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n) and d2>0

and i=d1*d2/n then
h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)

*op(n+i-d1-d2,(n-d1)/k);
prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do

Append(rest,[((n-d1-d2)/k)+ipart[r]]);
od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
h4:=h4+h;
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od; # ends the ipart loop
prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
od; # ends the d2 loop

od; # ends the d1 loop
ubimprim:=Maximum(imprimprob);

#--------------------------------------------------------------------------
prim:=0;
mscr:=MaximalSubgroupClassReps(SymmetricGroup(n));
i:=2;
while (i-1)<Length(mscr) do

if IsPrimitive(mscr[i],[1..n]) then
prim:=prim+Order(mscr[i]);

fi;
i:=i+1;

od;
ubprim:=n^2*prim/(Factorial((n-1)/2)*Factorial((n-3)/2));
ub:=ubimprim+ubprim;

#--------------------------------------------------------------------------
# We compare ub with target=1/e2^n.
# (GAP does not provide a value for e, so we use a number slightly larger).

target:=1/((2719/1000)*(2^n));
if ub>target then

Add(bad_n,n);
fi;

fi;
od;
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Appendix E

GAP program: s21bicycles

This program is used in the proof of Lemma 8.5.1.

w:=[1..21];primsubgroups:=[];bicycles:=[];714cycles:=[];21cycles:=[];
list7orbits:=[];set7orbits:=[];results:=[];
#-------------------------------------------------------------------------
mscr:=MaximalSubgroupClassReps(SymmetricGroup(w));
for m in mscr do

if IsPrimitive(m,w) then
Add(primsubgroups,m);

fi;
od;
Remove(primsubgroups,1); # Removes A_21 from the list
#-------------------------------------------------------------------------
for m in primsubgroups do

for c in ConjugacyClasses(m) do
cl:=CycleLengths(Representative(c),w);
if (Length(cl)=2 or Length(cl)=1)

and ([m,AsSet(cl)] in bicycles)=false then
Add(bicycles,[m,AsSet(cl)]);

fi;
od;

od;
#-------------------------------------------------------------------------
pgl:=primsubgroups[3];
for c in ConjugacyClasses(pgl) do

cl:=CycleLengths(Representative(c),w);
if Length(cl)=2 then

Append(714cycles,ShallowCopy(AsList(c)));
fi;
if Length(cl)=1 then

Append(21cycles,ShallowCopy(AsList(c)));
fi;

od;
#-------------------------------------------------------------------------
for g in 714cycles do

o:=Orbits(Group(g));
if Length(o[1])=7 then 7orbit:=AsSet(o[1]);
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else 7orbit:=AsSet(o[2]);
fi;
Add(list7orbits,7orbit);

od;
set7orbits:=AsSet(list7orbits);
#-------------------------------------------------------------------------
for orbit1 in set7orbits do

tally:=0;
for orbit2 in list7orbits do

if orbit2=orbit1 then tally:=tally+1; fi;
od;
AddSet(results,tally);

od;
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Appendix F

GAP program: n21

This program is used in the proof of Lemma 8.5.2.

# A variable called "test" which is a list of positive integers
# must be defined before this program is run. The program checks
# all odd integers n in this list.
#--------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#--------------------------------------------------------------------------
bad_n:=[]; ub_imprim:=0; ub_prim:=0;
for n in test do

ub:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..(n-1)/2] do

cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [0..d1] do

if d2=0 then cd2:=Factorial(n-1); else
cd2:=Factorial(d2-1)*Factorial(n-d2-1);

fi;
if d1=d2 then max_i:=d1-1; else max_i:=Minimum(d1,d2); fi;
for i in [0..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0; d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then # d1>0

d1resp:=Factorial(n/k)^k*(k/n)^2*
Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
if IsInt(d2*k/n) and d2>0 then

d2resp:=Factorial(n/k)^k*(k/n)^2*
Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);

fi;
if IsInt(d1/k) then
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d1dis:=Factorial(k)*Factorial(d1/k)^k*
Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));

fi;
if IsInt(d2/k) and d2>0 then

d2dis:=Factorial(k)*Factorial(d2/k)^k*
Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

elif d2=0 then
d2dis:=Factorial(k)*Factorial(n/k)^k/n;

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n) and d2>0 and

IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k) and i=d1*d2/n then

h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)
*op(n+i-d1-d2,(n-d2)/k);

prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n) and d2>0 and

i=d1*d2/n then
h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)

*op(n+i-d1-d2,(n-d1)/k);
prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do

Append(rest,[((n-d1-d2)/k)+ipart[r]]);
od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
h4:=h4+h;
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od; # ends the ipart loop
prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
od; # ends the d2 loop

od; # ends the d1 loop
ub_imprim:=Maximum(imprimprob);

#--------------------------------------------------------------------------
ub_prim:=112/Factorial(5)/Factorial(13);

#--------------------------------------------------------------------------
ub:=ub_imprim+ub_prim;
x:=Binomial(21,0)+Binomial(21,3)+Binomial(21,6)+Binomial(21,9)

+Binomial(21,7);
# (GAP does not provide a value for e, so we use a similar number)
if ub*(2719/1000)*((2*x)-3)>1 then

Add(bad_n,n);
fi;

od;
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Appendix G

GAP program: medium an

This program is used in the proof of Lemma 9.6.1.

# A variable called "test" which is a list of positive integers
# must be defined before this program is run. The program checks
# all n \equiv 2 \pmod{4} in this list.
#--------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#--------------------------------------------------------------------------
bad_n:=[];
for n in test do

if IsInt((n-2)/4)=true then
ub:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..n/2] do

if IsOddInt(d1) then
cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [1..d1] do

if IsOddInt(d2) then
cd2:=Factorial(d2-1)*Factorial(n-d2-1);
if d1=d2 then max_i:=d1-1;

else max_i:=Minimum(d1,d2); fi;
if d1=d2 and d1=n/2 then min_i:=1; else min_i:=0; fi;
for i in [min_i..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0; d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then

d1resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
if IsInt(d2*k/n) then

d2resp:=Factorial(n/k)^k*(k/n)^2
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*Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);
fi;
if IsInt(d1/k) then

d1dis:=Factorial(k)*Factorial(d1/k)^k
*Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));

fi;
if IsInt(d2/k) then

d2dis:=Factorial(k)*Factorial(d2/k)^k
*Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n)

and IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)

*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k) and i=d1*d2/n then

h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)
*op(n+i-d1-d2,(n-d2)/k);

prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n) and i=d1*d2/n then

h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)
*op(n+i-d1-d2,(n-d1)/k);

prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do

Append(rest,[((n-d1-d2)/k)+ipart[r]]);
od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
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h4:=h4+h;
od; # ends the ipart loop
prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
fi;

od; # ends the d2 loop
fi;

od; # ends the d1 loop
ub:=Maximum(imprimprob);

#--------------------------------------------------------------------------
target:=1/((2719/1000)*(2^n));
if (ub<2*target/7)=false then

Add(bad_n,n);
fi;

fi;
od;
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Appendix H

GAP program: small an

This program is used in the proof of Lemma 9.7.1.

# A variable called "test" which is a list of positive integers
# must be defined before this program is run. The program checks
# all n \equiv 2 \pmod{4} in this list.
#-------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#-------------------------------------------------------------------------
bad_n:=[];
for n in test do

if IsInt((n-2)/4)=true then
ub:=0; ub_prim:=0;ub_imprim:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..n/2] do

if IsOddInt(d1) then
cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [1..d1] do

if IsOddInt(d2) then
cd2:=Factorial(d2-1)*Factorial(n-d2-1);
if d1=d2 then max_i:=d1-1;
else max_i:=Minimum(d1,d2); fi;
if d1=d2 and d1=n/2 then min_i:=1;
else min_i:=0; fi;
for i in [min_i..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0; d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then

d1resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
if IsInt(d2*k/n) then
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d2resp:=Factorial(n/k)^k*(k/n)^2*
Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);

fi;
if IsInt(d1/k) then

d1dis:=Factorial(k)*Factorial(d1/k)^k
*Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));

fi;
if IsInt(d2/k) then

d2dis:=Factorial(k)*Factorial(d2/k)^k
*Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n)

and IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)

*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k)

and i=d1*d2/n then
h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)

*op(n+i-d1-d2,(n-d2)/k);
prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n)

and i=d1*d2/n then
h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)

*op(n+i-d1-d2,(n-d1)/k);
prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do

Append(rest,[((n-d1-d2)/k)+ipart[r]]);
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od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
h4:=h4+h;

od; # ends the ipart loop
prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
fi;

od; # ends the d2 loop
fi;

od; # ends the d1 loop
ub_imprim:=Maximum(imprimprob);

#-------------------------------------------------------------------------
prim:=0;
mscr:=MaximalSubgroupClassReps(SymmetricGroup(n));
i:=2;
while (i-1)<Length(mscr) do

if IsPrimitive(mscr[i],[1..n]) then
prim:=prim+Order(mscr[i]);

fi;
i:=i+1;

od;
ub_prim:=n^2*prim/(Factorial(n/2-1))^2;

#--------------------------------------------------------------------------
# We compare ub with target=1/e2^n.
# (GAP does not provide a value for e, so we use a slightly larger number).

ub:=ub_imprim+ub_prim;
target:=1/((2719/1000)*(2^n));
if ub>target then

Add(bad_n,n);
fi;

fi;
od;

177



Appendix I

GAP program: s22bicycles

This program is used in the proof of Lemma 9.8.1.

w:=[1..22];primsubgroups:=[];bicycles:=[];11_11cycles:=[];
list11orbits:=[];set11orbits:=[];results:=[];
#-------------------------------------------------------------------------
mscr:=MaximalSubgroupClassReps(SymmetricGroup(w));
for m in mscr do

if IsPrimitive(m,w) then
Add(primsubgroups,m);

fi;
od;
Remove(primsubgroups,1); # Removes A_22 from the list
#-------------------------------------------------------------------------
for m in primsubgroups do

for c in ConjugacyClasses(m) do
cl:=CycleLengths(Representative(c),w);
if (Length(cl)=2 or Length(cl)=1)

and ([m,AsSet(cl)] in bicycles)=false then
Add(bicycles,[m,AsSet(cl)]);

fi;
od;

od;
#-------------------------------------------------------------------------
m11:=primsubgroups[1];
for c in ConjugacyClasses(m11) do

cl:=CycleLengths(Representative(c),w);
if Length(cl)=2 then

Append(11_11cycles,ShallowCopy(AsList(c)));
fi;

od;
#-------------------------------------------------------------------------
for g in 11_11cycles do

o:=Orbits(Group(g));
if 1 in o[1] then 11orbit:=AsSet(o[1]);

else 11orbit:=AsSet(o[2]);
fi;
Add(list11orbits,11orbit);
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od;
set11orbits:=AsSet(list11orbits);
#-------------------------------------------------------------------------
for orbit1 in set11orbits do

tally:=0;
for orbit2 in list11orbits do

if orbit2=orbit1 then tally:=tally+1; fi;
od;
AddSet(results,tally);

od;
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Appendix J

GAP program: n22 an

This program is used in the proof of Lemma 9.8.2.

# A variable called "test" which is a list of positive integers
# must be defined before this program is run. The program checks
# all n \equiv 2 \pmod{4} in this list.
#-------------------------------------------------------------------------
# First we define a function zeros(y) - which returns the number of zeros
# in the list y
zeros:=function(y) local z1,z2,z; z1:=y; z2:=0; for z in z1 do

if z=0 then z2:=z2+1; fi; od; return z2; end;
#-------------------------------------------------------------------------
test:=[22]; # REMOVE
bad_n:=[];
for n in test do

if IsInt((n-2)/4)=true then
ub:=0; ub_prim:=0;ub_imprim:=0; imprimprob:=[];
divisors:=ShallowCopy(DivisorsInt(n));
Remove(divisors); Remove(divisors,1);
for d1 in [1..n/2] do

if IsOddInt(d1) then
cd1:=Factorial(d1-1)*Factorial(n-d1-1);
for d2 in [1..d1] do

if IsOddInt(d2) then
cd2:=Factorial(d2-1)*Factorial(n-d2-1);
if d1=d2 then max_i:=d1-1;
else max_i:=Minimum(d1,d2); fi;
if d1=d2 and d1=n/2 then min_i:=1;
else min_i:=0; fi;
for i in [min_i..max_i] do

combprob:=0;
for k in divisors do

d1resp:=0; d2resp:=0; d1dis:=0; d2dis:=0;
h1:=0; h2:=0; h3:=0; h4:=0;
if IsInt(d1*k/n) then

d1resp:=Factorial(n/k)^k*(k/n)^2
*Factorial((d1*k/n)-1)*Factorial(k-(d1*k/n)-1);

fi;
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if IsInt(d2*k/n) then
d2resp:=Factorial(n/k)^k*(k/n)^2*
Factorial((d2*k/n)-1)*Factorial(k-(d2*k/n)-1);

fi;
if IsInt(d1/k) then

d1dis:=Factorial(k)*Factorial(d1/k)^k
*Factorial((n/k)-(d1/k))^k*k/(d1*(n-d1));

fi;
if IsInt(d2/k) then

d2dis:=Factorial(k)*Factorial(d2/k)^k
*Factorial((n/k)-(d2/k))^k*k/(d2*(n-d2));

fi;
if IsInt(d1*k/n) and IsInt(d2*k/n)

and IsInt(i*k/n) then
h1:=p(i,n/k)*p(d1-i,n/k)*p(d2-i,n/k)

*p(n+i-d1-d2,n/k);
prob1:=h1*d1resp*d2resp/(cd1*cd2);
combprob:=combprob+prob1;

fi;
if IsInt(d1*k/n) and IsInt(d2/k)

and i=d1*d2/n then
h2:=p(i,d2/k)*op(d1-i,(n-d2)/k)*p(d2-i,d2/k)

*op(n+i-d1-d2,(n-d2)/k);
prob2:=h2*d1resp*d2dis/(cd1*cd2);
combprob:=combprob+prob2;

fi;
if IsInt(d1/k) and IsInt(d2*k/n)

and i=d1*d2/n then
h3:=p(i,d1/k)*op(d2-i,(n-d1)/k)*p(d1-i,d1/k)

*op(n+i-d1-d2,(n-d1)/k);
prob3:=h3*d1dis*d2resp/(cd1*cd2);
combprob:=combprob+prob3;

fi;
if IsInt(d1/k) and IsInt(d2/k) then

m:=Minimum(d1/k,d2/k);
if i=0 then

partitions:=[List([1..k],i->0)];
else

partitions:=RestrictedPartitions(i,[0..m],k);
fi;
for ipart in partitions do

m0:=zeros(ipart);
d1part:=[];
for r in [1..k] do

Append(d1part,[(d1/k)-ipart[r]]);
od;
d2part:=[];
for r in [1..k] do

Append(d2part,[(d2/k)-ipart[r]]);
od;
rest:=[];
for r in [1..k] do
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Append(rest,[((n-d1-d2)/k)+ipart[r]]);
od;
h:=p(i,ipart)*op(d1-i,d1part)*op(d2-i,d2part)

*op(n+i-d1-d2,rest)/Factorial(m0);
h4:=h4+h;

od; # ends the ipart loop
prob4:=h4*d1dis*d2dis/(cd1*cd2);
combprob:=combprob+prob4;

fi;
od; # ends the k loop
Append(imprimprob,[combprob]);

od; # ends the i loop
fi;

od; # ends the d2 loop
fi;

od; # ends the d1 loop
ub_imprim:=Maximum(imprimprob);

#-------------------------------------------------------------------------
ub_prim:=n^2*120/(Factorial(n/2-1))^2;

#--------------------------------------------------------------------------
# We compare ub with target=1/e2^n.
# (GAP does not provide a value for e, so we use a slightly larger number).

ub:=ub_imprim+ub_prim;
x:=Binomial(22,11)/2;
target:=1/((2719/1000)*(2*x-3));
if ub>target then

Add(bad_n,n);
fi;

fi;
od;
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