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Abstract

Regularized Least SquareRL(9 algorithms have the ability to avoid over-fitting
problems and to express solutions as kernel expansions.evowve observe
that the currenRLSalgorithms cannot provide a satisfactory interpretatioene
on the penalty of a constant function. Based on the intuitia a good kernel-
based inductive function should be consistent with bottdtita and the kernel, a
novel learning scheme is proposed. The advantages of thésyszlie in its cor-
responding Representer Theorem, its strong interpretatidity about what kind
of functions should not be penalized, and its promising esguimprovements
shown in a number of experiments. Furthermore, we providetaildd techni-
cal description about heat kernels, which serves as an dgdomthe readers to
apply similar techniques for other kernels. Our work pregic preliminary step
in a new direction to explore the varying consistency betwiaductive functions
and kernels under various distributions.

1 Introduction

Regularized Least SquareRL(S algorithms have been drawing people’s attention sinceg Were
proposed due to their ability to avoid over-fitting problearsl to express solutions as kernel ex-
pansions in terms of the training data [4, 9, 12, 13]. Varioudifications ofRLSare made to
improve its performance either from the viewpoint of maldffi] or in a more generalized form
[7, 11]. However, despite these modifications, problembrstnain. We observe that the previous
RLSrelated work has the following problem:

Over Penalization. For a constant functiorf = ¢, a nonzero term| f||x is penalized in both
RLSandLapRLS[1]. As a result, for a distribution generalized by a nonzeoastant function,
the resulting regression function by bd#h. SandLapRLSis not a constant as illustrated in the left
diagram in Fig. 1. For such situations, there is an over-mateon.

In this work, we aim to provide a new viewpoint for supervisgdsemi-supervised learning prob-
lems. By such a viewpoint we can provide a general conditiotieu which constant functions
should not be penalized. The basic idea is that, if a learaiggrithm can learn an inductive func-
tion f(z) from examples generated by a joint probability distribnt®onX x R, then the learned
function f(x) and the marginaPx represents a new distribution df x R, from which there is a
re-learned functiom(z). The re-learned function should be consistent with thenke@function in
the sense that the expected difference on distributigris small. Because the re-learned function
depends on the underlying kernel, the differeli¢e) — r(x) depends orf (z) and the kernel, and
from this point of view, we name this work.



RLS The Re-learned function and the Residual RLS vs PRLS

N 1 s
1.01 <2 A A | ™ o PRLS—yyzl
0.5 —O—f(X)-r(x)|
+  PRLS-y=0.001
1.001 PRLS-y=0

> 0.99 « - The Ideal Function > of
Labeled Data

0-98§ O RLS-y=0.1
Q&

RLS-y=0.01 9

0.97 RLS-y,=0 &

0.96— ¥ RLS-y=0.005 -1 0. 998
0 U5 1 -2 0 2 0 0.5 1
X X X

Figure 1: lllustration for over penalization. Left diagraithe training set contains 20 points, whose
z is randomly drawn from the intervéd 1], whereas the test set contains another 20 points, and
y is generated by + 0.005¢, ¢ ~ N(0,1). The over penalized constant functions in the term
||f]|x cause the phenomena that smailleran achieve better results. On the other hand, the over-
fitting phenomenon whef = 0 suggests the necessity of the regularization term. Baselese
observations, an appropriate penalization on a functi@xjected. Middle diagram:(x) is very
smooth, andf(z) —r(x) remains the uneven part ¢tx); thereforef (x) —r(x) should be penalized
while f is over penalized iff f|| k. Right diagram: the proposed model has a stable propertyaso t

a large variant ofy results in small changes of the curves, suggesting a rigkitofigenalizing
functions.

2 Background

The RKHS Theory enables us to express solutionsRifSas kernel expansions in terms of the
training data. Here we give a brief description of the cot&epor a complete discussion, see [2].
Let X be a compact domain or manifold,be a Borel measure o, andK : X x X — R be

a Mercer kernel, then there is an associated Hilbert spadé3RK - of functions X — R with
the corresponding nor} - ||x. Hx satisfies thaeproducing propertyi.e., for all f € Hg,
f(z) = (Kl,f) whereK is the functionK (x, -). Moreover, an operatab x can be defined on
Hg as:(Li f)(z) = [y f( (z,y)dv(y), whereﬁz( )is the Hilbert space of square integrable

functions onX Wlth the scalar produdtf, g), = [y f(z)g(z)dv(z).

Given a Mercer kernel and a set of labeled exampiesy,») 1 = 1,...,1), there are two popular
inductive learning algorithmsRkLS[12, 13] and the Nadaraya-Watson Formula [5, 8, 14]. By the
standard Tikhonov regularizatioRLSis a special case of the following functional extreme proble
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whereV is some loss function.

The Classical Representer Theorem states that the solution to this minimization problem esdist
‘Hx and can be written as
Z a; K l‘“ (2)

Such a Representer Theorem is general because it plays artamiprole in bothRLSin the case
whenV (z,y, f) = (y — f(x))?, and SVM in the case whé¥i(z,y, f) = max(0,1 — yf(z)).



The Nadaraya-Watson Formula is based on local weighted averaging, and it comes with @&dlos

form: . .
=1 i=1

The formula has a similar appearance as Eg. (2), but it playsportant role in this paper because
we can write it in an integral form which makes our idea techlty feasible as follows. Lei(x) be

a probability density function oveX, P(z) be the corresponding cumulative distribution function,
andf(x) be an inductive function. We observe thatf, f(x;))(: = 1,2,...,1) are sampled from
the functiony = f(z), then

A Re-learned Function can be expressed as

based onf(x) and P(:z:). From this form, we show two points: (1) H{z) = f(z), thenf(z) is
completely predicted by itself through the Nadaraya-WatSormula, and s¢(z) is considered
to be completely consistent with the kerd€lz, y); if r(z) # f(x), then the differencdl f(x) —

r(x)||x can measure how badlf(z) is consistent with the kerné{ (z, y) and (2) Intuitivelyr(z)
can also be understood as the smoothed functigi{:of through a kernek’. Consequentlyf(x) —
r(x) represents the intrinsically uneven part ffr), which we will penalize. This intuition is
illustrated in the middle diagram in Fig. 1.

Throughout this paper, we assume tfiatk (x, a)dP(c) is a constant, and for simplicity all kernels
are normalized by/ [, K(z,a)dP(«) so thatr(z) = Lk (f). Moreover, we assume thaf is
compact, and the measures specified ag(x).

3 Partially-penalized Regularization

For a given kernelX and an inductive functiotf, L (f) is the prediction function produced y
through the Nadaraya-Watson Formula. Based on Eq. (1)lipewgthe inconsistent parf(z) —
Lk (f) leads to the following Partially-penalized Regularizatgroblem:

J* = arg min fZsz,yu )+ IS = L ()l 5)
To obtain a Representer Theorem, we need one assumption.

Assumption 1 Let f1, fo € Hi. If (fi,fa)x = 0, then||f1 — Lix(f1) + fo — Lx(f)l|% =
11 = L (f)ll5 + [ f2 = L (f2)l% -

It is well-known that the operatal i is compact, self-adjoint, and positive with respectf{ X),
and by the Spectral Theorem [2, 3], its eigenfunctief(s:), e2(z), . . . form an orthogonal basis of
L2(X) and the corresponding eigenvalues > )\, ... are either finitely many that are nonzero,
or there are infinitely many, in which case — 0. Let fi = ). a;e;(z), fo = >, bie;(z), then
f—Li(f1) = 3, aiei(w)~Lr (3, aiei(w) = ¥, azei(z) =33, hiaes (x) = S (1-A)ages (x),
and similarly,fo — Lx(f2) = >_,(1 — A\i)bse;(x). By the discussions in [1], we ha\(el, ej)y =0

if ¢ # j,and(e;, e;), = 1; (es,e5)x = 01if ¢ # j, and(e;, e;) k = 5. If we consider the situation
thata;,b; > 0forall i > 1, then(f;, fo)x =0 |mpI|es thata;b; = Oforall 1 > 1, and consequently

(Fr = Lic(f1), fo — Lic(fa))ic = 52,(1 — Ai)2abi{ei(), e(x))xc = 0. Therefore, under some
constrains, this assumption is a fact. Under this assumpiie have a Representer Theorem.

Theorem 2 Lety;(x) be a basis i, of the operatol — L, i.e.,Ho = {f € Hx|f — Lk (f) =
0}. Under Assumption 1, the minimizer of the optimization [gobin Eq. (5) is

z) = Bip;(x +Zaz (23, (6)
j=1



Proof of the Representer Theorem. Any function f € Hy can be umquely decomposed into a
componentf; in the linear subspace spanned by the kernel functfdngr;, -)}!_,, and a compo-

nentf, orthogonal to it. Thusf = f|, + f1 = Z o; K (x;,-) + f1. By the reproducing property

and the fact thatf, , K (x;,-)) =0for1 <i < l We have

f(xj) < LL'],‘ Zal ml" ) x]?')>+<fJ_7 1’]»' Zaz xz;' > xj,‘)>-

Thus the empirical terms involving the loss function in E5) depend only on the value of the
coefficients{«; }._, and the gram matrix of the kernel function. By Assumption &,vave

! l
If = Le(PllE = |l 2, (@i, o) = Lic( 2 il (@i, Ml + 11f2 = Lee(f0)ll%
1 T
> ||;aiK(wm—LK(_;O@K(%-))H%-
It follows that the minimizer of Eq. (5) must havgf, — LK(fL)H = 0, and therefore admits a

representatiorf* (z) = f, + Xl: o K(x,2) = ZO: B () + Z ;K (z;, 7).
i=1 j=1

3.1 Partially-penalized Regularized L east Squares (PRLS) Algorithm

In this section, we focus our attention in the case What;, v;, f) = (v; — f(z;))?, i.e, the Regu-
larized Least Squares algorithm. In our setting, we aim beeso

min 3" (i — F)) 11~ Lic() k- ™

By the Representer Theorem, the solution to Eq. (7) is ofaHevfing form:

l

= Zﬂjuj(x) +Zo¢iK(xi,x). (8)
j=1 i=1
By the proof of Theorem 2, we havg = i Bipi(z) and (f, Z a; K(z;,x))k = 0. By
j=1

Assumption 1 and the fact thgt belongs to the null space, of the operatoﬂ Lk, we have

17 = L (P = [1f1 = L (POl + 10y @i (20, @) = Lic (i, K (s, 2)) [

= | iy ik (wi,0) = iy il (K (2,0)) | i = o (K = 2K" + K")a,

9)

where o = [ai,aq9,...,q]7, K is the l x | gram matrix K;; = K(z;,x;), K' and
K" are reconstructed x [ matrices K/, = (K(z;,2),Lx(K(vj,r)))x, and K, =
(Li (K (xi,x)), L (K(xj,x))) k. Substituting Eq. (8) and Eq. (9) to the problem in Eq. (7) ave
rive at the following quadratic objective function of thelimensional variable: ando-dimensional

variableg = [31, Ba, ..., Bo)T:
[a, 0%] = argmin — ;i (Y Ka—-93)T(Y - Ka—98) +ya' (K — 2K’ + K")a, (10)

whereW is anl x o matrix ¥;; = p;(x;), andY” = [y1,y2, ...,y . Taking derivatives with respect
to « and g3, since the derivative of the objective function vanishethatminimizer, we obtain

(YK —2K' + K") + K?)a+ K¥3 = KY, ¥1(Y — Ka — ¥3) = 0. (11)

Inthe term||f— Lk (f)]|, f is subtracted by.x (f), and so it partially penalized. For this reason, the
resulting algorithm is referred as Partially-penalizedjflarized Least Squares algorithPRLS.



3.2 ThePLapRLSAlgorithm

The idea in the previous section can also be extendddapdRLSin the manifold regularization
framework [1]. In the manifold setting, the smoothness om dlata adjacency graph should be
considered, and Eq. (5) is modified as

l I+u
* . 2
f* = arg min 7 z; (@i, yis f)+yallf =L (f )HK+(U+Z 5 Z )= f(x;))"Wij, (12)
whereWV;; are edge weights in the data adjacency. Fidimthe graph Laplaciad is given by
L = D—W,whereD is the diagonal matrix wittD;; = Z;ﬂ{ W;;. For this optimization problem,
the result in Theorem 2 can be modified slightly as:

Theorem 3 Under Assumption 1, the minimizer of the optimization obin Eq. (12) admits an
expansion

o l+u
= Zﬁjuj(a:) +ZaiK(mi,m). (13)
j=1 =1

Following Eq. (13), we continue to optimize th€ + wu)-dimensional variablea =

[1,az, ..., ap4]a and theo-dimensional variabled = [31, 52, .., 3,]T. In a similar way as

the previous section arldhpRLSIn [1], « and are determined by the following linear systems:
(KJK + M\ (K —2K' + K") + MoK LK)+ (KJU + M KLY)§ = K.JY, (14)
(W JK — XV LK)+ (U0 — N W' LU)G = U +Y,

whereK, K', K" are the(l +u) x (I +w) Gram matrices over labeled and unlabeled poirits an
(I + w) dimensional label vector given by = [y1,y2,...,4,0,...,0], Jisan(l 4+ u) x (I +u)

diagonal matrix given by = diag(1,1,...,1,0,...,0) with the first/ diagonal entries asand the
rest0, and¥ is an(l + u) x o matrix ¥,; = p1;(x;).

4 Discussions

4.1 Heat Kernelsand the Computation of K’ and K"

In this section we will illustrate the computation &7 and K" in the case of heat kernels. The basic
facts about heat kernels are excerpted from [6], and for materials, see [10].

Given a manifoldM and pointsz andy, the heat kerneK;(z, y) is a special solution to the heat
equation with a special initial condition called the deliadtiond(z —y). More specificallyd(z—y)
describes a unit heat source at positjionith no heat in other positions. Namedfxz — y) = 0 for

x £y andfjof 0(x — y)dx = 1. If we let fo(x,0) = é(x — y), thenK,(x, y) is a solution to the
following differential equation on a manifoldi1:

of
ot
wheref(z, t) is the temperature at locatiarat timet, beginning with an initial distributiorfy (x) at

time zero, and_ is theLaplace-Beltrami operatorEquation (15) describes the heat flow throughout
a geometric manifold with initial conditions.

—Lf =0, f(z,0) = fo(x), (15)

Theorem 4 Let M be a complete Riemannian manifold. Then there exists aifumét <
C>®Ry x M x M), called the heat kernel, which satisfies the following prtpe for
all z,y € M, with Ky(z,y) = K(t,z,y): (1) Ki(z,y) defines a Mercer kernel. (2)
Ki(z,y) = [y Ki—s(w,2)K(z,y)dz for anys > 0. (3) The solution to Eq. (15) ig(x,t) =
Iy Kt (z,y)fo(y)dy. @)1 = [, Ki(z,y)ldy and (5) WhenM = R™, Lf is simplified as

m H"/—?IHZ
at

Zl o 2,and the heat kernel takes the Gaussian RBF féirte, y) = (4nt) "2 e™




K’ andK" can be computed as follows:

Ki; = (K, ), Lx(Ki(zj,7)))x (by definition)

L (Ki(zj,7))|z=z, (bythe reproducing property of a Mercer kerel
= [y Ki(x;,y)Ki(xi,y)dv(y) (by the definition ofL )

= Ky (x;,z;) (by Property 2 in Theorent)

(16)

Based on the fact that k. is self-adjoint, we can similarly deriv 7’3 = Ks(x;,2;). For other
kernels,K’ and K"’ can also be computed.

4.2 What should not be penalized?

From Theorem 2, we know that the functions in the null spiige= {f € Hx|f — Lx(f) =
0} should not be penalized. Although there may be looser assomspthat can guarantee the
validity of the result in Theorem 2, there are two assumptionthis work: X is compact and
Jx K(z,0)dP(a) in Eq. (4) is a constant. Next we discuss the constant funstand the linear
functions.

Should constant functions be penalized? Under the two assumptions, a constant functishould
not be penalized, because= [, cK(z,a)p(a)de/ [y K(z,a)p(a)de, ie.,c € Hy. For heat
kernels, ifP(x) is uniformly distributed on\, then by Property 4 in Theorem 4, K (z, a)dP(c)
is a constant, and soshould not be penalized.

For polynomial kernels, the theory cannot guarantee thadtemt functions should not be penalized
even with a uniform distributio®(x). For example, considering the polynomial keragh-1 in the
interval X = [0 1] and the uniform distribution o, [ (zy+1)dP(y) = fol(:cy+1)dy =x/2+1

is not a constant. As a counter example, we will show in Sedi@ that not penalizing constant
functions in polynomial kernels will result in much worsearacy. The reason for this phenomenon
is that constant functions may not be smooth in the featuaeesproduced by the polynomial kernel

under some distributions. The readers can deduce an ex&onpler) such thatfol(xy + 1)dP(y)
happens to be a constant.

Should linear function o™z be penalized? In the case whetX is a closed ballB, with radius
r when P(z) is uniformly distributed ove3, and whenk is the Gaussian RBF kernel, theh
should not be penalized wheris big enough? Sincer is big enough, we havﬁw -dr =~ fBM -dx

ander Ki(z,y)dy = 1, and soa”z =[5, Ki(z,y)a"ydy ~ [, Ki(z,y)a"ydy ~ Lk (a” ).
Consequentlyja®x — L (a”z)||x will be small enough, and so the linear functishz needs not
be penalized. For other kernels, other spaces, or dthethe conclusion may not be true.

5 Experiments

In this section, we evaluate the proposed algoritfRt SandPLapRLSon a toy dataset (size: 40),
a medium-sized dataset (size: 3,119), and a large-sizadetdsize: 20,000), and provide a counter
example for constant functions on another dataset (si2889, We use the Gaussian RBF kernels in
the first three datasets, and use polynomial kernels togeavicounter example on the last dataset.
Without any prior knowledge about the data distribution,assume that the examples are uniformly
distributed, and so constant functions are considered tn b& for the Gaussian RBF kernel, but
linear functions are not considered to béHp since it is rare for data to be distributed uniformly on
a large ball. The data and results for the toy dataset arsréited in the left diagram and the right
diagram in Fig. 1.

5.1 UCI Dataset Isolet about Spoken Letter Recognition

We follow the same semi-supervised settings as that in [¢ptopareRLSwith PRLS and compare
LapRLSwith PLapRLSon the Isolet database. The dataset contains utteranc&$ slubjects who

!Note that a subset d&" is compact if and only if it is closed and bounded. Sifiteis not bounded, it
is not compact, and so the Representer Theorem cannot be establities the reason why we cannot talk
aboutR™ directly.
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Figure 2: Isolet Experiment

pronounced the name of each letter of the English alphabettwhe speakers were grouped into
5 sets of 30 speakers each. The data of the first 30 speakers #atraining set of 1,560 examples,
and that of the last 29 speakers forms the test set. The tésklistinguish the first 13 letters from
the last 13. To simulate a real-world situation, 30 binaagslfication problems corresponding to 30
splits of the training data where all 52 utterances of onalspewere labeled and all the rest were
left unlabeled. All the algorithms use Gaussian RBF kerrfeds RLSandLapRLS the results were
obtained with widtho = 10, y1 = 0.05, vl = ~v71/(u +1)?> = 0.005. For PRLSandPLapRLS$
the results were obtained with width= 4, v/ = 0.01, andyal = ~v71/(u +1)* = 0.01. In Fig. 2,

we can see that botARLSand PLapRLSmake significant performance improvements over their
corresponding counterparts on both unlabeled data andeest

5.2 UCI Dataset Letter about Printed L etter Recognition

In Dataset Letter, there are 16 features for each exampiethene are 26 classes representing the
upper case printed letters. The first 400 examples were takkenm the training set. The remaining
19,600 examples form the test set. The parameters are sdibasst o = 1, vl = va(I+u) = 0.25,
and~;l/(u+1)? = 0.05. For each of the four algorithnBLS PRLS LapRLS andPLapRLS for
each of the 26 one-versus-all binary classification tasks far each of 10 runs, two examples for
each class were randomly labeled. For each algorithm, thiages over all the 260 one-versus-all
binary classification error rates for unlabeled 398 examplad test set are listed respectively as
follows: (5.79%, 5.23%) foRLS (5.12%, 4.77%) foPRLS (0%, 2.96%) foLapRLS and (0%,
3.15%) for PLapRLSrespectively. From the results, we can see fRBSis improved on both
unlabeled examples and test set. The fact that there is noiarthe total 260 tasks fdrapRLS
andPLapRLSon unlabeled examples suggests that the data is distributedurved manifold. On

a curved manifold, the heat kernels do not take the Gausd&nf&m, and sd®’LapRLSusing the
Gaussian RBF form cannot achieve its best. This is the reabgrwe can observe th&lLapRLS

is slightly worse tharh.apRLSon the test set. This suggests the need for a vast of inviaetigaon
heat kernels on a manifold.

5.3 A Counter Examplein Handwritten Digit Recognition

Note that, polynomial kernels with degree 3 were used on UR&Set in [1], and 2 images for each
class were randomly labeled. We follow the same experinheatting as that in [1]. FORLS if we



use Eq. (2), then the averages of 45 pairwise binary clagidit error rates are 8.83% and 8.41%

for unlabeled 398 images and 8,898 images in the test setatdggly. If constant functions are not

penalized, then we should ugé(x) = Zﬁzl o; K (z;, z) + a, and the corresponding error rates are

9.75% and 9.09% respectively. By this example, we show #atihg constant functions outside

the regularization term is dangerous; however, it is faatarthat we have a theory to guide this in

Section 4: ifX is compact and’, K (z,)dP(«) in Eq. (4) is a constant, then constant functions
should not be penalized.

6 Conclusion

A novel learning scheme is proposed based on a new viewpbp#ralizing the inconsistent part
between inductive functions and kernels. In theoreticakats, we have three important claims: (1)
On a compact domain or manifold, if the denominator in Eq.i4) constant, then there is a new
Representer Theorem; (2) The same conditions become aenifitondition under which constant
functions should not be penalized; and (3) under the samditomms, a function belongs to the
null space if and only if the function should not be penalizEchpirically, we claim that the novel
learning scheme can achieve accuracy improvement in pahegdplications.
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