A look at learning models in Three by Three

Bimatrix games. *

Nicole Marie Bouchez
Royal Holloway
University of London
Egham Surrey TW20 0EX
N.Bouchez@rhul.ac.uk

20 November 2000

Abstract

Experimental data is used to test a variety of learning models using
a model that extends several of the existing learning models. Gener-
ally, the parameter estimate are in the expected ranges. The indi-
vidual agent parameter estimates indicate that there is considerable
individual heterogeneity. Representative agent parameter estimates
adequately predict the mode of the individual parameter estimates
when the data is pooled across matrices. They are not very effective
at predicting the mode of the disaggregated data. There is some ev-
idence in favour of the restriction that the two discounts are equal.
The restrictions that the agents equally weigh actions experienced and
actions not experienced is rejected using both representative agent and
individual agent parameter estimates )thought there is evidence that
subjects put more weight on actions experienced over those not expe-
rienced). We reject the rote learning version of the model in favour of
a (weak) belief learning parameterizations of the model.

*This research was supported in part by NSF Doctoral Dissertation Grant SRB-9617648



1 Introduction

This paper is about learning. We have all experienced learning but learning
actually encompasses some very different things: we learn how to walk as
children, we sit in classrooms and learn Math, and English, we learn how
to drive and we learn how to invest money in the stock market. We learn
when we acquire information, and we learn when we are confronted with a
situation where we don’t know what others are going to do.

We learn the rules of the road, but how we actually drive also depends
on who is on the road. Every time we get into the car, we interact with
the others on the road. A trip to the grocery store at midnight differs from
a trip at rush hour; how you drive on the freeway depends on who else is
on the road with you, if there is a patrol car ahead you may not choose to
speed, if the traffic is going at 75mph you may decide to go with the traffic
flow. If you don’t know ahead to time who is going to be on the road with
you how do you decide how to drive?

This type of learning also happens in sports, and in any situation where
the outcome depends on the actions of others. If you don’t know what they
are going to do ahead of time, what is it that determines your actions?

The models I will be considering have roots in the behavioral school of
psychology that was dominant in the first half of the century. Much of the
psychology research on learning ended in the 1950’s as the behavioral school
fell into disfavour (and was replaced by cognitive approaches). Recently,
there has been renewed interest in learning in psychology including work
by Friedman, Massaro, Kitzis & Cohen (1995) and Kitzis, Kelley, Berg,
Massaro & Friedman (1998).

Out of the pre-1950 tradition came the rote learning model (also known
as reinforcement learning, stimulus response or the law of effect). In these
models, successful strategies are reinforced and are more likely to be used

again. First formalized by Bush & Mosteller (1955); recent work on rein-



forcement models has come from Harley (1981), Cross (1983), Borgers &
Sarin (1996), Roth & Erev (1995),Erev & Roth (1998), and Tang (1996).

Belief models are another type of learning mechanism. Here, players
form beliefs about the state of the world next period and optimally respond
to these beliefs and individuals are allowed to take into account things they
have not personally experienced. Examples of the simplest of this type of
learning include Cournot best response (Cournot 1863) and fictitious play
(Brown 1951). As mentioned previously, in Cournot learning, what hap-
pened last period is assumed to be the best predictor of what will happen
next period. In fictitious play, the opponent’s average play over time is used
as the best predictor of their action next period. Other models of this type
include Cheung & Friedman (1997) and Fudenberg & Levine (1998) which
both allow for the weighting of past periods. Still more sophisticated are
the ”sophisticated belief” models that provide complex models of opponent
behaviour (Selten 1991, Stahl 1993, Stahl 1996, Stahl 19994, Stahl 19995).
Most recently, Camerer & Ho (1998¢) show that the previously competing
simple belief and rote learning models can be nested in their Experience
Weighted Average (EWA) model, a hybrid model with belief and rote learn-
ing as special cases.

Empirical work so far has concentrated on comparing different models
in terms of their fit and predictive ability with experimental data. Camerer
& Ho (1998b) and (1998a) find that their hybrid model performs better
than either of the other two approaches. Erev & Roth (1998) find that
reinforcement models perform better and Feltovich (1998) finds that specific
model performance depends both on the design of the experiment and on
the comparison criterion.

This paper proposes a model that combines insights from Fudenberg &
Levine (1995) and Camerer & Ho (1998¢) which in turn was built on Che-
ung & Friedman (1998) and Roth & Erev (1995). The model is fitted to



data from an experiment conducted at the University of California, Santa
Cruz and the resulting parameter estimates are compared to the models’
predictions. Both representative agent estimations and individual parame-
ter estimations are conducted and their results compared. Three by three
bimatrix games are chosen because they provide a crucial stepping stone
from the two by two bimatrix world to the more flexible multi-choice world.
Ultimately, we want to know which is the better model for a specific class

of problems.

2 The Basic Model

The games 1 will be considering in this paper have payoffs that depend on
both your own action and the action of your opponent (your opponent can
be a single person or you can be playing against a group of opponents).
These games are repeated for a number of periods. Every period you and
your opponent simultaneously make choices among the available actions.
Everyone gets to see the payoff consequences of these actions and you get to
make your next period’s choice!. The payoffs are used to build the propen-
sities for each action which are then used to predict probabilities of play.
The propensity Pf’j of individual i at time t for each action j is:
1 (¢i)(t7T)7ri,j(5ia ¢, s})

i
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The numerator is a discounted sum of the stream of payoffs over time

(1)

and ¢* € (0,1] is the discount. The payoff at time t to action j is 7'('%,]-('). The
denominator normalizes the propensity so that the propensities at different
times can be directly compared. A discount near zero, would indicate a

Cournot type player who only uses payoff information from the last period.

!The model can be applied more generally than this discussion indicates. The structure
of this game is introduced here for illustrative purposes only. This model is analyzed in

Bouchez (2000).



While a discount of ¢ = 1, averages of the payoffs to each choice over time
(this is also known as a Fictitious Play player).

The payoff, or profit, to action j is the jth element of the vector 7% (8%, ct, s%)
and is a function of §%, a weight on the importance of the payoffs to actions
not chosen relative to that chosen. As ¢ approaches 0, actions not chosen
have a smaller and smaller weight (they are no longer used) which corre-
sponds to reinforcement learning. At § = 1 we get pure belief learning and
the propensities are updated with all the payoff information. Intermediate
values of § can be thought of as weak belief learning where you don’t put as
much weight on actions you have not experienced. The action chosen by i
at time t is a vector ¢, (and is assumed to be a pure strategy vector?). The
state faced by i (what i’s opponents are doing) at time t is s¢. Note that in
both ¢t and s, the elements sum to one since they represent distributions
of play over possible actions.

The actual payoff function used in this analysis and in the experiments
is a function of a payoff matrix M (with elements my;). For a three choice
game, M is a 3x3 matrix and the payoff function is:

71-11;,1 (517 C%a 8%)

ﬂ-z(éz’ Cé, Sff) = 71-%,2(61’ cf‘:a S%) (2)

71-é,f}(éia céa S%)

i + 8t + dich st
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(Cli + 62012 + (5ic§)(mnsi + mlgsé + m13sé)

= | (8%} + b+ 8'ch) (mars] + magsh +magsy) | (4)

(6%, + 8tk + c4)(ma18 + maash + ma3sh)

If an individual i had played cb = [1,0, 0]’ period 2 and had been faced

2This assumption is not necessary but simplifies the presentation of the model.




by as state s = [%, %, %]', her payoffs that period would be:
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If § = 1, this model is equivalent to a belief model where all possible payoffs
are weighted equally. If § = 0, we have the reinforcement learning model
where only the action chosen is used in the propensity. Relaxing the assump-
tion that the discount values in the numerator and denominator are equal
makes this model asymptotically equivalent to a continuous time version of
the EWA model’.

The model is a probabilistic model, the probability of an individual

3The EWA model, as presented in Camerer and Ho (1998a,b,c), consists of the obser-
vation equivalent of past experience N(t) and the propensity Pij (t) for action j at time t.

The initial N(0) and P(0) are updated after period 0 so that:
N@)=p-Nt—1)+1,t>1

and,

¢-N(t—1)-P/(t = 1)+ [8+ (L= 8) - I(s], s:(t))] - mi(s], s-i(t))

Pl(t) = N

> 1
This is equivalent to .
N@E) =p" -NO)+>_ p "
r=1
and,
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pNO) + 3 pr '
For 0 < ¢, p < 1, this is asymptotically equivalent to
Sy 8T+ (L= 8) - (], si(t)] - mi(s], s—a(t))
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choosing an action increases as the propensity for that action increases. To
map the propensities on to actions, the Logit probability response function

is used so that the probability of i’s jth action c};,j at time t is:

e/\ by

Prob(c ; = j) = (7)

) eAi-Pti,j
J

where X! is the parameter. A A’ near zero would indicate a misspecified
model while a large ' would indicate that the propensities do a good job of
explain the observed play. Negative A’ values would suggest misspecification,
possibly due to higher order reasoning and anticipatory play in the sense of
Selten (1991).

The Logit has been used widely used in the literature on Learning
(Mookherjee & Sopher 1994, McKelvey & Palfrey 1995, Fudenberg & Levine
1998, Camerer & Ho 1998b). Other mapping functions are possible, but work
by Camerer & Ho (1998¢) has shown little difference between the Logit and
power response functions. Tang (1996) had similar results looking only at
reinforcement models. The Logit has the additional benefit of allowing neg-
ative payoffs.

The Logit is invariant to an additive constant on the propensities. In
order to estimate the model the probabilities are normalized relative to one
of the actions. The use of the Logit assumes the independence of irrelevant
alternatives: that the ratio of the probabilities of any two actions j and k,
P;/ Py, be independent of the remaining probabilities (Green 1993). This
implies that adding an alternative to the model, or changing the charac-
teristics of another alternative that is already included, will not change the
odds between actions j and k (Davidson & Mackinnon 1993), a plausible

constraint in this class of games.



3 Experiment

3.1 Lab procedures

In order to maintain the anonymity of the subjects, the experiments were
conducted at visually isolated computer stations in the UCSC computer
labs. The entire experiment is scripted to maintain consistency between
sessions. The subjects were given written instructions which are then cov-
ered fully by the experiment monitor (see Bouchez (2000) for the exper-
iment instructions). The subjects were told that the other subjects with
whom they interacted do not necessarily have the same matrix. A brief (2
period) scripted practice run was conducted to familiarize the subjects with
the computer interface. During the instruction period, subjects were free to
ask for questions and all non-strategic questions were answered.

The actual experiment was conducted in silence (questions can be di-
rected privately to the experiment monitor and are answered at her dis-
cretion). No strategic questions were answered. Eight to ten runs were
conducted, and each new run was announced and was preceded by a brief
pause. Subjects were not told the number of runs nor the exact ending time
of the experiment to rule out any end of experiment effects.

The points that each subject accumulates over the course of the different
runs were converted to cash payments at the end of the experimental session.
The experiments lasted approximately 2 hours and the subjects averaged $
10/hour (actual payments depended on their accumulated points and varied

from $12 to $24).

3.2 Experiment design

The data used to fit the model comes from an experiment run with groups
of 9 to 20 undergraduates at UCSC. Within each two hour session they

experience between 8 to 10 runs of 12 to 24 periods each. The runs have a



variety of different payoff bimatrices, but in any given session all runs have
the same information environment.

The bimatrices in this analysis were chosen to illustrate cases when Nash
Equilibrium theory was insufficient to explain the experimental evidence.
Two single population games were chosen, one with only a pure strategy

NE at (1,0,0) is from Stahl & Wilson (1994):

1

4
Matrix 2= | 2 8 (8)
3

S O3

10

The other is a Hawk Dove Bourgeois (HDB) game from Cheung & Fried-
man (1997) with both a pure strategy NE (0,0,1) and a mixed strategy NE
(2/3,1/3,0):

-2 8 3
Matrix 4 = 0 4 2|. 9)
-1 6 4

Four two population games are also used, one symmetric from Shubik (1996),

a Shapley shimmy with the only NE at (1/3,1/3,1/3):

0 5 4
Matrix 1=|4 0 5 |. (10)
5 40

The other two are non symmetric and come from Tang (1996). Matrix 17
satisfy’s Selten’s local stability criterion (Selten 1991) for his Anticipatory
learning model and has a mixed NE at (1/6,1/3,1/2),(1/6,1/3,1/2). The
other, Matrix 22, satisfies, Selten’s local instability criterion and also has a

NE at (1/6,1/3,1/2),(1/6,1/3,1/2):

20 8 8
Matrix 17 groupl = 5 20 5 (11)
0 0 20



Matrix 17 group2 = | 16 4 12 (12)
16 10 8
and

4 10 12

Matrix22 groupl = | 15 0 15 (13)
|18 0 14
[0 15 10 |

Matrix22 group2 = | 12 6 12 (14)
| 16 10 8

The runs were conducted under a ”full history” environment where the
subjects are able to see a complete history of every period played during the
run. This history included the individual subject’s choice and payoff each
period, the choice distribution of all players in the opponent population for
each period, and the time average choice distributions from the start of the
run.

”Mean matching,”

where each individual is matched against the average
action of all other players?, is used throughout all runs. Although some
information may be lost by not varying the matching protocol, Cheung
and Friedman (1998) show no great difference between mean matching and
randomly pairing participants beyond a slightly more rapid convergence.

A variety of other treatment variables are also available but not ex-
ploited: the number of subjects, sub-population versus full population, the
experience of the players, and the number of periods played. In past work

(Friedman 1996, Cheung & Friedman 1998), the number of subjects does

not seem to make a great deal of difference unless very small populations

“Note that since the payoff function used in this work is linear, mean matching is
equivalent to playing against each of the people in the opponent populations and receiving

the average payoff.



are chosen. The number here (9-20 subjects per session) should be adequate
for avoiding these problems. The number of subjects varies for practical,
subject recruitment reasons, as well as because in asymmetric matrix treat-
ments it is important to have sufficiently large half populations.

Since the interest in this study concerns ”intermediate term” learning,
the number of periods in most runs ranged between 10 and 20. Most runs
were 12 periods. In one of the games (matrix 2), however, behaviour did
not appear to be settling down, and subsequent runs were set at 24 periods.
The majority of the players used in these experiments were inexperienced.
They had never seen nor participated in a bimatrix experiment before.

The principal treatment variable is the payoff matrix. Six matrices are
used in this analysis. Two of the matrices were single group matrices where
the players are all in one group. The other four matrices were run under
opposing group treatments, one symmetric and the other three asymmetric.
Details of treatments and the individual experiment runs can be found in

Bouchez (2000).

4 Overview of the experimental data

There are a minimum of 14 (and a maximum of 24) runs for each of the
matrices used in this paper. Appendix A provides graphs of selected two
period time averages of play. There is some variation between maftrices,
between groups of experimental subjects and between runs with the same
subjects. There are however quite a few similarities between runs of the

same matrix.

4.1 Starting points

Figures 1-4 show the first period averages of play for each matrix. The

mean (and standard deviation) for each of the matrices are listed in Table 1

10



Table 1: First period of play averages -Single population Games (with stan-
dard deviations) *indicates that the mean is significantly different from ran-
dom play (1/3) at the 10% level. ** at the 5% and *** at the 1% level)

Matrix | Runs | Top Action % | Middle Action % | Bottom Action %
2 18 0.22%%* 0.24*** 0.53***
(0.14) (0.14) (0.19)
4 14 0.29 0.29 0.42*
(0.18) (0.16) (0.17)

and Table 2. There is substantial variability between the starting points of
different matrices and many are significantly different from random play (a
probability of 1/3 on each of the three possible actions). The variation in
starting points is of importance when deciding how to treat initial periods
of play (the model does not attempt to fit the initial periods). This will be
taken up again in the methods section (5.1) below. The starting points for
matrix 2 are fairly dispersed but none are near the pure strategy NE (1,0,0).
The first period actions for Matrix 4 diverge from the pure and the mixed

strategy NE.

4.2 End points

Figures 5-8 show the last two period averages of play and Nash equilibria
for each matrix. The graphs for Matrix 2 and Matrix 4 have a grouping
of final period actions near (but not at) the single periods pure strategy
Nash equilibrium. There is, however, no evidence that the pure strategy NE
would be reached if the number of periods were extended. The number of
periods of play was increased for Matrix 2 (to 24 period runs) and there was
no substantial difference in observed behaviour (see the two period averaged
figures in Appendix A). Runs in excess of 24 period were not attempted.

The end points for Matrices 1,7,17 and 22 are much more diverse.

11



Table 2: First period of play averages -Two population Games (with stan-
dard deviations) *indicates that the mean is significantly different from 1/3
at the 10% level. ** at the 5% and *** at the 1% level)

Matrix | Group | Runs | Top Action % | Middle Action % | Bottom Action %
1 1 23 0.20%** 0.37 0.43*
(0.20) (0.20) (0.23)
1 2 23 0.26** 0.34 0.41*
(0.17) (0.22) (0.23)
7 1 21 0.44** 0.35 0.21%**
(0.20) (0.21) (0.19)
7 2 21 0.41 0.23*** 0.36
(0.25) (0.16) (0.24)
17 1 24 0.52%** 0.16*** 0.32
(0.19) (0.14) (0.20)
17 2 24 0.19%** 0.30 0.50%**
(0.17) (0.16) (0.19)
22 1 18 0.28 0.20*** 0.52%**
(0.19) (0.16) (0.20)
22 2 18 0.25%* 0.21%** 0.53%**
(0.15) (0.15) (0.16)

12




Figure 1: First period population averages of play for matrix 2 (single pop-

ulation). The points are labelled with the experiment and run numbers.
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Figure 2: First period population averages of play for matrix 4 (single pop-

ulation)
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Figure 3: First period population averages of play for matrices 1 and 7

(opposing groups). The points are labelled with the experiment and run

numbers.
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Figure 4: First period population averages of play for matrices 17 and 22

(opposing groups). The points are labelled with the experiment and run

numbers.
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Figure 5: Last two period averages of play for matrix 2 (single population).
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Figure 6: Last two period averages of play for matrix 4 (single population).
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Figure 7: Last two period averages of play for matrices 1 and 7 (opposing

groups).
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Figure 8: Last two period averages of play for matrices 17 and 22 (opposing

groups).
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5 Fitting the models

The model (Equation 1) is fitted using a Maximum likelihood estimation
where the log likelihood function is

InL = Z Z cf;,j lnProb(cf;,j =7) (15)

t j=T,M,B

and Prob(cf;, ; = J) is the probability of i having chosen the jth pure strategy
action (cf;,j) at time t (see Equation 7 for the logit probability mapping).
The probability of play depends on three parameters in this specification:
a discount ¢, a logit parameter A and ¢, the weight of actions not chosen
relative to actions chosen. A more general version of this model which is
asymptotically equivalent to the Camerer & Ho (1998a) has two different

discount rates with p substituted for ¢ in the denominator.

5.1 Methods

The Maximum likelihood equation was estimated using the CML proce-
dure of GAUSS. The non-linear Broyden, Fletcher, Goldfarb and Shanno
(BFGS) method is used to calculate the asymptotic covariance matrix of
the parameter estimates as well as to calculate the Hessian (second deriva-
tive) approximations to be used during parameter iterations. This method
produced virtually identical results to Newton’s method (Bouchez 2000).
BFGS is generally faster than Newton’s method, though requiring more it-
erations. The line search method used is the polynomial or cubic fitting
method STEPBT.

The parameter estimates are robust to starting points ®. Thus, the start-

ing points for all the estimated were set at (¢, \! *) = (0.5,1.5,0.5). All of

®This was determined in both the representative agent and the individual parameter
estimates by varying the starting values. In the individual parameter estimates, the start-
ing points had little to no effect. In the representative agent estimations, poorly chosen
starting points can lead to non-convergence so non-convergent estimates are restarted at

a different starting point.
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Table 3: Convergence of Individual Parameter Estimates for the 3 parameter
model (with initial propensities set the matrices’ mean choice in the first
period and the parameters are not estimated first period.)

Matrix | Group | # Indiv. | # Non Conv. | # At bounds | Estimable Individuals
2 - 54 5 0 49
4 - 32 0 0 32
1 - 74 0 1 73
7 1 41 0 1 40
7 2 41 2 5 36
17 1 44 3 6 38
17 2 44 2 3 40
22 1 49 2 5 44
22 2 49 2 5 42
| Total | | 428 | 16 \ 25 \ 394

the estimates were loosely bounded (between 50 and -50 or 100 and -100)
and non convergent estimates and estimates at the bounds were excluded.
This procedure affected only one of the representative agent parameter es-
timations. This was more of an issue in individual parameter estimations
where approximately 97% of the data was estimable (see Table 3°).

Since I am not estimating the initial propensities (F), the issue of start-
ing points becomes important. Cheung & Friedman (1998) solve the problem
by not estimating the first period (which is very effective with low ¢ values).
I tried using all periods as well dropping the first and first two periods. Since
the loss of power when dropping two periods is too substantial and leads
to increased non-convergence, the estimates presented here have only one
period of data dropped”. The fewer initial periods dropped, the larger the
potential errors from poorly specified initial propensities. To minimize this

problem, initial propensities were set at the appropriate matrices’ first period

5Please note that an individual estimate could have been non-convergent and have

parameters at the bounds as well.
"Individual parameter estimate distributions do not change much as the number of

periods dropped is varied.
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averages of play. This is not a problem for Camerer and Ho (1998a,1998b,
and 1998c) since they explicitly estimate the initial propensities as part of

their estimation.

5.2 Results
5.2.1 Representative Agent Estimations

The initial step of the analysis is to estimate representative agents for each
matrix. This has been the predominant estimation method (Camerer &
Ho 1998c¢) but constrains the parameters to be the same across individuals,
something that is not suggested by theory or empirics.

Table 4 show the representative agent estimations by matrix. Note that
for asymmetric matrices, the two matrices have been estimated separately.
All of the estimates were convergent and were the same under BFGS and
Newton’s method (with the exception that 17-1 was at the bounds under
BFGS and thus did not converge).

With the exception of matrix 17-1’s negative ¢ estimate, all of the pa-
rameter estimates are in the expected ranges. The discounts ¢ are between
-0.09 and 0.53, the d estimates (the weight of actions not chosen relative to
those chosen) are between 0.61 and 0.81, and the X estimates are between
0.17 and 1.58. Using weak link games to estimate their model, Camerer &

Ho (1998b) estimated 0.525 < ¢ < .5828 and § = 0.652.

5.2.2 Individual Parameter Estimates

Individual parameter estimates were estimated in the same way as done in
the representative agent model (e.g. initial propensities set at the matrix’
first period averages of play and the first period data were not estimated).

Only individuals who have a minimum of 36 periods of data are used (this

8The actual estimate of ¢ depends on the model estimated.
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Table 4: Representative Agent Parameter estimates (and standard devia-
tion) by Matrix. Estimates are the same using Newton’s method or BFGS
except for 17-1 which does not converge under BFGS.

Matrix | Periods | ¢ A ) LogL LogL/# periods

Pooled | 16020 0.24 | 0.45 | 0.70 | -12900.30 .8053
(0.00) | (0.00) | (0.00)

2 1932 0.38 | 1.20 | 0.79 | -1079.42 .b587
(0.00) | (0.00) | (0.00)

4 1152 0.53 | 1.58 | 0.63 -656.57 .5699
(0.01) | (0.01) | (0.00)

1 3832 0.23 | 1.01 | 0.61 | -2262.38 .5904
(0.00) | (0.00) | (0.00)

7-1 1560 0.09 | 0.44 | 0.62 | -1285.56 .8241
(0.00) | (0.00) | (0.00)

7-2 1560 0.22 | 0.565 | 0.66 | -1268.83 .8133
(0.00) | (0.00) | (0.00)

17-1 1728 -0.09 | 0.17 | 0.65 | -1539.16 .8907
(0.00) | (0.00) | (0.00)

17-2 1728 0.10 | 0.35 | 0.81 | -1407.71 .8146
(0.00) | (0.00) | (0.00)

22-1 1764 0.28 | 0.29 | 0.64 | -1444.68 .8190
(0.00) | (0.00) | (0.00)

22-2 1764 0.17 | 0.34 | 0.70 | -1390.56 .7883
(0.00) | (0.00) | (0.00)
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corresponds to three runs of 12 periods or two runs of 24 periods). Indi-
vidual parameter distributions allow the parameter values to be tested for
model miss-specification, but more importantly, they attempt to answer the
questions of how much individual variation there is.

Figures 9-11 show the kernel density plots for the individual parame-
ter estimates by matrix while Figures 12-14 show the individual parameter
estimates pooled across matrices. Table 5 provides the summary statistics.
The kernel density estimates use the GAUSS library for kernel estimation by
Konning (1996). The Epanechnikov (1969) kernel was used in the analysis®.

The § parameter distributions (Figures 9 and 12) are primarily between
0 and 1, with the modes between 0.69 and 0.93. It is, however, interesting
to note that several of the matrices (1, and 22 for both groups) have some

weight at or near zero, as is the case when pooled across matrices (figure

9The kernel density estimates use the GAUSS library for kernel estimation by Konning
(1996) and implement the methods described by Hérdle (1990) and Silverman (1986). The
Epanechnikov kernel was used; Gaussian, rectangular and triangular kernels were checked
but did not alter the results. This is consistent with Wand & Jones (1995) who show
that most unimodal densities perform about the same when used as kernel densities. It
is however important to note that as the degree of skewness, kurtosis and multimodality

increase, the estimation becomes more difficult. The Epanechnikov kernel is defined as:

3 ]. 2
K =—(1-= 1 1
(u) 4\/5( 5“) lul<vE (16)
with its derivative
3
K@u=—"—ul 17
(u) 103 " tuisve (17)

where u is the vector of data points and 1,5 is an indicator which is equal to 1 when
|u] < v/5 and 0 when not . It is the most efficient kernel when compared to the optimal
kernel, the asymptotic mean integrated squared error-AMISE (Wand and Jones 1995).
The bandwidth was calculated following Silverman (1986) so that the bandwidth h is:

_ 0.9 min(s, IQR/1.34)
- nl/5

h

(18)

with s the sample standard deviation of the data points and IQR the inter-quartile range

of the data points.
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Figure 9: The distribution of individual subject estimates of the § parameter.
The dashed vertical lines are at zero and one. The solid line indicates the

representative agent estimate.
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Figure 10: The distribution of individual subject estimates of the Logit
parameter (A). The dashed vertical lines are at zero and one. The solid line

indicates the representative agent estimate.
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Figure 11: The distribution of individual subject estimates of the discount
parameter (¢). The dashed vertical lines are at zero and one. The solid line

indicates the representative agent estimate.
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Figure 12: Individual subject § parameter estimates pooled across matrices.
The dashed vertical lines are at zero and one. The solid line is at the

representative agent parameter estimate.
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Figure 13: Individual subject A parameter estimates pooled across matrices.
The dashed vertical lines are at zero and one. The solid line is at the

representative agent parameter estimate.
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Figure 14: Individual subject ¢ parameter estimates pooled across matrices.
The dashed vertical lines are at zero and one. The solid line is at the

representative agent parameter estimate.
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14). Since belief learning has implicitly assumed a § = 1, T will be testing
this constraint in the next section.

The parameter estimates for the logit parameter A (Figures 10 and 13)
are very dispersed in some matrices (2,4,1,17-2,22-2) and less so in others
(7,17-1,22-1). The mass of the distributions is mostly above zero, which is
consistent with the model. The value of A depends strongly on the matrix
and is related to the scale of the matrix (i.e.: scaling up the payoff matrix
up would lower ), and thus the distribution of parameters pooled across
matrices (Figure 13) provides little information beyond there being little
weight below zero.

The discount parameter ¢ estimates (Figures 11 and 14) are very dis-
persed in all of the matrices, and have much of their distributions below zero.
It is important to note that this is not unexpected given the high values of
0. The simulations in Bouchez (2000) clearly indicate that values of § close
to 1 lead to more dispersed ¢ parameter estimates. It is also important to
note that the matrices with the most period to period movement (matrices
7, 17, 22 -see figures in Appendix A) have the lowest discounts. In most of
the matrices, there is very little weight above one. Players with discounts
greater than one can be interpreted as imprintable: early periods have a
greater impact than subsequent periods. The pooled parameter estimates
have a mode near 0.1, but here again have a wide distribution.

Comparing the individual to the representative agent parameter esti-
mates, the latter are fairly good at identifying the mode of the individual
estimates. This is especially the case with the pooled estimates (figures 4-
6). It may be rational to ”forget” past periods when faced with a rapidly
changing environment. When looking at the parameter estimates by matrix,
there is a little more variability. The representative agent estimates of A are
very close to the mode of the distributions, as are the estimates of §. The ¢

estimates are more dispersed, and especially in the case of matrix 7-1, the
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representative agent estimation is not a very good indicator of the mode of

the distribution.

6 Hypothesis tests

6.1 The discount parameters

The EWA model proposed by Camerer & Ho (1998a) has two different dis-
counts (which have been collapsed into one in the model presented here).
The discount p is separated from ¢ in the denominator of the model so that

i tT:I (¢i)(t_7—)7ri,j (5i7 Ci’ S’ZT)

b (o)

in the discrete version of the model'?. To test the 3 parameter restriction, I

(19)

use the likelihood ratio test. The estimates of the 4 parameter model were
done in the same way as the estimates for the three parameter model with
initial propensities set to the first period averages of play and the first period
is excluded from the estimates. There are more cases of non-convergence
than before ~40% versus 8% and non-estimable individuals!! are excluded.

The likelihood ratio test statistic LR under the null hypothesis that the

constraint, is true is
LR=2(InL, —InL;) ~ X2, (20)

where In L, and InL, are the unrestricted and restricted log likelihoods,
and the degrees of freedom k is equal to the number of restrictions (1 in this
case).

Using the representative agent data (table 6), we fail to reject the re-

striction that the two discounts are equal at the 10% confidence level in all

10The EWA model also includes initial propensities which are also estimated so this

model is still not identical to Camerer & Ho (1998a) but is asymptotically equivalent.
"1ndividuals with non-convergent estimates or estimates at the bounds in either the 3

or 4 parameter models.
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Table 5: Individual Parameter estimates summary statistics for the 3 pa-
rameter model (with initial propensities set at the first period averages of
play and not estimating the first period)

‘ Matrix ‘ ‘ 103 ‘ A ‘ 0 ‘
2 Mean 0.41 | 241 | 1.54

(SD) | (0.57) | (2.97) | (4.73)
Median | 0.46 | 1.34 | 0.89
Mode | 0.56 | 0.98 | 0.92

4 Mean 1.08 | 2.47 | 0.65
(SD) | (4.26) | (1.91) | (0.39)
Median | 0.38 | 1.97 | 0.71
Mode | 0.39 | 1.74 | 0.72

1 Mean 0.26 | 2.63 | 0.61
(SD) | (0.65) | (7.57) | (0.38)
Median | 0.16 | 1.28 | 0.72
Mode 0.14 | 1.05 | 0.77

17-1 Mean | 0.54 | 0.02 | 0.70
(SD) | (3.49) | (1.00) | (0.79)
Median | -0.07 | 0.23 | 0.66
Mode | -0.17 | 0.23 | 0.69
17-2 Mean | 1.18 | 2.33 | 0.88
(SD) | (3.34) | (8.49) | (0.57)
Median | 0.45 | 0.66 | 0.91
Mode | 0.27 | 0.52 | 0.93

7-1 Mean 0.26 | 0.66 | 0.55

(SD) | (0.63) | (0.52) | (0.69)
Median | 0.16 | 0.55 | 0.66
Mode 0.06 | 0.53 | 0.69

7-2 Mean 0.98 | 1.01 | 0.82
(SD) | (3.24) | (1.04) | (0.41)
Median | 0.26 | 0.73 | 0.79
Mode | 0.26 | 0.68 | 0.72

22-1 Mean | 0.99 | 0.62 | 0.80
(SD) | (1.94) | (1.28) | (1.19)
Median | 0.25 | 0.40 | 0.73
Mode | 0.24 | 0.34 | 0.72
22-2 Mean | 1.39 | 0.84 | 0.69
(SD) | (6.27) | (0.87) | (0.47)
Median | 0.27 | 0.61 | 0.77
Mode | 0.10 | 0.45 | 0.80
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Table 6: Testing ¢ = p with representative agent parameter estimates and
likelihood ratio tests. The 4 parameter model estimates failed to converge in
some cases using BFGS (indicated by *) so those estimates were done using
Newton’s method (the other results were same using BFGS or Newton’s

method).

Matrix InL, InL, x? Stat.
(p=p) | (6#p) | (p-value)
Pooled | -12900.39 | -12892.57 | 15.63
(0.00)

2 -1079.42 | -1072.39 | 14.06
(0.00)

4 -656.57 | -655.32 2.50
(0.11)

1 -2262.38 | -2260.03 4.69
(0.03)

7-1 -1285.56 | -1285.53 0.07
(0.79)

7-2 -1268.83 | -1268.05 1.55
(0.21)

17-1 | -1539.16* | -1539.07 0.18
(0.67)

17-2 | -1407.71 | -1407.53* | 0.37
(0.53)

22-1 | -1444.68 | -1443.9% 1.58
(0.21)

22-2 | -1390.56 | -1390.21* | 0.71
(0.40)
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Table 7: Testing if 6 = 1. Representative agent likelihood ratio tests.

Matrix InL, InL, x? Stat.
(p=1) | (p#1) | (p-value)
Pooled | -14103.76 | -12900.39 | 2406.74
(0.00)

2 -1194.46 | -1079.42 | 230.09
(0.00)

4 -755.32 -656.57 | 197.49
(0.00)

1 -2720.28 | -2262.38 | 915.81
(0.00)

7-1 -1398.01 | -1285.56 | 224.90
(0.00)

7-2 -1388.20 | -1268.83 | 238.74
(0.00)

17-1 | -1604.80 | -1539.16 | 131.28
(0.00)

17-2 | -1485.13 | -1407.71 | 154.84
(0.00)

22-1 | -1631.14 | -1444.68 | 372.91
(0.00)

22-2 | -1562.76 | -1390.56 | 344.38
(0.00)

but two cases (Matrices 1 and 2) the results are not strongly in favour of the
alternate, especially in the case of the asymmetric two population matrices
(matrices 7, 17, and 22).

When looking at individual parameter estimates, the conclusions are sim-
ilar. Of 214 estimable individuals, we fail to reject the null hypothesis that
the two discounts are equal (at the 10% level) in 29 individuals (13% of the
estimable individuals) while at the 25% level that climbs to 80 individuals

(37%). There is little or not loss in assuming p = ¢.

6.2 Testing 0

The other restriction tested is whether § = 1. This is the assumption of

pure belief learning models (as opposed to rote models where § = 0 ~which
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is clearly rejected). From the parameter distributions (Figures 9, 12 and
Table 5) the modes of the distributions are between 0.69 and 0.93, with
medians between 0.66 and 0.91.

In the case of the representative agent estimations (Table 7), there is
no evidence to support the restriction § = 1. This is similar when testing
the individual parameter estimates where we fail to reject the null at the
10% level in 3 out of 245 individuals (1% of estimable individuals). These
conclusions are not consistent with the parameter distributions (Figure 9)
which show ¢ values near one. I conclude that § = 1 is a decent first

approximation in many cases, but it does not hold strictly.

7 Conclusion

Overall, the parameter estimates are in the expected ranges in both the
representative agent estimations and the individual estimations. The repre-
sentative agent parameter estimates are fairly good at estimating the mode
of the individual estimates in many (but not all) cases.

Mixed evidence is found when testing ¢ = p. Using representative agent
data we reject the hypothesis at the 20% level. Using individual parameter
data, the evidence is less clear and mildly in favour of the restriction (we
find evidence in favour of ¢ = p in 13% of the estimates at the 10% level
and in 37% of the estimates at the 25% level).

Both representative and individual agent estimates agree. The hypothe-
sis tests reject the restriction that § = 1. The pure rote learning restriction
that 0 = 0 is even more clearly rejected and the § parameters are generally
around 0.6-0.7. This means that we find strong evidence that individuals
are closer to belief learners than rote learners and § = 1 is a decent first
approximation in many cases.

The discrepancy between the two types of estimates in the hypothesis

tests and the dispersion of the parameter estimates clearly point to the
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value of individual parameter estimates despite their data requirements.
Representative agent estimates do not do a very good job testing restrictions

on the model.
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A Experimental Data - Selected Figures

The following are the graphs of the subject choices over time (with two
period smoothing) for some of the experiments. Two population games are
shown by population.
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A.2 Matrix 4 -Single population
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A.3 Matrix 1 -Two population
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A.4 Matrix 7 -Two population
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A.5 Matrix 17 -Two population
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A.6 Matrix 22 -Two population
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