
ar
X

iv
:0

90
5.

16
73

v1
  [

m
at

h.
ST

] 
 1

1 
M

ay
 2

00
9 Prequential probability:

game-theoretic = measure theoretic

Vladimir Vovk

$25

$0Peter

Peter

Paul

Paul

$50

$0

$100

The Game-Theoretic Probability and Finance Project

Working Paper #27

First posted January 26, 2009. Last revised May 11, 2009.

Project web site:
http://www.probabilityandfinance.com

http://arxiv.org/abs/0905.1673v1


Abstract

This article continues study of the prequential framework for evaluating a prob-
ability forecaster. Testing the hypothesis that the sequence of forecasts issued
by the forecaster is in agreement with the observed outcomes can be done using
prequential notions of probability. It turns out that there are two natural no-
tions of probability in the prequential framework: game-theoretic, whose idea
goes back to von Mises and Ville, and measure-theoretic, whose idea goes back
to Kolmogorov. The main result of this article is that, in the case of predicting
binary outcomes, the two notions of probability in fact coincide on the analytic
sets (in particular, on the Borel sets).
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1 Background

The prequential framework for evaluating probability forecasters was introduced
by A. P. Dawid in [4] and [5]. Suppose two players, Forecaster and Reality,
interact according to the following protocol.

Binary prequential protocol

FOR n = 1, 2, . . . :
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

END FOR.

The interpretation is that pn is Forecaster’s subjective probability that yn =
1 after having observed y1, . . . , yn−1 and taking account of all other relevant
information available at the time of issuing the forecast. We will refer to pn

as forecasts and to yn as outcomes. More generally, the outcomes take values
in an arbitrary measurable space and the forecasts are probability distributions
on that measurable space, but in this article we will restrict our attention to
binary outcomes (as in [5]); this will be further discussed at the end of Section
7.

In general, the two players possess perfect information about each other’s
moves: Forecaster chooses p1, Reality observes p1 and chooses y1, Forecaster
observes y1 and chooses p1, etc. We might, however, be interested in “oblivi-
ous” strategies for a player, especially for Reality, who may generate her moves
randomly according to a probability measure on {0, 1}∞ chosen in advance. On
the other hand, the players may also react to events outside the protocol.

Dawid’s prequential principle (see, e.g., [4, 5, 6]) says that when testing the
adequacy of the forecaster in light of the outcomes yn we should only use the
forecasts pn, not the forecasting strategy (if any) that Forecaster used to produce
pn. In this article we will be only interested in testing procedures that respect
the prequential principle. In other words, we will be interested in testing the
sequence

(p1, y1, p2, y2, . . .) (1)

of forecast/outcome pairs (pn, yn) for agreement. This sequence may be infinite
or finite.

There are two main ways to test sequences (1) for agreement, which we
will call game-theoretic and measure-theoretic. For concreteness, suppose the
sequence (1) does not satisfy

lim
n→∞

1

n

n
∑

i=1

(yi − pi) = 0 (2)

(i.e., the sequence is not “unbiased in the large”; see, e.g., [6] for numerous
other ways of testing probability forecasts). What do we mean when we say
that violation of (2) evidences lack of agreement?
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Two ways to answer this question correspond to two different approaches
to the foundations of probability theory. One version of the game-theoretic
answer is that we can gamble against the forecasts is such a way that, risking
only one monetary unit, we can become infinitely rich when (2) is violated.
The measure-theoretic answer is that, no matter what strategy Forecaster is
using, the probability of (2) is one; therefore, if (2) is violated, an a priori
specified event of probability zero (given by the negation of the formula (2)) has
occurred. Both becoming infinitely rich and the occurrence of a pre-specified
event of probability zero can be interpreted as lack of agreement between the
forecasts and outcomes.

In fact, even the first answer can be expressed in terms of probability. The
game-theoretic approach to the foundations of probability is as old as the stan-
dard measure-theoretic based on Kolmogorov’s axioms ([11]; see [17] for the
historical background). An imperfect version of the game-theoretic approach
was championed by von Mises [14] and formalized, in different ways, by Wald
[24] and Church [2]. Ville [20] gave an example demonstrating that von Mises’s
notion of a gambling strategy was too restrictive, and introduced a more gen-
eral class of gambling strategies and a closely related notion of a martingale.
However, the formal notion of game-theoretic probability was introduced only
recently (see, e.g., [21], [6], or, for a much fuller treatment, [16]). In particular,
an event has zero game-theoretic probability if and only if there is a gambling
strategy that, risking at most one monetary unit, makes the player infinitely
rich when the event happens.

The notion of game-theoretic probability makes the game-theoretic and
measure-theoretic justifications of the testing procedure based on (2) look very
similar: we just say that the probability (either game-theoretic or measure-
theoretic) of (2) being violated is zero. The main result of this article says
that the two notions of probability coincide on the analytic sets, and so the
two approaches to testing probability forecasts are equivalent, in the prequen-
tial framework. The restriction to the analytic, and even Borel, sets is not a
limitation in all practically interesting cases.

For testing procedures based on events of probability zero (basically, on
strong laws of probability theory, such as (2)), a special case of our result is
sufficient: it is sufficient to know that a Borel set has zero game-theoretic prob-
ability if and only if it has zero measure-theoretic probability. Our full result is
also applicable to events of merely low, not zero, probability. For example, we
could reject the hypothesis of agreement if

1

n

∣

∣

∣

∣

∣

n
∑

i=1

(yi − pi)

∣

∣

∣

∣

∣

≥ C
√

n (3)

for prespecified large numbers C and n. Our result shows that this and similar
procedures have equally strong game-theoretic and measure-theoretic justifica-
tions. Notice that in the case of (3) our decision to reject the hypothesis of
agreement can be made after observing a finite sequence, (p1, y1, . . . , pn, yn).
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2 This article

In the following two sections, 3 and 4, we formally introduce in the prequential
framework the two notions of probability discussed in the previous section. The
main result of this article is Theorem 1 in Section 5, asserting the coincidence
of the two kinds of probability on the analytic sets. This result has several
predecessors. In the situation where Forecaster’s strategy is fixed, Ville ([20],
Theorems 1 and 2 in Chapter IV) showed that a set E has game-theoretic prob-
ability zero if and only if it has measure-theoretic probability zero. (Ville stated
this result in slightly different terms, without explicit use of game-theoretic prob-
ability.) This was generalized in [16] (Proposition 8.13) to the statement that
game-theoretic and measure-theoretic probability coincide on the Borel sets. In
the case of a finite-horizon protocol, a statement analogous to Theorem 1 was
proved by Shafer in [15] (Proposition 12.7.4). The special case of Theorem 1
asserting the coincidence of game-theoretic and measure-theoretic probability
on the open sets was first proved in [23] (Theorem 2).

In the same Section 5 we also prove that measure-theoretic probability never
exceeds game-theoretic probability. This simple statement is true for all sets,
not just analytic. The proof of the opposite inequality is given in Section 6.
It relies on two fundamental results: Choquet’s capacitability theorem [1] and
Lévy’s zero-one law in its game-theoretic version recently found in [22].

Some notation and definitions

The set of all natural (i.e., positive integer) numbers is denoted N, N :=
{1, 2, . . .}. As always, R is the set of all real numbers.

Let Ω := {0, 1}∞ be the set of all infinite binary sequences and Ω⋄ :=
∪∞

n=0{0, 1}n be the set of all finite binary sequences. Set Π := ([0, 1]×{0, 1})∞
and Π⋄ := ∪∞

n=0([0, 1] × {0, 1})n. The empty element (sequence of length zero)
of both Ω⋄ and Π⋄ will be denoted Λ. In our applications, the elements of Ω
and Ω⋄ will be sequences of outcomes (infinite or finite), and the elements of Π
and Π⋄ will be sequences of forecasts and outcomes (infinite or finite). The set
Π will sometimes be referred to as the prequential space.

For x ∈ Ω⋄, let Γ(x) ⊆ Ω be the set of all infinite extensions of x that belong
to Ω. Similarly, for x ∈ Π⋄, Γ(x) ⊆ Π is the set of all infinite extensions of x
that belong to Π. For each ω = (y1, y2, . . .) ∈ Ω and n ∈ N ∪ {0}, set ωn :=
(y1, . . . , yn). Similarly, for each π = (p1, y1, p2, y2, . . .) ∈ Π and n ∈ N ∪ {0}, set
πn := (p1, y1, . . . , pn, yn).

In some proofs and remarks we will be using the following notation, for
n ∈ N ∪ {0}: Ωn := {0, 1}n is the set of all finite binary sequences of length
n; Ω≥n := ∪∞

i=nΩi is the set of all finite binary sequences of length at least n;
Πn := ([0, 1] × {0, 1})n; Π≥n := ∪∞

i=n([0, 1] × {0, 1})i.
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3 Game-theoretic prequential probability

A farthingale is a function V : Π⋄ → (−∞,∞] satisfying

V (p1, y1, . . . , pn−1, yn−1)

= (1 − pn)V (p1, y1, . . . , pn−1, yn−1, pn, 0)

+ pnV (p1, y1, . . . , pn−1, yn−1, pn, 1) (4)

for all n ∈ N and all (p1, y1, p2, y2, . . .) ∈ Π; the product 0∞ is defined to be
0. If we replace “=” by “≥” in (4), we get the definition of a superfarthingale.
These are prequential versions of the standard notions of martingale and su-
permartingale. We will be interested mainly in non-negative farthingales and
superfarthingales.

The value of a farthingale can be interpreted as the capital of a gambler
betting according to the odds announced by Forecaster. In the case of super-
farthingales, the gambler is allowed to throw away part of his capital.

Game-theoretic probability can be introduced as either upper or lower prob-
ability; in this article the former is more convenient (and was used in the infor-
mal discussion of Section 1). A prequential event is a subset of Π. The upper
game-theoretic probability of a prequential event E is

P
game(E) := inf

{

a | ∃V : V (Λ) = a and ∀π ∈ E : lim sup
n

V (πn) ≥ 1

}

, (5)

where V ranges over the non-negative farthingales. It is clear that we will obtain
the same notion of upper game-theoretic probability if we replace the ≥ in (5)
by >, replace lim sup by sup or lim inf (we can always stop when 1 is reached),
or allow V to range over the non-negative superfarthingales.

We will need the following property of countable subadditivity of game-
theoretic probability.

Lemma 1. For any sequence E1, E2, . . . of prequential events,

P
game (∪∞

i=1Ei) ≤
∞
∑

i=1

P
game(Ei).

In particular, if P
game(Ei) = 0 for all i, then P

game(∪∞
i=1Ei) = 0.

Proof. It suffices to notice that the sum of a sequence of non-negative farthin-
gales is again a non-negative farthingale.

4 Measure-theoretic prequential probability

A forecasting system is a function φ : Ω⋄ → [0, 1]. Let Φ be the set of all
forecasting systems. For each φ ∈ Φ there exists a unique probability mea-
sure Pφ on Ω (equipped with the Borel σ-algebra) such that, for each x ∈ Ω⋄,
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Pφ(Γ(x1)) = φ(x) Pφ(Γ(x)). (In other words, such that φ(x) is a version of the
conditional probability, according to Pφ, that x will be followed by 1.) The no-
tion of a forecasting system is close to that of a probability measure on Ω: the
correspondence φ 7→ Pφ becomes an isomorphism if we only consider forecasting
systems taking values in the open interval (0, 1) and probability measures taking
positive values on the sets Γ(x), x ∈ Ω⋄.

For each sequence (y1, . . . , yn) ∈ Ω⋄ and each forecasting system φ ∈ Φ, let

(y1, . . . , yn)φ := (φ(Λ), y1, φ(y1), y2, . . . , φ(y1, . . . , yn−1), yn) ∈ Π⋄.

Similarly, for each (y1, y2, . . .) ∈ Ω and each φ ∈ Φ,

(y1, y2, . . .)
φ := (φ(Λ), y1, φ(y1), y2, φ(y1, y2), y3, . . .) ∈ Π.

We can apply the idea of measure-theoretic probability to prequential events
as follows, in the spirit of [9], Section 10.2. For each forecasting system φ and
prequential event E ⊆ Π, define

P
φ(E) := Pφ

{

ω ∈ Ω | ωφ ∈ E
}

= Pφ(Eφ),

where Eφ :=
{

ω ∈ Ω | ωφ ∈ E
}

and Pφ(A) is understood, in general, as the outer
measure of A, i.e., as infB Pφ(B), B ranging over the Borel sets containing A.
The convention about using the outer measure is important only for our proofs,
not for the statement of the main result: according to Luzin’s theorem (see,
e.g., [10], Theorem 21.10), every analytic set is universally measurable, and Eφ

is analytic whenever E is. Now we define the upper measure-theoretic probability
of E as

P
meas(E) := sup

φ

P
φ(E). (6)

Remark 1. Our definition (6) is not fully adequate from the intuitive point of
view: even if we are willing to assume that Forecaster follows some forecasting
strategy (which is a non-trivial assumption: cf. the discussion in [5], pp. 1255–
1256), why should this forecasting strategy depend only on the past outcomes?
For example, a meteorologist forecasting rain might have data about tempera-
tures, winds, etc. (See [5], Section 9, for further discussion.) A more satisfactory
definition would involve a supremum over all probability spaces equipped with
a filtration and for each such a probability space a further supremum over all
forecasting systems adapted to the corresponding filtration (with a natural more
general definition of a forecasting system). Our definition (6) is the simplest one
mathematically and leads to the strongest inequality P

game(E) ≤ P
meas(E) (for

the analytic sets), which is the non-trivial part of our main result, Theorem 1.

5 Main result

Now we are have all ingredients needed to state our main result.

Theorem 1. For all analytic sets E ⊆ Π, P
game(E) = P

meas(E).
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Intuitively, this theorem establishes the equivalence between the purely pre-
quential and Bayesian viewpoints in the framework of probability forecasting.
The definition of measure-theoretic probability is Bayesian, in that Forecaster
is modeled as a coherent subjectivist Bayesian having a joint probability dis-
tribution over the sequences of outcomes (cf. [3], Section 1); we represent this
joint probability distribution as a forecasting system. Rejecting his forecasts
is the same as rejecting all forecasting systems that could have produced those
forecasts: cf. the supφ in (6). The definition of game-theoretic probability is
purely prequential, in that it does not postulate any joint probability distribu-
tion behind the forecasts; the latter are used for testing directly.

Remark 2. As discussed in the previous section (Remark 1), our Bayesian
forecaster is somewhat naive: he conditions only on the observed outcomes. It
would be easy (but would complicate the exposition) to allow Reality to issue
a signal sn, taking one of a finite number of values, before Forecaster chooses
his forecast pn. Allowing both farthingales and forecasting systems to depend
on the signals, one could still prove that P

game(E) = P
meas(E) for all analytic

E ⊆ Π following the proof of Theorem 1.

In this section we will only prove the inequality ≥ in Theorem 1. It turns
out that this inequality holds for all sets E, not necessarily analytic.

Theorem 2. For all sets E ⊆ Π, P
game(E) ≥ P

meas(E).

The simple proof of Theorem 2 will follow from Ville’s inequality ([20], p. 100;
in modern probability textbooks this result is often included among “Doob’s
inequalities”: see, e.g., [19], Theorem VII.3.1.III).

Let φ be a forecasting system. A martingale w.r. to φ is a function V : Ω⋄ →
(−∞,∞] satisfying

V (x) = (1 − φ(x))V (x, 0) + φ(x)V (x, 1)

for all x ∈ Ω⋄ (with the same convention 0∞ := 0).

Proposition 1 ([20]). If φ is a forecasting system, V is a non-negative mar-
tingale w.r. to φ, and C > 0,

Pφ

{

ω ∈ Ω | sup
n

V (ωn) ≥ C

}

≤ V (Λ)

C
.

If V is a farthingale, the function V φ : Ω⋄ → (−∞,∞] defined by

V φ(x) := V
(

xφ
)

, x ∈ Ω⋄,

is a martingale w.r. to φ. It is important that this statement does not require
measurability of the farthingale V ; even if V is not measurable, V φ is always
measurable, like any other function on Ω⋄ (which is why there was no need to
include the requirement of measurability in our definition of a martingale).

6



Proof of Theorem 2. Let E ⊆ Π. It suffices to prove that Pφ(Eφ) ≤ V (Λ)
for any forecasting system φ and any non-negative farthingale V satisfying
lim supn V (πn) ≥ 1 for all π ∈ E. Fix such φ and V . Then V φ is a non-negative
martingale w.r. to φ satisfying lim supn V φ(ωn) ≥ 1 for all ω ∈ Eφ. Applying
Proposition 1 to V φ, we can see that indeed Pφ(Eφ) ≤ V φ(Λ) = V (Λ).

6 Proof of the inequality ≤ in Theorem 1

We start from proving a special case of Theorem 1.

Lemma 2. If E ⊆ Π is a compact set, P
meas(E) = P

game(E).

Proof. Fix a compact prequential event E ⊆ Π. (Of course, “compact” is the
same thing as “closed” in this context.) Represent E as the intersection E =
∩∞

i=1Ei of a nested sequence E1 ⊇ E2 ⊇ · · · of closed sets such that

∀π ∈ Π : π ∈ Ei =⇒ Γ(πi) ⊆ Ei (7)

is satisfied for all i. Informally, Ei is a property of the first i forecasts and
outcomes. For each i = 1, 2, . . ., define a superfarthingale Wi by setting

Wi(x) :=

{

1 if Γ(x) ⊆ Ei

0 otherwise
(8)

for all x ∈ Π≥i and then proceeding inductively as follows. If Wi(x) is already
defined for x ∈ Πn, n = i, i − 1, . . . , 1, define Wi(x), for each x ∈ Πn−1, by

Wi(x) := sup
p∈[0,1]

(

(1 − p)Wi(x, p, 0) + pWi(x, p, 1)
)

. (9)

It is clear that W1 ≥ W2 ≥ · · · .
Let us check that Wi(x) is upper semicontinuous as a function of x ∈ Π⋄.

By (8) this is true for x ∈ Π≥i. Suppose this is true for x ∈ Πn, n ∈ {i, i −
1, . . . , 2}, and let us prove that it is true for x ∈ Πn−1, using the inductive
definition (9). It is clear that f(x, p) := (1−p)Wi(x, p, 0)+pWi(x, p, 1) is upper
semicontinuous as function of p ∈ [0, 1] and x ∈ Πn−1. It is well known that
supp f(x, p) is upper semicontinuous whenever f is upper semicontinuous and x
and p range over compact sets (see, e.g., [7], Theorem I.2(d)). A simple proof
of a slightly more general fact will be given below in Lemma 3. Therefore,
Wi(x) = supp∈[0,1] f(x, p) is an upper semicontinuous function of x ∈ Πn−1.

An important implication of the upper semicontinuity of Wi and the com-
pactness of [0, 1] is that the supremum in (9) is attained: it is easy to check that
an upper semicontinuous function attains its supremum over a compact set (cf.
[8], Problem 3.12.23(g)). For each i = 1, 2, . . ., we can now define a forecasting
system φi as follows. For each x ∈ Ωn, n = 0, 1, . . . , i − 1, choose φi(x) such
that

7



(1 − φi(x))Wi(x
φi , φi(x), 0) + φi(x)Wi(x

φi , φi(x), 1)

= sup
p

(

(1 − p)Wi(x
φi , p, 0) + pWi(x

φi , p, 1)
)

= Wi(x
φi)

(this is an inductive definition; in particular, xφi is already defined at the time
of defining φi(x)). For x ∈ Ω≥i, set, for example, φi(x) := 0. The important

property of φi is that Wφi

i is a martingale w.r. to φi, and so P
φi(Ei) = Wi(Λ).

Since the set Φ of all forecasting systems is compact in the product topol-
ogy, the sequence φi has a convergent subsequence φik

, k = 1, 2, . . .; let
φ := limk→∞ φik

. We assume, without loss of generality, i1 < i2 < · · · . Set

c := inf
i

Wi(Λ) = lim
i→∞

Wi(Λ).

Fix an arbitrarily small ǫ > 0. Let us prove that Pφ(Eφ) ≥ c − ǫ. Let K ∈
N. The restriction of Pφi

k
to ΩiK (more formally, the probability measure

assigning weight Pφi
k
(Γ(x)) to each singleton {x}, x ∈ ΩiK ) comes within ǫ of

the restriction of Pφ to ΩiK in total variation distance from some k on; let the
total variation distance be at most ǫ for all k ≥ K ′ ≥ K. Let k ≥ K ′. Since

Pφi
k
(E

φi
k

ik
) ≥ c, it is also true that Pφi

k
(E

φi
k

iK
) ≥ c; therefore, it is true that

Pφ(E
φi

k

iK
) ≥ c − ǫ. By Fatou’s lemma, we now obtain

Pφ

(

lim sup
k

E
φi

k

iK

)

≥ lim sup
k→∞

Pφ(E
φi

k

iK
) ≥ c − ǫ. (10)

Let us check that
lim sup

k

E
φi

k

iK
⊆ Eφ

iK
. (11)

Indeed, let ω /∈ Eφ
iK

, i.e., ωφ /∈ EiK
. Since φik

→ φ in the product topology and

the set EiK
is closed, ωφi

k /∈ EiK
from some k on. This means that ω ∈ E

φi
k

iK

for only finitely many k, i.e., ω /∈ lim supk E
φi

k

iK
.

From (10) and (11) we can see that Pφ(Eφ
iK

) ≥ c − ǫ, for all K ∈ N. This

implies Pφ(Eφ) ≥ c − ǫ. Since this holds for all ǫ, Pφ(Eφ) ≥ c.
The rest of the proof is easy: since

P
game(E) ≤ c ≤ Pφ(Eφ) ≤ P

meas(E) ≤ P
game(E)

(the last inequality following from Theorem 2), we have

P
game(E) = c = Pφ(Eφ) = P

meas(E).

In the proof of Lemma 2 we referred to the following simple result.

Lemma 3. Suppose X and Y are topological spaces and Y is compact. If a
function f : X × Y → R is upper semicontinuous, then the function x ∈ X 7→
g(x) := supy∈Y f(x, y) is also upper semicontinuous.
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Proof. For any c ∈ R, we are required to show that the set G := {x |
supy f(x, y) < c} is open. Let x ∈ G. For any y ∈ Y there exists a neighborhood
O′

y of x and a neighborhood O′′
y of y such that, for some ǫ > 0, f(x′, y′) < c− ǫ

for all x′ ∈ O′
y and all y′ ∈ O′′

y . By the compactness of Y , there is a finite family
O′′

y1
, . . . , O′′

yK
that covers Y . The intersection of O′

y1
, . . . , O′

yK
will contain x

and will be a subset of G. Therefore, G is indeed open.
The argument in [7], proof of Theorem I.2(d), is even simpler, but it assumes

that X is compact (which is, however, sufficient for the purpose of Lemma
2).

The idea of the proof of Theorem 1 is to extend Lemma 2 to the analytic
sets using Choquet’s capacitability theorem (stated below). Remember that a
function γ (such as P

game or P
meas) mapping the power set of a topological space

X (such as Π) to [0,∞) is a capacity if:

• for any subsets A and B of X ,

A ⊆ B =⇒ γ(A) ≤ γ(B); (12)

• for any nested increasing sequence A1 ⊆ A2 ⊆ · · · of arbitrary subsets of
X ,

γ (∪∞
i=1Ai) = lim

i→∞
γ(Ai); (13)

• for any nested decreasing sequence K1 ⊇ K2 ⊇ · · · of compact sets in X ,

γ (∩∞
i=1Ki) = lim

i→∞
γ(Ki). (14)

Condition (14) is sometimes replaced by a different condition which is equivalent
to (14) for compact metrizable spaces X : cf. [10], Definition 30.1.

It turns out that both P
game and P

meas are capacities. We start from P
game.

Theorem 3. The set function P
game is a capacity.

It is obvious that P
game satisfies condition (12). The following two statements

establish conditions (13) and (14). Condition (14) is easier to check: it can be
extracted from the proof of Lemma 2.

Lemma 4. If K1 ⊇ K2 ⊇ · · · is a nested sequence of compact sets in Π,

P
game (∩∞

i=1Ki) = lim
i→∞

P
game(Ki). (15)

Proof. We will use the equality P
game(E) = limi→∞ P

game(Ei), in the notation
of the proof of Lemma 2. This equality follows from

P
game(E) = c = lim

i→∞
Wi(Λ) ≥ lim

i→∞
P

game(Ei)

(the opposite inequality is obvious).
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Represent each Kn in the form Kn = ∩∞
i=1Ei where E1 ⊇ E2 ⊇ · · · and each

Ei satisfies (7); we will write Kn,i in place of Ei. Without loss of generality we
will assume that K1,i ⊇ K2,i ⊇ · · · for all i. Then the set K := ∩∞

i=1Ki can be
represented as K = ∩∞

i=1Ki,i, and so (15) follows from

P
game(K) = P

game (∩∞
i=1Ki,i) = lim

i→∞
P

game(Ki,i) = lim
n→∞

lim
i→∞

P
game(Kn,i)

= lim
n→∞

P
game (∩∞

i=1Kn,i) = lim
n→∞

P
game(Kn).

To check condition (13) for P
game, we will need the game-theoretic version,

proved in [22], of Lévy’s zero-one law ([13], Section 41). For each x ∈ Π⋄, define
the conditional upper game-theoretic probability of E ⊆ Π by

P
game(E | x) :=

inf

{

a | ∃V : V (x) = a and ∀π ∈ E ∩ Γ(x) : lim sup
n

V (πn) ≥ 1

}

,

where V ranges over the non-negative (super)farthingales.

Proposition 2 ([22]). Let E ⊆ Π. For almost all π ∈ E,

P
game(E | πn) → 1 (16)

as n → ∞. (In other words, there exists a prequential event N such that
P

game(N) = 0 and (16) holds for all π ∈ E \ N .)

Proof. It suffices to construct a non-negative farthingale V starting from 1 that
tends to ∞ on the sequences π ∈ E for which (16) is not true. Without loss of
generality we replace “for which (16) is not true” by

lim inf
n→∞

P
game(E | πn) < a,

where a ∈ (0, 1) is a given rational number (see Lemma 1).
Let π be any sequence in Π; we will define V (πn) by induction for n = 1, 2, . . .

(intuitively, we will describe a gambling strategy with capital process V ). Start
with 1 monetary unit: V (Λ) := 1. Keep setting V (πn) := 1, n = 1, 2, . . ., until
P

game(E | πn) < a (if this never happens, V (πn) will be 1 for all n). Let N1

be the first n when this happens: P
game(E | πN1) < a but P

game(E | πn) ≥ a
for all n < N1. Choose a non-negative farthingale S1 starting at πN1 from 1,
S1(π

N1) = 1, whose upper limit exceeds 1/a on all extensions of πN1 in E.
Keep setting V (πn) := S1(π

n), n = N1, N1 +1, . . ., until S1(π
n) reaches a value

s1 > 1/a. After that keep setting V (πn) := V (πn−1) until P
game(E | πn) < a.

Let N2 be the first n when this happens. Choose a non-negative farthingale S2

starting at πN2 from s1, S2(π
N2) = s1, whose upper limit exceeds s1/a on all

extensions of πN2 in E. Keep setting V (πn) := S2(π
n), n = N2, N2 + 1, . . .,

until S2(π
n) reaches a value s2 > s1(1/a) > (1/a)2. After that keep setting

V (πn) := V (πn−1) until P
game(E | πn) < a. Let N3 be the first n when this
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happens. Choose a non-negative farthingale S3 starting at πN3 from s2 whose
upper limit exceeds s2/a on all extensions of πN3 in E. Keep setting V (πn) :=
S3(π

n), n = N3, N3 + 1, . . ., until S3 reaches a value s3 > s2(1/a) > (1/a)3.
And so on.

Lemma 5. If A1 ⊆ A2 ⊆ · · · ⊆ Π is a nested sequence of prequential events,

P
game (∪∞

i=1Ai) = lim
i→∞

P
game(Ai). (17)

Proof. Let A1, A2, . . . be a nested increasing sequence of prequential events. The
non-trivial inequality in (17) is ≤. For each Ai the process

Si(x) := P
game(Ai | x)

is a non-negative superfarthingale (see Lemma 6 below). By Proposition 2,
lim supn Si(π

n) ≥ 1 for almost all π ∈ Ai. The sequence Si is increasing, S1 ≤
S2 ≤ · · · , so the limit S := limi→∞ Si = supi Si exists and is a non-negative
superfarthingale such that S(Λ) = limi→∞ P

game(Ai) and lim supn S(πn) ≥ 1 for
almost all π ∈ ∪iAi (by Lemma 1). We can get rid of “almost” by adding to S a
non-negative farthingale V that starts at V (Λ) < ǫ, for an arbitrarily small ǫ >
0, and satisfies lim supn V (πn) ≥ 1 for all π ∈ ∪iAi violating lim supn S(πn) ≥
1.

Lemma 6. For any prequential event E, the function x ∈ Π⋄ 7→ P
game(E | x)

is a superfarthingale.

Proof. Suppose there are x ∈ Π⋄ and p ∈ [0, 1] such that

P
game(E | x) < (1 − p) P

game(E | x, p, 0) + p P
game(E | x, p, 1).

Then there exists a non-negative farthingale V with lim supn V (πn) ≥ 1 for all
π ∈ E ∩ Γ(x) that satisfies

V (x) < (1 − p) P
game(E | x, p, 0) + p P

game(E | x, p, 1)

and, therefore,

(1 − p)V (x, p, 0) + pV (x, p, 1) < (1 − p) P
game(E | x, p, 0) + p P

game(E | x, p, 1).

The last inequality implies that there exists j ∈ {0, 1} such that V (x, p, j) <
P

game(E | x, p, j), which is impossible.

This completes the proof of Theorem 3. Let us now check that measure-
theoretic probability is also a capacity.

Lemma 7. The set function P
meas is a capacity.

11



Proof. Property (12) is obvious for P
meas. Property (14) follows from Lemmas

2 and 4.
Let us now check the remaining property (13), with P

meas as γ. Suppose
there exists an increasing sequence A1 ⊆ A2 ⊆ · · · ⊆ X of prequential events
such that

P
meas (∪∞

i=1Ai) > lim
i→∞

P
meas(Ai).

Let φ be a forecasting system satisfying

P
φ (∪∞

i=1Ai) > lim
i→∞

P
meas(Ai).

Then φ will satisfy P
φ (∪∞

i=1Ai) > limi→∞ P
φ(Ai), which is equivalent to the

obviously wrong Pφ

(

∪∞
i=1A

φ
i

)

> limi→∞ Pφ(Aφ
i ).

In combination with Choquet’s capacitability theorem, Theorem 3 and
Lemma 7 allow us to finish the proof of Theorem 1.

Choquet’s Capacitability Theorem ([1]). If X is a compact metrizable
space, γ is a capacity on X, and E ⊆ X is an analytic set,

γ(E) = sup {γ(K) | K is compact, K ⊆ E} .

For a proof of Choquet’s theorem, see, e.g., [10], Theorem 30.13.

Proof of Theorem 1. Combining Choquet’s capacitability theorem (applied to
the compact metrizable space Π), Lemma 2, Theorem 3, and Lemma 7, we
obtain

P
game(E) = sup

K⊆E

P
game(K) = sup

K⊆E

P
meas(K) = P

meas(E),

K ranging over the compact sets.

Remark 3. The fact that game-theoretic probability and measure-theoretic
probability are capacities has allowed us to prove their coincidence on the ana-
lytic sets, and it might be useful for other purposes as well. In general, neither
of these capacities is strongly subadditive, in the sense of satisfying

γ(A ∪ B) + γ(A ∩ B) ≤ γ(A) + γ(B)

for all prequential events A and B. To demonstrate this it suffices, in view of
Theorem 1, to find analytic sets A and B that violate

P
game(A ∪ B) + P

game(A ∩ B) ≤ P
game(A) + P

game(B). (18)

We can define P
game(E) for subsets of Πn by (5) with lim supn omitted. This is

an example of subsets A and B of Π2 for which (18) is violated:

A =

{(

0, 0,
1

2
, 0

)

,

(

1

2
, 0, 0, 0

)}

, (19)
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B =

{(

0, 0,
1

2
, 0

)

,

(

1

2
, 1, 0, 0

)}

. (20)

For these subsets we have

P
game(A ∪ B) + P

game(A ∩ B) = 1 +
1

2
>

1

2
+

1

2
= P

game(A) + P
game(B).

To obtain an example of subsets A and B of the full prequential space Π for
which (18) is violated, it suffices to add 00 . . . at the end of each element of the
sets A and B defined by (19) and (20).

7 Application to the limit theorems of probabil-

ity theory

The lower game-theoretic probability of a prequential event E is defined to be 1−
P

game(Π\E). Similarly, the lower measure-theoretic probability of a prequential
event E is defined to be 1 − P

meas(Π \ E).
The game-theoretic strong law of large numbers (see, e.g., [16], Section 3.3)

implies that (2) holds with lower game-theoretic probability one. The stan-
dard martingale strong law of large numbers implies that (2) holds with lower
measure-theoretic probability one. Our Theorem 1 establishes the equivalence
between these two statements. Similarly, Theorem 1 establishes the equivalence
between the game-theoretic law of the iterated logarithm for binary outcomes
(a special case of Theorems 5.1 and 5.2 in [16]) and the martingale law of the
iterated logarithm for binary outcomes in measure-theoretic probability theory.

Transition from game-theoretic to measure-theoretic laws of probability, cor-
responding to the inequality ≥ in Theorem 1, depends only on Ville’s inequality,
and so can be easily done for a wide variety of prediction protocols (see, e.g.,
[16], Section 8.1). Transition in the opposite direction, corresponding to the
inequality ≤, is more difficult, and its feasibility has been demonstrated only in
a very limited number of cases.

In an important respect Theorem 1 is only an existence result. For example,
in combination with the standard martingale strong law of large numbers in
measure-theoretic probability theory it implies the game-theoretic strong law of
large numbers for binary outcomes, but the resulting farthingale is very complex.
The corresponding strategy for the gambler (or Skeptic, in the terminology of
[16]) is also very complex. This contrasts with the simple and efficient gambling
strategies designed in game-theoretic probability: see, e.g., [16], Section 3.2, and
[12].

It would be interesting to design efficient general procedures producing sim-
ple gambling strategies witnessing that P

game(E) = 0 for natural classes of pre-
quential events satisfying P

meas(E) = 0. For example, such a procedure might
be applicable to all prequential events satisfying P

meas(E) = 0 and situated at
a given low level of the Borel hierarchy. This would allow an automatic proce-
dure of transition from measure-theoretic to constructive game-theoretic laws
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of probability: e.g., the set of sequences (1) violating the strong law of large
numbers (2) is in the class Σ0

3 of the Borel hierarchy, and the set of sequences
violating the law of the iterated logarithm is in ∆0

4.
In this article we have only considered the case where the outcomes yn are

restricted to the binary outcome space Y := {0, 1}. It is easy to extend our
results to the case where Y is any finite set and Forecaster outputs probability
measures on Y , interpreted as his probability forecasts for yn. It remains an
open problem whether it is possible to modify our definitions in a natural way
so that the equivalence between game-theoretic and measure-theoretic proba-
bility extends to a wide classes of outcome spaces and prequential events; this
would require imposing suitable measurability or topological conditions on the
farthingales (or superfarthingales) used in the definition (5) of game-theoretic
probability.
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