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Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases
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We show that one-dimensional binary mixtures of bosons or of a boson and a spin-polarized fermion
are Luttinger liquids with the following instabilities: (i) For different particle densities, strong attraction
between the mixture components leads to collapse, while strong repulsion leads to demixing, and (ii)
For a low-density mixture of two gases of impenetrable bosons (or a spin-polarized fermion and an
impenetrable boson) of equal densities, the system develops a gap and exhibits enhanced pairing
fluctuations when there is attraction between the components. In the boson-fermion mixture, the pairing
fluctuations occur at finite momentum. Our conclusions apply to mixtures both on the continuum and on
optical lattices away from integer or fractional commensurability.
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materials, they are cleaner and there is a large degree of and finite size on the results to be presented below.
The exploration of properties of matter at increasingly
lower temperatures and densities has yielded many sur-
prises. The achievement of Bose-Einstein condensation
(BEC) in dilute gases of ultracold atoms [1] is one beau-
tiful example. Ever since the observation of BEC, one line
of current experimental (and theoretical) studies is on
cold gases in very elongated atomic traps. In effectively
one-dimensional (1D) systems strong phase fluctuations
can occur. These systems are interesting for both large
and small � values, where � � Mg= �h2�0 is the dimen-
sionless coupling ratio, g is the coupling characterizing
the interaction between the atoms in 1D, M the atom
mass, and �0 the particle density. For �� 1, a single-
component 1D Bose fluid is a quasicondensate with a
fluctuating phase but strongly suppressed density fluctua-
tions [2]. Large � leads to a crossover to the
Tonks-Giradeau (TG) regime [2]: the bosons become
impenetrable, and resemble noninteracting fermions [3].
The low-energy properties in both regimes can be well
described by the Luttinger liquid concept [4,5].

These aforementioned regimes make up the state
space of the single-component system of 1D repulsive
bosons. It may therefore seem surprising that adding a
second component to form a mixture of two types of
bosons (B� B) or of a boson plus a spin-polarized fer-
mion (B� F) can lead to a richer phase diagram. In this
Letter, we show that such binary mixtures are Luttinger
liquids which can become unstable to gap opening in one
branch of the excitation spectrum, or to demixing, or to
collapse.

These instabilities occur at low temperatures by tuning
some parameters of the system, signaling a quantum
phase transition (QPT) [6]. Some of these instabilities
have direct analogs in higher dimensional systems, while
others may be more specific to 1D systems (and are
analogs of 1D spin-1=2 fermionic systems [7,8]). Dilute
cold gases are ideal for observing the instabilities that we
predict because, in contrast to conventional solid-state
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control and tunability of parameters such as particle
densities and the sign and strength of the interaction.
Furthermore, diluteness makes it a priori possible to
relate microscopic parameters such as scattering lengths
and atomic masses to the parameters of the low-energy
effective theory.

Contrary to their 3D counterparts [9–12], 1D binary
mixtures have only recently attracted interests [13,14]. To
our knowledge, there has been no analytic treatment of
these systems within the Luttinger liquid framework.
This is undertaken here using the harmonic fluid ap-
proach, which takes into account phase and density fluc-
tuations in 1D fluids [4,5]. We summarize our results:

Case 1.—We consider a binary mixture of two distinct
atomic species (either B� B or B� F) or of two internal
states of the same bosonic species. When a sufficiently
repulsive interaction exists between the components, the
mixture will be unstable against demixing, whereas for
sufficient attraction, it will collapse.

Case 2.—We consider a binary mixture in a low-
density limit, when the two components are sufficiently
close in density and if their sound velocities are similar,
the system undergoes a QPT when there is an attraction,
no matter how weak, between the two components. The
resulting state exhibits a strong pairing tendency. In the
case of a B� F mixture, the pairing fluctuations occur at
the Fermi momentum, unlike the B� B case (or F� F
[7]) where they occur at zero momentum.

Model and calculations.—The experimental realiza-
tion of the quasi-one-dimensional systems requires a
tight transverse confinement [2,15], which nowadays
can be achieved in various setups [16–18]. Our discussion
below will focus on the properties of homogeneous 1D
systems. This should be appropriate for the central region
of large harmonic [16] or square-well traps [17]. Alterna-
tively, a toroidal trap [18] can provide the conditions for
realizing a homogeneous 1D system. When necessary, we
shall also discuss the effect of longitudinal confinement
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Our starting point will be the following Hamiltonian
for a mixture of two 1D dilute gases (	;� � 1; 2):

H �
Z
dx
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For bosons, the field operators, �	�x�, obey
��	�x�;�

y
	�x0�
 � ��x� x0�, commuting otherwise. For

a spin-polarized fermion, the field operator obeys anti-
commuting relations: f�2�x�;�

y
2 �x

0�g � ��x� x0�. The
density operators �	�x� � �y

	�x��	�x�. The interatomic
interaction potential is v	��x� � g	���x�, with g	� �
2 �h!?a	� [15], where a	� are the scattering lengths para-
metrizing the 3D interaction between species 	 and �,
and !? is the transverse confinement frequency.

To study the low-energy properties of the above model,
we use the harmonic fluid approach [4,5], which employs
the phase-density representation of the field operators.
Phonon fields are introduced for each component: �	�x�
for long wavelength phase fluctuations and �	�x� for long
wavelength density fluctuations. It is assumed that
@x�	�x� and @x�	�x� are small compared to the equilib-
rium densities �0	. This approach treats bosons and fer-
mions in 1D on equal footing [4,5], and does not assume
the existence of a BEC, as usual mean-field treatments do.
Therefore, it can describe both systems of impenetrable
bosons (e.g., the Tonks gas [3] and others [19]), and
quasicondensates [2]. Introducing [4,5] �	�x� � ��0	 �
@x�	�x�=�


1=2
P
me

im��0	x�im�	�x�ei�	�x�, where the sum
over m involves only even (odd) integers if the operator
is bosonic (fermionic), and �	 � ��0	 �
@x�	�x�=�


P
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2im��o	x�2im�	�x�, into Eq. (1) one ob-
tains the low-energy Hamiltonian:
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� ~ggb cos2��1 � �2 � ��x�
: (2)

In Eq. (2), we have retained only terms which can have
the most dominant effects at low energies (i.e., are mar-
ginal or relevant in the renormalization group sense). Its
validity is restricted to energies smaller than the chemi-
cal potential. The low-energy physics is fully character-
ized by the phenomenological parameters K1;2, the sound
velocities v1;2, the couplings ~ggf;b, and � � �01 � �02. For
small enough g12, it is possible to relate these phenome-
nological parameters to the microscopic ones because
exchange and correlation effects will be of O�g212� in
~ggf;b (otherwise, they must be extracted from numerics
or experiments [5]). First notice that vN	 �
1=� �h��2

o!S	�, where !S	 � ��2
	 �@�	=@�	� is the com-

pressibility [4,5]. Furthermore, in homogeneous systems,
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Galilean invariance fixes the product vJ	 � v	K	 �
vF	 � �h��0	=M	 [4]. Thus from the exact solution for
a single-component 1D Bose fluid [20], vN	 � v	K�1

	 �
vF	�1� 8��1

	 �O���2
	 �
 for �	 � M	g		= �h2�0	 � 1

and vN	 ’ vF	�	=�2, for �	 & 1. Therefore, 1 � K	 <
�1 for bosons, K	 � 1 in the Tonks limit. For spin-
polarized fermions, K2 ’ 1, because the s-wave scatter-
ing length vanishes thanks to the Pauli principle, leaving
the much weaker p-wave channel, which can be ne-
glected. Finally, in the weak-coupling limit, ~ggf ’
g12=� �h�� and ~ggb ’ 4�g12�01�02= �h. The sign and strength
of g12 can be controlled using a Feshbach or a confinement
induced [15] resonance. Interestingly, the same
Hamitonian, Eq. (2), also describes a binary mixture in
a 1D optical lattice [21] provided that none of the com-
ponents is commensurate with the lattice periodicity. This
allows for further possibilities of tuning the parameters
v	, K	, and g12 (e.g., the strength of g12 can be modified
by shifting relative to each other the lattices where each
component hops).

The above Hamiltonian, Eq. (2), describes a rich vari-
ety of one-dimensional binary mixtures:

Case 1.—When the equilibrium densities of the two
species are different, i.e., for sufficiently large � � �01 �
�02, the cosine term in Eq. (2) can be neglected (see
below). Thus one is left with two Luttinger liquids
coupled by ~ggf @x�1@x�2. The normal modes of the system
can be found from the equations of motion for �1�x; t� and
�2�x; t�. The phase velocity of the normal modes is found
to be

v2� �
1

2
�v21 � v22� �

1

2

���������������������������������������������������������
�v21 � v22�

2 � 4�vJ1��vJ2�~gg
2
f

q
: (3)

Hence, the mixture will become unstable provided that
����������������
vN1vN2

p
< j~ggfj: (4)

For a repulsive interaction (~ggf > 0), the two components
of the mixture repel each other sufficiently strongly to
demix. However, for an attractive interaction (~ggf < 0), the
system is expected to collapse.

We now examine the linear instability condition,
Eq. (4), in several limiting cases. For a B� B mixture
in the quasicondensate regime (�1;2 & 1), vN	 ’
vF	�	=�2 and ~ggf ’ g12=� �h��. Then the mixture is un-
stable when

��������������
g11g22

p
< jg12j. In higher dimensional sys-

tems this condition is obtained from a mean-field theory
[12], which implicitly assumes the existence of a con-
densate. It is therefore interesting that it also applies to 1D
systems in the quasicondensate regime, where the phase
fluctuates. Another interesting limit is a B� F mixture
where the boson is a quasicondensate. For the fermion,
vN2 ’ vF2 � �h��02=M2. Hence, the system will become
unstable below a critical fermion density �crit

02 �
M2g212=��

2 �h2g11�. This agrees with the mean-field result
of Das [14]. Finally, consider a B� F or a B� B mixture
with impenetrable boson(s) (�	 � 1). Then Eq. (4)
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implies that the system becomes unstable when
��01�02�<M1M2g

2
12=��

4 �h4�.
We now briefly discuss the properties of a stable mix-

ture. As found above, at long wavelengths there will be
two branches of modes with phase velocities v� given by
Eq. (3). This result is not qualitatively affected by the
presence of a longitudinal confinement, though the actual
energies of the modes may. More interestingly, a stable
binary mixture will be a Luttinger liquid with all corre-
lations characterized (in the thermodynamic limit and at
zero temperature) by the usual power laws [4]. In a
trapped system, the power laws will be accurate near
the center of the trap [5]. A full discussion of these issues
will be given elsewhere [21].

Case 2.—When the components of the mixture are
close enough in density, one can no longer neglect the
cosine term in Eq. (2). To see this, consider the Tonks
limit where the bosons behave as free fermions. Then this
term describes a backscattering process between the fer-
mions: A fermion of each species is excited from one
Fermi point to the other, exchanging a momentum close
to 2���0 � ��. If �� �0 � ��01 � �02�=2 then this pro-
cess can occur at low energies and needs to be taken into
account. To simplify our analysis, take � � 0 (� � 0 will
be addressed at the end). By a perturbative analysis of the
free energy, we see that the correction due to this term
becomes larger than the zeroth order term as T ! 0 for
K1 � K2 < 2. To go further, we use the renormalization
group (RG) method and take K1 � K2 � 1 and v1 � v2.
(We have checked that small deviations from these as-
sumptions do not alter the physical picture qualitatively
[21].) The rationale for this is that the lower bound in a
boson system is K	 � 1, which is reached for the Tonks
gas limit (i.e., by reducing the density, increasing the
scattering lengths a		 or both [2]). In a B� F mixture,
however, the fermion already has K2 ’ 1, and we only
need to tune the boson to the Tonks limit. Furthermore, if
the velocites v1 and v2 can be made made similar [22],
then in the Tonks limit at equal densities, v1 � v2 � vF.
Thus the Hamiltonian (2) becomes Heff � H� �H�,
where:

H� �
�hv�
2�

Z
dx �K�1

� �@x���2 � K��@x���
2
; (5)

H� �
�hvF
2�

Z
dx ��@x���

2 � �@x���
2


�
�h
2�

Z
dx �~ggb cos

���
8

p
���x� � ~ggf�@x���2
: (6)

The new fields ���x� � ��1�x� � �2�x�
=
���
2

p
and ���x� �

��1�x� ��2�x�
=
���
2

p
describe the in-phase (‘‘�’’) and

out-of-phase (‘‘�’’) density and phase fluctuations of
the components of the mixture. The fact that in this limit
they are decoupled is an analog of spin-charge separa-
tion, so ubiquitous in 1D Fermi systems [8,23].
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H� has the form of a Luttinger liquid Hamil-
tonian characterized by the parameters K� �
�1� ~ggf=vF
�1=2 ’ �1� g12=� �h�vF�
�1=2 and v� �
vF�1� ~ggf=vF
1=2 ’ vF�1� g12=� �h�vF�
1=2. Hence, in-
phase modes are gapless (in the thermodynamic limit).
H� is a sine-Gordon model [8]. The relative impor-

tance of the marginal operators, the cosine term and
�@x���

2, can be assessed using the RG at weak coupling,
where gf � ~ggf=vF � 1 and gb � ��2

0 ~ggb=4�
2vF � 1. To

second order in these couplings, the scaling flow is of
Berezinskii-Kosterlitz-Thouless (BKT) type (see, e.g.,
Refs. [7,9]). It is interesting to note that if the sound
velocities are tuned to be equal (i.e., v1 � v2) in the limit
K1 � K2 � 1, then the RG flow proceeds along the sep-
aratrix g � gf � gb / g12 and the spectrum of the sys-
tem exhibits an enhanced SU�2� symmetry. This is not
present in the microscopic Hamiltonian (1), and seems
quite striking, especially for a B� F mixture. Thus, for
small g12 > 0, the effective coupling g is renormalized to
zero as the temperature is decreased and the cosine term
leads only to subleading corrections to the low-tempera-
ture properties: the out-of-phase modes will behave as a
Luttinger liquid with K� ’ 1 and v� ’ vF. But when
small g12 < 0, the effective coupling gb ! �1 with de-
creasing temperature. The exact solution of the sine-
Gordon model [8] then tells us that a gap opens for the
excitations of the out-of-phase mode. At weak g / g12
the gap �� jgj1=2 e�1=jgj [6,8], i.e., exponentially small,
and it becomes larger as g12 increases. Hence, at low
enough temperatures only in-phase modes can be excited.
In a finite-size system, however, the RG flow to strong
coupling will be cut off at a length scale comparable to
the size of the system. Therefore, for weak attraction one
should observe that the out-of-phase modes become more
‘‘stiff ’’ until the full gap develops.

If v1 � v2 and/or K1; K2 � 1 (with the differences
small) the effective SU�2� symmetry is lost and the
transition is of BKT type, the gap again being exponen-
tially small but with a different functional form (see, e.g.,
[6,8]). One notable consequence of the development of the
gap is that density fluctuations of both components will
become correlated because only in-phase modes are
allowed at low enough temperatures: specifically, the
2��0 part of density correlation h�	�x����0�ij2��0 �
cos�2��0� x�K� for arbitrary 	 � � � 1; 2 and 	 � �.
These correlations can be observed by exciting the modes
of the system and imaging each species independently.

The aforementioned correlations are also reflected
in the ‘‘pairing’’ correlations described by the operator
��x� � �1�x��2�x�. For a B� B mixture, h�y�x���0�i �
x�1=K� , which decays more slowly than the density cor-
relation, since for g12 < 0,K� ’ �1� g12=� �h�vF�
�1=2 >
1. For a B� F mixture, the same correlation function has
an interesting oscillation at ��0 (rather than at 2��0):
h�y�x���0�i � sin���0x� x

�1=K��K�=4. Thus, in a B� F
mixture, the pairing correlations will decay more slowly
than the density correlations for K� > 2=

���
3

p
’ 1:16.
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FIG. 1 (color online). Schematic phase diagram of the bo-
son(s) in the Tonks limit. j�01 � �02j is the density difference at
g12 � 0.
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We now discuss the physical picture underlying the
above calculations. On intuitive grounds, an attraction
between the two components of the mixture (g12 < 0)
will lead to the formation of bound pairs, and might
eventually lead to collapse. However, in the regime
studied above, pairing takes place between hard-core
bosons or a hard-core boson and a fermion, which means
that as long as the repulsion between bosons of the same
species is stronger, only bound pairs containing one par-
ticle of each component are possible. This picture is
confirmed by considering a strong-coupling limit of
the Hamiltonian (1), where first we take g11; g22 ! �1
and then g12 ! �1 such that jg12j � g11; g22 [24].
Moreover, in a B� B mixture pairs are also bosons, but
their condensation is forbidden in 1D dimension by rig-
orous theorems [2]. In a B� F mixture, the pairs are
fermions, and this slightly suppresses pairing correlations
relative to the B� B case. We expect a smooth crossover
from the weak-coupling regime to the strong-coupling
regime where tightly bound pairs form. As the strength of
attraction between the two components increases, the size
of the gap also grows thus preventing collapse (Fig. 1).

However, the gap can be destroyed when a sufficiently
large difference in chemical potential leads to a density
difference j�j > 0. This transition is of commensurate-
incommensurate type [8]. Small inhomogeneities in the
density due to the trap, will not have a strong effect in the
pairing provided that the density difference between the
two components does not become too large. Otherwise,
one can expect phase segregation into pairing and non-
pairing regions, with the former occurring mainly near
the center of the trap.

In conclusion, we have shown that binary mixtures of
1D quantum fluids exhibit some interesting instabilities.
In particular, we have found a pairing instability which
may be special to one dimension and should have unusual
experimental signatures [21].
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