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SYMBOLS
X Wavelength of electromagnetic wave*
I Length of line.

Resonant length of line

A t Width of resonance curve where maximum ordinate is 
reduced by a factor of two ( = )

Input electro-motive force.
\4 Voltage at distance x from input end.
Jx Current at distance x frum input end.
Vj Voltage at distance y from far end.
JLj Current at distance y from far end.

Impedance of lines at distance x from input end.
Terminating impedance at input end.
Terminating impedance at far end.

2.1 Input Impedance to line.
Input admittance to line.

Characteristic impedance of line.
T  propagation constant of line.
À Attenuation constant of line.

phase constixnt of line.
KqjKt Reflection coefficients of and .

(j) phase angle of reflection coefficients.
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IHnRODïïGTION

The standard circuits for the measurement of impedances 
at frequencies up to about 50 Mc/s are bridge networks 
although special design incorporating shielding and earthing 
devices is neceaSary in the radio-frequency range. The 

theory of the various bridge methods assumes that the current 
flowing in any arm of the bridge is constant throughout its 
path and depends only on the potential difference applied 
across the aim and the impedance of the arm.

Since the current at any point in a circuit depends on
the magnetic field of the electro-magnetic wave in the
vicinity and is not constant throughout the whole of its
path, this assumption is only permissable for wavelengths
which are large compared with the linear dimensions of the
apparatus. In fact the current varies from a maximum to a

A  Vminimum value in a distance where A  is the wavelength 
of the electro-magnetic wave associated with the current.

VAt a frequency of 100 Mc/s, say A . 300 cms and 4. = 7 5  cms.
It is impracticable to design bridges of the dimensions of a 
few centimetres and other methods have to be employed at these 
higher frequencies.

An outline of these methods is given in Section I followed 
by a more detailed study of two of the methods in Sections II 
and III. The difficulty of obtaining a satisfactory short- 
circuit in order to find the critical separation of the
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Williams* method was then investigated. This was eliminated 
by plotting the graphs differently. This work is described 
in Section IV* Next an impedance was measured on the same 
apparatus by the Williams method (using this modification) 
and the Ghipman method. These results are described and 

compared in Section V. Fintilly in the conclusion it is 
suggested that the Williams method may prove more useful 
on a coaxial tretnsinission line than on open Lecher wires.
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SECTIuïï I

AN OU'TLINE OF THE MAIN METHODS OF MEASURING 
IIÆPEDANOES AT ULTRA-HIGH FREQUENCIES BY THE 

USE OF TRANSMISSION LINES.
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When an alternating electro-motive force is applied to

one end of a pair of parallel wires a plane transverse
aelectromagnetic wave is propagated along the line with the 

same velocity as in free space. Currents are set up in the 
two conductors and are equal and opposite at any point. The 
ratio of the potential difference between the wires to the 
current flowing in them is known as the impedance at that 
point. If the line is terminated by an impedance the wave 
is reflected back and a standing-wave pattern consisting of 
a series of current and voltage nodes and anti-nodes is set 
up along the line, current nodes coinciding with voltage 
anti-nodes and vice versa. . This leads to various methods of 
measuring impedances which can be divided into two main types. 
These will be described in outline with mention of the more 
important methods. No attempt at chronological order has 
been made.

The first group of methods may be generally described as 
resonance methods. The measuring instrument is kept at a 
fixed position on the line and the length of line varied. 
Resonance curves of current or voltage art? plotted against 
length of line, first with a shorting-plate at one end and 
then with the shorting plate replaced by the unlmown impedance 
The value of the unknown impedance may then be deduced from 
the change in the resonant length of line and the width of 
the resonance curves.



R a u r e  ( I' I )
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Por the case of current resonance consider an electro
motive force 6cr injected through an impedance into
a line wf length the wther end of which is terminated
in an impedance (figure 1*1). In the Chipman
method of impedance measurement -̂r is the impedance of 
the current measuring instrument and the unknown
impedance.

The current and voltage at any point on the line can 
be expressed as the sum of that due to the original transverse 
electro-magnetic wave &nd the reflections from both ends. 
Summation of these shows that the voltage VL and current % 
at uny point distance ^  from the input end may be expressed

2
as

where is uhe characteristic impedance of the lines and 
a

P is the propÈjgation constant of the line (In quoting this 
equation the signs of ^nd are reversed becausu in this
case they refer to current reflection coefficients as opposed 
to voltage reflection coefficients in the reference),
P may be written oC + j'y3 where is the attenuation constant 
and the phase constant of the line.f
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Kq. and are the current reflection coefficients of the 

impedances and Zr-

Kq. - Zg — Zcf and K%- = Z„ —  Z-r
Zt> + ̂Cr ^

At the end of the line x - £ and by making this 
substitution in equation (I'l) and putting 2 Z»/(| + K‘giJ 
for (̂ Zo '̂ Zcr) 9 the current J-t at the end of the line is 

given by

Ij. = 4-Ko) /  + KV
2 Z. I I —

This is the current through . Z ^  and is recorded by the

measuring instrument.

-pe
I p  - 11 Kc^Xl -kKTr)

22, I I-Kc. K-r
This may be put in the form

I t = X o . f C O  (1 2 )
"T 6Vfhere J-o is independgfnt of 1 and

The product of the two reflection coefficients may be written
Kcr K, ' i  h

In which case the phase angle of the product is — 2
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Substituting from equation (1*4) in equation (1*3) and

writing the propagation constant F in the form
p/f) _ _________ _________________
7

_    1___________________
we+p)+-jc^ft^2.

_________________  I _________________

2 (K-q.K^tR SOrnlU-f i-p") + j ^ ^  + ‘V) j

In the Chipman method a thermo-junction is used to measure 

current so that only the absolute value of J need be 

considered.it«)r. -—-—'----------
+ sôyj, lûf-̂  pj-jp t + <p')]

If Ji<-<^ , as is usually the case, the maximum reading of

the current meter for varying length of line 1 occurs when 
1 = lo, say; i.e. when

( s L  + ^  0  6)



■t
<■
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substituting for ^  , the value of y  is given by

 ̂ A

Thus referring back to equation (1*4) it can be seen that

the phase angle cj> of the product of the reflection coefficients

is given by

C^r-^o^.- ^ f î o -  j (1-73

The maximum value of jjT ( f ) I le given by the substitution of 
(1*6) In (1*5)

}(01
2 jK'cr K’t I ̂  ( •< fo +p)

The increase in line lengthy ^necessary to reduce the 

current to g times its maximum value (see figure 1*2) is given 
by

SioÜt. l_ol ( fo f Sf, ) h p  J t" (d'fo f ^

Similarly the decrease in line length S f % necessary to reduce 
the current to this value is given by

t fo t ^ (n)

Since , say, and both are very small compared
with 1 these equations are the same within the limits of 
experimental measurement and may be written

Si)Jv.*(°< t-t p ) + ( o ( f e + - p ) ]  ^ ^ (m o )
X
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Thus from a knowledge of the resonant line length lo, the 
half width of the resonance curve when the current is
reduced from its maximum value by a factor of g, the attenuation 
constant of the lines cL and the wavelength X  , p can be 
calculated from equation (1*10) and q from equation (1*7). 
Substitution of these values in equation (1*4) gives the 
product of the current reflection coefficients 
Equation (1*4) may be written

K-7- Kq. - |KV Kq I (mi)

where ^ro- Is the phase angle of the product of the 
reflection coefficients.

Since K-j- is the reflection coefficient of the impedance 
of the measuring instrument and K q  that of the unknown 
impedance , in order to calculate Zq. from ,

VCĉ  must first be extracted from the product VCcr K-f .
This is done by replacing by a short-circuiting plate
or perfect reflector. In this case K q . ~ / and the product 
of the reflection coefficients is of the form

)K t

where is the phase angle of reflection coefficient of Z~r •
Thus the reflection coefficient of the unknown impedance Z^. is 
given by

IK



“ 12“

The phase angle of the reflection coefficient of i
given by substitution from equation (1*7)

4>0r= ^  [L- [U.c.- -â~]

Where 'I's.c. is the resonant length when is replaced by 
a short-circuiting plate

ctq. = ith [ U  ~ ]
^ } 0 12) 

anal JK<v| - I Kg. K-rl
| K h  ;

The resistance and reactance R q, and X q. of the unknown 

impedance can be calculated from the current reflection
coefficient Ko = |K o  1 as follows .
From the definition of current reflection coefficient 

K o  = —

Thus - Zo /_LfL_Kfi= 7
( / + K o  J

Replacing kij q- j

Z o  Ro ^ j
tu| A f J ^

(i.e. A - IKq. 1 CoS (j)o  ̂2) - IKq I Sin (j>c, /
Rc^+jXq. = (l?. + j X . ) T 4 n : f! -  j G 7 ( | is)

I I f  A  -h j "D j
Rq. and X q. can be calculated from this equation which can

usually be simplified by regarding Z ©  as a pure resistance.



0 ^ )

+
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In this latter case

Rcr= z J  i-.a" - 3^ ] ,, ^ll + ft’" + R J
X(i = i  [ I ^ ^  3 ^  m j
This method as it was used by Chipman and later Essen is 

described in detail in Section II. The method hao the 
disadvantage that for high values of terminating impedance 
and for values near the characteristic impedance of the line 
the resonance curve becomes very flat and the measurements 
cease to be sufficiently accurate.

Impedance can «.Iso be measured on a line by using voltage 
resonance. The following method employing this principle

3is due to Kaufmann . In the apparatus shown in figure (1*3) 
a shielded oscillator is loosely coupled through a shorting-plate 
to a Lecher wire system consisting of two parallel brass lines. 
Measurements are made by a diode voltmeter which is supported 
at right angles to the lines without actually touching them and 
is shown in more detail in figure (1*4). The distance S ia
adjusted to vary the sensitivity of the voltmeter.

Referring back to figure (1*1) the impedance at any
point on the line is given by Xx. • Equation (1*1) gives
expressions for N/t and J-x where Kq. and refer to
current reflection coefficients. Since we are now considering 
voltage resonance it is simpler to use voltage reflection 
coefficients, the only difference being a change of sign in



- 14-

each case* Thus

Vx = +
I-K ç K , e V m s 3

Z. t Zc
KQ.K-T-e'*^'

The Input impedance^: Is obtained by putting x = o in t; h: :'-•
*7equation (1*15) and substituting in " jĉ c

Z ;  -- Z o  0 + K-r-e~°'"^ ) (|. It)

The position of the shorting-plate at the end of the line 
is first adjusted until a system of standing waves can be 
detected on the line. In this case  ̂0 1 in equation (1*16)
which becomes

Z: ’ 2 o ?  f O-iV)
For iow-loss lines I can be replaced by i/3 - I so that
wnen 1 4- where n is any integer

y .  = J  Z .  I a n ^ ^  I . e .  Z ,  ^  0  ' ^ ^

The positions corresponding to these values of 1 are voltage
anti-nudes. The voltmeter is placed at the first anti-node
BB, a distance from the input end, and the unknown impedance

3 ̂«t the next, AA, IT from the input end. Thus the input 
impedance to the left of AA (or BB) looking towards the generator 
is very large and variations in the part of the circuit to the 
right of AA (the measuring circuit) do nut affect the input
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current. In the theory following AA is taken as the origin 
of distances measured along the line. Also since the voltage
pattern repeats itself with period 2, the voltage measured at 
BB la the same as that as AA.

The first measurements are made without the unknown 
impedance connected across the line. The distance l^from 
AA to the end shorting-plate^is adjusted to give maximum 
voltage at AA. This is equivalent to maximum input Impedance 
of the line to the right of AA and from equation (1*18) occurs 
when . Let this value uf i - i<> say.

The unkno^m impedance is then put across the lines
at AA and 1 re-adjusted for maximum voltage at AA. Let this 
value uf f = f-T- and let G- and B he the conductance and 
susceptance of Z_ .
The input admittance X: of the circuit to the right of AA
is then given by

X  - Cr +-JB + C o t y h
Q  +j (B -  C o k y o h )

The maximum voltage corresponds to the minimum value of X
and the latter occurs where

B  z ^

I fius 3 -  1 3.0 ("î — ^
, ta.n 2 }L(^o —

■I • ^s. rom this equation the ausceptance of the unknown impedance
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Tnay be found. Is calculated from the dimensions of the
lines and { io ^  ) is measured with a micrometer screw
arrangement.

The value of the conductance G of the unknown impedance 
is obtained by plotting the resonance curve of voltage 
against length of line 1 with the unkn.own impedance 
attached to the line. In this case, if the maximum value 
of the voltage is s^y, the ratio of to any other

Value of the voltage V is given by
-  o + j (B - it

V ’ G
substituting for B from equation (1*19)

^ 2̂  Cc.ot/^'ly ■— C.ol^/3[)

V  "
Since it is only the square of the absolute value of the 
voltage that is observed it is that is of interest.

V m «  f  (sav) -
■  G '  ^

Thus Ccot ysf*̂  c.ot ̂ 1 /

- ^  LlToLn —  Ca.r% )J

. J _  £tan (fo" fv )- ^  ) J  (/•-2l)

Where Af is the width of the curve at 'jzT (See
figure (1*2) which is exactly similar if voltage is substituted 
for current).

From equation (1*21) the conductance of the unknown
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impedance can be found and knowing this and the susceptance, 
the d̂mittüince and impedance can be calculated.

A substj-tution method for the measurement of admittances
Lhat high frequencies has been described by Miller &nd Salzberg 

This is different in principle from the two previous methods 
but is classified with them as it is partly a resonance method 
and does not involve any movement of the measuring instrument 
on the line.

A short-cii'cuited transmission line of length 1, less 
than , is used for the measurements. An electro-motive 
force is induced in the line through the shorting plate 
and the ouher end is closed by a variable condenser 0 across 
which a valve-voltmeter is connected (figure 1*5).

The shunt reactance X of the unknovm impedance is first 
found by connecting the latter across G and tuning G for 
resonance as indicated by a maximum reading of the voltmeter. 
Let this Value of G be Q  , The impedance is then removed 
and 0 is again tuned for resonance at a value Q  , say.
The shunt reactance X uhen follows fr^m the two value» of 
tfie reactance of the tuned condenser.

LjC, — X “ urC*2 ujker=c tO = .2TT X

In order to obtain the shunt resistance of the unknown 
impedance it is first necessary to find an expression for
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tiie voltage Vj at any point on the line distance y from one 
end in terms of y and 1 and the voltage across the other 
end (see figure 1*5).

Referring hack to equation (1*15), where and -̂r are 
the voltage reflection coefficients of the terminating 
impedances, the voltage at any point in the line distance x 
from one end is given by

I-
where the symbols have the same meaning as before (sew figure 1*1) 

Substituting l'\-r'ZTt7o

e -

= 6^ %  . __ Z  o S,'nkT(.f- a ) 4 JZ-T cqs/v?
Zo [z>ŝ {̂ i 2̂ -Cosk̂ l̂  {j^CbslxTf + Z-jrStnkTf j

The input impedance to the line is given by equation (1*16)

(i- K_e'̂ 9̂
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Substituting for In this equation

Z-T r-2.

- Z  k^r-l-Z)'e^^+ CSr-
L z - r j

-Z  fZsinklE t ^T-Cosknt? (j -2i+)
;Z.cosAT( + SCmk ?f

Substituting equation (1*24) into the denominator of
equation (1*23) the latter becomes

CosAlPf j j- ^  ^ %r Co&^PfJ
^K,

so that equation (1*23) may be written

V l  " ^  %  SCi^K ?  (f-Jl) f CoskT" ( f~7x)

%  f sir* k  IP f t  "Zt- ClosL'Pt

If the distances are now measured from the shorted end 
and the voltage across the other end is Vj (see figure 1*5) 
then "{-3L ~ <-j Vt =

Tii«3 V. . V-fZ^si^kTu + 2-tc^sITm 7 /l asj
' L 2.0 SCnkTi f- Zr CosAT'C J

Where Vy = Vx.
In this case since the end is shorted Z-y* O  and 

equation (1*25) reduces to
V w  - %  Strih^U

1 SfrTîTpf*
Substituting and neglecting line losse»

(i.e. putting 4 ^ - 0  )
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To find the required shunt resistance, without the 
unkno'vm impedance connected across 0 a Imown non-inductive 
resistance H. Is connected across the line. By sliding 
this resistance along the line a position is found when the 
reading of is the same as the original reading with the
Impedance connected across G. If R  is sufficiently large 
to have no effect on the voltage distribution along the line 
the power loss in the resistance can be expressed as

* y
where 1 is the distance of R  
from the shorted end of the line.

X

The power xoss in the unknown shunt resistance R at 
the and of the line is \y ̂

So that by making these equal

R ' | s £ r L J l _ L r  w U e  a  L SLn ^  'U \ /
P XIf " I t h i s  can be put in the form

Miller and Salzberg worked at frequencies of 30-250 Mc/s 
and used a single copper rod above a plate for the lines.
They first investigated the change in effective resistance 

of different types of fixed resistors throughout this frequency 
range. Later the method was used to measure the dielectric 

constant and power factor of insulators. The capacity of 
a condenser Was found first with air and then with solid 

dielectric between the niâtes. If these values are C, and ,
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respectively, the ratio gives the dielectric constant.
The effective resistance ̂  of the latter was then found as
described so that the power factor S is given by ^^

In the second group of line methods of measuring
impedances the measuring instrument is actually moved along

the lines and the standing-wave pattern investigated. The
earlier methods employed one measuring instrument only and an

* » 5example of this type is the Bruckmann method of impedance 
measurement. In the course of outlining the theory of the 
Miller,and Salzberg method of measuring admittances an equation 
expressing the voltage Vy at any point on a line distance y 
from one end in terms of the voltage \/̂  at the other end was 
developed, viz

Vc. r Vl. COsL _ ( \ 2

Zo Scot. Tl ^ Z-r OosU TL
At the end of the line y = o and the voltage at the 

l-rtermination Vj- is given by

Substitution from this equation in equation (1"25) gives 

(putting ^ ^ + jyS and neglecting line losses)
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Hence when Sin - O Cl-C- ^  " i 1̂ 7^
/ . _pn»l) X N jVL I  ̂I I

and when C o s ' O  Ct ^ - /_#. X» I V r̂ / ' 2  -r •

V x

V x
/f-

4
Zo

(  /

V - r

From this same equation

- fcoS/gw i- I j-o  Sen
^  L ^ i . Z-r

' " ' h f -  h / ’v  < i ^ J Z i ] t r r ^ d ^ , ^ r n ]

(substituting - P t '•'j and treating as purely
real)
V  ^ 2 V, COS/3 M+ jZ„Scn2 a^ _  ,• %  SCO Z Z  S C Z 0 ^

' ^-2(R,^jX!) 2 C ( l , - j £ i  ^ IZ^'^ ^

~ S£?..̂ 7+‘ -f- Z„Xt scngay -f I I — eos y  y 1^  |z,r /' L
-  —i- ^  Z c  , CoS^y3M / /  \  J. ^ R.-rZo . SCn ̂ J3 *~f ^
<2 I jzj" / h  y i z ^ r  / U

-  1‘̂ t I  J I + CoS2 n <j■ jZ-f) — % , 2 X t  Zq , Sir. 2/3y %

2|Z.r I IZJhZ/ /ZqdZT
Now introduce \  where t a n  Y  * IZ-t ]^~ 2<-*

2XtZ, ,
I.e. sin Y - 1?J.J ~~ __________________

y/^rlVZo*^3 Z, (RtV Xt )+ /e V  Rt
. !z-,r-z/z-o
-/h-rin

3Lnel CoS Y - ^ ̂  ~r__ ____________
/IZJ + 2 1  Z/Cxp-PP)
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^ r  2 i 2 q d  ( i z , r t 7 o ’; ^

^  iZy\\7] J I j. / I 2 t I  ̂ i -  Z . ' ?  -J3ZCR-r\%Z'>*2ZZ(XZ-« 7 )  . S i n ( 2 / 3 - j

' l ü r i  J  ( / z . i v z r r  J

=  | Z t I + Z o  ( l  ^  I I — —  ^ A  ^ o  ^  ^  , S m v ( 2 / 9 * j
" z i ^ l  i  l ' ^ T r +  ;  / /  jI

Thus the maximum values of j J occur when

T y 3 H  4- Y - ( 2 r > ^ - ^ ^ i r

c.c. H  - (3j2±Èlh. -h V-_X-
4  4TT

and are given by f Z-rl 2 l 2 ^  ji +- /i -  ( j i z Æ j ÿ I
2^1- / 7  i2j2

and the minimum values occur when 
y - Çi^n f V \
I 4  47T

and are given by IZ^I^r Z f  f | _  /| —  / \ 7

Hence ^  ) h  2  | V... ( | VI..
V , V ,  I /  V v  II V .

I^t IJ ^  i l^ri /;_ (i— / 2 Z R t Y?
l ^ v )  1’2' t ) *  7  i  ilZTl\Z.yJ

= 1 + 2 d  f a p . z .  
i2^r i^-rt

p  = I
c  * a m r i  1 <3 +:Vi A  a  q  A  o r i j T l  A  o f *  +".h<

|Z.|
^ I  - J  Vi 1 2 ^ 1
VT ' I Z. I

i.e. 17c I

Where  ̂ J^SL. and is the phase angle'of the unknown

\ /



four’s. 0-6)
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by making these substitutions

c o s i , . ir~ (1 2 1 )

Similarly by calculating ) 1 V»~«» I — IV""" I y in terms of
I! \4 I I V^IJ

V x  a n d  CoScj>r

Adding (1*29) and (1*30)

CoS4 - - 0 "il)
Thus using equacions (1*28; and (1*51; the modulus and 

phase angle of the unknown- impedance can be found when the 
maximum and minimum voltages along the line and the voltages 
at distances of half a wavelength and a quarter of a wavelength 
from the terminating impedance are known.

Bruckmann and Hempel used twin open lines for their 
experimental work on this method as shown in figure (1*6).
The unknown impedance was connected at a voltage antinode.

The two disadvantages of this method as compared with 
resonance methods are firstly when the measuring instrument is 
moved along the line to investigate the wave pattern the input 
impedance of the line is altered and the power input into the 
measuring circuit is not constant and secondly the method is 
only suitable for the measurement of impedances of the same 

order of value as the characteristic impedance of the line



F̂ une, 0 6)

:
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by making these substitutions

II ' ^ 1

C o S  j , ,  '  f  I V - .  I < - 1 V . . .  I j  - ,  I -  I l l ,  ( i  a i j

Similarly by calculating ^ j V-yy.| —  | y  " jj terma of

Vx and CoSĉ T
COS 4^ . L ^ .rt. ly^ I -  f..t 1 ] ------- A  g  i

^ "ZlVxIIV^j CI30J
Adding (1*29) and (1*30)
CoS 4 - - IV'"»x||V"C.j (1 3 /)

IVvJ|V^,\Thus using equa cions (1 *28; and (l*3i) the modulus and 
phase angle of the unknown- impedance can be found when the 
maximum and minimum voltages along the line and the voltages 
at distances of half a wavelength and a quarter of a wavelength 
from the terminating impedance are known..

Bruckmann and Hempel used twin open lines for their 
experimental work on this method as shown in figure (1*6).
The unknown impedance was connected at a voltage antinode.

The two disadvantages of this method as compared with 
resonance methods are firstly when the measuring instrument is 
moved along the line to investigate the wave pattern the input 
impedance of the line is altered and the power input into the
measuring circuit is not constant and secondly the method is
only suitable for the measurement of impedances of the same 

order of value as the characteristic impedance of the line
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since it is only in this case that the standing wave pattern 
is suitable for measurements. On the other hand the resonance 
methods, as mentioned before, have not been found suitable for 
the measurement of high values of impedance because of the 
damping effect on the resonance curve. This makes resonance 
methods unsuitable for measuring the conductivity and dielectric 
constant of liquids.

There is a further method for the measurement of 
impedance using Lecher Wires which is suitable for high

(3values of impedance namely that of Flint and Williams •
This method possesses the further advantage that the 
measurements taken are independant of random fluctuations 
of the input power as well as variations due to changes of 
the input impedance of the lines.

A diagrammatic sketch of the apparatus is shown in 
figure (1*7). The two impedances and refer to
those of two vacuum thermo-junctions whose couples are 
connected to sensitive micro-ammeters. The latter record
a quantity proportional to the square of the currents and

-—  a t

flowing in Z, and • It is the ratio which is
required and this is independant of input power and does not
depend, on the meter constants. In the calculation the
symbols have the same meanings as before and any new notation
is explained by the diagram. Current reflection coefficients 
a.Pe ' useA K, anj Hji are tke cuf̂ n̂ nf Tê îicJTion coê Ccients
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of the impedances Z, and .

Hence K, - Z, and Ka. = Zo— ̂ a_
Zo I ^

The equations for current and voltage -L^cand \/̂  at
any point on the line are given by equation (1*1)

\4 = fo-- (Kk
I K, M k e ^

= J -  . &  . f e ' %  f K ^ - e
Z.

The voltage across the line at AA can be found by putting
0L~O in this expression. The further substitution of
gives

1  = { f -
' / — K ,

and substitution of x = 1 in the equation for gives

I ,  - J .  . 4  - £ i i .  [ e . - ^  +  K .
I - K. Kk

I, - Z. e ’’'- H . e - ' '
Z, ( l + K i )

-potK-j Ki =

J-. . Z c  c
Z, O+K;,)

=  2 ^  . g - ~ ‘—  - S C n ^ i  C T {  + t )  
z, l + M,

Now write

/ "
1 . ' ^
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It is this quantity that is actually observed 
= A  I S c n i i

where A is independant of the value of 1.
l?urther substitution of (a -f-jb) for the complex quantity ^  
and of Jy3 for T  (i.e. attenuation is neglected) gives 

= A  I C L  C O S  ^  J  ) j  I
=  A  C O S ^ C h t ^ i  )  + C o s / i ^ Q ^  S i r , ^  ) J
- A  l̂ SCnh eu “h

The maxima of yo are given by 

/^„!x ’ ^  eosh'̂ ck.

and they occur when _
1 ^ f _ W+')"b  ^rpt - ^  where n is any integer

Hence I  /yO \ ̂  I —  Sin A Ov ̂  sCrt̂ C blpfj)(̂ ) CoS A GL
(l3 3j

TTTTTZy
CoS

Cosh^o!
This equation shows that a graph of /p ^ against 1 isr
symmetrical about the turning points.
Similarly y^.v, ' ^  SCnYi <x
(since yp^^^ occurs where l>-iy3f~ r*fl )

Thus yOmm ^y^mAx t:o.nK &.
The readings of yp are plotted against those of 1 and 

a curve of'the shape shown, in figure (1*8) is obtained. The 
distance between successive maxima and minima gives’ the value 
of , The positions are found accurately by plotting mean
abscissae near the turning points. The value of b is obtained
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I i I tfrom the fact that the first maximum occurs when h-t/3  ̂- Z 
and this can he checked by the position of the first minimum. 
The value of a is found by plotting a graph of CoS^C btysf ) 
against . From equation (1*33) this can be seen to be a
straight line with intercept cosh a on the cos*(b axis.

Knowing a and b, can be calculated from the current
reflection coefficient since

z. +2^

- ^  I

1.8. c a n k  L)

If Zo is purely resistive 
^  3l -h I frsLn b) _ (tamh a  +J han b )( I - j ta.nli a  h&n bj

^ I -l-JtanKa tanb I 4-
The real or resistive component of is therefore
Z- - tranha + « Z o  (ra.nh^a. Sec*b

1 +- tanh^'a kam^b 1-f tâ-nA^ tan^A
and the unreal or reactive component is

7 t£Ln t> 0 —  fcank^a.) ^ train b  SÇck^a,
I +  t â h k ' ^ a .  t a r t * { >  I + t a n k * ’ a  t a n ^ i >
In the experimental work described in the original paper

on this method the Impedances of several current meters were 

measured at a frequency of about 150 Mc/s. If any other 
unknown impedance is to be found it must be put in parallel 
with the current meter at the end of the line and the impedance 
of the latter determined first by a separate experiment.

The sensitivity of this method has been investigated by
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7Rogers . His analysis shows that a, which is difficult to

measure when small, is a maximum when b = 45® and this occurs
when the modulus of the unknown impedance equals that of the
characteristic impedance of the line. Since it is difficult
to construct a line with a characteristic impedance greater
than about 500 ohms this makes the method insensitive for
impedances with large phase angle. In order to reduce the
phase angle however the impedance may be shunted by a variable
length of short-circuited line but this makes the experimental
technique lengthy and intricate.

The Flint and Williams method was used by Rogers and 
SWilliams to investigate the impedances of thermo-junctions

of nominal resistances from 600 to 1600 ohms at 150 Mc/s. 
y  curves were plotted firstly with the thermo-junctions 
mounted in pin-bases in valve holders and secondly connected 
directly to the line (a system of Lecher wires). The curves 
shifted to the right when the thermo-junctions were 
dismounted and the capacitative effect due to the holder was 
thus calculated to be of the order of I . Also by 
investigating thermo-junctions of different resistance it was 
shown that the residuals of reactance were inductive for low 
values of resistance and capacitative for high values of 
resistance. Thus as the resistive component increases due 
to the skin-effect it is nullified by the net increase of 
self-capacity and the resultant impedance is less at higher
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frequencies.
A variation of the method in which the unknown impedance 

is determined without a knowledge of that of the current meter 
is due to Williams . In this case the impedance is 
connected across the end of the wires and two current meters 
are kept a fixed distance apart and moved along the line 
together. As in the previous method it is the ratio of the 
currents flowing that is required and consequently there are 

no errors due to variations of the input power. This method 
is described in detail in Section III and will not be 
considered further here.

In conclusion it appears that the principal sources of 
error inherent in the various methods may be summarised as 
follows. If a single meter is used to investigate the 
standing-wave- pattern along a line terminated in an unknown 
impedance the input impedance of the line alters with the 
movement of the meter and thus the power input into the lines 
varies apart from any random power fluctuations. Also the 
method is only suitable when the unknown impedance^ 
approximates to the characteristic impedance of the line.

Resonance methods depend upon a perfectly stable power 
input. They are not suitable for measuring impedances which 
are near the value of the characteristic impedance of the line 

or for very high impedances.
The methods employing two meters are independant of a
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steady power Input and can be used for higher values of 

impedance although the most accurate results are obtained 
when the impedance is near that of the characteristic 
impedance of the lines. The experimental technique is 
longer and more tedious than in the other methods.

The methods mentioned in the last two paragraphs both 
necessitate shorting the end of the line. Perfect reflection 
may be difficult to attain and this will be a further source 

of errors.
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SFOTIOH II

THE CURRENT RESONANCE METHOD FOR THE 
MEASUREMENT OF IMPEDANCES -



" ? ne________ d_,It :--=»G
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a) CHIPMM'S IvîBTHOP
The general theory of the Chipman method of impedance 

measurement by the use of current resonance was given among 
the methods in Section I, The original apparatus and 
experimental technique will be described in this section.
In his introduction to the paper Ohipman stresses the 
importance of the method for the measurement of impedances 
which are not necessarily of the same order of magnitude as 
the characteristic impedance of the line. In previous 
methods involving measurements of the standing wave pattern 
on a line terminated by the unknown impedance it was only 
under these conditions that the readings of minimum voltage 
or current were not too small for accurate observation .
Chipman states that the possible accuracy of the current 
resonance method varies approximately inversily as the 
frequency and is about 1% at 300 Mc/s.

The experimental arrangement is shown diagrammatically 
in figure (2*1). The thermocouple for detecting current 
was fixed to the outer tubes of the line and was therefore 
kept at a fixed distance from D and P. CD and DP were about 
a quarter of a wavelength and half a wavelength respectively. 
The line length 1 of figure (1*1) corresponds to BG in 
figure (2*1) and the shorting plates D and F ensured that 
the whole of the wave reaching C was reflected back and none 
of it travelled further down the line. The line was supported
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by Insulating pillars at a voltage antinode near B and also 
between D and S. The line length was altered by turning the

qfscrew the comparator to which the point G- was connected
and variations in line length were read on the comparator 
vernier. The oscillator A supplied electro-motive force at 
a frequency of 377 Mc/s. It was of the push-pull type and 
the circuit is shown in figure (2*2).

Referring back to the theory of the method in Section I, 
equations (1*8) and (1*9) reduce to equation (1*10). 
viz + p) + Sir<^ 3^
provided dC the attenuation constant of the lines is sufficiently 
small. This equation was used to calculate the real part of 
the product of the reflection coefficients of the two terminating 
impedance^ since

(1%)
A curve was plotted with ^  as abscissae and ]Kq.Kt ) 

as ordinates (figure (2*3) ). ûf ^ 2 8f = width of resonance
_ J2. — T~^ \

curve where the current I is (i 6. ZT - ̂  ).

I K? I could thus be read off the curve when /\f had been 
determined experimentally. Two curves were plotted as shown 
in figure (2*3), the full one of equation (1*10) (i.e. on the 
assumption that cL-O ) and the broken one of the sum of equations 
(1*8) and (1*9) taking çC ' IOnefye(><yé*n . The validity of 
the assumption that cJL~0 was investigated and it was concluded 
that the final ratio Î G-̂ rl that was required was

I F T "
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independent of which of the two curves was used with 

attenuation constants that are likely to he found in practice.
It was also concluded that for this value of oL used at 

a frequency of 377 Mc/s the error introduced into the phase 
angle of the relection coefficient by assuming a symmetrical 
resonance curve was less than experimental errors to be 
expected in measurements made on the resonance curve. The 
effect of radiation resistance on the attenuation constant - 
was investigated and it was found that at the frequency used 
the distributed radiation resistance of the line v/as small 
enough for the attenuation constant still to be neglected and 
that the radiation resistance of the termination could be 
calculated from the formula ( \7here 1 in
this case refers to the centre spacing of the line conductors).

?ftien JL is negligible | | can be found another
way by measurements made on maximum and minimum values of the 
current. This method was only used when the terrainating 
impedance was resistive and of approximately the same value as 
the characteristic impedance of the line. In this case the 
current resonance method is least accurate and the method ?/hich 

follows is possible because the two currents are of the same 
order of magnitude. From equations (1*2), (1*4) and (1*5)

VI.

anJ P(t) .  !________________



Fiĉ cir̂ ^

To
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Z [ K 141 sCrfCji(t̂)j -

(putting (/-O and substituting for p).
The maximum value of _J-̂  occurs when (A't i- Q ) - rilT and

yr P 4̂n~ÎTTthe minimum value where y3 t + <̂  j - —

Hence   an^J = -^o
l-IK̂ K-rl I +|K(rKTl

' * _ I ~h IKo Kt/
-I... " i--IKcvKJ

I Kc^ Kx I - -L -L mêw
— I— I —^  *>»C»\

For the calculation of the unknown impedance 2 q, ^ R q +j X^3
from its reflection coefficient and the characteristic 
impedance of the line,equation (1*14) was used
Viz - Z /1 - A"- 6" , 7

I. I j fl = iKvlcos^’'̂
X .  ,  2, y _ _ a B  i  V  B  =  I K j l  s i - n < t a ^

‘’{ I + fl* V 6^ 1- afl J
Curves of and were plotted on co-ordinates

of and c|>Q (concentric circles and radial lines
respectively). A sketch of the diagram is shown in fi.gure (2*4)
Its use is similar to that of the more usual type of circle 

lodiagram . The diagram is symmetrical about the base line 
and, because of this, if any two impedances are connected by 
the relationship the two points on the diagram
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corresponding to these impedances are mirror images of each 

other in the base line. Hence tlie resonance curves of the 
two impedances are identical in shape and the possible accuracy 
of measurement of the magnitude and phase angle of each is the 
same. This property enabled measurements of known impedances 
less than the characteristic impedance of the line to be used 
to check the accuracy of the method over the whole impedance 
range.

Chipman states in his conclusion that an accuracy of more 
than 1% is obtainable in the determination of impedances except 
in the case when the impedance approximates to a resistance of 
the same value as the characteristic Impedance of the line.
In this case the product of the two reflection coefficients 
can be found from maximum and minimum current measurements 
but in these circumstances it is preferable, if possible, to 
alter the characteristic impedance of the line by varying the 

spacing and to use the resonance method.
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b) BSSEN^S BXPERIM^HTAL STUDY OF CHIPMAin 8 METHOD.
The Chipman method of impedance measurement has been used 

Uby Essea at frequencies above 400 Mc/s^the main application 
being the measurement of the propagation constants of radio

frequency cables. The accuracies achieved were — 2fà for
reactance and It for resistance except when the unknown
impedance was largely resistive and near the characteristic 
impedance of the line.

In most of Essen's calculations the simplified equation 
(1*10) of Chipman's calculation 
Tlz SCn^. Vf = [ Sùnk

was further simplified to
^  o

i.e. fptfo was neglected in comparison with p.
Also since = 6  (\ u)

jH-rK’q . l - e  ^ r.€. p  ^ ^  I
Î2,If g is taken as two for both resonance curves (i.e. with 

and with a shorting plate connected across the input 
end of the line), substituting for p from equation (2*1)
|K^) = antilog 2 (sink 'fsCryS. Sfs-c-) ~  Sink '(sin/3.%i)j 2)

where Sf and are the resonant half-widths of the

curves in the two cases.
This equation and equation (1*12) viz c|)<̂  - to)

were found most generally useful for calculating|Kc^|o.ncl c|> ,

instead of using the curves of j ^ t \ e^gainst plotted by
A
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Chipman (figure 2*3), when an. accuracy of 2% was all that 
was required. The resistive and reactive components of the 
unknown impedance were calculated from its reflection 
coefficient and phase angle by using the circle diagram 
described in Chipman’s work (figure 2*4).

Considering equation (1*14) for the reactance of the 
unknown impedance 

viz

and substituting for A and B

- Î Z/-JjKaLSHlis:____  ]
. U+l><Crl̂  CoScj>Q J

when irlĉl = | this reduces to Xg- = tcLn 
Substituting for from equation (1*12)

2iT(fs.c.- L )

From this equation it can be seen that for the measurement 
of impedances varying in size from plus infinity to minus 
infinity a line of length is required.

Essen used two types of closed line for his experimental 
work. Balanced impedances were measured on a screened twin 
line and unbalanced impedances on a coaxial line (figures 
(2*5) and (2*6))

In the screened twin line of figure (2*5) two brass 
conductors A were fixed to the brass end closing the brass 
outer screen. T was a thermo -junction (d.c. heater 3*3 ohms) 

connected betw^een two lengths of tubing sliding on the
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conductors A on narrow collars. Either the unknown 

impedance Z^or the short-circuiting plate was connected at 
the end of the conductors. S and F were two heavy brass 

short-circuiting bridges sweated on to D and making sliding 
contact with the outer screen. These were found to be such 

efficient reflectors that their exact position along the line 
was not important and did not have to be adjusted for different 
frequencies. The variation in length of the line was 40 cm. 
so that the apparatus could be used for any frequency above 
375 Mc/s.

Figure (2*6) Is a sketch of the unbalanced line in whtfah 
the lettering corresponds with that used for the balanced line. 
The contacts between the inner and outer conductors were made 
by a metal ring K, to which the thermo-junction unit T was 
attached, and by two short-circuiting discs E and F which were 

joined by three brass tubes.
The validity of certain assumptions in the theory of the

W3 lSmethod checked using this apparatus. First the
attenuation constant of the line was measured to verify that 
it can be neglected in comparison with the experimental errors

A-when taking measurements. Two resonance peaks a distance 
apart were plotted and the resonant half-widths of the curves 

Sfj and measured. From equation (1*10)
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Jwhere *̂ 0 was the position of the first resonance peak.
putting g - 2 and assuming p is small 

SCr» ^ J>

S e n - J -  p

JL ~ ^   ̂ SényS )

X
Essen’s values for <3̂ were 1 x lo'*'*̂ nepers/cm for the balanced

— eline and 1*5 x 10 nepers/cm for the unbalanced line.
In the theory of the method the reflection coefficient 

of the short-circuit which replaces the unknown impedance is 
always assumed to be unity. Essen checked this point
experimentally in two ways. Firstly the inductance of a
short-circuiting bar was measured by shorting 30 cm of line 
with two similar bars and measuring the resonant frequency.
This was not quite 500 Mc/s (the latter corresponds t o ^  = 30 cm) 
and from the difference between ^  and 30 cm. the inductance 
was measured. This value was then compared with that obtained 
by using the bar as the unknown impedance in the Chipman method 
assuming that the short-circuit which replaced it was perfect. 
Secondly the inductances of several lengths of copper wire were 
calculated and then measured by the Chipman method with the sane 

assumption. The results showed that the resonant length of line, 
when the end was short-circuited, was not in error by more than 
0*15 cm in the case of the balanced line and 0*06 cm in that of 

the unbalanced line.

Measurements were made on the widths of the resonance
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curves to find the radiation resistance of the short-circuiting 
plate. The mean of the half-widths of two resonance curves 
for open circuit was first found. This exceeded the half-width 
when the line was shorted by the plate by 0*085 cm. This was 
substituted in equations (1*10) and (1*14) to get the radiation 
resistance which was of the order of 0*2 ohms.

The average difference between the resonant lengths of 
short-circuited and open-circuited line differs from ̂  by 
0*55 cm. Neglecting the possible error due to the short- 
circuited line this corresponds to an open-circuit end effect 
of about 0*08 for the unbalanced line. Similar
measurements for the balanced line gave an effect of 0*05 
Thistend-effect and also the impedance of any connecting 
wires are all included in the measurement of the unknown 
impedance.

The main use of the apparatus was for the measurement 
of the characteristic impedance and propagation constant of 
cables. The input impedance of a length of line 1 is 
given by equation (1*24)
viz CostiTf j

When the line is shorted at one end 2-^- O  and = ^s.c. say 

Thus 2^.c, = %  tb^nkTf
Similarly when the line is on open circuit ^  oo

and 7^^ :T cotk Tl
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and t <xr» h ̂ f  " \/5 .c./>2'o.cl .
Putting ÙcLm h T*{ - Cbumli ){ - fl-hjB

and Jh> can be expressed in terms of A and B
viz ^  A.)

t c x n  ^ / 3  f  -  ^  B  ./ A=- B '

Thus using equations (2'3), (2*4) and (2*5), ^  , (/ andy3

could be calculated when ô.c.. ^^s.c.bad been measured by
the Chipman method,

Essen shows in an appendix to the paper that the 
measurement of resonant length is most accurate and the error 
due to the junction is a minimum when %s.c.9.ud xl» c.ŝ re 
approximately equal and opposite in which case the length of 

the cable is g where is the wavelength in the
cable. This condition may be satisfied by varying either 
frequency or length of line.

The value obtained for when the signs of and
were reversed (by variation of frequency) was not the same. 
This was because of the error due to the effective impedance 
at the short-circuited and open-circuited ends of the cable 
and was eliminated to a first order by taking a mean value.
The attenuation varies with frequency so it was taken to 
apply to the mean frequency but it was necessary to determine

the phase constant or wavelength and hence the velocity had to
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be determined separately for each frequency. This was done 
by cutting successive lengths from the cable in such a way 
that in each case the reactance was zero. The length of 
cable removed each time was therefore and the velocity
could be calculated without any error due to end effect.
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SEGTION III

THE DOHBLE BRIDGE METHOD FOR THE MEAS'QRMENT 
OF IMPEDANCES



Figure. (S' 0
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a) METHOD
Wllliamâ’ method for the measurement of impedance hy a

system of Lecher wires was mentioned at the end of Section I.
Two meters are moved along the line together and the ratio of
the currents flowing in them noted. Similarly to the Flint

eand Williams’ method the readings are independent of random 
fluctuations of input voltage and the method possesses the 
further advantage that a knowledge of the impedance of the 
current meter is not necessary.

A diagram of the apparatus is shown in figure (3*1) .
and are the impedances of the current meters and

Z is the unknown impedance. The meaning of the other symhols
is clear from the diagram. The input impedance of the circuit
beyond B and including Z but not is given by equation (1*16) 
and is therefore ^  ^

I -  Ke,
K is the reflection coefficient of the unknown impedance and 
putting - C , say, the input impedance beyond B becomes

Thus the total impedance beyond B including is given by

7.0 fTo-rtî Cîs ^Say . (3 l)

+ fo fcoLoli C?S + ‘tT̂
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Now considering the length AB of the line, from equation (1*23)

V 5 " j ^  1 ( 3  2 )
(-TcSinkTs, + -^cosK'BrJ ^

where Is the voltage across the line at A
and is the voltage across the line at B
Vfl ' _L ; %  / where -J-| and JL^ are the currents 

V g  = 3 flowing in and -

Substituting for from equation (3*2)V0

-i. r —  CoskTs, -h Ps, ?
Z z  ^ 2' j

and for from equation (3*1)

i -  = —  Cos^ils, +7aSi«UPs, c o d  + Zo ?
Z  I J

Putting C f-e. ne_3leci"<'î Q alténuo-hoy.)

Xs. . J- î(<^u+jKl)coS/3S,+ j%Sink%, )si«/3S, ^
X u  ^ ^ ^

This equation can be written in the form ^

JLI * ^ A  + J B  -hCc+j'I>Jco^^» ^
X u  > .

where A, B, C and D depend only on ^  and S, and are 

independant of 2  and S  •
A » f?jt CoSyBS, B = X:iCosy3S, +  %, scr>y3 S,

c = —  S^nfiS, D = %  Si>>y3S,
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Putting 1^2 ) ” and. rationalizing

^̂2, f =  B / 9 + J  5 )  t  j 3 > > o t l i / k + j C  @ 9 - j  B )  j ^ o t k  -  j

 ̂ ( A c4̂ BD)^cof:k (k+jCLtySS)] + c o t k k j
+ j  B e ) ^cotB fpL+j (k^ygs)]—Cofk L<^'~jCbiy3S)J^ 

+ ( p H ' D ' 9 c o t l -  t ^ ^ j C B i y 3 S ) J . c o t k

= 'f'
B3)) ̂  fo-ioK g.-f ̂ toLfXt̂ yss)—^!â**CtjySS)

tr<xnK ex. +■ b%M C fc» ty 3 s)

1 -p bxni*  OLCoLM^Q) j  

t<vr» k ^  4 t̂ txjrx̂  C k fySS)

=: i-
( C ̂ P^secY Y/f feiri%V) f (  f^C-tBl>)y fArkcL sec^( k y s )+to~Pc Ck+/3s)$œÜ

t o .n h ^  + £b.r»̂ d ktySS)

 ̂(Violh'|>lyin ̂  Ly Cosk^o.. k ty3s) ^

- C c ^ i^ X iO  f'

( c ^ _ t l > ^ ) c o s k  J><gL4-C r 4 c - t^ 3 3 > ) s c V > / i3  @L B c ) s C ^ :?  C  k  t y 3 s l

SiViK*(V CO S^Ctlyss) i- sôn^ t  k ly 3 s)  Cos/> ĈL

/D^ j=r_L- ^^,[r^~R^).|.(^T>^3cosl\ 2<k t ^ c +d3>)S^k <̂V -

/%#! A SCnVî ô  4" kfyss^ /
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This equation may be written
K,+ Ku +K,  SCr^-gat/BS)

f- SLn^^bfy3S^
where K, , and are independ&it of s and are determined 
experimentally•

To simplify the experimental technique K 3 is made zero. 
For this condition 

AD - BO » 0
i . e .  % SCiySS, e-o&ps, +  Xu^SirySS, cos^S, -  Xj, Z„ Sto îSS,  ̂O

5’oVu tcunySS, )si>.y3S, COSy3S, =0
The relevant solution of this equation is 

Civr* /3S, — ——

This is the case of critical separation for which Sj -So , 
say. With this condition fulfilled equation (3*4) becomes

K, + - -------    (z s)
/ Sû̂ ĥ <3L-h SCn  ̂C l>4y3S^

The determination of the constants a and b from this equation
is described below. From a and b the value of Z may be 
calculated since

Zc-^Z
%  = Z. tdnk (oLtjl)

Treating Zo purely resistive the real or resistive
component of Z, viz R, is given by

2, tank h> _ ^  sCnh ̂ cl

I + k u d  Cfasl,2a+Cos2i,
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and the unreal or reactive component, viz X, by

X ®  Sec-Û A. to-nb , Si-V».2t>
I "f* totfili CL i) Co l̂i *30. + CoS 2. |>

In order to use equation (3*5) to determine the constants 
a and b it is first necessary to make K ̂  = 0 in equation (3*4). 
To find the critical separation of the bridges which fulfils 
this condition the end of the line is shorted making a a b = o 
so that equation (3*4) becomes

- K ,  + K a ,  Cosec <UsT f3 S (3S3

From this equation it can be seen that a graph of y^^against s 
is only symmetrical when =0. This is the required
position of critical separation when S’, - 5® • If S, >So the 
curve A of figure (3*2) is obtained and if Ŝ  <  S© the curve B. 
In the critical position the first minimum value of ^occurs 
when S - ^  (figure 3*3). This position is found by adjusting 
the bridges until the value of atS*jis a minimum.

When the condition S, -So(i,e. ^o) is satisfied 
equation (3*5) can be used Instead of equation (3*4) and this 
is done for the remaining measurements. First Kj is found by 
leaving the end of the line shorted (a = b = o) and plotting 
a graph of against CaS^C^^S , in this case equation (3*5) 
becomes

K, + K ^ c o s e c ^ S

30 that the graph is a straight line with intercept K| on the
j axis. The linearity of the graph is a criterion of the
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nearness of the separation of the bridges to the critical 
value•

The short circuit at the end of the line is then replaced 
by the unknown impedance and a secondy> curve plotted with 

y So * It can be seen from equation (3*5) that the eurve 
is symmetrical about the turning points so that these can be 
found accurately by drawing lines parallel to the s-axis.
The maxima of occur when

A
r

and the minima when

j tt-gjTs (^ io)

\ ^Thus the wavelength ^  can be found from the distance between
successive maxima and minima and, knowing X  , a value of b
can be calculated from the position of each turning point using
equations (3*9) and (3*10).

Equation (3*5) may be re-written
+ Scn^£ b-t I3S)

^
à graph of plotted aginst is therefore
linear (subject, of course, to the condition that the correct 
critical separation has been used) and has an intercept Sûr»h OL on 
the S.Cn̂  C l>J3s) axis. This is used to find a. Is
usually calculated so that everything in equations (3*6) and (3*7) 
is known and R and X may be found.

Williams used this method to investigate the properties



-52-

of transformer oil. Most of the apparatus is the same as 

that described fully in Section IV(b) and will not be described 
here also. The Lecher wires were terminated in an air 
condenser and ^ curves were plotted firstly with the 
condenser surrounded by air and secondly immersed in the oil. 
Assuming a to be zero in each case, the two values of b were 
obtained directly from the turning points of the graphs.
From equations (3*6) and (3*7) when a = o, R = 0 and X - ^tan b. 
Thus if the values of b were b ̂ and b ^ , respectively, the 
dielectric constant É  was given by

The method is quick and accurate for the measurement of 

impedances when the resistive component may be neglected.
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b) THEORETICAL AM) EXPERIMENTAL INVESTIGATION OP MLLIM'IS»
METHOD ((Ml33)M. Williamson and (Ml 8 9) E. Harrlss).

A critical experimental study of the double-bridge method
was made by Miss E. Harriss and the results form her thesis
for the M.Sc. degree of the University of London (1947).
In the first part of the work an alternative and more reliable
method of finding the critical separation is suggested.
Williams account can be understood in two ways. It could mean
that keeping S, fixed a graph of and s was plotted and the

process repeated for different values of until the minimum
value of occurred where . Prom equation (3*4)
when a = b - o and S^~So Ks “

K , K ; j  cosec ^ y s

The /s curve is thus symmetrical and by differentiating
zwith respect to s the minimum of can be seen to occur at 

S - •  This method therefore gives a correct value for the 
critical separation but is a trial and error one and may be 

long and tedious.
Alternatively Williams* statement may mean that s is kept 

fixed at ̂  and one set of readings of Si^odyls taken, the
minimum value of occurring when 5,-5’*, . It is shown by

\ * asubstituting S=^ in equation (3*4) and differentiating
with respect to S’, that when is plotted against for
$ 5^  the minimum value of occurs at a value of which
is not necessarily the critical separation. In fact it only
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occurs at the critical separation when is purely reactive.
After this analysis Miss Harriss suggests that to find 

the critical separation graphs of against s are plotted 
for various values of Si and the value of s for minimum 
found in each case. These values can then he used to find 
the critical separation directly. When a = b = o but Ks ̂  O 
equation (3*4) becomes

K, f K;i coscc^s 4 ^  ColySS

By differentiating this equation with respect to s it is seen
%that at the minimum value of

tr -----
F

Substituting for and from equations (3*3) and (3*4)
cotyas„c„ = —  cotyss, -

cot/3S„.„= —  Cot/as. + cotyss.
So that if is plotted against a straight line
is obtained with an equal intercept coty3S*, on each axis from 
which S<5 can be calculated.

The results of an experimental investigation at a 
frequency of 250 Mc/s given in a further section of the thesis

ÿ.are in the form of a number of curves of /O plotted aginst s
' 2for various values of S, with the corresponding graphs of yc>

against . T h e c u r v e s  were not symmetrical when
gr ^  as would appear from the theory. The corresponding 

graphs were not straight lines for the case when 
t h e c u r v e s  were symmetrical or when the minimum value
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 ̂ \of yO occurred at S-'Ç (figures 3*4 and 3*5). It was

concluded that these effects were due to the line being 
imperfectly shorted as a larger shorting-plate reduced the 
effect (figure 3*6).

Considering the original equation (3*4)
K  + K, ScnaC b y a s )

SCnĥ cx. + sCr»̂  C k
it can be seen that whatever the values of a and b if 
K 3 = O  (i.e. S|~ So ) the curve will be symmetrical.
However it is only when the ends are shorted (a = b = o) in 
addition to the separation being critical ( K 3 = O  ) that 
equation (3*11) can be used and the minimum occurs when ^  •
It can also be seen from equation (3*4) that it is only when
these two condition are fulfilled (i.e. a = b = o  and = O  )
that t h e c u r v e  is a straight line.

The theory of this effect is discussed by Miss M.
Williamson in a recent paper in the Physical Society
Proceedings. Theoretical graphs of against CLoSec%  & sJ
are shown with -- finite values of a and b. When a • o and b
is finite equation (3*4) becomes

K", + KiCoscc-*Ci>+y4s) +3Ki<^0>+l3s)

The graph of against c o s c c * i s  the same as against
CoS^^j3S foi" the ideal case when b = o (figure 3*7) which 
becomes a straight line when - O  . However the graph of
against0?S€t̂ 5when b ̂  o is of the form shown in figure (3*8).
When a is finite and b = o equation (3«4) becomes
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^ K  + Ka cosec^^s + K3 s6rv/3ScoSyss Cosec^s 

CoS^c^Lrnln ©l +  |

^  Cl Simln^ cosec^/3s) = If, fSi>il-»%. + It^^cosec^s
' + 5.K'3"^c?t/3S

The factor multiplying imposes a downward curvature 
on both branches of the curve while that multiplying eosec^s 
alters the slope of the whole graph. The shape of the curve 
is shown in figure (3*9). The two effects together are shown 
by the curve of figure (3*10) and figure (3*11) is an 
experimental curve for the purposes of comparison.

It is apparent from this investigation that although 
the correct critical separation and the value of b may be 
obtained from the graphs of an imperfectly shorted line it 
is essential to short the lines correctly in order to get a 
straight line graph of against CosecySS . It is from
the intercept of this straight line that the value of 
and hence of a must be obtained.
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830TI0N IV

A NEW METHOD FOR FINDING THE CRITICAL 
SEPARATION OF THE DOUBLE*^BRID(>S METHOD



s=k
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a) THEORY OP THE METHOD
The necessity for perfect shorting of the line, mentioned 

in the last section, presents considerable mechanical 
difficulties in the case of open Lecher wires and the 
difficulty is likely to become greater at higher frequencies. 
Consequently it would seem worth while eliminating this 
necessity at the expense of making the experimental technique 
longer.

Consider equation (1*24) for the input impedance % J 
of a length of line 1 terminated in an impedance 2-^

2c ■= Z.. c c ^ T f
coshTC + Z-T s&'kTC

If the end of the line is on open-circuit ^-r is infinitely 
great and the expression for becomes

Z j  - Z. coCk? {
When { = ̂  ) under these; conditions, 'Z^-O
Thus in figure (4*1) the part of the circuit to the left of AA 
may be effectively replaced by a short-circuit at AA.

To find the critical separation, instead of shorting the 
end of the line it may be left on open-circuit and s replaced 
b y i n  the relevant equations. When S, has its

gcritical value the curve of yO against s, with the line on 
open-circuit, should be symmetrical with its minimum occurring
where S " ̂

1*8* SzT A.
2.
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Substituting —  for s as explained above^equation (3*11), 
which applies under the critical conditions and when the end 
of the line is shorted, becomes

K, +  C o s e c ^ C s - ^ )
A graph of against cosec^^g-^^should, therefore, be a

straight line with intercept .
After the critical separation and the constant K, have 

been found in this slightly different way the rest of the 
method is the same as before, the distances again being
measured from the end of the line.
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b) EXPERIMENTAL WORK
Experimental work was carried out to investigate whether 

the shorting of the lines could be dispensed with as described 
in the previous sub-section.
DESCRIPTION OF APPARATUS

Much of the apparatus was the same as that used by 
Dr. Williams and Miss Harrias. The transmission lines were 
of right-angle brass, three metres long and six centimetres 
apart and were supported by ebonite pillars. The characteristic 
impedance was taken as 191 ohms since that was the value used 
for the same lines by Dr. Williams and Miss Harriss. For the 
experimental work in this section one end of the lines was 
left on open-circuit and the oscillator was coupled to the 
other end by means of a loop of thick copper wire. The 
tightness of the coupling could be adjusted to obtain currents 
of a suitable value in and .

The oscillator and its circuit-diagram are shown in 
figures (4*2) and (4*3). The circuit was of the tuned-anode, 
tuned-cathode type with two indirectly heated triodes (E*1171) 
in push-pull. The tuned-cathode circuit consisted of a 
variable condenser across two coaxial lines and the tuned-anode 
circuit of two brass rods (together with the inter-valve 
capacities). It was the latter pair of rods that were coupled 
to the line. The oscillator was shielded by a metal case and 
power (6*3 volts for the heaters and 250 volts H.T.) was
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supplied by a mains stabilizied power pack.
The impedances and 5^are shown in position in figure 

(4*4). They were vacuum thermo-junctions (A) mounted in 
ebonite blocks connected by a rod of insulating material (B). 
The distance between the two bridges was adjusted by a screw 
thread on the rod. Brass knife edges (C) were scFewed on 
to the blocks and made sliding contact with the lines. They 
were connected to the heater wires of the thermo-junction.
The thermo-couple wires were connected to sensitive micro
ammeters via screws in the blocks.

At a given frequency the extra resistance of the heater
wires due to the skin effect is constant so that the heat

a 
aproduced in and ^  is proportional to J-| and JL

respectively where _L, and are the currents flowing in
and . Both thermo-junctions had previously been found to
possess square-1aw characteristics so that the micro-ammeter

^  a 'T' ^readings were taken to be oroportional to _JL ̂ and .
The ratio gave the value of and it was not necessary
to determine the constant as the position of the minimum 

zvalue of was all that was required.
The flex connecting the micro-ammeters to the thermo-couples 

was kept at right-angles to the lines to prevent stray fields 
being picked up from the currents flowing in the lines. The 
readings were taken with the observer at least a metre from the 
lines and always in the same position to avoid varying
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capacitative effects.

RESULTS
aWhen plotting experimental values of yo against s it was

2.found that the minimum value of yO always occurred at a
distance slightly less than ^  from the end of the line.
Thus the open-circuit end-effect is equivalent to an extra
length of line 1 where 1 = ̂  - (distance of first minimum
from the end of the line). This was allowed for by subtracting
1 from ̂  to give a length x, say. Then the effective
short-circuit at AA (see figure 4*1) is at a distance x from
the end BB instead of a distance . This point is

2.
illustrated in figure (4*5). yO was therefore plotted 
against ecse^ts-x}. It was found that the linearity of this 
latter graph was a much more sensitive test of the critical 
condition than the symmetry of theyO/s curve.

Graphs ofjĈ /s andcoScc ^ ^ - 3 ^ e r e  plotted for different 
values of S, . These are shown in figures (4*6), (4*7) and
(4*8). In each case the end-effect 1 was 3*4 cm. The / A

curve appeared symmetrical both for S*, = 24*3 cm (figure 4*7) 
and for S, = 24*2 cm (figure 4*8). However while the graph 
of j:^/cjose.c^(s-2L) for S, = 24*3 cm (figure 4*7) approximated 
closely to a straight line a slight curvature was detectable 
at the lower end. The points on they^/^Scc^C5~x.^ graph 
for = 24*2 cm (figure 4*8) lay very near to a straight



n3-[4-7w] h j  .i4'7(Vj
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lln© and so this value of S^ was taken as the critical 
separation.

The intercepts K, on the axis were - 0*51 and - 0*53, 
respectively, so that although the latter was taken as correct 
the difference would not have had an appreciable effect when

I
plotting the graph of —  against C to obtain
a.

A further point which was investigated was the effect of 
a slight error in determining the end-effect 1 of the lines.
For the first set of readings S, was 24*3 cm and the / S
graph is sho'wn in figure (4*7). The first minimum of yo*
occurred at a distance of 58*5 cm from the end of the line
as nearly as could be determined from the curve. The mean 
value of ^  from the graph was 61*94 cm so that the end-effect 
1 was 3*44 cm, x (the distance of the effective short from the 
end of the lines) then equals (-^ — f ) i.e. 27*53 cm. Since 
3 can only be determined to the nearest millimetre graphs of

were plotted for x ■ 27*5 cm, 27*6 cm and
4- 7 4  XW

27*7 cm (figures 4=*#, 4'*~-10 and 4^11 ).
For the first two of these graphs (x = 27*5 cm and

X = 27*3 cm) the points lie very close to a straight line but
when X = 27*7 cm two branches of the graph are noticeable and
the curve is similar to the theoretical one when a and b are

2both finite (c*f. figure 3*10). The intercepts on the p> axis 
in each case were - 0*51, - 0*50 and - 0*49 respectively so
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that the value obtained for K, is not appreciably affected 
by changes of one or two millimetres in the value of x. However 
the linearity of theyO^^^gec^(S-xJ)curve does appear to be 
affected by a change of only a millimetre.

The experimental proceedure for finding the critical 
separation and the value of now involves the following
steps. First the bridges are set an arbitary distance apart 
with the lines on open-circuit at one end. A set of readings 
of , ~L^ and s is taken and a graph of plotted. If
the curve is obviously unsyrametrical there is nothing to be 
gained by plotting the graph. Further sets
of readings are then taken for different values of S, until 
the /s curve appears to be symmetrical. This should not be 
a long proceedure as the direction of the slope of the 
curves shows whether S, is too large or too small.

When the condition of symmetry is fulfilled the readings 
are used to plot a graph of against Cosec^ . Although
the curve may appear symmetrical the^^/c£>Secj^-x)gTaph
may not be linear as the value of S, is much more critical 
for this condition. More g graphs with the corresponding

graphs must then be plotted until the latter 

is linear. The value of S*, corresponding to the linear
graph is then the critical separation •

One difficulty that arises here is that when a 
graph is non-linear it may not be possible to tell whether the 
curvature is due to the value of S, not being the critical one
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or the effective short-circuit being taken in the wrong 
place. The shape of the graph is sensitive to both of these 
factors and it may be difficult to separate them.

Unfortunately the whole experimental proceedure to find 
the critical separation and the constant Kj may be a lengthy 
and tedious process but if the same apparatus and frequency 
are used for the measurement of several impedances and K* 
need only be found once.
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SECTION V.

THE MEASUraCSNT OF AN IMPEDANCE USING 
A SYSTEÎÆ OF LECHER WIRES.
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In order to compare the two line methods of measuring 
impedance outlined in Sections II and III the apparatus 
described in Section IV(b) was used. The impedance of an 
air condenser was measured firstly by the Williams or 
double-bridge method (sub-section (a)) and secondly by the 
Chipman or current resonance method (sub-section (b)). In 
an attempt to eliminate the end-effeots, which include the 
impedance of the leads to the condenser and of the joins at 
either end of the leads, readings were taken for two different 
values of the setting of the condenser.
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a) RESULTS USING THE DOUBLE-BRIDGE METHOD.
Prom the experimental results recorded in the previous 

section it was concluded that the critical separation S, 
between the bridges was 24*2 cms and that the value of K, 
was - 0*530.

An air-condenser set at an arbitary dial reading (20) 
was connected across the open end of the line and keeping
the distance between the bridges at 24*2 cms a further set of

'T' 'T' ^ a*,values of J-i , and a were taken. A graph of y*
against s was plotted as before (figure 5*1). Prom the
positions of the maxima of this curve the value of b was
calculated. (The maxima were obtained from the mean abscissae
and were used in preference to the minima as their positions
were less sensitive to the critical separation). The two
values obtained for b (4 60*7^ and + 58*6®) were averaged
giving 4 59.6.

The values of Scn̂ (̂ l>'fÿ8sjwere then worked out
for each value of s and the two plotted against each other 
(figure 5*2). The resultant graph has a very small intercept 
from which ScnU^cx was read and hence a found. The latter had 
a value of 0*186.

The dial setting of the air condenser was then moved to 
a second arbitary value (80) and the measurements repeated. 

T h ^ ^  andy^2^^ ' C graphs were similar in shape
to figures (5*1) and (5*2) and have not been reproduced.
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The value obtained for b in this case was + 67*3® (mean of 
468*2® and 463*4®) and that for a 0*172.
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b) RESULTS USING THE CURRENT RESONANCE METHOD.
The eu^ations in Chipman* 3 paper are obtained in terms of 

the reflection coefficients and kQ,. It is easier to
compare the results with those of Williams* method if they are 

in the same form, i.e. if they give a value for the same constants 
a and b from which the impedance Z is calculated by the equation

t a n k  C c i + J  t >  )  CS'l)
The results of Chipman*s method are given in the form of 

current reflection coefficients and where the suffixes 
G and T refer to the unknown impedance and the current measuring 
instrument respectively. Prom equation (1*4) the product Kĉ K-j- 
is given by

Since and = Zo by definition

2c, +Z-T Z, +

^ 2-j- ^Cr
Putti«g j W )  Î

ana jb,) >
and substituting in (5*2)

— ^Cp+j>)

hence / '
The equation which apnlies when the unknown impedance Î̂ q. is 
connected to the input end is equation (1*10), viz

SCr>k̂ CUfo-t J>)+Sdn̂  = [sCnÛ CUfo
Putting g = 2 and substituting from equation (5*3)
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When the Input end is shorted { Clq - -bcr” O  ) this becomes 
S t n b  is-c. t  C l f  1  ”  S e n  ^  - O f g c .  { ^  ù)

Prom equations (5*5) and (5*6)

*=SCnK —  S C n b  ' ^ S t n  ^  A f j x r . J  —  }  ( ^ ' 7 y )

where f ̂ and ‘fs-c. are the resonant lengths when the power is
injected through the unknown impedance or the shorting-plate
and A  f, and A  f s c. are the widths of the corresponding 
resonance curves at half their height.
Prom equations (1*7) and (1*12)

 ̂itJÎ f S.C. ]X
•^Gr " 4 t G  ~  4 t

= —  2  ( i>Cr +  ~  ^
= t><V

/. - 3 ^  t'fs-c. ~  h  j (if S^
The apparatus used to investigate Williams* method was 

suitable for the current resonance measurements with very little 
adaptation. In this case the power input to the line was first 
through a shorting-plate and then through the impedance to be 
measured. The current measuring instrument was one of the 
vacuum thermo-junctions used in Williams* method mounted and 
connected as before, i.e. the heater resistance was connected 
to knife edges which moved along the lines and the thermo-couple 
leads were connected to a sensitive micro-ammeter. The second 
thermo-junction was replaced by a reflecting plate (27 x 17 cm) 

of polished copper and the distance between the two was kept
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X

fixed at (figure 5«3).
For the first set of readings a polished copper plate 

(10 X 10 cm) was screwed on to the lines at kk and the current 
in the micro-ammeter^ connected to the thermo-couple leads of 
the thermo-junction^was read for different values of 1 near 
the point of resonance. The readings were proportional to 
the square of the current flowing in the heater wire and were 
plotted agàiinst 1 to give the graph of figure (5*4). The 
resonant length of line "̂ s.c.and the width of the curve at 
half its height Z\ cwere read off the graph.

The shorting-plate was then replaced by the air condenser 
with the dial set at the same two readings as in the 
experimental work on ^Villiams» method. In each case readings 
of __L̂  and 1 where taken, resonance curves plotted (figures 
5*5 and 5*6) and the values of f, and f, found as before. 
These values were substituted in equations (5*7) and (5*8).
For the two settings of the condenser a was 0*065 and 0*025 
and b was 56*4® and 56*6^
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c) COMPARISON AND DISCUSSION OF RESULTS.
The tabulated results for the two methods are shown below

Williams* method Chipman* s method
Condenser at dial 
reading 20.

CL ̂  O 1 ̂  &

b =

01 - 0 0 6  5

Condenser at dial 
reading 80.

CL « O  I75L ÛL c 0 - 0 ^ 5

b '+5^ 6"

The values obtained for a by the two methods are quite 
inconsistent and those for b do not agree at all closely.
The probable sources of error can be divided into three groups 

namely those common to both methods and those particular to one 
method only.

In the first group there is firstly the fact that the air 
condenser is not a balanced load. Secondly the general 
innacuracies inherent in the use of open lines also apply to 
both methods. Among these are the effects of stray fields, the 
capacitative effect of nearby objects and the difficulty of 
shorting the lines adequately. This latter point has already 
been discussed fully with reference to Williams* method and it 

applies equally, of course, to Chipman* s method. Thirdly the 
exact point of contact of the knife edges could not be 
determined within one or two millimetres.

The other main source of error in Williams’ method is the 
fact that a is determined from the intercept of the - ^
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graph and this intercept is very small and therefore difficult 
to measure accurately.

When taking readings during the experimental work on 
Chipman*3 method the effects of random voltage fluctuations 
were very noticeable although the power pack was mains stabilized. 
The only way to minimize these effects was to take the readings 
near the point of resonance as quickly as possible. The 
fluctuations affect the value obtained for the resonant half
width of the curve to a much greater extent than the position 
of resonance. Thus it is the value of a rather than b that is 
inaccurate for this reason. In fact both this effect and the 
one mentioned in the previous paragraph affect the measurraent 
of a and not of b.
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CONGLUSION

It appears from the discussion in the last section that most 
of the sources of error in the experimental work on Williams* 
method would not occur if a closed line were used instead of the 
Lecher wire system. k closed line eliminates the capacitative 
effect of nearby objects and of stray fields. Also it is 
possible according to Essen*s work (page 41) to short the line 
with negligable error. This would enable the critical 
separation end the constant K  ̂ to be found without lengthening 
the experimental proceedure as suggested in Section IV. The 
most suitable method, when the end of the line can be correctly 
shorted, appears to be the direct one suggested by Miss Harriss 
in Section Ill(b) (page 54).

The screened twin or coaxial type of line described in 
Essen*s work (figures 2*5 and 2*6) would be suitable according 
to whether the load was balanced or unbalanced. Some 
preliminary experimental work on Williams* method has been 
started using a coaxial line but it has not progressed far 
enough to justify an account. The micro-ammeter readings 
appear very steady, despite any external fields, and the 
curves are much smoother than those obtained with open Lecher 
wires and are easily repeated.

If the investigation were to prove successful it might be 

possible to find the value of a for liquid dielectrics by

introducing the liquid into the end of the coaxial line in an
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uprlght position. This quantity a is the important one in 
the case of dielectrics which show absorption.
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