
 
 
 
 

Discussion Paper Series  
 
 

2004 – 19 
 
 
 

Department of Economics 
Royal Holloway College 

University of London 
Egham TW20 0EX 

 
 
 
 
 

©2004 Kaushik Mitra. Short sections of text, not to exceed two paragraphs, 
may be quoted without explicit permission provided that full credit including © 
notice, is given to the source. 
 



Is more data better?∗

Kaushik Mitra
Royal Holloway College, University of London

June 28, 2003; revised

Abstract

Conventional wisdom usually suggests that agents should use all
the data they have to make the best possible prediction. In this paper,
it is shown that agents may make better predictions by discarding old
data if their model is mis-specified. The applicability of the results to
some economic models is also demonstrated.
Journal of Economic Literature Classification Numbers: C13, C22,

C53, D83, E32, E37.
Keywords: optimal, mean squared error, bounded memory.
Corresponding address: Department of Economics, Royal Hol-

loway College, University of London, Egham, Surrey TW20 0EX, U.K.
Email: Kaushik.Mitra@rhul.ac.uk, Phone: +44 1784 44 3910, Fax:
+44 1784-43 9534.

1 Introduction

The starting point of the paper is the presumption that if the true data gen-
erating process is unknown (and potentially complex), economic agents can
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be expected to use simple underparametrized representations of the process
to make their forecasts. They can then obtain the best forecast within this
class. In the terminology of Sargent (1999, Ch. 6), agents have “optimal mis-
specified beliefs”. This paper considers a similar situation of mis-specified
forecasting.
The broad idea is as follows. Suppose, the variable of interest to the

economic agent (like price of a good) follows an autoregressive process of
order k, i.e., an AR(k) process. It is possible that agents may get the form
of this process right (say, through some specification tests) and estimate the
parameters of this process which they then use to forecast the next period
value of the variable. Standard econometric theory then tells us that with
large enough data, the estimated parameter values will converge to the true
values. However, it is not clear what will happen if the true process is
unknown or if the agent fails to arrive at the correct form of the process.
In these situations, it is conceivable that agents may use a simple (“rule
of thumb”) method for making the short-term forecast. This simple rule
would be plausible in some cases. Another scenario may be that the agent
under-parametrizes the AR(k) process to be an AR(l) process; k > l. This
situation may seem particularly realistic if k is large. In Sargent’s spirit, the
agent can then choose the parameters of the AR(l) process optimally (using
some objective criterion) and form the forecast.
In order to get new analytical results, I focus on the simplest situation

where the true process is AR(1). The form of this process is not known to the
agent and he deals with this lack of knowledge by using the sample mean of
the previous T data points (T is referred to as the memory length) to make
the forecast. It seems that computing a sample average is a reasonable first
approach to making the forecast. This rule also arises from the simplest form
of mis-specification in this set-up: agents mis-specify (under-parametrize) the
order of the process to be AR(0), that is, a constant plus some white noise,
and hence use the sample mean of data to form the forecast. However, T
is chosen optimally to minimize the one period ahead forecast error. This
simple mis-specification enables us to get (to the best of my knowlege) some
new results for this forecasting problem. The intuition gained from here will
hopefully continue to be relevant for more complicated scenarios.
We have so far presented the basic idea in an abstract set-up. An equally

important aim of the paper is to present some concrete economic example
models where the scenario considered becomes directly relevant. Section 3
describes some of these models.
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2 The Main Result

Assume that a random variable µt evolves according to a first order auto-
regressive process (AR(1)) as specified below

µt+1 = λµt + (1− λ)µ̄+ εt; 0 ≤ λ < 1. (1)

where {εt} is white noise with Eεt = 0, Eε2t = σ2ε and µ0 is given. The
unconditional (asymptotic) mean of the µt process is given by the constant
µ̄. The true data generating process for µt is assumed unknown to the agents
but they need to forecast the current value of µt. At time t, this forecast,
µet(T ), is given by

µet(T ) = T
−1

TX
i=1

µt−i (2)

i.e., by the arithmetic mean of the previous T data points, {µt−1, µt−2, .., µt−T}.
T is called the memory length of the agent. The forecast error made at t is
µet(T ) −µt. We assume that the process has been running for a long period
of time so that t → ∞ gives a reasonable approximation of this process.
This approximation makes the moments of the forecast error independent
of the initial condition of the process. This is in line with what is done in
econometrics: one is interested in the statistical properties of estimators or
predictors in the long run, i.e., once the influence of the initial conditions has
died down.
Denote the mean squared error (MSE) of µet(T ), E[(µ

e
t(T ) − µt)2], by

MSEestt (T ) and the asymptotic MSE, limitt→∞ MSEestt (T ) by MSE
est
∞ (T ).

The basic problem is to determine the memory length T of the forecast (2)
which minimizes MSEest∞ (T ). In other words, the problem is to determine
the optimal memory length T for predicting the next realization of an AR(1)
process by the arithmetic (sample) mean of the last T observations.
Under rational expectations (RE), agents are assumed to know the true

data generating process, an assumption which is usually considered implau-
sible. In this model agents deal with their lack of knowledge of the true
structure by using the simple rule (2). However, this rule has much to be
said in its favor. For one thing, it is asymptotically unbiased for all memory
lengths T, i.e., limitt→∞E(µet(T )−µt) = 0, for all T. Secondly, the law of large
numbers of Markov processes implies that with large enough data the forecast
is expected to converge to the true mean of the asymptotic distribution of
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the process. Thirdly, the forecast µet(T ) encompasses the optimal prediction
for the important borderline cases of an i.i.d sequence (when λ = 0) and a
random walk world (when λ = 1). If λ = 0, T →∞ is optimal for prediction
whereas T = 1 is optimal when λ = 1.
We now explore whether the optimal T is affected when λ is between 0

and 1. As a preliminary step we prove the following proposition.

Proposition 1 For any λ ∈ [0, 1), we have

MSEest∞ (T ) = σ2ε[
(1− λ)2T (T + 1) + 2(1− λ)λT+1T − 2λ(1− λT )

(1− λ)3(1 + λ)T 2
] (3)

Proof. See Appendix A.
When λ = 0, MSEest∞ (T ) clearly decreases monotonically with T. How-

ever, it is not obvious what happens when λ > 0. To understand this, I prove
the following proposition.

Proposition 2 For any λ ∈ (0, 1), MSEest∞ (T ) decreases monotonically with
T for all T ≥ T (λ) ≡ 4λ(1− λ)−2.

Proof. See Appendix B.
Clearly T (λ) increases monotonically with λ. For example, T (.25) ≈ 2 and

T (.9) = 360. Proposition 2 shows that MSEest∞ (T ) decreases monotonically
with T for all T ≥ 1 provided λ is small enough so that T →∞ is optimal.
In fact, we can prove that this is true for all λ ∈ [0, 0.5] as shown in the
following proposition.

Proposition 3 For any λ ∈ [0, 0.5], T →∞ minimizes MSEest∞ (T ).

Proof. See Appendix C.
This leaves unanswered what happens when λ > .5?We are at least able

to provide a partial answer to this question in the following proposition.

Proposition 4 For any λ ∈ (.5, .88], T = 1 minimizes MSEest∞ (T ).
Proof. See Appendix D.
The proof of Proposition 4 may lead one to suspect that T = 1 is optimal

for all λ ∈ (.5, 1). One can, in principle, look at values of λ arbitrarily close
to 1 and solve the corresponding polynomial inequalities. However, the com-
putation time increases rapidly. Instead I computed the MSE numerically
for values of λ close to 1 and this leads me to the following conjecture.
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Conjecture 5 The optimal T is 1 for all λ ∈ (.5, 1).

One can provide some intuition for these results. λ may be interpreted
as the degree of mis-specification given the agents’ beliefs about the data
generating mechanism. If agents believe they live in an i.i.d world (λ = 0),
it is optimal to use T → ∞. If the true λ is close to 0, T → ∞ continues
to be optimal since the model mis-specification is not very severe. However,
if the true λ is close to 1, then the mis-specification is very severe and it is
no longer optimal to use T → ∞. Similarly, if agents believe in a random
walk world, it is optimal to use T = 1 (the best prediction is given by the
last realization). This continues to be optimal when λ is close to 1 since the
model is then not too mis-specified but is no longer optimal when the model
is heavily mis-specified, say, for λ close to 0.
The next section describes some economic example models where the

results of this section can be applied.

3 Economic example models1

3.1 Profit maximization by the firm

Example 1. This example follows Muth (1961). Consider the problem of
a firm choosing output in every period t based on its forecast of the market
price. The realized price in period t, pt, follows the exogenous stochastic
process (1) (pt ≡ µt).2 This assumption would be appropriate in an open
economy or for a monopolist facing infinitely elastic demand or for a firm
producing in a competitive market. The firm chooses output qt at the end
of period t − 1 to maximize expected period t profits. Assuming quadratic
costs cq2t /2, profits (Πt) are given by

Πt = ptqt − cq2t /2

so that expected profits are maximized by choosing qt = c−1pet where p
e
t is the

forecast of pt of the firm at the end of period t−1. In our case, pet (or pet(T )) is
given by (2) with pt = µt. By using the optimal choice qt = c

−1pet(T ), profits

1The first two examples are borrowed from Evans and Ramey (1998) and the third one
is from Honkapohja and Mitra (2003).

2However, εt has a bounded support to ensure the non-negativity of price.
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may be rewritten as

Πt(T ) = (2c)
−1(2ptpet(T )− pet(T )2)

and the firm chooses T to maximize expected profits, EΠt(T ).
Suppose, on the contrary, the firm chooses T to minimize the MSE of

pet(T ), E[p
e
t(T )−pt]2. SinceE[pet(T )−pt]2 = E[pet(T )2−2ptpet(T )+p2t ], and pt is

exogenous, this is equivalent to choosing T to minimize E[pet(T )
2−2ptpet(T )]

i.e., to maximize EΠt(T ).We assume that the price process has been running
for a long period of time so that it is appropriate for the firm to maximize
EΠt(T ) as t→∞.

3.2 Permanent Income Hypothesis

Example 2. This corresponds to the first example in Lucas (1976). Con-
sumption is given by

ct = cpt + ut,

cpt = kypt,

ypt = (1− δ)
∞X
i=0

δiyet+i, 0 < δ < 1.

Here ut is a white noise process denoting transitory consumption. cpt de-
notes permanent consumption, ypt is permanent income, δ is the household’s
discount factor and yet+i is the household’s time t forecast of income at time
t + i, yt+i. The income process yt is assumed to follow an AR(1) process
(yt = µt in (1)). While Lucas (1976) assumed rational expectations, we in-
stead assume that yet+i = y

e
t (T ) for all i = 0, ..,∞ so that ypt = yet (T ) and

ct = kyet (T ) + ut. As before, y
e
t (T ) = T−1

PT
i=1 yt−i. The agent’s problem

is to choose the memory T which minimizes limitt→∞E[yet (T )− yt]2 so that
the results of Section 2 apply. Note that agents use the same forecast, yet (T ),
for making predictions over longer horizons. This may be rationalized either
by assuming that agents believe (approximately) in an i.i.d world (Abraham
and Ledolter (1983)) or in a random walk world (Hamilton (1994)).

3.3 The Muth Market Model

Example 3. This extends Example 1. Assume a competitive market model
(the Muth market model) with identical suppliers. The optimal supply of a
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representative supplier from Example 1 is given by qt = c−1E∗t−1pt (we use the
notation E∗t−1pt instead of p

e
t now). E

∗
t−1pt denotes the (possibly) subjective

expectations of agents whereas the same notation without the superscript
asterisk denotes rational expectations. Suppose that actual total output is
equal to the sum of optimal outputs plus an iid shock vt with zero mean.
This yields the market supply function

qst = c
−1E∗t−1pt + vt,

to which we append a (downward sloping) demand function

qdt = C −Bpt.
Here, qjt , j = d, s, denote aggregate quantities demanded and supplied and
B, C > 0. Using equality of supply and demand, we obtain

pt = α+ λE∗t−1pt + ut, (4)

where ut = −B−1vt, α = B−1C and λ = −B−1c−1. This model has a unique
rational expectations equilibrium (REE), pt = ā+ ut, where ā = α/(1− λ).
Now assume that agents do not have RE and instead think that they are in
this steady state but do not to know the value of the constant ā. In accordence
with the macroeconomic learning approach, agents have a perceived law of
motion (PLM) of the form pt = A+ ut, and a natural estimate for A is then
given by E∗t−1pt = T

−1PT
i=1 pt−i.

3 Using this in (4) yields an AR(T ) process
for pt when all agents use the same T , i.e.,

pt = α+
λ

T

TX
i=1

pt−i + ut. (5)

Assume that all agents use T = 1 in their forecasting so that pt is an AR(1)
process. Does any single agent have an incentive to use T > 1, when all other
agents use T = 1? To answer this, a single agent can find the value of T that
minimizes lim t→∞E[T−1

PT
i=1 pt−i − pt]2. From Section 2, T = 1 minimizes

this expression if 1 > λ > 0.5. In this sense, T = 1 is a self-confirming
equilibrium in memory lengths if 1 > λ > 0.5.4

3See Evans and Honkapohja (2001) for an extensive discussion of the macroeconomic
learning approach.

4This terminology has been used in Sargent (1999). The term restricted perceptions
equilibrium is also sometimes used, see Evans and Honkapohja (2001, ch. 13-14). We also
note that in the basic Muth model λ < 0 but there are extensions of the model leading to
λ > 0 in the reduced form; see Honkapohja and Mitra (2003) for the details.
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3.4 Models with Lags

Example 4. The final example is borrowed from Evans and Honkapohja
(2001, Section 13.1.2 of ch. 13). We consider the class of models given by

yt = α+ λE∗t yt+1 + δyt−1 + ut, (6)

In (6), the market outcome depends on the agents’ forecast of future values
as well as lags in the endogenous variable− the reader is referred to Evans
and Honkapohja (2001, Section 8.6.2 of ch. 8) for various models covered
by (6). Under RE, there are typically two minimum state variable (MSV)
solutions of the form

yt = a+ byt−1 + dut

Assume that, as in Evans and Honkapohja, agents estimate a simple under-
parametrized model yt = a + εt, i.e., they believe that the economy is in a
stochastic steady state (εt is white noise). Hence, as before, agents forecast
E∗t yt+1 by T

−1PT
i=1 yt−i. Using this, the actual model is as an AR(T) process,

i.e.,

yt = α+ λT−1
TX
i=1

yt−i + δyt−1 + ut.

In particular, if all agents use T = 1, then yt becomes an AR(1) process,
namely,

yt = α+ (λ+ δ)yt−1 + ut

The analysis in Example 3 is applicable: T = 1 is a self-confirming equilib-
rium provided 0.5 < λ+ δ < 1.

4 Discussion and Concluding Remarks

As mentioned in the Introduction, if the true data generating process is un-
known, economic agents may be expected to use simple underparametrized
representations of the process to make their forecasts. A similar idea has
been explored in this paper and illustrated in the examples of Section 3.
This idea is related to some recent studies in the macroeconomic learning
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literature; these include Sargent (1999) and Evans and Honkapohja (2001).
In the learning literature the specification of the agents’ learning rule comes
from the underlying rational expectations equilibrium (REE) of the econ-
omy. For instance, if the macroeconomic model has a REE which takes the
form of an i.i.d sequence, then the agents’ learning rule (the perceived law
of motion (PLM)) would also take the form of an i.i.d sequence with an
unknown mean, as illustrated in Example 3. The forecasting rule (2) then
arises quite naturally since computing the sample average of past data is the
recommended statistical procedure for estimating the unknown mean. More
generally, as in Example 4, there is no reason why agents should have a PLM
of the same form as the REE. Such mis-specifications may also be relatively
difficult to detect. Hommes and Sorger (1998) introduced the concept of
consistent expectations equilibria (CEE) by the property that the PLM and
ALM are indistinguishable in terms of the sample average and autocorrela-
tions of the observed variable. An early version of the paper had examined
that if producers use the optimal T in their forecasting in Example 1, for
instance, expectations are consistent in most cases.
The question of optimal memory length examined in the paper is also

related to the analysis in Evans and Honkapohja (1993) and Sargent (1999).
It is often suggested that agents should use a “constant gain” instead of
“decreasing gain” in their learning algorithm when they suspect some struc-
tural change. This means that agents should put constant weight to current
data instead of decreasing weight as in least squares estimation. This pro-
cedure helps in adapting to an exogenous time-varying process. Evans and
Honkapohja (1993) examine the optimal gain parameter to use for an agent in
the context of an overlapping generations economy and furthermore whether
there exists equilibria where no agent has an incentive to deviate from his
choice of the gain (parameter) given the gain (parameter) of all other agents
(see also Evans and Honkapohja (2001, ch. 14)).5 The self-confirming equi-
librium in T = 1 examined in Examples 3 and 4 are obviously in the same
spirit.
The current paper differs from the existing literature in that it emphasizes

the size of memory to be an important issue. The memory length may
affect the stability properties of REE under learning dynamics as illustrated
in Example 3 and considered in detail in Honkapohja and Mitra (2003).
Convergence to the unique REE takes place in Example 3 if agents use infinite

5Sargent (1999) and Evans and Ramey (2001) examine similar ideas.
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memory when λ < 1 whereas non-convergence obtains if they use bounded
memory.6

We feel that there are several reasons why the use of a limited data set
in economic models is of interest. First, as shown here, economic agents
may rationally decide to use only a limited data set if all other participants
in the economy also do so. In addition, there is a certain naturalness to
the assumption of bounded memory since economic data is after all limited.
Perhaps no less important is the observation that econometricians seem to
systematically discard old data. Finally, the dynamics under bounded mem-
ory learning has some attractive properties which the RE solution does not
possess. For instance, the model of Example 3 displays excess volatility com-
pared to the RE benchmark (see Honkapohja and Mitra for the details). As
is well known, some markets (like financial markets) are indeed characterized
by excess volatility.

A Proof of Proposition 1

Observe that for all i, 0 ≤ i ≤ T − 1, we can write

µt−i = λT−iµt−T + µ̄(1− λ)
T−i−1X
j=0

λj +
T−i−1X
j=0

λjεt−i−j−1

and hence
TX
i=1

µt−i = µt−T (
1− λT

1− λ
) + µ̄(1− λ)(

(1− λ)T − 1 + λT

(1− λ)2
) + εt−T{(1− λT−1)

(1− λ)
}

+εt−T+1{(1− λT−2)
(1− λ)

}+ ..+ εt−3{(1− λ2)

(1− λ)
}+ εt−2{(1− λ)

(1− λ)
}.

Then

µet(T )− µt = (µt−T − µ̄){
1− λT − (1− λ)λTT

(1− λ)T
}+ εt−T{(1− λT−1)

(1− λ)T
− λT−1}

+εt−T+1{(1− λT−2)
(1− λ)T

− λT−2}+ ....+ εt−2{ (1− λ)

(1− λ)T
− λ}− εt−1.

6In the Honkapohja and Mitra setting with bounded memory, learning is asymptotically
unbiased for all memory lengths, see Honkapohja and Mitra, Proposition 3, for the details.
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so that

MSEestt (T ) = {1− λT − (1− λ)λTT

(1− λ)T
}2E[(µt−T − µ̄)2] + σ2ε[{

(1− λT−1)
(1− λ)T

− λT−1}2

+{(1− λT−2)
(1− λ)T

− λT−2}2 + ..+ { (1− λ)

(1− λ)T
− λ}2 + 1)].

Since µt is an AR(1) process, limitt→∞E[(µt−T − µ̄)2] = σ2ε(1− λ2)−1. Con-
sequently, as t→∞, the expression for MSEestt (T ) simplifies to (3).

B Proof of Proposition 2

The derivative of MSEest∞ (T ) with respect to T is

A(1− λ)−3(1 + λ)−1T−3σ2ε

where

A ≡ −2(1− λ− lnλ)λT+1T − (1− λ)2T + 2(1− λ)(lnλ)λT+1T 2 + 4λ(1− λT ).

Observe that, A < 4λ(1− λT )− (1− λ)2T < 4λ− (1− λ)2T, so that A < 0
for all T ≥ T (λ) ≡ 4λ(1− λ)−2.

C Proof of Proposition 3

First let λ∗ =
√
37−1
12
≈ .424. λ∗ is the (unique) value of λ at whichMSEest∞ (2)

=MSEest∞ (3) . Then T (λ
∗) ≈ 5.1.By Proposition 2, we know thatMSEest∞ (T )

decreases with T for all T ≥ 6. The question is what happens for T ≤ 5.
First observe that the inequality MSEest∞ ( T + 1) −MSEest∞ ( T ) > 0 is a
polynomial in λ, for given T. One can then verify that for all λ ≤ λ∗, 7

MSEest∞ (6) < MSE
est
∞ (5) < MSE

est
∞ (4) < MSE

est
∞ (3) ≤MSEest∞ (2) < MSEest∞ (1).

7I used the “Inequality Solve” package inMathematica Version 3.0 to solve algebraically
for these and all of the succeeding polynomial inequalities.
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This proves that the MSEest∞ (T ) decreases with T for all λ ≤ λ∗.
Note that MSEest∞ (1) < MSEest∞ (2) iff λ > .5 (this may be easily ver-

ified directly by using (3)). Now consider the case when λ ∈ (.424, .428].
Proposition 2 tells us that the MSE decreases for all T > 5 in this interval
of λ. It is also possible to verify that for all λ ∈ (.424, .428], MSEest∞ (6) <
MSEest∞ (5) < MSE

est
∞ (4) ≤ MSEest∞ (3) and MSEest∞ (2) < MSEest∞ (3). Since

we already know that MSEest∞ (2) < MSE
est
∞ (1), the optimal T can be com-

puted by comparing MSEest∞ (2) and MSE
est
∞ (T →∞) and it turns out that

MSEest∞ (T →∞) < MSEest∞ (2) iff λ < .5 (again this may be verified directly
by using (3)). This proves that the optimal T →∞ when λ ∈ (.424, .428].
Repeating the same type of arguments for neighbouring intervals like

(.428, .446], (.446, .466], (.466, .486], and (.486, .5], it can be shown that the
optimal T → ∞. Note that all these intervals arise out of comparing the
MSE associated with adjacent memory lengths.

D Proof of Proposition 4

When λ > .5, it has been shown thatMSEest∞ (1) < MSE
est
∞ (2). Consider now

the interval (.5, .504] of λ. In this case one can show that the MSE increases
monotonically from T = 1 to T = 7 and MSEest∞ (8) ≤ MSEest∞ (7). On
the other hand, using Proposition 2, we know that the MSE decreases with
T thereafter. Consequently, the optimal T can be computed by comparing
MSEest∞ (1) with MSE

est
∞ (T → ∞). But we already know that it can’t be

optimal to use T → ∞ so that T = 1 is optimal when λ ∈ (.5, .504]. When
λ ∈ (.504, .521], it can similarly be shown that the MSE increases from T = 1
to T = 8 and, thereafter, decreases with T so that the optimal T is 1. One
can continue in this fashion and look at higher intervals of λ. Thus, when
λ = .88, T (λ) = 250. Proposition 2 tells us that the MSE decreases for all
T ≥ 250 and it is possible to show that the MSE increases from T = 1 to
T = 250.
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