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Topological order and topological entropy in classical systems
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We show that the concept of topological order, introduced to describe ordered quantum systems which
cannot be classified by broken symmetries, also applies to classical systems. We discuss some of the funda-
mental properties of this type of classical order and propose how to expose it via a generalized topological
entropy. Starting from a specific example, we show how to use (quantum) pure state density matrices to
construct corresponding (classical) thermally mixed ones that retain precisely half of the original topological
entropy, a result that we generalize to a whole class of systems.
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I. INTRODUCTION

Over the past two decades, the notion of topological order
has been developed to describe quantum systems exhibiting
exotic properties such as a ground state (GS) degeneracy that
cannot be lifted by any local perturbations!? and fractional-
ized degrees of freedom.? These systems have been shown to
exhibit a type of order that defies the canonical classification
a la Landau-Ginzburg, and that was named topological
order.* Levin and Wen,? and Kitaev and Preskill® recently
proposed the idea that an appropriately defined topological
entropy could be used to measure the presence of topological
order in the GS of a quantum system. Such entropy can be
obtained as a linear combination of von Neumann entangle-
ment entropies of different bipartitions of the system,

Stopo=rylng(_SlA+S2A+S3A_S4A)s (1)
aimed at removing all bulk and surface terms to uncover the
sole topological contribution. A particular choice of the four
bipartitions, as used in Ref. 5, is illustrated in Fig. 1.

Despite all the efforts to understand topological order so
far, the research focused exclusively on zero-temperature
quantum systems, and the possibility of realizing topological
order in classical systems has been left open.’

In this paper, we explicitly show that the concept of topo-
logical order is not a pure zero-temperature property but that
it also applies to classical systems. Starting from a known
example of quantum topological order in a toric code, the
Kitaev model,® we show how an appropriate coupling to a
thermal bath can, in a certain limit of the coupling constants,
bring the system into a totally mixed state that exhibits a
nonvanishing topological entropy, therefore suggesting that
topological order is capable of surviving thermal dephasing.
We discuss one of the fundamental properties of classical
topologically ordered systems, namely, the peculiar structure
of phase space divided into sectors that are connected exclu-
sively by extensive rearrangements of the microscopic de-
grees of freedom. These sectors are not distinguishable under
any local measurement, and therefore lead to what ought to
be called topological ergodicity breaking. A display of glassy
behavior is expected to accompany classical topological or-
der (and possibly vice versa). We briefly comment on other
properties of classical topological order, although a thorough
characterization is beyond the scope of the present paper.
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Finally, we reformulate the definition of topological entropy
by using, instead of the von Neumann entropy, a boundary
entropy that is based on the mutual information entropy de-
fined in information theory. This allows for a natural and
more symmetric extension to classical as well as quantum
systems. We then generalize the results on the Kitaev model
to a whole class of quantum systems with GS wave functions
whose amplitudes are positive and factorizable when ex-
pressed in terms of some (local) microscopic degrees of free-
dom. We argue that loss of half the topological entropy be-
tween pure states and corresponding mixed states occurs
whenever such a correspondence can be established.

II. TOPOLOGICAL ENTROPY IN THE KITAEV MODEL

Consider the Kitaev model in Ref. 8. It consists of spin-
1/2 degrees of freedom on the bonds of a square lattice with
periodic boundary conditions. The Hamiltonian of the model
can be written in terms of plaquette (p) and star (s) operators
as

H=- M2 A~ N\s 2 By, )
s P

where N4, N are real, positive parameters; B, =11, I,crz where
j labels the four spins belonging to plaquette D, and A
=I1 jexa‘_f, where j labels the four spins belonging to the star
centered on vertex s.

Using the fact that all A; and B, operators have eigenval-
ues =1, that they all commute, and that they are subject to the
constraint I[,A;=1=II,B,, one can show that the GS of the
model is degenerate and the dimension of the GS manifold is
precisely 22. Furthermore, one can prove that this degeneracy
is not lifted by any local perturbation in the thermodynamic

limit, and the system exhibits topological order.
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FIG. 1. Illustration of the four bipartitions used to compute the
topological entropy in Ref. 5.
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Let us first rederive the topological entropy of the model
with a new approach that can be immediately applied to both
classical and quantum systems. We are going to work within
one specific topological sector. This choice will not affect the
results as Hamma er al. showed that all sectors exhibit the
same entanglement entropy.’ In the z basis for the spins,
where all the B, operators are diagonal, the GS is given by
the equal amplitude superposition of all states where the
product of the four ° components around each plaquette is
positive. Notice that the action of a star operator A in the z
basis does not violate the plaquette constraint above. One
can show that any state in the equal amplitude superposition
(within a single topological sector) is uniquely specified by a
product g of star operations required to obtain it from a given
reference state |0) that satisfies as well the plaquette con-
straint (and lies in the same topological sector). The GS can
thus be written as

1
|‘I’>=W2 gl0), (3)

geG

where G is the (Abelian) group of all possible products of
star operators, and |G|=2"2"" is the number of elements in
the group (n being the total number of spin degrees of free-
dom). At zero temperature, the system is described by the

density matrix
1 !
=T > g0)0le’ )

2.¢'eG

As elegantly shown in Ref. 9 by Hamma et al., the von
Neumann entropy of any bipartition (A,B) of the system
prepared in such GS is given by

Sa=—Tr(py log, ps) = 10g2|G| —logy(dadp) (=Sp). (5)

Here, p, is obtained by taking the partial trace over sub-
system B (py=Trpzp) and d4 (dp) is the number of elements
in the subgroup G, CG (GzC G) of transformations acting
solely on A (B) and leaving B (A) unchanged. Moreover,
Hamma et al. showed that whenever subsystem A is con-
nected, then d,=2>1 and dz=2%8, where 3, and 3 are the
number of single star operators acting solely on A and B,
respectively.

Since we are interested in computing the topological en-
tropy [Eq. (1)], we need to extend the above results to the
case of bipartitions involving multiple disjoint components.
Let us consider first the case when set A is composed of two
disjoint regions A; and A,, each of them connected, as in
bipartition 4 in Fig. 1. While all the operators in G that act
solely on A can be obtained as products of star operators
acting solely on A, the converse is no longer true for sub-
system B. In fact, the product of all star operators acting on
A, (i.e., both those stars acting solely on spins in A; and
those boundary stars acting on spins in A; and on spins in B
simultaneously) flips all 6% in A, two times, therefore leaving
them unchanged, while it has a nontrivial action on B.
Namely, this product gives rise to an operator that flips a
string of spins in B along the boundary of A;. Similarly, we
consider subsystem A, and construct the product of all star
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operators acting on A,. The composition of these two opera-
tors gives the product of all star operators acting on A (i.e.,
both those acting solely on spins in A and those at the bound-
ary acting simultaneously on A and on B), which is equiva-
lent to the product of all star operators acting solely on B.
Therefore, out of the two additional operators, only one of
them is a new operator on B that cannot be obtained as a
product of star operators acting only on B. In this specific
example then, d, =2 while dy=2%5"",

In the generic case of A=A, U--- UAmA and B
=B, U--- UBmB, with Al---AmA and Bl---BmB disjoint and
connected, we obtain

dA =22A+m3—1, dB=223+'”A_1. (6)

Finally, we can compute the topological entropy of the
system prepared in its GS [Eq. (3)] using Eq. (1) and the four
different bipartitions defined in Fig. 1. From Egs. (5) and (6)
and from the fact that

21A+24A=22A+23A’

my,=my =2 (and all others=1),

we obtain Sg,,=2=l0gy(D?), where D=2 is the so-called
topological dimension of the system, in agreement with the
result by Levin and Wen.’

III. CLASSICAL TOPOLOGICAL ENTROPY

Let us consider now what happens when the system in
question is coupled to a thermal bath that allows for dephas-
ing and thermalization within the lowest lying eigenstates of
the plaquette operators B),. This is the case in the limit of
Ap—®, ie., acting as a local hard constraint, with
My/T— 0. Later on, we discuss how the physics of this hard-
constrained system is relevant to the soft case where the
coupling constants are finite, and Az>T>\,. In the hard-
constrained regime, the system is described by a totally
mixed density matrix:'°

gl0)(0lg. (7)
geCG

pP= E
Following the same arguments as for the pure state [Eq. (4)]
in Ref. 9, we show that

2 gA|OA><0A|gAv (®)

p _ B
A=
|G|geG/GB

where G/Gy is the quotient group, and g, and |0,) are
given by the generic tensor product decompositions of
|0)=|0,)®05) and g=g4 ® gz. We can then show that

dB )n—l
71 = D 9
Pa ( |G| Pa ( )
and use the identity
1 . 4 .
= Tr(py logs pa) =~ I hn} £(Tr Pi) (10)
n—

to finally obtain the von Neumann entropy,
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S4=log,|G| -log, d (11)
=S‘(4pure state) + 10g2 dA + SB~ (1 2)

We will comment more on this result below. From Eq. (12),
we can compute the topological entropy [Eq. (1)]:

(mixed state) _ o tate) dzAdgA

mixed state) __ pure state . N

Smpo = Stopo + lim | log,
i\ dy dy,

— Sig;(r)e state) 1=1.

(13)

Notice that, while the bulk and boundary contributions
present in the classical von Neumann entropy in Eq. (12)
precisely cancel in the expression for the topological entropy,
the topological contributions give a nonvanishing result,
therefore suggesting that topological order may survive ther-
mal mixing (at least in 2D hard-constrained systems).

Notice also that the topological entropy of the classical
model obtained upon suppressing the off-diagonal elements
in the density matrix of the Kitaev model differs from the
quantum case by a factor of 1/2, namely, log, D instead of
log,(D?). The physical meaning of this factor is that each of
the underlying gauge structures of the Kitaev model (the
so-called electric and magnetic loops) is independently re-
sponsible for half of the zero-temperature topological en-
tropy, as we recently showed in Ref. 12.

What are the physical properties of such a classical topo-
logically ordered system? First, it follows from the density
matrix [Eq. (7)] that the expectation value for any product of
spins (z component, as these are thought as classical now) is
zero unless the spins belong to a closed, nonwinding
loop. The system is thus a featureless “spin liquid” in
a classical way (much as a paramagnet). However, it does
have order, topological order, in the sense that there are dif-
ferent such paramagnets distinguished by the product of
spins over a winding loop on the torus. When the constraint
Il;c ,05=+1 is fully enforced (Ng/ T— ), classically chang-
ing the topological sector requires the concomitant flipping
of a number of spins that is of the order of the linear size L
of the system. The probability for such event is of order g*,
where ¢'"¢h(© js the independent probability of the com-
bined flipping of all the spins along a loop € (equivalent to a
quantum tunneling event). This leads to the breakdown of
phase space into disconnected topological sectors (broken
ergodicity), and the associated time scales grow exponen-
tially in the size of the system, a typical signature of
glassiness.!! Notice the topological nature of such ergodicity
breaking process: the disconnected sectors cannot be distin-
guished by any local measurements.

Other properties observed in quantum topologically or-
dered systems, such as fractionalized excitations, lead to less
intuitive classical counterparts to be found, for example, in
the behavior of defects. In our classical version of the Kitaev
model, they appear in pairs connected by fluctuating strings,
and they are likely to give rise to unusual response and re-
laxation processes. While the topological entropy vanishes
identically, in the thermodynamic limit, as soon as the con-
straint is softened,'>!3 the topological nature of the defects
will persist at small enough temperatures (A>T \,), very
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much as the fractionalized excitations do in the quantum case
(Ag,A\4>T). In fact, at such low temperatures, the defects
are sparse and the constraint is satisfied everywhere in be-
tween. Thus the defect creation, motion, and annihilation are
locally dictated by the same “vacuum” structure that would
lead to topological order were it enforced throughout the
system.

IV. CONSTRUCTING A “BOUNDARY ENTROPY”

From Eq. (12), one can see that the von Neumann entropy
of a classical system is not a good measure of the boundary
entropy of a bipartition of the system because of the explicit
dependence on the bulk entropy of one of the two partitions.
One can obviate the problem by using the mutual informa-
tion entropy of a bipartition, defining the boundary entropy
to be

Shoundary = 5(Sa+Sp—Saup)- (14)
Clearly, Spoungary=S4=Sp when the system is prepared in a
pure state. In the case of a thermally mixed state, all bulk
entropy contributions cancel in Spoyngary> cONtrarily to the von
Neumann entropies S, and Sp, and only boundary terms are
retained.

We propose here to use Spoundary in Eq. (14) as an alterna-
tive definition of the von Neumann entanglement entropy,
applicable to quantum as well as classical systems. With this
definition, Egs. (5) and (12) imply that the entanglement en-
tropy stored in the boundary of a bipartition of a system
prepared in the pure equal amplitude superposition state [Eq.
(4)] is twice as large as the entropy stored in the classical
counterpart [Eq. (7)]:

S(mixed state) _ 1 S(pure state)
boundary — 2%boundary

(15)

At least half the entanglement entropy in the Kitaev model
has actually a classical origin.'*
Accordingly, we redefine Sy, in Eq. (1) using Eq. (14),
Siopo= M (= Stohidary + Stonndary + S Shonndary) -
r,R—®

boundary boundary boundary ~ *boundary
(16)
For the Kitaev model, we immediately obtain

Sv'(mixed state) _ lg(pure state)
topo — 2*~topo ’

(17)

in agreement with our direct calculation in Eq. (13). We ar-
gue that Eq. (16) is the proper reformulation of the topologi-
cal entropy by Levin and Wen in order to extend it to clas-
sical and quantum systems alike. Together with Eq. (15),
which we show hereafter to hold for a wide class of GS wave
functions, the new definition of topological entropy implies
that Eq. (17) also holds true within the same class. For this
type of systems, at least half of the quantum topological
order has therefore a classical origin. (Whether part of the
remaining half of the topological entropy could be further
ascribed to classical correlations, in the sense of Ref. 14, is
an interesting problem.)
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V. BEYOND THE KITAEV MODEL

All the calculations, as well as Egs. (3)—(5) and (7)—(12),
generalize straightforwardly to any quantum system whose
GS is given by the equal amplitude superposition of a given
set of states.'”

On the other hand, extending our results to generic wave
functions |W)=|Z|""Z,_sa(g)g|0) is highly nontrivial be-
cause g=g,®gp does not necessarily imply that a(g)
=a(gy)a(gg). Supporting results in this direction come from
considering the case of non-negative, local wave functions,
as defined by the condition that in the continuum limit,
a(g)—a(¢)=a(¢")a’(¢)a’(4P), with a’(¢?) depending
only on the boundary d between subsystems A and B where
the two field configurations ¢* and ¢® match (and equal
¢%).1° This is the case, for example, of scale invariant GS
wave functions, such as those of systems at a quantum criti-
cal point.!”

Consider the GS wave function(al) in the continuum limit

W)= ir f D e PEDR| ), (18)
\NZ

where Z=[D¢pe PEP  and E(p) satisfies E(p)
=FEA(¢)+EB(4B)+E/ (¢, ¢P) with E/(¢*, %) dependent
only on the boundary ¢ between subsystem A and subsystem
B for any bipartition (A, B).

As discussed in Ref. 17, one can start from the corre-
sponding pure state density matrix

= % f DD e AEIEN L g)(gr| (19)

and obtain the elements of the reduced density matrix
pa=Trgp,

1 A AL B 4By, 1 A 1B
(#1lpal =EID¢Be BLENS+EP (@) +E%(&7.%))2
o~ BLENGDER(GP1EY (8,852 (20)

One can then evaluate

n
1 A B
Trpl=— | I D¢ie—ﬁ[2,-EA(¢,~ +ZER ()]
i=1

n
_arS E A aBYes A 4B J
X e ARENS S EE GG S, ).
i=1
(21)

where, by construction, ¢, , =7 and ¢?,,=¢/. The term
I, 8(¢p?, ¢7.,) is the boundary constraint arising from the
product of p, with itself (which enforces the boundaries to
all match, because ¢ matches ¢?, which then matches ¢, ,
which, in turn matches qbﬁr], and so on). If we factorize the
integral over I, D¢; as I, D' DPED ¢?, we can simplify
the integrals over boundaries and the product of boundary
delta functions to obtain
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1 n n
Trpgziqusf’e-ﬁnf’f [Ipe!| TIDg?
¢

7 i=1 ¢ i=1

X ¢~ PEENG)+SER6))] (22)

where we explicitly used the assumption that all the
E? (¢}, ?) terms depend solely on the respective boundaries
qu. Now that the delta functions are no longer present, we
can address the remaining integrals as follows. The condition
that the 7 fields ¢! and the n fields ¢ agree at the boundary
is equivalent to having one replica free to take any value and
the remaining n—1 to be pinned, with fixed (Dirichlet)
boundary conditions. One thus obtains'®

ZAZB n—1
Tr o)y = (%) ~ f D¢’D ¢ D¢Be—B"E"—BEA(¢A)—BEB(¢B)’

(23)

where Z=[ LD e PE @Y i given by the integral over sub-
system A with Dirichlet boundary conditions, and, equiva-
lently, for Zg.

Finally, using identity (10), we can compute the von Neu-
mann entropy,

7278 1
S,=-1log, DZ Dy— f D¢£Eﬁe_BE(d’)

Z In2
78 B
=-1 ——(E. 24
0g> 7 +ln2< ) (24)

The case of the totally mixed state,

1
b=t f Db P g3 (), (25)

involves similar calculations, where the term T, 8(¢, ¢,
in Eq. (21) gets replaced by I17_ 8(¢?, 7. ) S, ¢t ). As a

result,

B\ n—1
Tr pﬁ = (?) E J D&D(f)AD(ﬁBe_B”E{?_BnEA(¢A)—ﬂEB(¢B)’
(26)
and
i B i, pA1,-BE®)
SA=—]0g2?+E D(;SE[E +E%]e
tog 22+ £ (% + () 1)
= — — 4+ — + .
%7 T2

Notice that, while for an equal amplitude superposition,
the totally mixed state could be reached via an appropriate
high-temperature limit (i.e., via coupling to a thermal bath),
this is no longer true for Egs. (19) and (25), which should be
interpreted only as a recipe to construct an associated classi-
cal system, given the quantum one.

In conclusion, we obtain

S(Apure state) =BF,+ BFg— BF 4 p + %(E‘?)’
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S/(qmlxed state) _ IBFB BFA UB + <Ez7> + <EA>
where BF,=-log, Zg, BFp=-log, ZIB), and BF,,p=-log, Z
For the boundary entropy defined in Eq. (14), we find that

S (mixed state)
boundary

|:BFB :BFAUB+ (EH>+ <EA>+,3FA

= BFaup+ %(E% + £<E8> +BFaus
B aup
T 2<E >}

1
=E|:EFA+IBFB BFsup+ 1'8 <Ea>]

l ure state
2 ‘S‘bF())unda;yt )' (28)

Thus, once again, for the boundary entropy defined in Eq.
(14), we find that Eq. (15) [and therefore Eq. (17)] still holds.
For any quantum system whose GS wave function is local
and with positive amplitudes, there exists an associated clas-
sical system which exhibits precisely half the topological
entropy. The configurations of the classical system have as
Boltzmann weights the squares of the amplitudes in the as-
sociated quantum GS.

VI. CONCLUSIONS

In this paper, we show how the concept of topological
order applies to classical systems. We propose a generaliza-
tion of the definition of topological entropy>® that applies to
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classical and quantum systems alike. We use this topological
entropy to identify topologically ordered phases at the clas-
sical level, and we discuss some of the properties of such
classical systems. We also show how to construct thermally
mixed (classical) density matrices that retain precisely half
the topological entropy of associated pure state density ma-
trices for a special class of quantum systems. Our results
imply that for quantum systems whose GS wave function in
a given basis can be gauged so as to have non-negative (lo-
cal) amplitudes, quantum topological order is present if and
only if the corresponding classical system obtained by re-
moving all off-diagonal matrix elements of the quantum den-
sity matrix is also topologically ordered, as defined above.
The result that topological order applies to classical sys-
tems could possibly provide a way to classify classical orders
without an obvious order parameter. We end with a specula-
tive note on the possibility that this might be the case in
glassy systems. No order parameter can be constructed in
glasses from equal-time correlation functions (as opposed to
the two-time Edwards-Anderson order parameter) of physi-
cal degrees of freedom (as opposed to replicated variables).
This fact is suggestive that, much as in quantum topologi-
cally ordered systems such as spin liquids, no local order
parameter can detect the underlying order of the glassy
states, and the hidden order could indeed be topological. In
this case, our finding that topological order and topological
entropy can be defined in classical systems may have impli-
cations to the understanding of the physics of glassy systems.
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