
Computer Security: A Machine
Learning Approach

Sandeep V. Sabnani

Technical Report
RHUL-MA-2008-09
07 January 2008

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Computer Security: A Machine
Learning Approach

Sandeep V. Sabnani

Supervisor: Professor Andreas Fuchsberger

Submitted as part of the requirements for the award of the MSc in Information

Security at Royal Holloway, University of London

I declare that this assignment is all my own work and that I have acknowledged
all quotations from the published or unpublished works of other people. I declare
that I have also read the statements on plagiarism in Section 1 of the Regula-
tions Governing Examination and Assessment Offences and in accordance with
it I submit this project report as my own work.

mailto:sandeepsabnani@gmail.com
mailto:A.Fuchsberger@rhul.ac.uk

I would like to dedicate this thesis to my loving parents and my late
Mama, Mr. Ranjeet Bhagwanani...

Acknowledgements

I wish to acknowledge the support and help of several people who
have been instrumental in some way or the other for making this dis-
sertation.

First and foremost, I would like to thank my parents for their never-
ending support and encouragement throughout my education. My
father has been an invaluable source of inspiration for me always. My
mother has always been my biggest motivation in times of high and
low. A special thanks to my Mami, Mrs. Gunjan Bhagwanani for her
encouragement and for always being there when I need her.

I would like to thank my supervisor Professor Andreas Fuchsberger
for his patience, guidance and constant encouragement. It has been a
great privilege to work under him. I also wish to thank Mr. William
Rothwell for his help and guidance.

I also wish to acknowledge my closest friends Manish Sachdev, Bharat
Raisingani, Mohit Vazirani, Sanjay Rohra, Tarun Rochiramani, Lokesh
Jagasia, Bimal Sadhwani, Monesh Punjabi and Arvind Sabharwal
with whom I have spent the most amazing years of my life and have
learned a lot, both academically and personally.

Finally, I would like to extend a very special thanks to my sister
Shefali and my brother Pankaj with whom I have shared a very special
bond and who have always been instrumental in motivating me in all
possible ways.

Abstract

On Computer Security: A Machine Learning Approach (Under the
supervision of Professor Andreas Fucshberger)

In this thesis, we present the application of machine learning to com-
puter security, particularly to intrusion detection. We analyse two
learning algorithms (NBTree and VFI) for the task of detecting in-
trusions and compare their relative performances. We then comment
on the suitability of the NBTree algorithm for the intrusion detection
task based on its high accuracy and high recall. We finally state the
usefulness of machine learning to the field of computer security and
also comment on the security of machine learning itself.

Contents

Nomenclature vii

1 Introduction 1

2 Computer Security 4
2.1 Computer Security Fundamentals 4

2.1.1 Confidentiality . 4
2.1.2 Integrity . 5
2.1.3 Availability . 5

2.2 Challenges in Computer Security 5
2.2.1 Protection . 5
2.2.2 Detection . 6
2.2.3 Response . 6

2.3 Intrusion Detection . 6
2.3.1 Motivations behind Intrusion Detection 6
2.3.2 Goals of Intrusion Detection 7
2.3.3 Types of Intrusion Detection 7

3 Machine Learning 9
3.1 Introduction . 9
3.2 Basic Concepts . 10

3.2.1 Learning . 10
3.2.2 Knowledge Representation and Utilisation 10
3.2.3 Inputs and Outputs . 11

3.3 Production of Knowledge . 11
3.4 Defining a Machine Learning task 12
3.5 Life Cycle of a Machine Learning task 12
3.6 Benefits of Machine Learning . 15

4 Machine Learning applied to Computer Security 17
4.1 Defining Intrusion Detection as a Machine Learning Task 17

iv

CONTENTS

4.2 Related Work . 18
4.3 Data Set Description . 19

4.3.1 Characteristics of the Data Set 20
4.3.2 Features . 20

4.4 Algorithms . 25
4.4.1 NBTree . 25

4.4.1.1 Decision Tree Classification 25
4.4.1.2 Naive Bayes Classification 25
4.4.1.3 The NBTree Approach 26

4.4.2 VFI . 27
4.5 Experimental Analysis . 28

4.5.1 Environment . 28
4.5.2 Evaluation Metrics . 29

4.5.2.1 Classification Accuracy 29
4.5.2.2 Precision, Recall and F-Measure 29
4.5.2.3 Kappa Statistic 30

4.5.3 Attribute Selection . 31
4.5.3.1 Information Gain 31

4.5.4 Summary of Experiments 33

5 Results 34
5.1 Results of NBTree . 34
5.2 Results of VFI . 35
5.3 Interpretation of Results . 36

6 Conclusions 39
6.1 Future Work . 40
6.2 Real-world Application . 41
6.3 Security of Machine Learning . 41

A NBTree Complete Results 43

B VFI Complete Results 44

C Experiment Resources 45

References 53

v

List of Figures

3.1 Machine Learning Flow . 13

5.1 NBTree v/s VFI - All Attributes 37
5.2 NBTree v/s VFI - Selected Attributes 38

vi

List of Tables

3.1 Selection of algorithms (adapted from [WF05]) 14

4.1 Basic Features [OC99b] . 21
4.2 Content Features [OC99b] . 21
4.3 Traffic Features [OC99b] . 22
4.4 Dataset Attributes [OC99a] . 22
4.5 A sample record of the dataset . 23
4.6 Confusion Matrix for a two-class problem(adapted from [WF05]) . 29
4.7 Confusion Matrix for a two-class problem (Expected predictions) . 31
4.8 Attributes selected using Information Gain 32
4.9 Summary of Experiments . 33

5.1 Results of NBTree with all attributes 34
5.2 Results of NBTree with selected attributes using Information Gain

measure . 35
5.3 Results of VFI with all attributes 36
5.4 Results of VFI with selected attributes using Information Gain

measure . 36

vii

Chapter 1

Introduction

This dissertation presents concepts from the field of Artificial Intelligence and
Machine Learning which can be used to address some of the challenging prob-
lems faced in the computer security domain.

Securing computer systems has become a daunting task these days with the
rapid growth of the internet (both in terms of size and scalability) and the in-
creasing complexity of communication protocols. The raging war between the
security perpetrators and information security professionals has become more in-
tense than ever. New and complicated attack methods are being developed by
attackers at an alarming rate by taking advantage of the intricate behaviour of
today’s networks. CERT has reported 8064 new vulnerabilities in the year 2006
and this figure has been significantly increasing over the past few years [CER07].

Although proactive means for achieving security1 have existed for a long time,
these approaches target the prevention and/or detection of only known attacks.
Novel attacks have been posing a long-standing problem in the field of informa-
tion security and as such, have received considerable attention in the recent past.
Many such novel attacks are difficult to detect solely on the basis of analysis of
basic behaviour of communication protocols (in the case of a network) or anal-
ysis of basic system calls (in the case of a single host). For instance, an attack
might be developed which operates in stealth mode, i.e. it may hide its presence
and evade detection [WS02]. Also, increasing complexity of cryptographic mech-
anisms (like IPSec) has made this detection problem more severe.

Another important problem in the field of computer security that has been
present for quite some time is that of insider threats. An employee at an organi-

1By security, we refer to both security of the network and security of a particular host in
the network.

1

sation is considered to be a trusted user and the possibility of an attack from an
insider is considered less probable. However, a study by CERT [CER05] showed
that insider attacks have been a cause of a lot of tangible and intangible losses
to many institutions in the recent past. Many of the insider threats may be un-
intentional, nevertheless it has become essential to ensure that insider behaviour
is in sync with the security policy of the organisation.

Handling the above issues is quite expensive for organisations. The detection
task requires security experts to formulate efficient rules for anomaly detection.
They are also required to handle large amounts of data. This adds an element of
unreliability and also makes the entire process quite slow. Also, checking whether
compliance to security policy by insiders is being achieved, is an onerous task for
an administrator as normal behaviour changes over time.

Machine Learning has been one of the most promising advancements in Com-
puter Science in the past few decades and has found success in solving intricate
data classification problems. It primarily deals with constructing computer pro-
grams that automatically improve with experience [Mit97]. The learning expe-
rience is provided in the form of data and actual learning is achieved with the
help of algorithms. The two main tasks that are addressed by machine learning
are the ability to learn more about the given data and to make predictions about
new data based on learning outcomes from the learning experience [Mal06]; both
of which are difficult and time-consuming for human analysts. Machine learning
is thus, well-suited to problems that depend on rare, expensive and unreliable
human experts. It has been successfully applied to complex problems ranging
from medical diagnosis to stellar analysis.

The task of detecting intrusions can be considered as a machine learning task
as it involves the classification of behaviour into user and adversary behaviour.
In this thesis, we study some significant machine learning approaches towards
solving some challenging computer security issues (mainly relating to detecting
intrusions) which are described in later chapters.

The motivations behind choosing this dissertation topic are manifold. Firstly,
the MSc course was instrumental in helping me have a decent understanding of
security concepts. The network security lectures gave an overview of anomaly
detection and this fuelled my desire to learn more about it. Being a computer
engineering graduate and having studied machine learning, I felt this topic would
help me apply my knowledge of security to learning and vice-versa. I also felt
that it would complement my future plans of pursuing research relating to these
two areas.

2

The following is roughly the structure of the thesis: In the next chapter,
we look at some computer security fundamentals and describe the aspects of
computer security that are of importance for this thesis. The following chapter
introduces some basics of machine learning. Thereafter, we look at how machine
learning algorithms can be efficiently used to solve the intrusion detection task
by using Weka, a machine learning tool described in [WF05]. This task would
demonstrate the use of two algorithms to solve the intrusion detection problem
and analyse their relative performance. We then discuss the suitability of one
of the algorithm over the other based on their performance metrics. Finally, we
conclude with a short discussion on the suitability of machine learning to security,
pointers for future work and security of machine learning itself.

3

Chapter 2

Computer Security

This chapter describes basic security concepts including the requirements of com-
puter security and the ways in which it can be achieved. It also describes the
basic types of intrusion detection mechanisms and their current state in achieving
the goals of computer security.

2.1 Computer Security Fundamentals

A computing environment comprises of various hardware and software compo-
nents (also referred to assets1). Computer security(S) involves the protection of
such assets. It can be expressed as a function of confidentiality(C), integrity(I)
and availability(A) of information to authorised users.

Ideally, security professionals attempt to maximize the value of S depending
on the security requirement of an organisation or application. The following
sections describe these concepts in a more detailed manner as given in [PP03]
and [Gol99].

2.1.1 Confidentiality

Confidentiality deals with the secrecy or privacy of assets. It ensures that only
authorised users are allowed to access computer assets. This ’access’ incorporates
any kind of access including reading, writing, printing or even the knowledge that
a particular asset exists. In short, as quoted from [PP03], confidentiality means
that ”only authorised people or systems can access protected data”.

1Here, we do not talk about assets like human and other intangible assets.

4

2.2 Challenges in Computer Security

2.1.2 Integrity

The concept of integrity makes sure that assets can only be modified by authorised
users. Modification of an asset may include tasks like changing, deleting, writing,
changing status and creating. According to Clark and Wilson [CW87], integrity
is maintained when

”No user of the system, even if authorised, may be permitted to mod-
ify data items in such a way that assets or accounting records of the
company are corrupted.”

According to the Orange Book [NIS85], integrity may also be defined as en-
suring external consistency.

2.1.3 Availability

This property is concerned with the proper availability of information or services
to authorised users whenever desired. It primarily aims to prevent any denial of
service [Gol99].

Apart from the above properties, there are other properties which may be con-
sidered a part of computer security. These include authentication, accountability,
reliability, fault-tolerance and assurance [Cra06].

2.2 Challenges in Computer Security

Ideally, a computer system can be made perfectly secure if all the above mentioned
properties are well1 satisfied. However, in practice it is impossible to design a
system with perfect security and usability [Mal06]. Any system can be subjected
to breaches of confidentiality, integrity and/or availability thereby rendering itself
in an insecure state. In order to address this scenario, it is acknowledged that
a system might fail and so there is a need to put in detection and response
mechanisms in addition to the protection mechanisms [Mal06].

2.2.1 Protection

The proactive part of security consists of protecting the asset. The asset is pro-
tected in order to prevent any breaches of confidentiality, integrity or availability.

1This may be relative to a particular security requirement.

5

2.3 Intrusion Detection

2.2.2 Detection

Since perfect security cannot be achieved, we anticipate that the protection mea-
sures might not be able to protect the assets under all cases. This leads to the
adoption of detection measures in security. These measures are used detect pos-
sible breaches of security and their efficacy depends on the time taken to detect.
This time may be different for different assets and may be proportional to the
value of the asset. Another factor that contributes to the efficiency of a detection
mechanism is the number of false alarms it generates. A false alarm may be a
false positive or a false negative. The higher the number of false alarms, the
slower is the detection process and is more expensive.

2.2.3 Response

Supplementing the detection process is the process of responding to security
breaches. The response type may be different in different scenarios and would
depend on the exact security requirement. Typical response types include evalu-
ating the damage, recovering from the damage, improving with experience, etc.

2.3 Intrusion Detection

Intrusion Detection is used to detect violation of a security policy of an organisa-
tion. These violations may be caused by people external to the organisation (i.e.
attackers) or by employees of the organisation (i.e. insiders). Although progress
has been made to detect violations by attackers, insider violations are difficult to
detect.

2.3.1 Motivations behind Intrusion Detection

Intrusion Detection has received considerable motivation owing to the following
reasons as quoted from [Sta06]:

1. If an intrusion is detected quickly enough, an intruder can be identified
quickly and ejected from the system before any damage is done or any data
are compromised. Even if the detection is not sufficiently timely to preempt
the intruder, the sooner that the intrusion is detected, the less is the amount
of damage done and more quickly that recovery can be achieved.

2. An effective intrusion detection system can serve as a deterrent, so acting
to prevent intrusion.

6

2.3 Intrusion Detection

3. Intrusion detection enables the collection of information about intrusion
techniques that can be used to strengthen the intrusion prevention facility.

2.3.2 Goals of Intrusion Detection

Along with the motivations, the goals of intrusion detection can be summarised
as below:

1. Detect as many type of attacks as possible including those by attackers and
those by insiders.

2. Detect as accurately as possible thereby minimising the number of false
alarms.

3. Detect the attacks in the shortest possible time.

2.3.3 Types of Intrusion Detection

In the past few decades, the above requirements have triggered the development of
different types of intrusion detection techniques that satisfy the above properties
to an extent. Based on their functionality, these techniques can be classified as
follows:

1. Signature-based detection (also known as Misuse detection):
In this technique, a user’s behaviour is compared with known attack pat-
terns. If a match is found, an alert is raised. This type is capable of
detecting only known attacks.

2. Specification-based detection:
This technique inverts the signature-based approach [Wol06]; legitimate
behaviour is specified and any deviation from legitimate behaviour raises
an alert. The challenges in this approach include the complexities of many
programs and the task of modeling such complex behaviour with precision.
On the contrary, rough specification reduces the sensitivity of the detector.

3. Anomaly detection:
This is the most promising technique of intrusion detection as it aims to
detect novel attacks in addition to known attacks. In this type, observable
behaviours of a system are used to build models for normal system operation
[Lia05]. These behaviours may include audit logs, network sensors, system
calls, etc. Various statistical techniques are used while building a model
and also while classifying new instances. The drawback of this approach
is the definition of normal behaviour. Expert domain knowledge may be
required while making such profiles of normal behaviour.

7

2.3 Intrusion Detection

Intrusion Detection systems can also be classified as network-based (which
monitor network traffic) or host-based (which monitor operating system events).
A more detailed description of these can be found in [MM01] and [Bac99].

As evident from the previous sections, anomaly detection is one of the most
important and challenging tasks in the computer security domain. The remainder
of this dissertation focuses on how machine learning and related ideas can be used
to address this problem. In particular, we will see how decision making algorithms
are capable of identifying anomalous behaviour by intelligent analysis of previous
network behaviour.

8

Chapter 3

Machine Learning

This chapter describes the basics of machine learning. We first discuss about
machine learning as a concept and thereafter describe the components and rep-
resentation of a machine learning task in more formal terms.

3.1 Introduction

The concept of learning can be described in many ways including acquisition of
new knowledge, enhancement of existing knowledge, representation of knowledge,
organisation of knowledge and discovery of facts through experiments [MCM83].
When such learning is performed with the help of computer programs, it is re-
ferred to as machine learning. However, considering the difficulty in defining
the measure of how much is learned, the authors in [WF05] have formulated an
operational definition of machine learning:

Things learn when they change their behaviour in a way that
makes them perform better

This can be thought of learning in terms of performance (and not knowledge,
which is rather abstract for computer programs), which is measurable in the case
of computer programs. This performance may either be measured in terms of
analysing the complexity of the algorithms or in terms of the functionality, the
choice depending mainly on the area of application.

9

3.2 Basic Concepts

3.2 Basic Concepts

3.2.1 Learning

In computer science, every computer action can be modeled as a function with
sets of inputs and outputs. A learning task may be considered as the estima-
tion1 of this function by observing the sets of inputs and outputs. The function
estimating process usually consists of a search in the hypothesis space (i.e. the
space of all such possible functions that might represent the input and output
sets under consideration).

The authors in [Nil96] formally describe the function approximation process.
Consider a set of input instances X = (x1, x2, x3...xn). Let f be a function which
is to be guessed by the learner. Let h be the learner’s hypothesis about f. Also, we
assume a priori that both f and h belong to a class of functions H. The function
f maps the input instances in X as,

X
h∈H→ h(X)

A machine learning task may thus be defined as a search in this space H. This
search results in approximating the relevant h, based on the training instances
(i.e. the set X). The approximation is then checked against a set of test instances
which are then used to indicate the correctness of h. The search requires algo-
rithms which are efficient and which best-fit the training data [Mit97].

3.2.2 Knowledge Representation and Utilisation

Depending on the way in which the learned knowledge may be represented, ma-
chine learning may be divided into decision trees, neural networks, probability
measures or other such representations. However, as identified in [DL03], a more
fundamental way to divide machine learning is on the basis of the type of input
and the way in which the learned knowledge is utilised. This division consists of:

• Learning for Classification and Regression: This is the most widely used
method of learning involving classification and regression. Classification
consists of assigning a new instance into one of the fixed classes from a
finite set of classes. Regression involves the prediction of the new value on
the basis of some continuous variable or attribute.

1We use the term estimation as the exact function may not be determinate.

10

3.3 Production of Knowledge

• Learning for Acting and Planning: In this case, the learned knowledge is
used for selecting an action for an agent. The action may be chosen in a
purely reactive way, ignoring any past values. Alternatively, the output of
classification or regression may be used by the agent to select an action
based on the description of the current world state. These approaches are
useful for problem solving, planning and scheduling.

• Learning for Interpretation and Understanding: This type focuses on the
the interpretation and understanding of situations or events rather than
just the accurate prediction of new instances. Many separate knowledge
elements are used to derive this understanding, which is known as abduction.

3.2.3 Inputs and Outputs

The inputs and outputs to a machine learning task may be of different kinds.
Generally, they are in the form of numeric (both discrete and real-valued) or nom-
inal attributes. Numeric attributes may have continuous numeric values whereas
nominal values may have values from a pre-defined set. For instance, an attribute
like temperature if used as a numeric attribute, may have values like 25oC, 28oC,
etc. On the other hand, if it is used as a nominal attribute, it may take values
from a fixed set (like high, medium, low). In many cases, the output may also be
a boolean value.

3.3 Production of Knowledge

The way in which knowledge is learned is another important issue for machine
learning. The learning element may be trained in different ways [DL03], supple-
mentary to the classes identified in section 3.2.2. For classification and regression,
knowledge may be learned in a supervised, unsupervised or semi-supervised man-
ner. In the case of supervised learning, the learner is provided with training
examples with the associated classes or values for the attribute to be predicted.
Decision-tree and rule induction methods, neural network methods, nearest neigh-
bour approaches and probabilistic methods are examples belonging to the type of
supervised learning. These methods differ in the way they represent the learned
knowledge (like rules, decision trees, probabilities, etc.) and also in the algo-
rithms that are used for learning.

Unsupervised learning is concerned with the provision of training examples
without any class association or any value for an attribute used for prediction.
Clustering and Density estimation are examples of unsupervised learning ap-
proaches. In the case of clustering, the goal of learning is to assign training

11

3.4 Defining a Machine Learning task

instances to classes of its own invention which can then be used to classify new
instances. Density estimation is used to build a model that predicts the proba-
bility of occurrence for specific instances.

A third approach, which is essentially between the two described above, is that
of semi-supervised learning. In this type of learning, the set of training examples
is mixed, i.e. for some instances the associated classes are present, whereas for
others, they are absent. The goal in this case is to model a classifier or regres-
sor that accurately predicts and improves its behaviour by using the unlabeled
instances.

One important thing to note is that the ultimate goal of any machine learning
task should be to generalise the data and not summarise it. In the latter case,
there will be no learning outcome and the learning exercise will tend to be futile
as predictions on future data will not be possible.

3.4 Defining a Machine Learning task

In general, a machine learning task can be defined formally in terms of three
elements, viz. the learning experience E, the tasks T and the performance element
P. [Mit97] defines a learning task more precisely as,

A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its per-
formance at tasks in T, as measured by P, improves with experience
E.

This representation of a machine learning task clearly defines the require-
ments. It gives an idea of what the machine learning problem is, and what are
its learning goals. It also states how these goals can be measured so that the
effectiveness of the task can be decided.

3.5 Life Cycle of a Machine Learning task

The life cycle of a machine learning task generally follows the process as depicted
in Fig: 3.1.

1. Choosing a learning algorithm.

2. Training the algorithm using a set of instances (referred to as the training
set).

12

3.5 Life Cycle of a Machine Learning task

Figure 3.1: Machine Learning Flow

3. Evaluating the performance by running the algorithm on another set of
instances (referred to as the test set).

Depending on the nature of the knowledge to be learned, different types of
algorithms may be chosen at different times. Also, the type of inputs and outputs
are also instrumental in choosing an algorithm. These include rule inferring al-
gorithms, algorithms based on statistical models, divide and conquer approaches,
covering algorithms, algorithms for mining association rules, algorithms based on
linear models, algorithms on instance-based learning and clustering algorithms.
Table 3.1 shows the typical algorithm choices based on the type of data available
for learning [WF05].

13

3.5 Life Cycle of a Machine Learning task

Table 3.1: Selection of algorithms (adapted from [WF05])

Sr.
No.

Dataset Characteristics Algorithm Choice

1 A single attribute can generalise the data Simple Rule inferring
algorithms (e.g. The
1- Rule Algorithm
[Hol93])

2 Allow all attributes to contribute equally
and independently

Statistical Modeling
(e.g. Naive Bayes
[JL95])

3 Datasets having a simple logical structure
which can be captured by constructing de-
cision trees using a few attributes

Decision Trees (e.g.
ID3 [Ges97], C4.5
[Qui93])

4 Independent rules might be able to assign
the instances to different classes

Covering Algorithms
(e.g. RIPPER
[Coh95], PRISM
[Cen87])

5 Dependence among subsets of attributes Association Rules
(e.g. Apriori [AS94])

6 Presence of numeric attributes with un-
derlying linear dependencies requiring a
weighted sum of attribute values with ap-
propriately chosen weights

Linear Models
(e.g. Perceptron
Algorithm [FS99],
Winnow [Lit88])

7 Presence of numeric attributes, in which
classifications appropriate to particular re-
gions of instance space might be governed
by the distances between themselves

Euclidean Distance
Algorithms (e.g. k-
Nearest Neighbours
[EPY97])

8 Datasets in which no class is to be pre-
dicted, but instances are to be divided into
natural groups

Clustering (e.g. k-
means [Mat00])

A detailed description of all these algorithms and their working logic is out
of the scope of this thesis. Similarly, it is also non-trivial to compare these algo-
rithms with regards to their relative advantages and disadvantages. For example,
rule-based algorithms may generate simple rules, but they might not generalise
well and also result in overfitting1. On the other hand, instance-based learners
may involve a high cost in classifying new instances and clustering may require

1A machine learning method is said to overfit if it performs well on the training data but
does not perform well on the test data.

14

3.6 Benefits of Machine Learning

a large dataset (as compared to other methods) to perform well [Lia05]. The
interested reader may refer to [WF05] for a more comprehensive explanation of
all these algorithms.

Once the algorithm is selected, the next step is to train the algorithm by pro-
viding it with a set of training instances. The training instances are used to build
a model that represents the target concept to be learned (i.e. the hypothesis). As
mentioned earlier, the main goal of this hypothesis formulation is to generalise
the data to the maximum possible extent. This model is then evaluated using
the set of test instances. It is extremely important to take care that the data
instances used in the training process must not be used during the testing phase
as it may lead to an overly optimistic model.

In the case where a large amount of data is available, the general approach
is to construct two independent sets, one for training and the other for testing.
On the other hand, if a limited amount of data is available, it becomes difficult
to create separate sets for training and testing. In such cases, some data might
be held over for testing, and the remaining used for training1. However, the data
in this case might be distributed in an uneven way in the training and test sets
and might not represent the output classes in the correct proportions. A method
called stratification can be used to circumvent this problem. In stratification, the
training and test sets are created in such a manner that the class distribution
from the whole dataset is preserved in the training and test sets [Hal99]. This
may be used in conjunction with another approach called cross-validation for an
even better learning performance [Koh95]. For a k-fold cross-validation, the data
is divided into k folds. The learning process is repeated k times, and every time
a single fold is used for testing and the remaining k-1 folds are used for training.
The results of a learner are then averaged accordingly depending on the value of
k.

3.6 Benefits of Machine Learning

The field of machine learning has been found to be extremely useful in the fol-
lowing areas relating to software engineering [Mit97]:

1. Data Mining problems where large databases may contain valuable implicit
regularities that can be discovered automatically.

2. Difficult to understand domains where humans might not have the knowl-
edge to develop effective algorithms.

1This is called the holdout procedure [WF05].

15

3.6 Benefits of Machine Learning

3. Domains in which the program is required to adapt to dynamic conditions.

In the case of traditional intrusion detection systems, the alerts generated are
analysed by a human analyst who evaluates them and takes a suitable action.
However, this is an extremely onerous task as the number of alerts generated
may be quite large and the environment may change continuously [Pie04]. This
makes machine learning well suited for intrusion detection.

The next chapter describes the application of machine learning to security,
more precisely to intrusion detection, where two machine learning algorithms are
analysed.

16

Chapter 4

Machine Learning applied to
Computer Security

”In a world in which the total of human knowledge is doubling about every ten
years, our security can rest only on our ability to learn”

-Nathaniel Branden

In this chapter, we focus on the application of machine learning to the field
of detecting intrusions. We first define a machine learning task for detecting
intrusions in formal terms as described in section 3.4. We then analyse two
different machine learning algorithms, the VFI algorithm [DG97] and the NBTree
algorithm [Koh96] with respect to their functioning, accuracy and efficiency in
detecting novel intrusions. Being based on different strategies, these algorithms
are expected to have different outcomes which will be compared.

4.1 Defining Intrusion Detection as a Machine

Learning Task

A machine learning task can be formally defined as shown in section 3.4. In
this section, we use this notation to formulate intrusion detection as a machine
learning task1. The parameters used to define a machine learning task are the
experience E, the task T and performance measure P.

For intrusion detection, the task T is the ability to detect intrusions as ac-
curately as possible. More precisely, for the scope of this thesis, good and bad

1This task formulation holds within the scope of this dissertation. In other scenarios, it
may be defined alternatively depending on the learning requirements.

17

4.2 Related Work

connections should be identified correctly. The experience E is provided as a
dataset. It consists of data that defines normal as well as abnormal behaviour.
The data set used in this dissertation is described in more detail in section 4.3.
Each of the instances in the training set provides some sort of an experience to
the learner. The performance P is measured in terms of classification accuracy
and other parameters like precision, recall, F-measure and kappa statistic which
are described in section 4.5.2. Thus, for intrusion detection, we have,

1. Task: To detect intrusions in an accurate manner.

2. Experience: A dataset with instances representing normal as well as attack
data.

3. Performance Measure: Accuracy in terms of correct classification of in-
trusion events and normal events and other statistical metrics including
precision, recall, F-measure and kappa statistic.

4.2 Related Work

A comparison of eager, lazy and hybrid learning algorithms for improving intru-
sion detection has been done in [Tes07]. A dataset generated from the honeypots
of Tilburg University was used for this study. RIPPER [Coh95] and IB1 [AKA91]
were the respective eager and lazy learning methods used to learn intrusions from
the data set. Attribute selection was done using InfoGain [Mit97] and CFS [Hal99]
mechanisms. This attribute selection was done only during the IB1 selection as
RIPPER has an inherent feature selection capability. A hybrid learning model
was also used by combining the above two approaches. It was found that RIPPER
was the most effective mechanism for classifying new intrusions on the concerned
data set.

A new algorithm called LERAD was devised for learning useful system call
attributes [TC05]. This is a conditional rule learning algorithm which generates
a small number of rules. The rules can be effectively used to detect more attacks
with a reasonable space and time overhead. In this research, it was shown that
analysis of system call attributes is extremely useful in detecting attacks and it
performs better than systems which analyse just the sequence of system calls.
This methodology mainly targeted at making the IDS deterrent to mimicry at-
tacks [WS02].

In [IYWL06], a combination of signature-based and machine learning-based
intrusion detection systems is shown to be quite useful. The authors showed

18

4.3 Data Set Description

that when a signature-based IDS is used as the main system and the machine
learning-based IDS is used as a supporting system, the supporting system can
filter out the false alarms and validate the decisions of the main system. Snort
was used as the signature-based IDS and extended IBL (Instance-based Learner)
[AKA91] was used as the algorithm in the machine learning-based IDS.

Another important research work was done in [Lia05], where the task of de-
tecting intrusions was associated with a text mining task. The frequency of
system calls was an important element in this thesis. The k -Nearest neighbour
learning methodology [Mit97] was used to categorise intrusions based on the fre-
quency of system calls. A cost-based model1 for determining the interdependence
between the IDS and the attacker was also presented, which was shown to be
quite effective.

In [SS03], it was shown that certain attack categories are better detected
by certain algorithms. A multi-classifier machine learning model using these
individual algorithms was built and to detect attacks in the KDD 1999 Cup
Intrusion Detection dataset. Nine different algorithms representing a variety of
fields were selected for this analysis. Probability of detection and false alarm
rate were used as the performance measures. Empirical results indicated that a
noticeable performance improvement was achieved for certain probing, DoS and
user-to-root attacks.

4.3 Data Set Description

The UCI machine learning repository [AN07] is one of the most comprehensive
archives for the machine learning community. The data set used for evaluation
in this dissertation is a subset of the KDD Cup ’99 data set2 for intrusion de-
tection obtained from the UCI machine learning repository. This data set was
used for The Third International Knowledge Discovery and Data Mining Tools
Competition and also in KDD-99, The Fifth International Conference on Knowl-
edge Discovery and Data Mining. The goal of the competition was to build a
network intrusion detector, a predictive model capable of distinguishing between
intrusions (or attacks) and normal connections. It contains a standard set of

1A cost-based model is one in which every decision taken by the learner is associated with
a cost. This cost may be specific to the domain in which the learning has to take place. An
example is described in [SJS00].

2The KDD Cup ’99 data set is a version of a data set used at the DARPA Intrusion
Detection Evaluation program. More details of the original data set can be found at http :
//www.ll.mit.edu/IST/ideval/data/data index.html

19

http://www.ll.mit.edu/IST/ideval/data/data_index.html
http://www.ll.mit.edu/IST/ideval/data/data_index.html

4.3 Data Set Description

data which includes a wide variety of intrusions simulated in a military network
environment [OC99c].

4.3.1 Characteristics of the Data Set

The data set consists of TCP dump data for a simulated Air Force LAN. In
addition to normal LAN simulation, attacks were also simulated and the corre-
sponding TCP data was captured. The attacks were launched on three UNIX
machines, Windows NT hosts and a router along with background traffic. Every
record in the data set represents a TCP connection i.e. a sequence of TCP packets
starting and ending at some well defined times, between which data flows from
a source IP address to a destination IP address under a well defined protocol.
Each connection was labeled as normal or as a specific attack type [OC99b]. The
attacks fall into one of the following categories:

• DOS attacks (Denial of Service attacks)

• R2L attacks (unauthorised access from a remote machine)

• U2R attacks (unauthorised access to super user privileges)

• Probing attacks

4.3.2 Features

In addition to the basic features (i.e. attributes) of the TCP dump data, the
authors in [SJS00] have defined higher-level features1 that help in identifying
normal connections and attacks. The ’same host’ features examine connections
in the past two seconds that have the same destination host as the current con-
nection and calculate statistics including protocol behaviour, service, etc. The
same service features are identical to the same host ones except that they have
the same service as the current connection. These two features are referred to as
time-based features. Another set of features called the host-based features were
constructed using a window of 100 connections to the same host and the con-
nection records were sorted by destination host. The last set of features called
content features were constructed by using domain knowledge so as to look for
suspicious behaviour (like number of failed logins) [SJS00]. Some of these features
are nominal and some are continuous. A complete list of the set of these features
for the connection records is explained in more detail in tables 4.1, 4.2 and 4.3.
In addition to this, table 4.4 shows the exact attributes used in this dissertation

1The feature description is adapted from [OC99b].

20

4.3 Data Set Description

along with their types. A sample entry in the dataset is also shown in table 4.5.
The last attribute in thsi entry is the Class attribute which indicates whether the
instance is normal or abnormal. It is specified as normal for normal instances
and one of buffer overflow, loadmodule, perl, neptune, smurf, guess passwd, pod,
teardrop, portsweep, ipsweep, land, ftp write, back, imap, satan, phf, nmap or
multihop for abnormal instances [OC99a].

Table 4.1: Basic Features [OC99b]

Feature Name Description Type

duration length (number of seconds) of the connec-
tion

continuous

protocol type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g.,

http, telnet, etc.
discrete

src bytes number of data bytes from source to desti-
nation

continuous

dst bytes number of data bytes from destination to
source

continuous

flag normal or error status of the connection discrete
land 1 if connection is from/to the same

host/port; 0 otherwise
discrete

wrong fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous

Table 4.2: Content Features [OC99b]

Feature Name Description Type

hot number of ’hot’ indicators continuous
num failed logins number of failed login attempts continuous
logged in 1 if successfully logged in; 0 otherwise discrete
num compromised number of ’compromised’ conditions continuous
root shell 1 if root shell is obtained; 0 otherwise discrete
su attempted 1 if ‘su root’ command attempted; 0 oth-

erwise
discrete

num root number of ‘root’ accesses continuous
num file creations number of file creation operations continuous
num shells number of shell prompts continuous
num access files number of operations on access control files continuous

21

4.3 Data Set Description

is hot login 1 if the login belongs to the ’hot’ list; 0
otherwise

discrete

is guest login 1 if the login is a “guest”login; 0 otherwise discrete

Table 4.3: Traffic Features [OC99b]

Feature Name Description Type

count number of connections to the same host
as the current connection in the past two
seconds

continuous

Note: The following features refer to these
same-host connections.

serror rate % of connections that have “SYN” errors continuous
rerror rate % of connections that have “REJ” errors continuous
same srv rate % of connections to the same service continuous
diff srv rate % of connections to different services continuous
srv count number of connections to the same service

as the current connection in the past two
seconds

continuous

Note: The following features refer to these
same-service connections.

srv serror rate % of connections that have “SYN” errors continuous
srv rerror rate % of connections that have “REJ” errors continuous
srv diff host rate % of connections to different hosts continuous

Table 4.4: Dataset Attributes [OC99a]

Sr. No. Feature Name Type

1 duration continuous
2 protocol type nominal
3 service nominal
4 flag nominal
5 src bytes continuous
6 dst bytes continuous
7 land nominal
8 wrong fragment continuous
9 urgent continuous
10 hot continuous

22

4.3 Data Set Description

11 num failed logins continuous
12 logged in nominal
13 num compromised continuous
14 root shell continuous
15 su attempted continuous
16 num root continuous
17 num file creations continuous
18 num shells continuous
19 num access files continuous
20 num outbound cmds continuous
21 is host login nominal
22 is guest login nominal
23 count continuous
24 srv count continuous
25 serror rate continuous
26 srv serror rate continuous
27 rerror rate continuous
28 srv rerror rate continuous
29 same srv rate continuous
30 diff srv rate continuous
31 srv diff host rate continuous
32 dst host count continuous
33 dst host srv count continuous
34 dst host same srv rate continuous
35 dst host diff srv rate continuous
36 dst host same src port rate continuous
37 dst host srv diff host rate continuous
38 dst host serror rate continuous
39 dst host srv serror rate continuous
40 dst host rerror rate continuous
41 num outbound cmds continuous
42 dst host srv rerror rate continuous
43 Class nominal

Table 4.5: A sample record of the dataset

Sr. No. Feature Name Value

1 duration 0

23

4.3 Data Set Description

2 protocol type tcp
3 service http
4 flag SF
5 src bytes 181
6 dst bytes 5450
7 land 0
8 wrong fragment 0
9 urgent 0
10 hot 0
11 num failed logins 0
12 logged in 1
13 num compromised 0
14 root shell 0
15 su attempted 0
16 num root 0
17 num file creations 0
18 num shells 0
19 num access files 0
20 num outbound cmds 0
21 is host login 0
22 is guest login 0
23 count 8
24 srv count 8
25 serror rate 8
26 srv serror rate 0
27 rerror rate 0
28 srv rerror rate 0
29 same srv rate 0
30 diff srv rate 1
31 srv diff host rate 0
32 dst host count 0
33 dst host srv count 9
34 dst host same srv rate 9
35 dst host diff srv rate 1
36 dst host same src port rate 0
37 dst host srv diff host rate 0.11
38 dst host serror rate 0
39 dst host srv serror rate 0

24

4.4 Algorithms

40 dst host rerror rate 0
41 num outbound cmds 0
42 dst host srv rerror rate 0
43 Class Normal

4.4 Algorithms

This section describes the algorithms used for learning intrusions. The first algo-
rithm is the NBTree [Koh96], which is a hybrid of decision-tree and Naive Bayes
classifiers [LIT92]. This is a significant improvement over the performance of a
traditional Naive Bayes classifier in terms of its accuracy. The second algorithm
is the VFI [DG97], which performs classification on the basis of real-valued vote
distribution among classes.

4.4.1 NBTree

The NBTree algorithm is a hybrid between decision-tree classifiers and Naive
Bayes classifiers. In order to understand the functioning of NBTree, it is first
important to know how classification is done on the basis of decision-trees and
Naive Bayes separately. The following sub-sections briefly explain the decision-
tree and Naive Bayes approaches. Finally the NBTree approach is described.

4.4.1.1 Decision Tree Classification

In this type of classification, the target concept is represented in the form of a tree.
The tree is built by using the principle of recursive partitioning. An attribute
is selected as a partitioning attribute (also referred to as node) based on some
criteria (like information gain) [Mit97]. This process is then repeated for every
child node until all attributes are exhausted and a decision-tree is constructed.
This decision tree may be further pruned so as to reduce the tree size [Qui93] and
also to avoid overfitting [Mit97].

4.4.1.2 Naive Bayes Classification

Naive Bayes classification [LIT92] is based on Bayesian probability learning. It
assumes conditional independence of attributes given the target value of the in-
stance. For a learning task based on Naive Bayes classification, each instance in
the dataset is represented as a conjunction of attribute values where the target
function f(x) can take values from a finite set V. A new instance to be classified

25

4.4 Algorithms

is presented in the form of a tuple (a1, a2, a3...an) and the learner is supposed to
classify this new instance. The output υNB of the Naive Bayes classifier is given
by:

υNB = argmax
υj∈V P (υj)

∏
i

P (ai|υj)

The above probabilities are based on the frequencies of attribute values in the
training data. In this case, there is no explicit search in the hypothesis space,
just frequency counting. A more detailed explanation can be found in [Mit97].

4.4.1.3 The NBTree Approach

The Naive Bayes method performs quite well for discrete-valued attributes. As
the data size increases, the performance improves further. However, for continuous-
valued attributes, it does not take into account attribute interactions [Koh96].
Decision-trees on the other hand do not give a good performance when the data
size is extremely large. These two weaknesses are overcome by the NBTree algo-
rithm.

The NBTree algorithm represents the learned knowledge in the form of a tree
which is constructed recursively. However, the leaf nodes are Naive Bayes cat-
egorizers rather than nodes predicting a single class [Koh96]. For continuous
attributes, a threshold is chosen so as to limit the entropy measure. The utility
of a node is evaluated by discretizing the data and computing the 5-fold cross-
validation accuracy estimation using Naive Bayes at the node. The utility of the
split is the weighted sum of utility of the nodes and this depends on the number of
instances that go through that node. The NBTree algorithm tries to approximate
whether the generalisation accuracy of Naive Bayes at each leaf is higher than
a single Naive Bayes classifier at the current node. A split is said to be signifi-
cant if the relative reduction in error is greater that 5% and there are atleast 30
instances in the node [Koh96]. The NBTree pseudo-code is shown as Algorithm 1.

The authors in [Koh96] showed that NBTree has considerable performance
improvement above its individual constituents and is suited to many real world
datasets. For n attributes, m attributes and l classes, the complexity of NBTree
for the attribute selection phase (for discretized attributes) is O(m ·n2 · l). When
the number of attributes is less than O(log m) (which is the usual case), and the
number of labels is small, then the time spent on attribute selection using cross-
validation is less than the time spent in sorting the instances by each attribute.
NBTree thus scales up well to large databases.

26

4.4 Algorithms

Algorithm 1 The NBTree Algorithm [Koh96]

Input: a set of T labeled instances
Output: a decision-tree with Naive Bayes categorizers at leaves

1. For each attribute Xi, evaluate the utility u(Xi), of a split on attribute Xi.
For continuous attributes, a threshold is also found out at this stage.
2. Let j = argmaxi(ui), i.e. the attribute with the highest utility.
3. If uj is not significantly better than the utility of the current node, create a
Naive Bayes classifier for the current node and return.
4. Partition T according to the test on Xj. If Xj is continuous, a threshold
split is used; if Xj is discrete, a multi-way split is made for all possible values.
5. For each child, call the algorithm recursively on the portion of T that
matches the test leading to the child.

Another advantage of NBTree is its simplicity of representing the learned
knowledge. It segments the data using a univariate decision tree, thus making
the segmentation easy to understand. Every leaf being a Naive Bayes classifier,
can also be easily understood [Koh96].

4.4.2 VFI

The VFI1 algorithm is a classification algorithm based on the voting frequency
intervals (hence the name VFI). In VFI, each training instance is represented as
a vector of features along with a label that represents the class of the instance.
Feature intervals are then constructed for each feature. An interval represents a
set of values for a given feature where the same subset of class values are observed.
Thus, two adjacent intervals represent different classes.

In the training phase of VFI, the feature intervals are calculated by calculat-
ing the lowest and highest feature value for every linear feature for every class.
For nominal features, the observed feature values are taken into consideration.
For each linear feature with k classes, 2k values are found. These values are
then sorted and each pair of consecutive points forms a feature interval. Point
intervals are formed for nominal values. Each of these intervals is represented as
a vector (lower, count1, count2....countk), where lower is the lowest feature value
and counti is the number of training instances of class i that fall into that interval.

In the classification phase, the interval i of the new instance e is found out.
A feature vote is then calculated for every class as follows:

1This explanation is adapted from [DG97]

27

4.5 Experimental Analysis

feature vote[f, c] = Number of instances of class c which fall into interval i of feature f
total number of classes

These votes are then normalised and the the class with the highest feature vote
is returned as the predicted class for the new instance. The following Algorithm
2 gives a simplified picture of the actual VFI algorithm.

Algorithm 2 The VFI Algorithm (adapted from [DG97])

Input: a set of T labeled instances
Output: The predicted class for a given new instance

1. Training Phase
For each feature, find the lowest and highest feature value for every linear class
and the observed value for every nominal class. Calculate the feature intervals
based on these values.
For each class, calculate the number of training instances that fall into every
interval.
2. Classification Phase
For a new instance e to be classified, find the interval into which the value of e
falls. Calculate the vote given by each feature, normalize the votes and return
the class with the highest vote.

4.5 Experimental Analysis

The experiments done in light of the information explained in the previous sec-
tions of this thesis consist of the evaluation of the performance of NBTree and
VFI algorithms for the task of classifying novel intrusions. The dataset described
in section 4.3 was used in the experiments. Weka [WF05], a machine learning
toolkit was used for the implementation of the algorithms described in sections
4.4.1 and 4.4.2. Weka provides a common interface for all the algorithm imple-
mentations that it contains. This interface can be used to specify the variables
of an algorithm, to graphically visualise the dataset under consideration and to
view the outcomes of algorithms on different datasets. This makes it convenient
to compare various machine learning methods on a given dataset and to draw
conclusions about the same. All resources used for this experiment including
Weka and the data set are made available in Appendix C.

4.5.1 Environment

The experiments were carried out on a laptop with 1.60Ghz of dual core process-
ing power and 2GB RAM. Due to the limitation in the available memory and
processing power, it was not possible to use the full dataset described in section

28

4.5 Experimental Analysis

4.3. Instead a reduced subset was used and 10-fold cross-validation (explained in
section 3.5) was used to overcome this limitation.

4.5.2 Evaluation Metrics

In order to analyse and compare the performance of the above mentioned algo-
rithms, metrics like the classification accuracy, precision, recall, F-Measure and
kappa statistic were used. These metrics are derived from a basic data structure
called as the confusion matrix. A sample confusion matrix for a two-class problem
can be represented as:

Table 4.6: Confusion Matrix for a two-class problem(adapted from [WF05])
Predicted Class Positive Predicted Class Negative

Actual Class Positive a b
Actual Class Negative c d

In this confusion matrix, the value a is called a true positive and the value d
is called a true negative. The value b is referred to as a false negative and c is
known as false positive [Wol06].

In the context of intrusion detection, a true positive is an instance which is
normal and is also classified as normal by the intrusion detector. A true negative
is an instance which is an attack and is classified as an attack.

4.5.2.1 Classification Accuracy

This is the most basic measure of the performance of a learning method. This
measure determines the percentage of correctly classified instances. From the
confusion matrix, we can say that:

Accuracy = a+d
a+b+c+d

This metric gives the number of instances from the dataset which are classified
correctly i.e. the ratio of true positives and true negatives to the total number of
instances.

4.5.2.2 Precision, Recall and F-Measure

Precision and recall [WMB99] are terms used widely in the information retrieval
domain. They are usually defined as:

29

4.5 Experimental Analysis

Precision = ratio of number of documents retrieved that are relevant to the
total number of documents that are retrieved

Recall = ratio of number of documents retrieved that are relevant to the total
number of documents that are relevant

Precision gives the percentage of slots in the hypothesis that are correct,
whereas recall gives the percentage of reference slots for which the hypothesis is
correct. Precision takes into account the substitution and insertion errors whereas
recall takes into account the substitution and deletion errors [MKSW99].

Referring from the confusion matrix, we can define precision and recall for
our purposes as [Tes07]:

Precision = a
a+c

Recall = a
a+b

The precision of a intrusion detection learner would thus indicate the propor-
tion of total number of correctly classified positive instances to the total number
of predicted positive instances and recall would indicate the proportion of cor-
rectly classified positive instances to the total number of actual positive instances.
Thus, a high precision and high recall are desirable for an IDS.

The authors in [KM97] identify that accuracy alone cannot be considered as
sole reliable measure for classification. This is because in a case where there
are 10 instances, out of which 9 are negative and 1 is positive, if the classifier
classifies all of them as negative, the accuracy would be 90%. However, it would
result in ignoring all the positive instances. The F-measure is therefore defined
as the weighted harmonic mean of precision and recall [MKSW99] to address this
problem which may be present in any classification scenario.

F-measure1 = 2∗Precision∗Recall
Precision+Recall

4.5.2.3 Kappa Statistic

The Kappa statistic is used to measure the agreement between predicted and
observed categorizations of a dataset, while correcting for agreements that occur
by chance. It takes into account the expected figure and deducts it from the
predictor’s success and expresses the result as a proportion of the total for a
perfect predictor [WF05]. So, for instance, if we had another confusion matrix
for the expected predictions of classes as follows:

1This is the most popular formula for the F-measure. A more general formula can be found
in [MKSW99].

30

4.5 Experimental Analysis

Table 4.7: Confusion Matrix for a two-class problem (Expected predictions)
Predicted Class Positive Predicted Class Negative

Actual Class Positive e f
Actual Class Negative g h

the Kappa statistic is calculated as,

Kappa = (a+d)−(e+h)
(a+b+c+d)−(e+h)

x 100

In addition to the above statistical metrics, the time taken to build the model
was also considered as a performance indicator.

4.5.3 Attribute Selection

Attribute Selection (also known as Feature Reduction or Feature Subset Selec-
tion) is an important task during any machine learning exercise (especially clas-
sification). Usually, the available data for machine learning analysis is multi-
dimensional and the number of dimensions (i.e. features or attributes) is often
high. It is not necessary that all the features of a particular dataset are important
for a machine learning algorithm. Many features may be redundant and may not
contribute at all to the classification task. For a dataset with k attributes, the
size of the hypothesis space is k2. For a small k, an exhaustive search to find out
the best suited hypothesis is possible. However, this task becomes non trivial as
the value of k increases [HS96].

Feature subset selection is the process of identifying and removing much of
the redundant and irrelevant information possible. This results in the reduction
of dimensionality of the data and thereby makes the learning algorithms run in
a faster and more efficient manner. It also reduces the size of hypothesis space
and in some cases, it also reduces the storage requirement [Hal99].

The experiments conducted in this thesis use the Information Gain attribute
selection method. This method is explained in the following sub-section.

4.5.3.1 Information Gain

Information Gain measure is used to determine how instrumental is a particular
attribute in correctly classifying the training data. Information gain is based on
the concept of entropy which is widely used in the information theory domain.
Given a collection of instances S, containing positive and negative examples of
some target concept. the entropy of S relative to this boolean classification is
given by [Mit97]:

31

4.5 Experimental Analysis

Entropy(S) = −p⊕log2p⊕ − p	log2p	

where p⊕ is the proportion of positive examples in S and p	 is the proportion of
negative examples in S.

For a target concept with c different possible values for the classes, the entropy
can be defined as [Mit97]:

Entropy(S) =
c∑

i=1

− pilog2pi

where pi is the proportion of S belonging to class i.

Based on the above definition of entropy, information gain G of an attribute
A is defined as [Mit97]:

Gain(S, A) ≡ Entropy(S) –
∑

υ∈V alues(A)

|Sυ |
|S| Entropy(Sυ)

where Values(A) is the set of all possible values for attribute A and Sυ is the
subset of S for which A has value υ. Information gain is thus the reduction in
entropy caused by partitioning the examples according to an attribute.

In this thesis, Weka’s implementation of the Information gain attribute se-
lector (called InfoGainAttributeEval) was used to determine the effectiveness of
attributes and the attributes were ranked in decreasing order of information gain
values. The first 7 attributes and the Class attribute were then used in the ex-
periment for the learning task. Table 4.8 lists these selected attributes which is
a subset of those shown in Table 4.5.

Table 4.8: Attributes selected using Information Gain

Sr. No. Feature Name Type

1 service nominal
2 src bytes continuous
3 dst bytes continuous
4 logged in nominal
5 count continuous
6 srv count continuous
7 dst host diff srv rate continuous
8 Class nominal

32

4.5 Experimental Analysis

4.5.4 Summary of Experiments

Based on the above algorithms, attribute selection methods and the type of cross-
validation, the following table shows a summary of the experiments conducted.

Table 4.9: Summary of Experiments
Algorithm Feature Reduction

Method
Cross-
Validation

NBTree - 10-fold
VFI - 10-fold
NBTree Information Gain 10-fold
VFI Information Gain 10-fold

33

Chapter 5

Results

The results1 of the experiments described in section 4.5 are discussed in this
chapter. A comparison between NBTree and VFI methods is also made based
on the values of the metrics defined in section 4.5.2. 10-fold cross-validation was
used for all the experiments. These results are then interpreted and conclusions
are drawn based on this analysis as to which of the methods is best suited to
solve the intrusion detection problem at hand.

5.1 Results of NBTree

NBTree was evaluated by taking into account all features of the dataset. The
results of this evaluation are summarised in the table below. The detailed result
set is provided in Appendix A.

Table 5.1: Results of NBTree with all attributes

Metric Value

Time taken to build
the model

1115.05s

Accuracy 99.94 %
Average Precision 90.33 %
Average Recall 92.72 %
Average F-Measure 91.14 %
Kappa Statistic 99.99 %

NBTree was further evaluated on the dataset by taking into account feature
reduction using the Information Gain measure. The results of this test are sum-

1The decimal quantities in this section are rounded to 2 decimal places for consistency.

34

5.2 Results of VFI

marised in the following table.

Table 5.2: Results of NBTree with selected attributes
using Information Gain measure

Metric Value

Time taken to build
the model

38.97s

Accuracy 99.89 %
Average Precision 94.54 %
Average Recall 90.84 %
Average F-Measure 92.28 %
Kappa Statistic 99.82 %

The NBTree clearly has a very high accuracy rate of classifying almost 99%
of the instances correctly in both cases (i.e. when all attributes were considered
and when only a selected attributes were considered). Also, it has high precision
and recall values, which are important in the intrusion detection task. The time
taken by NBTree for constructing the model is however greater than that of VFI
in all cases.

The feature selection mechanism does not affect the classification accuracy,
precision and recall values of NBTree to a great extent. In fact, the results show
that the classification accuracy is slightly higher with all attributes taken into
consideration. However, this is accompanied with a steep rise in the time taken
to build the model. With selected attributes, the time taken is 38.97s whereas
it is 1115.05s when all attributes are considered. This shows that NBTree is
extremely time-sensitive with regards to the number of attributes used. The F-
Measure also has a considerably high value (above 90% in both cases) so that the
problem described in section 4.5.2.2 is addressed to a good extent.

5.2 Results of VFI

Similar to the NBTree tests, VFI was also evaluated twice; once by taking all at-
tributes into consideration and then by using a reduced attribute subset obtained
by the Information Gain measure. The results of these experiments are listed in
the following tables. A detailed result set is provided in Appendix B.

35

5.3 Interpretation of Results

Table 5.3: Results of VFI with all attributes

Metric Value

Time taken to build
the model

0.92s

Accuracy 86.58 %
Average Precision 41.27 %
Average Recall 80.54 %
Average F-Measure 44.05 %
Kappa Statistic 79.50 %

Table 5.4: Results of VFI with selected attributes using
Information Gain measure

Metric Value

Time taken to build
the model

0.2s

Accuracy 75.81 %
Average Precision 35.71 %
Average Recall 75.82 %
Average F-Measure 37.43 %
Kappa Statistic 66.21 %

The results indicate that VFI does not perform too well on the given dataset.
It suffers from a low accuracy rate of just about 75% as compared to approxi-
mately 99% accuracy exhibited by NBTree. It also has very low precision values
and low recall values. The F-Measure and Kappa statistic also have very low val-
ues. It is however faster than NBTree with regards to building the classification
model.

It is observed that the feature selection mechanism reduces the classification
accuracy of the VFI algorithm accompanied with a reasonable decrease in the
time taken to build the model. The results indicate that performance is better in
most aspects if all the dataset attributes are taken into account while classifying
with VFI.

5.3 Interpretation of Results

For an IDS, the accuracy indicates how correct is the algorithm in identifying
normal and adversary behaviour. Recall would indicate the proportion of cor-

36

5.3 Interpretation of Results

Figure 5.1: NBTree v/s VFI - All Attributes

rectly classified normal instances whereas precision would indicate the number of
correctly classified normal instances from the total number of normal and attack
instances. The Kappa statistic is a general statistical indicator and the F-Measure
is related to the problem described in section 4.5.2.2. In addition to these, the
time taken by the learning algorithm for model construction is also important as
it may have to handle extremely large amounts of data.

37

5.3 Interpretation of Results

Figure 5.2: NBTree v/s VFI - Selected Attributes

The graphs in Figures 5.1 and 5.2 show a relative performance of NBTree and
VFI for the intrusion detection task on the dataset under consideration. Figure
5.1 shows the comparison with all attributes under consideration and figure 5.2
depicts the comparison for attributes selected using the Information Gain mea-
sure.

As per the definitions in section 4.5.2.2, a good IDS should have a recall that is
as high as possible. A high precision is also desired. From our results, we see that
the classification accuracy of NBTree is better than that of VFI in both cases.
There are tremendous differences in the precision and recall values of NBTree and
VFI where the NBTree exhibits a relatively higher precision and higher recall.
Also, when all attributes are used, NBTree has a lower precision value than the
case when selected attributes are used. In both these cases, the recall is more
or less the same. Also, the F- Measure value is high for NBTree in comparison
to VFI. NBTree is seen to have a better performance as compared to the VFI
in both the cases and it can thus be said that it is more suited to the intrusion
detection task on the given dataset.

38

Chapter 6

Conclusions

In this thesis, we described the applications of machine learning to computer secu-
rity, particularly to the task of detecting intrusions. Using Weka, we analysed two
algorithms towards their suitability for detecting intrusions from a dataset con-
taining audit data. We showed that machine learning can be effectively applied
to detect novel intrusions and focused on anomaly detection. The two learning
algorithms, NBTree and VFI were compared at the task of detecting intrusions.
NBTree with an accuracy rate of approximately 99% and a recall of approxi-
mately 90% was found to perform much better at detecting intrusions than VFI
for the dataset under consideration.

Based on the experiments done in the thesis and their corresponding results,
we can state the following:

• Machine learning is an effective methodology which can be used in the field
of Computer Security.

• The inherent nature of machine learning algorithms makes them more suited
to the intrusion detection field of information security. However, it is not
limited to intrusion detection. The authors in [MX06] have developed a
tool using machine learning to infer access control policies where policy
requests and responses are generated by using learning algorithms. These
are effective with new policy specification languages like XACML [Mos05].
Similarly, a classifier-based approach to assigning users to roles and vice-
versa is described in [SO04].

• It is possible to analyse huge quantities of audit data by using machine
learning techniques, which is otherwise an extremely difficult task.

The following sections suggest some recommendations for future work, men-
tion a real world application of machine learning to information security and also

39

6.1 Future Work

discuss briefly on the security of machine learning itself.

6.1 Future Work

Machine Learning is an experimental science [Mit97]. A learning method which
may be suited to a particular problem may not necessarily perform well at an-
other problem. Also, a learning method may have many configurable parameters,
which may result in a different performance.

Based on the above facts, the future work to this thesis can be summarised
as follows:

1. In this thesis, two learning algorithms were tested and compared. The Weka
machine learning toolkit offers a collection of many other learning schemes,
which can be tested and evaluated.

2. The parameters of the machine learning schemes used in this thesis were
default. It may be possible to further improve the performance of these
schemes towards intrusion detection by optimizing these parameters.

3. Owing to the limited processing power, memory available for the experi-
ments conducted and the scope of the thesis, a reduced subset of the actual
dataset was used. These experiments can be repeated by taking the entire
dataset which may further improve the performance of the learner.

4. The attribute selection mechanism (Section 4.5.3) used in this thesis was
based on the Information Gain concept. Also, the top 7 attributes with
maximum information gain (plus the class attribute) were used by the algo-
rithms. It is possible to conduct experiments in which a different attribute
selection mechanism is used and also, different number of attributes are
selected to be given as inputs to the algorithms.

Thus, in order to realise the full potential of machine learning to the field
of computer security, it is essential to experiment with various machine learning
schemes towards addressing security-related problems and choose the one which
is the most appropriate to the problem at hand.

40

6.2 Real-world Application

6.2 Real-world Application

The Minnesota Intrusion Detection System (MINDS)1 [EEL+] is an anomaly IDS
implemented at University of Minnesota. It uses a set of machine learning tech-
niques to automatically detect attacks against computer networks and systems.
A density based outlier detection algorithm called LOF [BKNS00] is used in the
anomaly detection module of MINDS. Experimental results involving live network
traffic at the university have shown that it it extremely promising and success-
ful at detecting several novel attacks which escaped identification from popular
signature-based tools such as Snort2.

6.3 Security of Machine Learning

While machine learning techniques are portraying a promising picture towards
solving problems in computer security, it is imperative to consider how secure are
the machine learning techniques themselves. The authors in [BNS+06] attempt
to answer a few questions relating to the security of machine learning techniques.
These questions quoted from [BNS+06] include:

• Can the adversary manipulate a learning system to permit a specific attack?

• Can an adversary degrade the performance of a learning system to the
extent that system administrators are forced to disable the IDS?

• What defenses exist against adversaries manipulating (attacking) learning
systems?

• What is the potential impact from a security standpoint of using machine
learning on a system? Can an attacker exploit properties of the machine
learning technique to disrupt the system?

Different attack scenarios with regards to subverting the learner were dis-
cussed. An adversary with deep understanding of the learning algorithm can be
considered as a potential threat to the learning process. As an instance, an attack
may cause the learner to build a model which deliberately misclassifies events.
For addressing the above attacks, various defense mechanisms were also proposed.

1http://www.cs.umn.edu/research/MINDS/MINDS.htm
2http://www.snort.org/

41

http://www.cs.umn.edu/research/MINDS/MINDS.htm
http://www.snort.org/

6.3 Security of Machine Learning

Does machine learning for security introduce a vulnerability? Although the
attacks and defenses in [BNS+06] were theoretical, current research in this field
is increasingly aiming to ensure that the answer to this question is no.

42

Appendix A

NBTree Complete Results

Detailed results of the intrusion classification task using NBTree are available in
a compressed format at the following URL:

http://www.isg.rhul.ac.uk/~mrai182/Detailed%20NBTree%20Results.zip

43

http://www.isg.rhul.ac.uk/~mrai182/Detailed%20NBTree%20Results.zip

Appendix B

VFI Complete Results

Detailed results of the intrusion classification task using VFI are available in a
compressed format at the following URL:

http://www.isg.rhul.ac.uk/~mrai182/Detailed%20VFI%20Results.zip

44

http://www.isg.rhul.ac.uk/~mrai182/Detailed%20VFI%20Results.zip

Appendix C

Experiment Resources

The resources used for this experiment are available in a compressed format at
the following URL:

http://www.isg.rhul.ac.uk/~mrai182/ExperimentResources.zip

45

http://www.isg.rhul.ac.uk/~mrai182/Experiment Resources.zip

References

[AKA91] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based
learning algorithms. Mach. Learn., 6(1):37–66, January 1991.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repository.
http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules. In Jorge B. Bocca, Matthias Jarke, and
Carlo Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, pages 487–499. Morgan Kaufmann, 12–15 1994.

[Bac99] Rebecca G. Bace. Intrusion Detection. Sams, December 1999.

[BCH+01] Eric Bloedorn, Alan D. Christiansen, Willian Hill, Clement Skorupka,
Lisa M. Talbot, and Jonathan Tivel. Data mining for network in-
trusion detection: How to get started. http://citeseer.ist.psu.

edu/bloedorn01data.html, Aug 2001.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen.
Classification and Regression Trees. Chapman & Hall/CRC, January
1984.

[BH95] Philippe Besnard and Steve Hanks, editors. UAI ’95: Proceedings
of the Eleventh Annual Conference on Uncertainty in Artificial In-
telligence, August 18-20, 1995, Montreal, Quebec, Canada. Morgan
Kaufmann, 1995.

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg
Sander. Lof: identifying density-based local outliers. SIGMOD Rec.,
29(2):93–104, 2000.

[BNS+06] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph,
and J. D. Tygar. Can machine learning be secure? In ASIACCS ’06:

46

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://citeseer.ist.psu.edu/bloedorn01data.html
http://citeseer.ist.psu.edu/bloedorn01data.html

REFERENCES

Proceedings of the 2006 ACM Symposium on Information, computer
and communications security, pages 16–25, New York, NY, USA,
2006. ACM Press.

[Cen87] Jadzia Cendrowska. Prism: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies, 27(4):349–370, 1987.

[CER05] Insider threat study:computer system sabotage in critical in-
frastructure sectors. http://www.cert.org/archive/pdf/

insidercross051105.pdf, 2005.

[CER07] CERT Vulnerability Statistics 1995 - 2006. http://www.cert.org/
stats/vulnerability_remediation.html, 2007.

[Coh95] William W. Cohen. Fast effective rule induction. In Armand Prieditis
and Stuart Russell, editors, Proc. of the 12th International Confer-
ence on Machine Learning, pages 115–123, Tahoe City, CA, July
9–12, 1995. Morgan Kaufmann.

[Cra06] Jason Crampton. Notes on Computer Security, 2006.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial
and military computer security policies. IEEE Security and Privacy,
00:184, 1987.

[DG97] Gulsen Demiroz and H. Altay Guvenir. Classification by voting fea-
ture intervals. In European Conference on Machine Learning, pages
85–92, 1997.

[DL03] Tom Dietterich and Pat Langley. Machine learning for cogni-
tive networks:technology assessments and research challenges, Draft
of May 11, 2003. http://web.engr.oregonstate.edu/~tgd/kp/

dl-report.pdf, 2003.

[EEL+] Levent Ertz, Eric Eilertson, Aleksandar Lazarevic, Pang-Ning Tan,
Vipin Kumar, Jaideep Srivastava, and Paul Dokas. Minds -
minnesota intrusion detection system. http://www.cs.umn.edu/

research/MINDS/papers/minds_chapter.pdf.

[EPY97] Eppstein, Paterson, and Yao. On nearest neighbor graphs. GEOM-
ETRY: Discrete & Computational Geometry, 17, 1997.

47

http://www.cert.org/archive/pdf/insidercross051105.pdf
http://www.cert.org/archive/pdf/insidercross051105.pdf
http://www.cert.org/stats/vulnerability_remediation.html
http://www.cert.org/stats/vulnerability_remediation.html
http://web.engr.oregonstate.edu/~tgd/kp/dl-report.pdf
http://web.engr.oregonstate.edu/~tgd/kp/dl-report.pdf
http://www.cs.umn.edu/research/MINDS/papers/minds_chapter.pdf
http://www.cs.umn.edu/research/MINDS/papers/minds_chapter.pdf

REFERENCES

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In Pro-
ceedinges of the 1996 IEEE Symposium on Research in Security and
Privacy, pages 120–128. IEEE Computer Society Press, 1996.

[FLSM00] Wei Fan, Wenke Lee, Salvatore J. Stolfo, and Matthew Miller. A
multiple model cost-sensitive approach for intrusion detection. In
Machine Learning: ECML 2000, 11th European Conference on Ma-
chine Learning, Barcelona, Catalonia, Spain, May 31 - June 2, 2000,
Proceedings, volume 1810, pages 142–153. Springer, Berlin, 2000.

[FS99] Yoav Freund and Robert E. Schapire. Large margin classification
using the perceptron algorithm. Machine Learning, 37(3):277–296,
December 1999.

[Ges97] Paul Gestwicki. Id3: History, implementation, and applications.
http://citeseer.ist.psu.edu/gestwicki97id.html, 1997.

[Gol99] Dieter Gollmann. Computer Security. John Wiley & Sons, 1999.

[GSS99] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning
program behavior profiles for intrusion detection. In ID’99: Proceed-
ings of the 1st conference on Workshop on Intrusion Detection and
Network Monitoring, pages 6–6, Berkeley, CA, USA, 1999. USENIX
Association.

[Hal99] Mark A. Hall. Correlation-based Feature Selection for Machine
Learning. PhD thesis, University of Waikato, Department of Com-
puter Science, 1999.

[Hol93] Robert C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11(1):63–90, April 1993.

[HS96] M. Hall and L. Smith. Practical feature subset selection for machine
learning. In Proceedings of the Australian Computer Science Confer-
ence, 1996.

[IYWL06] Doo Heon Song Ill-Young Weon and Chang-Hoon Lee. Effective in-
trusion detection model through the combination of a signature-based
intrusion detection system and a machine learning-based intrusion
detection system. Journal of Information Science and Engineering,
22(6):1447–1464, 2006.

48

http://citeseer.ist.psu.edu/gestwicki97id.html

REFERENCES

[JL95] George H. John and Pat Langley. Estimating continuous distribu-
tions in bayesian classifiers. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, pages 338–345, 1995.

[Ken99] K. Kendall. A database of computer attacks for the evaluation
of intrusion detection systems. http://www.kkendall.org/files/

thesis/krkthesis.pdf, 1999.

[KM97] Miroslav Kubat and Stan Matwin. Addressing the curse of imbal-
anced training sets: one-sided selection. In Proc. 14th International
Conference on Machine Learning, pages 179–186. Morgan Kaufmann,
1997.

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pages 1137–
1145, 1995.

[Koh96] Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: a
decision-tree hybrid. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, pages 202–207,
1996.

[KT03] Christopher Kruegel and Thomas Toth. Using decision trees to
improve signature-based intrusion detection. http://www.auto.

tuwien.ac.at/~chris/research/doc/2003_03.ps, 2003.

[Lan00] Terran D. Lane. Machine Learning Techniques for the computer se-
curity domain of anomaly detection. PhD thesis, Department of Elec-
trical and Computer Engineering, Purdue University, August 2000.

[LB97a] T. Lane and C. Brodley. Detecting the abnormal: Machine learning
in computer security. citeseer.ist.psu.edu/lane97detecting.

html, 1997.

[LB97b] T. Lane and C. E. Brodley. An application of machine learning to
anomaly detection. In Proc. 20th NIST-NCSC National Information
Systems Security Conference, pages 366–380, 1997.

[Lia05] Yihua Liao. Machine Learning in Intrusion Detection. PhD thesis,
University of California (Davis), Department of Computer Science,
2005.

49

http://www.kkendall.org/files/thesis/krkthesis.pdf
http://www.kkendall.org/files/thesis/krkthesis.pdf
http://www.auto.tuwien.ac.at/~chris/research/doc/2003_03.ps
http://www.auto.tuwien.ac.at/~chris/research/doc/2003_03.ps
citeseer.ist.psu.edu/lane97detecting.html
citeseer.ist.psu.edu/lane97detecting.html

REFERENCES

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. Machine Learning, 2(4):285–318,
1988.

[LIT92] Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of
bayesian classifiers. In National Conference on Artificial Intelligence,
pages 223–228, 1992.

[LS00] Wenke Lee and Salvatore J. Stolfo. A framework for constructing
features and models for intrusion detection systems. Information
and System Security, 3(4):227–261, 2000.

[Mah03] M. Mahoney. A Machine Learning Approach to Detecting Attacks
by Identifying Anomalies in Network Traffic. PhD thesis, Florida
Institute of Technology, 2003.

[Mal06] Marcus A. Maloof, editor. Machine Learning and Data Mining for
Computer Security. Springer, 2006.

[Mat00] Jiri Matousek. On approximate geometric k-clustering. Discrete &
Computational Geometry, 24(1):61–84, 2000.

[MC02] M. Mahoney and P. Chan. Learning models of network traffic
for detecting novel attacks. http://www.cs.fit.edu/~mmahoney/

paper5.pdf, 2002.

[MCM83] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Ma-
chine Learning: An Artificial Intelligence Approach. Tioga Publish-
ing Company, 1983.

[MH03] Steve Moyle and John Heasman. Machine learning to detect intrusion
strategies. Knowledge-Based Intelligent Information and Engineering
Systems, 2773/2003:371–378, 2003.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[MKSW99] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Perfor-
mance measures for information extraction. http://www.nist.gov/
speech/publications/darpa99/html/dir10/dir10.htm, 1999.

[MM01] Ludovic M’e and C’edric Michel. Intrusion detection: A bibliography.
Technical Report SSIR-2001-01, Sup’elec, Rennes, France, September
2001.

50

http://www.cs.fit.edu/~mmahoney/paper5.pdf
http://www.cs.fit.edu/~mmahoney/paper5.pdf
http://www.nist.gov/speech/publications/darpa99/html/dir10/dir10.htm
http://www.nist.gov/speech/publications/darpa99/html/dir10/dir10.htm

REFERENCES

[Mos05] Tim Mose. Oasis, extensible access control markup language, (xacml)
version 2.0. http://docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf, 2005.

[MX06] Evan Martin and Tao Xie. Inferring access-control policy properties
via machine learning. In POLICY ’06: Proceedings of the Seventh
IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY’06), pages 235–238, Washington, DC, USA,
2006. IEEE Computer Society.

[Nil96] Nils J.. Nilsson. Introduction to Machine Learning - an early
draft of a proposed book. http://ai.stanford.edu/~nilsson/

MLDraftBook/MLBOOK.pdf, 1996.

[NIS85] NIST. Trusted computer system evaluation criteria (orange book).
http://csrc.nist.gov/publications/history/dod85.pdf, 1985.

[OC99a] University Of California. Intrusion detection dataset in machine
readable form. http://kdd.ics.uci.edu/databases/kddcup99/

kddcup.names, 1999.

[OC99b] University Of California. The UCI KDD Archive, University of
California. http://kdd.ics.uci.edu/databases/kddcup99/task.

html, 1999.

[OC99c] University Of California. The UCI KDD Archive, University
of California. http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html, 1999.

[Pie04] Tadeusz Pietraszek. Using adaptive alert classification to reduce false
positives in intrusion detection. Recent Advances in Intrusion Detec-
tion, 3224:102–124, 2004.

[PP03] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Com-
puting. Pearson Education, Inc, 2003.

[PP07] Animesh Patcha and Jung-Min Park. Network anomaly detection
with incomplete audit data. Computer Networks: The Interna-
tional Journal of Computer and Telecommunications Networking,
51(13):3935–3955, 2007.

[PT05] Tadeusz Pietraszeka and Axel Tannera. Data mining and machine
learning—towards reducing false positives in intrusion detection. In-
formation Security Technical Report, 10(3):169–183, 2005.

51

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://ai.stanford.edu/~nilsson/MLDraftBook/MLBOOK.pdf
http://ai.stanford.edu/~nilsson/MLDraftBook/MLBOOK.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

REFERENCES

[Qui93] Ross R. Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., 1993.

[Ren04] Jason D. M. Rennie. Derivation of the f-measure. http://people.

csail.mit.edu/jrennie/writing/fmeasure.pdf, Feb 2004.

[SJS00] Wenke Lee Salvatore J. Stolfo, Wei Fan. Cost-based modeling for
fraud and intrusion detection results from the jam project. http:

//www.cs.columbia.edu/~wfan/papers/costdisex.ps.gz, 2000.

[SL06] Surendra K. Singhi and Huan Liu. Feature subset selection bias
for classification learning. In ICML ’06: Proceedings of the 23rd
international conference on Machine learning, pages 849–856, New
York, NY, USA, 2006. ACM Press.

[SO04] Shengli Sheng and Sylvia L. Osborn. A classifier-based approach to
user-role assignment for web applications. In Secure Data Manage-
ment, pages 163–171, 2004.

[SS03] Maheshkumar Sabhnani and Gursel Serpen. Application of machine
learning algorithms to kdd intrusion detection dataset within misuse
detection context. In Proceedings of International Conference on
Machine Learning: Models, Technologies, and Applications, pages
209–215, Las Vegas, Nevada, USA, 2003.

[Sta06] William Stallings. Network Security Essentials: Applications and
Standards (3rd Edition). Prentice Hall, 2006.

[TC05] G. Tandon and P. Chan. Learning useful system call attributes for
anomaly detection. Proc. 18th Intl. FLAIRS Conf., pages 405–410,
2005.

[Tes07] Sebastiaan Tesink. Improving intrusion detection systems through
machine learning. http://ilk.uvt.nl/downloads/pub/papers/

thesis-tesink.pdf, 2007.

[VMV05] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based
approach to the detection of SQL attacks. In DIMVA, pages 123–140,
2005.

[WF05] Ian H. Witten and Eibe Frank. Data Mining - Practical Machine
Learning Tools and Techniques, Second Edition. Elsevier, 2005.

52

http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf
http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf
http://www.cs.columbia.edu/~wfan/papers/costdisex.ps.gz
http://www.cs.columbia.edu/~wfan/papers/costdisex.ps.gz
http://ilk.uvt.nl/downloads/pub/papers/thesis-tesink.pdf
http://ilk.uvt.nl/downloads/pub/papers/thesis-tesink.pdf

REFERENCES

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

[Wol06] Stephen Wolthusen. Lecture 11 - Intrusion Detection and Prevention,
notes in Network Security, 2006.

[WS02] D. Wagner and P. Soto. Mimicry attacks on host based intrusion
detection systems. http://www.cs.berkeley.edu/~daw/papers/

mimicry.pdf, 2002.

[WZA06] Nigel Williams, Sebastian Zander, and Grenville Armitage. A prelim-
inary performance comparison of five machine learning algorithms for
practical ip traffic flow classification. SIGCOMM Comput. Commun.
Rev., 36(5):5–16, 2006.

53

http://www.cs.berkeley.edu/~daw/papers/mimicry.pdf
http://www.cs.berkeley.edu/~daw/papers/mimicry.pdf

	Nomenclature
	1 Introduction
	2 Computer Security
	2.1 Computer Security Fundamentals
	2.1.1 Confidentiality
	2.1.2 Integrity
	2.1.3 Availability

	2.2 Challenges in Computer Security
	2.2.1 Protection
	2.2.2 Detection
	2.2.3 Response

	2.3 Intrusion Detection
	2.3.1 Motivations behind Intrusion Detection
	2.3.2 Goals of Intrusion Detection
	2.3.3 Types of Intrusion Detection

	3 Machine Learning
	3.1 Introduction
	3.2 Basic Concepts
	3.2.1 Learning
	3.2.2 Knowledge Representation and Utilisation
	3.2.3 Inputs and Outputs

	3.3 Production of Knowledge
	3.4 Defining a Machine Learning task
	3.5 Life Cycle of a Machine Learning task
	3.6 Benefits of Machine Learning

	4 Machine Learning applied to Computer Security
	4.1 Defining Intrusion Detection as a Machine Learning Task
	4.2 Related Work
	4.3 Data Set Description
	4.3.1 Characteristics of the Data Set
	4.3.2 Features

	4.4 Algorithms
	4.4.1 NBTree
	4.4.1.1 Decision Tree Classification
	4.4.1.2 Naive Bayes Classification
	4.4.1.3 The NBTree Approach

	4.4.2 VFI

	4.5 Experimental Analysis
	4.5.1 Environment
	4.5.2 Evaluation Metrics
	4.5.2.1 Classification Accuracy
	4.5.2.2 Precision, Recall and F-Measure
	4.5.2.3 Kappa Statistic

	4.5.3 Attribute Selection
	4.5.3.1 Information Gain

	4.5.4 Summary of Experiments

	5 Results
	5.1 Results of NBTree
	5.2 Results of VFI
	5.3 Interpretation of Results

	6 Conclusions
	6.1 Future Work
	6.2 Real-world Application
	6.3 Security of Machine Learning

	A NBTree Complete Results
	B VFI Complete Results
	C Experiment Resources
	References

