THESIS

SUBMITRED FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

IN THE UNIVERSI TY OF LONDON
by

JOYCE WINIPRED ETHEL BRADING.

ProQuest Number: 10096553

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096553
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstraet of Thesis.

The structure of the Folysagoharide fromi Ulva Juatues.

The polysaccharide hss been purifled; after nitrie acid oxidation smail quantities of mueie and saccharie acids have been obtained. The earbohydrate has been methylated by repeated treatnent with $\mathrm{He}_{2} \mathrm{SO}_{4}$. Men H, the ohloroform aoluble fraction being further methylated with HeI, Ageo to a product with ole, 31\%. Prior treatments to give an soetylated produet or sulphate free product, suitable for methylation, were unsuceessfal. the properties of fally methylated and croly insoluble Iractions have been investigated; the former fraction was subjected to sethanolysis and the produate separated and investigated. Eviaenoe for $2: 3: 4-t r i m e t h y 1-1-r h a n n o s e ~ a n d ~ n o ~$ other simple and group, partlally methylated hexose and rhammose, an anhydro strueture and an aster was obtainod.

On autonydrolysis most of the uxonie adid and/or pentose is hydrolysed with about 50% of the rhamase, leaving an unstable maeromoleaular residue.

THE STRUCTURE OF THE
 POLYSACCHARIDE PROM PHE

ALGA, ULVA LACMUCA.

> The author wishes to express her sincere thanks to Dr. M. Georg for her advice and encouragement during the supervision of this research.

CONTENTS.

The investigation of algal polysaccharides has deveroped during this century and revealed a variety of structural types. Like other polysaccharides, they are hydrolysed to eimple sugar units by the action of acias. Early investigators identified some of the sugars present in the hydrolysates by means of derivatives such as osazones and during the same period fairly specific colour reactions with phenols were established for đetecting zetoses, uronic acids, etc., and methods were developed for the quantitative eatimation of certain sugar types, e.g. by distillatioa with hydrochloric seid. More precise information, particularly with regard to the linking of the sugars in the macromolecule, followed with the application of mettaylation techniques to polysaccharides, and the development of periodete oxidation for α-glyeol groups and chrometographic analysis of sugars and sugar derivatives, within recent years, provides new and powerful methods for confirming the results of methylation and for elucidating finer cetails of structure.

At the present time the survey of algal polysaccharides is very incomplete, the red (rhodophyceao) and brown (phaeophyceae) have been more extensively iavestigated than the green (ohlorophyceae) and blue-green (mxyophyceae) seaveeds, but generelizations are based on scant evidence.

Many of the polysacchstides are actaic, due to the presence of sulphuric acid estex or carboxylic acia grouns. Different sugar types occur, the hexoses glucose and galactose, pentoses and methyl-pentoses, althongh, so ras, none of those discovered are exelusive to algal carbohydrates and struetural investigation follows along similar lines, and has many aifficulties in common with worit in other branches of polyseceharide chemistry.
Sulphate esters.
Sulphate esters were show to be present in the polysecharides from many red sad brown algee by Haas et a1. $[1,2]$, gualitative tests showed thet the ash from ignition of the polysacharides consisted mainly of metal sulphate, and was not romoved by dialysis of the polysacoharide. the original materials geve ionie reactions for metel but not for sulphate, al though these were obtained after hydrolysis with acid or alkels.

When the salts of sulphate estex's sere ashed alone, ondy half of the sulphate present is retained in the esh, but all the sulphate is retained if the substance is ignited in the presence of excess sodiun carbonate, or estimated in solution after total hydrolysis.

$2 \mathrm{ROSO}_{2}$ Olia	$\mathrm{Na}_{2} \mathrm{SO}_{4}+3 \mathrm{O}_{2}\left(\mathrm{ana} \mathrm{CO}_{2} \mathrm{~B}^{3} \mathrm{H}_{2} 0\right)$
$2 \mathrm{ROSO}_{2} \mathrm{ONa}+\mathrm{Na}_{2} \mathrm{CO}_{3}$	$2 \mathrm{Na}_{2} \mathrm{SO}_{4}$ (and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$)

conditions were carried out and the sulphate in the ash from the salts was found to be approximately hall that obtained by the other two methods; this was confirmed Independentiy by Iusde Heen \& Oy [5].

Corresponding analyses on the Ulva Lactuca polysaccharide [4] showed the presence of sulphate ester, although acciurate figures conld not be obtained in earliser investigetions owing to difficulties ia purification, ond owing to the presence of carbozylic acid grouping which also reteinssodiun in the salt form of the polysaccharide.

It is noteworthy that gelactose is almost always found in polysacharides containing sulphate ester. In meny cases the sulphate has not been proved to be attached to this sugar, but when the carbohydrate consists mainily of galaotose, e.g. Agar [5], Irideea Laminarioides [6], the sulphate must be attached to it and the isolation of anhydro-galactose dorivatives (see next section) confirms this. Pucoiain seems to be en exception for~80, is accounted for as fucose, metals and sulphate [3].

Galactose may be detected by oxidation with 25% nitric acid, when insoluble mucic acid is formed and can be filtered off. Phenylmethyl hydrazine is also used for separating galactose irom suger mixtures $[7,8]$. Nucic acid has been obtained from the Ulva polysaccharide, but not with the ease, nor in quantities which indicate that $t_{4.1} \%$ galactose, 3.3% uxonic acid and 1.5% xylose have now been detected [62].
galactose is a major constituent.

Hydrolysis of sugar sulphnte esters.

the discovery of manual derivatives from sulphate ester polysaccharide 1.e. 3:6manhydro galactose derivatives Erom agar [9] stimuleted the investigation of simple sugar sulphates. A 3:6-anhyaro compound, methyl-3:6auhydro $\beta=D-g l u c o s i d e$, (i1) was first obtained by Pischer and zach [30] on alkaline hydrolysis of methyl-6-bromotri-acetyl- β-D-glucoside (i)

(i)

(ii)

Anhydro compounds axe also obtained on hydrolysis of suitable sugar sulphates [12].

(1ii) methyl- β-D-galactopyrano- (iv) methyl-3:6-aahydro- β-D -side-6-sulphate galaetopyranoside

The first stage in tho hydrolysis of (i) is the loss of Br ${ }^{-}$with the fomation of a carbonium eation. lihen esters

5.

of sulphuric or sulphonic acias axe hyerolysed it is knowa that the oxygen of the aster Linkege remainas attached to the acia group so that a carboafum eation is formed

$$
\overline{\mathrm{CH}}+0 \mathrm{OO}_{2} \mathrm{R} \rightarrow \mathrm{COR}^{\oplus}+\quad-\mathrm{OSO}_{2} \mathrm{R}
$$

aud the mechanism of suhydro ring formation is undoubtediy gimilar in all these cases.

During hydrolysis there is very 11 ttle temdenoy for the lost -ve group to be roplaced by a wve ion from the
 Jut it is readily replaced if a suftably placed aucleophilic group is available in the sugar moleovie, suoh as -9 erom the - 0 ${ }^{2}$ group on C_{3}, which can approach C_{6} on the opposita side irom the receding group. In suoh nueleophilic subatitation at a caubon atom, the carboniun ion is never actually froe and inveretion of conliguration occurs. That this mechonism operates in enlyyro ring formation les been amply conefrmed, mainiy from an isvestigation of the hydrolysis of Tosy2 $(=\underline{z}$-toluene sulphonyl-)
dorivatives $[12,1 \%, 14]$. Alcaline hycrolysis of a tosy2 group attached to an asymmetric carbon atom occurs quite readily if there is a tirans - Ori group attached to an adjacent cerbon atom, when an ethyleae oxide ring structuze is formed (v), or if there is an - or group so stituated that a kydrofurenol ming can be fommed, 2 iniced in the position trans to thet occupied by the tosyl group (vi)
proton removal
(v)
 (vi)

When there is no suitably placed free -off group. hydrolysis does not occur readily. percival ot al. have shown that the sane general conclusions apply to the alkaline hydrolysis of sulphate esters $[15,16,17]$. 3:6-hydro-furanol rings are formed readily 0.8 . (iv) and ethylene oxides have also been obtained eeg. by treating barium 5 -methyl-2:2-monoacetone-glucofuranose-6sulphate (vii) with liaclse, at $40^{\circ}, 7$ 2 2 monoacetone-5:6anhydroglucose (viii) is obtained, substitution at cs preventing the formation of a hyarofruanol ring.

(vii)

(villi)

The 2-sulphete group of beriun 1:6-onhydro- $\beta=-\mathrm{Dalac}$ to-pyrenose-i-sulphate ($2 x$) con be hydrolyseã yielding a 2:5-anhydro atructure (x) when the stable $1: 6$-anhydro

7.

group protects the glyeosiaic centre $[18]$ but a 2 -sulphate group seems to make a glycosiaic methyl group very labile to alkali, since barium 6 -ne thai- β-me thyl-D-galeo topyranose-2- $\mathrm{SO}_{4}(\mathrm{xi})$ midergoes extensive decomposition on treatment with alkali [17]

(Ix)

(x)

(xi)

This works has important bearing on the investigation of sulphate containing polysaccharides, relatively facile removal of sulphate by alkali inaleating that anhydre ring formation is possible in the macromolecule, and the isolation of anhydro compounds assisting to fix the position of the original esterifying sulphate. Properties of anhydro sugars.

Ethylene oxide rings are unstable to acid and alkali oc. Nate at 90° will effect session of the threenembered ring, an -ONe group being introduced with inversion occurring on the carbon aton which is attacked by the methoxyl anion.

Hydrofuranol. rings are more stable; when in

6.

association with pyrasose sugar struoture, the molecule Is slightiy strained end changes to the more stable \$*6-bhyafo furenose strueture if possible; even when methyl glycostdea are waed, a trace of Hel in varions solvents will efrect this change [29].

With Neon/HCL the pyranose ring opens and damethyl. acetal. is producod e.g. me thyl-3:6-anhydro- $\beta=$ D-galactopyranoside (xil), furanose fom not sterloally possible, gives 3:6-anhyăro-D-galactose-a\{me thylacetal. (xiji) [[0].

(xil)

球解 $\overrightarrow{\mathrm{HCl}\left(\frac{2}{2} \%\right)}$
(xii4)

Aqueous acid readily hydrolyses the glycoside group with seission of 5 and 6 membered sugar riags to give ajahyano sugars e.g. methyl-3:6-anhydro-2:4-aime thyl-D-giucopyrenoside (xiv) yields 3:6-anhydro-2: 4 -dime thyi-aldehydzo-D-glucose (xv)

These products give the reactions of free aldehydes
e.f. restoration of the colour to Schiff reagent [20], a reaction which is irequently used to detect them. Anhyaro sugars also give a positive Seliwanoff test (red colour with HCl and resorcinol) which was formerly thought specipic for ketoses.
sulphate ostor alsal polysaccharides.
Detailed work on the structure of sulphate ester algal polysaccharides has been carried out on produets from a few red algae.

Hassid investigated the polysacoheride from Irideae Laminerioides [8] and showed that it contained gelactose and sulphate in equivelent proportions. The sulphate was removed by the action of $0.5 \mathrm{NH}_{2} \mathrm{SO}_{4}$ or by $\mathrm{Ba}(\mathrm{OH})_{2}$ at 70°, without afrecting the polysaccharide seriously. Wethylation and hydrolysis of the polysaceharide gielded a dime thyl-gelactose and methylation of ter removal of sulphate gave trinethyl-galactose. Crystalline aerivatives were not obtalned and there was no suggestion of the formation of ankydro compounds.

Agar is also a polygalactose sulphate [21] but shows marked difforences in behaviour, the sulphate content is ruch lower and it ylelds DL-galactose-heptacetate by acetolysis [22]. The methylated product [25] contains no sulphato ond yields 2:4:6-trinethyl-D-galactopyranose (xvi), as main product, and methyl laevulate, on hydrolysis with aqueous sulphuric acid. liepeatec methylation with
$\mathrm{He}_{2} \mathrm{SO}_{4}$ and NaOfl gave a product of only $30-32$ \% ofte; after breakdown by methamolysis the glycoside of (xvi) and 2:4-dinethyl-3:6-anhydxo-lmgalactose (xvii) were obtained by Rereival and Porbes [24] and by Hands and peat [25].

(xvi)

(xvii)

Investigation of the properties of (xyit) shoved that it gave a positive selivenoff reaction and decomposed to methyl laevulate on treatment with aqueous acid; 3:6-anhydrogalactose was shown [26] to give DL-galactosehoptacetate on treatment with $\mathrm{Acg}_{\mathrm{g}} \mathrm{a}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Thus the earlier observations of Pirie and Percival $[28,23]$ and the low maxinnum methoxyl were explained by the presence of 3:6-ankydro-L-galactose wits, and the isolation of (xvi) indicated D-galactose to be linked in the 1 and 3 positions. Jones and Feat [27] obtalined, in addition, methyl-2:3: $4: 6$-tetrame thylagalac topyrazoside from the non-reducing end group and $2: 55-d i m e t h y 1-3: 5$ manhyaro-1m galactonic acid (xviil) from an agar fraction of high ash contenty which had been dialysed under acid. conditions.

(xvili)
The production of aldehydo forms from 3s6-anhydro structures hasalready been discussed and it can easily be seen how this galactonic acid could arise from 3:6-anhydro-L-galactose by ring opening undor acid conditions and subsequent ready oxidation of the -CHO group. The 3:6-anhydro group presumably being formed on removal of suiphate from C_{6}.

Quanti tive assay of the relative proportions of these nethylated derivatives indicated a straight chain strueture of 9 d-galactose units, linked in the $1: 3 \mathrm{~m}$ positions, terminated by L-galactose linked in the 4 position (xix) the last residue appearing as $3: 6$-anhydro, as shown, and I-galactonic acid derivatives, a structure in agreement with the absence of attack by periodate ien [28].

Carbohydrate containing galactose and sulphate is also obtained from chondrus orispus and gigartina stellata (caregheen). In this case sulphate is temaciously retained and a new acidic derivative has been isolated. The early wotik of Haas $[3,2]$ established the presence of sulphate. Pereival of al. havo shown these polysaccharides to be very similar, except for the presence of giucose in tho former; choudrus orispus [29], Bigartina stellate $[30,31]$.

By acetylating and then methylating the polysaccharide with $\mathrm{NaOH}, \mathrm{Me}_{2} \mathrm{SO}_{4}$ repeatedly, a product of ~ 20, Olte could be obtained. Direct methylation of the polysaccharide with ine $\mathrm{H}_{3}, \mathrm{He}_{2} \mathrm{SO}_{4}$ was not successful, nor could the \&f Ole of the above product be increased with these reagonts, or by the II. method. on aydrolysing the product with 0.5 N oxalie acid at 100°, 2;6-dimethyl-rgalectose was obteined.
lie thenolysis was difficult and prolonged repeated treatment with $\mathrm{FeOH} / \mathrm{HCl}$ in the presence of BaCl a was necossary to effect breaicdown and romove sulphur, Hethyl-2:6-aime thyl-galactopyranoside (xx) was the only

(xx) product identipied, indicating that only the OH groups on C_{2} and C_{6} are exposed in the polysaccharide. $60-70 \%$ of the molecule is accounted for in terms of galactose and sulphate. Unlike agar, the sulphate groups show remartable resistance to hydrolysis. 72 hours treatment with 14 HaOH at 100° only renoves 62 go the sulphate and practically none was removed during methylation. By analogy with the behaviour of simple hexose sulphates, Percival assumes that the sulphate group is probably attached to $C_{4}($ if it is linked to gelactose and not to the unknown part of the molecvle), since any other arrangement would permit the fomation of anhydro rings when SO_{4} removal woula be expeeted to be moh easier. Anlyydro derivatives have not so far been isolated, although positive colorimetric seliwanoff "iketose" reactions given by the unidentified portion may be due to these substanees.

It follows from this that the galaetose is probably linked through the I and 3 positions, as in agar, although the situation of the $-\mathrm{SO}_{4}$ gromp is almost certainly
different irom that in agar. ©.g. (xai)

Absence of reaction with periodate ion, lends support to this structure [16].

The behaviour of the sulphate group in the Ulva polysaccharide seems to resemble that of caragheen moch more closely than that of agar, comparable dificulties in purification have also been experienced.

Young and Rice [32] have isolated keto-gluconic acid (xxii), via. its diacetone derivative, from gigartina stellata polysaceharide after ozalie acid hydrolysis in aittrogen.

The presence of this rare substance has not been conflrmed by the 3ritish workers, nevertheless the reactions of ketogluconic acid are worthy of note, and
demonstrate the uncertainty which must be aftached to colour reactions, otc., when applied to wannown mixtures. Calciun ketoglueonate gives a brownish red (red when impure) with naphthoresorcinol, similar to ketoses. On boiling with HCI it gives furfural (estimated as phloroglucide) in amounts comparable with those obtained from uronic acids; under similer treatment CO_{2} evolution was not investigated, but undoubtediy the substance would readily lose CO_{2} at the same tine.

Algal polysacoharides containing Ironic acid.

Uronic acids may be detected by the evolution of CO_{2} on boiling with $12 \% \mathrm{HCl}$ and by colour reactions, such as that with HC1 and naphthoresorcinol [7].

Alginic acid, the first algel polysacharide to be investigated is a polymannuronic acid, and occurs quite widely in brown algae. e.g. Fucus serratus Laminaria and Maerocystis [21] . Hoagland and Lieb isolated pentasazone from this substence [34], but the pentose was probably a secondary product arising by loss of CO_{2} froin uronic acid during its treatment with hot acia. Nelson and Cretcher hydrolysed alginic acid with cold $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and obtained mennuronic acid (xxili) $[35,36]$.

(xxilii)

(xxiv)

Quantitative estimations of equivalent woight and CO_{2} evolution with $\# C L$ indicated that there was no other major constifuent.

The manner in which the simple units are liniced in the macromolecule was eluciated by Hisst et al. [37] . Alginie acid itself was found to be extremely resistant to acetylation or mathylation by the usual methods but a degraded alginic acid i.e. partially brokon down by meoh, ack treatment, could be methylated usiag thallium hydroxide and ethoxide, followed by $\mathrm{NeI}_{2} \mathrm{Ag}_{2} \mathrm{O}$. Hydrolysis was exceptionally dieficult but 2:3-dimethyl-D-mannuranic ester (xxiv) was obtained after me thenolysis with $\mathrm{NeOH}, \mathrm{FCH}$.

The extrene resistance to hydrolysis axcludes the possibility of furenose ring form so that algiale acid consists of D-nennuronic acid residues linked 1 ineally through positions 2 and 4 , the confaguration at C_{2} is probably β as the polysaccharide shows a large negative rotation and is in agrement with X Hay investigations on alginate sibres.

Alginic acid has only recently been partially acetylated using ke tene [38].

Mannuronic acid has so far only been obtained from algal polysaceharides but both gelecturonic and gluenronic acids poeur comonaly e.g. in pectic material and gums from land plants. Alginie acia resenbles the

17.

other polyuronides in its resistance to methylation and subsequent hydrolysis.

The unva polysaccharide is thought to contain uronic (or ketogluconic) acia and is resistant to methylation. The thallium method hes been tried by another investigator [39], wi thout success, probably owing to the presence of sulphate.

Alginic acid is often acompanied by polysaccharide containing pentose, most commonly the methyl-pentose L-fucose. Yolyfucose also occurs with sulphate coutaining material. The methyl pentose. L-rhamose (xxy) has been shown to be

(xav)
present in the ulva polysaccharide [4], this is the first inctance of the occurrence of Phamose in algal polysacchariaes, although it is known to occur in gum arabie and mucilages.

18.

SUMMARY OF INVESTIGARIONS ON THR ULVA POLYSACCHARIDE.
Ho investigation of the polysaccharide material of other green algae has been published. Sarlier work on the polysaccharide from the green alga, Ulva Lactuca, by M.M.T. Plant and E.D. Johnson [4] involved isolation of an acid polysaccharide as its sodium salt. Attempted fractionation by precipitation into alcohol at different $p H$ values did not yield products which showed marked difference in properties, except those which would be expected from variation in the proportion of acid and selt form. The presence of sulphate ester was established although quantitative assay was not possible, and I-rhamnose was identified in the methylated acid hydrolysis products as the crystalline 2:3:4-trimethyl-I-rhemnose-anilide and -phenylhydrazone. Evidence for uronic acid was inconclusive, $\sim 1000 \mathrm{~g}$. of various fractions yielding $44 \mathrm{~g} . \mathrm{CO}_{2}$. Quantitative estimation of methyl pentose, by distilling wi th $12 \% \mathrm{HCl}$, and weighing methyl-furfuralphloroglucide, assuming uronic acid to be absent, indicated that rhamnose formed $20-25 \%$ of the polysaccharide, the proportion being greater in material soluble in 50\% acidified alcohol than in the insoluble fraction; these estimations also indicated that small quantities of pentose and/or uronic acid were present in both
fractions but not present in simple hyorrolysis products from these iractions.

The isolation of 2:3:4:6-tetramethyl -D-galactoseanilide from methylated hydrolysisproducts by M.M.T Georg (Plant) [39], established the presence of galactose although it could not be obtained as the phenyl-methyl-hydrazine derivative.

Practically complete purification, except for the separation of a small amomat of very tenaciously held protein, has been achieved in recent work by D. M. Hardy [40] who has determined the sulphate and uronic acid content, equivalent weight and periodate uptake of the product. Chromatographic analysis of fractions obtained after methanolysis has established the presence of D-xylose, isolated as crystalline dibeazylidene-D-xylose-dimethylacetal; also uronic acid and sulphate ester, in agreement with other work; and also indicates that glucose, but not galactose, is present in the soluble methanolysis products.

In the present work, purification of the Ulva carbohydrate has been carried out. After nitric acid oxidation mucic acid has been obtained, but not with the ease, nor in quantities indicating simply bound galactose as a major constituent;
evidence for saccharic acid was also obtained, in
agreement with the chromatographic work of D.M. Hardy. The polysaccharide has been methylated by repeated treatment with $\mathrm{Me}_{2} \mathrm{SO}_{4}$, NaOH , the chloroform soluble fraction being further methylated with lleI, Ag20 to a product with OMe, 31\%. Prior treatments to give an acetylated product or sulphate free product, suitable for methylation, were not successful. The properties of the fully methylated and CHCl_{3} insoluble fractions have been investigated. The former iraction was subjected to methanolysis and the products separated and investigated; evidence for $2: 3: 4-t r i m e t h y l$ rhamose and no other simple end group, also evidence for partially methylated hexose, rhamiose, anhydro structures and an ester was obtained.

On autohydrolysis biuronic acid seems to be preferentially hydrolysed, leaving an unstable macromolecular residue.

From these results structural features of the polysaccharide are discussed (P.94), calculations based on SO_{4} content, Equ. wt., etc., are subject to some error, owing to the contaminating protein, part of which persists throughout the methylation of the polysaccharide.

It also seems probable that the polysaccharide used by I.D. Johnson and in much of the present work is somewhat different from that used by $D_{\text {.M }}$. Hardy and for
21.
the preparation of the second batch of glycosides, particularly with respect to pentose content. Ulva Pronds used in the earlier work were long and thin and had been collected from the South of England in early summer; the material used later consisted of broad fleshy fronds and was obtained from Millport, Scotland, in late summer. It is quite possible that the polysaccharide would vary slightly with the habitat and time of year, particularly if one were a haploid and the other a diploid form.

32.

Wiuch of the pigment was removed from the tronds by extraction with aqueous acetone; the acidic polysaccharide was then extracted as sodium salt by boiling the fronds with dilute sodium carbonate, purified by dialysing the extract in "Cellophane" ageinst dilute acetic acid and aistilled water, converted to sodium selt, concentrated and precipitated as a white fibrous product by pouring into alcohol.

Broperties are described on P. 48
The iree acid forin obtained at the end of dielysis was not completely iree of inorganie meterial (5 - 6\% ash, mainly CaSO_{3}), but rather than further prolong dialysis it was lound more effective to remove the last traces of metellic lons by an ion exchange reaction, using the resin "Zeocarb 215."
 the exchange of metal for hydrogen, is practically stoichiometric up to $0.05=0.10$ N. [4ty] 俭is was carried out by another experimenter [$[40]$ and after further dialysis a product of 0.8% ash, pure acid form, was obtained. Iractionation of the profuct was not attempted at this point since earlier attempts at fractionation [4] had not yielded proaucts which were significantly different in carbohydrate composition.

Nitric acid oxidation of the polysaccharide was carried out since polysaccharides containing galactose or galacturonic acid give mucic acid, and those containing glucose or glucuronic acid give the corresponding glucosaccharic acid which may be isolated as the potassium hydrogen salt.

Initial oxidation attempts gave only slight indication of the presence of mucic acid, owing to the presence of inorganic material, particularly calcium sulphate, which is of similar solubility. oxidation was repeated on well dialysea acid fom carbohydrate (ash $\sim 6 \%$) and a small quantity of mucic acid was obtained.

An organin acid potassium salt was also isolated and had similar properties to KHsaccharate.

MHRHXAACION HXPGR DMENRS

Acetylation of the polysacoharide.
It is generally found that when a polysaccharide can be first acetylated, methylation with simultaneous deacetylation can be effected smoothly and easily. In view of the aifficulty of methylating the polysaccharide airectiy the possibility of preliminary acetylation was investigated. The action of pyridiue and acetic anhydride in the cold had been attempted [4]; the main difficulty was that the carbohydrate formed a hard intractable solid in pyridine. However, the method of Carson and Waclay [42] (as used for the acetylation of pectin), was tried as it involved a different method for the preparation of the carbohydrate in pyridine,i,e. the water in a swollen aqueous gel was gradually replaced partly by acetone and then by pyridine; but the carbohydrate still lormed hard granules in the latter solvent which were not attacked by acetic anhydride, only yielding a product with less than one acetyl group per two anlyydro hexose units after repeated treatment. Much material was lost in aqueous washings, as the product was still water soluble, so that it ald not seen advantageons to pursue further the possibility of acetylation prior to methylation.
Baryta hydrolysis of the polysaccheride followed by (a) acetylation. (b) reethylationa

The product obtained from the polysaccharide after hydrolysis with baryta was submitted to acetylation and

$$
25 .
$$

methylation. Varying conditions of baryta treatment were investigated; material could be isolated in $25-30 \%$ yield containing $\sim 10 \%$ organically bound sulphate, and barium sulphate which could not be completely removed. When acetylated in the manner desrcibed earlier, a hard product of $\sim 12 \%$ OAc was obtained. Al though there was no marked development of reducing power on hydrolysis and the rotation of the product was still negative, it must have been seriously degraded, for after methylating once with NaOH and $\mathrm{Me}_{2} \mathrm{SO}_{4}$ there was much loss on dialysis, making it apparent that pretreatment with baryta did not yield material suitable for methylation.

Autohydrolysis (P.89) gave an unstable macromolecular residue, unsuitable for methylation.

Methylation of the polysaccharide.

Using methyl sulphate and alkali.
For the methylation experiments, crude sodium salt, precipitated in alcohol, centrifuged, but not dialysed, was used. Inorganic and other impurities of small molecular weight should ultimately be lost in the dialyses involved, any traces of protein not hydrolysed by the alkali would not be expected to become soluble in organic solvents by this treatment.

Initially, the addition of cold $30 \% \mathrm{NaOH}$ end $\mathrm{Me}_{2} \mathrm{SO}_{4}$ over ten hours, in an atmosphere of nitrogen, was tried; the quantities of reagents being comparable with those employed for the methylation of agar $[27]$. After seven treatments, when the product had not changed in appearance during three methylations, the product was worked up and it was possible to extract a small amount of chloroform soluble material (30% Me) from the solid product obtained, but it was obvious that there had been much loss of organic material.

Possible causes of loss were investigated and the methylation procedure varied in order to improve the yield of product. Hydrolysis of unused methyl sulphate at 100° was omitted, but the NaOH was only partially neutralized so that the mixture remained just alkaline to the end of dialysis; although $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was added with ice cooling it was found that the yield

27.

of product was improved if this stage wes omitted entirely.

The effect of warming the methylation mixture with raduction in the time of methylation, after the first treatment, was investigated, since aifter one treatment the polysaccharice should be somewhat more stable. In comparative experiments, at the higher temperature of $35-40^{\circ}$ slightly lower yleld of alcohol soluble material of 2% higher methoxyl content was obtained; thus warming speeded up the methylation procedure without significant aflect on the product.

The methoxyl iligure of alcohol soluble prodnet was not increaseâ after siz to seven treatments. The carbohydrate was generally given seven treatmenta, using the procedure describod in the experinental section. In this way a hard yollow whito solid product ves ob tained. Extraction with organic solvents.
 with 26 sione in 16% yield; this solvent, when acidipied. extracted further material and aciaified alcohol extractod a third amount, leaving a dull green swollen residue. This suggested that methylated acidic material was preseat, only becoming soluble when liberated from the salt form.

In order to obtain as moh material as possible for

Abstract

28. further treatment the orude methylated product was initially extracted with alcohol to which concentrated耳Cl was added matil a faint acid reaction on moist congo paper was obtained, later it was found more satisfactory to extract ondy the fraction soluble in acidililed CHCl ${ }_{3}$ for further treatment (see section on methylation with MeI, Agzo).

\section*{7ields.}

The quantity of glcohol soluble material varied as moisture was not rigidly excluded and its presence undoubtedly increased the yield of soluble material, with corresponding lowering of me thoxyl. figure and increase in inorganic contaminants.

The gield of chlozoform soluble product from large scale methylation was $15=20 \%$, OKe, $30-24 \%$.

The organic content of the insoluble fraction was assayed and indicated that the overall recovery of material was $\sim 85 \%$.

A11 these fractions were hygroscopic.

Further methylation, uging methyl iodide and silver oxide. After treatment of nethylated, alcohol soluble material with Hel and Ag20 it was possible to extract $\sim 45 \%$ of the product with CHCl_{3}, It was not possible to increase this yield significantly by the use of other solvents without heavy contamination by silver, possibly due to complex formation with fractions containing N or SO_{4}. By ushing methylatea chloroform soluble material for treatment with Furdie reagents satisfactory yields of product were obtained, the methoxyl ifgure was not ineressed beyond 31 during iive treatmonts. There was a relatively large increase after one treatment, suggesting esterification, whidh was conifmed by the production of Meof on baryte hyarolysis.

Eroperties of the methylated polyssccharide. Pale yellow powder. Ash 4% ($\mathrm{Ha}, \mathrm{Ca}, \mathrm{SO}_{4}$, trace of AgI). onte, 31\%; correctea for ash. C, $50.5 \% ; \mathrm{H}, 7.56 \% ; 4,2.40 \%$ corrected for ash
(Weiler and Strauss).
$[\alpha]_{0}^{16}=-34 \quad(C=0.4 \%$ in cHens)
Ionic sulphate 0.4%
Total sulphate 3.0%

$$
30
$$

HEMHAWOKTSIS

Wigorous treetment with hydrogen chloride in dry methyl alcohol was necessary to cause appreciable breakdown of the methylated polysaccharide to ether soluble material; treatrent with baryta enabled a barium salt to be separated from glycosides by virtue of ita insolubility in ary ether, and the salt was then converted to methyl ester: The separation was carried out according to the following scheme, average results are given.

Rotations could not be observed during methanolysis, but the change in rotation of -20 (starting material) to +20 (ether soluble product) indieated extensive breakdown. the giycosides aid not contain aitrogen and were fraetionated in vacuo.

She ester fraction was further puriried and investigated separately, it did not contain nitrogen.

The resldues were black and extremely viscous;

31.

Mitrogen and silver were present, much of the latter coula be precipitated from a solution of residues in MeOI by the action of H_{2} S.

$$
32 .
$$

Investigation of glycosides.

The glycosides were fractionally distilled in vacuo, and the specific rotation, refractive index and methoxyl content of each fraction were measured. Samples were hydrolysed with aqueous acid, losses were heavy where Schiff reactions indicated the presence of anhydro structures, and the detection of laevolic acid in one such instance agreed vi. th the destruction of anhydro compounds.

In order to identify the reducing methylated sugars, partition paper chromatography and the preparation of anilides was applied, a sample of a major fraction was also fully methylated and investigated. The results showed that all fractions were mixtures; I-rhamnose, isolated as 2:3:4-trimethyl-L-rhamnose anilide after solvent extraction, was the only simple end group present, although anhydro structures, produced by hydrolysis of sulphate, may also form end groups in a branched structure. Evidence for glucose rather than galactose was given by chromatography, but the anilides isolated indieated. galactose. Results from chromatography also showed some difference between the two batches of glycosides which were fractionated, the later material probably containing 2:3-dime thyl-xylose.

33.

Investigation of ester.
The isolation of ester material confirmed the indications of the presence of -COOH from methylation experiments and furfural estimations. The properties of this fraction suggested a methyl ester of a dimethyl-methyl-hexuronic acid, a crystalline product was obtained, but it was not identical with any established compound of this type; another possibility is that some anhydro hexonic ester is present. These results are discussed in the last section.

AUPORTYOROLYSTS.

Whan augars nad maxy related compounds are boiled uith hydrochzoric aoid, furfural ad derivatives may be obtadned. 1. Hezoses give very low yielas of w-hyäroxy-methylfurtural.

ω-hydroxy=me thyy furfural
2. Hexuronfe aeida jield carbon dioxide fron the earbacylic acta group with probable fornation of pentose iatermedinte which then decomposes to farfural.

Hexuroaic acid

 pentose
surfiural
3. Pentoses yield furfural (see z.)
4. Hethyl pentoses gield methyl furiuxal.

5. R-keto hexonie acida yield CO_{2} and furfural. the yiedd of corbou diozide in 2. is practiceliy
35.
quantitative and this reaction is used in methods for the estimation of uronic acids, (see P.86).

Determinations on the purified polysaccharide were carried out by D.M. Hardy [4I]. The carbon dioxide liberated from fully methylated material and from the methylation residues insoluble in CHCl_{3} was determined. Results indicated a loss of $\sim 50 \%$ of uronic acid in the former and only slight loss in the latter fraction as compared with the starting material.

Furfural and many of its derivatives give precipitates with solutions of certain reagents, e.g. phloroglucinol, thiobarbituric acid. The former was considered to be the most generally satisfactory by Norris et al. [44] and was used for the estimations on the Ulva polysaccharide.

However, the yields of furfural and related products are not quantitative, and the precipitates formed with phloroglucinol are of ill defined chemical composition; hence rigidly standardized conditions for carrying out the reactions have been recommended. Reliable empirical tables which give the equivalence between weight of phloroglucinol precipitate and sugar, under standard conditions, were first drawn up by Krober, Tollens et al., using single sugars (e.g. [45] for methyl pentoses). Later workers have attempted, by discovering the causes of the destruction of methyl furfural for

$$
36
$$

example, to improve procedure, so that results are less dependent on arbitrary conditions.

Kullgreen and Tyden [26] recommended the addition of salt to 13.15% HCl for the distillation, the salt stabilizing the acid concentrations at this level, for losses of methyl furfural are very dependent on acid concentration [47] which varied during the older procedure of distilling with 12% HCl. Losses due to oxidation can be avoided by working in nitrogen [47]. Quantitative yieldas of methyl furfural can be obtained by distilling it off in steam at 110° from $13.15 \% \mathrm{HCl}$ saturated wi th $\mathrm{NaCl}[48,49]$.

Norris et al. carried out estimations on various sugars and obtained expressions relating weight of sugar to weight of phloroglucinol precipitate, p.
e.g. For anhydro rhamnose, R.

$$
R=1.0433 P+0.0118 \pm 0.0003
$$

for 0.04 g . to $0,16 \mathrm{~g}$. Rhamnose.
But these investigators pointed out that the conversion factors are very dependent on conditions and stressed the necessity for investigators to determine the constants for their own conditions. They also investigated mixtures of two sugar types, nte:
e.g. methyl pentose and uronic acid, such as occur in natural polysaccharides. In general the course of the distillation of one component was affected by the presence of the other, so that expressions obtained for single sugars cannot be applied with accuracy. With uronic acia as one component, a satisfactory relation could be deduced if the uronic acid was independently estimated by CO_{2} evolution. Hezoses increased the weight of phloroglucinol precipitate owing to the production of small amounts of OII-methyl-furfural.

In the present work, the method of Norris was modified for use with smaller quantities of sugars, using rhamnose, arabinose and galacturonic acid. It was clear that the method of Van der Haar [50] for separating methyl furfural phloroglucide precipitate from furfural phloroglucide by virtue of the solubility of the former in 96% alcohol at 60° was unreliable (as stated by Norris) although it was used to give a comparative measure of rhamnose lost and retained in the macromolecule during autohydrolysis.

> The appearance and solubility of the phiorogiucide from the Ulva polysaccharide were very like those from arabinose and galacturonic acid, although the

38.

proportion of alcohol soluble material was much greater, confirming the presence of methyl pentose. In the earlier work [4] there was no indication of pentose in the methylated hydrolysis products, and the evidence for uronic acid was inconclusive, but this work suggested that uronic acid and/or pentose was present, and was supported by the present methylation and chromatography: studies $[40]$. Autohydrolysis and furfural estimations.

Since there was evidence that the proportion of methyl pentose in alcohol soluble hyarrolysis products was greater than that in the original [4] there was the possibility that it could be preferentially hydrolysed from the macromolecule. Autohydrolysis of the acid form of the Ulva polysaccharide was carried out and the product dialysed; the methyl pentose and pentose or uronic acid in dialysable and non dialysable fractions were approximately assayed.

The results indicated a preferential hydrolysis of uronic acid (or pentose), and that di- and possibly tri-saccharide fragments must have been liberated on autohydrolysis, the uronic acid may be liberated as aldobionic acid as is found after the hydrolysis of
various plant gums and mucilages e.g. gum arabic [51]. The non-dialysable portion contained sulphate ester.

EXPER TMBETYAL SSCTION

EXCRACFIOIF AND PURIEICATIOI OR THE POLYSACCHARIDS

TROI ULVA LACLUCA.

Ulva Lactuca was obtained from the Marine Biological Station, 基llport. Removal of pigments.

Pigments were extracted from the fronds by covering them with 85% acetone in shallow tanks and allowing them to stand exposed to sunlight for $3-\frac{1}{4}$ days, stirring occasionally. Three treatments jielded pale yellow coloured fronds which were dried in air. original extraction procedure.

Intitilly the procedure developed by E.D. Johnson
[4] was employed with slight moaltication.
1.e. 100 g . dry fronas were heated with \& 1. 0.5%
soaium carbonate solution, on a boliling water bath for 6 hours and the extract filtered off through calico. The fronds were further extracted by three treatments with 8 I $\quad 0.25 \%$ sodium carbonate, involving 30 hours more heating. The combined extracts were concentrated on a water bath to about 12 I , filtered through fine cloth to separate from a sluage, which was mainly inorganic, and further concentrated to a volume of approximately 600 ml . The polysaechariae was precipitated in a white fibrous form by pourlag the darik coloured, thick solution in a fine strean into

5 L , alcohol which was rapidly stirred; the final. alcohol concentration being $88-90 \%$.

The only alteration to this procedure was that conceatrated hydrochloric acid was adaed to the sodium carbonate solution during concentration, in order to reduce the alkalinity and hence minimise the hydrolysis of sulphate ester groups known to be present. The solution was kept alkaline to $1 . i$ mus, the total volume of concentrated HC1 used initially was $\sim 30 \mathrm{ml}$. equivalent to $\frac{3}{5}$ of the sodium carbonato used.

The product was kept under aleohol until required. It could be worked up to a fairly white solid by centrifuging off the alcohol, triturating twice with alcohol and then with ether.

This crude polysaccharide was found to have a very high siorganic content, ash $40-50 \%$ of dry weight. A large part of this inorganic matorial consisted of sodium chloride and sodive carbonate, which have only slight solubility in aloohol $\left(0.3 \mathrm{gI}^{-1} \mathrm{HaCl}, 0.2 \mathrm{gI}^{-1}\right.$ Ha2C03 in 90% alcohol) but which should be removed by dialysis against water; $\mathrm{Ca}^{\prime \prime}$ and so4" wore also known to be present.

Dielysis experiments for the purification of the polysaccharide.
"Cellophane" casings were used for dialysis. When dry they are easily damaged by contact with brown paper etc., and so were stored in a danp atmosphere (over 1%

42.

formalin solution) when not in use.
The performance of the casings was first investigated by dialysing a solution containing known amounts of sodium chloride, calcium sulphate, glucose and starch against distilled water. The solution inside the casing and the dialysates were tested for the substances used.

Glucose was estimated by hypoiodite titration, the loss involved on concentrating was corrected for by carrying out a comparable concentration of a standard solution; ions were assayed by suitably concentrating and diluting until the limits of sensitivity of the following tests were reached, and by comparing with standard solutions.
Cl^{\prime}. 0.8 ml . (2 drops) $3 \% \mathrm{AgNO}_{3}$ solution added to $1 \mathrm{ml} . \mathrm{Cl}^{\prime}$ solution, cloud detectable at $1 \times 10^{-3} \mathrm{~g} . \mathrm{Cl}^{\prime} \mathrm{L}^{-1}$.
$\mathrm{SO}_{4}^{\prime \prime} 0.8 \mathrm{ml} .\left(2\right.$ drops) $12 \% \mathrm{BaCl}_{2}$ solution added to $1 \mathrm{ml} . \mathrm{SO}_{4}$ " solution, cloud detectable at $7 \times 10^{-3} \mathrm{~g} . \mathrm{SO}_{4}{ }^{\prime \prime} \mathrm{I}^{-1}$.

Ca" 2 drops saturated $\left(\mathrm{NH}_{4}\right)_{4} \cdot \mathrm{Fe}(\mathrm{CN})_{6}$ solution + 1 drop alcohol added to 1 drop Ca . solution, cloud detectable after $\frac{3}{4} \mathrm{~min}$. at $5 \times 10^{-5} \mathrm{~g}$. $\mathrm{Ca}^{-1} \mathrm{I}^{-1}$.
43.

Results showed that the inorganic ions，glucose and a small proportion of the starch（giving a red colour with I_{2} ）dialysed readily and that the remainder of the starch（ I_{2} colour，blue）was retained through prolonged dialysis．

A solution of the crude polysaccharide， 8 g ．organic material，was dialysed against distilled water，and then against dilute HCl of pH 3 （bromphenyl blue），the pH of the acid form of the polysaccharide［4］．The loss of inorganic ions was estimated approximately using the nephelonetric tests，P．42．

	Af ter 2 days	2 days	6 days	3 treatments α HCl（pH 3）
Cl	0.4 g 。	0.015 g 。	0．02 g．	
SO_{4}	0.69 g 。	0.01 g ．	0.02 g ．	$0.016 \mathrm{~g} \cdot 0.016 \mathrm{~g} \cdot 0.016 \mathrm{~g}$ ．
Ca	0.03 g ．	0.001 g ．	0.001 g ．	0.01 g .0 .004 g 。

Final jield 6 g ．organic material i．e．$\sim 75 \%$ ．
The loss of 25% organic material on dialysis is not mainly carbohydrate in nature as Molisch tests on dialysates were only slightly positive．The steady loss of sulphate is probably due to the fact that solid CaSO_{4} is present and is only removed slowly because of its low
44.
solubility (0.2 at 18°). Dialysis against dilute HCl removed calcirm more rapidiy but prolonged exposure to mineral acid was not considered safe for the polysaccharide, particularly if it contained uronic acid.

A product worked up as sodium salt gave 22\% ash on ignition. A product worked up as ncid, by precipitating of sodium solt
a solution at pil 3 , in alcohol, gave 11% ash on ignition, but this was probably partly sodium salt, and would contain sodium chloride as this was not removed by dielysis; Ca and Fe.. were also present.

Samples of sodium salt purified in this way, ($23 /$ ash) were ignited and the sulphate estimated gravimetrically as BaSO_{4}.

On ignition without sodium carbonate, $9 \% \mathrm{SO}_{4}$
" n with n " $\quad 13 / \mathrm{SQ}_{4}$
The ash from sodium selt wich had only been dialysed for a short period ageinst distilled water was found to contain 22\% phosphate (by "nolybdenum blue" test, estimated colorimetrically). In view of the presence of calcium and phosphate it was obviously necessary to dialyse against a solution sufficiently acid to dissolve calcium phosphate. Dialysis against acetic acia was therefore tried as this would not affect the carbohydrate.

The concentrated sodium carbonate oxtracts were not procipitatod into alcohol, but the solution was neutralized and dialysed:-
(1) Ageinst rapidly Llowing tap water for 24 hours; this renoved mach of the NaCl and providea that the flow was fast, CaSO4 did not precipitate in the "cellophane".
(2) Against plowing dilute acetic acid.
(3) Against flowing distilled water.

Samples of the acid form polysaceharide solution were witharawn at this point and could be concentrated at 80° without charring. on ashing the ary solid, the for ash of the acid conld be obtained. Ideally this product shovid not leave any residue on ignition. The \& ash was used as a criterion of improvement in purification as (2) and (3) were varied. In (2) 11/100, $\mathrm{N} / 50$ and $1 / 25$ Acoif were tried and it was found that three days dialysis against N/50 AcCar vas necessary for the complete removel of phosphate. In (5) the time of dialysis against distilled water was varied from three to six days, ash ilgures showed only slight inprovement aiter four days. (see overleaf).
z. . Assistance from Mss $\mathrm{D}_{\mathrm{H}} \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\text {. Saunders in }}$ in the experimental woric involved in extracting the polysaccharide, etc.. is grateruily acknowiedged.

e.g.			46.	
Batch	HAc dielysis	Distilled water dialysis	Ash from acid form	Ash from sodium salt.
62	1V/100 3 days	s 3 days	$\begin{gathered} 5.9 \% \\ \left(30 / \mathrm{Ca} 33 \% \mathrm{SO}_{4}\right. \\ \left.1.5 \% / \mathrm{PO}_{4}\right) \end{gathered}$	26\% pptd pH 9
63			$\begin{aligned} & 5.5 \%\left(\mathrm{PO}_{4}=1 \% \text { of } \mathrm{ash}\right) \\ & 5.5 \% \end{aligned}$	21.1\% " " 11
69	17/503	$\begin{array}{ll} 5 & \prime \prime \\ 6 & \prime \prime \end{array}$	$\begin{aligned} & 5.4 \%\left(\mathrm{PO}_{4}=\frac{1}{2} \%\right. \text { of ash) } \\ & 5.4 \% \end{aligned}$	

Later batches were dialysed against $1 / 25$ HAC for 1 day, 1T/50 HAc for two days and distilled water for 4 days and gave figures generally varying between 5.5 and 6.0% ash in acid form. Inis ash consisted mainly of $\mathrm{CaSO}_{4} ; \mathrm{Ca}$ was removed by the ion exchange resin "Zeocarb"215 in its acid form and the SO_{4} by dialysis (D.M. Hardy [40) . For precipitation the solution was made alkaline with 2 N . NaOH ; it was necessary to bring the pH up to 9.5 (Thymol violet) to obtain a precipitate which settled well in alcohol. This required $\sim 35 \mathrm{ml} .2 \mathrm{NNaOH}$. on the basis of a maximum yield of 21 g . NaSalt corrected for CaSO_{4} present) and known equivalent weight determinations, 380 g . acid form requiring 23 g . Na for neutralization (40), this is $\sim 5 \mathrm{ml}$. in excess of the theoretical amount required for neutralization. The carbohydrate separated easily as a white solid when the final alcohol concentration, after precipitation, was $90,-94 \%$. The supernatent alcohol
was much less coloured than that obtained with eruce material. although it was eloudy; however only a small anount of badly coloured carbohydrate material coula be obtained on concentrating the alcohol from three batches; this was not retalned.

pianl procedure.

100 g . dry pigment extracted sronds were treated with solium earbonate as hitherto. Each extraet was allowed to stand before concentration and addition of HCL, when it could be decanted from a precipitate which was mainly sald soluble CaCOg. When the volume of the combined extracts was about 12 L. it was again decanted fron a rosidue which contained less than 30% organie material. During the concentration 12 L . to 600 ml , mueh more HCL was added so that the total volume ($\sim 190 \mathrm{ml}$.) was equivalent to ell the liagcos used. the resultant solution, which was still alkaline, was made neutral to 11 tmins and dialysed against rapialy ilowing tap water for 24 hr . against slowing $15 / 25$ Hhe for $24 \mathrm{hr} . \mathrm{H}^{1 / 50}$ Hhe for 48 hr . and distilled water for four days.

The solution was neutralized and concentrated to $\sim 400 \mathrm{mI}$. the pH adjusted to 9.5 and the solution ponred into ~ 4 I.aleohol so that the final alcohol concentration was not less than 90%. The white fibrous product could be converted to a white powder by trituration with aleohol and ether.

Tield 20 g . sodium salt from 100 g . fronds (corrected for CaSO Ash 22.7%
SO_{4} 14.2\% of soaium selt
$[\alpha]_{0}^{21}=-47 \quad\left(c=0.35 /\right.$ in $\left.H_{2} \mathrm{O}\right)$
(ifigures varied slightly for different batches).
With iodine solution, the acid form of the carbohyarate gives an intense blue-violetcolour, simitar to that given by starch, which persists on dilution. The selt form gives only a slight colouration. HETRIC ACID OXIDAPION.

oxidation of hydrolysis products.

Hydrolysis of the sodum salt form of the polysaecharide was carried out by boiling with 2 云 $\mathrm{H}_{\mathrm{L}} \mathrm{SO}_{\mathrm{A}}$ for 30 hr . (reducing
 baryta and the filtrate concentrated.
0.7 g . product was oxidised by 15 ml . $25 / \mathrm{FH} \mathrm{HH}_{3}(\mathrm{D}=2.5)$ at 70°, conditions which are used for the oxidation of lectose, but only inorganie erystalline iractions were obtalned on concontrating. The hyarolysis product was extracted with 95% alcohol in order to reduce the amount. of inorganic material and the extracted sugars were oxidised with Hilo3 at 65°. After slow evaporation two orops of inorganic material were removed, and on steading at room temperature another crystalline fraction which contained organic material was obtained, this daricened at 160° and showed some softoning at 190°, but contained inorgenic
material as it left an appreciable ash on ignition. Direct nitric aeld hyarolysis and oxidation of the polysacoharide. Dialysed acidu-fomm polysaccharide (ash 6\%) was usea for subsequent oxidations as the separation of mocie acid, witich seemed to be indicated above, shoula be easier with less inorganio material present. the procedure was besed on that of Dozés [50] for the isolation of mueic acid from polysaccharide containing only small amounts of galactose.
2.5 g . acid form carbohydrato was refluxed with 15 ml . 3\% Hinoz for 2 hours. The solution was soparated from unattacked material and concentrated in vacuo at $40^{\circ} \mathrm{wI}$ th a vigorous air streave, to remove oxides of aitrogen, When the volume was $\sim 8 \mathrm{ill}$. and $\sim 4 \mathrm{ml}$. erystelline fhorgaic material was filtered off. The viscous solution was then heated with 10 ml . 25% Hillz at 55° in an evaporating dish. When the rolume was $\sim 5 \mathrm{ml}$. it was allowed to stand at room temperature. The first product to orystallise was mainly inorganic, that which came down slowly coatained organic meterial, (K) More of this solid material was prepared on sinilar liaes and extraction with a swell anownt of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution folliowed by acidification with mios jielded erystallize macic acid mep. 217°, mixed m.p. with an authentic semple 216°. The Jield was very small. The colution from (X) was tosted for the presence of saccharic acid by adding saturated potassium acetate solution unt11 there was no more precipitation of solld

Abstract

50. material, the solution smelled or acetic acia. The solid was filtered off, washed with a little water and recrystellised from hot water. The crystels were very small but some did show trapezoidal facets.on examination under the mioroscope, and appeared similar to ea authentic sample of iAl sacoharate, propared from glucose. Whe silver selt wes prepared by aissolving 0.12 g . of the salt in the mianmum volume of water and pouring this solution into a cold solution containing 0.16 g . AgNios. The precipitate was allowed to stend in the dark for 2 hours when dariconing occurred, it wes Iiltered, washed with a little cold water and dried in the darle over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Finere was obvious ©ecomposition during the elrying. On ignition in a platioum crucible the Ag selt was found to contain $58.0 \% \mathrm{Ag}$ (Fheoretical $50.91 \% \mathrm{Ag}$), higher figures were also obtained, the Ag did not contain AgCl as there was no loss in weight on extraction with ammonia solution. Decongosition would account for the discrepancy, as also would the presence of some Ag oxalate (71.0\% Ag). Genvine ag saceharate was prepared and analysed under the same conditions, again there was some decomposition, but it was not so markea. Pound $51.08 \% \mathrm{Ag}$. Silver textrate was aiso less easily decomposed. oxelic acid hydrate mep. 100° was obtained on further concentration of the solution at (X) to $2 / 3$ volume or less. The residue which was not at tacked in the preliminary HNO_{3} hydrolysis ($\sim 15 \%$ of starting material) was heated

51.

with $30 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ on a water bath at 80° for 30 titins, no appreciable charring took place. Sufficient concentrated Hivos was adted to make $\approx 15 \%$ \#Hing concentration and the solution was heated for a furthar hour. After standing and deeating Irom nnattacized solid the solntion mas made alkaline with liacif and ilitered. It was oasier to filtar from ilocculont material whon alkaline, and macie acid would not be lost; addition of alcohol also aided filtration* The filitrate was acidilied with aitric acid, when a small quants ty of organic acid material felocoulent, polysaceharide like), was precipitated, the solution was allowed to eveporate at room terperature for two days. Sueileient water was eded to dissolve the large crystals of Nairoz leaving two products, (a) white cryatalline materisal whieh Was partly inorganic, and (b) pale yellow meteriel which adhered to the sides of the dish and eizter stick. This hardened on colleoting together and mashing with a small amont of cold water. \#1.p. after recrystellizing from hot weter 212°.

ACHMXIASION OP GHS POLYBACCHABIDS.

Sodium salt matorial, corresponaing to 6 gm . dry organic matter, which had been triturated with alcohol, was made into a anooth gel with 38 ml . water, eilute \#Cl was added watil the mixture gave a strong acid reaction to congo ada 67 ml . acetone were added. The aold form of the
carbohydrate, as a fine flocculent preetpitate, was centrifuged off and 60 ml . pyriakne added, the mixture was attrred for 5 minutes and allowed to atand for 3 hours, pyridine was centrifuged off and replaced by 60 ml . Presh, this was repeeted three times. the solid. was then stirred vigorously with 40 gm . pyridine and 6 gm . Preshly distilled acetic anhydride on a water bath at 45°. After an hour, 8 gm . Acgo were added and stirring continued for a further two houre. After standing overnight the supernatent Liquid was decanted in to 150 ml . 3/6. HCl and the reaidue, R, was retained. A small amount of ilocculent preeipitate formed in the HCl, wich after standing for 18 hours was centrifuged, washed vell with 3/ HCL and water and then with alcohol and ether. 0.3 gm . of material with 7\% acetyl content was obtained, some product had been lost in the equeous washings. The residue B , after washing with pyriaine and centripuging was allowed to stand with 10 ml . water, it swelled to a soft gel, smelling strongly of pyridine; on adaltion of 50 ml . pyridine with stirring a more flocculent precipitate was obtained. The pyriaine was removed by centrifuging and three further pyridine treatments applied, each with 24 hours steading; the rather hara product was acetylated in the save woy es before, it did not go into solution. After standing at room temperature for 48 hours the whole wes powred into

55.

150 ml . $3 / \mathrm{HCl}$ and worked up as before.
Acetyl content 13 多 ($\sim \frac{1}{\varepsilon^{2}}$ gP per anhydrohexose unit). Overall yiela 45-50\%.
\$stimation of acetyl content was carried out by stirxing a inown weight of material with 0.5 : alcoholic NaOH for $2 \frac{1}{2}$ hours at 55° in a stream of nitrogen, titrating excess JaOH with 0.5 if HCL using phenol phthalein indicator and cormpariag with blank experiment.
 with 20 ml . 0.5 IV alcoholie NaOH .

$\therefore 1 \mathrm{gn}$. carbohyarate contains $\frac{1.056 \times 0.453 \times 0.8094 \times 59}{2.4400 \times 0.1034 \times 1.000}$ $=0.13 \mathrm{gm}$. OAC.

BARY会 HYDROLYSIS.

A 5% solution of earbohydrate 1 n 5% baryta was heated at 70° in an atmosphere of nistrogen. Barium salt was precipitated and at no point did all the oxgenie matter go iato solution.

Heating time Reducing power as ml^{N}. $/ 20 \mathrm{I}_{2 \mathrm{gm}} \mathrm{m}^{-2}$

2 $\frac{1}{2}$ hours
5 hourg
Baryta concentration increased to 10%

$$
22 \text { hours } \quad 2 \mathrm{ml}
$$

2.3 ma.
2.5 mI .

On aciaicteation with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (to congo) the precipitate could be eentrifuged off, leaving a dark puagent mmelling

54.

saludicur. Yield, aifter comeentratiag and prseipitation with alcohol, 30, (ineluaing ash).

A similar hydrolyais at 88° showed a reducing eigure $3.5 \mathrm{~m} .{ }^{2} / 10 \mathrm{I} / 2$ after six hours which fell to near zero overnight. fehlings and sellvanoff tests negative. The solution was retreated with baryta at 80° and worised uy as before.

25\% recovery of organic material (with 32才 ash).
$[\alpha]_{\text {s>90 }}^{20}=-39(1 \%$ aqueous solution, cloudy).
Baryta hydrolgsis at 200° yielaed a very viscous degraded product.

Acetylation of baryta treated materiel, acoording to procedure given, Jielded a small quantity of hard materisi $O A C=12 \%$

5 gn. was methylated onee with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ and HaOH at room temperature, very little solid separated out on dialysis.

MEHHYLANLON OI FHE ROLYSACCHARIDE.

Hethylation of the polysaccharide using methyl suiphate and blkeli.

Erelininary experiments.
Crude sodium selt form carbohydrate, procipitated into alcohol and centrifuged, was used without further treatment. -. . . arying.

Material corresponaing to 6.2 gme dry dialysed orgenic

DIAGRAM 1.
meterial was swollen to a gel with water and methylatec at room temperature with $390 \mathrm{ml} .30 \% \mathrm{NeOH}$ and 140 ml . Mea SO_{4}, using the apparatus showa in Aiagram 1. the reagents were added slowly, through the two tap famels, in tenth portions at hourly intervals; a steady stream of nitrogen was passed into the Ilask through the sube, A, and the mixture was atirred rigorousiy. At the ond of ten hours, any methyl sulphate remaining was hydrolysed by heating on a boiling water bath for 45 minutes, with slov stirring. The carbohydrate darkened on treatment with alkali, more so on heating. After neutralizing with $\mathrm{H}_{2} \mathrm{SO}_{4}$ the product was dialysed agaiast distilled water for ~ 5 days. The dialysed solution was concentrated at 45° and then remethylated several times, using gradually reduced quantities of reagents with adaltion of acotone.

Second methylation, as first.
Third to Pifth methylations, 240 ml . 30 p NaOH, 100 ml . $\mathrm{Me}_{2} \mathrm{SO}_{4}, 80 \mathrm{ml}$, acetone.

Sixth and seventh methylations, 220 ml . $30 \% \mathrm{NaOH}$, 90 ml . $\mathrm{He}_{2} \mathrm{SO}_{4}, 120 \mathrm{ml}$. acetone.

The appearance of the product and its insolubility in water aid not appreciably alter after 4-5 treatments. The ifnal dialysis was allowed to run for 17 days and on concentrating to dryness 1.7 g. of a light jellow
powder was obtained, which was extracted three times with boiling chloroforn.

$$
\text { Yield, } 0.27 \text { gm. ; CBe, } 30 \% \text {. }
$$

Mothoxyl figures were estimated by the semi-micro zeisel method. Factors causing loss of material.
liaterial must have been lost during the dialyses, concentration of dialysates from two methylations showed that there was a steady small loss of organic material, and that most of the sodium sulphate was dialysed after 36 hours with distilled water, changed every eight hours. Hence, except for purification in the last stages, much shortex dialysis tines were employed (see account of final method employed.)

The action of cold and hot $30 /$ HaOH was investigated. A 2% solution of the carbohydrate in 30% NaOF was stirred vigorously, in an atmosphere of nitrogen, at room temperature, for 10 hours, followed by 1 hour on a boiling water bath. At the times indicated aliquot portions were wi thaxama and neutralized, and the reducing power determined by the Wi.12stätter hypoiodite method as modified by Baker and Hulton [43]. Mis is not as accurate as later modifications using carefully buffered slightly alkaline conditions e.g. [55] akd was further complicated by the fact that iodoform could be detected after titration, however changes in iodine uptake give an indication of the liberation of
reducing groups.

Hours at 20° in H_{2}	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	$3 \frac{1}{2}$	$4 \frac{1}{2}$	51	67	$7 \frac{1}{2}$	$8 \frac{1}{2}$
$\mathrm{min}^{1 / 1 / 10} \mathrm{I}_{2} \mathrm{gm}^{-1} \mid 0.1$	0.9	4.0	4.4	4.4	4.7	4.6	4.4	3.0	1.9	1.4
Hours at $100^{\circ} \mathrm{in} \mathrm{itg}^{\text {che }}$		$\frac{1}{4}$	12 hr . at				80° in ais.			
m1. ${ }^{1 / 10} 10 \mathrm{I}_{2} \mathrm{gn}^{-1}$		2.4	8.0		14.8					

Methylation was repeated, onitting the hydrolyeis of $\mathrm{Meg}_{2} \mathrm{SO}_{4}$, only about 25% of the $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ required for corplete neutralization was added before dialysis fexcept for seventh methylation) aad losses were visibly much less. The dry product was extracted with CHCl3: $\mathrm{FHOH}_{2}: 10: 1$. Yield, $16 \mu ;$ OKIG, 26%.
The residual material was treatea with the same solvent mixture to which concentrated HCl was aded until, after shaking and standing, a faint acid reaction with noist congo red paper was obtained.

Yield, 16%.
Alcohol extracted a further 16%, and the residue had become swollen and green coloured. on standiag, the dry material very rapidly absorbed moistare and the methylated carbohydrate was dump at this third extraction stage.

The residue was dried; yield, 52\%; ale, 12%.
overall yiela, 70\%.
Acidified Etoll was then used for extraction of material suitable for further treatment.

Gefect of warming amring methylation.
A trial experiment in which the material was warmed to 40° in the later stages of methylation, (6 treatments), geve a good yield of material of Onte, 24\%. Nvo methylations were carried out simultaneously with identical conditions, except that one was given six 10 hour treatments at room tomperature, and the other six, 7 hour treatments, (except the first), at temperatures increasing from 30° (second treatment) to 40° (firth treatment).

10 hour methylations 49% yiela sk\% oke
7 " \quad " 45% " 24%
There was no significant difference in the colour, ete., of matorisl during the two procedures, the slight difference in yield and \% OMe is possibly due to alcohol extracting more material of lower $\$$ Ote, oving to the presence of moisture, in the first case.
Vaxiation in the number of treatments.
After four methylations, product of ofe, $19 \%_{1}^{w o b}$ tained.
After six methylations, typical methoxyl figures for
alcohol soluble material were:-

Betch	IV	V	$V I$	$V I I$	VIII
\$ Oile	24	25	23	20	20
$\$$ Yield			47	35	

After seven methylations products with 25.3% and 22.6% Ole were obtained, a sample of the latter, after woricing up, was given two more treatments, the product had 22.8%

OHP with 25% Loss. In general meterial was given seven treatments, particularly as the larger seale procedure, used after methylation VII, did not seem to give as good yields of soluble material.

$$
\begin{aligned}
\text { Rotation } \quad[\alpha]_{5750}^{15}=-10 \quad[\alpha]_{5441}^{18}=-23\left(c=2 \% \text { in } \mathrm{H}_{2} \mathrm{O},\right. \\
\text { elondy solution) }
\end{aligned}
$$

At this point, chloroform extraction of material, for methylation by Purdie reagents, was used, and the methylation procedure was only modified in ninor ways, Cescribed in the next section. ginal methylation procedure.

Crude sodium salt, precipitated into alcohol, was centrifuged and the moisture and ash content estimated; It was ground up to a smooth gel with water, using about 1.5 ml . water for $1 \mathrm{gm} . \mathrm{dry}$ weight of organic material. For 15 gm . material 670 ml . $30 \% \mathrm{NaOH}$ and 250 ml . He2S04 were run in slowly in tenth portions at hourly intervals, the mixture was well stirred and aitrogen passed into the flask. The product was dialysed in "Cellophane" tubes or bags, to remove sodivm sulphate; it was necessary to rock the bags mechanically for efficient dialysis. Distilled water, renewed twice, alter 2 and then 3 hours, was first used, this renoved much of the iree alkali, it was then possible to dialyse against last running tap water overnight without serious precipitation of calciua carbonate or sulphate on the meribrane, and finelly the solution

DIAGRAM 2.

Was dialysed against distilled water for three hours. In Later treatments the reaction mixture was heated; for the fifth to seventh methylations, flowing distilled water was used throughout dialysis to avoid contamination with inorganic material from tap water.

The resulting solution was neutralized, if necessary, and concentrated in vacuo at 45°. Much frothing occurred when squeous solutions of polysaccharide were concentrated; the apparatus shown in diag. 2. was found suitable for removing water from large volumes of such solutions. The feraperature of the heating bath. B, was brought to $40-45^{\circ}$ and the bolthead Plasksevacuated before solution was rua in to the flask, D, through the tube, $A_{;}$the rate of entry of liquid was adjusted by the screw clip, c, so that it was approximately equal to the rate of distillation and inquid did not acommata in D. The recoiver was cooled by a fast spray of water.

Wuck of the organic materiel settiod out as a gel from the solution to be concentrated and was centrifuged off in order to svoid heating it, it was adaded to the concentrate for further methylation, sufficient 60\% MaOf solution beling used in methylating to compensato for the water present. After four treatments, much of the organic material separated ont very completely and by adjusting the height of the siphoaing tube A, could be leit in the vessel of solution to be concentrated and was not separated by centrifuging. The product was

61.

rome thylated, seven times in all; graêually increasing amounts of acetone were used, the quartities of nethylating reagents were reduced and when the reaction mixture was warmed on a water bath, additions were made at 45^{\prime} instead of 60^{\prime} intervals. Quantities of reagents used for the repeated methylation of 14 gm material are shown in the following table.

m2 30\% NaOH	$\mathrm{nII} \mathrm{He}_{2} \mathrm{SO}_{4}$	mil Acetone	Temperature	Duration
600	250	-	Room	20 hr .
530	225	50	30	$10^{\text {i }}$
530	225	200	40	$7{ }^{\prime \prime}$
360	150	100	40	$7{ }^{\prime \prime}$
360	150	150	40	7 "
275	112	200	40	7 *
275	112	800	40	7 "

- After the last methylation the solution was dielysed against flowing distilled water until it gave a negative reaction for sulphate (this took about eight days), and was concentrated to dryness at $40-45^{\circ}$, benzene being added to remove the last traces of water. The solid was extracted four times by boiling with chCl3 under reflux, using 300 ml , aeutral, 300 ml , $+200 \mathrm{ml}+200 \mathrm{ml}$, acidilied solvent, (concentrated HC1 sdded until. faint positive reaction to moist congo-red paper after standing). $\mathrm{CHCl}_{\mathrm{g}}$ was removed in vacuo with good aeration so that any free HCl was driven ofl.

The product was a light brown glass, difficult to remove from the ilask. By precipitating the product fron concentrated CHCl_{3} solvtion and triturating with petroleum ether a white powder was obtained more easily. The organic content of the residues was also assayed in some cases. The yields given below show variation, there is a tendency for higher yields to correspond with lower methoxyl 1Igures, as would be expected, the yields have been corrected for known losses, e.g. due to cellophane leaking in dialysis.

	\% are	\% Yield	\% overall 7ield.
XIII	29.9	19	-
XVI	27.8	10	50
XVII	29.7	15	85
XVIII	24	30	100
XIX	32.5	12	85
XX	23.4	20	90
XXI	35.1	12	50
XXII	24.7	(separate batches)	
	29.6		

Properties of methylated material, soluble in aciaified chloroforta.

(Yellow white powder)

$$
[\alpha]_{D}^{20}=-27 \quad\left(\mathrm{C}=0.63 \text {, in } \mathrm{cacl}_{3}\right) ; \text { ash, } 4 \% ; \text { slight }
$$ positive reaction for nitrogen by sodium fusion. Methylated material insolubla in acidilied chloroform. Theso residues had a Migh ash content of 22%.

20 gm were dialysed against $/ 50$ HAC for 7 备 days and distilled water for 8 days; on neutralizing with liaOH and working up 14 g product with 21.4% ash was obtained. Further dialysis yielded material with 10.5% ash; $\mathrm{Ca}_{2}, 22 \% ; \mathrm{SO}_{4}{ }^{\prime \prime}, 10.6 \% ; \mathrm{CO}_{3}{ }^{\prime \prime}$ positive.
the material was a green-brown colour and contained nitrogen. NMe 2.8%.

OMe, 17.2% orgenic sulphate 13%.
Uronic acid estimation (see R. 86) indicated one - COOH group present in 2010 g .

It was not possible to prepare a solution suitable for measuroment of rotation as the material did not form a horiogeneous solution except at very low concentrations. Purther methylation of residues.

Material which was insoluble in 1 tof was nhethylated twice with $\mathrm{Me}_{2} \mathrm{SO}_{4}$, 50% NaOH and acetone, at 40°. Extraction with acidified ytor gielded naterial of 19% one. Thus fuxther treatment ylelds ia little more soluble product but there is no appreciable increase in ofle contont.

Material which was soluble in itfor was extracted with CHCl_{3} (for methylation uith MeI, Ag2 0); the residue (soluble in RtOH, insoluble in CHCl $3 ; \quad[\alpha]_{D}^{20}=-8, C=0.63$ In istoin) was submitted to further methylation with $\mathrm{Me}_{2} \mathrm{SO}_{4}$, Na. M ; but this was not satisfactory. There was much darkening during methylation, there was loss on dialysis for removing NagSOA, and material could not be

$$
64 .
$$

extracted fron $\mathrm{lia}_{2} \mathrm{SO}_{4}$ in good giela by the use of organie solvents. The second extraction thod yielded a product of 22.3\% Olle.

Further methylation, using vethyl iodide and ailvar oxide.
Alcohol soluble material, $A, 22 \%$ owe, was used, it was not appreciably soluble in methyl iodide and so 2 g was relluxed with 4 ml Heom, 4 ml . HeI and 3 gm AgqO , the condenser being closed by a mercury trap. The methyl alcohol was dried by the magnesium methylate method, methyl Lodide was ireshly distilled from CaCl_{2}, and silver oxide was freshly prepared and dried in vacuo at 45°. Pour quantities of I gra. Aggo were added at two hourly intervals and then 8 ml Mel were stirred in, for the mixture was almost solia. After refluxing for a further three hours the mixture was extracted with dry chcle $_{3}$ and the extract dried with MgSO_{4}.

Yiela, $45 \% ;$ Otie, 25%
Further extraction with Meoll ylelded daris material containing Ag.

A was extracted with ohloroform, Jield, 60% olle, 23.5%, and methylated as before; yield, 72\%; 0Me, 29.0\%, readily obtained on CHCl_{3} extraction. In this case the fraction insoluble in CHCl_{3} is also preserved. the products from both experiments were combined and treated twice more in the same way giving a product with onf, 29\%; yield 82%.

Beryta hydrolysis of product.
The relatively large increase in methoxyl. ifgure on one treatment with $\mathbb{N e I}, \mathrm{Ag}_{2}$ o suggested the formation of methyl ester. 0.73 g . was reflaxed with 20 ml . 5, baryta at $50-55^{\circ}$ for 3 hours and the produet distilled careruliy. The first ill of distillate contained Meor (smel2) and gave a strong positive test for MeOH by oxidation to HCHO followed by resorcinol. colour test for HCHO.

Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to the residual mixtare until it was neutral to comgo red. 站traction with CrCl_{3} gave 0.67 g . (92\%) material 25.4% ofic, containing a very little BaSO_{4}.

The methoxyl ilgure of this product, by comparison with that of the starting matorial (23.5%) indicated that there was some methylation other than esterilication.

Two 9 gm. quantities of CHCl_{3} soluble material fash 4%) were each boiled with 30 ml . lieI, +4 g . Ag20 for 2 hours, + 4g. Ag2O Ior 2 hours, + 4 g . Aggo Ror 2 hours, +10 ml . Mel and 4 g . Ag20 for 2 hours, +4 g . Aga 0 for 2 hours. Fotal heating time ten hours.

The products wore extracted with CHCl_{3} etc. In the usual way, and retreated with the sane quantities of reagents.

Third treatment; Xield, 14.38 gej OMe, 29.7%
Fipth treatment; Yiele, $13.2 \mathrm{~g} .79 \% ;$ ome, 29.3% ash 4.3%
1.e. Olle, 51\%. correcting for ash.

Thus the methoxyl ifigure ald not seem to be significently increased aftor three or four methylations with qurale reageats.

Properties of fully methylated cricly soluble polysacoharide.
 trace of agI)

Areiysis 0, 50.5/; \#, 7. 56%; ${ }^{2} 2.40 \%$; corrected Lor ash (wienier and Strauss)
$[\alpha]_{D}^{20}=-34\left(C=0.4 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
Ionica sulphate 0.4% Uronic acia, 1 g, e cooH Flotal sulphate 3.0% in 2250 g .

Although it seened wilizely that protein woula persist through the methylation procodure, which involvea prolonged alkeli treatment and dialyses, no positive evidence for the presence of amino sugar in the polysaccharide and afficulty in removing thelast traces of protein have been found by another investigator [40]. Aecordingly testa for proteln were carried out on the methylation product.

Binret teat, negative. ARter hydrolysis with 20\% HCl on a boiling water bath for 6 hours the resultant solution was boilea with charcoal, filtored and neutrallsed; ainhydrin test, negative. After hydrolysis with 35\% NaOH on a boiliag vater bath for 12 hours the solution was charcoaled, filtared and neutralized; a slight positive ninhydrin test was obtained.

METHANOLYSIS OF METHYLARED POLYSACCHARIDE.

Dry MeOH containing dry HCl gas was used for methanolysis, the methylated polysaccharide readily formed a (cloudy) solution in this solvent. In all experiments exits were closed with F fraps.

The solution was boiled for the times specilied, and aiter cooling any remaining FCl was neutralized with dry, freshly propared $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The salution was filtered off through a No, 44 Iilter paper, which retained meh of the semi-colloidel silver, and the residues vere further extracted with lieoH. After drying with Hgsous, the solvent was evaporated and the product extracted with ether.

11 hours heating in Me OH, HCL (2.5%) gave a haxd white solid product, indicating very little breakdown.

47 howrs heating in MeOH, FCI (4\%) gave a dark
viscous product, $[\alpha]_{590}=+4$, in small yield.
50 hours heating gave $41 \% \mathrm{Jlel}^{1 a}$, and 60 hours, 66% yield of ether soluble material. As HCl was evolved âuring methanolysis further quantities were passed into the mixture at ~lo hour intervals. It wes not possible to follow rotations as the materlal was very dark coloured at this stage and heating was not further prolonged. luch of the meid was removed by aeration at 435° before treatment with Agacos.

Material was recovered/Agcl ette, in good yield ($\sim 80 \%$)

$$
68 .
$$

and was separated into ether soluble and insoluble Practions. The black insoluble reslaue contained Ag which could be precipitated by Hgs, there should be no free orgonic acid present at this stage to retain Ag as salt, but possibly a complex was formed with the nitrogen containing material which was isolated in this fraction. The methoxyl content of the ether soluble fraction was 41-43 \% when material, Me, 30 \% was used, an increase of Whe $\%$ consistent with extensive breakaown. The rotation was positive $(+20)$ as compared with a value ~-20 for the startingmaterial used in a perticular experiment.

At this stage any eciaic material woula be present as methyl ester, the ethor soluble fraction was therefore treated with 3 , baryta at $45-50^{\circ}$ for 3 hours; $C 0_{2}$ was passed into the solution to precipitate excess $\mathrm{Ba}(\mathrm{OH})_{2}$ as BaCO_{3} and after plltration the solid was washed well with hot water. The aqueous extracts were concentrated and aried well by distilling with cry benzene, leaving a whitish, extremely viscous solid. This material was extracted with ary ether for removal of glycosidea; it was important that the ether contained no water or alcohoi or Barium selts were partially dissolved, and conteminated the glyeosides.

Sel.ts were coaverted to ester by boiling gently with MeOH, HCI (1 $\frac{1}{2} p$) Ior $5-6$ hours, neutraliging with

$$
69 .
$$

whth $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and extracting with Heoric the extract was aried with KgSO_{4} and MeoH removed. The product contained traces of Ba and Ag selts but could be freed from these by Cricl_{3} extraction.
Besnlts.

He thanolysis	I (trial)	II	IIIA	IIIB	IV
\% Onse Starting material	not Purdied	30	27	29	30
Heating tinae, lis.	47	60	51	60	66
$\begin{aligned} & \text { \%ield } \\ & \text { ether sol. } \end{aligned}$	9	66	41	56	41
\% Onte	40	41	42.8	43.8	-
$\begin{aligned} & \text { P Mela } \\ & \text { glyeosides } \end{aligned}$	-	35	35		28
\% Onfo			45.7		44.0
$\begin{aligned} & \text { Yield } \\ & \text { ester } \\ & \hline \end{aligned}$	-	16	7		8
\% Onle	-	53.8	37.8		40.6
$\begin{aligned} & \text { Y Yield, } \\ & \text { residues } \\ & \text { (Ag removed) } \end{aligned}$	-	17	40		58°
\% oxe	-	32	38		

Changes in rotation
I 11

I
II

Starting material
-12
-20
Ether soluble produet
25
20

70.

In I, alcohol extracted 74% of the residue, and this fraction contained a crystalline Ag complex 1.9 .5 OMe.

3ractionation.

The giycoside fractions from me thanolyses II and III were fractionally distilled in vacuo, using a smell. claisen flasic with spiral condenser in the side limb (diag. 4). Temperatures recorded by the thermoneter in the flask are not significant as boiling points since ${ }_{\lambda}^{\text {the }}$ ate of distillation was slow. Beiractive indices were measured with an Abbe Refractometer.

The glycoasdes Irom IV were fractionated in the apparatus shown in aiag. 5 , in wich the receivers could be changed without lowering the vacum. After a preliminary rough iractionation the mixture was refractionated by distilling most of the first fraction before adding the second, as indicated. Addition of fractions involved washing in with ether and removal of solvent.

Glycosides II and III

Frac.	$\begin{aligned} & \text { Pres- } \\ & \text { sure } \\ & \text { mom Hg } \end{aligned}$	Bath	$\underset{{ }_{0}^{c}}{\text { Plask }}$	$\begin{gathered} \text { Yield } \\ \mathrm{g} . \end{gathered}$	\% Ohe	$\begin{aligned} & 18 \\ & n^{18} \\ & \hline \end{aligned}$	$[\alpha]^{18}$ 5780	$[\alpha]^{18}$ 5462	c, in CHCl_{3}
A 1.	0.12	$\begin{aligned} & 100 \\ & \frac{104}{105} \end{aligned}$	$\begin{aligned} & 56 \mathrm{~m} \\ & 64 \end{aligned}$	0.633	43.6	1.4503	6	20	1.1
A 2.	0.08	$\begin{aligned} & \frac{1.15-}{317-} \\ & \frac{118}{} \end{aligned}$	$\begin{aligned} & 67- \\ & 74 \end{aligned}$	0.880	43.6	1.4524	38	47.4	1.2
A 3.	0.09	$\begin{aligned} & 133- \\ & 2555 \end{aligned}$	$\begin{aligned} & 80- \\ & 84 \end{aligned}$	2.495	41.6	1.4586	50	56.5	1.3
A 4	0.06	$\begin{aligned} & 140- \\ & 155 \end{aligned}$		0.136			Internediate drop		
A. 5.	0.05	$\begin{aligned} & 158- \\ & 172 \end{aligned}$		0.520	40.01	1.4641		80.6	1.4
A 6.	12ask allowed to drain			0.053					
Resi due.				0.273					

A positive Schiff reaction was given by fractions A 2 and A ouly a very slight reaction was given by A 5 .

$$
72
$$

Glycosides IV.
Pressure throughout both distillations $2 \times 10^{-3} \mathrm{~mm}$ Hg .

Fraction	Bath ${ }^{\circ} \mathrm{C}$	Yiela g.
1.	$115-120$	0.8608
2.	$110-124$	0.0597
3.	$140-144$	0.3019
4.	$148-152$	0.3037

At 148° crystalline material formed in side arm of distilling Plask. Residue was allowed to renain in Plask.

fraction	${ }_{\text {Bath }}{ }_{\text {c }}$	$\begin{gathered} \text { Xield } \\ \text { g. } \end{gathered}$	\$ Onlo	${ }^{4}{ }_{\text {d }}$
B. 1	106-108	0.235	49.2	1.4503 (25)
Added frac. 2				
B. 2	110-115	0.058	Intermeajate	
Added 3 \& 4				
B. 3	115-	0.619	45.3	1.4562 (25 ${ }^{\circ}$)
	122-130			
B. 4	144-148	0.199	51.3	$1.4633\left(28^{\circ}\right)$
B. 5	158-168	0.945		
B. 6	170-175	0.10	44.7	
Residue		3.094		

A posithve Schiff reaction was given by fractions B, 3 and
B. 4; only a slight reaction, after 24 hours, was given by
B. 6. The lower fractions were investigated by hydrolysing and attempting to prepare derivatives from the

$$
73
$$

partially methylated reducing sugers. Losses on hydrolysis were heavy where the presence of anhydro compound was suggested by the Schilf reaction and the isolation of the ainitrophenyl hyarazone of laevulic acid in one case, also agreed with ahhydro derivatives being present initially.

The hydrolysis products were also investigated by the partition paper chromatography technique. This method of snelysis was Geveloped by Consden Gordon and Martin [54] ior mixtures of amino acids as obtained from proteins and peptides, extended to free sugars by Pertridge [55] and to methylated reducing sugars by Hirst et al. [56]. It involves placing a spot of the solution to be analysed, about $8 \mathrm{~cm}_{\text {, }}$ from the top of a strip of filter paper (mhatman No. 1); the paper is then houg vertically from a trough containing a waterseturated organic solvent, see diag. 6. with the top edge of the paper immersed in the solvent, and passing over a support, 3, to prevent capillary siphoning. The whole is enclosed in a sealed glass vessel so that the atmosphere is maintained saturated with weter and organic solveat vapours.

A sherp liquid front advances dowin the paper and the different constituents of the sugar mixture also nove down at varying speeds and hence become separated into discrete spots, their relative positions depending on the

$$
74 .
$$

type of solvent mizture used. These positions may be detected by arying the filter paper after the chromatogran has run for a suitable distanee, and then spraying with an appropriate reagents in the present work alcoholic silver nitrate solution was used, and the paper redsied at 100° for $3-5$ minutes.

The separation of the different sugar derivatives depends mainly on the differences in partition coefficients, since partition of each solute takes place between water bound by the cellulose end the orgenic solvent noving over the cellulose surface. Adsorption plays some, but a much less signilicant, part. In general the most satisfactory solvents are those which are only partially miscible with water.
lor a given solvent mixture, R_{F} values of solutes, where $R_{F}=\frac{\text { Distance moved by constituent }}{\text { Distance moved by solvent front }}$ remain practically constant and may be used to establish the constituents in a mixture once they have been measured using known compounds. Hirst of al. [56] found that R_{F} values of sugars varied somewhat with the distance moved and they use the more constant Rg values to characterize sugars and methylated derivatives
$\mathrm{R}_{\mathrm{g}}=\frac{\text { Distance moved by constituent }}{\text { Distence moved by tetramethyl- }- \text { - }}$

$$
75
$$

the spot of solution under investigation (A and B in ding. 6.)

Rg velues of the constituents of the lover glycoside fractions were measuced using the same solvent mixture as these laveatigetors,

Graction 3.

Hydrolysis
A sample of fraciion B. 1. was hydrolyseè by treatment With 0.2 N. followed by il HCl as show, the hydrolysis was followed polarimetrically by cooling to roon temperature $\left(20^{\circ}\right)$ at iknown time intervals and neasuring the rotation of the solution.

	In 0.2 HCl		Increased to N.						
2ime (hr)	0	0.5	1	1.5	2.5	2.5	3.5	5	7
$[\alpha]_{\mathrm{D}}^{20}$		35.4	39.3	42.3	45.1	42.5	42.5	41.5	41.6

After 3.5 hr . heating Fehlings reaction positive $\left(8^{\prime}\right.$ at $\left.70^{\circ}\right)$ HCL was removed by passing the solution down a colum of resin "donciaite E." This resin was found to be satisfactory for the removal of HCI used for the hydrolysis of a mixfure of tri- and tetra-methyl methyl glucosides. The product was taken up in ether to remove traces of material from the resin.

$$
\text { Yield, } 93 ; \text { Onte, } 42.0 \% ; \quad[\alpha]_{0}^{24}=+46.2
$$

Chromatography_of hycirolysis_proaucta
Solvent: 40% a-butanol, 10 ethanol, 49 water, $1 / 6$ amoula.
Spray: 10 solution of ammoniacal silver nitrate.
A $\sim 10 \mu \mathrm{~L}$. spot of a 10% solution of tetramethyl glucose was

76.

used for reference compound and $\sim 10 \mu \mathrm{~L}$. spots of a ~ 20% solution of product wes used. Runs were made for 20 hr , at $13^{\circ} \mathrm{C}$.
three constifnents were indicated, $1 a, 1 b, 1 c$, with the followiag Rg values:-

1 a	Rg	0.82
1 b	Rg	$0.86-0.87$
1 c	kg	1.01

The Rg value of lb veried over the wide range $0.854-0.88$ but consistent values for l_{2} and lo were obtained. The Fg value of 1.01 suggested that 2:3:4-trime thylrhemnose was present; 2:3:4:6-te trane thylgalactose and 3:4-dime thylrhamose are quoted [56] as showing Hg values of 0.88 . Additional chromatograms were then rua with a third spot of tetranethylgalactose solution in order to compare the position of this compound with ib. 2:3:4:6-te tramethylgalactose was faster moving than 1 b .

From the relative intensities and areas of the silver nitrato spots, laslb:le is roughly 2:2:3.

Since ehrosatography indicated that trimethylrhamose was present, 0.1268 g . was extracted with petroleum ether at room temperature in order to separate it to sone extent from the two other sugar derivatives; Yield $0.0723 \mathrm{~g} ., 57 \%$. This product was reflexed for 3 hr . With 0.031 g . dry freshly distilled ailian and

77.

3 ml . Btor. After removal of solvont and tritruxation with petrolewa ether a crystalline product was obtained, which formed feather-like crystals over the walls of the 11ask.

Yield, 0.038 g . crude, slighty discoloured product; mep. 107-1.09 .

Product recrystallized irom alcohol:ether:petroleum ether: $1: 1: 8$, inae white needies; m.p. 110°; the product did not depress the mop . of 2:3:4-trimethylrhamnose andilde; $[x]_{D}^{18}=130(0.3$ ina $\operatorname{colseg}) ; C$ ofter $64.8 \% ;$ IT $8.07 \% ; N, 5.25 \%$ (wellex and Strauss) Olle, 32.6 Theory 64.3, 8.24, 4.98, 35.1. Mraction 2.
A2. $[\alpha]_{5780}^{20}=+65 \quad[\alpha]_{5461}^{20}=+62 \quad\left(C=2.4\right.$ in H $\left.H_{2} 0\right)$
Hydrolysis
A sample of iraction $A Z$ was hydrolysed with 0.1 iv and 11 HCL as show, the hydrolysis being followed polexine trically.

	0.1 a HCl $\quad(\mathrm{C}=3.0)$								Ia N HCl			
Time (hx)	0.5	1	1.5	3	5	6	11	14	3.3	5	6.3	8.7
$[\alpha]_{5780}^{20}$	56.7	53.7	52.7	55.0	53.4	50.8	51.2	51.2	-	47	46	47
$[\alpha]_{5461}^{20}$	50.0	57.9	60.4	67	60.5	60.4	60.3	60.3	-	51.	47	47.5

After 11 hrg. heating, Behling's reaction positive (10' at 60°). The produet was aeutralized wi th BaCo dxyness in vacuo sud extracted with ether. Yield, 60\%, after 0.1 1 HCl troatment; fproduct on subsequent treatment with 留 HCl recovered in 82% yield).
olte, 33.5\%
$[\alpha]_{5780}^{12}+103$
$[\alpha]_{5461}^{12}=+106$.

Preparation of Anilide
0.100 g . of the hydrolysed fraction was treated with 0.060 g . freshly distilled aniline and 4 ml . alcohol and boiled for 3 hrs , after cooling, triturating with petrolewn ether, and allowing to stand for 2 days, a erystalline product was obtained. The product was triturated with cold alcohol filtered and washed with a little petroleum ether M. Pt $126-127^{\circ}$. Yiela 20 mg . (1st orop) 0.134 g . treated 0.070 g . andline gave 30 mg . (1st crop)mop. 129-132 . The anilide was recrystallized from alcohol petroleum ether (1.1) white needies 1.st crop m.p. 150°; 128° onte, 22.3\% 2nd crop m.p. 127°; OHe 23.7%.

Chromatography_of hydrolzsed_A2.
Procedure, as for fraction B. 1.
Three constituents were indicated with the following Rg values

2 a	Rg	0.61
2 B	Rg	0.82
20	Rg	0.87

A chromatogran rua with 2:3:4:6-to trame thylgalactose for comparison showed that this conpound was faster moving than 2c. 2:3:6-trimethylglucose and 2:3:6-trimethylmanose are quoted [56] as showing lg values of 0.81 ; thore is evidence from the work of D. M. Hardy that mannose is not
present in the Diva polysmecheride; spot $2 b$ dia move at the same rate as $2: 5 ; 6-t r i m e t h y l g l u c o s e ~ i n ~ t w o ~$ chromatogrems, rua for comparison, bat moved slightly more slowiy in a third.

Iraction 3.

Fraction A3 became yellow after standing for about two days.
AS
$[x]^{21}=+65$
$[x]_{5461}^{21}=+73 \quad\left(C=3.7\right.$ in $\left.H_{2} 0\right)$

Hydrolysise

$(\mathrm{C}=2.8)$							过 $\mathrm{H}_{2} \mathrm{SO}_{4}$
Tine (har)	0.5	2	1.75	2.75	5. 25		
$\begin{aligned} & {[\alpha]_{5780}^{21}} \\ & {[\alpha]_{5461}^{21}} \end{aligned}$	$\begin{gathered} 68.3 \\ 77.7 \end{gathered}$	80.9	74.3 82.8	75.5 83.4	$\begin{gathered} 75.5 \\ 83.4 \end{gathered}$	$\begin{aligned} & 86.8 \\ & 96.8 \end{aligned}$	Constant during 3 hrs heating.

Fehlings reaction positive after 5 hr . hydrolysis. The product was worked up as fraction A2.

Meld, 67% after 0.1 HC1 treatment, product on subsequen't treatraent with $\mathrm{NH}_{2} \mathrm{SO}_{4}$ recovered in 91% yield. ORE, 30\%. $[\alpha]_{5780}^{20}=+112\left(c=0.8-\mathrm{H}_{2} 0\right)$
AnIILa, formation was attempted but only a small anownt of very soft crystalline material was obtained on standing, wini wh wes lost on triturating with alcohol or petrolewn ether.

Isolation of lavyuic acid zi4-dinjtrophenylhydrazone.
By extracting the Barium salts, remaining after ether extraction, with warm water and adding a solution of
80.

2:4-ainitrophenyl hydrazine in HCI, a smell arount of yellow precipitate was obtained. This was recrystellized Prom $\mathrm{CHCl}_{3}, \mathrm{~m} . \mathrm{p}, 205^{\circ}$. Mixed mep. with the seme derivative of laevulic acid prepared from cane sugar, 205°. Molegular welght- of A3, wes determined oryoscopicaliy in benzene.
0.1200 g . in 17.58 g . $\mathrm{C}_{6} \mathrm{H}_{6}$ showed a depression of Fz pt of $0.161^{\circ} \therefore$ m, ut. 212. Purther methylation of Praction AS.
$1,032 \mathrm{~g}$, fraction $A 3$ was refluxed with 3 ml . WeI +1.0 g . fresh ary $\mathrm{Ag}_{2} \mathrm{O}$; 0.5 g. Ag2 O was adeded aiter two hours, 0.5 g . Ag2 $0+2 \mathrm{mil}$ MeI after four hours heating, and 0.5 g . Aggo after six and eight hours heating. The product was extracted with CHCl_{3}, the extract dried with MngSO_{4}, and solvant distillea orf,

1st treatment,	yield	0.986 g,	53.5%	one
3rd "	"	0.914	g,	55.46%

The product was distillisd in vacuo, using a small flask with wide side arm and no fractionating colum; 0.523 g . main fraction was obtained, Bath Y 96-101 / $0.21 \mathrm{~mm} . \mathrm{Hg}$. The pale yellow residue in the flask was not volatile at 140°.

$$
81 .
$$

Hydrolysis.
$c=12.1$ in 0.1 N HCl .

Time (hr)	0.25	0.5	1.25	2.0	4.0	6.5	10.5
[]$_{5780}^{21}$	80	93	93.5	93	93	93	93

Field 58\% (Hydrolysis of methyl tetramethyl glucoside gave 84% jiela) 43.9% OMe.
$[\alpha]_{5461}^{29}=+119$
$[\mathrm{K}]_{5480}^{2 \pi}+110(\mathrm{C}=2.8$ in EtOH$)$
$[\times]_{6401}^{27}=-129.6$
$[\mathrm{k}]_{5750}^{29}=120\left(\mathrm{C}=0.8\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$

Formation of anilide_from methylated Praction A3.
0.10 g . was refluxed for 3 hr . with 0.06 g . freshly distilled aniline in Etof. After removal of solvent a small amount of crystalline product was obtained. M pt crude product 165°, after trituration with alcohol petroleum ether ($1: 2$)

Chromatography_of $A^{3} \delta$ and_fuliy_methylated A^{3} e after hydrolysis.

Procedure as for fraction B. 1.
Three constituents were indicated in fraction A3, with the following Rg values,

3 a	Rg	0.47	(trace)
3 b	Rg	0.62	
3 c	Rg	0.82	

After methylation the following Rg values were obtained,

3Pa Rg 0.89-0.91 (trace)
$3 \mathrm{~Pb} \quad \mathrm{Rg} \quad 1.0$
3Pe Rg 1.01 (main)
Thus rhamose and glucose are present although the third spot does not correspond to any value quoted for a fully methylated sugar likely to be present, neither is it due to a trimethyl galactose (2:3:4-anilide, m.p. 168).

Fraction 4.

Fraction B4 was investigated since this showed a. rise of methoxyl figure, suggesting some separation of a more completely methylated biose, which was not apparent in the first fractionation, A. Also erystalline material formed during the preliminary fractionation at bath T. 144°. On triturating a sample of fraction B4 with ary MeOH a small amount of exystalline material was obtained, m.p., after draining on porous tile and recrystallizing once from methyl alcohol, chloroform (1:1), $44+45^{\circ}$.

Praction $B 4$ became yellow on standing for 24 hours.

83.

Hydrolysis.

$$
\text { In } 0.2 \text { in } \mathrm{HCl}(\mathrm{c}=1.3) \quad \text { In } \mathbb{N} \mathrm{HCl}
$$

Time. hr .0	0.25	0.5	1	1.75	2.75	-	0.5	1.5	8.5	
$[\alpha]_{D}^{18}$	-	96.8	95	89.2	96.5	93.6	95	93.5	93.5	93.5

The product was worked up as Iraction 1B, using "de-acidite" E.

Yield 75% containing a little material from resin. Chromatography_ó hydrolysis product.

4 a	Rg	0.54
4 b	Rg	0.74
4 c	Rg	$0.86-.87$.

ITWESTIGASION OF ESTAR PRACRIOH.

Acidic material, after separation as Baxiom selts was eaterified with HeOk/HCl (1.5%), HCl was removed by aeration and $\mathrm{AB}_{2} \mathrm{CO}_{3}$, and the ester extracted with Me oH (P .69).

A sample of the ester from methanolysis II was converted back to Berium salt by refluxing with 4% baryta, the solution was boiled gently and $\sim 0.5 \mathrm{ml}$. distillate collected which contained Me of (oxidation to HCHO and resorcinol coloix test). The solution was made just acia to congo, concentrated somewhat at 40°, and extracted with CHCl3. A dark yellow viscous syrup was obtained 23% one.

Exgctionial distilation.
0.40 g . ester from methanolysia III, 37.8% oife, was fractionally distilled, using a small distilling flask with wide side arm and no sractionating column. 0.136 g . main iraction was obtained, bath T $145^{\circ} / 0.20 \mathrm{~mm}$, HE, 40.2% ORle, $n_{D 9}^{19} 1.4628$. $[\alpha]_{5750}^{20}=+49 \begin{gathered}c \\ \text { cin in meon } \\ \text { There was an }\end{gathered}$ appreciable residue, not volatile below 180°.

The ester fraction from methenolysis IV was obtained similarly and then reconverted to Berium salt and re-esterilied in order to remove glycosides more completely. After re-esterification material was recovered in poor field (51%) but part of the product erystallized on
standing for 6 days.
Crystelline prodict.
Mpt crude material 118°.
Mpt aftar recrystallization from alcohol/petroleum ether $118-119^{\circ}$.

Botation, The product was apparently insoluble in water, and 0 optical activity could be detected in an equeous solution after staiding over this orystaline material.

A positive iodoform reaction was given. ORe, 39.8\%.
At temptea preparation of amide.
A solution of $0,063 \mathrm{~B}$. distililed ester in 8 ml . dry Weof was saturated with dry $1 \mathrm{HF}_{3}$ and left at 0° for 3 days. On removal of solvent a syrup was obtained. The treatment was repeatoc, and after prolonged standing at 2° there was not sufficient crystelline material to isolate, but amiae formation had taken place, since after repeated evaporation with MeGH to drive off free dirg, the product yielded lilig on heating with baryta.

(19) , if

URONIC ACID BSIIMAMIONS.

The uronic acic (or keto elycomic) acid) contents of the fully methylated and chloroform insoluble fractions of methylated polysaccharide were estimated by distillation with HCL, according to the procedure of Dickson et al. [57]. The apparatus was modified (Diag. 7) by the use of all glass joints where possible, and the CO_{2} absorption involved on introducing baryta in the original method was ellminated by the use of an enclosed siphoning arrangement for drawing baryta into the burette from the resevoir, K , by the three-way tap, J, connected to a purap, to the atmosphere and through a soda lime tube to the burette.

A strean of air, freed from CO_{2} by passage through the sode lime towers $A A$, was arawn through the apparatus by a water prump attached to the safety vessel H. The sample, containing $\sim 0.3 \mathrm{~g}$, uronic acid was placed in the reaction flask C, with $100 \mathrm{ml}, 13.15 \%$ HCl and porous pot; the height of the oil bath, B, was adjusted so that the acid level was just below that of the oil. The air stream was passed for about twenty minutes, and then heating of the ilask commencod. When the acid boiled, approximately 20 ml . 0.2 II baryta was run into the absorbing tower G, filled with glass beads, and the rate of air flow increased. The base of Q was flanged outwards, and the upward air stream prevented the baryta running
into the Buchner flask, F. The trap, D, containing aniline, removed furiural and the trap E, containing silver nitrate solution, removed any HCL not refluxed back by the condenser, or removed by PhNH_{2}

Heating was continued for 5 hr , with the temperature of the oil bath maintained at $135-140^{\circ}$ and the air flow adjusted to $2-3$ bubbles per second. At the end of this period the tower was washed down with CO_{2}, free water and excess baryta titrated with 0.1 NHC1 in an atmosphere of mitrogen, using phenolphthalein indicator. The chloroform insoluble material was boiled with a Iittle if HCl to romove the small amount of free carbonate present and the acid concentration then made up to 13.15\% before estimating uronic acid.

Results.

	Direct t tration. ml HCl \equiv 10 ml be	mi bexyta used in tower	ml HCl required to neutralize.	$\begin{aligned} & \mathrm{mil} \mathrm{HCl} \\ & =\mathrm{CO}_{2} \end{aligned}$		
Blank estimation						
	84.78	20.0	24.70	0.08		
	24.78	10.0	24.71	0.07		
Blank correction $=0.08 \mathrm{ml}$ HCI				mil $\mathrm{HCl} \equiv \mathrm{CO}_{2}$ corrected for blank	mL HCL	
$\text { for blank } \equiv 1 \mathrm{gm}$						
0.1986	$6{ }^{6}$ 24.78	26.24	43.41		21.51	108
				(Theoreticel 106)		
Fully methylated material (corr: for ash)						
0.5610 g	g. 24.78	19.97	43.71	5.63	10.0	
0.4514 g .	g. 20.83	19.04	35.50	4.18	9.4	
0.5005 g .	g. 20.83	20.32	37.39	4.86	9.7	
$\mathrm{CHCl}_{3} \mathrm{C}$ insol.	1. mater	(corr: for	ash)	17.48		
0.849 g	. 20.83	34.34	67.51		20.50	

$\therefore 2150 \mathrm{~g}$. Methylated material ($30,0 \mathrm{Me}$) contains I g.e. C00M, i.e. 1 acid group per 9 (methylated anhydrohexase) units.
$\therefore 2006 \mathrm{~g}$. CHClz insoluble matorial (19 g OMe) contains

1. g.e. COOH, i.6. 2 acid group per ~ 5 units.

Aupohyprolisis.

Autohydrolysis of a 0.5% solvtion of acid form polysaccharide, pH 3, was carried out on a boiling water bath in a nitrogen atnosphere. The hydrolysis was followed by the developnent of reducing power, using the hypoiodite titration mothod of Bacer and Hulton [43] and polarimetricaliy when the solution had cleared sufficiently. Both methods indicated that a steady state was reached after $45-50 \mathrm{hr}$. heating.

Time (hr.)	2	1.25	8.25	14	20	38	40.5	43.25	50
$[\alpha]_{5780}$	-	-	-72	-65	-59	-47	-34	-36	-36
$\mathrm{mi} .0 .17 \mathrm{I}_{2}$									
gm^{-1}	6.5	15.3	20.9	24.7	34.3	45.8	53.2	55.2	55.2

The resulting solution was yellow brow and contained a light-weight brown suspension, It was concentrated to about one third volume in vacuo at 45° in H_{2}; a little CaSO_{4} was precipitated. The solution, containing 2.1 g . organic matter, wes dialysed against three 500 ml , volunes of distilled water over a period of $2 \frac{1}{2}$ days. During this time the material inside the dielyser darkened considerably. The dialysates were concentrated at 45° in It and gave a positive nophthoresorcinol reaction for uronic acid, there was no mariced reaction from the non-dialysable material, although its dark colour made results inconclusive. Aliquot portions of both fractions were boiled with HCl. to assess the distribution of methyl pentose and uronic acid (and/or pentose).

Furfural and methyl-furfural. Ifstimations.
The all-glass apparatus used is shown in diagram 8. A sample of the material under investigation, containing
~ 0.02 8. L-rhamose was placed in the 100 ml . round plask together with $20 \mathrm{ml} .15 .15 \% \mathrm{HCl}$, saturated with NaCl. The flask was immersed in an ofli bath to the level of the liquid and a steady strean of nitrogen was passed through the apparatus beiore and auring the heating period; the astrogen inlet, N, did not dip below the surface in order to avoid blocking.

The oil bath was heated to $170-175^{\circ}$ and maintained at this temperature. Wen the contents of the flask. boiled 30 ml . 13.15 HCl , saturated with NaCl , was added through the tap funnel, three more similar additions were made at 15 minute intervals and the liquid boiled for a total of $1 \frac{1}{4}$ hours. During this time the volume stayed in the range 20.50 ml .

The rate of aiatillation was not fast enough to further shorten the heating time; increased heating time aid not yield increased weights of phloroglucide precipitate from a fixed quantity of rhamose hydrate. The liquid remaining in the flask was only slightly discoloured when rhamose weas used and contained much solld NaCl.

Phloroglucinol solution was prepared accoraing to Browne \& Zerban [7] . 11 gm AnalaR phlorogiucinol was dissolved in 300 ml bolling $12 \% \mathrm{HCl}$ and poured into

1200 mL 12\% HC1; after standing at least a week the solution was fillered before use.

10 ml phloroglucinol solution was added to the distillate and the total volune made up to 130 ml with $13.15 \% \mathrm{HCl}$, if necessary. The solution darkened and a precipitate formed slowiy, it was illtered off in a Grade 4 sintered glass cructble after standing for 24 hours. The precipitate was washea, using 50 ml water, driod in an air oven at 100° for an hour and weighed.

There was a negligible blank correction.
The precipitate was then extracted with three 6 ml . portions of 96% alcohol at 60°, the crucible being heated in a beaker inmersed in a water bath at suitable temperature.

Using rhamnose, the precipitate was light brown in colour and was soluble in 96\% alcohol except for a very small darker residue $(\sim 2 \%)$. Using arabinose, the phioroglucide precipitate was black and partly soluble in alcohol ($\sim 10 \beta$). under the conditions speci ied. The alcohol extract was dark green in colour. The appesrance and solubillty of the phloroglucide precipitate from $\boldsymbol{p - g e l a c t u r o n i c ~ a c i d ~ w a s ~}$ similar to that obtained when using arebiaose.

In appearance, the phlorogiucite precipitaterrom the Ulva polysacharide was like that obtained when using arabinose, but a greater proportio of it was soluble in 96% alcohol.

Results

lass of L- rhannose hydrate, \mathbb{R}_{0}	Hass of phloroglucinol ppt, P.	groportion insol in 96% EtOH at 60°
0.01764 g 。	$0,00996 \mathrm{g.} \begin{aligned} & \text { (moan of } \\ & 4 \text { results. }) \end{aligned}$	
0.03296 g .	$\begin{gathered} 0.02145 \mathrm{g.} \text { (mean of } \\ 4 \text { results. } \end{gathered}$	18

$\therefore R=1.332 P+0.00432$
$R^{2}=1.273 P+0.00418$ where $R^{1}=$ nass of anhyârous rhamzose.
0.02194 g . L-Thamiose hydrate gave 0.01320 g . ppt., in agreement with this expression $(0.01320 \mathrm{~g}$. ppt, from 0.2190 g . rhamose hydrate).
0.02052 g . arabinose gave 0.01620 g . ppt. 10% soluble in alcohol.

Estimations on_autohydrolysis groducts.
2.2 6. carbohydrate material present before dialysis. 룍ㅆsable material.
$1,01 \mathrm{~g}$. carbohydrate; naphthoresorcinol reaction, positive.

On distillation with HCL $5 / 46$ of this material gave 0.05158 g . phloroglucinol ppt. 0.02154 g . insoluble in 96% alcohol at 60°, indicating
0.365 g ., 36%, methyl pentose $\equiv 44 \mathrm{ml} .0 .1 \mathrm{NI} \mathrm{I}_{2}$
$0.27 \mathrm{G} ., 27 \%$, pentose, or
$0.34 \mathrm{~g} ., 54 \%$. uronic acid $: 43 \mathrm{ml} .0 .1$ if I_{2}
Total reducing power of dialysate $: 56 \mathrm{ml} .0 .1$ i I_{2}.

This discrepancy is probably due to the fact that the fragments hydrolysed from the macromolecule are of the di (and tri?) saccharide order. Nondialysable material.

This solution, which had become very dark, was concentrated; samples were used for boiling with HCL and the rest worked up to a hard daric solid by trituration with alcohol and ether. Yield $0.85 \mathrm{~g} .$, allowing for sarapling; there were known losses on working up, \therefore estimate 1.0 g . non-dialysable material.

On distillation with HCI $5 / 101$ of this material gave 0.01363 g , phloroglucinol ppt. 0.00204 g . insol, in 96% alcohol at 60°, indicating
$0.38 \mathrm{~g} ., 38 \%$ methyl pentose
$0.06 \mathrm{g.} 6 \$,$% , pentose or 0 . œ 8 \mathrm{~g} ., 8 \%$ uronic acid.
Retations and calculations of $\%$ are all based on ash free organic carbohydrate material.

These figures are approximate as the distillation of standard mixtures of methyl pentose, pentose and uronic acid with HCl was not investigated, and for calculation they have been assumed to distil independently. CO_{2} estimations for assay of uronic acid were not performed. But the results show that $\sim 50 \%$ of the carbohydrate is broken down to dialysable fragments on autohydrolysis and that this portion contains practically all the pentose or uronic acid whereas the distribution of methyl pentose is not significantly
different in the two cases.
The instability of the residual macro molecule af ter autohydrolysis suggests that it would not be suitable for methylation.

DISCUSSION OR STRUCTURAL FEATURES.
The following results, obtained by D.M.Hardy on the purified polysaccharide [4I], are also considered Total SO_{4} in sodium salt, 16.3%; on ashing Na salt alone, SO_{4} retained, $12.3 \% . \mathrm{X}$
After baryta hydrolysis,
Total SO_{4} in sodium salt, $1.3 .8 \%$; ashing Na salt alone, SO_{4} retained, 9.4%.
Free acid polysaccharide, Equ.Wt., $386 ; 44 \mathrm{~g} \cdot \mathrm{CO}_{2}$ from $896 \mathrm{~g} . ;$ reaction with 1 g . mol 100^{-2} by $820 \mathrm{~g} .$, formic acid liberation very slightly positive.

The sulphate content of purified starting material as used for methylation, 14.2%, and the above, indicate I SO_{4} group to 3 (16.3%) to $4(13 \%)$ units (unit $=$ anhydro
hexose); results varied on different batches, probably owing to small differences in extraction procedure. The $13 \% \mathrm{SO}_{4}$ content of methylated material insoluble in CHCl_{3}, shows no change compared with the starting material, allowing for the introduction of 17.2% OMe, there is therefore no concentration of a sulphate containing polysaccharide in this portion. The almost complete absence of sulphate and evidence of anhydro structures in fully methylated material suggests that some sulphate removal has occurred during methylation; the losses on hydrolysis of glycoside fractions giving a Schilf reaction are compatible with the original in © SO_{4} ester units having given a corresponding amount of anhydro derivatives. But it is difficult to reconcile this with the retention of most of the sulphate on heating with baryta, and the absence of any Seliwanoff reaction from the products. Possibly during methylation breakdown occurs (also indicated by dialysable fragments, p.63) making available a suitably situated - OH group for anhydro ring formation; $-\mathrm{SO}_{4}$ on C_{2} renders galactosidic groups labile (p.7).

The uronic acid in the polysaccharide appears to occur in 1 in $4-5$ units (protein $n_{\lambda}^{\text {not } w i l l}$ introduce a significant error in CO_{2} estimations) and the quantity of uronic acid in insoluble methylated material is only
slightly less, 1 in 5 units (P.88). The ratio of SO_{4} to COOH agreeteg with the SO4 figures, X, on P. 94. In the fully methylated material only 1 in 9 units yield CO_{2} with HCl , alloving for introduction of OMe.

Thus the insoluble material does not appear to be significantly different from the starting material i.e. if the latter were a mixture of polysaccharides, no particular component has been fractionated. Consequently, as overall losses on methylation are not heavy ($\sim 15 \%$), the soluble, completely methylated product ($\sim 20 \%$) must also be related to the starting material; it is degraded, SO_{4} has been removed and whalf the uronic acid lost, possibly by fissure at point A in a part of the structure of the type:-
Uronic-Rh. $\left.\begin{array}{ccc:c}\mathrm{A} & \\ \text { Hexose } & \mathrm{SO}_{4} & \text { (or } & \text { Uronic } \\ \frac{1}{2} & \mathrm{SO}_{4}\end{array}\right)$ (lost on dialysis)

It is not possible to decide whether all the mits which carried sulphate form anhydro structures. The difficulty of removing sulphate makes it impossible to compare methylated de-sulphated material with these products. Of the other constituents 37% appears to be rhammose (P. 92), confirmed in other work of D.M. Hardy; nitric acid oxidation indicates that only a small proportion of other sugar is glucose or galactose, or their corresponding uronic
97.
acids; glucose is confirmed by chromatography, but if significant quantities of galactose are present it must presurably be as sulphate, so linked to SO_{4} and other residues that SO_{4} is not easily hydrolysed.

A possible repeating unit could be 3 hexose sulphate, 2 uronic acid, 3 rhamnose, andlother sugar. M.Wt., 1624 ; Eq.Wt., $333 ; \mathrm{CO}_{2}$ from $812 ; \mathrm{SO}_{4}, 16.6 \%$ of NaSalt; rhamnose 30.3% of acidform polysaccharide.

Fraction,	B1	A2	A3	AB Iujly metingled	B4
B.Pt. (bath)	106	117	135	100	144
\% OMe	49.1	43.6	41.6	56.2	51.3
\% OMe after hydrol.	42	33.5	30.0	43.9	
$\begin{gathered} 18 \text { befone } \\ \text { in hyarol } \\ \hline \end{gathered}$	1.4503	1.4524	1.4586	1.4432	1.4633
Rg values after hydrol.			0.47 (tr)		
		0.61	0.62		
	$\begin{aligned} & 0.82 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.87 \end{aligned}$	0.82		0.86-0.87

The more volatile constituents are similar in fractionations A and B, but significant differences appear in the $130-140^{\circ}$ b.pt. region, second fractions show a rise in \% OMe and chronatography shows different constituents. As there was very little evidence for pentose in earlier work of $E . D$. Johnson and now xylose
has been detected by D.M.Hardy, it seems probable that spot Rg 0.74 is due to $2: 3$-dimethyl-D-xylose $(\mathrm{Rg}=0.74$ [56]).

In fraction B1, 2:3:4-trimethyl-L-rhamnose is definitely prosent, confirmed by anilide, to the extent of 50% from chromatography. The second constituent is probably 3:4-(or other) dimethyl-L-rhamnose; 3:4- is the only dimethyl rhamnose investigated. A. high proportion of rhamose is in agreement with the . It., methoxfl content, increase in the positive sease of rotation in water as compared with thet in organic solveat, and the changes in rotation on hydrolysis $[57,58]$. The observed value of i_{D} is high for trinetayl- plus dimethyi-ae thyl-rhamosede plus other fully methylated suger. But the presence of trimethyl-hexose would accounit for the observed high value of n_{D}. Trimethylglucose seems probable from chrometography, spot Rg 0.82 , and this constituent is present in $A 3$, which gives inliy methylated glucose on treetment with Purdie reegents. Trimethylgiucose would also contribute the adsitional positive rotatory power shown by this fraction as compared with rhe nose derivatives alone.

Physical constants of the pure methylated glycosides under consideration are shown overleaf.

99.				
	\% OMe		$\begin{array}{l\|l\|} \hline \text { e\|l } & n_{0} \\ \text { ter } & \text { before } \\ \text { drol hydal } \end{array}$	$[\chi]$ af ter ${ }_{\text {hydrol }}$
50\% 2:3:4-me thyl trime thyl-L-rhamnoside	56	45	1.4415	20
25\% 3:4-me thyldime thyl-L-rhamnoside	45	32	1.45	19
25\% 2:3:6-me thyl trime thyl-D-glucoside [54]	52	42	1.4583	70
Mixture	52	41	1.45	42

figures agreeing well with those fownd. Thus a rhamnose end group forms $\sim 5 \%$ of the glycosides. The probable 3:4-dimethyl-L-rhamose has been obtained from various mucilages where 2-D-galacturonido-L-rhamnose occurs eg. [50] ; oxidation by Br 2 , for the isolation of 3:4-dimethyl-L-rhamnonolactone has not yet been tried. Al though its properties all suggest material more fully methylated than dimethylhexose, the anilide from fraction AZ was similar to the dimethylgalactose anilide, m.p. 130°, prepared by Robertson and Lamb [61], and thought to be the 2:3-dimethyl compound. Since the anilide from A3 purdied had a m.p. corresponding to 2:3:4-trimethyl-Dgalactose anilide, it seemed that galactose was present. However authentic 2:3-dimethylgalactose anilide has now been synthesised by D.J. Bell and does not possess the properties of the compound obtained by Robertson and Lamb; neither can any evidence of dimethyl hexose in A2, or tri- or tetra-methylgalactose in $A 3$ purdied, be obtained by chromatography. 2:3-dimethylrhamose and 2:3:6 trimethyl-

100.

glucose do not form crystalline anilides, so that the anilide from AL is probably not a mixture, confirmed by lack of iractionation in repeated crystallizations.

Rotations of $A 3$ before and after hydrolysis indicate the absence of significant quantities of di- and trimethyl-L-rhamose, in agreement with the absence of spots Rg 1.01 and 0.87 on chromatography. Rg 0.82 is presumably trimethyl glucose and one of the other constituents is a rhamose derivative since rhamose is indicated by chromatography after complete methylation. The properties of fully methylated $A 3$, except rotation, suggest that it is mainly methylated rhamnose, but as tetramethylmethylglucoside is present there must also be a fully methylated compound with high positive rotation.

In $B 4$ the constituent $\mathrm{Rg} 0.86-0.87$ is probably due to the same trimethyl glucose, persisting through the other fractions. Rg 0.74 is possibly due to $2: 3$-dimethyl-Dxylose, quoted $\mathrm{Rg} 0.74[56]$, xylose is known to be present In the carbohydrate [41]. The rise of of OMe at this b.p. suggests fully methylated biose; Rg 0.54 is not due to dimethylhexose or monomethylrhamose, (Rg values of this order quoted)for the \% OMe of B4 is too high. It is more likely to be due to unhydrolysed biose, but fully methylated sugar should appear from hydrolysis of this constituent.

Since there are many methylated sugars le.g. dimethyl-
rhamnose other than $3: 4$) which have not yet been investigated by paper chromatography, other conclusions concerning the glycosides are possible and none will be reliable until comparison with authentic compounds has been carried out in more than one solvent mixture.

Concerning the anhydro compound, a wethyiated auhydroglycoside (B.p. $\sim 90^{\circ}$) or corresponding dimethyl acetal (B.p. $\sim 110^{\circ}$) could be formed on methanolysis, both being likely at the strength HCl used, if the structures are comparable with 3:6-anhydrogalactoses [20]. Dimethylacetal would show a higher \% OMe and fall in \% OMe on hydrolysis than is found; a monomethy15:6-anhydro-methylhexoside seems probable. Such a structure would be expected to give the corresponding aldehydo compound on 0.1 N and hydrolysis, without extensive decomposition, but oxidation can easily occur and may account for the losses during the hydrolysis of fractions A2 and A3.

The crystalline material of the ester fraction could be a dimethyl-anhydro-hexonic ester (39.1% ome) although the galactose compound of this type [20] does give an aqueous solution with positive rotation; a methylated saccharic ester is not likely. The properties of the distilled portion suggest a mixture of the methyl esters of methyl-mono- and di-methylhexuronic acid ($39.4 \% \mathrm{Me}$) but not fully methylated compound.

$$
102 .
$$

constants do not permit of any distinction to be made between glucuronic and galacturonic acids. The undistilled residue is probably a bionic ester (fully methylated rhamobionic ester has 49.5% (4) .

The fractions of the fully methylated material not so far investigated cannot have very much lower methoxyl content and are probably merely less completely hydrolysed. It is not possible to draw conclusions as to the structure of the mecro molecule. A repeating anit might be of the type:-

fragment A being lost in dialysis by fissure at X during $\mathrm{Me}_{2} \mathrm{SO}_{4}$, NaOH methylation, A biose fragment is probable owing to the known stability of links of type W, this making possible a loss of SO_{4} from P with formation of anhydro structures $e .8$. by liberatiag $\mathrm{C}_{3}-$ OH if $\mathrm{C}_{6}-\mathrm{OSO}_{3} \mathrm{H}$ were present. After methanolysis, B vould yield uronic and biuronic acid. Some of the link Y might be broken during extraction with acidified CHCl_{3}, but subsequent conditions are not those in which Q would be expected to form an anhydro structure. The rhamnose end group and methylated glucose and xylose and biose come from C. In
103.
view of the isolation of galactose by M. Georg [39] the hexose, $P Q$, is possibly galactose.

It is not possible to reconcile this structure, nor even the methylated Pragments (if 3:4-, 2:3- and 2:3:6methylated compounds) 'with the periodate uptake of the polysaccharide; the rhamose end group should give significant quantities of H. COOH, which was not found [41]. If links W and Z are 1:3- and not 1:1- the theoretical periodate uptake (2 molecules) is in better agreement with that found.

Bibliography.

8. E.L. Hirst, J.K. N. Jones, E.A. Woods
J.,

1947, 1048.
9. E.G.V. Percival,
J.C. Somerville, I.A.Forbes. J., 1939, 1844.
10. E. Fischer, L. Zach. Ber.,

1912, 45, 456.
11. R.B. Duff, E.G.V.Perci-
val.
12. S. Peat, L. ${ }^{(}$. Wiggins. J.,

1941,
830.
13. W.H.G. Lake, S. Peat. J., 1938, 1417.
14. Recent Advances in

Carbohydrate Chemistry, II.
15. E.G.V. Percival, T.H.

Soutar.
16. E.G.V. Percival.
J., 1945,

119
17. R.B. Duff, E.G.V.Percival. J., 1947, 1675
18. R.B. Duf.
J., 1949,

1597

29. J.Buchanan, E. B.Percival,

E.G.V.Percival.	J.,	1943,	51.
30. E.T.Dewar, E.G.V.Percival. Nature,	1945,156,	633.	
31. E. T.Dewar, E.G.V.Percival.J.,	1622.		
32. E.G.Young, F.A.H.Rice.	J.Biol.Chem.,	1946,164,	35.
33. Stanford.	Chem.Nevs,	1883,	254,
			267.

34. D.R.Hoagland L L. Lieb. J.Biol.Chem., 1915 25, 287.
35. W. I. Nelson, L.H.Cretcher. J.Amer. Chem. Soc. 1929 51, 1914.
36. W.I. Nelson, I.H.Cretcher.J.Amer.Chem.Soc., 1930 52, 2130.
37. H. L.Hirst, J.K.N.Jones,
W. O. Jones.
J.,

1939
1880.

38. A. Wasserman.	J.,	1948		197.
39. M. Georg.	Unpubli shed.			
40. D.M.Hardy.	Unpublished.			
41. D.R. Myers.	Ind. Eng. Chem.,	1941	33	1203.
42. J.F. Carson, W.D.				
Maclay.	J. Amer. Chem. Soc	,1945	67	787.
43. J. L. Baker,				
H.F.E.Hulton.	Bioch. J.,	1920	14	754.
44. C.R.Mar shall,				
F.W.Norris.	Bioch.J.,	1937	31	1939.
45. W.B.Ellet, B.Tollens. 46. C.Kullgreen, H.Tydén.	Ber.,	1905	38	492.
	Ingen, Vetansk.			
	Akad. Handb .,	1929	No94.	
47. C.R.Marshall, P. W.Norris.Bioch.J.		1937	31	1053.
48.	J.Rsch, Nat. Bur.	1938	21	327.
	stdds.,	1939	$\underline{23}$	293.

49. C. Hockett, A. Guttag,
M.E.Smith. J.Amer.Ch.Soc., 1943651.
50. Van der Haar. Nachweig, Trennung und Bestimmung der
Nonosaccharide und Aldehydesauren.
51. F. Smith
52. C. Dorée.
53. Hawthorne.
54. R. Consden, A.H.Gordon,
A.J.P.Martin. Bioch.J., $1944 \quad \underline{38} 224$.

The aution wishies to express her thanks for

 grantis from The Chemical Boelety for the purebase of Ulva, from the Central Researeh Fund and the Dixon Bund of the University of London for the purchase of a centrifuge and a rerraoboneter respectively, and for Plnancisl assistance from Irperial Ghemical Industries 3 tu.