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ABSTRACT

The azimuthal magnetic field and current density structure of a 
Plasma Focus device, have been investigated by the observation of the 
Faraday rotation of a ruby laser probe beam. The magnetic field and 
current distributions play important roles in plasma compression, 
heating, confinement, stability, and particle acceleration. However, 
in over two decades of research, no satisfactory experimental data on 
the field or the current have been produced. The results reported are 
of the first measurements of magnetic field and current distribution in 
the Plasma Focus, using a non perturbing diagnostic technique. A full 
description of the experimental apparatus and method, the physics of 
the differential polarimetry (with refraction effects included), and 
theoretical reviews of Faraday rotation, birefringence, dichroism, and 
refraction, are given. It was found that during the collapse phase of 
the discharge, times t = -10 ns to t = 0 ns (peak compression), the 
current and field are confined to the plasma skin. The penetration 
depth is 0.56 mm, and the resistivity is classical. During the dense 
pinch phase, between t = 0 ns and t = +10 ns, the plasma develops a 
turbulent core, of radius 2 mm, in which the resistivity is highly 
anomalous (by a factor 6000). This results in a rapid diffusion 
(lasting approximately 10 ns) of field and current (typically 20$ of 
the total) into the core. Particle acceleration is suppressed at this 
stage because the ion Hall term, w , is less than unity. Outside
this core, the resistivity is classical, and the current is carried in 
the plasma skin. At times t = +10 ns to t = +15 ns, axial current 
filamentation was observed. These filaments last less than 2.5 ns, and 
carry in excess of 12$ of the current. Future studies of the 
filamentation should lead to a better understanding of the intense 
neutron production observed in Plasma Focus devices.
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INTRODUCTION

The internal magnetic fields of laboratory plasmas can be measured 

by a variety of techniques, such as Thomson scattering [1,2,3], and 

Zeeman splitting of line radiation from neutral lithium probe beams 

[4,5]. These techniques are reviewed by Peacock [6] and the TFR 

group [7]. However, this class of measurement has proved difficult, so 

that there is no single method which can be described as established or 

routine. In addition, because of the large variation in the basic 

parameters of the many laboratory plasmas in existence, e.g. in

electron density, a measurement technique which can be applied to one 

type of plasma may not be feasible with another. One method which is 

becoming established, although far from being routine, and which is 

independent of plasma type, is Faraday rotation. This method has been

applied to a variety of plasmas ranging from the smallest laser

produced plasmas (radius 'u 250 microns, magnetic field ^ 200 Tesla, 

electron density ^10%? m“ )̂ [8,9], to the largest Tokamak plasmas 

(radius 0.25 m, magnetic field /u 2 Tesla, electron density 

^ 10̂  ̂ m ”"^ [10,11,12]. This is the method which was chosen to measure 

the unknown azimuthal magnetic field structure of a Plasma Focus

device, and it ' is this investigation which is the subject of this 

thesis.

The Plasma Focus [13,14] is a device in which a plasma sheath is 

formed across an insulator between and at one end of two concentric 

cylindrical electrodes. The current through the plasma forms a 

magnetic field within the volume between the electrodes and the

insulator side of the plasma sheath. The result is that the magnetic 

pressure, or volume J_xB force, drives the plasma away from the 

insulator and down between the two electrodes 'snow-ploughing* the low
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pressure gas ahead. The gas is normally deuterium at a pressure of 
approximately 2 torr. This phase is called the run-down phase. 

Eventually, the sheath reaches the open end of the electrodes and, as a 

result of the jxg. radial force component, pinches. This phase of the 

discharge is called the collapse phase. On the axis of the device used 

in this experiment [15], described in chapter 2, electron densities 

greater that lO^s m "  ̂have been observed at maximum compression of the 

pinch column, when the plasma radius is approximately 2mm, and the 

plasma current 340 kA, with an associated magnetic field strength 

30 Tesla. All chronlogy is with reference to this time and is 

denoted t = 0. The phase commencing from peak compression, is called 

the dense pinch phase.
V

The magnetic field plays an important role in the dynamics of the 

Plasma Focus. Initially, it is the driving force which forms the 

plasma. Later, around the time of peak compression, it is an important 

source of ion heating. At peak compression of the pinch, the beta, or 

ratio of kinetic to magnetic pressure, is of order unity. As a result, 

the plasma can interact strongly with the magnetic field, modifying it. 

Current driven instabilities can be generated which lead to anomalous 

resistivity [16], and consequently enhanced Ohmic heating. In order to 

investigate and quantify these processes, the magnetic field structure 

must be measured.

Faraday rotation experiments on the Plasma Focus, have been 

attempted previously [17,18,19], but none have been totally 

successful. Other techniques have been employed to measure the 

internal magnetic field; by the spectroscopic observation of the 

Zeeman splitting of impurity ion line radiation from the plasma [20], 

and by the insertion of magnetic probes into the plasma volume to
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measure the field locally [21,22]. The former measurement gave only ah 
estimate of the field strength (50-100 Tesla), while the latter 

succeeded but only at the price of seriously perturbing the plasma. 

Therefore, the magnetic field of a Plasma Focus had not been determined 

experimentally with any precision or confidence. For this reason, it 

was decided to design a polarimeter, and measure the internal magnetic 

field structure using the Faraday rotation method.

In this method, a plane polarised electromagnetic probe beam is

directed through the plasma in a direction parallel to a component of

magnetic field, and the change in the plane of polarisation determined.

The change is called Faraday rotation, and occurs because the plasma is

biréfringent to circularly polarised light. The angle of rotation is

small, and depends upon the square of the probe beam's wavelength, and

on the line integral A n  Bn dl, where n is the electron density, andL e li e
B|j is the parallel component of magnetic field. It is therefore a line 

integral measurement technique, with the inherent problem of unfolding 

the many measurements needed from different plasma chords to give the 

magnetic field profile. In addition, the electron density must also be 

known, and in the work described here, was determined using ruby laser

1.5 ns double exposure holographic interferometry. This measurement is 

itself a line integral measurement technique requiring unfolding, and 

is described in section 2.2.3.

Several methods exist by which small Faraday rotation angles can be 

measured. For example, if the probe beam's plane of polarisation is

made to circularly rotate at a constant angular frequency, then the

intensity detected through an analyser would be observed to vary as a 

sine squared curve at this angular frequency. Faraday rotation either 

advances or retards the probe beam's plane of polarisation, and results
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in a phase shift of the transmitted signal [23]. The phase shift is 
exactly the Faraday rotation angle. This method is independent of the 

probe beam’s intensity, so that variations in the illumination of the 

analyser cannot be misinterpreted as being due to Faraday rotation. 

Another method consists of using a probe beam with a plane of 

polarisation which oscillates through a small angle, larger than the 

Faraday rotation angle, at a constant frequency [24]. The intensity 

transmitted through a crossed analyser then varies at the oscillation 

frequency. Faraday rotation alters the amplitude of the signal 

observed at this frequency by lock-in techniques. Unlike the previous 

phase method, this amplitude method has the problem that variations in 

the analyser illumination may be interpreted as being due to Faraday 

rotation. However, by observing the signal amplitude at twice the 

fundamental oscillation frequency in addition, the illumination term 

can be removed to leave only information about the Faraday rotation 

angle [12].

Both these methods were devised for application on Tokamak plasmas,

where the time scales involved are of the order of milliseconds, and

the required oscillation frequencies in the range 10 - 100 MHz, For 

the Plasma Focus, the time scales are of the order of nanoseconds, 

which would require variations in the probe beam’s plane of

polarisation at GHz frequencies. This was considered to be too

difficult to achieve with the ruby laser used in the experiment, 

because good spatial and temporal coherence were required along with 

high power operation. Therefore, both of these methods were rejected 

for use on the Plasma Focus.

The technique adopted is known as the differential half-shade 

method [25], and is described in chapter 3. The plane polarised probe
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beam emerging from the plasma is divided into two equally intense 

beams, which are transmitted through two analysers. To achieve high 

sensitivity, these analysers are set at a small angle from the crossed 

position. This angle is called the half-shade angle, and was 2° in the 

experiment. The crossed positions were chosen so that with Faraday 

rotation, the transmittance of one analyser increases, while the other 

decreases. By detecting the intensities transmitted, and calculating 

the ratio of signal difference to signal sum, the direction and 

magnitude of the Faraday rotation angle can be determined. By taking 

this ratio, the effect of variations in the probe beam illumination is 

removed. A Q-switched ruby laser (694.3 nm, 0.5 J) of pulse length 

30 ns was used as source. It was chosen for several reasons. At the 

laser's wavelength, the expected Faraday rotation angle < 5® , was

sufficiently large for accurate measurements, with minimal 

complications due to refraction and birefringence.

The experimental scheme adopted was to image a 250 micron diameter

plasma chord onto a single detector, via two fibre optic links of 

different length. Many measurements were taken during a laser pulse, 

with a time resolution of 2.5 ns. The full spatial and temporal 

details of the Faraday rotation were built up on a shot to shot basis, 

at several viewing chord positions.

This scheme is different to that commonly employed in laser

produced plasma diagnostics [8,9], where a very short laser pulse is 

used to 'freeze' the plasma, and in which the whole plasma is imaged 

onto photographic film via polarisation analysers. From the resulting 

optical density of the photographic images, the Faraday rotation angle 

is determined. This technique gives all the spatial information 

required to unfold the data, assuming cylindrical symmetry.
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Interferometry can also be performed simultaneously along the same
optical path; which is an advantage in plasmas where the parameters can

vary considerably from shot to shot. In the Plasma Focus, the electron 

density distribution is reproducible during the collapse phase,

afterwhich instabilities occur which break up the plasma column. A

similar 'freeze' scheme was attempted on the Plasma Focus [26], but did 

not have sufficient sensitivity to observe the much smaller than 

anticipated actual Faraday rotation (A 0.5°). One disadvantage which 

has possibly been overlooked by experimentalists, is that the 'freeze' 

technique cannot observe very rapid changes in magnetic field. For 

example, the unique observations of the short-lived axial current 

filaments reported in this thesis, were seen as a very rapid change in 

the Faraday rotation angle in the neighbourhood of the magnetic axis. 

These filaments lasted for a time period A  2.5 ns, and if the 'freeze' 

technique had been employed, the probability of observing a filament 

would have been very small.

In any Faraday rotation experiment, there is an optimum choice of 

probe wavelength. It was stated that Faraday rotation scales as so 

that as large a wavelength as is feasible would at first appear the 

best choice. However, there are several complicating factors which 

must be considered. The probe beam is refracted by the plasma, and the 

refraction angle, also scaling as X^, sets an upper limit to the 

wavelength, depending on what is acceptable. The perpendicular 

component of magnetic field in the plasma causes the plasma to be 

biréfringent to linearly polarised light, with the consequence that the 

probe beam emerges elliptically polarised. This effect is known as the 

Cotton-Mouton effect [27], and scales as X \  It is polarisation 

sensitive and can be minimised, in addition to correctly choosing the 

wavelength, by the choice of initial plane of polarisation. Other
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effects which must be considered are dichroism and birefringence, 

caused by electron collisionality and plasma density inhomogeneities 

respectively. All of these optical properties are examined in detail 

in chapter 1. The two final important factors are the availability of 

a suitable high power source (high power is required when analysers are 

used near the crossed position), and the sensitivity and speed of 

detectors at the optimum wavelength.

Complications in the measurement of Faraday rotation occur in 

practice due to the effect of optical elements on the probe beam's 

polarisation state. The curvature of lens surfaces with. Fresnel 

reflection, can alter the polarisation planes spatially within the 

probe beam (see appendix B), Stress-birefringence within the elements 

can cause polarisation ellipticity. Dielectric beam-splitters have 

different reflection coefficients for s and p polarisation states. 

This latter property of beam-splitters has been turned to an advantage 

by using them to amplify Faraday rotation. All of these effects can 

change during a plasma shot due to the probe beam’s optical path 

changing as a result of refraction. The angles of incidence, and 

therefore the values of reflection and transmission coefficients, as 

well as the points of reflection can change. This latter change can 

have the effect of altering the reflection plane of a beam-splitter, 

which consequently appears as a rotation of the probe beam's plane of 

polarisation.

A full theoretical analysis of the optical behaviour of the 

polarimeter developed for this measurement is given in chapter 3. The 

effect of plasma refraction on the measurement of Faraday rotation has 

been assessed It is shown that for this instrument, there is an 

optimum operating point where the effects of refraction are minimised.
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This can and has been verified experimentally by simulating the effects 

of refraction. New criteria are presented for determining the optimum 

sensitivity when limited by either polarisation ellipticity, or by the 

analysers finite rejection ratio.

The results of the Faraday rotation experiment, together with the 

results from holographic interferometry, are given in chapter 4. Also 

discussed, is the analysis of these measurements, e.g. the Abel 

inversion, and the accuracy of the unfolded electron density and 

magnetic field. These magnetic field results are the first detailed

measurements made on a Plasma Focus by a non-perturbing technique.
V

The interpretation of the results is also given in chapter 4. From 

the interferometry measurements, information on the temporal evolution 

of the plasma’s axial length, plasma radius (at a variety of Z axis 

positions), and sheath velocities, is described. In addition, from the 

unfolded electron density distributions, the electron line density and 

average density, can be calculated. From these, the axial particle 

loss rate, and the focussing efficiency of the Plasma Focus, can be 

evaluated. The magnetic field measurements give directly the plasma 

current, and the current leakage across the insulator. Assuming 

pressure balance models, average temperature profiles are determined. 

In addition, the plasma resistivity can be estimated from the magnetic 

field diffusion rate. From Ampere’s law, the axial current density 

profile is obtained. This gives the electron drift velocities, and the 

Ohmic heating deposition. The interpretation of the results for axial 

current filaments, are also discussed. The information presented on 

many of these topics are original, since they follow from the first 

accurate magnetic field measurements made on a Plasma Focus device.
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Finally, in chapter 5, a summary of the results and conclusions 

from the investigation of the Plasma Focus is given. The new work 

presented in chapters 1 and 3 on polarisation effects, refraction, and 

polarimetry, are discussed. Suggestions for improving the experimental 

technique and for future research are given.
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CHAPTER 1 A REVIEW OF FARADAY ROTATION AND 

OTHER OPTICAL PROPERTIES OF PLASMA

1.1 INTRODUCTION

A plasma permeated by a magnetic field has optical properties which 

are similar to those of crystals. It is biréfringent, optically 

active, and dichroic. In addition, because of gradients in electron 

density, they are refractive. Starting from the theory of 

electromagnetic wave propagation in magnetised plasma, the theories of 

Faraday rotation, birefringence, and dichroism, are reviewed. The 

coupling of these effects is also examined, and the manner in which the 

effects of birefringence can be minimised discussed. The theory is 

applied to a simple cylindrical plasma model, for which the method of 

extracting the magnetic field profile from Faraday rotation 

measurements is considered. Useful analytical expressions are derived 

which quantify these effects. Refraction by cylindrical plasmas is 

also reviewed. •

1.2 WAVE PROPAGATION IN A HOMOGENEOUS MAGNETISED PLASMA

In this section, the theory of electromagnetic wave propagation in 

an infinite homogeneous Lorentz plasma will be considered. A Lorentz 

plasma is a simple plasma model in which the ions are at rest, acting 

as a continuous stationary fluid, through which the electrons
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Wave propagation

Figure 1.1

 ̂ Coordinate frame for wave propagation in an 

arbitrary direction to the magnetic field.

move. Interparticle interactions are included through a momentum 

damping term (discussed in section 1.4).

Consider a plane electromagnetic wave propagating along the z-axis 

at an angle 9 to the magnetic field which lies in the y-z

plane (see figure 1.1). The interaction of the wave with the plasma 

occurs via the electric field of the wave and the equation of motion

of the electrons is
d v

m - — = -e E -e v  x  B -  vm v
e d t  — — — e — (1.1)

where y. is the electron velocity, and v is the effective collision 

frequency for momentum transfer to the ions. Assuming that the plane 

wave has a phase factor exp(iwt), where oj is the wave frequency, then 

with the substitution d/dt = ico and the definition of the current
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density J.
J = -e n  V 
—  e —

(1.2)

where n is the electron density, the equation of motion, on expansion, 
e

gives an expression for Ohm's law with a reciprocal conductivity

tensor o--1

-1
E =  cr . J (1.3)

where

-1 m

i03 + V

■0) c o s i 
ce

Ü) s in 0  
ce

03 co s t 
ce

i03 + V

-03 s in 9  1 
ce

i03 + V

(1.4)

and where = eB/m^ is the electron cyclotron frequency. The second 

stage in the theory is to derive Ohm's law with a conductivity 

tensor y  , namely'

J  =  O’ . E (1.5)

The dispersion relation for wave propagation then follows from the 

requirement that equations 1.3 and 1.5 are self-consistent.

The conductivity tensor is derived by considering Faraday's and 

Ampere's laws, with an explicit current density jL

9b

V X E = -
3 t

9d

V X H = J  +

(1.6)

(1.7)
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A plane wave propagating along the z-axis with a phase factor given by

exp(i03t - kz)

where k is a complex phase coefficient defined as

. ( J Ük = a + 1 —  ji c

(1.8)

(1.9)

where u is the refractive index and a is the attenuation coefficient, 

must satisfy these equations. Substitution into equations 1.6 and 1.7» 

along with the constitutive relations

D = £ E and B = ji H
— o— — o—

(1.10)

where both the relative permittivity and permeability are unity, and 

eliminating the Ü  components gives the conductivity tensor

o = iüoe

%:-l 0

pf-l

-1

(1.11)

where u is a complex refractive index defined as

(1.12)

For equations T.3 and 1.5 to be self-consistent
-1(^ %)yE = 0 (1.13)

where _I is the unit tensor. This equation represents a set of three 

simultaneous equations, and the determinant of the coefficients must be 

zero for a non-trivial solution to exist. Therefore
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(iw + vXu^-l) +
ioj2 pe

03

-03 (&2-l)COS(ce

03 (p?-l)sin8 ce

03 (pf-l)COS(ce

(i03 + V) -1) +
103'“pe

03

03 sinB ce

-(i03 + V) +
i03̂  pe

03

=  0

(1.14)

where o) = (e^n /e m ) pe e o e
refractive index 

equation [28]

then

is the plasma frequency, 

follows by solving' this

The complex 

determinantal

-1
03'“

1-
iv
ôT"

of sinfG ce ce s i n ^ G 032 C O s 2 G  ce

403^(1-
032 pe _ 
032 f . '  '  1

This is Appleton's equation. It gives the refractive indices and 

attenuation coefficients for waves whose state of polarisation is 

determined by the ratios of the electric field component coefficients 

given by equation 1.13.

Two parameters are employed to describe the polarisation; the wave 

polarisation coefficient and the longitudinal polarisation

coefficient S. These are defined as

(1.16)

From equation 1.13» in the absence of damping, R+ is given by

R = i  (1+(1 + pZ)^) (1.17)± r

(1.15)
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where F is defined by
/ w' \ (1-lS)

P  -  ^  [ 1 — P ®  * C O S 0
03 \  03̂  /  s i n f G

ce \  /

and where the subscript taken, + or -, is the same as the sign taken in 

Appleton's equation. In the high frequency limit

03 »  03 ; 03 ; V ( 1 . 1 9 )
pe ce

the longitudinal polarisation coefficient is very small, so that there 

is only a negligable longitudinal electric field component. There are 

therefore two waves for each direction with a polarisation described by 

R^, and these are called characteristic waves. They are the normal 

modes of electromagnetic oscillation in the plasma, and have the very 

useful property that they propagate without changing their polarisation 

state. They are generally elliptically polarised, and are orthogonal, 

with their major axes at 9 0® to each other, and with the same 

ellipticity but opposite handedness (see figure 1.2). Any polarised 

wave can be resolved into two waves with orthogonal polarisation. The 

ellipticities of the characteristic waves, which are .determined from 

R+, are given by

= ^(l-(l+F2)^) (1.20)

E_ = j((l+F2)^-l) (1.21)

A non-characteristic wave propagating at an oblique angle to the 

direction of the magnetic field will have its polarisation modified by 

the plasma. How this occurs can be analysed by resolving the wave into 

two orthogonally polarised characteristic waves. These are then 

allowed to propagate through the plasma, subject to different 

refractive indices and attenuation coefficients. Finally, the
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Left-handed or 'slow' ^  characteristic wave

►  E.

R ight-handed  or 'fast' 
characteristic wave

Figure 1.2

The general polarisation state of the characteristic waves

polarisation state of the wave emerging from the plasma is obtained by 

a superposition o-f the characteristic waves, each with different phases 

and amplitudes. The polarisation change is usually a rotation of the 

major axis, and an increase in the polarisation ellipticity.

1.3 THE PRINCIPAL CHARACTERISTIC WAVES

There are two directions in the plasma which are of special 

interest. These are parallel and perpendicular to the magnetic field 

lines, and are called the principal directions. In this section, the 

refractive indices, attenuation coefficients, and state of polarisation 

of the characteristic waves for these directions are given. These 

waves are called the principal characteristic waves. It will be
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assumed that the wave frequency satisfies the high frequency limit.

1.3.1 PROPAGATION PARALLEL TO THE MAGNETIC FIELD

For the case of wave propagation parallel to the magnetic 

field, 0 = 0°, the wave polarisation coefficient has the following

values
=q:i (1 .2 2 )

Assuming that the x components of the waves have unit amplitude and

phase given by the real part of exp(iw t), the field components for the

wave with R = -i are +

E = c o s  w t  and E = - s i n  ojt ( 1 . 2 3 )X y
\

Superposition of these wave components gives a characteristic wave with 

circular polarisation. The direction in which the electric field 

describes the circle - the handedness - is clockwise for an observer

looking towards the source of light. In plasma wave theory the wave is

called left-handed, and is sometimes refered to as the ’slow' wave.

Similarly, the characteristic wave with R_ = i has field components

E = c o s  w t  and E = s i n  w t  ( 1 . 2 4 )X y

Again the polarisation is circular, but the wave is now called the 

right-handed or 'fast' wave. The electric field vector describes the 

circle in an anti-clockwise manner, for an observer looking towards the 

light source.

These polarisations are shown in figure 1.3 and, included for 

comparison, is the direction of electron gyration. This corresponds to 

the direction of rotation of the right-handed wave. Unfortunately, the
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Direction of wave 
propagation

Electron
gyration

Right-handed circularly Left-handed circularly
polarised characteristic wave. polarised characteristic wave.

Figure 1

The circularly polarised principal characteristic waves.

labels used in plasma wave theory do not conform to the normal 

convention in optics, where the electric field vector rotates clockwise 

and anti-clockwise for right and left-handed polarisations 

respectively, for an observer looking towards the light source. This 

is because the label in plasma wave theory, describes how the wave 

compares with the direction of electron gyration. For the case of 

propagation anti-parallel to the magnetic field, 6 = 180°, the wave 

polarisation coefficient has the values

= ±i (1.25)

so that for the right-handed wave, the field components are as given by

equations 1.2 3 , which are those for a left-handed wave propagating

parallel to the field. Thus, with respect to the magnetic field, the

electric field vector of the right-handed wave will appear as shown in
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a) Parallel to the magnetic
field.

b) Anti-parallel to the 
magnetic f ie ld , and 
normal optics convention.

Figure 1.4

The handedness of the right-handed circularly polarised principal 

characteristic wave with respect to the magnetic field.

figure 1.4. The conventional direction of rotation is also shown for 

comparison.

From Appleton’s equation, the refractive indices and attenuation 

coefficients for these waves, in the high frequency limit, are [2 8]

Right-handed wave 1 -
ce

“r =
0)2 V 

pe

2c  (0)—03 ) 2 /^ j—(JL) —0)2 \  ^
ce  I ce pe

0)

( 1 . 2 6 )

( 1 . 2 7 )
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L e f t - h a n d e d  wave _ /  ^p e  \
I wCw+W^g)y ( 1 . 2 8 )

0)2 V
a  ---------------^ (1 29)

2c (w + w  ) 2 / oj+u) -  pe 
ce ce ——-03

The subscripts L and R refer to the left and right handed waves 

respectively.

1.3.2 PROPAGATION ORTHOGONAL TO THE MAGNETIC FIELD

The wave polarisation coefficient for wave propagation orthogonal 

to the magnetic field, 0 = 90°, has the values

R = 0  and R = ( 1 . 3 0 )+

Taking these in turn, the R + =  0 result means that there is no wave 

component E^. Thus the characteristic wave is linearly polarised with 

the electric field along the y-axis, and therefore parallel to the 

magnetic field. This wave is called the ordinary wave. For R_ = °° , 

there is no component, and the wave is linearly polarised along the 

x-axis, which in turn is perpendicular to the magnetic field. This 

characteristic wave is called the extraordinary wave. These 

characteristic waves are shown in figure 1.5 .

From Appleton's equation, the refractive indices and attenuation 

coefficients for these waves, in the high frequency limit, are [28]

0)2
O r d i n a r y  wave p = f l  ^  ) ( 1 . 3 1 )

O \ 03̂
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“o =
Extraordinary wave

pe

e x
1 -

0)2 (0)2 -0)2 ) 
pe pe

0)2 (0)2 -0)2 -0)2 ) 
pe ce

a
0)2 V (0)2-20)2 +0)2 ) 

pe__________ pe ce
e x 2 c ( 0)2 —20)2 —0)2 ) ( 0)2—0)2 —0)2 ) ? 

pe ce pe ce

(1.32 )

(1.33)

(1.34)

The subscripts *0' and 'ex' refer to the ordinary and extraordinary 

waves respectively.

Extraor<jinary wave

Direction of wave 
propagation

Ordinary wave

FIk pp q l.tS

The linearly polarised ordinary and extraordinary 

principal characteristic waves.
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1.4 THE EFFECTIVE COLLISION FREQUENCY

The attenuation of an electromagnetic wave in a plasma arises 

through momentum transfer from the electrons, oscillating in the 

electric field of the wave, to the background ions, via the Coulomb 

interaction. The attenuation coefficients given in the previous 

section are proportional to the effective collision frequency for 

momentum transfer, v . This frequency is obtained by averaging the 

velocity dependent collision frequency over the velocity distribution 

of the electrons. For the case of a Maxwellian distribution, the 

result is [2 8]

e B e

In these equations, Z is the ionic charge, T^ is the electron 

temperature, and A is the Coulomb parameter, defined by Spitzer [29] 

as the ratio of the Debye length to the mean impact parameter for a 90° 

deflection of an electron by an ion, due to classical Rutherford 

scattering. This ratio is given by [29]

However, this derivation considers the interaction of electrons 

with the plasma ions at the plasma frequency and not the wave 

frequency. It also ignores electron diffraction, which for 

temperatures > 80 eV becomes important. Taking these effects into 

account, the parameter A has the following limiting forms [28,30]
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T ^  77 2% eV £nA = £ n { 0 . 4 5  ( ) A } ( 1 . 3 7 )
w /  s

k  T
T > 77 2% eV inA = £ n { 2 . 2 4  r — ~  }  ( 1 . 3 8 )

e ncü

1.5 THE APPROXIMATION OF GEOMETRICAL OPTICS

The theory of electromagnetic wave propagation discussed in 

sections 1.2 and 1.3, assumed an infinite homogeneous plasma. However, 

laboratory plasmas are inhomogeneous. Generally, the wave equation for 

studying wave propagation in such media is the inhomogeneous wave 

equation. But, since the wavelengths used in optical plasma 

diagnostics are typically very much less than the electron density 

scale length, then the plasma can be considered to exist as layers in 

which its optical properties are homogeneous. Thus, the homogeneous 

wave equation can be applied locally, and we need only consider the 

propagation of plane waves. More importantly, the solution to the 

homogeneous wave equation can be used to approximate propagation in an 

inhomogeneous plasma, because it will appear as a homogeneous medium 

with variable propagation coefficients. The solution has the following 

form

E ( z , t )  =  E ^ e -  ^  ( 1 . 3 9 )

where X is the wavelength of the wave, and where the attenuation and 

the optical path length are integrated over the wave trajectory, L.

The condition which must be fulfilled for this simplification to be
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valid, is known as the approximation of geometrical optics, and 

expressed by the inequality [3I]

IS

»  X (1.40)

This states that the refractive index scale length must be very much 

larger than the wavelength of the wave.

1 .6 FARADAY ROTATION

In this section, the polarisation change experienced by an 

electromagnetic wave propagating through an inhomogeneous plasma, in a 

direction parallel to the magnetic field, will be discussed. It is 

assumed that the approximation of geometrical optics applies, so that 

the plasma appears homogeneous. It is also assumed that the wave 

frequency is sufficiently greater than the characteristic plasma 

frequencies for the results of section 1.3.1' to be valid. Initially, 

attenuation is neglected.

Consider a plane electromagnetic wave which is propagating through 

a magnetised plasma in a direction parallel to the magnetic field. 

This is a principal direction for which the characteristic waves have 

left and right hand circular polarisation. Since the initial 

polarisation is linear, then we can resolve the wave into 

characteristic waves of equal amplitude (see figure 1.6). If the 

initial polarisation is along the x-direction, then the x and y 

electric field components of the characteristic waves, from
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The change in the plane of polarisation from a) the initial 

state, to b) the final state, due to Faraday rotation.

equations 1 .23 and 1.24, are given by

= a c o s w t  , = - a  s i n o j t
X o y  o

R R
and E = a cosoot , E' = a s inoo t X  o y  o

(1.41)

where the superscripts L and R denote the left and right hand circular 

polarisation respectively, and a^ is the amplitude. These two 

characteristic waves initially have the same phase. After propagating 

through the plasma along an optical path L, the field components are 

given by

= a^ c o s  (oot-<j)^) , E ^  = - a  s i n  (oot-(j)^)

and

with phases

a^ co s  (oot-({)^) , = a^ s i n  (oot-(p^) (1.42)

(p -  —  /  d£  , and ~  d£
L L

(1.43)
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Superposing the waves, the resulting field components are

E = E ^  + E^  = 2 a  co s  ( 6 / 2 )  co s (cü t-d ) )
X X X  o

L R - (1.44)
■ E = E + E = 2a  s i n ( ô / 2 )  c o s ( w t - é )y y y o

where 6 is the phase difference » &nd J is the mean phase

of the characteristic waves (c{) +cj) ) / 2  . The ratio of the

electric field components is then given by

E
^  = t a n  Ô /2 ( 1 . 4 5 )
X

From equations 1.26 and 1.28 , it can be shown that is greater than 

. Therefore, the phase velocity of the right-handed characteristic 

wave is greater than that of the left-handedi and the phase 

difference 6 is positive. Thus, since the ratio of the field 

components is independent of time, the polarisation is linear, and 

since the phase difference is positive, then the plane of polarisation 

is inclined at an angle 6 /2 from the x-axis, measured anti-clockwise. 

This rotation is called Faraday rotation, and is analogous to optical 

activity in crystalline media. Its magnitude, \p , is given by

’*'“ 1  (1-46)

The direction of rotation is in the same sense as the handedness of 

the faster characteristic wave, namely the right hand circularly 

polarised wave. From figure 1.3, this is in the same direction as 

electron gyration about the field lines.
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The resultant wave electric field can now be written as

E ^ t )  = E ^ { ^  cosip + 2  s in i j j }  c o s (C ü t -$ )  ( 1 . 4 7 )

which is the equation of a plane wave with its plane of polarisation at 

an angle ip from the x-axis, with a phase equal to the average phase of 

the characteristic waves. The amplitudes of the characteristic waves

are therefore E /2. •0

Consider now the case where a plane wave propagates anti-parallel 

to the magnetic field. The phase velocity of the right-handed 

characteristic wave remains larger than that of the left-handed, but 

now, as shown in section 1 .3 .1 , the equations for the field components 

of the characteristic waves are interchanged. After propagating along 

the path L, the resultant wave electric field vector is given by

E ^ t )  = E ^ { ^  cosip - 2  s i n i | ; }  c o s ( w t - ÿ )  ( 1 . 4 8 )

which has the same phase and amplitude as before, but with the plane of 

polarisation below the x-axis at the angle ip . Therefore, the Faraday 

rotation is clockwise. This is still in the same direction as the 

handedness of the right-handed wave and electron gyration. This result 

demonstrates that the process of Faraday rotation is non-reciprocal. 

If the wave were reflected back upon itself, the rotation would be 

additive. This is shown in figure 1.7.

The equation for Faraday rotation can be expanded by substituting 

equations 1.26 and 1 .2 8 for the refractive indices, and on simplifying 

the square root terms, becomes
(Jĵ  ÜÔ

*  = f  dJ, ( 1 . 4 9 )

Substituting for the plasma frequency, the cyclotron frequency, and the
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Faraday rotation is nonreciprocal

light wave frequency, gives

ip = ( 1 . 5 0 )

where A = STT̂ e
o e

= 2 . 6 3  X 10 r a d .  T e s l a  ^ ( 1 . 5 1 )

From this equation, we see that Faraday rotation scales as the square 

of the wavelength, and is proportional to the line integral of the 

product of electron density and magnetic field.
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1.6.1 THE CYLINDRICAL PLASMA MODEL

Consider the case of a plasma with cylindrical symmetry. If it 

carries an axial electrical current, the magnetic field lines also have 

cylindrical symmetry. If an axial magnetic field is superimposed, then 

the resultant field lines are helical. In these circumstances, a wave 

directed through the plasma will not in general travel along a 

principal direction. However, Faraday rotation will still occur, 

because there is a component of the field parallel to the wave path. 

The equation for Faraday rotation, neglecting the non-contributary 

orthogonal magnetic field component, can be written as

V ip = AX2 r  n  B . d i  ( 1 . 5 2 )L e—

If the wave is propagating in the r - d  plane (see figure 1.8), then for 

the geometry of this model, the equation for the Faraday rotation at an 

impact parameter h, is

ipQ(h) = 2AhX^J" (r)Bg (r) (r^-h^ ) ^dr ( 1 . 5 3 )

h

where Bg is the azimuthal magnetic field, and a is the plasma radius. 

This assumes that the wave is not refracted by the plasma. If 

refraction is important, the line integral must be taken along the wave 
path.

This result, in addition to being applicable to linear laboratory 

plasmas, such as the Plasma Focus, is also applicable to toroidal 

plasmas. However, as will be shown, a measurement of this rotation 

will only yield the azimuthal magnetic field profile. In many cases 

the axial or toroidal magnetic field profile is unknown and requires
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The cylindrical plasma model

measurement, as in the Reverse Field Pinch, or is sufficiently large, 

as in the Tokamak, that a possible misalignment of the probe beam, out 

of the r- 0  plane, may induce an additional Faraday rotation leading to 

an erroneous measurement. In order to generalise the problem, so that 

both the measurement of an axial magnetic field by Faraday rotation and 

the possible effect of this field on the measurement of Bq can be 

examined, consider the case where the beam is propagating through the

plasma at an angle Ü from the r-0 plane (see figure 1.9). The

corresponding parallel Eg component, substituted into equation 1.52, 

gives the same result as equation 1.53 for the partial Faraday rotation 

angle [32]. This occurs because the increased optical path length 

through the plasma, exactly compensates for the diminished parallel 

azimuthal field component. Therefore, any experimental misalignment of

the probe beam from the r-0 plane will not affect the value of ip .

The parallel axial magnetic field component gives rise to a partial
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Figure 1.9

Probe beam propagation at an arbitrary angle to the r-0 plane.

Faraday rotation angle ijj  ̂C32], where

ilj (h) = 2AX2tanfi n (r)B (r)(r^“h^) ^rdre z ( 1 . 5 4 )

and where is the axial magnetic field. The total Faraday rotation 

angle experienced by the probe beam is therefore ip̂  + {(j ,

If the effect of the axial field is to be supressed in a 

measurement of i|.)g , the angular misalignment of the probe beam from the 

r- 0 plane, must be such that << ipQ.

The effect of the orthogonal field component has been neglected. 

In fact, it will change the polarisation state from linear to 

elliptical, and may also affect the degree of Faraday rotation. This 

property is called birefringence or the Cotton-Mouton effect, and is
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discussed in section 1.7. However, as will be shown for the case where 
only the azimuthal field exists, if the initial plane of polarisation 

is such that the electric field of the wave is either parallel to, or 

orthogonal to, the axis of the plasma, then the effect will be small. 

This is because the wave will behave similarly to a characteristic wave 

for propagation perpendicular to the field. Faraday rotation will tend 

to make the wave less characteristic, but if the rotation is small, 

then the Cotton-Mouton effect will also be small.

1.6.2 THE ABEL INVERTED MAGNETIC FIELD PROFILES

Experimentally we are interested in the measurement of the magnetic 

field structure defined by the components Bg(r) and B^(r). These can 

be extracted from two measurements of Faraday rotation, at many impact 

parameters, when = 0 and when ÇI > 0. Then, the partial Faraday

rotation angles are
i|;g(h) = ^p^ih,çi=0)

and ip̂ (h) = > 0)- = 0) (1.55)

The equations for these partial rotations, in cylindrical geometry, 

are a form of Abel's integral equation [33]

g(h) = rf(r)(r2-h2)"^dr (1.56)

with solution

f(r) = - ^  ^  (h2-r2)"^dh (1.57)71 */ an

Assuming cylindrical geometry, from equation 1.53, we obtain the 

following equation for the azimuthal magnetic field
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■=<« ■ 3 ï ( ^ ) )
r

Similarly, from equation 1.54, the axial magnetic field is given by

^ dij; (h) 1

r

These solutions depend on the derivatives d/dhCi^i^/h) and d 14̂ /dh. 

Therefore, experimental measurements of the Faraday rotation must be 

sufficiently precise for these to be accurately determined. The 

spatial electron density distribution must also be known before the 

magnetic field structure is calculated.

1 .6 . 3  THE EFFECT OF DICHROISM ON FARADAY ROTATION

The effect of dichroism has not been considered. This is 

incorporated into the theory of Faraday rotation by including 

attenuation of the characteristic waves.

The amplitudes of the characteristic waves, as they propagate along 

the optical path L, are reduced to a^ and a^ for the left and right 

hand circular polarisations respectively, where -

a, = a a = a • (1 60)
L O R O

This attenuation occurs in addition to the phase change. The electric 

field components of the characteristic waves, are given by 

equations 1.42 with the amplitudes a^ and a . On superposing these 

components, and writing the amplitude of the left-handed wave as
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Ellipticity due to Dichroism.

^ , the resultant wave vectors become
5 " L= 2a^ cos (— )cos (a3t-(̂ )) + AcosCwt-cf) )

and = 2a^ sin (■j)cos (wt-cj)) - Asin (wt-c})̂ )
(1.61)

These equations give a resultant wave whose polarisation is equivalent 

to that produced by the superposition of a plane wave of amplitude 2a^, 

and phase $ , linearly polarised at an angle 6/2 from the x-axis (the

Faraday rotation angle), with a left-handed circularly polarised wave 

of amplitude A and phase (see figure 1.10). The resultant wave 

polarisation is elliptical, with- the handedness of the least attenuated 

left-handed wave.

The ellipticity £ is obtained by considering the resultant wave 

amplitude when
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(ut-5) = ya
and is given by

E =
*L

(1.63)

The azimuthal angle of the ellipse’s major axis is the Faraday rotation 

angle.

The ellipticity, when small, can be expressed as

e s i ( i  - -Ü )  (1.64)

and from equations 1.60, with the exponential expansion exp(x) =  1+x, 

is simplified to

E ' I  65)

From equations 1.27 and 1.29 for the attenuation coefficients, this 

equation becomes

 ̂ i l /E = — :---- d& (1.66)

L

Substituting for the frequencies w , and v, we obtain

3/
C ' & n A  d& (1.67)

where ,—  9
P = ______________ G   -43 3 3/ _i

1536.?E '«s. %  = 2 . 2 8 X 1 0  » K Tesla .68)
0 e B

Therefore, the ellipticity due to dichroism scales as the fifth power 

of the wavelength, and is dependent on a line integral involving the 

magnetic field, the electron temperature to the minus three-halves 

power, and the cube of the electron density.

Thus, the general result is that a plane wave emerges from a
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magnetised plasma with elliptical polarisation, after propagating 
parallel to the magnetic field. The major axis of the ellipse is 

rotated by Faraday rotation from the initial plane of polarisation, and 

the left-handed ellipticity arises from the preferential attenuation of 

the right-handed characteristic wave.

1.7 BIREFRINGENCE

The theory of birefringence in an inhomogeneous magnetised plasma, 

is similar to the theory of Faraday rotation. Birefringence, also 

called the Cotton-Mouton effect [27], arises from the anisotropy 

created by the magnetic field, and affects waves propagating in a 

direction perpendicular to the magnetic field. In the following 

theoretical review, the following .assumptions are made: The

inhomogeneous plasma is considered homogeneous, with the approximation 

of geometrical optics applicable. Also, the wave frequency is very 

much greater than the characteristic plasma frequencies. Initially, 

the effect of dichroism will be neglected.

Consider a plane electromagnetic wave propagating through a plasma 

in a direction perpendicular to the magnetic field. This is a 

principal direction for which the characteristic waves are linearly 

polarised, with the wave electric field either parallel to, or 

orthogonal to, the magnetic field. If the initial plane of 

polarisation is at an angle, 0 , to the magnetic field direction (see 

figure 1.11), then the wave can be resolved into the electric field 

components corresponding to the ordinary and extraordinary principal
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Extraordinary
wave

E ' cos 0

Ordinary wave

Figure 1.11

The ordinary and extraordinary characteristic wave components for wave 

propagation in a perpendicular direction to the magnetic field.

characteristic waves

E = E = a c o s  0)t and E = E = a c o s  w t  
o X  X ex y y ( 1 . 6 9 )

with amplitudes

a = E ’ cosX and a = E ' s i ny ( 1 . 7 0 )

where E* is the initial electric field amplitude. These initially have 

the same phase. After propagating through the plasma, along a path L, 

the characteristic waves have different phases due to their unequal 

phase velocities. The electric field components are then

E -  a cos  (cot“ (|) ) and E = a cos  ( cot-d) )
o x  o ex y e x ( 1 . 7 1 )

with phases

'*’0 = - r  " 4 d l ( 1 . 7 2 )
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The equation for the resultant electric field is then obtained [34] by

eliminating wt from these equations, and the result is
2 2 

E \  /  E \  2E E COSO
—  ) + ( —  ) ---------- -------------------  = s in = 6  ( 1 . 7 3 )

/ \ / ^x ŷ

where 6=6 -6 is the phase difference. This is the equation for an o ex
ellipse, which has the following properties: The azimuthal angle, ,

of the major axis, measured anti-clockwise from the x-axis, is given by

t a n  2\p  = t a n  20 co s  6 ( 1 . 7 4 )

and t h e  e l l i p t i c i t y ,  E ,  b y

E = t a n  X ( 1 . 7 5 )

where x ( “ ' ^ = 0 ( = J  ) is an angle defined by

s i n  2 x  = s i n  20 s i n  6 ( 1 . 7 6 )

From equation 1.74, if the phase difference is small, such that

cos 6 = 1 ,  the major axis of the ellipse will be parallel to the initial 

plane of polarisation. If it is not small, then only by having the 

initial plane of polarisation at the angle 0 or 90 degrees to the 

magnetic field will this be true. For a small phase difference which 

satisfies sin 6 =tan6, from equations 1.75 and 1.76, the ellipticity is 

approximately given by

e s y  6 s i n  20 ( 1 . 7 7 )

and has a maximum value when 0 = 45 degrees. If 0 = 0 or 90 degrees, 

the ellipticity is zero. Thus, birefringence will not be observed if 

the initial plane wave is also a characteristic wave.
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The handedness of the polarisation ellipticity depends on the sign

of tan X » which in turn depends on the sign of sin 6. If 6 is

positive, then the polarisation is right-handed for an observer looking 

towards the source of light. If 6 is negative, then the polarisation 

is left-handed. These labels correspond to the usual convention in 

optics, as discussed in section 1.3.1» In our case 6 is positive, and 

so the polarisation is right-handed.

The phase difference, 6, can be expressed in terms of the plasma

parameters by substituting the refractive indices for the ordinary and

extraordinary waves, equations 1.31 and 1.32, giving
r  (jü̂ Ci3̂

6 = 2  /  4 - - dJl ( 1 . 7 8 )

\

Substituting for the plasma frequency, the cyclotron frequency, and the 

wave frequency, gives

6 = d X^ ( 1 . 7 9 )

where
© ̂ —11 —1 —2 

D =     = 2 . 4 6  X 10 m T a .  8 0 )
16tt̂ £o e

Ellipticity due to birefringence therefore depends upon the cube of the 

wavelength, and the line integral of the product of electron density 

and the square of the magnetic field.

1.7.1 THE CYLINDRICAL PLASMA MODEL

In this section, the polarisation ellipticity arising from

birefringence, for the case of an initially plane polarised wave 

propagating through a cylindrically symmetrical plasma, will be 

considered. For simplicity, the following assumptions apply. The wave

propagates unrefracted only in the r-6 plane. The initial plane of
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polarisation is at an angle <r from the plasma axis. The magnetic field 

is azimuthal.

The appropriate field factor for describing birefringence with this 

plasma geometry, is the square of the perpendicular field component. 

Substituting this factor, together with the expression for the optical 

path increment, into equation 1.79, gives the phase difference 

experienced by the wave at an impact parameter h

6 ( h )  = 2 D X V ^  n ( r ) B 2 ( r ) ( r 2 - h 2 ) *  ( 1 . 8 1 )h e  o r

From equation 1.77, the ellipticity, assuming 6 is small, is given by

6 ( h )  = & 6 (h )  s i n  2 cr ( 1 . 8 2 )

Faraday rotation due to the parallel field component occurs 

simultaneously with the Cotton-Mouton effect. Since this will alter 

the azimuthal angle of the state of polarisation, then equation 1.82 is 

only approximate. A better approximation is obtained by adding the 

Faraday rotation angle to the initial azimuthal angle, i.e. 

equation 1.82 becomes

E ( h )  = & 6 (h )  s i n  2 ( f + ^ ( h ) )  ( 1 . 8 3 )

From this equation, we see that in order to minimise the ellipticity 

- a requirement of accurate Faraday rotation measurements - the initial 

plane of polarisation must be chosen such that, with Faraday rotation, 

the wave appears most like either the ordinary or the extraordinary 

principal characteristic wave. Another factor which aids the 

minimisation of the ellipticity, is by a suitable choice of wavelength. 

Since the ellipticity scales as the wavelength cubed, while Faraday 

rotation scales only as the square, then by shortening the wavelength,
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the ellipticity will decrease more rapidly than Faraday rotation. An 

optimum point will eventually be reached where the measurement becomes 

feasible.

The generalised problem of arbitrary wave propagation across a 

cylindrical plasma carrying both azimuthal and axial magnetic fields is

not simply treated using the explicit methods so far adopted in this

chapter. The coupling between Faraday rotation and birefringence 

cannot easily be included. This topic is covered in section 1.8.

1.7.2 THE EFFECT OF DICHROISM ON BIREFRINGENCE

The effect of characteristic wave attenuation on birefringence, can 

be shown by substituting the amplitudes of the field components given 

by equations 1.71, with the attenuated amplitudes. Thus, these

equations become
„ _ -/-ra d&e b o  cos (cut “(|)̂)

® ^ L G e x ^ ^ c o s ( w t - 0 ^ ^ )  ' ( 1 . 8 4 )

and the problem is now equivalent to that when the initial plane of 

polarisation subtends an angle t from the magnetic field, where t is 
given by

t a n  T = t a n  0 ( 1 . 8 5 )

rather than the true angle 9. The orientation of the polarisation 
ellipse, ip , is then given by

tan 2ip — tan 2t cos 6 86)

and the ellipticity from
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sin 2 X = sin 2 T sin 6 (1.87)

T h e r e f o r e ,  t h e  e f f e c t  o f  d i c h r o i s m  i s  t o  a l t e r  b o t h  t h e  a n g u la r  

p o s i t i o n  o f  t h e  p o l a r i s a t i o n  e l l i p s e  and i t s  e l l i p t i c i t y .  From

e q u a t i o n s  1 .3 2  and 1 . 3 4 ,  i t  can  be shown t h a t  a ^ ^ i s  g reo- t& r  t h a n  a ^ .  

T h e r e f o r e ,  t i s  stno-LLer t h a n  8, and t h e  e l l i p s e  l i e s  closer bo t h e

x - a x i s  w i t h  d e c re a s e d  e l l i p t i c i t y .

1.7.3 BIREFRINGENCE DUE TO DENSITY INHOMOGENEITY

If the approximation of geometrical optics is not satisfied, then

effects can occur which lead to polarisation changes similar to

birefringence [35]. This can be seen by considering the inhomogeneous 

wave equation for an unmagnetised, and therefore isotropic, plasma

V^E + 2  V(E.Ve) + ek^E = o (1 .88)

where e is the permittivity given by

£ = 1 -  ( 1 . 8 9 )
Ur o

If the plasma is cylindrically symmetric, so that the permittivity has 

a radial dependence only, then the scalar product £.. Ve = 0 for waves 

polarised with their electric field parallel to the z-axis. It is 

non-zero for waves polarised orthogonally to the axis, and is given by
1 E
—V (E . Vc ) = -  - j Y  ( 1 . 9 0 )
^ “  n

w h e re  i s  t h e  e l e c t r o n  d e n s i t y  s c a le  l e n g t h .  T h i s  l e a d s  t o  a phase  

r e t a r d a t i o n  p e r  u n i t  l e n g t h ,  6 '  , b e tw e e n  th e s e  p o l a r i s e d  waves o f

0 n

w h ic h  ca n  become l a r g e  i f  ( X / L n )  >> 1 i . e .  i f  t h e  a p p r o x i m a t i o n  o f

— 55 —



geometrical optics is not satisfied, or if 0 which can occur if

the wave frequency approaches the plasma frequency.

In conclusion, an inhomogeneous plasma will appear homogeneous to a 

wave if the condition of geometrical optics is satisfied, and will not 

be biréfringent if the wave frequency is very much greater than the 

plasma frequency. Otherwise, birefringence can be minimised by 

choosing an initial plane of polarisation either parallel or 

perpendicular to the axis of symmetry.

1.8 A GENERAL THEORY OF FARADAY ROTATION AND BIREFRINGENCE

The theories derived for Faraday rotation and birefringence, 

neglected the coupling between these effects when a wave is not 

propagating along a principle direction, as in the cylindrical plasma 

model. Heald [3 6] examined this coupling for the particular case of 

wave propagation in a homogeneous plasma with a helical magnetic field. 

However, de Marco and Segre [3 7] were the first to consider the general 

problem of wave propagation in an inhomogeneous plasma with a spatially 

varying magnetic field. This work was further developed by Craig [3 8], 

and by Segre [39]. It is this latter work which is described below. 

The approximation of geometrical optics is assumed, as is the high 

frequency limit. Dichroism is neglected.
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Figure 1.12 

The Poincare sphere,

The two angles ip and x define the state of elliptical polarisation 

(of section 1.7). From these two angles, every state of polarisation 

can be uniquely specified.

On the surface of a sphere of unit radius, called the Poincare 

sphere [34,40,41], each state of polarisation is represented by a point 

S, whose latitude and longitude are 2x and 2^ respectively, as shown in 

figure 1.12. The cartesian coordinates of the point S are called the 

Stokes parameters, and define the polarisation vector 2. [34]

cos 2X cos 2'/' 

cos 2X sin 2'AS = (1.92)

sin 2X
Any polarised wave can be resolved into two orthogonally polarised 

waves, and two states of polarisation (x^, ^i)» (X2* ^ 2  ̂ orthogonal
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i X

Z “

if

Fiavrs.
Coordinate system for wave propagation in an 

arbitrary direction to the magnetic field.

(1.93)

These are represented on the surface of the Poincare sphere by two 

diametrically opposite points.

The change in the. polarisation state of a plane wave propagating in 

the Z direction, at an angle 9 to the magnetic field, through a thin 

slab of plasma, as shown in figure 1.13, can be represented on the 

Poincare'sphere by a rotation of the point S, representing the wave’s 

initial polarisation state, about an axis which joins the diametrically 

opposite points representing the orthogonally polarised characteristic 

waves. The angle of rotation is the phase difference arising after 

propagating through the slab, and the direction of rotation clockwise 

for an observer looking towards the origin of the vector representing 

the fastest characteristic wave [40,41], The change in the
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polarisation state is then described by the differential 
equation [37,39]

dS
—  = a  x S  ( 1 . 9 4 )

where

E  = (1-95)
is the vector which describes the rotation of the Poincare' sphere, and 

has the direction of the vector which describes the fast characteristic 

wave. The subscripts S and F refer to the slow and fast characteristic 

waves respectively.

The polarisation vector of the fast characteristic wave, , is 

obtained from the wave polarisation coefficient R_ (see section 1.2), 

and from the orientation of the magnetic field. For the coordinate 

system employed (see figure 1.13), the azimuthal angle of the fast 

characteristic wave is given by

Ipp = -3 (1.96)

where 3 is the angle between the y-axis and the perpendicular component 

of the magnetic field. The ellipticity is given by equation 1.21, and 

therefore

tan Xp = ̂  ((1+P2)^-1) (1.97)

where F is defined by equation 1.18. The polarisation vector 

follows [39]
cos 2/3 (1 + P2) 3

Sp = / -sin 20 (1 + ) ) (1.98)

F(1 + F2)"^
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The difference of the refractive indices |ig - Up is obtained from 

Appleton's equation (equation 1.15), and in the high frequency limit,

is given in terms of the magnetic field cartesian components by
2

^S~^F ü)2
_ pe

B2 +B2 
X  y

1-
pe

( 1 + F = )^
( V U p ) T ( 1 . 9 9 )

where the dimensionless parameter T is defined as

B2 + B̂  
X y

1-

ÜJ2
pe

(1)2
+ B= z

(1.100)

For the generalised magnetic field geometry, with respect to the wave's 

direction of propagation as depicted in figure 1.13, substituting the 

relevant sines and cosines of the angles 0 and 3, in terms of the x,y, 

and z magnetic field components, gives the vector ^  describing the 

rotation of the Poincare sphere

= pe

e
m

€

e_
m

e

2o)

P2 - B2
y X

1-(X)2 /(jj2
pe

2B B 
X y

l-Uf /(Jj2 
pe

(1.101)

The evolution of the Stokes vector ^  along the optical path of the 

wave, may be determined by solving the three coupled first-order 

differential equations (equation 1.94)

dS_
— S ~ S 

z y z ydz

dŜ
dz
dS

— 3 ^ 2  — SI S
X  Z X  z

(1.102)

"1 — s n - Q s
dz y X y X

These would normally be solved numerically, starting from the initial

polarisation state ( x̂ , and the initial position Z . The path of

integration is that of the wave through the plasma. Since
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 ̂» it ' is possible to reduce the number of coupled 
equations to two, but in order to check the accuracy of the numerical 

solution, all three must be retained. The azimuthal angle and 

ellipticity of the wave emerging from the plasma, are obtained from the 

final polarisation vector component values, and are given by

^  f  t a n ' l  ( ^ )  ( 1 . 1 0 3 )

and g
G = ----------   r  ( 1 . 1 0 4 )

1 + (1-S2)S
This theoretical treatment can be applied to any magnetic field 

geometry when the cartesian components of the magnetic field along the 

optical path of the wave can be specified. For the particular case 

when the wave propagates parallel to the magnetic field, i.e. 0 =0° 

the wave should experience Faraday rotation without change in 

polarisation ellipticity. With the magnetic field components and By 

set to zero, the dimensionless parameter T is given by

T = 1 -  ( 1 . 1 0 5 )(jL)2

In the high frequency limit << Wj and therefore T = 1. Also the 

sum of the refractive indices hg+Up = 2. Thus, the rotation vector ^  

is given by
0)2 0) \

n = (o. 0. P*. , - ) (1.106)

and the evolution of the StokeS vector by

dS
—  = (-0 S , 0  S , 0 )  ( 1 . 1 0 7 )
dz z y  z X

Since dS /dz = 0, then sin2 % o r the ellipticity of the wave remains 
z

constant, as expected. Therefore, holding x constant, and 

differentiating S explicitly with respect to Z, we obtain
X
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dS , I
— ^  = _2S ^  S ( 1 . 1 0 8 )
dz y dz z y

The evolution of the azimuthal angle, i.e. Faraday rotation, along the 

optical path is then given by

É l  =  1  P®  ̂ ( 1 . 1 0 9 )
dz 2 c u f

which on integration, gives a result identical to equation 1.49 for 

pure Faraday rotation.

1.9 REFRACTION

In the theory described in the previous sections, it was assumed 

that refraction of the wave propagating across the plasma was 

negligible. However, if this is not so, the line integrals must be 

taken over the actual ray trajectory. In this section, the theory of 

refraction is reviewed.

A ray incident on a cylindrically symmetrical plasma in the r-0 

plane, follows a path which satisfies Bouguer’s formula [34]

U ( r )  r  s i n  (p = c o n s t a n t  ( 1 . 1 1 0 )

where 0 is the angle between the tangent at a point on the ray path and 

the radius vector to the point. If h is the ray’s impact parameter 

(see figure 1.14), then at the plasma radius a, the refractive index is 

unity, and cJ)=TT-sin ^ ^  . Therefore the constant in Bouguer’s formula 
is just the impact parameter h.

If (r ,8) are the polar coordinates of a plane curve, then the angle
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ray

Plasmaoc

Figure 1.14

Refraction of a ray by a cylindrical plasma.

0 is given by

s i n  c{) = r  ( r ^  + [£]■)
Substitution into equation 1.110, squaring and rearranging, gives the 

ray path derivative [34]

dS h
d r  r

(1.112)

This simple result can also be derived from Snell’s law as by 

Wort [42], and from Fermat’s principle using the calculus of variations 

as by Schreiber et al [43].

From this result, the derivative dr/d0 is zero when h = u(r)r. 

This occurs when the ray has approached the axis to a minimum distance

r given by 
m in
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r =  5----- (1.113)

At this point, <j) = |* and 9 = &(TT+a), where a is the refraction or

deflection angle. On exit from the plasma, both 0 and cj) have minimum

values 0 and ({) respectively, related by m m

0 = a  + (f) ( 1 . 1 1 4 )m m

Therefore, integrating equation 1.112 between the radial limits r^^^ 

and a, then gives

è(TT+a)

dQ =  - h  I  1/■i
r  . 

m in

( p f r ^ - h S )  ^ d r  ( 1 . 1 1 5 )

From Bouguer’s formula, (\> = sin  ̂—  , and so the refraction angle
m 3,

is given by

a  = 2 c o s ‘ ^ ( ^ )  -  2 h  I  ( 1 . 1 1 6 )

r . min

If this is not negligible, then the incremental change in path length 

along the ray trajectory is given by

d£ = p r ( p ^  - h ^ ) ^ d r  ( 1 . 1 1 7 )

These results can be extended to the case of a ray incident on a 

cylindrically symmetrical plasma, at an angle Q from the r-0 plane and 

with an impact parameter h (see figure 1.15)» Bouguer’s formula then 
becomes [44]

p ( r ) r  s i n  (j) cos  co = h cos  

w i t h  p ( r )  s i n  üü = s i n  Q ( 1 . 1 1 8 )
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Plasma y

Figure 1.15

Refraction of a ray propagating at an arbitrary angle to the r-0 plane

The angle is as before, and the angle w is that angle between the 

tangent to the ray at a point and the r-0 plane at the point. The 

second of these equations implies that the ray will emerge from the 

plasma in a plane inclined at the incidence angle ü from the r-0 plane.

The ray path derivatives can be derived from Snell’s law as by 

Heald [44]. However, an extension to the work of Schreiber et al [43], 

by the inclusion of a third dimension, is less cumbersome algebraically 

and gives identical results. The mathematical details of this 

extension are given in Appendix A. The ray path derivatives derived 

therein are
= ± rsin^Cu^rB-r^sinZ^-hScosG^) ^dr

ÉÈ = ± (-)cos0(u2r2-r2sin2^-b:cos20)"^ dr r
(1.119)
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The minimum radius r is given bymin

r = h cos Q, (r )-sin^^2) (1.120)min min

and following a similar argument to that above, the refraction angle is 

given by

a = 2 cos'^(-) - 2 h cos Q / -(u2r2-r2sin2f^-h2cos2J2)"^dr (1.121)
a

r
r . min

In addition to a 8 deflection, the ray will suffer an axial 

displacement AZ. If the ray enters the plasma at an axial position

Z = 0, it will emerge at the position Z^ given by

Z = 2  sin 9. I  r(p2r2-r2sin2^-h2cos2^) ^dr (1.122)
V  r .min

In the absence of plasma, the ray would have arrived at the position Z@ 

given.by

Z^ = 2 tan 0^a2-h2)^ (1.123)
(

Therefore, the axial displacement is simply given by the difference

AZ = Z^ - Z^ (1.12 4)

The incremental change in path length is given by

dil = ur(u2r2-r2sin2&^h2cos2^)"^cil (1.125)
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1.10 APPLICATION OF THE THEORY

In this section, the theories of Faraday rotation, dichroism, 

birefringence, and refraction, are applied to the particular case of a 

cylindrically symmetrical plasma, in which the electron density varies 

linearly with radius, and in which the axial current density is 

constant. In addition, the effect of a constant axial magnetic field 

will be examined. The aim is to derive simple analytic expressions 

useful to the experimentalist.

The linear electron density profile may be represented by

n (r) = n (1 - — ) (1.126)e eo a

where n is the axial electron density, and a is the plasma radius.80
The azimuthal magnetic field also varies linearly with radius, as a 

result of the constant axial current density, and is expressed by

B9(D = ( l . m )

where Ip is the plasma current.
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1.10.1 FARADAY ROTATION

The Faraday rotation experienced by a probe beam propagating in the 

r-0 plane of the plasma is given by equation 1.53* Substituting for 

the electron density and azimuthal magnetic field profiles, on 

integration, we obtain

il )a + ( a ^ - h ^ )
( 1 . 1 2 8 )

The maximum value, , occurs when h = 0.45a, and is given by

i}j ^  = 1 .4 2  X 10 n I  X^
mo eo p

( 1 . 1 2 9 )

This is a useful result. It gives a good estimate of the Faraday 

rotation that may be expected from a plasma having approximately linear 

density and magnetic field profiles.

Consider, for example, the Faraday rotation of a ruby laser probe 

beam by a Plasma Focus. At the wavelength of this laser, 694.3 nm, the 

approximation of geometrical optics and the high frequency limit are 

both satisfied. Assuming an axial electron density of 4.0x10^^ m"3, 

and a plasma current of 340 kA (the measured values at peak compression 

of the pinch), the maximum Faraday rotation angle, assuming linear 

profiles, would be 93 mrad or 5.3 degrees. The maximum rotation 

observed in the Plasma Focus experiment, apart from that when axial 

filamentation occured, was approximately 0.5°, which is smaller than 

expected by a factor 10. This discrepancy arises because the magnetic 

field of the Plasma Focus, at this time, is located at the plasma edge 

due to the skin effect, and does not vary linearly as assumed by 

equation 1.129. When the experiment was originally conceived, the 

plasma current was thought to be nearer 500 kA, which gave a very
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optimistic estimate of the Faraday rotation angle.

If the plasma has an axial magnetic field, then the partial Faraday 

rotation angle experienced by a probe beam at an angle V. from the r- 0  

plane, due to the parallel component of axial field, is given by 

equation 1.54. On substituting for the electron density, and 

integrating, we obtain

i n  1a+(a^-h^) (1.130)

which has a maximum value when h = 0. This is dependent upon the 

plasma radius, unlike ifig .

A useful result is obtained by comparing the partial rotation 

angles and as the ratio 4̂  ̂/ .  Then,

)(0(̂  '
where is 'the value of the azimuthal magnetic field at the plasmaÜ 3.
radius. This equation quantifies the effect of probe beam misalignment

from the r- 6  plane, in the presence of an axial magnetic field. A

maximum tolerable misalignment angle, , can be determined given a

maximum tolerable partial rotation il; . Setting ip as 10$ of ipf. , sozm zm D

that / ̂ 0 = 0 .1 , the maximum misalignment angle becomes

(1 7) I
For example, if the field ratio = 1, then at an impact

parameter of h = 0 .45a, which gives maximum ip , the maximum

misalignment angle is 2.6°. In Tokamak plasmas, the field ratio is

nearer 0.25, and so the problem is more accute as the tolerable
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misalignment angle becomes 0.64°. This may be a serious problem in 

these devices.

In the Plasma Focus, a self generated axial magnetic field may 

exist [45], with approximately the magnitude of the azimuthal magnetic 

field. Assuming this is correct, then the first result above applies 

to the Plasma Focus.

1.10.2 DICHROISM

Given an azimuthal magnetic field only, and a constant electron 

temperature profile, a probe beam propagating in the r-0 plane will 

experience ellipticity due to dichroism given by 
Cu I InAX^h.

E(h) =
r  i  ^

( a 2 - h 2 ) ^
~1 13h2 '

- a + ( a 2 - h 2 ) ^
4 8a2 2a h

-

3/ïïa2 T '2 eo
(1 .133)

where -Tq-q is the electron temperature. This expression is obtained 

from equation 1.67, after substitution for the appropriate plasma 

profiles, by integrating with the assumption that In A is constant.

The ellipticity has a maximum value when h = 0.9a, i.e. at the plasma 

edge. Of interest is the ellipticity at impact parameter h = 0.45a, 

which is

e ( 0 . 4 5 a )  = 3 . 3 x l 0 " ^ ^ X ^ n ^  I  T £nA
■ eo p eo ( 1 . 1 3 4 )

Taking again the Plasma Focus as an example, a plane polarised ruby 

laser probe beam will emerge with an ellipticity of 4x10-9, assuming 

an electron temperature of 800 eV at peak compression. This value of 

ellipticity is very small, which is typical of the ellipticity obtained 

with most laboratory plasmas at wavelengths suitable for Faraday
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rotation experiments. The estimate calculated on the assumption of a 

constant temperature is an underestimate, as near to the plasma edge 

where the major contribution exists, the electron temperature is least 

and the plasma more collisional.

The theory so far developed has assumed classical collisionality.

In plasmas where anomalous collisionality occurs, the ellipticity will 

be larger than that calculated by a factor given by the enhancement of

the actual collision frequency over the classical frequency. In the

Plasma Focus, the rapid magnetic field diffusion observed after peak 

compression of the pinch, has been interpreted as being due to an 

anomalous resistivity approximately 6000 times the classical value.

Therefore, the ellipticity of the probe beam must be larger than that 

calculated by this factor, and so, e = 2.4x10 However, this is not 

large enough to have affected the measurement of Faraday rotation.

1.10.3 BIREFRINGENCE

In the absence of an axial magnetic field, the phase difference

between the ordinary and extraordinary characteristic waves of a plane

polarised probe.beam in the r-0 plane, on integration of equation 1.81

with the assumed linear plasma profiles, is given by

6 = 0  ( a = -  f h 2 ) ( a 2 - h 2 ) ^  ( 1 .1 3 5 )m 2

where I  ̂ n
6 = — - — 2 2 2   ( 1 . 1 3 6 )

24TT̂  a'
is the maximum value, and occurs when h = 0. At an impact parameter 

h = 0.45a, the phase difference is
n I "

(5 (0.45a) = 1.03 X 10'^® ---- 1^— ^ (1.137)
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At peak compression of the Plasma Focus, the plasma radius is 

2.35 mm. For the ruby laser probe beam, the phase difference between 

the characteristic waves is 6.8x10”®. The maximum ellipticity due to 

birefringence is 6/2, i.e. 3.4x10"®, and occurs when the initial plane 

of polarisation is approximately 45° to the r-6 plane. This value of 

ellipticity is larger than that due to dichroism, and would not have 

affected the measurement of Faraday rotation. In the experiment, the 

initial plane of polarisation was approximately 10° from the r-0 plane, 

giving an ellipticity of 1.2x10-5.

Consider the effect of a constant axial magnetic field. Assuming 

Bg, then for propagation in the r-9 plane, the phase difference 

between the characteristic waves is
'

6(h) = DA^n B2 eo z
* h2(a2-h2)^ - -  £n a

r a+(a2-h2 )* 
L h (1.138)

which has a maximum value when h = 0. Therefore, the maximum value of 

polarisation ellipticity is

•  ̂= I (1.139)

This result is useful when plasmas such as the Tokamak are considered 

for Faraday rotation experiments.

1.10.4 REFRACTION

The problem of refraction is not easily solved analytically. One 

approach is to solve the refraction equations numerically assuming 

appropriate electron density profiles. The dependence on wavelength 

and electron density can then be analysed. Only the deflection angle 

a, for refraction in the r-0 plane, will be considered.
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From equation 1.116, substituting the dimensionless parameters 
H = h/a and R = r/a, we obtain

(p2R2-H)"^ —CX(H) — 2 cos  H -2H ^  ( j i^ R 2 -H )  ^ ( 1 . 1 4 0 )

m

where u is the refractive index, and R is the normalised minimum ' m
radius. From this expression, we see that the deflection angle is

independent of the plasma radius. Writing the electron density as

n^(r) = n^^f(R), where f(R) is a function describing the profile, the

refractive index, assumed to be that of the ordinary characteristic

wave and given by equation 1.31, is
n 1

U(R) = ( 1 -  f ( R ) )  ( 1 . 1 4 1 )
c

where is the critical electron density, defined by
47t2c2£ m

0 e
  ( 1 . 1 4 2 )

Therefore, apart from the functional form of the electron density

profile, the deflection angle is dependent only on the ratio n /n .
eo c

Assuming a linear electron density profile, numerical solution of 

equation 1.140 shows that the maximum deflection occurs at an impact 

parameter h = 0;5a. The magnitude of the maximum deflection, ,

varies approximately linearly with the ratio n^^/n^, and is given by

a  s 0 . 7  (n  / n  ) r a d ia n s ,  ( 1 . 1 4 3 )m eo c
valid in the ratio range 0.001 ^ ^eo^^c ^ 9.1. Since the critical 
electron density scales as 1/X^, the maximum deflection is proportional 

to the wavelength squared. It is also proportional to the axial 

electron density.

If a parabolic density profile is assumed, expressed by 

ng(R) = ng^d - R=), numerical solution of equation 1.140, gives the
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result that the maximum deflection occurs at an impact parameter 
h = 0.65a. The magnitude of the maximum deflection also varies

linearly with the ratio n^^/n^, and is given by
a  = (n  / n  ) r a d ia n s  ( 1 . 1 4 4 )

m eo c

valid within the range quoted above.

Consider, for example, the refraction experienced by a ruby laser

beam probing the Plasma Focus. For the ruby laser wavelength, the

critical electron density is 2.3x10^^ m “ .̂ Therefore, assuming an

axial electron density of 4.0x10^^ m"^, the ratio n /n = 0.0174.eo c
From equations 1.143 and 1.144, the maximum beam deflection is

12.2 mrad (0.7 degrees) and 17.4 mrad (1.0 degree) for linear and
V

parabolic density profiles respectively. The maximum refraction angle 

that can be expected from the Plasma Focus, at peak compression of the 

pinch, is therefore 17.4 mrad. This result is in good agreement with 

the values measured by Morgan [46].
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CHAPTER 2 DESCRIPTION OF THE PLASMA FOCUS AND DIAGNOSTICS

In this chapter, a description of the Plasma Focus device and its 

associated diagnostics, electrical and optical, Faraday rotation 

excepted, are given. The timing control system used to synchronise the 

Plasma Focus with the ruby laser diagnostics, is also discussed.

2.1 DESCRIPTION OF THE PLASMA FOCUS

The Culham Plasma Focus device [15], its operation, and its 

electrical and neutron diagnostics, are described in this section. 

Theoretical descriptions of the physics of the Plasma Focus, have been 

given by Mather [14], and by Morgan [46], and are not discussed here.

2.1.1 MECHANICAL CONSTRUCTION

The mechanical layout of the Plasma Focus electrodes, vacuum 

vessel, and electrical connections, are shown schematically in 

figure 2.1. The centre electrode (1) - the anode - was a solid copper 

cylinder of diameter 50 mm, with a heavy metal section (95% W + 5% Cu) 

of length 30 mm, at the lower end. This reduced electrode erosion due 

to electron bombardment. A small hole at the centre of the capped end 

was necessary for reproducible operation. The centre electrode was 

connected to the brass high-voltage plate (2).

The copper outer cylindrical electrode (3) was of internal diameter 

92 mm, and length 230 mm. It was perforated by 228 regularly arranged
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Figure 2.1

Mechanical construction of the Plasma Focus

9.5 mm diameter circular holes, which improved machine

performance [47]. The electrode was connected to the brass earth plate

(4). The high voltage plate was insulated from the earth plate by-

interleaved polythene and melinex sheets.

A 'top-hat' pyrex insulator (5) separated the two electrodes. The 

tubular sleeve of this insulator had an outer diameter of 63.5 mm, and

extended 46 mm into the gun.

The two electrodes projected into an octagonal stainless steel 

vacuum chamber (6), with five 50 mm diameter and three 75 mm diameter 

diagnostic ports, arranged one per side. Below the gun was a 100 mm 

diameter port. Attached to this was a 600 mm long pyrex tube, used to
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trap eroded material and dissipate the kinetic energy of the plasma.

2.1.2 THE CAPACITOR BANK AND SUPPLY LINES

Electrical energy was stored in a 40 kV (maximum), 

93*85 micro-Farad capacitor bank. Typically, this bank was charged to 

a voltage of 24.1 kV, where the stored energy was 27.25 kJ. The 32 

capacitors, each of capacity = 3 micro-Farads, were charged by a high 

voltage d.c. power supply consisting of a step-up transformer and 

half-wave rectifier, in conjunction with a voltage doubling circuit. A 

maximum current of 200 mA at 50 kV could be delivered to the capacitor 

bank by this supply.

The capacitor bank was modular in design. Each of the four modules 

was divided into two separate circuits, individually switched by a 

3-electrode swinging-cascade spark-gap. These switches connected the 

capacitors to the high voltage and earth plates of the Plasma Focus via 

216 parallel coaxial cables. This number of parallel cables, in 

addition to the 8 parallel spark-gap switches, resulted in a low source 

inductance of 33.7 nH, and a source resistance of 2.25 milli-Ohms.

The spark-gaps were triggered by a 35 kV Blumlein cable, itself

switched by a master spark-gap. This master spark-gap was triggered by 

a 15 kV thyratron voltage pulse. Typically, 25 ±  5 ns elapsed between

application of the trigger pulse and current conduction. The eight

spark-gaps were well synchronised in comparison to the

2.8 micro-seconds quarter period of the discharge.
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2.1.3 THE VACUUM AND GAS FILLING SYSTEM

A 150 mm diameter oil diffusion pump, backed by a single stage 

rotary oil pump of capacity 450 litres per minute at 100 torr pressure, 

evacuated both the vacuum chamber and electrode gun assembly. To 

reduce oil vapour pressure in the vacuum chamber, a refrigerated baffle 

was used in the throat of the diffusion pump. Adjacent to this baffle 

was a remotely controlled isolation valve. Typically a base pressure 

of 5x10“® torr was achieved.

Pressures were measured using three guages. For the pressure range 

100 to 10 torr, a Pirani guage was used. Pressures below 1 milli-torrV
were measured with an ionisation guage. Accurate pressure filling of 

the system with deuterium was achieved with a mercury manometer. The 

deuterium gas filling was introduced by a hot-wire leak valve, remotely 

operated from the control panel.

2.1.4 OPERATION OF THE PLASMA FOCUS DEVICE

The operation of the Plasma Focus was as follows:

a) The chamber was evacuated to a base pressure of % 5x10"® torr.

b) The diffusion pump isolation valve was closed.

c) The chamber and gun were filled with deuterium to the

operating pressure of 1.8 torr.

d) The Blumlein trigger cable was charged to 35 kV.

e) The capacitor bank was charged to the operating voltage
of 24.1 kV.

f) The discharge was initiated.
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Typically 10 to 20 discharges were fired on a single gas filling before 
the procedure was repeated.

When the machine had been pumped down from atmospheric pressure, 

approximately 50 shots were fired to condition the electrodes. This 

aided reproducibility.

Optimum energy transfer to the plasma was achieved when the 

operating voltage and filling pressure were chosen so that peak 

compression of the pinch occured at the time of the discharge circuit 

current maximum. At this time, all the energy is stored inductively 

(the capacitor bank voltage is approximately zero), and the plasma can 

extract energy from a maximised magnetic field. The operating 

conditions used in this experiment (24.1 kV, 1.8 torr D^) were chosen 

for optimum energy transfer.

2.1.5 BASIC DIAGNOSTICS

There were three basic diagnostics used on the Plasma Focus. These 

monitored the supply current, the gun voltage, and the total neutron 

yield of the plasma.

Rogowskii Coil

The discharge current from the capacitor bank was measured using a 

Rogowskii coil looped around the gun between the high voltage and earth

plates, enclosing the current flow. The voltage proportional to dl/dt

induced in this coil, was sampled using a potential divider, and 

integrated using a passive RC integrating circuit with a

80 micro—seconds time constant. The output voltage of the integrating

circuit was proportional to the discharge current. Calibration was
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Plasma Focus current waveform,

achieved by observing the 'ringing' of the circuit current when the 

high voltage and earth plates were short circuited.

A current waveform observed during a discharge is shown in 

figure 2.2. Peak current is approximately 490kA. The dip in the 

waveform is characteristic of the Plasma Focus. It begins at peak 

compression of the pinch, and is due to the rapid inductive changes 

that occur at this time.

The Rogowskii coil voltage was extremely useful as a timing marker. 

At the time of peak compression, the coil voltage rapidly increased to 

a maximum, then oscillated before decaying. This rapid first voltage 

rise, shown in figure 2.3, is called the 'dl/dt singularity', and 

coincided exactly with the time when peak compression of the pinch 

occured adjacent (Z < 10 mm) to the centre electrode, as observed by
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Figure
The Plasma Focus dl/dt waveform.

holographie interferoinetry. By comparing the time of the dl/dt 

singularity with the time when . the Faraday rotation probe beam was 

incident on the plasma, accurate chronology was obtained. The time of 

the dl/dt singularity was set at t = 0.

Gun Voltage

A high-impedence voltage divider monitored the voltage between the 

high voltage and earth plates. The small voltage sampled, was 

proportional to the voltage between the two electrodes at the *top-hat' 

insulator. The inductance of the two electrodes (approximately 28 nH 

maximum), was sufficiently large to prevent direct observation of the 

voltage across the plasma. At peak compression of the pinch, the 

insulator voltage was several times the initial capacitor bank voltage, 

due to the very rapid change in inductance at this time. This high 

voltage caused current leakage across the insulator, amounting to
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150 kA at peak compression (the Rogowskii coil measurement was 490 kA, 

and the plasma current, subsequently measured by Faraday rotation, was 

340 kA).

Total Neutron Monitor

The total neutron yield for each discharge was monitored using a 

silver activation technique. A Geiger-Muller tube with a thin silver 

window, was mounted within a block of polythene. This block moderated 

the 2.45 Mev neutrons produced by D-D reactions in the plasma. These 

thermalised neutrons activated the silver, whose subsequent beta-decay 

(half-life 2.4 minutes) was detected by the Geiger-Muller tube. An 

amplifier-scaler (Nuclear Enterprises Scaler-Timer ST6) counted the 

number of pulses produced by the detector during the 100 second time 

interval immediately following each discharge. The total count 

obtained was proportional to the total neutron production of the plasma 

discharge.

This monitor was used uncalibrated, but provided an indicator of 

the quality of the focus discharge, so that data recorded on a shot to 

shot basis could be compared. A good discharge yielded approximately 

10^ neutrons [46], and a poor discharge ^ 1 0 ® .  In a poor discharge, 

the plasma column was not focussed onto the machine axis, the current 

waveforms did not exhibit the characteristic dip, the dl/dt singularity 

was absent, and no appreciable voltage appeared at the gun insulator.
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2.2 LASER DIAGNOSTICS

The co-operative laser scattering [48,49], holographie interferometry, 

and Faraday rotation diagnostics used on the Plasma Focus, all made use 

of a ruby laser oscillator. This oscillator, together with the

co-operative scattering system and the holographic interferometry, are

described in this section. In addition, the clipping system used to 

produce a 1.5 ns FWHM ruby laser pulse for holographic interferometry, 

is described.

2.2.1 THE RUBY LASER OSCILLATOR

The Korad K1 694.3 nm ruby laser oscillator, consisted of a 10 mm 

diameter, 100 mm long ruby rod, pumped by a helical flash tube, between 

a 100% reflecting dielectric mirror and a 26% reflecting sapphire

output mirror forming the laser cavity. Between the 100% mirror and

the ruby rod was a multi-stack polariser and a Pockel cell. The C-axis

of the ruby crystal was orientated to give maximum gain to horizontally 

polarised light. However, the polariser had a minimum transmittance 

with this polarisation. Therefore, while the Pockel cell was

unstressed, lasing could not occur. Q-switching of the cavity was

accomplished when the Pockel cell was stressed by a 40 kV voltage pulse 

from a thyratron switched Blumlein cable. This voltage corresponded to 

the Pockel cell's half-wave voltage, i.e. that voltage which rotates 

the plane of polarisation by 90 degrees. To achieve maximum power from 

the oscillator, Q-switching was timed to occur at maximum population 

inversion, approximately 1 ms after initiation of the flash-tube

discharge. Thermal stabilisation of the ruby rod and cavity mirrors, 

was accomplished by circulating deionised cooling water maintained at a 

temperature of 15 ±  1°C.
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The output energy was 0.5 J, measured using a TRG Control Data 

Corp. 107 Thermopile. The pulse shape, approximately Gaussian, was 

monitored with an ITL S-20 vacuum photodiode (risetime 0.2 ns). The 

pulse width was normally 20 ns FWHM for both the co-operative 

scattering and the holographic interferometry (undipped pulse). The 

pulse was lengthened for the Faraday rotation measurements to 

approximately 30 ns FWHM, by de-tuning the laser cavity.

2.2.2 CO-OPERATIVE LASER SCATTERING

Co-operative laser scattering from a 300 MW, 20 ns FWHM, ruby laser 

pulse (oscillator pulse amplified to 6 J), was observed simultaneously 

for three differential scattering vectors. Three sets of collection 

optics viewed approximately identical scattering volumes, 10 mm below 

the centre electrode. Two scattering angles of 10 and 45 degrees, 

having differential scattering vectors perpendicular to the Z-axis of 

the Plasma Focus (the direction in which current driven effects are not

observed), were used to study thermal levels of scattered light. This

gives information on electron and ion temperatures. A second 10 degree 

scattering direction, was in the plane defined by the incident laser 

beam and the Z-axis, resulting in a differential scattering vector 

parallel to the Z-axis. The scattered light observed in this direction 

contained information on current driven instabilities.

Spectral analysis was performed by a triple slit (one per 

scattering direction) Monospec 1000 monochromator, coupled to a gated 

Princeton Applied Research Corp. optical multichannel analyser. The 

wavelength resolution was 0.018 nm per channel. Details of this 

diagnostic, together with results, are given by Kirk [49].
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2.2.3 HOLOGRAPHIC INTERFEROMETRY

Holographic interferometry of the Plasma Focus, was used to observe 

the temporal evolution of the electron density radial profile during 

the time period around peak compression of the pinch. This information 

was required so that magnetic field data could be extracted from 

Faraday rotation measurements. In addition, it gave useful information 

on the plasma's behaviour. The imaged holographic technique used, is a 

standard diagnostic for this type of plasma. Reviews of the method, 

together with theory, are given by Jahoda and Siemon [50], Faw and 

Dullforce [51], and Collier, Burckhardt, and Lin [52]. A short ruby 

laser pulse (1.5 ns FWHM), was required to prevent smearing, due to 

plasma motion, of the phase shift to be measured. Both the optical 

layout used to provide a short laser pulse, and the holographic optical 

arrangement, are described in the following sections.

2.2.3.1 RUBY LASER. CLIPPING SYSTEM

The optical layout used to produce a 1.5 ns ruby laser pulse is 

shown in figure 2.4. One important requirement of the holographic 

method used is good spatial coherence of the laser beam. In order to 

obtain this, the oscillator Q-switched pulse was expanded by a x2 

telescope, and passed through an OB10 blue glass stop of diameter 8 mm, 

so that only the central 4 mm portion of the oscillator's output was 

used.- Following this stop, the beam was passed through a A/2 plate, 

which rotated the plane of polarisation from the horizontal to the 

vertical. The beam then passed through an unstressed Pockel cell 

(Electro Optics Developments Ltd. PC125, with a rise time of 0.3 ns) 

and was reflected in the horizontal plane from a 'crossed' Gian-Thomson 

polarising prism. The beam was then incident on a nitrogen pressurised
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laser triggered spark gap (LTSG). The LTSG consisted of a hollow 

annular anode, containing a positive lens which focussed the laser onto 

the adjacent cathode. The anode-cathode spacing was 300 microns. The 

Pockel cell had two 50 Ohm high voltage BNC sockets for each electrode, 

with impedence matching between them.

The electrical circuit, also shown in figure 2.4, consisted of a 

Brandenburg high voltage power supply which charged a coaxial cable 

linking LTSG and Pockel cell, via a 1 Meg-Ohm charging resistor. The

braiding of the cable was held at earth potential, and the central

conductor at a negative voltage suitable for half-wave switching of the 

Pockel cell. The cathode of the LTSG and both Pockel cell electrodes 

were at this voltage. At the end of the cable, an RC dump was used to 

prevent voltage pulse reflections. The length of cable between LTSG 

and power supply was tens of meters long, ensuring that no reflected 

pulses would switch the Pockel cell during the laser pulse. A short

length of coaxial cable (~100 mm) connected both Pockel cell

electrodes.

The circuit works as follows: When the LTSG is broken down by the

leading edge of the laser pulse, a voltage pulse propagates into the 

transmission line. When it arrives at the first Pockel cell electrode, 

a potential difference across the crystal arises, and the Pockel cell 

becomes stressed (the other electrode remains at the original 

potential). The voltage pulse continues to propagate, and after a 

delay time determined by the length of the joining coaxial cable, 

arrives at the second electrode. The potential difference falls, and 

the Pockel cell returns to its former unstressed state. The voltage 

pulse continues to propagate silong the line until it is dumped.
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When the Pockel cell was stressed, the polarisation of the laser 

was rotated into the horizontal plane. Light was therefore transmitted 

by the polarising prism. Only a short laser pulse was transmitted. 

The duration of the pulse, was determined by the rise time of the 

voltage step, the rise time of the Pockel cell, and the length of 

transmission line joining both electrodes. The minimum pulse duration 

obtained with this arrangement was approximately 1.5 ns FWHM. Both the 

LTSG voltage and pressure were trimmed for optimum clipping, 

approximately 5 kV and 60 psi respectively. Maximum energy throughput 

was achieved by clipping at the peak of the oscillator output pulse. 

This was accomplished by a suitable choice of cable length between LTSG 

and Pockel ^cell, and by varying the illumination of the LTSG. 

Typically, the pulse energy was 20 mJ.

2.2.3.2 HOLOGRAPHIC INTERFEROMETRY, OPTICAL. LAYOUT

The optical layout of the holographic interferometry is shown in 

figure 2.5. The 1.5 ns clipped ruby laser pulse was divided by a 50% 

reflecting dielectric beam-splitter into a scene beam and a reference 

beam. Each of these is described in turn.

Scene Beam

The scene beam was reflected by three steering mirrors Ml, M2, and 

M3. A xIO expansion Galilean telescope followed. The scene beam then 

passed into the vacuum chamber, interacted with the plasma, and emerged 

through another vacuum window to be imaged by the lens LI, of focal 

length +650 mm and diameter 75 mm, onto the holographic plate. The 

overall beam expansion was 22, and the magnification of the plasma 
image was 2.2.
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Figure 2 , 5

Holographic interferometry optical layout.

Reference Beam

The reference beam was reflected by a 100$ dielectric mirror M4 

placed adjacent to and below the holographic plate. The beam was 

expanded by a +10 mm focal length lens ( 1 2 ) , and reflected from a 100$ 

reflecting dielectric mirror M5. At the holographic plate, the beam 

expansion was 22. This matched the expansion of the scene beam.
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Discussion
An imaged holographie technique was used in this experiment. This 

had the advantage over normal diffuse methods in that noise due to 

speckle pattern was reduced [50]. A double exposure of the hologram 

was made without plasma after mirror M5 had been tilted slightly to 

vertically displace the reference beam. This had a twofold purpose. 

Firsly, by making a reference exposure in the absence of plasma, the 

phase shift of the scene beam with plasma is revealed by the Moire’ 

pattern of fringes. Secondly, by tilting the mirror, horizontal 

reference fringes are introduced, making the phase shift readily 

measureable. The reduction in speckle pattern had the additional 

advantage of increasing the Moire’ fringe resolution [50].
V

The holographic plates used were Agfa-Gevaert 10E75, with a 

resolution of 2800 lines per mm. The exposure required for an optical 

density of unity was approximately 5x10"^ Jm"^. The holographic plates 

were protected from plasma and background light by an interference 

filter, whose transmission was centred at 694*3 nm. The plates were 

developed with Neofin-Blue, a surface developer. The amplitude 

holograms obtained after the development process, were converted to 

phase holograms with .ferricyanide bleach. This had the advantage of 

giving bright reconstructed holograms with sharp fringes. Processing 

techniques and bleach recipes are reviewed by Faw and Dullforce [51].

The imaged holographic technique used was sensitive to poor spatial 

coherence of the laser, which produced fringe splitting in the 

interference patterns and decreased fringe contrast. Sufficiently good 

spatial coherence was obtained by working with only a small area of the 

available beam, and correctly overlapping both scene and reference 

beams at the holographic plate. In this way, interfering rays
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originate from the same part of the laser beam and therefore have 

identical coherence properties. Temporal coherence was also important. 

The laser linewidth, =0.01 nm, corresponded to a coherence length of 

^ 1 0  mm. Therefore, the scene and reference beams optical path lengths 

had to be identical to within this coherence length. This was 

accomplished by adjusting the positions of steering mirrors Ml and M2.

2.3 THE PLASMA FOCUS-DIAGNOSTIC RELATIVE TIMING CONTROL SYSTEM

The Plasma Focus-diagnostic relative timing was controlled by a 

system which worked as follows: The ruby laser flash tube was

triggered manually using a Culham trigger unit 8287. After a delay of 

approximately 1 ms (by a Culham delay unit 8288), the Plasma Focus 

master spark gap was triggered. Once the plasma discharge was near to 

the open end of the electrodes, approximately 2 micro-seconds after the 

trigger pulse, light from the plasma sheath, monitored by a narrow 

collimator through one of the holes in the outer electrode, was 

transmitted by fibre optic to an optical trigger (Culham type 8283). 

This produced a trigger pulse for a delay unit (Space Technology 

Laboratories Inc. nanosecond delay pulse generator), which Q-switched 

the oscillator. This latter delay unit (STL) provided the fine 

adjustment required for the relative timing between the Plasma Focus 

and the laser. The STL also provided an oscilloscope trigger pulse, 

which could be further delayed with fixed cable delays.
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CHAPTER 1 DESCRIPTION OF THE POLARIMETEE

3.1 INTRODUCTION

In this chapter, a full theoretical and experimental description is 

given of the differential half-shade polarimeter designed, developed, 

and successfully used in the measurement of Faraday rotation of an 

optical probe beam in a Plasma Focus discharge.

V
A plane polarised Q-switched ruby laser (cf section 2.2.1), of 

pulse duration s 30 ns FWHM and energy 0.5 J, was used as the probe 

beam. It was judged to be the most appropriate laser source for the 

folowing reasons: At the laser's wavelength, 694.3 nm, the expected

Faraday rotation angle of < 5 degrees, was considered sufficiently 

large for accurate measurements. Also, both refraction of < 1 degree 

and polarisation ellipticity due to dichroism and birefringence of 

% 2x 10"^, were not too large (maximum limits were 2 degrees and 10“  ̂

for refraction and ellipticity respectively). The ruby laser, having 

an output power of ^15 MW, was also sufficiently powerful to be 

detected after transmission by an analyser near to the crossed 

position.

The polarimeter was designed to view a single plasma chord, of 

diameter 250 microns, at any chosen position 5 mm below the Plasma 

Focus centre electrode, within a 20 mm wide ruby laser probe beam. The 

diameter of this chord was chosen to correspond to approximately one 

tenth of the minimum observed plasma radius (2.35 mm). Faraday
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rotation of the probe beam along this chord, was observed throughout 

the ruby laser pulse with a detection system having a temporal 

resolution of 2.5 ns. The polarimeter was designed to operate at any 

chosen half-shade angle. The optimum half-shade angle for the Plasma 

Focus measurement, when probe beam refraction and polarisation 

ellipticity are considered, was approximately 2 degrees, the angle 

used, and gave a noise limited angular rotation resolution of 

approximately 0.02 degrees.

The detailed temporal evolution of the Faraday rotation angle 

observed along the single chord, at a fixed chord impact parameter, was 

built-up over several plasma shots. The spatial variation was obtained 

by repeating the measurement over several impact parameters. This 

measurement procedure was aided by two factors: Firstly, the ruby

laser pulse detected from the viewing chord, was observed to be 

approximately twice as long as the Q-switched pulse, measured using the 

whole beam. This effectively doubled the amount of data taken per 

plasma shot. Secondly, the polarimeter was designed so that the impact 

parameter could be changed between shots without disturbing the optical 

alignment.

The polarimetry was based on the differential half-shade 

method [25]. This relies on dividing the probe beam from the plasma 

into two equally intense beams. These beams are analysed by separate 

polarisera, each set at a small angle from the crossed position. This 

small angle is called the half-shade angle. The orientations of the 

analysers are chosen so that when Faraday rotation occurs, the 

intensity transmitted by one analyser increases while that by the other 

decreases. The Faraday rotation angle is obtained by detecting the 

light transmitted by the analysers using square law detectors, and
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determining from the observed signals, the ratio of signal difference 

to signal sum. Comparison of this ratio value with a calibration 

curve, prepared by simulating Faraday rotation, gives the Faraday 

rotation angle. The advantage of this method is that by taking the 

above ratio, the result is independent of the laser light intensity. 

This was useful, as the laser’s output fluctuated by as much as 50$ in 

amplitude during a shot.

The probe beam was divided using a multilayer . dielectric 

beam-splitter. However, as a result of the differences in the 

amplitude reflection coefficients for light having s and p 

polarisations, i.e. light polarised perpendicular and parallel to the 

reflection plane respectively, the polarisation of the reflected light 

varied little with Faraday rotation, reducing the polarimeter's 

sensitivity. This problem was solved by firstly reflecting the light 

from a similar beam-splitter. The pair of beam-splitters were arranged 

so that they were orthogonal (see figure 3.1). The first beam-splitter 

(BS1), was positioned so that the horizontal initial plane of 

polarisation was approximately parallel to the p-plane. This initial 

plane of polarisation was chosen to minimise the effects of plasma 

birefringence. In this orientation, the light reflected from BS1 has a 

polarisation change greater than that due to Faraday rotation. In 

other words, it magnifies Faraday rotation. By having BSI’s reflection 

properties identical to those of the second beam-splitter (BS2), the 

initial magnification exactly balances out the demagnification that 

occurs on reflection from BS2. As a by product of this compensation 

scheme, which was achieved by reflecting only 20$ of the probe beam 

from BS1, the polarisation change of the light transmitted by BS2 was 

twice the change due to Faraday rotation. This gave rise to a 

polarimeter having a non-symmetrical response curve, and a higher
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sensitivity at a given half-shade angle than a standard half-shade 

device (a standard half-shade polarimeter is one in which the probe 

beam is divided equally in a manner which does not affect the magnitude 

of the polarisation change, e.g. a polarimeter based on a Wollaston 

prism). The gain in sensitivity was achieved at the cost of decreasing 

the polarimeter’s dynamic range, and increasing its sensitivity to 

polarisation ellipticity.

Only one detector was used to observe the light transmitted by the 

two analysers. This was accomplished by transmitting the light to the 

detector along two high transmission fibre-optic links having unequal 

lengths. The difference in their length, was chosen so that the two 

detector signals observed were well separated in time. This scheme was 

useful for three reasons: Firstly, the problem of balancing the two

detectors common in differential measurements did not exist. Secondly,
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the detector was positioned in the screened room, and therefore 

protected from electrical interference associated with the Plasma Focus 

device. Thirdly, the two signals were displayed together on the single 

trace of a fast storage oscilloscope, avoiding the jitter normal 

between the two traces of dual beam oscilloscopes.

Imaging optics were used in the polarimeter to correct for 

refraction of the probe beam. This ensured that the plasma chord 

viewed remained fixed during the shot. However, refraction resulted in 

the angle of incidence at BSl changing, and therefore the values of the 

s and p reflection coefficients. This affected the polarisation 

magnification factor, and therefore the plane of polarisation of the
V

light reflected.

Refraction did not affect the angle of incidence on BS2. However, 

because the probe beam was imaged to a fixed point, while the point of 

reflection from BS2 varied with refraction angle, the orientation of 

the reflection plane, and correspondingly the p-plane, was modified.

The change in polarisation angle that occured at BS2 on reflection 

and transmission, depended on the angular shift of the reflection 

plane. Since the reflection plane was rotated, while the analysers 

were fixed, the half-shade angles, defined in relation to the 

reflection plane of BS2, were also altered. As a result, an increased 

polarisation change occuring at BS2 due to refraction was analysed by 

an analyser with a larger half-shade angle, thereby reducing the 
overall effect.

Experimentally, the effects of refraction could be studied by 

calibrating the polarimeter at several impact parameters. This was
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because plasma chords viewed at different impact parameters were 

equivalent to a single plasma chord viewed at a fixed impact parameter, 

but with a variety of equivalent refraction angles. The theoretical 

analysis given in section 3*^» shows that the polarimeter has a unique 

operating point where the effects of probe beam refraction are minimal. 

This has been confirmed experimentally. The location of this operating 

point in the parameter space of the polarimeter’s response curve, 

depends upon several factors: The initial plane of polarisation with

respect to the p-plane of BSl, the reflection properties of both 

beam-splitters, the change in the reflection coefficients of BSl with 

incidence angle, the relative misalignment between the two 

beam-splitters s and p planes, the imaging optics, and finally, the 

ratio of fibre-optic transmittances. Finding the position of the 

operating point experimentally is done in a trial ind error manner. The 

Faraday rotation measurements from the Plasma Focus, were taken with 

the polarimeter operating from this optimum operating point. 

Essentially, the optimum operating point arises because all the effects 

of refraction cancel out, i.e. the change in BSI’s polarisation 

magnification factor cancels out the ' effect of the change in the 

reflection plane at BS2.

Probe beam polarisation ellipticity decreases the sensitivity of 

the polarimeter to Faraday rotation, and complicates the problem of the 

polarimeter’s behaviour to refraction. It also determines the optimum 

sensitivity or half-shade angle of the polarimeter. This topic is 

examined, along with similar effects produced by the rejection ratios 

of the analysers, in section 3*6.
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3.2 DETAILS OF THE EXPERIMENT

The optical arrangement, selection of optical components, and 

alignment of the polarimeter, are discussed below.

3.2.1 DESCRIPTION OF THE EXPERIMENTAL ARRANGEMENT

In this section, the experimental optical arrangement is described. 

The details of the optical layout are shown in figure 3.2, and a colour 

illustration is shown in figure 3.3. All of the optical elements were 

anti-reflection coated, and all the lenses were manufactured from low 

stress Schott BK7 glass. Each optical component is described in 

sequence.

Polarising Prism: In order to define the ruby laser probe beam’s 

plane of polarisation, together with the removal of any elliptical 

polarisation component, the light was passed through a high quality 

Glan-Thomson polarising prism. The 10 mm square aperture prism, with 

rejection ratio u 10”®, was fixed within a 360 degree rotation mount, 

which had a Vernier scale' resolution of 5 minutes of arc.

The setting of the polarising prism determined the initial plane of 

polarisation of the ruby probe beam. This plane was therefore the 

reference plane from which subsequent rotations were measured. Once 

the polarimeter was aligned and the analysers set, this prism was 

manually rotated, simulating Faraday rotation, and the polarimeter 

calibrated. The prism had therefore to be rigidly mounted, to ensure 

that the only rotation imposed was that intended, and was not due to 

any pivotal movement of the prism within its support. The error in
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setting the plane of polarisation was approximately the vernier scale 
resolution of the rotation mount.

Light rejected by the prism was detected by an ITL vacuum

photodiode (0.2 ns risetime) and the signal displayed on a 7844

dual-beam Tektronix oscilloscope. This served as a timing reference

for comparison with the simultaneously displayed Rogowskii coil dl/dt 

waveform, enabling the synchronisation of both plasma and probe beam.

The Expansion Telescope; In order to cover a 20 mm wide region of 

interest within the plasma focus, the ruby laser probe beam, of 

diameter 10 mm, was expanded by a Galilean telescope.

The Plasma And Vacuum Chamber: After expansion by the telescope, 

the probe beam passed through a 10 mm thick, 75 mm diameter, plate

glass window into the plasma focus vacuum chamber. With the ruby laser 

pulse synchronised to the plasma, both Faraday rotation and refraction 

of the probe beam occurred. The beam then passed out of the machine 

through a 10 mm thick, 130 mm diameter, plate glass window at the end 

of the pumping port T-piece. In comparison with the other optical

elements within the system, these windows were of poor quality. They

had transmittances of 78$ at 694.3 nm, and caused polarisation

ellipticity of approximately 5x10"3 due to stress-birefringence. 

Better windows were not used, as after a few discharges a thin film of 

tungsten, sputtered from the centre electrode, was deposited on the 

vacuum surfaces. Consequently, the windows had to be replaced

periodically.

The First Imaging Lens (LI): In order to prevent wandering of the 

probe beam and loss of information, the refracted light was collected
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by a lens - the first imaging lens - which, together with two other 

lenses, L2 and L3, formed an image of the central plane of the plasma. 

It was within this image that local Faraday rotation measurements were 

made.

The first imaging lens was plano-convex, with a focal length of 

+650 mm, and diameter 70 mm. Its position was approximately 1 metre

from the plasma, and collected light refracted through angles up to

35 mrad. The magnification provided by this lens was 2.2.

The First Beam-snlitter ( B S D : The first stage in the polarisation

analysis was^ to reflect the light collected by the first imaging lens

with a multilayer dielectric beam-splitter. The beam-splitter used had

intensity reflectivities R =0.50 and R = 0.205 at the lasers p
wavelength for the 45 degree angle of incidence. The substrate was 

silica glass, of thickness 3 mm, and diameter 50 mm. It was mounted in 

a gimbal with micrometer adjustment.

Interference Filter: Background light emitted by the plasma was 

removed by a multi-layer dielectric interference filter, having a 3 nm 

bandwidth centered at' the ruby wavelength. Peak transmission was 60$.

Second Imaging Lens (L2); A second imaging lens was used in 

conjunction with the first to form a real image of the plasma at the 

polarimeter stop S. The diameter was 50 mm, and its focal length 

+400 mm, giving an overall magnification at the stop of 1 .0 3 .

Polarimeter Stop (S); To minimise the amount of light within the 

polarimeter, an iris diaphram stop closed to a diameter of 1 mm was

used. Onto this stop, an image of the plasma plane was formed, which
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prevented vignetting of the probe beam, and simplified the alignment 

procedure (see section 3*2.3). It was within the area of the plasma 

image seen through this aperture that the Faraday rotation measurement 

was made. This stop was the first optical element on the translating 
optical table.

Third Imagine Lens— (13J : A +100 mm focal length plano-convex lens 

was used to image the stop, containing the plasma plane image, onto the 

ends of two fibre-optics via the second beam-splitter and analysers. 

Its diameter was 40 mm, and was mounted on the polarimeter translating 

table. The magnification of the stop at the image plane was 1.6, and 

the overall magnification of the plasma plane at the fibre-optics was 

1.65.

The Second Beam-splitter (BS2): This beam-splitter was manufactured

from an identical substrate to the first. Its reflectivities at

69 4 .3  nm, for the 45 degree angle of incidence, were = 0.55 and

R = 0 .2 3 . It was mounted similarly to the first, and was attached to P
a rigid column on the translating optical table. All the optics 

relating to the reflected beam were mounted on this column.

The Analvsers (A and A ): These were Polaroid type HN22 sheet 
T R

analyser, having a transmittance of 59$ at 694.3 nm for the preferred 

polarisation [40], and a transmittance of 3x10”® when crossed. They 

were of diameter 40 mm, and were attached to rotatable circular mounts, 

engraved in one degree increments. They were both set at approximately 

2 degrees from the crossed position, i.e. the half-shade angle was 

2 degrees.
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The F lb r e - Q p t iG s : These relayed the light transmitted by the 

analysers to the screened room for detection, minimising noise pick-up 

by the detector from the Plasma Focus discharge. The type used was 

Quartz et Silice QSE 400-C quartz fibre, of diameter 400 microns, 

attenuation of 40 dB per kilometre, and lengths 10 m and 30 m. The 

difference in attenuation was therefore 0.8dB (17$). Two different 

lengths were employed so that the analysed signals were time delayed 

with respect to each other, simplifying detection. Since the final 

image of the probe beam in the plasma plane was formed at the ends of 

these fibres, then by back-projection, the diameter of the fibres 

determined the diameter of the plasma chord viewed. This was 250 

microns. Bot^ fibres were aligned to view the same plasma chord.

The Translating Optical Table: All the optics behind the 

polarimeter stop were mounted on a translating optical table. By 

moving this table, any plasma chord across a diameter, at a constant 

axial position 5 *mm below the centre electrode of the Plasma Focus, 

could be viewed. The positioning error was approximately 100 microns.

Detection and Measurement of Faradav Rotation: The light carried

by the fibre-optics ' was' detected by a single photo-detector (Motorola 

MRD500), which ensured equal detector detectivities for both analysed 

beams and so removed the usual problem encountered with differential 

measurements of balancing one detector with another. This was 

accomplished by having different fibre lengths, and these were 10 m and 

30 m for the fibres carrying the reflected and transmitted light 

respectively. The difference in length, 20 m, was chosen such that the 

optical delay time, approximately 110 ns, was greater than the duration 

of the ruby laser pulse. The detector output therefore consisted of 

two signal waveforms representing the two polarisation analysed laser
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The detector circuit.

intensity waveforms.

The detector circuit is shown schematically in figure 3.4. The 

diode was reversed biased to 90 volts, and was in parallel with a 

3 micro-Farad capacitor to avoid current limitation of the diode rise 

time of 1 ns (50 Ohm load) during the detection period. The diode had 

a positive spherical lens at the entrance aperture, which increased the 

intensity of light falling on the detector surface from the adjacent 

fibre-optic ends. In the mode of operation used, the detector was

equivalent to a current source, with the current proportional to light

intensity. The load was the 50 Ohm impedance of the oscilloscope 

amplifier, and so the signal displayed was proportional to light

intensity. A 400 MHz 7834 Tektronix storage oscilloscope, with a

500 MHz 7A19 plug-in amplifier, was used to display the laser 

waveforms.
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Detector output signal with and without simulated Faraday rotation.

The detection scheme adopted, namely to display both analysed laser 

waveforms on an oscilloscope screen, is probably the simplest possible. 

The Faraday rotation angle is determined by measuring the ratio of

signal difference to signal sum at corresponding positions within 

Polaroid oscillographs of the displayed waveforms, and comparing with 

calibration data. Figure 3*5 shows the detector output in the absence

of plasma when the signals are balanced, and when Faraday rotation of

0.25 degrees is simulated. These demonstrate the relative time delay 

between the signals due to the difference in fibre-optic length, the
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change in the signal amplitude with rotation angle (one increases while 

the other decreases), and, apart from amplitude, the similarity between 

the waveforms. This latter feature would not exist if the rotation 

angle were not constant during the laser pulse, as during a focus 

discharge, or if the two fibre-optics were not viewing the same area of

the laser beam, i.e. the same plasma chord.

3.2.2 THE CHOICE OF OPTICS

All of the optical components used in the experimental arrangement, 

had to have a low level of stress birefringence, sufficient to produce 

a polarisation ellipticity of less than 10"^. They were chosen by

examining each component between crossed polarisera. 

Stress-birefringence revealed itself as a variation in the intensity

transmitted across the component, resulting in a mottled or patterned 

appearence, easily seen against the uniform dark background of the area 

adjacent to the component.

Care had to be taken in mounting the optical components, as this 

could cause stressing. This was avoided by clamping lightly, and 

checking each component in its optical mount between crossed 

polarisera.

Dust can also be a problem, as its presence on optical surfaces 

causes local depolarisation of the probe beam. Each optical element 

was kept dust free by frequent application of an air jet.
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3.2.3 ALIGNMENT

There were several unusual alignment problems with this 

experimental arrangement. These were with regard to the positioning of 

the beam-splitters, the polarising prism, and the analysers. These are 

described below, as are the procedures followed for the relative 

alignment of the fibre-optics, and the imaging of the plasma plane.

The alignment started with the experimental arrangement devoid of 

all lenses, the analysers, and the interference filter. Both vacuum 

windows were present on the machine, and the polarimeter stop was fully 

open. The optic axis through the machine, which intersected the z-axis 

of the plasma at the point of interest, 5 mm ±  250 microns below the 

centre electrode, was defined by a He-Ne laser from the ruby laser 

bench.

The first beam-splitter was positioned such that the He-Ne laser 

was reflected from its central portion, with an angle of incidence 

*^45 degrees, through BS2 to the fibre-optic, in the horizontal plane. 

The position of this fibre-optic defined the p-plane of BS1, and also 

the optic axis in this part of the arrangement. Once BS1 and the 

fibre-optic were set, all other optical elements were aligned relative 

to them.

The polarising prism was set so that the initial plane of 

polarisation of the probe beam was approximately co-planar with the 

p-plane of BS1. It will be shown later that this is not necessarily 
the best orientation.

The p-plane of BS2 was that plane containing both fibre-optics and
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the point of reflection from BS2. This plane was set approximately 

co-planar with the s-plane of ESI. As this was the vertical plane, 

then the fibre-optic above BS2 was positioned vertically above both the 

reflection point and the other fibre-optic. This ensured that the 

angle of incidence was % 45 degrees.

Both fibre-optics were to view the same plasma chord, and be imaged 

in the plane of the polarimeter stop. The alignment method used, was 

to illuminate the ends of the fibre-optics, with a He-Ne laser, at the 

detector end within the screened room, so that they became sources 

within the polarimeter itself. The +100 mm lens, L3, was then 

positioned to give an image of the fibre, seen through BS2, in the stop 

plane, without deviation of the optic axis. The image plane was 

checked by observing the lack of parallax between image and stop. The 

image of the fibre, seen reflected from BS2, was also formed in the 

stop plane, and was obtained by adjusting the vertical height of the 

fibre. Again the parallax method was used to check the location of the 

image plane. The images of the two fibres were then overlapped, by 

closely observing their images in the stop plane, and by adjusting BS2.

The first imaging lens was positioned to image the emitting 

filament of a small light bulb in the plasma plane, onto the film plane 

of the holographic interferometer camera (cf section 2.2.3)» without 

deviation of the optic axis. The second imaging lens was then 

positioned to image the bulb in the polarimeter stop plane, again 

without optic axis deviation. It was then fine adjusted to image the 

illuminated fibre-optics in the plasma plane, confirmed by the lack of 

parallax between the image and the aperture of an auxilliary stop 

placed on the centre electrode. The magnification of the first and 

second lens combination was determined by translating the optical
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table, and observing the fibre-optics’ image within the aperture of the 

auxilliary stop. The measured translation distance required for the 

image to move across a complete diameter gave the magnification.

The analysers were set for a half-shade angle 6^= 2 degrees by the

following method. The analyser in the transmittance arm of the

polarimeter, A^, was set by crossing it with the He-Ne alignment laser

when the polarising prism was rotated by e /2 = 1  degree, where the

factor 2 is the polarisation magnification factor produced by the

beam-splitters. The analyser in the reflection arm of the polarimeter,

A^, was set by crossing it with the He-Ne when the prism had been

rotated by e in the opposite direction from the initial starting 
H \

point. The prism was then reset to its initial orientation.

The expansion telescope was then aligned, the polarimeter stop 

closed down to a diameter of 1 mm, and the interference filter 

positioned with the reflected He-Ne light co-incident with the optic 

axis.

The final adjustment took place within the screened room. With the 

polarising prism set for the chosen initial plane of polarisation, the 

two fibre-optic ends were adjusted relative to the photodiode, until 

the amplitudes of the observed ruby laser waveforms were identical.
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3.3 THEORY OF THE POLARIMFITFT?

In this section, a full theoretical analysis is given of the

polarimetry. The expression relating the response of the polarimeter,

i.e. the ratio of signal difference to signal sum, to the Faraday 

rotation angle, is derived. This derivation includes the effects of 

refraction, impact parameter, the relative misalignment between the

beam-splitters, polarisation ellipticity, analyser rejection ratio, 

imaging optics, the reflection and transmission properties of

dielectric beam-splitters, and fibre-optic transmittances.

The state of polarisation of the probe beam from the plasma, is 

defined by two orthogonal electric field vectors, £  and A, which have 

the magnitudes of the major and minor wave components of the 

polarisation ellipse respectively. These components differ in phase by 

90 degrees. The ellipticity is defined as e = /7E .

The initial plane of polarisation is defined with respect to the

p-plane of BS1, and is given by the angle measured anti-clockwise 

from the p-plane (see figure 3*6). The Faraday rotation angle ip, is 

defined with respect to, and measured anti-clockwise from, the initial 

plane of polarisation. Therefore, the major wave vector £  subtends an 

angle ^ from the p-plane of BS1. Similarly, because they are

orthogonal, the minor wave vector A subtends an angle ^ from the

s-plane of BS1, measured anti-clockwise.

The polarimeter's polarisation properties are analysed by

considering the polarisation and amplitude changes experienced by both 

major and minor waves vectors explicitly at each optical component.
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initial and Faraday rotated major and minor wave vectors.

Assuming that the ellipticity of the probe beam arises from 

stress-induced birefringence in the Plasma Focus vacuum windows only, 

then both waves can be treated separately, as they differ in phase by 

90 degrees and can only interfere if birefringence is present. 

Transmission losses common to both waves are not included as they do 

not affect the polarimeter's properties.

3 .3.1  REFLECTION FROM THE FIRST BEAM-SPLITTER

Consider the reflection of the probe beam from' ESI. If the 

amplitude reflection coefficients for the p and s components are rpi
and r^^ respectively, then, as shown in figure 3.7, the amplitudes of 

the reflected components are, for the major wave
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-S2rp,Ê cosip.llJ<

b) Polarisation state of beam 
reflected from BS2

+
-9 -

oLU
CMCL

X

c)Polarisation state of beam 
transmitted by B52

Figure 3.JZ

The orientation of the major wave vector a) after reflection 

from ESI, b) reflected from BS2, and c) transmitted by ES2.

- 113 -



where E ' and E are the p and s polarised components respectively, and 
P s

are
E ^ = - r  < EE s in ( i| ;+ i| j ) and = r  EE c o s  (ip+ip ) ( 3 . 2 )p pi o 0 S sx  U u

for the minor wave, where the superscript e refers to the minor wave.

The resultant major and minor waves are at angles 0 from the

p-plane of BS1 and 0^ from the s-plane respectively, given by

tan 0 = tan (3.3)

and
tan 0^ = ^  tan (t[i+i|ĵ ) (3.4)

where a =r /r defines the polarisation magnification provided by 1 si pi
BS1. For the reflection properties of BS1, = -1.56, resulting in 0

lying further away from the p-plane, and 0^ nearer to the s-plane. 

Therefore, the major and minor wave components are no longer 

orthogonal.

Change In The Angle Of Incidence

Refraction and impact- parameter both affect the angle of incidence 

T on BS1, and so allowance must be made for the variation in the value 

of â . If ÔT is the change in the angle of incidence, then is given 

by a^°+(9a^/0T)ôT , where a^°is the value applying to rays travelling

parallel to the optic axis.

A probe beam passing through a cylindrical plasma in a direction 

perpendicular to the axis of symmetry, is refracted in a plane parallel 

to the beam and normal to the axis. This plane is approximately the 

p-plane of BS1, and so only the effect of a changing angle of incidence
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Change in the angle of incidence on BS1 with 

plasma refraction and impact parameter.

for rays in this plane need be considered.

Consider a ray at an impact parameter h, refracted by the plasma

through an angle e , in the horizontal plane. After passing through

the first imaging lens, the ray will intersect the optic axis at an 

angle $ (see figure 3.8), given by

t a n  0 = -  t a n ©  + ^  ( 3 . 5 )

where is the magnification of this lens, and its focal length.

This angle is also the change in the incidence angle on BS1, i.e.

ÔT = $ . Therefore, for a minimal change in the angle of incidence, 

both the magnification and focal length of the lens must be large.
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Ray trajectory through the polarimeter stop.

3 .3 . 2  REFLECTION FROM THE SECOND BEAM-SPLITTER

The refracted ray of figure 3.8, is reflected from BS1 at an angle 

$ from the optic axis, and after the second imaging lens, of focal 

length fg and absolute magnification m̂ , passes through the polarimeter 

stop at an angle C from the axis (see figure 3.9). This angle is given

“X» 1
t a n  C = ------ t a n  0 ( 3 . 6 )

2 *2

After passing through the final imaging lens, of focal length and

magnification the ray subtends an angle y from the axis (see figure 
3 .10), which is given by

t a n  Y = ^  t a n  Ç ( 3 . 7 )
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Angle of incidence on BS2 and fibre optics.

The magnitude of this angle has important consequences on the 

polarimeter's behaviour.

How this angle affects the angle of incidence on BS2 can be seen 

from figure 3.11. If the incident ray is in the direction of the unit 

vector u, given by

u = ^(-siny) + ^(-cosy) + &(0) ( 3 . 8 )

and the reflected ray is in the direction of the unit vector x» given 

by
= i(-siny) + ^(0) + Ê(cosy) (3.9)

where and are unit vectors along the x, y, and z, axes of the

Cartesian co-ordinate frame shown, then the angle between the incident 

and reflected rays, cr , being twice the angle of incidence, is given by
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The angle of incidence and reflection plane of BS2.

cos a = u.v = sin^Y (3.10)

From the derivative

If = 2 ^  = 2y << 1 (3.11)

we see that T , the angle of incidence, is insensitive to y . 

Therefore, the reflection and transmission properties of BS2 will not 

be affected by refraction or changing impact parameter.

However, angular changes at BS2 alters the orientation of the s and 

p planes. This is demonstrated in figure 3.12, where the new planes 

are denoted s’ and p’ respectively. A ray imaged onto the fibre-optic 

and incident on BS2 at an angle y from a parallel to the optic axis, is 

reflected in a plane - the p-plane - which is inclined at the angle y 

from both the vertical and the horizontal. This is equivalent to an
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a) The change in incidence angle at the fibre optics, defined by the 

angle 7, causes b) a changein the reflection plane of BS2 from p to p ’

angular rotation of the incident plane of polarisation by an amount y . 

In addition, if ri is the misalignment angle between the p-plane of ESI 

and the s-plane of BS2 for rays travelling along the optic axis, i.e. 

y = 0 (see figure 3.13), then on reflection from BS2, the electric 

field components of the major and minor wave vectors, in the s-p' 

co-ordinate frame of BS2, are given by (cf figure 3*7)

Manor

E = r  E { r  c o s ( ^ + ^  )cos(y+T]) - r  )sin(y+îl)} ( 3 . 1 2 )s s2 o p1 0 Si ^

E = r  „E  { r  <cos(ü+ù )sin(y+ri) + r  sin(iĵ +ip )cos(y+Ti)} p p2 o pi  ̂ 0 si o

Minor
E^= -er E {r s i n ( M  )cos(y+n) + r cos(^+^ )s in ( y + n ) }  (3.13) s s2 o pi 0 sx H
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Figure 3.13

The beam-splitter misalignment angle v is defined with respect 

to the p-plane of BS1 and the s-plane of BS2 when 7 = 0 .

E = -Er _E {-p2EQ{-rp^sin(ij;+i|;^)sin(y+ri) + r^^ c o s  (ip+i|j^)cos(y+Ti) } (3.13)

where r and r are the s and p amplitude reflection coefficients of
S2 P2

BS2 respectively.

Similar expressions for the components transmitted by BS2 are

obtained by replacing r and r with t and t respectively, which
Sd p2 s2 p2

are the corresponding amplitude transmittances.

3 .3 . 3  POLARISATION ANALYSIS AND DETECTION

The Reflected Beam

The resultant reflected major wave is polarised at an angle cj) from 

the s-plane of BS2, measured anti-clockwise, and is given by
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ta n  (f) =
tan(y+ri) + 0̂ tan(^+^^)

1 - o^tan(y+n)tan(^+^^) (3.14)

Similarly, the orientation angle of the resultant reflected minor wave 

vector, (j)̂, measured anti-clockwise from the p-plane of BS2, is given 

by

,c 1 ta n  (p = — 
a

ta n (y + n )  + —  tan(i|;+i|;^)

2 1 11 - -  tan(y+n)tan(^+^g)
(3.15)

where polarisation magnification factor for light

reflected from BS2 alone.

The intensities and , for the major and minor waves

respectively, are given by

r . E
s

cos (j)

and

- C O S  (j) -
(3.16)

The transmission axis of the analyser is fixed with respect to 

the s-p geometry of BS2 when the ray travels along the optic axis. If 

is the angle between the crossed axis of the analyser and the 

s-plane of BS2 when y = 0, then for a ray with y z 0, i.e. an off-axis 

ray, the orientation of the crossed axis becomes E^+y (see figure 

3.14), which is equivalent to a rotation of the analyser. Therefore, 

the intensity transmittances T^ and T^ , for the major and minor waves 

respectively, are

- 121 -



B52

Axis of maximum 
transmission

and

Analyser crossed 
axis

BS2

Fjgurg. -If 14

The orientation of the analyser crossed axis is defined 

with respect to the s and p planes of BS2 when 7 = 0 .

T^ = T^sin2(E^+Y-^) + R^cos^(E^+y-^)

= T^cos2(Eg+y-#^)

(3.17)

where T^ is the analyser transmittance for the preferred plane of 

polarisation, and Is the transmittance when crossed. The intensity 

transmitted to the fibre-optic, 1^^, is therefore

= TRiR + TR^R (3.18)

The Transmitted Wave

The resultant major wave vector of the beam transmitted by BS2, is 

polarised at an angle Ç from the s-plane of BS2, measured 
anti-clockwise, and is given by
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2̂
tan Ç = —  tan * (3.19)

Similarly, the resultant minor wave vector of the beam transmitted by 

BS2 is polarised at an angle from the p-plane of BS2, measured
anti-clockwise, and is given by

E (̂ 2 E
^ “ 6“ (3.20)2

where ^2^^p2"^^s2 polarisation magnification factor, and tp2

and t^2 the amplitude transmittance coefficients.

The intensities and , for the major and minor waves

respectively, are given by

■' ■ (4)'\cosC /

If E^ is the angle between the analyser A^'s crossed axis and the 

s-plane of BS2 when y = 0, then, similarly to the case of the reflected 

beam, the analyser intensity transmittances T^ and T^ , for the major 

and minor waves respectively, are

= T sin2(€ +7-0+ R,cos2(€ +7-0
(3.22)

= T^cos2(E^+y-C^)

and therefore, the total intensity transmitted to the fibre, I^p* is
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Detection
The probe beam intensities transmitted by the analysers, are

relayed by the fibre-optics to the single detector. The resulting

signals, S and S for the transmitted and reflected beams 
T R

respectively, are

V f t ^TF

V fR^RF

(3.24)

where rî  is the detector detectivity, and t^^ and t^^ are the 

transmittances of the fibre-optics relaying the light comprising the 

beams transmitted and reflected from BS2 respectively.

V
3 .3 . 4  THE POLARIMETER RESPONSE CURVE -

The parameter which defines the response of the polarimeter is the 

ratio of the signal difference to signal sum, R, given by

R =
^T~^R _ ^FT^TF ~ ^FR^RF
^T*^R ^FT^TF '*■ ^FR^RF

(3.25)

This can be re-expressed in terms of the analyser transmittances as

R =
(ATt ' T jj) + B (T ^ -C T ^ )  

(AT^+Tjj) + B(T;^+CT^) (3.26)

where the dimensionless parameters A, B, and C, are given by

A =

r  t
FT

L ̂ FR

V r i  [ ! s2 ]-^FRJ L ^ s2 J LcosCy ( ai-tan(^+^^)tan(Y+
L^s2 J L c o s f J  ( Ï  -  % ^tan (^+^^ )tan

n)
(Y+n)
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—  E, (3.27)
COSÇ /

3 .4  THE_ PREDICTED BEHAVIOUR OF THE PQLARIMRTFR TO REFRAnTTDM

Once the experimental arrangement has been set-up, aligned, and an 

experimental plasma run initiated, two variables exist which can change 

the value of R measured during a plasma shot. These are the Faraday 

rotation angle and the refraction angle. Ellipticity due to plasma 

birefringence is negligible. In addition, changing the impact 

parameter between shots modifies the polarimeter response curve. 

Parameters such as the analyser settings, the misalignment angle 

between the beam-splitters, and the inclination angle of the initial 

plane of polarisation with respect to the p-plane of BS1, are constants 

whose values affect the behaviour of the polarimeter to these two 

variables, and affect the manner in which this behaviour is modified 

with impact parameter. The influence of some of these parameters on 

the theoretical behaviour of the polarimeter to refraction is examined 

below. The half-shade angles and are 2 degrees.

The behaviour of the polarimeter at a given impact parameter to 

plasma refraction, can be simulated by changing the impact parameter, 

a.s they are indistinguishable in their effect on the angles $ and y . 

Comparison of the response curves at different impact parameters 

therefore reveals the effect of refraction at one impact parameter. Of
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course, it would be simpler to assume a refraction angle, and then 

calculate what effect it would have on the polarimeter response. 

However, this would be difficult to verify experimentally. It is 

easier to compare the polarimeter response at different impact 

parameters, as this is directly observable, and so simulate the effect 

of plasma refraction.

The change in the probe beam angle of incidence on BS1, produced by 

refraction of © at an impact parameter h, is equivalent to a change in 

the impact parameter of Ah with zero refraction. From equation 3-5, 

with f, = +650 mm and m, = 2.2, a change in the impact parameter of 5 mm, 

simulates refraction of 0.97 degrees. This is approximately the
V

maximum refraction angle that can be expected, at the ruby laser 

wavelength, from the Plasma Focus (cf section 1.10). The resulting 

value of Y » from equations 3.5, 3.6, and 3.7 with h = 0, is 0.36

degrees.

Table 3.1 gives a list of constant parameters, together with their

values, which describe the behaviour of the polarimeter. The

parameters q, t^^, and t^^, are variables. The analyser crossed

positions, and are also constants, whose values depend upon the 

parameters , 3̂  , 4̂  ̂> înd q . This is because they are set by

crossing them with the He-Ne alignment laser (see section 3.2.3), at 

zero impact parameter and therefore zero y , when the polarising prism 

is orientated to give a change in the plane of polarisation at the 

analysers of + 2 degrees. For the analyser A^, the prism is rotated

such that = 2 degrees, when is the required half-shade

angle. Crossing occurs when E^=^ with ip +ip̂  = ip + 2 degrees. The 

value of E^ then follows. Similarly, the analyser A^ is set when the 

prism is rotated to give ~ ~ 1- degrees, so that crossing
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TABLE_ 3.1 VALUES OF THE OPTICAL PARAMETERS

PARAMETER VALUE

-1.58114

-0.0359 p«'

a -0.646672

62 1.30809

(T /R^ ) 0.8181852 S2

0.59

«A
-63.0 X 10

occurs when e =r with ]h +ih = W - 1 degrees. The value of thenT Tq r Tq T
follows.

3.4.1 THE OPTIMUM OPERATING POINT

The essential details of the polarimeter's behaviour is obtained by 

considering the case when both the polarisation ellipticity and the 

rejection ratio of the analysers are zero. Taking the simplest 

possible case, i.e. i|ĵ = q = 0, and " 1.22, it

can be shown that the range of possible values of R is from +1 to -1, 

when # = + y and Ç = E^ + y respectively. These are just the

positions where the analysers are crossed. The position where R = 0 is 

called the operating point, as this is the position on the response 

curve from which Faraday rotation measurements are made. For this 

case, the polarimeter’s non-symmetrical response curves for three
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1.5 2.5

The predicted polarimeter response curve for an 

initial plane of polarisation ^ = 0  degrees.

impact parameters 0, ± 5  mm, are shown in figure 3*15. The two outer 

curves are equivalent to the response curves for a probe beam with 

impact parameter h = 0 mm, but with refraction of ±  0.97 degrees. Two 

features are particularly important. The first of these is the 

separation of the curves at the operating point. If Faraday rotation 

were absent during a plasma shot, a considerable change in the measured 

value of R could arise due to refraction alone, which would be 

subsequently wrongly interpreted as being due to Faraday rotation. At 

the impact parameter h = 0 mm, with a refraction angle of s 1 degrees, 

a change in R s 0.3 will occur. This is large in comparison to the 

measurement noise error 6R = ±0.025 (discussed in section 3.5.3). 

Therefore, for this case, the polarimeter would be totally unsuitable 

for Faraday rotation measurements. The second important feature, is

the difference in the gradients of the curves. This is discussed 
below.
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The predicted polarimeter response curve for an 

initial plane of polarisation 30 degrees.

Exploring parameter space, a position is found where the

behaviour of the polarimeter becomes suitable. For the parameters and

impact parameters used above, the polarimeter’s response curves for an

initial plane of polarisation =30 degrees, are shown in

figure 3.16. All three curves intersect at approximately the same

point, eliminating the error due to curve separation. If this

intersection point occured at the point R = 0, this would be the

optimum operating point for the polarimeter, where the effect of

refraction is smallest. A change in the measured value of R due to 

refraction will still occur however. This arises through the

difference in the gradients of the curves at the operating point.

Faraday rotation must be present for the effect to take place. Its

magnitude ôR^is given by
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lp(B (3.28)
R=0

where dR/dip|jj^is the gradient of the response curve at the operating 

point, and defines the sensitivity of the polarimeter. For 

convenience, 6R^ is best compared with the change in R due to Faraday 

rotation alone, 6R^, given by

■(stj»
For the parameters used, these gradients are

_ d
3

dR
= 0 . 3 4  ©  and  —̂  

R=0 ' ^
= 1.38 (3.30)

R=0V
Therefore the ratio dl^ôR^ s 0.24 and so an error of 24? will result 

if refraction of 1 degree occurs. Typically, the refraction from the 

Plasma Focus is 0.5 degrees. Therefore, the typical error will be 12?, 

assuming that the polarimeter is operated from the optimum operating 

point.

The fibre-optic transmittance ratio (t /t ), affects the locationFT FR
of the intersection and operating points, although not as strongly as 

\jĵ . Changing the value of this ratio alters the position of the 

intersection point with respect to the R-axis, leaving the jp -axis 

position relatively unaltered. Consequently, the position of the 

intersection point can be manipulated until the optimum operating point 

is achieved.

The misalignment angle r\ similarly affects the location of the 

intersection point with respect to the R and ip axes. However, the 

effect is weak and requires large angles, ^ ±  30 degrees, to make a 
small change.
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Experimentally, the optimum operating point can be found by 

adjusting the angle and the ratio This can be done

without'affecting the optical alignment. The transmittance ratio can 

be considered to be the coupling efficiency between the fibres and the 

detector, and is easily variable in practice. The angle ip is also 

easily variable with the polarising prism. The misalignment angle is 

not variable as it is fixed by the alignment procedure.

The intersection region occurs because the effects of refraction

cancel each other out. The parameter which is responsible for

cancelling the effects at the second beam-splitter, is the gradient of

the first beam-splitter’s polarisation magnification factor with angle

of incidence, 3a /9x • Although this term is small, its contribution 1
becomes significant when the angle is large.

The positions where the response curves turn over at the extremes 

of their range, i.e. at R = +1, a.re different on either side of the

operating point (cf figures 3.15 and 3*16). For a Faraday rotation

angle of 2 degrees, the zero impact parameter curve of figure 3.16 has

a value R = +1, while for an angle of -1 degrees, the value is -1.

This non-symmetry arises because the net effect of the beam-splitter 

combination amplifies the change in polarisation of the beam

transmitted by BS2 by a factor l a  6  I = 2, while it is essentially' 1 2
unaltered for the beam reflected from BS2. The response curve reaches 

the value R = -1 when ^ = -1 degrees, because the analyser is in the 

crossed position.
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3.4.2 THE EFFECT OF ANALYSER BF.TRCTTON RATIO

The effect of the analyser rejection ratio, R , depends very muchA
on its magnitude, and on the half-shade angle of the polarimeter. It 

can be neglected however if the inequality

R. «  -I T. tan^e (3.31)A 2 A  H

is satisfied. Otherwise, the effect will reduce the range of the ratio 

R, and also the sensitivity to Faraday rotation. It would also 

complicate the behaviour of the polarimeter with refraction, spreading 

out the intersection region and confusing the position of the optimum 

operating point. The effect must be kept minimal, and limits the

half-shade angle that can be used by the polarimeter. The optimum 

half-shade angle, when limited by analyser rejection ratio, is 

discussed in section 3.6.1.

3.4.3 THE EFFECT OF POLARISATION ELLIPTICITY

As for the analyser rejection ratio, the effect of polarisation

ellipticity, if significant, will reduce the range of the ratio R, and

also the polarimeter’s sensitivity to Faraday rotation. Again it will

confuse the position of the optimum operating point. From equations

3.16 and 3.21, the intensity ratios (I^/I ) and (I^/I ) are
R R T T

approximately and = 4e^ respectively.1 2  1 2
Therefore, the intensity of the minor wave component at the analyser A^ 

is approximately four times that at the analyser A , and so, unlike the 

case for the analyser rejection ratio, the effect will be greatly 

enhanced in the neigbourhood of the point R = -1. The effect of

polarisation ellipticity sets a lower limit to the half-shade angle of

the polarimeter. The optimum sensitivity, with ellipticity a limit, is
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discussed in section 3.6.2.

3.5 EXPERIMENTAL OBSERVATIONS

In this section, experimental observations of the polarimeter’s 
behaviour are described.

3.5.1 MAGNIFICATION OF THE POLARISATION CHANCE

The relationship between the angles cj) and Ç with Faraday rotation, 

was directly observed when the analysers were crossed with the He-Ne 

alignment laser during the procedure followed to set the half-shade 

angle. From equations 3.14 and 3.19, with\^^= 0, t) = 0, and y = 0, 

these relationships are approximately

= ip and  ̂= - 2^ (3.32)

Plots of (f) and or equivalently the analyser settings at which 

crossing occurs, against^, should therefore be linear with gradients 1 

and 2 respectively. In figure 3.17, the experimentally observed 

relationship is shown. As predicted, the points measured are a good 

fit to linear curves with these gradients.

3.5.2 OBSERVATION OF THE .OPTIMUM OPERATING POINT

The first step in the experimental procedure followed to measure 

Faraday rotation, is to calibrate the polarimeter. This is done by 

rotating the polarising prism, which simulates Faraday rotation, and 

observing the polarimeter’s response curve R(^). However, this
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Experimental observations of the polarisation 

magnification produced by the beam-splitters.

procedure is complicated as the calibration must occur at the optimum 

operating point of the polarimeter (see section The problem is

locating this point.

It was shown in section 3*4.1, that the initial plane of 

polarisation strongly' affects the location of the optimum point. The 

strategy adopted to locate the optimum point, was therefore to chose an 

initial angle, roughly corresponding to the p-plane of BS1, set the 

half-shade angle, and then plot three calibration curves at impact 

parameters 0, ±  5 mm. From the positions of the curves with respect to 

each other, assuming the optimum point is not found, the direction in 

which must be changed can be determined. This procedure is then 

repeated until the point is found. The final calibration occurs after 

both and the fibre transmittances t^^ and t^^ have been adjusted so 

that the optimum operating point is reached, i.e. when the
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intersection point lies close to or at the line R = 0.

Figure 3 « 18 shows a set of three calibration curves observed 

experimentally for an initial plane of polarisation defined by the 

polarising prism setting of 187.5 degrees. The half-shade angle was

1.5 degrees. Clearly, the intersection point had not been found. The

positioning of these curves indicated that the angle ih was too small.
0

Figure 3*19 shows the set of calibration curves observed when the 

polarising prism setting was 191 degrees, giving, a larger angle ip . 

For this case, the optimum point had been found. Both these sets of 

experimental curves are very similar to the sets of theoretically 

predicted curves shown in figures 3.15 and 3.16.

Figure 3.20 shows the actual set of calibration curves used in the 

Plasma Focus experiment. The half-shade angle was 2 degrees. Some 

departure from that predicted is shown by the curve for the impact 

parameter +5 mm. This was because the observed probe beam had passed 

through different parts of the machine vacuum windows, and

consequently, the polarisation ellipticity was different. From this 

graph, the value of R at the -1 turning point, for zero impact

parameter, is approximately -0.93. It will be shown in section 3.6.2,

that this is due to a polarisation ellipticity of 4.5x10 As the

response curves peak at a value of +1, then the effect of the analyser 

rejection ratio is unobserved.

The sensitivity of the polarimeter dR/d^^^^^ = 1.2 per degree, and

the change in the sensitivity due to refraction approximately 0.28 per 

degree squared. Therefore, the ratio of the change in R due to 

refraction to that due to Faraday rotation, from equations 3*28
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Figure 1.18

The experimentally observed polarimeter response 

curve away from the optimum operating point.
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The experimentally observed polarimeter response 

curve near to the optimum operating point.
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and 3.29, is given by

^ 0 - 2 ®  (3.33)

and so an error of 20? will result if refraction of 1 degree occurs. 
Typically, the error will be 10%.

3'5.3 THE MINIMUM OBSERVABLE FARADAY ROTATION

The minimum observable Faraday rotation angle, is defined as

that angle which produces a change in the polarimeter’s response which 

is indistinguishable in its magnitude to that due to noise. If the 

level of noise is then the minimum observable rotation is

O' . ( 4min \ dip r (3.34)
R=0

Therefore, is defined as that angle which gives a signal to noise
ratio of unity.

Noise can originate from several sources within the experimental

set-up. The first is due to plasma light emission which may have a

random polarised component. However, no plasma light was observed due 

to the effective screening of the interference filter. The second is 

due to detector noise. As the detector was housed within the screened 

room, then it was protected from electrical interference. Both shot 

noise and diode recombination noise were not observed. Another source 

was due to amplifier and oscilloscope noise. Again this was not 

observed. The final noise source was observable however. This was due 

to the slight difference in the regions of the ruby laser observed by

the two fibre-optics. The small difference in the two viewing chord

positions, resulted in the laser intensities carried by the fibres 

having slightly different time histories. This effect was greatly
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exagerated by the differencing technique. Another contribution to this 

noise, may have arisen from the difference in the convolution of laser 

intensity pattern at the entrance apertures of the fibres with the 

surface admittances.

Experimentally, noise was observed by measuring the ratio R at many

corresponding points within the laser waveforms observed for

calibration shots. For these, ip i s  fixed and so R is constant. Noise

is then observed by statistically averaging over many shots and many

measurements, and determining the standard deviation. For the

experiment, the standard deviation was 0.025 and had no significant

correlation with either signal level or value of R. Therefore, the

noise observed was constant. Taking the noise (SR = 0.025, theN
corresponding minimum observable Faraday rotation angle was 

0.02 degrees or 0.35mrad.

3.6 THE OPTIMUM SENSITIVITY OF THE POLARIMETER

The polarimeter's sensitivity essentially depends upon the 

half-shade angle used. However, the dynamic range is proportional to 

half-shade angle, and so large sensitivity can only be achieved at the 

cost of small dynamic range. In addition, small half-shade angle 

results in small analyser transmission, setting a minimum illumination 

power requirement, or a minimum feasible half-shade angle with the 

source used. In the following sections, new criteria for determining 

the optimum sensitivity of the polarimeter when limited by analyser
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rejection ratio and polarisation ellipticity, are presented. It is 

assumed that dynamic range and source illumination are both sufficient.

3.6.1 LIMITATION BY ANALYSER REJECTION RATIO

Consider the polarimeter's response curve for the simple case when 

= Y = 0° and =1.22. The polarisation ellipticity is

assumed zero, and the analysers rejection ratio R^ is assumed finite 

and equal for both. The values of the optical parameters are as given 

in table 3.1. The half-shade angle will be considered variable.

The sensitivity (dR/di|;]^^ , from equations 3.26 and 3.27, is 

expressed explicitly by

dR
dip

a (B -a )(R,-T.) sin 2e„ i _ A ------ H (3.35)
R=0

where the half-shade angle e is assumed equal for both analysers. 

This is plotted in figure 3.21 against half-shade angle for various 

analyser rejection ratios. The effect of R^ clearly limits the maximum 

posssible sensitivity. The half-shade angle giving rise to the maximum 

sensitivity, e from equation 3.35, is given by

^min "VsT^ (3.36)

which is similar to that derived by Jarboe [53]. This angle is plotted

in figure 3.22 against the ratio R^/T^. For the HN22 analysers,

maximum sensitivity would be achieved with a half-shade angle of

0.15 degrees. However, at this setting the dynamic range,

1.5 = 0.225 degrees, would be very small. If a larger dynamic

range was needed, then obviously the minimum half-shade angle would be
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Figure 1.22

The optimum polarimeter half-shade angle determined a) by 

maximum sensitivity, and b) by minimising refraction effects.
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chosen accordingly.

This minimum half-shade angle was determined without considering

the effect of refraction. A better choice, if dynamic range is not a

limitation, is found by considering the value of the ratio R when

i'G" when the analyser is crossed with the probe beam.

this point is chosen because it is a good indicator of polarimeter

performance, and is more sensitive than at the corresponding point when

the analyser A^ is crossed. This is because the magnification factor

^ 1^2 effectively reduces the half-shade angle at this point. From

equations 3.26 and 3.27, the value of the ratio at this point, R , is-1
given by

64R \-lA \ (3.37)

This is plotted in figure 3.23 against the ratio R^/T^ for various 

half-shade angles. For the half-shade angle given by equation 3*36, 

the value of R ^ is constant, having the approximate value -0.3. This 

value is too low. The best polarimeter performance is obtained when 

R  ̂is in the range -0.9 to -1.0, when the effect of the analyser 

rejection ratio is small, and does not alter significantly the location 

of the optimum operating point. Using this as the new criterion to 

ensure that the polarimeter is optimised for both sensitivity and 

minimal refraction effects, the optimum polarimeter half-shade angle 

E* , is given by
/ 20 R \^

This is also plotted in figure 3.22. It is approximately six times 

larger than the angle given by equation 3.36. For the 2 degrees 

half-shade angle used in the experiment, the effect of the HN22
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Ratio value R_]_ against analyser rejection 

ratio for various half-shade angles.

analyser rejection ratio should be negligible as R =-0.99* Even if

the actual rejection ratio were worse by one order of magnitude, then

R would still be greater than -0.9, and the position of the optimum 
-1

operating point would be unaffected.

3.6.2 LIMITATION BY POLARISATION. ELLIPTICITY.

The criterion used in the previous section to determine the optimum 

half-shade angle when limited by analyser rejection ratio applies 

equally well to the problem of determining the optimum half-shade angle 

when limited by polarisation ellipticity. This is because the effects 

of both on the behaviour of the polarimeter are similar. Assuming 

again the case used previously, but now with the analyser rejection 

ratio assumed zero, and the ellipticity finite, the value of the 

polarimeter’s response curve at the R_^ turning point, from
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Ratio value R_^ against polarisation ellipticity 

squared for various half-shade angles.

equations 3.26 and 3.27» is given by

>2 «2^2

xlO‘3

R-1

4 ( g r - a Z )  - e „ ( l - a  / 6  y
2 2 1 H 2 2

4(3^-ot^) + e ^ ( i - a  / g
2 2 1 H 2 2

( 3 . 3  9)

This is plotted in figure 3.24 against ellipticity squared for various

half-shade angles. Best overall polarimeter performance is again

obtained with a half-shade angle which gives R ^ 2  -0.9. This

optimised half-shade angle e* » is given bym

E* = m
'4 a^E^ (19 3^ -a^ )

1 2 2 I ( 3 . 4 0 )

(1-a /3 y 2 2
and is plotted in figure 3.25.

For the polarimeter to have an optimum half-shade angle of 

2 degrees, the polarisation ellipticity would have to be 6x10 

From the experimentally observed calibration curves shown in
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The optimum half-shade angle determined 

by minimising refraction effects.

figure 3.20; the R turning point has the range of values -0.95 to—1
-0.90. From figure 3.24, this corresponds to a polarisation 

ellipticity of between 4.5x10”  ̂ and 6.0x10” .̂ Therefore, the 

polarimeter was used with optimum sensitivity at the half-shade angle 

used in the Plasma Focus Faraday rotation experiment. The source of 

this ellipticity was' identified as being due to stress birefringence 

within the machine’s vacuum windows.

From section 1.10, the ellipticity produced by dichroism and

birefringence, even assuming anomalous collisionality, was in the range 
~510 to 10 . This is significantly lower than the ellipticity due to

stress birefringence. Therefore, neither dichroism or birefringence 

affects the measurement of Faraday rotation.
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ÇHA.PTER__4 RESULTS. ANALYSIS OF RESULTS. AND INTERPRETATION

The results of holographic interferometry and Faraday rotation 

measurements of the Plasma Focus are presented. From these 

measurements, the azimuthal magnetic field structure of the pinch is 

determined. Descriptions of the data analysis, the errors, and the 

interpretation of the results, are given.

The measurements were taken with identical initial conditions, 

which were 24.1 kV capacitor bank voltage, and 1.8 torr filling 

pressure of deuterium gas.

4.1 RESULTS

Typical results of holographic interferometry and Faraday rotation 

polarimetry, are given in this section.

4.1.1 HOLOGRAPHIC INTERFEROMETRY

A sequence of ruby laser 1.5 ns double exposure holographic 

interferograms of the Plasma Focus were obtained in the time interval 

ranging from t = -100 ns to t = +50 ns with the experimental 

arrangement described in section 2.2.3.

The sequence of three reconstructed holograms shown in figure 4.1, 

show the evolution of the Plasma Focus during the collapse phase. Each 

was taken during a separate discharge. At time t = -30 ns, the
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radially pinching current sheath is clearly visible against the 

background reference fringes. Also visible is the position where the 

current sheath folds over to become the return sheath. This position 

is marked with an arrow. The axial length of the plasma column, and

radius at a Z-axis position 5 mm below the centre electrode, are 19 mm

and 9 mm respectively. Instabilities of small amplitude are visible. 

At time t = -10 ns, the plasma column is more developed with a smaller 

radius of 3.6 mm and an axial length of 21 mm. The compact fringe 

structure at the plasma edge is similar to that shown for the earlier 

time, and indicates small edge density scale lengths. Instabilities 

with larger amplitude are observed. However, the plasma appears 

symmetric. At^ time t = 0 ns, peak compression of the plasma column

occurs over an axial length of 'u 10 mm from the the centre electrode.

Axial electron densities of 4x10^^ m“^ are achieved in a plasma column 

of radius 2.35 mm. The axial length of the plasma is 21.5 mm. The 

fringe shift distribution across the plasma image indicates a 

relatively uniform density gradient. Instabilities become more severe 

at this time, although the symmetry has not been destroyed. This 

latter hologram depicts the end of the collapse phase and the beginning 

of the dense pinch phase.

The three reconstructed holograms of figure 4.2, show the plasma at 

various times during the dense pinch phase. At time t = +5 ns, the 

plasma appears similar to that at peak compression (cf. figure 4.1). 

Instabilities have not yet destroyed the pinch. At time t = +20 ns, 

the plasma has clearly expanded in the area adjacent to the centre 

electrode. This expansion appears formless. It is also apparent that 

the plasma column has divided into two separate dense regions. This 

occurs as the result of a large amplitude m = 0 or sausage instability. 

Finally, at time t = +35 ns, the plasma in the neighbourhood of the
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centre electrode is undetectable. From the sensitivity of the 

interferometer, an upper limit to the electron density of 3x10^^ m"^ 

for this region is estimated. The remaining dense plasma column 

downstream is strongly perturbed by large amplitude m = 0 

instabilities. This frame depicts the last stages of the dense pinch 

phase, with peak compression occuring in the region where the return 
current sheath is formed.

4.1.2 FARADAY ROTATION

Oscillographs of the polarimeter detector output were taken for a 

time range between -100 and +100 ns from peak compression of the 

plasma. The Z-axis position of the plasma plane observed was 5 mm 

below the centre electrode. Over 500 shots were recorded for a variety 

of impact parameters varying between ±  10 mm. In this section, typical 

Polaroid oscillographs are shown and discussed.

In figure 4.3, oscillographs of the detector output at impact 

parameters -3 and +4 mm are shown. Both were recorded at similar times 

during separate discharges. Most of the structure seen in the 

waveforms is due to the laser's output. Faraday rotation manifests 

itself by both changing the relative amplitudes at corresponding signal 

positions and, because it is time dependent, by modifying the waveform 

shapes differently. For the oscillograph taken at impact parameter 

“3 mm, the large increase in amplitude seen at the beginning of the 

second waveform, relative to the first, is due to Faraday rotation of 

approximately 0.3 degrees. After this time, the two waveforms become 

very similar indicating much less Faraday rotation. This time history 

of the Faraday rotation arises as follows; When the current sheath 

moves through the polarimeter's field of view, Faraday rotation is
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observed. Once the plasma sheath's radius is less than the impact 

parameter, the probe beam passes through vacuum and the Faraday 

rotation is zero. Therefore, it is simply the plasma sheath moving 

across the viewing chord that is observed. The handedness of the 

rotation observed agrees with that predicted on the basis of the known 

magnetic field direction. The oscillographs taken for impact parameter 

+4 mm shows the same behaviour, although the direction of Faraday 

rotation is reversed. This reversal occurs because the polarimeter's 

field of view is on the opposite side of the magnetic axis.

Within the shot to shot variations observed in the experiment, no 

difference between the data taken on opposite sides of the magnetic 

axis was seen. Therefore, from the data, the plasma appears 

cylindrically symmetric.

During some plasma shots, very large departures - spikes - in the 

waveforms were observed. Figure 4.4 shows two typical shots. These 

spikes, one a rapid increase in amplitude, the other a similarly rapid 

decrease, occur at corresponding points within the two waveforms and 

are due to large Faraday rotation angles (approximately 1 degree which 

is twice the maximum normally observed). The two results shown were 

for impact parameters +1.5 mm and 0 mm. The observation of spikes at 

zero impact parameter indicates that there are large magnetic field 

strengths in the neighbourhood of the axis, and that the magnetic axis 

of the plasma may not necessarily correspond to the geometrical axis of 

the device. The spikes observed at impact parameter +1.5 mm are for a 

Faraday rotation with an opposite handedness to that at 0 mm, 

indicating that the magnetic axis lies between these points.
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Figure 4.1

Typical interferograms during the collapse phase, 
and at peak compression of the plasma.
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Figure 4.2

Typical interferograms during the dense pinch phase.
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I

“H h " 2 0 n s

h =  -3mm

h = 4  mm

Polarimeter signais displaying normal Faraday rotation

Figure 4.3

Typical oscillographs of the polarimeter detector 

signal during a plasma discharge.
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h =Omm

^  ^O ns

Polarimeter signals displaying Faraday rotation spikes 
due to axial current filaments

Figure 4.,A
Oscillographs of the polarimeter detector signal exhibiting 

Faraday rotation due to short lived axial current filaments.
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The duration of these spikes is approximately 2.5 ns, which 

corresponds to the 400 MHz bandwidth of the recording system. The 

magnitude of the observed rotations, 0.95 degrees, does not depend on 

impact parameter out to a value of 1.5 mm. These two results indicate 

that the measurements may be bandwidth limited.

4.2 ANALYSIS OF HOLOGRAPHIC INTERFEROGRAMS

Analysis of the interferometric fringe shift data contained in the 

holograms, gives the electron density radial distributions at a variety 

of times during the evolution of the discharge. In addition, the 

temporal evolution of both the plasma radius and the return sheath 

axial position can be determined. The procedures followed in the 

analysis of the holograms are described below. The accuracy of the 

unfolding is also discussed.

4.2.1 HOLOGRAM RECONSTRUCTION

In order to extract the interferometric data, the holograms had 

firstly to be reconstructed. White light reconstruction was 

accomplished using the optical arrangement of Jahoda and Siemon [50], 

shown schematically in figure 4.5. Light from a lamp P was collected 

by a condenser lens C, behind which was placed the hologram, H, to be 

reconstructed. With the lamp and lens positioned such that the light 

cone converged through the hologram to a focal point, F , two similarly 

converging first order diffracted light cones were produced on either 

side. A photographed image of the hologram taken in the light of one 

of these first order diffracted light cones, produced the reconstructed

- 155 -



Figure 4.5 

Hologram reconstruction

interferograms as shown in figures 4.1 and 4.2. This was most easily 

done by positioning the camera’s objective lens, 0, at the focus of one 

of the diffracted light cones. The images were recorded on Polaroid 

type 55 positive/negative film.

The type 55 negatives were examined by projecting from a 4x5 inch 

enlarger onto a large screen, giving an overall real space 

magnification of the interferograms of approximately 12. The observed 

spatial positions of the interferometric fringes, at their points of 

intersection with a line drawn between two corresponding vacuum fringes 

on either side of the plasma image, at the Z-axis position of interest, 

gave the radial distribution of the fringe shifts. The actual fringe 

shift was given by the number of fringes crossing the line between the 

plasma radius and the point, plus the fringe itself. On the axis, an 

additional fractional fringe shift was estimated using linear
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interpolation.

4.2.2 ABEL INVERSION

The Plasma Focus is, to a good approximation, azimuthally 

symmetric. Therefore, a cylindrical model can be used to analyse the 

data. The fringe shift, F, caused by light propagating through the 

plasma at an impact parameter h, in the r—0 plane, is given by [54]

■ i r //  n ( r ) r ( r 2 - h 2 ) " ^ d r  ( 4 . 1 )e
h

where \  is the probe beam wavelength, and n is the critical electron
c

density for that wavelength. For the 694.3 nm wavelength of the ruby 

laser used, = 2.3x1Cp^m Equation 4.1 is a form of Abel's

integral equation, with the solution for the electron density profile 
given by

“2 )oi /■(dF(h)t , -èn _ ( r )  = — — > ( h 2 - r 2 )  ^dh  ( 4 . 2 )
e IT / ( dh /

r

This integral depends upon the gradient of the fringe shift profile

with impact parameter. Therefore, for accurate density unfolding, the

fringe shift profile must be precisely known. This also implies that 

good profile fitting to the raw data is necessary. The observed fringe 

shift profiles did not in general correspond to known analytic 

solutions. Therefore, the Abel inversion integral was determined

numerically. This was most conveniently done using the method of

Bockasten [55], which assumes cylindrical symmetry.

The raw data consisted of the positions of the integer fringe 

shifts, the fractional axial fringe shift value, and the plasma radius. 

Through this data, a continuous curve was fitted numerically using
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library Fortran subroutines on a Prime 500 computer• This curve

consisted of a set of N-1 cubic splines, where N is the number of data

points, each defined only within the interval between the N-1 pairs of

adjacent points. Typically, 1 0 - 1 5  data points were used. From this

curve, a sequence of fringe shift values F^, were calculated for

equidistant impact parameter values, h^ = ka/n (k = 0,1,2,...,n-1),

where a is the plasma radius, and n is an integer. From these F^

values, n values of the electron density, n (r ), at the radial
e j

positions r̂  = ja/n (j = 0,1,2,...,n-1), were calculated using the Abel

inversion equation [55]
2Xn

% «jk ^  (4.3)

where the coefficients are tabulated by Bockasten for cases when 

the integer n = 10, 20, or 40. The latter set of coefficients is given 

only for j _> 30, and enables a more detailed study of the edge of the 

distribution. For the analysis of the interferometric data reported in 

this thesis, the value of n used was 20. This provided sufficient 

accuracy over the whole distribution.

Three typical fringe shift profiles for times t = -25, 0, and

+10 ns are shown in figure 4.6. The fringe shift profile at time 

t = -25 ns, is similar to that taken from the reconstructed hologram 

shown in figure 4.1 at time t = -20 ns. The fringe shift increases

rapidly at the plasma edge, reaches a maximum value, and then decreases

slightly towards the axis. This profile is characteristic of a hollow 

electron density distribution, peaked near to the plasma-vacuum 

boundary. The fringe shift profile at time t = 0 ns, is strongly

peaked on axis, with approximately 14 fringe shifts observed. At time

t = +10 ns, the profile remains peaked on axis, and has a similar 

gradient to that at time t = 0 ns. Only the boundary region shows any
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significant modification. This is due to the relaxation of the density 

distribution after peak compression.

4.2.3 ABEL INVERTED ELECTRON DENSITY PROFILES

A sequence of Abel inverted electron density distributions during 

the collapse phase, from times t = -44 ns to t = -7.5 ns, are shown in 

figure 4.7. The axial positions of these profiles lie in the range 

5 - 10 mm below the centre electrode. At the earliest time, 

t = -44 ns, the pinching sheath is well defined, with a peak electron 

density 1.2x1Cp^ m The axial density is 8.0x10^^ m"^, which is 60?

of the density for completely ionised deuterium gas at the 1.8 torr 

filling pressure used. Although not shown, approximately 6 ns later 

the axial density has increased to 1.3x1(?^ m"^, which corresponds to 

the filling density. The peak density at this time is 1.4x10^4 m “ .̂ 

As time progresses, both the peak sheath density and axial density 

continue to rise. The radial distribution of the éléctron density 

reaches an almost constant value of 4.0x10^^ m"^, approximately 10 ns 

before peak compression. This represents an increase in axial density 

by a factor of 50 from the earlier time of t = -44 ns, and an increase 

in peak density by a factor of 3.3. Following this time to peak 

compression, the distribution maximises on axis and grows rapidly, as 

demonstrated by the plot at time t = -7.5 ns.

Figure 4.8 shows a sequence of Abel inverted electron density 

distributions during the dense pinch phase, from peak compression until 

a time t = +20 ns. Again the axial positions of these profiles lie in 

the range 5 - 1 0  mm. At peak compression, the plasma radius is 

2.35 mm, and the axial electron density 4.2x10^^ m"^. This density is 

approximately 500 times larger than the axial density at t = -44 ns,
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Plasma Focus Electron Density Distributions

Radius (mm)20

Figure 4.8

Abel inverted electron density distributions 

during the dense pinch phase.
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and 300 times the filling density. At the time t = +6 ns, the axial 

electron density has dropped by a factor 2.7 to 1.56x1025 At the

time t - +10 ns, the axial density is 5.2x1024 ni"3, which is a decrease 

by a factor 8.4 from peak compression. During the last 10 ns time 

period of the collapse phase, the density increases by a similar 

factor. Thus, within a 10 ns window on either side of peak 

compression, the electron density profiles are similar. At a time 

t = +20 ns, the axial electron density has decreased to 1024 nT^ , and 

the profile clearly shows the relaxation of the density distribution.

These results are in good agreement with an earlier investigation 

of the Plasma Focus by Morgan [46], who used Mach-Zehnder 

interferometry. In Morgan's investigation, the device was operated 

with different initial conditions to the present work. These 

conditions were: 30 kV capacitor bank energy, and 2.5 torr filling

pressure of deuterium with H% Argon.

During the time period covered by figures 4.7 and 4.8, the plasma 

column was perturbed by Raleigh-Taylor instabilities. As a direct 

result, it was not possible to obtain from every analysed hologram the 

electron density profiles at a Z-axis position 5 mm below the centre 

electrode, which was the position where the Faraday rotation 

measurements were made. Therefore, in order to cover the time interval 

of interest, several profiles from adjacent axial locations were 

utilised. Fortunately, it was found that the profiles did not have a 

significant axial dependence when Z ^  10 mm. Thus, the electron 

density profiles reported in this thesis, and used in the analysis of 

Faraday rotation, are composed of plots from a variety of axial 

positions, with Z ^  10 mm.
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Figure 4.9 shows an isometric plot of the temporal behaviour of the 

electron density distribution, between the times t = -44 ns and +20 ns. 

This was constructed using the experimental data shown in figures 4.7 

and 4.8. Linear interpolation was used to generate data at times other 

than those for which profiles were known.

4.2.4 THE PLASMA RADIUS AND SHEATH VELOCITY

In addition to electron density information, the holographic 

interferograms give details of the temporal evolution of the plasma 

radius at various axial positions. Figure 4.10 shows the observed time 

dependence of ^he plasma radius at an axial position Z = 5 mm. It is 

seen that the radius decreases linearly with a velocity of 

2.35x10^ ms"l, until a time approximately 15 ns before peak 

compression, after which, the velocity drops to zero at peak 

compression. The plasma then expands, and the rate of expansion is 

similar to the rate of contraction before peak compression.

The minimum plasma radius was 2.35 mm, and this occured at the time 

when the dl/dt singularity was observed on the Rogowskii coil waveform. 

This is peak compression of the pinch, and it is with reference to the 

dl/dt singularity that all timings are made.

The curve fitting the data points of figure 4.10 is hyperbolic, 

having the form
a ( t )  = a ^ ( l -  ^2 ( t - t ^ ) 2 ) ^ +  Eg ( 4 , 4 )

2

where the constants a. , a , a , and t , are defined as follows: The^ 2 3  Q
sum â  + a^, is the minimum plasma radius and occurs at a time t^. The 

ratio a^/a^, is the gradient of the hyperbola's asymptote and is also
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the velocity of the plasma-vacuum boundary. Finally, the constant a^ 

is the value of the radius at the intersection point between the 

asymptote and the line t = t̂  . The gradient of the asymptote was found 

by least—squares fitting the data, with a 6 mm, to a linear curve. 

The parameter â  can be considered to be half the sheath thickness, 

because, when the sheath converges on axis and is reflected, during the 

reflection period it overlaps itself. From the data collected for the 

three axial positions Z = 5> 7.5, and 10 mm, the sheath thickness is

approximately 1.4 mm. This value agrees well with the width of the 

shock as determined from the electron density profiles shown in 

figure 4.7; and is approximately twice the magnetic field penetration 

depth as observed by Faraday rotation and discussed later.

For axial positions > 1 0  mm, the hyperbolic fit to the data is 

poorer after peak compression than before. This is because at these 

locations, the plasma column is less reproducible, due to the effects 

of plasma instability.

The three curves shown in figure 4.11, summarise the results 

observed for the axial and temporal behaviour of the plasma radius. 

The axial dependence of asymptotic radial velocity shown, indicates 

that the sheath is slowest adjacent to the centre electrode, and is 

fastest when Z ^  10 mm. Between the axial points 5 and 10 mm, the 

velocity increases from 2.35x10^ms"^ to 2.65x10^ms”l . For Z ^  10 mm, 

the velocity is approximately constant at 2.7x10^ms This behaviour 

of the radial velocity with axial position is different to that 

observed by Morgan [46], who observed a decrease in velocity with axial 

position. The axial dependence of minimum plasma radius, shows that 

the greatest compression occurs at the axial position Z = 7*5 nun» At 

the neighbouring points Z = 5 and 10 mm, the values of minimum radius
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> Z  (mm)12-57*5
Figure _4.11

The axial behaviour of the plasma boundary radial asymptotic 

velocity, the mimimum plasma radius, and the timing of peak 

compression with respect to the dl/dt singularity.

are marginally larger. For Z 2  10 mm, there is a rapid increase in the 

minimum plasma radius. Therefore, plasma compression decreases with 

axial position. This is possibly due to axial flow of plasma from 

positions closer to the centre electrode. The axial behaviour of the 

time when maximum plasma compression occurs, t^, is also shown. At 

axial locations Z ^  8 mm, peak compression occurs at time t = 0, i.e. 

the time of the dl/dt singularity. At axial locations > 8 mm, peak 

compression occurs after the dl/dt singularity, reaching +15 ns at 

Z = 15 mm. At Z = 10 mm, peak compression occurs at approximately 

+1 ns, which, together with the minimum plasma radius behaviour, 

validates the assumption that for 5 <. Z ^  10 mm the plasma's electron 

density distributions are similar. Only the asymptotic velocity shows 

any significant difference. However, only the density profiles between 

times -10 and +10 ns are required for unfolding the magnetic field 

results from the Faraday rotation measurements, when the velocities are
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far from their asymptotic values.

4.2.5 PLASMA AXIAL LENGTH

Figure 4.12, shows the observed axial length of the plasma column 

against time. The data points were measured from the centre electrode 

shadow to the maximum axial position where the interferometric fringe 

shift pattern first appeared distorted. This distortion was due to the 

plasma return sheath. This particular feature of the reconstructed 

holograms is shown by arrows in figure 4.1. The observed initial axial 

velocity of the return sheath was 1.57x10^ ms“l. This was constant 

until approximately t = -25 ns, afterwhich it decreased over a 30 to 

40 ns period. At times > +10 ns, the velocity remained constant at 

^7.5x104 ms"l. Therefore, over the period around peak compression, 

the axial velocity dropped by approximately a factor 2.

A simple snow-plough model of the plasma return sheath can be used 

to explain why the velocity decreases. Assuming a perfect snow-plough, 

the rate of change of momentum per unit volume of the plasma sheath 

must balance the magnetic force per unit volume driving it. 

Therefore [56]

i -  B2 = pv2 ( 4 . 5 )2|i 0 zo

where p  is the mass density of the filling gas, B q  is the azimuthal 

magnetic field, and v̂  is the axial sheath velocity. From this model, 

the sheath velocity is proportional to the magnetic field strength, or 

equivalently, the plasma current. Therefore, the observed reduction in 

the sheath velocity by a factor 2 would indicate that the plasma 

current has also decreased by a similar amount. It will be shown later 

that the plasma current at peak compression, measured using Faraday
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rotation, is 340 kA. This is approximately 70% of the current from the 

capacitor banks. At this time, the high voltages generated by the 

rapid changes in plasma inductance, cause current leakage across the 

insulator between the electrodes, as observed by Gourlan et al [57]. 

This leakage is significant only in the time period around peak 

compression. Thus, the reduction in sheath velocity is due to this 
current leakage.

This result supports the conclusion that insulator leakage is the 

cause of the low plasma current measured by Faraday rotation, rather 

than another mechanism in which the current is conducted in a low 

density plasma outside the pinch column, as considered by 

Bernard et al [21,22,58] to explain magnetic probe measurements. This 

latter mechanism is not supported by the velocity observations as the 

diffuse plasma must carry most of the 150 kA current not within the 

dense plasma column, which would result in only a small change in 

magnetic field strength at the return sheath position, and therefore, a 

small change in the axial sheath velocity, contrary to that observed.

4.2.6 ACCURACY OF THE ANALYSIS

The distributions of electron density and the data demonstrating 

the temporal evolution of the plasma radius and length, were subject to 

a variety of errors. These errors fall into the following classes:

a) Inaccuracies in the measurement of fringe shifts and lengths 

from the reconstructed holograms.

b) Imperfect hologram reconstruction.

c) Errors due to poor laser spatial coherence.

d) Errors arising from the unaccounted additional phase shift due
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to the return current sheath.

e) Errors due to incomplete compensation for the effects of scene 

beam refraction.

f) The systematic Abel inversion error.

These are now considered in sequence:

a) The fringe shift positions could be determined within the

reconstructed hologram images to an accuracy of ^ 1 mm. Therefore,

with a real space magnification of 12, the error in this measurement

was 0.1 mm. With the background fringe spacing employed, approximately 

1 - 1 . 5  per mm,̂  the equivalent fringe shift error, 6F, was 0.1.

Only holograms in which the fringe structure could clearly be seen 

were used in the analysis. This ensured that the error in counting the 

fringes was zero.

The error in determining the plasma radius was typically 0.25 mm. 

This is equivalent to a 10% relative error in a single measurement of 

the plasma radius at peak compression. It is less at all other times. 

This error arises because at the plasma-vacuum boundary the deviation 

of the interferometric fringes from the vacuum reference fringes is 

gradual, with the result that it is difficult to pin-point exactly 

where the deviation begins.

The error in determining the plasma length was 0.75 mm. This is 

larger than the uncertainty in the plasma radius, but represents a 

smaller relative error ( '^4% as typically Z 20 mm).

b) Care was taken during the reconstruction of the holograms to
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correctly image the interferogram onto the Polaroid film. The film and

hologram planes were parallel within 5 degrees, and the magnification

about unity, so that length contraction was less than 1%. This error

is sufficiently small to be neglected.

c) Imperfect laser spatial coherence - ruby lasers generally have 

poor spatial coherence - manifests itself as a variation in the pattern 

of reference fringes across the interferogram. Ideally, the reference 

fringes should all be parallel. A typical hologram was tested by 

comparing the reference fringes at several points with parallel linear 

lines drawn through the reference fringes. It was observed that the 

fringes varied on average by approxmately 0 .1 mm, which was equivalent 

to a fringe shift error of 0 .1.

Holograms taken when the laser's spatial coherence was poor' were 

easily identified because some reference fringes were split into pairs. 

Holograms exhibiting these split fringes were analysed for plasma 

radius and length only.

d) The phase shift distribution recorded for a plasma discharge, 

represents the optical path length experienced by the scene beam due to 

the central plasma column and the outer return sheath through which it 

passes twice. As the field of view was a. 40 mm, with the plasma radius 

much less in general, while the diameter of the return sheath was 

90 mm, any phase shift due to the return sheath would have been 

approximately constant over the range of impact parameters, and would 

be experienced equally by both that portion of the scene beam which 

passed through the central plasma column and that portion which 

generated the reference fringes. The effect of the return current 

sheath would therefore be undetected, and so the errors are therefore
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negligible.

e) The scene beam was in general refracted by the plasma due to 

radial electron density gradients. Although imaging optics were 

employed to correct for refraction, this method of correction is not 

perfect. The error in the phase shift, due to the actual optical path 

through the plasma rather than the apparent, is estimated by 

Morgan [46] as

For the electron density profile observed at peak compression, the
25 - 3axial density is 4.2x10 m , and the plasma radius 2.35 mm. 

Therefore, dn^/dr = 1.79x10^® m"^ , and the resulting fringe shift error 

is 0.05.

f) The accuracy of the Abel inversion was assesed by using analytic 

expressions for the ' fringe shift profile which had known analytic 

solutions to Abel's integral equation. By direct comparison of the 

numerically evaluated solution with the known solution, the accuracy 

was determined. This method also tested the accuracy of the cubic 

spline curve fitting to the data points. Gorenflo [59], in addition to 

giving several numerical Abel inversion methods, lists several useful 

analytic solutions. For the Bockasten [55] method, the overall error 

was generally on and near to the axis, increasing to 5% at the 

plasma edge.

The total error in the fringe shift is obtained by compounding all 

the separate errors, and is 0.15. This is similar to the fringe shift 

error of Morgan [46].
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4.2.7 iÇ.CILRACY_.OF THE ELECTRON DENSITY ABET. INVERSION

The error in the Abel inverted electron density, 6 n^, at the radial 
point rj, from equation 4.3, is given by

6n ( r . )  = 
e 3

3n
5a + I  

k

9n

k
( 4 . 7 )

where 6 a is the error in the plasma radius, and ôF^ is the error in the 

fringe shift at impact parameter h^. From this equation, the relative 

error at the radial point r. is

-IM ( 4 . 8 )

Thus, the minimum relative error is given by the relative error in the 

plasma radius. Since the fringe shift error is constant over impact 

parameter, then 

6n

e J

2 4X2n *6F2
^ a^n^z(Tj) i ^jk ( 4 . 9 )

The relative error in the electron density is therefore given by 

combining the plasma radius relative error with a relative error due to 

the fringe shift uncertainty. This latter error depends upon the sum 

I  a. 2 , which varies from 370 to 2 for the cases when j = 0 to 19k jk
respectively. Therefore, with 5F = 0.15, the axial electron density 

relative error is
6n

r =0

43 - 2
+ 8 . 5 6 x 1 0  ( a n  ( r = 0 ) )  

e
(4 .1 0 ) -

and the relative error at the plasma edge, where r = 19&/2 0, is
6n

j=19
6a 2 I ^

+ 4.6xlO^^(ang(r^g)) ^ / (4.11)
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For the electron density distribution observed at peak compression, 

these relative errors are on axis and 35^ at the plasma edge. The 

error at the plasma edge is therefore considerably higher than on axis.

The relative error in the centre of the distribution, given when

j = 10 and E = 9 .4 , is

° | [ ^ ]  + 2 . 2 x l o 4 2 ( a n g ( r ^ o ) ) - ^ j  ( 4 . 1 2 )
6n

e
n

e

For the profile at peak compression, the relative error is 13%.

The radial distribution of the measurement error generally follows 

the above pattern, with a 10 - 15% central relative error, increasing 

rapidly at the plasma edge to 30 - 40%. The error distribution will of 

course depend upon the actual density profile.

4.2.8 INITIAL INTERPRETATION

Line Densitv; Additional information about the plasma is 

obtained by calculating the electron line density N̂  . This quantity is 

the total number of electrons contained within a unit length of plasma, 

and is given by

/ > ■
=  2tt /  n ^ ( r ) r d r  ( 4 . 1 3 )

This was evaluated from the Abel inverted electron density profiles by 

fitting the 20 data points unfolded with a curve composed of cubic 

splines, and integrating numerically using Simpson's rule to an error 

1%.

The accuracy of the line density calculation can be estimated by 

considering the integral to be approximated by the sum
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where Ar — a/n. The relative error is then given by

f - - -.2 %(r.5n (r. ))2 ) &f ■ [?] + J j e' J
( 4 . 1 5 )

With a 5% relative error in the plasma radius, the total relative error 
is typically 15 - 20%,

Figure 4.13 shows the time history of the calculated electron line

density. During the time interval —50 ns to —20 ns, N increases
e

slowly from 1.6x10^° m"^ to 1.88x10^° m”^ . This increase, 

approximately 15%, occurs during the period when the pinching sheath is 

snow-ploughing incompletely ionised gas. At the latter time, the line 

density becomes approximately constant, which is due to an equilibrium 

between particle gain by the snow-ploughing of the sheath and particle 

loss by axial flow caused by the oblique nature of the sheath front. 

This axial flow masks any additional gain of electrons from impurity 

ions evolving to higher ionisation states.

In the time interval t = -20 ns to peak compression, the line 

density drops by a factor 2.35 to 8.0x10^® m During the dense pinch 

phase, t = 0 to +30 ns, the line density increases very slightly, and 

may be considered to be constant. This behaviour is interpreted as 

follows: After t = -20 ns, the average density begins to increase

rapidly, and the velocity of the plasma-vacuum boundary decreases. 

This slowing down of the plasma boundary reflects the increasing 

internal kinetic pressure of the plasma. As the pinch is two 

dimensional with the plasma radius increasing with axial position, the 

plasma pressure downstream, i.e. greater axial position, will be less
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Temporal evolution of the electron line density.

and so axial plasma diffusion will occur, leading to a decrease in the 

line density. Axial flow upstream towards the centre electrode could 

occur if the plasma in the neighbourhood of the electrode was colder. 

However, as particles would be trapped there, then the pressure would 

quickly rise due to a local increase in line density and so evolve to 

an equilibrium pressure with the plasma downstream. Therefore, axial 

flow upstream would quickly stop, leaving only downstream axial flow.

The decrease in line density stops at peak compression because at 

this time maximum internal pressure is achieved. After peak 

compression, the line density remains constant as there is always a 

region downstream where peak compression is occuring, effectively 

blocking any further axial flow. As the volume of high density plasma, 

at low Z, is greater during the dense pinch phase than at its onset, 

then any particles gained by axial flow from downstream will be
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dispersed and relatively unobserved. This may explain the slight 

increase observed in during the dense pinch phase.

The electron line densities evaluated by Morgan [46] are larger 

than those determined in the present study by a factor 2. In addition, 

while the observed time histories of are similar during the collapse 

phase, both showing the decrease at peak compression, Morgan observes a 

recovery in line density during the dense pinch phase to approximately 

its peak value during the collapse phase, which is contrary to that now 

observed.

Average Electron Densitv: The average electron density, . n^, is

obtained by dividing the electron line density by the cross-sectional 

area of the plasma, i.e. n̂  = N̂ /ira? . Figure 4.14 shows the time 

variation in the observed average electron density. Initially it 

increases relatively slowly, rises rapidly between the times t = -15 ns 

to -10 ns, and then grows to a peak value of 4 .TxICp^ m ̂  at time

t = 0 ns. During the dense pinch phase, the observed fall in the 

electron density is to a good approximation an exponential decay, with 

an e-folding time of 11.8 ns. A similar e-folding time can be 

determined from the data of Morgan [46].

Focusing Efficiencv: When the sheath spills out of the two

electrodes at the start of the collapse phase, and radially implodes to 

the axis, all the atoms contained within a cylinder of unit length and 

radius equal to the radius of the inner electrode (25 mm), would be 

fully ionised and compressed on axis if the focusing efficiency were 

100%. The electron line density would then be given by = T̂ r̂  n^, 

where n^ is the filling density of deuterium atoms. For a filling

pressure of 1.8 torr of diatomic deuterium, n^ = 1.27x10 m , and
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Temporal evolution of the average electron density.

therefore the maximum possible line density is 2.49x10^® m"^. At peak

compression of the pinch, N = 8x10^® m"^ and so the focussinge
efficiency is 32%, with the remaining 68% lost by axial flow. This is 

considerably higher than the 5% efficiency found by Morgan [46] for the 

Plasma Focus working at a higher bank voltage (30 kV) and with a 

2.5 torr filling pressure of deuterium seeded with Argon.

The total number of electrons contained by the plasma column, of 

length 'u 23 mm, is approximately 1.84x10 at peak compression. The 

total number of electrons released by ionising all the deuterium gas 

swept-up by the Plasma Focus from the start of the discharge to peak 

compression, is approximately 1.3x10^°. Therefore, the overall 

compression efficiency of the Plasma Focus is 1.4%.
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■A^3i.9-1 .PJtQW Loss Rate; The rate of axial particle loss during the 

collapse phase can be determined only within the time period t = -20 ns 

to 0 ns. At earlier times, the filling gas is incompletely ionised, 

and possibly any axial flow is hidden by an electron source provided by 

increasing impurity ionisation. Prior to peak compression, a 

considerable drop in line density, equal to 8.0x10^® m^ , is observed. 

The actual loss may be greater, as the possible electron source from 

impurity ions is unknown. Therefore, the minimum particle loss rate 

over this period is 5.4x1Cp^ m“^s“ .̂

Ionisation Energy Expenditure: The dissociation energy of diatomic

deuterium to monatomic deuterium is = 1 eV. Combining this with the

13.6 eV ionisation energy per atom, the energy expended on ionising

each deuterium molecule is 28.2 eV. The total volume swept-up by the

plasma from the beginning of the discharge to peak compression is

approximately 1.05x10“^ m and therefore, with an initial gas filling

pressure of 1.8 torr, equivalent to a D density of 6.35x1 C?̂  m"^ , the2
ionisation energy used is s 300 J. As the initial energy stored 

capacitively was 27.25 kJ, then the net expenditure of energy for 

ionisation alone is 1.1%.

4 . 3  ANALYSIS OF FARADAY ROTATION RESULTS

Analysis of the Polaroid oscillographs showing the polarimeter 

detector output, gave the Faraday rotation raw data. From this data, 

in combination with the electron density profiles, the azimuthal 

magnetic field distribution was evaluated. The various steps in the 

analysis and the results obtained are described below.
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4.3.1 OSCILLOGRAPH ANALYSIS

The first step was to analyse the oscillographs. This was done by 

tracing one waveform, and superposing the other to ensure accurate time 

correlation. The corresponding signal heights were then measured at 

several time points within the combined waveforms. The ratio of the 

signal difference to signal sum, R, was then calculated for these 

points. This analysis was carried out on all the oscillographs, giving 

the temporal evolution of the ratio value at the impact parameters used 

in the experiment.

4.3.2 THE FARAÜAY ROTATION DATA

The Faraday rotation data were determined from the ratio 

measurements by comparing with calibration curves. Allowance was made 

for the finite value of the ratio value in the absence of plasma. 

Figure 4.15 shows the observed temporal evolution of the Faraday 

rotation angle during the collapse phase, at the impact parameter 3 mm. 

The data points shown are those of several sets of points, each from 

different plasma discharges. Through the collection of points a best 

fit curve is drawn, with its shape determined by that normally observed 

for a single plasma shot. The large scatter is due to shot to shot 

variations.

The azimuthal magnetic field profile is obtained by Abel inverting 

the spatial distribution of the Faraday rotation data at a given time. 

Since the data was collected at discrete impact parameter settings, 

which gave the temporal behaviour and not the spatial, the next step in 

the analysis was to construct a three dimensional representation of the 

data. This was done by drawing the contours of constant Faraday
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Figure 4.15

The observed Faraday rotation angle plotted against 

time for impact parameter h = 3 mm.

rotation angle in time and space. This procedure ensured that the data 

were self-consistent, smoothing the effect of the large shot to shot 

variations observed. It also made it possible to read the data 

spatially rather than temporally. Data from both sides of the magnetic 

axis were used. The contour map constructed from the observed data is 

shown in figure 4.16. The data collected were sufficient for an 

accurate analysis during the time period -10 to +10 ns.

This contour map shows that the maximum observed Faraday rotation

angle, approximately 0.5 degrees, occurs close to the plasma-vacuum

boundary, and is smaller by a factor = 10 from that predicted in 

section 1.10. This reduction arises because, as will be shown, the 

magnetic field is located in the plasma skin, where the electron

density is least. After peak compression, the contours redistribute,

with the position of maximum rotation radially contracting. This will
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be shown to be due to rapid magnetic field diffusion into the plasma 

column. The magnitude of the rotation does not change during this 

period, as might have been expected considering the larger electron 

density. This is because most of the electrical current remains 

attached to the plasma skin, resulting in low internal magnetic field 

strengths. After time t = +10 ns, the contours rapidly shift outwards. 

This is because the electron density distribution decays (the e-folding 

time of the average density during this period is 11,4 ns),

4.3.3 ABEL INVERSION

As with the interferometric data, the plasma was assumed 

cylindrically symmetric. Therefore, the results of section 1,6.2, for 

the Abel inversion of Faraday rotation data, were then applied to give 

the magnetic field structure, Bockasten's inversion method [55] was 

again used, with n = 20, This number of points gave suitable accuracy 

over the distribution. From equation 1.58, the magnetic field profiles 

were computed using the expression
r r \ i

L^kJ
(4.16)

where r̂  and h^ are as defined in section 4,2,2, the are the 

Bockasten coefficients, and is the Faraday rotation angle at the 

impact parameter h^.

The data to be Abel inverted consisted of the spatial positions of 

the Faraday rotation contours, read from the contour map of 

figure 4,16, together with the magnitude of the rotation. Cubic 

splines were fitted to the data to give a smooth continuous curve. The 

technique used was identical to that used in the interferometric fringe 

shift profile fitting, discussed in section 4,2,2, From this curve, 20

- 185 -



data points were determined and used in the Abel inversion routine. 

Figure 4.17 shows three Faraday rotation spatial profiles, for times 

-5, 0, and +5 ns. The errors shown in these profiles are the 

uncertainties in the positions of the contours, and the points shown 

are those used to generate a smooth profile.

4.3.4 ABEL INVERTED MAGNETIC FIELD PROFILES

Figure 4.18 gives a sequence of magnetic field profiles during the 

collapse phase, from times t = -10 ns to peak compression, as

determined by Abel inversion of the Faraday rotation data. The

electron density profiles used were obtained from those observed 

interferometrically. The observed field profiles were found to exist 

only in the skin region of the plasma, where the magnetic field

strength increases from a value of'u 20 Tesla at time t = -10 ns, to

40 Tesla at peak compression. The average value of magnetic field 

penetration depth is 0.56 mm, which is approximately half the sheath 

thickness as determined from the studies of plasma radius at early 

times during the collapse phase. This depth also approximately 

corresponds to the distance between maximum electron density in the 

sheath and the vacuum boundary. The magnetic field strength in the 

neighbourhood of the axis is zero.

This penetration depth is very much less than the value of 7 nun 

computed by Potter [60] with a two dimensional numerical fluid model. 

It is also smaller than the 1,5 mm skin-depth estimated from non Abel 

inverted Faraday rotation measurements on a Plasma Focus by Fillipov et 
al [18],

Figure 4,19 shows the magnetic field profiles during the dense
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Faraday rotation spatial profiles,
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Abel inverted magnetic field profiles 

during the collapse phase.
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Abel inverted magnetic field profiles 

during the dense pinch phase.
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pinch phase obtained by Abel inversion. Initially the field is 

confined to the skin region, but after approximately 2.5 ns radial 

diffusion towards the axis occurs. By the time t = +10 ns, the field 

has diffused almost to the axis. During this period, the low internal 

magnetic field strength of the radially contracting region, decreases 

from approximately 15 Tesla to 3 Tesla.

The magnitudes of the magnetic field strengths measured, are 

marginally lower than those measured by Peacock et al [20]. The 

discrepancy between the two sets of measurements, made on the same 

device, may be a result of the different initial conditions. In 

Peacock’s study/"the plasma current was larger by 10%, and the minimum 

plasma radius smaller.

The magnetic field observations during the collapse phase are 

contrary to the magnetic probe measurements of Bernard et 

al [21,22,58]. The conclusions of Bernard’s work was that only a small 

fraction of the plasma current, approximately 15%, is carried by the 

dense plasma sheath, with most of the current confined to a low density 

highly turbulent region following behind and outside the sheath. In 

the present work, it will be shown that 70% of the capacitor bank 

current is carried by the dense plasma sheath, with the remaining 

current lost to insulator current leakage. Bernard’s observations may 

be a result of the perturbing diagnostic technique that was used.

During the dense pinch phase, Bernard et al [21,22,58] concluded 

that the dl/dt singularity was due to enhanced resistance, which led to 

a diminution of the plasma current. This resistance regime 

subsequently gave way to a regime in which the current was transported 

by intense beams of ions and electrons. In the present study, the
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rapid magnetic field diffusion observed during the dense pinch phase, 

is interpreted as being due to anomalous resistivity. The Faraday 

rotation ’spikes’ observed are also interpreted as being due to current 

filamentation on axis. These two results are in close agreement with 
Bernard’s conclusions.

4.3.5 PLASMA CURRENT

The Abel inversion method used, evaluated the magnetic field 

strength out to a radial position 19a/20 only. Therefore, the magnetic

field strength at the plasma radius was unknown. However, by

determining the axial current density at this end point, and then 

assuming a linear radial dependence out to the plasma radius where the 

current density is zero, integration gives an approximate value of the 

current flowing within this outermost region. By adding this 

fractional current to the current flowing within the remaining plasma, 

as determined from the field strength at the outermost point, the total 

plasma current and therefore the magnetic field strength at the plasma 

radius is determined. For the field profiles shown in figures 4.18 and 

4.19, the average value of the plasma current calculated is 340 kA, 

with a standard deviation of 70 kA, i.e. 20%. This is approximately 

70% of the 490 kA current from the capacitor banks observed at this 

time with the Rogowskii coil.

The current of 150 kA not accounted for, is probably lost by 

current leakage across the insulator which is known to occur with

Plasma Focus devices [57]. The leakage can become large when large 

voltages are induced across the insulator due to rapid changes in the

plasma’s inductance. Inductive voltages peak at the time of peak

compression, and so maximum insulator leakage occurs at this time. It
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is estimated from the results of a numerical model of the Plasma Focus 

electrical circuit, discussed in section 4.4.11, that the insulator 

resistance at this time is approximately 0.25 Ohms.

Figure 4.20 shows the magnetic field contours in time and space for 

a 340 kA plasma. This contour map was constructed from the magnetic 

field results by normalising the data to that of a 340 kA plasma. The 

straight parallel contours are those of the vacuum field.

4.3.6 AXIAL CURRENT FILAMENTS

Analysis of those oscillographs showing the Faraday rotation spikes 

(see figure 4.4) revealed that none represented Faraday rotation angles 

greater than 0.95 degrees. This was regardless of impact parameter. 

The 2.5 ns duration of the spikes was equivalent to the bandwidth of 

the measurement, suggesting that the measurements were bandwidth 

limited, and that therefore the 'duration of the spikes was probably 

less and the actual rotation probably larger. The spikes were observed 

at times between t = +10 and +15 ns. From the known plasma radius at 

these times, the possible Faraday rotation profiles were plotted. 

These are shown in figure 4.21. Only two data points were used, with 

the curves drawn through the spatial error bar of the axial point.

Abel inversion of these possible profiles gives the magnetic field 

distributions shown in figure 4.22. These distributions are highly 

peaked near the axis. It will be shown later that the current density 

profiles are also highly peaked on axis. Therefore one interpretation 

is that the spikes arise due to current filamentation on the axis. The 

magnetic field strengths of 44 and 57 Tesla for the times t = +10 and 

+15 ns respectively, are due to currents of 42 and 72 kA respectively.
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Figure 4.21 

Faraday rotation spatial profiles of 

plasma with axial current filaments.
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Abel inverted magnetic field profiles 

of plasma with axial current filaments,
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These currents are approximately 12 - 21 $ of the plasma current. The 

radius of the filament is in the range 190 to 250 microns.

This result is comparable to the observations of Neff et al [61], 

where subnanosecond electron beams, of energy > 0.5 MeV, were monitored 

using a Cerenkov detector external to the plasma. The time duration of 

the electron beam was less than 0.4 ns. Their estimated beam current 

was 40 kA, which is similar in magnitude to the current carried by the 

filament in the present study.

Observations by Kirk [49], using co-operative laser scattering 

(described in section 2.2.2), during the time period when Faraday 

rotation 'spikes’ were observed (the measurements were not made 

simultaneously) demonstrated that scattering with a differential 

scattering vector parallel to the current was highly enhanced (up to a 

factor 30) over thermal levels of scattering. These observations have 

led to the conclusion that the ratio of. electron drift velocity to 

thermal velocity must, at least, be of the order of unity, indicating 

that the current is carried by particle beams. From the calculated 

value of filament current density, the drift parameter is determined to 

be of the order of 556. This discrepancy in the drift parameter, arises 

because the value of the filament radius is over-estimated, which is a 

result of the bandwidth limitation and the finite dimensions of both 

the plasma chord viewed and the Abel inversion space mesh. The 

over-estimation of the filament radius results in a value of current 

density which is too small, and correspondingly a drift velocity which 

is too small. This interpretation of the Faraday rotation 'spikes' 

data, leads to the conclusion that very much larger magnetic field 

strengths than measured exist in the neighbourhood of the axis. This 

topic is again•examined in sections 4.4.5 and 4.4.6.
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4.3.7 ACCURACY OF THE FARADAY ROTATION DATA

The Faraday rotation data were subject to a variety of errors from 

both the experimental technique and the data analysis. The accuracy of 

the magnetic field profiles has been determined by examining the 

effect of the error in the Faraday rotation data and the error in the 

electron density profile on the Abel inversion. Firstly however, the 

error in the Faraday rotation data must be assesed. The errors are 

classified as follows:

a) Errors in the measurement of the ratio of signal difference to 

signal sum from Polaroid oscillographs.

b) Errors due to noise on the detector output.

c) Inaccuracy due to the effects of probe beam refraction.

d) The additional Faraday rotation due to the double traversal of 

the return current sheath.

e) Errors in the calibration.

f) Errors due to detection system bandwidth limitation.

g) Imperfect construction of the rotation contour map.

These are now examined in turn:

a) For a given oscillograph, the error in the measurement of the 

signal difference to signal sum ratio, depends upon several factors: 

The oscillograph waveform trace width; the uncertainty in the zero 

datum position; the quality of the camera imaging; and the values of 

the signals themselves. Typically, the error in the ratio value 

resulting from these factors is 0.025.

b) The amplitude of noise on the detector output (possible sources
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are discussed in section 3»5»3), was studied in the following manner. 

As the value of the ratio R was constant for any given calibration 

shot, regardless of signal amplitude, analysis of these calibration 

shots gave the noise error or standard deviation in the value of R. 

Allowing for the measurement error itself, the relative error in a 

measurement of the signal amplitude due to noise was 1.6?.

c) The effect of refraction on the ratio measurement was discussed 

in section 3.4. Based on the observed behaviour of the calibration 

curves with impact parameter, the error resulting from refraction is 

given by ôR=gR© , where 0 is the refraction angle, and g is a 

constant defined by

The gradient dR/d Tp is the slope of the calibration curve at the 

operating point. From the calibration curves, g = 0.23 per degree.

The maximum refraction expected, and observed by Morgan [46] using 

Schlieren techniques, was = 17 mrad at peak compression. Taking half

this value as being typical, the error due to refraction is 10?. This

error will only exceed the measurement error when the Faraday rotation 

angle is greater than 0.22 degrees.

d) The Faraday rotation experienced by the probe beam on its double

pass through the return sheath was negligible for the following 

reasons; Along the optical path of the beam through the sheath, the 

angle subtended by the magnetic field was approximately constant at 

10 degrees. Therefore, from equation 1.50, it is reasonable to expect 

that the Faraday rotation angle is given by
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Ip = 2AX2B|j n^L (4.18)

where L is the thickness of the return sheath, and n is the average 

electron density. If the rotation is to be negligible, <.0.01 degrees, 

then this can only be achieved with an electron density .< 10^^ , as

®|| ” 0 .1 3 6 Tesla, and L = 5 mm. The actual density can be estimated as 

follows. If the line densities of the inner plasma column and the 

return sheath were similar, then the ratio of the average densities 

will be given by ILr^ , where and are

the radii of the inner plasma column and the return current sheath

respectively. With ë 2.5 mm, and = 50 mm, the ratio is

approximately 0.01. Thus, the density of the return sheath will be

approximately two orders of magnitude less than that in the pinch. 

However, for the rotation due to the return sheath to be observed, the 

densities must be similar.

e) The calibration curves used to convert the data from ratio values 

to Faraday rotation angles, were composed of some 19 points, each the 

statistical average of several ratio measurements. The distribution of 

these points was over the full range + 1, and was concentrated around 

the operating point. Taking into account the number of points, their

distribution, and the accuracy by which the polarising prism could be

set ( ^0.04 degrees), the relative error in the curve gradient at the 

operating point was 4%.

The error in the conversion from the ratio value to the Faraday 

rotation angle is given by ^
S\p = I G:(5R2 + 6R^2) + [f^j| (4.19)

where is the error in the Faraday rotation angle, is the value of
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the ratio in the absence of plasma, 5R is the error in , ôR is the 

error in the ratio measurement R, G is the gradient dj j/dR of the 

calibration curve at the operating point, and 6G is the error in the 

gradient G. With the values, G = 0.8, 6G/G = 0.04, 6 =  0.001, and

ÔR = 0.025, the Faraday rotation error is

ôip  = { ( 0 . 3 5  m ra d )2  + ( 0 . 0 4  ( 4 . 2 0 )

Therefore, the uncertainty in the Faraday rotation angle is 0.35 mrad 

compounded with a 4% relative error due to the uncertainty in the

calibration curve gradient. Typically, ^ =0.25 degrees and therefore

a 4% relative error is 0.17 mrad. Thus, the main contribution to the

uncertainty arises from the measurement of the signal ratio, and not

from the calibration.

f) There was no evidence in the data, other than those of the 

Faraday rotation * spikes', to suggest that there was an uncertainty due 

to the 400 MHz bandwidth of the detection system. Measurements made 

with half this bandwidth did show evidence of this limitation, as the 

magnitude of the Faraday rotation was attenuated by a factor up to 2. 

In order to examine this topic, consider the plasma movement that 

occurs in a 2.5 ns time interval. From the contour map of figure 4.16, 

the greatest movement occurs in the time period from t = -10 ns to 

-7.5 ns, and results in a decrease in the plasma radius of

approximately 0.5 mm. This is twice the diameter of the plasma chord

viewed by the polarimeter. During the same period, the Faraday

rotation angle at an impact parameter of 3 mm rises to a maximum. The

gradient of angle with impact parameter at this point is approximately 

0.4 degrees per mm. Therefore, a plasma movement of 0.5 mm is 

equivalent to a change in the Faraday rotation angle of 0.2 degrees. 

This is large in comparison to the 0.3 degrees maximum rotation
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observed. Thus, it may be that the data for this period is affected by 
the finite bandwidth.

For times 2  -5 ns, the plasma movement and rates of change in 

Faraday rotation angle are smaller than during the earliest period. 

Therefore, any effect will be smaller. However, during the period 

t = +5 ns to +10 ns, there is a considerable restructuring of the 

Faraday rotation contours. It may be that during this period,

smoothing of the data detailing this restructuring occurs, due to the 

bandwidth limitation.

From the Abel inverted magnetic field profiles during the collapse

phase, shown in figure 4.18, no significant change in profile, other

than that due to the reciprocal radius change in the vacuum field 

magnitude, is observed. The field penetration depth, and the value of 

plasma current within the estimated errors, both remain constant. From 

these observations, no evidence for bandwidth limitation is seen. In 

conclusion, the bandwidth of the detection system used in this

experiment was sufficient, but probably only marginally. For future 

studies, the bandwidth should be increased to a minimum of 1 GHz. No

error due to this effect will be considered in this error analysis. It

is assumed that the 0.05 degree shot to shot variation error, discussed 

below, is sufficient to include any effect.

There is evidence that the data for the Faraday rotation 'spikes' 

were affected by bandwidth limitation. As it is difficult to estimate 

the actual error due to this effect, it is assumed that the error is

four times the normal shot to shot variation, i.e. ôip = ± 0 . 2  degrees.

g) The final error arises from the construction of the contour map.
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The shot to shot variation in the observed Faraday rotation angle due 

to plasma irreproducibility was approximately +0.05 degrees before 

peak compression, and +.0.1 degrees after. This latter variation was 

greater the larger the impact parameter, due to uneven expansion of the 

plasma column caused by instabilities. However, by using the average 

of the data points, the error was reduced to approximately 

0.05 degrees. This is larger than the inaccuracy of the technique, and 

so there would be no gain in improving the sensitivity of the 

experimental method.

The overall error in the measurement of the Faraday rotation angle 

is therefore that of the shot to shot variation, which is 0.05 degrees.

Precautions were observed during the experiment to ensure that the

uncertainties were kept minimal. The first was to take calibration

data throughout the experimental run. The second to take many
• .

reference shots in the absence of plasma giving the value of . And 

finally, to check the value of the ratio R at the -1 turning point. 

This latter precaution was taken as thermally induced

stress-birefringence in the vacuum windows can arise during the 

experimental run, and may have been initially present in replacement 

windows. The first two precautions enable any variation in the 

behaviour of the polarimeter to be followed.

4.3.8 ACCURACY.0F_THE ABEL INVERSION

The error in the Faraday rotation measurement, ôip , combined with

the error in the electron density data, on , results in a magnetice
field error, 6B^, given by
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r—  On on e

oB,
ôip (4.21)

where a is the plasma radius, and 6a is the error in a. From 

equation 4.16, the relative error is

ÔB,

if.
(4.22)

Thus, the relative error in the magnetic field is given by the combined 

relative errors of the electron density and plasma radius with a 

relative error due to the Faraday rotation measurement uncertainty.

For simplicity, consider the field error at the edge of the 

distribution due to the uncertainty in the Faraday rotation angle only. 

This error, which is greater than the error at any point inside the 

plasma, is obtained when k = 19, and has a magnitude given by

1.4 6^ (4.23)

From the previous section, the error in the Faraday rotation angle is 

0.05 degrees. Therefore, from this equation, at time t = -5 ns,

6Bq = 4 . 7  Tesla. This gives a relative error due to the rotation 

measurement uncertainty alone of 18%. At peak compression,

ÔB = 5 . 3 Tesla, which gives a relative error of 16%. At time0
t = +5 ns, the edge error 6Bg = 11 Tesla, which corresponds to a

relative error of 55%. This large relative error arises because at 

this time the edge electron density is lower than during the previous 

times. These error are typical of the edge errors due to the rotation 

measurement error alone.

The magnetic field error at points within the distribution, again
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due to the measurement uncertainty alone, can also be determined from 

equation 4.22 and expressed in a form similar to equation 4.23. This 

involves calculating the sum ’ However, this can only

be done if either the rotation error is constant over impact parameter, 

or if the error has a known dependence with impact parameter. 

Generally, neither of these is satisfied. In the error analysis 

presented here, it is assumed that the error decreases to zero at the 

axis, with the full error applied to the plasma edge distribution only. 

This may be seen from the error bars in the plots of Faraday rotation 

angle against impact parameter shown in figure 4.17. Thus, only at the 

edge can the error be simply expressed. At points within the 

distribution, the important parameter which determines the error is the 

value of electron density. High densities result in low errors.

The total magnetic field error is given by combining the Faraday 

rotation measurement error with the error due to electron density and 

plasma radius. Therefore, at the plasma edge, where the rotation error 

of typically 18% is a maximum, and where the electron density error of 

typically 35% is also a maximum, the total magnetic field error of 

typically 40% is a maximum. Within the distribution itself, the 

relative error in the electron density is approximately constant at 

10%, and the magnitude of the magnetic field is small, approximately 

1 Tesla. When the relative error given by equation 4.22 is computed, 

the result is of order unity. However, the magnitude of the field 

error, ^ 1 Tesla, is approximately a factor 5 less than the edge 

error due to the rotation measurement error alone. This improvement in 

accuracy is a result of the large electron densities found inside the 

plasma. In the neighbourhood of the magnetic axis, the magnetic field 

strength is approximately zero. In this region, the estimated error is 

0.5 Tesla. The distribution of errors across the profile, will of
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course depend on the actual distribution.

The Abel inverted magnetic field profiles shown in figures 4.18 

and 4.19, are given complete with the estimated errors. From these 

plots, the large edge errors are clearly seen. The small uncertainties 

in the neighbourhood of the axis are also seen.

As discussed in section 4.2.6, the error introduced by the Abel

inversion method was approximately 1% on and near to the axis, and

approximately 5% at the plasma edge. These values of error are 

insignificant in comparison with the sources of error already 

described.

The method used to analyse the Faraday rotation data assumed that

the plasma was cylindrically symmetric. There was no evidence from

either holographic interferometry or from the Faraday rotation data to 

suggest that this assumption was incorrect.

4.4 INTERPRETATION OF RESULTS

. In this section, the results obtained from the Faraday rotation 

measurements and holographic interferometry are interpreted in terms of 

other plasma parameters in an attempt to understand the physical 

processes occuring in the Plasma Focus.
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4.4.1 TEMPERATURE CALCULATIONS

Four different temperature estimates are made during the collapse 

and dense pinch phases of the Plasma Focus. The first two are based on 

the assumption of pressure balance, the third on a magnetic piston 

model, and the fourth on the free expansion of the plasma. These are 

discussed in turn. For the first three temperature calculations, the 

magnetic field profiles for the times t = -5, 0, and +7.5 ns, were

normalised to give an edge magnetic field strength consistent with a 

340 kA plasma. This was done to ensure that the external magnetic

pressure terms employed were comparable.
V

Pressure.Balance

During the early stages of the collapse phase, the observed sheath 

velocity remained constant. This implies that there was an equilibrium 

between the forces acting upon the sheath. Neglecting the comparitively 

small snow-plough pressure term (p V^) at this time, the equilibrium of 

the forces is expressed by the pressure balance equation [62]

2n^(r)kgT(r) + 1 ^  B ^ g ( r ) = ^  (4.24)
o o

where T is the average particle temperature, i.e. T* = (T^ + T^)/2, B^

is the internal azimuthal magnetic field strength, and B_ is theoa
magnetic field strength at the plasma-vacuum boundary. From the 

magnetic field profiles obtained, and the electron density data, the 

average temperature can be estimated using this expression.

During the time period t = -10 to 0 ns, the average temperature 

profiles are as shown by the solid curves of figure 4.23 a). These 

profiles indicate that the hottest region is the current sheath, where 

the temperature rises from approximately 150 eV to 500 eV between the
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times t = -10 ns and peak compression. During the same period, the 

axial temperature falls from 85 eV to 25 eV. These low axial 

temperatures are probably the result of applying too simple a plasma 

model. Hollow temperature profiles were predicted by the numerical 

fluid model of Potter [60]. In this model, peak temperatures of 

Tg = T^ = 1.5 keV were calculated.

Within the time period t = 0 to +10 ns, the average temperature 

profiles calculated on the assumption of pressure balance are as shown 

in figure 4.23 b). During this period, the edge temperature increases 

from 500 eV at peak compression to 680 eV at the time t = +7.5 ns. It 

then decreases to 460 eV 2.5 ns later. Again the axial temperatures of 

approximately 25 eV are low.

The second average temperature estimate is obtained from the well 

known Bennett equation describing the pressure balance between a simple 

linear pinch and its self-magnetic field [62]

\ i  V  = 16 ÏÏ N T ( 4 . 2 5 )
o p  e B

where is the electron line density. From the electron line 

densities calculated in section 4.2.8 and the measured plasma current 

of 340 kA, the Bennett temperature at the time t = -10 ns is 125 eV.

This temperature increases to a value of 228 eV at peak compression due

to the fall in line density. It then remains constant during the dense

pinch phase.

From the co-operative scattering measurements of Kirk [16,49], the 

average ion temperatures across the plasma column are similar to the 

edge temperatures calculated using pressure balance. Although the 

scattering measurements were made at an axial position 10 mm below the
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centre electrode, and there may be an axial dependence of temperature 

as computed by Potter [60], it is reasonable to assume a peak average 

temperature of 500 eV. This is contrary to the Bennett temperature of 

228 eV. Therefore, the plasma is not in pressure equilibrium, and the 

plasma beta, or ratio of kinetic to magnetic pressure, is approximately 

2. Thus, the plasma is confined inertially, and not through the

action of the magnetic field.

Sheath Momentum

It was observed that the sheath velocity decreased during the final 

stages of the collapse phase. This implies that equilibrium between 

the forces did not exist, contrary to the assumption of pressure 

balance. The internal kinetic pressure of the plasma therefore exceeds 

the magnetic pressure, as concluded above. An estimate of the excess

internal pressure can be made by determining the rate of change of. the

sheath's momentum. Assuming that the mass of the sheath is the mass of 

that region occupied by the magnetic field, the rate of change of 

momentum is

J a - 6

d (mv) „ - ,~  = 2ïïrm^ I  n ^ ( r ) r d r  (4.26)
a-ô

where 6 is the field penetration depth, and r is the sheath 

deceleration. From the observed hyperbolic relationship between plasma 

radius and time, the deceleration can be calculated, and has a maiximum 

value of 4.4x10^^ m s a t  peak compression of the pinch. This value of 

deceleration is similar to that observed by Morgan [46]. The 

penetration depths and calculated sheath masses during the collapse 

phase are approximately constant, having the values 0.56 mm and 

5.1x10“® Kgm respectively.

The excess kinetic pressure, Ap, is given by
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Figure 4,23

Average temperature profiles a) during the collapse phase assuming 

pressure balance (solid curve), and with sheath momentum included 

(dashed curve). b) Temperature profiles during the dense pinch phase 

assuming pressure balance.
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and acts over an area per unit length of 2Tr(a-6) . Setting the net 

outward force equal to the rate of change of momentum, we obtain the 

expression
^ ( m v )  = Ap.27T(a-ô) (4.28)

Application of this equation gives a more realistic temperature 

estimate than pressure balance. However, it is only applicable during 

the collapse phase when the sheath is well defined.

The temperature profiles predicted by this magnetic piston model 

are shown by the dashed curves of figure 4.23 a). At the time 

t = -10 ns, the curve is similar to that produced assuming pressure 

balance. This is because the sheath deceleration is small at this 

time. The difference becomes larger towards peak compression, where a 

temperature of 439 eV is calculated at the internal edge of the sheath. 

This is 143 eV higher than the equivalent temperature estimated using 

pressure balance. Again, low temperatures are evaluated for the axial 

region.

IQJL-T.enip.g ratvrs

An estimate of the ion temperature can be made during the dense 

pinch phase by assuming that the observed expansion of the plasma 

column occurs at a rate given by the ion thermal velocity. This is a 

reasonable assumption if the plasma is confined by inertia. For the 

observed expansion velocity of 2.3x10^ ms"^, the equivalent ion 

temperature is 1.1 keV.
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4.4.2 FIELD PENETRATION DEPTH

The average field penetration depth of 0.56 mm during the time 

period t = -10 ns to peak compression, is approximately half the width 

of the plasma sheath as observed interferometrically and described 

previously (cf section 4.2.4). It is known that the width of a 

collisionless shock wave is of the order of an ion Larmor radius [62]. 

Therefore, it will be instructive to compare the ion Larmor radius in 

the current sheath with the field penetration depth. The deuterium ion 

Larmor radius is given by

^ L i  ^  ^  mm ( 4 . 2 9 )

where T is the ion temperature in units of electron volts. With the 
i

typical values of field strength and pressure balance temperature of 

12 Tesla and 325 eV respectively, the ion Larmor radius is 0.3 mm. 

This is approximately half the observed penetration depth. Thus, the 

field penetration depth is approximately an ion Larmor diameter.

4.4.3 CLASSICAL RESISTIVITY

The classical electrical resistivity of a plasma parallel to the 

magnetic field, riy» is given by [29]

n i l  = —  X 3 . 0 4  X l O " ^  ZT Z n A  Ohm-m ( 4 . 3 0 )I I  ®
where the temperature T is expressed in units of eV, and the factor

e

is dependent upon the ionic charge Z and is tabulated by

Spitzer [29]. For the case where Z = 1, = 0.582. The resistivity

perpendicular to the magnetic field, n_̂ » is larger than n|| by a factor 

1.97.
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For the Plasma Focus, the electrical current is perpendicular to 

the magnetic field, and so only will be considered. Taking the 

simplest case when Z = 1, this resistivity is given by

= 1 . 0 3  X  l O " ^  T i n k  Ohm-m ( 4 . 3 1 )

At peak compression, the electron density within the current carrying

region is approximately 1.6x10^^m”^, and from the pressure balance

temperature calculations, assuming T = T = T , T s 500 eV in thee i e
plasma skin. Therefore, with InA = 12, the electrical resistivity is 

1.1x10"^0hm-m. This is larger than the resistivity of copper by a 

factor 'u 6. At time t = -10 ns, the resistivity is approximately 5 

times larger thàn this due to the smaller electron temperature. 

Assuming that the temperature during the dense pinch phase remains 

constant, then the resistivity will also remain constant.

4.4.4 MAGNETIC FIELD DIFFUSION

A magnetic field will diffuse into a conductor within a time period 

Tg given approximately by [62] /n where n is the electrical

resistivity, and L is a characteristic length. For the Plasma Focus, 

both the resistivity and a characteristic length - the plasma radius - 

are known, and so the field diffusion time can be estimated.

At the time t = -10 ns, the plasma radius is 3*76 mm, and the

resistivity is 5.5x10“^ Ohm-m. Therefore, the field would diffuse to

the axis in a time s 32 micro-seconds. At peak compression, the

diffusion time would be s 63 micro-seconds. These times are very much

larger than the nanosecond timescales of the plasma, and explain why

the magnetic field is present only within the skin of the plasma. The

field cannot diffuse ahead more rapidly than it is convected.
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During the dense pinch phase, the magnetic field is observed to 

diffuse rapidly to the plasma axis in a 10 ns period commencing from 

peak compression. From the expression for the magnetic field 

penetration time, a perpendicular resistivity of 6.9x10 ^Ohm-m would be 

required to achieve this. This resistivity is consistent with an 

electron temperature of only 1,3 eV, which is smaller than the actual 

temperature by at least two orders of magnitude. Therefore, the plasma 

resistivity during this period is anomalous, and is larger by a factor 

approximately 6000 to that at peak compression. Thus, the electron-ion 

collision frequency is also anomalously high by this factor.

This value of anomalous resistivity is in close agreement with the

results of Bernard et al [22], who estimated from magnetic probe
3 4measurements that the resistivity is larger by a factor 10 to 10 in 

comparison with the Spitzer value. Highly turbulent plasma was 

believed responsible.

4.4.5 CURRENT DENSITY DISTRIBUTION

The current density distribution, (r), can be determined from the 

observed magnetic field distributions by Ampere's law

O

This is evaluated at a radial point rj with the following expression

- r ,Bg(r ^^)}(2M„r A.)- (4.33)

where Ar is the spatial separation of the points. The current density

on axis, J , assuming that the magnetic field varies linearly, is zo
given by
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zo

The current density distribution at the edge of the plasma is unknown 

beyond a radial point r = 37a/40. For convenience, it is assumed that 

the current density varies linearly between this point and the plasma 

radius, where it is zero.

From equation 4.33, the error in the current density, 6J , is givenz
by

+ (r (r ,Ar) ‘ (4.35)

where the magnetic field uncertainties at the neigbouring radial points 

are as given by equation 4.22. The error in the current density on 

axis, is given by
2 SB (r )

ÜJzo = n --  (4 36)o 1

where r̂  = a/20.

The current density profiles during the collapse phase are shown in 

figure 4.24. Included for comparison are the errors calculated with 

equation 4.35. All of the electrical current flows in the plasma skin, 

and the current density rises from 3.6x10^^ Am”^ at time t = -10 ns, to 

8.8x10^^ Am”  ̂ at peak compression. The uncertainties during this 

period range from 22% at t = -10 ns to 62% at t = 0 ns. Therefore, the 

profiles are more accurate the earlier the time.

The current density profiles during the dense pinch phase are shown 

in figure 4.25. The uncertainties in these calculations are also 

shown. These plots demonstrate more clearly the details of the rapid
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Axial current density distribution 

during the collapse phase.
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Axial current density distribution 

during the dense pinch phase.

- 216 -



magnetic field diffusion. At time t = +2.5 ns, the current structure 

has divided into two peaked profiles. The relative error of the 

current density within the inner of these two profiles is approximately 

50%f while within the division region and the outer profile it is 

greater than unity. Thus, it is not known whether the current density 

within the division is zero, or how the current is distributed within 

the outer profile. However, the total plasma current is a fixed 

quantity and is therefore an important constraint on the shape of the 

current density profile. At time t = +5 ns, the separation of the two 

current rings has increased, while the maximum currrent density of the 

inner ring has decreased from 4.8x10^-^ Anr^ at t = +2.5 ns to

1.74x1QlO Am"2. The error in the latter quantity is 55%. Again the

details of the division region and outer profile are not accurately 

known. At time t = +7.5 ns, the two current structures are moving 

apart, one radially contracting, the other expanding with the plasma. 

The current density of the contracting current ring, 7.5x10® Am”^, has 

again fallen. Finally, at time t = +10 ns, the inner profile has

almost reached the axis. The current density at this time is

7.8x10^ Am~^, which is similar to that 2.5 ns earlier. The error in

these two estimates are 30% and 50% respectively.

The electrical current flowing within the contracting current 

profile, can be obtained from the values of the magnetic field strength 

and radius at the point separating the two regions, via Ampere’s law.

At time t = +2.5 ns, the position of the current density minimum,

between the two maxima, is approximately r = 2 mm. The magnetic field 

strength at this point is 12.2 Tesla. Therefore, the current flowing 

within a radius of 2 mm, is 125 kA, i.e. 37% of the total plasma 

current. At this time, the plasma radius is 2.47 and so, most of 

the plasma current remains in the skin region. Later, at time
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t = +5 ns, the radius of the separation point is approximately 1.9 mm, 

and the current flowing within the inner region is 68 kA, i.e. 20% of 

the total plasma current. At time t = +7.5 ns, the radius of the 

separation point is 2 mm, and the inner current flow 43 kA, i.e. 13% 

of the total. Finally, at time t = +10 ns, the radius value is

2.25 mm, with 36 kA, i.e. 11%, flowing in the plasma core. These

observations indicate that the point of separation between the two 

current regions remains approximately constant with a radius value of 

2 mm over the 7.5 ns period examined. In addition, the initially large 

fraction of current which diffuses radially inwards from the plasma 

skin, decays in time. This is despite the fact that the area of plasma 

carrying the current increases. The decay of the current may be a 

result of the anomalous resistivity within this region. As most of the

plasma current remains in the plasma skin, then the resistivity of the

plasma skin appears classical. Therefore, the region of anomalous

resistivity is confined to the plasma core with a radius of 2 mm.

Axial Current Filaments

Figure 4.26 shows the current density distributions evaluated from 

the magnetic field profiles for the Faraday rotation data where 

’spikes’ were observed. The profiles are strongly peaked on axis, and 

are what would be observed with a single large axial current filament, 

or with many close packed axial filaments. The estimated value of 

current density for both times of +10 and +15 ns is approximately 

constant at 3.7x10^^ Am” .̂ This is larger than the maximum current 

density at peak compression of the pinch and the maximum current

density of the radially contracted current ring at time t = +10 ns by

factors 4 and 47 respectively. The error in the calculated value is

5 - 10%, which, because of the uncertainties involved in the original
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Current density distribution of plasma 

with axial current filaments.
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Faraday rotation profile, especially close to the axis, the finite 

spatial resolution of the Abel inversion scheme used, the finite size 

of the plasma chord viewed by the polarimeter, and the detection system 

bandwidth limitations, is too small an estimate. For the same reasons,

the maximum current density calculated should be considered a lower

limit. The current density distribution outside of the current

filament is uncertain due to large errors.

From the magnetic field profiles for the current filaments, the 

maximum field strengths are between 44 and 57 Tesla at radii 0.19 and 

0.25 mm for times t = +10 and +15 ns respectively. Therefore, from 

Ampere’s law, the total electrical current flowing within the filaments 

is between 42 and 72 kA. These currents represent 12 and 21% of the 

total plasma current respectively. From the current density profiles, 

the half-maximum radii of the filaments is between 167 and 217 microns. 

Both the estimated values of peak field strength and filament current 

should, similarly to that of the current density, be treated as lower 

limits, while the values of filament radius should be considered as 

upper limits.

The values of • current flow within these filaments are not 

significantly different to the values of current flow within the inner 

turbulent core of the plasma normally observed. The filaments also 

occur at times later than t = +10 ns, the time when current reaches the 

axis. Therefore, one possibility is that these filaments are the end 

result ,of a radial contraction of current density, in which the 

fraction of plasma current diffusing to the axis is larger than normal.
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4.4.6 DRIFT VELOCITY

The electron drift velocity, v , can be determined from the currentd
density calculations and electron density data using the expression 

^2 = (4.37)

The accuracy of the evaluation is given by the relative errors in both 

electron and current density

6 V . ( (- 6 J -1 2 (- (5n -1 2 J ^d
^d

z
Jz + - IT -  ( ( 4 . 3 8 )

The calculated radial profiles of the drift velocity during the

collapse phase are shown in figure 4.27. During this period, t = -10

to 0 ns, the drift velocity increases by a factor of 4 from 1.2x10^ ms"^

to 4.7x10^ ms"l, with errors 25 and 70% respectively. Also shown are

those drift velocities corresponding to 5% of the thermal velocity of

electrons with temperatures ranging from 100 eV to 1 keV. At peak

compression, the pressure balance temperature in the skin is

approximately 500 eV. Therefore, assuming this to be the electron

temperature, the drift velocity at this time is approximately 5% of the

thermal velocity. During the period shown, the drift parameter,

Ç = V /v , is constant at 5%. d e

Only the current density of the contracting current ring is known

accurately during the dense pinch phase. Therefore, only the

corresponding drift velocities will be certain. Figure 4.28 shows the

maximum calculated drift velocities within this inner turbulent

structure. Drawn througth the points is an exponentially decaying

curve, with an e-folding time of 1.74 ns. It is apparent that the

decrease by a factor 56 in the drift velocity, from 4.7x10 ms to
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FiKure 4.28

Maximum drift velocity within the inner current 

distribution during the dense pinch phase.

8.4x10^ ms  ̂ in the time period t = 0 to +7.5 ns, is approximately 

exponential. The rapidity of this reduction is clearly expressed by 

the small 1.74 ns e-folding time. Similarly to the current density, 

the drift velocity between t = +7.5 and +10 ns is approximately 

constant. The accuracy of the drift velocity calculations during this 

phase is typically 50%.

In the absence of a potential difference across the plasma, the 

electron drift velocity would decay exponentially with an e-folding 

time given by the reciprocal of the electron-ion momentum transfer 

collision frequency. The observed rate of decay of the drift velocity, 

gives a collision frequency approximately a factor 10 times smaller 

than the classical value. Assuming that the resistivity is anomalous 

by a factor ICP during this period, the discrepancy between the actual 

collision frequency and the calculated frequency is 10 This large
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factor suggests that current is being driven during this period. 

However, the level of turbulence does have a noticeable effect as the 

current flow during this period decays.

Current filaments

The minimum electron drift velocities in the current filaments are 

3.3x10^ ms-l and 6.9x10^ ms'l, with errors 35? and 60%, at times 

t = +10 ns and +15 ns respectively. With an electron temperature at 

these times = IkeV, the drift parameter is 2.5 - 5.2?, which may be the 

lower limit. This value of drift parameter is similar to that present 

in the plasma skin during the collapse phase and at peak compression.

Results from co-operative laser scattering [49] indicate that 

higher filament drift velocities occur (cf section 4.3.6), with the 

result that the filament may exist with very small dimensions. One 

estimate of the filament radius is obtained as follows: Assuming a

drift parameter of unity, an electron temperature of 1 keV, and the 

observed electron densities of T.IxlO^^ and 3.3x10^4 at times 

t = +10 ns and +15 ns respectively, the corresponding axial current 

densities would be 1.5x10^^ Am"^ and 7.0x10^^ Am“^ . Assuming in 

addition the observed total filament currents of 42 kA and 72 kA at 

these times, the radii of the filaments would be 30 and 57 microns. 

Filaments with these radii and currents would have self magnetic fields 

of 280 and 253 Tesla respectively. These radii are similar to the 

values of ion Larmor radii that would exist. The electron Larmor radii 

would be approximately 0.5 microns.

This estimate of the filament radius assumes that all of the 

filament electrons conduct current and have a drift parameter of unity.
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With the original dimensions, the fraction of electrons with drift 

parameter unity needed to carry the observed currents are 2.5% and 5.2% 

at times t = +10 ns and +15 ns respectively. Therefore, a small 

fraction of the available electrons, with large drift parameter, may be 

responsible for the observed filament characteristics.

4.4.7 HEATING MECHANISMS

Some estimates of the plasma heating due to Joule heating, magnetic 

compression, adiabatic compression, and shock heating, can be made 

during the time period of interest.

The location of the electrical current during the collape phase

indicates that only the skin region obtains energy from Ohmic heating.

The power input can be estimated from the calculated values of plasma

resistivity and current density. During the time period t = -10 to

0 ns, the calculated value of classical resistivity decreased from

5.5x10-7 Ohm-m to 1.1x10-7 Qhm-m, while the current density rose from

3.6x10^0 Am"^ to 8.8x10^® Am"^. Therefore, the power dissipated per

unit volume, ^,Jf , varies from T.IxlO^'^ to 8.5x10^^ Wnr^. The areas Jl z
occupied by the current channel is s 10"^ mP, and so the Joule heating 

per unit length is 7.7 GWnri, and is approximately constant during this 

period. Over the 10 ns time interval, the number of electrons per unit 

length within this area is constant, = 1.5x10^® m'l, and so each 

electron will receive ^ 32 eV of energy. If the resistivity were 

anomalous by a factor 100, the rate of magnetic field diffusion would 

still be slow (^500 ns) relative to the timescale of the observation 

and would not be seen from the magnetic field data. If the resistivity 

were anomalous by this factor, the Joule heating would be increased to

3.2 keV per electron.
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Assuming an electron temperature of 500 eV during the dense pinch 

phase, the classical resistivity is 1.1x 10”7 Ohm-m, and the total 

resistance per unit length of the plasma column is approximately

6.3 milli-Ohms per metre. Therefore, the power input per unit length 

is 740 MW. This heat input represents a heating of only 3 eV per 

particle in a 10 ns period. However, the plasma resistivity is 

anomalous during this period, having a value of 6.9x10“^ Ohm-m as 

derived from the magnetic field diffusion rate^ This resistivity is 

found only within the central core of the plasma where the current 

density is low and the particle density high. In a 10 ns period, it 

can be calculated that the particle heating would be typically 1 kev. 

As the value of anomalous resistivity and current density vary 

throughout the pinch, there may be regions where significant heating 

(> 1 keV per particle) occurs.

When the current filament occurs, the Joule heating resulting from 

the high current density, assuming a classical resistivity of

1.1x10“7 Ohm-m, is approximately 1.5x10^®Wm“^. Therefore, during the

2.5 ns duration of the filament, heating of 37.5 MJm”^ occurs. The 

line density of electrons in the filament is approximately 

5.5x10^7 m“l, and so, with a radius of 190 microns, the heating per 

particle is = 25 eV. This low heating rate may be enhanced if the 

resistivity is anomalous. Assuming a resistivity of 6.9x10“^ Ohm-m, 

the plasma heating would be 125 keV per particle.

If the resistivity of the filament is anomalous. Joule heating will 

result in an increase in plasma kinetic pressure which is sufficiently 

larger than the filament magnetic pressure to cause break-up. From the 

magnetic field strengths and electron densities of the filaments, this 

would occur when the mean temperatures exceeded 340 eV and 1.2 keV for
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times t = +10 and +15 ns respectively. These, although probably a 

lower limit, are not very large compared to the mean plasma 

temperature, and imply that the filaments are easily destroyed by 
internal Ohmic dissipation.

As the plasma column radius decreases from 3.76 to 2.35 mm at times 

t = -10 to 0 ns, the work done by the magnetic field per unit length isr "2 1 -1
r ~  ”  ( 4 . 3 9 )B 4TT

Taking the average particle line density of 2.2x10^° m"^ during this 

period, the energy gained per particle is 156 eV.

The average mass per unit length of the current carrying plasma 

sheath during the time interval t = -10 to 0 ns, is 5.1x10“® Kgm“^. 

With a sheath velocity of 2.35x10® ms“l, the kinetic energy per unit 

length is 1.4 kJml This is carried mostly by the ions. Assuming that 

this is dissipated into thermal energy of all the plasma ions (ion 

viscosity scales as T ), the heat gained by each ion would be 80 eV. 

If this energy were dissipated into thermal energy of only those ions 

in the plasma sheath, the heat gain would be 580 eV per ion. The total 

amount of kinetic energy avaiable to the ions is larger than 1.4 kJm“^ . 

The exact quantity is not known, but an estimate can be made as

follows. The total mass per unit length of the plasma column is

3.7x10“?Kgm“l, and the mean square velocity is approximately half the

square of the plasma-vacuum velocity. Therefore, the mean plasma

kinetic energy is 5.1 kJm"^. This estimate is larger than that of the

sheath alone, and would give each plasma ion an energy gain of 290 eV.

During the late stages of the collapse phase, the plasma is

compressed in a manner which may be assumed adiabatic. During the time
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period t = -10 ns to t = 0 ns, the plasma velocities are less than the 

sound speed. Therefore, shock waves with their associated 

non-reversable changes of state, do not exist. The degree of Joule 

heating during this period is also minimal. However, one 

non-reversible process which occurs, is the reduction in the electron 

line density. This results in an outflux of heat from the system. 

Neglecting this, from the adiabatic compression equation

= constant, with volume proportional to radius squared, we obtain 

_ constant. Assuming y = 5/3, the increase in temperature

due to the change in plasma radius from 3.76 mm to 2.35 mm at time 

t = -10 ns and t = 0 ns respectively, is approximately 1.9. This is 

not a large factor considering that the uncertainties in the estimate 

are large, especially since approximately 50% of the particles are lost 

to the system. During the time period t = 0 ns to t = +10 ns, the 

plasma expands by a similar amount. Therefore, adiabatic cooling will 

occur. However, because of anomalous Joule heating of electrons, 

together with viscous and turbulent heating of the ions, this cooling 

will probably not be observed.

4.4.8 THE ELECTRON DENSITY EXTERNAL TO THE PINCH COLUMN

An upper limit to the value of the electron density external to the 

pinched axial column and the return plasma sheath, can be determined 

from the observation that the Faraday rotation angle at large values of 

impact parameter drops to zero once the plasma radius is less than the 

value of impact parameter (see figure 4.15).

The following assumptions are made: The electron density outside

the plasma column is radially constant, i.e. n ( r ) = n  . No current
e e x

flows external to the pinch (i.e. the difference current between that
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observed by Faraday rotation, and that measured by the Rogowskii coil, 

is the leakage current across the insulator). The magnetic field is

given by the vacuum field of the plasma. The impact parameter is

larger than the plasma column radius.

The Faraday rotation angle, from equation 1.53, is

\ { j ( h )  =  5 . 0 5  x l O  t a n  ( 4 . 4 0 )

where a is the radius of the return current sheath. The upper limit r
to the electron density in the volume between the inner plasma column

and the return current sheath is given when the Faraday rotation angle

is set to the minimum measureable Faraday rotation angle. For the

experiment, ip , = 0.02 degrees. Therefore, with a plasma current of min
340 kA, an impact parameter of 10 mm (the largest used), and setting 

the radius of the return plasma sheath to that of the outer electrode, 

the upper limit to the electron density is 1.5x10^^m”® , which is a 

factor 8.4 less than the filling gas electron density.

4.4.9, RAYLEIGH-TAYLOR INSTABILITY

In the time period around peak compression, the kinetic pressure of 

the plasma exceeds that of the magnetic field. This results in a 

deceleration of the plasma-vacuum boundary, which gives rise to 

Rayleigh-Taylor instabilities [62]. The rise time, or growth rate, is 

given by
w = ( g k ) ^  ( 4 . 4 1 )

where g is the acceleration, and k is the wavenumber of the 

instability.

The reconstructed hologram shown in figure 4.1 at time t = 0 ns,
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was analysed for axial perturbations. The wavelength of the 

instability observed was 2.5 mm. The deceleration observed from the 

collection of interferograms was approximately 2x10l3ms“2. Therefore, 

from equation 4.41, the e-folding time of the instability was 4.5 ns. 

Generally, the deceleration was smaller, and the wavelength larger, 

resulting in a longer rise time.

4.4.10 PLASMA. AND GUN INDUCTANCE

The inductance of the plasma and the gun electrodes can be 

determined from the known geometry and magnetic field distribution.

Gun Inductance ^

The characteristic time frequency of the electrical circuit is 

approximately 100 kHz. At this frequency, the skin depth of copper 

- the electrode material - is approximately 200 microns. Therefore, 

the gun inductance per unit length, Lg, is given by [63]

h  % ( 4 . 4 2 )

where a and b are the radii of the inner and outer electrodes 

respectively. The maximum value of gun inductance is 28 nH.

Plasma Inductance

The plasma inductance is defined by the ratio of magnetic flux 

external to the electrodes per unit plasma current. The amount of flux 

depends upon the plasma geometry, and the internal distribution of 

magnetic field. In calculating the magnetic flux, the following 

assumptions were made: The maximum axial extent of the plasma is as

observed and shown in figure 4.12, and occurs at a radial position 

equal to the radius of the inner electrode. For smaller radii, the
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geometry of the plasma is as observed interferometrically. For larger 

radii, the geometry is parabolic. During the collapse phase, the 

magnetic field skin depth is 0.5 mm. During the dense pinch phase, the 

internal magnetic field distribution is linear.

With the above assumptions, the temporal behaviour of the 

calculated plasma inductance is as shown in figure 4.29. Maximum 

inductance occurs at peak compression of the pinch, and has a value of

11.5 nH. After peak compression, the inductance decreases slowly. 

This is because the decrease in inductance due to the radial expansion 

of the plasma column adjacent to the centre electrode, offsets the

increase in inductance due to both the radial contraction at large
Vaxial position, and due to the increase in axial position of the return 

sheath.

The plasma column will be distorted by instabilities during the 

dense pinch phase. This will result in the true plasma inductance 

varying considerably in time, and explains the behaviour of the dl/dt 

Rogowskii coil signal observed after peak compression.

At peak compression of the pinch, the total inductance (plasma + 

gun) is 39.5 nH. Therefore, the energy stored in the source inductance 

is 4 kJ, and the energy stored in the plasma and gun is 2.3 kJ. Thus, 

the total stored magnetic energy at peak compression is 23% ' of the 

initial stored energy.

4.4.11 A_TIME-DEPENDENT ELECTRIC CIRCUIT MODEL

A time-dependent model of the Plasma Focus electric circuit, was 

developed to examine the effects of insulator leakage, and current
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arcing or short circuiting between and at the open end of the

electrodes, on the current and voltage observed at the insulator. The

aim was to compare the model with the waveforms normally observed with 

the Rogowskii coil and voltage stack, to determine whether or not 

insulator current leakage and shorting could be diagnosed.

The electric circuit of the model is shown in figure 4.30, where C

is the capacity of the capacitor bank (93.85 micro-Farads); is the

bank voltage; R is the source resistance (2.25 milli-Ohms); L iss s
the source inductance (33.7 nH); R is the insulator resistance; LL g
is the gun inductance; R is the short circuit resistance; R is theA p
plasma resistance; and L is the plasma inductance. The parametersP
1?» , and , are the total, the leakage, the short-circuit, and

the plasma currents respectively. The gun inductance is given by 

equation 4.42, and the position of the plasma is determined by a 

snow-plough model, discussed below. The plasma inductance is given by 

the curve shown in figure 4.29.

The axial position of the plasma was given by a simple snow-plough 

model [56], in which the axial velocity of the plasma is

- -
(4.43)v  = 

z
% STT̂  p 

(I + I )2 - °A p u

where a is the radius of the inner electrode; p is the filling gas 

density; p^ is the filling gas pressure; and eis a factor describing 

the snow-plough efficiency. The model was run with the following 

initial conditions: The filling pressure was 1.7 torr of deuterium,

and the bank voltage was 23 kV. In order to obtain a run-down time 

similar to that observed experimentally, approximately 2 micro-seconds, 

the snow-plough efficiency was fixed at 60%. The plasma resistance was
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Figure 4,30 

Equivalent Plasma Focus Discharge Circuit.

assumed constant at 2 milli-Ohms.

The rate of change of gun inductance was obtained by multiplying 

equation 4.42 by the snow-plough velocity. The rate of change of 

plasma inductance was obtained by differentiating the inductance-time 

plot of figure 4.29.

Three permutations of the model were examined;

a) No Leakage. No Short Circuit

The simplest model of the circuit is that in which there is no 

insulator loss, and no current arcing. Solution of the differential 

equations describing the circuit gives the results shown in 

figure 4.31. The current waveform, similar to that observed 

experimentally (see figure 2.2), peaks in excess of 500 kA after a
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Current waveforms computed for the case when there 

is neither insulator leakage or current arcing.

run-down time of 2.2 micro-seconds. The rate of change of total 

current, also similar to that observed experimentally (see figure 2.3), 

is highly peaked at the time of peak compression. During the collapse 

phase, the current decreases from its peak value by 10%.

b) Leakage. No Short Circuit

For a circuit model in which insulator leakage occurs, but not 

current arcing, assuming an insulator resistance of 0.25 Ohms, the 

results are as shown in figure 4.32. The total current waveform is 

similar to that for case a), and has a 4% decrease from peak current 

during the collapse phase. Current leakage across the insulator occurs 

throughout the discharge, and only during the collapse phase does it 

begin to become large. This is because at this time, voltages in 

excess of 30 kV appear across the insulator, due to the rapid changes 

in plasma inductance that occur. The calculated value of current
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is insulator leakage without current arcing.

leakage at peak compression is 120 kA. This is approximately the

difference between the observed capacitor bank current and the current 
. . ‘ ' • ■ ■ 

measured by Faraday rotation. The plasma current waveform shows a

rapid drop as insulator leakage increases. This gives rise to a

reduction in the plasma’s axial velocity, as observed experimentally.

At peak compression, the voltage appearing across the plasma, and

between the open ends of the two electrodes, is in excess of 100 kV.

This voltage is hidden from the insulator by the gun inductance, and

may result in current arcing at the open end of the two electrodes.

The rate of change of total current also peaks at the time of peak

compression. It is smaller than case a) by a factor 8.

c) Leakage and Short Circuit

For this case, both insulator leakage and current arcing are 

considered. An insulator resistance of 0.25 Ohms and a short-circuit
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Current waveforms computed for the case when both 

insulator leakage and current arcing occur.

resistance of 0.25 Ohms, are assumed. Current arcing is assumed to 

occur once the plasma has spilled out of the ends of the electrodes. 

The results are shown in figure 4.33. Similarly to cases a) and b), 

the dl/dt waveform peaks at the time of peak compression, and is 

similar to that observed experimentally. The maximum value is smaller 

than case a) by a factor 2.6. The current waveforms are identical with

case b) up until the short circuit occurs. Then, as the short circuit

current rises, together with the rising insulator leakage, the plasma 

current falls very rapidly, to approximately 54% of its peak value.

The maximum insulator and arc currents are 95 kA and 175 kA

respectively. At peak compression of the pinch, the voltage across the 

plasma is approximately 110 kV.

Discussion
For the three model cases considered, no significant difference
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between the total current and dl/dt waveforms exist. In case a), the 

very sharp dl/dt pulse may not be observed experimentally with a 

Rogowskii coil having a finite rise time. The calculated decreases in 

total current during the collapse phase from peak value to the value at 

peak compression, are very similar, and would not be distinguishable 

experimentally. The voltages appearing at the insulator, typically 

half the plasma voltage, are also very similar. Therefore, it is 

unlikely that either insulator current leakage or current arcing could 

be diagnosed with the electrical diagnostics.

As insulator leakage is known to exist in the Plasma Focus [57]» 

case a) is too simple a model. Similarly, discharges in which current 

arcing was observed [64], gave neutron emissions which were lower than 

normal by several orders of magnitude. This is not surprising

considering the dramatic decrease in plasma current shown in 

figure 4 .3 3. Therefore, as with case a), case 0 ) does not represent a 

typical Plasma Focus discharge. Based on the Faraday rotation 

measurements, and the observations of the axial return sheath position, 

case b) appears to best represent the Plasma Focus discharge circuit.

4.4.12 ELECTRON AND ION HALL TERMS

Many transport processes in plasmas [65] depend upon the degree to

which the ions and electrons are tied to the magnetic field lines of

force. Two parameters which quantify this are the electron and ion

Hall terms. These are defined as w T and go t respectively,ce 61 ci 11
where w and w . are the electron and ion Larmor frequencies, and tce Cl e 1

2-nd are the electron-ion and ion-ion momentum transfer collision

times. When the Hall term is greater than unity, Larmor radius effects 

are important, and the particle is said to be collisionless. When the
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Hall term Is less than unity, the particle is collisional, and the Hall 

term in the transport coefficients can be neglected. The Hall term 

basically decribes the number of Larmor orbits a particle makes before 

losing momentum through collision.

The ratio of electron Hall term to ion Hall term, assuming equal 

particle temperatures, is approximately 60. Therefore, only one term 

need be determined. From this ratio value, it is clear that processes 

involving electrons may be affected by the magnetic field, while 

processes involving ions may not.

The electron-ion momentum transfer collision time is given by 

the reciprocal of the effective momentum transfer collision frequency, 

discussed in section 1.4, and expressed by equation 1.35. For

simplicity, assuming InA = 12, the collision time is approximately

T . = 2 . 8 7  X 1 0 ^^  T ^  n ^  s e c o n d s  ( 4 .4 4 )
e i  e e

where the electron temperature is measured in electron volts.

During the collapse phase, the electron densities and pressure 

balance temperatures are typically 1.5x1Cp^ m and 150 eV at time 

t = -10 ns, and are typically 2.0x10^^mT^ and 500 eV at peak

compression. These values occur where the magnetic field strengths are 

approximately half of their maximum values. From equation 4.44, the 

electron-ion collision time is 35 picoseconds and 160 picoseconds at 

these respective times.

The magnetic field strengths are typically 9 and 20 Tesla at times

t = -10 ns and t = 0 ns respectively. Therefore, the electron Larmor

frequencies are 1.58x10^^rad-s-l and 3.52x10^^rad-s"^ respectively.
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Combining these frequencies with the collision times, the electron Hall 

term varies from 55 at time t = -10 ns to 563 at time t = 0 ns. These 

are larger than unity, and therefore, the electrons are collisionless. 

The transport coefficients depend upon the square of the Hall term, and 

so changes in the values of the transport coefficients by a factor of 

100 occur over the 10 ns time period considered.

The ion Hall term changes from approximately 0.9 to 9.4 during the 

time period t = -10 ns to peak compression. Therefore, during the time 

period considered, the initially collisional ions become collisionless.

During the dense pinch phase, the typical values of electron 

density, electron temperature (assumed to be the pressure balance 

temperature), and magnetic field strength, are not significantly 

different to those quoted above for the collapse phase. Therefore, on 

the basis of classical collisionality, the electron Hall term is of 

order 100, while the ion Hall term is of order unity. However, the 

resistivity of the plasma within a radius of 2 mm is anomalous by a 

factor of 6000 from the classical value. This is due to anomalous 

electron-ion collisionality. Therefore, the actual collision time is 

smaller by this factor of 6000. This results in an electron Hall term 

less than unity. Thus, the central core of the plasma is highly 

collisional, while outside of this core, the electrons are 

collisionless', and the ions are marginally collisionless.

4.4.13 COMMENTS ON NEUTRON PRODUCTION AND ION ACCELERATION

Two important processes which occur in the Plasma Focus are neutron 

production and ion acceleration. Perhaps the latter is the more 

important of the two as it may play a necessary role in the former.
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However, neither is fully understood. In this final section, some 

comments on neutron production and ion acceleration are given in the 

light of the results from the Faraday rotation experiment. Firstly, 

brief reviews of neutron and deuteron emission characteristics are 

given, followed by some discussion on models and mechanisms proposed to 
explain the observations.

The neutron emission from a Plasma Focus, typically 10® to 10^® per 

discharge, originates from a small volume of a few cubic centimeters in 

front of the centre electrode [66]. The yield, proportional to the 

fourth power of the plasma current [67], is not correlated with the 

observed intensity of accelerated deuterons [68]. The emission is 

accompanied by anomalous resistivity [66], and the yield can be 

drastically reduced by application of a bias axial magnetic field [67]. 

The neutron emission occurs in two pulses. The first begins at peak 

compression, and the second at the onset of m = 0 instabilities [69] 

and peaks when the plasma has expanded to large radius and low

density [67]. These pulses may be superposed depending when the

instabilities occur. The neutron emission is anisotropic with a factor

up to 3 times more neutrons emitted in the forward axial direction than 

in a direction perpendicular to the axis. The neutron energy spectrum 

shows a large axial energy shift of between 200 and 700 keV from the 

2.45 MeV D-D reaction energy [70].

In addition to the neutron emission, the plasma emits beams of 

deuterons with energies up to 5 MeV [71]. The number of ions in the 

beam could be as large as 10^®[71], which would be larger than the 

neutron yield by a factor 10^. The beam is highly directional, with

typically 100 times more deuterons emitted in a forward axial direction 

compared with those emitted perpendicular to the axis [71]. The
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deuterons are emitted in a single pulse of width - 8 ns, or as a 

collection of ~ 8 ns pulses covering a time period of 50 - 100 ns [72]. 

The ion beam can carry a significant amount of energy. Gullickson and 

Sahlin [71] estimate a conversion efficiency from initial stored energy 

to beam energy of 0.1%. This is smaller than the 3% value determined 

from measurements on the Limeil 340 kJ Plasma Focus [70].

Although no precise correlation between deuteron beam intensity and 

neutron yield has been established [68,72], it is probable that 

deuteron beams play an important role in the neutron production 

process. Therefore, an understanding of the mechanism behind ion

acceleration will also give greater understanding of the neutron
Vproduction process.

Two simple models which have been used in attempts to explain the 

observed neutron emission characteristics, are the beam-target and the 

moving boiler models, both reviewed in reference 66. In the former 

model, neutrons are assumed to be produced as the result of the 

interaction between a beam of deuterons, accelerated to energies of 

^ 0.25 MeV, with plasma ions and cold background filling gas. In the 

latter model, the neutron emission is assumed to come from a 

thermonuclear plasma of temperature '̂ lO keV and with a centre of mass 

velocity of approximately 10® ms'l Neither of these models has so far 

been totally successful in describing the experimental observations. 

It is possible that many different processes are involved. However, 

there are some models which attempt to explain both deuteron 

acceleration and neutron production. These involve a single ion 

acceleration mechanism, and are discussed below.

In Bernstein's model [73], it is assumed that due to the onset of

- 242 -



anomalous resistivity during the dense pinch phase, there is a rapid 

radial contraction of the current distribution. The change in magnetic 

flux within the plasma generates an axial electric field via Faraday's 

induction law. Computations by Bernstein of the deuteron ion orbits in 

the crossed magnetic and electric fields revealed two classes of ion. 

The first class of ion occupied Larmor orbits which never crossed the 

magnetic axis. These gyrated in a radial gradient of axial electric 

field, and obtained substantial heating in a cyclotron process. The 

second class of ion occupied Larmor orbits which did cross the axis. 

In addition to the above heating mechanism, these ions also obtained a 

large relative axial drift. Bernstein found that up to 10% of the 

deuterons could be accelerated to energies of 600 keV. He concluded 

that the collisions between these accelerated ions and cold plasma ions 

would result in a neutron emission which satisfies the observed 

characteristics.

Extensions to Bernstein's model by Gary and Hohl [74], and 

Gary [75], examined the effect of an electric field on the pinch axis 

together with the contraction of current density due to anomalous 

resistivity, on the ion velocity distribution, initially assumed 

Maxwellian, Their computations found that, in addition to the 

cyclotron heating process, ions within a Larmor radius of the axis 

undergo very efficient axial acceleration.

In addition to the assumption of anomalous resistivity, the above 

models assumed that the ions were collisionless. If the ion Hall term 

was less than unity, both cyclotron heating and ion acceleration would 

be suppressed.

From the Faraday rotation measurements, it is found that anomalous
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resistivity does occur during the dense pinch phase. Therefore, the 

models main assumption is correct, and deuteron acceleration would be 

expected. Particle acceleration certainly does occur after the 

observed contraction ends, as evidenced by the Faraday rotation spikes, 

with the acceleration region probably corresponding to a current 

contraction zone at a larger axial position.

For ions with classical collisionality, the ion Hall term is of 

order unity. This would satisfy the models second assumption, and so 

ion acceleration and heating would be possible. However, the ions are 

only marginally collisionless. Any increase in ion-ion scattering due 

to turbulence, as^ might be expected considering the anomalous 

electron-ion scattering, would reduce the ion Hall term to a value less 

than unity. This would be contrary to the models assumption, and would 

prevent both ion acceleration and heating. As no Faraday rotation

spikes are observed during the current contraction period, it is more 

probable that the latter conclusion is correct. Therefore, during this 

period it is unlikely that neutron production arises from beam-target 

interactions.

During the contraction period, the ions do obtain considerable 

heating by Ohmic dissipation. This is localised to the region of

anomalous resistivity. Therefore, it is possible that the first 

neutron pulse is by thermonuclear fusion. The pulse duration would

last longer than the contraction period, as observed experimentally, if 

the contraction zone moved axially with the region of maximum plasma 

compression. The position of the neutron emission region would then

follow behind the region of highest density, as observed [70].
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Once the current contraction period has ended, Faraday rotation 

spikes are observed. This indicates that particle acceleration does 

occur, and that at this time neutron production via beam-target 

interactions are possible. It also indicates that the ions are 

collisionless. Therefore, the neutrons emitted from the plasma may 

come from thermonuclear reactions within the current contraction zone 

at large axial position and from beam-target interactions. Ion 

acceleration must occur in the plasma volume behind the current 

contraction zone. This volume is nearer to the centre electrode, which 

is the position where the plasma has experienced the greatest 

expansion. One model of ion acceleration which is applicable when the 

ions are collisionless, and when the plasma has low density, is that 

due to Potter and Haines [76], described below.

This numerical model simulates the interaction of 20,000 deuterons 

with the self-conàistent electromagnetic field of an electron fluid. 

Initially, the ions are positioned uniformly within the plasma, and 

have a Maxwellian velocity distribution. It is found that when the 

ions are collisionless and the ion Larmor radius is smaller than the 

pinch radius, if a small axial electric field is applied, the ion 

distribution function obtains a singular component. Ions crossing the 

magnetic axis are rapidly accelerated to an energy of approximately 

100 keV in a direction away from the centre electrode. The resulting 

neutron emission is anisotropic, and the neutron energy spectrum is

consistent with a source moving with a centre of mass velocity of
6 -1 1,2x10 ms

The assumptions of this model are satisfied in the expanded plasma 

adjacent to the centre electrode. They are also satisfied after the 

onset of m = 0 instabilities when the plasma column has expanded
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significantly. The second neutron pulse peaks after the onset of m = 0 

instabilities [69]. Therefore, the second neutron pulse may arise from 

the effect of deuterons accelerated by the mechanism of Potter and 

Haines. The Faraday rotation spikes, and anisotropic neutron emission 

during the first neutron pulse, may also be due to this ion 

acceleration mechanism. Future studies of the correlation between the 

current contraction, the current filamentation, and the neutron and 

deuteron emissions, should lead to a better understanding of the 

neutron production and ion acceleration mechanisms in the Plasma Focus.
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CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

5.1 DISCUSSION

The a p p l i c a t i o n  o f  th e  F a ra d a y  r o t a t i o n  te c h n iq u e  to  th e  s tu d y  o f  a 

P la sm a  F o cu s  d e v ic e  has p ro v id e d  s i g n i f i c a n t  a d d i t io n s  to  o u r  k n o w le d g e  

o f  t h i s  p la s m a .

W ith  th e  h ig h l y  s e n s i t i v e  p u rp o s e  b u i l t  p o la r im e t e r  u se d  i n  t h i s  

s t u d y ,  th e  i n t e r n a l  a z im u th a l  m a g n e t ic  f i e l d  s t r u c t u r e  d u r in g  th e  l a t e  

c o l la p s e  and e a r l y  dense  p in c h  p h a se s  o f  th e  d is c h a r g e  h ave  been  

d e te rm in e d  f o r  th e  f i r s t  t im e  u s in g  a n o n - p e r tu r b in g  d ia g n o s t ic  

t e c h n iq u e .  I t  f o l lo w s  t h e r e f o r e ,  t h a t  th e  a x i a l  c u r r e n t  d e n s i t y  and 

e le c t r o n  d r i f t  v e l o c i t y  p r o f i l e s  d e te rm in e d  f ro m  th e  f i e l d  d i s t r i b u t i o n  

h ave  a ls o  b een  r e s o lv e d  f o r  th e  f i r s t  t im e .  T h is  has e n a b le d  a v a r i e t y  

o f  p ro c e s s e s  t o  be e x a m in e d : c u r r e n t  le a k a g e  a c ro s s  th e  i n s u l a t o r ,

p la s m a  r e s i s t i v i t y .  O hm ic h e a t in g ,  and  p la sm a  c o l l i s i o n a l i t y .  A new 

r e s u l t  f r o m  t h i s  s tu d y  i s  th e  o b s e r v a t io n  o f  r a p id  m a g n e t ic  f i e l d  

d i f f u s i o n  d u r in g  th e  dense  p in c h  p h a s e .

I t  h as  been  p o s s ib le  t o  c a lc u la t e  an u p p e r  l i m i t  t o  th e  e le c t r o n  

d e n s i t y  e x t e r n a l  t o  th e  p in c h  co lu m n  u s in g  th e  n u l l  r e s u l t  o b ta in e d  i n  

th e  e x p e r im e n t  o nce  th e  p la sm a  r a d iu s  i s  le s s  th a n  th e  v ie w e d  c h o rd  

im p a c t  p a r a m e te r .  T h is  i s  a new a p p l i c a t i o n  o f  th e  te c h n iq u e .

A new o b s e r v a t io n  made w i t h  t h i s  m e th o d , i s  t h a t  o f  th e  F a ra d a y  

r o t a t i o n  's p i k e s '  due to  c u r r e n t  f i l a m e n t a t i o n  on a x is .  The f i l a m e n t
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dimensions, associated magnetic field strengths, current density, and 

electron drift velocity, have been assessed.

The analysis and interpretation of the results from the holographic 

interferometry and Faraday rotation studies were the subject of

chapter 4. Of these two studies, the former is by a standard

diagnostic. However, differences between the results of the present 

study and those of an earlier study by Morgan [46] were obtained. This 

is probably because of the different initial conditions: bank voltage

and filling gas. Since the results of the interferometry must be used

in a full analysis of the Faraday rotation data, the Abel inversion 

technique and error analysis of the interferometric data has been 

described in detail.

It has previously been difficult to determine the accuracy of Abel 

inverted data. In the analysis of the Abel inverted electron density 

profiles, section 4.2.7, three new expressions were given which 

quantify the relative error in the electron density at the plasma edge, 

on the axis, and half way between the axis and the edge. In the 

analysis of the Abel inverted magnetic field profiles, section 4.3.8, a 

new expression was given for determining the absolute error, from the 

uncertainty in the Faraday rotation angle alone, at the plasma edge. 

This is used in conjunction with the errors in the plasma radius and 

electron density to give the total error. One conclusion was that the 

main source of error at the plasma edge was the 30 - 40% error in the 

electron density.

As no other Faraday rotation experiments on Plasma Focus devices 

have been successful, it has been difficult to compare the results of 

this study with the results of others. However, the results of Bernard
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et al [22] on anomalous resistivity, the results of Neff et al [61] on

electron beams, and the co-operative scattering results of Kirk [49], 

do support the two major new observations made with this technique:

rapid field diffusion and current filamentation.

A summary of new results and conclusions from the investigation of

the Plasma Focus is given in section 5.2. Following this section are

suggestions for improving the experimental technique, and suggestions

for future research. However, before the summary is given, the new

work described in chapter 1 on polarisation effects and refraction, and 

in chapter 3 on the polarimeter and polarimetry, will be briefly 

discussed.

Polarisation Effects and Refraction: A theoretical review of

Faraday rotation, birefringence, dichroism, and refraction, was given 

in chapter 1. A review detailing all of these effects has not been 

previously published. This review has examined the effects themselves, 

and, for the first time, the coupling between Faraday rotation and 

dichroism, and birefringence and dichroism. The coupling between 

Faraday rotation and birefringence has previously been analysed by

others [37,38,39].

The effect of an axial magnetic field on the measurement of the

azimuthal magnetic field by the Faraday rotation method, when the probe

beam is misaligned from the r-9 plane, has been examined for the first

time and shown to be important when B > B_. It was demonstrated thatz 0
for a Tokamak plasma, the misalignment angle must be smaller than 

0.64 degrees.

In section 1.10, new analytic expressions for quantifying Faraday
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rotation, and the effects of birefringence and dichroism, have been 

derived. These will be of considerable use to experimentalists

planning future Faraday rotation studies of laboratory plasmas.

The previously known ray path differential equations which describe 

the trajectory of a refracted ray through a cylindrical plasma, at an

arbitrary angle to the r-0 plane, have been determined using a new

extension to the work of Schreiber et al [43]. This extension is the 

addition of a third dimension to the ray's path in the derivation which 

is based on Fermat's principle and uses the calculus of variations.

This work is detailed in Appendix A.
V

The Polarimeter and Polarimetrv: The polarimeter used in the

investigation of the Plasma Focus was of a design which has not

previously been used in Faraday rotation studies of laboratory plasmas. 

However, the differential half-shade method of polarimetry has been

used before, as by Dougal et al [77], Falconer et al [7 8], and by 

Brown et al [79], on theta-pinch plasmas.

There are two main differences between the polarimeters used in

these experiments and the polarimeter described in this thesis. The 

first is the half-shade angle: it was 2 degrees in this study, while

for all these other experiments it was 45 degrees.

The second difference is that, whereas the half-shade angle was

fixed in these experiments, the polarimeter used in this study was

designed to have a variable half-shade angle, ranging from less than 

the 2 degrees used to greater than 45 degrees. This versatility was 

required for two reasons. Firstly, the magnitude of the Faraday 

rotation angle produced by the Plasma Focus at the wavelength of the
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ruby laser probe beam was unknown, although it had been calculated from 

theory (cf section 1.10). The polarimeter was therefore required to 

have a high and variable sensitivity, so that it would be possible to 

detect a significantly smaller rotation than that predicted. The 

second reason was time resolution. A resolution of the order of 1 ns 

was needed, which ruled out the use of conventional difference 

amplifiers in determining the ratio of signal difference to signal sum. 

For simplicity, an oscilloscope was used. However, as the common mode 

rejection achievable in measuring signal differences from two 

oscilloscope traces on a Polaroid oscillograph is low, the observable 

effect on the detected signals due to Faraday rotation - sensitivity - 

needed to be as large as was feasible. This was not a constraint in 

the experiments of references 77,78, and 79.

It is interesting to compare the minimum observable Faraday 

rotation angles found in these experiments with that found in this 

study. Dougal et al achieved a resolution of 0.5 degrees. 

Falconer et al achieved a resolution of 0.017 degrees, and Brown et al 

obtained a resolution of 0.015 degrees. Both these latter two 

experiments had a similar resolution to that of this study, which was 

0.02 degrees. Although the polarimeter of Dougal et al at first sight 

appears insensitive, it is useful to compare the minimum resolution 

with the maximum Faraday rotation observed. The ratio of maximum 

observed angle to mimimum resolution was 14 in the work of 

Dougal et al, it was 4.9 in the work of Falconer et al, and in this 

study, it was 18. It is not known in the work of Brown et al. 

Therefore, while the best resolutions are similar, the polarimeter used 

in this experiment was more accurate than those of references 77 and 

78.
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Two experimental techniques which have now been applied for the 

first time in Faraday rotation studies of plasmas, are the 

amplification of Faraday rotation by an orthogonal pair of dielectric 

beam-splitters, and the use of a single detector in a difference 

measurement scheme due to the use of different length fibre optics 

which cause an optical delay.

As the design of the polarimeter is new, the theoretical analysis 

of its optical properties is original. The predictions made with this 

theory have been fully confirmed experimentally. In addition, two new 

criteria were derived for determining the optimum sensitivity of a 

half-shade polarimeter when limited by polarisation ellipticity and 

analyser rejection ratio in the presence of strong plasma refraction of 

the probe beam. In Appendix B, the polarisation change caused by the 

surface curvature of lenses has been analysed.

5.2 SUMMARY OF NEW RESULTS AND CONCLUSIONS FROM THE PLASMA FOCUS STUDY

A summary of new results and conclusions from the investigation of 

the Plasma Focus by Faraday rotation polarimetry and holographic 

interferometry are given below.

Collapse Phase

During the collapse phase, at a Z-axis position 5 mm from the

centre electrode, the plasma sheath contracts radially with a velocity

of 2.35x10^ms  ̂to a minimum plasma radius of 2.35 mm at time t = 0 ns.

The axial sheath velocity decreases from the asymptotic value of 
5 -11.57x10 ms at t = -25 ns by a factor of approximately 2 at time
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t = 0 ns. This is because of the large increase in current leakage 

across the insulator at this time, due to the large inductive voltage 

generated by the pinching process. At peak compression, the axial 

electron density is 4.2x10^^m"3 + 10$, which is 300 times the filling 

density, and the average density is 4.7x10^^m"^. The electron line 

density drops by a factor 2.35 to S.OxlO^^nj-l time t = -20 ns to

t = 0 ns. The mass per unit length of the plasma column at this latter 

time is 3.7x10“*̂Kg m“^ . The line density at peak compression 

represents a focussing efficiency of 32$ during the collapse phase 

only, and 1.4$ when the run-down phase is included. The energy 

utilised in ionising the deuterium filling gas is 1.1$ of the initial 

bank energy. The drop in line density represents an axial flow loss 

rate of 5.4x1C?'^m”^s~^.

The maximum Faraday rotation angle observed during this period is 

approximately 0.5 degrees at t = 0 ns. This is smaller by a factor 

= 10 from that initially expected, and is due to the skin effect. The 

error in the Faraday rotation angle is approximately 0.05 degrees and 

arises from plasma irreproducibility and not measurement errors, e.g. 

the effect of refraction.

The null Faraday rotation result observed when the plasma radius is 

less than the value of impact parameter, gives a new estimate of the 

upper limit to the electron density in the volume between the focused 

plasma and the return current sheath. This estimate is 1.5x10^^m 

which is a factor 8.4 less than the filling density.

The magnetic field is confined to the plasma skin with a 

penetration depth of 0.56 mm, which corresponds to approximately one 

ion Larmor diameter and is approximately half the width of the plasma
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sheath at times t < -15 ns. This is considerably less than the value 

of 7 mm computed by Potter [60] using a numerical fluid model. The 

magnetic field strength at the plasma edge, ^ 28 Tesla, is consistent 

with a 340 ±  70 kA plasma, which is 70$ of the capacitor bank current. 

The remaining 30$ is lost due to insulator leakage. The magnetic field

error is typically 40$ at the edge, due mostly to 30$ edge density

errors, and is of magnitude 0,5 Tesla internally. The electron line 

density and mass per unit length of the plasma occupied by the magnetic 

field are 1.5x10^^ m"^ and 5.1x10"®Kg m"^ respectively.

Estimates of the average temperature using pressure balance gives

T = 500 eV at pealc compression. If sheath momentum is included, an 

increase in temperature by 143 eV is obtained. These are in reasonable 

agreement with the scattering results of Kirk [49]. The Bennett 

temperature of 228 eV is found to be too small, and indicates that the 

plasma is inertially confined with a plasma beta of approximately 2. 

The resistivity is 1.1x10"?0hm-m, which is six times larger than the 

resistivity of copper, and gives a magnetic field diffusion time of 

63 microseconds. It is for this reason that the field is confined to 

the plasma skin, it cannot diffuse ahead more rapidly then it is 

convected. The maximum axial current density is 8.8x10^^Am”  ̂±60$, 

and the electron drift velocity is 4.7x10^ms"^ + 70$. The ratio of 

electron drift velocity to thermal velocity is approximately 5$, and is 

constant within the time period t = -10 ns to t = 0 ns.

The Joule heating in the sheath from time t = -10 ns to t = 0 ns, 

is approximately 32 eV per electron. During this time period, the 

magnetic work done is 156 eV per particle, and the kinetic energy of 

the pinching plasma is sufficient to heat the ions by 290 eV. 

Adiabatic heating by a factor 1.9 during this period is offset by a
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reduction in line density by a similar amount.

The calculated plasma inductance peaks at 11.5 nH at time t = 0 ns. 

This gives an inductively stored energy in the plasma and gun of 8.5$ 

of the initial stored energy. The total amount of energy stored 

inductively in the discharge circuit at this time is 23$ of the initial 

energy. Numerical simulations of the discharge circuit with a

snow-plough model of the plasma, show that the dl/dt singularity

observed with the Rogowskii coil occurs at •peak compression, in

agreement with the results of holographic interferometry where peak 

compression is observed to occur simultaneously over an axial length 

Z < 10 mm. The numerical results show that it is possible for the

150 kA difference current between the observed plasma current and the 

490 kA capacitor bank current to be lost due to insulator leakage. The 

value of insulator resistance necessary for this leakage is 

approximately 0.25 Ohms. Because of the inductance of the electrodes, 

the voltage across the plasma is approximately twice the voltage which 

appears across the insulator. If arcing were to occur across the open 

ends of the electrodes, the plasma current would drop very rapidly. 

This would result in a poor neutron yield as observed by Bernard 

et al [64].

During the time period t = -10 ns to t = 0 ns, the electron Hall

term U3 T increases from 55 to 563» and the ion Hall term w T.. ce ei
increases from 0.9 to 9.4 respectively. Therefore, the electrons are 

collisionless and the ions are marginally collisionless.

Dense Pinch Phase

During the dense pinch phase, the electron line density remains 

essentially constant at 8.0x10 m . This is in disagreement with
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Morgan [46]. The average electron density decays approximately 

exponentially from the value 4.7x10^'^m"^ at time t = 0 ns with an

e-folding time of 11.8 ns. This was not previously recognised and can

be seen in Morgan's data. The plasma expands at a velocity of

2x10®ms"^, which is the free expansion velocity of 1.1 keV

temperature ions.

During the time period t = 0 ns to +10 ns, the magnetic field 

diffuses to the axis. The internal magnetic field strength is low and 

falls from 15 to 3 Tesla during this period. Pressure balance 

temperatures give a maximum value of 680 eV at time t = +7.5 ns.
V

The magnetic field diffusion time of 10 ns is consistent with a 

resistivity of approximately 6.9x10""^Ohm-m, which corresponds to an 

electron temperature of 1.3 eV. Therefore, the resistivity is

anomalous by a factor 6000. This is in good agreement with the 

results of Bernard et al [22].

The current density profile peaks in the plasma skin, and has

similar values to that during the collapse phase. During the time

period t = 0 ns to +10 ns, the profile consists of two maxima. One is 

confined to the plasma skin and expands with the plasma. The other 

contracts radially. The plasma current flows mainly in the skin, where 

the resistivity is classical. The region of anomalous resistivity is 

confined to the plasma core with radius 2 mm. The contracting 

current distribution has a maximum current density value of

4.8x10^^Am ̂  at time t = +2.5 ns, and falls to a value 7.5x10 ^Am”  ̂ at 

time t = +7.5 ns. This latter value is similar to the peak current 

density at time t = +10 ns. The total current flowing within the core 

is 125 kA, i.e. 37$ of I^, at time t = +2.5 ns, and decreases to
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43 kA, i.e. 13$ of I , at time t = +7.5 ns. At time t = +10 ns, theP
current is 36 kA. The maximum drift velocity falls approximately 

exponentially from 4.7x10^ms”  ̂ at time t = 0 ns, by a factor 56 to

8.4x10^ms  ̂+. 50$ at time t = +7.5 ns. The e-folding time is

approximately 1.74 ns, which is larger than the anomalous electron-ion 

momentum transfer collision time by a factor 10^. The electron drift 

velocities in the plasma skin are similar to those during the collapse 

phase. Joule heating in the region with anomalous resistivity is

> 1 keV per particle in the time period t = 0 ns to +10 ns. It is

insignificant in the plasma skin.

The electron Hall term in the plasma skin is of order 100 and the 

ion Hall term of order unity, similar to the values found during the 

collapse phase. The electron Hall term within the turbulent core «1, 

and the ion Hall term, if the ion self collision time is anomalous, is 

also «1. Therefore the plasma skin is collisionless, while the plasma 

core is collisional. Deuteron acceleration due to the mechanism of 

Bernstein [73] is suppressed at this time. Later, once the plasma has 

expanded, deuteron acceleration due to the mechanism of 

Potter et al [76] may occur and could explain the current 

filamentation.

Current Filaments

The Faraday rotation 'spikes' observed corresponded to Faraday 

rotation angles of 0.95 degrees. The measurements were bandwidth 

limited. The 'spikes' were observed to occur in the time period 

t = +10 ns to t = +15 ns. The duration of the 'spikes' was 2.5 ns. 

These results are interpreted as being due to axial current 

filamentation. These spikes may be similar to the observations of 

short lived electron beams by Neff et al [61], and have a strong time
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correlation to the large enhancements in scattered light as observed by- 

Kirk [49]. The duration of the current filaments is 2.5 ns. The 

associated magnetic field strengths are ^  44 Tesla and 2  57 Tesla, at 

radii 190 microns and 250 microns, at times t = +10 ns and +15 ns 

respectively. These radius values are similar to the resolution of the 

Abel inversion space mesh. The current density > 3.7x10^^AnT^ at both 

times, and the drift velocities 2  3.3x10^ms"^ and 2  6.9x10^ms“  ̂ at 

times t = +10 and +15 ns respectively. These velocities correspond to 

drift parameters of 1 2 . 5 %  and 2  5.3^ respectively. If only 4$ of 

the available electrons carried the current, the drift parameter would 

be of order unity. The half current density maximum occurs at radii 

167 microns and 217 microns respectively. The total currents carried 

by the filaments are 42 kA and 72 kA, i.e. 12$ and 21$ of the plasma 

current, at times t = +10 ns and +15 ns respectively. These currents 

are not significantly different to the current carried within the inner 

turbulent core at time t = +10 ns, and indicate that they may be 

related effects.

If the drift parameter is assumed to be of order unity, as 

indicated by the results of Kirk [49], it can be estimated that the 

filament radius would be approximately 50 microns, and the associated 

current density and magnetic field would be "̂ l̂O^^Am”^ a n d 250 Tesla 

respectively.

The electron line density of the filament is 5.5x10 m ” . Joule

heating with classical resistivity gives 25 eV per particle for the 

lifetime of the filament. The heating will be greatly increased if the 

resistivity is anomalous. The temperature of the filament, estimated 

using pressure balance with the self-magnetic field, is 340 eV and

1.2 keV at times t = +10 ns and t = +15 ns respectively. Joule heating
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to temperatures greater than these would cause the filament to 

break-up, and may be the reason for their short lifetime.

5.3 SUGGESTIONS FOR FUTURE IMPROVEMENTS

The results obtained from the Faraday rotation study were subject 

to a variety of limitations in the experimental method. These are

discussed below, together with suggestions for future improvements.

a) The Faraday rotation measurements were built-up on a shot to shot

basis. Similarly, electron density measurements were obtained from 

holographic interferograms of separate discharges. Because these 

measurements were not made simultaneously, the magnetic field

measurements were subject to errors due to shot to shot plasma

irreproducibility. The measurement technique would be considerably 

improved if both measurements were made simultaneously, with the

polarimeter redesigned to view several different plasma chords. 

Interferometry of the plasma Z-plane being studied could be done 

continuously by using a streak-camera and Mach-Zehnder interferometer, 

as by Hirano et al [80]. The polarimeter image plane would easily

accomodate several fibre optic pairs, and the light transmitted by the 

first beam-splitter in the polarimeter could be used as the scene beam 

in the interferometer.

b) The detection system of the polarimeter proved to have

insufficient bandwidth to accurately resolve the current filamentation. 

Assuming a sub—nanosecond lifetime of the filament, similar to the 

0.4 ns duration of the electron beam observed by Neff et al [61], a
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bandwidth of 2 GHz would be required. This would also reduce any 

effects due to plasma motion.

There are two methods by which this bandwidth could be achieved. 

The first is to use a streak camera at the ends of equal length fibres. 

This would be capable of 100 picosecond resolution. The second 

method would be to use a fast photodiode, several are capable of 100 ps 

resolution, together with an analogue to digital converter. Whereas 

the best Tektronix waveform digitizer (7912AD) can sample at slightly 

better than 1 GHz, GaAs ADC's can sample at 8 GHz [81].

c) In the analysis of the Faraday rotation data, the main assumption 

made was that of cylindrical symmetry. On the basis of the plasma 

symmetry revealed by holographic interferometry, this may appear a 

reasonable assumption. However, this symmetry may not apply to the 

current density distribution, which may even not be continuous. 

Current filamentation may exist. In order to examine this aspect, 

Faraday rotation polarimetry based on the 'freeze' technique [9] should 

be attempted with simultaneous interferometry. Very high spatial 

resolution, 'u 50 microns, can be achieved with common photographic 

materials. Also, high temporal resolution, *^0.5 ns, can be achieved 

by using a single mode locked pulse from a suitable laser. These 

measurements, which would examine a full cross-section of the plasma, 

should be made simultaneously at a variety of 8 positions around the 

plasma. A full tomographical analysis [82,83] of the data would then 

reveal filamentation on the dimensional scale of the measurement 

resolution.
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5.4 .SUGGESTIONS FOR FUTURE RESEARCH

In addition to the improvements discussed in the previous section, 

the following research topics are suggested for future investigation.

a) The existence of a self generated axial magnetic field in the 

Plasma Focus has long been suspected from indirect experimental 

observations [45]. It would therefore be of considerable importance to 

determine whether or not it does in fact exist. The Faraday rotation 

method would be ideal for this measurement. It would not be necessary 

for the field to be examined in detail, although this would be very 

useful. A demonstrable effect would be sufficient to establish the 

field's existence.

There are two ways in which this measurement could be achieved with
• .

the Culham Plasma Focus. The first would be to replace the solid 

centre electrode with a hollow electrode, and provide suitable entrance 

and exit optical windows. This would entail considerable 

re-engineering of the machine. An optical probe beam directed through 

the plasma parallel to the axis would then be used in a Faraday 

rotation experiment. The polarimeter described in this thesis would be 

suitable, although care would have to be taken as strong refraction, 

and perhaps birefingence, would occur because of the long optical path 

through the plasma in a direction perpendicular to large electron 

density gradients.

The second method, and perhaps the more practical, has already been 

discussed in sections 1.6.1 and 1.6.2 where the effect of an axial 

magnetic field on a probe beam which propagates through a cylindrical
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plasma at an angle to the r — 0 plane was described. Also discussed 

was the experimental method by which the effects of the azimuthal and 

axial fields could be separated. In the present context, the

experiment would be to repeat the Faraday rotation experiment reported 

in this thesis simultaneously with an identical experiment which used a 

probe beam at an angle to the r - 0  plane. The difference in the

Faraday rotation angles observed would be due to an axial magnetic

field alone. From section 1.10.1, it can be estimated that the

rotation angles due to axial and azimuthal fields of equal magnitude 

would be similar if the probe beam were at an angle of 24 degrees from 

the r - 0  plane. Therefore, it would be reasonable to expect a 

demonstrable effect^ if the experiment were conducted at an angle

> 24 degrees.

b) It was demonstrated that the results obtained from the Faraday 

rotation 'spikes' observed, were affected by the measurement bandwidth 

limitation, the spatial resolution of the plasma chord viewed by the

polarimeter, and the Abel inversion space mesh dimension. Assuming

sufficient improvements in the experimental technique which avoid these 

problems, the following topics for investigation are suggested:

1) Using several fibre optic pairs, the spatial profile, at a

constant axial position, of the Faraday rotation occuring with current 

filamentation would be observed. This would provide sufficient data to 

greatly improve the accuracy of the results discussed in this thesis. 

This experiment would also provide more accurate details of the current 

constriction process. The axial behaviour of both these phenomena 

should also be examined.

2) Using several fibre optic pairs aligned to view several axial
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points at a constant impact parameter, the axial time dependence of the 

filamentation would be directly observable. Correlation with the time 

dependence of the current constriction to the axis would indicate 

whether or not these effects were coupled. Studies of the time 

correlation between the hard X-ray, neutron, and deuteron emission from 

the plasma, may shed new light on the mechanisms behind deuteron 

acceleration and neutron production.
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APPENDIX A THE RAY PATH DERIVATIVES OF A REFRACTED RAY

The ray path derivatives which describe the trajectory of a ray 

through a refracting cylindrical plasma, can be derived from Fermat’s 

principle using the calculus of variations. The problem is to 

determine the path L which minimises the optical path length, expressed 

mathematically as solving the extremum [34]

6 p d i l  = 0 A l

Assuming cylindrical geometry, with the refractive index a function of 

radius only, i.e. jj=ii(r) , then with the path increment dl expressed 

in cylindrical co-ordinates

d& = (1  + r2  02 + Z 2 ) ^ d r  A2
r  r

where 0^ = d0/dr, and = dZ/dr are the ray path derivatives, the 

problem is now expressed as

6^  I  d r  = 0  A3

where the integrand I is

I  = u ( r ) ( l  + r 202 + Z 2 ) ^  A4

This integral has a minimum value when the path L satisfies the 

Euler-Lagrange equations [34]

d r  \ 90^ I  90

d r  V 9Z /  9Z 
r

= 0 A6
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Substituting the integrand I into equation A5 gives the result

+ j-2 02 + 22 ) ^ = c o n s t a n t  A7

Substituting the integrand into equation A6 gives the result

Z | i ( l  + 02 + ) ^  = K = c o n s t a n t  A8
r  r  r  z

Dividing equation A8 by A7 gives the relation between the ray path 

derivatives and 0^, namely

Z = (K / K  ) r = 0  A9
r  Z b r

Substituting this equation into equation A7 gives

0 = ± -  K . ( ) i 2 r 2  -  r : K : - E 2 ) " *  A lO
r  r  b z b

and so

Z = ± r K  (u = r2  -  K | ) " ^  A l l
r  z z b

These latter two equations are-the ray path derivatives. The remaining 

part of the problem involves determining the constants Kg and K^.

As equations A10 and All are valid for all r, 0, Z, then by

determining 0 or Z^ explicitly outside the plasma, the constants Kg

and K can be derived. For a ray propagating at an angle 0 from the 
z

r-0 plane, in an orthogonal plane a distance h from the axis, it can be 

shown that the Z-position of a point on the ray's trajectory is related 

to the radius at the point by

Z2 = t a n 2 ( r ^ - h ^ )  A12

Differentiating with respect to r, gives

Z = ± r t a n J ^ ( r 2 - h 2  ) A13
r
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Comparison with equation All with u(r) = 1, gives on equating the 

coefficients
K = sin A14z
Kq = h cos rZ A15
V

Therefore, the equations for the ray path derivatives are

9^ = ± h cos S^Cu^r^-r^sin^r^-h^cos^fî) ^ A16

Z = ± r sin -r^ sin^f^-h^ cos^fî)  ̂ A17r
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APPENDIX P LENS INDUCED POLARISATION CHANGE

Plane polarised light incident upon a lens will, in general, emerge 

with a different plane of polarisation. The change in polarisation is 

due to the variation in the reflection properties of the curved 

surfaces. The problem is analysed by applying Fresnel’s reflection 

laws [3 4].

Consider a ray incident upon a dielectric. If it is plane 

polarised at an angle from the reflection plane, i.e. the p-plane, 

the transmitted ray will have a plane of polarisation at an angle 6i, 

given by
61 = tan ^{aitancj)} B1

where oti= t /t and t and t are the amplitude transmittances fors p s p
the s and p polarisations respectively. On transmission through a 

second surface, the plane of polarisation changes to 6 2 , given by

62 = tan ^{aittztancj)} B2

where 0.2 is the transmittance ratio of the second surface. The ratio

t /t , from Frèsnel's laws, is s p

t /t = a = cos (8 .- 6 ) B3s p 1 r

where 0  ̂is the angle of incidence, and 6^ is the angle of refraction.

Therefore, the change in the plane of polarisation, , is the

difference between the angles 82 snd (}), i.e.

i|; = tan^{aiCX2tan(J)}-(J) ^4

From this expression, the polarisation change produced by a lens can be 

determined.
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Consider the trajectory of a ray from a point source, 0, imaged by 

a lens (see figure B1). The ray is incident upon the first surface at 

a height h above the optic axis, a distance Ü from the source. The 

incidence angle is given by

-1 ^1 - 1  ^1 6 = tan —  + s in —  B5
U Ri

where R is the radius of curvature of the first surface. The angle of 1
refraction is given by Snell's law [34], and on substitution into 

equation B3, gives

Cti= cos(0^^- sin sin 8^^]) B6

where p is the refractive index.

Similarly, if I is the image position, an axial distance V from the 

point, a height ĥ  above the axis, where the ray emerges from the lens, 

the angle of refraction is

®r2 = T  *  âf B7

where R is the radius of curvature of the second lens surface. From 2
equation B3

(%2 = COS (8 _ - sin sinB _]) B8r2 u r2

which, together with equation B6, gives the product ai&2 .

The maximum change in polarisation angle occurs when the initial 

plane of polarisation is at an angle , given by

( ai02 (1-0102)11
4> = cos I ---------------> B9

( 1 - a? )

This angle is approximately 45 degrees, and is determined from 

equation B4 by differentiating with respect to , and setting to zero.

— 26 8 —



The maximum change in polarisation angle, is then given by

4̂  = t a n  ^ ( a i 0 2  t a n  (}) ) -  0 BIO
m m m

Example
Consider the maximum polarisation change caused by a plano-convex

lens of focal length +650 mm. This lens is identical to the first

imaging lens within the polarimeter described in chapter 3. If the 

point source (plasma) is at a distance Ü = 1 m, the resulting image 

distance V = 2 m. Assuming a ray incident upon the plane surface of 

the lens at a height h^ = 25 mm above the axis, the angle of incidence 

is 1.43 degrees. This results in a transmittance ratio of

Oi = 0 .9999 6 53. Assuming also that the ray emerges at a height

hg = 25 mm, i.e. h^ = hg, the angle of refraction at the second convex 

surface is 5.13 degrees. This results in a transmittance ratio of 

0̂ 2 = 0 .99 955 3 7. Therefore, &ia2 = 0.999519, and from equations B9 and 

BIO, the maximum polarisation change is -0.014 degrees.

The magnitude of the polarisation change actually caused by the 

first imaging lens in the polarimeter, was smaller than the above 

angle. This was because the initial plane of polarisation was 

approximately parallel to the p-plane of the lens, whatever the value 

of plasma impact parameter, or refraction angle. The effect is equally 

small for all the lenses used in the polarimeter, and as a result, the 

effect of lens induced polarisation change on the measurement of 

Faraday rotation can be neglected.

Generally, lens induced polarisation changes are important when the 

lens curvature is large. Lenses of this nature are often encountered 

in expansion telescopes. In the diagnosis of laser produced plasmas
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where the 'freeze* method of polarimetery [9] is often used, because of 

strong refraction, the whole aperture of imaging optics must be used to 

form an image of the plasma. Therefore, the full effect of lens 

induced polarisation change can occur, and may be important when short 

focal length lenses are used.

Vu

Figurs_ll
The trajectory of a ray through a lens.
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FARADAY ROTATION APPUED TO A REVERSE FIELD PINCH

O.G. M uir* and P.O. Caraian.

CuLham Laboratory, Abingdon, Oxon, 0X14 3D3, UK 

INTRCDL'CTrCN
Thera are now a variety of technlouea for meas

uring internal magnetic fields in toKama\s. that 
nave aeen successfully developed, e.g. lignt scat
tering, [  ̂̂ Zeeman solitting^^^ and Faraday 

f 41rotation . The poloidal field, 3̂ , was the 
quantity of interest since its distribution deter
mines the plasma equilibrium and stability properties 
Ctne toroidal field distribution, 3^Cr) differs only 
sligntly from that produced externally). In rev
ersed field pinch plasmas, both the 3^(r) and B^Cr) 
field distributions are mainly generated internally 
and play and equal role in the plasma stability. 
Therefore, both 8  ̂and 8  ̂are the quantities of 
interest.

The raraoay rotation method give a continuous 
integral measurement of the internal poloidal mag
netic field alone wnen the beam is in the vertical 
plane, but otherwise gives a continuous integral 
measurement of both internal magnetic fields. The 
integral is over a straight oath and the measure
ment of the Faraday rotation angle is done by simple 
polarimetry external to tne machine. .It is proposed 
to use the Faraday rotation technique, employing an 
HCN/DCN laser (A • 337/190 um) to measure both dis
tributions in the MBTXIA plasma.

The MBTXIA machine is a reversed field pinch 
(RFP) under construction at Culham. It has a major 
radius of 0.3m and minor radius of 0.26m. The ex
pected plasma parameters are: T̂ 'vSO-lSCeWi n̂ n,
1.3x10"^-4x10^^m current -v 400KA: <B> t Q.5T.
T-c O-OICE CF 'WAVELENGTH AND SOURCE

The choice of a suitable wavelength for Faraday 
rotation is governed essentially by considering what 
sources are available, and whether this source has 
sufficient power for an accurate measurement of the 
Faraoay rotation angle obtained at the source wave
length. Other important effects which have to be 
considered are refraction, loss of transmitted 
power Cue to turbulence^^^ and degradation of the 
beam polarisation due to the oercenoicular component 
of magnact -iald^^^^^^.

we -ava -cund that Oecauao of the low toroidal 
magnetic -laid in RFP plasmas, tne deoolarisation 
gf-ect la negligible. This is in contrast to 
tô amar. plasmas wnere because of the large tcroical 
flaid, fe becQlarisatlon ef-'ect becomes important

(EURATOM/UXAEA Fitaion A a a o a ia tia n ). 

when the Faraday rotation angle exceeds some 10T,
The rotation angle, is described oy the relation:

n^ B.di

where X is the laser wavelength: n  ̂ and 3 are the 
electron oensity and magnetic field respectively; 
and U is the path length. This relation is not 
valid when depolarisation is present.

If the plasma can be considérée to be a hori
zontal cylinder, of raoius a, with cylindrical sym
metry, then for a beam of wavelengtn X prooagating 
through the plasma with an impact parameter, h. and 
at an angle. £1, from the vertical plane, then tne 
Faraday rotation angle, *, is found to be given by:

CD

where Bj and B^ are the poloidal and longitudinal
magnetic fields respectively; A • 2.32 x 10 rad 

— 1tesla ; and IIq and are the rotation angles due 
to tne individual magnetic fields 8 g and 3^ respec
tively, and are given by the integral incorporating 
the apprdpriate magnetic field.

The Faraday rotation angle, therefore scales as 
X̂ . as does refraction. Numerical calculations of 
the expected angle of rotation, and refractive dev
iation for various source wavelengths are given in
Taole I. The axial electron density used was 1,5 x 
20 -310 m and the plasma current AOOkA. The ratio of

measure of transmission of the beam. A ratio greater 
than 0 . 2  could indicate vary high attenuation due 
to turbulence and a ratio less than 0 . 0 2  would be 
desirable^^^. From Table I the wavelength giving 
rise to the largest Faraday rotation angle with an 
Og/n^ ratio of less than 0 . 0 2  and with a tolerable 
beam deflection is 337um produced by an hC.N laser.
At this wavelength the rotation expected is typic
ally 1 0° with a beam deviation lass than 5mm. The 
minimum measurable angle -at this wavelength deter
mined by detector and amplifier noise is acout 0 .1°

r 4 1verified experimentally at Fcntenay-aux-Roses .
At a nigner axial electron density pf A x 10^^ m  ̂
the OCN laser «avelergth of DCum wcuid also give a 
Faraoay rotation angle pf typically 10° arc a beam 
ceviation lass tnan 5mm. T-e source crccucirg rao-
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iation at these wavelengths also has sufficient 
power for a multichannel Faraoay rotation diagnostic. 
DATA INVERSION

From equation (1) the Faraday rotation angle, 
for a beam propagating at an angle. Q, from the 

vertical plane, is the sum of two rotations, and 
ÿ , arising from tne two magnetic fields Bg and B̂ , 
The poloioal field rotation, *g, can be measured 
alone wnen 0 *0 . The toroidal field rotation, 
can also be measured when 0 / 0 , but this requires 
that the appropriate *g be Known, Therefore, for 
measuring the two rotation angles, we must have two 
beams propagating through the plasma simultaneously, 
at the same impact parameter, and one beam having 
0*0. It is by this method that the internal mag
netic fields of HBTXIA will be measured. To obtain 
the field profiles the diagnostic must be a multi
channel one. The pitch profile can be determined 
without any Knowledge of the electron oensity, since 
by Abel inversion of <ig and

2 AX^ tan n n^B^ “ ” 7  /^( dh
Â -r̂

2AX2 n B dh
/ĥ-r̂

and from the definition of the pitch, P • rB^/B

and the above equations:
,a/^\ dh

. r( dh J f'ĥ -r̂
dh

'/ĥ-r̂
which does not involve the electron density. The 
safety factor profile is also given since q » P/R 
wnere R is the plasma major raoius.
COfCLJSIDNS

_We nave concluoed that a Faraoay rotation 
Diagnostic using an HCN/DCN laser is a practical 
diagnostic method for measuring the internal mag
netic fields of a RFP and in particular the HBTXIA 
plasma. With the wavelengths available with this 
laser system, 337gm or 190um, and the expected 
range of electron density (1.5 x 10^^ - 4 x 1 0  m î , 
Faraoay rotation angles of typically 10° will be 
Observed with negligible refraction. Depolarisation, 
or loss of transmitted power.
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TABLE I
SOURCE OF WAVELENGTHS, ROTATION ANO DEFLECTION ANGLE 

. FOR HBTXIA

SOURCE "e^"c * «

CH3 F
-HCN
OCN
Methanol
CO3

U-wavB
495um
337um
190um
118u
1 0 .Sum

0.13
0.032
01015
0.005
0 . 0 0 2

5x10'^

8 8 °
2 2 °
1 0 '̂
3°
1 °

0 .0 1 °

2 0 °
5°
2 °
1°

0.3°
0 .0 0 2 °

rig » 1.5 X 10^ m̂ * « typical Faraoay rotation 
angle: a » maximum Deflection angle.

•Attached from Royal Holloway College, 
University of London
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NBV EVIDENCE FOR NON-THERMAL FLUCITJATIONS IN THE PLASMA FOCUS 
USING IMPROVED LIGHT SCATTERING TECHNIQUES

R E Kirk*, D G Muir*, M J Forrest, N J Peacock
Culham Laboratory, Abingdon, Oxon, 0X14 3DB 

(Euratom/UKAEA Fusion Association)

*0n attachment from Royal Holloway College, University of London
ABSTRACT

Refined optical laser scattering techniques have been 
used to investigate the dynamics of the plasma focus 
device. Holographic interferometry, Faraday rotation 
and co-operative laser light scattering have provided 
detailed temporal evolution of.the plasma parameters.
Of these, three are believed to be unique measure
ments in this device, namely, the radial magnetic and 
current density profiles and three simultaneous 
Scattered ion spectra.

The physical understanding of the plasma focus device has been hitherto 
restricted by the difficulties in diagnosing such complex transient plasmas.
Here, we report the application of three complementary optical diagnostics 
techniques to investigate the collapse and dense-pinch phases of a focus 
described previously with a stored energy of 25 kJ at 23 kV and with a
filling pressure of 1.8 torr of deuterium. Holographic interferometry, Faraday 
rotation and co-operative laser light scattering from a multiple beam output 
Q-switched ruby laser producing pulses of 15-300 MIV" and 1.5-30 ns BVHM provide 
comprehensive temporal information on the plasma parameters. These include the 
radial electron density profile n^(r), the azimuthal magnetic field Bg(r), the
current density distribution J_(r) and three ion fluctuation spectra S.(k,w).r 41  ̂~The Faraday rotation (FR) technique is based on the differential half
shade method with a viewed plasma chord diameter of 250 ym and has a 
temporal resolution of 2.5 ns and an angular rotation resolution of 0.4 mrad.
The detailed temporal evolution of the FR observed at a given chord impact 
parameter is built-up over several plasma shots, using a 30 ns 20 MIV laser puls^ 
while the spatial variation is obtained by repeating the measurement over 
several impact parameters. By combining the FR measurements with electron 
density distributions obtained using 1.5 ns_exposure holographic interferometry, 
tlic magnetic field structure is obtained by Abel inversion Ihe current 
density is then obtained with .Arroere's law.



The ion feature of the Thomson scattered light spectrum has been measured 
synchronously for three differential scattering vectors k and two values of the 
scattering parameter a = Three sets of collection optics view
essentially identical scattering volumes situated at a position on the pinch 2" 
axis 10 mm below the centre electrode, with the laser incident, k^^ normal to 
this axis. Two scattering angles of 10 and 45 degrees (and thus two different 
a values) having differential scattering vectors k with no component parallel 
to the z-axis (i.e. no current driven effects) yield thermal levels of the 
scattered light. This has enabled the effects of the radial velocity component/̂  
and plasma impurities on the ion spectrum to be measured by cross 
correlating the effects for both a values for a single shot. A second 10 degree 
scattering direction is in the plane defined by ^ & k̂ ^  ̂and permits the 
additional effects on the scattered light spectrum due to a relative electron- 
ion drift velocity parallel to the ̂ -axis to be measured. The temporal 
evolution of the ion features for these three k vectors has been built up over 
a large number of shots from t = -50 ns to +80 ns relative to the peak 
compression of the pinch.

The FR measurements obtained at a z position = 5 mm indicate that the 
maximum rotation, obser\'’ed at peak compression of the pinch (t = 0 ns), was 
0.475 degrees. Abel inverted magnetic field profiles are shown in Fig. 1. At 
times t = -8 ns and t = 0 ns, ^r) (Tesla)

340kA  Vacuum Field

I "O n *

the field and hence current is 50  ̂
confined to the plasma skin 
with penetration depths 0.5 and 40 
0.7 mm respectively. During 
these times, the plasma current 
is 340 k.4 - 30*, which is 70% 
of the load current. Figure 2 
shows the scattered data |q
obtained from a shot at 
t = -5 ns. For times before q

peak compression it is
obseived that the 10 degree k Fig. 1

parallel to z spectnun is enhanced with respect to the thermal spectrum by 20% 
at t = -40 ns rising to 100% at t = 0 ns. The enlianccd spectrum is 
characterised by being asNTnmetric with its peak blue shifted with respect to 
the ruby wavelength. This is intcipireted as being due to an electron-ion drift

r (mm)
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Fig. 2. Scattered data from optical multichannel analyser

velocity, v̂ , with a vyv^^~ O.i-0.8 which is in agreement with the plasma 
current being carried in the skin. During this period profile fitting of the 
two thermal level spectra indicates that allowing for radial velocity effects 
the average parameters across the plasma diameter are Ti % 400 eV, Te 800 eV 
and a radial velocity of 2.0 x lÔ m/s which is in agreement with the radial 
velocities observed from the holographic interferometry. Pressure balance 
calculations from the magnetic field profiles indicate that with a Te/Ti ~ 2 
the plasma edge temperatures are Ti 'V' 600 eV and Te 'v- 1200 eV from which the 
B penetration depth is 2-3 ion Larmour radii and 10̂ .

The important feature of the FR results is the observation of a rapid 
diffusion of the magnetic field after peak compression towards the axis 
(penetration time ~ 10 ns). The current density profiles shoun in Fig. 3 
clearly illustrates this diffusion. At t = +2.5 ns, the current structure has 
divided into two annular rings. At times t = +5 ns and t = +7.5 ns it is seen 
that one ring is radially contracting, while the other is expanding. At 
t = +10 ns, the current has all but reached the axis. This rapid field 
diifusion could be explained as being due to an enhancement of the resistivity 
to V 10 Spitzer due to the Hall term [1 + (^Qgtg )̂"]- The rapid collapse of 
the current dens it}' distribution as obsen’ed, has been proposed as a possible 
ion acceleration mechanism for neutron production in the plasma focus



During so;ne plasma shots, 
relatively large rotations 
'V 1 degree were observed 
at times between +10 ns 
and +15 ns with duration 
of - 2.5 ns. At a slightly 
later time interval of +15 
to +20 ns (due to the 
difference in £-axis 
observation positions) 
very large enhancements 
are obsem'ed in the k 
parallel to z scattered 
spectrum which are 
typically five to ten 
times the thermal level. Fig. 3

Enhancements of up to 30 times have been observed. The indication is that during 
this period v^/v^^ becomes greater than unity. Abel inversion of the FR profiles 
has revealed the existence at these times of beam currents on the axis carrying 
- 60 kA, i.e. - 20% of the plasma current. In conclusion we report the first 
detailed FR and scattering observations of the plasma focus giving firm 
evidence for the existence of current redistribution and the resultant 
production of axial beam currents during the dense pinch phase.

.10

r  (mm|
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