
RFID Authentication Protocols using
Symmetric Cryptography

Boyeon Song

Technical Report
RHUL–MA–2009–24
16 December 2009

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

RFID Authentication Protocols using Symmetric
Cryptography

Boyeon Song

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2009

Declaration

These doctoral studies were conducted under the supervision of Prof. Chris J.
Mitchell.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Information Security
Group of Royal Holloway, University of London as a candidate for the degree of
Doctor of Philosophy. This work has not been submitted for any other degree or
award in any other university or educational establishment.

Boyeon Song
December 2009

2

Acknowledgements

I dedicate my thesis to my parents. Their love, trust and support have given me
great comforts and encouragements through my PhD student life. I can never thank
them enough.

I would like to express my heartfelt gratitude to my supervisor, Chris J. Mitchell.
His sharp and excellent comments and guidance have refined and polished my PhD
work.

I am thankful to my colleges and staffs in the Information Security Group for their
helps in various ways.

Christ Church Virginia Water was a wonderful blessing for me. Their cares, prayers
and services have sustained and brighten my life in the UK.

Most of all, thanks to God for what He has done for me; He has been with me
wherever I go and has strengthened me. I will praise the Lord all my life.

3

Abstract

Radio Frequency IDentification (RFID) is emerging in a variety of applications as
an important technology for identifying and tracking goods and assets. The spread
of RFID technology, however, also gives rise to significant user privacy and security
issues. One possible solution to these challenges is the use of a privacy-enhancing
cryptographic protocol to protect RFID communications.

This thesis considers RFID authentication protocols that make use of symmetric
cryptography. We first identify the privacy, security and performance requirements
for RFID systems. We then review recent related work, and assess the capabilities
of previously proposed protocols with respect to the identified privacy, security and
performance properties.

The thesis makes four main contributions. First, we introduce server impersonation
attacks as a novel security threat to RFID protocols. RFID tag memory is generally
not tamper-proof, since tag costs must be kept low, and thus it is vulnerable to
compromise by physical attacks. We show that such attacks can give rise to desyn-
chronisation between server and tag in a number of existing RFID authentication
protocols. We also describe possible countermeasures to this novel class of attacks.

Second, we propose a new authentication protocol for RFID systems that provides
most of the identified privacy and security features. The new protocol resists tag
information leakage, tag location tracking, replay attacks, denial of service attacks
and backward traceability. It is also more resistant to forward traceability and server
impersonation attacks than previously proposed schemes. The scheme requires less
tag-side storage than existing protocols and requires only a moderate level of tag-side
computation.

Next, we survey the security requirements for RFID tag ownership transfer. In some
applications, the bearer of an RFID tag might change, with corresponding changes
required for the RFID system infrastructure. We propose novel authentication pro-
tocols for tag ownership and authorisation transfer. The proposed protocols satisfy
the requirements presented, and have desirable performance characteristics.

Finally, we address the issue of scalability in anonymous RFID authentication pro-
tocols. Many previously proposed protocols suffer from scalability issues because
they require a linear search to identify or authenticate a tag. Some RFID proto-

4

cols, however, only require constant time for tag identification; unfortunately, all
previously proposed schemes of this type have serious shortcomings. We propose a
novel RFID pseudonym protocol that takes constant time to authenticate a tag, and
meets the identified privacy, security and performance requirements. The proposed
scheme also supports tag delegation and ownership transfer in an efficient way.

5

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Main Contributions . 15
1.3 Organisation . 15
1.4 Publications . 16

2 Cryptographic Techniques and Protocols 17
2.1 Communications Security Goals . 17
2.2 Cryptographic Primitives . 19

2.2.1 Symmetric Techniques . 20
2.2.2 Asymmetric Techniques . 22

2.3 Authentication Protocols . 23

3 Overview of RFID 25
3.1 The History of RFID Technology . 25
3.2 RFID Systems . 28

3.2.1 RFID Tags . 28
3.2.2 RFID Readers . 31
3.2.3 Back-end Server . 31

3.3 RFID Protocols . 32
3.3.1 Focus of the Thesis . 33
3.3.2 Cryptography for RFID . 33

3.4 RFID Applications . 34

4 Security, Privacy and Performance Requirements 36
4.1 Privacy and Security . 36

4.1.1 Privacy . 37
4.1.2 Security . 38

4.2 Performance Requirements . 41
4.3 Additional Functional Requirements 43

4.3.1 Tag Delegation . 43
4.3.2 Tag Ownership Transfer . 44

5 Related Work 46
5.1 Preliminaries . 47
5.2 The Weis-Sarma-Rivest-Engels Protocols 47

6

CONTENTS

5.3 The Ohkubo-Suzki-Kinoshita Protocol 49
5.4 The Henrici-Müller Protocol . 50
5.5 The Molnar-Wagner Protocol . 51
5.6 The Molnar-Soppera-Wagner Protocol 53
5.7 The Saito-Imamoto-Sakurai Protocols 54
5.8 The Dimitriou Protocol . 56
5.9 The Duc-Park-Lee-Kim Protocol . 56
5.10 The Lim-Kwon Protocol . 58
5.11 The Osaka-Takagi-Yamazaki-Takahashi Protocol 60
5.12 The Chien-Chen Protocol . 61
5.13 The Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-Ribagorda Pro-

tocol . 63
5.14 The Fouladgar-Afifi Protocols . 65
5.15 The Tsudik Protocols . 67
5.16 The Burmester-de Medeiros-Motta Protocol 71
5.17 Comparisons . 72
5.18 Summary . 74

6 A Novel Security Requirement 77
6.1 A Novel Security Threat . 78

6.1.1 RFID Protocols . 78
6.1.2 Attack Models . 78
6.1.3 Server Impersonation Attacks 79

6.2 Server Impersonation Attacks on RFID Protocols 80
6.2.1 The Henrici-Müller Protocol 80
6.2.2 The Dimitriou Protocol . 80
6.2.3 The Chien-Chen Protocol . 82
6.2.4 The Lim-Kwon Protocol . 82

6.3 Countermeasures and Future Work 84
6.4 Summary . 86

7 A Novel RFID Authentication Protocol 87
7.1 Design Principles . 87
7.2 Protocol Description . 88

7.2.1 Initialisation . 88
7.2.2 Authentication Process . 89
7.2.3 Evolution of the Protocol . 90

7.3 Analysis of the Protocol . 91
7.3.1 Privacy and Security . 91
7.3.2 Performance . 92

7.4 Summary . 94

8 RFID Tag Ownership Transfer Protocols 96
8.1 Tag Ownership Transfer . 97
8.2 RFID Protocols for Tag Ownership Transfer 98

8.2.1 Tag Ownership Transfer and Secret Update 98
8.2.2 Authorisation Recovery . 100

7

CONTENTS

8.3 Analysis of the Protocols . 101
8.3.1 Privacy and Security . 101
8.3.2 Performance . 102
8.3.3 Tag Ownership Transfer . 103

8.4 Summary . 104

9 A Scalable RFID Pseudonym Protocol 106
9.1 Scalability Issues . 107
9.2 A Novel RFID Authentication Protocol 108

9.2.1 Main Features . 108
9.2.2 Initialisation . 109
9.2.3 Authentication and Secret Update 110

9.3 Tag Delegation and Ownership Transfer 112
9.4 Analysis of the Protocol . 114

9.4.1 Privacy and Security . 114
9.4.2 Performance . 117

9.5 Summary . 119

10 Conclusions 120
10.1 Research Achievements . 120
10.2 Future Work . 123

8

List of Figures

3.1 RFID tags . 29
3.2 RFID system . 32

5.1 The HAC protocol . 48
5.2 The RAC protocol . 49
5.3 The OSK protocol . 50
5.4 The HM protocol . 51
5.5 The MW protocol . 52
5.6 The MSW protocol . 53
5.7 The SIS1 protocol . 55
5.8 The SIS2 protocol . 55
5.9 The D protocol . 57
5.10 The DPLK protocol . 58
5.11 The LK protocol . 60
5.12 The OTYT protocol . 61
5.13 The CC protocol . 63
5.14 The PHER protocol . 64
5.15 The FA1 protocol . 66
5.16 The FA2 protocol . 68
5.17 The T1 protocol . 69
5.18 The T2 protocol . 70
5.19 The T3 protocol . 71
5.20 The BMM protocol . 73

6.1 Server impersonation attack on the HM protocol 81
6.2 Server impersonation attack on the D protocol 81
6.3 Server impersonation attack on the CC protocol 82
6.4 Server impersonation attacks on the LK protocol 85

7.1 The authentication protocol . 90

8.1 Secret update protocol . 100

9.1 RFID authentication and secret update 113

9

List of Tables

3.1 RFID operation frequencies . 30

5.1 Privacy and security properties . 75
5.2 Performance properties . 76

7.1 Privacy and security properties . 93
7.2 Storage requirements . 94
7.3 Computation requirements . 94

8.1 Privacy and security properties . 102
8.2 Performance of secret update protocol 103
8.3 Properties for tag ownership transfer 104

9.1 Operation of the protocol . 109
9.2 Privacy and security properties . 117
9.3 Performance properties . 118

10

Abbreviations

BMM Burmester-de Medeiros-Motta

CC Chien-Chen

D Dimitriou

DB Database

DoS Denial-of-Service

DPLK Duc-Park-Lee-Kim

EPC Electronic Product Code

FA Fouladgar-Afifi

HAC Hash-based Access Control

HM Henrici-Müller

LK Lim-Kim

MAC Message Authentication Code

MitM Man-in-the-Middle

MSW Molnar-Soppera-Wagner

MW Molnar-Wagner

OSK Ohkubo-Suzki-Kinoshita

OTYT Osaka-Takagi-Yamazaki-Takahashi

PHER Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-Ribagorda

PRBG Pseudo-Random Bit Generator

PRN Pseudo-Random Number

PRF Pseudo-Random Function

RAC Randomised Access Control

RF Radio Frequency

RFID Radio Frequency IDentification

SA Strong Attacker

SIS Saito-Imamoto-Sakurai

T Tsudik

TC Trusted Centre

WA Weak Attacker

XOR eXclusive OR

11

Notation

We use the following notation throughout the thesis, unless otherwise stated.

n The number of tags that a server manages
r A random string
S A server
T A tag
Ti The i-th tag (1 ≤ i ≤ n)
x̂ The most recent value of x (for any value x)
x The updated value of x (for any value x)
x� a Right circular shift operator, which rotates all bits of a bit-string x to the

right by a bits, as if the right and left ends of x were joined.
x� a Left circular shift operator, which rotates all bits of a bit-string x to the

left by a bits, as if the left and right ends of x were joined.
⊕ XOR operator
‖ Concatenation operator
← Substitution operator
?
= An operator that checks whether the right side value equals the left side value

12

Chapter 1

Introduction

Contents

1.1 Motivation . 13

1.2 Main Contributions . 15

1.3 Organisation . 15

1.4 Publications . 16

This chapter gives an overview of the thesis as a whole. In section 1.1 we present

the motivation for the research, and in the following section we describe the main

contributions of the thesis. Section 1.3 provides an overview of the overall structure

of the thesis. Finally, we present a list of publications related to the thesis.

1.1 Motivation

Radio Frequency IDentification (RFID) is an automatic identification technology

that uses radio waves to identify objects such as products, animals or persons. The

use of RFID has become widespread, including in point of sale applications [29],

product tracking in a supply chain [34, 38], transport payments [22, 42], entry access

control [29], animal supervision [22, 36], automated vehicle identification [22, 29],

library book administration [29, 46], patient identification in hospitals [29], and

electronic passports [30, 39].

The main benefits of RFID systems are that they can provide automated contactless

identification of a range of physical entities, and can be used to track valuable

objects. However, the use of such RFID tags gives rise to serious privacy and

security concerns, including the possibility of eavesdropping, snooping, cloning, and

13

1.1 Motivation

tracking of end users [19, 23, 24, 29, 71]. These concerns arise from the ways in

which RFID tags operate.

An RFID reader and an RFID tag communicate via a wireless radio communica-

tions channel. Thus, interactions between a reader and a tag are susceptible to

eavesdropping and/or manipulation. Also, each RFID tag has a unique value that

is used to identify it. If a tag emits its fixed value to every reader that queries it,

then the location of the tag can be tracked, and thus the privacy of the tag holder

could be invaded. Moreover, an RFID tag is typically designed to be inexpensive for

mass distribution. Such a low-cost tag has limited memory capacity and processing

ability, and its memory is typically not tamper-resistant. Thus, information stored

in an RFID tag, including stored identifers and keys, is vulnerable to compromise,

e.g. by side-channel attacks.

In recent years, a considerable volume of papers have been published providing

solutions to these RFID security and privacy challenges. One approach to addressing

such privacy and security threats is to use a tag authentication scheme in which a tag

is both identified and verified in a manner that does not reveal the tag identity to an

eavesdropper. Many RFID authentication protocols use cryptographic techniques

to protect messages exchanged over a radio frequency interface from eavesdropping.

However, RFID tags have limited processing power and storage because of tight tag

cost requirements. Thus, in current RFID tags it is infeasible to use computationally

intensive cryptographic algorithms, such as public key cryptographic techniques.

Instead, symmetric cryptographic schemes, such as hash functions and symmetric

encryption algorithms, are commonly used. As a result, authentication protocols for

RFID systems should not only be designed to address privacy and security threats,

but should also take into account the limited capabilities of RFID tags.

A wide variety of protocols for RFID protocols using symmetric cryptosystems have

been proposed. However, as we show in chapter 5, they all have privacy, security,

and/or performance drawbacks.

For these reasons, this thesis focuses on the design of RFID authentication protocols

using symmetric cryptographic techniques. The thesis begins by identifying the

privacy, security and performance requirements for such protocols, and analyses the

strengths and weaknesses of existing protocols. We aim to propose novel RFID

authentication protocols that meet the identified requirements.

14

1.2 Main Contributions

1.2 Main Contributions

As discussed above, in this thesis we consider RFID identification/authentication

protocols that use symmetric cryptography, such as hash functions and MACs. The

main contributions of the thesis are as follows:

1. We identify the privacy, security and performance requirements for RFID pro-

tocols.

2. We assess the prior art against the identified privacy, security and performance

requirements.

3. We introduce a novel security threat, namely server impersonation attacks,

which we argue poses a genuine risk to RFID protocols.

4. We propose a new RFID authentication protocol that provides most of the

identified privacy, security and performance requirements.

5. We present requirements for secure RFID tag ownership transfer, and propose

RFID authentication protocols for tag ownership transfer that satisfy these

requirements and that have desirable performance characteristics.

6. We propose an RFID pseudonym protocol with desirable scalability properties

that takes constant time to authenticate a tag and that meets the identified

privacy, security and performance features.

1.3 Organisation

The remainder of the thesis is organised as follows:

• Chapter 2 introduces the security goals and cryptographic primitives that are

used in this thesis.

• Chapter 3 provides an overview of RFID systems. We outline the history of

RFID technology, and describe RFID components, protocols and applications.

• In chapter 4 we investigate the possible threats to RFID systems, and identify

associated privacy, security and performance requirements. We also discuss

15

1.4 Publications

two additional functional requirements, namely tag delegation and tag owner-

ship transfer.

• In chapter 5 we assess recently proposed RFID protocols that use symmetric

cryptography against the identified privacy, security and performance require-

ments.

• In chapter 6 we introduce server impersonation attacks, a practical security

threat to RFID security protocols that has not previously been described. We

show how such attacks can give rise to desynchronisation between server and

tag in a number of existing RFID protocols.

• In chapter 7 we propose an RFID authentication protocol that provides the

identified privacy and security features and that has modest tag resource re-

quirements.

• In chapter 8 we survey the security requirements for RFID tag ownership

transfer and identify desirable features. We also propose novel authentica-

tion protocols for tag ownership and authorisation transfer that satisfy the

identified requirements.

• Chapter 9 considers the issue of scalability in anonymous RFID authentication

protocols. We propose a novel RFID authentication protocol with desirable

scalability properties, and that possesses the identified desirable privacy, secu-

rity and performance properties.

• In chapter 10 we summarise the contributions of the thesis, and identify direc-

tions for future research.

1.4 Publications

This thesis contains material that has been published or submitted for publication

in [63, 64, 65, 66, 67].

The contents of [64] form the basis for chapter 6, and the contents of [65] form the

basis for chapter 7. The contents of [63] have been updated since publication, and

an updated version can be found in [67]. The contents of [63] form the basis for

chapter 8, and the contents of [66] form the basis for chapter 9.

16

Chapter 2

Cryptographic Techniques and
Protocols

Contents

2.1 Communications Security Goals 17

2.2 Cryptographic Primitives 19

2.2.1 Symmetric Techniques . 20

2.2.2 Asymmetric Techniques . 22

2.3 Authentication Protocols 23

This chapter introduces general communications security goals and cryptographic

primitives. In section 2.1 we identify communications security goals that are rele-

vant to this thesis, and in section 2.2 we present cryptographic primitives that will

be used to meet these goals in the schemes we consider here. Section 2.3 defines

authentication protocols, a major class of security techniques.

2.1 Communications Security Goals

To effectively assess security needs, and evaluate/choose the most effective solution

for a particular application, a definition of the security goals or requirements for

that application is needed [27]. In this section, we present general communications

security goals that are relevant to this thesis.

The main communication security goals, also known as security services, can be

defined as follows [27, 43]:

17

2.1 Communications Security Goals

• Confidentiality is a service that denies read access to information to all but

those authorised to have it. There are numerous approaches to providing

confidentiality, ranging from physical protection to mathematical algorithms

which render data unintelligible. Encryption can be used to meet this goal.

• Data integrity is a service which addresses the unauthorised alteration of

data. To provide data integrity for data communicated across an unreliable

channel, it must be possible to detect data manipulation by unauthorised

parties. Data manipulation includes such things as insertion, deletion and

substitution. Note that this contrasts with data integrity provision for data

stored within a computer system, where it is possible (at least in principle) to

prevent modification to data. That is, in a computer system the objective of

an access control system is typically to control access to data thereby prevent-

ing unauthorised modifications, whereas in communications system it is not

possible to prevent changes, only to detect them.

• Authentication is a term used with two distinct, albeit related, meanings.

Data origin authentication enables the recipient of transmitted data to

verify its origin. Entity authentication enables a party in a communication

session to verify, at an instant in time, the identity of the other party in the

session; mutual authentication refers to the provision of entity authentication

for both parties.

• Non-repudiation is a service which prevents an entity from denying having

made a commitment or performed an action. The provision of the service

involves the generation of evidence about the commitment or action. In a

communications context, non-repudiation of origin involves the provision of

evidence about the transmission of a message, that has value even if the mes-

sage originator subsequently denies having sent the message.

• Access control provides protection against unauthorised use of resources,

e.g. the use of a communications resource; the reading, writing, or deletion of

an information resource; or the execution of a processing resource.

Besides these security goals, certain general usability requirements also play an im-

portant role in developing security solutions [27]:

18

2.2 Cryptographic Primitives

• Scalability: a network protocol is said to be scalable if the number of nodes

can be significantly increased without imposing an unacceptable workload on

any entity in the network. The interpretation of unacceptable will vary de-

pending on the context (and the size of the network). For example, a load that

is quadratic function of the number of network nodes may be unacceptable if

the number of network nodes becomes large, whereas a load that is linear (or

less, e.g. logarithmic) in the network size is more likely to be acceptable, even

for very large networks. Any security scheme deployed in a network should not

significantly affect its scalability. In the context of secure RFID systems, we

would typically require that the workload on the server to complete a single

transaction should not be a linear function of the number of deployed RFID

tags.

• Performance: security features must have minimal impact on network per-

formance. This is especially important for real-time communications, where

meeting the security requirements must not prevent the provision of the re-

quired quality of service. Performance also goes hand in hand with the resource

usage of the medium; the security solutions must not, for example, cause a de-

crease in the overall capacity of the network.

2.2 Cryptographic Primitives

Cryptography is the study of mathematical techniques to hide information [43].

The fundamental objective of cryptography is to enable two parties to communicate

over an insecure channel in such a way that an adversary cannot understand and/or

manipulate what is being said [69]. This channel could be a telephone line, computer

network, or wireless interface [69].

Cryptographic techniques can be divided into two main classes, symmetric and asym-

metric techniques, depending on the nature of the keys used [43, 44, 69]. In sym-

metric cryptography (also called secret key cryptography), the sender and receiver

share a common secret key. In asymmetric cryptography (also called public key

cryptography), every participating entity has its own key pair, made up of a private

key, which is kept secret by its owner, and a public key, which can be disseminated

freely.

19

2.2 Cryptographic Primitives

2.2.1 Symmetric Techniques

When using a symmetric cryptographic algorithm to protect a transmitted message,

the sender and receiver must share a secret key. The precise use of the key will

depend on the nature of the protection provided by the algorithm being used (e.g.

to protect the confidentiality or the integrity of the message).

The main classes of symmetric techniques are: encryption algorithms, message au-

thentication code algorithms, hash functions and pseudo-random bit generators,

each of which are discussed in greater detail below.

Symmetric Encryption

There are a variety of different types of symmetric encryption techniques, also known

as secret key encryption algorithms. The most widely discussed class of symmetric

cipher is the block cipher. In a block cipher, data are processed in blocks, for exam-

ple, of 64 or 128 bits [44]. A block cipher algorithm is made up of encryption and

decryption functions [43, 44, 69]. Encryption takes as input a block of plaintext and

a secret key, and outputs a block of ciphertext [43, 44, 69]. Decryption, when given

the same secret key, always maps a ciphertext block back to the correct plaintext

block [43, 44, 69].

The principle function of encryption is to provide the confidentiality service for

transmitted or stored data [43, 44, 69]. However, it is possible to provide other

services if encryption is used in appropriate ways [44].

Message Authentication Codes

A Message Authentication Code (MAC) algorithm is a cryptographic function that

takes as input a message and a secret key, and outputs a short, fixed length, block

of bits known as the MAC [43, 44, 69]. This MAC is then sent or stored with the

message, and acts to protect its integrity and guarantee its origin [43, 44, 69]. If

the recipient of a MAC is equipped with the correct secret key, then the key can

be used with the received message to re-compute the MAC value [43, 44, 69]. If

this re-computed value agrees with the MAC value sent or stored with the message,

20

2.2 Cryptographic Primitives

then the recipient knows that the message has not been changed and that it must

have been sent by someone who knows the secret key (presumably the legitimate

originator) [43, 44, 69].

A MAC algorithm is a family of functions f parameterised by a secret key k, with

the following properties [43]:

• Easy of computation: given a value k and an input x, the MAC fk(x) is easy

to compute.

• Compression: f maps an input x of arbitrary finite bit-length to an output

fk(x) of fixed bit-length l (e.g. l = 64 or 128).

• Forgery-resistance: given a sequence of text-MAC pairs (x′, fk(x
′)) for a fixed

key k, it is computationally infeasible to compute a text-MAC pair (x, fk(x))

for any x 6= x′.

Hash Functions

Hash functions are somewhat different to the functions we have considered so far

in that they do not use keys. A hash function takes an input an arbitrary data

string and gives as output a short, fixed-length value that is a function of the entire

input; this output is known as a hash code or hash value [43, 44, 69]. Hash functions

must have the one-way property, that is, they must be designed so that they are

simple and efficient to compute, but also so that given an arbitrary output, it is

computationally infeasible to find an input that gives the chosen output [43, 44, 69].

That is, a hash function is an efficiently computable function which maps an ar-

bitrary length input to a fixed length output; i.e. h : {0, 1}∗ → {0, 1}l. The basic

requirements for a cryptographic hash function are as follows [43]:

• Preimage resistance: for any output y, it is computationally infeasible to find

an input x such that h(x) = y, given no corresponding input is known.

• 2nd-preimage resistance: given x, it is computationally infeasible to find x′ 6= x

such that h(x) = h(x′).

21

2.2 Cryptographic Primitives

• Collision resistance: it is computationally infeasible to find any pair of distinct

inputs x and x′ such that h(x) = h(x′).

Pseudo-Random Bit Generators

A pseudo-random bit generator (PRBG) is a deterministic algorithm which, given

a truly random binary sequence of length m, outputs a binary sequence of length

l > m which appears to be random. The input to the PRBG is called the seed,

while the output of the PRBG is called a pseudo-random bit sequence [43, 68].

The security strength of a PRBG depends on a variety of factors, including the

period and probability distribution of the output sequence [14].

2.2.2 Asymmetric Techniques

We now discuss two of the main classes of asymmetric algorithms, namely asym-

metric encryption algorithms and digital signature schemes.

Unlike symmetric cryptosystems, which make use of a single key known to sender and

receiver, asymmetric cryptosystems employ two keys, a public key and a private key.

These public and private keys are related mathematically, and an entity’s private

key cannot be derived from its public key [43, 44, 68, 69].

Asymmetric Encryption

Asymmetric encryption, also known as public key encryption, involves an encryption

operation that transforms blocks of plaintext into ciphertext blocks, and a decryp-

tion operation that reverses this process [43, 44, 68, 69]. The main difference from

symmetric encryption is the way in which keys are used [43, 44, 68, 69]. The public

key of the intended recipient of a message is used for encryption and the recipient’s

private key is used for decryption [43, 44, 68, 69]. A user’s public key is made avail-

able to anyone who wants to encrypt a message intended for that user; the recipient’s

private key is used to decrypt received encrypted messages [78].

Implementing such an algorithm requires the computation of complex mathematical

functions, e.g. involving multi-precision integer or finite field arithmetic [44]. As a

22

2.3 Authentication Protocols

result, public key encryption schemes tend to be more computationally intensive,

and hence slower to compute, than secret key encryption algorithms [44]. Because of

this, simple wireless devices such as RFID tags are likely to lack the computational

power necessary to handle asymmetric encryption algorithms [44].

Digital Signatures

A digital signature is computed as a function of the message to be signed using the

signer’s private key, and can then be verified by anyone equipped with the signer’s

public key [43, 44, 68, 69]. When computing a signature it is almost always the case

that a hash function is applied to the message being signed. The most common

form of a signature gives a value that, much like a MAC, is sent or stored with the

message it is protecting [43, 44, 68, 69].

One key difference from a MAC is the way in which signatures are verified [44].

Verifying a MAC essentially involves re-computing it. However, verifying a digi-

tal signature uses a special verification function that takes as input the signature,

the message and the public verification key, and gives as output an indication as to

whether the signature is valid or not [44]. Thus, just because an entity can verify the

correctness of a signature, does not mean that it is possible to forge a signature [44].

Thus, as well as being able to provide data integrity and data origin authentication

functions, a digital signature can also provide non-repudiation services. The disad-

vantage is that digital signature functions are generally significantly more complex

to compute than MAC functions [44].

2.3 Authentication Protocols

We also briefly introduce authentication protocols, a major class of security tech-

niques that incorporate the use of cryptographic algorithms [44].

An authentication protocol is a defined exchange of messages between two (or possi-

bly more) parties, with the objective of providing one or both parties with an entity

authentication service [43, 44, 60]. That is, the objective is for one or both of the

parties to verify the identity of who it is they are exchanging messages with, and

that the other party is actively involved in the protocol, that is, that the messages

23

2.3 Authentication Protocols

are not replayed versions of ‘old’ messages [43, 44, 60].

Authentication protocols make use of cryptographic techniques to protect the origin

and integrity of individual messages [43, 44, 60]. One common approach is to employ

MACs for this purpose. As an alternative to the use of MACs to protect the protocol

messages, it is also possible to use digital signatures [43, 44].

24

Chapter 3

Overview of RFID

Contents

3.1 The History of RFID Technology 25

3.2 RFID Systems . 28

3.2.1 RFID Tags . 28

3.2.2 RFID Readers . 31

3.2.3 Back-end Server . 31

3.3 RFID Protocols . 32

3.3.1 Focus of the Thesis . 33

3.3.2 Cryptography for RFID . 33

3.4 RFID Applications . 34

This chapter provides an overview of RFID systems. We outline the history of

RFID technology in section 3.1, and describe the components of an RFID system in

section 3.2. Sections 3.3 and 3.4 introduce RFID protocols and applications.

3.1 The History of RFID Technology

RFID is a wireless automatic identification and data capture technology that uses

radio communications. RFID technology can be used for automatically identifying

objects such as products, animals or persons, collecting data about them, and en-

tering that data directly into computer systems. We now briefly describe below how

RFID technology started and evolved.

The roots of RFID technology can be traced back to the Second World War, where

25

3.1 The History of RFID Technology

radar technology was employed to detect incoming aircraft by sending out pulses of

radio energy and detecting the echoes that came back [57]. The Germans, Japanese,

Americans and British all used radar to warn of approaching planes while they were

still miles away [57]. However, there was no way to identify which planes belonged

to whom [36, 57]. The Germans attempted to solve the identification problem by

simultaneously rolling their aircraft in response to a signal from the ground radar

station [36, 57]. This would change the radar reflection’s polarisation, creating a

distinctive blip on the radars [57]. This system was the first demonstration of active

RFID [57].

The British responded by creating the Identify Friend or Foe (IFF) system [57]. This

involved placing a transponder on each plane which, when it received signals from

a radar station on the ground, broadcasts a signal back that identified the aircraft

as friendly [36, 57]. RFID uses the same basic concept [36, 57]. When a signal is

sent to a transponder, the transponder wakes up and either reflects back a signal

(passive system) or broadcasts a signal (active system) [36, 57].

An early paper exploring the idea behind RFID was published in 1948 by Stockman

[70], which contains the first public description of RFID technology [57]. Advances

in radar and RF communications systems continued through the 1950s and 1960s

[36]. Several technologies related to RFID were developed, such as the long-range

transponder systems of IFF for aircraft [36].

The 1960s were the prelude to the explosion of interest in RFID systems of the

1970s; the theory of RFID was developed, and application field trials started [36].

Harrington studied electromagnetic theory related to RFID [36, 57]. The first RFID

companies, Sensormatic and Checkpoint, were founded in the late 1960s. They

developed a commercial application, Electronic Article Surveillance (EAS), designed

to counter theft, jointly with other companies such as Knogo [36].

In the 1970s, there was a major advance in RFID technology [36]. A wide range

of bodies, including companies, academic institutions, and government laboratories

actively worked on RFID, and notable advances were realised [36]. For example, the

Los Alamos National Laboratory developed a system for tracking nuclear materials

[36]. The concept of putting an RFID tag in a truck and using RFID readers at the

gates of secure facilities to identify them was also developed [36].

26

3.1 The History of RFID Technology

The 1980s saw the practical implementation of RFID technology, to varying degrees

in different parts of the world [36]. Applications emerged in transport, industry,

personnel access and animal supervision [36].

The 1990s saw the widespread adoption of electronic toll collection throughout the

United States [36]. In the early 1990s, IBM engineers developed and patented an

ultra-high frequency (UHF) RFID system. UHF offered longer read range and faster

data transfer [36, 57].

UHF RFID was further developed in 1999, when the Uniform Code Council, Euro-

pean Article Number (EAN) international, Procter & Gamble and Gillette funded

the establishment of the Auto-ID Centre at the Massachusetts Institute of Tech-

nology (MIT) [36, 57]. At MIT, Brock and Sarma investigated the possibility of

attaching low-cost RFID tags to products, in order to track them through the sup-

ply chain [36, 57]. Their proposal involved putting only a serial number on the tag

to keep the price down; a simple microchip that stores very little information is less

expensive to produce than a more complex chip with more memory [36, 57]. Data

associated with the serial number on the tag would be stored in a database that

would be accessible over the Internet [36, 57].

Between 1999 and 2003, the Auto-ID Centre gained the support of more than 100

large end-user companies, as well as the U. S. Department of Defence and many key

RFID vendors [36, 57]. It established research laboratories in Australia, the United

Kingdom, Switzerland, Japan and China [36, 57]. It also developed two air interface

protocols (Class 0 and Class 1), the Electronic Product Code (EPC) numbering

scheme, and a network architecture designed to support retrieval of data associated

with an RFID tag on the Internet [36, 57]. According to the Generation 1 (or

Version 1) specifications [15], EPCglobal Class 0 tags are read-only devices, whereas

Class 1 tags are one-time programmable.

The technology was licensed to the Uniform Code Council in 2003, which created

EPCglobal, a joint venture with EAN International, to commercialise EPC tech-

nology [36, 57]. The Auto-ID Centre shut down in October 2003, and its research

responsibilities were passed to Auto-ID Labs and EPCglobal, which was responsible

for managing the new EPC Network [36, 57].

Some of the largest retailers in the world, including Albertsons, Metro, Target, Tesco,

27

3.2 RFID Systems

Wal-Mart, as well as the U. S. Department of Defence, have described their plans to

integrate EPC technology into goods tracking for their supply chains [36, 57]. The

pharmaceuticals, tyre, defence and other industries are also moving to adopt the

technology [36, 57]. EPCglobal ratified a second-generation standard in December

2004, paving the way for broad adoption [36, 57].

RFID has demonstrated its importance in a wide range of markets, including live-

stock identification and automated vehicle identification systems. This broad range

of applications arises from its capability for tracking moving objects [36, 57].

3.2 RFID Systems

An RFID system consists of three key components: RFID tags, RFID readers and

a back-end server. Each of these components is now explored in greater detail.

3.2.1 RFID Tags

An RFID tag is an identification device which has a unique identifier and which

transmits data over the air using radio frequency (RF) in response to interrogation

by an RFID reader [23, 29]. It is also known as a transponder. We use here the

term ‘tag’ for its simplicity.

A tag is designed to receive a specific radio signal and automatically transmit a reply

[71]. A tag consists of an integrated circuit and an antenna. The integrated circuit

is for processing data; it modulates and demodulates radio signals, and stores and

processes information. The antenna is used for communicating via an RF signal

with RFID readers. The memory on tags may be read-only, write-once read-many,

or fully rewritable [79]. Figure 3.1 shows some examples of tags.

Processing capacity

RFID devices can be divided into two broad classes, ‘dumb’ and ‘smart’. A dumb

tag has no significant processing power, its unique identifier will normally be a fixed

length value, typically 10 or 16 hexadecimal digits long, and its memory capacity

is likely to be fairly small — of the order of a few hundred bytes to a maximum

28

3.2 RFID Systems

Source: http://www.anbitarabia.com/rfid.htm

Figure 3.1: RFID tags

of around 2kBytes [37]. In its simplest implementation, a tag listens for a radio

signal, and sends a signal of its own as a reply [71]. More complicated systems may

transmit a single letter or digit back to the source, or send multiple strings of letters

and numbers [71].

A smart tag, by contrast, has on-board processors that are typically capable of per-

forming cryptographic operations [37]. It will often have a much larger memory

capacity of 32kBytes or more, and be capable of requiring authentication before

allowing access to stored data [37]. Such a tag may also be able to encrypt commu-

nications using session keys to avoid snooping or data injection attacks [37].

Power supply

Tags can be categorised into three classes according to the nature of the power

supply (if present): active, passive and semi-passive tags [71].

Passive tags do not contain a battery or other power source. Instead they contain

a resonant circuit capable of absorbing power from an RFID reader’s antenna [71].

29

3.2 RFID Systems

Table 3.1: RFID operation frequencies
Name Range Read range Typical applications

LF 30 − 300 kHz 50 cm Pet identification
HF 3 − 30 MHz 3 m Building access control
UHF 300 MHz − 3 GHz 9 m Box and pallet tracking
Microwave > 3 GHz > 10 m Vehicle identification

Source: [23], pages 59–60

Thus, they must wait for a signal from an RFID reader in close proximity [71].

Active tags have their own power source, usually an internal battery. Since they

contain a battery to power the radio circuitry, they can actively transmit and receive

without having to be powered by an RFID reader’s antenna, and can therefore

interact with an RFID reader at significantly greater distances [71].

A semi-passive tag has a battery to power its memory circuitry, but relies on signals

from an RFID reader’s antenna to power its radio circuits when receiving and sending

data [71].

Operating frequency

The operating frequency is the electromagnetic frequency used by a tag to com-

municate and/or obtain power. The electromagnetic spectrum within which RFID

systems typically operate is commonly divided into low frequency (LF), high fre-

quency (HF), ultra-high frequency (UHF), and microwave [23].

Different frequencies have different properties. Lower frequency signals are better

able to travel through water, while higher frequencies can carry information at higher

rates [23]. Higher frequency signals are typically also easier to read at a distance.

Table 3.1 [23] shows the read ranges for the four main frequency ranges, and how

they have been used in applications.

Stored data

The volume of data carried by a tag can range anywhere from a few bytes up to

several megabytes, depending on the application and the individual tag [71]. The

data carried in a tag can be in a variety of formats. In the absence of ratified

30

3.2 RFID Systems

standards, many tag data formats are proprietary in nature, although standards are

now emerging [71].

The Electronic Product Code (EPC) is the RFID-based replacement for the Uni-

versal Product Code (UPC) bar code. The latter allows for 1010 products, and its

numbers are quickly being used up [71]. The EPC uses the EPCglobal organisation’s

General Identifier (GID-96) format. A GID-96 identifier contains 96 bits (12 bytes)

of data. Under the GID-96 standard, every EPC consists of three separate fields:

the 28-bit General Manager Number that identifies the company or organisation; the

24-bit Object Class that divides products into groups; and the 36-bit serial number

that is unique to the individual object. A fourth field consists of an 8-bit header

that is used to guarantee the uniqueness of the EPC code [71]. This allows for a

total of 3× 1025 unique items under the EPC system [71].

3.2.2 RFID Readers

An RFID reader is a device that can recognise the presence of RFID tags and read the

information supplied by them [23]. It is also known as a transceiver or interrogator.

Here, we simply use the term ‘reader’. A reader uses its antenna to query and

receive data from tags by broadcasting an RF signal. RFID readers are typically

connected to a back-end server equipped with a database of tag information [71].

In such a case, the reader forwards tag responses to this back-end server for further

processing.

3.2.3 Back-end Server

A back-end server manages a database containing information associated with the

RFID tags which it manages, and can retrieve the detailed tag information (or the

identity of the item attached to the tag) using the tag response as a key. Figure 3.2

shows how the components relate to one another.

In summary, when a back-end server wants to identify one or more tags, a reader

emits an RF signal via its antenna. Any tag within range of the signal responds with

certain stored data, such as a tag identifier. The reader then passes the received tag

data to the back-end server. The server processes the tag information to identify

31

3.3 RFID Protocols

Source: http://www.jesic-tech.com/RFID tag.html

Figure 3.2: RFID system

the tag, and can then retrieve any needed information.

3.3 RFID Protocols

RFID systems involve a reader transmitting a radio signal, and a tag receiving this

signal answering with a response signal [71]. This response is then processed by a

back-end server. Depending on the tag’s computational power (if any), the tag may

perform cryptographic operations in order to compute its response (and/or update

its stored data). The sequence of messages exchanged by the reader, tag and back-

end server (along with any computations performed by the parties) constitutes the

RFID protocol.

Some tags are ‘read-only’, while other tags have data ‘written’ to them. In practice

tag protocols are often proprietary, although EPCglobal and the International Or-

ganisation for Standardisation (ISO) have defined a number of protocols designed

for use in RFID systems [71]. Further information can be found, for example, in

[23, 71]

32

3.3 RFID Protocols

3.3.1 Focus of the Thesis

In this thesis we are concerned with a particular type of RFID tag, i.e. those tags

capable of performing (light-weight) cryptographic operations. Therefore, in line

with much of the existing research literature, we focus on RFID protocols with the

following properties.

• The protocols involve two parties, namely a server and a tag.

• The term ‘server’ means a combination of a back-end server and its readers.

That is, the channel between the back-end server and the readers is secure.

• A server maintains a secure database of information for the tags that it man-

ages, and has a significantly greater processing capability than a tag.

• A tag can perform lightweight cryptographic operations; it can also gener-

ate pseudo-random numbers, compute hash functions, and perform symmetric

encryption operations.

• A tag has a rewritable memory which may not be tamper-resistant, and thus

is susceptible to compromise.

• The channel between the server and tag is an insecure radio-frequency inter-

face, and thus tag-server communications are subject to eavesdropping and/or

modification.

3.3.2 Cryptography for RFID

We make the following assumptions about the availability of cryptographic functions

suitable for implementation on RFID tags.

• There are sufficiently secure hash functions which are suitable for a low-cost

tag.

• There is a sufficiently secure pseudo-random number generator for a low-cost

tag.

33

3.4 RFID Applications

Implementing asymmetric cryptographic techniques such as RSA in most current

RFID tags remains impractical because of the limited resources available to tags [2,

31]. Instead, symmetric cryptographic schemes are commonly applied for RFID

systems. Standard symmetric cryptosystems such as SHA-1 or AES are also rather

unsuited to today’s low-cost tags [18]. However, a number of light-weight implemen-

tations of block ciphers and hash functions have recently been studied, including the

schemes presented in [11, 17, 40, 55, 58, 61, 80].

The following two hash functions appear to be of particular value in this respect.

• The Whirlpool hash function has been standardised by ISO/IEC and evalu-

ated by the New European Schemes for Signatures, Integrity and Encryption

(NESSIE) project [56]. Pramstaller et al. [55] presented a compact hardware

implementation of Whirlpool that uses an innovative state representation, and

that makes it possible to significantly reduce the required hardware resources.

• Shamir [61] introduced a one-way function called SQUASH (short for SQUar-

hASH) that is based on modular squaring. SQUASH is ideally suited to

challenge-response authentication in highly constrained devices, such as RFID

tags, and is provably as secure as factoring [7, 61].

A one-way function such as a cryptographic hash function or a block cipher can be

used to generate pseudo-random bit sequences [43]. In practice, an iterated keyed

hash function which takes a cheap and weak pseudo-random source (for instance

circuitry noise) and an internal key as its inputs could be used as a pseudo-random

bit generator [54, 72].

3.4 RFID Applications

Landt [36] claims that RFID technology can increase revenue, improve efficiency

and lower costs in business. RFID systems are being adopted in a wide variety of

fields, including product management, animal supervision, transportation payments,

library book administration, automated vehicle identification, patient identification

in hospitals, entry access control, and electronic passports [24, 29, 37]. For example,

RFID tags can help hospitals to improve patient care, pharmaceutical companies to

34

3.4 RFID Applications

reduce counterfeiting, logistics providers to improve the management of moveable

assets and supply chains to track goods from the point of manufacture to the retail

point of sale [26].

There are many different types of tags, as described in section 3.2.1. The following

general guidelines can be used to help select the best type of tag for a particular

application [23]:

• Use smart labels for automated application in a warehouse.

• Use passive tags for the lowest cost, and semi-passive or active tags only as

necessary for additional capabilities or greater read range.

• Use LF/HF tags for individual items.

• Use UHF tags for shipping units such as pallets.

• Use microwave tags for vehicles and long-distance reading.

• Where possible, to reduce cost, store only an identifier on the tag and look up

the rest of the information. Greater on-tag storage is more expensive.

• Follow standards where possible, and watch what the largest adopters are

doing.

35

Chapter 4

Security, Privacy and
Performance Requirements

Contents

4.1 Privacy and Security . 36

4.1.1 Privacy . 37

4.1.2 Security . 38

4.2 Performance Requirements 41

4.3 Additional Functional Requirements 43

4.3.1 Tag Delegation . 43

4.3.2 Tag Ownership Transfer . 44

In this chapter we investigate the possible threats to RFID systems, identify associ-

ated privacy, security and performance requirements, and present a list of require-

ments for RFID protocols, which has been constructed by taking the union of all

previously given sets of requirements. Section 4.1 describes the privacy and security

requirements for RFID systems, and section 4.2 identifies the performance require-

ments for such systems. In section 4.3 we also discuss two additional functional

requirements, namely tag delegation and tag ownership transfer.

4.1 Privacy and Security

To provide security for a system, the possible threats and risks to that system need to

be determined. These can then be used to set security requirements. Finally, coun-

termeasures to the threats and residual risks can be selected and implemented [1].

36

4.1 Privacy and Security

In this section, we first investigate two main classes of threats to RFID systems,

namely threats to privacy and security. The threats that we examine are taken from

the existing literature. We also introduce a list of requirements to mitigate such

threats.

In this thesis we consider the RFID systems that fit the model given in section 3.3.1.

4.1.1 Privacy

One of the main concerns of users of RFID systems is user privacy. Unprotected

communications between a tag and a server over a wireless channel can disclose

information about a tag, including its location (and, by implication, the location of

its owner).

Threats

Two major privacy issues are as follows [2, 29, 47, 49, 79].

• Tag Information Leakage [49]: in a typical RFID system, when a server

queries a tag, the tag responds with its identifier. If unauthorised entities

can also obtain a tag identifier, then they may be able to request and obtain

the private information related to the tag held in the server database. For

example, if the information associated with a tag attached to a passport, ID-

card or medical record could be obtained by any server, then the damage would

be very serious.

• Tag Tracking [79]: if the responses of a tag are linkable to each other or

distinguishable from those of other tags, then the location of a tag could be

tracked by multiple collaborating unauthorised entities. For example, if the

response of a tag to a server query is a static ID code, then the movements of

the tag can be monitored, and the social interactions of an individual carrying

a tag may be available to third parties without him or her knowing.

37

4.1 Privacy and Security

Privacy Requirements

RFID systems should meet the following privacy requirements in order to mitigate

the two threats described above.

• Tag Information Privacy: RFID systems should be able to resist tag infor-

mation leakage. To protect against such a threat, RFID systems need to be

controlled so that only authorised entities are able to access the information

associated with a tag.

• Tag Location Privacy: RFID systems should be able to resist tag tracking

attacks. If messages from tags are anonymous, then the problem of tag tracking

by unauthorised entities can be avoided.

4.1.2 Security

Communications between a server and a tag via an insecure wireless channel are sus-

ceptible to eavesdropping. Security threats feasible to RFID systems are discussed

below.

Attack Model

We divide possible attackers into two groups, as follows.

• A weak attacker (WA) is a malicious entity that can observe and manipulate

communications between a server and a target tag, but cannot compromise

the tag.

• A strong attacker (SA) is a malicious entity that has compromised a target

tag, in addition to having the capabilities of a weak attacker.

Threats by an SA as well as a WA should be considered in RFID protocol design,

because the internal data in a tag memory are liable to exposure as a result of

side-channel attacks [4, 41]. Such attacks are attacks that are based on side channel

information that can be retrieved from a device performing cryptographic compu-

tations [5]. Side channels provide information about internal computations through

38

4.1 Privacy and Security

measurement, e.g. by monitoring variations in power consumption, external radia-

tion, or the time taken to perform calculations [5]. Side channel attacks make use

of such information to recover the key the device is using [5].

Security threats to RFID systems can be classified into weak and strong attacks in

line with the attacker types defined above.

Weak attacks

The following attacks are feasible for a WA [2, 29, 79].

• Tag Impersonation [79]: a WA could impersonate a target tag to a server

without knowing the tag’s internal secrets. It could communicate with a server

instead of the tag and be authenticated as the tag.

• Replay attack [13]: a WA could replay messages exchanged between a server

and a tag without being detected, thereby performing a successful authentica-

tion between a tag and a server.

• Man-in-the-Middle (MitM) attack [28]: a WA could interfere with mes-

sages sent between a server and a tag (e.g. by insertion, modification or dele-

tion).

• Denial-of-Service (DoS) attack [79]: a WA could block messages transmit-

ted between a server and a tag. Such an attack could cause the server and the

tag to lose synchronisation. For example, the server might update its shared

secrets, while the tag does not; as a result, they would no longer be able to

authenticate each other.

Strong attacks

An SA may be able to perform the following attacks, as well as the weak attacks

described above [2, 41, 49].

• Backward Traceability [49]: an SA might be able to trace past transactions

between a server and a compromised tag using knowledge of the internal state

39

4.1 Privacy and Security

of the tag. That is, given all the internal state of a target tag at time t,

the attacker is able to identify target tag interactions that occurred at time

t′ < t. The past transcripts of a tag may allow tracking of the tag owner’s

past behaviour.

• Forward Traceability [41]: an SA might be able to trace future transactions

between a server and a compromised tag using knowledge of the internal state

of the tag. That is, knowledge of a tag’s internal state at time t can help to

identify tag interactions that occur at time t′ > t. The only way of maintaining

future security once the current tag secrets have been revealed is to detect key

compromise as soon as possible, and to replace the compromised secrets as

soon as possible.

• Server Impersonation [64]: an SA might be able to impersonate a legitimate

server to a compromised tag using knowledge of the internal state of the tag.

This attack does not appear to have been discussed previously, despite its

potential importance. The SA could, for example, ask the tag to update its

internal state, with the effect that the legal server will no longer be able to

communicate successfully with the tag, although the SA will. We introduce

this novel strong attack in detail in chapter 6.

Resistance to backward traceability is sometimes also referred to as forward security

[10, 14, 49, 76]. In the thesis, we use the terms backward traceability and forward

traceability (defined as in [41]) in order to clearly distinguish between threats to

past and future anonymity.

Security requirements

We identify security requirements for RFID systems designed to mitigate the threats

of the weak and strong attacks described above, as follows.

• Resistance to Tag Impersonation: an adversary should not be able to

impersonate a tag without compromising a tag.

• Resistance to Replay attack: an adversary should not be able to reuse mes-

sages exchanged between a server and a tag, thereby performing a successful

session between the tag and the server.

40

4.2 Performance Requirements

• Resistance to MitM attack: an adversary should not be able to manipulate

messages sent between a server and a tag without compromising a tag.

• Resistance to DoS attack: blocking of messages transmitted between a

server and a tag should not mean that the server and the tag can no longer

communicate successfully.

• Backward Untraceability: an adversary should not be able to to trace past

transactions between a server and a tag, even if it compromises the tag.

• Forward Untraceability: an adversary should not be able to to trace future

transactions between a server and a tag, even if it compromises the tag.

• Resistance to Server Impersonation: an adversary should not be able to

impersonate a server to a tag, even if it compromises that tag.

4.2 Performance Requirements

RFID schemes cannot use computationally intensive cryptographic algorithms to

provide privacy and security because tight tag cost requirements put severe limits

on tag-side resources (such as processing power and storage).

RFID schemes should address the following performance issues [2, 4, 33, 47, 74, 79].

• Storage Capacity [79]: the volume of data stored in a tag should be min-

imised because of tight tag cost requirements.

• Computation [79]: the complexity of tag computations should be minimised

because of the very limited power available to a tag.

• Communication [79]: the number and size of messages exchanged between

a tag and a reader should be minimised.

• Scalability [4]: the server should be able to handle a large tag population.

It should be able to identify multiple tags using the same radio channel. Per-

forming an exhaustive search to identify individual tags is difficult when the

number of tags is large.

41

4.2 Performance Requirements

The issue of scalability raises questions about the complexity of searching stored

data. As background to subsequent discussions, we briefly review some of the main

approaches to searching arrays of data.

The need to search an array for a value is a common problem [48]. For example,

in an RFID system, a server maintains a database containing information for tags

that it manages. When a server queries a tag and receives a response in return, it

examines its database to find an entry whose ‘key’ value matches the appropriate

entry in the tag response. It can now identify the tag and access other information

related to it.

Three fundamentally important searching methods applicable when records are

stored in arrays are linear search, binary search and hash table search.

• Linear search is the simplest method. It involves examining each element in a

list in sequence until a match is found [35, 48]. Its running time is of the order

of n, written O(n), where n is the number of elements in the list [35]. Searching

relatively small lists sequentially does not require much computer time [48].

However, when the list get longer (as in, for example, telephone directories or

lists of credit card customers), linear searches are very inefficient [48]. Since

large amounts of computer time could mean considerable costs and/or delays

when large amounts of data must be frequently searched, more efficient means

of searching are needed [48].

• Binary search is a more sophisticated search algorithm. It involves examining

the middle entry in an (ordered) array to see which half of the array contains

the desired value [48]. The middle value of the appropriate half is then ex-

amined to see which half of this half contains the value in question [48]. This

halving process is continued until the value is located or it is determined that

the value is not in the list [48]. Clearly, a binary search requires that the list

must be sorted before searching [35, 48]. The sorting process has its own costs

which should be evaluated [48]. Binary search runs in O(log n) time [35]. This

is significantly better than linear search for large lists of data [35].

When n is large, binary search takes much less time, in the worst case, than

linear search. This is because it makes log n rather than n comparisons [35].

However, the steps involved in a binary search are typically more complex and

42

4.3 Additional Functional Requirements

more time-consuming than the steps performed in a linear search [35]. Hence,

for smaller values of n, it is possible that a linear search will be faster [35].

• Hash tables can also be used for list searching [35]. A hash table is a data

structure for the storage of records, that is intended to provide rapid access

to a record with a given key value [35]. The search time is a constant, i.e.

O(1), in the average case. This search technique requires the ability to assign

key values so that all keys are within an ordered range of indices, ideally not

much larger than the number of entries in the array; this is achieved using

hashing. It also requires sufficient storage to be available to accommodate all

the records [35].

To make a hash table, a hash function is used to map a key into the index (the

hash) of an array element where the corresponding value is to be sought [35].

The hash function here is not necessarily a cryptographic hash function. To

search for an entry in the hash table, the key is hashed, and the hashed value

is then looked up in the table. Of course, there is the possibility of two keys

hashing to the same value — this can be resolved, for example, by putting a

colliding entry into the next available slot in the table (which is why the table

needs to be a little larger than the number of entries in the array).

4.3 Additional Functional Requirements

In this section, we introduce two functional requirements, tag delegation and own-

ership transfer, that are likely to be required in some RFID systems.

4.3.1 Tag Delegation

In RFID systems, a centralised back-end server is often in charge of a large number

of tags. In some systems in which tag responses are anonymous, tag identification

requires the back-end server to compute every possible tag output in turn until it

finds a match [81]. This can seriously damage scalability [81].

A related issue is that many protocols require a reader to interact with the centralised

back-end server in order to identify a tag [81]. In some applications, this reading

latency can be an unacceptable overhead [81]. In addition, if the database becomes

43

4.3 Additional Functional Requirements

unavailable for some reason, such as network connectivity failure, all interactions

with tags relying on that back-end server will be stopped [81].

Delegation is one possible solution to these performance issues [81]. Delegation

enables a back-end server to delegate the right to identify and authenticate a tag to

a specified entity, such as a reader [41, 45, 81].

Delegation may be permanent or temporarily [81]. In the first case, a reader is given

permanent means to interact with a tag in its read range, and the back-end server

is contacted only when a new tag arrives or an old tag leaves the system [81]. In

the second case, the back-end server temporarily transfers the right to interact with

a set of tags for a limited number of queries, and updates or revokes the delegation

according to a delegation policy [81].

4.3.2 Tag Ownership Transfer

Another possible functional requirement for RFID systems is tag ownership transfer.

In some applications, an RFID tag may change its owner a number of times during

its lifetime. For example, suppose that a manufacturer produces a tag and attaches it

to an object, and that a retailer purchases the tagged object from the manufacturer,

and then sells it to a customer. The customer may then resell the object at some

later time. In such RFID systems, changes of tag owner could occur frequently, and

thus a secure and privacy-preserving means of tag ownership transfer is needed.

Tag ownership means having authorisation to identity a tag and control all the re-

lated information [41, 45]. Tag ownership transfer implies a shift of such capabilities

to a new owner [41, 45], who must therefore be given the necessary private informa-

tion to securely interact with and identify the tag. Thus all information associated

with the tag will need to be passed from the old to the new owner. However, at the

moment of tag ownership transfer, both the old and new owners have the informa-

tion necessary to authenticate a tag, and this fact may cause an infringement of tag

owner privacy. More specifically, if the previous owner is malicious, it may still be

able to read the tag using retained tag information after transfer, and/or trace the

new owner’s transactions with the tag. That is, the privacy of the new owner might

be compromised by the previous owner. Conversely, if the new owner is malicious,

then it might be able to trace the previous owner’s past transactions with the tag.

44

4.3 Additional Functional Requirements

That is, the privacy of the previous owner might be compromised by the new owner.

In chapter 8, we identify requirements for secure tag ownership transfer.

45

Chapter 5

Related Work

Contents

5.1 Preliminaries . 47

5.2 The Weis-Sarma-Rivest-Engels Protocols 47

5.3 The Ohkubo-Suzki-Kinoshita Protocol 49

5.4 The Henrici-Müller Protocol 50

5.5 The Molnar-Wagner Protocol 51

5.6 The Molnar-Soppera-Wagner Protocol 53

5.7 The Saito-Imamoto-Sakurai Protocols 54

5.8 The Dimitriou Protocol . 56

5.9 The Duc-Park-Lee-Kim Protocol 56

5.10 The Lim-Kwon Protocol 58

5.11 The Osaka-Takagi-Yamazaki-Takahashi Protocol 60

5.12 The Chien-Chen Protocol 61

5.13 The Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-Ribagorda
Protocol . 63

5.14 The Fouladgar-Afifi Protocols 65

5.15 The Tsudik Protocols . 67

5.16 The Burmester-de Medeiros-Motta Protocol 71

5.17 Comparisons . 72

5.18 Summary . 74

In this chapter we consider previously proposed RFID identification and authentica-

tion protocols based on the use of symmetric cryptographic techniques. In each case

(in sections 5.2-5.16) we assess them against the privacy, security and performance

requirements identified in chapter 4. Comparisons of the properties of these protocols

are provided in section 5.17.

46

5.1 Preliminaries

5.1 Preliminaries

A variety of protocols for use in RFID systems have been proposed. Many of these

protocols use cryptographic functions to protect messages exchanged between an

RFID reader and tag and to provide authentication. As discussed in section 3.3.2,

implementing asymmetric cryptographic techniques in most current RFID tags re-

mains impractical; instead, symmetric cryptographic schemes are commonly applied.

Thus, this thesis focuses on RFID protocols using symmetric cryptographic schemes.

The following notation is used in the protocol descriptions in this chapter.

S A server

Ti The i-th tag (1 ≤ i ≤ n)

n The number of tags that S manages

x̂ The most recent value of x (for any value x)

x The updated value of x (for any value x)

⊕ XOR operator

‖ Concatenation operator

← Substitution operator
?
= An operator that checks whether the right side value equals the left side value

The protocols introduced in this chapter work under the assumptions described in

section 3.3.1. Tables 5.1 and 5.2 provide comparisons of the schemes presented in this

chapter with respect to the security, privacy and performance properties identified

in chapter 4.

In the following sections 5.2-5.16, we review previously proposed RFID protocols

presented in the order in which they were published.

5.2 The Weis-Sarma-Rivest-Engels Protocols

Weis et al. [79] proposed two protocols known as Hash-based Access Control and

Randomised Access Control (referred to here as the HAC and RAC protocols, re-

spectively) in 2003. The schemes control access to a tag by locking or unlocking the

tag using a one-way hash function h.

47

5.2 The Weis-Sarma-Rivest-Engels Protocols

In the HAC scheme, a server S stores values IDi, ki and HIDi for each tag Ti, where

IDi is an identifier for Ti, ki is a secret key and HIDi = h(ki). Each tag Ti stores

IDi and HIDi. When a tag Ti is locked, it responds with HIDi to all queries. To

unlock a tag, the server sends it ki. If, for a received key ki, HIDi = h(ki), the

tag unlocks itself and replies with IDi. Figure 5.1 summarises the protocol, where

time flows from the top to the bottom, i.e. the top-most message is sent first and

the bottom-most message is sent last. The other figures in this thesis use the same

convention.

However, the scheme allows a tag to be tracked by an eavesdropper, because the

static value HIDi is used repeatedly [79]. In addition, ki and IDi are transferred in

clear text, and hence they can be obtained by an eavesdropper.

S Ti
[Ti : IDi, ki,HIDi] [IDi,HIDi]

Query
−−− →

HIDi

← −−−
Find HIDi

ki
−−− → If h(ki) = HIDi,

IDi

← −−− Unlock

Figure 5.1: The HAC protocol

The second scheme, the RAC protocol, employs a random number generator as well

as a hash function to prevent the tracking attack possible for the HAC protocol. A

server stores IDi for each tag Ti, and a tag Ti stores IDi. A locked tag Ti generates

a different response in every session by responding with the pair (r,M1 = h(IDi‖r)),
for a randomly tag-generated r, whenever it is queried. A server then identifies the

tag by performing an exhaustive search of all stored tag records; the server computes

h(IDj‖r) for each stored IDj in turn, until it finds a match to the value received from

the tag. To unlock a tag, the server sends it the value IDi. Figure 5.2 summarises

the RAC protocol.

However, a tag response M1 can be intercepted, and knowledge of M1 allows replay

and tag impersonation attacks. In an attempt to avoid such problems, Weis et

al. [79] suggested that IDi⊕ fki(r) or (IDi‖h(IDi))⊕ fki(r) could be used instead of

h(IDi‖r), using a secret key ki shared between a server and a tag Ti. In addition,

48

5.3 The Ohkubo-Suzki-Kinoshita Protocol

the use of a fixed identifier IDi can give rise to traceability threats.

The properties of these protocols are summarised in Tables 5.1 and 5.2.

S Ti
[Ti : IDi] [IDi]

Query
−−− →

Generate r
M1 = h(IDi‖r)

r,M1

← −−−
Exhaustive search
to find IDi

s.t. M1 = h(IDi‖r)
IDi

−−− →

Figure 5.2: The RAC protocol

5.3 The Ohkubo-Suzki-Kinoshita Protocol

In 2003, Ohkubo, Suzki and Kinoshita [49] proposed an RFID privacy protection

scheme (referred to here as the OSK protocol) designed to protect against tag track-

ing and backward traceability. It involves updating the tag identifier whenever a

tag is queried, using a low-cost hash-chain mechanism.

The server stores a secret s0i and an identifier IDi for each tag, and a tag initially

stores the secret information si as s0i . In a session, the tag sends M1 = g(si) to

the server, and renews its secret si to h(si), where g and h are hash functions. The

server then identifies the tag via an exhaustive search, computing g(hj(s0i)) for each

tag until it finds a match with the received value M1, where hj denotes j iterations

of the function h. Figure 5.3 summarises the OSK protocol.

This protocol is subject to replay attacks, and hence an eavesdropper can imper-

sonate a target tag without knowing the tag secrets. In addition, the scheme is

not scalable, because a server needs to perform O(n) work to identity a tag from

amongst a population of n tags (see section 4.2). The properties of this protocol are

summarised in Tables 5.1 and 5.2.

Avoine, Dysli and Oechslin [3] proposed a modification to this scheme to prevent

49

5.4 The Henrici-Müller Protocol

S Ti
[Ti : IDi, s

0
i] [si]

Query
−−− →

M1 = g(si)

Exhaustive search
M1

← −−−
to find IDi

s.t. M1 = g(hj(s0i)) si ← h(si)

Figure 5.3: The OSK protocol

replay attacks. In the revised version, a server sends a random challenge r to a tag,

and the queried tag replies with M1 = g(si ⊕ r). As a result, an adversary cannot

reuse a tag reply M1 to respond to a different challenge r.

Avoine and Oechslin [4] further modified the protocol to introduce a time-memory

trade-off designed to reduce the server’s tag identification workload, thereby im-

proving its scalability. The main drawback of this modified scheme is the need

for large server storage, because precomputation and storage of look-up tables are

required [3, 4].

5.4 The Henrici-Müller Protocol

Henrici and Müller [25] proposed an RFID authentication scheme (referred to here

as the HM protocol) in 2004, designed to enhance location privacy. It uses a one-

way hash function h and a binary operation ◦ on bit strings (a simple exclusive-or

function is adequate for this purpose [25]).

A server must store a table containing the following entries for each tag Ti: the

hash of the current tag identifier HIDi that acts as the primary index for the table,

the current tag identifier IDi, a transaction number TIDi, the number of the last

successful transaction LSTi, and the stored entry for the associated tag AEi. A tag

Ti stores the values of IDi, TIDi and LSTi. When queried, a tag responds with

M1 = h(IDi), M2 = h(IDi ◦ TIDi), and δ = TIDi − LSTi. The server then finds an

IDi that matches the received values of M1, M2 and δ. If the server identifies the

tag Ti, it generates a random number r and sends M3 = h(r◦TID′i ◦IDi) back to the

tag, where TID′i = LSTi + δ and + is regular integer addition. If the authentication

50

5.5 The Molnar-Wagner Protocol

process completes correctly, the tag and the server will update their stored copies

of IDi to the value IDi ◦ r. Figure 5.4 summarises the HM protocol.

This scheme still allows a degree of tag tracking, because a tag always replies with

the same hashed IDi before the next successful authentication [10]. Also, it does

not provide backward untraceability, because an attacker that compromises a tag

could easily compute the identifiers used in previous sessions. The properties of the

protocol are summarised in Tables 5.1 and 5.2.

S Ti
[Ti : HIDi, IDi,TIDi,LSTi,AEi] [IDi,TIDi,LSTi]

Query
−−− →

TIDi ← TIDi + 1
M1 = h(IDi)
M2 = h(IDi ◦ TIDi)
δ = TIDi − LSTi

M1,M2,δ
← −−−

Find HIDi = M1

s.t. TID′i = LSTi + δ,M2 = h(IDi ◦ TID′i),
and TID′i > TIDi

Generate r
M3 = h(r ◦ TID′i ◦ IDi)

r,M3

−−− → Verify

Update M3
?
= h(r ◦ TIDi ◦ IDi)

AEi ← IDi

IDi ← IDi ◦ r If OK, update
HIDi ← h(IDi) IDi ← IDi ◦ r
TIDi ← TID′i LSTi ← TIDi

LSTi ← TID′i

Figure 5.4: The HM protocol

5.5 The Molnar-Wagner Protocol

Molnar and Wagner [46] proposed a mutual authentication scheme (referred to here

as the MW protocol) to provide privacy for library RFID systems. The scheme uses

a pseudo-random number function to protect the messages communicated between

tag and server.

In their basic authentication protocol, a server S and a tag Ti share a shared secret

ki, that is used as a key for a pseudo-random number function f . The server queries

51

5.5 The Molnar-Wagner Protocol

a tag by sending it a random number r1. The tag generates a random number

r2, computes M1 = IDi ⊕ fki(0‖r1‖r2), and sends them both to the server. The

server finds the value IDi for the tag using the received values of r2 and M1, and

sends M2 = IDi ⊕ fki(1‖r1‖r2) back to the tag to complete server authentication.

Figure 5.5 summarises the protocol.

One feature of this scheme is its use of a tree-based technique that reduces tag

identification complexity from O(n) to O(log n) (see section 4.2). The n tags are

considered as leaves in a balanced binary tree, and each edge in the tree is associated

with a secret. A server knows all the secrets, and each tag stores the log n secrets

corresponding to the path from the root to the tag. Thus, the work for the server

to identify a tag has magnitude O(log n).

However, this scheme could degrade privacy if an adversary tampers with a tag,

because in such a case the adversary is able to trace other tags in a probabilistic

way, as described in [3]. Also, this scheme uses a fixed key ki for each tag Ti, and

hence it cannot resist backward traceability; once a tag is compromised, the attacker

can trace past communications related to the tag. The properties of the protocol

are summarised in Tables 5.1 and 5.2.

S Ti
[Ti : IDi, ki] [IDi, ki]
Generate r1

r1
−−− → Generate r2

M1 = IDi ⊕ fki(0‖r1‖r2)

Logarithmic work search
r2,M1

← −−−
to find IDi

s.t. IDi = M1 ⊕ fki(0‖r1‖r2)

M2 = IDi ⊕ fki(1‖r1‖r2)
M2

−−− → Check that

IDi
?
= M2 ⊕ fki(1‖r1‖r2)

Figure 5.5: The MW protocol

52

5.6 The Molnar-Soppera-Wagner Protocol

5.6 The Molnar-Soppera-Wagner Protocol

In 2005, Molnar, Soppera and Wagner [45] proposed an RFID pseudonym protocol

(referred as here the MSW protocol) that employs pseudo-random number functions.

The scheme uses a tree of secrets of depth d = d1 + d2, like the MW scheme. Each

node in the tree has an associated l-bit secret key. The first d1 levels of the tree

contain node secrets that are chosen uniformly and independently at random by the

trusted centre during system initialisation using a function H, where H(s) denotes

the key associated with node s in the tree. Each node at depth d1 corresponds to a

unique tag. When a tag is enrolled into the system, it receives all keys on the path

from its node to the root. Thus, each tag needs the capacity to store d1 secrets. The

next d2 levels of the tree contain secrets that are derived using a pseudo-random

generator G.

When a tag is queried, it generates a random number r, computes the key values

k(d1+j) = Gb(k(d1+(j−1))), where j = 1, 2, · · · , d2 and b ∈ {0, 1}, and responds with a

pseudonym M1 = (Fk1(r), Fk2(r), · · · , Fkd(r)), where F is a pseudo-random number

function and kj (j = 1, 2, · · · , d) represent the secrets along the path in the tree of

secrets from the root to the tag’s current leaf. The tag then increments the counter

ci. Figure 5.6 summarises the MSW protocol.

S Ti
[Ti : k0, k1, · · · , kd1] [(k0, k1, · · · , kd1), ci]

Query
−−− → Generate r

k(d1+j) = Gb(k(d1+(j−1))),
(1 ≤ j ≤ d2, b ∈ {0, 1})
M1 = (Fk1(r), Fk2(r), · · · , Fkd(r))

Logarithmic work search
r,M1

← −−−
to find Ti
s.t. k(d1+j) = Gb(k(d1+(j−1))), ci ← ci + 1
(1 ≤ j ≤ d2, b ∈ {0, 1})
and M1 = (Fk1(r), Fk2(r), · · · , Fkd(r))

Figure 5.6: The MSW protocol

The scheme takes O(log n) work to identify a tag because of its use of a tree of

secrets (see section 4.2). It further allows for time-limited delegation. However,

the ownership transfer procedure of this scheme is rather restrictive, in the sense

that the old and new owners must trust the same Trusted Centre (TC), and the

53

5.7 The Saito-Imamoto-Sakurai Protocols

TC’s database controls all the secret tag information. A reader that has received

partial information from the TC can read the tag only a limited number of times

without on-line connectivity to the TC. Thus, the scheme more closely resembles a

time-limited access delegation scheme than a system for ownership transfer [41].

The scheme only provides tag identification, not mutual authentication. It also

allows replay attacks. The tree-based secrets approach requires that each tag stores

the dlog ne secrets corresponding to the path from the root to the tag and performs a

number of pseudo-random number function computations to generate its pseudonym.

In addition, if a tag secret is compromised, then the attacker can compute the secrets

for every descendent in the subtree rooted at that tag node. That is, the more tags

an adversary tampers with, the greater the privacy breaches, as for the MW scheme

[3, 54]. The properties of the protocol are summarised in Tables 5.1 and 5.2.

5.7 The Saito-Imamoto-Sakurai Protocols

Saito et al. [59] proposed two approaches for reassigning an RFID tag’s key for own-

ership transfer. The schemes protect the privacy of the new owner from the old

owner by updating the tag key using a symmetric cryptosystem. As these schemes

are only a process for key change, they need to be combined with an RFID authen-

tication scheme to form a complete RFID system. The first scheme (referred to

here as the SIS1 scheme) employs a three-party model using a Trusted Third Party

(TTP). The current owner server (Sold) first passes the secret key ki used to encrypt

the tag identifier IDi to the new owner server (Snew). The new owner server then

generates a new encryption key k′i, and asks the TTP to send both keys ki and k′i

to the tag, after encrypting them, so that the tag can update its identifier using the

new key k′i. Figure 5.7 summarises the protocol.

However, this scheme has usability and security issues, because the new owner must

communicate with a TTP [59], and, if a tag is compromised, the secret key shared

between the TTP and the tags will be exposed.

The second scheme (referred to here as the SIS2 scheme) uses a two-party model. It

is based on the premise that the backward channel (i.e. the communication channel

from a tag to a reader) is more secure against eavesdropping than the forward channel

54

5.7 The Saito-Imamoto-Sakurai Protocols

Sold Snew TTP Ti
[ki] [K] [IDi,K, ki]

ki
−−− →

(secure) Generate k′i
ki,k

′
i

−−− →

(secure) M = EK(ki, k
′
i)

M
−−− →

(ki, k
′
i) = DK(M)

ki ← k′i

Figure 5.7: The SIS1 protocol

(i.e. the communication channel from a reader to a tag), because the signal strength

in the backward channel is weaker than one in the forward channel. In this scheme,

the new owner server (Snew) of a tag encrypts both the old encryption key ki provided

by the current owner server (Sold) and the new key k′i which the new owner server

has created, using a nonce n received from the tag over the backward channel. It

sends M = En(ki, k
′
i) back to the tag, where Ex(y, z) denotes the encrypted version

of a plaintext (y, z) computed using a symmetric encryption scheme, keyed by x.

The tag obtains k′i by decrypting M , and updates ki to k′i. Figure 5.8 summarises

the protocol.

However, the assumption that intercepting the nonce sent from the tag is difficult

is questionable, because, as pointed out in [59], an attacker could be located close

to the tag and thereby successfully eavesdrop on the backward channel, despite its

short range. Also, a tag always stores a fixed identifier, and hence the tag’s past

interactions could be traced if the tag is compromised.

Sold Snew Ti
[ki] [IDi, ki]

ki
−−− →

(secure)
Query
−−− →

Generate n
n

← −−−
Generate k′i
M = En(ki, k

′
i)

M
−−− →

(ki, k
′
i) = DK(M)

ki ← k′i

Figure 5.8: The SIS2 protocol

55

5.8 The Dimitriou Protocol

5.8 The Dimitriou Protocol

Dimitriou [13] proposed an RFID authentication protocol (referred to here as the D

protocol) in 2005, designed to enforce user privacy and protect against tag cloning.

A tag Ti stores its identifier IDi, and a server S stores the identifier IDi and a hash

of the identifier HIDi for each tag Ti, where HIDi serves as the primary key used

to identify information related to the tag. This scheme makes use of a challenge-

response approach and employs a hash function h and a keyed hash function f . A

server queries a tag by sending it a random number r1, and a tag responds with a

random number r2, a hash of its identifier M1 = h(IDi), and a keyed hash of the

random numbers M2 = fIDi
(r2‖r1).

The scheme maintains scalability in the sense that the server can find the value

HIDi corresponding to the received value of M1, without an exhaustive search. If

the server finds a matching value HIDi, it checks that the received value of M2

equals fIDi
(r2‖r1). If the validation is successful, the server authenticates the tag

and updates its identifier IDi to g(IDi), where g is a one-way function. The server

then sends a message M3 = fIDi
(r2‖r1) using the updated identifier to the tag.

The tag authenticates the server by checking the received value of M3. If the check

is successful, the copy of the identifier IDi held by the tag is also updated. The

protocol is summarised in Figure 5.9.

However, the tag identifier remains the same between valid sessions, thereby making

the scheme vulnerable to tracking. Additionally, the scheme is prone to DoS attacks

[13]; if the message M3 does not reach the tag in a session, the server will update the

tag identifier but the tag will not. The properties of the protocol are summarised in

Tables 5.1 and 5.2.

5.9 The Duc-Park-Lee-Kim Protocol

Duc et al. [14] proposed an authentication protocol (referred to here as the DPLK

protocol) for EPCglobal Class-1 Gen-2 RFID tags [16] in 2006. It uses simple cryp-

tographic primitives such as a pseudo-random number generator and a cyclic redun-

dancy code.

56

5.9 The Duc-Park-Lee-Kim Protocol

S Ti
[Ti : HIDi, IDi] [IDi]
Generate r1

r1
−−− →

Generate r2
M1 = h(IDi)
M2 = fIDi

(r2‖r1)
r2,M1,M2

← −−−
Find HIDi = M1

If M2 = fIDi
(r2‖r1),

Update
IDi ← g(IDi)
M3 = fIDi

(r2‖r1)
M3

−−− → ID′i ← g(IDi)
Verify

M3
?
= fID′

i
(r2‖r1)

If OK, update
IDi ← ID’i

Figure 5.9: The D protocol

A tag Ti is set up by assigning it an Electronic Product Code EPCi, a session key

ki and a long-term secret pi. A server stores the values of EPCi, ki and pi for each

tag. We use f and h respectively to denote the pseudo-random number generator

and cyclic redundancy code used by the scheme. When queried, a tag generates a

random number r and responds with M1 = h(EPCi‖r)⊕ki and M2 = h(M1⊕r). The

server then performs an exhaustive search to find a stored EPCi for which M1⊕ki =

h(EPCi‖r). If the server finds a matching value, it sends M3 = h(EPCi‖pi‖r) ⊕ ki
to the tag. If a session ends successfully, the copies of the session key ki held by the

tag and server are updated using f . The protocol is summarised in Figure 5.10. The

security of the scheme can be improved by employing cryptographic hash functions

instead of h and f .

The scheme cannot prevent replay attacks before the next successful authentication,

because M1 and M2 can be reused by an attacker to impersonate the tag. Most

seriously, a DoS attack could permanently desynchronise a server and a tag [10].

The scheme also does not provide backward untraceability because EPCi and pi are

fixed [10]. The properties of the protocol are summarised in Tables 5.1 and 5.2.

57

5.10 The Lim-Kwon Protocol

S Ti
[Ti : EPCi, ki, pi] [EPCi, ki, pi]

Query
−−− → Generate r

M1 = h(EPCi ‖ r)⊕ ki
M2 = h(M1 ⊕ r)

Exhaustive search
r,M1,M2

← −−−
to find EPCi
s.t. M1 ⊕ ki = h(EPCi ‖ r)

If M2 = h(M1 ⊕ r)
Compute
M3 = h(EPCi ‖ pi ‖ r)⊕ ki

M3

−−− → Verify

Update M3 ⊕ ki
?
= h(EPCi ‖ pi ‖ r)

ki ← f(ki)
If OK, update
ki ← f(ki)

Figure 5.10: The DPLK protocol

5.10 The Lim-Kwon Protocol

The RFID authentication protocol (referred to here as the LK protocol) proposed

by Lim and Kim [41] is a challenge-response protocol employing pseudo-random

functions. The LK scheme uses a forward key chain for tag secret evolution and a

backward key chain (used in reverse order) for server validation.

This scheme makes use of three pseudo-random functions, f : {0, 1}l × {0, 1}2l1 →
{0, 1}2l1 , g : {0, 1}l → {0, 1}l, and h : {0, 1}2l1 → {0, 1}2l1 where l is the bit-length

of a tag secret, and l1 is the bit-length of random challenges and responses. A server

stores two sets of data for each tag Ti, namely the current data set and the most

recent old data set (initially empty). The current data set contains the following

tag identification data: a random secret si, m identifiers ti
j = ext(gj(si), l2) for

0 ≤ j ≤ m − 1, a random number ui for a backward key chain, the length vi of

the backward key chain, and two secrets for server validation wi,S = hvi−1(ui) and

wi,T = h(wi,S), where m is the maximum number of allowable authentication failures

between two valid sessions, ext(x, l) denotes a simple extract function returning l

bits out of x, gj denotes j iterations of the function g, and l2 is the bit-length of a

tag secret sent by the tag to help the back-end server to identify it. The tag stores

58

5.10 The Lim-Kwon Protocol

the tag secret si, the server validator wi,T , a failure counter ci and the maximum

number of the counter m, where ci is initialised to 0.

The LK protocol refreshes the tag secret si within both the tag and the server

whenever the authentication process completes successfully, using exchanged ran-

dom numbers r1 and r2 and a secret for server validation wi,S , i.e. si ← g(si ⊕
(wi,S‖r1‖r2)). If an authentication session fails, only the tag updates its stored tag

secret si to g(si). The protocol is summarised in Figure 5.11.

For tag ownership transfer, the server of the new owner of a tag securely communi-

cates with the server of the current owner, and receives all the relevant information

for the tag. The new owner’s server then communicates with the tag outside the

reading range of the previous owner’s server. As a result, the tag refreshes its secrets

using random values shared only with the new server, and so no other party can

communicate with the tag from this point onwards.

The protocol provides forward untraceability from the moment that an adversary

misses just one successful authentication session after it has compromised the tag

secret. The use of the backward hash key chain makes it difficult to impersonate a

server to tags. Storing the most recent old data set protects against the desynchro-

nisation problem arising from DoS attacks. The server can identify a tag in O(1)

work (see section 4.2).

However, the server must perform O(m) operations for tag authentication, and must

perform a significant number of pseudo-random function computations to update

the tag secrets after a successful tag authentication. In addition, the server must

store two key chains for each tag [41]. Also, an attacker can perform rapid-fire

interrogation of a tag to increment its counter ci to the maximum possible value.

As a result, the tag secret si will remain static and will give the same response M1

to every query until a valid session is performed, thereby allowing tag tracking [41].

Moreover, an attack introduced in [51] allows an adversary to trace a tag without

compromising the tag. The properties of the protocol are summarised in Tables 5.1

and 5.2.

59

5.11 The Osaka-Takagi-Yamazaki-Takahashi Protocol

S Ti
[Ti : si, (t

0
i , · · · , t

m−1
i), ui, vi, wi,S , wi,T , [si, wi,T , ci,m]

ŝi, (t̂
0
i , · · · , t̂

m−1
i), ûi, v̂i, ŵi,S , ŵi,T]

Generate r1
r1

−−− → Generate r2
M1 = ext(si, l2)
M2 = ext(f(si, r1 ‖ r2), l1)

Find tji = M1

r2,M1,M2

← −−−
Compute s′i = gj(si)
If M2 = ext(f(s′i, r1 ‖ r2), l1),
Compute
M3 = f(s′i, r2 ‖ r1)⊕ wi,S

M3

−−− → wi,S ←M3 ⊕ f(si, r2 ‖ r1)

Verify wi,T
?
= h(wi,S)

ŝi ← g(s′i)

t̂i
k ← ext(gk(ŝi), l2) If OK, update
where 0 ≤ k ≤ m− 1 ci ← 0

v̂i ← vi si ← g(si ⊕ (wi,S ‖ r1 ‖ r2))
ŵi,T ← wi,T wi,T ← wi,S
ŵi,S ← wi,S Else,

ci ← ci + 1
si ← g(s′i ⊕ (wi,S ‖ r1 ‖ r2)) If ci < m
tki ← ext(gk(si), l2) si ← g(si)
ni ← vi − 1
wi,T ← wi,S
wi,S ← hvi(ui)

Figure 5.11: The LK protocol

5.11 The Osaka-Takagi-Yamazaki-Takahashi Protocol

Osaka et al. [50] presented an RFID security method (referred to here as the OTYT

protocol) that supports ownership transfer with high efficiency. The scheme uses a

hash function h and a symmetric encryption scheme E. Each tag stores ei = Eki(IDi)

as its identifier, where ki is a secret key shared by the tag and server and IDi is a

long term tag identifier (known only to the server). The server stores IDi, ki, and

ei for each tag Ti.

A server queries a tag by sending it a random number r, and the tag responds with

M1 = h(ei ⊕ r). The server performs an exhaustive search to find a pair (ei, ki) for

which h(ei ⊕ r) = M1, and authenticates the tag by decrypting ei using ki.

To transfer ownership of a tag, the current owner generates a new key k′, updates its

60

5.12 The Chien-Chen Protocol

identifier e to e′ = Ek′(IDi) in order to protect its privacy from the new owner, and

then sends k′ to the new owner via a secure channel. The new owner then creates

a new key k′′, computes a new tag identifier e′′ = Ek′′(IDi) in order to protect its

privacy from the previous owner, and sends M2 = e′ ⊕ e′′ to the tag so that the

tag can obtain the new tag identifier e′′ from the received value of M2. Figure 5.12

summarises the protocol.

The scheme requires a relatively small amount of tag computation; however, it has a

number of security vulnerabilities. The value of e′⊕e′′ is vulnerable to manipulation

by an adversary, and the scheme does not prevent DoS attacks. In addition, if an

attacker queries a tag twice using the same random number, then it receives the same

response from the tag, enabling it to track the tag. Also, if a tag is compromised,

an adversary is able to track past tag transactions, because an adversary that has

M2 for a previous session can compute a previous identifier by computing M2 ⊕ ei.
The properties of the protocol are summarised in Tables 5.1 and 5.2.

S Ti
[Ti : IDi, ki, ei] [ei, ki]
Generate r

r
−−− →

M1 = h(ei ⊕ r)

Exhaustive search
M1

← −−−
to find IDi

s.t. h(ei ⊕ r) = M1

and Dki(ei) = IDi

. .
Generate k′i
e′i = Ek′

i
(IDi)

M2 = ei ⊕ e′i
Update

M2

−−− → Update
ei ← e′i, ki ← k′i ei ←M2 ⊕ ei

Figure 5.12: The OTYT protocol

5.12 The Chien-Chen Protocol

The RFID mutual authentication protocol proposed by Chien and Chen [10] in 2007

(referred to as the CC protocol) is based on the EPCglobal Class-1 Gen-2 RFID

standard [16]. The protocol uses simple cryptographic primitives such as a pseudo-

61

5.12 The Chien-Chen Protocol

random number generator and a cyclic redundancy code.

The server stores five values for each tag Ti: an Electronic Product Code EPCi, the

new authentication key ki, the new access key pi, the most recent old authentication

key k̂i, and the most recent old access key p̂i. A tag stores three values, namely EPCi,

ki, and pi. The values of ki and pi are updated after each successful authentication

to give backward untraceability. We use f and h respectively to denote the pseudo-

random number generator and cyclic redundancy code used by the scheme.

The server queries a tag by sending it a random number r1. The tag generates

a random number r2, computes M1 = h(EPCi‖r1‖r2) ⊕ ki and sends r1 and M1

back to the server. The server performs an exhaustive search to find an EPCi for

which M1 ⊕ ki = h(EPCi‖r1‖r2). If such an EPCi is found, the server computes

M2 = h(EPCi‖r2) ⊕ pi and sends it to the tag. The server then updates ki and

pi to f(ki) and f(pi), respectively. The tag verifies the received value of M2. If

the verification is successful, the tag also updates its keys ki and pi. Figure 5.13

summarises the protocol.

The scheme still permits a degree of backward traceability. Suppose that a strong

attacker has compromised a tag and intercepted the values of r1 and M1 sent in the

immediately previous session. The attacker can check that f(M1 ⊕ h(EPCi‖r1‖r2))
equals the compromised key ki, and can thus determine the previous key k̂i, because

EPCi is fixed. In the same way, if a strong attacker has intercepted r2 and M2 in

the immediately previous session, it can compute p̂i by checking whether f(M2 ⊕
h(EPCi‖r2)) equals pi. Moreover, Peris-Lopez et al. [52] show that the CC scheme

permits location tracking, tag impersonation, server impersonation, and backward

traceability, because of the linear properties of a cyclic redundancy code (CRC)

that is used as a checksum algorithm. In addition, the use of a short length (16-bit)

CRC allows desynchronisation by DoS attacks and does not guarantee unequivocal

tag identification [52]. The properties of the protocol are summarised in Tables 5.1

and 5.2.

62

5.13 The Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-Ribagorda
Protocol

S Ti
[Ti : EPCi, ki, pi, k̂i, p̂i] [EPCi, ki, pi]
Generate r1

r1
−−− →

Generate r2
M1 = h(EPCi ‖ r1 ‖ r2)⊕ ki

r2,M1

← −−−
Exhaustive search
to find EPCi
s.t. M1 ⊕ ki =
h(EPCi ‖ r1 ‖ r2)

Compute
M2 = h(EPCi ‖ r2)⊕ pi

M2

−−− → Verify

Update M2 ⊕ pi
?
= h(EPCi ‖ r2)

k̂i ← ki
p̂i ← pi If OK, update
ki ← f(ki) ki ← f(ki)
pi ← f(pi) pi ← f(pi)

Figure 5.13: The CC protocol

5.13 The Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-
Ribagorda Protocol

Peris-Lopez et al. [53] proposed an RFID mutual authentication protocol (referred

to here as PHER protocol) in 2007, obtained by modifying a scheme due to Shieh

et al. [62]. The PHER scheme makes use of a secure one-way hash function h.

In the scheme, a server S stores the following entries for each tag Ti: the tag identifier

IDi, the tag password pi, the server secret xi for the tag, a random index-pseudonym

ti, and the most recent old value of ti, denoted by t̂i, where ti is used as the key

to retrieve tag information. A tag Ti stores the values of ti, ai and pi, where

ai = h(IDi ⊕ xi) is computed by the server in the tag registration phase.

For mutual authentication and index-pseudonym update, the scheme uses five ex-

changed messages. When a tag Ti is queried, it generates a random number r1,

computes M1 = h(r1‖ti) and M2 = h(r1‖ai), and sends r1, M1 and M2 to the

server. The server performs an exhaustive search until it finds a value ti for which

h(r1‖ti) equals M1. If a match is found, the server computes ai = h(IDi ⊕ xi) and

63

5.13 The Peris-Lopez-Hernandez-Castro-Estevez-Tapiador-Ribagorda
Protocol

checks that the received value of M2 equals h(r1‖ai). If the check is successful, the

server generates a random number r2, computes M3 = h(r1‖r2‖ai) and sends r2 and

M3 to the tag. The tag checks that the received value of M3 = h(r1‖r2‖ai) and, if so,

it sends M4 = h(r2‖ai + 1) to the server. If the received value of M4 = h(r2‖ai + 1),

the server updates the tag index-pseudonym ti to h((r1‖r2)⊕ai⊕ti), and sends M5 =

h((r1 ⊕ r2)‖ti) back to the tag to confirm the tag index-pseudonym update. When

the tag receives M5, it computes a new index-pseudonym t′i = h((r1‖r2) ⊕ ai ⊕ ti),
and checks that the received value of M5 = h((r1 ⊕ r2)‖t′i). If the validation is

successful, the tag also updates ti to the new value t′i. The protocol is summarised

in Figure 5.14.

S Ti
[Ti : IDi, ti, t̂i, pi, xi] [ti, ai, pi]

Query
−−− →

Generate r1
M1 = h(r1‖ti)
M2 = h(r1‖ai)

Exhaustive search
r1,M1,M2

← −−−
to find ti
s.t. M1 = h(r1‖ti)
ai = h(IDi ⊕ xi)
If M2 = h(r1‖ai),
Generate r2
M3 = h(r1‖r2‖ai)

r2,M3

−−− → If M3 = h(r1‖r2‖ai),
M4 = h(r2‖ai + 1)

M4

← −−−
If M4 = h(r2‖ai + 1),
Update
t̂i ← ti
ti ← h((r1‖r2)⊕ ai ⊕ ti)
M5 = h((r1 ⊕ r2)‖ti)

M5

−−− → t′i = h((r1‖r2)⊕ ai ⊕ ti)
If M5 = h((r1 ⊕ r2)‖t′i),
Update ti ← t′i

Figure 5.14: The PHER protocol

The scheme is rather complex in that it requires the transmission of five messages.

As a result, a tag must perform six hash function computations in a session. In

addition, the tag secret ai is static, even if the tag updates ti in every successful

authentication session. Thus, backward traceability is possible. If a strong attacker

64

5.14 The Fouladgar-Afifi Protocols

intercepts all messages sent in a previous session, it can identify the values of M2, M3

and M4 that relate to the compromised tag using knowledge of ai. The properties

of the protocol are summarised in Tables 5.1 and 5.2.

5.14 The Fouladgar-Afifi Protocols

Fouladgar and Afifi [20, 21] presented two protocols for RFID tag delegation and

ownership transfer in 2007. In both schemes, a tag stores two secret keys k′i and

ki and a counter ci. The key k′i is used to compute pseudonyms, and ki is used

to update both keys. The server stores the values of IDi, k
′
i and ki for each tag.

The first scheme [21] (referred to as the FA1 protocol) uses a cryptographic hash

function h, and the second scheme (referred to as the FA2 protocol) uses a symmetric

encryption function E.

In the FA1 scheme, a server queries a tag by sending it a random number r1. If the

tag’s counter ci is not the the maximum value cmax, it increments its counter and

replies with a random number r2 and M1 = h(r2 ⊕ k′i). Otherwise, if ci = cmax, the

tag replies with r2 and M1 = h(r2⊕ki). The server identifies the tag by exhaustively

searching through its database for a key k′i or ki such that M1 = h(r2⊕ k′i) or M1 =

h(r2⊕ki). If M1 = h(r2⊕k′i), the session terminates. Otherwise, if M1 = h(r2⊕ki),
the server then generates a random number δ, computes M2 = h(δ)‖(δ⊕ h(ki)) and

sends M2 to the tag. The server also updates k′i and ki to h(k′i ⊕ δ) and h(ki ⊕ δ),
respectively. When the tag receives M2, it obtains δ from M2 and updates k′i and

ki in the same way as the server. Figure 5.15 summarises the FA1 protocol.

The new owner queries a target tag using r1, and receives a random number r2 and a

hash-based pseudonym M1 = h(r2 ⊕ k′i) in return. The new owner then sends them

to the current owner of the tag to request ownership transfer. The current owner

then instructs the tag to set its counter to the maximum possible value. As a result,

in the next session, the tag and the server of the new owner will update the copies

of tag secrets k′i and ki, using a hash function and a random number generated by

the tag.

Unfortunately, the scheme does not resist replay attacks, because a tag response

is a function of only k′i (or ki) and r2, and thus an eavesdropper can reuse the tag

65

5.14 The Fouladgar-Afifi Protocols

response to impersonate a tag. The tag keys k′i and ki are fixed until the tag counter

ci reaches cmax. This might give rise to traceability threats, if a tag is compromised.

An attacker could also perform a rapid-fire interrogation DoS attack to increment

ci up to cmax [20].

S Ti
[Ti : IDi, ki, k

′
i] [ki, k

′
i, ci, cmax]

Generate r1
r1

−−− →
Generate r2
If ci 6= cmax,
ci ← ci + 1
M1 = h(r2 ⊕ k′i)

Else
M1 = h(r2 ⊕ ki)

Exhaustive search
r2,M1

← −−−
to find IDi

s.t. M1 = h(r2 ⊕ k′i)
or M1 = h(r2 ⊕ ki)

If M1 = h(r2 ⊕ k′i),
Identify Ti
. .
Else if M1 = h(r2 ⊕ ki),
Generate δ
M2 = h(δ)‖(δ ⊕ h(ki))

M2

−−− → α‖δ = M2 ⊕ (1l‖h(ki))
Update (l : the bit-length of h(δ))
k′i ← h(k′i ⊕ δ) If α = h(δ),update
ki ← h(ki ⊕ δ) k′i ← h(k′i ⊕ δ)

ki ← h(ki ⊕ δ)
ci ← 0

Figure 5.15: The FA1 protocol

The FA2 scheme [20, 21] is similar to the FA1 scheme, except that it uses a symmetric

encryption algorithm instead of a hash function. When a tag receives a query r1,

it replies with a random number r2 and M1 = Ek′i(r1 ⊕ r2), if the tag counter

ci is not the maximum value cmax. Otherwise, if ci = cmax, the tag replies with

M1 = Eki(r1 ⊕ r2). The server identifies the tag by exhaustively searching through

its database for a key k′i or ki such that M1 = Ek′i(r1 ⊕ r2) or M1 = Eki(r1 ⊕ r2).
If M1 = Ek′i(r1 ⊕ r2), the session terminates. Otherwise, if M1 = Eki(r1 ⊕ r2), the

server then generates a random secret δ, computes M2 = Eki(r2‖δ) and transfers

66

5.15 The Tsudik Protocols

M2 to the tag. The server then updates k′i and ki to k′i ⊕ r2 ⊕ δ and ki ⊕ r2 ⊕ δ,
respectively. When the tag receives M2, it obtains δ by decrypting M2, and then

updates k′i and ki as k′i ← k′i ⊕ r2 ⊕ δ and ki ← ki ⊕ r2 ⊕ δ. Figure 5.16 summarises

the FA2 protocol.

For tag ownership transfer, the new owner queries a target tag using r1, and receives

a random number r2 and a symmetric cryptography based pseudonymM1 = Ek′i(r1⊕
r2) from the tag, and then transmits them to the current owner asking for tag

ownership to be transferred. Before transferring ownership, the server of the current

owner generates a random number, and makes both its database and the tag update

the tag secrets k′i and ki using random numbers generated by both the server and the

tag, to protect its privacy from the new owner. It then passes the updated secrets

to the new owner, along with other necessary information. To protect its privacy

from the old owner of the tag, the new owner of the tag executes another session

with the tag, thereby updating its keys. As a result, the old owner can no longer

identify the tag. The new owner can also keep the key values transferred from the

old owner if the tagged item has a warranty for after-sales service. However, the

authors do not describe in detail how the tag can recover the old key kept by the

old owner for after-sales service.

The FA2 scheme also allows replay attacks. Suppose an eavesdropper intercepts the

values of r1, r2 and M1 sent in a session. The eavesdropper can now impersonate the

tag to the server in the following way. When the server sends r1 to the eavesdropper

(impersonating the tag), the eavesdropper can reply with r′2 = r1 ⊕ r2 ⊕ r′1 and

M1. As in the FA1 scheme, if an adversary compromises a tag, then it may be

able to trace the tag’s past communications that used the same keys k′i and ki.

Also, a counter exhaustion attack is possible, exactly as for the attack on FA1. The

properties of the protocols are summarised in Tables 5.1 and 5.2.

5.15 The Tsudik Protocols

Tsudik [72] described an RFID identification protocol (referred to as the T1 protocol)

that provides a basic level of tag identification using time-stamps. Tsudik [73]

proposed two further schemes (referred to as the T2 and T3 schemes) that also

provide tag authentication. The schemes use monotonically increasing time-stamps

67

5.15 The Tsudik Protocols

S Ti
[Ti : IDi, ki, k

′
i] [ki, k

′
i, ci, cmax]

Generate r1
r1

−−− →
Generate r2
If ci 6= cmax
ci ← ci + 1
M1 = Ek′

i
(r1 ⊕ r2)

Else
M1 = Eki(r1 ⊕ r2)

Exhaustive search
r2,M1

← −−−
to find IDi

s.t. M1 = Ek′
i
(r1 ⊕ r2)

or M1 = Eki(r1 ⊕ r2)
If M1 = Ek′

i
(r1 ⊕ r2)

Identify Ti
. .
Else if M1 = Eki(r1 ⊕ r2)
Generate δ
M2 = Eki(r2‖δ)

M2

−−− → r2‖δ = Dki(M2)
Update Update
k′i ← k′i ⊕ r2 ⊕ δ k′i ← k′i ⊕ r2 ⊕ δ
ki ← ki ⊕ r2 ⊕ δ ki ← ki ⊕ r2 ⊕ δ

ci ← 0

Figure 5.16: The FA2 protocol

for tracking-resistant tag authentication, and employ a keyed hash function f .

In these three schemes, a tag stores ki, ti, and tm,i, where ki is a tag-specific secret,

ti is initially a time-stamp assigned to the tag at the time of manufacture, and tm,i

is the highest possible time-stamp. The value ki serves as both a tag identifier and

a cryptographic key. Neither ti nor tm,i need to be unique to a tag. A tag must also

possess a uniquely seeded pseudo-random number generator.

In T1, a server maintains a periodically updated hash table in which each row

contains IDi, ki, and fki(t
′
i) for a tag, where t′i is the time-stamp for the server.

The server first sends t′i to a tag Ti. If t′i ≤ ti or t′i > tm,i, the tag generates and

returns a pseudo-random number r. Otherwise, the tag updates its time stamp ti

to t′i, and replies with M1 = fki(ti). The server can identify the tag by finding M1

in its look-up table. Figure 5.17 summarises the T1 protocol.

68

5.15 The Tsudik Protocols

The T1 scheme only needs O(1) operations to identify a tag, because a hash table is

used for all look-ups (see section 4.2). However, the scheme merely identifies a tag

and does not provide tag authentication. Additionally, the scheme is susceptible to a

trivial DoS attack in which an attacker incapacitates a tag by sending it an inaccurate

future time-stamp value [73]. Moreover, the scheme makes the assumption that a

given tag is never identified (interrogated) more than once within the same time

interval [73].

S Ti
[Ti : IDi, t

′
i, ki, fki(t

′
i)] [ki, ti, tm,i]

t′i
−−− →

δ = t′i − t
If (δ ≤ 0) or (t′i > tm,i),
Generate r
M1 = r

Else
ti ← t′i
M1 = fk(ti)

Find IDi

M1

← −−−
s.t. M1 = fki(t

′
i)

Figure 5.17: The T1 protocol

The T2 scheme adds tag authentication to the T1 scheme using a challenge-response

method. When a tag Ti receives a query consisting of a time-stamp t′i and a random

number r1, it checks that t′i is a valid time-stamp. If the validation is successful,

the tag updates ti to t′i, and computes M1 = fki(ti). Otherwise, the tag generates

a pseudo-random number r2 instead of computing M1. The tag then generates a

pseudo-random number r3, computes M2 = fki(r3‖r1) and responds to the server

with r3, M1 and M2. The server identifies the tag by finding M1 in its look-up table

for the time-stamp t′i, and authenticates the tag by checking that M2 = fki(r3‖r1).
Figure 5.18 summarises the T2 protocol.

This scheme also takes constant time to identify and authenticate a tag because of

its use of a look-up table. However, if a tag has been previously desynchronised by

an attacker, it requires the server to perform O(n) operations to authenticate the

tag. The T2 scheme is also susceptible to DoS attacks, like the T1 scheme [73].

The T3 scheme mitigates the DoS vulnerability of the T1 and T2 schemes by using

69

5.15 The Tsudik Protocols

S Ti
[Ti : IDi, t

′
i, ki, fki(t

′
i)] [ki, ti, tm,i]

Generate r1
t′i,r1

−−− →
δ = t′i − t
If δ ≤ 0 or t′i > tm,i,
Generate r2
M1 = r2

Else
ti ← t′i
M1 = fk(ti)

Generate r3
M2 = fki(r3‖r1)

r3,M1,M2

← −−−
Find IDi

s.t M1 = fki(t
′
i)

and M2 = fki(r3‖r1)

Figure 5.18: The T2 protocol

a hash-chain to generate a so-called epoch token, which allows a tag to ascertain

that a time-stamp is not too far into the future.

A server generates a hash chain of length v by starting with an initial value (say, X)

and repeatedly hashing it v times to produce a root hv(X), where v = dtm,i/ωe and

ω is the epoch duration, (e.g. one day). Each tag initially stores an epoch token zi

as a root of the hash chain, hv(X).

A server generates a random number r1 and sends t′i, r1 and its epoch token z′i to

a tag. The tag checks the received values of t′i and z′i, by verifying that t′i ≥ ti

and t′i < tm,i, and that z′i = hγ(z′i), where γ = bt′i/ωc − bt/ωc. If the validations

are successful, the tag updates ti and zi to t′i and z′i, respectively. The tag then

computes M1 = fki(ti), generates r2, computes M2 = fki(r2‖r1), and sends M1,

M2, and r2 as its reply. Otherwise, the tag generates pseudo-random numbers r2,

r3 and r4, and sends them instead. The server identifies the tag by finding M1 in

its look-up table for the time-stamp t′i, and authenticates the tag by checking that

M2 = fki(r2‖r1). Figure 5.19 summarises the T2 protocol.

The server only needs to perform O(1) operations to identify and authenticate a tag,

70

5.16 The Burmester-de Medeiros-Motta Protocol

if the tag reply is valid. If not, the server takes O(n) time to authenticate a tag. For

T3, DoS attacks still remain a threat, because an adversary can incapacitate a tag

for the epoch duration ω, if it queries the tag with the current epoch token and the

maximum possible t′i within the current epoch [73]. In addition, for both T2 and T3,

the adversary can potentially distinguish between synchronised and desynchronised

tags by timing the server responses, because a synchronised tag only requires a

server to perform a quick table look-up, whereas a desynchronised tag requires it

to perform an exhaustive search. Moreover, all three of the Tsudik schemes have

backward traceability, because of their use of a fixed key ki [73]. The properties of

the protocols are summarised in Tables 5.1 and 5.2.

S Ti
[Ti : IDi, t

′
i, ki, fki(t

′
i), z

′
i] [ki, ti, tm,i, zi]

Generate r1
t′i,r1,z

′
i

−−− →
δ = t′i − ti
γ = bt′i/ωc − bti/ωc
If δ ≤ 0, t′i > tm,i or hγ(z′i) 6= zi,
Generate r2, r3, r4
M1 = r3
M2 = r4

Else
ti ← t′i
zi ← z′i
M1 = fk(ti)
Generate r2
M2 = fki(r2‖r1)

r2,M1,M2

← −−−
Find IDi

s.t M1 = fki(t
′
i)

and M2 = fki(r2‖r1)

Figure 5.19: The T3 protocol

5.16 The Burmester-de Medeiros-Motta Protocol

Burmester, de Medeiros and Motta [7] proposed an anonymous RFID authentication

protocol (referred to here as the BMM protocol) in 2008. This protocol is based on

a scheme originally proposed by van Le, Burmester and de Medeiros [76].

71

5.17 Comparisons

Each tag Ti is initially assigned a unique tuple (ki, τi, qi) of l-bit random values that

is stored in non-volatile memory; ki is its secret key, τi is a one-time pseudonym,

and qi is a seed for generating pseudonyms. The tag also has a boolean variable bi

and a cyclic counter ci that takes m distinct values. The scheme uses an appropriate

pseudo-random function g to generate values for pseudonyms, authenticators and

confirmation. For each tag, the server S stores in a key-lookup database a tuple:

ki, qi, (τi, qi, q
1
i , · · · qmi), where qji = gki(qi‖IV‖ctr(j)), IV is an initial vector, and

ctr(j) is the jth value of the cyclic counter ci described above. The server also

stores the most recent old values of the tuple to maintain state coordination with

the tag.

The state of tag Ti is controlled by the value of bi; if the tag fails to receive a

correct value of M3 from the server, bi is set to 1, otherwise bi = 0. The server

sends a random number r1 to tag Ti. The tag replies with M1 and M2; if the stored

value bi of a tag is 0, the tag’s pseudonym is M1 = τi, otherwise it computes M1 =

gki(qi‖IV‖ctr(j)). The tag also computes three values v0, v1 and v2: v0‖v1‖v2 =

gki(M1‖r1), where v0 is kept for later use as a pseudonym update, v1 is used for an

authenticator, and v2 is used for confirmation. The tag then replies to the server

with M1 and M2 = v1. The server uses its key-lookup database to identify the

tag using the received value of M1, and checks the validity of the received value of

M2 by computing v′0‖v′1‖v′2 = gki(M1‖r1). If the validation is successful, the server

sends M3 = v′2 to the tag, and updates the tuple for the tag. If the received value

of M3 = v2 and the stored value of bi = 0, then the tag updates its pseudonym τi to

v0. Otherwise, it updates its seed qi to v0. Figure 5.20 summarises the protocol.

A tag can be identified with constant-cost key lookup, thereby maintaining scalabil-

ity for the back-end server (see section 4.2). However, the scheme does not provide

backward untraceability and allows a degree of tag tracking [7]. The properties of

the protocol are summarised in Tables 5.1 and 5.2.

5.17 Comparisons

We now compare the protocols introduced above against the privacy, security and

performance requirements identified in chapter 4.

72

5.17 Comparisons

S Ti
[Ti : ki, (τi, qi, q

1
i , · · · qmi), [ki, τi, qi, bi, ci]

(τ̂i, q̂
1
i , · · · q̂mi)]

Generate r1
r1

−−− →
If bi = 0,
M1 = τi

Else
M1 = gki(qi‖IV‖ctr(j))
ci ← ci + 1

v0‖v1‖v2 = gki(M1‖r1)
M2 = v1

M1,M2

← −−−
Find (M1, ki)
v′0‖v′1‖v′2 = gki(M1‖r1)
If M2 = v′1
M3 = v′0

M3

−−− →
Update If M3 = v2
If M1 = τi If bi = 0
τ̂i ← τi, τi ← v′0 τi ← v0

Else if M1 = τ̂i Else
τi ← v′0 bi ← 0, qi ← v0

Else if M1 = qji Else

qi ← v′0, {q̂
j
i }mj=0 ← {q

j
i }mj=0 bi ← 1

{qji }mj=0 ← {gki(qi‖IV‖ctr(j))}mj=0

Else if M1 = q̂ji
qi ← v′0
{qji }mj=0 ← {gki(qi‖IV‖ctr(j))}mj=0

Figure 5.20: The BMM protocol

In Table 5.1, we give a comparison of the privacy and security properties of the

protocols. The table indicates whether or not a protocol resists privacy violations

(tag information leakage or tag location tracking), weak attacks (tag impersonation,

replay attacks, man-in-the-middle attacks, or denial-of-service attacks), and strong

attacks (backward traceability, forward traceability, or server impersonation). The

table also indicates whether a protocol provides tag authentication and/or server

authentication.

Table 5.2 gives the performance properties of the protocols. The protocols are com-

pared with respect to the tag storage, tag computation, communication and scala-

bility requirements identified in chapter 4. More specifically, the table indicates the

73

5.18 Summary

type of secrets stored in a tag, the type and number of cryptographic function com-

putations required in a tag (which are significantly more computationally complex

computations than arithmetic and logical operations), the number of pseudo-random

numbers that need to be generated in a tag, the number of exchanged messages, and

the server complexity of identifying and authenticating a tag.

Tables 5.1 and 5.2 enable the strengths and weaknesses of the protocols to be readily

assessed. For example, the LK and PHER schemes have many desirable privacy and

security properties, but require significant cryptographic function computations in

a tag and possess scalability issues; the MSW scheme requires O(log n) work for tag

identification but needs the greatest amount of tag storage and the largest number

of cryptographic function computations in a tag; the HAC, HM, D, T1, T2, T3 and

BMM schemes need only O(1) work for tag identification and authentication, but

all have critical security shortcomings.

These comparisons are intended to be helpful for implementers considering the use of

an RFID protocol, and who need to compare the privacy, security and performance

properties of a range of schemes. For example, if the application requires the number

of complex function computations in a tag to be minimised, then properties C2

and C3 in Table 5.2 will be key to their choice; alternatively, if scalability is a

critical requirement, then low complexity in column C5 is the key criterion; finally,

if minimising tag memory is particularly important, then protocols which have a

small entry in column C1 are advantageous.

5.18 Summary

We have reviewed a number of recently proposed RFID identification and authen-

tication protocols. We have also assessed their privacy, security and performance

properties against the requirements identified in chapter 4.

In the following chapters we describe a series of novel schemes which have privacy,

security and performance properties superior to those of the prior art summarised

here.

74

5.18 Summary

Table 5.1: Privacy and security properties

P1 P2 W1 W2 W3 W4 S1 S2 S3 A1 A2

HAC
√

· · · ·
√

· · · × ×
RAC

√ √
· · ·

√
· · · × ×

OSK
√ √

· · ·
√ √

· · × ×
HM

√
· · · ·

√
· · · × ◦

MW
√ √ √ √ √ √

· · · ◦ ◦
MSW

√ √
· · ·

√
· · · × ×

D
√

·
√ √ √

·
√

· · ◦ ◦
DPLK

√ √
· · · · · · · × ◦

LK
√

·
√ √ √ √ √

∗ ∗ ◦ ◦
OTYT

√
·

√
· · · · · · × ×

CC
√

· ·
√ √

· · · · × ◦
PHER

√ √ √ √ √ √
· · · ◦ ◦

FA1
√ √

· ·
√ √

· · · × ◦
FA2

√ √
· ·

√ √
· · · × ◦

T1
√ √ √ √ √

· · · · × ×
T2

√ √ √ √ √
· · · · ◦ ×

T3
√ √ √ √ √

· · · · ◦ ×
BMM

√
·

√ √ √ √
· · · ◦ ◦

P1 : tag information leakage

P2 : tag location tracking

W1 : tag impersonation

W2 : replay attack

W3 : man-in-the-middle attack

W4 : denial-of-service attack

S1 : backward traceability

S2 : forward traceability

S3 : server impersonation

A1 : tag authentication

A2 : server authentication
√

: resists such an attack

∗ : partially resists such an attack, under certain assumptions

· : does not protect against such an attack

◦ : provides the property

× : does not provide the property

75

5.18 Summary

Table 5.2: Performance properties

C1 C2 C3 C4 C5

HAC ID,HID 1HF 0 2/4 O(1)

RAC ID 1HF 1 2/3 O(n)

OSK s 2HF 0 2 O(n)

HM ID,TID,LST 3HF 0 3 O(1)

MW ID, k 2PRF 1 3 O(log n)

MSW (k0, k1, · · · , kd1), c dPRF d2 + 1 2 O(log n)

D ID 4HF 1 3 O(1)

DPLK EPC, k, p 3CRC 2 3 O(n)

LK s, wT , c,m 4PRF 1 3 O(m)

OTYT e, k 1HF 0 2/3 O(n)

CC EPC, k, p 2CRC 3 3 O(n)

PHER t, a, p 6HF 1 5 O(n)

FA1 k, k′, c, cmax 1/5HF 1 3 O(n)

FA2 k, k′, c, cmax 1/2SE 1 3 O(n)

T1 k, t, tm 1HF 0/1 2 O(1)/O(n)

T2 k, t, tm 2HF 1/2 2 O(1)/O(n)

T3 k, t, tm, z (γ + 2)HF 1/3 2 O(1)/O(n)

BMM k, τ, q, b, c 1/2PRF 0 3 O(1)

C1 : the type of secrets stored in a tag

C2 : the type and number of cryptographic function computations required in a tag

C3 : the number of pseudo-random numbers generated in a tag

C4 : the number of exchanged messages

C5 : server complexity to identify/authenticate a tag

HF : a hash function computation

PRF : a pseudo-random function computation

SE : a symmetric encryption operation

/ : or

76

Chapter 6

A Novel Security Requirement

Contents

6.1 A Novel Security Threat 78

6.1.1 RFID Protocols . 78

6.1.2 Attack Models . 78

6.1.3 Server Impersonation Attacks 79

6.2 Server Impersonation Attacks on RFID Protocols 80

6.2.1 The Henrici-Müller Protocol 80

6.2.2 The Dimitriou Protocol . 80

6.2.3 The Chien-Chen Protocol 82

6.2.4 The Lim-Kwon Protocol . 82

6.3 Countermeasures and Future Work 84

6.4 Summary . 86

In this chapter we introduce server impersonation attacks, a practical security threat

to RFID security protocols that has not previously been described. We first give a

general description of attack models and present server impersonation attacks on

synchronisation-based RFID protocols. Section 6.2 describes how a server imper-

sonation attack can bring about desynchronisation in a number of existing RFID

schemes. In section 6.3 we then propose possible countermeasures to server imper-

sonation attacks; finally, section 6.4 contains a summary of the results.

77

6.1 A Novel Security Threat

6.1 A Novel Security Threat

A variety of security and privacy threats to RFID authentication protocols have

been widely studied, including eavesdropping, replay attacks, DoS attacks, and tag

tracking, as described in chapter 4. In this section we introduce another practical

threat, namely server impersonation attacks.

In the prior art, the main purpose of authentication of the server to the tag is to com-

bat server impersonation. However, in this chapter the term server impersonation

attack is used in a very specific sense, namely to refer to desynchronisation attacks

involving impersonation of a server to a tag that are made possible by compromise

of a tag’s internal state.

6.1.1 RFID Protocols

Many protocols have been proposed for use in RFID systems (see, for example, chap-

ter 5). We focus here on RFID authentication protocols requiring synchronisation

between a tag and a server, which operate under the following assumptions as well

as the assumptions identified in section 3.3.1.

• An RFID protocol consists of three flows; typically, the first flow is a query

from a server to a tag, the second is the reply from the tag to the server for

tag authentication, and the third is the response from the server to the tag for

server authentication.

• A server and a tag share secrets used for mutual authentication. They update

the shared secrets synchronously whenever they perform a successful authenti-

cation session; a server updates its stored tag secrets after receiving the second

flow and having authenticated the tag, and the tag updates its stored secrets

after receiving the third flow and having authenticated the server.

6.1.2 Attack Models

Security threats to RFID protocols can be classified into weak and strong attacks,

as described in chapter 4. Weak attacks just rely on observing and manipulating

78

6.1 A Novel Security Threat

communications between a server and tags. Strong attacks become possible for an

attacker which has compromised a target tag. Backward traceability and forward

traceability are both examples of strong attacks. Forward traceability is related to

tag ownership transfer [41]. This is because, if an RFID scheme does not provide

forward untraceability and the ownership of a tag is transferred, then the previous

owners might be able to read communications between the new owner and the tag

[41].

In addition to these traceability threats, an SA that has compromised a tag could

impersonate a valid server using knowledge of the tag’s internal state. Such an

adversary might be able to ask the tag to update its internal state, with the effect

that the tag can no longer communicate successfully with the real server. Such a

server impersonation attack is a significant issue for secure tag ownership transfer,

as well as in relation to backward and forward traceability. For example, suppose

that an RFID protocol does not resist forward traceability and server impersonation.

Suppose further that, using this protocol, a previous tag owner has passed ownership

of a tag to a new owner, but knows the tag secrets at the time of transfer. The

previous owner might be able to use this knowledge to impersonate the new owner’s

server to the tag, and change the tag secrets after ownership transfer. As a result,

the new owner might no longer be able to read the tag successfully, and only the

previous owner would be able to identify the tag. This attack does not appear to

have been discussed previously, despite its potential importance. We discuss such

server impersonation attacks in greater detail below.

6.1.3 Server Impersonation Attacks

Server impersonation means that an adversary is able to impersonate a valid server

to a tag. One reason that this is a genuine threat is because desynchronisation can

occur if a tag updates its stored data when the server does not. More specifically,

in protocols satisfying the assumptions given in section 6.1.1, an attacker that has

read a tag’s stored secrets could impersonate an authorised server to the tag. If

the attacker executes an authentication session with the tag, impersonating a valid

server, then it could make the tag update its stored secrets, although the genuine

server will not update its stored data. The tag and the real server would then be

desynchronised, and incapable of successful communications.

79

6.2 Server Impersonation Attacks on RFID Protocols

Whether or not the compromise of tag stored secrets enables such a server imper-

sonation attack is the main focus of the next section.

6.2 Server Impersonation Attacks on RFID Protocols

Our focus here is on desynchronisation attacks arising from server impersonation

attacks, as discussed in section 6.1.3. We now review four recently proposed RFID

schemes as typical examples of protocols fitting the model given in section 6.1.1; in

each case we consider whether or not the compromise of a tag’s secret data enables

a server impersonation attack.

6.2.1 The Henrici-Müller Protocol

We first examine the HM protocol, described in section 5.4.

Server impersonation attack

It is straightforward for a strong attacker to carry out a server impersonation based

desynchronisation attack on the HM protocol. If an attacker knows the secrets stored

in a tag, i.e. IDi , TIDi and LST i, then the attacker can impersonate the server and

complete a successful authentication session with the tag. The attacker can send a

query to the target tag, receive M1, M2 and δ from the tag in reply, and then send

a valid response, r and M3, to the tag. The tag will then verify M3, and update

its stored value of IDi to IDi ◦ r, but the genuine server will not update its value

of IDi . As a result, the server and the tag will become desynchronised. Figure 6.1

summarises this server impersonation attack.

6.2.2 The Dimitriou Protocol

We next examine the D scheme, described in section 5.8.

80

6.2 Server Impersonation Attacks on RFID Protocols

Adversary Tag Ti
IDi ,TIDi ,LST i IDi ,TIDi ,LST i

Query
−−− → TID i ← TIDi + 1
M1,M2,δ
← −−−

r,M3

−−− → ID i ← IDi ◦ r
LST i ← TIDi

(After the attack) .
Server Tag Ti
HID i, IDi ,TIDi ,LST i,AE i ID i,TID i,LST i

Figure 6.1: Server impersonation attack on the HM protocol

Server impersonation attack

The D scheme is subject to a server impersonation attack analogous to that described

on the HM protocol. If an adversary knows IDi , then it can impersonate the server

to conduct an authentication session with Ti. The adversary will receive r2, M1

and M2 as a response from Ti, when it sends a query r1 to the tag. Using the

compromised tag information, the adversary can then respond with a valid M3. As

a result of receiving M3, the tag will update its copy of the identifer IDi to g(IDi);

however, the genuine server will not update its stored data. The server and the tag

will then become desynchronised. Figure 6.2 summarises this server impersonation

attack.

Adversary Tag Ti
ID i ID i

r1
−−− →
r2,M1,M2

← −−−
M3

−−− → ID i ← g(ID i)
(After the attack) .
Server Tag Ti
HID i, ID i ID i

Figure 6.2: Server impersonation attack on the D protocol

81

6.2 Server Impersonation Attacks on RFID Protocols

6.2.3 The Chien-Chen Protocol

In this section we consider the CC scheme, described in section 5.12.

Server impersonation attack

In the CC scheme, server impersonation attacks remain a practical threat to syn-

chronisation between the server and the tag.

An adversary that has read EPC i, ki and pi from a tag Ti can commence a session

with the tag by sending it a random number r1. When the tag responds with r2

and M1, the attacker is able to send the expected value of M2 back to the tag. As

a result, the tag will update both its session key ki and its access key pi. The tag

will then have stored keys that are different to those held by the server, as shown in

Figure 6.3.

Adversary Tag Ti
EPC i, ki, pi EPC i, ki, pi

r1
−−− →
r2,M1

← −−−
M2

−−− → ki ← f(ki)
pi ← f(pi)

(After the attack) .
Server Tag Ti
EPC i, ki, pi, k̂i, p̂i EPC i, ki, pi

Figure 6.3: Server impersonation attack on the CC protocol

6.2.4 The Lim-Kwon Protocol

In this section we consider the LK scheme, described in section 5.10.

Server impersonation attack

In the LK scheme, the server possesses a value wi,S that is used to authenticate the

server to the tag, which the tag does not possess. This means that an adversary

82

6.2 Server Impersonation Attacks on RFID Protocols

that has compromised a tag is not able to impersonate a server to the tag using an

approach analogous to those described above for the other three protocols. That is,

an adversary cannot masquerade as a valid server to a tag Ti, even if it knows both

the tag secret si and wi,T , because it does not know wi,S and hence is unable to

compute M3.

However, a server impersonation attack could still be feasible if an adversary per-

forms a more elaborate attack; if an adversary first performs a DoS attack or a tag

impersonation attack in a previous valid authentication session, and obtains wi,S

from the messages sent in this session (using the compromised tag secret si), it

could subsequently carry out a server impersonation attack in a session with the

tag, as long as no valid session has been performed since the tag compromise. Such

an attack will cause desynchronisation between the server and tag.

We describe two possible server impersonation based desynchronisation attacks on

the LK protocol of this general type. In both cases we assume that the adversary

has compromised the tag secrets si and wi,T before launching the attack.

• Server impersonation attack after a DoS attack

Suppose that an adversary is able to eavesdrop on communications in a normal

authentication session between the tag and a server, and also prevent the third

flow from reaching the tag. As a result, the server will refresh the tag secret si

to s̆i = g(si ⊕ (wi,S ‖ r1 ‖ r2)), but the tag will update its stored tag secret si

to ṡi = g(si). The adversary can now compute the server authentication secret

wi,S from M3 using the compromised tag secret si, as shown in Figure 6.4(a),

and then calculate the session key ṡi that the tag currently stores. The ad-

versary can now start a new session with the tag, impersonating the server to

the tag. If this authentication session is successful, then the tag will refresh its

session key to s̃i = g(ṡi ⊕ (wi,S ‖ r′1 ‖ r′2)), but the server will not change its

stored values for the tag. As a result of combining a DoS attack and a server

impersonation attack, the server and the tag will become desynchronised.

• Server impersonation attack after a tag impersonation attack

An attacker that knows the secret values for a tag Ti, i.e. si and wi,T , can

easily impersonate the tag to a server as follows. When a server sends a query

r1 to the tag, the attacker impersonates the tag to reply with r2,M1 and M2.

83

6.3 Countermeasures and Future Work

The server will then send M3 to the attacker, and will update its copy of the

tag secret from si to s̆i = g(si ⊕ (wi,S ‖ r1 ‖ r2)). The attacker is now able to

compute the server secret wi,S from M3. As a result, the attacker is capable of

impersonating the server to commence a separate session with the tag. If the

session between the attacker and the tag completes successfully, the tag will

refresh its session key to s̃i = g(si ⊕ (wi,S ‖ r′1 ‖ r′2)). However, the real server

will keep the value s̆i as the session key for the tag. Authentication between

the server and the tag will now be impossible. This attack is summarised in

Figure 6.4(b).

However, both the attacks we have just described are rather complex, and may be

difficult to conduct in practice.

6.3 Countermeasures and Future Work

Once an RFID tag’s stored secrets have been compromised, it is difficult to prevent

server impersonation based desynchronisation attacks, as we have shown in our

analysis of four existing RFID protocols in section 6.2.

We could attempt to design more robust RFID protocols that make such server

impersonation attacks more difficult to perform. If an RFID protocol uses a digital

signature scheme for authentication of a server to a tag, then a SA is unable to

impersonate the server to a tag just by compromising the tag. However, the use of

public key cryptography may be beyond the capabilities of many tags.

Another possible countermeasure involves a tag storing the most recent old secrets

as well as its current secrets, as proposed for the server DB. As a result, the

protocol would be more resistant to a desynchronisation threat caused by a server

impersonation attack; an adversary would have to carry out at least two sessions

to succeed in such a desynchronisation attack. However, such an approach might

increase tag cost.

A further possible alternative approach would be to require the server to possess a

secret that is used for server authentication to a tag and that is not known to the tag,

like the value wi,S in the LK protocol. In this latter protocol, the server possesses

tag-specific secrets wi,S , which the tag does not have. The tag can authenticate the

84

6.3 Countermeasures and Future Work

Server Adversary Compromised Tag: Ti

Session (1) .

[si, {tki }m−1
k=0 , ui, vi, wi,S , wi,T], [si, wi,T] [si, wi,T , ci,m]

[ŝi, {t̂ki }m−1
k=0 , v̂i, ŵi,S , ŵi,T]

r1
−−−−−−−−−−−− →

r2,M1,M2

← −−−−−−−−−−−−
M3

−−− → (Block)
Refresh
s̆i ← g(si ⊕ (wi,S ‖ r1 ‖ r2)) wi,S ←M3 ⊕ f(si, r2 ‖ r1) Update
v̆i ← vi − 1 ṡi ← g(si) ṡi ← g(si)
w̆i,T ← wi,S

w̆i,S ← hvi(ui)
Session (2) .

[s̆i, {t̆ki }m−1
k=0 , ui, v̆i, w̆i,S , w̆i,T], [ṡi, wi,S , wi,T] [ṡi, wi,T , ci,m]

[si, {tki }m−1
k=0 , vi, wi,S , wi,T]

r′1
−−− →
r′2,M

′
1,M

′
2

← −−−
M′

3

−−− → Refresh
s̃i ← g(ṡi ⊕ (wi,S ‖ r′1 ‖ r′2))
w̃i,T ← wi,S

. .

[s̆i, {t̆ki }m−1
k=0 , ui, v̆i, w̆i,S , w̆i,T], [s̃i, w̃i,T , ci,m]

[si, {tki }m−1
k=0 , vi, wi,S , wi,T]

(a) Server impersonation attack after a DoS attack

Server Adversary Compromised Tag: Ti

Session (1) .

[si, {tki }m−1
k=0 , ui, vi, wi,S , wi,T], [si, wi,T] [si, wi,T , ci,m]

[ŝi, {t̂ki }m−1
k=0 , v̂i, ŵi,S , ŵi,T]

r1
−−− →
r2,M1,M2

← −−−
M3

−−− →
Refresh
s̆i ← g(si ⊕ (wi,S ‖ r1 ‖ r2)) wi,S ←M3 ⊕ f(si, r2 ‖ r1)
v̆i ← vi − 1
w̆i,T ← wi,S

w̆i,S ← hvi(ui)
Session (2) .

[s̆i, {t̆ki }m−1
k=0 , ui, v̆i, w̆i,S , w̆i,T], [si, wi,S , wi,T] [si, wi,T , ci,m]

[si, {tki }m−1
k=0 , vi, wi,S , wi,T]

r′1
−−− →
r′2,M

′
1,M

′
2

← −−−
M′

3

−−− → Refresh
s̃i ← g(si ⊕ (wi,S ‖ r′1 ‖ r′2))
w̃i,T ← wi,S

. .

[s̆i, {t̆ki }m−1
k=0 , ui, v̆i, w̆i,S , w̆i,T], [s̃i, w̃i,T , ci,m]

[si, {tki }m−1
k=0 , vi, wi,S , wi,T]

(b) Server impersonation attack after a tag impersonation attack

Figure 6.4: Server impersonation attacks on the LK protocol

85

6.4 Summary

server by checking that the value of wi,S sent by the server is valid, because the

value wi,T held by the tag is a hash of wi,S . Thus, such a scheme can resist server

impersonation attacks resulting from tag compromise. As described in section 6.2.4,

a server impersonation based desynchronisation attack on the LK scheme remains

possible, but the method is rather complex. This may be sufficient to make such

attacks impractical.

An important challenge for future work is to design a robust and practical RFID

protocol that is able to resist strong attacks such as server impersonation, whilst

minimising cost and maximising performance.

6.4 Summary

A server impersonation based desynchronisation attack is a feasible security threat

because RFID tag memory is typically not tamper-resistant. In this chapter we

have shown how, in cases where tag memory has been compromised, certain pre-

viously proposed RFID protocols can be desynchronised by a server impersonation

attack; such an attack is relatively straightforward to perform on the MH, D and CC

schemes, but more difficult for the LK scheme because of its use of an authentication

key known to the server but not the tag.

We have also proposed possible countermeasures designed to make an RFID pro-

tocol more resistant to such server impersonation attacks — one problem is that

implementing these measures might increase tag cost. That is, we have a trade-off

between security and cost. We conclude that server impersonation attacks should

be considered in any future security assessment of an RFID protocol.

86

Chapter 7

A Novel RFID Authentication
Protocol

Contents

7.1 Design Principles . 87

7.2 Protocol Description . 88

7.2.1 Initialisation . 88

7.2.2 Authentication Process . 89

7.2.3 Evolution of the Protocol 90

7.3 Analysis of the Protocol 91

7.3.1 Privacy and Security . 91

7.3.2 Performance . 92

7.4 Summary . 94

In this chapter we propose an RFID authentication protocol designed to address the

identified privacy and security requirements, whilst also preserving desirable per-

formance characteristics. The principles on which the novel protocol are based are

described in section 7.1, and the protocol itself is presented in section 7.2. Section 7.3

analyses the protocol and compares it to the prior art. The final section summarises

the results.

7.1 Design Principles

The goals of the new protocol are to meet the privacy and security requirements

given in chapter 4, and also to maximise performance efficiency.

87

7.2 Protocol Description

The protocol involves three messages, and uses a challenge-response approach. It

uses random numbers to give anonymity for each tag response, as in the CC and

LK protocols (see chapter 5). The server database stores both the most recent

and the current data for each tag to protect against desynchronisation between the

server and tags, like the HM, CC and LK protocols. If the authentication procedure

is successful, then the server and tag refresh their shared secrets probabilistically

using exchanged random numbers, thereby providing untraceability, as in the LK

protocol.

One of the main features of the protocol is that a random number generated by a

tag serves as a temporary secret for the tag. Another feature is that a tag only

needs to store an identifier, where this identifier is the cryptographic hash of a bit-

string assigned to the tag. The server database stores tag bit-strings as well as tag

identifiers. The bit-string is used for server validation.

We use the following notation in the protocol description.

h A hash function, h : {0, 1}∗ → {0, 1}l

f A keyed hash function, f : {0, 1}∗ × {0, 1}l → {0, 1}l (a MAC algorithm)

l The bit-length of a tag identifier

si A string of l bits assigned to the ith tag Ti

ti Tag Ti’s identifier of l bits, which equals h(si)

r A random string of l bits

7.2 Protocol Description

We now introduce the novel authentication protocol, which is summarised in Fig-

ure 7.1.

7.2.1 Initialisation

The following steps must be performed prior to using the protocol.

• A server assigns a string si of l bits to each tag Ti, computes ti = h(si),

and stores ti in the tag. The string length l should be large enough so that an

88

7.2 Protocol Description

exhaustive search to find the l-bit values ti and si is computationally infeasible

(e.g. l = 64, 96 or 128).

• The server stores the entries (si, ti, ŝi, t̂i) for every tag that it manages. ŝi and

t̂i are the previously assigned values for si and ti, respectively. Initially (ŝi, t̂i)

is set to null.

7.2.2 Authentication Process

The protocol involves the following sequence of steps.

1. A server generates a random l-bit string r1 and sends it to Ti.

2. The tag Ti generates a random l-bit string r2 as a temporary secret for the

session, and computes M1 = ti ⊕ r2 and M2 = fti(r1‖r2). Ti then sends r1,

M1 and M2 to the server.

3. When the server receives the values M1 and M2 from the tag, it performs the

following steps.

(a) The server searches its database as follows.

i. It chooses the next value ti from amongst the values ti or t̂i stored

in the database.

ii. It computes M ′2 = fti(r1‖(M1 ⊕ ti)).

iii. If M ′2 = M2, then it has identified and authenticated Ti. It then goes

to step (c). Otherwise, it returns to step i.

(b) If no match is found, the server stops the session.

(c) The server computes r2 = M1 ⊕ ti and M3 = s⊕ fti(r2‖r1) and sends r1

and M3 to the tag.

(d) The server updates ŝi and t̂i for the tag Ti to the current value of si and

ti respectively, and then updates si and ti so that si ← (si � l/4)⊕(ti �
l/4)⊕ r1 ⊕ r2 and ti ← h(si).

4. When Ti receives the value M3, it computes si = M3 ⊕ fti(r2‖r1) and checks

that h(si) = ti. If the check succeeds, the tag has authenticated the server,

and sets ti ← h((si � l/4) ⊕ (ti � l/4) ⊕ r1 ⊕ r2). If the check fails, the tag

keeps the current value of ti unchanged.

89

7.2 Protocol Description

S Ti
[Ti : si, ti, ŝi, t̂i] [ti]
Generate r1

r1
−−− →

Generate r2
M1 = ti ⊕ r2
M2 = fti(r1‖r2)

r1,M1,M2

← −−−
Find ti in the DB
s.t. M2 = fti(r1‖(M1 ⊕ ti))

r2 = M1 ⊕ ti
M3 = s⊕ fti(r2‖r1)

r1,M3

−−− →
ŝi ← s si = M3 ⊕ fti(r2‖r1)
t̂i ← ti If h(si) = ti,
si ← (si � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r2 ti ← h((si � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r2)
ti ← h(si)

Figure 7.1: The authentication protocol

7.2.3 Evolution of the Protocol

The protocol proposed above is a revised version of a protocol (referred to as the SM

protocol) we originally proposed in [65]. In [9, 75], attacks are described on the SM

protocol; tag impersonation, server impersonation and desynchronisation by DoS

attacks are all possible, which arise because the XOR operation is used to construct

each of messages M1, M2 and M3.

Cai et al. [9] presented a revised scheme designed to resist such attacks, in which the

construction of M2 uses concatenation instead of XOR, and M3 uses a hash function

h(r2) instead of (r2 � l/2).

The protocol presented in section 7.2 is a further revision of the original SM protocol.

The scheme incorporates the following changes from the original version.

• The construction of M2 has changed from fti(r1 ⊕ r2) to fti(r1‖r2). This is

the same as in the updated scheme introduced by Cai et al. [9].

• The construction of M3 has changed from si ⊕ (r2 � l/2) to si ⊕ fti(r2‖r1).

90

7.3 Analysis of the Protocol

7.3 Analysis of the Protocol

We analyse the protocol described in section 7.2 against the requirements identified

in chapter 4.

7.3.1 Privacy and Security

The protocol has the following privacy and security properties.

• Tag Information Privacy: the detailed information of tag Ti is stored in the

database of the server, which is assumed to be secure. Thus, only a legitimate

server that has information related to the tag can extract a tag identifier ti from

the pair (M1, M2) sent by Ti, and can then access the information associated

with the tag.

• Tag Location Privacy: the responses of the tag Ti are anonymous, since the

tag only ever sends pairs (M1, M2), which cannot be linked to any particular

tag. In other words, the eavesdropper can neither link tag responses to pre-

vious responses from the same tag, nor distinguish one tag’s responses from

another’s. It is thus difficult to track the location of a tag.

• Tag Impersonation attack: for a WA to impersonate Ti, it must be able to

compute a valid response (M1, M2) to a reader query. However, it is hard to

compute such a valid pair without knowledge of ti. Of course, an SA is able

to clone a tag.

• Replay attack: the scheme is a challenge-response authentication protocol

using random numbers to resist replay attacks. The messages M1,M2 and M3

are functions of freshly generated nonces r1 and r2, and thus these messages

cannot be reused in other sessions.

• DoS attack: if the message M3 is blocked and does not reach the tag, the

shared secrets of the server and Ti might become desynchronised, since the

server will refresh si and ti but the tag Ti will keep the current value of ti.

However, the server maintains both the old and new values of si and ti for

each tag Ti in its database, so that the server can resynchronise with the tag

in such a situation.

91

7.3 Analysis of the Protocol

• Backward Traceability: an SA cannot identify the past interactions of Ti,

even if it knows Ti’s present internal state. That is, an attacker is unable

to discover the previous identifiers of Ti because they are the cryptographic

hashes of values not available to the tag.

• Forward Traceability: the scheme provides forward untraceability if a strong

attacker misses M3 just once in a single successful authentication session after

compromising Ti’s secret. That is, if the attacker cannot prevent Ti from

receiving the last message M3, or does not have access to all the values r1, r2

and si that are needed to refresh ti, then it cannot compute the new identifier

and track future transactions.

• Server Impersonation attack: a legitimate server responds with a message

M3 to a tag in order to enable the tag to authenticate the server. An SA cannot

create a valid M3 without knowing si, and thus is unable to impersonate a

legitimate server to Ti just by compromising ti. However, if an attacker has

access to all the exchanged messages and knows the value of ti used in a

single authentication session, it can compute the refreshed si for the following

session. Hence, our protocol only resists such an attack on the assumption

that an adversary does not have access to at least one of the values r1, M1

and M3 in an authentication session that is performed between an authorised

server and a tag, for which the adversary knows the tag’s secret ti.

Table 7.1 compares the protocol with six of the schemes introduced in chapter 5

with respect to the privacy and security properties discussed in chapter 4. The six

schemes have been selected for comparison since they and the protocol proposed

here all involve three flows and use a challenge-response approach.

It is clear from Table 7.1 that the proposed protocol satisfies a greater number of

the privacy and security properties than any of the previously proposed schemes.

7.3.2 Performance

The DPLK, CC and LK schemes and the novel protocol all update the secrets shared

between a server and a tag in every successful session in the same order; moreover, in

each of these schemes the server database stores both the most recent and the current

92

7.3 Analysis of the Protocol

Table 7.1: Privacy and security properties

Property HM MW D DPLK CC LK Sec. 7.2

Information leakage
√ √ √ √ √ √ √

Location tracking ·
√

·
√

· ·
√

Tag impersonation ·
√ √

· ·
√ √

Replay attack ·
√ √

·
√ √ √

DoS attack
√ √

· · ·
√ √

Backward traceability · ·
√

· ·
√ √

Forward traceability · · · · · ∗ ∗
Server impersonation · · · · · ∗ ∗

√
: resists such an attack

∗ : partially resist such an attack, under certain assumptions

· : does not protect against such an attack

data for each tag. These schemes also all use pseudo-random number generators and

checksum algorithms to protect the integrity of messages.

We compare the storage and computation requirements of both a server and a tag for

these four protocols. Table 7.2 gives the storage needed in the server database and

the memory required in a tag for each of these protocols. In the case of the database,

we restrict our attention to the storage required to support tag authentication.

Table 7.2 indicates that the protocol given in section 7.2 requires the least tag-side

memory of the four protocols assessed.

In order to compare the computational requirements of the four protocols, we take

into account the checksum algorithms and secret updating functions that require the

most computation in each protocol. The DPLK and CC protocols for the EPCglobal

Class-1 Gen-2 RFID tag make use of a CRC as a checksum algorithm, which is

efficient but less cryptographically strong, whereas the LK scheme uses pseudo-

random functions (PRFs), and the protocol given in section 7.2 uses hash functions

for checksum computation and secret updates, which provide enhanced security.

Table 7.3 compares the number of times each such function is computed in these

protocols, under the assumption that they utilise the same algorithm.

From Table 7.3 it follows that the protocol given in section 7.2 requires the same

number of complex function invocations for the tag as the other three protocols.

To sum up, the novel protocol has tag storage advantages over the DPLK, CC and

93

7.4 Summary

LK schemes, whilst also providing the identified privacy and security properties.

Table 7.2: Storage requirements
Storage DPLK CC LK Sec. 7.2

Server (l + l1 + l2)n (l + 2l1 + 2l2)n 2(l + 3l3 +ml4)n 4ln

Tag l + l1 + l2 l + l1 + l2 l + l3 + 2l5 l

n : The number of tags
m : The maximum number of authentication failures in the LK protocol (e.g., m = 64 [41])
l : The bit-length of a tag identifier (e.g., l = 64, 96 or 128 [10, 41])
l1 : The bit-length of a PIN in the DPLK and CC protocols (e.g., l1 = 32 [10])
l2 : The bit-length of a session key in the DPLK and CC protocols (e.g., l2 = 16 [10])
l3 : The bit-length of a server validator in the LK protocol (e.g., l3 = 32 [41])
l4 : The bit-length of a tag secret transmitted in the LK protocol (e.g., l4 = 32 [41])
l5 : The bit-length of the number m and a tag counter in the LK protocol (e.g., l5 = 7 [41])

Table 7.3: Computation requirements
Computation DPLK CC LK Sec. 7.2

On receiving the 2nd flow (k + 1)F kF (k1 + 1)F kF
Server On sending the 3rd flow 1F 1F 1F 1F

On updating or refreshing 1F 2F (k1 + k2 +m)F 1F
Total (k + 3)F (k + 3)F (2k1 + k2 +m+ 2)F (k + 2)F

On sending the 2nd flow 2F 1F 1F 1F
Tag On receiving the 3rd flow 1F 1F 2F 2F

On updating or refreshing 1F 2F 1F 1F
Total 4F 4F 4F 4F

F : A computationally complex function (such as a CRC, PRF or hash function)
m : The maximum number of authentication failures in the LK protocol (e.g., m = 64 [41])
v : The length of the backward key chain in the LK protocol (e.g., v = 220 [41])
k : An integer satisfying 1 ≤ k ≤ 2n
k1 : An integer satisfying 0 ≤ k1 ≤ m− 1
k2 : An integer satisfying 0 ≤ k2 ≤ v − 2

7.4 Summary

We have presented a new RFID authentication protocol designed to meet the re-

quirements identified in chapter 4. This scheme is a revised version of a previously

proposed protocol [65], which has been successfully attacked [9, 75].

The novel protocol has been compared with existing schemes with respect to both

its privacy and security properties and its storage and computational requirements.

The comparisons have shown that the protocol described here is both more secure

94

7.4 Summary

than previously proposed schemes and has practical advantages over them, because it

provides the greatest number of identified privacy and security features and requires

the least tag-side storage.

95

Chapter 8

RFID Tag Ownership Transfer
Protocols

Contents

8.1 Tag Ownership Transfer 97

8.2 RFID Protocols for Tag Ownership Transfer 98

8.2.1 Tag Ownership Transfer and Secret Update 98

8.2.2 Authorisation Recovery . 100

8.3 Analysis of the Protocols 101

8.3.1 Privacy and Security . 101

8.3.2 Performance . 102

8.3.3 Tag Ownership Transfer . 103

8.4 Summary . 104

In this chapter we examine the requirements for secure tag ownership transfer, and

propose RFID authentication protocols satisfying these requirements. Section 8.1

describes the specific requirements for tag ownership transfer. Section 8.2 proposes

new protocols for secure tag ownership transfer, designed to provide the identified

properties. In the following section, the privacy and security properties of the proto-

cols are analysed, together with their performance characteristics; the protocols for

tag ownership transfer are also compared with the prior art. Section 8.4 concludes

this chapter.

96

8.1 Tag Ownership Transfer

8.1 Tag Ownership Transfer

One functional requirement for RFID systems is secure tag ownership transfer, as

described in chapter 4. In some applications, an RFID tag may change its owner a

number of times during its lifetime. Ownership transfer means that the server of the

new owner takes over tag authorisation, and so needs to be given the necessary pri-

vate information to securely interact with and identify the tag. Thus all information

associated with the tag will need to be passed from the old to the new owner.

However, at the moment of tag ownership transfer, both the old and new owners

have the information necessary to authenticate a tag, and this fact may cause an

infringement of tag owner privacy. More specifically, if the previous owner is ma-

licious, it may still be able to read the tag using retained tag information after

transfer, and/or trace the new owner’s transactions with the tag. That is, the pri-

vacy of the new owner might be compromised by the previous owner. Conversely,

if the new owner is malicious, then it might be able to trace the previous owner’s

past transactions with the tag. That is, the privacy of the previous owner might be

compromised by the new owner.

The following requirements for secure tag ownership transfer have been identified [20,

41, 50]:

• New Owner Privacy: Once ownership of a tag has been transferred to a

new owner, only the new owner should be able to identify and control the tag.

The previous owner of the tag should no longer be able to identify or trace the

tag.

• Old Owner Privacy: When ownership of a tag has been transferred to a new

owner, the new owner of a tag should not be able to trace past interactions

between the tag and its previous owner.

• Authorisation Recovery: In some special cases, the previous owner of a tag

might need to temporarily recover the means to interact with it. For example,

suppose that a customer has bought an RFID tagged item with guarantee

provided by the retailer. If the customer finds a fault in the item, it will need

to be returned to the retailer for repair or replacement. In such a case the

retailer should be able to identify the item and check that it originally sold

97

8.2 RFID Protocols for Tag Ownership Transfer

this item with an after-sales guarantee [20]. That is, the current owner of

the tag should be able to transfer its authorisation rights over the tag to the

previous owner.

The possible need for authorisation recovery in an RFID system was first raised

in [20, 21]. However, it seems that no concrete protocol to address this possible

requirement has been proposed. In the next section, we introduce RFID protocols

for tag ownership transfer which support this requirement.

8.2 RFID Protocols for Tag Ownership Transfer

We propose RFID authentication protocols fulfilling the requirements described in

section 8.1. We first introduce a secret update protocol that operates in conjunction

with the protocol introduced in chapter 7 (referred to here as P1). We next present

a novel authentication protocol designed to provide authorisation recovery.

The protocols are revised versions of protocols we previously proposed in [63]. The

revisions have been made because the original protocols are based on the SM pro-

tocol, which has been shown to possess vulnerabilities (see also chapter 7).

The protocols introduced in this chapter work under the assumptions identified in

sections 3.3.1 and 3.3.2. The protocols use one hash function h : {0, 1}∗ → {0, 1}l

and two keyed hash functions f : {0, 1}∗×{0, 1}l → {0, 1}l and g : {0, 1}∗×{0, 1}l →
{0, 1}2l.

8.2.1 Tag Ownership Transfer and Secret Update

The owner of a tag can identify and authenticate it, and update its secrets, using P1.

When tag ownership is to be transferred, the following process is performed. The

current owner transfers all the information related to the tag, except for the most

recent secrets (ŝ, t̂), to the new owner via a secure channel. This information transfer

should take place after the current owner has updated the secrets shared between

its server and the tag, in order to protect its privacy against possible tracking by

the new owner.

98

8.2 RFID Protocols for Tag Ownership Transfer

Once an entity has received all the tag information, it has ownership of the tag.

However, in order to provide new owner privacy, as discussed in section 8.1, the

server of the new owner needs to execute another protocol to establish new secrets

with the tag.

A new owner can perform P1 to update the tag secrets. However, we propose

using a novel secret update protocol (referred to as P2) to improve performance. In

this protocol the cryptographic function computations performed by a tag, and the

messages exchanged between a server and a tag, are less than in P1.

Prior to running P2, we assume that the server S of the new owner of tag T has

the pair of current secrets (s, t) for T , obtained as a result of the tag information

transfer; we also suppose that T has identifier t. The secret update protocol P2

involves the following steps.

1. S generates a new secret s′ of l bits for T , and computes t′ = h(s′). S generates

a random string rS , computes MS = gt(rS) ⊕ (s‖t′), and then sends rS and

MS to T .

2. When T receives rS and MS from S, it performs the following steps:

(a) T computes (s‖t′) = MS ⊕ gt(rS).

(b) If h(s) = t, T has authenticated S as an authorised server. Otherwise,

the session terminates.

(c) T updates its secret t to t′, and generates a random string rT of l bits.

(d) T computes MT = ft(rS‖rT) using the new secret t, and sends rT and

MT to S.

3. S checks that MT is equal to ft′(rS‖rT). If the validation succeeds, S now

knows that T has received the new secret t′, and updates secrets s and t for T

to s′ and t′, respectively. Otherwise, S goes to step 1, and starts a new session.

If P2 completes successfully (and the old owner does not eavesdrop on the messages),

then S and T will share new secrets known only to them, and the old owner is no

longer able to identify or trace T . Both the old and new owners can also keep the

pair of the tag secrets provided by the old owner, denoted by (ṡ, ṫ), for use in the

event that the old owner needs to identify T again. P2 is summarised in Figure 8.1.

99

8.2 RFID Protocols for Tag Ownership Transfer

S T
[T : s, t] [t]
Generate s′

t′ = h(s′)
Generate rS
MS = gt(rS)⊕ (s‖t′)

rS ,MS

−−− → (s‖t′) = MS ⊕ gt(rS)
If h(s) = t,
t← t′

Generate rT
MT = ft(rS‖rT)

If MT = ft′(rS‖rT),
rT ,MT

← −−−
ṡ← s, ṫ← t
s← s′, t← t′

Figure 8.1: Secret update protocol

8.2.2 Authorisation Recovery

As discussed above, the previous owner of a tag may need to temporarily interact

with the tag again. The following authentication protocol (referred to as P3) enables

this to occur.

P3 enables server S to make T change its secret back to the value it had when S

took ownership of T from the old owner. Prior to running P3, we assume that S

stores the following information for tag T : the current secrets (s, t), the most recent

secrets (ŝ, t̂), and the old secrets also known to the old owner (ṡ, ṫ); we also suppose

that tag T has identifier t.

P3 is the same as P2 except that t′ is set equal to ṫ without the step generating new

secrets s′ and t′. After successful execution of P3, T stores ṫ as its identifier. As a

result, the old owner can identify T again.

The current owner can recover authorisation rights over T from the old owner by

executing P2.

100

8.3 Analysis of the Protocols

8.3 Analysis of the Protocols

We evaluate the protocols proposed in section 8.2, namely P2 and P3, with respect

to privacy, security, performance and tag ownership transfer, using the requirements

presented in sections 4.1, 4.2 and 8.1.

8.3.1 Privacy and Security

P2 and P3 are mutual authentication protocols. In these schemes, when tag T re-

ceives rS and MS from server S, T authenticates S by obtaining s from the messages

and checking that h(s) = t. This works because s is a secret specific to T known

only by S. S authenticates T by checking that the received MT is correct, since it

is computed using a shared secret t which is known only to T and S. S can also

confirm that T has the same new secret t′ as S.

The schemes protect against tag information leakage because T ’s responses are a

function of its secret t, and thus only the server that knows the secret is able to

identify T and access the tag information. The schemes protect against tag location

tracking because T ’s responses are anonymous, since they are a hash of random

strings rS and rT , and are independent of one another.

The messages exchanged between the server and tag are computed using random

strings rS and rT , secrets t and s, and keyed hash functions f and g. Thus, the

protocols can resist replay attacks and man-in-the-middle attacks. To impersonate

a tag, an attacker must be able to compute a valid response MT . However, it is

difficult to compute such a message without knowledge of the secret t, because an

attacker cannot learn the updated key t′ from the value MS sent by S, and thus

cannot compute MT since it is a function of t′.

Denial-of-service attacks are not practical in P2 and P3. S knows the identity of

a tag when it starts a session with the tag, and the purpose of these schemes is to

update the tag secrets. Thus, if S does not receive a tag reply to its query, it can

immediately detect the error and fix it. Suppose that message MT does not reach S

in P2 (or P3). Then T will update its identifier, but S will not. However, S knows

the updated value of t, and can recover synchronisation with T using it.

101

8.3 Analysis of the Protocols

Suppose that a tag T is compromised after P2 has been performed. The protocols do

not enable backward traceability, because, in P2, T ’s new secret t′ does not have any

relationship to previous keys, and then, in P1, it is updated using a non-invertible

hash function h. The schemes also resist forward traceability if an adversary does not

obtain the values r1, M1 or M3 exchanged between the server and tag in P1, because

t is updated using r1, r2 and s after every successful session (see also chapter 7).

Even if an adversary has compromised T , it cannot impersonate a legitimate server

in P2 or P3 without additional information. This is because the server’s message

MS is a function of the secret s known only to the server, and the adversary cannot

obtain this value, even if it compromises T . To succeed in such an attack, the

adversary must first perform other attacks to obtain s.

In Table 8.1, the privacy and security properties of P2 and P3 are compared to five

schemes introduced in chapter 5. The five schemes have been selected for comparison

since they and the protocol proposed here all involve tag authentication and secret

update processes for tag ownership transfer. The table shows that the proposed

schemes address the identified privacy and security threats.

Table 8.1: Privacy and security properties
LK OTYT FA1 FA2 P1 P2/P3

Tag information leakage
√ √ √ √ √ √

Tag location tracking · ·
√ √ √ √

Tag impersonation
√ √

· ·
√ √

Replay attack
√

· · ·
√ √

Man-in-the-middle attack
√

·
√ √ √ √

Denial-of-service attack
√

·
√ √ √ √

Backward traceability
√

· · ·
√ √

Forward traceability ∗ · · · ∗ ∗
Server impersonation ∗ · · · ∗ ∗

√
: resists such an attack

∗ : partially resists such an attack, under certain assumptions

· : does not protect against such an attack

8.3.2 Performance

P2 and P3 are efficient in terms of non-volatile memory and communication require-

ments, because a tag only needs l bits of non-volatile memory to store its secret t, and

only two messages need to be exchanged to provide mutual authentication between

102

8.3 Analysis of the Protocols

the server and tag.

P2 and P3 have modest computational requirements. The only cryptographic com-

putations (which are significantly more computationally complex computations than

arithmetic and logical operations) required by P2 or P3 are at most three hash func-

tion computations in the tag and the server. In P2, both T and S need to compute

each of h, f and g once. In P3, T needs to compute each of h, f and g once, and S

needs to compute f and g once.

Therefore, in order to update a tag’s secrets after transfer of ownership, performing

P2 is more economical than performing P1 again.

Table 8.2 compares the performance characteristics of P2 and P3 with the secret

update process for the four schemes analysed in Table 8.1. The table indicates

the type and number of cryptographic function computations required of a tag, the

type and number of entries stored in tag non-volatile memory, and the number of

exchanged messages in each protocol.

Table 8.2: Performance of secret update protocol
LK OTYT FA1 FA2 P1 P2/P3

Tag computations 4PRF 1HF 5HF 2SE 4HF 3HF

Tag storage s, wT , c,m e, k k, k′, c, cmax k, k′, c, cmax t t

Message flows 3 3 3 3 3 2

8.3.3 Tag Ownership Transfer

The protocols proposed in section 8.2 meet the three requirements for tag ownership

transfer identified in section 8.1.

First, P2 is designed to protect the privacy of the new owner from the old owner

of a tag T . That is, future interactions between the new owner and T are secure

against tracing by the old owner. When ownership of T is transferred to the new

owner, the new owner and T establish new secrets using P2. As a result, the old

owner is no longer able to read T .

Next, the protocols also protect the privacy of the old owner from the new owner of

T . The old owner should update secrets s and t for T using P2, before transferring

the updated secrets to the new owner. As a result, the new owner cannot trace

103

8.4 Summary

previous transactions between the old owner and the tag since it only knows the

updated secrets.

Finally, P3 provides authorisation recovery, the third requirement described in sec-

tion 8.1. P3 causes T to change its secret t to ṫ, which the new owner received

from the old owner when ownership of T was transferred. As a result, the old owner

recovers authorisation rights for T , and thus can read T again and look up the tag

information.

We compare the novel protocols to seven of the the previously proposed schemes

introduced in chapter 5, in each of which tag ownership transfer is addressed. Ta-

ble 8.3 provides a comparison of the novel protocols with these schemes with respect

to the security of tag ownership transfer. The new protocols provide all the identified

properties.

Table 8.3: Properties for tag ownership transfer
MSW SIS1 SIS2 LK OTYT FA1 FA2 Sec. 8.2

New owner privacy × ◦ ◦ ◦ ◦ × ◦ ◦
Old owner privacy × × × × ◦ × ◦ ◦
Authorisation recovery × × × × × × × ◦

◦ : provides such a property

× : does not provide such a property

8.4 Summary

In some RFID applications it is necessary to support transfer of tag ownership. We

have identified three requirements for secure and privacy-preserving tag ownership

transfer: new owner privacy, old owner privacy, and authorisation recovery. We

have proposed novel RFID authentication protocols for tag ownership transfer that

meet these requirements. The scheme consists of three protocols: an authentication

protocol (P1), a secret update protocol (P2), and an authorisation recovery protocol

(P3). We believe that P3 is the first proposed practical authentication scheme for

authorisation recovery.

We have also analysed and compared P2 and P3 to the prior art. The schemes

satisfy the identified privacy and security requirements. P2 and P3 have desirable

performance characteristics; a tag needs less non-volatile memory than in previously

104

8.4 Summary

proposed schemes, performs just three hash function computations, and the number

of messages exchanged between the tag and the server is only two, with mutual

authentication. P1, P2 and P3 also provide all the identified requirements for tag

ownership transfer.

105

Chapter 9

A Scalable RFID Pseudonym
Protocol

Contents

9.1 Scalability Issues . 107

9.2 A Novel RFID Authentication Protocol 108

9.2.1 Main Features . 108

9.2.2 Initialisation . 109

9.2.3 Authentication and Secret Update 110

9.3 Tag Delegation and Ownership Transfer 112

9.4 Analysis of the Protocol 114

9.4.1 Privacy and Security . 114

9.4.2 Performance . 117

9.5 Summary . 119

This chapter considers the issue of scalability in anonymous RFID authentication

protocols. We propose a novel RFID authentication protocol with desirable scalability

properties, and that meets the identified desirable privacy, security and performance

properties. We first, in section 9.1, introduce scalability issues in pseudonym pro-

tocols. In sections 9.2 and 9.3 we then present a novel scalable protocol, and in

section 9.4 we analyse it against the identified requirements. Finally, in section 9.5,

we summarise the contributions of this chapter.

106

9.1 Scalability Issues

9.1 Scalability Issues

One approach to protecting against privacy and security threats in RFID systems

is to use a tag authentication scheme in which a tag is both identified and verified

in a manner that does not reveal the tag identity to an eavesdropper. A large

number of tag authentication protocols of this type have been proposed. Typically,

pseudonyms are used to provide anonymity to tags; whenever a tag is queried, it

responds with a different cryptographically derived pseudonym. In some of these

pseudonym-based protocols, see for example the OSK, DPLK, OTYT, CC, PHER,

FA1 and FA2 protocols, a server must perform a linear search of its database to

identify a tag. That is, for each tag entry in the database in turn, it computes the

pseudonym that would be produced by that tag (using stored secrets) and compares

it with the received pseudonym. Such a linear search runs in O(n) time, where n

is the number of elements in the database (see section 4.2). Such a costly search

function will potentially cause scalability issues as the tag population increases.

As discussed in section 4.2, scalability is a desirable property in almost any system,

enabling it to handle growing amounts of work in a graceful manner [6]. A scal-

able RFID system should be able to handle large numbers of tags without undue

strain, and a scalable RFID protocol should therefore avoid any requirement for

work proportional to the number of tags.

Some RFID pseudonym schemes, see for example the HM, D, LK, T1, T2, T3, and

BMM protocols, require only O(1) work to identify a tag (see section 4.2). Most

such schemes use look-up tables to match a value with a pseudonym received from

a tag, thereby taking constant time without the need for a linear search. However,

all previously proposed schemes of this type possess significant security, privacy or

performance shortcomings, as discussed in chapter 5.

An alternative means of improving the scalability of an RFID system is delegation

(see section 4.3). Tag delegation involves giving authorised entities the right to query

and identify certain tags during a specified period. This clearly has the potential to

reduce the server’s workload. The MSW, LK, FA1 and FA2 schemes are examples

of protocols supporting delegation.

In this chapter, we propose an RFID pseudonym protocol providing scalability that

107

9.2 A Novel RFID Authentication Protocol

possesses two features, namely that a server takes only constant time to identify a

tag, and that tag delegation is straightforward.

9.2 A Novel RFID Authentication Protocol

We introduce here a new RFID authentication protocol. This protocol provides

scalability as well as satisfying the privacy, security and performance properties given

in chapter 4. The RFID protocols considered here operate under the assumptions

identified in sections 3.3.1 and 3.3.2.

9.2.1 Main Features

The protocol has the following main features:

• To improve scalability, the protocol makes use of a precomputed look-up table

for tag authentication, as in the HM, D, LK, T1, T2, T3, and BMM schemes.

As a result, the server takes O(1) work to identify and authenticate a tag,

without needing a linear search (see section 4.2).

• The look-up table contains a number of entries for each tag, one for each

element of a tag-specific hash-chain. Elements from this hash-chain are used

as tag identifiers (and as database keys to identify tags). A keyed hash function

is used to generate each hash-chain, using a secret key shared by the tag and

server. The hash-chain length, m, determines the number of tag identifiers

that can be produced using any one key.

• The operation of the protocol, described in greater detail below, can be divided

into three cases, as follows (see also Table 9.1):

1. Case 1: for each of the first m − 1 queries of a tag, the protocol pro-

cess only involves tag authentication and requires just two messages. To

authenticate a tag, the server searches a look-up table, taking constant

time.

2. Case 2: on the mth query of a tag, the protocol updates the secrets

shared by the server and tag, as well as providing tag authentication.

108

9.2 A Novel RFID Authentication Protocol

This process requires an additional message. The server takes O(1) work

to authenticate a tag, as in case 1.

3. Case 3: if a tag is queried more than m times, which should not normally

happen, then the protocol requires the server to perform a linear search

with complexity O(n).

Table 9.1: Operation of the protocol

Query number 1, · · · , (m− 1) m (m+ 1), · · ·
Operation Case 1 Case 2 Case 3

State Regular state Irregular state

• In case 3 of the protocol, we apply the protocol defined in chapter 7 (referred

to here as P1).

• In normal operation (cases 1 and 2), a tag does not need to generate pseudo-

random numbers; however, in case 3, a pseudo-random number is needed to

prevent tag tracking.

• For server authentication (in cases 2 and 3), for each tag the server holds a

secret s that only it knows, as in the LK scheme and P1.

9.2.2 Initialisation

The server S chooses values for l and lr and functions e, f , g and h as follows.

• l is the bit-length of a tag identifier and a shared key. It should be large

enough to ensure that an l-bit key is a strong cryptographic key for the keyed

hash functions, and in particular that an exhaustive search to find an l-bit tag

identifier is computationally infeasible.

• lr (≤ l) is the bit-length of a random string. It should be large enough to

ensure that an exhaustive search to find an lr-bit value is computationally

infeasible.

• e : {0, 1}∗ × {0, 1}l → {0, 1}l, f : {0, 1}∗ × {0, 1}l → {0, 1}l and g : {0, 1}∗ ×
{0, 1}l → {0, 1}3l are keyed hash functions.

109

9.2 A Novel RFID Authentication Protocol

• h is a hash function, h : {0, 1}∗ → {0, 1}l.

The server S builds a look-up table which is used for tag identification. The table

definition process involves the following steps for each tag T managed by S.

• S chooses a random l-bit string s, and computes the l-bit key k = h(s), where

s is used for server authentication and k is used as input to the keyed hash

functions e, f and g.

• S chooses a random l-bit string x0, and computes the hash-chain values xi =

ek(xi−1) for 1 ≤ i ≤ m, where the values xi are used as tag identifiers and m

is the length of the hash-chain.

• S stores s, k and the identifiers x0, x1, · · · , xm as the entries for T in its look-up

table.

Each tag T stores k, x and xm, where x is initially set to x0 and functions as T ’s

identifier.

9.2.3 Authentication and Secret Update

The novel protocol has three different stages in line with the cases described in sec-

tion 9.2.1: tag authentication, secret update (I) and secret update (II). The stages

are as follows (see also Figure 9.1).

Case 1: Tag Authentication

S generates a random lr-bit string r, and sends r to T .

1. When T receives r, it compares its stored values of x and xm. If x 6= xm, then

the following steps are performed.

(a) T computes MT = fk(r‖x) and updates its identifier x to ek(x). T sends

r, x and MT back to S. If the updated x is equal to xm, T waits for a

server response, keeping r and MT in short term memory.

(b) When S receives x and MT , it performs the following steps.

110

9.2 A Novel RFID Authentication Protocol

i. S searches its look-up table for a value xi equal to the received value

of x. If such a value is found, S identifies T . Otherwise, the session

terminates.

ii. S checks that fk(r‖xi−1) equals the received value of MT , where k is

the key belonging to the identified tag T . If this verification succeeds,

then S authenticates T . Otherwise, the session terminates.

iii. If x 6= xm, then the authentication session terminates successfully.

Case 2: Secret Update (I)

iv. If x = xm, then S performs the following steps to update the secrets

for T .

A. S chooses a random l-bit string s′ and an integer m′, and com-

putes a key k′ = h(s′) and a sequence of m′ identifiers x′i =

ek′(x
′
i−1) for 1 ≤ i ≤ m′, where x′0 is set to x. (These values can

be precomputed.)

B. S computes MS = gk(r‖x‖MT) ⊕ (s‖k′‖x′m′), and sends r and

MS to T .

C. S updates the set of stored values for T from (ŝ, k̂, s, k, x0,

x1, x2, · · · , xm) to (s, k, s′, k′, x, x′1, x
′
2, · · · , x′m′), where ŝ and k̂

are the most recent previous values of s and k, respectively.

(c) When T receives r and MS , it computes (s‖k′‖x′m′) = MS⊕gk(r‖x‖MT).

If h(s) is equal to k, T authenticates S and updates k and xm to k′ and

x′m′ , respectively. (The secret update session then terminates success-

fully.) Otherwise, the session terminates.

Case 3: Secret Update (II)

2. When T receives r, if T ’s stored values of x and xm are equal, then the following

steps are performed. (This irregular case arises if T did not update its shared

secrets correctly in the previous session, that is, if the secret update (I) step

fails.)

(a) T generates a random number rT as a session secret, and computes M1 =

fk(r‖rT) and M2 = rT ⊕ x. T sends r, M1 and M2 back to S with a

request for an update of the shared secrets. T waits for a server response,

keeping r, rT and M1 in short term memory.

111

9.3 Tag Delegation and Ownership Transfer

(b) When S receives M1 and M2, the following steps are performed.

i. S searches its look-up table for a value x = xm or x = x0 for which

M1 = fk(r‖(M2 ⊕ x)). If such a value is found, S authenticates T .

Otherwise, the session terminates.

ii. If x = xm, S performs the following steps. (This case arises when,

although T sent x = xm to S in the previous session, S did not

receive it correctly. Thus, neither S nor T have updated their shared

secrets.)

A. S chooses a random l-bit string s′ and an integer m′, and com-

putes a key k′ = h(s′) and a sequence of m′ identifiers x′i =

ek′(x
′
i−1) for 1 ≤ i ≤ m′, where x′0 is set to x. (These values can

be precomputed.)

B. S computes rT = M2 ⊕ x and MS = gk(r‖rT ‖M1)⊕ (s‖k′‖x′m′),
and sends r and MS to T .

C. S updates the set of stored values for T from (ŝ, k̂, s, k, x0,

x1, x2, · · · , xm) to (s, k, s′, k′, x, x′1, x
′
2, · · · , x′m′).

iii. If x = x0, S computes rT = M2 ⊕ x and MS = gk̂(r‖rT ‖M1) ⊕
(ŝ‖k‖xm) and sends r and MS to T . (This case arises if MS did not

reach T correctly in the previous session, and thus T did not update

its secrets, although S did. That is, this step resynchronises S and

T .)

(c) When T receives r and MS , it computes (s‖k′‖x′m′) = MS⊕gk(r‖rT ‖M1).

If h(s) is equal to k, T authenticates S and updates k and xm to k′ and

x′m′ , respectively. (The secret update session then terminates success-

fully.) Otherwise, the session terminates.

9.3 Tag Delegation and Ownership Transfer

Tag delegation enables a server to delegate the right to identify and authenticate a

tag to a specified entity for a limited time period [41, 45]. Such a procedure could

be used to reduce the computational load on a server.

In the protocol described in section 9.2, tag delegation is straightforward. When

S wants to delegate T to an entity, it transfers the secret k and the identifiers

112

9.3 Tag Delegation and Ownership Transfer

S T

[T : ŝ, k̂, s, k, (x0, · · · , xi, · · · , xm)] [k, x, xm]
Generate r

r
−−− →

If x 6= xm,
MT = fk(r‖x)
x← ek(x)

Case 1:
r,x,MT

← −−−
Find xi = x in the DB
Check MT = fk(r‖xi−1)
. .
Case 2:
If x = xm,
MS = gk(r‖x‖MT)⊕ (s‖k′‖x′m′)

r,MS

−−− →
Update secrets for T (s‖k′‖x′m′) = MS ⊕ gk(r‖x‖MT)

ŝ← s, k̂ ← k If h(s) = k,
s← s′, k ← k′ k ← k′

x0 ← x xm ← x′m′

xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′)

If x = xm,
Generate rT
M1 = fk(r‖rT)
M2 = rT ⊕ x

Case 3:
r,M1,M2

← −−−
Search for x = xm(or x0)
for which M1 = fk(r‖(M2 ⊕ x))
rT = M2 ⊕ x
If x = xm,
MS = gk(r‖rT ‖M1)⊕ (s‖k′‖x′m′)

If x = x0,
MS = gk̂(r‖rT ‖M1)⊕ (ŝ‖k‖xm)

r,MS

−−− →
Update secrets for T (s‖k′‖x′m′) = MS ⊕ gk(r‖rT ‖M1)
s← s′ If h(s) = k,
k ← k′ k ← k′

x0 ← x xm ← x′m′

xi (1 ≤ i ≤ m)← x′i (1 ≤ i ≤ m′)

Figure 9.1: RFID authentication and secret update

113

9.4 Analysis of the Protocol

x0, x1, · · · , xm for T to the entity via a secure channel. As a result, the entity can

authenticate T a maximum of m times. However, the entity receiving the delegation

right cannot update the tag secrets, as it does not know s.

Multiple delegations of a tag T are also possible. If S transfers the secret k and

the identifiers x0, x1, · · · , xm for T to multiple entities, then these entities can all

authenticate T during the same limited period, that is, until x = xm is reached.

If the delegated tag T is queried m times, then S will need to update T ’s secret and

identifiers and, if necessary, S can now delegate the right to query the tag again.

Note that it is always necessary for S to update the tag secret and identifiers, since,

as noted above, only S knows s.

Unlike delegation, tag ownership transfer means that the tag owner transfers all

rights over the tag to a new owner [41, 45]. In order to achieve ownership transfer

of T , S must transfer the secrets s and k and the identifiers x0, x1, · · · , xm for T ,

along with any other necessary information, to the new owner via a secure channel.

This transfer should only take place after the old owner has updated the secrets

and identifiers for T , in order to protect its privacy against possible tracking by the

new owner. The server of the new owner should also update the tag secrets after

receiving them from the old owner, in order to protect its privacy against possible

tracking by the old owner. This update needs to take place in an environment where

there is no possibility of eavesdropping by the old owner. Once this is complete, only

the server of the new owner will be able to authenticate T and update the secrets

for T .

9.4 Analysis of the Protocol

9.4.1 Privacy and Security

The protocol proposed in section 9.2 involves performing a tag authentication (TA)

process to authenticate a tag. When a tag is queried for the mth time, the server

and tag update their shared secrets using the secret update (I) (SU1) process. If

SU1 does not complete successfully, in the following session the secret update (II)

(SU2) process is performed. SU1 and SU2 make use of a key transfer protocol and

involve mutual authentication.

114

9.4 Analysis of the Protocol

Note that both TA (case 1) and SU1 (case 2) are ‘normal’ cases of the protocol, but

SU2 (case 3) will only occur if the protocol fails to operate as it should. This case

arises if a message transfer in SU1 fails.

The security of the protocol relies on the tag secrets k and s and the hash functions e,

f , g and h. Under the assumption that the l-bit key k is a strong cryptographic key

for e, f and g, an exhaustive search to find the l-bit values s and x is computationally

infeasible. Also, given that hash functions e, f , g and h are one-way and collision-

resistant, as assumed in section 3.3.2, the protocol has the following privacy and

security properties.

• Tag Information Privacy (P1): we assume that the server database is secure.

Thus only the server that has the secrets related to a tag can identify the tag

and access the tag information.

• Tag Location Privacy (P2): a tag reply (x,MT) is anonymous to an eaves-

dropper that does not know k, because x is updated to ek(x) in every query

and MT depends on x. A tag reply (M1,M2) in SU2 is also anonymous to an

eavesdropper, because M1 and M2 are computed using the key k and a session

secret rT . As a result, an adversary cannot track the location of a tag simply

by eavesdropping on tag messages.

The protocol resists the following attacks feasible for a WA.

• Tag Impersonation (W1): to impersonate a tag, a WA needs to compute x and

MT (or M1 and M2). However, a WA cannot compute them without knowing

k.

• Replay Attack (W2): a WA cannot reuse messages used in previous sessions

because each response is a cryptographic function of a fresh random number.

More specifically, MT and MS in TA and SU1 depend on r, and M1, M2 and

MS in SU2 depend on r and rT .

• MitM Attack (W3): a WA cannot interfere with the exchanged messages by

inserting or modifying messages, because of the use of the secrets k and s and

random numbers r and rT .

115

9.4 Analysis of the Protocol

• DoS Attack (W4): if the second or third message in SU1 is blocked, SU2 will be

performed in the following session. If the third message MS in SU2 is blocked,

the server and tag will become desynchronised, because the server will update

the shared secrets but the tag will not. However, in the next session, the server

will detect such an event, because the tag will send as identifier the value x0

in the server’s look-up table. The server can thus recover synchronisation with

the tag.

We next consider the degree to which the protocol can resist the security threats

posed by an SA, identified in section 4.1.

• Backward Traceability (S1): one significant feature of the protocol is that,

when x = xi in TA, MT is computed as a function of xi−1. As a result, it

is difficult for an SA to trace transactions in previous sessions except for the

immediately previous session in which xi is included in the tag reply. An SA

could intercept a tag identifier from a previous transaction, and compute the

compromised identifier x by iteratively applying keyed hash function e to the

previous identifier. However, the previous transactions were anonymous to the

attacker at that time. Thus, in practice, tracing past transactions will not be

simple. Obviously, if tag past transactions were computed using keys different

from the compromised key k, it will be infeasible for an SA to trace them,

because the previous keys will have no relation to the key k.

• Forward Traceability (S2): an SA can trace future transactions in which the

compromised key is used. However, once the server and the compromised tag

update their shared secrets, and assuming that the SA does not intercept the

value of MS sent from the server, it will not be able to compute the updated

secrets and thus will no longer be able to trace tag transactions. Therefore, a

server should immediately replace the tag secrets if it suspects that a tag may

have been compromised.

• Server Impersonation (S3): an SA could try to update the secrets of a tar-

get tag by impersonating a legitimate server. If such an attack was possible,

then the legitimate server would no longer be able to identify the tag, whereas

the attacker would. One advantage of the protocol is that such a server im-

personation attack is not straightforward. The reason for this is that an SA

116

9.4 Analysis of the Protocol

cannot compute MS just by compromising a tag, because s is known only

by the server. An SA must perform a more sophisticated attack in which it

intercepts MS in order to learn s.

Table 9.2 summarises the protocol’s privacy and security properties, and compares

the protocol to seven of the previously proposed schemes introduced in chapter 5.

These seven protocols have been selected for comparison since they and the protocol

proposed here all are designed to take only O(1) work to identify a tag, using a

precomputed look-up table, when they are in regular states.

Table 9.2: Privacy and security properties
P1 P2 W1 W2 W3 W4 S1 S2 S3

HM
√

· · · ·
√

· · ·
D

√
·

√ √ √
·

√
· ·

LK
√

·
√ √ √ √ √

∗ ∗
T1

√ √ √ √ √
· · · ·

T2
√ √ √ √ √

· · · ·
T3

√ √ √ √ √
· · · ·

BMM
√

·
√ √ √ √

· · ·
TA

√ √ √ √ √ √
∗ ∗ ∗

SU1
√ √ √ √ √ √

∗ ∗ ∗
SU2

√ √ √ √ √ √ √
∗ ∗

√
: resists such an attack

∗ : partially resists such an attack, under certain assumptions

· : does not protect against such an attack

9.4.2 Performance

The protocol proposed in section 9.2 has the following performance characteristics.

• Scalability: a server uses a look-up table for tag identification. As a result,

a server can match a received anonymous identifier to a tag using its look-up

table in O(1) time, without needing a linear search. The protocol is scalable

in the sense that a server only takes constant time to authenticate a tag, and

tag delegation is straightforward, as stated in section 9.3. However, if a tag

is queried more than m times without updating the tag secrets (case 3), the

tag will reply with M1 and M2, and in this case the server needs to perform a

linear search to authenticate the tag.

117

9.4 Analysis of the Protocol

• Computation: in normal operation, i.e. when using TA and SU1, a tag does

not need to generate any pseudo-random numbers. However, in SU2, a tag

needs to generate a pseudo-random number in order to resist being traced. A

tag needs to perform two hash function computations in the most common

case (TA), four hash function computations in SU1, and three hash function

computations in SU2. A server performs only one hash function computation

in TA. In SU1 and SU2, a server must perform m′ hash function computations

in order to generate a new secret and new identifiers for a tag; fortunately

these values can be precomputed.

• Communication: TA involves only two messages. SU1 and SU2 require one

additional message.

• Storage Capacity: a tag needs a long term memory of 3l bits to store k, x and

xm.

The performance of the protocol is compared to the prior art in Table 9.3. The com-

parison shows that the performance of the proposed protocol compares favourably

with existing schemes.

Table 9.3: Performance properties
C1 C2 C3 C4

HM ID ,TID ,LST 3HF 0 3

D ID 4HF 1 3

LK s, wT , c,m 4PRF 1 3

T1 k, t, tm 1HF 0/1 2

T2 k, t, tm 2HF 1/2 2

T3 k, t, tm (γ+2)HF 1/3 2

BMM k, τ, q, b, c 1/2PRF 0 3

TA 2HF 0 2
SU1 k, x, xm 4HF 0 3
SU2 3HF 1 3

C1 : The type of secrets stored in a tag

C2 : The type and number of cryptographic computations required in a tag

C3 : The number of pseudo-random numbers required in a tag

C4 : The number of exchanged messages

118

9.5 Summary

9.5 Summary

The main contribution of this chapter is to propose a scalable RFID pseudonym

protocol that meets the identified privacy and security requirements. The proto-

col has two features supporting scalability; a server takes only O(1) work for tag

authentication, and tag delegation is straightforward.

The protocol is divided into regular and irregular states. The regular state has two

variants: tag authentication and secret update (I). In both cases, the server takes

constant time to authenticate a tag. An irregular state occurs if the secret update

(I) process fails. In such a case, the secret update (II) process is required. This

process applies the protocol proposed in chapter 7.

We have compared the protocol to previously proposed scalable RFID protocols

which take only constant time to identify a tag using a look-up table. The proposed

scalable protocol is practical and provides the identified privacy and security prop-

erties. Tag authentication involves only two messages, and the secret update (I) and

(II) procedures require only one more message. A tag does not need to generate any

pseudo-random numbers in a regular session. The computational and storage loads

on a tag are reasonable by comparison with the prior art. A server can perform in

advance the most complex computations needed to update the shared secrets. In ad-

dition, the scheme protects against the identified privacy threats and weak attacks,

and also provides partial security against the identified strong attacks.

119

Chapter 10

Conclusions

Contents

10.1 Research Achievements . 120

10.2 Future Work . 123

In this chapter we summarise the contributions of the thesis and identify directions

for future research.

10.1 Research Achievements

This thesis is concerned with RFID authentication protocols that use symmetric

cryptographic techniques to protect messages exchanged over an insecure radio fre-

quency interface.

The main achievements of this research can be summarised as follows.

• In chapter 4 we have established privacy, security and performance require-

ments for RFID protocols, as well as functional requirements. The privacy

requirements cover tag information privacy and tag location privacy. The se-

curity requirements cover resistance to both weak and strong attacks, that

is, resistance to tag impersonation, replay attacks, man-in-the-middle attacks,

denial-of-service attacks, backward traceability, forward traceability and server

impersonation. The performance requirements relate to tag storage capacity,

tag computation, communication and scalability. The additional functional

120

10.1 Research Achievements

requirements involve tag delegation and tag ownership transfer.

• In chapter 5 we have reviewed a total of 20 recently proposed RFID identifica-

tion and authentication protocols. We have also assessed their privacy, security

and performance properties against the requirements identified in chapter 4.

We have assessed whether or not they provide the identified privacy and secu-

rity properties. We have also summarised their performance properties; more

specifically, we have evaluated the type of secrets stored in a tag, the type and

number of cryptographic function computations required in a tag, the number

of pseudo-random numbers that need to be generated in a tag, the number of

exchanged messages and the complexity of the server computations to identify

and authenticate a tag.

• In chapter 6 we have introduced the concept of server impersonation as a novel

type of strong attack. A server impersonation based desynchronisation attack

is a feasible security threat because RFID tag memory is typically not tamper-

resistant. We have shown how, in cases where tag memory has been compro-

mised, certain previously proposed RFID protocols can be desynchronised by

a server impersonation attack; such an attack is relatively straightforward to

perform on the MH, D and CC schemes, but more difficult for the LK scheme

because of its use of an authentication key known to the server but not the tag.

We have also proposed possible countermeasures designed to make an RFID

protocol more resistant to such server impersonation attacks — one problem

is that implementing these measures might increase tag cost. That is, we have

a trade-off between security and cost.

• In chapter 7 we have proposed a new RFID authentication protocol designed

to meet the requirements identified in chapter 4. The novel protocol has been

compared with existing schemes with respect to both its privacy and security

properties and its storage and computational requirements. The comparisons

have shown that the proposed protocol is both more secure than previously

proposed schemes and has practical advantages over them, because it provides

the greatest number of identified privacy and security features and requires

the least tag-side storage.

• In chapter 8 we have discussed tag ownership transfer. We first identified

three requirements for secure and privacy-preserving tag ownership transfer:

121

10.1 Research Achievements

new owner privacy, old owner privacy, and authorisation recovery. We next

proposed novel RFID authentication protocols for tag ownership transfer that

meet these requirements. The scheme consists of three protocols: an authen-

tication protocol (P1), a secret update protocol (P2), and an authorisation

recovery protocol (P3). The scheme proposed in chapter 7 is used for P1. We

believe that P3 is the first proposed practical authentication scheme for autho-

risation recovery. We have also analysed and compared P2 and P3 to the prior

art. The schemes satisfy the privacy and security requirements identified in

chapter 4. P2 and P3 have desirable performance characteristics; a tag needs

less non-volatile memory than in previously proposed schemes, performs just

three hash function computations, and the number of messages exchanged be-

tween the tag and the server is only two, with mutual authentication. P1, P2

and P3 also provide all the identified requirements for tag ownership transfer.

• In chapter 9 we have considered scalability issues in RFID systems. We have

proposed a scalable RFID pseudonym protocol that meets the identified pri-

vacy and security requirements. The protocol has two features supporting

scalability; a server takes only O(1) work for tag authentication, and tag del-

egation is straightforward. The protocol is divided into regular and irregular

states. The regular state has two variants: tag authentication and secret up-

date (I). In both cases, the server takes constant time to authenticate a tag.

An irregular state occurs if the secret update (I) process fails. In such a case,

the secret update (II) process is required. This process applies the protocol

proposed in chapter 7. We have compared the protocol to previously proposed

scalable RFID protocols which take only constant time to identify a tag using

a look-up table. The proposed scalable protocol is practical; tag authentica-

tion involves only two messages, and the secret update (I) and (II) procedures

require only one more message; a tag does not need to generate any pseudo-

random numbers in a regular session; the computational and storage loads on

a tag are reasonable by comparison with the prior art; a server can perform in

advance the most complex computations needed to update the shared secrets.

In addition, the scheme protects against the identified privacy threats and

weak attacks, and also provides partial security against the identified strong

attacks.

122

10.2 Future Work

10.2 Future Work

There are many possible topics for further study within the general area of RFID

security. We mention four possible directions relating to work described in this

thesis.

• This thesis only considers RFID protocols using symmetric cryptography, and

primarily those using hash functions. There are a number of other general

classes of RFID protocols that merit further study, including RFID protocols

using asymmetric cryptography. There could also be many attacks on RFID

systems that we have not identified. Thus, further study of such protocols and

possible attacks on them would be desirable.

• We have assumed that the channel between the back-end server and the reader

is secure. Hence, we have not dealt with security threats arising on that

channel. However, in some applications, server-reader communications may

be insecure, e.g. they may use a wireless channel. Thus, secure authentication

protocols over this channel should be studied further.

• We have studied ‘general’ RFID protocols, i.e. protocols that can be used in any

application. However, each RFID application has its own specific requirements.

For example, RFID systems for E-passport, library book management and the

supply chain have different security and performance requirements. Thus,

it would be helpful to develop requirements for specific applications, and to

specify RFID protocols to meet these requirements.

• We have not provided security proofs for the protocols proposed in this thesis.

Work on formal models for RFID systems is only just emerging [2, 8, 12, 32, 77].

Thus, devising appropriate formalism for use in specifying and analysing RFID

protocols remains a challenging and potentially fruitful topic.

123

Bibliography

[1] S. Aissi, N. Dabbous, and A. R. Prasad. Security for Mobile Networks and

Platforms. Universal Personal Communications. Artech House, Norwood, MA,

USA, 2006.

[2] G. Avoine. Cryptography in Radio Frequency Identification and Fair Exchange

Protocols. PhD thesis, Ecole Polytechnique Federale de Lausanne (EPFL),

Lausanne, Switzerland, December 2005.

[3] G. Avoine, E. Dysli, and P. Oechslin. Reducing time complexity in RFID

systems. In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography

— SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 291–

306, Kingston, Canada, August 2005. Springer-Verlag.

[4] G. Avoine and P. Oechslin. A scalable and provably secure hash based RFID

protocol. In International Workshop on Pervasive Computing and Communi-

cation Security — PerSec 2005, pages 110–114, Kauai Island, Hawaii, USA,

March 2005. IEEE Computer Society Press.

[5] H. Bar-El. Introduction to side channel attacks. White paper, Discretix Tech-

nologies Ltd., October 2002.

[6] A. Bondi. Characteristics of scalability and their impact on performance. In

the 2nd International Workshop on Software and Performance — WOSP 2000,

pages 195–203, Ottawa, Ontario, Canada, September 2000. ACM Press.

[7] M. Burmester, B. de Medeiros, and R. Motta. Anonymous RFID authentica-

tion supporting constant-cost key-lookup against active adversaries. Journal of

Applied Cryptography, 1(2):79–90, 2008.

124

BIBLIOGRAPHY

[8] M. Burmester, T. van Le, and B. de Medeiros. Provably Secure Ubiquitous

Systems: Universally Composable RFID Authentication Protocols. In the 2nd

IEEE/CreateNet International Conference on Security and Privacy for Emerg-

ing Areas in Communication Networks — SecureComm 2006, pages 1–9, Bal-

timore, Maryland, USA, August 2006. IEEE.

[9] S. Cai, Y. Li, T. Li, and R. Deng. Attacks and Improvements to an RFID

Mutual Authentication Protocol and its Extensions. In Second ACM Conference

on Wireless Network Security — WiSec’09, pages 51–58, Zurich, Switzerland,

March 2009. ACM Press.

[10] H. Chien and C. Chen. Mutual authentication protocol for RFID conforming

to EPC class 1 generation 2 standards. Computer Standards & Interfaces,

29(2):254–259, February 2007.

[11] Y. Choi, M. Kim, T. Kim, and H. Kim. Low power implementation of SHA-1

algorithm for RFID system. In IEEE Tenth International Symposium on Con-

sumer Electronics — ISCE ’06, pages 1–5, St.Petersburg, Russia, September

2006. IEEE.

[12] I. Damg̊ard and M. Østergaard. RFID Security: Tradeoffs between Security

and Efficiency. Cryptology ePrint Archive, Report 2006/234, 2006.

[13] T. Dimitriou. A lightweight RFID protocol to protect against traceability and

cloning attacks. In Conference on Security and Privacy for Emerging Areas in

Communication Networks — SecureComm 2005, pages 59–66, Athens, Greece,

September 2005. IEEE.

[14] D. N. Duc, J. Park, H. Lee, and K. Kim. Enhancing security of EPCglobal gen-

2 RFID tag against traceability and cloning. In Symposium on Cryptography

and Information Security — SCIS 2006, Hiroshima, Japan, January 2006. The

Institute of Electronics, Information and Communication Engineers.

[15] EPCglobal. EPC Standard Specification, version 1.1 rev. 1.24, April 2004.

[16] EPCglobal. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-

2 UHF RFID Protocols for Communications at 860 MHz – 960 MHz, Version

1.2.0, October 2008.

125

BIBLIOGRAPHY

[17] M. Feldhofer. Low-Power Hardware Design of Cryptographic Algorithms for

RFID Tags. PhD thesis, Graz University of Technology, Institute for Applied

Information Processing and Communications (IAIK), Graz, Austria, November

2008.

[18] M. Feldhofer and C. Rechberger. A case against currently used hash functions in

RFID protocols. In R. Meersman, Z. Tari, and P. Herrero et al., editors, On the

Move to Meaningful Internet Systems 2006 — OTM 2006 Workshops, volume

4277 of Lecture Notes in Computer Science, pages 372–381. Springer-Verlag,

November 2006.

[19] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contact-

less Smart Cards and Identification. Wiley, second edition, 2003.

[20] S. Fouladgar and H. Afifi. An efficient delegation and transfer of ownership

protocol for RFID tags. In First International EURASIP Workshop on RFID

Technology, Vienna, Austria, September 2007.

[21] S. Fouladgar and H. Afifi. A simple privacy protecting scheme enabling del-

egation and ownership transfer for RFID tags. Journal of Communications,

2(6):6–13, November 2007.

[22] S. Garfinkel, A. Juels, and R. Pappu. RFID Privacy: An Overview of Problems

and Proposed Solutions. IEEE Security and Privacy, 3(3):34–43, May-June

2005.

[23] B. Glover and H. Bhatt. RFID Essentials. O’Reilly, Gravenstein Highway

North, Sebastopol, CA, USA.

[24] T. Haver. Security and privacy in RFID applications. Master’s thesis, Norwe-

gian University of Science and Technology, Trondheim, Norway, June 2006.

[25] A. Henrici and P. Müller. Hash-based enhancement of location privacy for

radio-frequency identification devices using varying identifiers. In R. Sandhu

and R. Thomas, editors, International Workshop on Pervasive Computing and

Communication Security — PerSec 2004, pages 149–153, Orlando, Florida,

USA, March 2004. IEEE Computer Society.

[26] S. Holloway. RFID: An Introduction. Technical report, Microsoft Developer

Network, 2006.

126

BIBLIOGRAPHY

[27] International Organization for Standardisation, Genève, Switzerland. ISO

7498-2: 1989, Information processing systems — Open systems Interconnec-

tion — Basic reference model — Part 2: Security arichitecture, 1989.

[28] A. Juels. Minimalist Cryptography for Low-Cost RFID Tags. In C. Blundo and

S. Cimato, editors, International Conference on Security in Communication

Networks — SCN 2004, volume 3352 of Lecture Notes in Computer Science,

pages 149–164, Amalfi, Italia, September 2004. Springer-Verlag.

[29] A. Juels. RFID security and privacy: A research survey. IEEE Journal on

Selected Areas in Communications, 24:381–394, February 2006.

[30] A. Juels, D. Molnar, and D. Wagner. Security and Privacy Issues in E-passports.

In Conference on Security and Privacy for Emerging Areas in Communications

Networks — SecureComm 2005, pages 74–88, Athens, Greece, September 2005.

IEEE.

[31] A. Juels and S. Weis. Authenticating Pervasive Devices with Human Proto-

cols. In Victor Shoup, editor, Advances in Cryptology — CRYPTO’05, volume

3126 of Lecture Notes in Computer Science, pages 293–308, Santa Barbara,

California, USA, August 2005. Springer-Verlag.

[32] A. Juels and S. Weis. Defining Strong Privacy for RFID. In International

Conference on Pervasive Computing and Communications — PerCom 2007,

pages 342–347, New York City, New York, USA, March 2007. IEEE Computer

Society Press.

[33] S. Karthikeyan and N. Nesterenko. RFID security without extensive cryptog-

raphy. In Workshop on Security of Ad Hoc and Sensor Networks — SASN ’05,

pages 63–67, Alexandria, Virginia, USA, November 2005. ACM Press.

[34] F. Kerschbaum and A. Sorniotti. RFID-Based Supply Chain Partner Authen-

tication and Key Agreement. In Second ACM Conference on Wireless Network

Security — WiSec’09, pages 41–50, Zurich, Switzerland, March 2009. ACM

Press.

[35] J. F. Korsh. Data Structures, Algorithms and Program Style. PWS Publishing

Co., Boston, MA, USA, 1986.

127

BIBLIOGRAPHY

[36] J. Landt. Shrouds of time: The history of RFID. 1 October 2001. http:

//www.rfidconsultation.eu/docs/ficheiros/shrouds_of_time.pdf.

[37] A. Laurie. Practical attacks against RFID. Network Security, 2007(9):4–7,

September 2007.

[38] Y. Li and X. Ding. Protecting RFID Communications in Supply Chains. In the

2nd ACM Symposium on Information, Computer and Communications Security

— ASIACCS ’07, pages 234–241, Singapore, Republic of Singapore, 2007. ACM

Press.

[39] I. Liersch. Electronic passports — from secure specifications to secure imple-

mentations. Elsevier Information Security Technical Report, 14(2):96–100, May

2009.

[40] C. Lim and T. Korkishko. mCrypton — A Lightweight Block Cipher For Secu-

rity of Low-Cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung,

editors, Workshop on Information Security Applications — WISA’05, volume

3786 of Lecture Notes in Computer Science, pages 243–258, Jeju Island, South

Korea, August 2005. Springer-Verlag.

[41] C. Lim and T. Kwon. Strong and robust RFID authentication enabling per-

fect ownership transfer. In P. Ning, S. Qing, and N. Li, editors, Conference

on Information and Communications Security — ICICS ’06, volume 4307 of

Lecture Notes in Computer Science, pages 1–20, Raleigh, North Carolina, USA,

December 2006. Springer-Verlag.

[42] K. Mayes, K. Markantonakis, and G. Hancke. Transport ticketing security and

fraud controls. Elsevier Information Security Technical Report, 14(2):87–95,

May 2009.

[43] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography, volume 6 of Discrete Mathematics and Its Applications. CRC

Press, 1996.

[44] C. J. Mitchell. Cryptography for mobile security. In C. J. Mitchell, editor,

Security for Mobility, IET Telecommunications, chapter 1, pages 3–10. The

Institution of Engineering and Technology, December 2003.

128

BIBLIOGRAPHY

[45] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseudonym

protocol enabling ownership transfer of RFID tags. In B. Preneel and S. Tavares,

editors, Selected Areas in Cryptography — SAC 2005, volume 3897 of Lecture

Notes in Computer Science, pages 276–290, Kingston, Canada, August 2005.

Springer-Verlag.

[46] D. Molnar and D. Wagner. Privacy and security in library RFID: Issues, prac-

tices, and architectures. In B. Pfitzmann and P. Liu, editors, Conference on

Computer and Communications Security — ACM CCS, pages 210–219, Wash-

ington, DC, USA, October 2004. ACM Press.

[47] P. Najera and J. Lopez. RFID: Technological Issues and Privacy Concerns.

In A. Acquisti, S. Gritzalis, C. Lambrinoudakis, and S. di Vimercati, editors,

Digital Privacy: Theory, Technologies and Practices, chapter 14, pages 285–306.

Taylor & Francis Group, 2008.

[48] D. W. Nance and T. L. Naps. Introduction to Computer Science: Program-

ming, Problem Solving and Data Structures. West Publishing Company, second

edition, 1992.

[49] M. Ohkubo, K. Suzki, and S. Kinoshita. Cryptographic approach to “privacy-

friendly” tags. In RFID Privacy Workshop, MIT, MA, USA, November 2003.

http://www.rfidprivacy.us/2003/agenda.php.

[50] K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi. An efficient and secure

RFID security method with ownership transfer. In Y. Wang, Y. Cheung, and

H. Liu, editors, Computational Intelligence and Security — CIS 2006, volume

4456 of Lecture Notes in Computer Science, pages 778–787. Springer-Verlag,

September 2006.

[51] K. Ouafi and R. C.-W. Phan. Traceable Privacy of Recent Provably-Secure

RFID Protocols. In S.M. Bellovin, R. Gennaro, A. Keromytis, and M. Yung,

editors, 6th International Conference on Applied Cryptography and Network

Security — ACNS 2008, volume 5037 of Lecture Notes in Computer Science,

pages 479–489, New York City, New York, USA, June 2008. Springer-Verlag.

[52] P. Peris-Lopez, J. Hernandez-Castro, J. Estevez-Tapiador, and A. Ribagorda.

Cryptanalysis of a novel authentication protocol conforming to EPC-C1G2 stan-

dard. Computer Standards & Interfaces, 31(2):372–380, 2009.

129

BIBLIOGRAPHY

[53] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Rib-

agorda. An efficient authentication protocol for RFID systems resistant to active

attacks. In M. K. Denko, C. Shih, K. Li, S. Tsao, Q. Zeng, S. Park, Y. Ko,

S. Hung, and J. Park, editors, Emerging Directions in Embedded and Ubiqui-

tous Computing — EUC 2007 Workshops: SecUbiq, volume 4809 of Lecture

Notes in Computer Science, pages 781–794, Taipei, Taiwan, December 2007.

Springer-Verlag.

[54] R. D. Pietro and R. Molva. Information confinement, privacy, and security in

RFID systems. In J. Biskup and J. Lopez, editors, European Symposium Re-

search Computer Security — ESORICS 2007, volume 4734 of Lecture Notes

in Computer Science, pages 187–202, Dresden, Germany, September 2007.

Springer-Verlag.

[55] N. Pramstaller, C. Rechberger, and V. Rijmen. A compact FPGA implemen-

tation of the hash function Whirlpool. In ACM/SIGDA 14th International

Symposium on Field Programmable Gate Arrays — FPGA’06, pages 159–166,

New York, 2006. ACM Press.

[56] B. Preneel et al. Final report of European project IST-1999-12324: New Eu-

ropean schemes for signatures, integrity, and encryption. http://www.cosic.

esat.kuleuven.be/nessie/, April 2004.

[57] M. Rieback, B. Crispo, and A. Tanenbaum. The Evolution of RFID Security.

IEEE Pervasive Computing, 5(1):62–69, January–March 2006.

[58] R. Roman, C. Alcaraz, and J. Lopez. A survey of cryptographic primitives

and implementations for hardware-constrained sensor network nodes. Mobile

Networks and Applications, 12(4):231–244, 2007.

[59] J. Saito, K. Imamoto, and K. Sakurai. Reassignment Scheme of an RFID Tag’s

Key for Owner Transfer. In T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai, and

L.T. Yang, editors, Emerging Directions in Embedded and Ubiquitous Com-

puting — EUC 2005 Workshops, volume 3823 of Lecture Notes in Computer

Science, pages 1303–1312. Springer-Verlag, November 2005.

[60] B. Schneier. Applied Cryptography: Protocols, Algorithems, and Source Code

in C. John Wiley & Sons, Inc., New York, NY, USA, 1996.

130

BIBLIOGRAPHY

[61] A. Shamir. SQUASH — A New MAC with Provable Security Properties for

Highly Constrained Devices Such as RFID Tags. In K. Nyberg, editor, Fast Soft-

ware Encryption: 15th International Workshop — FSE 2008, Revised Selected

Papers, volume 5086 of Lecture Notes in Computer Science, pages 144–157,

Lausanne, Switzerland, February 2008. Springer-Verlag.

[62] W. Shieh and J. Wang. Efficient remote mutual authentication and key agree-

ment. Computer & Security, 25(1):72–77, 2006.

[63] B. Song. RFID Tag Ownership Transfer. In Workshop on RFID Security —

RFIDSec 08, Budapest, Hungary, July 2008.

[64] B. Song. Server Impersonation Attacks on RFID Protocols. In Second Inter-

national Conference on Mobile Ubiquitous Computing, Systems, Services and

Technologies — UBICOMM 08, pages 50–55, Valencia, Spain, October 2008.

IEEE Computer Society.

[65] B. Song and C. J. Mitchell. RFID authentication protocol for low-cost tags.

In V. D. Gligor, J. Hubaux, and R. Poovendran, editors, ACM Conference on

Wireless Network Security — WiSec ’08, pages 140–147, Alexandria, Virginia,

USA, April 2008. ACM Press.

[66] B. Song and C. J. Mitchell. Scalable RFID Pseudonym Protocol. In 3rd Interna-

tional Conference on Network & System Security — NSS 2009, pages 216–224,

Gold Coast, Queensland, Australia, October 2009. IEEE Computer Society.

[67] B. Song and C. J. Mitchell. Scalable RFID Security Protocols supporting Tag

Ownership Transfer. Computer Communications, submitted, 2009.

[68] W. Stallings. Cryptography and Netwrok Security: Principles and Practice.

Prentice Hall, Upper Saddle River, New Jersey, second edition, 1999.

[69] D. Stinson. Cryptography: Theory and Practice. CRC Press, Boca Raton,

Florida, second edition, 2002.

[70] H. Stockman. Communication by means of reflected power. Proceedings of The

Institute of Radio Engineers, 36(10):1196–1204, October 1948.

[71] F. Thornton, B. Haines, A. M. Das, H. Bhargava, A. Campbell, and J. Klein-

schmidt. RFID Security. Syngress, Massachusetts, USA, 2006.

131

BIBLIOGRAPHY

[72] G. Tsudik. YA-TRAP: Yet another trivial RFID authentication protocol. In

Fourth IEEE Annual Conference on Pervasive Computing and Communications

— PerCom 2006, pages 640–643, Pisa, Italy, March 2006. IEEE Computer

Society.

[73] G. Tsudik. A family of dunces: Trivial RFID identification and authentication

protocols. In N. Borisov and P. Golle, editors, Privacy Enhancing Technologies,

7th International Symposium — PET 2007, volume 4776 of Lecture Notes in

Computer Science, pages 45–61, Ottawa, Canada, June 2007. Springer-Verlag,

Berlin.

[74] István Vajda and Levente Buttyán. Lightweight authentication protocols for

low-cost RFID tags. In Second Workshop on Security in Ubiquitous Computing

— Ubicomp 2003, Seattle, WA, USA, October 2003.

[75] T. van Deursen and S. Radomirović. Attacks on RFID Protocols. Cryptology

ePrint Archive, Report 2008/310, July 2008.

[76] T. van Le, M. Burmester, and B. de Medeiros. Universally composable

and forward-secure RFID authentication and authenticated key exchange. In

R. Deng and P. Samarati, editors, ACM Symposium on information, Computer

and Communications Security — ASIACCS ’07, pages 242–252, New York, NY,

USA, March 2007. ACM Press.

[77] S. Vaudenay. On Privacy Models for RFID. In K. Kurosawa, editor, Advances

in Cryptology — Asiacrypt 2007, volume 4833 of Lecture Notes in Computer

Science, pages 68–87, Kuching, Malaysia, December 2007. Springer-Verlag.

[78] R. D. Vines. Wireless Security Essentials: Defending Mobile Systems from Data

Piracy. Wiley, August 2002.

[79] S. Weis, S. Sarma, R. Rivest, and D. Engels. Security and privacy aspects

of low-cost radio frequency identification systems. In D. Hutter, G. Müller,

W. Stephan, and M. Ullmann, editors, International Conference on Security in

Pervasive Computing — SPC 2003, volume 2802 of Lecture Notes in Computer

Science, pages 201–212, Boppard, Germany, March 2003. Springer-Verlag.

[80] K. Yüksel. Universal hashing for ultra-low-power cryptographic hardware ap-

plications. Master’s thesis, Dept. of Electronical Engineering, Worcester Poly-

technic Institute, Worcester, MA, USA, 2004.

132

BIBLIOGRAPHY

[81] Y. Zhang and P. Kitsos. Security in RFID and Sensor Networks. Auerbach

Publications, April 2009.

133

