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1. Monetary policy advice

1.1. Determinacy. A fundamental issue in the evaluation of alternative monetary

policy rules, especially when the structural model has forward-looking elements, is the

question of whether a proposed policy rule is associated with a determinate equilibrium

or not. Starting with the work of Sargent and Wallace (1975), it has been shown that

certain types of policy rules may be associated with very large sets of rational expectations

equilibria (REE) and that some of these equilibria may involve fluctuations in variables

like inflation and real output due solely to self-fulfilling expectations. Such rules and

the associated equilibria arguably ought to be avoided if one wishes to stabilize these

variables.1 Perhaps disconcertingly, this problem appears to be particularly acute for

policy rules which may otherwise seem to be fairly realistic in terms of actual central bank

behavior. For example, Clarida, Gali and Gertler (1998) have provided evidence which

suggests that monetary policy for the major industrialized countries since 1979 has been

forward-looking: Nominal interest rates are adjusted in response to anticipated inflation.

This empirical finding is somewhat puzzling in light of the fact that such forward-looking

rules are associated with equilibrium indeterminacy in many models (see, in particular,

Bernanke and Woodford (1997)). Similarly, in many models policy rules which call for the

monetary authority to respond aggressively to past values of endogenous variables (such

as the previous quarter’s deviations of inflation from a target level, or the output gap)

can be associated with explosive instability of rational expectations equilibrium. Yet at

the same time, such policy rules might also be thought of as fairly realistic in terms of

actual central bank behavior in some contexts. Thus, at least two empirically relevant and

seemingly ordinary-looking classes of policy rules seem to be associated with important

theoretical problems, problems which might cause one to hesitate before recommending

such rules to policymakers.

Christiano and Gust (1999), among others, have stressed the seriousness of these

theoretical concerns for the design of stabilization policy. Even aside from broad modeling

uncertainty, there is considerable sampling variability about the estimated parameters of a

given model of the macroeconomy. When a candidate class of policy rules may or may not

generate indeterminacy, or explosive instability, depending on the particular parameter

1Some of the authors that discuss this issue most recently include Bernanke and Woodford (1997),
Carlstrom and Fuerst (2000), Christiano and Gust (1999), Clarida, Gali and Gertler (2000), McCallum
and Nelson (1999), Rotemberg and Woodford (1998, 1999), and Woodford (1999).
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values of the structural model and of the policy rule, it creates something of a minefield

for policy design. One might, for instance, recommend a particular rule on the basis that

it would generate a determinate rational expectations equilibrium, and that the targeted

equilibrium would have desirable properties based on other criteria, such as utility of

the representative household in the model. And yet, in reality, important parameters

may lie (because of sampling variability alone) in a region associated with indeterminacy

of equilibrium, or with explosive instability. Actually implementing the proposed rule

could then lead to disastrous consequences. Thus, from the perspective of the design of

stabilization policy, one would greatly prefer to recommend policy rules such that, even

if the structural parameters actually take on values somewhat different from those that

might be estimated, a determinate rational expectations equilibrium is produced.

1.2. Learnability. Even when a determinate equilibrium exists, coordination on that

equilibrium cannot be assured if agents do not possess rational expectations at every point

in time. It therefore seems important to analyze these systems when agents must form

expectations concerning economic events using the actual data produced by the economy.

In general terms, the learning approach admits the possibility that expectations might

not initially be fully rational, and that, if economic agents make forecast errors and try

to correct them over time, the economy may or may not reach the REE asymptotically.

Thus, beyond showing that a particular policy rule reliably induces a determinate REE,

one needs to show the potential for agents to learn that equilibrium (see also Bullard and

Mitra (2002)). In this paper, we assume the agents of the model do not initially have

rational expectations, and that they instead form forecasts by using recursive learning

algorithms–such as recursive least squares–based on the data produced by the economy

itself. We ask whether the agents in such a world can learn the equilibria of the system

induced by different classes of monetary policy feedback rules. We use the criterion

of expectational stability (a.k.a. E-stability) to calculate whether rational expectations

equilibria are stable under real time recursive learning dynamics or not. The research

of Evans and Honkapohja (2001) and Marcet and Sargent (1989) has shown that the

expectational stability of rational expectations equilibrium governs local convergence of

real time recursive learning algorithms in a wide variety of macroeconomic models.
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1.3. The benefits of monetary policy inertia. We conclude that it is important

to recommend to central banks those policy rules which have desirable determinacy and

learnability properties, taking into consideration possible imprecision in the structural

parameters. Our main finding is that a wide variety of monetary policy rules are desirable

in this sense provided the monetary authorities move cautiously in response to unfolding

events. This is true both from the point of view of determinacy and of learnability of

equilibrium. We model this caution, or inertia, on the part of the central bank by allowing

the contemporaneous interest rate to respond to the lagged interest rate in the policy rule.

Inertia is one of the well-documented features of central bank behavior in industrialized

countries: Policymakers show a clear tendency to smooth out changes in nominal interest

rates in response to changes in economic conditions. Rudebusch (1995) has provided

one statistical analysis of this fact. More casually, actual policy moves are discussed

among central bankers and in the business press in industrialized countries as occurring

as sequences of adjustments in nominal interest rates in the same direction. This is so

much the case, in fact, that policy inertia has been the source of criticism of the efforts of

central bankers, as suggestions are sometimes made that policymakers have been unwilling

to move far enough or fast enough to respond effectively to incoming information about

the economy.

Our study provides analytical support for monetary policy inertia on equilibrium de-

terminacy and learnability in the context of a standard, small, forward-looking model

which is currently the workhorse for the study of monetary policy rules. More specifically,

we consider two variants of monetary policy feedback rules made famous by the seminal

work of Taylor (1993, 1999a, 1999b). In one case, the central bank is viewed as adjusting

a short-term nominal interest rate in response to deviations of past values of inflation and

output from some target levels and, in order to capture interest rate smoothing, we also

include a response to the deviation of the lagged interest rate from some target level. We

call this the lagged data specification. Our second specification calls for the policymakers

to react to forecasts of inflation deviations and the output gap, in addition to the lagged

interest rate, and we call this the forward-looking specification.2

In previous studies it has been observed that there are important determinacy prob-

lems with both of these rules in the absence of inertia (see Bernanke and Woodford (1997),

2We consider only these two classes of rules due to space constraints. We do discuss the robustness of
our results to a wider class of rules when appropriate.
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Bullard and Mitra (2002), and Rotemberg and Woodford (1999)). We find that by plac-

ing a sufficiently large weight on lagged interest rate deviations in each of these classes of

policy rules, the policy authorities can mitigate the threats of indeterminacy or explosive

instability, and that this is one of the primary benefits of monetary policy inertia. We

also argue that policy inertia actually promotes learnability of rational expectations equi-

librium. Our contribution is to provide analytical results to this effect and to highlight

some of the intuition behind them.

Combining our results on determinacy and learnability with the Christiano-Gust cau-

tion leads us to recommend inertial policy rules as the most promising from the perspective

of both generating determinacy and learnability of a rational expectations equilibrium.

1.4. Recent related literature. One could interpret our findings as a theory of

why monetary policy inertia is observed in industrialized economies. In particular, our

results suggest why other, non-inertial types of policies might leave the economy vulnerable

to unexpected dynamics, and hence why central banks might willingly adopt inertial

behavior. Recently, several very different theories have been proposed as to why policy

inertia might be observed, for instance Woodford (1999), Caplin and Leahy (1996), and

Sack (1998). Our results are probably best viewed as complementary to these theories.

Bullard and Mitra (2002) study the determinacy and learnability of simple monetary

policy rules, that is, of policy rules which only respond to inflation and output deviations,

but not to lagged interest rate deviations, and so do not comment on the question of

monetary policy inertia. Evans and Honkapohja (2002a) analyze learnability in a simi-

lar model, and consider different ways of implementing optimal monetary policy under

discretion, which leads to non-inertial rules.

We observe that the finding that interest-rate inertia is conducive to the existence

of determinate REE has already been noted in Rotemberg and Woodford (1999) and

Woodford (2000). Our contribution on the determinacy front is to elaborate in greater

detail the reasons for the numerical findings in Rotemberg and Woodford (1999) and to

show that the beneficial effects of inertia are true for a wider class of policy rules than

considered in Woodford (2000). In addition, our results on determinacy are also somewhat

helpful in understanding the effects of inertia on learning dynamics.

With regard to the recent empirical literature concerning policy rules, our results are

comforting since actual interest rates are often modeled by a reaction rule where the
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change in the funds rate responds to deviations of inflation and output from their typical

values (for an example in the U.S. case see Fuhrer and Moore (1995a)). This means that

the coefficient on the lagged interest rate in the policy rule is unity. The same type of

policy rules are also found to have desirable properties in terms of low output and inflation

volatility across four different structural macroeconometric models of the U.S. economy

in the study of Levin, Wieland, and Williams (1999).

1.5. Organization. In the next section we present the model analyzed throughout

the paper. We also discuss the types of linear policy feedback rules we will use to organize

our analysis, and a calibrated case which we will occasionally employ. In the subsequent

sections, we present conditions for determinacy of equilibrium for the lagged policy rule.

The conditions for determinacy of the forward rule are relegated to the appendix since,

as mentioned before, conditions similar in flavor have been noted in the literature. We

then turn to the question of learnability of REE under our various specifications. Section

5 discusses briefly the validity of the results in an extension of the basic model which

incorporates important backward looking elements. We conclude with a summary of our

findings.

2. Environment

2.1. The model. We study a simple forward-looking macroeconomic model developed

by Woodford (1999) which we write as3

xt = Êtxt+1 − σ
³
rt − rnt − Êtπt+1

´
(1)

πt = κxt + βÊtπt+1 (2)

where xt is the output gap, πt is the period t inflation rate defined as the percentage

change in the price level from t − 1 to t, and rt is the nominal interest rate; each of the

two latter variables are expressed as a deviation from the long run level. Since we will also

analyze learning we use the notation Êtπt+1 and Êtxt+1 to denote the possibly nonrational

private sector expectations of inflation and output gap next period, respectively, whereas

the same notation without the hat symbol will denote rational expectations (RE) values.

In the literature, equation (1) is sometimes called the intertemporal IS equation

whereas equation (2) is sometimes called the aggregate supply equation or the new Phillips

3See Woodford (1996) for the nonlinear model and its log-linearized version.
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curve. Equations (1) and (2) are obviously valid under rational expectations (RE) but

here we assume them to be valid even when expectations of agents are not necessarily

rational. We refer the reader to Honkapohja, Mitra, and Evans (2002) and Evans and

Honkapohja (2002b) for a discussion of the assumptions required for this to be true.

Briefly, this derivation is based on individual Euler equations under (identical) subjective

expectations of the agents. We consider this kind of behavior boundedly rational but

reasonable since agents attempt to optimize between the current and next period via the

Euler equation.4

The parameters σ, κ, and β ∈ (0, 1) are structural and assumed positive on economic
grounds; see Woodford (1999) for an interpretation of these constants. The “natural rate

of interest” rnt is an exogenous stochastic term that follows the process

rnt = ρrnt−1 + �t (3)

where �t is iid noise with variance σ2� , and 0 ≤ ρ < 1 is a serial correlation parameter.

2.2. Alternative policy rules. We close the system by supplementing equations

(1), (2), and (3), which represent the behavior of the private sector, with a policy rule

for setting the nominal interest rate representing the behavior of the monetary authority.

We stress that we view identification of classes of rules that reliably produce determinacy

and learnability as a prior exercise to locating an optimal rule according to some objective

function assigned to the central bank. Once we isolate the characteristics of rules that

reliably produce both determinacy and learnability, then one could go about finding an

optimal or best-performing rule from among the ones in this set.

Taylor (1993, 1999a) popularized the use of interest rate feedback rules that react to

information on output and inflation. Our first specification considers a case in which

interest rates are adjusted in response to last quarter’s observations on inflation and the

output gap. This is our lagged data specification for our interest rate equation:

rt = ϕππt−1 + ϕxxt−1 + ϕrrt−1. (4)

This specification is considered operational by McCallum (1999) since it does not call for

the central bank to react to contemporaneous data on output and inflation deviations.

4Recently, Preston (2002) has proposed an alternative formulation of learning in which infinite horizons
matter for individual behavior.
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Our second specification assumes that the authorities set their interest rate instrument

in response to their forecasts of output gap and inflation, so that the policy rule itself

is forward-looking. Forward-looking rules have been found to describe well the actual

behavior of monetary policymakers in countries like Germany, Japan, and the U.S. since

1979, as documented by Clarida, Gali, and Gertler (1998). We consider a simple version

of this rule, namely5

rt = ϕπÊtπt+1 + ϕxÊtxt+1 + ϕrrt−1. (5)

In the next section, we consider the determinacy of REE, and then we follow that with a

section analyzing the learnability of equilibrium. We maintain the following assumptions

throughout the paper: ϕπ ≥ 0 and ϕx ≥ 0, with at least one strictly positive, ϕr > 0,

κ > 0, σ > 0, and 0 < β < 1. We sometimes illustrate our findings using a standard

calibration of this model for which we use Woodford’s (1999) calibrated values, namely,

β = .99, σ−1 = .157, κ = .024, and ρ = .35.

3. Inertia and determinacy

3.1. Lagged data in the policy rule. We start by considering the system when

the policymaker reacts to lagged values of inflation, output, and interest rate deviations.

Non-inertial lagged data rules (i.e., rules with ϕr = 0) can easily lead to non-existence

of locally unique stationary solutions. Indeed, Bullard and Mitra (2002) note that a

sufficiently aggressive response to inflation and output deviations invariably leads to such

a situation in quantitatively important portions of the parameter space.6 We now show

that this problem need not arise if the central bank displays sufficient inertia in setting

its interest rate.

In this case, our policy rule is given by equation (4), so that the complete system is

given by equations (1), (2), (3), and (4). If yt = (xt, πt, rt)0, then this system can be put

5Similar interest rate rules also arise in the context of implementing optimal discretionary monetary
policies and nominal GDP targeting, see respectively Evans and Honkapohja (2000) and Mitra (2001). One
interpretation for this rule is that both policymakers and private agents have homogeneous expectations
and learning algorithms. Alternately, it may be that the central bank simply targets the predictions of
private sector forecasters. However, one can allow for some forms of heterogeneity in learning rules, see
Honkapohja and Mitra (2001a, 2001b).

6The interested reader can consult Figure 2 in that paper, or similarly Figure 2.15 of Rotemberg and
Woodford (1999).
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in the form

Êtyt+1 = B1yt + ςrnt , (6)

B1 =

 1 + β−1κσ −β−1σ σ

−β−1κ β−1 0
ϕx ϕπ ϕr

 . (7)

Determinacy depends on the eigenvalues of B1: Since rt is pre-determined and xt, πt are

free, equilibrium is determinate if and only exactly one eigenvalue of B1 is inside the unit

circle.7

Woodford (2000) provides necessary and sufficient conditions for determinacy of such

a system. Proposition 2 in the appendix of Woodford (2000) lists three possible sets

of conditions in terms of the characteristic polynomial of B1 under which determinacy

obtains. Specifically, he shows that a 3 × 3 matrix has exactly one eigenvalue inside the
unit circle and the remaining two outside if and only if one of three cases holds. The

cases are labelled I, II, and III. We now apply these conditions to B1. The details of these

calculations are given in Appendix A.

The following two conditions are necessary for both Cases II and III in Woodford

(2000) which also rule out Case I:

κ(ϕπ + ϕr − 1) + (1− β)ϕx > 0, (8)

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (9)

The condition (8) is precisely what Woodford (2000) calls the Taylor principle, whereby

in the event of a permanent one percent rise in inflation, the cumulative increase in the

nominal interest rate is more than one percent. However, the Taylor principle in general

does not suffice for determinacy. Another necessary condition for determinacy is condition

(9). This proves the following result:

Proposition 1. Assume that κ(ϕπ+ϕr− 1)+ (1−β)ϕx > 0 for the inertial lagged data

interest rule (4). Then a necessary condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (10)

This proposition shows that the Taylor principle is not sufficient for determinacy: It is

also necessary that the degree of inertia ϕr be large enough. If the central bank responds

7Our determinacy analysis follows conventional practice, see Blanchard and Kahn (1980).
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vigorously to inflation and output without displaying enough inertia, then the condition

for determinacy may be violated.

The conditions required for Case III in Woodford (2000) reduce to (8), (9), and8

ϕr > 2− (1 + κσ)β−1. (11)

The right hand expression in (11) is less than 1 since κ > 0, σ > 0, and 0 < β < 1.

These conditions show that a large enough value of ϕr will always result in determinacy

since this contributes to satisfaction of all of the conditions (8), (9), and (11) required for

determinacy by Case III. A value of ϕr ≥ 1 always satisfies (8) (and hence rules out Case
I) and (11), so that if ϕr also satisfies condition (9), the conditions for determinacy will

be met. Using Proposition 1 proves:

Proposition 2. Assume that ϕr ≥ 1 for the inertial lagged data interest rule (4). Then
the necessary and sufficient condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) > σ[κ(ϕπ − 1) + (1 + β)ϕx]. (12)

The analytical results given above provide intuition for a number of results obtained in

more complicated forward-looking models. For instance, Rotemberg and Woodford (1999)

found that large values of ϕr tend to be associated with a unique equilibrium. This is

easily explained by conditions (8), (9), and (11) which are sufficient for a determinate

outcome. Values of ϕr ≥ 1 automatically satisfy condition (8), and condition (11) along
with small values of κ, such as the one employed by Rotemberg and Woodford (1999),

help to satisfy condition (9) easily and create a relatively large region of determinate

equilibria.

Similarly, we can also provide intuition for the finding in McCallum and Nelson (1999,

pp. 34-35) that interest rules with large values of ϕπ or ϕx deliver dynamically stable (in

their terminology) results, so long as there is a sufficient level of policy inertia. Their

first explanation for this surprising finding can be understood from our condition (9).

Relatively small values of σ and κ means that condition (9) is likely to be easily satisfied.

The intuition of McCallum and Nelson (1999) is, therefore, verified here to this extent:

Small values of these two parameters, which are crucial for the transmission of policy

8The necessary and sufficient conditions required for Case II are (8), (9), and another (complicated)
condition which is not reproduced here.
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actions to inflation, reduce the possibility of non-existence of any stationary solution. But

in fact we can go further. Conditions (8), (9), and (11) demonstrate that for any admissible

values of structural parameters, if policy is sufficiently inertial then the associated REE

will always be determinate.9

3.2. Summary of the results on determinacy. The beneficial effects of a large

degree of inertia on determinacy extend to the forward looking rule, (5), see Appendix B

for the details. In addition, they also extend to other rules not considered here. Woodford

(2000) has shown that for rules responding to contemporaneous values of inflation, out-

put and the lagged interest rate, determinacy is completely characterized by the Taylor

principle. The Taylor principle also characterizes determinacy for rules responding to con-

temporaneous expectations of inflation, output, and the lagged interest rate, examined in

Bullard and Mitra (2002). In other words, a high degree of inertia promotes determinacy

for a wide variety of rules considered in the literature. Note that the same cannot be

said for the response to inflation and output in the interest rule- a response which is too

aggressive to these parameters may lead to problems of non-existence of stationary REE

or indeterminacy.

The tendency of policy inertia to help generate determinacy may be an important

reason why so much inertia is observed in the actual monetary policies of industrialized

countries. However, too much policy inertia may cause another type of instability–that

of the learning dynamics. We now turn to this topic.

4. Inertia and learnability

4.1. Lagged data in the policy rule.

The system under learning. We now consider learning, beginning with the case

in which the policy authority responds to lagged data.10 In this case, the complete

system is given by equations (1), (2), (3), and (4). We analyze the expectational stability

of stationary minimum state variable (MSV) solutions (see McCallum (1983)). For the

analysis of learning, we need to compute the MSV solution and for this we need to

obtain a relationship between the current endogenous variables (and their lags) and future

expectations. This relationship is now obtained by first defining the vector of endogenous

9Propositions 1 and 2 may give the impression that the Taylor principle is necessary for determinacy.
However, this is not true, see Proposition 9 in Appendix A.
10Our analysis of learning is standard and follows Evans and Honkapohja (2001), ch. 10.
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variables, yt = (xt, πt, rt)0, and by putting our system in the form yt = ΩÊtyt+1+δyt−1+

κrnt where Ω and δ are given by

Ω =

 1 σ 0
κ β + κσ 0
0 0 0

 , (13)

δ =

 −σϕx −σϕπ −σϕr
−κσϕx −κσϕπ −κσϕr
ϕx ϕπ ϕr

 . (14)

The MSV solution for this model takes the form

yt = ā+ b̄yt−1 + c̄rnt (15)

with ā = 0, and with b̄ and c̄ given by

b̄ = (I − Ωb̄)−1δ, (16)

c̄ = (I − Ωb̄)−1(κ + ρΩc̄), (17)

provided the matrix (I − Ωb̄) is invertible. Equation (16) potentially yields multiple

solutions for b̄ and the determinate case corresponds to the situation when there is a

unique solution for b̄ with all eigenvalues inside the unit circle. For the analysis of learning,

we assume that agents have a perceived law of motion (PLM) of the form

yt = a+ byt−1 + crnt (18)

corresponding to the MSV solution. We then compute the following expectation (assuming

that the time t information set does not include yt)11

Êtyt+1 = a+ bÊtyt + cρrnt = (I + b)a+ b2yt−1 + (bc+ cρ)rnt . (19)

Inserting the above computed expectations into the actual model one obtains the following

actual law of motion (ALM) of yt

yt = (Ω+Ωb)a+ (Ωb
2 + δ)yt−1 + (Ωbc+Ωcρ+ κ)rnt . (20)

11We assume that the private sector only has access to information on the previous period’s values of
output, inflation and interest rate in forming its forecasts. We believe this assumption to be realistic since
contemporaneous values of these variables are rarely available in practice. We also assume that the agents
use information on the contemporaneous natural interest rate, rnt , in forming their forecasts; however, we
stress that the results on E -stability are unaffected even if we assume that the agents only observe the
last period natural interest rate in forming their forecasts.
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The mapping from the PLM to the ALM takes the form

T (a, b, c) = ((Ω+Ωb)a, Ωb2 + δ, Ωbc+Ωcρ+ κ). (21)

Expectational stability is then determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) . (22)

The fixed points of equation (22) give us the MSV solution (ā, b̄, c̄). We say that a

particular MSV solution (ā, b̄, c̄) is expectationally stable if the MSV fixed point of the

differential equation (22) is locally asymptotically stable at that point. Our system is in a

form where we can apply the results of Evans and Honkapohja (2001, ch. 10). It can then

be shown that for E -stability of any MSV solution, assuming that the time t information

set is (1, y0t−1, r
n
t )
0, the eigenvalues of the following three matrices:

b̄0 ⊗ Ω+ I ⊗ Ωb̄− I, (23)

ρΩ+ Ωb̄− I, (24)

Ω+Ωb̄− I, (25)

need to have negative real parts (I denotes the identity matrix). If any eigenvalue of

the above matrices has a positive real part, then the MSV solution is not E -stable, and

cannot be learned by boundedly rational agents using recursive least squares. Note that

the MSV solution for b̄ directly affects the E -stability conditions and this is the key to

understanding the results under learning.

A quantitative case. We illustrate regions of determinacy and E -stability for the

case when the policy authorities react to lagged data in Figure 1 where we have employed

the baseline parameter values. Figure 1 contains three panels, the first of which corre-

sponds to the case where there is no policy inertia, so that ϕr = 0. The figure is drawn in

(ϕπ, ϕx) space, holding all other parameters at their baseline values. Vertical lines in the

figure denote parameter combinations that generate determinacy, and that also generate

local stability in the learning dynamics. Horizontal lines, on the other hand, indicate

parameter combinations that generate determinacy, but where the unique equilibrium is

unstable in the learning dynamics. In this and all figures, the blank region is not asso-

ciated with determinacy. The ϕr = 0 portion of this figure illustrates that determinacy

does not always imply learnability. It also illustrates that Taylor-type rules which react
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Figure 1: With ϕr = 0, the region of the parameter space associated with both determinate and
learnable rational exepectations equilibria involves relatively small values for ϕx, and generally
ϕπ > 1. In the blank region, determinacy does not hold. When ϕr = .65, which is close to
empirical estimates in the literature, the region of the parameter space associated with determi-
nacy and learnability expands, relative to the no inertia case. For a large value of ϕr, such as
ϕr = 5 as shown here, much of the pictured (ϕπ, ϕx) space is associated with both determinacy
and learnability.

aggressively to inflation but with little or no reaction to other variables (like the output

gap or the lagged interest rate) tend to be associated with both determinacy and learn-

ability. However, one judgement concerning this panel might be that of Christiano and

Gust (1999), since parameter values within an empirically relevant range are sometimes

associated with equilibria which are not determinate, or which are determinate but not

learnable.

The second panel of Figure 1 illustrates how the situation is improved when the degree

of monetary policy inertia is increased from zero to ϕr = .65. This value is close to

estimates of the degree of policy inertia based on U.S. postwar data. In this case, the region

of the (ϕπ, ϕx) space associated with both determinacy and learnability of equilibrium

has been enlarged. The region associated with determinate, but unlearnable, rational

expectations equilibria has been eliminated. This effect becomes even more pronounced

in the third panel, where a very large value of ϕr is employed, specifically, ϕr = 5. In

this case, a much larger portion of the space is determinate and learnable. Thus, we see

that larger degrees of policy inertia enhance the prospects for determinacy considerably,

relative to the case where there is no policy inertia at all. In addition, learnability does not
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appear to be jeopardized by large degrees of policy inertia, as the determinate equilibria

are also learnable, even when ϕr is large.

Intuition and analytics. We now provide some intuition and analytics for the

phenomenon illustrated in Figure 1. We first start with a discussion of non-inertial policy

rules when ϕr = 0. The triangular region in the left hand panel of Figure 1 shows

that there are determinate equilibria which are E -unstable in this case. We first provide

intuition for this phenomenon. When ϕr = 0, the reduced form model with the interest

rate rule

rt = ϕππt−1 + ϕxxt−1 (26)

takes the form

yt = ΩÊtyt+1 + δyt−1 + κrnt , (27)

Ω =

·
1 σ
κ κσ + β

¸
, (28)

δ =

· −ϕxσ −ϕπσ
−κϕxσ −κϕπσ

¸
, (29)

where yt = [xt, πt]
0. The MSV solution of (27) continues to take the form (15) with the

same solutions for ā (= 0), and b̄, c̄ given by (16) and (17). It is the feedback from

lagged endogenous variables (via b̄) in the stationary MSV solution that is the key to

understanding E -instability of determinate equilibria.

In matrix form, the MSV solution for b̄ is of the form

b̄ =

·
bxx bxπ
bπx bππ

¸
, (30)

where bxπ = ϕπϕ
−1
x bxx, bπx = ϕxϕ

−1
π bππ (assuming ϕx, ϕπ > 0), and bxx and bππ can be

computed from equation (16) (see Appendix C for the details). Written explicitly, this

MSV solution takes the form

xt = bxxxt−1 + bxππt−1 + ... (31)

πt = bπxxt−1 + bπππt−1 + ... (32)

Here the three elipses denote terms involving shocks not needed for our analysis. We

conclude that b̄ in (30) is singular, and that |bxx + bππ| < 1 is required for stationarity of
the MSV solution b̄. Explicit analytical expressions for bxx and bππ are not obtainable.
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To examine what type of MSV solutions can be E -stable, we first note that a necessary

condition for E -stability is that the eigenvalues of Ω+Ωb̄− I have negative real parts and
for this, the determinant of Ω+Ωb̄− I, given by

−bxx(1− β + κϕπϕ
−1
x )− bππ(κ+ ϕxϕ

−1
π )σ − κσ, (33)

must be positive. Hence, it is necessary that at least one of bxx or bππ be negative for

E -stability since otherwise this determinant will be negative. In other words, if both bxx

and bππ are positive (implying that bxπ and bπx are also positive), the MSV solution will

necessarily be E-unstable.

In fact, this is precisely what happens in the triangular determinate but E -unstable

region of Figure 1. As mentioned in Section 3.1, this region corresponds to the violation of

the Taylor principle and the necessary and sufficient condition for determinacy in this case

is given by condition (70) in Proposition 9 (with ϕr = 0 here). However, Proposition 9

does not tell us anything about the properties of this determinate solution which is crucial

for E -stability. In fact it can be easily checked that the unique stationary solution for b̄ in

this region involves both bxx > 0 and bππ > 0 which makes this solution E -unstable. As

long as ϕr = 0 (or small), the existence of a determinate equilibrium does not preclude a

solution for b̄ with both bxx and bππ positive.

The economic interpretation of this result is as follows. Since bxx, bππ, bxπ, and bπx

are all positive, the MSV solution (31)-(32) in this region has a perverse feature in the

sense that an increase in either lagged output or inflation raises the nominal interest rate

but not by enough (i.e., the real interest rate falls) so that this increases current output

and inflation which further enhances these inflationary pressures if one starts outside

the REE. If agents actually do have rational expectations (RE), then their beliefs will

exactly match realizations and, furthermore, this equilibrium will be the unique one in

this parameter range. When agents do not have RE to start with, then there will be

pressure to move further away from these determinate REE owing to the perverse nature

of the solution.

The (vertical) determinate and E -stable region when ϕr = 0, on the other hand,

satisfies the Taylor principle and it can be checked numerically that these are characterized

by MSV solutions where bxx, bππ(and hence bxπ, bπx) are all negative. In these solutions,

an increase in either lagged output or inflation increases the nominal and real interest rate

so that contemporaneous output and inflation fall pushing the economy back towards the



Determinacy, Learnability, and Monetary Policy Inertia 16

initial equilibrium even when agents start outside the REE and are learning using recursive

least squares.

We note that the same phenomenon exists qualitatively for small values of ϕr. With a

low degree of inertia in the policy rule, a (triangular) region of determinate but E -unstable

equilibria continues to exist for precisely the same reason outlined above. However, the

size of this triangular determinate region shrinks as the degree of inertia increases and is

eventually eliminated.

When the policy rule involves ϕr > 0, the MSV solution b̄ takes the form (see Appendix

D)

b̄ =

 bxx bxπ bxr
bπx bππ bπr
ϕx ϕπ ϕr

 (34)

with bxx = ϕxϕ
−1
r bxr, bxπ = ϕπϕ

−1
r bxr, bπx = ϕxϕ

−1
r bπr, and bππ = ϕπϕ

−1
r bπr. Conse-

quently, once bxr and bπr are known, the remaining unknowns can be easily determined

from them. However, the two equations for determining bxr and bπr are nonlinear (see

equations (78) and (79) in Appendix D) and analytical expressions are not obtainable.

Written explicitly the MSV solution is of the form

xt = bxxxt−1 + bxππt−1 + bxrrt−1 + ... (35)

πt = bπxxt−1 + bπππt−1 + bπrrt−1 + ... (36)

and the solution for the interest rule (in the MSV solution) is the same as (4).

It is easy to check that two of the eigenvalues of b̄ in (34) at the MSV solution are

zero and the third one is given by ϕr + ϕxϕ
−1
r bxr + ϕπϕ

−1
r bπr. A stationary solution for

b̄ is, therefore, equivalent to the requirement that

−(1 + ϕr)ϕr < ϕxbxr + ϕπbπr < (1− ϕr)ϕr. (37)

Without any further calculations, the right hand inequality in (37) immediately demon-

strates that if ϕr ≥ 1, a necessary condition for stationarity is that at least one of bxr or
bπr (i.e., bxx or bππ) be negative. We state this result as a proposition.

Proposition 3. Assume that ϕr ≥ 1. A necessary condition for an MSV solution with

the lagged data interest rule (4) to be stationary is that either of the following conditions
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holds.

bxx < 0, bxπ < 0, and bxr < 0, (38)

bππ < 0, bπx < 0, and bπr < 0. (39)

In other words, a high degree of inertia precludes a stationary MSV solution with both

bxr and bπr positive. Furthermore, analysis of (37) also shows that the same reasoning need

not apply for small values of ϕr. In particular, with ϕr small, a determinate equilibrium

with positive values of both bxr and bπr can satisfy (37) and indeed such equilibria do

exist. However, we show below that all such solutions continue to be E -unstable as in the

non-inertial case.

We now turn to a discussion of E -stability of the MSV solution when ϕr > 0. Appendix

E provides the details behind the necessary and sufficient conditions for E -stability. It is

shown there that a necessary condition for Ω+ Ωb̄− I to have eigenvalues with negative

real parts (i.e., for E -stability) is that a2 defined as

a2 = −[(1− β)ϕx + κϕπ]ϕ
−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr − κσ (40)

be positive. This implies that at least one of bxr or bπr must be negative for E -stability.

This proves:

Proposition 4. A necessary condition for an MSV solution with the lagged data interest

rule (4) to be E-stable is that either of the following conditions holds.

bxx < 0, bxπ < 0, and bxr < 0, (41)

bππ < 0, bπx < 0, and bπr < 0. (42)

Proposition 4 shows that any MSV solution with both bxr and bπr positive is necessarily

E -unstable regardless of the degree of inertia in the policy rule. The intuition here is the

same as in the case of the non-inertial rule. E -stability rules out a perverse (positive)

effect of the lagged interest rate on contemporaneous output and inflation in the MSV

solution, something which the criterion of determinacy per se does not. In particular, a

necessary condition for E -stability is that an increase in the lagged interest rate results

in a increase in current output or inflation in the MSV solution (35)-(36).

Proposition 3 showed that (only) a high degree of inertia ruled out precisely the same

types of stationary MSV solutions (i.e., with bxr > 0 and bπr > 0) which are always
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E -unstable by Proposition 4. In other words, with a high degree of inertia, the necessary

conditions for both determinacy and E -stability coincide; compare Propositions 3 and 4.

In fact, one can check numerically that super-inertial rules (i.e, rules with ϕr ≥ 1) lead
to determinate MSV solutions with both bxr and bπr negative.12 Appendix E shows that if

the degree of inertia is large enough, the necessary and sufficient condition for E -stability

in this case simplifies to the one given in the following proposition.

Proposition 5. Assume that ϕr ≥ 1 for the lagged interest rule (4) and consider a

stationary MSV solution (i.e., one satisfying (37)) with bxr < 0 and bπr < 0. Let σϕx +

(β + κσ − 1)ϕπ ≥ 0 and

ϕ+r ≡ 2−1β−1[1 + β + κσ +
p
(1 + β + κσ)2 − 4β] > 1. (43)

Then if ϕr ≥Max{β+κσ, ϕ+r }, the necessary and sufficient condition for E-stability is13

−[(1− β)ϕx + κϕπ]ϕ
−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr > κσ. (44)

Obviously, bxr < 0 and bπr < 0 per se do not suffice for condition (44) to be satisfied–

they must be large enough for this. As it turns out, numerically, the determinate MSV

solutions with super-inertial rules satisfy condition (44) and all such solutions are E -

stable. Herein lies the intuition behind the E -stability of MSV solutions associated with

super-inertial rules. However, if ϕr is small, a determinate equilibrium with bxr > 0 and

bπr > 0 (and hence bxx, bxπ, bππ, bπx all > 0) exist and all such solutions are E -unstable by

Proposition 4–this explains the triangular region of determinate but E -unstable equilibria

for low degrees of inertia.

4.2. Forward expectations in the policy rule.

The system under learning. With forward expectations the complete system is

given by equations (1), (2), (3), and (5). We analyze E -stability of the MSV solution.

After defining the vector of endogenous variables, yt = (xt, πt, rt)0, we put our system in

the form

yt = ΩÊtyt+1 + δyt−1 + κrnt , (45)
12We are unable to prove this result analytically, i.e., that ϕr ≥ 1 implies bxr < 0 and bπr < 0.

However, this can be easily checked numerically for plausible values of parameters (including the baseline
values in Table 1) and is the basis for Proposition 5 below.
13We note that β + κσ > 1, which suffices for σϕx + (β + κσ − 1)ϕπ ≥ 0, is generally satisfied for

plausible values of structural parameters since β is close to 1 (including the baseline values). In addition,
for the baseline values, ϕ+r = 1.48. We conjecture that the condition ϕr ≥ Max{β + κσ, ϕ+r } may be
weakened.
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Figure 2: For small values of ϕr, forward-looking policy rules generate determinacy and learn-
ability provided ϕπ > 1 and ϕx is sufficiently small. For ϕr = .65, a larger region of the
(ϕπ, ϕx) space pictured is associated with both determinacy and learnability. Large values of
ϕr generate relatively large regions of determinacy and learnability in (ϕπ, ϕx) space.

where Ω and δ are given by

Ω =

 σ(σ−1 − ϕx) σ(1− ϕπ) 0
κσ(σ−1 − ϕx) σ(κ+ βσ−1 − κϕπ) 0

ϕx ϕπ 0

 , (46)

δ =

 0 0 −σϕr
0 0 −κσϕr
0 0 ϕr

 . (47)

The MSV solutions take the same form (15) as in the case of lagged data. The analysis of

learning is also exactly the same as before. Hence, assuming that the time t information

set is (1, y0t−1, r
n
t )
0, E -stability of any MSV solution requires that the eigenvalues of the

matrices (23), (24) and (25) have negative real parts.

A quantitative case. Figure 2 illustrates how, even for this case where the policy-

makers are reacting to expectations of future inflation deviations and output gaps, policy

inertia tends to enhance the prospects for determinacy and learnability of a rational ex-

pectations equilibrium. For low values of ϕr, such as the value ϕr = 0.1 in the first panel,

we again find that active Taylor-type rules with little or no reaction to other variables

are associated with both determinacy and learnability of equilibrium. However, the large

region in the figure which is not associated with determinacy might be enough to limit

recommendations of such rules via arguments such as those of Christiano and Gust (1999).
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The second and third panels of Figure 3 show that increased policy inertia can mitigate

such concerns, creating a larger region of determinacy, and in addition, that in these cases

determinate equilibria are also learnable.

Intuition and analytics. We now provide some intuition and analytics for the

phenomena illustrated in Figure 2. As before, it is the MSV solution for b̄ which is crucial

for E -stability. To gain further understanding, we first explore the type of stationary

solutions permissible. Since it is only the lagged interest rate which appears in the model,

the MSV solutions written explicitly take the form

xt = bxxt−1 + ..., (48)

πt = bππt−1 + ..., (49)

rt = brrt−1 + ..., (50)

where bx, bπ, and br are to be determined by solving the system of equations (16), see

Appendix F for the details. Furthermore, stationarity requires |br| < 1.14 Assuming that
Det[I − Ωb̄] = 1− bxϕx − bπϕπ 6= 0, the solution for br is given by

br = ϕr(1− bxϕx − bπϕπ)
−1. (51)

We consider three mutually exclusive cases for stationarity, namely

0 < bxϕx + bπϕπ < 1, (52)

bxϕx + bπϕπ > 1, (53)

bxϕx + bπϕπ < 0. (54)

Under case (52), stationarity is ruled out when ϕr ≥ 1 since br > 1 from (51). Case (53),

i.e., bxϕx + bπϕπ > 1, is permissible only when at least one of bx or bπ is positive (when

ϕx, ϕπ > 0) at the MSV solution. Furthermore, bxϕx + bπϕπ > 1 implies that br < 0 by

(51) and stationarity requires that

bxϕx + bπϕπ > 1 + ϕr. (55)

Note that condition (55) cannot a priori be ruled out for a stationary MSV solution even

when ϕr ≥ 1. The final case, condition (54), is permissible only when at least one of bx
14 In matrix form, the b̄ solution for the forward rule (5) has only zeros in the first two columns and the

third column has bx, bπ, and br , respectively. Hence, two of the eigenvalues of b̄ are 0 and the third is br.
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or bπ is negative at the MSV solution. In addition, bxϕx + bπϕπ < 0 implies that br > 0

from (51) and stationarity is equivalent to the requirement that

bxϕx + bπϕπ < 1− ϕr . (56)

We collect these results in the following proposition:

Proposition 6. Assume that ϕr ≥ 1. The MSV solution, (48)-(50), associated with

the forward looking interest rule (5), is stationary if and only if either of the following

conditions hold.

bxϕx + bπϕπ > 1 + ϕr (which implies br < 0), (57)

bxϕx + bπϕπ < 1− ϕr (which implies br > 0). (58)

In other words, even with a high degree of inertia, a stationary MSV solution is a priori

compatible with either br < 0 or br > 0. Of course, such a stationary MSV solution could

either be in the determinate or indeterminate region of the parameter space. Nevertheless,

as in the case of lagged data, a stationary solution with br < 0 implies a perverse relation

in the sense that a rise in the lagged interest rate reduces the contemporaneous interest

rate and raises the contemporaneous output gap or inflation (since at least one of bx or

bπ must be positive).

We now consider some necessary conditions for an MSV solution to be E -stable and

examine the relationship between E -stability and stationarity. Appendix G proves the

following:

Proposition 7. A necessary condition for E-stability of the MSV solution, (48)-(50),

associated with the forward looking interest rule (5) is that bxϕx + bπϕπ < 1 (which is

equivalent to br > 0).

E -stability, therefore, imposes restrictions on the parameters involved in the MSV

solution, independently of stationarity and the degree of inertia in the policy rule. In par-

ticular, it imposes the restriction that a rise in the lagged interest rate should necessarily

lead to a rise in the current interest rate in the MSV solution. Intuitively, when br > 0,

an (unexpected) rise in inflationary pressures which pushes the economy outside the REE

(even if it started from one) causes the interest rate to rise today which in turn causes

the interest rate to rise tomorrow. This rise creates a downward pressure on aggregate
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demand and inflation reducing the inflationary pressures and pushing the economy back

towards the REE. If instead br < 0, then the rise in the interest rate reduces the rate

tomorrow which in turn increases these inflationary pressures and pushes the economy

further away from the REE. Note that the criterion of stationarity per se does not impose

this restriction (see Proposition 6).

Proposition 7 immediately shows that the stationary MSV solutions possible under

case (53) when bxϕx + bπϕπ > 1 (i.e, br < 0) are always E -unstable. Such solutions do

exist in the indeterminate region of the parameter space as will be shown below. Hence,

the only stationary MSV solutions which can be E -stable when ϕr ≥ 1 are the ones with
br > 0.

To gain further intuition, we consider the case when ϕx = 0 in some detail. When

ϕx = 0, the MSV solution(s) for bπ are given by a cubic polynomial given in Appendix

F. It is shown that there exists a negative solution for bπ (i.e., br > 0) which satisfies

(56) when ϕr + ϕπ > 1. Appendix F also shows that if condition (9) in Proposition 11

is violated (with ϕx = 0), then there also exists another stationary solution for bπ with

bπ > 0 (i.e., br < 0) satisfying condition (55). The latter solution is, however, E -unstable

by Proposition 7.

If the solution is determinate under the conditions given in Proposition 11, Appendix F

shows that this uniquely stationary MSV solution involves bπ < 0, bx < 0, and 0 < br < 1.

Super-inertial rules, therefore, cause the determinate REE to have the property that a rise

in the lagged interest rate of one percentage point causes a rise in the current interest rate

of less than one percent, that is, 0 < br < 1. In other words, a high degree of inertia rules

out stationary MSV solutions with br < 0 that are necessarily E-unstable by Proposition

7 and only permits stationary solutions with 0 < br < 1 which can be E-stable.

Appendix G proves E -stability of the determinate MSV solution when ϕr is large

enough. First, we recall Proposition 11 which stated that if ϕr ≥ 1, then condition (9)
is necessary and sufficient for determinacy. Appendix G shows that when ϕx = 0, a high

enough degree of inertia always results in E -stability of these determinate solutions. More

specifically, we are able to prove the following proposition.

Proposition 8. Assume that ϕx = 0 and that the conditions in Proposition 11 for de-

terminacy hold i.e., that ϕr ≥ 1 and condition (9) holds for the forward rule (5). Then if
ϕr ≥Max{1, β + κσ}, the determinate equilibria are E-stable.
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The intuition behind this result follows from our discussion. A high degree of inertia

forces the determinate MSV solution to have the property that bπ < 0, bx < 0, and

0 < br < 1 which results in E -stability. The similar intuition is prevalent for arbitrary

values of ϕx. It is easy to check numerically that if the policy rule is super-inertial, then

the determinate solutions involve bπ < 0, bx < 0, and 0 < br < 1 even when ϕx > 0,

which then implies E -stability of the determinate MSV solution.

4.3. Summary of the results under learning and robustness of results. In

Figure 1, we illustrated a situation where a region of the parameter space that generated

determinacy of rational expectations equilibrium failed to generate learnability. Signif-

icantly, that region was associated with violation of the Taylor principle as well as no

inertial element of monetary policy. Rules satisfying the Taylor principle were found to

be associated with expectational stability in Bullard and Mitra (2002). Increasing the de-

gree of monetary policy inertia appears to also be associated with learnability of rational

expectations equilibrium in our setting.

We considered only two types of (albeit plausible) interest rules primarily because of

space constraints. However, similar results extend to other rules not reported here. In

particular, this is true for rules responding to contemporaneous values of inflation, output,

and the lagged interest rate as well as to contemporaneous expectations of inflation and

output and the lagged interest rate- in either case, a high degree of inertia results in

E-stability of the determinate REE .

We have assumed that agents use past data in forming their forecasts when they are

learning. E -stability conditions are in general sensitive to the information agents use in

forming their forecasts, see Evans and Honkapohja (2001, ch. 10). If we assume instead

that agents use contemporaneous values of inflation and output in forming their forecasts

(which McCallum would label non-operational, since such information is not normally

available in actual economies), then a high degree of inertia continues to result in E -

stability of the determinate REE. In this sense, results on E -stability of the determinate

equilibria with super-inertial policy rules are robust to the information agents use in their

forecasts.
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Table 1. E-stability of determinate REE
Inflation inertia Output inertia E-stability

χ = .1 θ = .2, .4, .6, .8 Yes in all cases
χ = .2, .4, .6, .8 θ = .1 Yes in all cases

Table 1: E-stability of determinate equilibria under varying degrees of output and inflation
inertia.

5. Endogenous inflation and output persistence

The model given by (1) and (2) is entirely forward looking and as a result it has difficulty

capturing the inertia in output and inflation evident in the data, see Fuhrer and Moore

(1995a, 1995b), and Rudebusch and Svensson (1999). Consequently, we briefly look at an

extension of this model considered in Clarida, Gali, and Gertler (1999), Section 6, with

important backward looking elements. The model now consists of the structural equations

xt = −σ
³
rt − rnt − Êtπt+1

´
+ (1− θ)Êtxt+1 + θxt−1 (59)

πt = κxt + (1− χ)βÊtπt+1 + χπt−1 (60)

The parameters θ and χ capture the inertia in output and inflation and are assumed to

be between 0 and 1. The shock rnt is still assumed to follow the process (3).
15

We examined numerically the E-stability of determinate solutions for different levels of

(inflation and output) inertia for the baseline values of Woodford (1999). For illustrative

purposes, we consider here only the forward looking rule, (5), and report the results in

Table 1. The first row of Table 1 examines the effects of varying degrees of output inertia

with the other parameters set at χ = 0.1, ϕx = 0, ϕπ = 1, and ϕr = 5. The second row,

on the other hand, examines the effects of varying degrees of inflation inertia where we

have also set θ = 0.1, ϕx = 0, ϕπ = 1,and ϕr = 5.

The results demonstrate that a large degree of inertia in the interest rule does not

hamper the E-stability of REE even when the model (realistically) incorporates important

backward looking elements.

6. Conclusion

Two key issues for the evaluation of monetary policy rules are whether they induce a

determinate rational expectations equilibrium or not, and whether that equilibrium is

15Clarida, Gali, and Gertler (1999) have a cost-push shock in the inflation equation (60). However, for
the purpose of our analysis, this does not matter since it leaves the results on determinacy and learnability
unaffected.
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learnable or not. We provide analytical results which indicate how an increased degree of

interest rate smoothing can induce both determinacy and learnability of rational expecta-

tions equilibrium over a wide range of feasible parameters. This is true across both of our

specifications of monetary policy rules–a finding which we believe substantially alters

the evaluation of these rules. Consequently, neither of these classes of policy rules–which

might be considered particularly realistic in terms of actual central bank behavior–should

be deemed undesirable on account of determinacy or learnability questions, once policy

inertia is taken into account.
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7. Appendices

7.1. APPENDIX A (Determinacy of Lagged Rule) . The characteristic poly-

nomial of B1 (given in (7)), p(λ), is given by

p(λ) = λ3 +A2λ
2 +A1λ+A0; (61)

A2 = −(1 + β−1 + β−1κσ + ϕr), (62)

A1 = β−1 + (1 + β−1 + β−1κσ)ϕr − σϕx, (63)

A0 = β−1σ(κϕπ + ϕx − σ−1ϕr). (64)

Note that p(1) = 1 +A2 +A1 +A0 and p(−1) = −1 +A2 −A1 +A0. We have

p(1) = β−1σ[κ(ϕπ + ϕr − 1) + (1− β)ϕx], (65)

p(−1) = β−1σ[κ(ϕπ − ϕr − 1) + (1 + β)ϕx − 2σ−1(1 + β)(1 + ϕr)]. (66)

Conditions (A.3) and (A.4) in Woodford (2000) can then be seen to correspond to Condi-

tions (8), and (9) respectively in the text. Condition (A.7) corresponds to condition (11)

since

|A2| = 1 + β−1 + β−1κσ + ϕr > 3 (67)

iff condition (11) holds. Conditions (A.1) and (A.2) of Case I correspond to the negation

of (A.3) and (A.4), i.e., conditions (68) and (69).

We now show that the Taylor principle need not even be necessary for determinacy.

For Case I, the necessary and sufficient conditions for determinacy can be expressed as:

κ(ϕπ + ϕr − 1) + (1− β)ϕx < 0, (68)

[κσ + 2(1 + β)]ϕr + 2(1 + β) < σ[κ(ϕπ − 1) + (1 + β)ϕx]. (69)
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Condition (68) corresponds to violation of the Taylor principle. Conditions (68) and (69)

rule out Cases II and III in Woodford (2000). As a result, we have the following.

Proposition 9. Assume that κ(ϕπ+ϕr− 1)+ (1−β)ϕx < 0 for the inertial lagged data

interest rule (4). Then the necessary and sufficient condition for determinacy is

[κσ + 2(1 + β)]ϕr + 2(1 + β) < σ[κ(ϕπ − 1) + (1 + β)ϕx]. (70)

Note that condition (70) represents violation of condition (10) in Proposition 1. Propo-

sition 9 provides the required conditions for determinacy when the degree of inertia is low.

If ϕr = 0, the necessary and sufficient condition for determinacy from Proposition 9 is

given by16

(1 + β)−1[κ(1− ϕπ) + 2(1 + β)σ−1] < ϕx < (1− β)−1κ(1− ϕπ). (71)

7.2. APPENDIX B (Determinacy of Forward Rule) . With the forward looking

rule (5), the system can be put in the form (where yt = (xt, πt, rt−1))

Êtyt+1 = Byt + ςrnt ; (72)

B = (1− ϕxσ)
−1

 1− β−1κσ(ϕπ − 1) β−1σ(ϕπ − 1) σϕr
−β−1κ(1− ϕxσ) β−1(1− ϕxσ) 0

ϕx(1 + β−1κσ)− β−1κϕπ β−1(ϕπ − ϕxσ) ϕr

 .(73)
Since rt−1 is pre-determined and xt, πt are free, equilibrium is determinate if and only if

exactly one eigenvalue of B is inside the unit circle.

As shown in Bernanke and Woodford (1997) and Bullard and Mitra (2002), a suffi-

ciently aggressive response to inflation or output leads to indeterminacy with the rule (5)

when ϕr = 0. However, we show that this problem can be circumvented by assuming a

sufficiently aggressive response to the lagged interest rate.17

To economize on space, we state the propostions on determinacy below without proof.

The proofs may be obtained from the authors upon request. The first propostion shows

that if the response to the output gap ϕx is not large, then necessary conditions for

determinacy are given by conditions (8) and (9). More specifically:

16This explains the (triangular) determinate region in the left hand panel of Figure 1 involving values
of ϕπ < 1 which violates the Taylor principle.
17Woodford (2000) has considered the determinacy analysis of a variant of the forward rule where the

interest rate responds to expected inflation and the current output gap. The indeterminacy problems
are much more severe for the rule (5) when ϕr = 0, see Bullard and Mitra (2002). As mentioned before,
similar interest rules also arise in the context of implementing optimal discretionary monetary policies
and nominal GDP targeting, see Evans and Honkapohja (2000) and Mitra (2002).
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Proposition 10. Assume that ϕx < 2σ−1 for the inertial forward looking policy rule (5).

Then conditions (8) and (9) are necessary for determinacy.

This again shows that the Taylor principle in general is not sufficient for determinacy;

a high degree of inertia is also necessary. Note that exactly the same conditions (8) and

(9) are necessary for determinacy in the case of rules responding to lagged data; compare

with Proposition 1. In addition, we have

Proposition 11. Assume that ϕr ≥ 1 for the inertial forward looking policy rule (5).
Then the necessary and sufficient condition for determinacy is (9).

The same proposition was proved for rules responding to lagged data; compare with

Proposition 2. These results show that for given values of ϕπ and ϕx, a large enough

value of ϕr invariably leads to uniqueness as in the case of lagged rules.

7.3. APPENDIX C (MSV Solution for Non-Inertial Lagged Rule). In this

case, assuming that D ≡ bxx(1− βbππ) + (β + κσ)bππ + βbxπbπx + κbxπ + σbπx − 1 6= 0,
the MSV parameter values is given by the solution to the following four equations

bxx = [(1− βbππ)σϕx]D
−1, (74)

bxπ = [(1− βbππ)σϕπ]D
−1, (75)

bπx = [(κ+ βbπx)σϕx]D
−1, (76)

bππ = [(κ+ βbπx)σϕπ]D
−1. (77)

These four equations yield bxπ = ϕπϕ
−1
x bxx, bπx = ϕxϕ

−1
π bππ so that this system can

be reduced to two (nonlinear) equations in two unknowns which can easily be solved

numerically. In general, there are three solutions for b̄ of which exactly one is stationary

in the determinate region.

7.4. APPENDIX D (MSV Solution of Inertial Lagged Rule). We now consider

the situation when ϕr > 0 in the lagged rule. Assuming that I −Ωb̄ is invertible, we need
to solve the system b̄ = (I − Ωb̄)−1δ for the MSV solution, with b̄ a 3× 3 matrix in this
case. Using Mathematica, one can verify that the MSV b̄ solution takes the form given in

(34), with bxx = ϕxϕ
−1
r bxr, bxπ = ϕπϕ

−1
r bxr, bπx = ϕxϕ

−1
r bπr, and bππ = ϕπϕ

−1
r bπr. The
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two (nonlinear) equations for determining bxr and bπr are given by

bxr = ϕr[bxrϕr + σ{bπr(βϕπ + ϕr)− ϕr}]E−1, (78)

bπr = ϕr[κϕr(bxr − σ) + bπr{κσϕr + β(ϕr − σϕx)}]E−1, (79)

E ≡ ϕr − (κϕπ + ϕx)bxr − {βϕπ + σ(κϕπ + ϕx)}bπr. (80)

7.5. APPENDIX E (E-stability of Inertial Lagged Rule). We examine the

conditions for E -stability of the MSV solution.18 We first start with the matrix Ω+Ωb̄−I
which has one eigenvalue of −1 and the remaining two are given by

η2 + ηa1 + a2 = 0, (81)

a1 = 1− β − κσ − ϕ−1r [(ϕx + κϕπ)bxr + {σϕx + (β + κσ)ϕπ}bπr], (82)
a2 = −[(1− β)ϕx + κϕπ]ϕ

−1
r bxr − σ(ϕx + κϕπ)ϕ

−1
r bπr − κσ. (83)

Hence, the necessary and sufficient conditions for Ω + Ωb̄ − I to have eigenvalues with

negative real parts are that a1 > 0 and a2 > 0.

We next look at the 9 × 9 matrix b̄0 ⊗ Ω + I ⊗ Ωb̄ − I. Using Mathematica, one can

verify that five of the eigenvalues are −1 and two of the remaining four are given by

ϕ−1r [(ϕx + κϕπ)bxr + {σϕx + (β + κσ)ϕπ}bπr]− 1 = −β − κσ − a1, (84)

where the right-hand equality above uses the expression of a1 from (82). So, a1 > 0

implies that the eigenvalues (84) are negative, as required for E -stability.

The final two eigenvalues of b̄0⊗Ω+I⊗Ωb̄−I are given by the solution of the following
characteristic polynomial

η2 + ηc1 + c2 = 0, (85)

c1 = −ϕ−1r [bxr{(2 + β + κσ)ϕx + κϕπ}+
bπr{σϕx + (1 + 2β + 2κσ)ϕπ}+ ϕr{(1 + β + κσ)ϕr − 2}], (86)

c2 = ϕ−2r [2β(ϕxbxr + ϕπbπr)
2 + 3β(ϕxbxr + ϕπbπr)ϕ

2
r +

ϕ2r{βϕ2r − (1 + β + κσ)ϕr + 1}− bxrϕr{κϕπ + (2 + β + κσ)ϕx}
−bπrϕπ(1 + 2β + 2κσ)ϕr − σϕxϕrbπr], (87)

and for E -stability we need c1 > 0 and c2 > 0.

18A Mathematica program which computes these E -stability conditions is provided at
http://www.stls.frb.org/research/econ/bullard/.
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We finally look at the matrix ρΩ+ Ωb̄− I which has one eigenvalue equal to −1 and
the remaining two given by the solutions to

η2 + ηa1ρ + a2ρ = 0, (88)

a1ρ = 2− ρ(1 + β + κσ)− (ϕx + κϕπ)ϕ
−1
r bxr − (89)

{σϕx + (β + κσ)ϕπ}ϕ−1r bπr

= a1 + (1− ρ)(1 + β + κσ),

a2ρ = (1− ρ)(1− βρ)− ρκσ − {(1− βρ)ϕx + κϕπ}ϕ−1r bxr − (90)

{σ(ϕx + κϕπ) + β(1− ρ)ϕπ}ϕ−1r bπr,

and for E -stability we require both a1ρ > 0 and a2ρ > 0. The right hand equality in (89)

uses the expression for a1 from (82) which, therefore, shows that a1 > 0 implies that

a1ρ > 0 (since 0 < ρ < 1).

In summary, the necessary and sufficient conditions for E -stability given in (23), (24),

and (25), reduce to the coefficients a1, a2, c1, c2, and a2ρ defined in (82), (83), (86), (87),

and (90), respectively, being all positive.

Details for Proposition 5. We first note that

a1 − a2 = 1− β − βϕ−1r (ϕxbxr + ϕπbπr) > 1− β − βϕ−1r (1− ϕr)ϕr (91)

where the right hand inequality in (91) follows from the solution being stationary and

ϕr ≥ 1, i.e., (the right hand inequality in) condition (37). Hence, ϕr ≥ 1 implies that
a1 > a2 from (91) and hence a2 > 0 implies a1 > 0.

Similarly, comparing term by term, it can be checked that a2ρ > a2 since bxr < 0,

bπr < 0 and 0 < ρ < 1. So a2 > 0 also implies that a2ρ > 0.

The required necessary and sufficient conditions for E -stability have now reduced to

a2 > 0, c1 > 0, and c2 > 0.

We now examine c2. Since ϕr > 0, the sign of c2 is determined by the expression

within parentheses in (87). The first two terms within this parentheses can be combined

together as

2β(ϕxbxr +ϕπbπr)
2+3β(ϕxbxr +ϕπbπr)ϕ

2
r = β(ϕxbxr +ϕπbπr)[3ϕ

2
r +2(ϕxbxr +ϕπbπr)].

(92)
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We show that the expression (92) is positive since each of the individual terms in paren-

theses on the right hand side of (92) is negative. The first term, β(ϕxbxr+ϕπbπr), in (92)

is negative by condition (37) when ϕr ≥ 1. The second term in (92) is also negative since

ϕxbxr + ϕπbπr < −
3

2
ϕ2r < (1− ϕr)ϕr, (93)

where the final inequality in (93) again uses (37). The inequalities bxr < 0 and bπr < 0

then imply that the final three terms within the parentheses in (87) are positive. Hence,

a sufficient condition for c2 > 0 is that g(ϕr) ≡ βϕ2r − (1 + β + κσ)ϕr + 1 ≥ 0. Since
g(0) > 0 and g(1) < 0, g(ϕr) = 0 has two positive roots, one between 0 and 1, and the

other more than 1. The root exceeding one is given by

ϕ+r ≡ 2−1β−1[1 + β + κσ +
p
(1 + β + κσ)2 − 4β]. (94)

In addition, g(ϕr) > 0 for all ϕr > ϕ+r since g(∞) = ∞. This proves that c2 > 0 when

ϕr ≥ ϕ+r .

Now c1 > 0 iff the expression within the parentheses in (86) is negative. The first two

terms of this parentheses can be grouped together as

bxr{(2 + β + κσ)ϕx + κϕπ}+ bπr{σϕx + (1 + 2β + 2κσ)ϕπ} (95)

= (2 + β + κσ)(ϕxbxr + ϕπbπr) + (β + κσ − 1)ϕπbπr + σϕxbπr + κϕπbxr

< (2 + β + κσ)(1− ϕr)ϕr + [σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr

where the final inequality uses condition (37). Using this we can conclude the following

about the expression within the parentheses of c1

bxr{(2 + β + κσ)ϕx + κϕπ}+ bπr{σϕx + (1 + 2β + 2κσ)ϕπ}+ ϕr{(1 + β + κσ)ϕr − 2}
< (2 + β + κσ)(1− ϕr)ϕr + [σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr + ϕr{(1 + β + κσ)ϕr − 2}
= ϕr(β + κσ − ϕr) + [σϕx + (β + κσ − 1)ϕπ]bπr + κϕπbxr. (96)

If σϕx + (β + κσ − 1)ϕπ ≥ 0 and ϕr ≥ β + κσ, then the above expression is negative

provided bxr < 0 and bπr < 0. This proves that c1 > 0. The only remaining condition

required is a2 > 0 which is given in the proposition.

7.6. APPENDIX F (MSV Solution of Forward Rule). We first consider the

nature of the MSV solution. Equations (16) involve three equations in the three unknowns
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bx, bπ, and br. The third equation determines br once bx and bπ are known from the first

two equations. The first two equations (which can be verified using Mathematica) are

(assuming that Det[I − Ωb̄] = 1− bxϕx − bπϕπ 6= 0)

bx = ϕr[bx + (bπ − 1)σ][1− bxϕx − bπϕπ]
−1, (97)

bπ = ϕr[κ(bx − σ) + (β + κσ)bπ][1− bxϕx − bπϕπ]
−1. (98)

These two equations yield the following simultaneous system in bx and bπ:

ϕxb
2
x + (bπϕπ + ϕr − 1)bx + (bπ − 1)σϕr = 0, (99)

ϕπb
2
π + [bxϕx + (β + κσ)ϕr − 1]bπ + κϕr(bx − σ) = 0. (100)

One can solve for bx in terms of bπ from equation (100) which yields

bx = [κσϕr + {1− (β + κσ)ϕr}bπ − b2πϕπ](κϕr + bπϕx)
−1 (101)

and substituting equation (101) into equation (99) yields a (cubic) polynomial in bπ whose

roots yield the MSV solutions for bπ. Once bπ is determined, bx and br can be determined

from it.

Details for the case when ϕx = 0. When ϕx = 0, we substitute (101) into (99)

and the cubic polynomial in bπ simplifies to

p(bπϕπ) ≡ (bπϕπ)
3 + (bπϕπ)

2d1 + (bπϕπ)d2 + d3 = 0; (102)

d1 = (1 + β + κσ)ϕr − 2,
d2 = 1 + βϕ2r − [1 + β + κσ(ϕπ + 1)]ϕr,

d3 = κσϕπϕr.

The characteristic polynomial, (102), evaluated at bπϕπ = (1− ϕr), yields

p(1− ϕr) = κσϕ2r(ϕr + ϕπ − 1) (103)

so that p(1 − ϕr) > 0 for all ϕr + ϕπ > 1. This means that there exists a negative root

bπ which satisfies (56) since p(−∞) = −∞. If the solution is determinate (say) under the
conditions given in Proposition 11, then this is also the uniquely stationary solution.

The characteristic polynomial, (102), evaluated at bπϕπ = (1+ϕr), on the other hand,

yields

p(1 + ϕr) = ϕ2r[{κσ + 2(1 + β)}ϕr + 2(1 + β)− κσ(ϕπ − 1)]. (104)



Determinacy, Learnability, and Monetary Policy Inertia 35

From (104), observe that p(1 + ϕr) < 0 when

{κσ + 2(1 + β)}ϕr + 2(1 + β) < κσ(ϕπ − 1), (105)

that is, precisely when condition (9) in Proposition 11 is violated (with ϕx = 0). This

shows that when ϕr + ϕπ > 1 and condition (105) is satisfied, there exist two stationary

solutions for bπ, one with bπ < 0 satisfying condition (56) and the other with bπ > 0

satisfying condition (55).

Note that equation (97) implies that

bx = br[bx + (bπ − 1)σ] (106)

which can be rearranged to give

bx(1− br) = σbr(bπ − 1). (107)

The inequality bπ < 0 implies that

0 < br = ϕr[1− bπϕπ]
−1 < 1 (108)

which in turn implies that bx < 0. We note that

bx = σϕr(1− bπ)[bπϕπ + ϕr − 1]−1. (109)

7.7. APPENDIX G (E-stability of Forward Rule). We look at the three pairs

of matrices required for checking E -stability.19 We first start with the 9 × 9 matrix
b̄0 ⊗ Ω+ I ⊗ Ωb̄− I which must have eigenvalues with negative real parts for E -stability.

Using Mathematica, one can verify that five of the eigenvalues are −1 and two of the
remaining four are given by

bxϕx + bπϕπ − 1. (110)

A necessary condition for E -stability is, therefore, bxϕx + bπϕπ < 1 which is equivalent

to br > 0. This proves Proposition 7.

The final two eigenvalues of b̄0 ⊗ Ω + I ⊗ Ωb̄ − I are given by the solutions to the

characteristic polynomial

η2 + ηc1 + c2 = 0, (111)

19A Mathematica program which computes these E -stability conditions is provided at
http://www.stls.frb.org/research/econ/bullard/.
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where

c1 = [(1− bxϕx − bπϕπ)
2 + (1− bxϕx − bπϕπ)− {1 + β − κσ(ϕπ − 1)− σϕx}ϕr]Xa;

Xa ≡ (1− bxϕx − bπϕπ)
−1; (112)

c2 = [(1− bxϕx − bπϕπ)
3 + βϕ2r + ϕrXr](1− bxϕx − bπϕπ)

−2; (113)

Xr ≡ bπ[bπϕπ(σϕx − ϕπ) + ϕπ{2 + β + κσ(1− ϕπ)− σϕx}− σϕx]

+bx[bxϕx{κϕπ − (β + κσ)ϕx}+ ϕx(1 + 2β + 2κσ − κσϕπ − σϕx)− κϕπ]

+bxbπ[κϕ
2
π + σϕ2x − (1 + β + κσ)ϕxϕπ]− 1− β + κσ(ϕπ − 1)− σϕx(βϕr − 1).

Necessary and sufficient conditions for the above polynomial to have negative real parts

are that c1 > 0 and c2 > 0.

For E -stability we also need the eigenvalues of Ω+Ωb̄− I to have negative real parts.

One eigenvalue of this matrix is −1 and the remaining two are given by the solutions to
the characteristic polynomial

η2 + ηa1 + a2 = 0; (114)

a1 = (1− bπϕπ − bxϕx)− β + κσ(ϕπ − 1) + σϕx, (115)

a2 = bx[ϕx(β + κσ − 1)− κϕπ]− σϕxbπ (116)

+σ[κ(ϕπ − 1) + (1− β)ϕx].

The necessary and sufficient conditions for the above polynomial to have negative real

parts are that a1 > 0 and a2 > 0.

Finally, one also needs the eigenvalues of ρΩ+Ωb̄− I to have negative real parts. One
eigenvalue of this matrix is −1 and the remaining two are given by the solutions to the
characteristic polynomial

η2 + ηa1ρ + a2ρ = 0; (117)

a1ρ = (2− bπϕπ − bxϕx)− ρ[1 + β − κσ(ϕπ − 1)− σϕx], (118)

a2ρ = 1− ρ[1 + β − κσ(ϕπ − 1)− σϕx] + βρ2(1− σϕx) +

bx[ϕx{ρ(β + κσ)− 1}− ρκϕπ]− bπ[(1− ρ)ϕπ + ρσϕx], (119)

so that for E -stability one requires a1ρ > 0 and a2ρ > 0.
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We conclude that the necessary and sufficient conditions for E -stability of any MSV

solution in the case of forward rules requires that all of the coefficients c1, c2, a1, a2, a1ρ,

and a2ρ defined in (112), (113), (115), (116), (118), and (119) are positive and that

bxϕx + bπϕπ < 1.

Details for Proposition 8. We consider E -stability of the unique MSV solution

(when ϕx = 0) which exists under the conditions given in Proposition 11, i.e., when ϕr ≥ 1
and condition (9) is satisfied. As proved in Appendix F, this MSV solution has bπ < 0,

bx < 0, 0 < br < 1, and satisfies (56). Note that condition (56) implies that the eigenvalue

(110) is negative.

We first examine the coefficients c1, c2 in (112) and (113) involved in the eigenvalues

of b̄0 ⊗ Ω+ I ⊗ Ωb̄− I. Consider c1 in (112) first. Since bπ < 0, Xa ≡ (1− bπϕπ)
−1 > 0,

and E -stability requires the expression in parentheses of c1 to be positive. This expression

simplifies (when ϕx = 0) to

2 + (bπϕπ)
2 − 3bπϕπ − ϕr{1 + β − κσ(ϕπ − 1)}

> 2 + (ϕr − 1)2 + 3(ϕr − 1)− ϕr{1 + β − κσ(ϕπ − 1)}
= ϕ2r + ϕr − ϕr{1 + β − κσ(ϕπ − 1)} = ϕr[ϕr − β + κσ(ϕπ − 1)]. (120)

The first inequality above uses the fact that bπ satisfies (56), i.e., bπϕπ < 1−ϕr. Equation
(120) shows that ϕr ≥ β + κσ suffices to make c1 > 0 for all ϕπ > 0.

Next we turn to c2. Since (1 − bπϕπ)
−2 > 0 by bπ < 0, E -stability requires the

expression in parentheses of c2 in (113) to be positive. This expression simplifies, after

some manipulation, to (when ϕx = 0)

βϕ2r + (1− bπϕπ)
3 + (1− bπϕπ)ϕr[κϕπ(σ − bx) + bπϕπ − (1 + β + κσ)]

= βϕ2r + ϕ3rb
−3
r + ϕ2rb

−1
r [κϕπ(σ − bx) + bπϕπ − (1 + β + κσ)]

= ϕ2rb
−1
r [(ϕrb

−2
r − β)(1− br) + κσ(ϕπ − 1)− κϕπbx], (121)

where we have used the value of br = ϕr(1−bπϕπ)−1 at the MSV solution from (108) and
eliminated bπϕπ in the final line (121). Obviously, if ϕπ ≥ 1, then c2 > 0 for all ϕr ≥ β

since 0 < br < 1, and bx < 0.

We consider further the situation when ϕπ < 1. For this we substitute the value of bx

from (107) at the MSV solution in the final term of (121), i.e., −κϕπbx, and write this in
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terms of br. Before doing this, we first note from (107) that

bx(1− br) = σbr(bπ − 1) = σbr(ϕ
−1
π − ϕrϕ

−1
π b−1r − 1) (122)

= σϕ−1π [br(1− ϕπ)− ϕr],

where we have manipulated br = ϕr(1 − bπϕπ)
−1 (obtained from (108)) to get the final

expression on the right hand side above in terms of br. Using (122), we finally obtain

−κϕπbx = κσ(1− br)
−1[(ϕπ − 1)br + ϕr]. (123)

Using (123), the expression within parentheses in (121) simplifies to

(ϕrb
−2
r − β)(1− br) + κσ(ϕπ − 1)− κϕπbx (124)

= (ϕrb
−2
r − β)(1− br) + κσ(ϕπ − 1) + κσ(1− br)

−1[(ϕπ − 1)br + ϕr]

= ϕr[κσ(1− br)
−1 + (1− br)b

−2
r ] + κσϕπ(1− br)

−1 − κσ(1− br)
−1 − β(1− br),

where the first two terms in the third line of (124) has grouped together terms involving

ϕr and ϕπ. Then c2 > 0 iff the expression in the third line of (124) is positive. This will

be so iff

ϕr[κσb
2
r + (1− br)

2](1− br)
−1b−2r > κσ(1− br)

−1 − κσϕπ(1− br)
−1 + β(1− br), (125)

that is, iff (after multiplying both sides of the above equation by (1− br)),

ϕr[κσb
2
r + (1− br)

2]b−2r > κσ(1− ϕπ) + β(1− br)
2, (126)

ϕr > [κσb
2
r(1− ϕπ) + βb2r(1− br)

2][κσb2r + (1− br)
2]−1. (127)

Comparing the terms within the two parentheses in the right hand side of (127), it is easy

to see that this right hand expression in (127) is less than 1 since 0 < β, br < 1 and ϕπ

is assumed to be less than 1. This proves that a sufficient condition for c2 > 0, for all

ϕπ > 0, is ϕr ≥ 1.
We next turn to the eigenvalues of Ω+Ωb̄− I which need to have negative real parts.

When ϕx = 0, a1 and a2, defined in (115), and (116), reduce respectively to

a1 = 1− bπϕπ − β + κσ(ϕπ − 1), (128)

a2 = κσ(ϕπ − 1)− κϕπbx. (129)
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We first examine a2. From (129), observe that a2 > 0 when ϕπ ≥ 1 since bx < 0 at the

MSV solution. We now prove that a2 > 0 even when ϕπ < 1. From (129), when ϕπ < 1,

a2 > 0 iff

−κϕπbx > κσ(1− ϕπ), (130)

that is, iff

κσ(1− br)
−1[(ϕπ − 1)br + ϕr] > κσ(1− ϕπ), (131)

where we have used (123) in (131). Inequality (131) is equivalent to

(1− br)
−1[ϕr(1− ϕπ)

−1 − br] > 1. (132)

Since ϕπ < 1 and ϕr ≥ 1, (132) is obviously satisfied and hence, a2 > 0 for all ϕπ > 0.

We next turn to a1. From (128), it is obvious that a1 > 0 when ϕπ ≥ 1 since bπ < 0

at the MSV solution and 0 < β < 1. We now prove that a1 > 0 even when ϕπ < 1. From

(128), when ϕπ < 1, a1 > 0 iff

1− bπϕπ > β + κσ(1− ϕπ), (133)

that is, iff

ϕr > [β + κσ(1− ϕπ)]br (134)

where in moving from (133) to (134), we have used the value of br in (108) above. From

(134), it is clear that since 0 < br < 1, a sufficient condition for a1 > 0 for all ϕπ > 0, is

that ϕr ≥ β + κσ.

Finally, we turn to the eigenvalues of ρΩ + Ωb̄ − I which need to have negative real

parts. The coefficient a1ρ, defined in (118), reduces to (when ϕx = 0)

a1ρ = 2− bπϕπ − ρ[1 + β − κσ(ϕπ − 1)] = 2− ρ(1 + β)− bπϕπ + ρκσ(ϕπ − 1) (135)

which is obviously positive when ϕπ ≥ 1 since 0 < β, ρ < 1 and bπ < 0 at the MSV

solution. We now show that a1ρ > 0 when ϕr ≥ β + κσ even when ϕπ < 1. For this note

that we can write a1ρ as

a1ρ = 2− bπϕπ − ρ[1 + β − κσ(ϕπ − 1)] = a1 + (1+ β)(1− ρ)− (1− ρ)κσ(ϕπ − 1) (136)

where we have used the expression of a1 from (128) in the right hand equality of (136).

From (136), it is obvious that since 0 < ρ < 1, a1 > 0 implies that a1ρ > 0 when ϕπ < 1.
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Since it was proved above that a1 > 0 when ϕr ≥ β + κσ, for all ϕπ > 0, it follows,

therefore, that a1ρ > 0 under the same condition.

We now turn to a2ρ, defined in (119), which simplifies (when ϕx = 0) to

a2ρ = 1− ρ[1 + β − κσ(ϕπ − 1)] + βρ2 − ρκϕπbx − (1− ρ)bπϕπ

= (1− ρ)(1− βρ)− (1− ρ)bπϕπ + ρ[κσ(ϕπ − 1)− κϕπbx]

= (1− ρ)(1− βρ)− (1− ρ)bπϕπ + ρa2, (137)

where we have used the value of a2 from (129). Since a2 > 0 was proved before (for all

ϕπ > 0 when ϕr ≥ 1), it follows from (137) that a2ρ > 0 also since 0 < β, ρ < 1, and

bπ < 0.


