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Number recognition in different formats 
 
 
 An interesting aspect about numbers is that they can be presented in different 
formats.  Although numbers are associated spontaneously with arabic digits, they can 
also be represented as Roman numerals, (e.g., MMIV), sequences of words (both 
spoken and written), or in an analog form (e.g., dots on a die, tallies on a sheet of 
paper, or bar graphs). This raises the question of how numbers in the different formats 
are processed. What are the commonalities and what are the differences? I will first 
deal with the analog displays, which have a meaning both for humans and animals; and 
then continue with the verbal and the arabic numerals, which are uniquely human 
achievements. In line with McCloskey and Macaruso (1995), I will use the term number 
for format-independent aspects of numerical cognition, and the term numeral to refer to 
modality-specific representations (i.e., analog, verbal, and arabic numerals). 
 
 
Perceiving analog displays of numbers 
 

The basic function of numbers is to represent quantities (also called numerosities 
when the elements are clearly separated). By counting how many similar elements 
there are in a scene, we can assess their number. Because 5-year olds regularly make 
errors in their counting (e.g., Gelman & Gallistel, 1978), for a long time it was thought 
that knowledge of numerosities required formal education to be mastered. However, 
research in the 1980-1990s has indicated that this is not true for the apprehension of 
small numerosities. It is now well established that young babies, just like all kinds of 
animals (rats, pigeons, pigs, …) can easily discriminate numerosities smaller than four 
(see the chapters of Brannon and Spelke, Barth, & Lipton). In addition, they can 
compare two quantities when the differences between the quantities are big.  For 
instance, Antell and Keating (1983) reported that newborns who were habituated to 
successive displays with two elements each (and, therefore, barely looked at them any 
more), showed increased interest when a display with three elements was presented.  
Using a similar habituation technique, Xu and Spelke (2000) reported that 6-month olds 
can discriminate between 8 and 16 items, but not between 8 and 12. 

  
Human adults also show a distinction between the perception of a small number 

of items and the perception of a large number. Whereas it only takes some 50 ms 
longer to decide that a display contains three dots than to decide that it contains one 
dot, the time needed to detect nine dots is more than 600 ms longer than the time to 
detect seven dots. The difference is even consciously felt by the participants. Whereas 
they “see” the numerosity directly when the display contains less than four items, they 
have to “count” in order to correctly assess larger numbers. In addition, the assessment 
of larger numerosities is easier when the items are presented in a canonical form (e.g., 
a six represented by 2 rows of 3 dots, as on a die) than when they are presented in a 
random configuration (Mandler & Shebo, 1982; Wender & Rothkegel, 2000). The 
immediate apprehension of small numerosities (up to 3 to 4 elements) has been called 
subitizing (Kaufman, Lord, Reese, Volkman, 1949; Jensen, Reese, & Reese, 1950). 
Figure 1 shows the typical results of a study on subitzing. 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 1 about here 
- - - - - - - - - - - - - - - - - - - - 
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Further interesting observations are made when numerosities larger than four are 
presented and mathematically literate participants are prevented from counting them 
(for instance by a brief display of the stimulus pattern). Under these circumstances, 
participants have to come up with an educated guess, and they again show behavior 
that very much resembles that of animals. 

  
A first finding is that participants spontaneously underestimate the number of 

elements in the display. The underestimate increases as the numerosity grows. For 
instance, Krueger (1982) showed each participant one sheet of paper with some Xs on. 
Participants were asked to give an estimate of the number of Xs on the page. When 50 
Xs were present on the sheet, participants estimated them to be around 40; when 100 
Xs were shown, estimates hinged around 75; when 200 were shown, the average 
estimate was some 135; and when 300 Xs were shown, participants estimated them to 
be around 200. So, there was a compressive function between the estimates given by 
the participants and the actual number presented (the former increased less rapidly 
than the latter). The compressive function was best captured by a power function with 
an exponent of .8 (i.e., in-between a linear function – exponent 1 – and a square root 
function – exponent .5).  

 
A second finding when adults estimate numerosities on the basis of analog 

displays, is that the estimates show variability.  For instance, van Oeffelen and Vos 
(1982) showed participants tachistoscopic displays with random configurations of dots 
and asked them to estimate whether or not there were exactly 12 dots in the display. 
The interesting variable was how often the participants would think there were 12 
elements, given that another number had been presented. The results of this study are 
shown in the lower left part of Figure 2. When the number of elements presented was 
11 or 13, participants made some 35% false alarms. When 10 or 14 elements were on 
the display, participants made some 24% errors. For a distance of 3, they made 17% 
errors, and for a distance of 4 they made 8% errors.  This pattern of mistakes is very 
similar to the patterns of errors shown by animals in similar designs (see the two upper 
parts of Figure 2). 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 2 about here 
- - - - - - - - - - - - - - - - - - - - 

 
Finally, a third finding with numerosity estimates is that the variability in estimates 

increases with growing target numbers. This was particularly clear in an experiment 
reported by Whalen, Gallistel, and Gelman (1999). Participants were presented with a 
dot that repeatedly flashed on and off in one location, and were asked to say 
approximately how many times the dots flashed, without verbal counting (special 
precautions were taken to prevent the counting). Both the response means and the 
standard deviations increased in direct proportion to the target number, which ranged 
from 7 to 25. Again, these findings were very similar to previous results obtained with 
rats and shown in Figure 3. 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 3 about here 
- - - - - - - - - - - - - - - - - - - - 
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On the basis of these findings, a considerably number of researchers nowadays 
assume that animals and humans are born with a preverbal numerical system (based 
on analogue magnitudes) that is capable of apprehending small numerosities precisely 
and larger numerosities approximately (e.g., Butterworth, 1999; Dehaene, Dehaene-
Lambertz, & Cohen, 1998; Gallistel & Gelman, 1992; Wynn, 1998).   

 
Gallistel and Gelman (1992), for instance, hypothesized that subitizing is nothing 

else than fast counting, based on the preverbal representations. In their model, each 
time an element of a display is encountered, a quantity is added to an accumulator (the 
authors compare this process to pouring cups of water in a bucket). At the end of the 
count, the accumulator is emptied into memory, and the total quantity is read. However, 
because there is some noise in the unit quantities added and/or in the reading from 
memory, there will be variability in the outcomes. This variability grows the more units 
(cups) have been added. Therefore, only for small numbers of units is it possible to 
rapidly assess the exact quantity. For larger numbers either mistakes are made, or a 
more laborious process must be used, which consists of verbal counting.  

 
The idea of an innate, preverbal numerical system has also been defended by 

Dehaene and colleagues (e.g., Dehaene, 1992; Dehaene, Dehaene-Lambertz, & 
Cohen, 1998). They use the metaphor of a number line for this system. Numerical 
representations are thought to be ordered from small to large, and numbers are 
recognized by looking at which part of the number line is activated. The number line is 
thought to be compressed (e.g., according to a logarithmic function or a power function), 
so that the part of the line devoted to the number 1 is larger than the part devoted to the 
number 2, which in turn is larger than the part devoted to the number 3, and so on.  
Because of this characteristic, the representations of small numbers are more easily 
discernable than those of large numbers, and from a certain magnitude on the 
numerical representation can no longer be determined with certainty. It can only be 
estimated, unless an explicit verbal counting process is initiated. 

  
This interpretation, however, is not shared by everyone (e.g., Mix, Huttenlocher, 

& Levine, 2002; Simon, 1997). There are two main points of contention. First, there is 
the question to what extent the empirical evidence of numerical knowledge in children 
and animals is due to the numerosity of the items (i.e., to the abstract notion of number: 
“two-ness, three-ness”), or to some confounded perceptual factor, such as the area 
covered by the items, the duration of the stimulus display (when the items are presented 
in time), or the density of the elements in the display. For instance, Feigenson, Carey, 
and Spelke (2002) in a first experiment replicated Antell & Keating’s (1983) experiment 
with the use of animallike objects made of Lego bricks: Infants of 7 months old who 
were habituated to successive displays of one object, showed increased interest when a 
display with two objects was shown, and vice versa. However, in four subsequent 
experiments, the authors failed to find the dishabituation effect when the front surface 
area of the objects was controlled, so that the task could not be explained on the basis 
of the total size of the stimulus configuration. For instance, the infants did not show 
renewed interest when in the habituation phase two small objects were presented, and 
in the test phase one double-sized object. Apparently, the infants’ behavior was more 
influenced by the size of the total stimulus configuration than by the number of elements 
in the display. 

 
The second point of contention is whether one really needs numerical knowledge 

to perceive numerosities up to 4. It is generally assumed that humans (and animals) can 
keep 3-4 chunks of information simultaneously in short-term memory. Maybe this is the 
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reason why infants and animals can perceive the difference between 2 and 3 elements, 
and why human adults show the subitizing effect? All they have to do is to match the 
second perceptual stimulus to the information of the first stimulus stored in short-term 
memory (Simon, 1997). This could be done by a simple one-to-one matching process, 
without any requirement of numerical knowledge (see also Logan & Zbrodoff, in press, 
for a recent perceptual interpretation of both the subitizing effect and the “counting” 
effect shown in Figure 1). One specific prediction of the short-term memory account is 
that infants and animals must not be able to compare numerosities larger than 4 (when 
perceptual factors are controlled), because these numerosities lay outside the short-
term memory span. Needless to say, this is currently a matter of strong debate in the 
literature (see, e.g., Feigenson, Carey, & Hauser, 2002 vs. Xu & Spelke, 2000; Xu, 
2003).  

 
In summary, when mathematically literate humans are confronted with numbers 

shown in an analog format, they have no problems perceiving numerosities smaller than 
4 (subitizing). For larger numerosities, they either start to count or they make a rough 
estimate. Because the subitizing effect and the rough estimates resemble 
characteristics of animal cognition (accurate perception of small numerosities, a 
tendency to underestimate large numerosities, and an increased variability in the 
estimates of larger numerosities), some authors have suggested that they are based on 
an innate, preverbal numerical system, which humans share with animals. Other 
researchers question such a nativistic view of numerical cognition, and point to the fact 
that much empirical evidence can be explained by perceptual factors unrelated to 
numerical cognition. 

 
The finding that people spontaneously start to count numerosities larger than 4, 

shows how important symbolic representations are for human numerical cognition. In 
the following sections, I review the main findings on the processing of these symbolic 
representations. 

 
 

Recognizing verbal numerals 
 

The words for the small numbers are among the first acquired, and research has 
shown that nearly half of the 3-year olds are capable of using the words up to seven in a 
sensible way (e.g., to count a row of objects; Gelman & Gallistel, 1978). Needless to 
say, knowledge of number words dramatically facilitates the mathematical competence 
of humans, and a look at the number words themselves reveals some of the hurdles 
that had to be overcome in inventing them (Ifrah, 1998). For instance, the fact that the 
words “one, two, and three” have the same stem in German and Roman languages 
indicates that they have a common, more ancient origin. Similarly, nearly all Western 
languages have a number word related to “new” (nine, neuf), presumably because this 
number marked a discovery at some moment in our history; and the words for 11 and 
12 betray that the base-ten structure of our number system was not yet well established 
by the time they were coined (although “eleven” and “twelve” originate from the sayings 
“one-left” and “two-left” – after you’ve counted all 10 fingers/digits; the fact that our 
number system has a base 10 also originates from the widespread use of fingers to 
count). 

 
There are no reasons to assume that the perception and the production of verbal 

numerals would be any different from that of other words. So, we can take inspiration 
from the more general models of visual and auditory word recognition and production. 



 6

Because not everything can be covered in the space of a chapter, I will limit myself to 
the recognition of printed words. Readers interested in an introduction to spoken word 
recognition, may want to have a look at McQueen (in press).  Those interested in 
spoken word production, are referred to Levelt, Roelofs, and Meyers (1999) and the 
following commentaries. Finally, those interested in written word production, may want 
to read Bonin, Peereman, and Fayol (2001).  

 
There are three discussions within the literature of visual word recognition that 

are particularly interesting for number recognition. The first deals with the question of 
whether or not a mental lexicon is needed for the recognition of word forms; the second 
concerns the question of how the meaning of words is accessed; and the third 
addresses the question of how morphologically complex words are recognized. 

 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 4 about here (Coltheart et al., 2001) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
 In models of word recognition it has been customary to make a distinction 

between a so-called word-form level and a word-meaning level (e.g., Balota, 1994; see 
Figure 4 for an example of such a model). The flowcharts of these models usually 
capture the former under the term “lexicon” and the latter under the term “semantic 
system”. At the lexical level, a match is made between the incoming perceptual 
information and word-form knowledge stored in memory, to determine whether a given 
stimulus (either visual or auditory) refers to a known word or not. At the semantic level, 
the meaning of a known word is derived. Several reasons have been given for the 
distinction between the lexical and the semantic level. A first reason is that many 
researchers believe that the lexical level is more differentiated than the semantic level. 
For instance, many authors are convinced that a distinction should be made between a 
visual and an auditory lexicon. Some arguments for this distinction are related to the 
nature of the input (e.g., the letters of short written words are probably processed in 
parallel, whereas there is a clear serial component in the phonemes of spoken words, 
which typically take hundreds of milliseconds to be pronounced). Other arguments are 
derived from priming studies. It has been shown that within-modality repetition of a word 
(e.g. visual-visual) results in larger facilitation effects than cross-modality repetition 
(e.g., auditory-visual; Morton, 1979).  

 
 A second reason for separating lexical from semantic representations has to do 

with the lack of one-to-one mappings between words and meanings. For example, the 
meaning of words to some extent depends on the context: The word big has a different 
meaning in the phrase the big ant  than in the big rocket (Harley, 2001). Also, many 
words have different meanings (polysemy) or share their meaning with other words 
(synonyms). It is difficult to explain the resolution of these ambiguities in the mappings 
from form to meaning within a single layer of representations. 

 
 Finally, a third reason for separating the lexical from the semantic system, is that 

humans can do quite some processing of “words” without understanding them. For 
instance, a long series of neuropsychological patients have been described who had 
severe difficulties matching visually presented words to pictures, but who nonetheless 
knew very well which letter sequences formed existing words and which formed non-
words. In addition, they could read the words aloud, even when the words contained 
irregular letter sound correspondences, as in blood, climb, and come (Coltheart, in 
press; Gerhand, 2002).  
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Insert Figure 5 about here (Seidenberg & McClelland, 1989)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Although the distinction between word form and word meaning is still dominant in 

models of visual word recognition, it has been criticized by Seidenberg and McClelland 
(1989). In their distributed model of visual word recognition (see Figure 5), word 
knowledge no longer begins when the activation of an entry in the orthographic lexicon 
exceeds a certain threshold, but consists of the co-activation of processing units that 
encode the orthographic, phonological, and semantic properties of a word (see also Van 
Orden, Pennington, & Stone, 1990). A visual word activates a number of orthographic 
units representing the sequence of input letters. This activation spreads to the semantic 
and the phonological units that are connected to the activated orthographic units, and 
feeds back until a stable state is reached. In addition, the various units are no longer 
devoted to single words (i.e., there are no localist representations any more). Each unit 
is activated by many words, and the identity of a word is determined by a pattern of 
activation across multiple units. Seidenberg and McClelland (1989) showed that many 
features of human visual word recognition can be simulated with such a model that no 
longer contains a visual lexicon.  

 
With respect to the recognition of number words, the large majority of existing 

models have taken inspiration from the Coltheart et al. model (Figure 4) and, therefore, 
contain an orthographic lexicon with localist representations (for a review, see 
Campbell’s chapter in this book). A major exception has been Campbell (1994) who 
defended a view very similar to Seidenberg and McClelland’s. According to his multiple 
encoding view, numbers are simultaneously encoded in multiple ways (analog, verbal, 
arabic) through a process of activation that automatically dissipates. In this model, 
number recognition depends on the pattern of co-activation of the different codes rather 
than on the activation of one particular, localist code. 

 
The second discussion within the literature of visual word recognition that is 

pertinent to number recognition, has to do with the question how central the meaning 
system is within the language architecture. To an outsider, this may seem a strange 
discussion, because what else is (visual) word recognition for than to access the 
meaning of a written message?  However, researchers discovered that for the two tasks 
they usually ask participants to perform, meaning can be more or less discarded to 
explain the results. These tasks are the naming of visually presented, isolated words 
(word naming) and deciding whether or not a presented string of letters forms a correct 
English word or not (lexical decision). For word naming, traditionally three routes have 
been postulated (see Figure 4; but also see Seidenberg & McClelland (Figure 5) who 
distinguished between two routes only). First, there is a direct conversion from letters to 
sounds, making it possible to name unknown sequences of letters, such as non-words. 
The second route goes from the orthographic input lexicon to a phonological output 
lexicon, enabling the reader to correctly pronounce irregular words such as come. 
Finally, the third route goes from the orthographic input lexicon, through the semantic 
system, to the phonological output lexicon. However, it is usually assumed that this 
route is too slow to affect performance. Hence, this route has not been implemented in 
any of the existing computational models of word naming. Similarly, lexical decision 
times have been explained by focussing on the activity within the word-form lexicon, 
with little or no contribution from the words’ meanings. 
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 In general, findings with verbal numerals are well in line with the assumption of 
asemantic routes in visual word processing. Fias, Reynvoet, and Brysbaert (2001), for 
instance, presented a verbal numeral and an arabic numeral on the same display. 
Participants were asked to name the verbal numeral and to ignore the arabic numeral. 
They were perfectly capable of doing so, as evidenced by the fact that the naming 
latencies were the same when the arabic numerals referred to different magnitudes than 
the verbal numerals (e.g., six – 5), as when they referred to the same magnitudes (e.g., 
six – 6). In contrast, when the participants had to make a response that involved the 
meaning of the verbal numerals (i.e., indicate whether the verbal numeral was odd or 
even), they showed faster responses when both numbers referred to the same 
magnitude than when they referred to different magnitudes. Other evidence for the 
existence of non-semantic processing routes for verbal numerals comes from the 
finding that  participants do not need more time to indicate that eight is written in small 
letters and two in large letters than to indicate that eight is written in large letters and 
two in small letters, whereas they do show such a magnitude-size congruity effect with 
Arabic numerals and other types of  non-alphabetic stimuli (e.g., Ito & Hatta, 2003; see 
the section on arabic numerals for more information about this task).  
 
 On the other hand, research on the processing of verbal numerals has also 
shown that although the semantically mediated route is slightly slower in the naming of 
words, its importance must not be underestimated within the traditional three-route 
model. Reynvoet, Brysbaert, and Fias (2002), for instance, showed that the naming of 
verbal numerals was primed by arabic numerals with a close value. That is, participants 
named the target word five faster when 115 ms before the arabic primes 4 or 6 had 
been presented tachistoscopically, than when the arabic primes 2 or 8 had been 
presented (see the section on arabic numerals for more information about this distance-
related priming effect). Subsequent research showed that the same effect was obtained 
with masked primes presented a mere 43 ms before the targets (Reynvoet & Brysbaert, 
in press). This cross-notation priming effect suggests that it does not take much to pre-
activate the number magnitude route enough to find semantically mediated effects in 
the naming of verbal numerals.  
 

Other evidence for the importance of the semantically mediated route in the 
naming of verbal numerals comes from Cappelletti, Kopelman, and Butterworth (2001). 
They reported the case of a semantic dementia patient who could hardly read words 
any more (21% of the words with regular letter-sound mappings, such as must; and12% 
of the words with irregular mappings, such as pint), but who was flawless at reading 
verbal numerals, due to spared numerical knowledge. Spared numerical knowledge is 
also often reported in Alzheimer’s disease, and is in line with the finding that numerical 
knowledge is represented separately from many other types of semantic knowledge in 
the brain (e.g., Pesenti et al., 2000; see also Dehaene et al.’s chapter in this book). 
 

Finally, the third discussion in the visual word recognition literature, that has a 
particular bearing on number processing, is the question of how morphologically 
complex words are recognized. In number reading, only the verbal numerals from zero 
to twelve are without question monomorphemic (i.e., consisting of one meaning unit 
only). In contrast, words like twenty-one and one-hundred twenty-six are clearly 
polymorphemic (i.e., contain at least two morphemes). In-between, there are some 
number names of which it is not clear whether they can be considered as 
polymorphemic because their constituents are different from the original words (e.g., 
thirteen, twenty, fifty, …[instead of threeten, twoty, and fivety]). There are two types of 
clear polymorphemic number words. The first are derivations obtained by adding a 
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suffix to a simple number word (e.g., sixty, seventy). The second are compound words 
that are obtained by combining two or more words (e.g., twenty-one). Theoretically, 
morphologically complex words can be processed in two ways (see, e.g., Bertram & 
Hyona, 2003). Either they can be decomposed into their constituents which are then 
used to compute the meaning; or they can be stored as a whole in the mental lexicon. 
Researchers have offered quite divergent ideas about the relative importance of the two 
processing pathways and the factors that determine the balance. Variables that have 
been proposed are semantic transparency, word frequency, and the length of the 
constituting words. Morphologically-complex words are more likely to be stored and 
retrieved as a whole when the semantic relation between the word and the constituents 
is unclear (i.e., more likely for honeymoon than for honeybee), when the complex word 
is frequently encountered (i.e, more likely for honeybee than for honeyfungus), and 
when the complex word is short (i.e., more likely for eyelid than for watercourse). These 
factors allow us to predict that verbal numerals like fifteen and twenty (high-frequency, 
short, no clear relationship between the constituents and the complex word) are more 
likely to be recognized as a whole than numerals like seventy and ninety (lower 
frequency, semantically transparent), and that words like ninety-eight (long, low-
frequency) are bound to be processed through decomposition. However, thus far, 
virtually no research has been done on this topic. 
 
 All in all, research on the processing of written verbal numerals, even though 
limited, has returned findings that are well in line with what can be expected on the 
basis of what is known about the processing of visually presented words in general. 
Most importantly, there is evidence that for many tasks (e.g., number naming and 
decisions about the size of number words) the meaning of verbal numerals is not 
activated fast enough to influence the response. This is in line with the assumption of 
non-semantically mediated routes in models of word processing, an assumption made 
by both localist (Figure 4) and distributed (Figure 5) models. As the majority of verbal 
numerals consist of more than one morpheme, any comprehensive theory of verbal 
numeral recognition will have to address the question of how morphologically complex 
words are recognized, an issue that has been overlooked so far. 
 
 
Recognizing arabic numerals 
 
 The invention and application of Arabic (actually Hindi) numerals has further 
advanced the human numerical competence (Ifrah, 1998). It is widely assumed that the 
use of Roman numerals has prevented the Romans from attaining a mathematical 
sophistication that matches the sophistication they reached in other knowledge areas 
(just try to solve the problem CMIX times LI). Interesting features of arabic numerals are  
the use of a base 10 throughout (remember that the base-ten structure is not completely 
present in many verbal number systems; see Miller’s chapter for the implications of 
this), and the use of place coding. Units are always written rightmost, tens are second, 
hundreds third, and so on. This way of coding required the invention of the digit 0, for 
instance to represent 909 (nine hundreds and nine units, no tens). The power of the 
arabic notation can be seen in the fact that even for simple arithmetic problems 
involving the addition or multiplication of single digits, participants are much faster and 
more accurate when the numerals are presented as digits than as words (Campbell, 
1994; Noel et al., 1997), even when the words are spoken (LeFevre et al., 2001). 
 
 The existence of arabic numerals begs the question of how they are recognized. 
As for the verbal numerals, a distinction must be made between small numbers and 
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large numbers. Nearly all numerals with three digits or more require a decomposition 
(parsing) process. There is nobody defending the idea that a numeral like 4253 with its 
associated magnitude is stored as a whole in the human brain. The only known 
exception to this parsing requirement is when a complex numeral is frequently used as 
a nominal label to refer to a particular entity (e.g., when the participant’s car is a 
Peugeot 206, when the participant is heavily interested in Boeings 747, or when the 
participant is a postman working near the Belgian village Darion, which has the 
postcode 4253). For these familiar complex numbers, there  is some evidence that they 
may be stored holistically, as it is possible to prime them with their associated words 
(e.g., the number 206 is recognized faster after the tachistoscopically presented prime 
Peugeot than after the tachistoscopically presented prime Boeing; Alameda, Cuetos, & 
Brysbaert, 2003; Delazer & Girelli, 1997), In general, however, complex numbers must 
be decomposed into their constituents, and this is a process that is prone to brain 
damage (due to a stroke or to dementia). Many patients with numerical problems have 
difficulties reading and writing complex arabic numerals correctly (e.g., writing three-
hundred and four as 3004). 
 
 Researchers largely agree that small numbers are recognized as a whole, but 
disagree about (1) whether these small numbers are limited to single digits, or whether 
they also include two-digit numbers (12, 20, 88), and (2) whether semantic activation is 
pivotal for the processing of arabic numerals? Before homing in on these two 
discussions, I will first review the major empirical findings about the processing of small 
arabic numerals. 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 6 about here 
- - - - - - - - - - - - - - - - - - - - 

 
 A first robust finding is that the processing is more demanding for larger numbers 
than for smaller numbers. This is already true for digits. It is easier to indicate which is 
the smaller of the pair 2-3 than to indicate which is the smaller of the pair 8-9. It is also 
easier to calculate 2+3 and 2x3 than 8+9 and 8x9. Brysbaert (1995) even found a 
robust number magnitude effect in a short-term memory experiment. In this experiment, 
participants first had to read three arabic numerals going from 0 to 99, and then to look 
at a fourth arabic numeral and to decide whether this fourth numeral was part of the 
initial set: yes or no. Eye movements of the participants were tracked, and the time was 
measured participants needed to store the numeral in short-term memory before they 
proceeded to the next numeral. Figure 6 shows the average reading time for the first 
numeral seen by the participants as a function of number magnitude. The most 
important variable to predict the reading times turned out to be the logarithm of the 
number magnitude, in line with the predictions of the compressed number line model 
(Dehaene, 1992). 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 7 about here 
- - - - - - - - - - - - - - - - - - - - 

 
 A second robust finding in arabic numeral processing is that when two numbers 
are processed together, processing times are influenced by the distance between the 
numbers. This is particularly clear when both numbers have to be compared, as it is 
much easier to say which digit is the smaller for the pair 2-8 than for the pair 2-3. More 
precisely, decision times are a function of the logarithm of the distance between the two 
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numbers (see Figure 7). Another distance-related effect that has been described is the 
number priming effect. A target digit is recognized faster when it follows a 
(tachistoscopically presented) prime with a close value than when it follows a prime with 
a more distant value. Figure 8 shows data obtained by Reynvoet and Brysbaert (1999) 
with a number naming task and masked primes. Response latencies were fastest when 
prime and target were the same (e.g., 5 and 5; the font size was manipulated in order to 
diminish the physical overlap of the stimuli). They were significantly slower when prime 
and target differed by one unit (e.g., 4 or 6 and 5), and again significantly slower when 
the distance was 2 or 3. With non-tachistoscopic presentation of the prime, the priming 
is obtained over a range of more than 10 units (Brysbaert, 1995); with tachistoscopic 
presentation of the prime it usually ends at a distance of 3. A further intriguing aspect of 
the distance-related priming effect is that it is symmetric. That is, the priming is equally 
strong from 6 on 5 as from 4 on 5, despite the fact that the associative strength between 
4 and 5 is stronger than between 6 and 5 (when asked to say the first word that comes 
to mind, participants are more likely to say five after hearing four than after hearing six). 
A last interesting aspect about the priming effect is that it is equally strong across 
notations as within notations (Reynvoet et al., 2002). The effect of the prime 6 on the 
arabic target 5 is the same whether the prime is presented in arabic notation or in verbal 
notation. This finding has been interpreted as evidence that the interaction between 
prime and target occurs at an abstract, notation-independent level. The most often cited 
candidate is the number line of analog magnitudes. 

 
- - - - - - - - - - - - - - - - - - - - 
Insert Figure 8 about here 
- - - - - - - - - - - - - - - - - - - - 

 
 A third major finding about the processing of arabic numerals is that the semantic 
magnitude information of the numeral is activated more rapidly than is the case for 
verbal numerals. Because of this feature, it is nearly impossible to design a task with 
arabic input that is not affected by the meaning of the numeral. Henik and Tzelgov 
(1982) designed one of the first studies that demonstrated this aspect of arabic numeral 
processing. They asked participants to indicate which numeral of a presented pair of 
digits had the larger physical size (see also Ito & Hatta, 2003, discussed above).  
Participants found it more difficult to indicate that 2 was the larger in the pair 2 – 8 than 
to indicate that 8 was the larger in the pair 2 – 8, thereby effectively showing a Stroop-
like interference effect between the numerical size (which was to be ignored) and the 
physical size. Similar findings have been reported in a counting task: It is easier to say 
that four digits are present in the stimulus 4 4 4 4 than in the stimulus 3 3 3 3 (Pavese & 
Umilta, 1998) 
 
 A last robust finding is that people in Western cultures have a strong tendency to 
associate small numbers with left, and large numbers with right (Dehaene et al., 1993; 
see also the chapter by Fias & Fischer). When participants have to indicate whether a 
number is odd or even, they can do so faster with the left hand to small numbers (e.g., 
1, 3) and with the right hand to large numbers (e.g., 6, 8; see Figure 9). This effect has 
been linked to the reading direction of the participants and/or to the way in which 
ordered continua (such as the number line) are taught in school. In the parity judgment 
task, there is an additional tendency to associate odd numbers with left hand responses 
and even numbers with right hand responses (Nuerk et al., in press).  

 
- - - - - - - - - - - - - - - - - - - - 
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Insert Figure 9 about here 
- - - - - - - - - - - - - - - - - - - - 

 
 Some of the above effects have been used to try to find out whether two-digit 
arabic numerals are processed as a whole or as a syntactic combination of tens and 
units (see the first issue of discussion mentioned at the beginning of this section). If 
these numbers are processed as a whole, one would expect them to form some kind of 
continuous number line as a function of their magnitude. On the other hand, if they are 
stored as combinations of tens and units, one would expect discontinuities at the 
transition from one ten to the next. As it turned out, researchers observed evidence for 
both views.  
 

Brysbaert (1995) argued that the reading times shown in Figure 6 strongly 
suggested that all numerals between 1 and 99 are part of a single compressed number 
line. Similarly, Dehaene et al. (1990) obtained a logarithmic distance effect in a 
magnitude comparison of two-digit numbers (in which participants had to indicate 
whether numerals like 60 and 59 were smaller than 65; see Figure 7), and argued on 
the basis of this that two-digit numbers were compared by looking at the analog 
magnitude they represented and not by looking at the individual digits (in which case it 
would be much easier to decide that 59 is smaller than 65 than that 60 is smaller than 
65, because the former pair of numbers start with a different digit). Reynvoet and 
Brysbaert (1998) wondered whether they would find the same priming effect from 10 on 
9 as from 8 on 9, and having found so, also concluded that units and teens were part of 
the same continuum. Finally, Dehaene et al. (1993) noted that the small-left and large-
right association extended over the boundary of units and teens, and also concluded 
that they were part of the same number line. 
 
 On the other hand, there are findings that cannot easily be explained by the 
assumption of a single number line going from 1 to 99, and that seem to indicate that 
two-digit arabic numerals are rapidly decomposed into a syntactic structure of tens and 
units [a view most strongly defended by McCloskey (1992)]. Nuerk, Weger, and Willmes 
(2001) showed that in the comparison of two-digit number pairs not only the distance 
between the numbers counts (Dehaene et al., 1990), but also whether or not both 
numbers are unit-ten compatible. A number pair was defined as compatible if the 
magnitude comparison of the tens and the magnitude comparison of the units led to the 
same response (e.g. 52 and 67 are compatible, because 5 < 6 and 2 < 7), and as 
incompatible if this was not the case (e.g. 47 and 62 are incompatible, because 4 < 6 
but 7 > 2). Nuerk et al. (2001) observed a significant compatibility effect. Participants 
were faster to indicate that 52<67 than that 47<62, even though the distances between 
the numbers are the same. This compatibility effect suggests that the tens and the units 
were compared in parallel, a finding which is more in line with the view that number 
magnitudes are represented as composites of powers of 10 (i.e., the meaning of the 
numeral 28 is represented as {2} x {101} + {8} x {100}). Other evidence for a rapid 
decomposition of two-digit arabic numerals into powers of 10 was recently reported by 
Ratinkcx, Brysbaert, and Fias (submitted). These authors asked participants to name 
two-digit arabic numerals, which were preceded by tachistoscopically presented primes. 
They not only observed the expected distance-related priming effect (e.g., prime 37 and 
target 38), but also priming when the prime and the target shared a single digit in the 
tens or the units position (e.g. primes 28 and 34 for target 38). In addition, there was an 
interference effect when prime and target shared a digit on different positions (e.g., 
primes 82, 43, and 83 for target 38). 
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One way of interpreting the divergent findings on the processing of two-digit 
arabic numerals (recognized as a whole or as a combination of powers of 10) is to 
assume that both types of processing occur in parallel. Such a model has been 
proposed by Dehaene and colleagues (e.g., Cohen, Dehaene, & Verstichel, 1994; 
Dehaene, 1992; Dehaene & Cohen, 1995). In this model, arabic numerals 
simultaneously activate an analogue magnitude representation on the number line, and 
a visual arabic number form, in which numbers are represented as strings of digits on 
an internal visuo-spatial scratchpad. Another idea could be that simultaneously with the 
analogue magnitude, a more precise semantic representation consisting of powers of 
ten is built. This representation is needed anyway for the processing and storing of 
more complex numbers (i.e., integers with more than two digits, and real numbers with 
multidigit precision; see the parsing process mentioned above). 
 
 Dehaene’s model brings us to the second point of discussion in the literature: 
Whether there exists a lexicon for arabic numerals similar to the orthographic lexicon for 
visual word recognition, so that quite some processing of arabic numerals can be done 
before the meaning gets fully activated. Dehaene and colleagues claim there is. For 
instance, Cohen et al. (1994) described a patient who had difficulties reading complex 
numbers, except when they were highly familiar (e.g., 1945). They attributed this spared 
capacity to the existence of an input lexicon for familiar arabic numerals, which has 
direct, non-semantic connections to the speech output. Similarly, Dehaene and Cohen 
(1997) described a patient who could name digits, despite the fact that her number 
understanding was impaired (she made 20% errors when asked to indicate whether 
digits were larger or smaller than a standard). Also in the literature of visual word 
recognition, it has been claimed that digits, just like all other logographic symbols in 
texts (abbreviations, punctuation marks, special characters), are part of the orthographic 
input lexicon used for text reading (e.g., Coltheart, 1978). 
 

 On the other hand, there is very little empirical support for non-semantically 
mediated processing in arabic numerals. As reviewed above, the meaning of a number 
can easily be ignored in a font size judgement task when the number is presented as an 
alphabetic word (i.e., deciding which is the physically smaller stimulus is not more 
difficult for the pair eight-two than for the pair eight-two). However, this is much less 
easy (and maybe impossible) when the numbers are presented in arabic format or in 
another logographic script (Henik & Tzelgov, 1982; Ito & Hatta, 2003 (arabic numerals 
and Kanji words); Pansky & Algom, 1999). Similarly, Fias et al. (2001) reported that 
verbal numerals could be read without any interference from an arabic distractor on the 
same display. However, the very same study showed that this was not true for the 
naming of digits: Naming latencies to the numeral 5 were longer when the distractor 
was four than when it was five.  

 
Because of the rapid and omnipresent activation of the semantic information, it 

has been claimed that the processing of arabic numerals resembles more the 
processing of pictures than the processing of words (e.g., Brysbaert, Fias, & Reynvoet, 
2000; Fias, 2001; Fias et al., 2001; McCloskey, 1992). In theories of picture processing, 
it is widely assumed that some perceptual form processing is needed before the 
meaning can be activated, but the idea of an independent picture lexicon directly 
connected to the speech output has not found empirical support (e.g., Hodges & 
Greene, 1998). In this respect, it is important to keep in mind that the meaning of arabic 
numerals need not be confined to magnitude information (although this obviously is the 
most important semantic attribute of numbers). It can also be encyclopedic or episodic 
information related to the arabic numeral, certainly when the numeral is often used as a 
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non-quantitative label (as in Boeing 747; or in the number year 1992). This could 
explain some of the remaining abilities of neuropsychological patients to name arabic 
numerals of which they no longer know the exact magnitude (Cohen et al., 1994; 
Dehaene & Cohen, 1997). 

 
Brysbaert, Fias, and Reynvoet (2000) listed some reasons why they thought the 

creation of a full-fledged lexicon was less compelling for the recognition of arabic 
numerals than for the recognition of visual words (see also Seidenberg & McClelland 
(1989) for the reasons why they claim a lexicon is not needed, even not for the 
recognition of words). For a start, printed words are quite long combinations of letters, 
which nevertheless have to be read within roughly a third of a second. Indeed, one of 
the most striking characteristics of the visual word recognition system is that it does not 
take notably longer to read a nine-letter word than a three-letter word (e.g., compare 
lucrative and rat). The same is not true for arabic numerals: As soon as the number 
length exceeds two digits, response latencies increase dramatically, indicative a 
cumbersome parsing process (e.g., compare 582617493 and 617). Second, all 
combinations of arabic digits have a meaning, as opposed to only a very few of all 
possible letters combinations. Third, the meaning of arabic numerals is always the 
same, independent of the context (as opposed to words; see the previous section). 
Fourth, arabic numerals only exist in one visual form, whereas words can both be 
written and spoken, and are language-dependent (for those who master more than one 
language). Finally, more information is attached to words than simply their meaning. In 
many languages, words have a gender, can differ in number, and can only take certain 
syntactic roles within a sentence. Many authors believe this word-form related 
information is stored in the lexicon. For these reasons, the creation of a lexical system 
next to a word-meaning system seems more compelling for verbal numerals than for 
arabic numerals. Arabic numerals can in principle be recognized like objects (or pictures 
of them): The stimulus is decomposed into a structural description of perceptual 
features, which activates the corresponding semantic information. 

 
The difference between word and digit processing has also been documented in the 

neuropsychological literature, where patients have been described who could no longer 
read printed words (alexia), but who could still recognize arabic numerals and do some 
rather sophisticated processing on them (e.g., Cohen & Dehaene, 2000). Intriguingly, 
Pesenti et al. (2000) also described a patient who had major difficulties identifying 
visually presented objects (visual agnosia), but who nevertheless read arabic numerals 
fluently. Apparently, the similarities in the processing of pictures and arabic numerals do 
not imply that they are functionally identical (maybe because the meaning of numbers 
and the meaning of visual objects are different sources of knowledge?). 

 
All in all, recent research on the recognition of small arabic numerals has revealed a 

rather intriguing picture. First, digits activate their meaning faster than words, and also 
seem to require semantic mediation for further processing. In this respect, their 
processing is closer to that of picture recognition than to that of word processing. The 
meaning primarily refers to the magnitude of the numeral, but can also involve 
encyclopedic and episodic knowledge associated with the numeral, certainly if the 
numeral is frequently used in a non-quantitative way. Arabic numerals of three digits 
and more virtually always need to be parsed (unless they are familiar labels), a process 
that is rather demanding and highly susceptible to brain damage. Two-digit numbers 
form a kind of in-between category with quite some evidence for holistic processing, but 
also some signs of decomposition into tens and units. 
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Conclusion 
 
 In this chapter, I have reviewed the basic findings in number recognition and their 
implications for our views of what is happening. Rather than giving a personalized and 
simplified account, I have tried to keep an eye for the major discussions that are going 
on, although inevitably I biased the text towards my own convictions. A summary of 
these convictions is shown in Figure 10. For each of the three types of input, I have tried 
to sketch a general outline of the steps that are likely to be involved. Attentive readers 
can, on the basis of the various uncertainties that have been discussed, build their own 
version of the model (and test this). 

 
- - - - - - - - - - - - - - - - - - - - - - 
Insert Figure 10 about here 

- - - - - - - - - - - - - - -  - - - - - - - 
 
 A first choice is to divide the semantic number system in a part dedicated to the 
processing of the magnitude of the numerical input, and a part dedicated to the 
encyclopedic and episodic knowledge associated with numbers. In the number 
magnitude system, as before (Brysbaert, 1995) I make a distinction between the 
recognition of the core numbers, and the precise representation of each and every 
possible number (simple and complex), probably in a base 10 format. The core 
numbers consist of the integers 1-99 (the number line), and some basic multipliers 
(hundred, thousand, …). 
 

For the perception of numerosities in analog displays, I postulate a visual feature 
detection stage (needed for the separation of the stimulus from the background), 
directly connected to the compressed, analog number line. This is a simplification, as it 
does not deal with the processes needed for the sequential counting of the elements in 
a display that is shown long enough. Another extension of the model would be the 
addition of a connection between the visual feature units and stored mental images of 
triangles, faces of dice and so on, which are probably involved in the apprehension of 
numerosities presented in a familiar, canonical form. 

 
For the recognition of verbal numerals, I have copied the Coltheart et al. (2001) 

model, and connected it to the semantic system. As individual number words always 
represent core numbers, only connections between the orthographic input lexicon and 
the core numbers are postulated. For the same reason, no direct connections between 
the orthographic input lexicon and the encyclopedic/ episodic information are accepted 
(e.g., the stimulus "two hundred and six" is not directly associated with a Peugeot car; 
this requires mediation of the number magnitude system). Another choice that has been 
made, is to postulate the feedback mechanisms not from the number line, but from the 
extended number system (which has more precise representations, certainly for 
numbers beyond the subitzing range). Because the verbal output for many numbers 
requires a sequence of multiple words, I have included Levelt et al.'s (1999) stage of 
lemma retrieval and syntactic parsing between the number magnitude system and the 
phonological output system. 

 
Arabic numerals are encoded in two different ways: as a sequence of position-

specific digits, and as a percept of the complete numeral (probably limited to numerals 
of 4 digits, the maximum capacity of visual short-term memory). The position-specific 
digits activate the number line and the extended number magnitude system in parallel 
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(in line with the finding that all types of numerical tasks are easier with arabic input than 
with verbal input). In addition, the mental images of familiar numbers activate 
associated information in semantic and episodic memory. 

 
A justified criticism against the box-and-arrow type of model proposed in Figure 

10 is that it offers little explanation of the specific processes involved. There is a big gap 
between a general, verbal description of the processes in the  different boxes and 
arrows, and the actual implementation of them, which would make the model detailed 
enough to quantitatively simulate the various empirical benchmarks that have been 
listed in the present chapter. This will be the major challenge for the coming years. 
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Figure 1 :  Mean reaction time needed by participants to say how many white asterisks 
are presented on a computer screen, as a function of numerosity. The points represent 
the observed data. The lines represent linear regression functions relating reaction time 
to numerosity within the subitizing range (1-3) and the counting range (4-10). Notice that 
the lack of a difference between the enumeration of 3 vs. 1 dots, shown in Figure 1, is 
not always present. Usually, there is a small positive slope of some 50 ms in the 
subitizing range (partly dependent on whether or not the numerosity 4 is included in the 
range). Also notice the slope of over 300 ms in the counting range. (from Logan & 
Zbrodoff, in press) 
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Figure 2 : The distance effect when animals and humans compare numerosities. The 
data discussed in the text are those of the lower left part (panel C). This panel shows 
how many times participants wrongly indicated that 12 elements were presented on the 
screen as a function of  the actual number presented. As can be seen, the percentage 
of errors dropped systematically from a distance of 1 (i.e., when 11 or 13 elements were 
presented) to a distance of 4. The upper panels show data of animals in similar 
situations: (A) The deviation between the actual number of pecks made by pigeons and 
the fixed standard of 50, (B) Chimpanzees selecting the larger of two small numbers of 
chocolate bits. Finally, panel D shows the number of errors students make when they 
compare arabic numerals to a fixed standard of 65 (see also Figure 8). Figure copied 
from Dehaene et al. (1998). 
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Figure 3 : These data show the actual number of lever presses made by rats after they 
had learned that a certain number (4, 8, 16, or 24) was required for a reward (part A). 
Notice that in this situation, the average number matches the required number quite 
well, but that the data vary from trial to trial. The variability increases with increasing 
average number. As a matter of fact, the increase in variability is a linear function of the 
average (and required) number, as shown in part B. Very similar data are found with 
humans, when they are prevented from counting the actual number and have to rely on 
rough estimates. Figure copied from Whalen et al. (1999). 
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Figure 4 : Coltheart et al.’s (2001) dual-route cascaded model of visual word 
recognition and reading aloud. This model is exemplary of many traditional models of 
visual word recognition, based on localist representations. First, the letters of the 
presented words are identified. These letter representations then activate entries in the 
orthographic lexicon, and are converted simultaneously into their most likely sounds 
(phonemes). The phonemes feed into a phonological lexicon, which contains the 
spoken representations of all known words. Reading aloud of words occurs through a 
combination of direct grapheme-phoneme conversions and the activation of known word 
forms in the lexicons. Lexical decision is based on activation within the orthographic 
and/or the phonological lexicon. Notice that although the model contains a third route 
through the semantic system, this route is not believed to be fast enough to influence 
word naming or lexical decision times. For this reason, it has not yet been implemented 
in the working, computational model. 
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Figure 5 : Seidenberg and McClelland’s (1989) triangular model of visual word 
processing (as implemented by Plaut et al., 1996). In this model, there is no longer a 
lexicon, where all known word forms are stored in dedicated (localist) units. Instead, 
information about words is stored in collections of units in the orthographic, the 
phonological, and the meaning layers that are co-activated.  The individual units are 
activated (to a different extent) by many different words. In this model, the activation of 
the meaning of words is thought to be central in word processing. However, this part of 
the model has not yet been implemented, and does not seem necessary to simulate the 
basic findings of word naming and lexical decision. 
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Figure 6 : Reading times for arabic numerals ranging from 0 to 99 in a short-term 
memory task. Circles indicate the observed data; lines indicate the predicted times on 
the basis of the logarithm of number magnitude, number frequency, and the number of 
syllables in the number name. Figure copied from Brysbaert (1995). 
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Figure 7 :  Time mathematically literate adults need to indicate whether a two-digit 
arabic numeral is larger or smaller than a fixed standard of 65. Figure copied from 
Dehaene et al. (1990). 
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Figure 8 : Time participants need to name an arabic numeral as a function of the value 
of the preceding prime. Naming latencies are fastest when prime and target have the 
same value (e.g., 9-9). They are slightly slower when the prime is one unit less than the 
target (e.g., 8-9) or one unit more (e.g., 10-9). Reaction times are again slower when 
the distance between prime and target is 2, and when it is 3 (at which point the priming 
effect for tachistoscopically presented primes levels off). The extra priming effect 
observed when prime and target have the same value (identity priming) is only present 
when prime and target are displayed in the same modality (e.g., prime and target in 
arabic notation). When prime and target are presented in different formats (e.g., prime is 
verbal, target is arabic), the net priming effect reduces to what can be expected solely 
on the basis of the distance between prime and target. Data from Reynvoet & Brysbaert 
(1999). 
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Figure 9 : Figure illustrating the findings that in Western cultures (1) small numbers are 
preferentially associated with left-hand responses and large numbers with right-hand 
responses, and (2) that odd numbers are preferentially associated with left-hand 
responses and even numbers with right-hand responses. The figure shows the results 
of an experiment in which participants had to indicate whether a presented arabic 
numeral ranging from 1 to 8 was odd or even, by pressing with the left or the right hand. 
The figure shows the differences in RT of right hand responses minus that of left hand 
responses. When left-hand responses were faster than right hand responses, this 
difference score is positive, which was the case for the small numbers. For the numbers 
5-8, the right hand responses were faster than the left hand responses, giving rise to 
negative difference scores. The difference scores in general were also more negative 
for the even numbers (2, 4, 6, and 8) than for the odd numbers, indicating that the right-
hand responses were faster for these numbers. Data from Nuerk et al. (in press) 
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Figure 10 : A model of number recognition in verbal, analog, and arabic format. Note 
that the three boxes with visual feature units refer to the same perceptual processes. 
This box has been drawn anew for each input format to increase the clarity of the graph. 
Also note that the verbal system is the same as in Figure 4. This is a choice for localist 
representations (against the model presented in Figure 5). Other noteworthy choices 
are: (1) verbal numerals do not activate representations in the extended number system 
directly, (2) arabic numerals do, but this is probably limited given the laborious parsing 
that is needed for numerals of more than 2 digits, (3) there is no feedback from the 
number line, (4) there is no lexicon for arabic numerals, but (5) there is a store of 
percepts of arabic numerals similar to the images we have of other visual pictorial 
stimuli. This store (6) can activate associated memories in semantic and episodic 
memory. 
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