THE PRODUCTION AND RESPIRATION ECOLOGY OF RESERVOIR POPULATIONS OF ZOOPLANKTON, WITH SPECIAL REFERENCE TO DAPHNIDS.

Thesis submitted for the degree of Ph.D. to the University of London (Royal Holloway College).
by T. E. Andrew

July 1976.

ProQuest Number: 10097428

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097428
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

I declare that the material presented in this thesis is my own unaided work except where otherwise acknowledged. Furthermore, I declare that no part of this work has been previously submitted in fulfilment of the requirements for a higher degree.

1. ABSTRACT.

Field measurements of standing crop biomass and population numbers at weekly intervals and respiration rates of zooplankton at fortnightly intervals were determined in a London storage reservoir between January 1968 and June 1969. Biomass estimates fell within a range of $0.38-4.56 \mathrm{~g}$ dry weight. m^{-2} for cladocerans and 0.08-2.66g.dry weight. m^{-2} for copepods. Daphnia hyalina population numbers were highest in the spring, $601.35 \times 10^{3} . \mathrm{m}^{-2}$ in 1968 and $761.71 \times 10^{3} \cdot \mathrm{~m}^{-2}$ in 1969. Daily production rates were calculated to be between 0.0022 and $0.225 \mathrm{gc} \cdot \mathrm{m}^{-2} . \mathrm{day}^{-1}$ and the annual production for 1968 was estimated at $12.70 \mathrm{gC} . \mathrm{m}^{-2}$ the main contribution coming from D. hyalina. Population respiration rates were between 2.35 and $27.28 \mu \mathrm{~g} \mathrm{O}_{2} \cdot \mathrm{mg} \cdot \mathrm{dry}$ weight ${ }^{-1}$. $\mathrm{hr} .^{-1}$ with the highest rates occurring in spring and autumn.

A length weight relationship, growth rates of eggs and stages of life and respiration rates of D. hyalina were determined in the laboratory. These culture experiments at $10^{\circ} \mathrm{C}$ gave an egg duration rate of $7-10$ days. Respiration determinations, measured by the Cartesian diver technique, were lower than the field measurements.

2. ACKNOWLEDGEMENTS

My sincere thanks are due to my supervisor Dr. A. Duncan for her kindness, help and friendly criticism during the course of this work. I am most grateful to Dr. E. Windle Taylor, C.B.E., Director of Water Examınation of the Metropolitan Water Board, for permission to sample in the reservoirs and for the generous help of his staff, especially Dr. J. Ridley, Mr. J.A.P. Steel and the boat crew. I would also like to thank Professor P. Butler of Royal Holloway College for the use of the facilities in the Zoology Department. Finally I gratefully acknowledge the studentship fron the Natural. Environmental Research Council for this study.

The study of zoonlankton in freshwater ecosystems has attracted much attention which has heen directed largely towards explaining and analysing ponulation fluctuations and more recently to estimate secondary production. Recently the International Riological Programme gave a nev impetus to these studies. The nullication of methodological handhooks, particularly I.E.P. Fandrook: No. 17 (EDMONDGON AND MINEEPG 1971); the pulalication of various international symposia and the encouracement to translate valuable texts such as that of WTMBPR (1971) hes extended the range of ideas, literature and technicuas. particularly those of Festern Eurone to researchors in this Eicld.

Most of the interest in seconcary mroduction has heen directed tomards the evaluation of the role of a single constituent of the animal population present in the ecom syster. FSLL (1064) has cram attention to the fact that most zoonlankton ponulations have heen studied in the laboratory under controlled conditions or in their natural hakitat where variales are uncontrolled and he concludes that, although these studies provide valuable information, a more useful annroach is to combine a labontory-experimental annroach with a field description to prevent gross mismestimations of nonulation rate processes and production. Wis annroach har boen further usefully rodified to include the measurement of rates other than nomlation chance, such as lahoratory studies of feceing and respiration for internolation into field stucies and this has been attompted hy several investigators inclucinc SCrympler (1968), yTPRy (1069) and

Cumpres ET AL. (1969). The logical extension of this anproach is to measure these variarles in field situations, but this is, unfortunately, beyond the resource of most investigations, although some attemnts to measure processes, such as respiration, under field conditions have been made (STRASERARA 1967, CREMPP AND NUNCAN 1969, CANF AND BJ.AŽKA 1974). Attempts to relate field anc lahoratory measurements of the same process provides useful information and indicates areas of large discrepancy when extrapolating results from the laboratory to the ficld sitwation (DUNCNN ET AL. 1970). A further, and possibly more rowarding, stace is to intearate studies of this sort with detailed studjes at othrr tronhic levels. This may be done by correlation (WRIGHT 1965) or simultaneous studies interrated by the use of common and comparahle units such as carhon or eneray (SmEI ET PL. 1972). The purpose of the present study vas to examine, hoth in the field and the laboratory f_{p} selected characteristics of the zoonlantton of freshwaters, to setermine rroboble influences on other parts of the ecosystem. Pesearch was concentrated on the nincinle horbivore (Danhnia sn.) ane the characteristics studied included growth, production and respiration which, it was honed, might indirectly reveal information on the tronhic relationships of the natural ponulations - a notoriously difficult area to study directly.
3.1. TIE FIELD STUDY ARER:

Two Metropolitan Water Foard ${ }^{1,2}$ reservoirs, the Queen

[^0]Mary ${ }^{2}$ and the gueen Elizabeth $I X^{2}$ were used to obtain Eield samples. These are two of several reservoirs situated in the Lower Thames Valley which form part of the London water supply storago system. A map, showing the location of these reservoirs, can be seen in fiqure 3.1(a). These reservoirs are man-made and consist of a basin excavated from the London clay and surrounced by an embankment of the spoil with a clay core keyed into the lower clay and lined with concrete blocks. Both reservoirs have flat hottoms, a simple outline shape, are in exposed situations and are filled with water from the River Thames. Tahle $3.1(a)$ gives their dimensions

Table 3.1(a)

[From RJDLEY (1964)]

The River Thames is an enriched calcareous river with the following nutrient levels: $\mathrm{NH}_{3} \cdots \mathrm{~N} \ldots 0.1-1.2 \mathrm{mg} / \mathrm{L}, \mathrm{NO}_{3} \cdots \mathrm{~N} \ldots$ $5 \mathrm{mc} / \mathrm{L}$, orthophosphate ... l-2 $\mathrm{mg} / \mathrm{L}, \mathrm{SiO}_{2} \ldots 15-20 \mathrm{mg} / \mathrm{L}$ and $\mathrm{CaCO}_{3} \ldots 250 \mathrm{mg} / \mathrm{L}$ (inINDLE-TAYLOR 1957).

The §.M. is roughlv circular with'a baffle wall delimiting the outlet area to approximately one-third of the whole (fig. 3.1(b)). Water enters the basin through pipes with sumerged orifices and impinges on a small wall which ahsorbs most of the momentum and restricts mixing to the space ketween the

[^1]
Fig. $3.1(\mathrm{a})$.

Fig. 3.1(b).
pipes and the wall. Normally between one and two per cent of the volume of water is abstracted from the reservoir daily. The large area, shallowness, the exposed situation and volume of the water transported each day normally ensures that the reservoir is isothermal for most of the year. However, when periods of intense radiation coincide with relative stillness, some degrec of stratification occurs but this usually only involves the bottom metre of the reservoir where chemical deterioration takes place. Such conditions do not usually persist for very long periods and the reservoir then de-stratifies. The period of stratification is not usually long enough for gross deterioration of the bottom maters and overturns do not significantly affect the quality of the main water mass although such overturns may, of course, affect biological production. The 2.M. is therefore characterised by intermittent stratification with, perhaps : three mixings per year (WINDLE-TAYLOR 1967). The depth-time distribution of temoerature can be seen in figure $3.1(c)$ and can be seen to be very much the same for the different ycars of the study. Similarly the depth time distribution of oxygen in the O.M. can be seen in figure 3.1(d). The fluctuations in the surface levels during the study represent the normal winter lowering of the water level. Algalogical data will be introduced in the main body of the text where nertinent. The Q.E.II is also roughly circular but has no baffle (ficure 3.l(c)) and has a complex inlet jet arrangoment to facilitate the artificial mising of the water mass when stratification occurs. The function of these jets and a fuller descrintion of the reservoir can be found in RIDLEY (1964) and RIDIEY PT i土. (1966). Normally two per cent of the watcr passes through the reservoir daily. Depthmotime

Fig. 3.1(c). (from Steel unpubl.)

Fig. 3.1(d). (from Steel unpubl.)

plan of queen elizabeth il reservoir - east molesey

Fig. 3.1(e).
distribution of temperature and oxygen saturation can be seen in figures $3.1(f)$ and $3.1(g)$, resnectively.

This study was concentrated principally on the Q.M.
There were several advantages in working on the M.w.R. rescrvoirs. Several biological and physicowchemical studies pre-dated this study and continuing work is heing carried out by the M.W.E. biolocical section and other institutions. Parlier studies of particular relevance to this work include those of turnpull (unnublished), fNGOLD (1968), LANGHELT (1968) and CREUER (unnublished) who worked on various aspects of the zooplankton of reservoirs. The study of PIBBY (1969) on Diaptomus aracilis in the O.E. II and King George VI reservoir, the suhsequent work of BURGIS (1975 in prep.) on cyclopoid populations in the Q.E.II and that of DOOMRN (1973) who worked on rotifer populations particularly in the Q.E.II and the continuing interest of DUNCAN (1975(a), (b)), DUNCAN ET AL. (1970) and NADIN-HURLEY AND DUNCAN (1976) have extended the understanding of the zooplankton. Alcal studies have been carried out fy BELLTNGER (1967) and MCGILL (1969) and EVANS and MeGILL (1970) and a large body of information has been gathered by Mr. J. A. P. Steel, Assistant Biologist of the M.W.B. who has carried out a study of the nrimary production of both reservoirs simultaneously with the present study. He has generously mare available a large body of basic limnological and algal data used in this work (STEEL 1972. STEEL 1973, STEEL 1975 and STEEL FT AL. 1972). 3.2 Daphnia sn.

Daphnids were the princinal herbivores in the two reservoirs studied and much has koen rencrted about the hiology of Daphnia spe. which is extromely useful to field and lahoratory studies of this nature. Danhnia spo. have

Fig. $3.1(f) .($ from Steel unpubl.)

Fig. 3.1(g). (from Steel unpubl.)
been studied frequently in the lahoratory because of their ease of culture and parthenogenetic mode of reproduction in normal conditions. E'ANTA ET PL. (1939), in their monograph, record much information on the gromth, genetics and physiology of the genus and this to a large extent represents a synthesis of their carlier work. BERE (1931, 1936) studied reproduction in Daphnia and ANDERSON (1932), ANDERSON AND JENKINS (1932) and FNDERSON ET AL. (1937) describe the events in the life span and growth characteristics of D. magna and D. nulex. MACARTIUR AND. BAILLIE (1929(a)) describe the effect of temperature on the duration of life of D. magna. Later studies of growth in culture include those of GREEN $(1954,1956)$ who defines the renroductive development of D. marna, and FALL (1964) and HRBACKOVA-ESSLOVA (1966) who define growth rates and reproductive rotes of Dyphnia snp. at different temperatures. Metabolic laboratory studies include those of MACARTHUR AND EAILLIE (1929(b)) who measured the respiration rate of D. magna and scherbakorf (1935) with D. longisnina. More recent respiration studies include these of: RICEMN (1958) D. pulex, 7EISS (1963) - D. magna, ECHINDLER (1968) D. magna ane CREMER AND DUNCAN (1969) - D. hyalina. PLAǨKA (1966) published an interesting paper on the metaholism of Daphnia spn. related to secondary production.

Feeding studies in the laboratory have been made by several workers, early studies including those of SMITH (1935), DUNHRM (1933), PACAUD (1939), COKER AND MAYES (1910), PYTMRR (1954), SUSETCHENIA (1958) and NAUNERCK (1959). More auantitative studies have been undertaken fy RIGLER (1961(a), (b)), MCMMON AND RTGLER (1963, 1965), MCHAEON (1965), BUPNS AND RIGLER (1967), RURNS (1968, 1969). These
studies have heen concerned with the mechanisms of feeding and the relationships between filtering rates and food concentrations, food types, body size and temperature. RICIMAN (1958) and SCFINDLER (1968) examine food uptake, by D.magna and D, pulex respectively, as part of their investigations. Some authors cast doubts on the suitability of certain food organisms for laboratory culture of Daphnia sp. (SCUINDLER 1968, OTSUKI AND TAKAHISEA 1969) but although these may be justified it is difficult to draw conclusions ahout the diet of daphnids as only recently have we seen clear information on the diet in natural conditions (NADIN-FURLEY AND IUNCAN 1976).

RICHMAR . influenced by the classic work of LINDEMAN (1942) on community dynamics and MACFADYEN's (1948) discussion of the meaning of production in biological systems. produced his important laboratory study of the transformation of energy hy D. pulexul958. This was the first attempt to produce a complete laboratory energy budget for Daphnia sp. by moasuring growth, respiration and feeding of the animals in the laboratory at $20^{\circ} \mathrm{C}$. This has influenced many other studies since - not only those concerned with the cladocera.

There have been many studies of field populations of Daphnia and extensive discussion can be found in HUTCHINSON (1967).

Anong these studies, PATALAS (195A, 1956) and WIKTOR (1961) describe the seasonal occurrence of D. hyalina in Polish lakes and both authors describe a perennial species comparable with that found in the O.M. by the present bawourn and author and CRFMER (pers. comm.) MRAVERA (1972) and by GEORGE AND EDGARDS (1974) and GEORGE (1973) in a Melsh reservoir.

Studies important to the development of the understanding of ponultion fluctuations and the concept of turnover time as a mothod of estimating field production include that of FDMONDSON (1060) on rotifor populations which influenced the work of rTROSS ET AL. (1961), WRLL (1064), MRTGHT (1965), and most subsecuent workers with daphnid populations. The ponulation dynamics of Daphnia are described from an estimate of the ponulation size and a knowledge of the eqos-to female ratio which gives a reproductive index and together with the egg developmental times at different temperatures enahles a prediction of the rate of increase of the population to be made. First described for zooplankton by ELSTER (1954) for the calanoid copend, Fudiaptomus gracilis and later used by fDronnson (1960) for a population of rotifers, the method is set out clearly, as used for the Cladocera, by CUMINS ET AL. (1969).

It has been widely recognised that estimations of production in populations that have continuous reproduction present special problems and this is the case with perennial populations of daphnids where cohorts cannot be easily distinguished. PETROVICH ET AL. (1964) reported in MINBERG (1971) estimate the production of copepods using mean individual weichts of developmental stages, the numbers and duration of these stages. KONSTANTINOVA (1961) descrited In UTMPERG (1971) with various species of Cladocera and LEEEDEVA (1064) for D. longispina use the same technique applied to field recornised size classes for the ostimation of production and a similar method has been used by STEEL ET AL. (1972).

Another prohlen encountered in estimating production is the effect of predators on daphnid populations and these might include inverte:prate predators such as adult Cyclops sn. and Leptodera kindtif (described by CUMMIMS FP AL. (1969)) or vertebrate predation hy young fish. These are difficult to -20-
relate unless direct measurements of nradation have been made but recently it has been shown that estimations of the instantaneous death rate, using the birth rate model given by FDMONDSON (1960) can be used to pinpoint periods of intense predation (NUNCN 1975) a. Knowing the size classes being predated it becomes possible to guess whether the predator is fish or invertebrate.

STEEL ET AL. (1972) show how comhined studies at. different tronhic levels may be used to estimate the demand of herbivore ponulations on primary production. This approach is not easily within the compass of an individual worker. This paner raises the interesting cuestion of what source of carhon supports daphnid populations when algal populations are insufficient. STEEL (1972) discusses this further and it appears that the other fond sources might be detrital carhon or bacteria and that these sources might he more important than hitherto exnected. NADIN- HURLEY AND DUACAN (1976) have looked more directly at this prohlem.

FIEIID SiHRIING
Zooplankton samples were collected using two different samping techniques. F.B.d. piankton nets were used to take vertical hauls through the water colurin and a 5L Patalas volume sampler (PATALAS, 1954) was used to take samples at Eet depths through the water colurn. These two nethods provide data for comparison of the techniques and both are shown to have their advantages. Net hauis are simpie and quick to take-an advantage when weather conditions are extreme - and they give iarge numbers of animals for estimates especially of animals present in shail numbers such as eef bearing aciuit daphnids, adult copepods etc. The principal difficulty is that large corrections have to be wade to give absolute numbers. Patalas samples provide more accurate voiurie estimates of zooplankton which may be used to show the depth distribution of the animais and larger numbers were aiways caucht than the net samples, but the labour involved to obtain large nuisbers is greater than the net samples. Patalas samples were used to calculate the net factors.

Samples were used for estinating population numbers and biomass. These were, in turn, used for popuiation analysis. Samples were also used for collecting aniuais for field and laboratory experinenta for respiration and growth.
4.1.1 Coliection of net samples.

Two Erades of $\bar{F} . B . A$. plankton net were used, a coarse and a fine net. The coarse mesh net (23.6 meshes per min) had a measured pore size of 0.188 m and was used to coliect the larger zoopienkton. The fine mesh net (70.9 meshes per cm) With a measured pore size of 0.050 m was suitabie for collection of the smaller zooplankton. The fine mesh net retained some phytoplankton and during periods when large quantities of
algae were present tended to ciog, reducineg, it is suspected, the efficiency of sampling.

Net samples were taken through the vertical column of the water (vertical net haul, V.N.H.), the nets being fitted with copper buckets and heavy weights. The net was lowered into the water until the weight was feit to touch the bottom and then pulled back through the water at as constant a rate as possible. The length between the net mouth and tip of the above weight was one metre, thus ail net samples were taken from one metre from the bottom.

The contents of the nets were run of into ecrew topped botties and the nets were washed by dipping the not, to its mouthy in the water and concentrating the sampie in the bucket. This washing was added to the sampie and then repeatcd. The net was Iurther scoured of plankton using a plastic wash bottle filled with distilled water.

Samples to be counted wore preserved in situ by the addition of formain, to a concentration of 5%, from a wash bottle. This method proved satisfactory for keeping samples until they could be counted.

4.1.2. Coliection of Patalas samples.

Patalas samples wore taken at 2 m intervals through the water column at the depths $3 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}, 7 \mathrm{~m}$ and 9 m . The procedure that was used Is shown djagramaticaliy in fig. 4.I.2(a). The sampler described by PaTalas (1954) was lowered to the appropriate depth and 'jerkod' shut. The sampler was then lifted from the water and filtered through a coarse mesh filter (with a pore size of 0.188 mm) using a large plastic Iunnel fitted with the perspex filtering unit shown in fig. 4.I.2.(a). The zooplankton trapped was washed into storage jars using a wash bottle containing distilled water and the netting filet was then removed and washed scparately into the container. This ensured that Iossns of zooplankton in the

Fig. 4.1.2(a).
filter were minimal, Samples required icy counts were ixed with formalin in the same way as for the net samples.

The depth of Pataias samples was monitored by metre markings of the suspension rope which was calibrated allowing for the length of the sampler.A Kera--Mantel type rope was used to suspend the sampler as this has less stretch than the more comron 'Hawser wound' rope the weight of the sampler ensured a vertical descent if it was Iowerod carefully into the water. If the sampier, was allowed to descen under its own weight $i t$ ' tended to 'plane' sideways in the water, but as the catch mechanism was fairlu sensitive to jeris, care was taken in lowering the sampiei and this reduced the sideways drift. If the drift had beon 30° then semples of ' $g^{\prime} \mathrm{m}$ error would have been taken at 8 m , - Iess towirds the surface. With the exception of very extreme wather conditions it is thought that samples were taken from the correct depth.

4.1.3. Samping frequency.

Sampies were taken from October 1967 to June 1969 from both Q.M. and Q.E.II. The sampies were taken at woekly intervals from Q.M. but these were increased at some periods of the year. Samples wero taken a* fortnightly intervals from Q.F.II., agein with some more irequent samples in some periods. In the event of unfavourable conditions samples wre taken from the outlet pier of the rescrvoir and samples were repeated at the earlicst possible day afterwardsy Samples were taken in the mornings betwecn 8 am and IIam.

The Irequency of sampline was based on the expericnce geined from previous studies of the roservoir (CREFIER, in prep.). It was thought that monthly sampling loft too large a gap betweon samples for major changes in zooplankton and algal popuistions to register but that shorter samping times than one week normally involved too much labour for the results obtrined.

Samples wre normaily taken fron singlo stations on both reservoirs. The representativeness of this procedure has been discussed in earlicr work (STBGL, in prep.) (CREMER, in prep.).

A smail samping programme, ciesigned to test the validity of single station sampling of the Q.M., was carried out during the late spring of $1970(5 / 6 / 70)$. Samples were taken from different stations ovor the reservoir and were examined in terms of biomass per vertical net haul. Tho results of 35 samples taken are shown in fig. 4.j.4(a). For the whole reservoir a mean dry weight of $232 \mathrm{mg} \pm 64$ (S.D.) was obtained. This is equivalent to $232 \mathrm{mg} \pm 27.5 \%$ (S.D.). If samples of a weight between 100 and 300 mg are considered they represent an area of approximately 80% of the reservoir and incIude the sampling station A. The result of 24 midwater samples gives a mean dry weight of $187 \mathrm{mg} \pm 49$ equivaient to $187 \pm 26.2 \%$.

Figure 4.1.4(a) shows the areas of hich concentration of zooplankton to be limited to an area around the inlet of the reservoir. This mey reflect a local concentration of zooplankton whore River Thamos water is flowing, via an aqueduct, into the reservoir. The areas of low concentration of zooplankton are \mathbb{O} ound close to the baffle that divides the reservoir and this might affect the local populations here. More samples may have amplified the picture obtained but it seems that an accuracy of about $\pm 26 \%$ can be obtained from one sempling station if sampies are not taken from close to the roservoir odge or in close proximity of the iniet pier. LANGHEIDT (1968) sampled for a vear from the tip of the baffle and at the outlet and this work is in general agreement with these findings.
 takine samples from three etations and mixing them to obtain a meanted sample for the rescrvoir, has little advantage over

Fig. 4.1.4(a).
a single station. This method, of lumping samples, was later abandoned by STEEL in favour of a singie station sampling programme for phytopiankton samples.

Similar programmes for QEII have been carried out by DUNCAN (pers. comm.) and these show a similar situation to exist in this reservoir.

4.1.5. Sampling reproducibility.

Net Sampling.

For vertical net hauls, in ideal conditions, the volume of water sampled should be the product of the area of the net mouth and the height of the water column sampied.

$$
\begin{aligned}
V=\pi r^{2} z \quad \text { where } V & =\text { volume of water sampled } \\
r & =\text { radius of not mouth } \\
z & =\text { height of water column. }
\end{aligned}
$$

Theoreticaily all animais in the path of the net should be inciuded in the sample. In practice, a snaller volume of water is filtered by the net because several different fectors act to reduce the efficiency of capture of the not. These factors include water resistance to the net and net avoidance by the animals being samied. Discussion of these factors has been given by other authors and major contributions have been made by WIMSUR AND (JIARFE (1940), SZLAUER (1964, 1965, 1968), ELSTIMR (1958) and JCNAUGHT (1971). CRHMER (in prep.) examined the effect of hauling speed on capture and concluded thet a constent hauine specd reduced the variation in sampling orror. Using vertical net hauls, CRFXER (in prep.) measured the biomass of the hauls at varyine hauling speeds and the resuits for replicate samples teken from the QEII are prosented in table 4.1.5(a).

TabIe 4.1.5(a)

	Composition of sample (VNH)	$\begin{aligned} & \text { Ho. OI } \\ & \text { samples } \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { cry weight } \\ & \mathrm{B} \mathrm{mg} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{SD}} \\ & \mathrm{mg} \end{aligned}$	$\mathrm{SD} / \mathrm{x} / \%$
Duncan 9/8/67	Daphnids + copepods	4	81.5	± 7.0	± 8.6
$\begin{gathered} \text { Creme } \\ 24 / 8 / 67 \end{gathered}$	Daphnids + copepods Daphnids Copepods	6	30.9	± 5.8	± 18.6
		6	15.3	± 4.9	± 31.9
		6	15.7	± 2.6	± 16.6

* Twice the amount of zooplankton was left behind in the cylinder than in the experiment of the 9/8/67.

Samples were examined, using information from several sources, to discover how much reliability cen be placed on individual samples.

Specific experiments, designed to test the reproducibility of samples in terms of numbers of animals and biomess per vertical net haul, were performed on $19 / 6 / 70$ and 19/8/70 respectively. In both experiments ten net hauls were taken sequentially from the sane place and the subsequent treatmont was as for normal field samples.

Biomass. Ten sampies taken frow the rait had a mean dry weight of $74.96 \mathrm{mg} \pm 13.49 \mathrm{SD}$ (range 61.47-88.45mg), which is equivalent to $74.96 \mathrm{~m} \pm 18 \%$ ($\mathrm{mE} 5.7 \%$). These resuits are comparable with resuits presented in table 4.I.5(e).

Counts. Ten sampies taken from the raft were counted exhaustively using the Stempel pipette subsampling technique. The rosults of this experiment are presented in tablc 4.1.5(b).

Table 4.1.5(b)

	liean	S.I.	SDFOX	Kange
Daphnia without eggs	954	± 114.7	*I2\%	339-1069
Daphnia with eges	9.2	± 3.5	38\%	5.7-12.7
Daphnid eggs	782	± 35	4.5\%	747-817
Bosmina sp	419	± 43	*10\%	376-462
Asplanchna sp	226	± 55	* 24%	171-462
Cyclons aduit	13.8	± 2.5	18\%	11.3-16.3
Cvclons copepodid	207	± 29	* 14%	278-236
Disptomus adult	11.4	± 3.3	29\%	8.1-14.7
Diaptomus copepodid	6.8	± 3.0	44\%	3.8-9.8
Total animals	1923	± 143	7\%	1780-2066

* These figuros show a greater deviation then expected from the mean count than is expected for a Poisson distribution (S.D. $=\sqrt{\vec{x}}$) and this suggests ciumping within the samples. The results show that the variation for the whole sample (ali animals present), $1923 \pm 7 \%$ animals, is less than most of the individual components of the sample. When the numbers in a component of the sample are small the error may tend towards $\pm 50 \%$ and this error may be critical in any field samples containing, say, Iow egg numbers.

Net samples were alweys taken in pairs. Samples for counting were mixed and counted as a single sample. Samples for biomess measuremonts wore treated indiviciually and these results (from the ficla sampling programe) have boen treated to examine difforences in pairs of samples. Eiomass samples were separeted into two Irections - a daphnid fraction and a copepod fraction - which are comparabie individually or as a total sample. Semples wero identified in the order taken from the reservoir and resuits are presented in fig. 4.1.5(a). That biomass samples normaliy are $\pm 5 \mathrm{mg}$ means little as samples vary considerabiy in size at different times of the year.
$-30-$

Most samples collected, during this study, were less than 25mg weight and figure 4.1.5(a), aithough a useful indicator; is better expressed as difference in weight as a percentage of the mean weight of the sample pairs. Results treated in this way show the sampies to be $\pm 17.7 \%$ of the mean $(\mathbb{N}=172)$ for the fractions of the sample.

Patalas sampling.

In ideal conditions the Patalas sampler should trap five litres of water and the organisms contained in it. These should be filtered from the water. Littie experimentation was carried out on the reproducibility of samples. From biomass data available the Pataias sampie variation obtained was $\pm 10.94 \%(N=46)$ which compares Iavourably with net haui data. Resuits are presented in figure 4.1.5(b). The symmetry of the histogram is the result of each peir of samples giving rise to its mfan, one will be positive and one negative in relation to that mean. The resuits were obtained from duplicate Patalas sampies taken during the course of field respiration experiments.

Reproducibility of numbers was tested in a small experiment performed on $5 / 6 / 70$. Ten samples taken from the . raft area of the reservoir from a depth of three metres were treated as normal field samples. The results are presented in table 4.1.5(c).

Fig. 4.1.5(b).

Table 4.1.5(c)

-	Mean no per patalas	SD	$\mathrm{SD} \% \overline{\mathrm{~F}}$	Range
Daphnia $>2.0 \mathrm{~mm}$	0.5	0.49	98	0.1- 9.9
Daphnia 1.40-1.99mm	18.2	3.6	20	14.6-21.8
Daphnia $1.00-1.39 \mathrm{~mm}$	12.6	5.3	41	7.3-17.9
Daphnia $<1.00 \mathrm{~mm}$	135.1	12.1	9	123.0-147.2
Daphnia eges	5.4	4.2*	77	1.2- 6.6
Cyolops aduzt	1.1	1.1	99	0- 2.2
Cyclops copepodite	0.8	0.4	57	0.4-1.2
Diaptomus aduit	2.0	1.5	74	0.5-3.5
Diaptomus copopodite	0.8	0.3	33	0.5-1.1
Bosmina sp.	13.2	2.7	20	10.5-15.9
Nauplii	0.9	I.7*	184	0- 2.8
Aspianchna sp.	1.4	1.6	112	$0-3.0$
Total animals	192	± 9.7	5\%	194.3-201.7

* Samples deviating from expected S.1. This suggests clumping which is actuaily the case for the eggs. This occurs in three samples from ten.

This figure is comparabie with table 4.1.5(b) and the same comments appiy. The total variation is low $192 \pm 5 \%$, and where numbers are high, in excess of 100 individuals, variation is less than $\pm 10 \%$. This is in agreement with the recomnendation of LUNDETAL. (I958) to count 100 organisms or more.

Comparison of coarse and fine nets.
Two grades of piankton net, a coarse (60 mesh) and fine (180 mesh), were used for vertical net samples throughout this study (4.1). The results of the field sampling programme provide a comparison of the two types of plankton nets.

Five groups of animais caught in the nets were compared numericaliy using size-class data from sample counting. Resuits show that Daphnia hralina of a size range $0.4-1.0 \mathrm{~mm}$ in length were, except in three samples, always present in larger numbers in the coarse nets. Daphnia hyalina egg numbers were higher in the coarse nets. Bosmina sp: numbers were higher in the fine net samples as were Asplanchna sp., copepod naupiii and the smailer rotifers. The results are presented in table 4.1.5(d).

For l)aphnia, (1.00 mm), the fine net catch was 49.6% that of the coarse net. Bosmina numbers were 136.9% of the coarse net catch. The probable explanation of the figures presented in table $4.1 .5(d)$ is that the numbers captured are related to the pore size of the nets used. Daphnids cannot escape through the mesh of either net whereas Bosmina and Asplanchna, the snaller rotifers and the nauplii can probably be washed through the coarse mesh net. The eggs of daphnids are held in the brood pouch of the aduit females and as these are normally greater than 1.4 mm in Iength, the numbers of eggs are related to the efficiency of capture of this size group.

Jess of the larger animals are caught in the fine nets because the smaller pore size increases pressure in the net mouth and aiso increases clogging of the net filtering surface. These factors effectively reduce the volume of water column filtered. The effects of clogging are difficult to assess as clogging can occur under a variety of conditions and may be caused either by phytoplankton or the zooplankton itself as the net gets full. This may resuit in an apparentiy greater efticiency of capture of the smaller zooplankton by coarse nets.

Table A.1.5(d)

	Daphnia		Eggs		Bosmina		Asplanchna	
	<1.0							
	F	C	F	C	F	C	F	C
8/1/68	350	560	100	175	0	0	200	-
22/1	1950	1890	575	1200	0	0	50	-
29/1	270	1069	10	163	0	0	140	-
12/2	840	1630	830	740	220	90	0	-
19/2	560	700	520	305	0	0	10	-
26/2	780	895	650	260	10	0	110	-
4/3	580	810	50	180	10	0	140	-
11/3	470	670	100	250	0	0	50	-
25/3	120	395	10	45	10	5	40	-
1/4	150	136	110	26	10	2	50	-
29/4	7950	13675	650	600	150	20	850	-
6/5	6600	10200	100	0	50	25	1050	-
13/5	2950	6525	0	25	125	100	575	-
20/5	1175	3090	0	50	100	113	0	-
27/5	1350	1490	33	30	383	70	33	-
5/6	75	664	0	35	150	83	350	-
10/6	110	90	0	0	90	60	20	-
22/7	4300	3225	0	0	350	125	7200	-
12/8	500	1160	0	0	525	370	800	-
19/8	775	1848	550	170	175	233	2675	\div
26/8	325	325	250	450	25	0	25	-
3/9	1775	3375	25	50	0	0	175	-
9/9	850	1510	0	0	0	0	0	-
7/10	850	1710	100	0	0	0	0	-
14/10	875	940	25	150	0	0	250	-
21/10	90	120	0	0	20	40	410	-
17/3/69	400	1240	900	850	40	20	180	
24/3	340	900	240	1070	40	10	180	
8/4	80	190	120	180	20	20	100	220
14/4	200	630	575	$\begin{array}{r} 1510 \\ -3 \end{array}$	50	50	300	9

Table 4.1.5(d) cont.

21/4	100	216	0	25	0	100	625	100
28/4	875	4800	1575	1940	200	40	1625	550
5/5	2100	10050	200	1400	100	375	4700	7225
12/5	3250	7575	200	2000	750	725	17150	14850
19/5	7000	15920	150	250	550	350	3500	4075
27/5	2800	7900	260	625	310	400	830	375
2/6	1880	4020	100	100	500	210	410	230
9/6	410	890	0	10	180	90	150	50
Total	56055	113033	8908	14874	5143	3756	29750	27565
N	38	38	38	38	38	38	12	12
$\% \mathrm{f} / \mathrm{c}$	49.59		59.89		136.93		107.93	
$\%^{c / f}$	201.		166.90		73.00		92.60	

Comparison numbers caught by fine net and coarse net using the comparable field data available.
$0=z \operatorname{zer}$

- = not recorded.

2/5/69 Q.M.

	Bosmina	Asplanchna	Daphnia
Fine net	100	4700	2100
Coarse net	375	7225	10,050

As piankton nets age with use the mesh size changes perinch gradually. With a new 180 mesh net the pore size was measured initiaily as 0.050 mm and after use for eight months this becane reduced to 0.047 mm . Similariy, for a 60 mesh net pore sizes decreasing from 0.188 mm to 0.183 mm are observed. The sizes are further decreased by teasing of the fibres caused by wear. The nets in use in this study were employed for 21 months and the effect was probabiy further increased. This may partiaily expiain the fact that during the first year of the study Asplanchna was not caught in the coarse net at all whereas they were caught in Iarge numbers during the spring of 1969. This efiect was probabiy increased as Asplanchna numbers were higher in the second year during the spring period (1968 max. 1050/fine net haul, max. 1969 14,850/fine net haul).

Coarse and line nets were compared for catching characteristics by regression analysis. Different components of the catch, Daphnia <I.Omm, daphnid eggs, Bosmina sp and Asplanchna sp were compared for the two types of net for catchis per vartical haul. Rosuits are presented in table 4.1.5(e).

TabIe 4.1.5(e)

$p=$ coarse net $y=f i n e ~ n e t ~ h a u i ~$	Correlation coefficient (r)	Kegression equation $y=b x+c$	Standard deviation Sres at x
Daphnia $\langle 1.0 \mathrm{~mm}$	$0.559, p<0.001$	$\mathrm{y}=0.33 x+51.3$	265 at 297.5
Daphnid eggs	$0.174, p<0.1$	No significant correlation	
Bosmina sp.	$0.596, p<0.001$	$\mathrm{y}=123 x+5.5$	26.3 at 9.88
Asplanchna sp.	$0.974, p<0.001$	$\mathrm{y}=1.041 x+8.8$	103 at 229.7

Although there is a very highiy significant correlation, except for the daphnid eggs, where there is no correlation, the standard deviations of the regression analyses are extremely high. Examination of the resuits for Asplanchne sp . catches in both nets (tabie 4.1.5(d) sheds some light on this discre pancy. Where numbers are low, the fine nets are supericr in catching Asplanchna sp. Where numbers are high, the coarse net catches the same numbers or more, probably due to the filtering surface of the net becoming ciogged with animals and reducing the relative filtering area of the net surface. The same may apply to other organisms. Normally the smallon animals (Bosmina $s p$ and Asplanchna ar) are caught better in the fine nets than the larger animais (daphnids and aduit copepods). The non-correlation of the egg numbers is probably related to the low numbers of egg carrying adult Daphnia appearing in the fine net hauls i.e. not enough eges were sampled.

A comparison of not and Patalas samples.

Coarse net samples and Patalas samples were taken simultaneousiy throughout the sampling programme and both perinch samples were filtered through 60 mesh plankton net. The daida obtained provide a basis on which to compare the properties of the two sampling techniques.

The Patalas sampler took 5 L samples from a column and -39-
the colurnn average was treated as an "integrated" column sample. The net haul sampies through the column and in a sense represents an integrated coluran sample. If the catching efficiencies of the two nethods were the same, resuits should be identical. In practice this is not the case.

The net has a mouth size of 0.30 m and in the Q.M. sampied through a depth 1 IIm which shouid sampie $0.7776 \mathrm{~m}^{3}$. This is equal to 777.61. The five Patalas samples are equal to 25 I of the colum. These results are comparable and if there were a 100% capture in both techniques the net haul shouid contain 31.10 times the number of animals in the net. The proportions of the components of the nets and Patalas samples shouid remain the same.

Numbers caught by the two methods were compared by regression analysis and the resuits are presented in table 4.1.5(f). All Daphnia, daphnid egg numbers and ali animals captured are compared. The daphnid ege numbers inciude those eges shaken loose irom the brood pouches of the adult females.

$\begin{aligned} & \text { tabie 4.1.5(f) } \\ & y=\text { Patalas nos. } \\ & =\text { net haul nos. } \end{aligned}$	Regression equation $\mathrm{y}=\mathrm{b} x+\mathrm{c}$	Standard deviation Sres at \bar{x}	Correlation coefficient $r(p)$.
All animals	$\mathrm{y}=0.075 x+12.96$	27.58 at 442.0	$0.827(p<.001)$
111 Daphnia	$y=0.078 x+9.57$	21.50 at 283.0	$0.828(p<.001)$
Total Daphnia ege nos.	$\mathrm{y}=0.122 x+1.20$	7.49 at 34.0	$0.614(\mathrm{p}$ (.001)

These results are presented graphicaily in figs. 4.1.5(c), (d) and (e). The resuits show a very sienificant correlation coefficient and the ragression equations and deviations for all aninals and all Daphnia are very similar and show that the net hauls contain 33% the expected numbers of animals if the Patalas samples have a 100% efficiency of capture.

A similar resuil can be obtained by comparing the fractions of net hauis that the Patalas sampies represent on comparable sampling days. These data are conveniently treated as the fraction of a net haul, that each Patalas sample represents expressed as a percentage of the net haul ($251 \mathrm{P} \times 100$). The negative binomial distribution obtained is satisfactorily treated by a log transformation (ELIIOT 1971). Resuits for ail daphnids are presented as a histogram in fig. 4.1.5(f). The arithnetic mean (14.1\%) is different from the mode (10.7%) but the moce is a better estimate of the relationship between net hauls and Patalas samples. This resuit shows that, if the Patalas sampler has a 100% efficiency of capture, then the net hauls capture 34% the expected number of animals.

Nets and Patalas samples were compared, by adjusting graphical scaies, over the season where comparable samples had been taken. The results are presented in figs. 4.1.5(g) and $(g)_{i i}$. The same trends are seen in both sampling techniques, all major peaks of numbers being present. This picture could only have been improved by nore frequent sampling.

The reiationship between the composition of net and Patalas samples has been examined by regression analysis. The results analysed for size ciasses of Daphnia are presented in table 4.I.5(g). Resuits are presented graphically in fig. 4.I.5(h). These results show that the composition of net and Patalas sampies are very similar and have a high correlation coefficient. The larger size classes of daphnids are less well correiated, probably due to the low numbers representing this fraction.

Fig. 4.1.5(f).

Fig. 4.1.5(g) (i).

[^2]

Table 4.1.5(g)

Regression equation	Standard deviation	Correlation coefficient	
Daphnid size class	$\mathrm{y}=\mathrm{bx+c}$	Sres at \bar{x}	$r(p)$
1.0 mm	$\mathrm{y}=0.69 x+18.9$	12.36 at 71.0	$0.629(p<0.001)$
$1.0-1.39 \mathrm{~nm}$	$\mathrm{y}=0.418 x+6.1$	6.09 at 9.0	$0.824(p<0.001)$
$1.4-1.99 \mathrm{ma}$	$\mathrm{y}=0.712 x+6.4$	10.40 at 17.9	$0.712(p<0.001)$
$>2.0 \mathrm{~mm}$	$\mathrm{y}=0.328 x+1.5$	3.08 at 1.9	$0.423(p<0.001)$
Total Daphnia	$\mathrm{y}=0.944 x+5.6$	28.29 at 100	$0.944(\mathrm{p}<0.001)$

Biomass - number reiationshin.
The data availabie from net sampiss were examined to discover whether a relationship existed between numbers of animals caught and the dry weight of animai samples captured by the same method. A regression analysis of weicht on numbers of daphnids shows a high correlation coefficient ($r=0.870 p<0.001$) and gives the regression equation (fig. 4.1.5(i))

$$
y=0.0059 x+0.759
$$

$y=$ sampie dry weight per verticai net haul (me)
$x=$ numbers of daphnids per vertical net haul
The biomass resuits obtained from the ciry weight of net samples were also compared with the bionass calculated from numbers obtained in the field sampes and from Laboratory measurements of individual dry weiehts (section 5.2.1) The size ciasses measured fron field samples were given a mean dry weight for the class and these figures were used to compute the calculated dry weight. The calculated dry weight is given by the formula

$$
\text { Bcalc }=\left(\mathrm{Nc} \cdot \overline{\mathrm{w}} \in+\mathrm{N}_{1} \cdot \overrightarrow{\vec{W}}_{1}+\mathrm{N}_{2} \cdot \overrightarrow{\mathrm{w}}_{2}+\mathrm{N}_{3} \cdot \vec{W}_{3}+\mathrm{N}_{4} \cdot \overrightarrow{\mathrm{w}}_{4}\right)
$$

The values of \bar{W} used are presented in table 4.1.5(h)

Tabıe 4.1.5(h)

Size ciass		nean individual dry weíght (mg)
Figes	(we)	0.0018
<1.0ma	$\left(\bar{w}_{-1}\right)$	0.0044
1.0-1.39mm	$\left(\bar{w}_{2}\right)$	0.0088
1.4-1.9913	$\left(\bar{w}_{3}\right)$	0.0242
72.0 mm	(\bar{W}_{4})	0.0532

Resuits were mailysed by regression anaiysis and the results for 71 smples are preaented in figure 4.1.5(j). There is a very high correlation coetficient ($r=0.449 \mathrm{p}<0.001$) and the vaiue of b in the recression equetion approaches 1.0.

$$
y=0.96 x-0.75
$$

$$
\begin{aligned}
& y=\text { calculated dry weight (mg) } \\
& x=\text { measured dry weight (ing) }
\end{aligned}
$$

Varıation seen in these rosults depends on two principie errors. Firstiy, the ssmping error of the nurbers and field biomasses and secondiy the choice of men indivadual dry weights for the different size classes. The latter error varies from sample to sample as anlimais nay be nearer to one end of a size group than another on difierent sampline dates. As an approxination the vaiues chosen serm to be adequate.

Sampies coliected in the field using the methods described (section 4.1,) were used in one of four ways: either for Iaboratory experimentation, field experimentation, estimation of fieid standine crops in terms of biomass or for population datia analysis (51.3)..

4.2.1 Countine of sampes.

Sampies required for counting were preserved in 5% formain solution. These samples were fixed immediately after coliection, noruaily within ten minutes and never more than one hour Iater. Severai suthors (WRIGFT 1965, CUMMENS ET AL 1969) criticise the use of formain as a preservative for zooplenkton, WIGGI recommends the use of 95% ethanol to prevent the bailooning of carapaces and the subsequent loss of eges, whereas CUMHNS suggests thet no preservatives are suitabie.ARMSTRONG\&WICKSTEAD: (1962) recommend the use of 4 or 5% formalin as a simple effective method of preservation and the evidence of the present study agrees with this conciusion.

A1I samples wre exanined in a speciaily constructed clear perspex dish. This dish (fig. 4.2.I(a))was of porspex plate excavated to create a trough . . fitted with a baffle in order to prevent currents noving animals in the sample. The trough sides were angied to prevent plankton adhering to the sides. The bottom of the trough was divided into three equal sections of one m by machine scoring.

The exaination of sampies was by means of a Watson binocular microscope fitted with an ocular micrometon. The microscope had a nagnification rance of 12.5-140 X which proved adequate for all but the nost critical exemination. Characteristics of zoopiankton exsmined.

Species were identified for the Cladocera. Cyclopoid copepods were erouped as were aiaptonid conepods and all -53-

Diagram of counting chamber. (to scale)

fig.4.2.(a)
naupiii were erouped irrespective of species. Asplanchna wes identified but other rotifers were grouped together. Other animais that were captured were identified as far as was quickly possible.

Cyclopoid and diaptonid copepodites were distinguished and these were sexed where possible.

Daphnia hyalina was identrficd as one of the following categories:-

This breakdown of D. hyaina into categories that represent stages of biological significance is based on laboratory studies of the animal.
(a) eariy instars
(b) includes primiparous instars
(c) egg carrying insters
(d) aduits of more than 10 instars.

Eggs found loose in samples were rare but these were easily recognisable and were counted. Stages of egg developwent whether or not the egg was recognised as an embryo - were also recorded.

Individual animal sizes were not recorded excout as in the categories already described but accuracy and reproducibility of neasurement is discussed in section 4.4.2. Subsampling.

Patalas sampies were completely counted irrespective of the numbers of piankton present.

FATE OF FIELD COLLECTIUNS

Fig. 4.2(a)

Net hauls were subsampled using a Stempel pipette. The complete sample was made up to a volume of 250 ml and subsamples of 2.5 ml wore abstracted. Each subsample, therefore, represented $1 / 100$ th of the total sample. A minimum of 100 daphnids was counted glving an error of $\pm 20 \% \mathrm{p}<0.05$. In practice between 5 and 10 subsamples were counted (mininum 3 subsamples) and if more than 10 subsamples were required the whole sample was counted. Non-daphnid species counted and ege numbers had a greater error when their numbers were Iess than 100.

The mean of the subsampies was used to estinate the total sauple number. Fifteen subsamples of one sample were counted to estimate the degree of error using this technique. The results are presented in Table 4.2.1(a). Different groups of animals were examined to see the effect of numbers present in the sample on the reiiability of the estimate. The results show that the variation of the total sample number is $\pm 6.1 \%$ and for a large part of the sample, for example daphnids without egess, the deviation is $\pm 9 \%$. This compared favourably with errors, encountered by GReHhil (1970) of $\pm_{13 \%}$. For small parts of the sample errors of the order of $\pm 65 \%$ are important especially in the estimation of ege numbers in the samplo for production estimates.

Table 4.2.1(a)

	Mean No	Standard deviation	SD\%
Daphnids without eggs	183.1	16.7	8.9
Daphnids with eggs	1.4	0.9	65.0
Daphnid eggs	10.8	6.2	67.6
Bosmina sp.	84.0	10.1	12.0
Cyclops adults	2.7	1.5	57.8
Total Sample (N = I5)	373.9	22.7	6.1

Zooplankton standing crop measurements, in terms of biomass, were determined from coarse vertical net hauls. The samples were trausferred to the Laboratory in clean glass jars and treated rapidly, a process which occurred within one hour after coilection.

Separation.

Samples were separated into two fractions (copepods and daphnids)using the technique of STRASKRRABA (1967). This mechanical deparation technique involves narcotising the zooplankton with a 90% ethanol $-\frac{10 \%}{c} \mathrm{ch}$ loroform mixture for a few minutes in a separating funnel and following this with vigorous shaking during which air trapped under the carapaces of the daphnids causes them to float. The copepod fraction sinks to the bottom and was run off separately from the daphnid fraction.

When samples were too large to be accommodated in the flask, they were reduced by use of a net and perspex filter arrangement.

Whenever large algal population affected net samples significantly, the animais were separated fron the algae using a simple device employing the response of zooplankton to red light of low intensity. Horizontal illumination with this light causes a horizontal swimming response towards the red iight (BAYLOR AND SMITH 1953). The diagram of the apparatus is shown in figure 4.2.2 (a). The aninals were introduced into the reflux tube, the tap was opened and then left overnight in a cold room at $10^{\circ} \mathrm{C}$. The technique was used previously by CREMER AND DUNCCAN (1969) who found the separation to be satisfactory.

Filtering and drying.

Sampies were filtered, using a Sirtoritus, stainless
steel, filtering unit and coilecting the filtrate on $4.2 \mathrm{~cm}-59-$

Separation apparatus.

fig.4.2.2(a)

Whatman GF/C filter papers. These glass fibre filter papers were previously oven dried at $60^{\circ} \mathrm{C}$ and preweighod. The pore size of the filter was sufficiently small to retain all zooplankton. Samples were filtered under vacuum and animals adhering to the filter unit were added to the sample with a camel hair brush or fine forceps.

Sampies were dried at $60^{\circ} \mathrm{C}$ in a Pickstone oven. The temperature of $60^{\circ} \mathrm{C}$ was chosen to ensure no loss of lipid material which is reported to occur by evaporation above this temperature (SOUTHWOOD (1966), GROVEETAL (1961)). Samples were dried for at least 24 hours before weighing to constant weight. Samples were transferred to the balance in a desiccator containing silica gel to prevent loss of material or the hygroscopic collection of water from the atmosphere and aiso to allow the samples to cool.

Weighing

Samples were weighed on an Oertling beam balance (Model 146) with a sensitivity of 0.01 mg . This, applied to a minimum sample weight of approximately l.Omg, has an accuracy of 1% which compares favourably with the work of TRANTER(1962) who clains an accaracy of 1.8 - 9.4% with zooplankton wet weights.
4.2.3. Individual biomass measurements.

Dry weights for measured individuals of D. hyalina
were obtained in order to construct a length-weight relationship for this species. Two different, but comparable, methods were used. The first method was the same as that of RICHMAN (1958) and EDMONDSON (1955) who measured groups of animals. of the same size category with an ocular micrometer, dried them on cover slips at $60^{\circ} \mathrm{C}$ and found the mean dry weight of the size group. The second method, using a Cahn Gram Electrobalance, involved the weighing of a measured individual -61daphnid.

Collection and sorting

Daphnids were collected from the Q.M. during the two weeks of 16/9/69 with coarse net hauls and kept alive in 2 L Dewar flasks for examination in the laboratory. The animals were sorted according to sexual condition and measured with an ocular micrometer, fitted to a Watson binocular microscopa, while still living. Length measurements had a consistent reproducibility (0.16% standard error expressed as a pereen.. tage of the mean - see section 4.4.2).

Samples were oven dried at $60^{\circ} \mathrm{C}$ for 24 hours before weighing and carried to the balance in a desiccator containing silica gel.

Oertling balance dry weights.
Groups of animals of the same size group and reproductive condition were selected and measured. These were dxied on a preweighed 2.5 cm Whatman GF/C glass fibre filter paper and weighed to constant weight on an Derting beam balance. The mean individual dry weight was obtained by dividing the weight by the number of animals. Between 13 and 60 animal.s. depending on size and reproductive condition, of each size group were weighed the balance had a sensitivity of 0.02 mg and the minimun sample size was 0.45 mg which shows an accuracy of about 4% but the reproducibility of the experiment was always better then 10% of the animal weights. Size groupings were predeternined arbitrarily as 0.10 mm groupings e.g. $0.50-0.59 \mathrm{~mm}, 0.60-0.69 \mathrm{~mm}$. This practice could lead to bias if all animals had occurred at one end of a size range but in practice this error was fo:m to be self cancelling. 35 length - weight points wora cetermined by this method.

Individual dry weights.
Individual dry weights were measured directly using the Cahn Gram Electrobalance which, it is stated, can measi:a
10^{-7} g (0.1μ g) but actuaily has a sensitivity of 0.2μ g which is 0.05% of the scale range. Animals were measured while living and dried on glass coverslips. The animals were removed from the coverslips with a fine tungsten needle and weighed complete on the balance. The weighing chamber of the balanee had a dish of colour sensitive silica gel to maintain a dry atmosphere during weighing. The smallest aninals measured had a weight of 3.5μ which had an accuracy of about 6\%. 450 measurements of individual dry weights were made.

The Oerting method preceded and was replaced by the Cahn individual method which gave more results for the same measuring and sorting effort and proviça. more informationain terms of reproductive and size categories. Resuits were analysed graphicaily and by simple regression analysis by the method of least squares.

An attempt was made to measure resriratory rates of zooplankton populations in the field. A sjmple technique, essential for the type of field conditions encountered, was developed. It was essentially the closed bottle technique used by several workers in the laboratory (RICHMAN 1958, NLARSHALL ETAL 1935, etc.) with minor modifications to suit field conditions. Oxygen wes determined using the Winkler method (WINKLER1888) and the technique evolved from an earlier study by CREMER AND DUNCAN (1969) and DUNCAÑ ET AL (1970).

4.3.1. Apperatus and procedure

Apparatus used had to be simple and robust to cope with variakle weather conditions encountered in the reservoir throughout the year. Bottles used were 300ml "Quickfit" flasks fitted with hollow, groundglass stoppers.

The bottles were suspended $k y$ putting them in a length of excavated "Nalgene" tuke (Jencons) which had been cut to accommodate five kottles. This arrangement is shown in figure 4.3.1 (a). When loaded, the bottles were wrapped in klack polythene sheeting secured firmly by elastic bands. This darkening prevented light affecting results ky preventing photosynthetic activity within the kottles. The bottles fitted tightly in the tukes and the ends of the tukes were secured with a continuous chain which also served to suspend the unit. These units could then be easily suspended at set depths on a chain fitted with carbine clips which made removal simple and fast.

Animal samples were taken from the field and filtered through a coarse net (60 meshes) filter kefore ${ }^{-64-}$

being put into the experimental kottles. The unit of animals for the experiment was normally one 5I Fatalas sample per bottle, kut when animal numbers were estimated to ke too small to obtain a result for a 4 hour exposure, a fraction of one vertical net haul was used. While concentrating animal samples, the excess water was collected in a 13.6 L plastic container (Geeco). This weter was used to fill control and animal bottles and also came from the same depth as the animal samples. This process had the advantage that the water was at the same reservoir temperature and food concentration that the animals were taken from but the animals were concentrated to akout 17 times their original concentration. Bottles were filled with a siphon and flushed through with at least three times their own volume of water. The animal samples were then added to the top of the kottles and allowed to sink into the water kefore the stoppers were inserted.

Duplicate kottles were used for each sample at each depth. One control bottle was fixed immediately with Winkler's reagents and the kottles were then suspended in the reservoir, at the fixed depth that the animals were taken from, for approximately four hours. The actual time of exposure was measured exactly. After exposure, the bottles were removed from the water, fixed immediately with animals present, with Winkler's reagents, and then carried to the lakorator for titration.

When conditions allowed, a complete depth profile of the reservoir was made at $1,3,5,7$ and 9 metres. As conditions worsened samples were progressively removed from the bottom strata or vertical net hauls were taken as the sample unit.

The Winkler's technique used was that descriked in Standard Methods (A.P.H.A 1965) with minor modifications. Reagents were made up and put under a small vacuum to remove excess air. (Reagents are described in Appendix 4.3.). Winkler's reagents I and II were added in the field and the bottles were stored in this condition. Bottles were moved from field to laborator $i n$ plastic dustbins filled with reservoir water. This helped to maintain field temperatures and to prevent air diffusion through the ground glass joint. Samples were acidified immediately prior to titration and 50 ml samples were titrated against $N / 80$ sodium thiosulphate solution using solvble starch with urea as an indicator. Bottles were kept in the dark until titration which was carried out as quickly as possible after removal from the reservoir. Titration was usually carried out on the same day.

Initially an N.F.L grade 'A' 5 ml kurette was used but later it was found more convenient to use a Smith's free piston burette in conjunction with a magnetic stirrer. 50 ml grade 'A' pipettes were used for taking samples from the bottles and animals were left in the kottles while subsampling. The sample was then filtered through whatman g / f filter papers and dried to constant weight. The procedure was the same as for field kiomass dry weights (see section 4.2.2).

To measure the respiration of the animals, the animals were placed in water of known oxygen concentration and left for a known time with the kottle closed. The oxygen consumption is the difference ketween the initial oxygen foncentration and the final oxygen concentration of the water. In the field, the situation is more complex recause of the presence of other oxygen consuming organisms in the water
and the difference ketween initial and final oxygen concentrations may be an overestimate of the oxygen consumption. A retter estimate con be obtained ky using a final control of water left for the same time period as the animal experiments.

The oxygen consumption was calculated in the following way

Oxygen consumption per bottle $\mathrm{C}_{\mathrm{k}}=$ If $-\mathrm{Af} \mathrm{mgO}_{2}$ Zooplankton Eespiration $\mathrm{C}_{\mathrm{z}}=\mathrm{Cb} / \mathrm{w} / \mathrm{t} \mathrm{mgO}_{2} / \mathrm{mg} /$ hour Where $\mathrm{Cb}=$ oxygen consumption per kottle (mgO_{2}) $I_{f}=$ oxygen concentration of final control $\left(\mathrm{mgO}_{2}\right)$ $A f=$ oxygen concentration of animal bottle $\left(\mathrm{mgO}_{2}\right)$ $W=$ dry weight of zooplankton (mg) t = time of exposure (hrs.)

4.3.2 Errors associated with using the Winkler's method

 for the determination of oxygen consumption of animals
in closed bottles.

Discussion may be found in standard texts concerning volumetric titration errors (VOGEL 1954, CONWAY 1962) and will only ke considered briefly here. These errors apply equally and are volid here, but normally concern titrations carried out in solutions not containing living organisms. When the Winkler's methöd is applied to respiratory me9surements various new errors are introduced. The oxygen consumption is normally measured as the difference between two samples and errors should te applied to the level of oxygen consumption by the animals and not the total oxygen content of the samples. The type of errors considered include those associated with fixation and titration of samples containing animals, the measurement of lowered oxygen concentrations, the flushing of respirometer bottles, the storage and transport of samples
in various conditions of light, temperature and time and the relationship of the normality of the sodium thiosulphate used with accuracy of the kurette as well as the size of sub-sample and level of oxygen consumption.

The whole procedure was examined to discover sources of error and how these might ke rectified or reduced in relation to the total error involved in the experimental design.

Effects of filtration of snimals

The effect on the metakolism of the animals of keing filtered out of the samples has not been examined directly, but is almost certainly related to the'disturbed period'respiration accounted for later. Losses of animals to the filter are very small and are unlikely to affect the results significantly as results are computed as O_{2} consumption/mg dry weight/hour and the dry weight of animals is the weight of animals in the respirometer bottle. Any losses to the filter will not reach the kottle.

A second effect of filtering will te on the oxygen tension of the water used for filtering the sample bottles. This oxygen concentration is only likely to be seriously affected if the water is grossly supersaturated. When the water is undersaturated, the filtering process is such that it will tend to saturate the water. At supersaturetions the oxygen will tend to bukble out. These effects will koth be heightened by any increase in temperature occuring while samples are out of the reservoir. Except during periods of high supersaturation, the effect of filtering is to raise the oxygen concentration ky $38 \% \pm 9.7$. This comparison was made ketween initial control samples -69-
and the oxygen concentration found in the field and the correlation coefficient for this test is very high ($r=0.725 \mathrm{p}$ (.001). Where supersaturation occurred there wos a 15% drop in oxygen concentration but this only occurred once during an experiment when the oxygen tension in the reservoir was 205%

These results, however, are unlikely to affect the respiration values obtained veryseriously. The oxygen saturation of the bottles will deerease as the animals respire and final levels reached mould be close to field concentrations kut they may affect the respiration rate of the animals and this would 'show up' in the 'disturbed period respiration. Effects of kottle treatment

Respiration kottles were fixed with zooplankton still in the sample. Direct fixation in the presence of the animals is the simplest procedure and of advantage in field situations. This procedure does not appear to affect the precision of the titration if carried out quickly after the experiment
($\pm 0.026 \mathrm{ml} 0.0125 \mathrm{~N}$ thiosulphate for a 50 ml sample) rut it does alter the accuracy. The error, which is 0.013 ml 0.0125 N thiosulphate per mg dry weight of animal, is due to the loss of iodine either because the manganic hydroxide is trapped in or on the carapaces and is not all dissolved on acidification or because it stains' the animal kodies and is isolated from the titration.

An alternative rrocedure would $k e$ to siphon samples from the respirometer with a filtering siphon but this would incorporste the error associated with filtering of incressing the oxygen content of the sample and the flushing error - ε much more serious error at this stage.

Ahimal errors are most likely to be the result of concentrating animals to obtain measurakie respiration rate and the effect of 'handling' animals upon their metakolic activity. ZEISS (1963) discusses the effect of population density on zooplankton respiration rate and records that adult D. magna confintd to a space of 0.24 or 0.12 ml per individual had an oxygen consumption 2 to 2.5 times those animals with 12 ml or more at $19-21^{\circ} \mathrm{C}$. He critises respirometers where crowding occurs on this kasis. During field experiments only three samples (from 95) came within the $0.24-0.12 \mathrm{ml} /$ individual that he discusses. These occurred during winter months when net hauls were employed as the sampling unit. With Patalas samples only seven samples show individuals with less than $I \mathrm{ml} /$ individual, made up lorgely of small individusls of D.hyalina, Bosmina sp. and copepods.

A second effect of concentrating animals is to increase the concentration of metakolic wastes. These are carbon dioxide and nitrogenous waste. The nitrogenous waste of zooplankton is largely in the form of ammonium ions (BLAŽKA 1966) and these might be oxidised to nitrite ions. REBSDDORF (1966) concludes that if n itrites are suspected to be present in the woter, the Fomeroy-Kirschman azide modification of the Winkler technique removes the error due to nitrites. As nitrite is frequently present in the field situation, this practice was employed. The effect of metabolic waste was not considered further except in that it was recognised that high concentrations of ammonia might affect $-71-$
the metakolism of the animals. However, the time af exposure of the experiment was relatively short (4 hours) and this effect was considered to be small. The third effect of 'handling' has keen discussed by several other authors working with different animals. NiaRSHALI et at (1935) studying the marine copepod, Calanus finmarchius, suggest that there is a period of disturced respiration of up to ten hours after capture. They suggest that this is due to 'handing' and confinement. KAMiEiR (1969), working with Isoperle kuresi and compuring closed bottle and other respirometer measurements, records a disturked period of up to five hours.

In the field experiments the effects due to handling are incorporated in the results but several experiments were curried out to assess the extent of this disturbance and its duration. Bottles were filled and exposed in the same way as field samples except that kottles were removed at hourly intervals,

The results of this experiment are presented in figures 4.3.2.(a) and (k). Each result represents a cumulated mean respiration result at the particular hour. After three to four hours exposure the respiration rate appears to slow down to a steady level kut the levels are high because the first hours of disturbed respiration affect the final result. The results are the same tetween three and eight hours and, although too high, the four hour exposure period is a reasonable compromise if a correction factor of about 0.6 the final value is used. The measurement of respiration at one or two hours is also very variable due not only to disturbed

RESPIRATION RATE OF ZOOPLANKTON IN RESPIROMETER BOTTLES AGAINST TIME AFTER LOADING

Fig. 4.3.2(a).

RESPIRATION RATE OF ZOOPLANKTON IN RESPIROMETER BOTTLES AGAINST TIME AFTER LOADING

Fig. 4.3.2(b).
period respiration but also because in this reaion the oxygen differences are of the same order of magnitude as the oxygen consumed by the animals and the limits of sensitivity of the technique are keing anproached.

The effect of a change in concentration of the food of the animals on their respiration is not known but is not as large as i.t would have been if all food was removed. The exposure time is relatively short compared with change of fond concentration and this error will also be incorporated in the results of the experiments doscribed above.

Win kler's errors

Delay of titration:
The results of a series of experiments to test the effects of delaying titration of samples in various conditions are presented in table 4.3.2(a). The results show that the precision of the titration varies very little but the accuracy alters significantly if the titration is delayed for 24 hours. There is very little difference hetween samples kept in the light or dark. The results presented here apply to 50 ml subsamples taken from the respiration fottles and it can be seen that if the samples are left overnight, the error can be greater than the total differences of a respiration measurement. For this study, no results are given where this error has been exceeded.

Tarle 4.3.2(a)	$\begin{aligned} & \text { Mean titration } \\ & \left.\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{1}(\mathrm{ml})^{\prime}\right) \end{aligned}$	$\begin{aligned} & \text { Standard } \\ & \text { deviation } \end{aligned}$	SD\% mean	N.
Immediate titration	4.439	0.035	0.79	24
Stored for 24 hrs. (in dark)	1.509	0.026	0.58	24
stored for 24 hrs . (in dark)	4.512	0.029	0.64	24

Chemical errors were minimal if the solutions were freshly made up and well stireed before titrations were carried out. Any oxygen taken up ky Winkler's Reagents is self cancelling as it appears unchanged in both experimental and control samples. Sodium thiosuphate solution was made from commercially produced stock ampoules and diluted to the required strength. When standardised against Potassium iodate solution of known normality, this was found to ke less than 0.5% different from the required strength. 'Analar' reagents, low in impurities, were used throughout. Initially difficulty was experienced with starch indicators but the use of 'starch-solukle-urea' proved satisfactory as its colorimetric endpoint was clearly visible. The chemical error was estimated as a coefficient of variation of 0.789%; which is largely due to the photochemical reaction of iodine. KAMLER (1969) draws attention to the error associated with insufficient kottle flushing which partially saturates samples with oxygen from the bottles. KAMLER'S results show that flushing at least three times is necessary. NiARSHALL ET AL circumvented this proclem by flushing the kottles with nine times their own volume of the water used. KAMLER obtains an error of $0.196 \% \pm 0.0066 \mathrm{mg} / \mathrm{L}$, a standard error of 3.4% of the mean. RICFiviN (1958) obtains a standard error of 10% of the mean. These figures are related to the oxygen difference rather than the total oxygen concentration of the samples. Experiments were performed to test the effect of measuring oxygen tensions near saturation and with lowered oxygen tensions which related to control and final experimentan bottles. Results obtained showed that with concentrations at 100% and 30% oxygen
saturations, the standard deviations were low (takle 4.3.2(b)) but if bottle flushing was not carried out these deviations incresse two to four times.

Table 4.3.2(b)

	$\begin{aligned} & \text { Mean } \\ & \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \end{aligned}$	Standurd deviation	SD 3. \% mean	N.
Air saturated water (flushed 3x)	$\begin{aligned} & 4.082 \\ & (\mathrm{mls}) \end{aligned}$. 0036	. 08%	20
O_{2} reduced water ((lushed 3x)	(mis)	. 0054	. 42%	20
Air saturated water (not flushed)	(4.815)	. 015	. 31%	10
10, reduced water (not flushed)	(2.7s)	. 012	. 43%	10

These results also show that errors increase as oxygen saturation gets lower. During the experimental work saturations fell kelow 80% of the total saturation on only two occasions.

Glass Errors.

CONWAY (1962) suggests that the glass error is best expressed as the coefficient of variation of the individual glass errors (Cg).

$$
\mathrm{cg}=\sqrt{\left(C p^{2}+C b^{2}+C m^{2}\right)}
$$

where $C p=$ coefficient of variation of pipette

| $\mathrm{Cb}=$ | $"$ | $"$ | $"$ | $"$ burette |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Cm}=$ | $"$ | $"$ | $"$ | $"$ manipulation |

The coefficient of variation of the pipette varies with the drop size and its precision on how much it delivers. The coefficient of variation of the burette is dependent on drop size and the coefficient of variation of manipulation on how well the burette maj be read.

The total coefficient of variation (Cg) was found to be 0.062%, which is very small compared with other errors discussed.

A second glass error is associated with the volume of the respirometer bottles. These volumes were determined ky weighing with and without water. For the experiments, it was assumed that the bottles had a volume of 300 mls but in practice it was higher than this at $308.94 \pm 7.98(2.6 \%)$ which respresents an underestimate of 2.9% in kottle size. This is not significant in the estimation of a respiration rate. Other Errors.

Other errors that occurred include interference by other living organisms. Algal photosynthetic production was ignored as the kottles were blackened with polythene sheet and the effects of respiration and as a trap for iodine were ignored as quantities of algae were small. Bacteria may act as a consumer of oxygen but the exposure time of the experiment was kept short (4-5 hours) and bacterial action was minimal at this period of exposure.

Combined Errors.
The total combined error, C, may be estimated $k y$ $C=\left(C g^{2}+C w^{2}+C t^{2}+C a^{2}\right)$
where $C g=$ glass variation $\quad C w=$ Winkler variation
Ct = treatment variation Ca = Animal variation
The largest errors occur as parts of $C W$ and $C a$ where Ca is in the order of 10%. The totel error has been estimated as 10.57%.

In addition a correction of plus 0.013 ml N/80 thiosulphate has to ke made for each mg dry wt of animal in the samples and the final result reduced to 0.6 of its level to account for disturbed period respiration.

Individuals of D. hyaling were cultured in the lakoratory, to measure growth, development and respiration rates, at the constant temperature of $10^{\circ} \mathrm{C}$. This was designed to complement previous studies from the same lakoratory, by DUivCnil AND CREMiAR, carried out at $20^{\circ} \mathrm{C}$. The temperatures chosen reflected critical periods in the field situation where $10^{\circ} \mathrm{C}$ was the modal temperature of the spring zooplankton peak and $20^{\circ} \mathrm{C}$ was the maximum summer temperature.

4.4.1. Culture of animals

Animals were collected from the $\alpha \cdot M$. with coarse net hauls on $9 / 4 / 69$ when the water temperature was $7{ }^{\circ} \mathrm{C}$ and the reservoir wis isothermal. These were transported to the lakoratory in 2L Dewar flasks and sorted for culturing. Large, $\rangle 2.0 \mathrm{~mm}$, females, with eggs in the krood pouch, were selected for culturing.

Large glass aquaria, maintained at a constant temperature of $10^{\circ} \mathrm{C}$, were used to contain the culture vessels. Temperature control, better than $\pm 0.1^{\circ} \mathrm{C}$, was maintained ky using klackened 40W, light bulbs connected, via ${ }^{2}$ Sunvic relay, to a Beckmann mercury contact thermometer, as a heat source and copper cooling coils containing refrigerant as a heat sink. The tanks were insulated with expanded polystyrene foam jackets m and the arrangement is shown diagramatically in figure 4.4.1.(a). The water contained the algicide, Phenoxytol, to prevent trouklesome growths. Animals were cultured individually in labelled 25ml open topped dishes which floated in the aquaria. Dishes were cleaned carefully with chromic acid mixture and thoroughly rinsed with distilled water each time the culture medium was changed. The culture medium

was filtered reservoir witer taken freshly from the Q.M. It was filtered through Whatman GFC filter papers to remove algae and detritus, and kept in large (2L) conical flasks at $10^{\circ} \mathrm{C}$. Reservoir water was collected twice weekly in $20 I$ polythene containers.

Animals were fed from a culture of oocystis solitaria (Withr.) oktained from the M.W.B. which had keen isolated from reservoir populations and had been maintained in bottle cultures since 1967. Oocystis cultures were maintained in the exponential growth phase ky sukculturing and cultures showing a tendency to become sessile were discerded. Cell numbers were estimated by taking one ml sutsamples, diluting to 100 ml and counting further one ml subsamples, in a haemocytometer. Cell concentrations were maintained at approximately 2.5×10^{4} cells/ml in the animal cultures.
4.4.2. Measurement of animals.

Animals were measured daily and records were kept ky means of sketches and notes of other relevant features of their development.

Several different measurements of each animal were recorded and these correspond with measurements made ky ANDERSON (1932). The physical dimensions measured are presented in figure 4.4.2(3). For these measurements animals were gently transferred to a glass slide in a drop of water and the water was reduced until the animal was restricted ky the boundary of the water drop. Measurement took less than a minute and were then returned to their culture dish. This handing of animals proved to ke inexpensive in terms of animal deaths although it placed an obvious strain upon them.

Reproducibility of measurements was examined by remeasuring the same living animal. Three dimensions: length, width and body length were measured ten times -81-

DIMENSIONS OF DAPHNIA RECORDED

fig.4.4.2.(a)
using the normal Watson Einocular microscope with micrometer eyepiece. Results are presented in takle Table 4.2:4(a)

	ength (mm)	width (mm)	Eody length (mm)
N=10			
mean	2.241	1.415	1.880
S.D.	0.011	0.013	0.012
S.E.	0.16%	0.28%	0.17%

Stages of growth were also recognised. At each daily measurement, or more frequently if the animal was used for respiration experiments, the presence or absence of a carapace was noted and this indicated whether the animal had changed instar. By this means a map of instar-time development was created.

Adult daphnids were recognised ky the first development of an ovary which marked the onset of sexual maturity. An attempt was made to quantify this for the construction of energy budgets and life takles. The production of offspring by the Cladocera moJ ke convemiently divided into two stages which occur in adjacent instars. The first stage is seen as ovary development and the second stage as the shedding of the eggs into the brood pouch and their subsequent development until release. CREMER AND DUNCAN (1969) describe ovary growth in semi- quantitative terms - small, large etc., but in this study the length of the ovary was measured and used as an index of its growth and in later stages the numbers of developing eggs were ascertained.

Stages of egg development in the krood pouch were also reccgnised and these were recorded together with numbers of young and length measurements. The stages of egg development recognised corresponded with those otserved by GREEIN (1954) for D. magna and those observed by $-83-$
information was used to illuminate length measurements. The stages of egg development recognised were:

1. Undifferentiated eggs
2. Differentiated eggs
3. Antennae forming
4. Two red eyes present
5. One kluck eye present
6. Heart beating, limbs moving During these experiments some of the animals developed ephippia (resting eggs). Measurements were made of ephippial development as far as possikle and postephippial animals were distinguished.

Limited observations of the nutritional state of the animals were made. Food concentrations were monitored and the state of the guts (full, empty, colour) were recorded with the presence of food reserves such as oil droplets in the kody tissues.

Other okservations such as heart beat rate and spine damage were recorded if they were thought to ke of significance.

Measurements and observations were made at least once a day, normally early in the morning, and more frequently if the animals were in the process of moulting. Other observations were made at the times when animals were used for respiration work. Overall the culturing experiments lasted 108 days until the death of the last animal.

The Cartesian diver micro-respirometer was used to measure respiration rates of D. hyalina in the laboratory. These were mesored at $10^{\circ} \mathrm{C}$ and the results used for the construction of an energy budget. This work was carried out jointly with Dr. A. Duncan and followed a similar study from the same lakoratory by A. Duncsn and G. Cremer at $20^{\circ} \mathrm{C}$.

The Cartesian diver technique, origi nally described
 modified ky ZeUTHell (1943, 1950) who provides a basic description of 'stoppered divers' which were used in this study. The method used is that of KLikOwskI (1968, 1971).

It is not proposed to give a detailed discussion of the principles and practice of the Cartesian diver here since the subject is adequately covered ky IINDERSTR\&NLANG (1943), HOLTER (1943) and in relation to squatic animals ky RLEKUWKI (1968).'

The Cartesian diver respirometer is o constant volume variable pressure system and the stoppered diver encloses agas vubkle which mikes it slightly koyant in its flotation medium (O .1 NNa OH). The flotation vessels are fixed in a constant temperature tank ($\pm 0.01^{\circ} \mathrm{C}$) and are connected to a manometer filled with Brodie's fluid (UNBREIT ET AL 1949): The mancmeter was read against a mm scole of 150 cm . The internil pressure of the system is controlled ky means of course and fine screw adjustments attached to the manometer, chamges in pressure in the flo tation medium being transmitted through the fluid filled space between the diver chamber and stopper to the gas bubble inside the diver. Increased pressure deareases the gas volume and the diver sinks and vice versa. This
happens bec-use eich diver has a constent volume which maintains neutral kouyancy it an arbitrary level which can be maintained by pressure ddjustment of the mancmeter. The mancmeter, flotation vessels and temperuture kith urrangement are presented diagramaticolly in figure $4.4 .3(a)$ and the diver construction is shown in figure $4.4 .3(\mathrm{~b})$.

The upparatus used wus built with eight flotation vessels and muintained in j cool, dimily lit busement. During experimentation, the divers were okserved with a microscope modified to 'travel' vertically which had a kuilt-in low intensity light source.

Divers of verious sizes were constructed from thin walled 'Fyrex' glass capillury tuking with a specific grivity of 2.55 and these were washed in concentrated sulphuric acid and rinsed in distilled water before use. Braking ind louding pipettes were constructed from similar capillury tuking. After use in experiments, divers were aguin washed in sulphuric scid and rinsed cerefully with distilled water and stored in cotton wool in smull Petri dishes.

Befcre experiments were ferformed the flotation medium was air saturated by kubkling washed air through the medium.

The experimental animals were transferred to the looding dish which containtd filtered reservoir water at $10^{\circ} \mathrm{C}$. The diver was also transferred to this dish, filled with this water and then the animal was 'rersuaded' to enter the diver. Difficult:' was experienced with small individuals which tended to adhere to the diver walls and these were gently pushed in with a loading上irette. The diver (with animal) was then transferred to O.I.N NaOH solution which was introduced into the lower neck of the diver and the stolfer was then inserted. -86-
Fig. 4.4.3(a).

LOADED CARTESIAN DIVER

Fig, 4.4.3(b).

The diver wis then transferred to the flotation vessel.

Manometer readings were commenced immediately and recorded at 15-20 minute interwals until a 'straight line' respiration rate was obtained and the manometer was read to 0.5 mm of Brodie's fluid. A siecimen graph of the rate of change of equilibrium pressure is shown in fig. 4.4.3(c) and the rate of oxygen consumtion was calculated using the procedure outlined ky KLEKONSKI (1968)

After experimentation, divers were removed, dismantled and the animals returned to their culture vessels.

DIVER EXPERIMENT

fig.4.4.3(c)

SThNDING CROI (wEIGHT)
The standing crof measured directly of daphnids in Q.M. for the period of this study can be seen in figure 5.1.1.(a). The sequence of the seasonal cycle is ncrmal for a temperate lake with standing crop maxima occuring in the sfring (April/May) and autumn (August/September) for the years of the study. This sequence is widely reccgnised (reviewed in HUTCHINSON 1967) and similar to previous studies of these reservoirs (CREmer and duncan 1969, angold 1968, latighelit 1968). It can also be seen that the winter levels are quite high (normally 380 to $1140 \mathrm{mg} / \mathrm{m}^{2}$) which are approximately the same in both years of the study. The string maxima, however, are considerably different in 1968 and 1969. The 1968 spring maximum reached a level of about $3040 \mathrm{mg} / \mathrm{m}^{2}$ and in 1969 this reached about $4560 \mathrm{mg} / \mathrm{m}^{2}$ this will be discussed more fully in a later section (section 5.1.4.). The sutumn maximum in 1968 reached a level of about $1900 \mathrm{mg} / \mathrm{m}^{2}$ which probably compares with the late autumn value of about $1520 \mathrm{mg} / \mathrm{m}^{2}$ in 1967. In both 1968 and 1969 the spring maximum is freceded by very low standing crof in mid April and this in turn is preceded ky a smaller peak in eurly April. The significance of this event will be discussed in the -91-

Fig. 5.1.1(a).
section relating to fofulation dynamics (5.1.3). During the whole course of the year the standing crop fluctuates in a fairly regular fashion a peak being followed ky a low followed by a feak which in the winter months at least prokably represents regular changes in the population structure (section 5.1.3).

Figure 5.1.1(k) shows the standing crof of copepods (Cyclops sp and Diaptomus sp) throughout the year. The technique used to separate the Cofepoda from the cla docera does not separate cyclopoid from calanoid copepods and the numerical analysis must be used to distinguish specific sxcession. The 1968 data show that the standing crop reaches a feak in late April, followed by a high summer level and a subsequent peak in late August. The spring peak is also seen in 1969 but is a much higher level $\left(-2660 \mathrm{mg} / \mathrm{m}^{2}\right)$ wher correlates with the higher darhnid standing crop in that year. The raw data for the biomass figures are fresented in Appendix 5.1.1.

Figure $5.1 .1(c)$ shows the mean individual dry weight for Cladocera in field samples calculated from the dry weight per V.N.H. and the numbers per V.N.H. (Séction 5.1.2.) and this provides a crude idea of the population structure at different periods of the year. When thefigure is high it indicates that the population is composed mainly of large old individuals and when low it is mainly small (young) individuals. It can ke seen from the figure that during the winter the fofulation is coposed of large old femiles whereas during the spring feak (late April and early May) the population is of small animals. Towards the end of the spring outkurst the age structure changes and there are fewer but larger animals in the porulation (see fig.5.1.2(a) showing fercentage age structure of porulations). -93-

Fig. 5.1.1(b).

Figure 5.1.1(d) shows a similar aprrach to the coferod fopulations and the sume fattern in each year can be seen.

5.1.2. STANDING CROF (NUIVBERS)

Porulation sizes are normally presented as numbers e.g. EDMONDSON (1955), HALL (1964), WRIGHT (1965) and standing crofs in terms of weight calculated from these and a knowledge of the population structure. Figure 5.1.2(a)(i) and 5.1.2(a)(ii) shows the pofulation size. of D. hyalina throughout the period of this study. The numbers are shown on a logarithmic scale and egg numbers are also shown. The fopulation size of D. hyalina varies throughout the course of the year in 1968, the spring population maximum occurring in late April ($601350 / \mathrm{m}^{2}$) followed by a second maximum in July ($32580 / \mathrm{m}^{2}$) and the autumn maximum in early september ($147744 / \mathrm{m}^{2}$). The winter levels are fairly high compared with the low numbers immediately preceding the spring period of population increase. The same fattern can be seen in 1969 except that the maximum sfring population size is higher (70710 tm ${ }^{2}$). In 1969 more samples were taken freceding the sfring peak and an earlier prepeak maximum zan be seen in early April $\left(190000 / \mathrm{m}^{2}\right)$. This situation can be seen in 1968 if the Patalas data are examined (section 5 (1.8) where samples were taken during April, and this appears to be a normal pattern associated with egg production before the spring maximum.

Egg numbers can also be seen in figure 5.1.2(a) and the obvious feature is that the winter levels are consistently high (7600-456000/m2) whereas the summer levels are very low. The 1969 data show high egg numbers occurring during March and April before the spring maximum. Again in 1969 the winter egg levels sre consistently high. These egg numbers are more understandakle when the internal structure of the populntion is considered in conjunction with the egg numbers.

Figure 5.1.2(k) shows the size structure of the D.hyalina population throughout the course of the study. Numbers are plotted on a logarithmic scale for convenience and the overall pattern is the same as the total numbers seen in figure 5.1.2(a). Except during octoker and November 1968, the smallest size class (<1.00mm length) exceeds all the other size clusses in absolute numbers for the whole Jear and with rare exceptions the largest size class ($>2.00 \mathrm{~mm}$) is always lower in numbers than the other size classes. The size class $1.40-1.99 \mathrm{~mm}$ follows a very similar pattern to the $1.00-1.39 \mathrm{~mm}$ size class but often exceeds the latter which is a function of the relative duration of these size classes as a size grour.

The relative proportions of sexuelly mature to immature animuls can be seen more clearly in figure $5.1 .2(c)_{\wedge}^{(i)}($ (i) where mature snimals ($\rangle 1.40 \mathrm{~mm}$ length) are compared with sexually immature animals (1.40 mm length) The situation is the same in each year of the study. Late winter and early spring populations ... have a high percentage of mature animals which reach a maxirum of $60-80 \%$ during early April and precede the spring population maximum, and correspomds with the mincr premaximum peak that can be seen in fig. 5.1.1.(a). During the spring, summer and autumn peaks the profortion of older, larger animals decreases and slowly increases again as the population numbers decline. The major population feaks, which coincide with the high biomass figures, are composed largely of small animals.

The mean maximal brood size (eggs fer female with eggs) can te seen in figure $5 \cdot 1.2(\mathrm{~d})_{\text {(i)r }}$ (ii). It can be seen that the presfring values are high and rise to a maximum before the spring peak and each subsequent peak. The brood size falls throughout the spring peak and reaches a low level throughout the summer months. GREEN (1956) indicates that the egg number per female is related to size of adult and food and

Fig. 5.1.2(b)
AGE STRUCTURE OF DAPHNIA HYALINA POPULATIONS IN Q.M. 1358

Fig. 5.1.2(C)i.
age structure of daphnia hyalina populationsin o.m. 1969

Fig. 5.1.2(c)ii.
MEAN MAXIMAL BROOD SIZE Q.M. 1958

Fig. 5.1.2(d)i.

the winter months the mean size is high but food wuality is probakly foor (STEEL et al 1972). As a result of this mean egg numbers are high kut not as high as pre-peak conditions when food and size conditions are suitable.

The nccurrence and numbers of cther species of macro zonnlankton icontifien can be seen in ficure 5.1.2(e). Rosults are on a logarithmic scalc and the total numbers are nresented. Tre cyclonoids have a low mopulation densjty during the winter and a sprins peak in late foril which coincises with the daphnid population peak. Summer cyclonnic ponulations are high and there is a second neak in late sumer (late August) and the population falls to the vinter Jevel. The pattern was reprated in spring lofe although the population maximum pas higher in this year (1050-130.65 $\times 10^{3} . \mathrm{m}^{-2}, 1260-157.70 \times 10^{3} . \mathrm{m}^{2}$). There is a suggestion srom the work of compre (pers. comm.) that two species of Cyclens exist in the reserveir and that one is a snring nonulatior and the other a late summer ponulation but taxonomic separation of these was not made and no further comment car the offered bere.

The diantonid ponulations are 10 in the wintor, hirh throughout the summer and reach a population maximum in late August ($229.0 \times 10^{3} . \mathrm{m}^{2}$) then fall to lo numers suring the winter. This pattern is essentially the same as rescriber for Diantomus aracilis in the Q.E.II by KIERY (1060). The ponulation structure of cyclopoies and diantomids as fuveniles and arults are shown in figures 5.1.?(f) and 5.1.?(g) respectivoly.

```
+ Information taken from both net and Patalas samnles.
```


Fig. 5.1.2(a).

Fig. 5.1.2(f).

0

Fig, 5.1.2(g).

Bosmina sp. are larcely absent throughout the winter from September to March appearing sporadically in very low numbers. The population begins to increase in March of each year and in 1968 reaches a population maximum in early nugust ($15.98 \times 10^{3} . \mathrm{m}^{-2}$) although the spring levels were higher in 1969.

The only other species that appeered in significant numbrri in the macrozoonlankton was Asplanchna sp. . a large carnivornus rotifer. The only records in 1968 were in July when ponulations reached $50.8 \times 10^{3}{ }^{\circ} \mathrm{m}^{2}$ but durina snring 1969 the Asplanchna populations reached very high levels and crashed over a period of two months. The maximum values rocorded were $561.3 \times 10^{3} \cdot \mathrm{~m}^{-2}$ on may 12 when they were by far the most numerically abundant catch in the ccarse net. The population rise can be seen in figure 5.1.2(h) for this nericd. The reasons for the appearance of Asplanchna in the coarse nets are obscure except that they were largex individuals in 1969. It is possible that they were predating on small damhids; both Bosmina sn. and small D。hvalina were present at this time but no direct evidence of this is availahle.

Other specics found in the macrozcoolankton were rare in numbers and occurrence but included.

Eurycercus sp.	(ll occasions)
Cynris sp.	(once)
Leptodora kindtii	(once)
Chironomid larvas	(once).

Of these Furvercus is a littoral form and like Cynris may have been washed in from the river or the onges of the reservoir. Chironomids are benthic and Leptodora kindtii is a truly nlanktonic cladoceran carnivore associated with late summer.

Fig. 5.1.2(h).

Pofulation size changes, in terms of numbers and kiomass, have keen described in section 5.1 .2 and 5.1.1. Some characteristics and attributes of the fopulation structure of D. hyalina are examined in this section, especially those that have keen used ky other workers for analysis of population dynamics of daphnids.

It was seen in figure 5.1.2(a) thet the occurrence of a high proportion of adults in the population corres ponded with high egg numbers. This occurs during the early months of the year and precedes fopulation maxima. However, the maximum nurker of eggs per adult (brood size) is notsynchronous with highest proportion of adults in the population. Figure 5.1.3(a) shows the mean brood size (the mean number of eggs in adults with eggs) and the number of eggs per adult in the population. (HALL (1964) refers to this as the average krood size). Egg counts of field samples identified eggs and developing embryos and for each embryo recognised, 1.92 eggs were seen. This result is at variance with the result presented by HALL (1964) and is curious rather than of consecuence. The figure shows that during the winter, when the population has a high proportion of adults, the mean trood size is $4-6$ eggs per female. During the prespring peak situation this rises to akout 14 eggs per kroad. Although egg numbers kecome very high during pre-spring peaks, not enough eggs are found to account for the observed, subseguent daphnid populations. This anomaly may te explained in one of three ways: (a) that egg sampling is inefficient and not all the eggs in the population are trapped (b) that juveniles are imported

Fig. 5.1.3(a).
from the river source and (c) that ephippial hatching occurs from the bottom of the reservoir. Recent work ky DUNCAN (fers. comm.) suggests that ephipial hatching may account for this discrepancy. No degenerating eggs were seen in field samples, some were seen in the lakoratory cultures, although these have $k \in \in$ widely reforted (HALL 1964, WKIGHT 1965 and GREEN 1956).

The factors controlling the number of $\epsilon g g s$ froduced ky dafhnids may be offected by intrinsic fectors such as age, size and clonal charecteristics or environmental characteristics such as food or temperature (GREEN 1956). Most studies of these factors have been lakoratory based. GREEN (1954, 1956) demonstrated that the mean number of eggs increases with the size of the adult female but ANDERSON AND JENKINS (1942) showed that egg production decreases in successive generations a clonal defect. BERG (193才) showed that extreme temperatures can be deleterious to egg rroduction and INGLE ETAL (1937) descriked the oftimal temperatures for egg production. SCHINDLER (1971) examined the quality of the food and suggests that blue-green algae provide foor dietary material. GREEN (1966), in Hampton Court Long Water, found that the egg teaks coincided with the highest chlorofhylla levels. Other workers in field situations, have tacitly āssumed a relationshif ketween chlorofhylıfeaks ond egg production although it is more often necessary to introduce a lag Feriod between chlorofhyllíneak and egg production (HALL 1964, WRIGHT 1965). GEORGE AND EDwARDS (1974) also make this essumption and further define the importance of the quality of the diet.

In this study it has $k \in \in$ found difficult to detect -114-
these direct influences on egg Froduction. Attempts to relate egg froduction to temperature are inconclusive as there is an obvious seasonal variation which may well ke contrclled ky diet. Analysis shows no easily definakle relationship $k \in t w e e n ~ e g g ~ n u m b e r s ~ a n d ~ c h l o r o p h y l l ~ a ~ f e a k s ~$ even when lag factors based on developmental times are introduced. Attempts to discover a reletionship ketween mean brood size and chlorophylla \mathfrak{f} er individual have also proved negative. (Yhe availakility of chlororhylla in the Q.M. affears to ke two orders of magnitude higher than that in Eglwys Nynyda Reservoir reforted ky GEURGE AND EDWARDS (1974).) Undourtedly there is a relationshif x ketween the algae and the daphnid egg production kut it has froved difficult to find a satisfactory relationshif here. The seasonal variation in the chlororhylla concentration is preented in figure 5.1.3(k) with an indication of the sfecific composition of the qredominant components of the algae.

The cladocera provide a sfecial froklem when analysing forulation fluctuations tecause they have continuous reproduction and mortality. This means that kirth rates and death rates cannot be determined ky counting alone. Hover, the egg ratio method of estimating froduction modified from ELSTIER (1954) and used ky EDliONDSON (1960) for rotifers has keen applied ky HALI (1964), WRIGHT (1965) and GEORGE AND EDwARDS (1974) to populations of daphnids and CUMMIINS et al 1959 for $\underset{\text { a }}{ }$ variety of Cladocera. Knowing the number of eggs (E), the duration of development (De) and the initial fopulation size (No) the finite rirth rate (B) can ke calculated from,
(i) $B=\frac{E}{D_{e} N_{0}}$

Fig. 5.1.3(b). (after Steel unpubl.)

From B, the instantaneous kirth rrte (k^{\prime}) can ke calculated where,

$$
\text { (ii) } b^{\prime}=\operatorname{In}(1+B)
$$

Although this only operates rigo rously for a fopulation with a stable age distritution, it can be arplied to populations with an unstable age distribution if there is a short sampling interval.

The coefficient of forulation growth (r^{\prime}), a measure of the actual fopulation chenge, can ke calculsted from sequential estimates of porulation numbers. If No is the initial fofulation size and Nt is the pofulation size after time t, then,
(iii) $N_{t}=N_{o} e^{r^{\prime} t}$
or (iv). $r^{\prime}=\frac{\operatorname{InNt}-\operatorname{InNO}}{t}$
The rime sign is conventionally used to indicate that r^{2} and k^{\prime} have keen calculated from counts (EDMONDSON 1960). Know $_{\wedge} \mathrm{Kl}^{\prime}$ and r^{\prime} the instontaneous death rete con be calculated from,

$$
\text { (v) } d^{\prime}=\mathcal{E}^{\prime}-r^{\prime}
$$

The finite death rate (D) may be calculated from d' the equation;

$$
\text { (vi) } \cdot D=I-e^{-d^{\prime}}
$$

In this study two inderendent population estimates were cvailakle for the colculation of these population parameters (\mathcal{l}, r^{\prime} and d^{\prime}) as counts of the zooplankton were made from koth net hauls and Fatalas samples. The numbers obtained for $\mathbb{E}, \mathrm{r}^{\ddagger}, d^{*}$ and D can be seen in AFpendix 5.1.3

Figure 5.1.3(c) shows the instanteneous kirth rate, instantaneous rate of change and instantaneous death rate during the course of this study for D. hyalina. The values have keen calculated from the net haul counts except
when no information is availakle, when Fatalas data are used. Theoretically both sets of data should give the same values for r^{\prime}, r^{\prime} and d^{\prime} as they are dimensionless numbers. In general they do reveal the same trends kut differ in some details. The values of r^{\prime}, which are calculated from successive fairs of porulation numbers are flotted at the midfoint of eoch period.
values
In a starle fopulation values b^{\prime} should exceed the values of r^{\prime} if the egg production is to account for the observed changes in fofulation size. when the forulation density is low, for example during the winter, the total egg estimations may te unsatisfactory and may account for variation from this pattern. But during this study the values of r^{\prime} frequently exceeded b^{\prime} during most feriods of the year which indicates that the egg production of the kopulation existing in the reservoir does not entirely account for the subseauent chenges.

The winter situation is very similar koth in 1968 and 1969 with consistent k^{\prime} velues, which were slightly higher in 1969 than 1968, and r^{\prime} values generally lower kut occasionally exceeding k^{\prime} values. During the spring of 1968 the changes in fopulation size may be accounted for ky the egg rroduction in the reservoir but this is not so in 1969 when r^{\prime} values far exceed r^{\prime} values. There is evidence from the Fatalas samples during April 1969 that the net houl b' volues are too low but not sufficiently low to account for this discrepancy. The situation becomes very confused in the mid summer when large fofulation peaks in June, July and early August cannot be sustained ky the eggs froduced in the reservoir. The explanation of these discrepancies is either in the poor quality of

the egg estimates or that dilternative sources of young animals exist. The methods used to collect samples were comparakle with other workers (HALL 1964, wRIGHT 1965 and GEURGE AND EDwARDS 1974) who only occasionally had r^{\prime} velues exceeding b^{\prime} values and it would orrear more likely that either efhirpial production end direct imrort from the river would account for the differences. Never-theless, the figures presented cast doukt on the vilidity of using these data for other purposes such as rroduction esimations.

The instantaneous death rate, d, indicates the monality of the population, also on a seasonal basis. Periods of negative mortelity, shown $k \in l o w ~ t h e ~ b a s e ~ l i n e, ~$ indicate where fofulation growth is not supported ky egg production. The negative mortality is not shown to scele. The feriods of highest death rates occur during population creshes, as might be expected, but the real value of this estimate, as a means of calculating finite death rates (D) is lessened if it is accepted that there is some import of animals from other sources. It would ke logical to assume that the death of some of the fopulation occurs continuously however small this may ke, and negative mor tality rates point to a deficiency in the model for use in this particular situation.

Takle 5.1.3(a) shows the mean instantaneous birth rote and fositive rote of increase of pofulation for eech year of the study and compares this with results given by other authors. The mean instantaneous kirth rate is similar to although lower than thet of GEGRGE AND EDwaRDS (1974) which in turn is lower than the value given by wRIGFT (1965). However the maximum birth rate

Table 5.1.3(a)	$\mathrm{b}^{\text {Mean }}$	$\frac{\text { Maximum }}{k^{\prime}}$	$\begin{aligned} & \text { Mean- } \\ & \text { ve } r^{\prime} \end{aligned}$	Maximum + ve r^{\prime}
$\begin{array}{r} \text { Q.M. } 1968 \\ 1969 \end{array}$	$\begin{aligned} & .033 \\ & .030 \end{aligned}$	$\begin{aligned} & .534 \\ & .101 \end{aligned}$	$\begin{aligned} & .133 \\ & .130 \end{aligned}$	$\begin{aligned} & .418 \\ & .420 \end{aligned}$
HALL (19,64)	-	.610	-	. 150
WRIGHT (1965)	- 15	. 590	-	. 140
$\begin{array}{\|ll} \text { GEURGE \& } & 1970 \\ \text { EDWARDS } & 1971 \\ (1974) & \end{array}$.049 .053	$\begin{aligned} & .298 \\ & .230 \end{aligned}$.028 .040	$\begin{array}{r} .132 \\ .124 \end{array}$

Taken from Patalas results.
approaches the higher values given in the literature. The instantaneous rate of change is about threefold that previously reported. If the mean values of b^{\prime} and r^{\prime} are used to satisfy equation (v) and then (vi) on an annual basis the average value for the finite death rate (d^{\prime}) obtained for both years of the study is 0.0952 which is equivalent to a 9.5% loss of individuals to the population each day. This compares with values given by GEORGE AND EDH:IARDS (1974) of between 4.7 and 6.5%.

Several alternative methods are aveilable for cslculating froduction from zocplankton field data. Each has odvantsges snd disadvantages and instead of selecting one method, several hafe keen tried in this study.
A. wINBeRG (1971) examines the froklems asscciated with production estimetions for populations that reproduce continuously and have cohorts that cannot easily ke distinguished. Most arproaches to these porulations are bosed on the finite growth rate of individuals from egg to death. This requires a knowledge of the duration of stages of the life of the individuels and the weight increment of and numbers of these stoges. Using this method, winkerg proposes the following generalised formula for estimating production per unit area or unit volume per unit time. The units of production may be any convenient unit such as dry weight or unit carkon.

$$
\text { (i) Production (F) }=\frac{N_{e} \cdot W_{e}}{D_{e}}+\frac{N_{i} \cdot \Delta w_{i}}{D_{i}}+\ldots . . \frac{N_{n} \cdot \Delta_{m}}{D_{n^{i}}}
$$

where $\mathbb{N}_{e}, \mathbb{N}_{\mathrm{i}} . \ldots \mathbb{N}_{\hat{n}}=$ the number of individuals in stsge
e, i,

$$
\begin{aligned}
\Delta w_{e}, \Delta w_{i}, \ldots . \Delta w_{n}= & \text { the weight increment of that } \\
& \text { stage. } \\
D_{e}, D_{i}, \ldots . D_{n}= & \text { the duration of that stage } \\
& \text { at the field temperature, } \\
& \text { usually in days. }
\end{aligned}
$$

This method of estimating production has keen used ky several authors including FECHEN AND SHUSHKINA (1964),

GREZE AND BALDINa (1964), WINBERG ET AL (1965) and STEEL ET AL (1972). This method involves analysing the population within arbitrary size classes, the durations of which are known, and making these corresponding to the elements of equation (i). The duration rates were determined in the lakoratory study of growth (figure 5.2.2(h).) and the weight increments in the length-weight determinations (section 5.2.1). Population biomasses were estimated as the product of the numerical population analysis and the length-weight determinations indicated in figure 5.2.1.(a).

Results of this estimate of production can be seen in figure 5.1.4($\mathrm{s}_{\text {) }}$) and the dgta are presented as. production of dry weight of D. hyalina in milligrammes per metre square per day. The pattern of production is similar for each year of the study although the levels of production achieved differ. The winter production is low, $25-60 \mathrm{mg} \cdot \mathrm{m}^{-2}$ d ay^{-1}, rut during the spring this rises to the maximum level (1968 662 mg . $m^{-2} \cdot d a y 19,691064 \mathrm{mg} \cdot \mathrm{m}^{-2} \cdot$ day $\cdot 1$) Froduction fells during fune, reaches high levels in July ($641 \mathrm{mg} . \mathrm{m}^{-2}$. day ${ }^{-1}$) and during the $3 u t u m n$ period (up to $300 \mathrm{~m} \cdot \mathrm{~m}^{-2} \cdot \mathrm{day}^{-1}$.

An estimate of annual production is obtained cy integrating the area under the daily production curve and is found to te $50.60 \mathrm{~g} \cdot \mathrm{~m}^{-2} \cdot \mathrm{yr} .^{-1}$. which is equal to akout $4.22 \mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{yr}^{-1}$. (It is only possikle to speculate the m^{3} value as the level of the water is altered at different times of the year. A 12m depth is assumed. Froduction was also estimated for the

Fig. 5.1.4(a).

Efriod until the end of the spring period for each year.

$$
\begin{array}{lll}
1968 \text { to } 10.6 .68 & 24.95 \mathrm{~g} \cdot \mathrm{~m}^{-2} \cdot & 2.08 \mathrm{~g} \cdot \mathrm{~m}^{-3} \\
1969 \text { to } 10.6 .68 & 27.92 \mathrm{~g} \cdot \mathrm{~m}^{-2} \cdot & 2.33 \mathrm{~g} \cdot \mathrm{~m}^{-3}
\end{array}
$$

These results are compared with the results given ky a few other workers in Takle 5.1.4(a)

Meshkova (1952) in Winkerg(1971)*	$\frac{\text { D. Iongispina sevanica }}{\text { eulimnctica }}$	$2.153 \mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{yr} \mathrm{r}^{-1}$
```Fetrovich et al (1961)*```	$\frac{\text { D.galeata }}{\text { mendotae }}$	$5.82 \mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{yr} \mathrm{m}^{-1}$
Wright(1965)*	$\frac{\text { D.galeata }}{\text { mendotae }}$	$41.50 \mathrm{~g} \cdot \mathrm{~m}^{-3} \mathrm{yr} .^{-1}$
Wright (1965)*	D.schodleri	$82.86 \mathrm{~g} \cdot \mathrm{~m} \cdot{ }^{-3 \cdot \mathrm{yr}}{ }^{-1}$
George \& Edwards (1974)	D.hyalina	$11.68 \mathrm{~g} \cdot \mathrm{~m} \cdot{ }^{-3} \cdot \mathrm{yr}^{-1}$

The percentage contrikution
to the daily production "... of eggs, juveniles and adults^is shown in
figure 5.1.4(k). The same pattern can be seen in both years of the study. Egg production accounts for a reletively small proportion of the total production (max. 30\% in August 1968) and is normally highest in the winter (10-20\%) although this level was sustained into late March in 1969. Adult production is high in the winter, normally 30-50\% of the total but occasionally exceeding $80 \%$. The proportion of adult production increases rapidly immediately before and after production maxima. The juvenile production is the largest proportion of the total (40-80\% for most of the time) and accounts for the largest proportion of froduction peaks. During the summer the juvenile production remains high.


Fig. 5.1.4(b).

The daily froduction to kiomass ( $\mathrm{F} / \mathrm{B}$ ) ratios are shown in figure 5.1.4(c). The kiomass in the value calculated from the froduct of the number and weight of each stage sumnicd for all steges. The minimum value ( 0.027 ) occurs in the winter and the maximum value ( 0.224 ) occurs in the mid summer and values are very much the same during the different years of the study. The onnual F/B ratio in the Q.M. for D. hyalina was found to te 38.62 and this is compared with values reported in the literature in table 5.1.4(b).

The annual $\mathrm{F} / \mathrm{B}$ ratios are high compared with other workers but not the highest reported in the for literature, $N$ NNBitRG et al (1972) report an annual $F / B$ ratio in Rybinsk Reservoir of 50:0 GEORGe AND EDNARDS (1974) working with the seme srecies, D. hyalina, in the very shallow Elgws Nynydd reservoir jive daily H/B ratios tetween 0.003 and 0.263 and an annual F/B ratio of 20.8 in 19,70 and 25.9 in 1971.

It can te seen in figure 5.1.4(c) where the seasonal temperature curve is shown, thet there is a strong correlation ketween temperature and $\mathrm{F} / \mathrm{B}$ ratio. This relotionship is examined further in figure 5.1.4(d) where the daily $F / B$ ratio is Flotted against temperature. Although the correlation is strong, no further statistical analysis has keen ferformed on the data beceuse production (F) has alreedy been estimated partly as a function of the field temperature (equation (i) elemert D in this section) and such snalysis becomes statjstically fatuous. The data of SCHINDLER (1972) also show this correlation and although his $F / B$ values are lower tho average temperatures are lower and for the same

Table $5.1 .4(\mathrm{~b})$

ZOOPLANKTON TYPE	ANNUAL P/B	DAILY P/B	£ake	SOURCE
Herbivore		. 105	Mikolajskie	Kajak et al (1972)
"		. 098	Taltowisko	"
"		. 160	Flosek	"
"		. 067	Sniardwy	"
Crustacean	14.334	0.011-0.096	Arctic Lake	Schindler (1972)
Herbivore	12.6		L. Krugloe	Winberg (1972)
"	13.0		L. Krivoe	"
"	22.1		L. Krasnoe	"
"	50.0		Rybinsk Res.	"
"	24.7		L. Drivyati	"
${ }^{17}$	16.3		L. Naroch	"
11	13.9		L. Myastro	"
"	18.4		L. Batorin	"
"	26.2		Kiev Res.	"
D. hyalina	38.622	0.027-0.224	Q.M.	Present Study
"	20.8		Eglwys	George 品 Edwards (1974)
"	25.9		Nynydd	


the relationship between daily pib ratio amo the field temperature


Fig. 5.I. $4(\mathrm{~d})$.

Using the $\mathrm{F} / \mathrm{B}$ values as derived above, the production may ke colculatēd using the directly measured field tiomsss. Results for D. hyalina in the Q.M. cen be seen in figure 511.4(e). The pettern is similar to the calculeted rroduction
(figure 5.1.4(a))kut values obtained are lower, especislly at peak rroduction periods. The peaks occur at the same time and through the winter velues are very similar but in the spring and summer peaks values are acout $50 \%$ less in each year. The annual production estimate ky this method is $45 \%$ of the calculated method and was calculated to $k \in 23.04 \mathrm{~g}$. dry weight $\mathrm{m} . \mathrm{m}^{-2 y i^{-1}}$ for 1968. The first six months production of 19,69 was celculated to $\mathrm{b} \in 15.66 \mathrm{~g} . \mathrm{dry}$ weight. $\mathrm{m}^{-2}$. The difference may ke ascriked to the value of the weight increment used for juvenile daphnids, due to the fact that many of this size class do not reach full size and account for thelargest numbers in the population especially during pofulation maxima.
B. A second method of estimating population production may be kased on a knowledge of the instantoneous growth retes of the individusls in that pofulation knowing the instantaneous growth rate (g.) in a particulэr stage, the growth, or production, of the individual ( $P_{S}$ ) in one day may be colculated from
(ii) Ps $=$ gs. ws.
where ws is the weight of the individual stage. (see equation (iii) section 5.2.2.). Knowing the weight contrikution of the different stages to the total


Fig. 5.1.4(e).
population $k i c m a s s$ and the instontineous growth rate of the different stsege dsily porulation production may ke calculated. In e sense this is similar to the arflication of $\mathrm{F} / \mathrm{B}$ ratics to biomass measurements Lecause $g \cdot B \cdot \equiv \frac{F}{\bar{B}} \cdot \mathrm{~B} \cdot$. The steges recognised in field somples were eggs, animals >1.0mm (1), ketween 1.0 and $1.4 \mathrm{~mm}(2)$, between 1.4 end $2.0 \mathrm{~mm}(3)$ and animols $>2.0 \mathrm{~mm}$. From the kody-length relationshif shown in figure 5.2.1.(a) an aprroximate relative weight hes keen assumed for egg, (1), (2), (3) and (4) of 0.324 : 1.0: 1.5: 5:10 and using this ratio, the numbers in the stages of the porulation counts and the directly messured population Eiomass (B), the weights of these stag.es contributing to the kiomass was calculated from

and similarly for $B_{1}, B_{2}, B_{3}$ and $B_{4}$.
The instantaneous growth rate (g) was taken from the values given in takle 5.2.2(c) and the egg duration rate (1/D) was that shown in takle 5.2.2(h). Instantaneous growth rates were corrected to existing field tenferature relationship shown for e\&g development. Fopulation production was then estimeted from (iv) $P=1 \cdot B_{e}+g_{1} \cdot B_{1}+g_{2} \cdot B_{2}+g_{3} \cdot B_{3}+g_{4} \cdot B_{4} \cdot m g \cdot m-2$.

Daily production rates calculated ky this method can te seen in figure 5.1.4(f). The pattern of results oktained is very similar to those calculated for figure $5.1 .4(a)$ but the values are generally lower except in early September 1968 when a maximum of 422 $\mathrm{mg} \cdot \mathrm{m}^{-2}$ was recorded. During the eerly pert of the $-133-$


[^3]spring peak in 1968, kiomass data were more comflete than numerical estimates of forulation size and 5.1.4(f) prokakly moxe nearly reflects the true situation. The annual production for this method was calculated to ke $28.856 \mathrm{~g} \cdot \mathrm{~m}^{-2}$. which is $57 \%$ of the first method. The similarities ketween figure 5.1.4(f) and (e) are very striking.
C. The third alternative method of calculating production, develofed ky EDMCNDGON (1960) for use with rotifer pofulations from the earlier work of ELSTER (1954) and applied ky a variety of workers to Cladocera, is tased on the concept of turnover time, T, Turnover time in days, defined as the time required for a porulation of steady size to reflace itself in numbers is derived from
\[

$$
\begin{aligned}
\text { (v) } T= & \frac{1}{B} \text { where } B \text { is the finite kirth rate } \\
\text { or(vi) } T^{1}= & \frac{1}{\text { where } D \text { is the finite death rate }} \begin{aligned}
\text { derived in section } 5.1 .3 \text { equation } \\
\text { (vi) used ky GEURGE AND EDNARDS (1974) }
\end{aligned}
\end{aligned}
$$
\]

The percentage turnover per day,
(vii)


T
may $k \in$ applied to the stunding crop kiomass to oktain a figure for the daily production. The disadvantages of using this method for calculating production in this particular situation are the incorporation of the inadequecies of using $r^{\prime}, d^{\prime}$ and $r^{\prime}$ to describe the population dynamics in the Q.M. However, production estimates for production values from equations (v) and (vi) are presented in figure 5.1.4.(g). The results


[^4]do not compare satisfactorily with results presented in figures 5.1.4(e) and (f) although this calculation is also based on the directly measured field kiomass. Production peaks occur in koth spring periods although the amount of production is considerakly less than that measured by the othermethods. The amplitude of the peak in 1968 is considerably higher than other figures kut this is recorded at the kegining of April, the others fall at the end of the month. The annual production for 1968 is calculated to te $12.944 \mathrm{~g} . \mathrm{m}^{-2}$ ( $25.6 \%$ of that calculated $k y$ the first method).

The different methods of calculating production used in this section produce very different results and care must be taken in selecting the set of resulis that reflect the actual situation. The first method used probably over-estimates the actual production as it relies heavily on lakoratory measured biomass estimates. The last method is unsatisfactory because the population parameters derived are insufficient to descrike the situation and also take no account of the time it takes daphnidsto develop from hatçing to reproducing adult. The kest methods to use here are probably those applying a measure of $F / B$, derived from the first method or from g.B. and applied to the measured porulation kiomass. There is, in practice, very little difference ketween these two techniques in the result achieved. In subsequent sections, production estimations, where referred to, will be kaser cn the results shown in figure 5.1.4(f) and the actual values used are presented in Appendix 5.1.4.

Length-weight relationships and the arowth rates of the stages of Diaptomus so. and Cyclons sn. were not determined in this study. However values of these are available in the literature. Growth rates of stages of Cyclons sp. and, or, Diaptomus sp. have keen reported hy several workers including CUmins et al.. (1969), BURGIS (1970), WINBERG (1971) and MUNPO (1974). Lengthweight relationships have been reported hy wnBerg (1971) and KIERY (1969) among others.

Population densities of the copepods in the Q.M. Were estimated by counting and direct measurements of the biomass (section 4.2.2.). The numerical analysis subdivided the diantomid and cyclopoid conepods into adults and juveniles. From these data, together with developmental rates and length-weight data taken from the literature, estimates were made of the daily production of the copepods. Using established relationships for the effect of temperature on developmental rates (MUNRO 1974) and the numerical population analysis, calculated production values for diaptomids and cyclopoids wore derived from equation 5.1.4(i) for the adult and copepodite fraction of the population. Biomass was calculated from the product of the number of the stage and the average weight of the stage. From these values of production and biomass, P/B ratios were established for the different copepod populations and these can be seen in figure 5.1.4(h). Also shown in the figure is a general line for the total copepod production to total copepod biomass ratio on a daily basis. The daily p/B ratios exhibit the same general features of the daphnid line shown in figure 5.1.4(c) excent that the correlation with temperature is not quite so marked in the mid summer. -138-

Fig. 5.1.4(h).

The best value of production of copepods was detcrmined by the product of these daily $P / B$ ratios and the directly measured biomass (see section 5.1.1, figure 5.l.l.(b)) of the copepods and the values obtained are presented in figure 5.l.4(i). The annual production of the copepod fraction of the zooplankton calculated by this method was found to be $5.286 \mathrm{g.m}^{-2}$, which is equal in each year although the production levels during the spring of 1969 are nearly three times as hiọh as spring 196. . The winter levels are low and rise steadily to the spring maximum which is largely produced by the Cyclops sp. populations (Ficure 5.1.4(j) shows the percentace contribution of cyclopoids and diaptomids to the daily prom duction rate. of the copenods). The summer levels of production are high, peaks occurring in June (max. $55 \mathrm{mg} \cdot \mathrm{m}^{-2}$. day ${ }^{-1}$ ) ${ }^{\text {and }}$ July and August ( $\max .71 \mathrm{mg} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ ) when the highest production peak occurs. This peak is again cyclopoicdominated whereas the June and July peaks are produced mainly by Diaptomus sp. The highest production rate occurred in 1969 during the spring when the mainly cyclopoid, populatinn achieved a rate of $172 \mathrm{mg} \cdot \mathrm{m}^{-2}$.day ${ }^{-1}$.

This method of estimating production, although admittedly open to criticism, provides what appears to be a reasonable estimate of the production of the copepod population. The $P / B$ ratios tend to he lower than those for daphnids (figure 5.1. $\mathcal{C}_{( }(\mathrm{c})$ ) but this may well be an underestimate as no account is taken of nappliar production and might be expected for animals with a longer developmental time attaining a smaller final size. One interesting feature of the copepod production is the fact that the cyclopoids dominate the spring and autumn production peaks while the diaptomids are the main producers in the mir. summer.


Fig. 5.1.4(i).

It is well known that the metabolic rate of animals can be affected by a range of environmental factors such as food concentration and quality, temperature, stage and state of development and the body size of the particular species (see section 5.2.3). BlAŽKA (1966) suggests that three types of metakolic regulation may occur in field conditions. Fistly that respiration rates may be lowered in low seston conditions (insufficient food) for food reserves to last. The return to normal or heightened respiration rates may ke delayed for several generations when food becomes sufficient. This response may occur in the change from winter to spring conditions. Secondly he suggests that the respiration rate may vary with the percentage utilisation of protein for different types of diet (quality of diet): His third suggestion is that daphnids show a seasonality of respiration rates and that field animals show a more marked acclimation to temperature than lakoratory cultured animals.

It is difficult to simulate field food conditions, either quality or concentration, in the lakoratory and impossible to simulate the life historiws of previous field generations. For these reasons, an attempt has been made, in this study, to measure oxygen consumption of the zooplankton in as near field conditions as possible to detect gross variations that might occur from laboratory measurements of oxygen consumption. The technique used was the simple closed bottle technique descriced in section 4.3. Other studies of this nature have been attempted by MARSHALL ${ }_{\text {ETAL }}$ (1935). STRASKKRABA (1967)
and CRENER AND DUNCAN (1969). BISHOP (1968) and GANF AND BLAŽKA (1974) measured oxygen consumption ky the kottle method in the lakoratomy. The results of this study are presented here and subsequently compared with laboratory results interpolated into field population estimates. Fart of this work has $b \in e n$ puklished separately with additional material ky DUNCAN et al. (1970).

Figure 5.1.5. (a) shas the seasonal change in oxygen consumption per milligram dry weight per.hour for the macrozooplankton during 1968 and 1969 at approximately fortnightly intervals. The vertical bars represent the range of results obtained. It can be seen that there is a period of intense metabolism occuring in the spring of koth years, and to a lesser extent in the summer. It is not easy to define a causal relationship of this seasonal fluctuation in metabolic rate and several different factors prokakly contrikute to the differences that can ke seen. The spring pericid of high metakolism, that can be seen in both years but which is higher in 1969, coincides with a period of intense parthenogenetic reproduction ky D. hyヨlina resulting in very large standing crops of young, small animals - a category that has a high weight-specific respiratory rate. An indication of the size structure of the population is given $k y$ the mean individual dry weight, estimated ky dividing the field standing crop kiomass by the field standing crop numbers (see section 5.1.1. figure 5.1.1(c)) The field wstimations of respiration rate have keen plotted against the mean


Fig. 5.1.5(a).
-145-
individual dry weight and the results can be. seen in figure 5.1.5(k). The relationship, although mean individual dry weight is a crude index of population structure, is analogous to other respiration rate per unit weight relationships (see fig 5.2.3.(k)). Regression analysis of the results, excluding medsurements made during the spring period of each year, produce a highly correlated relationship when plotted as a doukly logarithmic function.,$~\left(y=5.53 x^{-1.168}, r^{2}=0.8727\right.$ $\mathrm{p}<0.001 \mathrm{n}=22$ ). This relationship has keen used to estimate expected respiration rates knowing the mean individual dry weights. Results are presented in figure 5.1.5.(c) and it is possikle, from this figure, to identify periods when respiration rates ore impressed more than might be expected from size structure attributes of the population. The specific composition of the zooplankton, with high numbers of Cyclops sp in the spring population, may also enhance field estimations of metakolic rate kut not enough even to approach the levels recorded. The summer rate, during July and August 1968, which is marginally higher than the line estimated from mean individual dry weights is most likely to be explained ky the presence of relatively large numbers of Bosmina longirostris and gravid female Diaptomus gracilis. During the winter months, when respiration rates are fairly steady, the zooplankton population structure remoins predominantly cladoceran, with a higher proportion of old individuals than in the spring and late summer (section 5.1.3.)

Food quantity and quality prokakly exert the effects on the metakolic rate in the way that BLAŽKA (1966)


Fig. 5.1.5(b).
PERIODS OF IMPRESSED RESPIRATION RATE IN Q.M.

Fig. 5.1.5(c).
suggests although no direct evidence of this is presented here as measurements of ingestion and assimilation were not made. DUNCAN (1975)a suggests that the filtering rate nay $k \in$ depressed $k \in l o w ~ i t s$ maximum due to the high concentration of detritils present in the water, although the critical limiting concentration suggested ky RIGLER (1961 ( 2 )) is lower than the algal plus detrital kiomass present at the time. During the winter the sest-on has a larger proportion of detrital material present and overoll lower concentrationsthan other periods of the year. This low quality, low quantity food source might, if BLAZKA'S hypothesis is correct, depress the meterolic rate slightly during the winter months and cause 3 heightened priod of metakolism in the spring when food becomes akundant. DUNCAN ET AL (1970) indicate that seston levels can decline dramatically during midsummer and possibly cause corresponding dips in the zooplankton metabolic activity as occurs during late June 1968.

No obvious temferature effect can ke seen on the resfiratory rates of the zooplankton and regression analysis of respiration rate per unit weight against temperature shows no correlation $\in \mathrm{ven}$ at the $20 \%$ level ( $r=-0.1140$ ). However, the impressed rates of respiration that are seen in the spring occur at the time of year when the most rapid rate of rise in temperature occurs. At this time of the year the zooplankton, particularly the cladoceran fraction, may not $k \in f u l l y$ acclimated to the changing temperature in relation to its generation time. In spring this might cause the increase in thelevel of metakolic
actipity that is observed in the field measurements. Figure 5.1.5(d) shows the mean respiration rate per unit weight from the field measurements plotted against the rate of chenge of tempersture of the reservoir. The kroken lineis highly steculative and fitted by eye but appears to demonstrate that with a positive increase in the rate of change of temferature there is a heightened metabclic rate. Increased negetive rates cause a raised, but less easily distinguished, metakolic rate. Many more field measurenents would $k \in$ reauired to test the validaty of this line but non-acclimatisation of the fopulation metaholism might te a large contributory factor in the enhanced metikilic rate found in spring. A corresponding fall in metabolic rate in the autumn is less detectableas the rise in rate is less dramatic and, as with oll these measurements, can be disguised ky other factors such as population structure and food conditions.

Interpolation of lakoratory respiration measurements into field population data gives on equally confused picture. Results obtained from lakoratory experiments, described in section 5.2.3, are presented in figure 5.1.5.(e) together with a comyosite field line dotted taken from the two years of the study. The ${ }_{\wedge}$ liner wht the-open-circtes represents the respiration rate, calculated from the actual lakoratory rates obtsined applied without any temperature correction. This assumes that the field pop̈ulations ere fully acclimated to the field temferiture. As can be seen, this derived line is consistently higher than the field measured of 1969
line except during the spring feriod $\wedge^{\text {when }}$ the measured field line is two to three times higher. Except during


Fig. 5.l.5(d).
CALCULATED RESPIRATION`RATE OF ZOOPLANKTON IN Q.M.

fig. $5.1 .5(\mathrm{e})$
one period in late Sertember, and where the spring lines cross, the respiration retes from these loboratory calculstions are one sind a half to two times the field measurements.

The Qio corrected line, which is calculated on
the assumption that the lakoratory measurements at $20^{\circ} \mathrm{C}$ $i$ were most satsfactory, as the nutritional state may have been better, gives a fair degree of agreement from August to the end of November kut underestimates the respiration rate during the winter and srring and overestimates it during the early summer. Using the $10^{\circ} \mathrm{C}$ line, $Q_{10}$ corrected, the same pattern is observed exceft that the corresp ondence occurs with the winter respiration rates. As might be expected, the Qio corrected line shows a direct correlation with the observed field temferature.

Neither the fully acclimsted likoratory line or the $Q_{10}$ corrected lakoratory lines give a satisfactory approximation to the field measured lines exceft at occasional times of the year. The explanation of this difference is otscure.

The work of CREMER AND DUNCAN (1969) provides the only directly comfarakle study of field metabdic rate measurements in zooplankton populations. Their results appear to show a temperature-metabolic relationshif during the summer but not during the winter or sring where the calculated values are twice the messured rate. They also look for explanations other then a simple temperature function and explain discrenconcies in terms of diet and population structure for spring ond uutumn. The seosonal puttern they show is slightly different
from that of the present study kut differences may ke due to differences of sampling interval and the differences found in zooplunkton populations found from year to year. The values for the metibolic rutes they show ore in the same order of megnitude as results found in this study. BISHOP (1968) and GANF AND BLAZ゙KA (1974) rerert:a. temperature derendent metabolic rel tionshif with thej.r experiments but these were lakoratory based and involved rapid acclimation to the new temper tures.

The conclusions to te drewn from the field results are tentative nd much more field and lakoryory work needs to be undert:ken to verify these. Results obteined are obviously different from laboratory me:surements interfolated into field forulation ate. The seasonal pattern of events appeurs to be s f follows: during the winter and summer, when the ambient temper ture is stakle for longish feriods, the zooplankton metebolic rates are tempersture sdafted. These may be depressed during the winter by foor quality or insufficient food rescurces. During the sfring the met:bolic, rate is raised ky two to three times its expected level cused ky a corkination of the following factors: (a) a rarid rise in the rute of temperoture chonge leeding to unacclimatised animal fopulations (k) improvement in the quality ans quantity of the food and (c) a chonge in the weight-sfecific metabolic rate caused ky chinges in the populatior structure. Summer levels are norqully enhenced by the presence of significont numbers of other, smaller, sfecies such as Diartomus grecilis and Bosmina longirostris. The sutumn rates are raised, but this is less obvious than the spring chunges, by the rujid fell in environmentil temfer ture which leuds to unscclimetised foruletions.
5.1.6. FTELD ASSIMILETIOR

It is widely accepted that assimilation is equal to the sum of the production and respiration of an individual animal (MACFADYEN 1963 and PETRUSEwICZ AND MACFADYEN 1970) and that this may he anplicd to ponulations (MACFADYFN 1963 and EDMONDGON AND WINBERG 1971), thus
(i) $A=P+R$ 。

For this study the daily production rate for the zonplankton was estimated from the sum of the daily production rates of the daphnids and copepocs describod in section 5.1.4 calculated from the product of the respective $P / B$ ratio and standing crop biomass.
(ii) $P_{\text {total }}=P_{\text {daphnids }}+E_{\text {conepods }}{ }^{\circ}$

The population respiration was calculated from the product of the hourly fiela respixation rate (section 5.1.5) and the standing crop tiomass multipiicd up for a daily value.
(iii) $R_{\text {raily }}=$ R.B.2A.

No account has heen taken of any possible diurnal fluctuation of respiration rate. At sample perinds where no respiration rate was measured, values have been estimated from the adja cent values and the early period of 106. from measured 1969 values at the same period and appropriate temperature. All results excent where otherwise stated are on a daily basis. In this section different elements of the study are compared and a common unit is used and that is taken to be unit carbon per metre square ( $\mathrm{g} . \mathrm{C} . \mathrm{m}^{-2}$ ) following the practice of STEEL ET AL (1972). This approach has ben ueed by cther workers studying the zooplankton (GEORGE AND EDWRRDS 1974) but is more frequently found in algalogical studies (e.g. STEEL 1972). To
facilitate this approach it has been assumed that:
$g C=$ o.drymeight.0.44. (as a measure of $P$ ) $g C=90_{2} .0 .375\left(\right.$ assuming an $\left.R . Q_{0}=1.0\right) .\binom{$ as a measure of $R}{$ assumg carbohydrate metabolism } G.C $=9$ chloronhyll a. 30.

The daily assimilation rate of the zoonlankton population for the course of the study is shown in figure 5.1.6(a) and this is Aravn on a logarithmic scale. The figure also shows the standing cron of the algal population. The contributions of daphnir and copepod production and the respiration of the population to the total assimilation are distincuished. It can be seen that the standing cron of algal carbon is usually an oxcer of magnitude higher than the zoonlankton assimilation excont towards the end of the spring algal peak when assimilation aprocaches the total available algal carbon (in 1969 this is exceeded). The zooplankton assimilation poaks can be seen to follow the algal peaks and tend to be proportional to the available algae. STEEL ET AL (1972) draw attention to the fact that assimilation efficiences of the cladocera are normally less than 50\% (RICHMAN 1958) and therefore the actual carbon demand may well he more than twice the assimilation levels shown here. At certain times of the year, particularlv during the winter, detrital carbon may provide ancther significant source of food and this is found in quantities between 4.0 and $600 \mathrm{mg} \mathrm{Com}{ }^{-3}$ (STERL pers. comm.). Hewever, there is evicence that although this provides a food source at certain times of the year it is likely to provide a poor quality diet. It is more rewarding to relate zooplankton assimilation to other daily "gains" and "losses" of carbon in the system as attempted hy sxeel ET AL. (1972) - see paper attached in Anreneix 5.3 .- but as the algal primary


Fig. 5,1,6(a).
production rates and much other necessarv information were not determined as part of this study it has been deemed inanpropriate here.

The figure also revaals the extent of the ranhniri contrihution to the total production rate which is the main component of the zoonlankton and the tacit assumption is that the zooplankton is herbivorous. This is certainly not true of all adult copepods; some adult Cyclons spo. being carnivorous but giaptomus copepodites and adults are phytoplankton feeders (KIPEY 1969) and there is evirence that Daphnia spn. are more omnivorous than the literature shoras (MADJN-HUELIEY AND DUNCAN, 1976).

The respiration component of the zooplankton assimilation varies at different times of the year, being high in the winter and during spring peaks and low in the summer. The total amount of energy needed for resniratory maintenance occurs just before and during the spring peaks of zooplankton production. The ratio of production to assimilation ( $K_{2}$ ) more effectively describes this situation where

$$
\text { (iv) } K_{2}=\frac{\underline{p}}{\bar{n}}=\frac{P}{p+\Gamma}
$$

which is analagous to the $r_{2}$ values described in section 5.2.4. The daily $K_{2}$ values are shown in figure $5.1 .6(k)$ together with the existing field terperature. There is a very strong correlation between $r_{2}$ and temperature but this miaht be expected as production and respiration to some degree have been shown to be functions of temperature (see sections 5.1.4 and 5.1.5). What is internsting is that for over half the year the respiration element of the assimilation exceeds the
RATIO OF PRODUCTION TO ASSIMLLATION ( $\mathrm{K}_{2}$ ) FOR FIELD ZOOPLANKTON POPULATIONS.Q.M.

fig. 5.1.6.(b)

```
pronuction ance most of the svailable energy is usen for
maintenance of the populstion although this neriod includes the
hirhost noriod of nroduction. The heirhtened snring and
autumn metabolism creates a hioher domand on the available carbon than the summer levels. \(P_{2}\) values will be affecter not onlv by temnerature but by quality and quantity of available food as well as the specific composition of the plankton but it must he repeated that these \({ }_{2}\) values demenstrate a remarkable sensitivity to even relatively small chanres jen fielc temporature.
```


## Footncte

The assimilation values for zoonlankton riven above are very similar to the values shom by STREL FT NL。 (1972) but the values used to satisfy equation (i) wexe obtained by rifferent methods. The laboratory respiration estimates probably uncerestimate this demand while the calculated rroduction (as in section 5.1 .4, method $A$, probahly overestimates this fraction.

Patalas samples were taken from Fetruary 1968 until the end of the study. These samples were used principally to check and calibrate the net sampling procedure as descriked in section 4.1.2. They were also used to provide the five litre sampling unit for the field respiration measurements (section 4.3.1). However they also provide a kody of information on the seasonal depth distribution of the zooplankton and as this has not $b \in e n$ recorded in the literature before, these data have keen presented here. Most depth-distribution descriptionsheve keen limited to s short period of time such as one or two days and describe the diurnal vertical migrations of the zooplankton (see HUTCHINSON 19,67 for review and ANGOLD 1968 for work on $\mathbb{M} . W . B$. reservoirs).

Population fluctuationsfrom Fatalas samples for the Q.M. are shown in figure 5.1.7.(a) for D. hyalina field size classes as kite diagrams. The figures presented represent an averaged value for each sampling date in a 25 L sample. It can te clearly seen in the figure how peak egg numbers precede peak numbers in the immature size classes except before the June and July peak of 1968. During these peak periods, the egg numbers are not sufficient to account for the subsequent population changes and this may be due either to unsatisfactory egg estimates (insufficient females with eggs counted) or to another source of immature animals. Suksequent work of DUNCAN (pers. comm.) suggests that ephippial hatching may account for this difference in numbers tut import of juveniles from the



Fig. 5.1.7(a).
river may also contribute part of the population. The winter numbers of Novemker 1968 to March 1969 sh ow that egg and immature stage numkers are very similar which suggests that the population structure remains fairly stakle during this period. A more sophisticated comprison may be made ky comparing the relstionship between numbers and duration rates for eggs and immature stages and this confirms the sibove observation, Ne/De : Nimm/Dimm. The rafid fluctuations of the population during the spring of 1968 is probakly an artefact of close interval sampling and does not occur in 1969 when samples were taken at weekly intervals. In other respects the samples showed the same characteristics as the net samples (see section 5.1.2.).

Figure 5.1.7.(b) shows Patslas samples for the other principal zooplankton as averaged 25L samples. This figure shows that Bosmina sp. is found intermittently throughout the year and reaches a population maximum in late June and July. Cyclopoid copepods occur mainly in the spring reaching peak numbers in late April and May of koth years studied. Diaptomid copepods follow the cyclopoids and peak in June and July with a second peak in late August. winter populations of Cyclops sp and Diaptomus sp. are consistently low.

The time depth distritution of the zooplankton is shown in figures 5.1.7.(c), (d), (e), (f), and (g),. As samples were normally taken during the morning no observations are possible akout diurnal depth fluctuations although these might be considerakle ( $M^{C}$ CLAREN 1963). It is very difficult to determine a simple pattern of time-depth distrikution kut it seems


Fig. 5.1.7(b).


QUEEN MARY RESERVOIR 1969
TIME-DEPTH DISTRIBUTION OF DAPHNIA POPULATION (NOS.I5L PATALAS SAMPLE)


LEGEND	
	0-9
\%	10-24
$\square$	25.49
)	50-99
5	100-249
Kix	250-499
4	over 500

Fig. 5.1.7(c),


Fig. 5.1.7(d).


Fig, 5,1.7(e).


Fig. 5.l.7(f).


Fig. 5.1.7(g).
likely that the distributions seen are the result of three different factors. The clessical description of vertical migration includes a down and evening rise for the zooplankton and a gentle sinking during the night and day. As samples were taken in the morning after dawn, they are likely to ke in the sinking portion of the migration. . H\&RRIS (1953) suggests that zooplankton vertical migrations are an adaptive response to $k e$ in the regions of most satisfactory food conditions. If this simple view is accepted then the zooplankton will predominate in the deeper waters during the winter when detrital carkon is likely to $k \in \operatorname{most}$ important and the situation is reversed in other parts of the year when the diet is mainly algal and oftimum conditions occur in the upper few metres of the water. A second fector that might $\exists f f e c t$ distrikution might ke thermal stratification which does occur trensiently during spring, summer and autumn and may be responsikle for localised concentrations of zooflankton during these periods. The third factor is the extent of the duirnal migration itself, which may ke masked ky the first two factors mentioned. There is experimental evidence (see HUTCHINSCN 1967) that vertical migration in dophnids is controlled ky different wavelengths of light kut the size of the animals might also affect the distance of the migration and there are indications that sexual differences in copepods may contrikute behavioural differences (hart and aldanson, 1976). angold (1968) examined the duirnal distrikution of zooplankton in an M.W.B. reservoir (King George VI, Staines) during one 48 hour period kut her results are difficult to generalise from as they covered the period of an

Figure 5.1.7.(c) shows the distrikution of D. hyalina to $k \in f$ foirly uniform throughout the depths except that winter concentrations, when they occur, tend to be in the mid and lower waters (5 to 10.5 m ) whereas spring and summer concentrations are normally seen akove five metres. This mey best ke seen as a food related response and the situbtion is the same for both years of the study. Egg distrikution, which is reloted to the distribution of (normally) large grovid females, show eggs to $k e$ concentrated between three and seven metres during the spring ond sutumn egg paks ond kelow five metres during the winter; at other times of the year they are fairly evenly distributed (figure 5.1.7.(d).

The cyclopoid copepods (figure 5.1.7(e) show a confusing distribution. Winter concentrations are found towards the bottom and at other times of the year in the middle water, three to seven metres, except during May 1968 when the biggest concentritions were at nine metres. During the sutumn the cyclopoid populatinns are concentrsted near the surface. The cyclopoid distribution is probakly a predominantly food related resfonse. The diaptomids aggreqjete nesr the bottom during the winter end towards the surfoce during peak feriods (June/July and late August). This cen be seen in figure 5.1.7.(f).

Bosmina sx. (figure 5.1.7.(g) appeared eorlitr in 1969, than 1968 and during the spring of 1969 were found mainly kelow three metres with the biggest concentrations at the kottom. In 19,68 the animels were
found mainly kelow three metres with biggest concentrations $k \in l o w$ five, metres except thet immediately kefore the population croshed the greatest densities were found nesr the surfsce.
5.1.8. \&UELN ELIZABETH II RESERVOIR

The sampling programme for the Q.E.II. was restricted to taking direct kiomass measurements ky vertical net hauls at approximately fortnightly intervals. During this fart of the study KIBBY (1969) took samples at weekly intervals to examine the Diartomus gracilis populations and he has also reported mean numbers of Bosmina sp., Darhnia sp and Cyclofs sp in addition to the fluctuations in the celanoid copepod population. Three siecies of Dachnia coexist in the Q.E.II although not throughout the full season, D. hyalina, D. Fulex and D. magne. D. magna is normally associated with shallower kodies of water and its appearance in the Q.E.II is curious and prokakly related to the management of the reservoir.

The standing crop of the zooplankton is seen in figure 5.1.8(a) for the course of the study. The same pattern for the daphnids, as was seen for the Q.M., is exhibited with the highest crofs occurring in the spring (mid May 1968 and early June 1969) when the crops reached $8.471 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ dry weight in 1968 and $6.515 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ dry weight in 1969. These velues are acout twice those recorded in the Q.M. kut in fect the largest crofs were recorded in different years. The winter levels were low, between $0.135 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ and $2.234 \mathrm{~g} \cdot \mathrm{~m}^{-2} 1967 / 68$ and considerakly lower in 1968/69. The spring feak in 1969 occurs later in the year and this moy ke related to the fact that the temperature rise occurred later in this year. The summer levels remein fairly high and there are indications that there was on autumnal feak in late September and Octoker although the samrling frequency

Fig. 5.1.8(a).
was poor at this time making observations speculative. The average daily standing crop during 1968 was $2.365 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ which is equal to $0.138 \mathrm{~g} \cdot \mathrm{~m}^{-3}$ (comparakle results for $Q . M$. are $0.645 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ and $0.0537 \mathrm{~g} \cdot \mathrm{~m}^{-3}$ ).

The standing crop of the corepods during the course of the study can also te seen in figure 5.1.8(a) and here not only the levels kut 3 so the measured volues of the coperod standing crop are similar in the Q.M. Peaks occur in koth string periods slightly before the main daphnid peaks and the maximum standing crop of each year occurred at this time $\left(1.301 \mathrm{~g} \cdot \mathrm{~m}^{-2} 19683.275 \mathrm{~g} \cdot \mathrm{~m}^{-2}\right.$ 1969). The autumn peak seen in the Q.M. is not revealed here, again frobably kecause of the infrequent sampling at this time. The average daily standing crop during 1968 was $0.299 \mathrm{~g} \cdot \mathrm{~m}^{-2}\left(0.018 \mathrm{~g} \cdot \mathrm{~m} \cdot{ }^{3}\right.$ ), the corresponding figures for the Q.M. are $0.253 \mathrm{g.m}{ }^{2}\left(0.021 \mathrm{~g} . \mathrm{m}^{-3}\right.$ )

It is not possikle to estimete production directly in the Q.E.II as no data are aveilakle from porulation counts to satisfy the equations to calculate this. However an approximate estimste may be obtained by using the $F / B$ values obtained for the q.M. (section 5.1.4) and applying these to the population standing crop of daphnids. This suffers from the obvious criticism thet three different species of daphnids were present and each of these may have different growth characteristics and this is especially true of D. magna which is a much larger species (sfecimens of over 6 mm in length carrying more than 400 eggs were caught in samples during March 1968). But the F/B values ortained for the Q.M. fall well within the range given ky other workers
(see table 5.1.4(b)) and SChINDLER (1972) finds similar $P / B$ values for the same temerature with D. magna - Therefore an estimate of production using this method is presented in firure 5.1.8(k) with reservations about the values presented. The $F / B$ values used have keen applied on the kasis of the same field temperoture at the same period of the year.

The daily froduction rates for the Q.E.II are higher than the $2 . M$. as would $k \in$ expected as the stending crop is larger. The maximum rate, $0.780 \mathrm{~g} \cdot \mathrm{~m}^{-2}$. day ${ }^{-1}$ occurs in late May 1968 ond the levels remain consistently high through the summer although large fluctuations do occur. The lowest levels of daily production are reconded in March $1969,0.002$ g.m. ${ }^{-2}$. day $\because . .1$ and during this pre-sfring period the production rate was consistently low kut rises steadily to the high val ues in late June. The annual production of the Q.E.II was calculated to be $82.185 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ which is equivalent to $4.834 \mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{yr} .^{.1}$ The annual $\mathrm{P} / \mathrm{B}$ rotio for the reservoir may therefore be calculated as 34.75 which is high but in the same order of magnitude as other workers. The spring production peak in 19,69 came more than a month after the 1968 pear, the production up until the same time in early July keing $35.33 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ in 1969 and $48.34 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ in the corresfonding period in 1968. This may te due principally to two factors. Firstly the spring rise in temperature of the water body was delayed ky cold weather (see tempersture lines in figure 3.1. ( $f$ ) and secondly that the overwintering populetion is very much smaller in 1959 thus not giving the fopulation the good growing start it


Fig. 5.1.8(b).
had in 1968.
The daily production rates for the coperod porulations in the Q.E.II are shown in figure 5.1.8(c). These olso have keen obtained by multiplying the $\mp / B$ ratio obtained in the Q.M. for the copepod populations ky the stending crof. The criticisms of the method are the same as for its rise in the Q.M. in addition to the (unknown) differencer in population structure prevailing in the Q.E.II. However, examination of the data of KIBBY (1969) shows that the population structure of the copepod populations ia very similar in both reservoirs and this treatment frovides at least an approximate estimate of copepod rroduction.

The values for daily production fall within the range 0.39 to 210.65 mg dry weight. $\mathrm{m}^{-2}$. day which is very similar to the Q.M. The maximum value was achieved in May 1969 rut a comparable value may well have teen reached in May 1968 when sampling was less frequent the rates of production are high in the spring and autumn but the winter levels fall extremely low in both years of the study. The annual production of copepods in the Q.E.II is calculated to ke $6.334 \mathrm{~g} . \mathrm{m}^{-2}$. for 1968 which is the equivalent to $0.373 \mathrm{~g} \cdot \mathrm{~m}^{-2}$. The metre square column value is higher than the Q.M. ( $5.286 \mathrm{~g} . \mathrm{m}^{-2}$ ? ) tut the metre cuke value is lower (Q.M. $=0.440 \mathrm{~g} \cdot \mathrm{~m}^{-3}$.). The total froduction until the end of June in 1969 was higher than 1968 ( 4.553 g.m. ${ }^{-2}$ and $6.488 \mathrm{~g} \cdot \mathrm{~m}^{-2}$ resfectively) but, as has been indicated, these values may be distorted by inadequato sampling.

Fig. 5.1.8(c).

Figure 5.1.8(d) shows the annual veriation in the algal stending crop in terms of chlorophyll a as well as an indication of the succession of algal sfecies 'throughout the study. It is interesting to note that although the zooplankton standing crop and roduction is higher in the Q.E.II than the Q.M. the algel standing crop is lower in the 0. . II then the 6.M.

Fig. 5.1.8(d). (after Steel unpubl.)

Length measurements frovide the most comronly used indication of body size in the Cladocera (WINBERG, 1971 RICHMAN 1958, LE SEUR 1960 , EDMONDSON 1955, RIEROWSKI AND IVANOVA unfukl., BURNS 1968). A length-weight relationship may be used to convert length measurements to weight measurements and the weight is most conveniently expressed as dry weight. This relationship may be measured empirically or ky assuming a mathematical relationshif and fitting the results obtained to this equation ky regression analysis.

In this study two methods were used to determine the length-weight relationship for D. hyalina. A Cahn balance was used to obtain individual dry weights and an Oertling kalance to octain mean dry weights for different size classes of animels. Results oktained are presented in figure 5.2.1(a) plotted in an urithmetic fashion and apfroximate to afower equation.

$$
W=a L^{b}
$$

This becowes more apfarent when redrawn on doukle logarithmic fafer where straight line is seen (fig. 5.2.1.(b). A regression analysis, using the method of least squares, produces the following equations for all the animals measured.

Oertling means
Cahn individual


A closer examination of fig. 5.2.1.(a) shows that it may be more satisfactory to analyse the curve intu more sxecific areas which represent stages of develofment of the animal either in size or reproductive terms. Figure 5.2.1.(c) presents the results of regression analyses breaking down the curve in different ways.

Figure 5.2.1(a) shows there to be a kreak in the curv. at 0.9 mm and regression analysis for animals above and below this length shows that the value of "b" is different. -182-

## LENGTH-WEIGHT RELATICNSHIP DAFHNIA BYALINA



Fig. 5.2.1(a).


Fig, 5.2.1(b).


Fig, 5,2,1(c).

For animals less than 0.9 mm length $\mathrm{b}=3$ which suggests that growth is geometric, i.e. there is a constant relationshif ketween linear dimensi ons during growth. The full regressicn equation is

$$
<0.9 \mathrm{~mm} W=16.29 \mathrm{I}^{3.01}
$$

For animuls above $0.9 \mathrm{~mm} \mathrm{~b} \simeq 3$, indicating that the relationshif is nearly geometric.

$$
>0.9 \mathrm{~mm} W=11.74 \mathrm{~L}^{2.29}
$$

The reason for this change in growth pattern is discussed more fully later in this section but the kody length 0.9 mm Ls significant in the growth of D. hyalina as this is the normal size before the primiparous instar and the value of "b" may ke affected by the onset of sezual maturity.

A difference is also seen with animals seen to be in a reproductive state with ovaries, eggs or embryos.

Reproductive animals $>0.9 \mathrm{~mm} W=11.70 L^{2.73}$
This figure shows that $t$ is approsching 3 and the conclusion is that $\mathfrak{n}$ nimals with eggs etc., aprroach the more geometric form of growth.

During the course of this stumy the mean dry egg weight for D. hyalina was determined as $3.24 \mu \mathrm{~g}$ fer egg. Also the mean dry weight of the cast ephipfium was found to be $20 \mu \mathrm{~g}$ fer ephippium.

The resulta obtained for length-weight relationships are consistent with, and in the range obtained by,other workers. The results obtained for all animals are presented with those of cther workers for different species in figure 5.2.1(d) and the numerical values of their regression lines are presented in takle 5.2.1.(a)


Fig. 5.2.1(d).

Takle 5.2.1.(a)

SFecies	$W \mathrm{G}=\mathrm{aL}{ }^{\mathrm{E}}(\mathrm{mm})$	Author	Comment
Daphnia sty.	$W=5.2 L^{3.00}$	Pechen (1965)	
Bosmina sF.	$W=12.4 L^{2.20}$	Pechen (1965)	
Daphnia pulex	$W=5.4 L^{3.45}$	Richman(1958)	Recalculated
Daphnia pulex	$W=5.5 L^{2.43}$	LeSeur (1960)	Recalculated
Daphnia spF.	$W=11.6 L^{2.61}$	Burns (1964)	
$\begin{aligned} & \text { Simocephalus } \\ & \text { vetulus } \end{aligned}$	$W=15.0 L^{2.33}$	Klekowski and Ivanova(unput. $)$	

Variations of "b" values from 2.2 to 3.45 are found within these results. The values of $\mathrm{b}=3.22$ for the Oertling means and $k=2.52$ for the Cahn individusl messurements fill well within this runge.

The results presented here, with those of the other workers, assume that there is a mathematical relationship between weight and length. An inherent donger in this procedure is that the wrong mathematical relationship may be assumed and as direct measurement of the weight of most Cladocera is not easy, small errors in weight determination may lead to large discrepancies when interconverting for values such as calorific determinaticns.

Early workers assumed there to be a direct relationship ketween weight and the cuke of the body length when interfreting netakolic experiments with Cladocera (OBRESHKOVE 1930, OBRESHKOVE \& FRAZER (1940). These suthors use the following expression

$$
\begin{equation*}
W=a \quad \mathrm{~L} 3 \tag{i}
\end{equation*}
$$

WINBERG(1971) draws attention to the fact that the implication of this equation is that geometie proportions of the cody do not change throughout the growth of the animal if $b=3$.
$W=a I^{r}$
and concludes that "if the kody form changes during growth of the simal so that the ratio of linear measurement to weight decreases then $k\rangle 3$ or in the opfosite case $b\langle 3 . "$

Most modern workers use the assumptions of WINBERG (1971) and assume that there is a straight line relationship for the equation
(iii) $\log _{10} W=\log _{10} L+\log _{10^{2}}$ which is the same as equation (ii). Equation (i) is a sfecial case of this.

Some other workers make their data fit other equations such as
(iv) $\quad \mathrm{W}=\mathrm{kL}-\mathrm{a} \quad$ (Richman 1958, Le Seur 1960 )
(v) $\quad \log _{10} W=b L+a$
but these only seem to fit when data are either insufficient or discontinuous.

SePeral studies involving the measurement of the linear dimensions of Cladocera have been reported, and those working with Daphnia pulex and Daphmia magna (ANDERSON 1932, ANDERSON et al 1937). indicate that linear dimensions appear to ke constant. KONSTANTINOVA (1961) measured length (1), height (h) and thickness ( $t$ ) for a smsill range of immature animals (up to $l=1.32 \mathrm{~mm}$ ) and found that the ratios of $l: t: h$ were constant.

Relationshifs are further complicated, however, by the fact that cyclomorthosis is common in oome species of Cladocera and the usefulness of total length measurement may be impaired under environmental or genetic conditions which cause variation in helmet length (BROOKS 1946, 1957. GREEN 1954, HRBAC゙CK 1962,).

In the present study, animals from culture experiments were measured for length (1), body length (sg) and viath (b) to see of the relationships were geometric. -189

Results for all animals (D.hyalina) are fresented in figures 5.2.1.(e), (f) and (g) and are summarised in table 5.2.1.(b).

Tukle 5.2.1.(b)

Relationship	Regression equation	Standard deviation (Sres)	Correlation   coefficient(r)
length / width	$1=.735 b-.153$	0.0707	$0.987 \mathrm{p}<0.001$
length body/length	$1=.8445 \mathrm{~g}-.059$	0.0361	$0.997 \mathrm{x}<0.001$
codr length/width	$S g=.880 y-.081$	0.0894	$0.980 \mathrm{~F}<0.001$

The results show a very high correlation coefficient and a very low standard deviation and the relationship between linear dimensions appears to be geometric throughout the life of the animals.

Results for the length-width relationship for individual animals are presented in figure 5.2.1.(h) and these show very little difference from the general figures.

A further assumftion implied when assuming a lengthweight relationship corresfonding to equation (ii) is that the density of the animal remains constant throughout the life cycle of the animal (This was noted ky BRODY(1945) who worked with demestic animals). GLIWICZ (1968) has pointed out that, in practice, the density of the animal may vary throughout its life although the linear proportion remain constant, He observed that the fat content of D. cucculata, D. longispina and other Cladocera varies seasonally and that it might ke affected ky food conditions prevailing. Observations of the condition of individuals during this study indicate that oil droplets are most often present in newly released juveniles and ovigerous adults and this could affect the density at these stages. The presence of eggs and ovaries could also affect the density of the animals and this may explain the "kinks" in the curves.


Fig. 5.2.1(e).


Fig. 5.2.1(f).


Fig. 5.2.1(g).


Fig. 5.2.1(h).
5.2.2. GROWTH OF DAFFiNIA IN CULIURE

Culture of D. hyolina in the lakoratory at $10^{\circ} \mathrm{C}$ provided information for developmental rates at different stages of the life history, growth chorecteristics and a source of animals for lakoratory respiration studies. This study followed similur work $6 y$ DUlvCan AND CREMER (unpubl.) at $20^{\circ} \mathrm{C}$ and some of their unpublished results are presented here for comparison.

## Increase in length

Daphnids, like other Crustacea, grow in discrete stages or instars. The end of each instar is marked ky the animal shedding its carapace and rapidly increasing in size before the new carapace becomes toughened.

Results of observations of the growth of D. hyolina as body length messurements are presented in figure 5.2.2(a) for all animals cultured except line XIII. (Line XIII is discussed sepurately). These results show thet the length of the unimil normally increases it each instar but th. $t$ the rate of increase in length decreases is the animel gets older. Each instar is usuolly characterised $k y$ an inmedi.ite increase to the maximum length for the instar followed ky s slight contraction to the final length for the instar. The increase in length in the pre-adult instur is $20-40 \%$ and this decreases to acout 5 to $10 \% \mathrm{ky}$ the sixth instar and the increase in length per instar is fairly constant to deoth. Variation in length for the some instars in different animals of the same line may be consideruble and the variation tends to ke much greater in the sdult insturs. This sequence of events appeurs to be normul for daphnids and compures with results reported by HALL (1964) and CREMER AND DUNCAN (1969).

Fig. 5.2.2(a).


A summary of the medsurements for all animols except line XIII is presented in takle 5.2.2(3). These figures are meins for the unipuls (meun length, mean age etc.) for each instar until the end of the experiment.

Incre"se in weight.
A more useful measure of the growth is the increuse in terms of weight. (see WINBeRG 1971 and Ferruserinc AND NACFADYEN 1970). Eength messurements were converted to weight using the relationships derived in section 5.2.1. The length-weight relationships used for this conversion were:

$$
\begin{aligned}
& \text { for animals }<0.9 \mathrm{~mm}, \quad W=16.29 \mathrm{~L}^{3.01} \mathrm{~g} \\
& \text { for inimals }>0.9 \mathrm{~mm}, \quad W=11.74 \mathrm{~L}^{2.29} \mathrm{~g}
\end{aligned}
$$

The results ure presented in table 5.2.2(k) and graphicully in figure 5.2.2(k).

The line in figure 5.2.2(b) was fitted by inspection and this compares with examples given in EETRUNEwICZ AND NACFADYEN (1970) for other animals. The size categories recognised in field clusses are also shown. The figures obtained may $k \in$ used to calculate the finite growth rate of the unimals (G) using the expression.

$$
G=\frac{W_{2}-W_{1}}{t_{2}-t_{1}} \quad=\frac{W}{t} \cdot \text { g/ind./day }
$$

The growth rate per unit weight may be culculated ky dividing the finite growth rute (G) by the average weight of the individual where

$$
G=\frac{W}{t \bar{W}}
$$

Tukle 5.2.2(k)

Instar	!	Age (hrs)	Length   (mm)	$\mathrm{weight}_{(\mathrm{g})}$
Egg	;	-167	0.43	3.24
1		0	0.61	3.68
2	!	86	0.76	6.97
3		169	0.99	15.81
4		265	1.34	22.95
5	!	373	1.64	36.34
6		527	1.68	48.49
17		646	1.95	54.18
- 8		769	2.11	64.91
- 9		962	2.12	65.60
10	;	1148	2.15	67.75
- 11	'	1422	2.22	72.93
12	;	1533	2.21	72.18



A more useful measure of growth is defined by the instantaneous growth rute, $g$, of the animals whare:

$$
g=\frac{\operatorname{In} W t_{2}-\operatorname{In} w t_{1}}{t_{2}-t_{1}}
$$

which represents the daily growth us a percentuge of the previous days kody weight. Results cf the colculation of $g$ are presented in tikle 5.2.2(c).

Takle 5.2.2(c)

Instar	$\begin{aligned} & \text { Weight } \\ & (\mu \mathrm{g}) \end{aligned}$	Daily   Instantanecus   growth rate,g.		$\begin{aligned} & \text { Field size } \\ & \text { class (mm) } \end{aligned}$	
Egg	3.24	diily	hourly	during	
1	3.68	. 0355	. 0075		
2	6.97	. 1600	. 0067	.1177	0.99
3	15.81	. 1575	. 0065		
4	22.95	. 1022	. 0046	. 1022	1.00-1.39
5	36.34	. 0715	. 0030		
6	48.49	. 0581	. 0024	. 0504	1.40-1.99
7	54.18	. 0216	. 0009		
8	64.91	. 0221	. 0009		
9	65.60	. 0014	. 0001		
10	67.75	. 0028	. 0001	. 0716	22.00
11	72.93	. 0203	. 0008		
12	72.18	-	-		

These results have $b \in e n$ cilculated from u smouthed semilogarithmic plot of the data which prokakly gives a better estimate as the result for instar 3 appears to be too high.

These figures ore used in section 5.1.4 for the calculation of the production in the field populations. -199-

Farthenogenetic development is normal in the Cladecera and most of the animals used in this study developed their first ovary during the fourth instar ( $N=13$ ), kut some during the fifth or sixth instar. This variability appears to te ncrmal and has been recorded by other workers including BANTA ETAL (1939), ANDERSON (1932), HRBACKOVA-K(1966) and MURUGAN AND SIVARAAKRIGHINA (1973). The first instar in which the ovary develops is known as the primiparous instar and the cvary appears early in, and develops during the rest of, the instor. In the later stages of ovary development eggs can often te distinguished and enumerated.

The eggs are shed into the brood pouch of the female at the end of each instar when the animal has shed its carapace. The eggs develop in the krood pouch for the $r \in s t$ of the instar and the young are released just before the carapace has keen shed at the following moult. This sequence of events has been recognised ky other workers with other species and is descriked fully ky GREEN (1956), working with D. magna, who also described different stages of the egg development (sfction 4.2.2).

Results of observations of the reproductive history of all animals, except line XIII, are presented as a summary in takle 5.2.2.(d).

Takle 5.2.2(d)

InsTAR	$\begin{aligned} & \text { SIZE } \\ & (\mathrm{mm}) \end{aligned}$	AGE(hrs)	FIRST   (N)	FARTHETVOGGIVETIC BROUDS		INO. UF FEMALES wITH EFHIFPIA
				N	Mean egg No.	
1	0.611	-	-	-	-	
2	0.76	86	-	-	-	
3	0.99	169	-	-	-	-
4	1.44 :	265	13	-	-	-
5	1.74 :	340	3	11	7.8	2
6	1.80	436	-	1	7.0	12
7	1.95 !	646	-	0	-	1
8	2.11	769	-	3	17	2
9	2.121	962	-	$\bigcirc$	-	3
10	2.15	11-8	-	0	-	-
11	2.22	1422	-	1	6	1
				1		

The takle shows instar, mean size, mean age for the primiparous and reproductive instars, mean egg numbers (brood size) and the occurrence and numbers of ephippial kroods. The krood size varied considerably (maximum 18, minimum 1 egg) but during this study were maximal in the fifth and eigth instars for all animals. Figure 5.2.2.(c) shows the numbers of eggs per instar for all except line XIII and it can be seen that egg numbers increase with instar number until instar II and then decrease with age ( as do ephippial broods). This sequence may be related to food quantity or quality but is also seen in other studies such as those reported by Banta etal (1939).
EGGS PER INSTAR FOR DAPHNIA HYALINA

Fig. 5.2.2(c).

During this study normul parthenogenetic reproduction wis interrupted in all lines, except line XIII, by ephippial reproduction. It is generally thought that ephippiul production is generated by unsuitakle environmental conditions such as low temperature or insufficient or poor qu:lity food (BANTA AND BROMV 1939, BROOk 1946) and this is marked by the production of males and the distinctive resting eggs. Although ephippial production in cultures has keen observed before (BANIAETAL1939), and ephippia have keen used to start cultures (GREEN 1956), no setisfactory explanation of their occurrence has keen given. In this study no male daphnias appeared and all cultures were of individual animals isolated from each other in glass culture dishes. BANTA (1926) and SCHRADER. (1926) reported the production of "pseudosexual" eggs (ephippia) without the presence of males for lakoratory cultures of D. pulex. Developing ephippia were first seen as a thickening and change in shape of the carapace and as these developed, eggs were laid into them. The development of an ephippium spanned two normal instars and the ephippium was then cast with the carapace. After casting the carapace with the ephippium, the female D. hyalina then either developed another ephippium or produced a normal parthenogenetic brood. Animals that had cast an ephippium were left with a characteristic shape to the dorsal side of the csrapace which remained with the animal during its future development. In one instance a parthenogenetic rrood that was developing degenerated before the ephippium developed.

The results presented in takle 5.2.2(d) show that ephippial development occurred in all instars, after the animal became sexually mature, except instar ten. Very few of the cultured animals survived to instar ten. Ephippial kroods only occurred in the first reproductive instar in two cases, most ephippial’broods occurring in instar $\operatorname{six}(\mathbb{N}=12)$.

The reasons for the arfearance of the ephippial reproductive phase of D. hyalina, in these cultures, sre not clear and are Especially difficult to understand as no males developed. Cast ephippia were kept isolated in the same culture conditions and these did not develop during the course of the experiment kut this may be due to the fact that they were not fertilised. The ephippial production seemed to occur in similar instars but these were not at all synchronised and the nimals also consisted of groups from different generations. The effect of low temperature ( $10^{\circ} \mathrm{C}$ ) may have triggered ephippial production but a much more likely cause is the quality of the food. TAUB AND DOLIAR (1968) suggest that food quality is of importance to the growth and reproduction of daphnids and feeding on a monoculture of Oocystis may not have keen satisfactory (15.3 x $10^{3}$ cells/ml + 0.9) and falls into the limits discussed by BURNS AND RIGLER (1967) who suggest that up to $25 \times 10^{3}$ cells per ml D. rosea, which is of comparakle size to D. hyalina, is filtering maximally with yeast as a food. This situation is likely to be common in field populations but again BURNS AND RIGLER (1967) suggest that field filtering rotes may $k e$ lower than those measured in the lakoratory. One difficulty in accepting the suggestion that food quality may have caused ephiffial production
is that line XIII, although cultured in identical conditions and at the same time, rroduced no ephipria. This might suggest that control of erhippial production may be in part genetic but may be triggered ky environmental conditions (although this appears to ke very rare in the reservoir populations).

## Line XIII

Line XIII was cultured from an adult D. hyalina (XIII) taken from the original field sample and was normal in all resfects excert that it was a dwarf line. BANTA (1039) recognises the existence of dwarf lines in daphnids.

Results ere fresented in figure 5.2.2(d) and takle 5.2.2(e) and these show that the embryos were smaller, before release from the brood pouch, than the mean length for embryos of other lines ( 0.38 and 0.43 mm respectively), kut that they fall within the size range for all embryos ( $0.30-0.52 \mathrm{~mm}$ ). The length at instar one and subsequent instars can $k e$ seen to be smaller than all other animels and the instar lengths do not fall into the normal range. The rate of increase in le noth of the animals appears to $k \in$ different from the other lines in instars one, two sind three but not in subsequent instars. The mean maximum length reached at maturity (instar 12) was l.71mm (maximum 1.88 mm ) compared with 2.22 mm for other lines. Line XIII was much longer livedthan other lines and the maximum age was reached in instar 19 hs opposed to instar 14 in other lines.

Iine XIII reached its priniparous instar (instar four) at a mean length of 0.94 mm compared with 1.34 mm for other lines. Reproductively line XIII was different
Table 5.2.2(e)

GROWTH OF DAPHINIA HYALINA AT $10^{\circ} \mathrm{C}$ (LINE XIII TO INSTAR 7)
15- c-Carapace

Fig. 5.2.2(d).
from other lines in that no ephipfial kroods were produced and mean $\in g g$ numbers fer krood were much higher than other lines. Two animals reached their primiparous instar at instar three and the rest in instar four but, as only five animals survived to instar four, little more can $k \in$ inferred from this. Results of the reproductive observations are presented in takle 5.2.2(f). In all other resfects the development of line XIII was similar to other lines.

Takle 5.2.2(f)

INSITAR	$\begin{aligned} & \mathrm{SIZE} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { (hrs) } \end{aligned}$	FIKST CVARY   (IV)	PARTHELVGEIVETIC BROODS	
				N	Miean Egg No.
1	0.44	-	-	-	-
2	0.61	140	-	-	-
3	0.76	214	2	-	-
4	0.94	318	3	2	5.5
5	1.08	414	-	2	7.5
6	1.25	548	-	3	8.0
7	1.33	707	-	5	9.2
8	1.41	875	-	4	9.0
9	1.48	1026	-	4	9.0
10	1.54	1212	-	4	8.0
11	1.63	1366	-	3	15.3
12	1.71	1534	-	2	8.5
13	1.71	1686	-	2	5.5
14	1.60	1758	-	1	3
15	1.60	1950	-	1	4
16	1.60	2070	-	1	2

The occurrence of the dwarf line XIII is difficult to explain but was probably genetic rather than environmentally controlled. The fsct that the line developed -208-
from an otherwise normil udult collected from the field ( 1.36 mm when collected) and identified as D. hyulina indicates that this wes not uncther species. It is not known how frequently dwarf lines occur in the field situation but if this is: high it might kias production estimates.

Durution of stages
Results of the experiments to determine the duration of stages of development for all lines are presented in the takles 5.2.2(a) and 5.2.2(e) for animals cultured at $10^{\circ} \mathrm{C}$. The duration of Eg g development corresponds with the duration of the instar that the egg develops in and can be seen to be 167 hours (range 144-192 hrs) which is about six days. Line XIII is very similar at 157 hours. The results for the duration of instars are presented graphically in figure 5.2.2(e) for all lines and although there is variation from line to line, there is a general trend for the duration of the instar to increase with the age of the animal up to instar eight when it becomes relatively constant until instar 12. After this instar duration fluctuates and then decreases as the animal becomes more senile. From the eighth to the 13th instar the duration is around 170-180 hours and this corresponds with the mean egg development time of 167 hours for parthenogenetic kroods.

The variation ketween lines for duration of instars is quite considerable in both early and late instars (up to 144 hrs ) but at the primiparous instar (three to six) the variation is low and it appears that the mean duration time of the lines tecomes synchronised at the onset of sexual maturity.
DURATION OF INSTARS FOR DAPHNIA HYALINA

Fig. 5.2.2(e).

Similarly, the ages of the animals may be compared at the same instars and it is apfarent that most animals reach the same instar at the same time. The standurd error, expressed is a percentgge of the mean age for euch instur for all lines, is $13 \%$ but this is less than $5 \%$ at most instars. Growth at $20^{\circ} \mathrm{C}$ (Duncan and Cremer)

Results of a similar experiment by DUNCAN AivD CREMER (in prep.) are presented in takle 5.2.2(g). These results are directly comparable with the results shown in table 5.2.2(3) and similar inferences may be drawn except that the experiment was performed at $20^{\circ} \mathrm{C}$. During the course of this work only parthenogenetic reproducticn occurred kut development time for eggs, not egg froduction, is considered here. These data is presented to enable conclusions to be drawn brout the effect of temperature on the rate of development.

Relationship between tempersture and develoment for D. hyalina

The rate of developrent of the animal is the time it takes for stage of the life history to be reached. The rute of egg development in D. hyalina, for exumple, is the time the egg takes to develop from its release from the ovary until it is released from the krood pouch of the adult: the rate of development of a juvenile daphnid is the time from hatching until it reaches sexual maturity ardeath. The relationship between temrerature and development rate for different stages of the life history of the aniaal must be known accurately for froduction calculations from fleld data.


The stiges chosen may relate to a period of kiological significance in the life of the Enimal, such as the time taken from hatching to sexual maturity, of it may relate to in arbitrary measurement of the animal such as size. In either cise the value chosen must be recognisable in field samples for satisfactory estimates of production to ke made. This point is discussed further by EDNOINDSON AlvD wINBERG (1971) and FETRUSEW:ICZ aND ViACFADYEIV (1970).

Using the developmental rates oktained for animals cultured at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, developmental periods for other temperatures were calculated on the basis of Krogh's normal curve as used by wINBERG (1971). The rate of egg develofment is rresented in figure 5.2.2(f). Calculated results, falling within the range of field temperatures, are fresented in takle 5.2.2(h). The line obtained from these results is compared with a similar line given ky BURGIS (1970) and SCHINDLER (1972) for other planktonic crustacea. SCHINDLER (1972) using results cited ky other workers, derives the equation relating the duration of egg development and temperature ( ${ }^{\circ} \mathrm{C}$ ) where

$$
1 / D=0.0426+0.0008 T^{2}
$$

which can ke seen to ke slightly different from the values obtained for the duration of egg development for D. hyalina.

The results obtained for the duration of egg
develofment from lakoratory culturing were:

$10^{\circ} \mathrm{C}$	$\mathrm{D}=170 \pm 30$ hours	S.E. $\% \overline{\mathrm{D}}=6.29 \% \quad(\mathrm{~N}=8)$
$20^{\circ} \mathrm{C}$	$\mathrm{D}=56.5 \pm 9.3$ hours	S.E. $\% \overline{\mathrm{D}}=6.23 \% \quad(\mathrm{~N}=7)$

RELATIONSHIP BETWEEN TEMPERATURE AND DEVELOPMENTAL TIME(1/0)

Fig. 5.2.2(f).

For line XIII at $10^{\circ} \mathrm{C}$ the value can be seen to be very similar:

$$
20^{\circ} \mathrm{C} \quad D=164.1 \pm 27.5 \text { hours S.E. } \%=4.34 \% \quad(N=13)
$$

Takle 5.2.2(h)

$\mathrm{T}^{\circ} \mathrm{C}$	$1 / D\left(\mathrm{day}^{-1}\right)$	D (days)	D (hrs)
1	0.0475	21.05	505
2	0.0500	20.00	448
3	0.0575	17.39	417
4	0.0650	15.38	369
5	0.0750	13.33	310
6	0.0850	11.76	282
7	0.0975	10.26	246
8	0.1125	8.89	213
9	0.1275	7.84	188
10	0.1408	7.10	170.5
11	0.1675	5.97	143
12	0.1925	5.19	125
13	0.2200	4.55	109
14	0.2400	4.17	100
15	0.2700	3.70	89
16	0.2975	3.36	81
17	0.3275	3.05	73
18	0.3575	2.80	67
19	0.3900	2.56	62
20	0.4284	2.35	56.5

Figure 5.2.2(g) shows that the extrapolation of results, using Krogh's normal curve, Froduces a line comfurarle with other fuklished results. BOMTRELL (1975), as with $\mathbb{M}^{\text {c CLAREN }}$ (1963), questicns the validity of assuming a relationship such as Krogh's curve or the van't Heff-Arrhenius function to descrike development rates
of epiphytic cladocerans and coperods. Although his criticism is probikly justifiakle, and he suggests several curvilinear functions of a quadratic form that may give slightly ketter statistical fits to the puklished figures, it is difficult tc select a particular function for a single species. To use Krogh's approximation, when few measurements are available, was thought to be the kest compromise. The resulting errors in production estimetions are, in practice, very small as the greatest deviation fron the assumed line occurs at extremely low temeratures when production is low because developmental rates are very slow and population sizes are very smoll.

These results were checked with results obtained using the approximate methed of WRIGHT (1965) who estimated the duration of egg development from field data. wRIGHT descrikes the method as "determining the average time required for dominanant cohorts to pass through each of a succession of adult sizeclasses at different times throughout the study". In this study the interval between successive and distinct pofulation peaks of the smallest size class was assumed to be an estimate of the duration of egg development at the known field temperature. This technique is certainly subject to sampling errors and the errors of interval sampling as well as subjective errors akout the distinctiveness of a peak, and also the assumption that successive peaks represent distinct cohorts, but the results, with a range represented ky vertical bars, Froved to ke in fairly good agreement with and complement the calculated values. These resats can be seen in figure 5.2.2(g) and takle 5.2.2(i).

Takle 5.2.2(i)

Field   $\left({ }_{C}\right)$	Memperature duration   of eggs (days)	Range   (days)	$N$
4	22.0	$15-29$	2
5	14.5	$7-22$	2
6	13.0	$6-20$	2
9	9.0	$6-12$	2
10	7.5	$4-10$	3
11	7.5	$4-10$	3
12	5.5	$3-8$	2
16.5	3.0	$1-7$	3

The results for the developmental time cf stages identified in the field samples, calculated from laboratory kudget figures are presented in takle 5.2.2(j)

Table 5.2.2.(j)		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		
Stage	Instar	hours	days	hours	days	Q10
Egg		170.5	7.10	56.5	2.35	3.02
1.00	1 and 2	169	7.04	82	3.42	2.06
1.00-1.39	3 and 4	201	8.38	75	3.13	2.63
1.40-1.99	5,6 and $7^{*}$	428	17.38	185	7.71	2.32

* at $20^{\circ} \mathrm{C}$ instars 8,9 and 10 were also less than 2.00 mm .

Q,10 is the frequently accepted relationshif ketween
a metabolic function and temperature ond has $k e e n$ used here to estiaute developrental rates, using the reciprocal of duration of a stage, for the colculation of field production estimates. (see section 5.1.4)

There have keen few puklished studies of the respiration of daphnids in the lakoratory and these include the work of liACARTHUR AND BAILLIE (1929)b, ZEISS (1963) and SCHINDLER (1958) working with D. magna. - Other relevant studies include the field respiration experiments of BLAZKKA (1966), STRASKRABA (1967) and CRbivER AND DUNCAN (19,69) as well as the comparison of field and lakoretory results ky DUNCAN也I AI (1970). Lekoretory studies of respirytion with other Cledocera include those of OBRESHKOVE Aivi BAriía (10.30) and UBRisfikuve (1930) with Simocephalus expinosus, OBRESHKOVE AND KING (1932) and IVANOVA AND KLEKOWSKI (1972) with S. vetulus and MOSHIKI EL AL (1969) working with the carnivorous cladoceran Leptodora kindtii.

It is widely recosnised thet respiration may ke used as a measure of the metakolism of an animal and that this may ke affected ky a wide renge of physiologicel and environmentel factors. Fhysiological factors include kody size, age, reproductive stэte, nutritionsl state and stress. Environmental factors include tempersture, oxygen tension and the degree of crowding or confinement of the animal.

Metaklic rete is proportional to a power of the kody weight (WEYMOUHH ET AL 1944, ZEUTHEN 1947, 1953 and HEMINGSEN 1950, 1960);

$$
R=a w^{b}
$$

Theoretical values such as $\mathrm{k}=0.75$ (HEMMINGSEN 19EO) have keen suggested, kut velues within the renge $\mathrm{r}=0.7$ and 0.9 have been reported for ricrocrustacea. RICHMAN (1958) gives a figure of $b=0.88$ for D. pulex and

SCHINDLbi (19,68) hints at a similer vilue for D.megna. Zuluen (1953) suggests thet the ' b ' velue chonges with ontocenetic increse in kody size. The study by ZEISS (1963) is concerned with the effect of space and crowding on D. magne which he finds cen gffect the metskic rate sianificuntly at levels not found in nature but that my become importsnt in laborstory studies. SCHINDLER (19,68) studied the effects of crowding, refroductive state, kody weight and tempersture on metakdic weisht and found that only kody weight and temper ture heve a signific三nt eftect on the respiretion rate of D. magna.

In tois study, respir tjon retes were messured for onimls with a known life history gt times throughout their develorment. (The respirstion work was completed in conjunction with and on the same animals used for develormentel studies ard described in section 5.2.2. The kulk of the resfiratory determinctions were mode ky Dr. A. Duncen with the close assistence of the suthor and results are rresented here with her permission and the authors own interfret tion). This hat the advantage thrt the effects of kody size, age and reproductive state on respiretory activity could ke examined for indivjduel enimils. The effect of nutritionil stote, stress and activity have reen discussed in an earlier section (4.4.3.).

THe relationshir between respirstion rate end kody size in terms of weicht for $n$. hyalina at $10^{\circ} \mathrm{C}$ are presented in figure 5.2.3(s). The line, which is for all animals, can be seen to have a satisfactory dourle


Fig, 5.2.3(a).
logarithmic relationshin (i.0. $R=a^{r}$ sor tahle 5.2.3(a) Welor) and the weights werc calculated from reasured lengths. and the length weight relationship obtained in section 5.2.1. The results were analysed by regression analysis producing satisfactory regression lines for all animals and immature animals and these results can be seen in table 5.2.3(a)

Table 5.2.3(a)

	$\begin{aligned} & R=a N^{b} \\ & \mu 10_{2} / \times 10^{-3} \end{aligned}$	Standard   Error   (Syx)	$\begin{aligned} & \text { Fesidual } \\ & \text { Variance } \\ & \left(s^{2}\right) \end{aligned}$	N	Rearession Coefficient   (b)
All animals	7.67w0.795	0.2891	0.3024	116	$\begin{aligned} & \text { O. } 8502 \mathrm{p}< \\ & 0.001 \end{aligned}$
Inmature	$9.061{ }^{0.677}$	0.3215	0.3340	70	$\begin{aligned} & 0.6483 \mathrm{p}< \\ & 0.001 \end{aligned}$

It can be seen from the table that the regression coefficient is highly significant in each case. The regression equation for reproductive animals does not provide a satisfactory line because the weight range of the adult animals used for these experiments was too
small and the vertical spread of results is too wide. The verietion obtained may appear to be high when compared with other workers' results (e.E. RICHiwnin 1958), but the measurement of respirstion rates of daphnids using the Cartesian diver technicue revesls individual varietions whereas the respiretion of many animels in a closed cottle technique disguises individual variation and only produces an average value.

The results ure diso shown es respiration rate per unit weight against weight in figure 5.2.3.(b) and it cen ke seen that this relationship has a negutive exponential form. Of the results of regression analyses, the line of best fit is given ky
$R / W=7.67 W^{-0.205} \mu L O_{2} \quad . h r^{-1} \times 10^{-3} \quad .(\mathrm{l}=0.3845 \mathrm{p}<0.001)$
Figure 5.2.3(c) shows on orithmetic plot of individugl respiretion rate ageinst length for all animels at $10^{\circ} \mathrm{C}$. This figure shows the respiretion rate of reproductive animsis folling between sizes 1.10mm and 2.00 mm length the upper limit of which is an artefact of the culturing technique. Anim:ls frequently exceed 2.00mm in the field situation. The stages snd types of reproductive development are distinguished in this figure and ovigerous animols, animals with eggs and developing ovories and those with an ephiprium have been distineuished from those without any okvious sexual attrikute. It is apparent thet the some sized individuals with both eggs and ovaries have a higher respiretion rate than those with only eggs or than those with ephippia.

Oxygen consumption is compared with age and instor in figures 5.2.3.(d) und 5.2.3.(e) (lines IV $e$ and IX


Fig, 5,2,3(b).


Fig. 5.2.3(c).
OXYGEN CONSUMPTION OF DAPHNIA HYALINA AT $10^{\circ} \mathrm{C}$ RELATED TO AGE (LINE IVe)

Fig. 5.2.3(d).


Fig. 5.2.3(e).
respectively) for individual onimuls throughout their life history. It $c$ n be seen th.t the resrir.tion rite is foirly uniform for the first three insturs kut the variution becomes lurfe in the primipirous instir,
individusls such as lXd, showing up to a threefold increvse in the respirstion rete. Other messurements are consistent with the results discussed although it seems that the production of ephifpis, ky sdult fem-les, coincides with a depressud respirution rote. This reduction in respiretion rate may reflect either a reduced food intake or $\mathfrak{y}$ poor quality food end thet it is these semistarved animals that eroduce ephippia. When an animal fuils to reach sexual maturity at the norr.l stage, it iso exhibits a. defressed respiretion rite in the adult (see individuel IXj). Where two recrirtion retes for the same individual occur at the same time of neasuremert it rerresents two actual retes measured consecutively during the same EXperiment. The difference may ke rel:ted to a difference in activity of, or conditions imposed upon, the anim: l during the experiment. The lower measurements in these cases hove a Frofound effect on the errors of the regression invlyses but $h$ ve $k \in \in$ included s there is no resson to doubt their valiclity.

The relotionship retween resrir tion rate and temper ture
Although no sfecific experiment was designed to study the effect of tempersture on the respiration rate of D. hyaline, the experimental temper, ture of $10^{\circ} \mathrm{C}$ was chosen to complerjent the eirlier unpuklished work of DUNCAN AND CRElieR at $20^{\circ} \mathrm{C}$. using the sme species and techniques. Their results are used here in sumar y, with their full approvel, to discuss and interpret this relationship. The interpretation is solely the responsikility of the present author.

The relotionship ketween temper ture nd metakolic processes is a complex end controversiol issue ond useful reviews of this topic cin be found in ANDREWARTHA AND BIRCH (1954), THILEN-NILSEN AND EVANS (1960), M ${ }^{C}$ CLAREN (1963), WIGGLESWORTH (1966) and HEGARTY (1973).

One of the most frequently socepted rel tionships is expressed ky the empiricil Q10 formulu which is generelly used in the following form:

$$
\text { (i) } Q 10=\frac{V_{1}}{V 2} T_{1-t_{2}}^{1}
$$

This theoretic relutionshif, und the very similar Law of Arrhenius,
(ii) $V_{2}=V_{1}-\frac{1-1}{t 2-t 1}$
where $V_{1}=v \in l o c i t y$ of recction et temrersture t1
$V_{2}=$ velocity of rection ot temeereture t2
$e \quad=$ base of notursl logarithms
$=r e s c t i o n$ constent
Were derived for splicetion to secific chemical reections teking plice under defined laburetory conditions. Although much use has ketn mbde of these formulee in kiology, it is debatakle as to whether they have any predictive significunce in onimal metukolic studies although it may be argued that they may $k \in$ useful describing different rate- temperature resctions. KKUGH (1914) in KROGH 1916 from measurements of the rates of respirytion of a series of poikilotherms st different tem"ertures froduced a groph of respiration rete ig inst tempersture where maximum retes coincided on a simple curve descriked ky van't Hoff's rule (where $\mathrm{V}_{\mathrm{t}+10}=\mathrm{VtQ10}$ ). Since them many studies have been used to confirm this result. WINBERG (1971) analysed Krogh's nornjl curve at different temperatures and his constructed
a tacle of temperature corrections (q values) for converting resrir tory rotes me sured et one temeer ture to respiratory rates st another known temperuture where

$$
\begin{aligned}
& R t_{2}=R t_{1} \cdot \frac{q^{2}}{q 1} \\
& \text { Rt } 1_{1}=\text { respiration rete }-t \text { termer.ture } t_{1} \\
& \mathbb{F i}_{2}=\text { resriration rute } \mathrm{t} \text { temrer ture } \mathrm{t}_{2} \\
& q_{1}=\text { 'q value'rate at ternersture } t_{1} \\
& q_{2}=q \text { volue } r \text { te temerture } t_{2}
\end{aligned}
$$

Initially it was prowosed to use respir tory data ortained at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ together with wintergs ${ }^{6}$ quick, method to Froduce a resfiration tofferiture rel:tionship.

Regression envlyses, calculated from the original data of DUNCAIN AND CREVER (unpukl.), for respirstion weight curves can $k e$ seen in titele 5.2.3.(k) and these are comparable with results for the all inimal lines from the $10^{\circ} \mathrm{C}$ work as seen in tukles 5.2.3.(k) and the text.

Takle 5.2.3..(b)

$\begin{aligned} & \text { All } 2 \frac{\text { D.hyalina }}{0^{\circ} \mathrm{C}} \\ & \text { at } \end{aligned}$	Stindard error $(s . y \cdot x \cdot)$	Residual   vsrisnce   (S2)	N	Regression coefficient(t)
$\mathrm{R}=8.502 \mathrm{w}^{-0.73}$	0.3002	0.2451	101	$0.7437 \mathrm{p}<0.001$
$R / W=8.602 W^{-0.27}$	0.3002	0.2451	191	-0.3801p<0.001

Using vinkergs 'quick' method where, $q 10=2.67$ nd $q 20=$ 1.00 , snd $R_{10}=7.67 \mu l 02 \cdot h_{1}-1 \times 10^{-3}$, for on unimsl of unit weight, sukstitution in the formula

$$
R_{t 20}=R t_{10} \cdot \frac{q 20}{q 10}{ }^{\text {gives }} 20.47 \mu \mathrm{lo}_{2} \cdot \operatorname{mr}^{-1} \times 10^{-3} .
$$

The actuil result obt.ined ky measurement (see table 5.2.3 (b)) is:

$$
\operatorname{Rt}_{20}=8.602 \mu 10_{2} \cdot h_{1}{ }^{-1} \mathrm{x}_{10} 0^{-3}
$$

Either $R_{20}$ is lowtr thwn would $k \in$ expected according to Krogh's curve or $\mathrm{R}_{10}$ is higher than expected. The use of this method assumes that the resfonse of respiration to temperature follows Krogh's curve. Few studies of cladoceran metakolism have keen undertaken at different temperatures and SCHINDlek (1968) gives no indication that his experiments at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ with D.magna did other than okey Krogh's surve. MOSHIRI etal (1969) also report results consistent with Krogh's curve for Leptodora kindtii. $M^{C}$ CLAREN (1963), reviewing a wide range of temperature functions in marine zooplankton, suggests theoretical curves that give a $k \in t t \in r$ degree of fit than Krogh's curve kut he still finds differences in rates at different temperatures.

The results obtained at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ are plotted together in figure 5.2.3.(f) and regression analysis produc. the relationship

$$
\begin{aligned}
& R=8.305 i j 0.748 \quad 0_{2} \mu \mu^{-1} x_{x 10^{-3}}\left(\text { syx. }=0.1946, s^{2}=0.2598\right. \\
& r=0.8285 \mathrm{p}<0.001)
\end{aligned}
$$

The 'a' values at $10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and as the same regression lin" are very similar (7.67, 8.60 and 8.30 respectively) but the values are significently different as is seen ky analysis of variance (takle 5.2.3.(c)). The correlation coefficiente are extremely high and the standard error very low for these analyses and the analysis shows the slopes of the lines ('r' values) to be the sime.

RELATIONSHIP EETWEEN RESPIRATION AND WEIGHT FOR ALL ANIMALS AT $10^{\circ} \mathrm{C}$ AND $20^{\circ} \mathrm{C}$


Fig. 5.2.3(f).

Table 5.2.3(c) Analysis of variance of regression lines at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Source of veriation	d.f.	S.S.	N.S.	V.Ratio	F.05
Explained ky   parallel Reg.   Improve. due to   indiv. slopes   Difference in   intercepts   Devns. from indiv.   slopes	1	23.36210	23.36210	551.3800	3.87
Total	1	0.04076	0.04076	0.9621	3.87

The results seen here suggest that D. hyalina has acclimated its respiration rate to the experimental temperature to a much greater extent than expected. Acclimation of respiration rate to temperature in this way has not previously keen reforted in the literature for daphnids and although complete acclimation has not occurred the rate measured is only $5 \%$ of the expected value. $\operatorname{mUNRO}$ (1974) reports a degree of acclimation of develommental rate to temperature for Cyclops sp tut does not indicate whether this applies to other metakolic processes.

Adaptation of resfiratory rates to different temperatures in geographically separated races of poikilotherms has keen recognised for a long time (see VERNBERG AND VERNBERG 1970). RAO AND BULLOCK (1954), FRECHT ETAL (1955), FRECHT (1958), FROSSER AND BRGWN (1961), PROSSER (1962) and NEwELL (1971) review the occurrence of acclimation of metakolic rate functions to temperature in poikilotherms. These authors suggest that resfiratory acclimation may occur if the animal is kelt at the new temerature for many days'. PRECFT (1958) froposes a classification sheme of response
patterns to temperature change which includes comfletely adapted types. Newwll (1971) foints out that acclimation is a complex phenomenon and defends on factors other than time, such as activity and nutritional state.

In the fresent study, darhnids used in the respiration exieriments had been collected from the field when the environmental temferature was low (between $7{ }^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ ) and transferred to the experimental temierature. The offsfring of these animals and sucsequent generations were used for restiration exferiments. All the animals used for resfiration determinations had keen at the exerimental
 animals had generation rather than many days' to acclimate to their new temperature. The degree of temperature change $\left(10^{\circ} \mathrm{C}\right)$ for the $20^{\circ} \mathrm{C}$ experiment was large even compared with the annual range of field terneratures (from $4^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ ), although no individual animal would survive long enough to ke surject to this temperature range, and yet the animals still acclimated. The nutritional state and activity were, as far as was observed, the same in koth exferiments. The onclusion to be drawn from these two experiments is that temierature acclimation of respiration rate occurred. It is felt, ky the author, that the period of acclimation, which covered generations, in relation to the change in temperature, was sufficient for almost complete acclimation to have occurred. BUFFINGTON (1969) finds a similar phenomenon with the diptersn, Culex fipiens piciens where complete resiiratory acclimation occurred during the culture of individuals at the experimental temperature for the whole life cycle. Acclimation of this sort may ke a more widestread occurrence than has been frevicusly reforted. FRALEIGH AND WIEGERT (LETs. comm.) find the same function
iis klue-green algae in hot springs. No explanation of the kinetic changes that must occur can be offered on the basis of the results presented here and there is very little indication from the literature akout this (see Newtil 1971). The ecological occurrence of this phenomenon is also discussed in section 5.1.5 describing field respiration measurements.

Since RlChilin (1958) produced his lakorstory energy kudget for $D$. pulex, there heve keen no puklished energy kudgete for daphnids. It has not been widely recognised that energy kudgets can ke most revealing in the strategy of a species ky compartmentalising its availakle energy and this can ke useful for interpreting field data. This method has keen pioneered ky KLEKOWSKI AND SHUSHKINA (1966) working with Nacrocyclops albidus and some information is availakle from work on Simocephalus vetulus (.KLEKOWSKI AND IVANOVA1972).

Using the data obtained from growth and respiration experimentation, described in sections 5.2.2 and 5.2.3, it was possible to produce a partial energy kudget for D. hyalina at $10^{\circ} \mathrm{C}$. Using the results of DUNCAN and CREWER (in prep.)at $20^{\circ} \mathrm{C}$, the effect of temperature on the energy rudget was examined. RICriviniv (1958) uses two generally accepted equations for the theoretical kasis of his energy kudget, that of IVLEV (1939, 1945), later modified ky RICKEK (1946) where:

$$
\text { Input }=\text { Growth }+ \text { Respiration + Egestion.....( (1) }
$$

and that of LINDELMANN (1942) where:

$$
\text { Assimilation }=\text { Growth }+ \text { Respiration...........(2) }
$$

Neither input nor egestion rates were measured in the present study but assimilation was estimated from equation (2) using respiration and growth data. The results obtained are presented kelow.

Figure 5.2.4(a) shows the growth and respiration of an individual D. hyalina ( $\overline{I X}_{j}$ ) from the $10^{\circ} \mathrm{C}$ experiment. Individual $\underline{I X}_{j}$ was chosen as a good representative of line IX, in that the primiparous instar was the fifth and it also produced an ephippial as well as the more normal parthenogentic broods. Results for -236-

other Individuals of lines IXdand IVEE are shown
in Appendix figs. $5 \cdot 2 \cdot 4(a) \gamma(b){ }^{(b)} \Lambda^{\text {and }}$ these show the same general features.

Using the information shown in figure 5.2.4(a) an instantaneous and cumulative energy kudget has been constructed and is shown in figure 5.2.4(k) for the individual IXj. To construct this kudget, length was converted to weight using the relationships obtained in section 5.2 .4 and this weight was then converted to a common energy unit (calories) using the calorific values obtained by RICHWAN (1958), where:

newborn animals last pre-adult instar<br>actively reproducing animals

calorific value
$4059 \mathrm{cal} / \mathrm{g}$ ash free
$4124 \mathrm{cal} / \mathrm{g}$
$5075 \mathrm{cal} / \mathrm{g} "$ " "

Egg production was calculated from the number of eggs and the calorific value of the eggs was assumed to ke the same as that of a newborn individual. Ephippia were assumed to re equal in value to two parthenogenetic eggs as the normal number of eggs per ephippium in the Cladocera (BANTAETAL1939.). The oxycalorific value of oxygen was taken to be 3.57 calories per mg. (MACFADYEN 1963). The final assumption made was that animals had an R.Q. $=1$, which assumes that carcohydrate metakolism was occurring (MACFADYEM 1963). The cumulated energy budget in figure 5.2.4 $\left(b_{1}\right)$, calculated in this way, shows, for individual IXj at $10^{\circ} \mathrm{C}$, that by the end of its life, during the eighth instar, growth and respiration (assimilation) had totalled .. 0.87 calories of which 0.38 calories were growth in terms of body and egg growth. It can $k e$ seen that when the animal becomes sexually mature the rate of increase in kody growth falls but the growth rate is continued as egg production. Figure 5.2.4 $\left(\mathrm{b}_{2}\right)$ shows the instantaneous kudget for individual IXj for body growth and reproduction and also for the -238-
$\%$

Fig. 4.2.4(b)]

assimiluted energy. The highest rates can be seen at the start of an instur when an abrupt chenge occurs for growth and there is a decrease as the animal gets older. The assimilition line is a reflection of the growth line as respiration is a function of size.

The results of the cumulsted rudget for ill animals at $10^{\circ} \mathrm{C}$ are presented in takle 5.2.4(a) and shown graphically in figure 5.2.4(c). The kudget is shown to instar 12 at $10^{\circ} \mathrm{C}$ and the relationship betmeen egg production and body growth can be seen much more clearly although mean egg numbers, not maximal egg numbers, sre used for the calculation. It appears that the ratio of cumulated egg to kody growth kecomes fairly constant during active adult growth whereas in the juvenile period active growth is manifested as rapid body growth. This observation relates to the growth rate of animals which is discussed in section 5.2 .2 and is seen as a decrease of the growth rate (G) in mature animals. The index of growth to assimilation ( $\mathrm{K}_{2}$ ) seen in takle 5.2.4(a), which includes egg growith (Ge) as well as body growth (GE) changes slightly throughout life. Initially at a low level, it reaches a maximum of 0.63 ( $63 \%$ ) during the first remroductive instar and slowly falls throughout the rest of the animals life. The change in the value of $K_{2}$ can tee seen in figure 5.2.4(d) and the velues obtained compare well with the results given ky RICHivill (1958) where:
juvenile $\mathrm{K}_{2}=55-59 \% \quad\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
adult of $\mathrm{K} 2=56-73 \%$
40 days old
and the results of IVANCVA AND KLEKCwiskI (1972) for
Table 5.2.4(a)

	Instar	$\begin{array}{\|l\|} \hline \mathrm{Age} \\ (\mathrm{hr}) \\ \hline \end{array}$	$\underset{(\mathrm{ma})}{\text { Length }}$	$\underset{(\mu \mathrm{g})}{\text { Weight }}$	Eggs	$\begin{aligned} & \text { Respiration } \\ & 1 \mu 1 / \mathrm{hr} \end{aligned}$	Cunulated growth (cal.)			Cumulated respiration (cal.)	$\left\lvert\, \begin{gathered} \substack{\text { Assimilation } \\ \text { (cal.) } \\ A=G_{b}+G_{e} \\ e \\ \hline} \\ \hline \end{gathered}\right.$	$F_{2}=\frac{G_{b}+G_{e}}{A}$
							$\begin{gathered} \text { body } \\ G_{h} \\ \hline \end{gathered}$	$\begin{gathered} \text { eggs } \\ \mathrm{G}_{\mathrm{e}} \\ \hline \end{gathered}$	$\mathrm{e}^{\mathrm{G}} \mathrm{CG}_{\mathrm{b}}$			
	Egg	-167\|	-	3.24	-	20.0	0.0132	-	0.0132	0.0169	0.0301	0.439
	1	0	0.61	3.68	-	22.0	10.0149	-	0.0149	0.0259	0.0398	0.374
	2	86	0.76	6.97	-	35.5	0.0283	-	0.0283	0.0417	0.0700	0.547
	3	169	0.99	15.81	Ovary	65.5	0.0652	-	0.0652	0.0731	0.1383	0.471
Oin	4	265	1.34	22.95	5.6	86.5	0.1165	0.739	0.1904	0.1194	0.3098	0.615
	5	373	1.64	36.34	7.8	122.0	0.1844	0.1769	0.3613	0.2174	0.5787	0.624
	6	527	1.68	48.49	7.8	151.4	0.2461	0.2799	0.5260	0.3237	0.8497	0.619
	7	646	1.95	54.18	9.0	164.4	0.2750	0.3987	0.6737	0.4316	1.1053	0.610
	8	769	2.11	64.91	12.3	188.3	0.3294	0.5611	10.8905	0.6037	1.4942	0.596
$\begin{aligned} & \stackrel{i}{\dot{N}} \\ & \end{aligned}$	9	962	2.12	65.60	9.0	189.8	0.3329	0.6799	1.0128	0.7820	1.7948	0.564
	10	1148	2.15	67.75	8.0	194.5	0.3438	0.7855	1.1293	0.9529	2.0822	0.542
	11	1422	2.22	72.93	13.0	205.4	0.3701	0.9571	1.3272	1.1894	2.5166	0.517
	12	1533	2.21	72.18	5.6	203.9	10.3663	1.0310	1.3973	1.3037	2.7010	0.517

Table shows cumulated energy budget for D. hyalina at $10^{\circ} \mathrm{C}$.



Fig. 5.2.4(d).

Simocephalus vetulus where:

juvenile	$\mathrm{K}_{2}$	$=71.3 \%$	$=73.1 \%$
preadult	$\mathrm{K}_{2}$		
adult	$\mathrm{K}_{2}$	$=64.7 \%$	

Comparing $K_{2}$ values at $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ the results of which can be seen in Table 5.2.4(b) and are calculated ky the same methods (plotted graphically in figure 5.2.4(f) it can be seen that the shape of the curves are the same but the values at $20^{\circ} \mathrm{C}$ are slightly higher. The ratio of $K_{2}$ values ( $K_{2.20} / K_{2.10}$ ) is fairly constant at 1.26 . Takle 5.2.4(k) shows a summary of the kudget results for D. hyslina obtained by DUNCAN AND CRENER (unpukl.) calculated ky the same methods used to obtain table 5.2.4(a). The results can be seen graphically in figure 5.2.4(e) which shows the same features as figure 5.2.4(c) except that the time to reach a given instar is much shorter. A comparison of the two figures shows that therespiration demand to reach a given instar is smaller at $20^{\circ} \mathrm{C}$ than $10^{\circ} \mathrm{C}$.

Figure 5.2.4(g) compares the cumulated budgets of $20^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ animals using the same instar scale instead of the same time scale. This figure shows that for the sume stage of growth the energy of kody growth is the sume in koth cases. The energy of egg growth is very similar but differences are apparent and due to a different rate of egg production (number per instar). This difference is probably the result of using sparse data for the egg production at $20^{\circ} \mathrm{C}$ and relates to the one individual ( $\overline{\text { IIIC }}$ ). The $10^{\circ} \mathrm{C}$ figures are based on the mean egg numbers far instar for all animpls cultured. GREEN (1956) and HALL (1964) demonstrate clearly that the rate of egg development in Daphnia, und not the actual egg numbers produced, is a function of temperature -245 -
Trable 5.2.4(b)



Fig. 5.2.4(e).


Fig. 5.2.4(f).

and if this is true in representative experiments the egg production per instir should $k \in$ the same at koth temperatures. The figure (5.2.4(g)) also shows the energy of respiration and it cen be seen that the respiration fraction is much lower ot $20^{\circ} \mathrm{C}$ than $10^{\circ} \mathrm{C}$ for these animals. The importance of this is that for fully acclimated animsls although the respiration rate is the same at both temperatures, the developmentul time is much longer at lower temperatures and consequently more respirational energy is used.

Figure 5.2.4(h) shows the kody growth (in terms of length) and respiration of individual IIc at $20^{\circ} \mathrm{C}$ and IXj at $10^{\circ} \mathrm{C}$ superimposed on the sume instar scule. This figure demonstrates thst apart from expected individual variation in growth and respiretion rates that they are very much the same.


The bulk of this study Asalt with the nueen Mary Reservoir and animals taken from that rescrvoir for further study in the laboratory. Therefore most of the comment in this section is directed mainly towards the CoM. although that is not to say that the gueen Elizabeth Reservoir showed no irteresting aspect. The recont naner of Duncrs (1975b) draws attention to the cocxistence of three snocies of Danhnia in the R.E.II reservoir and uncoubtedly this situation exister at the time of this study and contributed to the very different production situation described in section 5.1.8.

In studies of ficld nonulations most information is Cerived from a basic nonulation estimate taken at intervals curing the course of a season. This estination is most often one of ponulation numbers which has heen further refined by sub-civision into snecific and/or size categories, reproductive stages, etc. It may also bo a rixect measure of the bimass of the population hut this has more often been obtained as the product of the numerical analysis and a length:weight relationshir.

The ouality of the pomulation estimata determines the reliability of any subsecuently calculated informatinn such as ponulation dynamic indices or nopulation production estimates. The basic nonulation estimate may be improver in sevcral ways. The best available technique annlicable to the particular field situation must he selected. Samples may be roplicated to the extent that the statistical estimate improves significantly. Unfortunately the improvement of the statistical estimate by renlication of samples is no guarantee that the choson sampling techniaue is the best estimator of absolute nonulation size and care must
also be taken to gather only a manageable number of samples so that time remains for the study of other, perhans more rewarding, facets of the problem. As LUND RT AL. (1958) remonstrate while sub-samoling olgal nonulations, the reward (nrecision in this case) does not innrove directly in pronortion to the effort. In alternative annroach is to select scveral different sampling methods which may sacrifice the procision oftainakle for the same effort with a single replicated technigue but might indicate how close to absolute ponulation size the sampling proaramme approaches. An example of this prohlem encountered in this study is in the difficulty in obtaining a satisfactory estimate of egg numbers in the ponulation. This made nopulation analyses and production estimates by standard techniques difficult. Renlication of the samples may well have imoroved the reliability of the estimate but the alternative samnling technicue using ratalas volume samnles showed essentially the same problem. This indicated that an introduction of young from some other source may account for the observed discrenancies. Recent work of Dưfenn fers. comm.) indicates that nart of this difference may be accounted for hy enhipnial hatching from the bottom of the reservoir and that this may be considerable at certain times of the year.

Making full use of available ponulation data by estimating production or explaining monulation fluctuations by means of models involves the use of other factors such as the ego developmental rate (De), the instantancous individual grouth rate ( $g$ ), the respiration rate ( $R$ ) and the feeding rate. These factors are themselves surject to crrors in their determination which may cause mross distortion
of the real situation if incornorated into monulation data without reference to the existing field conditions. Each factor above is in some way a function of temperature, $f\left(T^{\circ}\right)$. an easily and accurately measurable field variable. Unfortunately the relationshin of these factors and temnerature is not always simnle or clear. Results given in this study demonstrate that the effect of temperature on respiration is not always the same in the laboratory and field situations and that an annarently simple temperature relationshin such as the commonly accenter $Q_{10}$ function may be obscured by a variety of factors such as feeding conditions, nrevinus nutritional state or a degree of acclimatization to the existing environmental tomnerature as well as the more easily determinable size metabolic relationship. In fact the measure? ficla respiration rates, admittedly confuser by being of a mixes species porulation, depart so far from $0_{10}$ expectations as to make questionable the relevance of this sort of relationshin to field conditions.

It is therefore advisable, when laboratory measurements of any function are to be interpolated into field data, to devise a field method (however crude) that can he used to check laboratory results in ficle conditions even if no obvious reason to exnect a discronancy can be seen. Workers in the area of zooplankton production use, among other factors, a value of $D e$ to calculate their mroduction estimates. rancer (1965) estimated De from the field ponulation data thenselves and GEORGE AND EDUARDS (1975) made in situ determinations of De. These results, where theoretically only temnerature may affect the developmental rate of healthy eggs, show excellent a areement with results given by other workers from laboratory exneriments, but even here extranolation of the relationship to
unmeasured temperatures may lead to problems of interoretation. McCLAREN (1963) and BOTTRELL (1975) cast तoubts on the previously accented relationship between $D e$ and temnerature and suggest several different functions that may be employed. Fortunately, in this narticular examnle, the improved functions deviate little from the earlier function except at or beyond the extremes of the environmental temperatures encountered kut empirical determinations of Do in the field situation, if feasible, obviate the need to extrapolate a limited range of laboratory eeterminations. Greater difficulties may be encountered when variables other than temperature may also affect a relationship. This has already been indicated in the area of field metabolism and the nroblem is not restricted to the zoonlankton (GANF 1974). The instantaneous growth rate may be modified by food guality and guantity, the previous life history (this is usually unknown in field situations), the temperature and the genctic history of the population. The occurrence of a dwarf line in the laboratory study (line XIII in section 5.2.2) may not be uncommon in the field ponulations but without more sonhisticated data analysjs it is impossible to identify their contrihution to the ponulation production and it is only nossible to anply measure factors in a blanket fashion to the nonulation data. The effects of food auality and quantity on various growth and metabolic functions has not been examined here. (or in many other studies) and is an area that requires attention. It is difficult to discover which particular food source the zooplankton are using and this may not be in proportion to the existing algal nonulations. NADIN-HURLEY AND DUNCAN (1976) have made a serious attemnt to determine srecifically what food sources are used hy daphnids but it still remains to find out what nutritional
value quantitatively and qualitatively the natural diet provides.

Errors of interpolation do not only occur in the estimate of the variable to be introduced into the nopulation data but also in the manner in which they are used. When apnlying variables such as growth or resniration rates retermined in the laboratory, the values chosen must be applied to particular size categories that have been identified in field samnles. These have often been determined on an arbitrary hasis, especially if develommental stages such as instars cannot be distinguished, or on the basis of a previous study, JEORGD AND EDWIRDS (1975) use the categories of the present author in STEEL FT AL. (1972) and these were determined on the revious experience of CREMER (ners. comm.). The size categories chosen are most useful if they renresent akiologically identifiable stage of development such as juvenile, acult, or renroductive state even if these stages do not renresent a known instar. Stages such as these usually cmbrace several instars and the choosing of a particular respiration rate, growth rate or weight for interpolation becomes largelv guesswork (heavily biased by the experience of the worker) and this will introduce errors within the range of that particular size class. This type of prror becomes large particularlv when one size category cmbracing several instars Aominates the population sample. Again a more satisfactory approach would he to measure each individual but in the available time this would he at the exrense of other narts of the study. The determination of results from the field situation, even if only approximate, provides a useful indication of large discrepancies. The anplication of laboratory weight data to the numerical analysis of population data has to some extent
been examined in this study (section 4.1.5) and discrenancies hitherto unreported can be seen to exist. The individual variation in weight of animals of the same length (fig. 5.2.l(a)) can be considerable and is likely to be a normal field phenomenon and may be more extreme if seasonal variations are to be considered.

The corclusion to be drawn from the above nart of the discussion are not that interpolation of laboratory results into field data should not be attempted but that caution should be oxercised when doing so. $\Lambda$ field measurement, èven if $\wedge$ crude, may indicate areas of discrepancy. $A$ useful function is served by erecting models and testing them with whatever data are available as this indicates areas of the study needing further, and sonetimes more sophisticated, examination. If alternative methods are available for testing the same function it may be possible to arrive closcr to the actual result.

Many of the results presented here reinforce the findines of other workers in this fielc. The seasonal changes in the zooplankton ponulations are much the same as found for other studies in shallow eutronic lakes (e.g. GEORGE AND EDWARDS 1975). Similarly production levels achieved are well within the range reported in the literature but towards the urper end of the range. This again might he exnected in waters rich in nutricnts for algal growth supporting very large algal crops. The major contribution to this production is from D. hvalina, again a similar result to GEORGE AND EDTMRDE (1975) but different from the result of JOUNSON AND WALKER (1375) in the very shallow Loch Leven where Cyclons strenuus abyssorum was the dominant zoonlankter.

The reasons why D. hyalina vas dominant in the O.M. during this study are complex and not well understood but may be most related to the fish populations existing in the reservoir and their controlling influence as predators of the zooplankton. Other predators of the daphnids include large populations of Isplanchna sp. occurring principally in the spring of 1969 and the occasional appearance of Lentodora kindtii as well as the continual presence of adult cyclopoid conepods.

The results of the field respiration experiments nrovided valuakle data for making estimates of population assimilation. The results obtained compare with and exnand the seasonal pattern descrihed by CREMER AND DUNCRN (1969) for the same resorvoir. The seasonal variation in respiration rates which cannot be adequatcly described in terms of temperature and food conditions have fundamental ecological implications esnecially in reference to the assimilation demands of the daphnids. This fhenomenon reauires further description and unfortunately no explanation of the mechanism is possible from this study although a few other workers are concerned with this nroblem in other animals (see NEWELL 1971). The assimilation of the zooplankton in the field situation expands the findings of ETEEL ET AL. (1972) and although differing in some detail reaffirms the usefulness of these data in contributing to exnlain the overall relationshins between zooplankton and algal scology. The contribution of respiration as a user of energy narticularly during the winter and snring can be seen in figure 5.l.6(a).

The laboratory studies have been used mainly to amnlify the production and respiration studies in the field. The
length-weight relationshins and growth rates of different stages were necessary to calculate production rates from the field data. The results presented here are in accord with the findings of other workors. The measurement of indivicual dry weights shower clearly the variation that can be expecter. The laboratory resniration rates determined, partly by the author in conjunction with A. Duncan and rartly by $A$. Duncan and $G$. Cremer, where acclimatization at two widely senarated temneratures apnears to have taken place is interesting in relation to the field respiration rates ohtained. Althouah interpolation of these results into field data is difficult, for the reasons discussed in the earlier nart of this section, they go a long way to confirming the acturacy of the field results. Whether this Cearee of acclimatization to temnerature is a common phencmenon is open to speculation kut the effect on the animals is marked. The cumulaten energy budgets of individual D. hyalina (fig. 5.2.A(g)) show that for the same Deriod of time less energy has been used for rospiration by the animals at the hicher temperatures and the difference has been channelled into production mainly in terms of egg production. In the field situation most of the production is by small, immature incivinuals, lower pronortions surviving to hecome mature femalos, and these animals have a very high weight specific respiratory rate. This may account for the very high contribution of rospiration to the field assimilation. This particularly anplies when the temperatures are colder and the growth rates of the animals are slower thus remainino as small incividuals for a longer pericd of time. The laboraterv nart of the study could well have been amplified by examining the same factors at a greator
range of temperatures hut this would have made demands in terms of time and effort that were not rracticarle.

In conclusion, this study, although incomnlete in many areas, does serve to indicate some facets of the rroblem that warrant further detailef study. Particular areas that escaner attention include measuroments of field feering rates and assimilation efficiencies which would he valuakle in defining the trochic relationshins of the zoorlankton. Similarlv a measure of predation on one hand and ophipnial production on the other and the contribution of the River Thames might have made comnlete studies in their own rioht. Two areas that have received brief treatment in this work include production and respiration. It has been shown that production estimates depend partly on the method used to estimate them and tho most satisfactory method miaht bo determined by more theoretical work and computer simulation using solected data in different models. The resniratinn studies also incicate a need for further field exnerimentation and further studies to discover possible control mechenisms.

Finally, the nresont stưy has demonstrated to the author the value of studies that are linked with several workers linked closely and working in a common field study area. This has haprened recently under the aegis of the I.E.P. nrogramme with such grouns as the Loch Leven I.R.P. nroject and the Lake George I.B.P. rroject. On a smaller scalc the conperation between $J$. A. Steel and $A$. Duncan, tognther with a number of other workers, while allowing score for individuality hut with the same oeneral orjectives, has allowed integrated studies bevnon the scone of an individual wnrker to be undertaken.

ANDFRSON, B. G. (1933. Whe number of pre-adult instars, growth, relative growth, and variation in Daphnia magna. Biol. Bull. mar. Biol. Lab., Woods Hole, 63: 21-98.

ANDERSON, E. G. \& JENTRIMS, J. C. (1942). A time stucy of events in the life span of Daphnia magna. Eicl. Eull. 83: 260-272. ANDERSON, B. Go, LTHABR, I. a ZUPANIC, L. J. (1937). Growth and variability in Daphnia nulex. Eiol. Bull. 73? 444-453.

ANDREMARTHA, E. G. \& BIRCH, J. C. (1954). The Distribution and Abundance of Animals. 782 pp ( (Chicago).
ANGOLD, W. M. (1968). Studies on the distribution and population structure of zooplankton in reservoirs. Ph.D. Thesis (Science). University of Iondon (186 pp).

ARMSTRONG, F.A. J. \& NICKSTMAD, J. H. (1962). A rote on the preservation of plankton samples with formalin. Journ. Cons. Int. Explor. Mer. $27(2), 129-130$.

BANTA, A. M. (1926). A thelytokous race of Cladocera in which pseudo-sexual reproduction occurs. $Z$. indukt. Abstamm. uo Vererb Lehre 40: 28-41.

BANTA, A. M. \& BROWN, L. A. (1939). Control of male and sexual etal
egg production. In Eanta^1939.. pp. 106-130.
BANTA, A.M., WOOD, T. Ro, BROWN, I. A. \& INGLE, I. (1939). Studies on the physiology, genetics and evolution of some Cladocera. Carnegie Inst. Wash., Dept. Genetics, Paper No. 39-285 ppo

BAUDOUIN, M. F. \& RAVERA, O. (1972)。Weight, size, and chemical composition of some freshwater zooplankters: Daphnia hyalina (Icydig). Limnol. Oceanogr. 17(4) 645-649.

PAYLOR, E.R. \& SMITH, F.E. (1953). The orientation of Cladocera to polarized light. Am. Nat. 87: 97-101.

BEJLINGER: E. (1967). ECologic a 1 and taxonomical studies of filter bed algae. Ph.D. Thests. University of toncon.

BERG, K. (1931). Studies of the genus Daphnia O. F. Muller with especial reference to the mode of reproduction. Viderisk. Medd. fra Densk. Naturhist. Forening. 22: 1"222. PERG. K. (1936). Reproduction and depression in the Cladocera illustrated by the weight of the amimals. Arch. für Hydrobiol. 30: 433-462.

BISHOP, J. W. (1968). Respiratory rates of mierating zooplankton in the natural habitat. inimnol. Oceanogr. 13. $1: 58-62$ 。

BLAŽKA. P. (1965). Retabolism of natural and cultured populations of Daphnia related to secondary production. Verh. int. Ver. Limnol., 16; 380-335.

BOTRRELI, I. H. (1975). The Relationship between Temperature and Duration of Egg Development in some Epiphytic Cladocera and Copepoda from the River Thames, Rearing, with a Discussion of Temperature Functions. Oecologia. 18.1: 63-34.

BRODY, S. (19C5). Bioenergetics and Growth. Reinhold Yub. Co., N.Y. xij + 1023 Ro.

BROORS, J. L. (1906). Cyclomorphosis in Dephnia I. in analysis of D. retrocmiva and D. galeata. Ecol. Monogr. 16: 409~1.17.

BROORS, J. L. (1957). The systematics of North lmerican Daphnia. Mern. conn. Icad. Irts Sci. 13: 5-180.

BUEFINE OT, J. D. (1969). Eemperature acclimation of respiraticn in Culexpipiens plpiene (Diptera: Culicidae) and the influence of soasonal selection. Comp. Eiochem. Physiol. 30: 655-878.
tungis M. J. (1970). The effect of temperature on the development time of ecgs of mermocuclons spa a tropical cyclopoid copepod fron Lake George, Uganda. Limnol. Oceanogr. 15. 5: 742-747.

BURNS, C. $G$. (1968). Direct observations of the mechanisms regulating focding behaviour of Daphnia in lakewater. int. Rev. ges. Fydrobiol. 53: 83-100.

BURNS, C. (1959). Relation betwoen filtering rate, temperature and body size in four species of Denluia. Itmol, Oceanogr. $14,693 \cdot 700$.
 rates of Dophnia in lakewater and th suspensions of yeast. isimol. Oceanorr. 12: 493-502.
 observations in Mountain rake, Virginia, Ecology 2l: 192 198.

Comaty. E. J. (icc2). Microdiffusion anelysis and volumetric error. (5th edition). Cros?y, Lockood and Son Lta.

CRENER, G. A. Zooplankton of Stozace Reservoirs. Fh. D. Thesis. Vriversity of Lomdon (in prep.)

CREMER, G.A. \& DUNCAN, A. (1969). A seasonal study of zooplanktonic respration under field conditions. Yorh. int. Ver Jimoola, 17: 181-190.
 SCANLON, R. M. \& ZAJDEL, R. K. (1969). Ecological energetios of a natural population of the predaceous zoonlanker lentodorakinatli Focke (cladocera). Oikos 20: 189‥223.

DOOKAN, M. (3973). Energetics of planktonic Potifors anplied to populations in reservoirs. Fh.D. Thesis, London University。

DUHCAN, A. (1975(a)). The importance of zooplankton in the ecology of reservoirs. Jhe effects of storage on water quality. Water Rescarch Centre Symposium。 pp. 247-272.

DUNCAN, A. (1975(b)) Production and Biomass of Three Species of Daphnia coexisting in London Rescrvoirs. Verh. int. Ver. Limnol. 1975, 19: 2853-2867.

DUNCAN, A., CREMER, G. A. \& ANDRET, T. (1970). The measurement of respiratory rates under field and laboratory conditions during an ecological study on zooplankton. Pol. Arch. Hydrobiol. 17: 149160.

DUNEAM. F. H. (1938). Abundant feeding followed by restricted feeding and longevity in Danhnia, Physiol. Zool. 11: 399-407.

EDHONDSOH, W. T. (1955). The seasonal life history of Daphnia in an arctic lake. Ecology 35: 439-455.

EDMONDSON, W. T. (1960). Reproductive rates of rotifers in natural populations. lem. Ist. Ital. Idrobiol. 12: 430-455.

EDMONDSON, N. T. \& WINBERG, G.G. (Eds.) (1971). A Manual on Methods for the Rssessment of Secondary Productivity in Fresh Waters. IEP Handbook No. 17, Blackwell; Oxford.

ELIIOT, J. M. (1971). Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication No. 25.

ELSTER, H. J. (1954). Üer die Populations dynamik von Eudiantomus gracilis Sars und Feterocope borcalis Fischer in Bodensee Ohersee. Arch. Hydrobiol. suppl. 20; 546.614.

ELSTER. $\mathrm{Fi} . \mathrm{J}$. (1958). Zum Problem der quantitativen Methoden in dor zooplankton forschung. Verh. int. Verein. Limnol. 13,2: $061 \cdots 973$.

EVANS，J．H．\＆MCGILL；S．M．（1970）．An investigation of the Coulter Counter in＂blomoss＂determinations of natural freshwater phytoplankton populations．Hydrobiologia 35：401－A19． GANF，G．G．（1974）．Rates of Oxycen Uptare by the planktonic Community of a Shallow Equatorial Iake（Lake George，Uganda）． Decologia（Ber1．）15：J7－32。
GANF，G．G．\＆BLAŽRA，P．（1974）．Oxfgen uptake，ammonia and phosphate excretion by zooplankton of a shallow equatorial lake（Lake George，Uganda）．Timnol．Oceanogx．19：313－325． GEORGR，D．G．（1973）．Diapause in Cyclops ricinus．Oikos， 24：135－142．

GEORGE．D．G．\＆EDMARDS，R．V．（1974）。 Pooulation dynamics and production of Daphnia hyalina in a eutrophic reservoir． Freshwat．Biol．1974，4：445－465．

GLIWICZ，Z．M．（1968）．The use of anaesthetizing substance in studies on the food habits of zooplankton commpities． Ekol．Dolska．（A）．16：279 295．

GREEAM，T．（1970）．The nooplankton of fough Meagh，1968－1969． Ir。Nat．J．265－271。

GREEN，J．（1954）．Size and reproduction in baphnia magna （Crustacea：Cladoccra）．Proc．zool．Soc．Iond．124： 535－545．

GREEN，J．（1956）．Growth，size and roproduction in Danhnia （Crustaceas Cladocexa）．Dxoc．zool．Soc．Iond．126：173－204．

GREEN．J．（1966）．Seasonal variation in egg production by cladocera．J．Anim．Ecol．35：77－10A．

GREZE，V．V．a BALDIM，E．P．（1954）．Dinamika populacii i godovaya produktaiya Ivcatia clausi Giesbr．i Centropages kroyeri $v$ nenticheckog zone chernogo Borya．wro Sovaston．Biol．Stancii．17，249～261．Trans．FREC 893.

HEGARTY, T. W. (1973). Temperature coefficient ( $\Omega_{10}$ ), Seed Germination and Other Biological Processes. Nat. 243: 305-306.

GROVE, E. Lo, JONES, R. S. \& MATTHENS, W. (1961). The loss of sodium and potassium during dry ashing of animal tissue. Analyt. Eiochen. 2: 221-230.

MARRIS, J.E. (1953). Physical factors involved in the vertic. l migration of plankton. O. Jl, microsc. Sci. 94: 537-550.

HALL, D. J. (1964). An ezperimental approach to the dynamcis of a natural population of Daphnia galeata mendotae. Ecology, 45: 94-112.

HART, R. C. \& ALLANSON, B. R. (1976). The distribution and diel vertical migration of pseudodiaptomus hessel (Nrázek) (Calanoida: Copepoda) in a suberopical lake in scuthern Africa. Freshwat. Biol. (1976) 6: 183-198.

## HEGARTY

HEMPINGSEM, A. M. (1950). The relation of standard (Basal) energy metabolism to total fresh weight of living organisms. Reports of the Steno Memorial Eospital and Nordisk Insulin laboratcrium, Vol. IV. np. 7-58.

HEMMINGSEM, A. M. (1960). Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the steno memorial Hospital and the Nordisk Insulin laboratorium. Vol. IX Part II p. 7-10.

HOLTER, H. (1933). Technique of the Cartesian diver. C.r. Trav. Lab. Carlsberg. Ser. Chim. 243 399-478.

ERERCKK, J. (1962). Species compositon and the amount of zooplankton in relation to the fish stock. Rez. Cesk. Rrad. Ved. 72: 3~116.

HRBACKOVA-ESSLOVA, M. (1966). The differences in the growth and reproduction at $8^{\circ}$ and $20^{\circ}$ of Daphria pulicaria Forbes population inhabiting midland ponds and Righ Tatra lakes. Vestn. Ch. Tshsl. Zool. Epol. 30: 30-33.

HUTCHINSON, G.E. (1967). A Treatise on Limmology. Volume II. Introduction to lake biology and the limoplankton. John Wiley. pp. 1115.

INGLE, L., MOOD, T. R. \& EANTA, $A_{0}$. M. (1937). A study of longevity, growth, reproduction, and heart rate in Daphnia longispina as influenced by limitations in quantity of food Jour. exp. Zool. 763 325-352.

IVLEV, V. S. (1939). Transformation of energy by aquatic animals. Int. Revue ges. Hydrobiol. Hydrogx. 38: 449m458. IVLEV, V. S. (1945). The biological productivity of waters. Usp. sovrem. Biol. 19: 98-120. (In Russian).

JOHNSON, D. \& WALKER, A. F. (1974). The Zconlankton of Loch Leven, Kinross. Froc. R. S.E. (B) , 74,19: 285-294.

KAMLER, E. (1969). A comparison of the closed-bottle and flowingwater methods for measurements of respiration in aquatic invertebrates. Pol. Arch. Eydrobiol.: 16: 31-49.

KIBBY, H. (1969). Energy transformations by a population of Diaptomus gracilis. Ph.D. Thesis, University of London, 224 pp .

KLEKOWSKI, R. Z. (1968). Grrtesien Civers nicro respircmetry for terrestrial anmals. ro. Slwf in Cranzinski, r. and Vlekouski. R. Z. Wothods of Fcological Drorgetics. TBP trinine course. Narsaw. Polish Acad. Sci.

KLEKOUSKI, R. Z. (1971). Cartesian divex microrespirometry. pp. 290-295 In EDMOHDSOR \& WINEERG (1971). IBP MNDEOOK NO. 17 - A Manual on Methods for the Assessment of Secondary Productivity in Fresh waters.

KLEKOHSKI, R. Z. \& IVANOVA, M. B. (1972). Elenents of an energy budget of Simocephalus vetulus (Cladocera). Fol. Arch. Eydrobiol.

KLEKOWSKI, R. \& SHUSHKINA, E. A. (1966). Fnergeteskii balans Macrocyclons albidus za vremua ego metamorfoza pri raznykh kontsentratsiyakh korma. Zh. obshch. Biol. 29.2: 199-208. Trans.

KONETANTINOVA, N. S. (1961). O tempe rosta vetvistovsykh rachov i opredelenii okh produktsii. Vopr. Ikhtiol. 1,2: 362-367. FRBC Trans. 410.

FPOGH, A. (1916). The respiratory exchange of animals and man. Longmans. Lond.

LANGYELT, L. (1968). Studies on the formation of zooplankton from Thames river water in the Meiropolitan vater Enard Reservoirs. M.Phil. Thesis (Zoology). University of London 253 pp.

LFBEDEVA, L. I. (1961). Opredelenie produktsii vetvistovsykh rachkov v vodokhranilishchakh. Tezisy lo-i nauch. konf. po izuch. vnutr. vodoemov Pribattiki, pp. 109-110.

LE SEUR, $F$. . ${ }^{(1960) \text {. The life history of Daphnia pulex spp. }}$ Proc. Rontana Acad. Sci., 19: 80-83.

LINDENAN, R. L. (1942). The tronhic-dynamic asnect of ecology. Ecology 23: 399-n18.

IINDERSTRAM-IANG, K. (1937). Frincinle of the Cartesian diver anplied to gasometric technique. Nature, Lond. 140: J.O8.

LIMDERSTRØM-LANG, K. (19.13). On the theory of the Cartesian diver microrespirometer. C.r. Tranv. Lab. Carlsberg. Sex. Chim; 24: $333-398$.

LUND, $\because$. W. G., KIPLING, C. \& LE CREN, E. D. (IS50). The inverted microscope method of estimating algal numbers and the statistical kasis of estinations by counting. Uyrorolologia. 11: 143-170.

MACARTHUR, J. W. \& ERILILE, F. H. T. (1920)(a). Metabolic activity and duration of life. I. Influence of temperature on longevity in Daphnia magna. Jour. exp. Zool. 53: 221-242.

MACARTHUR, J. W. \& BAILLIE, W. H. T. (1929)(b). Metabolic activity and duration of life. II. Metabolic rates and their relation to longevity in Daphnia magna. Jour. exy. 2001. 53: 243-268.

MACFADYEN, A. (1948). The meaning of productivity in biological systems. J. Anim. Ecol. 17: 75-80.

MACFADYEN, A. (1963). Animal Ecology: Aims and Methods. (2nd edition). Pitman, $34 \wedge$ pp. (London).

McGILL, S. M. (1969). The ecology of the phytonlankicn of a new reservoir in the Thames Valley. Ph.D. Thesis. University of Ioncion.

MCLAEEN, I.A. (1963). Effects of temnerature on growth of zooplankton and the adantive value of vertical migration. Jour. Fish. Res. Bd. Can. 20: 685-727.

MCMMON, J. W. (1965). Some physical factors influencing the feeding hehaviour of Danhnia macna Straus. Can. J. Zool. 43: 603-611.

MCMAHOH, J. M. A RIGLER, F. H. (1963). Mechanisms requlating the feeding rate of Danhnia magna Straus. Can. J. Zool. 41: 321-332.

MCHABON, J. W. \& RIGLER, F. H. (1965). Feening rate of Daphnia magna straus in different foods labelled with radioactive phosphorus. Iimnol. Oceanogr. 10: 105-113.

McNnUGET, D. C. (1969). Develoments in acoustic plankton samnling. Troc. 12th Conf. Gxeat Lakes Res. 61-68 (Internat. Assoc. Creat Lakes Research).

MARSHALL, S. M. NICHOLLS, A. G. \& ORR, A. P. (1935). On the biology of Calanus finmarchius Part VI. Oxvgen consumption in mit. bist. relation to environmental conditions. J. Mar. Fiol. Assoc. U.K. 20: 1-25.

MOSFIRI, G. A., CUMMINS, K. W. \& COSTA R. (1969). Pespiratory energy expenditure by the predaceous zooplankter Leptodora kindtif (Focke) (Crustacea: Cladocera). Limnol. Oceanogr. 14.4: $475-486$ 。

MUNPO, I. G. (1974). The Effect of Temperature on the Development of Egg, Nauriliar and Copepodite Stages of two Snecies of Copepods, Cyclops vicinus Uljanin and Eudiantomus gracilis Sars. Oecologia. 16.A: 355~358.

MURUGAN, N. \& SIVAPAAKRISHNA, K. G. (1973). The biology of Simocenhalus acutirostratus Kinc (U'iedocera: Daphnidae) labcratory studies of lifespan, instar duration, eçg rroduction, growth and staces in embryonic develoment. Freshwat. Biol.

$$
3,1: \quad 77 \sim 83 .
$$

MADIN-FURLEY \& DUMCAN, A. (1276). As comparison of daphnid gut particles with the sestionic particles present in two Thames Valley reservoirs throughout 1970 ara 1971. Freshwat. Einl. 6,2: 109-123.

NAUSERCK, A. (1959). Zur Eestimmung der Filtrierrate limnischer Planktontiere. Arch. Nysrobiol. (Suppl.), 25: 83-101. MEVELL, R. C. (1971). The biology of incertidal animals. Legos Press (London).

OBRESHKOVE, V. (1930). Oxygen consumption in the develomental stages of a Cladoceran. Fhysiol. Zool. 3; 271-292.

OBRESHKOVE, V. \& $3 \pi N T A, \pi . \operatorname{M.~(1930).~A~study~of~the~rate~of~}$ oxveren consumption of different cadoceric clones derived originally from a siigle mother. Physiol. Yool. 3: 1-8.

ODRESHKOVE, V. \& KING, A. J. (1932). The effect of X-rays on the gaseous metabolism of a Cladoceran. Physiol. Zool. 5: 457-471.

ORRESHKOVE, V. \& FRAZER, A. W. (1900). Growth and differentiation of Danhnia magna eggs in vitro. Biol. Full. mar. biol. Lab. Woods EOle, 78: 428-436.

OTSURI, A. \& TARAHISA, $\mathbb{E} .(1969)$. Resicue from Pacterial Decomposition of Green Algal Cells as Food for Eaphnia. Nature. Vol. 222 (June 21). $L$
PACAUD, A. (1933). Contribution a I'écologie des cladocères. Bull. Biol. de la France et Pelgique (Sunni.), 25; 1-260. PATALAS, K. (1954). Poróvijwcze badenia nad rowym typem samoczynnego czerpacza planktonoweco i hurcochemicznego. (Comparative studies on a new type of self acting water sampler for rankton and hydrochemical investigations). Ekol. pol. Ser. $\bar{n}$, 2, 231-242, (Ergi. summ.).

PATALAS, K. (1956). Sezcnowe zmiany w zespole skorupiakow nelagicznych w jeziorze Zamhowym. Polskie Archwm Hydrobiol. 3: 203-251.

PETROVICK, P. G. SEUSHKINA, E. A. \& PECHEN: G. A. (1964). Raschet produktsii zooplanktona. Dokl. Akad. Nauk. SSSR 139.5: 1235-1238. In WINBERG 1971.

PETRUSEWICZ, K. \& MACFADYEN, A. (1970). Productivity of Terrestrial Animals. Principles and Methods. IBP Handbook No. 13. Blackwell, Oxford.

PECHEN, G. A. \&SEUSHKINA, E. $f_{1}$ (1964). Produktsiya planktonnykh rakoobraznykh v ozerakh raziishnoc̣o tipa. Biol. Osnovy Rybnogo Khoz. na Vnistr. Vodoemakh Pribaltiki. Minsk, 249-256. PRECHT, H. (1958). In Prysiological ndaptation. Ed. C. I. Prosser, Washington, American Physiological Society pp 50-78. Patterns of Temrerature Adantation.

PRECHT，H．，CHRISTOPHERSEN，J．\＆HENSEL，H．（1955）． Temneratur und Leben．Verlin．Springer－Verlag， 514 pp． PROSSER，C．L．（1962）．In Comparative Physiology of Temperature Regulation Part I．（J．P．Hannon and E．Viereck，Eds．），pp．l－44 Arctic Aeromed．Lab．Fort Wainright，Alaska．

PROSSER，C，L．\＆BROWN，F．A．（1961）．Comnarative Animal Physiology（2nd ed．）．च．B．Saunders． 661 pp．

RAO，K．P．\＆EULLOCK，T．H．（1954）． $\mathrm{O}_{10}$ as a function of body size and habitat temperature．Am．Miac． 88：33－44。

REBSDORF，A．（1966）．Evaluation of some modifications of the WINKLER method for the determination of oxygen in natural waters．Verh．Irt．Verein．I．innol．16：450－464．

RICHMAN，S．（195\％）．The tramsformation of energy by Danhmia nulex．Eccl．Monogr．20：273－91．

RICKER，W．E．（1937）．Statistical treatment of samnling processes useful in the enumeration of plankton organisms． Arch．Fydrobiol．31：68－84．

RIDLEY，J．E．（1964）．Themal stratification and themocline control in storage reservoirs．Proc．Soc．Wat．Treat． Exam．13：275－297。

RIDLEY，J．E．A．，COOLEY，P．\＆STEEL，J．A．P．（1966）．Control of thermal stratification in Thames Valley Reservoirs．Proc． Soc．Wat．Treat．Exam．15：225－244。

RIGLER F． H ．（1961）（a）．The relation between concentration of food and feeding rate of Danhnia magna Straus．Can．J． Zool．39：857－868．

RICLER，F．H．（1961）（b）．The untake and release of inorganic phosmhorus by Daphnia magna straus．Iimnol．Oceanogr． 6：165－174。

RYTHER, J. H. (1954). Tnhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction and survival. Ecology, 35: 522-533.

SCEERRAKOFF, A. P. (1935). Ueber den Sauerstoffverbrauch von einigen Planktoncrustaceern. Nrb. der. Limnol. Stat. zu Kossinc. 19: 67-89.

SCHINDLER, D. W. (1968). Feeding, assimilation and resniration rates of Daphnia magna under various environmental conditions and their relation to production estimates. J. Nnim. Ecol. 37: 369-385.

SCHINDLER, D. W. (1972). Production of mytoplankton and zoonlankton in Canadian Shicld Lakes. In Productivity Problems of Freshwaters (eds. 7. Rajak and A. VilllbrichtIlkowska), pp. 311-331. Warszawa-Krakow.

SCMINDLER, J. E. (1971). Food quality and zoonlankton nutrition. J. Anim. Ecol. 40: 580-595.

SCHRADER, F. (1926). The cytology of pseudo-sexual eggs in a species of Daphnia. Z. indukt. Abstamm. - u. Vererbhehre, 40: 1-27.

SMITH, M. W. (1936). Notes on the food of Daphnia pulex de Geer in fertilised waters. Trans. Am. Fisk. Soc., 66: 287-290.

SOUTHWOOD, T.R.E. (1966). Ecological Methods. Methuen Lond.

STANDARD METHODS FOR THE EXAMINATION OF WATER AND WAGTEWATER (1965 (12th Ed.). Amer. Public Health Association, Inc., New York.

STEEL, J. A. (1972). The application of fundamental limnclogical research in water supply system design and menagement. Symp. Zool. Soc. Lond. No. 29, 41-67.

STEEL, J. A. (1973). Reservoir algal productivity. University of Newcastie-upon Tyne Symposium. The use of mathematical models in water nollution control. A. James (Ed.) Newcastle-upon-Tyne, 1073

STEEL, J. A. (1975). The management of Themes Vallev Reservoirs. The effects of storage on water cuality. Water Research Centre Symposium 371-419.

STEEL, J. A. Po, DUNCAN, A. \& ANDREN, T.E. (1972). The daily carbon gains and losses in the seston of Oueen Mary Reservoir, England, during early and mid- 1968. In Productivity Problems of Freshwaters (eds. Z. Kajak and A. Hillbricht-Ilkowska), pp. 515-528. Warszawa Mrakow. STRASKRASA, M. (1967). Estimation of respiration in the field of natural populations of Cladocera and conepoda using the quantitative method of plankton sorting. Arch. Hydrobiol., 63: 497-511.

STROSS, R. G., NEESS, J. C. \& HASLER, A. D. (1961). Turnover time and production of the planktonic crustacea in limed and reference portion of a bog lake. Ecology 42: 237-244

SUSHTCHENIA, L., (1958). Xolichest vennye dannye o fil'tratsionnom pitaniiplanktonnykh rachov. Nauch. Dokl. vyssh. Shk., Biol. Nauki, 1: 241-260.

SZLAUER, L. (1964). Reaction of Daphnia pulex de Geer to the approach of different objects. Pol. Arch. Hydrobicl. 8 (25) 1: 5-16

SZLAUER, L. (1965). The refuge ability of plankton animals before models of plankton-eating animals. Pol. Arch. Eydrobiol. $8(26)$ 1: 89-96.

SZLAUER, L. (1968). Investigations upon ability in plankton crustacea to escane the net. Pol. Arch. Hydrobiol. 15 (28) 1: $79-86$

TAUB, F. B. \& DOLIAR, A. M. (1968). The nutritional inadoquacy of Chlorella and Chlamydomonas as a food of Daphnia pulex. Limnol. Oceanogr. 14: 598-606.

TETENS $-N$ IELSEN, E. \& EVANS, D. G. (1960). Duration of the pupal stage of Aedes taeneorhynchus with a discussion of the velocity of development as a function. Oikos. 11: 200-222. TRANTER, D. J. (1960). A method for determining zooplankton volumes. Jour. Conseil. Perm. Internatl. Explor. Mer. 25(3): 272~278

UMBREIT, W. W., BURRIS, R. H. \& STAUFFER, J. F. (1949). Manometric Techniques and Tissue Metabolism. Furgess Pub. Co., Minn. 227 pp.

VERNBERG, F. J. \& VERNBERG, W. B. (1970). The animal and the environment. Holt, Rinehart and Winston, Inc. N.Y. xv +398 pp.

VOGEL, A. I. (1954). A textbook of macro and semimicroqualitative inorganic analysis. Longmans.

WEYMOUTH, F. N., CRIMSON, J. M., HALL, V. E., BELDING, F. S. \& FIELD, J. II (1944). Total and tissue respiration in relation to hody weight. Physiol. Zool. 17: 50-71. WICGLESWORTH, V. E. (1956). Insect Physiology. Methuen 134 pp.

WIKTOR, K. (1961). The influence of habitat factors on variations in the populations of Bosmina corregoni. Daphnia hyalina and Danhnia cuculata. Ekol. Polska., (Ser. A.) 9: 1-19. 2olish text engl. summ.

WINBERG, G. G. (Ed.) (1971). Methods for the Estimation of Production of Aquatic Inimals. Translated by $A$. Duncan. Academic Press. Lond.

WINBERG, G. G., PECHET, G. A. \& SHUSHKINA, E. G. (1965). Produktsiya planktonnych rakoobraznykh trekh ozerakh raznogo tipa. Zool. Zh. A1: 675-688. Trans. NLLRTS 6019. VINBERG, G. G., BABITSKY, V. A., GAVRILOV, S..I., GLXDYY, G. V., ZAKHARENKOV, I. S., KOVALEVSKAYA, R. Z., MIKYEYEVA, T. M., NEVYADOMSYAYA, P. S., OSTAPENYA, A. P., PETROVICN, P. G., POTAENKO, J. S. \& YAKUSHKO, O. F. (1972). Biological productivity of different types of lakes. In Productivity Problems of Freshwaters (eds. Z. Rajak and A. FillbrichtIlkowska), pp. 383-40A. Warszawa-Krakow.

WINDLE-TAYLOR, E. (1967). Forty-first report on the results of the bacteriological, chemical and biological examination of the London waters for the years 1965-1956. Metropolitan Water Board; London.

WINKLFR, L. W. (1888). Die bestimmung des im Wasser gelösten Sauerstoffes. Chem. Ber. 21: 2843-2855.

WINSOR, C. P. \& CLARKE, G. L. (1950). A statistical study of variation in the catch of plankton nets. J. Mar. Res. 3: 16-24. WRIGirt, J. C. (1965). The population dynamics and production of Daphnia in Canyon Ferry Reservoir, Montana. Limnol. Oceanogr. 10: 583-590.

ZEISS, F. R. (1963). Effects of population densities on zooplankton respiration rates. Limnol. Oceanogr., 8: 110-115. ZEUTHEN, E. (1947). Body size and metabolic rate in the animal kingcom with special recard to marine microfauna. Comp. Rendus Lab. Carlsberg Ser. Chem. 26: 17-161.
7.EUTHEN, E. (1950). Cartesian River respirometer. Biol.

Bull., 98: 139-143.
ZEUTHEN, E. (1953). Oxygen uptake as related to body size in organisms. nuart. Rev. Eiol. 28: 1-12.
8. APPENDICES

APPENDIX 4.3.

## Reagents for Winkler's Determination

(a) Winkler's I
$\mathrm{M}_{\mathrm{n}}^{\hat{\mathrm{S}} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad 400 \mathrm{~g}}$
made un to 1 litre distilled water
(b) Winkler's II

KOH	7 Og
KI	150 g

made up to 1 litre distilled water
$+\mathrm{N} \mathrm{SN}_{3}$ $10 g$
dissolved in 40 mls distilled water
(c) Concentrated sulphuric acie

36N
$\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) Starch-soluble urea.
(e) N/320 Sodium thiosulphate solution made up from commercially purchased ampoules of solution of known strength.

Dry weight of daphnies and copepods. mg per V.N.H. in 0.

Date	Daphni*s	Conenocs	Date	raphnids	Conepods
16.10.67	80.12	7.38	20.10	11.60	4.78
23.10	8.14	4.07	4.11	16.49	1.31
30.10	11.95	2.53	18.11	12.56	4.23
6.11	10.61	4.13	25.11	6.03	1.23
13.11	3.64	. 66	2.12	17.10	4.52
20.11	23.97	3.16	9.12	2.68	4.27
27.11	7.20	2.54	16.12	ก.74	. 13
4.12	10.19	3.61	30.12	4.43	1.72
11.12	10.69	3.34	6.1.69	11.74	2.58
18.12	17.30	3.78	13.1	14.13	3.89
1.1.68	4.79	2.10	20.1	22.0 ¢	2.59
8.1	10.29	2.93	27.1	20.70	1.42
15.1	21.13	4.14	3.2	31.63	2.16
22.1	26.62	5.96	10.2	10.23	1.24
29.1	8.47	2.54	17.2	6.46	1.88
5.2	2.21	4.23	24.2	23.12	10.52
12.2	26.56	8.12	3.3	13.83	3.26
10.2	10.911	2.80	10.3	16.79	7.06
26.2	10.10	8.38	17.3	23.57	10.23
4.3	14.05	9.40	24.3	20.68	0.86
11.3	15.15	9.80	31.3	11.10	11.11
18.3	1.58	3.59	ก. 4	11.65	7.16
25.3	6.70	5.29	10.4	56.67	24.46
1.4	4.01	3.85	14.1	29.05	2. 33
8.4	27.51	4.53	18.4	3.80	3.59
18.4	3.81	5.20	21.4	8.81	4.50
22.4	10.83	2.66	23.4	68.21	18.70
23.4	78.81	25.70	30.1	21.61	33.59
6.5	37.03	11.49	5.5	121.76	59.39
13.5	43.22	6.43	7.5	22.00	34.55
20.5	30.52	6.39	9.5	22.28	8.03
27.5	22.13	7.12	12.5	59.24	70.43
5.6	$\bigcirc .22$	10.72	19.5	$11^{18.38}$	17.14
10.6	5.36	15.78	27.5	79.78	10.84
17.6	11.79	15.26	2.5	36.18	5.60
25.6	14.76	12.05	9.6	23.74	12.76
1.7	1.84	2.13			
8.7	9.67	6.57			
22.7	21.00	13.30			
29.7	2.25	1.90			
5.8	1.25	1.42			
12.8	5.04	1.9 ?			
10.8	22.62	12.75			
26.8	32.96	25.15			
3.0	16.53	0.75			
2.0	20.53	7.17			
15.9	25.53	5.45			
23.0	5.19	2.22			
30.9	23.53	1.33			
7.10	12. 25	5.42			
14.10	16.13	2.37			
21.10	3.10	. 95			

APPENDIX. 5.1.2.
Numbers and classes of D. hvalina per coarse V.N.H. for Q.M.

Date	Total	EEgs	$>1.0 \mathrm{~mm}$	1.0-1.39	1.40-1. $n^{n}>2.0$	
30.10 .67	850	100	310	50	490	0
13.11	360	80	170	30	160	0
27.11	900	440	500	80	320	0
17.12	2470	350	1910	260	240	60
I. 1.68	2575	775	1400	475	675	25
8.1.	870	175	560	140	170	0
22.1.	2640	1200	1890	330	410	10
29.1.	1307	163	1069	69	169	0
12. 2.	2280	740	1630	250	320	180
19. 2.	840	305	700	45	60	35
26. 2.	1315	260	895	230	155	35
4.3.	1370	180	810	335	200	25
11. 3.	1225	250	670	275	270	10
18. 3.	555	25	405	70	25	0
25.3.	470	45	395	45	10	0
1. 4.	178	26	136	16	20	6
29.4.	15825	600	13675	1275	750	125
6. 5.	12050	0	10200	825	850	175
13. 5.	8000	25	6525	725	625	100
20. 5.	3975	50	3090	325	513	50
27.5.	2335	30	1490	320	410	130
5.6.	723	35	664	17	42	0
10.6.	100	0	90	0	0	10
17.6.	1860	0	1710	50	80	20
1.7.	350	20	220	80	50	0
8.7.	1750	0	1550	75	125	0
22.7.	8575	0	8225	200	150	0
5.8.	240	20	200	0	40	0
12.8.	1160	0	1160	0	0	0
19.8.	2987	170	1848	280	776	66
26.8.	450	450	325	25	50	50
3.9.	3888	50	3375	300	200	13
9.9.	1960	0	1510	130	60	0
23.9.	1440	0	1210	150	70	10
30.9.	2962	437	2050	213	475	25
7.10.	2070	0	1710	220	140	0
14.10.	1210	160	940	70	180	20
21.10	180	0	120	0	60	0
28.10.	660	150	360	50	240	10
4.11 .68.	730	0	310	20	370	30
11.11.	780	0	520	80	160	20
18.11.	1810	180	1190	140	480	0
25.11.	420	140	140	30	250	0
2.12.	870	210	210	10	640	10
9.12.	200	30	150	10	40	0
16.12.	740	120	500	60	140	40
23.12.	1500	520	880	120	460	40
30.12.	390	40	300	30	60	0
6.1.69,	1080	450	670	130	250	30
13. 1.	1460	430	960	160	360	10
20.1.	1450	760	890	160	360	40
27.1.	930	740	550	50	310	20
3. 2.	920	660	640	70	200	10
10. 2.	1070	520	760	100	180	30
17. 2.	430	140	310	40	70	10
24. 2.	880	590	510	130	220	20
3. 3.	790	420	540	60	160	30
10. 3.	825	350	530	140	135	20
17. 3.	1940	850	1240	200	440	60

APPENDIX E.1.2 (Crrta.)

Date	Totai	EEES	>1.0 min	$1.0-1.39 \mathrm{~mm}$	1.40-2. ${ }^{\text {a }}$ mm	<2.0mm
24.3.	1670	1070	900	210	490	70
31. 3.	1230	180	720	140	340	30
8.4.	420	180	190	60	170	0
10.4.	5000	1233	2850	1233	800	117
14.4.	1710	1510	630	310	740	30
21.4.	290	25	216	16	50	8
28. 4.	5120	1940	4800	160	140	20
30.4.	1380	680	1220	70	60	30
5. 5.	1.2025	1400	10050	1425	475	75
9.5.	$\bigcirc 2760$	0	2140	610	10	0
12. 5.	- 9975	2000	7575	1675	650	75
19. 5.	20045	250	15920	2025	1975	125
27. 5.	12025	625	7900	1250	2525	350
2.6.	5440	100	4020	470	880	70
9.6.	1330	10	890	210	230	0

APPENDIX 5.2.2
Numbers of Bosmina sp., Cyclops sp., Diaptomus sp., and Asplanchna sp. per coarse V.N.H. for Q.M.

Date	Bosmina	Cyclops	Diaptomus	Asplanchna
30.10 .67	20	120	230	0
13.11.	0	20	100	0
27.11.	20	100	180	0
17.12.	0	60	130	0
1. 1.68	13	75	376	0
8.1.	0	40	140	0
22. 1.	0	380	180	0
29.1.	0	56	26	0
12. 2.	90	80	80	0
19. 2.	0	475	60	0
26. 2.	0	585	125	0
4.3.	0	235	70	0
11.3.	0	380	50	0
18. 3.	25	250	60	0
25. 3.	5	160	100	0
1.4.	2	226	40	0
29.4.	50	3675	225	0
6. 5.	25	1450	650	0
13. 5.	100	675	225	0
20.5.	113	475	150	0
27. 5 .	70	360	200	0
5.6.	83	216	1411	0
10.6.	60	390	890	0
17.6.	280	300	1320	0
1.7.	440	210	490	200
8.7.	400	200	700	1600
22.7.	125	675	2200	0
5.8.	1210	250	230	0
12. 8.	370	170	60	0
19. 8.	233	1302	1737	0
26. 8.	0	875	6000	0
3.9.	0	737	250	0
9.9.	0	870	290	0
23.9.	0	170	200	0
30.9.	0	137	250	0
7.10.	0	70	1260	0
14.10.	0	40	440	0
21.10.	40	230	650	0
28.10.	0	60	290	0
4.11 .68	20	0	240	0
11.11.	0	60	400	0
18.11.	0	130	300	0
25.11.	10	10	110	0
2.12	10	80	160	0
9.12 .	0	0	70	0
16.12.	10	30	60	0
23.12.	80	20	280	0
30.12.	0	20	70	0
6.1.69	20	30	140	0
13.1.	30	70	380	0
20.1.	10	60	230	0
27.1.	0	110	90	0
3. 2.	0	120	100	0
10. 2.	10	150	110	0
17. 2.	0	170	30	0
24. 2.	30	390	80	0
3.3.	30	330	130	0

APPENDIX 5.1.2 (Ocnta.)

Date	Bosmina	Cyciops	Diaptomus	Asplanchna
10.3.	0	220	60	10
17.	3.	20	520	190
24.3.	10	230	100	0
31.3.	20	570	80	0
8.4.	20	280	20	0
10.4.	30	1650	266	30
14.4.	50	370	20	90
21.4.	100	530	49	100
28.4.	40	2830	160	550
30.4.	50	3880	120	550
5.5.	375	4150	225	7225
7.5.	150	1925	100	11000
9.5.	60	1090	130	7360
12.5.	725	3825	275	14850
19.5.	350	700	225	4075
27.5.	400	750	250	375
2.6.	210	350	60	230
9.6.	90	140	630	50


Date	VERTICAL NET Hauls				patalas			
	$\mathrm{b}^{\prime}$	$r^{\prime}$	d'	D	$\mathrm{b}^{\prime}$	$r^{\prime}$	d.	D
1.1 .68	. 0223	-	-	-	-	-	-	-
8.1	. 0130	-. 1550	. 1680	. 1546	-	-	-	
22.1	. 0291	. 0793	-. 0502	*	-	-	-	-
29.1	. 0087	-. 1004	. 1091	. 1034	-	-	-	-
12.2	. 0240	. 0397	-. 0157	*	-	-	-	-
19.2	. 0251	-. 1426	. 1677	. 1535	-	-	-	
26.2	. 0104	. 0640	-. 0536	*	. 0126	--	-	-
4.3	. 0070	. 0059	. 0011	. 0011	. 0056	$-.0583$	. 0639	-
11.3	. 0141	-. 0160	. 0301	. 0297	-	-	-	-
18.3	. 0034	-. 1131	. 1165	. 1100	-	-	-	-
25.3	. 0086	-. 0238	. 0326	. 0321	$\bigcirc$	-. 0694	. 0694	. 0670
1.4	. 0163	-. 1387	. 1550	. 1436	. 0571	. 2265	-. 1694	*
8.4	-	-	-	-	. 5344	-. 1112	. 6456	. 4757
18.4	-	-	-	-	. 0477	-. 0755	. 1232	. 1159
29.4	. 0080	. 1603	-. 1523	*	. 0107	. 3750	-. 3643	
6.5	0	-. 0389	. 0389	. 0382	. 0074	-. 0274	. 0348	. 0342
13.5	. 0005	-. 0585	. 0590	. 0573	. 0016	. 0177	-. 0161	*
20.5	. .024	-. 0999	. 1023	. 0972	. 0029	. 0492	-. 0463	*
27.5	. .028	-. 0760	. 0788	. 0758	. 0077	-. 1790	. 1767	. 1620
5.6	. 0144	-. 1303	. 1447	. 1347	$\bigcirc$	-. 1704	. 1704	. 1567
10.6	0	-. 3956	. 3956	. 3267	. 0647	-. 1230	. 1877	. 1711
17.6	0	. 4176	-. 4176	*	. 0042	-. 2975	-. 2933	*
24.6	-	-	-	-	. 0071	. 0061	. 0010	. 0010
1.7	. 0192	-. 1193	. 1385	. 1293	. 0047	-. 1196	. 1243	. 1169
8.7	$\bigcirc$	. 1821	-. 1821	*	. 0026	. 2055	-. 2029	*
15.7	-	-	-	-	. 0063	. 0891	-. 0828	*
22.7	0	. 1135	-. 1135	*	$\bigcirc$	. 0234	-. 0234	*
29.7	-	-	-	-	. 0359	-. 4871	. 5320	. 4073
5.8	. 0269	- -2554	. 2823	. 2460	. 0671	. 0014	. 0627	. 0608
12.8	0	. 2251	-. 2251	*	$\bigcirc$	-. 0715	. 0715	. 0690
19.8	. 0170	1. 1351	-. 1181	*	. 2694	. 3845	-. 1151	*
26.8	. 2829	-. 2704	. 5533	. 4261	. 1567	-. 1436	. 3003	. 2594
3.9	. 0042	. 2695	-. 2653	*	. 0115	. 2066	-. 1951	*
9.9	0	\|-. 1142	. 1142	. 1079	-	-	-	-
23.9	$\bigcirc$	-. 0220	. 0220	. 0218	. 0084	-. 1106	. 1190	. 1122
30.9	. 0390	. 1030	-. 0640	*	. 0219	. 0925	-. 0706	*
7.10	0	-. 0512	. 0512	. 0499	. 0097	-. 0822	. 0919	. 0878
14.10	. 0326	-. 0767	. 1093	. 1035	. 0295	. 0794	-. 0499	*
21.10	0	-. 2722	. 2722	. 2383	0	-. 3846	. 3846	. 3193
28.10	. 0510	. 1856	-. 1346	*	-	-	-	-
4.11	0	. 0144	-. 0144	*	-	-	-	-
11.11	$\bigcirc$	. 0095	-. 0095		-	-	-	-
18.11	. 0139	. 1203	-. 1064	*	. 0123	-. 0696	-. 0573	*
25.11	. 0365	-. 2087	. 2453	. 2175	. 0151	-. 0710	. 0861	. 0825


| Date | VERTICAL NET HAULS |  |  | PATALAS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{b}^{\prime}$ | $\mathrm{r}^{\prime}$ | $\mathrm{d}^{\prime}$ | D | $\mathrm{b}^{\prime}$ | $\mathrm{r}^{\prime}$ | $\mathrm{a}^{\prime}$ | D |
| 2.12 .68 | .0266 | .1040 | -.0774 | $*$ | .0255 | .1055 | -.0800 | $*$ |
| 9.12 | .0149 | -.2100 | .2249 | .2014 | .0429 | -.1741 | .2170 | .1951 |
| 16.12 | .0137 | .1869 | -.1732 | $*$ | .0334 | -.0060 | .0394 | .0386 |
| 23.12 | .0291 | .1009 | -.0718 | $*$ | - | - | - | - |
| 30.12 | .0067 | -.1924 | .1991 | .1805 | .0390 | .0010 | .0380 | .0373 |
| 6.1 .69 | .0219 | .1455 | -.1236 | $*$ | .0277 | -.0530 | .0807 | .0775 |
| 13.1 | .0155 | .0431 | -.0276 | $*$ | .0264 | .0682 | -.0418 | $*$ |
| 20.1 | .0335 | -.0010 | .0345 | .0339 | .0164 | -.0152 | .0316 | .0311 |
| 27.1 | .0618 | -.0634 | .1252 | .1177 | .0504 | .1698 | -.1194 | $*$ |
| 3.2 | .0524 | -.0015 | .0539 | .0525 | .0442 | -.0088 | .0530 | .0516 |
| 10.2 | .0311 | .0216 | .0095 | .0095 | .0372 | -.1178 | .1550 | .1436 |
| 17.2 | .0172 | -.1302 | .1474 | .1371 | .0147 | -.1147 | .1294 | .1214 |
| 24.2 | .0375 | .1023 | -.0848 | $*$ | .0290 | .0523 | -.0233 | $*$ |
| 3.3 | .0299 | -.0154 | .0453 | .0443 | .0230 | .0579 | -.0349 | $*$ |
| 10.3 | .0183 | .0344 | -.0161 | $*$ | .0195 | .0132 | .0063 | .0063 |
| 17.3 | .0281 | .0940 | -.0659 | $*$ | .0320 | -.0312 | .0632 | .0612 |
| 24.3 | .0470 | -.0214 | .0684 | .0661 | .0603 | .0101 | .0502 | .0490 |
| 31.3 | .0116 | -.0437 | .0553 | .0538 | .0233 | -.0620 | .0843 | .0808 |
| 8.4 | .0408 | -.1343 | .1751 | .1606 | .0163 | -.0870 | .1033 | .0981 |
| 14.4 | .1007 | .2340 | -.1337 | $*$ | .1432 | .2003 | -.0571 | $*$ |
| 21.4 | .0117 | -.2637 | .2754 | .2407 | .1339 | -.1675 | .3014 | .2602 |
| 28.4 | .0520 | .4204 | -.3684 | $*$ | .1264 | .3256 | -.1992 | $*$ |
| 5.5 | .0233 | .1220 | -.0987 | $*$ | .0653 | .1959 | -.1306 | $*$ |
| 12.5 | .0432 | -.0271 | .0703 | .0679 | .0143 | -.0264 | .0407 | .0399 |
| 19.5 | .0027 | .0872 | -.0845 | $*$ | .0045 | -.0021 | .0066 | .0066 |
| 27.5 | .0119 | -.0852 | .0971 | .0925 | .0159 | -.0548 | .0707 | .0683 |
| 2.6 | .0050 | -.1133 | .1183 | .1116 | .0069 | -.1018 | .1087 | .1030 |
| 9.6 | .0018 | -.2012 | .2030 | .1837 | .0038 | -.0779 | .0817 | .0785 |
|  |  |  |  |  |  |  |  |  |

NOTE: - no sample

* death rate ( $D$ ) negative which indicates either recruitment from ephippial hatching or river import or poor sampling.


## APPENDIX 5.1.4.

PRODUCTION FIGURES CALCUTATED FRKM g.D. and P/B RATIOS FROM SINBERG'S MENYOD

Eate	P.mg.m ${ }^{-2} \cdot \mathrm{dav}^{-1}$	P/B	Date	P.mg.m ${ }^{-2}$.day ${ }^{-1}$	P/B
30.10 .67		. 090	7.10	138.37	. 138
13.11		. 059	14.10	94.67	. 111
27.11		. 052	21.10	14.38	. 103
18.12		. 039	28.10	46.14	. 095
1.1 .68	7.23	. 033	4.11	16.99	. 072
8.1	13.41	. 031	11.11	-	. 059
22.1	38.60	. 033	18.11	35.85	. 063
29.1	15.45	. 038	25.11	12.96	. 216
12.2	33.64	. 031	2.12	28.67	. 044
19.2	15.50	. 030	9.12	5.00	. 026
26.2	20.32	. 025	16.12	13.96	. 035
4.3	20.84	. 024	23.12	-	. 037
11.3	23.68	. 024	30.12	6.64	. 032
18.3	13.88	. 036	6.1 .69	14.94	. 029
25.3	19.38	. 018	13.1	19.06	. 030
1.4	9.41	. 045	20.1	29.0?	. 030
8.4	111.60	-	27.1	29.92	. 035
18.4	16.96	-	3.2	52.18	. 038
22.4	55.43	-	10.2	13.76	.031
29.1	401.57	. 099	17.2	7.72	. 027
6.5	172.48	. 093	24.2	26.90	. 027
13.5	200.55	. 092	3.3	18.94	. 026
20.5	131.17	. 103	10.3	22.81	.030
27.5	84.89	. 115	17.3	- 36.19	. 029
5.6	75.53	. 161	24.3	2.9 .32	. 039
10.6	29.10	. 112	31.3	20.72	. 041
17.6	101.10	. 161	8.4	21.30	. 013
24.6	138.19	-	14.1	59.53	. 050
1.7	24.34	. 166	21.4	22.23	. 062
8.7	91.97	. 204	28.4	282.40	.100
22.7	257.53	. 224	5.5	638.96	. 102
29.7	18.43	-	12.5	337.14	. 115
5.8	6.48	. 174	19.5	630.89	. 109

```
APPENDIX 5.1.4 (contd.)
```

Date	P.mg.m				
12. day $^{-1}$	$P / B$	Date	P.mg.m		
12.8 .68	52.44	.186	27.5 .69	361.50	.100
19.8	137.27	.134	2.6	208.51	.122
26.8	144.72	.141	9.6	16.22	.110
3.9	422.00	.164			
9.9	195.77	.161			
23.9	40.72	.060			
30.9	139.02	.127			

Numbers of D.hyalina and classes per 25L from Patalas samples. for Q.M.

Date	Total	Ecgs	1.0 mm	$1.0-1.39 \mathrm{~mm}$	$1.40-2.0 \mathrm{~mm}$	\%2.0mm
26. 2.68	113	27	95	5	11	2
3. 3.	170	18	$\pm 39$	12	18	1
25.3.	50	0	31	10	9	0
1. 4.	244	128	188	35	9	12
8.4.	112	623	22	7	82	1
18.4.	66	19	29	1	20	16
29.4.	911	47	832	73	6	0
30.4.	1803	101	1627	145	25	6
4. 5.	856	2	820	23	12	1
6.5.	752	29	- 500	200	551	1
9. 5.	540	15	- 859	59	17	5
10. 5.	1187	43	865	200	112	10
12. 5.	1296	18	1149	89	43	15
13. 5.	851	8	605	108	136	2
14.5.	348	4	309	17	17	5
20. 5.	1201	18	817	220	153	11
21. 5.	1064	12	671	164	217	12
27. 5.	343	12	227	42	74	0
5.6.	74	0	173	1	0	0
10.6.	40	9	19	2	11	8
17.6.	321	4	288	17	16	0
24.6.	335	7	284	33	13	5
1.7.	145	2	123	14	8	0
8.7.	611	4	583	23	4	1
15.7.	1140	20	1045	72	21	2
22.7.	968	6	921	23	24	0
29.7.	32	3	29	1	2	0
5.8.	33	7	26	0	6	1
12.8.	20	0	18	0	2	0
19.8.	295	304	126	54	93	22
20. 8.	805	165	571	125	101	8
26. 8.	108	56	93	4	11	0
3.9.	564	20	517	32	15	0
23.9.	134	4	89	26	18	1
30.9.	256	21	167	48	37	4
7.10	244	5	108	28	8	0
14.10.	251	30	179	22	42	8
21.10.	17	0	7	0	10	0
18.11.	194	17	98	21	73	2
25.11.	118	16	40	31	35	8
2.12 .68	247	57	88	6	146	7
9.12.	73	32	35	2	36	0
16.12.	70	28	41	4	22	3
30.12.	116	71	44	15	51	6
6.1.69.	- 49	26	30	4	13	2
13. 1.	-79	40	47	15	15	2
20.1.	71	18	49	7	14	1
27.1.	223	144	152	18	51	2
3.2.	219	132	142	12	52	7
10.2	96	56	71	6	18	1
117.2.	43	12	30	5	6	2
24:2.	62	32	46	6	10	0
3.3.	93	38	62	10	18	3
110.3.	102	38	66	14	17	5
17.3.	82	41	56	6	19	1
124.3.	88	73	44	8	34	2

ARPEMDIX 5.1 .7 (contd.)

Date	Total	Eggs	1.0 mm	$1.0-1.39 \mathrm{~mm}$	$1.10-2.0 \mathrm{~mm}$	2.0 mm
31.3	57	16	36	8		
8.4	31	6	20	2	10	3
14.4	126	137	31	21	9	0
21.4	39	10	27	3	74	0
28.4	331	364	335	13	9	0
5.5	1501	525	1104	206	28	5
12.5	1248	82	1139	56	167	20
19.5	1227	25	1006	89	53	0
2.7 .5	883	62	626	91	128	4
2.5	$A 33$	11	331	32	156	10
9.6	251	4	192	27	68	20

Numhers of Fosmina sp., Cvclons sp., Diaptomus sp., and Asplanchna sp. per 25 L from Patalas samples for $\cap . M$.

Date	Bosmina	Cyclops	Diantomus	Asplanchna
26.2.68	0	28	14	0
3.3	1	31	6	0
25.3	2	15	9	0
1.4	11	135	13	0
8. 4	$\bigcirc$	25	20	0
18.4	2	76	14	0
29.1	5	130	10	$\bigcirc$
30.4	15	414	19	0
4.5	0	190	35	0
6.5	0	$\wedge 8$	48	0
9.5	2	210	88	0
10.5	12	27	95	0
12.5	10	116	51	0
13.5	7	56	24	0
14.5	0	32	15	0
20.5	$\stackrel{\square}{9}$	61	21	0
21.5	12	84	31	0
27.5	19	34	10	0
5.6	0	22	50	0
10.6	6	28	152	0
17.6	31	10	254	0
24.6	102	40	269	0
1.7	185	17	317	0
8.7	91	10	192	0
15.7	518	26	117	0
22.7	39	55	144	0
29.7	49	11	16	0
5.8	117	7	12	$\bigcirc$
12.8	16	11	17	0
19.8	6	17	76	0
20.8	3	135	245	0
26.8	1	30	227	0
3.9	1	27	34	0
23.9	1	14	18	0
30.9	0	3	6	0
7.10	1	5	52	$\bigcirc$
18.10	0	9	52	0
21.10	0	14	23	0
18.11	0	10	24	0
25.11	1	7	17	0
2.12	1	10	49	0
9.12	0	4	30	0
16.12	1	4	25	0
30.12	5	6	31	0
6.1 .69	1	7	13	$\bigcirc$
13.1	5	4	1.9	0
20.1	0	5	19	0
27.1	1	12	18	0
3.2	5	18	11	0
10.2	0	20	9	0
17.2	0	12	8	0
21.2	4	29	7	0
3.3	1	37	8	0
10.3	1	32	5	0
17.3	3	22	10	0
24.3	2	22	2	0

APPEMIIX 5.1.7 (contd.)

Date	Fosmina	Cvelons	Diantomus	Asplanehna
31.3	1			
6.4	0	25	20	2
14.4	9	36	6	3
21.4	6	34	3	0
28.4	3	169	7	2
5.5	41	$3 \Omega 6$	16	6
12.5	66	321	22	306
19.5	51	40	17	294
27.5	33	43	51	03
2.6	25	17	18	34
9.6	17	4	90	7

Dry weicht of daphnics and conepols. mer per V.H. ת.E.II

Date	Daphnids	Conepods	Date	Daphnids	Conepors
18.17 .67	104.33	19.22	20.5	69.14	7.89
25.10	39.20	5.32	12.6	110.17	16.35
1.11	49.39	6.07	26.6	62.06	8.85
3.11	3.56	. 30	10.7	33.54	8.36
15.11	21.14	5.21	24.7	15.13	4.15
22.11	14.52	. 75	5.8	95.39	12.60
29.11	17.7 ?	2.58	21.8	16.53	3.54
6.12	58.80	. 42	25.9	54.93	4.67
13.12	7.71	. 68	2.10	36.86	4.79
20.12	23.73	0.00	16.10	64.21	5.78
27.12	71.55	0.30	27.11	5月.68	3.25
3.1.69	22.41	2.61	12.12	13.43	1.11
10.1	19.3 ?	. 50	1.1 .69	12.22	1.74
17.1	39.80	3.58	8.1	21.ก3	1.87
24.1	32.81	1.36	5.2	2.33	. 69
7.2	28.26	3.68	19.2	5.26	$2 . \cap 7$
14.2	14.26	7.32	5.3	1.65	. 93
21.2	38.41	4.15	19.3	2.13	2.31
28.2	48.35	1.70	2.4	3.35	1.92
6.3	23.55	. 59	16.4	6.47	-
13.3	16.13	6.01	30.4	15.75	23.44
$2{ }^{2} .3$	22.55	2.08	14.5	47.65	06.21
27.3	117.62	5.50	28.5	137.53	31.92
3.4	131.50	8.34	11.6	171.43	16.83
24.4.68	171.55	36.63	25.6	117.11	12.61
15.5	222.?2	20.81			
22.5	65.10	11.42			



Appendix fig. 5.2.4(a).


APPENDIX 5.3.

A. Duncan, G. A. Cremer and T. Andrew

# THE MEASUREMENT OF RESPIRATORY RATES UNDER FIELD AND LABORATORY CONDITIONS DURING AN ECOLOGICAL STUDY ON ZOOPLANKTON 

Department of Zoology, Royal Holloway College, University of London, Englefield Green, Surrey, England


#### Abstract

Two procedures adopted in an attempt to measure the respiratory rates throughout the year of the naturally composed macro-zooplankton in near-field conditions are described critically and in detail. Some results are presented showing the changes in the oxygen consumption per mg dry weight of the larger zooplankton from two reservoirs in the lower Thames Valley (England). An attempt is made to compare the levels of "field" respiratory rates per 51 of the zooplankton during a period when Daphnia hyalina predominated with the levels obtained when 'laboratory respiratory rates of this species were applied to its field population numbers obtained during the same period.


## INTRODUCTION

In ecological studies, the measurement of respiratory rates can provide us with information difficult to obtain in other ways, namely, how much energy is required for maintaining normal activities in a particular species and, together with measurement of growth rates, gives us another estimate of the demands this species-population makes upon its food supply, in addition to a direct one. The respiratory rate is also an extremely sensitive measure of the physiological state of an animal and its measurement helps us to distinguish the different states of metabolism exhibited by animals throughout their life cycle in response to various environmental conditions. Some ecologists have suggested that it is not necessary to measure respiratory rate to the degree of sensitivity possible because the range of metabolic levels in any species is too small for the type of productive studies with which most International Biological Programme investigations are concerned. However, if our aim is not only to produce some value or other representing the secondary biological production in terms of $\mathrm{cal} / \mathrm{m}^{2}$ year but also to understand why this particular value was obtained and therefore to be able to predict future values, more needs to be known about the patterns of both metabolic land growth responses of different species to their environment.
It is well known that the metabolism of animals is affected by various environmental conditions such as temperature, food concentration and qua-
lity as well as the state of development and body size of the species itself. It may also be that an animal's previous history affects its respiratory responses to its present environmental conditions. In 1966, Blažka gave a very interesting paper in which he suggested that the relationship between the rate of oxygen consumption and temperature was not a simple one of temperature acclimatization. He postulated three types of metabolic regulations related in some way to food conditions which occurred in some species of the cladoceran genus Daphnia and perhaps in other crustacea; in two of these, the level of metabolism did not alter under the influence of immediate environmental change but required some time. The first of these metabolic regulatory mechanisms was revealed during a period of low winter metabolism in Daphnia hyalina coinciding with low concentrations of seston (less than $3 \mathrm{cal} / \mathrm{l})$; the respiratory rate decreased proportionately to the seston concentration so that the energy reserves of these winter daphnids could last for 6-7 weeks longer. The resumption of the spring-summer levels of metabolism did not take place immediately but only after about 6-8 weeks or two or three generations. The second type of metabolic regulation is concerned with the variability of the relationship between oxygen consumption and temperature; this was detected in several daphnid species, all with similar responses. Measurement of the metabolic rate per mg body $N$ at several temperatures from $5^{\circ}-30^{\circ} \mathrm{C}$ at different seasons of the year in field animals as well as in well-fed laboratory cultures kept at $20^{\circ} \mathrm{C}$ showed that the pattern of metabolic response was different in field animals at different seasons and was different in the laboratory and field animals. Blažka suggests that the field animals were exhibiting a more developed temperature acclimatization. The third type of metabolic regulation postulated concerns the varied percentage utilization of protein as a respiratory fuel under different levels of diet. Information about this was obtained by measuring the quantity of ammonia excreted as well as oxygen consumed and by assuming that all the ammonia excreted came from catabolized protein. In laboratory cultures of D. hyalina with a surplus of food, proteins were not used as a source of energy whereas in the field, betw'een $12-80 \%$ of the liberated energy came from protein metabolism. The percentage of protein metabolized in this way was affected by environmental factors, being increased with increase in temperature and decreased by an increase in the level of food.

If Blažka's ideas are correct and the previous nutritional history of an animal can affect its present responses to its environmental conditions, direct measurements of metabolic rates of field animals under field or simulated field conditions may enable us to detect this situation, to interpret the pattern of metabolic response to seasonal and other changes in its normal environment as well as to gain some idea of the degree of metabolic variation to be expected. During the last three years, an attempt has been made to measure the oxygen consumption of the naturally composed macro-zooplankton (retained on a 0.3 mm mesh) in as near to field conditions as possible in order to determine whether any pattern of variation in metabolism was detectable. This work was part of a study on the metabolism and secondary production of the zooplankton in three reservoirs of the lower Thames Valley whose phytoplankton was being investigated simultaneously (Steel et al., in preparation).

## METHODS

For field measurements of respiration at all seasons of the year, only the simplest, weather-proof apparatus can be employed. Simple glass stoppered flasks of 300 ml capacity protected in nalgene tubes were used, flushed and filled with reservoir water, to which were added concentrated suspensions of zooplankton filtered off through a 0.3 mm mesh from a quantitative sample. After fixation with an azide modified alkali-iodide solution, the level of dissolved oxygen was determined by the standard Winkler titration, using 50 cr 100 ml sub-samples and an 0.0125 N sodium thiosulphate solution. The level of dissolved oxygen in the animal flask was compared with that of two control flasks without animals, one of which, the initial control, was fixed immediately after filling and the other, the final control, at the same time and having received the same treatment as the animal flask; the difference between the animal and final control flasks was used to calculate oxygen consumption by the zooplankton concentrate. These two controls were important in that they provided a check on the oxygen changes occurring associated with the water medium itself. The flasks were suspended in the water body itself, which thus acted as a natural water bath, usually from a buoy or raft whose wind-induced movements provided some shaking. The term, "in as near to field conditions as possible" refers mainly to temperature, the water medium used and to the period of time between the collection of animals and their re-suspension inside bottles.

Two procedures were developed during the course of the study differing in the methods employed to collect the animals (nets hauled vertically from above the bottom to the surface or volume samples taken from various depths) and in the length of exposure period ( 24 or 4 hr ); the consequences of these technical differences are described below.

The earlier proc'edure was developed in 1966-1967 by Cremer, whose aim was to study comparatively the seasonal changes in numbers, biomass and metabolism of the zooplankton of three reservoirs. The sampling and subsequent treatment of samples is described in more detail in Cremer and DunCAN (1969) and was designed to provide composite collections consisting of a known number of vertical net hauls from several stations. These composite samples were consiodered to be representative of the water body as a whole, leaving in abeyance for the moment the question of how selectively nets sample a column of water. The net samples were convenient in that they provided an integrated sample of what was present throughout the depths. In the laboratory, the composite samples were split into equal sub-samples, using a plankton splitter designed by $\mathrm{Mctada} \mathrm{(1959)} \mathrm{and} \mathrm{these} \mathrm{were} \mathrm{used}^{\text {(192 }}$ for either counts and species analysis, dry weights of various components or respiratory measurements. The respiratory sub-sample was treated carefully and immediately; it was further sub-divided to provide suitable concentrations of animals whose oxygen consumption was not more than $20 \%$ of the initial oxygen concentration. It was a matter of experience to judge this, especially as the degree of sub-sampling necessary varies seascnally. Thus in May, during the peak daphnid numbers, too large a sub-sample was used resulting in a greater than $20 \%$ decrease in oxygen concentration in the animal flask so that these results had to be rejected. As the exposure period was 24 hours in order to encompass any diurnal variation, it was necessary
to use reservoir water filtered through a glass fibre pad ( $G F / C$ ) to remove the algae and bacteria; the use of filtered water meant that the animals had no food available while in the flasks. The two control flasks were also filled with filtered water and the differences in oxygen concentration was usually less than $30 \%$ of the animal oxygen consumption. The animal and final control flasks were suspended, undarkened, from a buoy in a windy part of the reservoir near the laboratory for 24 hours. As the oxygen consumption of the macro-zooplankton was obtained by subtracting the oxygen content of the final control from that of the animal flask, any heightened initial respiration due to the disturbance of the animals by handling will be incorporated in the results, although this error is somewhat reduced because of the long exposure period; Kamler (1969) has recently drawn attention to this error associated with closed-bottle-Winkler respirometers. To what extent lack of food for 24 hours affects the oxygen consumption of these animals is not known.

During this work, an attempt was made to estimate the oxygen consumption of not only the naturally composed zooplankton but also of its component fractions, namely the copepods, consisting of the larger copepodites and adult of Diaptomus gracilis and Cyclops spp., and the cladocerans, consisting of Daphnia hyalina, other species of Daphnia and the larger stages of Bosmina longirostris. It is possible to separate the copepods from the rest of the zooplankton by Straskraba's narcotic technique (Straskraba 1967) and to measure their oxygen consumption in a separate flask and to calculate the respiration of the cladocerans by subtraction. The effect of the mild narcotization on the respiratory rate of the copepods has not yet been tested but the animals recover very rapidly their normal swimming movements. However, the subsequent shaking to separate off the cladocerans is likely to produce a period of initial "disturbed" respiration as mentioned above.

The second procedure was developed during 1967 and 1968 by Duncan on one of the three reservoirs and on another during 1968 and 1969 by Andrew. In contrast to the procedure described above, the concentration of animals suspended in the flasks was determined by the number of animals collected by the five litre Patalas volume sampler (Patalas 1954) and retained on a 0.3 mm mesh net disc. Moreover, all the handling of animals, from their collection to their re-suspension inside the flasks, was carried out under field conditions, as shown in Fig. 1. The period of exposure was only four hours. Animals from a known depth were washed into a flask which was then flushed out with three times its own volume of coarse filtered reservoir water from the same d'epth. This coarse filtered water contained all the particles or organisms which passed through the 0.3 mm mesh net disc, so that some food was available for the herbivorous species. However, due to the presence of algae, detrital particles and smaller zooplanktonic organisms, it was necessary to darken the flasks to prevent photosynthetic production of oxygen and to expose the flask for a period too short for bacterial respiration to reach a measurable level. The difference in the oxygen concentration of the initial and final controls was greater than in the first procedure when glass fibre filtered water was used, and was between $50-100 \%$ of the animal oxygen consumption for most of the year but dropped to $25 \%$ with a mean value of about $10 \%$ during peak daphnid periods. Rather than acting as a control on the changes occurring in the water medium, these differen-
ces provided an estimate of the oxygen consumption of the various organisms present, which passed through the 0.3 mm mesh. The oxygen consumption of the macro-zooplankton was calculated from the difference in oxygen content of the final control and the animal flask and will include both the initial period of heightened respiration due to disturbance and possibly darkness as well as any possible effect which the presence of animal excretory products may have on algal or bacterial respiration. The former error will be more serious than in the first procedure since it will form a greater proportion of a four hour consumption. It may be possible to eliminate by fixing an additional animal bottle after the period of disturbance, previously determined. Duplicate samples were taken at 2 m intervals down to 9 m depth or to the thermocline at weekly or fortnightly intervals.


Fig. 1. Diagram showing the collection, handling and suspension of samples for "field" respirations

The time taken between the removal of animals from the reservoir to their re-suspension inside the flasks was much shorter in the second procedure. Usually all the titrations were completed on the same day and the animals filtered off to determine their dry weights. Thus it was possible to obtain quite quickly an estimate both of the standing crop and the metabolic intensity of the macrozooplankton, which is useful during periods of rapid change. Parallel samples were also taken for counts and species analysis.

One of the problems not yet solved satisfactorily is how to fix the oxygen in the animal flask. Direct fixation in the presence of the animals is the simplest technique which can be easily carried out at the edge of the reservoir; this does not seem to affect the precision of the titration carried out within an hour, $\pm 0.026 \mathrm{ml}$ thiosulphate for a 50 ml sample, but does alter its accuracy (Andrew, personal communication). The error which is $0.013 / 1 \mathrm{ml}$ hiosulphate $/ \mathrm{mg}$ dry wt . animal is the result of loss of iodine either because the manganic hydroxide which is trapped in or on the carapaces is not all dissolved on acidification or because it colours the animals' bodies and is isolated from the titration. An alternative method attempted during this work was to siphon off a sub-sample into a smaller bottle, filtered through
a coarse mesh disc to remove the animals. This produced rather variable results when performed at the edge of the reservoir because of the problems of preventing contact with air, of flushing the receiver bottle adequately to remove the film of air on its surfaces and of clogging of the netting by animals forced against it by water flow. It may be possible to use a syringe to withdraw a good sub-sample, especially if it is simultaneously fixed as in the Fox and Wingfield technique, although this method precludes any previous flushing of the syringe walls. The addition of liquid paraffin does not ensure isolation from atmospheric air and contaminates the bodies of the animals whose dry weights are desired. Transporting the flasks for fixation under laboratory conditions involves submerging them in water containers to prevent air diffusion through the ground glass joint, demands more labour, lengthens the exposure period and risks changes in temperature.

RESULTS
Figure 2 illustrates the seasonal changes in the oxygen consumption per mg dry weight of the larger zooplanktonic animals from two of the reservoirs during 1966, 1967, 1968 and 1969, measured by means of closed bottle respirometers, suspended in the reservoir for 24 or 4 hours; these measurements were performed by three different workers for various periods of time


Fig. 2. Seasonal changes in the oxygen consumption per mg dry weight of macro-zooplankton from two reservoirs in 1966-1969
at monthly, fortnightly or weekly intervals. Although there is considerable variation in the maximal absolute values of metabolic rate in different years for the same reservoir, these are probably not real but reflect procedural and calculation differences associated with different exposure times, errors due to disturbance from handling, darkness, absence of food. What is striking is the similar seasonal pattern of variation in metabolic intensity revealed in consecutive years with the periods of more intense metabolism occurring during the spring, in the summer and again during the autumn. The causes of some of these periods of more intense metabolism are not yet known, although in Queen Mary Reservoir, the spring period coincides with a period of intense parth'enogenetic reproduction by Daphnia hyalina resulting in very
! large standing crops of very young, small animals with a high level of weight specific respiratory rate. However, this is not the cause of the periods of more intense metabolism later in the year. Nor are these caused by the higher water temperatures prevailing at this time but rather they seem to be associated with changes in the specific composition of the zooplankton (with relatively few Daphnia hyalina, relatively more Bosmina longirostris and the appearance of considerable numbers of adult cyclopoids) and in their breeding conditions (a greater proportion of female Diaptomus gracilis bearing egg sacs). This is discussed in more detail in Cremer and Duncan (1969) but clearly more information is required about the respiratory rates of different develcpmental stages of these species in order to interpret the complex changes occurring in the summer and autumn.

The level and quality of food available is also likely to affect the metabolism of zooplanktonic animals. This would be best demonstrated by the direct measurement of ingestion and assimilation rates together with respiratory rates and some information on the percentage utilization of protein as a respiratory fuel, as suggested by Blažka (1966); the simultaneous and frequent measurement of these would be most indicative of the food situation but difficult to achieve. However, the juxtaposition in Fig. 3 of the seston concentration, level of zooplankton biomass (predominantly cladoceran) and its weight specific respiratory rate during the summer of 1968 in the top 5 m . of King George VI reservoir suggests that the overall decline in metabolic intensity of the zooplanktonic biomass may be a reflection of the dramatic decline in seston level. The alternation at almost weekly intervals of periods of high biomass levels and lower metabolism (19.VII, 1.VIII) with lower biomass levels and more intense metabolism (4.VII, 26. VII and $8-15$. VIII) coincides with the occurrence in the zooplankton of either predominantly large or predominantly small daphnids.

During the spring 1968, an attempt was made to compare the respiratory rates of the zooplankton in Queen Mary reservoir obtained in two ways. The spring period was chosen because at this time the zooplankton consists mostly of Daphnia hyalina reproducing most intensely and resulting in its highest levels of standing crop biomass and numbers. What was compared was the mean respiratory rate of zooplankton from 5 l samples from different depths as measured in closed bottle respirometers suspended in the reservoir with rates calculated from respiratory rates of different sizes measured in the laboratory applied to the same field populations.

In the laboratory, the progeny from several large, old females containing twenty or more parthenogenetic eggs were kept separate at $20^{\circ} \mathrm{C}$ in condi-


Fig. 3. Changes in the concentration of seston biomass and the oxygen consumption per mg dry weight and biomass of macro-zooplankton in one reservoir during the summer 1968. 1 -zooplankton metabolic rate, 2 -zooplankton biomass, 3 - seston biomass
tions of surplus food which was Oocystis spp. cultured from the reservoir populations. These old females were the precursors of the subsequent spring daphnid "bloom". The temperature was $20^{\circ} \mathrm{C}$ because it was the first temperature investigation to be completed in a programme studying the influence of temperature on the respiration and development of D. hyalina. The young released from these older females were individually named and their development followed in individual cultures until they died. Fourteen such individuals were successfully reared in dishes whose 30 ml filtered reservoir water was changed daily and replenished with surplus food. The following daily observation was made on each individual: growth as length in mm from the top of the helmet to the inflexion at the base of the spine; respiratory rate in the modified cartesian diver (Zeuthen 1950, Klekowski 1968); the occurrence of ecdysis; the reproductive state, involving the condition and size of ovary, the number of eggs and developmental state of the embryos. Figure 4 illustrates the developmental cycle of animal 11c which lived for 600 hr at $20^{\circ} \mathrm{C}$ up to its 10 th instar when it had produced 6 broods of eggs. Such a method of investigation pioneered by Dr. R. Z. Klekowski in the study on Macrocyclops albidus (Jur.) (Klekowski and Shushkina 1966) provides a pattern of both the individual's and the species' life history. Thus 11c missed producing a brood of eggs during its 7th instar, for some reason, and this coincided with both a period of respiration lower than expected (horizontal hatching) and a cessation of growth in length; the stippled areas re-


Fig. 4. The length, oxygen consumption, ecdysis and reproductive state of an individual Daphnia hyalina (number 11c), cultured at $20^{\circ} \mathrm{C}$, fed on Oocystis solitaria and observed at daily intervals throughout its life span of 600 hr . C -carapace instars
present the increased respiration associated with the development of an ovary and its released eggs and embryos.

For the purpose of the present comparison of metabolic rates, these fourteen life histories were employed to obtain average individual respiratory rates at $20^{\circ} \mathrm{C}$ for different length classes. Figure 5 a illustrates the relationship between the mean oxygen consumption per hour of an individual and body length and Fig. 5b presents the numbers of different length classes of D. hyalina present in Queen Mary reservoir during April, May and June 1968. From these two sets of data was calculated the total oxygen consumption of the D. hyalina present in five litres, both at $20^{\circ} \mathrm{C}$ and at field temperature (whose values are given on the lower axis); the measurements at $20^{\circ} \mathrm{C}$ were converted to field temperatures by means of the tables based on Krogh's nor'mal curve as published in Winberg (1956). The two population respirations, derived from laboratory measurements applied to field numbers, are illustrated in Fig. 6 along with the field respirations per 51 measured by means of closed-bottles suspended in the reservoir; this latter curve gives also the range of the $95 \%$ confidence limits.

Figure 6 shows that the field respirations during this period of the daphnid spring peak were considerably higher than the population respirations derived from laboratory measurements but the similar shape of the two sets lof curves suggests that the same events are being described. The reasons for this difference is not known at present. It is unlikely to be due to the respiration of the other species present in the field bottles since these were not numerically abundant during this time; the mean numbers per 5 l of larger zooplanktonic species between 25.III. 68 and 17.VI. 68 was 131 for D. hyalina, 18 for Cyclops sp., 10 for Diaptomus sp. and 1 for Bosmina sp. As mentioned



Fig. 5. A - the mean oxygen consumption of 14 Daphnia hyalina cultured at $20^{\circ} \mathrm{C}$, the relationship between oxygen consumption and body length. $B$-the numbers per 251 of Daphnia hyalina of different sizes in one reservoir during the spring 1968


Fig. 6. A comparison of the "field" and laboratory respiration of zooplankton from Queen Mary reservoir, 1968, during a period when Daphnia hyalina was predominant. The methods compared were the closed-bottle-Winkler respirometer and cartesian diver respirometers. --- field respiration at field temperature of zooplankton - mostly $D$. hyalina ( $\pm$ standard deviation. Numbers in brackets - ml space per daphnid); laboratory respiration of D. hyalina applied to field populations of D. hyalina
'earlier, any initial heightened respiration due to disturbance from handling is incorporated in the field respirations but has been excluded from the diver results which were applied to population numbers; this is a possible cause of the difference not yet measured. Another possible cause is the effect of crowding; Zeiss (1963) records that adult Daphnia magna confined to a space of 0.24 or $0.12 \mathrm{ml} /$ individual consumed 2 to 2.5 times more oxygen at $19-21^{\circ} \mathrm{C}$ than those with 12 ml available per individual and, on this basis, criticises the use of microrespirometers for the measurement of daphnid respiration. The space available per daphnid is given in $\mathrm{ml} /$ individual in Fig. 6 (the numbers in brackets) and varied throughout the spring period. It is clear that it was minimal (between 1 and $2 \mathrm{ml} /$ individual) during the greatest respiration, however, the space available for single daphnids of various ages in the cartesian divers used was between 0.01 and 0.02 ml and the respiratory rates when applied to population numbers revealed lower levels of respiration per 51 rather than higher. An important difference between the two respirometers was the possibility for active movement; all sizes of animals in the bottles but only the smaller daphnids in the divers could swim actively during the respirometric measurements. Moreover, in both respirometers, the period of measurement lasted about 4 to 5 hours which may be a long time for a daphnid to be without food, as was the situation in the divers, whereas normal food in reduced concentration was present in the field bottles. Clearly, further investigation needs to be undertaken in order to determine the causes of the difference in level revealed in Fig. 6.

## SUMMARY

1. Two procedures adopted in an attempt to measure the respiratory rates hroughout the year of the naturally composed macro-zooplankton in near-field conditions are described critically and in detail. Both procedures involved the use of concentrates of zooplankton and closed-bottle-Winkler respirometers but differed in the presence or absence of food and in the duration of exposure ( 4 or 24 hr ).
2. Some results are presented showing the changes in the oxygen consumption per mg dry weight of the larger zooplankton from two reservoirs in the lower Thames Valley (England) at different seasons of the year and during a period of rapid decline in the summer seston concentration. The possible causes of the changes revealed are discussed.
3. An attempt is made to compare the levels of "field" respiratory rates per il of the zooplankton during a period when Daphnia hyalina predominated with the levels obtained when laboratory respiratory rates of this species were applied to its field population numbers obtained during the same period. The laboratory neasurements were obtained from daily measurements throughout the life cycle if fourteen D. hyalina, cultured at $20^{\circ} \mathrm{C}$ and fed on Oocystis solitaria by means of leuthen's stoppered cartesian diver, an approach pioneered by Klekowski in Matrocyclops albidus Jur. (Klekowski and Shushinina 1966). The pattern of changes in the population respiratory rate throughout this period of spring peak abundance tiven by the two methods was very similar but the levels differed. Possible causes of this difference are discussed.

## Acknowledgements

The authors wish to acknowledge their indebtedness both to Windle Taylor, C. B. E., Direct of Water Examination of the Metropolitan Water Board, for his permission to work on the reservoirs of the lower Thames Valley and to Doc. Dr.
R. Z. Klekowski for so generously passing on his experience both in the techniques of the Zeuthen stoppered cartesian diver and in its application to ecological problems.

## REFERENCES

Blazka, P. 1966. Metabolism of natural and cultured populations of Dapnia related to secondary production. Verh. int. Ver. Limnol., 16, 380-385.
Cremer, G. A., Duncan, A. 1969. A seasonal study of zooplanktonic respiration under field conditions. Verh. int. Ver. Limnol., 17, 181-190.
Kamler, E. 1969. A comparison of the closed-bottle and flowing-water methods for measurements of respiration in aquatic invertebrates. Pol. Arch. Hydrobiol., 16, 31-49.
Klekowski, R. Z. 1968. Cartesian diver microrespirometry for terrestrial animals. In: W. Grodzinski, R. Z. Klekowski [Eds.] Methods of ecological bioenergetics, 51-66, Warszawa-Kraków, Pol. Acad. Sci.
Klekowski, R. Z., Shushkina, E. A. 1966. Ernährung, Atmung, Wachstum und Energie-Umformung in Macrocyclops albidus (Jurine). Verh. int. Ver. Limnol., 16, 3999-418.
Motoda, S. 1959. Devices of simple plankton apparatus. Mem. Fac. Fish. Hookaido Univ., 7, 73-94.
Patalas, K. 1954. Porównawcze badania nad nowym typem samoczynnego czerpacza planktonowego i hydrochemicznego [Comparative studies on a new type of self acting water sampler for plankton and hydrochemical investigations]. Ekol. pol. Ser. A, 2, 231-242, [Engl. summ.].
Straskraba, M. 1967. Estimation of respiration in the field of natural populations of Cladocera and Copepoda using the quantitative method of plankton sorting. Arch. Hydrobiol., 63, 497-511.
[Winberg, G. G.] Винберг, Г.Г. 1956. Интенсивность обмена и пищевые потребности pbō [Rate of metabolism and food requirements of fishes]. Minsk, Izd. Belgosuniversiteta. [Engl. ed.: Transl. Ser., 194, Fish. Res. Board of Canada].
Zeiss, F. R. 1963. Effects of population densities on zooplankton respiration rates. Limnol. Oceanogr., 8, 110-115.
Zeuthen, E. 1950. Cartesian diver respirometer. Biol. Bull., 98, 139-143.

PRODUCTIVITY PROBLEMS OF FRESHWATERS. WARSZAWA - KRAKÓW 1972

James A. P. STEEL, Annie DUNCAN and Tony E. ANDREW<br>Metropolitan Water Board,<br>Queen Elizabeth 11 Reservoir,<br>Molesey Road, West Molesey, Surrey, England<br>Royal Holloway College (University of London),<br>Englefield Green, Surrey, England<br>The New University of Ulster,<br>Coleraine, Northern Ireland

# The daily carbon gains and losses in the seston of Queen Mary Reservoir, England, during early and mid 1968 

The aim of the contribution is to describe the seasonal changes in the daily rates of carbon "gains" and "losses" in the seston of Queen Mary Reservoir during 1968, in order to indicate the possible temporal and quantitative trophic inter-relationships between the basin's phytoplankton and herbivorous zooplankton. The methods adopted for measurement and computation of the various parameters involved are described: net primary production, algal numbers, chlorophyll, total particulate carbon, algal immigration and emigration, time-depth temperature and silica distributions and, for Daphnia hyalina Leydig, the numerical density, length frequency distribution, individual body weight, duration of developmental cycle, mean respiratory rate and daily assimilation. The weekly sampled biomasses of D. hyalina, algae and detritus illustrate the statics of the situation and the daily carbon "gains" and "losses" in the reservoir seston its dynamics; a computed balance between these daily "gains" and "losses" provide an estimate of the required increase and decrease or of the goodness, or poorness, of the attempt to balance the incoming and outgoing carbon fluxes.

## 1. INTRODUCTION

The aim of the contribution is to describe the seasonal changes in the daily rates of carbon "gains" and "losses" in the seston of Queen Mary reservoir during 1968, in order to indicate the possible temporal and quantitative trophic inter--relationships between the basin's phytoplankton and herbivorous zooplankton. It represents a first attempt to integrate the results from $\mathrm{Ph} . \mathrm{D}$. theses and co-operative studies designed to form a parallel investigation involving two or three trophic levels and has proved more successful in the first half of the year than during the late summer period.

## 2. DESCRIPTION OF THE RESERVOIR

Queen Mary Reservoir is one of several being studied which are situated in the Thames valley and which form part of the Metropolitan Water Board's storage system for the London water supply. These reservoirs are wholly man-made, consisting of a basin excavated to the London clay and surrounded by an embankment of materials with a clay core "keyed" into the lower clay. Queen Mary Reservoir is the largest of the Board's reservoirs at present and its major supply reservoir; its area is 290 ha, depth 12 m and volume $30 \times 10^{6} \mathrm{~m}^{3}$. Normally between 1 and $2 \%$ of its total volume passes through it every day. The reservoir is roughly circular with a baffle wall delimiting the outlet area to approximately one third of the whole. Water enters the basin through pipes with submerged orifices and impinges upon a small wall which thus absorbes most of the momentum of the inlet water and restricts any mixing to the space between the pipes and the wall. The reservoir is filled from the River Thames, an enriched calcareous river with the following nutrient levels: $\mathrm{NH}_{3}-\mathrm{N}-0.1-1.2 \mathrm{mg} / \mathrm{l}, \mathrm{NO}_{3}-\mathrm{N}-5 \mathrm{mg} / \mathrm{l}$, orthophosphate $-1-2 \mathrm{mg} / \mathrm{l}$, $\mathrm{SiO}_{2}-15-20 \mathrm{mg} / \mathrm{l}, \mathrm{CaCO}_{3}-250 \mathrm{mg} / \mathrm{l}$ (Windle Taylor 1967).

The large area, shallowness and volume transported per day generally ensures that this reservoir is isothermal for most of the summer. However, when periods of intense radiation coincide with relative stillness, some degree of stratification appears but usually only involves the bottom metre of the reservoir, there being some chemical deterioration. Such conditions do not usually persist for very long periods and the reservoir then de-stratifies. The period of stratification is not usually long enough for gross deterioration of the bottom waters and overturns do not affect the quality of the general water mass, although such overturns may, of course, affect biological production. Thus, this reservoir is characterized by intermittent stratification with, perhaps, three mixings per year (Windle Taylor 1967).

## 3. METHODS

3.1 Thes amples upon which this study is based were taken at weekly intervals between 9-11 a.m. from the outlet raft (Fig. 1). In an earlier investigation ( Ste e l et al., in preparation), this reservoir was sampled from three major areas, the inlet (A), tip of baffle (B) and outlet (C). In each area, depth samples were obtained from two or more stations and then bulked so as to
provide a composite sample from that area. Subsequent comparison of the chemical and biological data of the composite samples indicated sufficient homogeneity of the organisms being considered here for the outlet samples to be taken as representative of the whole. Measurements of vertical extinction coefficients of the outlet water during 1968 indicate, after some period of closure of the reservoir, the presence of river water within two days. This would seem to support the presence of a fairly high degree of horizontal mixing implicit in the sampling results.


Fig. 1. Map of Queen Mary Reservoir and its time-depth distribution of temperature and dissolved silica during 1968
3.2 Net primary production has been computed from an assessment of the total. daily gross production reduced by an assumed daily respiratory loss. The daily gross production was determined by short-term (4-6 hours) exposure of replicate light and dark bottles at various depths, any change of oxygen being measured by Winkler's titration, the dosing reagents of which were modified to $50 \%$ Pomeroy-Kirschmann concentration. The iodine was released by phosphoric acid and a 100 ml aliquot titrated with N/80 thiosulphate in a Smith's Free Piston Burette, using fresh starch indicator. The resultig profile was planimetrically integrated with respect to depth and converted to a daily rate per unit area by a day rate conversion factor determined as part of the main study. The daily respiratory loss per unit volume was assessed from the respiratory rate in the dark and assumed to be constant throughout the 24 hours. The time course of change in oxygen concentration over 24-30 hours was measured and the linear or near-linear portion of the result regressed. In order to convert this day rate per unit volume to a day rate per unit area, it was multiplied by an assumed mixing depth assessed from vertical distribution of counts and chlorophyll data. Thus, net production:

$$
N P=\Sigma n P-n \cdot R \cdot 24 \cdot z_{m}
$$

(Talling 1957) where: $\Sigma n P=$ the daily integrated gross production, $n=$ the phytoplankton concentration per unit volume, $R=$ the respiratory rate per unit phytoplankton, $z_{m}=$ the mixed depth.

This net production in terms of oxygen was then converted to carbon net production assuming a PQ of one.
3.3 Phytoplankton counts were performed using a clarified membrane filter technique ( Ste el 1969) in conjunction with Utermöhl sedimentation-counting with an inverted microscope. Occasional size measurements were performed so as to allow volume assessment.
3.4 Chlorophyll was measured by filtration of $1-21$ samples onto Whatman GFC glass fibre filter papers with an addition of $\mathrm{MgCO}_{3}$. These were extracted in $90 \%$ acetone for 24 hours in the dark at $-4^{\circ} \mathrm{C}$. The samples were then filtered through either sintered glass or glass fibre and their optical density (OD) determined in a Beckman DB spectrophotometer. Chlorophyll concentration was determined as $11.9 \mathrm{OD}_{663} \mathrm{mg} / \mathrm{m}^{3}$ ( Talling and Driver 1961).
3.5 Total particulatecarbon was determined by wet oxidation of the total particulate material with a potassium dichromate-sulphuric acid oxidant together with a silver sulphate catalyst. The oxygen demand was determined by back titration with $\mathrm{N} / 80$ ferrous ammonium sulphate and equivalence to $C$ was used to assess total $C$. The particulate carbon was separated by filtration of $1.0-0.11$ of sample, after removal of the larger zooplankton, through Whatman GFC glass fibre paper previously treated in a muffle furnace for at least 0.5 hour at $550^{\circ} \mathrm{C}$. A regression of total particulate carbon and computed total plant volume was then used to assess plant carbon and this subtracted from the total particulate carbon was taken to be detrital (tryptonic) carbon.
3.6 Algal immigration was computed from a knowledge of the volume of river water flowing into the basin each day and the concentration and size of those phytoplankters which also were forming the reservoir's standing crop. From this data, and using the above carbon/ volume relationship, a total daily input per unit area was calculated, assuming "instantaneous" mixing.
3.7 Algal'emigration was computed in an exactly similar fashion, but using the reservoir phytoplankton standing crop.
3.8 The time-depth temperature distribution (Fig. 1) was constructed from the data automatically recorded from twelve resistance thermometers placed at 1 m intervals throughout the depth at the outlet raft.
3.9 The time-depth silica distribution (Fig. 1) was constructed from silica determinations by an acid molybdate method; the developed yellow colour was read at $420 \mathrm{~m} \mathrm{\mu}$ in a Beckman DB spectrophotometer.
3.10 The numerical density and length frequency distribution of populations of Daphnia hyalina Leydig, the only daphnid and the main planktonic herbivore present, were based upon averages of samples collected by means of a 5-litre Patalas volume sampler at five depths which were then filtered through a coarse mesh net (aperture size - 0.26 mm ) in situ. Total counts were made of all the organisms retained on this net, through which few small daphnids could pass. The following daphnid stages were recorded: eggs or embryos, less than 1 mm length, $1.00-1.39 \mathrm{~mm}, 1.40-1.99 \mathrm{~mm}$, greater than 2.00 mm ; number of individuals with eggs or embryos; numbers of eggs or embryos per individual. Simultaneously, vertical hauls with coarse and fine plankton nets were taken to provide larger samples but these net samples collected only one third of the daphnids collected by the volume sampler for the same volume of water filtered and have not been used in the calculations.
3.11 Individual body weights of daphnids for the field size classes were obtained from a length-body weight regression based upon measurement of several hundred field individuals using a Cahn electrobalance. The carbon content was $44 \%$ of the dry weight.
3.12 The duration of the developmentalcycle and the mean respirat ory rates of daphnids of different lengths at 10 and $20^{\circ} \mathrm{C}$ were determined experimentally (Duncan, Cremer and Andrew, in preparation); in each case, about 20 individuals, fed on an excess supply of Oocystis solitaria Wittrock, were reared under controlled temperature conditions, from newly released young of known age until their death. At both temperatures, the oldes $t$ individual had attained the 10th-11th instar but was about 600 hours old at $20^{\circ} \mathrm{C}$ and 1,200 hours old at $10^{\circ} \mathrm{C}$. Rates of oxygen consumption were measured by means of Zeuthen's stoppered cartesian diver (Zeuthen 1950, Klekowski 1968) at 24 hourly or 48 hourly inter-
vals. Respiratory rates for other temperatures were obtained from diver measurements of field individuals. The developmental period for other temperatures were calculated from the measured durations on the basis of Krogh's normal curve (Winberg 1968). An RQ $=1.0$ was assumed for converting oxygen consumption to carbon production.
3.13 Daphnid daily assimilation (as carbon per unit area) has been calculated as the sum of their daily production and respiration, assuming that no natality or mortality occurred during the 24 hours being considered; this under-estimates the "grazing demands" of the population since the assimilation efficiency in Cladocera is usually less than $50 \%$ ( Richman 1958, Klekowski and Ivanowa - personal communication on Simocephalus vetulus) and diver respiratory rates probably represent something less than active metabolism. Daphnid production was calculated from numbers and size frequency distribution in the weekly samples, the maximal dry body weight attained by the field length classes and the duration of development at different temperatures. Thus,

$$
\sum_{i=1}^{5} N_{i} \cdot \frac{\left(w_{i \max }-w_{(i-1) \max }\right)}{D_{t}} \cdot 0.44
$$

where : $N_{i}=$ the average number of a field size class per unit area [five field classes are involved (eggs/embryos, less than $0.1 \mathrm{~mm}, 1.0-1.39 \mathrm{~mm}, 1.40-1.99 \mathrm{~mm}$ and greater than 2.0 mm )] ; $w_{l_{\text {max }}}-$ $\left.-w_{(i-1) \max }\right) \cdot 0.44=$ the difference between the maximal dry weights of individuals belonging to successive field classes, converted to carbon; $D_{t}=$ the duration in days of the development of the field classes at field temperatures.

The population respiration was calculated from mean respiratory rates per hour for different instars at different temperatures, assuming that the rate of oxygen consumption was constant throughout 24 hours; no account has been taken of any possible food effects upon either the respiratory rate or duration of development. Thus,

$$
\sum_{i=1}^{5} N_{l} \cdot R_{i t} \cdot 24 \cdot 0.4
$$

where : $R_{t t}=$ the oxygen consumption per hour of an individual at the field temperature; this is converted to carbon production per day, assuming an $\mathrm{RQ}=1$.
3.14 Inter-sample computation: As the carbon fluxes associated with the biomass changes relate to "inter-sample" periods, it was necessary to estimate the values of the other carbon fluxes at similar times. Such "inter-sample" values have been obtained by assuming a linear rate between samples, that is,

$$
\underset{\substack{\text { Inter } \\ n \rightarrow n+1}}{ }=\frac{a_{\mathrm{n}+1}-a_{\mathrm{n}}}{7}
$$

where : $a=$ a parameter determined on or computed for sample days $n$ and $n+1$ at weekly intervals.

Some earlier model work on this system indicates that, with respect to the various rates involved and the sampling frequency, such an assumption would not invalidate the relationship detailed in what follows.

## 4. RESULTS

Figure 2 illustrates the qualitative and quantitative algal history at 1 m depth throughout the period considered. It may be seen that the algae of this eutrophic basin are dominated by diatoms. There are usually much larger crops of blue-
-green algae, however, the very poor late summer of 1968 seems to have greatly reduced their abundance. A particular characteristics of those algal crops which do exist is their "dynamic" nature ; they are usally either increasing or decreasing, any quasi steady state being maintained for only short periods. Figure 2 also illustrates the seasonal changes in the numerical abundance of five length groups of Daphnia hyalina, the two larger of which are reproductive. The fact that the group less than 1.0 mm is more abundant than the numbers of eggs-embryos implies that the larger reproductive sizes have been inadequately sampled.


Fig. 2. Weekly sampled species composition of phytoplankton and size-frequency distribution of Daphnia hyalina

Figure 3 presents the weekly sampled biomasses of Daphnia hyalina, algae and detritus. The daphnid biomass was calculated from the product of arithmetic mean concentration of each size group and the group mean dry weight, multiplied by the total depth. Figures 2 and 3 show the considerable overwintering population of Daphnia as well as its three periods of reproductive activity. An
estimate of the detrital carbon biomass was obtained from regression analyses on particulate chlorophyll and carbon concentration. The zero chlorophyll-carbon was taken to represent detrital carbon. This concentration was multiplied by the total depth to obtain biomass. Subtraction of that biomass from the total particulate carbon biomass is an estimate of the algal carbon biomass. This estimate is supplemented by values based upon algal volume and total particulate carbon regression analyses, the resulting coefficients being taken as an indication of the value of the carbon-volume relationship of the algae. This relationship was used to ensure that the chlorophyll-carbon analyses were restricted to more or less. steady values of the carbon/chlorophyll ratio. The algal biomass has a largest value ( $32 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) at the end of the spring bloom of Stephanodiscus astraea Grunow. The subsequent lesser peak (about $15 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) is almost coincident with a diatom maximum in the River Thames. The final biomass of August is,


Fig. 3. Weekly sampled biomasses of Daphnia hyalina, algae and detritus as g carbon $\cdot \mathrm{m}^{-2}$
as already indicated, much reduced from "normal", and would usually also be of the order of $15 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$. The January and early February detrital biomass ( $4.5 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) is a result of the large silt suspensions in the high winter flows of the River Thames. The post-algal peak "levels" (about $2.5 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) are presumably partially the result of the manner of estimate, that is, it includes as non--chlorophyllous carbon bacteria, rotifers and Protozoa, although some loss of these will occur due to the pore size of the glass fibre filters used and/or fragmentation of the organisms.

Figure 4 illustrates the main daily carbon "gains" and "losses" in the reservoir during 1968, where daily carbon "gains" are represented by the rate of
phytoplankton net carbon fixation ( $+N P$ ) plus the daily addition of river algal and detrital carbon (algal and detrital immigration) and any decrease in either algal $(-\Delta B / \Delta t)$ or detrital $(-\Delta C / \Delta t)$ biomass. The daily carbon "losses" are the algae and detritus carried out of the basin (algal and detrital emigration), any increase in either algal $(+\Delta B / \Delta t)$ or detrital $(+\Delta C / \Delta t)$ biomass, any negative net


Fig. 4. Computed inter-sample daily carbon fluxes (expressed in terms of $\mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ )
production $(-N P)$ plus the carbon which must have been assimilated daily by the daphnid population present [daphnid assimilation $(P+R)$ ], these being the main planktonic herbivore. A computed balance between these daily "gains" and "losses" was then set up, the required increases and decreases being shown in Figure 5.

Figures 3 and 4, respectively, illustrate the statics and dynamics of the situation, and thus in what follows any quoted biomass estimate will be found in Figure 3 whereas any cited rate can be read off from Figure 4.

In the early part of the year, what algal biomass was present (between $1-2 \mathrm{~g}$ $\mathrm{C} \cdot \mathrm{m}^{-2}$ ) is dominated by a large variety of Stephanodiscus astraea (cell size : 1518 by $40-50 \mu$ ) and data on both net production (up to $2,000 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ ) and changes in the standing crop (up to $2,500 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ ) suggest that nearly all the production is being manifest as new algal biomass. This state of affairs continued until early March when the basin was shut in; within the next


Fig. 5. The required carbon fluxes for numerical balance of Figure 4
ten day, further net production reduced the silica concentration within the basin to nearly zero (Fig. 1) and this coincided with the maximal algal biomass of 32 g $\mathrm{C} \cdot \mathrm{m}^{-2}$. This was then followed by an algal biomass reduction to approximately $10 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ due to settlement of the moribund $S$. astraea.
i During the same period, and up to mid-April, when the biomass of Daphnia hyalina was low (less than $1 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ), daphnid assimilation was also at a very low level (about $100 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{day}^{-1}$ ); the food available was either nutritively poor detrital material ( $4 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) or, during February, March and April, large populations of the relatively inedible diatom, S. astraea. Although as many as $60 \%$ of the mature-sized daphnids (which were not very numerous) were bearing | eggs, the low number of eggs per female (about $4.0 /$ female) seemed to confirm the poor quality of the food available.

The basin was then re-opened to the river in late March and the consequence was an introduction of more silica as well as the diatoms, Asterionella formosa Hassall and Stephanodiscus hantzschii Grunow, from the river. A rapid growth : of $S$. hantzschii and, to a lesser extent $A$. formosa, took place within the river during the first three weeks in April, thus producing a greater algal immigration ( $300 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2}: \mathrm{day}^{-1}$ ) into the reservoir. Just after the main growth of Stepha-
nodiscus astraea, when the daphnid biomass was still at a relatively low level (about $1 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ), this algal immigration, plus some degree of basin net production, were sufficient to produce a second growth of A. formosa and S. hantzschii $\left(15 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}\right)$. Towards the peak of this growth in late April, Figure 4 demonstrates that there was virtually no net production within the basin and, in fact, there seemed to be a large column respiratory deficit (up to $500 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{day}^{-1}$ ). Meanwhile, the high biomass levels were being maintained by algal immigration.

By the beginning of April, a striking increase in the number of eggs per female daphnid ( $14.0 /$ female) took place and remained high ( 10 eggs/female) until the end of April ; this coincided with the better quality of the food available in the actively growing cells of the river diatoms. By the end of April and during May, a major change occurred, namely, the appearance of a large increase in daphnid biomass (up to $5 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) whose daily assimilation level reached values of $1,000 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ and, concomitantly, the plant biomass decreased to a low level (to about $0.5 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ). This reduction occurred although the same level of algal immigration ( $270 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{day}^{-1}$ ) from the river was sufficient earlier to support much larger basin plant biomasses. The immigrant algae consisted of smaller diatoms ( $S$. hantzschii with a cell size of $8-10$ by $8-10 \mu$ and $A$. formosa with a cell size of $2-4$ by $60-120 \mu$ ) and these appear to be the sole potential food available to support these high daphnid assimilations apart from the detrital carbon immigration of about $136 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$. It therefore appears that the daphnid population at this time was being maintained entirely by the immigrant river algae and detritus, which, however, was being voraciously grazed down so that no measureable basin net production was detectable. At the end of April and beginning of May, considerable numbers of adult Cyclops vicinus Uljanin and the predacious rotifer Asplanchna sp. were present and may have cropped the smaller daphnids; this effect has not as yet been demonstrated.

This situation continues until the end of May and early June, when the river population of algae declines so that the algal immigration level drops to 85 mg $\mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day ${ }^{-1}$ and, consequently, the daphnid biomass falls to their low summer value ( $0.5 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ) with a daily assimilation rate of barely $200 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2}$ - day ${ }^{-1}$ during June. Throughout this period (end of May to July) the main food available was again detrital carbon ( $270-85 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{day}^{-1}$ ) upon which the daphnids could only produce 2 or fewer eggs per female.

In the absence of any serious levels of herbivorous grazing in mid-June, the basin production attains values of about $1,000 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ which results, by the end of June and beginning of July, in a further increase in the algal biomass (up to $14 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ), consisting of Asterionella formosa and Tribonema bombycinum Derbes et Solier, the former being twice more abundant than the latter. During the second week in July, the concentration of Asterionella decreased as that of Tribonema increased, resulting in a reversal of dominance, although the biomass remained at much the same level ( $10-14 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$ ).

However, after some delay, daphnid assimilation demands increased up to
$900 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ in mid-July and remained at more than $300 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ - day ${ }^{-1}$ until the beginning of August, during which period, the algal biomass was rapidly reduced to $1 \mathrm{~g} \mathrm{C} \cdot \mathrm{m}^{-2}$, even although some net production ( 500 -$-700 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ ) was still taking place. It would appear that the basin production is not being maximally exploited by the cladocerans during this period which could be the result of predation. During July, the only invertebrate carnivore present in large numbers was Asplanchna sp. whereas, later during August, when the rotifer numbers were still high, the predacious Leptodora kindtii (Focke) and adult cyclopoids were also present. Any cropping effect by these predators has not yet been assessed quantitatively and nothing is known about the numbers of young fish larvae in the reservoir.

At the present state of this investigation, it is not possible, as had been hoped; to continue to the end of the year such interpretations of the changes in algal and daphnid biomasses because of various difficulties, one of which is the assessment of "mixed depth" for net production and respiratory calculations for blue-green algae.

## 5. SUMMARY AND DISCUSSION

It is suggested that the following sequence of biological events occurred in Queen Mary Reservoir during the first half of 1968 :

1. A period of low "holding" net primary production, light-limited, which together with immigrant detrital carbon, supports the low winter daphnid population with a characteristically low egg number per female.
2. This is followed by a period of high basin net production but little river algal immigration; the still high level of detrital carbon immigration provides the sole support of the daphnid biomass since the dominant alga is of an almost inedible size. The net production results in very high algal biomasses of Stephanodiscus astraea.
3. Nutrient limitation takes place in the relatively quiescent conditions of the enclosed basin; there is a period of sedimentation of the senescent diatom.
4. The opening of the basin to the river brings in new silica and new algae from the river, Stephanodiscus hantzschii and Asterionella formosa. The resulting basin net production plus the continual algal immigration results in new levels of algal biomass
5. The river algal biomass then attains maximum levels, resulting in a decline in the level of river silica. This also causes a decrease in the level of silica in the basin and, coinciding with this, high levels of deficit algal respirations were measured. The algae of river origin are smaller diatoms, apparently grazeable by daphnids, since large increases in daphnid biomass, produced by increased egg production per female, coincides with reductions in diatom biomass.
6. This situation of low diatom biomass plus the relatively constant, fairly high input of river diatoms changes when the river diatom population declines. The daphnid population, although possibly subject to predation by rotifer and adult cyclopoid predators, appears to overgraze its food supply and its biomass falls to very low levels.
7. In the absence of daphnids, further net production by the summer population of Asterionella and Tribonema results in new algal biomass.
8. After some delay, an increase in daphnid biomass then occurs and the grazing power of this new daphnid population, possibly also subject to predation by Asplanchna coincides with a reduction in the plant biomass to low levels.

Figure 5 is indicative of the goodness, or poorness, of the attempt to balance the incoming and outgoing carbon fluxes; the biomasses illustrated in Figure 3 represent temporary resting places of carbon in its passage through the trophic system of the basin-ecosystem, with complete capability to effect such a balance, "deficit" sources and sinks would be unnecessary and Figure 5 would just show a zero line. The deviation from perfect balance shown in Figure 5 is some measure of the imperfections of our field sampling, measurement and computation techniques; these result from (1) non-measurement of parameters of importance (bacterial production, diatom sedimentation, herbivore grazing directly, young fish predation); (2) imperfect measurement of other parameters (algal respiration, active metabolism of daphnids, adequate field sampling, particularly of the larger daphnid sizes); (3) imperfect computation by which we mean inadequate understanding of the relevant factors influencing organisms in nature and under the conditions of measurement, resulting in imperfect transfer coefficients.

The larger sink fluxes in Figure 5 are those of mid-March, that is, immediately after the spring maximum of Stephanodiscus astraea. The requirement is almost entirely to satisfy a large reduction in algal biomass ( $-\Delta B / \Delta t$ ) (approximately about $2,000 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{day}^{-1}$ ) and the net production of that reducing biomass. It would seem reasonable to ascribe this reduction to sedimentation, and some field measurements made during the post-bloom spring period confirm that such a value for sedimentation is reasonable for that time. The other moderately large sink fluxes are those of June and July, in which probably all the errors play a part. Thus an unknown amount of sedimentation will have taken place and, as there was only partial circulation of the water column, much greater difficulty exists in estimating the "mixed depth". Adequate assessment of such an effect is important for the estimation of net production and over- or underestimation may well be due to an under- or overestimate of this depth. It is quite possible that such a "mixed depth" may not in fact exist for the whole of the 24 hours.

It had been hoped to continue this mode of approach throughout the year, however this has not proved possible for the biomasses of late August and early September. As this was a mixture of blue-green and motile green algae, it has been impossible to obtain an objective estimate of their circulated depth from a single sampling station. Choice of what seemed a reasonable depth, based on their
vertical distribution at the outlet, led to some very large estimates of their net production ( $2,000 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot$ day $^{-1}$ ) which could only be balanced by a "deficit" sink of approximately $1,500 \mathrm{mg} C \cdot \mathrm{~m}^{-2} \cdot$ day $^{-1}$. The buoyancy and motility of the organisms makes it unlikely that such a deficit could be explained by sedimentation. It would seem, therefore, that the net production was being overestimated, due probably to some overestimate of the gross production and the difficulties of obtaining a meaningful column respiration.

Although the attempt to equate the carbon fluxes then being measured has been only partially successful, it has proved useful in revealing where subsequent work should be concentrated.

The contribution of J.A.P. Steel is by permission of Dr. E. Windle Taylor, Commander of the British Empire, Director of Water Examination of the Metropolitan Water Board. A. Duncan and T.E. Andrew wish to thank Dr. E. Windle Taylor for permission to sample in Queen Mary Reservoir and for generous help from his staff. T.E. Andrew was in receipt of a Studentship from the Natural Environmental Research Council which he gratefully acknowledges.

## REFERENCES

Duncan, A., Cremer, G.A., Andrew, T.E. (in preparation) - On life cycle energy budgets of Daphnia hyalina Leydig at 10 and $20^{\circ} \mathrm{C}$ and in excess of food.
Klekowski, R.Z. 1968 - Cartesian diver technique for microfrespirometry (IBP Meeting on Methods of Assessment of Secondary Production in Freshwaters) - Prague, 26 pp. (mimeographed).
Richman, S. 1958 - The transformation of energy by Daphnia pulex - Ecol. Monogr. 28: 273-291.
S te e l, J.A.P. 1969 - A membrane filter method for counting algae - J. Soc. Wat. Treat. Examin. 18: 343-346.
Steel, J.A.P., Bellinger, E., Colling, R.L., Duncan, A., Cremer, G.A. (in preparation) - A limnological survey of three storage reservoirs in the lower Thames valley, England.
Talling, J.F. 1957 - The phytoplankton population as a compound photosynthetic system - New Phytol. 56: 133-149.

Talling, J.F., Driver, D. 1961 - Some problems in the estimation of chlorophyll-a in phytoplankton (Proc. of the Conference on Primary Productivity Measurement. Hawaii) U.S. Atomic Energy Commission Publication, T1D, 7633: 142-146.

Winberg, G.G. (editor) 1968 - Mctody opredeleniya produkcii vodnykh zhivotnykh [The methods for the estimation of production of aquatic animals] - Minsk, 242 pp .
Windle Taylor, E. 1967 - Forty-first report on the results of the bacteriological, chemical and biological examination of the London waters for the years 1965-66 - Metropolitan Water Board, London.
Zeuthen, E. 1950 - Cartesian diver respirometer - Biol. Bull. 98: 139—143.


[^0]:    $1_{\text {Now }}$ the Thames Water Authority, Metronolitan Division.
    ${ }^{2}$ For the sake of brevity in the text, the quen Mary Reservoir will he referred to as Q.M., Queen Elizabeth IJ as Q.E.II, and the Metronolitan Water Boarct as M.W.B.

[^1]:    2see footnote on page 7.

[^2]:    Fig. 4.I.5(g)(ii).

[^3]:    Fig. 5.1.4(f).

[^4]:    Fig. 5.l.4(g).

